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Abstract

This note is accessible to every two years undergraduated student. It is mostly based on my
knowledge and from typical textbooks in the field like. To anyone who is able to understand every
of example in this note then you have wasted a little time in your life. With those who do not
understand the most then you should prepare more to comeback stronger. An with those who
understand half of all examples but also get some perspectives on other examples then you are
appropriate with this note. Thank you so much!
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1 Fundamental concepts

Definition 1.1. A category C contains a class of objects Obj(C) and set of morphisms between
any ordered pair of objects (A,B),Hom(A,B), and the composition Hom(A,B) × Hom(B,C) →
Hom(A,C) denoted by:

(f, g) 7→ gf ∀f ∈ Hom(A,B), g ∈ Hom(B,C)

These ingredients must satisfy the following axioms:

(1) Each morphism f has a unique domain and a unique target. Alternatively, Hom sets are
pairwise disjoint.
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(2) For each object A there is a special morphism, called identity of A, 1A ∈ Hom(A,A) such that
f1A = 1Af = f whenever the composition is allowed.

(3) Composition is associative in the sense that h(gf) = (hg)f whenever the composition of these
morphism is possible.

If we keep all objects of C and reserves all directions of arrows then we have its opposite category
Cop. This construction has an advantage that it reduces half of our works in category theorem.
Note. There are examples of category that is not ”isomorphic” to its opposite category.

Example 1.2 (Sets). The category of all sets (not proper class), morphism are fucntions and comp-
isition is taken in the usual sense.

Example 1.3 (Grps). The category of all groups, morphisms are group homomorphisms and com-
position is the usual composition of functions.

Example 1.4 (Rings). The category of all rings, morphisms are ring homomorphisms and composi-
tion is the usual composition of functions. If we require rings have unit element then we also restrict
morphisms take unit to unit.

Example 1.5 (Fields). The category of all fields, morphisms are field homomorphisms that take 1
to 1 and the composition is the usual composition of functions.

Example 1.6 (ModR,R Mod,Vectk). Objects are right (left) R - modules and as its morphisms are
module homomorphisms. When R = k is a field we have a category Vectk of all vector spaces over k.
When R = Z we have the category of all abelian groups, denoted by Ab.

Example 1.7 ((X,≤)). Given a partially ordered set (X,≤). Then there is a category X whose
objects are elements of X and the hom set Hom(x, y) between x, y ∈ X is either empty or has only
one elements; the second happens iff x ≤ y. For instance, X = n = {0, 1, ..., n− 1} with usual order is
a category.

Example 1.8. Let (X, τ) be a topological space. We make τ a structure of paritially ordered sets
under the ordinary inclusion. By example 1.6 this is a category and we denote by O(X). If U, V ∈ τ
and U ⊂ V then the unique morphism from U to V is the inclusion which we denote by ιVU .

Example 1.9 (Top). Objects are topological spaces, morphisms are continuous maps and composition
is the usual composition of maps. There is also a category of pointed topological spaces Top∗ whose
objects are (X,x0), x ∈ X and morphism f : (X,x0)→ (Y, y0) is a continuous one f : X → Y, f(x0) =
y0.

Example 1.10 (HTop). Objects are all topological spaces, morphisms are homotopy classes of con-
tinuous maps. Composition is naturally defined but it is less obvious to see it is well-definied. Similar
to Top∗ there is a category HTop∗.

Note. There are more interesting examples of a category as: algebra over a field, the category of
graded rings (or graded algebra), the category of spectral sequences,... Some of them are useless, some
are useful.

1.1 Special morphisms

From now on, whenever I write gf then it means f,g are composable and we deal with a fixed category
C. Capital letters like A is understood as an object of C.

Definition 1.11 (Monomorphism). A morphism f : A → B is called a monomorphism iff for
every pair of morphism x, y : C → A then fx = fy implies x = y.
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Definition 1.12 (Epimorphism). A morphism f : A → B is called a epimorphism iff for every
pair of morphisms x, y : B → C then xf = yf imples x = y.

Definition 1.13 (Isomorphism). A morphism f : A→ B is called a isomorphism if there exists a
morphism g : B → A such that gf = 1A, fg = 1B . In this case, A and B are called isomorphic.

Note. Every isomorphism is both mono and epi but the converse is failed. Moreover, in some
specific categories concepts of mono and epi are not compatible with the concreteness of injective,
surjective.

1.2 Special Objects

Definition 1.14 (Suboject).

Definition 1.15 (Quotient object).

The next definition and examples are out of this section, we advice the reader to directly read the
next section and comeback here lately.

Definition 1.16 ((co)Group object). Let C be a category having finite products and a terminal
object Z. A group object in C is an object G and three morphisms µ : G ×G → G, η : G → G and
ε : Z → G making the followng diagrams commute:

• Associvity.

G×G×G G×G

G×G G

1×µ

µ×1 µ

µ

• Identity.

