Eight circles theorem-A generalization Brianchon's theorem

Proposed by Dao Thanh Oai, solution by Luis Gonzalez

January 30, 2014

Abstract

We give a result: Eight circles theorem

Theorem 1. Let $A_1, A_2, A_3, A_4, A_5, A_6$ lie on a circle; $B_1, B_2, B_3, B_4, B_5, B_6$ lie on another circle. Such that A_1, A_2, B_1, B_2 lie on a circle $(C_1), A_2, A_3, B_2, B_3$ lie on a circle (C_2) ; A_3, A_4, B_3, B_4 lie on a circle (C_3) ; A_4, A_5, B_4, B_5 lie on a circle (C_4) ; A_5, A_6, B_5, B_6 lie on a circle (C_5) ; A_6, A_1, B_6, B_1 lie on a circle (C_6) . Then C_1C_4, C_2C_5, C_3C_6 are concurrent. If two circles $(A_1A_2A_3)$ and $(B_1B_2B_3)$ have same center, then six points $C_1C_2C_3C_4C_5C_6$ are is a circumscribed hexagon

Figure 1: Eight circles theorem

Proof. Label (O_1) and (O_2) the circumcircles of the hexagons $A_1A_2A_3A_4A_5A_6$ and $B_1B_2B_3B_4B_5B_6$ respectively. Invert (O_1) and (O_2) into concentric circles through an inversion centered

at one of their limiting points. In the new figure, by obvious symmetry, $A_1A_2B_2B_1$, $A_2A_3B_3B_2$, etc, become isosceles trapezoids with $A_1A_2 \parallel B_1B_2$, $A_2A_3 \parallel B_2B_3$, etc \implies cyclic hexagons $A_1A_2A_3A_4A_5A_6$ and $B_1B_2B_3B_4B_5B_6$ with corresponding parallel sides are then homothetic $\implies A_1A_3 \parallel B_1B_3 \implies A_1A_3B_3B_1$ is isosceles trapezoid due to symmetry, thus in the original figure $A_1A_3B_3B_1$ is cyclic. Hence, A_1B_1, A_2B_2, A_3B_3 concur at the radical center H of $C_1, C_2, \odot (A_1A_3B_3B_1) \implies HA_1 \cdot HB_1 = HA_2 \cdot HB_2 = HA_3 \cdot HB_3$ $\implies H$ is center of the direct inversion that swaps (O_1) and (O_2) . By similar reasoning, A_4B_4, A_5B_5, A_6B_6 go through H.

Let O_1O_2 cut (O_1) and (O_2) at X, Y and U, V respectively (U is between H,X and V is between H,Y). Arbitrary ray issuing from H cuts $(O_1), (O_2)$ at A, B. UXAB and VYAB are then cyclic \implies perpendicular bisector ℓ of AB cuts perpendicular bisectors of UX, VY at their circumcenters I, J, respectively. If M, N, L are the midpoints of AB, UX, VY and P is the projection of O_2 on ℓ , then from cyclic IMHN and JMHL, we have $\angle NPO_2 = \angle NIO_2$ and $\angle LPO_2 = \angle LJO_2$. But since O_2I and O_2J clearly bisect $\angle BO_2U$ and $\angle BO_2V$, the angle $\angle IO_2J$ is right $\implies NIO_2 = \angle LO_2J \implies \angle NPL = \angle NPO_2 + \angle LPO_2 = \angle LO_2J + \angle LJO_2 = 90^\circ \implies P$ moves on the circle ω with diameter $NL \implies \ell$ envelopes the ellipse \mathcal{E} with focus O_2, O_1 and pedal circle ω .

As a result, perpendicular bisectors of A_1B_1 , A_2B_2 , etc, touch the ellipse $\mathcal{E} \Longrightarrow$ hexagon $C_1C_2C_3C_4C_5C_6$ is circumscribed to \mathcal{E} . Hence, by Brianchon theorem, C_1C_4 , C_2C_5 and C_3C_6 concur. Obviously when (O_1) and (O_2) are concentric, \mathcal{E} becomes a circle concentric with these.

Dao Thanh Oai, Kien Xuong, Thai Binh, Viet Nam. Email address oaidt.slhpc@gmail.com Luis Gonzalez, 5 Julio Avenue, Maracaibo, Venezuela. E-mail address: luis240985@gmail.com