# Eight circles theorem-A generalization Brianchon's theorem 

Proposed by Dao Thanh Oai, solution by Luis Gonzalez

January 30, 2014


#### Abstract

We give a result: Eight circles theorem Theorem 1. Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ lie on a circle; $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ lie on another circle. Such that $A_{1}, A_{2}, B_{1}, B_{2}$ lie on a circle $\left(C_{1}\right), A_{2}, A_{3}, B_{2}, B_{3}$ lie on a circle $\left(C_{2}\right)$; $A_{3}, A_{4}, B_{3}, B_{4}$ lie on a circle $\left(C_{3}\right) ; A_{4}, A_{5}, B_{4}, B_{5}$ lie on a circle $\left(C_{4}\right) ; A_{5}, A_{6}, B_{5}, B_{6}$ lie on a circle $\left(C_{5}\right) ; A_{6}, A_{1}, B_{6}, B_{1}$ lie on a circle $\left(C_{6}\right)$. Then $C_{1} C_{4}, C_{2} C_{5}, C_{3} C_{6}$ are concurrent.If two circles $\left(A_{1} A_{2} A_{3}\right)$ and $\left(B_{1} B_{2} B_{3}\right)$ have same center, then six points $C_{1} C_{2} C_{3} C_{4} C_{5} C_{6}$ are is a circumscribed hexagon




Figure 1: Eight circles theorem

Proof. Label $\left(O_{1}\right)$ and $\left(O_{2}\right)$ the circumcircles of the hexagons $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ and $B_{1} B_{2} B_{3} B_{4} B_{5} B_{6}$ respectively. Invert $\left(O_{1}\right)$ and $\left(O_{2}\right)$ into concentric circles through an inversion centered
at one of their limiting points. In the new figure, by obvious symmetry, $A_{1} A_{2} B_{2} B_{1}$, $A_{2} A_{3} B_{3} B_{2}$, etc, become isosceles trapezoids with $A_{1} A_{2}\left\|B_{1} B_{2}, A_{2} A_{3}\right\| B_{2} B_{3}$, etc $\Longrightarrow$ cyclic hexagons $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ and $B_{1} B_{2} B_{3} B_{4} B_{5} B_{6}$ with corresponding parallel sides are then homothetic $\Longrightarrow A_{1} A_{3} \| B_{1} B_{3} \Longrightarrow A_{1} A_{3} B_{3} B_{1}$ is isosceles trapezoid due to symmetry, thus in the original figure $A_{1} A_{3} B_{3} B_{1}$ is cyclic. Hence, $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$ concur at the radical center $H$ of $C_{1}, C_{2}, \odot\left(A_{1} A_{3} B_{3} B_{1}\right) \Longrightarrow H A_{1} \cdot H B_{1}=H A_{2} \cdot H B_{2}=H A_{3} \cdot H B_{3}$ $\Longrightarrow H$ is center of the direct inversion that swaps $\left(O_{1}\right)$ and $\left(O_{2}\right)$. By similar reasoning, $A_{4} B_{4}, A_{5} B_{5}, A_{6} B_{6}$ go through $H$.

Let $O_{1} O_{2}$ cut $\left(O_{1}\right)$ and $\left(O_{2}\right)$ at $X, Y$ and $U, V$ respectively ( U is between $\mathrm{H}, \mathrm{X}$ and V is between $\mathrm{H}, \mathrm{Y})$. Arbitrary ray issuing from $H$ cuts $\left(O_{1}\right),\left(O_{2}\right)$ at $A, B . U X A B$ and $V Y A B$ are then cyclic $\Longrightarrow$ perpendicular bisector $\ell$ of $A B$ cuts perpendicular bisectors of $U X, V Y$ at their circumcenters $I, J$, respectively. If $M, N, L$ are the midpoints of $A B, U X, V Y$ and $P$ is the projection of $O_{2}$ on $\ell$, then from cyclic $I M H N$ and $J M H L$, we have $\angle N P O_{2}=\angle N I O_{2}$ and $\angle L P O_{2}=\angle L J O_{2}$. But since $O_{2} I$ and $O_{2} J$ clearly bisect $\angle B O_{2} U$ and $\angle B O_{2} V$, the angle $\angle I O_{2} J$ is right $\Longrightarrow N I O_{2}=\angle L O_{2} J \Longrightarrow \angle N P L=\angle N P O_{2}+\angle L P O_{2}=\angle L O_{2} J+$ $\angle L J O_{2}=90^{\circ} \Longrightarrow P$ moves on the circle $\omega$ with diameter $N L \Longrightarrow \ell$ envelopes the ellipse $\mathcal{E}$ with focus $O_{2}, O_{1}$ and pedal circle $\omega$.

As a result, perpendicular bisectors of $A_{1} B_{1}, A_{2} B_{2}$, etc, touch the ellipse $\mathcal{E} \Longrightarrow$ hexagon $C_{1} C_{2} C_{3} C_{4} C_{5} C_{6}$ is circumscribed to $\mathcal{E}$. Hence, by Brianchon theorem, $C_{1} C_{4}, C_{2} C_{5}$ and $C_{3} C_{6}$ concur. Obviously when $\left(O_{1}\right)$ and $\left(O_{2}\right)$ are concentric, $\mathcal{E}$ becomes a circle concentric with these.

Dao Thanh Oai, Kien Xuong, Thai Binh, Viet Nam.
Email address oaidt.slhpc@gmail.com
Luis Gonzalez, 5 Julio Avenue, Maracaibo, Venezuela.
E-mail address: luis240985@gmail.com