G× Z G×G Z ×G

G

1×ε

λ µ
ρ

ε×1

where λ, ρ are two projections

• Inverse.
G G×G G

Z G Z

ω µ ω

ε
ε

where ω is the only morphism from G → Z and two top horizotal arrows are (1, η) and (η, 1).
A cogroup object in a category D having finite coproducts and an initial object is just a group
object in its opposite category Dop.

Example 1.17. A group object in Grp is just an abelian group.

Example 1.18. In Sets and Top the only group object is ∅. But in Sets∗ and Top∗ the only group
object is ∗.
Example 1.19 (Topological space). A topological group is a group object in the category of topo-
logical spaces.

Example 1.20 (Suspension and loop space). In HTop∗ the reduced suspension ΣX = (X ×
[0, 1])/(X × {0, 1} ∪ x0 × [0, 1]) is always a cogroup object while a loop space equipped compact-open
topology ΩX = Hom([0, 1], X) is dually a group object. Note that both of them are self-functor
HTop∗ → HTop∗.

Example 1.21. In algebraic geometry, a group object in the category of scheme is called a group
scheme.
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2 Functor

Once we have objects, categories we must pay attention to relations between them and that we have
functors.

Before functoriality, people lived in caves.− B.Conrad

Definition 2.1 (Covariant functor). Give two category C,D. A covariant functor S : C → D is a
function such that:

(1) S(C) ∈ Obj(D) ∀C ∈ Obj(C)

(2) For each f ∈ Hom(C,C ′), C, C ∈ Obj(C) there is a morphism S(f) : S(C)→ S(C ′)

(3) S(gf) = S(g)S(f) whenever there is a sequence A
f→ B

g→ C

(4) S(1A) = 1S(A) ∀A ∈ Obj(C)

A contravariant functor C → D is just a functor Cop → D.
Every algebraic invariance is constructed as a functor.

Definition 2.2 (Faithful functor). A functor S : C → D is called faithful if S : Hom(A,B) →
Hom(S(A), S(B)) is injective for all A,B ∈ Obj(C).

Definition 2.3 (Full functor). A functor S : C → D is called faithful if S : Hom(A,B) →
Hom(S(A), S(B)) is surjective for all A,B ∈ Obj(C).

Example 2.4 (Dual vector space). Given a field k, then in the category of vector spaces over k
there is a self-contravariant functor that sends each vector space V to its dual V ∗ = Homk(V, k). This
point of view could apply to modules over ring rather than vector spaces.

Example 2.5 (Forgetful functor). Let take a typical example. Then the functor Grp → Sets
sending a group to its underlying set is called forgetful functor . By mean of this, you can construct
a number of forgetful functors.

Example 2.6 (Free functor). Free functors are dual functors of forgetful functor, in most cases they
are adjoin. Let take a typical examples, given a set S and a ring R. There is a free module, denoted
by F (S) whose elements are formal sum: ∑

s∈S,vs∈R
vss

This is a free functor Sets→R Mod.

Example 2.7 (Grothendieck completion). Given an abelian monoid (A,+) we define an equivalent
relation on A2 by (a1, a2) ∼ (b1, b2) if there exists a c ∈ A : a1 + b2 + c = a2 + b1 + c. Then
the set G(A) = A2/ ∼ is really an abelian group. This construction can be viewed as a functor
G : AbMon→ Ab.

Example 2.8. Homotopy groups, singular homology groups are examples of convariant functor
HTop→ Ab(Grp).

Example 2.9. Singular cohomology groups or cohomology ring, topological K - theory are examples
of contravariant functors

Example 2.10. Four most important functors in homological algebra, Tor,Hom,
⊗
,Ext are all func-

torial.
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Example 2.11. A presheaf on a topological space X is a convariant functor O(X) → Sets. Here
Sets can be changed to Ab or ModR. A sheaf is a presheaf but satisfies equilazer conditions,
that is, Uniqueness and Gluing. There are two categories of presheaves and sheaves over X whose
morphisms are natural transformations, they are denoted by pSh(X) and Sh(X), respectively.

Example 2.12 (Spectrum). The correspondence R → Spec(R) wherein the right side is spectra of
a commutative ring R equipped Zariski topology, is a contravariant functor CRing→ Top.

Example 2.13 (Scheme). In algebraic geometry, a scheme is a convariant functor (the category of
commutative rings) CRings→ Sets. Roughly speaking, a system of polynomial under an action of a
ring homomorphism is remained a system of polynomial.

Example 2.14 (Direct and inverse image). See example 2.29.

Example 2.15. Given a topological space X, there is functor Top→ CRings that maps a topological
space to all continuous real-valued functions on it, C(X) = C(X,R). A famous theorem due to both
Gelfand and Kolmogorov asserts that in the category of compact Hausdorff spaces, C(X) is isomorphic
to C(Y ) as commutative rings implies that X is homeomorphic to Y . Because of this theorem, this
functor is not useful as (co)homology functors since considering an isomorphism between two rings are
as difficult as considering whether two spaces are homeomorphic.

