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Abstract

It is not that this particular lemma hasn’t been known so far. But it hasn’t been established
as a lemma yet, whereas I find it pretty useful to solve many problems in olympiads. Therefore,
I would like to infer this as The Exponent Gcd Lemma. The problems this lemma can prove,
can be proved in other ways too. But this way I have found solutions much more easier and
elegant, more importantly, avoiding some sledge hammers. This lemma sounds like Lifting The
Exponent(LTE) lemma a bit. But they actually have not much in common. But as a matter of
fact, LTE can be proven by this lemma. And also, a very important special case of Zsigmondy’s
Theorem can be proven using this lemma. The most impressive property of this lemma is it’s
simplicity.

1 Main Lemma

Before we introduce our lemma, we shall denote x is co-prime to y by x ⊥ y. That is,

x ⊥ y ⇒ gcd(x, y) = 1

For brevity assume,

f(x, y, n) =
xn − yn

x− y
,

where νp(n) = α means α is the greatest positive integer so that, pα|n. Alternatively, we can denote
by pα||n.

Lemma 1.1 (Exponent GCD Lemma). If x ⊥ y,

g = gcd(x− y, f(x, y, n))|n

Proof Of Lemma. Re-call the identity,

xn − yn = (x− y)(xn−1 + xn−2y + . . .+ xyn−2 + yn−1)

This yields
f(x, y, n) = xn−1 + xn−2y + . . .+ xyn−2 + yn−1

We know that,
P (x) = (x− a) ·Q(x) + r

then r = P (a). So, in this case,

f(x, y, n) = (x− y) ·Q(x, y, n) + r

Hence, r = f(y, y, n). Here,

f(y, y, n) = yn−1 + yn−2 · y + . . .+ yn−1 = nyn−1

From Euclidean algorithm, we can infer

gcd(x− y, f(x, y, n)) = gcd(x− y, f(y, y, n)) = gcd(x− y, nyn−1)
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Earlier we assumed x ⊥ y, and so x− y ⊥ yn−1 because

gcd(x− y, y) = gcd(x, y) = 1

Thus,
g = gcd(x− y, f(x, y, n)) = gcd(x− y, n)

This gives us g|n.

Corollary 1. This can be true for all odd n too:

gcd
(
x+ y,

xn + yn

x+ y

)
|n

Corollary 2. For a prime p,
gcd(x− y, f(x, y, p)) = 1or p

2 Applications

Problem 1 (Hungary, 2000). Find all positive primes p for which there exist positive integers n, x, y
such that

x3 + y3 = pn

Solution. For p = 2, x = y = 1 suffices. Assume p > 2, hence odd.
If gcd(x, y) = d then, we have d|pn. So, d is a power of p. But in that case, we can divide the

whole equation by d and still it remains an equation of the same form. Let’s therefore, consider
gcd(x, y) = 1.

(x+ y)(x2 − xy + y2) = pn

According to the lemma,
g = gcd(x+ y, f(x, y, 3)| gcd(x+ y, 3)

This means g|3. If g = 3, then we have 3|p or p = 3. On the other hand, g = 1 shall mean
that x + y = 1 or x2 − xy + y2 = 1. Neither of them is true. Because x, y > 0, x + y > 1 and
(x− y)2 + xy > 1.

Problem 2 (APMO 2012 - Problem 3). Find all pairs of (n, p) so that
np + 1
pn + 1

is a positive integer

where n is a positive integer and p is a prime number.

Solution. We can re-state the relation as

pn + 1|np + 1

Firstly, we exclude the case p = 2. In this case,

2n + 1|n2 + 1

Obviously, we need
n2 + 1 ≥ 2n + 1⇒ n2 ≥ 2n
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But, using induction we can easily say that for n > 4, 2n > n2 giving a contradiction. Checking
n = 1, 2, 3, 4 we easily get the solutions:

(n, p) = (2, 2), (4, 2)

We are left with p odd. So, pn + 1 is even, and hence np + 1 as well. This forces n to be odd.
Say, q is an arbitrary prime factor of p+ 1. If q = 2, then q|n+ 1 and since

np + 1 = (n+ 1)(np−1 − ....+ 1)

and p odd, there are p terms in the right factor, therefore odd. So, we infer that 2k|n+ 1 where k
is the maximum power of 2 in p+ 1.

We will use the following lemmas without proof for being well-known.

Lemma 2.1. If a|b and a|c, then a| gcd(b, c).

Lemma 2.2. If
ax ≡ bx (mod n)

and,
ay ≡ by (mod n)

then
agcd(x,y) ≡ bgcd(x,y) (mod n)

Lemma 2.3.

lim
n→∞

(
1 +

1
n

)n

= e

where e is the Euler constant.

