Exponent GCD Lemma

Masum Billal

Abstract

It is not that this particular lemma hasn't been known so far. But it hasn't been established as a lemma yet, whereas I find it pretty useful to solve many problems in olympiads. Therefore, I would like to infer this as The Exponent Gcd Lemma. The problems this lemma can prove, can be proved in other ways too. But this way I have found solutions much more easier and elegant, more importantly, avoiding some sledge hammers. This lemma sounds like Lifting The Exponent(LTE) lemma a bit. But they actually have not much in common. But as a matter of fact, LTE can be proven by this lemma. And also, a very important special case of Zsigmondy's Theorem can be proven using this lemma. The most impressive property of this lemma is it's simplicity.

1 Main Lemma

Before we introduce our lemma, we shall denote x is co-prime to y by $x \perp y$. That is,

$$
x \perp y \Rightarrow \operatorname{gcd}(x, y)=1
$$

For brevity assume,

$$
f(x, y, n)=\frac{x^{n}-y^{n}}{x-y}
$$

where $\nu_{p}(n)=\alpha$ means α is the greatest positive integer so that, $p^{\alpha} \mid n$. Alternatively, we can denote by $p^{\alpha} \| n$.

Lemma 1.1 (Exponent GCD Lemma). If $x \perp y$,

$$
g=\operatorname{gcd}(x-y, f(x, y, n)) \mid n
$$

Proof Of Lemma. Re-call the identity,

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\ldots+x y^{n-2}+y^{n-1}\right)
$$

This yields

$$
f(x, y, n)=x^{n-1}+x^{n-2} y+\ldots+x y^{n-2}+y^{n-1}
$$

We know that,

$$
P(x)=(x-a) \cdot Q(x)+r
$$

then $r=P(a)$. So, in this case,

$$
f(x, y, n)=(x-y) \cdot Q(x, y, n)+r
$$

Hence, $r=f(y, y, n)$. Here,

$$
f(y, y, n)=y^{n-1}+y^{n-2} \cdot y+\ldots+y^{n-1}=n y^{n-1}
$$

From Euclidean algorithm, we can infer

$$
\operatorname{gcd}(x-y, f(x, y, n))=\operatorname{gcd}(x-y, f(y, y, n))=\operatorname{gcd}\left(x-y, n y^{n-1}\right)
$$

Earlier we assumed $x \perp y$, and so $x-y \perp y^{n-1}$ because

$$
\operatorname{gcd}(x-y, y)=\operatorname{gcd}(x, y)=1
$$

Thus,

$$
g=\operatorname{gcd}(x-y, f(x, y, n))=\operatorname{gcd}(x-y, n)
$$

This gives us $g \mid n$.

Corollary 1. This can be true for all odd n too:

$$
\left.\operatorname{gcd}\left(x+y, \frac{x^{n}+y^{n}}{x+y}\right) \right\rvert\, n
$$

Corollary 2. For a prime p,

$$
\operatorname{gcd}(x-y, f(x, y, p))=1 \text { or } p
$$

2 Applications

Problem 1 (Hungary, 2000). Find all positive primes p for which there exist positive integers n, x, y such that

$$
x^{3}+y^{3}=p^{n}
$$

Solution. For $p=2, x=y=1$ suffices. Assume $p>2$, hence odd.
If $\operatorname{gcd}(x, y)=d$ then, we have $d \mid p^{n}$. So, d is a power of p. But in that case, we can divide the whole equation by d and still it remains an equation of the same form. Let's therefore, consider $\operatorname{gcd}(x, y)=1$.

$$
(x+y)\left(x^{2}-x y+y^{2}\right)=p^{n}
$$

According to the lemma,

$$
g=\operatorname{gcd}(x+y, f(x, y, 3) \mid \operatorname{gcd}(x+y, 3)
$$

This means $g \mid 3$. If $g=3$, then we have $3 \mid p$ or $p=3$. On the other hand, $g=1$ shall mean that $x+y=1$ or $x^{2}-x y+y^{2}=1$. Neither of them is true. Because $x, y>0, x+y>1$ and $(x-y)^{2}+x y>1$.