2.1 Natural transformation

Definition 2.16 (Natural transformation). Given two convariant functors (or both contravariant
but arrows are reserved) S, T : C → D. A natural transformation τ : S → T is a one-parameter
family of morphisms in D in each object of C

τ = (τA : SA→ TA)A∈Obj(C)

making the following digram commutes for all morphism f : A→ A′

SA TA

SA′ TA′

Sf

τA

Tf

τA′

Some authors like the following representation:

S Tτ

If τA is a isomorphism for all A ∈ Obj(C) then we say S, T are isomorphic as functors.

Example 2.17 (Characteristic classes). A characteristic class is a way of associating to each
principal bundle a cohomology class. Formally, given a topological group G a characteristic class of
X is a natural transformation c : PrinG( )→ H∗( ).

• The first Chern class c1 : PrinU(1)(X) → H2(X,Z) appears in complex geometry and is a
complete invariant of line bundles.

• The first Stiefel-Whitney class w1 : PrinO(1)(X) → H1(X,Z/2) is completely similar, that is,
w1 is a isomorphism defined on all spaces.

There is a class (maybe proper class) of natural transformations between S, T and we denote it by
Nat(S, T ). Now there is a famous lemma which makes me feel uncomfortable in one year ago whenever
I see it.
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Lemma 2.18 (Yoneda lemma). Let C be a category and A ∈ Obj(C) and S : C → Sets be a
convariant functor. Then there is bijection:

Nat(HomC(A, ), S)→ S(A)

given by τ → τA(1A).

The prove is straightforward and can be found in any textbook on homological algebra.

Corollary 2.19. Let C be a category and A,B ∈ Obj(C) such that HomC(A, ) is naturally isomorphic
to HomC(B, ) then A ∼= B.

Corollary 2.20 (Yoneda embedding). Given C is a small category then there is a functor S : C →
SetsC

op

that is injective on objects and whose image is a fullsubcategory of SetsC
op

. In other words,
we say every small category is a full subcategory of a category of presheaves.

Example 2.21 (Double dual vector space). This is a canonical example. In category of finite
vector spaces over a field k then V is isomorphic to its dual V ∗ but this isomorphism is unnatural
because it is depent on a choice of basises. Consider its double dual, again the finiteness of V implies
V and V ∗∗ are isomorphic. But here one has a particular canonical isomorphism.

Example 2.22 (Cohomology operation). Cohomology operations become central to algebraic from
about 20 years ago and has widely proved its power especially in homotopy. Given two abelian groups
G,H then a cohomology operation of type (n,m,G,H) is a natural transformation between two
cohomology theories Hn( , G)→ Hm( , H) defined on CW or Top and may be imposed some extra
conditions.

• The Steenrod squares Sqi : Hn(X,Z/2)→ Hn+i(X,Z/2).

• The Steenrod powers P i : Hn(X,Z/p)→ Hn+2i(p−1)(X,Z) in which p is a fixed prime.

• The Adam operations ψk : K(X) → K(X) are used to solve the famous Hopf invariant one
problem and vector fields on spheres.

Definition 2.23 (Representable functor). A functor is said to be representable if it is isomorphic
to a either hom functor (convariance or contravariance), Hom( , ∗) or Hom(∗, ).

Example 2.24 (Brown’s representability). For any abelian group G and any CW-complex X then
by Brown’s representability theorem the singular cohomology Hn(X,n) is represented by K(G,n) -
an Eilenberg-Maclane space. It means there is natural bijection between Hn(X,n) and all homotopy
classes [X,K(G,n)]. Lostly speaking, the functor Hn : CW→ Ab is representable.

We can said even more that a contravariant functor h : (CW0)pt → (Setspt)op that send homotopy
pushout to weak pullback and wedge sum in arbitrary of index set to product (strongly additive)
(formularly, h(∨Xi) =

∏
h(Xi)) then h is representable.

Example 2.25 (Algebrac K0 group). An unrelavant example but I also want to interpret here is
the first algebraic K - group K0(R) of a ring R. It is Grothendieck completion of monoid of all finitely
generate projective modules over R under the isomorphic relation. A well-known result claims that
K0(R) ∼= [Spec(R),Z] wherein the right side is homotopy classes from spectra of R to Z with discrete
topology.

Example 2.26 (Topological K - theory). The reduced complex topological K - theory K̃(X) is

represented by classifying space BU of infinite unitary group U . It can be formulated as K̃(X) ∼=
[X,BU ] ∼= 〈X,BU × Z〉. Real K - theory use BO instead of BU . Two significant notes here is the
Bott periodicity theorem and Grassmanian manifolds.
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• The Bott periodicity asserts that Ω2BU ∼= BU×Z or equivalently K̃(X) ∼= K̃(S2X). (S is stand
for unreduced suspension). Note also that we have homotopy equivalences:

