Exponent GCD Lemma
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Abstract

It is not that this particular lemma hasn’t been known so far. But it hasn’t been established
as a lemma yet, whereas I find it pretty useful to solve many problems in olympiads. Therefore,
I would like to infer this as The Fxponent Ged Lemma. The problems this lemma can prove,
can be proved in other ways too. But this way I have found solutions much more easier and
elegant, more importantly, avoiding some sledge hammers. This lemma sounds like Lifting The
Ezponent(LTE) lemma a bit. But they actually have not much in common. But as a matter of
fact, LTE can be proven by this lemma. And also, a very important special case of Zsigmondy’s
Theorem can be proven using this lemma. The most impressive property of this lemma is it’s
simplicity.

1 Main Lemma
Before we introduce our lemma, we shall denote x is co-prime to y by = 1 y. That is,
xLly=ged(z,y) =1

For brevity assume,

xn_yn
f(mayan): )
=Yy

where v,(n) = a means « is the greatest positive integer so that, p®|n. Alternatively, we can denote
by p*|n.

Lemma 1.1 (Exponent GCD Lemma). If x L vy,
g = ged(@ —y, f(z,y,n))In
Proof Of Lemma. Re-call the identity,
at—yt = (- y) (@ 2" Py ey Ty

This yields
fl@ym) =2t +a" Py 4y 4y

We know that,
P(z)=(r—a) - Qz) +r

then 7 = P(a). So, in this case,
f@y,n) = (z—y) Qr,y,n) +r
Hence, r = f(y,y,n). Here,
Fyyn) =y" -y ey by T =y
From Euclidean algorithm, we can infer

ged(z — y, f(2,y,n)) = ged(z — y, f(y,y,n)) = ged(z — y,ny" ")
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Earlier we assumed = L y, and so  —y L 4"~ because

ged(z — y,y) = ged(wz,y) =1

Thus,
g =ged(z —y, f(x,y,n)) = ged(z — y,n)

This gives us g|n.

Corollary 1. This can be true for all odd n too:

Corollary 2. For a prime p,
ged(z —y, f(z,y,p)) = lor p

2 Applications

Problem 1 (Hungary, 2000). Find all positive primes p for which there exist positive integers n, z,y
such that
3 3 _.n
o+ Yy =p

Solution. For p = 2,2 = y = 1 suffices. Assume p > 2, hence odd.

If ged(x,y) = d then, we have d|p™. So, d is a power of p. But in that case, we can divide the
whole equation by d and still it remains an equation of the same form. Let’s therefore, consider
ged(z,y) = 1.

(x +y)(@® =2y +y*) ="
According to the lemma,
g=ged(z +y, f(z,y,3)[ged(@ +y,3)
This means g|3. If g = 3, then we have 3|p or p = 3. On the other hand, g = 1 shall mean
that ¢ +y = 1 or 22 — zy + y?> = 1. Neither of them is true. Because z,y > 0,2 +y > 1 and
(x—y)? +ay > 1.

n?+1 L
1 18 a positive integer

Problem 2 (APMO 2012 - Problem 3). Find all pairs of (n,p) so that e
where n is a positive integer and p is a prime number.
Solution. We can re-state the relation as
p" 4+ 1nf +1
Firstly, we exclude the case p = 2. In this case,

2" +1n? 41

Obviously, we need
n*4+1>2"+1=n?>2"
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But, using induction we can easily say that for n > 4, 2" > n? giving a contradiction. Checking
n =1,2,3,4 we easily get the solutions:

(n,p) = (2,2),(4,2)

We are left with p odd. So, p™ + 1 is even, and hence n? + 1 as well. This forces n to be odd.
Say, ¢ is an arbitrary prime factor of p + 1. If ¢ = 2, then ¢|n + 1 and since

nP+1=n+1nP1—..4+1)

and p odd, there are p terms in the right factor, therefore odd. So, we infer that 2¥|n + 1 where k
is the maximum power of 2 in p + 1.
We will use the following lemmas without proof for being well-known.

Lemma 2.1. If alb and a|c, then a|ged(b,c).

Lemma 2.2. [If
a® =b* (mod n)

and,
ay =b¥  (mod n)

then
agcd(w,y) = bng(w’y) (IIlOd n)

1 n
lim (1 + > =e
n—oo n

Now, we prove the following lemmas.

