
Problem 11776
(American Mathematical Monthly, Vol.121, May 2014)

Proposed by D. Beckwith (USA).

Given urns U1, . . . , Un in a line, and plenty of identical blue and identical red balls, let an be the
number of ways to put balls into the urns subject to the conditions that
(i) each urn contains at most one ball,
(ii) any urn containing a red ball is next to exactly one urn containing a blue ball, and
(iii) no two urns containing a blue ball are adjacent.
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Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Two non-empty urns belong to the same connected component if also the urns between them are
non-empty. Let ck be the number of ways to put the balls in a connected component of k urns. It
is easy to see that when k ≡ 1 (mod 3) then ck = 1:

B,BRRB,BRRBRRB,BRRBRRBRRB,BRRBRRBRRBRRB, . . .

Moreover, if k ≡ 2 (mod 3) then a disposition can be obtained from one of size k − 1 by adding a
ball R to the left or to the right, so ck = 2. On the other hand, if k ≡ 0 (mod 3) then a disposition
can be obtained from one of size k−2 by adding a two balls R to the left and to the right, so ck = 1.
It follows that
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Let us assume that a disposition has j connected components of total size k. Let ti be the number
of empty urns between the (i − 1)th and the ith components for i = 1, . . . , j + 1. Then ti ≥ 1 for
i = 2, . . . , j and the number of dispositions of this kind is(

n− k + 1

j

) ∑
k1+k2+···+kj=k

j∏
i=1

cki
= [xk]

(
n− k + 1

j

)
Cj(x)

Hence

an =
∑
k≥0

[xk]
∑
j≥0

(
n− k + 1

j

)
Cj(x) =

n∑
k=0

[xk](1 + C(x))n−k+1

= [xn]

n∑
k=0

(1 + C(x))n−k+1xn−k = [xn]
∑
k≥0

(1 + C(x))k+1xk

= [xn]
1 + C(x)

1 − x(1 + C(x))
= [xn]

1 + x + 2x2

1 − x− x2 − 3x3

and (a) is proved.



As regards (b), we observe that for r ≥ 0,
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Thus (b) follows from (a):
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