BU × Z ∼= ΩU ⇒ U ∼= ΩBU ∼= Ω(BU × Z) ∼= Ω2U

• The classifying space BU(n) of n - dimensional unitary group U(n) is homotopic to n - dimen-
sional complex Grassmanian manifold Gn = Gr(n,C∞) and the set of (unpointed) homotopy
classes [X,Gn] represents the set of isomorphism classes of n - dimensional complex vector bun-
dles over X. In formula,

[X,Gn] ∼= V ectn(X)

Example 2.27 (Classifying space of principal bundles). If we denote PrinG(X) for isomorphism
classes of principal G - bundles over X then a theorem of Steenrod concludes that there is a space BG
and a so-called G - bundle, universal bundle EG → BG which classifies all G - bundles over X. In
formula:

[X,BG] ∼= PrinG(X)

When G is discrete we could take K(G, 1) as BG and take its universal cover to be universal bundle.
The problem arises when G is not discrete, like Lie groups then a famous construction due to Milnor
is welcome to all of you.

Adjoint functors

We see that right (or left) adjoint functor of a functor (if exists) is unique up to an isomorphism and
vice versa. Indeed, MacLane in his Categories for Working Mathematician proved that

Theorem 2.28. If (S, T ) and (S, T ′) are adjoint pairs where S : C → D, T, T ′ : D → C then T ∼= T ′.

Example 2.29 (Adjoint to forgetful functor). Forgetful functors seems always have their adjoint
functors. The following list proves my statement:

• For each set X we can form a free (abelian or not) group (or vector space) with a formal basis
is this set. This construction give us two adjoints of forgetful from Grps,Ab to Sets.

• Given an arbitrary group H there are two ways to construct a new abelian which is closely
related to G. That is, the center c(G) and the abelianization G/[G,G]. But we do not prefer the
first one since it is not a functorial way. The second one gives us an adjoint to forgetful functor
Ab→ Grps

HomAb(G/[G,G], H) ∼= HomGrps(G,H)

• Grothendieck completion is adjoint to forgetful funtor from the category of abelian groups to the
category of abelian monoids.

• If F is a presheaf on a topological space X, then a morphism of presheaves sh : F → Fsh is
a sheafification of F if Fsh is a sheaf and for any other sheaf S and any presheaf morphism
f : F → S there exists a uniques morphism of sheaves fsh : Fsh → S making the following
diagram commutes:

F Fsh

S

sh

f
fsh

The construction of sheafification is via the fact that the category of etale bundle over X and
sheaves over X are isomorphic. An explicit construction ultilizes compatible germs is given in
Ravi Vakil’s book. Now it is easy to verify that sheafification is left adjoint to forgetful functor.
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• Given two rings R,S and three modules AR,RBS , CS then there is a natural isomorphism:

HomS(A⊗R B,C)→ HomR(A,HomS(B,C))

this example is written in every textbook of category theory or homological algebra as a first
nontrivial adjoint pair.

• ring extension

• Given a field k and A is a k - module we form its tensor algebra :

T (M) =

∞⊕
n=0

A⊗n

and tensor algebra of a k - module is left adjoint to forgetful functor Algk →Modk:

HomAlgk
(T (A), B) ∼= HomModk

(A,B)

there are various examples like this, they appears in the theory of algebra over field and partic-
ularly in theory of Lie algebra.

Example 2.30 (Digonal functor). The diagonal functor ∆ has both left and right adjoints, that is
limit and colimit. (See definition 3.14)

Example 2.31 (Stalk and skyscraper sheaf). The stalk of a presheaf is given in example 3.5,
it is a functor Sh(X) → Ab (in the case sheavese of abelian groups). If A is any abelian group we
definie the skyscaper sheaf x∗A at the point x ∈ X is (x∗(A))(U) = A if x ∈ U and 0 for otherwise.
Therefore we have an adjoint pair:

HomAb(Fx, A) ∼= HomSh(X)(F , x∗(A))

Example 2.32 (Direct image and inverse image). Given a continuous map between two contin-
uous map f : X → Y and a sheaf G on X we could define a sheaf on Y by f∗G(V ) = G(f−1(V )). It is
called pushfoward by f and is adjoint to inverse image (example 3.6). That is,

HomSh(X)(f
−1F ,G) ∼= HomSh(Y )(F , f∗(G))

Example 2.33 (Reduced suspension and hom). In HTop∗, reduced suspension and loop is an
adjoint pair.(example 1.22)

Example 2.34 (Frobenius reciprocity). This is a theorem due to Frobenius which establishes the
duality between the process of restricting and inducting. Let G be a group and H its a subgroup.
Next, let ResGH denote class function of G to H and IndGH the induced class function of a given class
function on H. For any group K there is an inner product 〈 , 〉K on the vector space of class function
K → C. Then for any class function ψ : H → C, σ : G→ C there is a equality:〈

IndGHψ, φ
〉
G

=
〈
ψ,ResGHφ

〉
H

in other words, they form an Hermitian adjoint pair.