Problem 2 (APMO 2012 - Problem 3). Find all pairs of (n, p) so that $\frac{n^{p}+1}{p^{n}+1}$ is a positive integer where n is a positive integer and p is a prime number.

Solution. We can re-state the relation as

$$
p^{n}+1 \mid n^{p}+1
$$

Firstly, we exclude the case $p=2$. In this case,

$$
2^{n}+1 \mid n^{2}+1
$$

Obviously, we need

$$
n^{2}+1 \geq 2^{n}+1 \Rightarrow n^{2} \geq 2^{n}
$$

But, using induction we can easily say that for $n>4,2^{n}>n^{2}$ giving a contradiction. Checking $n=1,2,3,4$ we easily get the solutions:

$$
(n, p)=(2,2),(4,2)
$$

We are left with p odd. So, $p^{n}+1$ is even, and hence $n^{p}+1$ as well. This forces n to be odd. Say, q is an arbitrary prime factor of $p+1$. If $q=2$, then $q \mid n+1$ and since

$$
n^{p}+1=(n+1)\left(n^{p-1}-\ldots .+1\right)
$$

and p odd, there are p terms in the right factor, therefore odd. So, we infer that $2^{k} \mid n+1$ where k is the maximum power of 2 in $p+1$.

We will use the following lemmas without proof for being well-known.
Lemma 2.1. If $a \mid b$ and $a \mid c$, then $a \mid \operatorname{gcd}(b, c)$.
Lemma 2.2. If

$$
a^{x} \equiv b^{x} \quad(\bmod n)
$$

and,

$$
a^{y} \equiv b^{y} \quad(\bmod n)
$$

then

$$
a^{\operatorname{gcd}(x, y)} \equiv b^{\operatorname{gcd}(x, y)} \quad(\bmod n)
$$

Lemma 2.3.

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

where e is the Euler constant.
Now, we prove the following lemmas.
Lemma 2.4. If x is the smallest positive integer such that

$$
a^{x} \equiv 1 \quad(\bmod n)
$$

then if,

$$
a^{m} \equiv 1 \quad(\bmod n)
$$

m is divisible by x.
Proof. Let, $m=x k+r$ with $r<x$. Then, since $a^{x} \equiv 1$,

$$
a^{m} \equiv\left(a^{x}\right)^{k} \cdot a^{r} \equiv 1
$$

This implies,

$$
a^{r} \equiv 1 \quad(\bmod n)
$$

But this is a contradiction for the minimum $x>r$. So, we must have $r=0$ that is, $x \mid m$.

Lemma 2.5. If p is an odd prime, then $p^{n} \leq n^{p}$ for $p \leq n$.

Proof. This is true for $n=1$. Say, this is also true for some smaller values of n. Now, we prove this for $n+1$.

Since $p \leq n$,

$$
(p n+p)^{p} \leq(p n+n)^{p}
$$

and therefore,

$$
(n+1)^{p}=n^{p}\left(1+\frac{1}{n}\right)^{p} \leq p^{n}\left(1+\frac{1}{p}\right)^{p} \leq p^{n} \cdot e<p^{n+1}
$$

Back to the problem. Assume that q is odd.

$$
q\left|p^{n}+1\right| n^{p}+1
$$

Write them using congruence. And we have,

$$
\begin{aligned}
& n^{p} \equiv-1 \\
\Rightarrow & (\bmod q) \\
n^{2 p} \equiv 1 & (\bmod q)
\end{aligned}
$$