Now, we prove the following lemmas.

Lemma 2.4. If x is the smallest positive integer such that

ax ≡ 1 (mod n)

then if,
am ≡ 1 (mod n)

m is divisible by x.

Proof. Let, m = xk + r with r < x. Then, since ax ≡ 1,

am ≡ (ax)k · ar ≡ 1

This implies,
ar ≡ 1 (mod n)

But this is a contradiction for the minimum x > r. So, we must have r = 0 that is, x|m.

Lemma 2.5. If p is an odd prime, then pn ≤ np for p ≤ n.
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Proof. This is true for n = 1. Say, this is also true for some smaller values of n. Now, we prove
this for n+ 1.

Since p ≤ n,
(pn+ p)p ≤ (pn+ n)p

and therefore,

(n+ 1)p = np(1 +
1
n

)p ≤ pn(1 +
1
p
)p ≤ pn · e < pn+1

Back to the problem. Assume that q is odd.

q|pn + 1|np + 1

Write them using congruence. And we have,

np ≡ −1 (mod q)

⇒ n2p ≡ 1 (mod q)

Suppose, e = ordq(n) i.e. e is the smallest positive integer such that

ne ≡ 1 (mod q)

Then, e|2p and e|q − 1 from lemma 2.4.
Also, from Fermat’s theorem,

nq−1 ≡ 1 (mod q)

Therefore,
ngcd(2p,q−1) ≡ 1 (mod q)

From p odd and q|p+ 1, p > q and so p and q − 1 are co-prime. Thus,

gcd(2p, q − 1) = gcd(2, q − 1) = 2

From lemma 2.1, e| gcd(2p, q − 1) and so we must have e = 2. Again, since p odd, if p = 2r + 1,

n2r+1 ≡ n (mod q)

Hence, q|n+ 1. If q|np+1
n+1 , then by the lemma 1.1 we get

q| gcd
(
n+ 1,

np + 1
n+ 1

)
|p

which would imply q = 1 or p. Both of the cases are impossible. So, if s is the maximum power of
q so that qs|p+ 1, then we have qs|n+ 1 too for every prime factor q of p+ 1. This leads us to the
conclusion p+ 1|n+ 1 or p ≤ n which gives pn ≥ np by lemma 2.5. But from the given relation,

pn + 1 ≤ np + 1⇒ pn ≤ np

Combining these two, p = n is the only possibility to happen.
Thus, the solutions are

(n, p) = (4, 2), (p, p)
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Problem 3 (Masum Billal). For rational a, b and all prime p, ap − bp is an integer. Prove that, a
and b must be integer.

Solution. Since a, b are rational, we can assume that a = m
d , b = n

d with m ⊥ d, n ⊥ d. Otherwise,
if m 6⊥ d we can divide by the common factor. Moreover, we can assume m ⊥ n. Indeed, if not, say
r is a prime factor of d. Then we must have r 6 | gcd(m,n). Otherwise the condition m ⊥ d would
be broken. Therefore, without loss of generality, m ⊥ n. Let q be a prime factor of d. Thus,

qp|mp − np

for all p, and e be the smallest positive integer such that

me ≡ ne (mod q)

Like lemma 2.4, we can say that e|p for all prime p. But this impossible except for e = 1. Hence,
q|m− n. Now, take a prime p 6= q, and from Exponent GCD lemma we have

gcd (m− n, f(m,n, p)) |p
=⇒q 6 |f(m,n, p)

This gives us, qp|m− n for all prime p 6= q which leaves a contradiction inferring that d can’t have
a prime factor i.e. d must be 1. And then, a and b both are integers.

Problem 4 (A Special Case Of Zsigmondy’s Theorem1). Prove that xpk − ypk has a prime factor
q such that q|xpk − ypk but q 6 |xpi − ypi for 0 ≤ i < k.

Problem 5 (Lifting The Exponent Lemma). If p is an odd prime, and x, y integers so that x ⊥ y
and p|x− y with

νp(x− y) = α, νp(n) = β

then,
νp(xn − yn) = α+ β

Problem 6 (Masum Billal). If p > x2 − x+ 1 is a prime and x > 2 a positive integer. Prove that

f(x) = (1 + x)p − (1 + xp)

has at least 4 distinct prime factors.

Masum Billal
CSE, University Of Dhaka

1It is the most important case of Zsigmondy’s theorem we use in problems. If someone considers the original
theorem to be a sledge hammer, in that this lemma should work fine.
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