Isomorphism and equivalence of categories

Definition 2.35. Given two categories C,D we say they are isomorphic if there exists two functors
S : C → D, T : D → C such that ST = idD, TS = idC .
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Example 2.36 (Finite posets and finite T0 - spaces). This outstanding simple discover brings
a new way to look at finite spaces due to Alexandroff, for this reason posets are usually known as A
- spaces. For our convinience, we restrict to finite poset and finite T0 - spaces. The stragery here is
when we have a finite space X then we assign each point x its minimal open set Ux which is defined
to be intersection of all open sets containning x. After that, we definine a relation x ≤ y ⇔ Ux ⊂ Uy.
Conversely, if we have a poset X then an its subset U is open iff x ∈ U ⇒ y ∈ Y ∀y ≤ x.

Example 2.37 (Boolean algebras and Boolean rings). Boolean algebras and Boolean rings are
isomorphic as categories. This is an exercise in chapter 1 of M.Atiyah, Introduction to commutative
algebra. (In the case I remember rightly)

Example 2.38 (Sheaves and etale spaces). An etale space is something like a vector bundle of
abelian groups. Briefly, it is a local surjective homeomorphism in which every stalk is an abelian group
with additions and inversions are continuous. An etale map is almost like a vector bundle morphism
and there is a category of etale spaces of abelian groups Shet(X,Ab) over a topological space X. The
sheaf of section of an etale space of abelian groups defines a functor Shet(X,Ab) → Sh(X,Ab) and
a intricated theorem claims that this is indeed an isomorphism of categories.

Example 2.39 (Group rings and representations). Let G be a group and k is a field hence we
have kG is the group algebra. Given a group representation ρ : G→ GL(V ) where V is a vector space
over k we turn V into a kG - module by the following rule:

(
∑
g∈G

vgg)v =
∑
g∈G

vgρ(g)(v)

Conversely, given a kG - module M then M is a k - vector space as well. A multiplication with
an element of G yields a linear automorphism of M and hence we have a group homomorphism
ρ : G→ GL(M). This natural correspondence extends us an isomorphism of categories.

In fact, most of categories are not isomorphic and we want to weaken our condition but it should
be still strong enough to reflect our desired properties.

Definition 2.40 (Equivalence). Given two categories C,D we say there are equivalent if there
exists two fucntor S : C → D, T : D → C such that ST ∼= idD, TS ∼= idC . (isomorphic as functors by
mean of natural transformation)

Example 2.41 (Algebraic bundles and topological bundles). The Serre-Swan theorem asserts
that if X is a compact Hausdorff space and C(X) is the ring of real-valued functions on X then
the category real vector bundle over X is isomorphic to the category of finitely generated projective
modules over C(X). Particularly, algebraic line bundles are as equivalent as topological line bundles.
(A algebraic line bundle over a ring R is a finitely generated projective module of constant rank 1
at every prime ideal of R)

Example 2.42 (GLn(R)-principal bundles and real vector bundles). Given a principal G -
bundle and a linear representation ρ : G → Aut(V ), we get an associated vector bundle whose fibers
look like V instead of G. This gives us an equivalence between the category of principal GLn(R) -
bundles and the category of n - dimensional real vector bundles. The inverse functor is given by frame
bundle.

There is another example called Dold-Kan correspondence which I give at the last big section.

2.2 Derive a new category from known categories

Definition 2.43. A subcategory A of a category C is a category whose objects of A are also objects
of C and morphisms are morphisms in C (HomA(A,B) ⊂ HomC(A,B)).
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Example 2.44. The category Ab of all abelian groups is a fullsubcategory of the category of all
groups Grp.

Definition 2.45 (Quotient category). A congruence on a category C is an equivalent relation ∼
on the class

⋃
Hom(A,B) of all morphisms in C such that:

• f ∈ Hom(A,B) and f ∼ f ′ then f ′ ∈ Hom(A,B).

• f ∼ f ′, g ∼ g′ and the composite gf exists imply that gf ∼ g′f ′.

Definition 2.46 (Quotient category). A congruence ∼ on a category C defines a quotient category
C/ ∼ whose objects are objects of C and morphisms are equivalent classes of morphisms in C.

Example 2.47. The category HTop is a quotient category of the category Top under the homotopic
relation.

Theorem 2.48. Every functor F : C → D determines a congruence by saying f ∼ g iff F (f) = F (g).
Then this functor factors through the quotient functor C → C/ ∼.

Definition 2.49 (Product category). Given two categories C,D there is a product category C ×D
whose objects

Obj(C × D) = Obj(C)×Obj(D)

and morphisms
HomC×D((A,B), (A′, B′)) = HomC(A,A

′)×HomD(B,B′)

Definition 2.50 (slice category). Given a category C and an object A. The slice category over
A is written (A ↓ C) whose an its object is a pair (B, πB) with B ∈ Obj(C), πB : B → A. A morphism
from (B, πB)→ (B′, πB′) is just a morphism in C from B → B making the followng diagram commutes:

B B′

A

πB

πB′

Given a subcategory C′ of C the category (A ↓ C, C′) is just the category (A ↓ C) but morphisms
are required to be morphisms in C′.