Lemma 2.3.

where e is the Euler constant.

Lemma 2.4. If x is the smallest positive integer such that

a®*=1 (mod n)

then if,
a™ =1 (modn)

m 1s divisible by x.

Proof. Let, m = zk 4+ r with r < z. Then, since a* =1,

This implies,
a"=1 (mod n)

But this is a contradiction for the minimum = > r. So, we must have r = 0 that is, z|m.

Lemma 2.5. If p is an odd prime, then p™ < n? for p <n.
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PRroOF. This is true for n = 1. Say, this is also true for some smaller values of n. Now, we prove
this for n + 1.
Since p < n,
(pn +p)? < (pn+n)?

and therefore,
1 1
(n+1)P =nP(1+ =) <p"(1+ 2—?)1’ <p"-e<p*t!

Back to the problem. Assume that ¢ is odd.
qlp” + 1nP +1
Write them using congruence. And we have,
n’ = -1 (mod q)
=n*=1 (mod q)
Suppose, e = ordy(n) i.e. e is the smallest positive integer such that
n®=1 (mod q)

Then, e|2p and e|g — 1 from lemma 2.4.
Also, from Fermat’s theorem,
n? ' =1 (mod q)

Therefore,
necd(p.g—1) — (mod q)

From p odd and ¢|p+ 1, p > ¢ and so p and ¢ — 1 are co-prime. Thus,
ged(2p, g — 1) = ged(2,¢ — 1) =2
From lemma 2.1, e| ged(2p, ¢ — 1) and so we must have e = 2. Again, since p odd, if p = 2r + 1,

n? ™ =n  (mod q)

Hence, g|n + 1. If ¢|%=EL | then by the lemma 1.1 we get

n+1"7
nP +1
d 1, ——
qlec <n+ ,n+1>lp

which would imply ¢ = 1 or p. Both of the cases are impossible. So, if s is the maximum power of
q so that ¢®|p + 1, then we have ¢°|n + 1 too for every prime factor g of p 4+ 1. This leads us to the
conclusion p + 1|n + 1 or p < n which gives p™ > n? by lemma 2.5. But from the given relation,

pr+1<nP+1=p" <n?

Combining these two, p = n is the only possibility to happen.
Thus, the solutions are

(n,p) = (4,2), (p,p)
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Problem 3 (Masum Billal). For rational a,b and all prime p, a? — bP is an integer. Prove that, a
and b must be integer.

Solution. Since a, b are rational, we can assume that a = 7,b = 5 with m L d,n L d. Otherwise,
if m Y d we can divide by the common factor. Moreover, we can assume m | n. Indeed, if not, say
r is a prime factor of d. Then we must have r fgcd(m,n). Otherwise the condition m L d would
be broken. Therefore, without loss of generality, m 1 n. Let ¢ be a prime factor of d. Thus,

qp’mp —nP

for all p, and e be the smallest positive integer such that

m®=n° (mod q)

Like lemma 2.4, we can say that e|p for all prime p. But this impossible except for e = 1. Hence,
g|lm — n. Now, take a prime p # ¢, and from Exponent GCD lemma we have

ng (m -n, f(mvnvp)) ‘p
=q [f(m,n,p)

This gives us, ¢P|m — n for all prime p # ¢ which leaves a contradiction inferring that d can’t have
a prime factor i.e. d must be 1. And then, a and b both are integers.

Problem 4 (A Special Case Of Zsigmondy’s Theorem!). Prove that - ypk has a prime factor
q such that q|x7’lC — yplc but g fzP' —yP" for 0 <i < k.

Problem 5 (Lifting The Exponent Lemma). If p is an odd prime, and x,y integers so that x L y
and plx — y with
vp(x —y) = a,pp(n) = 5
then,
(" —y") =a+p
Problem 6 (Masum Billal). If p > 2> — z + 1 is a prime and x > 2 a positive integer. Prove that
fl@)=(1+42)" - (1+2")

has at least 4 distinct prime factors.

Masum Billal
CSE, University Of Dhaka

Tt is the most important case of Zsigmondy’s theorem we use in problems. If someone considers the original
theorem to be a sledge hammer, in that this lemma should work fine.

MATHEMATICAL REFLECTIONS 6 (2012) 5