Suppose, $e=\operatorname{ord}_{q}(n)$ i.e. e is the smallest positive integer such that

$$
n^{e} \equiv 1 \quad(\bmod q)
$$

Then, $e \mid 2 p$ and $e \mid q-1$ from lemma 2.4.
Also, from Fermat's theorem,

$$
n^{q-1} \equiv 1 \quad(\bmod q)
$$

Therefore,

$$
n^{\operatorname{gcd}(2 p, q-1)} \equiv 1 \quad(\bmod q)
$$

From p odd and $q \mid p+1, p>q$ and so p and $q-1$ are co-prime. Thus,

$$
\operatorname{gcd}(2 p, q-1)=\operatorname{gcd}(2, q-1)=2
$$

From lemma 2.1, $e \mid \operatorname{gcd}(2 p, q-1)$ and so we must have $e=2$. Again, since p odd, if $p=2 r+1$,

$$
n^{2 r+1} \equiv n \quad(\bmod q)
$$

Hence, $q \mid n+1$. If $q \left\lvert\, \frac{n^{p}+1}{n+1}\right.$, then by the lemma 1.1 we get

$$
q\left|\operatorname{gcd}\left(n+1, \frac{n^{p}+1}{n+1}\right)\right| p
$$

which would imply $q=1$ or p. Both of the cases are impossible. So, if s is the maximum power of q so that $q^{s} \mid p+1$, then we have $q^{s} \mid n+1$ too for every prime factor q of $p+1$. This leads us to the conclusion $p+1 \mid n+1$ or $p \leq n$ which gives $p^{n} \geq n^{p}$ by lemma 2.5. But from the given relation,

$$
p^{n}+1 \leq n^{p}+1 \Rightarrow p^{n} \leq n^{p}
$$

Combining these two, $p=n$ is the only possibility to happen.
Thus, the solutions are

$$
(n, p)=(4,2),(p, p)
$$

Problem 3 (Masum Billal). For rational a, b and all prime $p, a^{p}-b^{p}$ is an integer. Prove that, a and b must be integer.

Solution. Since a, b are rational, we can assume that $a=\frac{m}{d}, b=\frac{n}{d}$ with $m \perp d, n \perp d$. Otherwise, if $m \not \perp d$ we can divide by the common factor. Moreover, we can assume $m \perp n$. Indeed, if not, say r is a prime factor of d. Then we must have $r \not \backslash \operatorname{gcd}(m, n)$. Otherwise the condition $m \perp d$ would be broken. Therefore, without loss of generality, $m \perp n$. Let q be a prime factor of d. Thus,

$$
q^{p} \mid m^{p}-n^{p}
$$

for all p, and e be the smallest positive integer such that

$$
m^{e} \equiv n^{e} \quad(\bmod q)
$$

Like lemma 2.4, we can say that $e \mid p$ for all prime p. But this impossible except for $e=1$. Hence, $q \mid m-n$. Now, take a prime $p \neq q$, and from Exponent GCD lemma we have

$$
\begin{aligned}
& \operatorname{gcd}(m-n, f(m, n, p)) \mid p \\
\Longrightarrow & q \nmid f(m, n, p)
\end{aligned}
$$

This gives us, $q^{p} \mid m-n$ for all prime $p \neq q$ which leaves a contradiction inferring that d can't have a prime factor i.e. d must be 1 . And then, a and b both are integers.
Problem 4 (A Special Case Of Zsigmondy's Theorem ${ }^{1}$). Prove that $x^{p^{k}}-y^{p^{k}}$ has a prime factor q such that $q \mid x^{p^{k}}-y^{p^{k}}$ but $q \nmid x^{p^{i}}-y^{p^{i}}$ for $0 \leq i<k$.

Problem 5 (Lifting The Exponent Lemma). If p is an odd prime, and x, y integers so that $x \perp y$ and $p \mid x-y$ with

$$
\nu_{p}(x-y)=\alpha, \nu_{p}(n)=\beta
$$

then,

$$
\nu_{p}\left(x^{n}-y^{n}\right)=\alpha+\beta
$$

Problem 6 (Masum Billal). If $p>x^{2}-x+1$ is a prime and $x>2$ a positive integer. Prove that

$$
f(x)=(1+x)^{p}-\left(1+x^{p}\right)
$$

has at least 4 distinct prime factors.
Masum Billal CSE, University Of Dhaka

[^0]
[^0]: ${ }^{1}$ It is the most important case of Zsigmondy's theorem we use in problems. If someone considers the original theorem to be a sledge hammer, in that this lemma should work fine.