Definition 2.51 (General form of comma category). Given three categories A,B, C and two
functors S : A → C, T : B → C. There is a comma category (S ↓ T ):

• Objects are triplet (A,B, h) wherein h ∈ Hom(S(A), T (B)).

• Morphisms between (A,B, h), (A′, B′, h′) are pairs (f, g) with f ∈ Hom(A,A′), g ∈ Hom(B,B′)
and the following square commutes:

S(A) S(A′)

T (B) T (B′)

S(f)

h h′

T (g)

Example 2.52. When A = C, S is identity functor and B is trivial category (with one object ∗ and
one morphism) the category (S ↓ T ) is called slice category over T (∗), and denoted by (T (∗) ↓ A).

Example 2.53. When A = B = C and both S, T are identity functors then the comma category
(S ↓ T ) = C→ is called arrow category.
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Example 2.54. There is a category of real (or, complex) vector bundles of topological spaces. Then
this category has objects as a triplet (E,B, p) wherein p : E → B is a vector bundle. Given two vector
bundles (E1, B1, p1), (E2, B2, p2) then a morphism between them is a pair of continuous (f, g) making
the following square commutes:

E1 E2

B1 B2

f

p1 p2

g

and we requires f sends p−1
1 (x) to p−1

2 (g(x)). This category is a subcategory of Top→.

Example 2.55. Fixed a vector spaceX there is a category of vector bundles overX. It is a subcategory
of (X ↓ Top). Morphisms between two bundles over X should be require more, it sends a fiber at a
point to fiber at that point; just like example 2.6 when we take B1 = B2 = X and g = idX . Because
of the importance of this category, we give it a notation Vect(X).

Definition 2.56 (Functor category). Given two categories C,D there is a functor category DC
whose objects are functors C → D and morphisms are natural transformations. This seems a good
definition except in general there are too much morphisms which means morphisms between two objects
can be a proper class. To avoid this phenomenom, we require domain C to be a small category. In
these cases we usually denote I rather than C, the letter I refers to the word index .

3 Limit and Colimit

We begin with familiar definitions of kernel, cokernel and see them as examples of pullback and pushout
and even we have a more general setting, namely, limit and colimit.

Definition 3.1 (zero object). A zero object 0 in a category C is an object with precisely one
morphism in each hom set Hom(0, A),Hom(A, 0).

If a category C has a zero object then this object is unique up to an isomorphism and we are able
to define zero map A→ B as factoring through zero object, A→ 0→ B.

Definition 3.2 (pullback). Given two morphism f : B → D, g : C → D. The pullback is an object A
with two morphisms π1 : A→ B, π2 : A→ C satisfying fπ1 = gπ2 and is universal with this property.
It means if we have another triplet (P, p1, p2) with fp1 = gp2 then there is a unique morphism from
P → A making the following diagram commutes:

P

A B

C D

p1

p2
π1

π2 f

g

Once we defined pullback we define pushout of two morphisms p : A → B, q : A → C to be
the pullback of two morphisms pop : B → A, qop : C → A in opposite category. This is a special
case of limit in a category is dual to colimit in its opposite category. Finally, we define kernel of a
morphism f : A → B to be the pullback of (f : A → B, 0 → B) and cokernel to be pushout of
(f : A→ B,A→ 0).

As a typical candidate we give you the Seifert - Van Kampen theorem.
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Example 3.3 (Van Kampen theorem). The Van Kampen theorem asserts that for two given open
path-connected subspace U, V of a topological space X such that U1, U2 is also path-connected then
π1(X) is a pushout of the diagram (i1 : π1(U1 ∩ U2)→ π1(U1), i2 : π1(U1 ∩ U2)→ π1(U2)), here based
point is in U1, U2. It is often drawed as follow:

π1(U1)

π1(U1 ∩ U2) π1(U1) ∗π1(U1∩U2) π1(U2) π1(X)

π1(U2)

j1

i1

i2

'

j2

We are not ready to define what Image is as kernel and cokernel but if it exists then it must
naturally be kernel of a cokenerl.

Definition 3.4 (Colimit, Limit). Let I be a small category, C be an arbitrary category, ∆ : C → CI
be the diagonal functor. The colimit of a functor S : I → C is an object of C, written colimi∈ISi
together with a natural transformation from S to ∆(colimi∈ISi), which is universal among natural
transformation S → ∆A,A ∈ Obj(C). That means there exists an unique morphism f : colimi∈ISi
making the following diagram commutes:

S ∆colimi∈ISi

∆(A)
∆f

The limit of a functor S : I → C is the colimit of Sop : Iop → Cop.

As a first example, we have pullback and pushout are a colimit and a limit, respectively.
The importance of adjoint pair is expressed in the following theorerm whose proof is omitted.

Example 3.5 (Stalks of a presheave). The concept of stalk is motivated by germs of holomorphic
functions and germ of diferentiable functions. Given a presheaf F on a space X and x ∈ X then the
stalk of F at x is defined to be lim−→x∈UF(U) where the index set runs over all neighborhoods of x.

Example 3.6 (Inverse image). Given a continuous map between two topological spaces, f : X → Y .
Let F to be a sheaf on Y then we want to pullback F to X using f . Firstly, we define a presheaf
f−1Fpre(U) = colimπ(U)∈V F(V ) and then take its sheafification f−1F = (f−1Fpre)sh.

Theorem 3.7. Suppose L : C → D be left adjoint to R : D → C, where C,D are arbitrary categories.
Then L preserves all colimits and R preserves all limits.

Theorem 3.8 (Presheaf as colimit). Let C be a presheaf of sets (and possibly, abelian groups,
modules, ...) then C can always be treated as a colimit in a slice category.

Proof. Let F ∈ SetsC
op

be a presheaf and we define a canonical representable convariant functor
hX by hX = HomC( , X). We form a slice category (∆ ↓ X) in definition 2.52 by taking T to be
a constant functor. Explicit, it is a category whose objects are morphisms hX → F and morphisms
f : hX → hY is a morphism makig the followng diagram commutes:

hX hY

F

f

12



and by Yoneda’s lemma we can view f as induce by a morphism X → Y . There is a functor:

φ : (C ↓ X)→ SetsC
op

(hX
f→ F ) 7→ hX

on the other hand, there is a map φ(f) → F, ∀f ∈ (∆ ↓ X) that commutes with all diagram and
hence they induce a map

colim(C↓X)φ(f)→ F (1)

and we want to prove this is an isomorphism. By Yoneda’s lemma for each X ∈ C, a ∈ F (X) there is
a morphism hX → F such that the identity of X is sent to a. It follows that (1) is surjective. To see
its injectivity we show that each:

colimφ(f)(X)→ F (X)

is an injection . Suppose two elements a1 ∈ φ(f1)(X), a2 ∈ φ(f2)(X) are mapped to a same element in
F (X). Then f1, f2 correspond to maps hY1

→ F, hY2
→ F given by elements β1 ∈ F (Y1), β2 ∈ F (Y2),

and a1, a2 correspond to maps g1 : X → Y1, g2 : X → Y2. The fact they are the same thing in F (X)
means that pullback g∗1(β1) = g∗2(β). Let γ = g∗1(β1) = g∗2(β): We have a first diagram:

hX hY

F

f1

γ

β1

and a similar second one:

hX hY

F

f2

γ

β2

The first diagram shows that a1 ∈ hY1
(X) of the colimit is identified with the identity of hX(X) by

f1. Similar argument to a2 we see that they are identical in F (X) and this shows that (1) is injective.

In general, limit behaviors not as well as colimit so we restrict our index category to be directed.
That is a poset such that for two arbitrary elements i, j there is a element k such that i, j ≤ k. In this
kind of category we can make a simpler description of the elements in limit and in some nice categories
(ModR, for instance) limit preserves short exact sequences. But since we are in the field of category
theory so if you want more homological algebra then I suggest [3] as a reference.

4 Abelian categories

Briefly speaking, abelian categories are where we can do homological algebra. Initially, abelian cat-
egories first appear in Tohoku paper of Grothendieck in which he wanted to unify two cohomology
theories, sheaf cohomology and group cohomology, because these cohomology theories share many
similar properties and these stable categories were developed as a language to research similarities.

Definition 4.1 (Additive category). A category C is additive

(1) Hom(A,B) is an abelian group for all A,B ∈ Obj(C).

(2) The following distributive laws hold with X,Y ∈ Obj(C):

b(f + g) = bf + bg, (f + g)a = fa+ ga ∀a ∈ Hom(X,A), f, g ∈ Hom(X,Y ), b ∈ Hom(Y,B)

(3) C has a zero object.

13



(4) C is complete and cocomplete, that is to say C has finite products and finite coproducts.

Example 4.2. ModR,R Mod,pSh(X,Ab),Sh(X,Ab) are typical examples for additive category but
neither CRings or Grp is additive.

Definition 4.3 (Additive functor). An additive functor T between two additive categories C → D
is a functor such that T : Hom(A,B)→ Hom(TA, TB), A,B ∈ Obj(C) is a homomorphism of abelian
groups.

Example 4.4. Hom functor of either variance and tensor product are examples of additive functors
ModR → Ab.

Definition 4.5 (Abelian category). An abelian category is an additive category such that:

(1) Every morphism has a kernel and a cokernel.

(2) Every monomorphism is a kernel and every epimorphism is a cokernel.

Example 4.6. ModR,R Mod are abelian categories.

Example 4.7. This example is not obvious although it is the most important one. It is to say that
Sh(X,Ab) is an abelian category.

Example 4.8. Let A be an abelian category and I be a small category then the functor category AI
is an abelian category as well. As an corollary, we have pSh(X,A) is an abelian category.

Example 4.9. Let Comp(A) be the category of all complex chains in A. This category has objects
as chains of form:

(C•, d•)...
dn+2→ Cn+1

dn+1→ Cn
dn→ Cn−1

dn−1→ ...

wherein Cn ∈ Obj(A), dndn+1 = 0 ∀n. A morphism between (C•, d•) → (C ′•, d
′
•) is a collection of

morphisms (fn) making every square commutes:

... Cn Cn−1 ...

... C ′n C ′n−1 ...

dn+1

fn

dn dn−1

fn−1

d′n+1 d′n d′n−1

If A is an abelian category then so is Comp(A).

Definition 4.10 (Image of a morphism). Let f : A → B be a morphism in an abelian category
then we define the image of f to be:

Im(f) = ker(coker(f))

With definition of image in hands we define an sequence A
f→ B

g→ C is exact iff Im(f) = ker(g).

Definition 4.11 (Exact category). A category P is an exact category if it is a fullsubcategory
of an abelian category A and closed under extension, that is, if 0 → A → B → C → 0 is an exact
sequence in A with A,C ∈ Obj(P) then B ∈ Obj(P).

Exact categories come from algebraic K - theory. Grothendieck defined an abelian group K0(P)
as an abelian group having generators Obj(P) and the relation A + C = B if there is an exact
sequence 0 → A → B → C → 0. Later, in analogy with topological K - theory, Bass invented the
Whitehead group K1(P). Finally, thanks to Quillen because he gave a general construction called Q
- construction where he associated P with a new category QP and took its classifying space BQP
and then defined:

Ki(P) = πi(BQP)

Of course, this general definition of Quillen agrees with earlier definitions ofK0,K1 due to Grothendieck
and Bass. To avoid abstract, one should just take the fullsubcategory of ModR contains all finitely
generated projective modules over commutative ring R.
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Definition 4.12 (Projective and injective objects). An object P in an abelian category A is
projective if for every epimorphism g : B → C and every f : P → C, there exists h : P → B with
f = gh.

P

B C

f
h
g

An object E is injective in A if it is projective in Aop.

Definition 4.13. An abelian category A has enough projectives if for every object A of A there
exist an epimorphism P → A with P is projective. Dually, A has enough injectives if there is a
monomorphism A→ E in which E is injective.

An advantage of injective objects is that it allows us to define cohomology. Fortunately, most of
our familiar abelian categories have enough injectives.

Theorem 4.14. If A is an abelian category that is closed under products and has enough injective
then Sh(X,A) has enough injectives.

How do we know our axioms of defining an abelian category is sufficient and enough? Two following
theorems answer the question:

Theorem 4.15 (Freyd-Heron-Lubkin). If A is a small abelian category, then there is a convariant
faithful exact functor F : A → Ab

The second theorem due to Mitchell improves the one above.

Theorem 4.16 (Mitchell). If A is a small abelian category, then there is a convariant full faithful
exact functor F : A → Ab

The Meta theorem is omitted here, the readers who prefer could easily find it in any standard
textbook on category theory.

4.1 Ext groups in an abelian category

If an abelian category A does not have enough injectives then we do not hope to define Tor functor
but we could still define Ext functor of either variance. To do this, we remind that there is a 1 − 1
correspondence between equivalent classes of extensions of A by B and Ext1(A,B) where A,B are two
modules over a commutative ring. Pullback the group structure on Ext1(A,B) to the set of equivalent
classes we have an addition on it which is well-known as Baer sum. By mimicking this process, we
could recapture the group structure of Ext1(A,B) in an arbitrary abelian category. This approach is
due to Yoneda.

An element of Extn(A,B), A,B ∈ Obj(A) is an equivalent class of exact sequence of form:

ξ : 0→ B → Xn → ...→ X1 → A→ 0

The equivalence relation is generated by the relation ξ ∼= ξ′ if there is a diagram:

ξ : 0 B Xn ... X1 A 0

ξ′ : 0 B X ′n ... X ′1 A 0

To add ξ and ξ′ (now they may be in different classes) let X
′′

1 be the pullback of X1, X
′
1 over A. Let

X
′′

n be the pushout of Xn, X
′
n under B and let Yn be the quotient of X

′′

n by the skew diagonal copy of
B. Then ξ + ξ′ is defined to be the class of:

0→ B → Yn → Xn−1 ⊕X ′n−1 → ...→ X2 ⊕X ′2 → X
′′

1 → A→ 0
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5 Geometry of a category

5.1 Simplicial set

Simplicial set is a way we genelizes posets (as a category), directed graphs to higher dimensional
objects. Since the decomposition of a CW - complex into cells allows us to compute homology of a
such space more easily. Homotopy groups, however, remain difficult to compute and simplicial sets
allow us to define homotopy groups in a combinatorial way through their relation to topological spaces.
(note that this point of view does not help us compute homotopy groups more easily)

It was firstly introduced by Samuel Eilenberg in 1950. In this section, we give definitions and sum up
basic results in the theory of simplicial objects. The most famous one may be the Dold-Kan theorem
which established the correspondence between chain complex category and simplex category of an
arbitrary abelian category A.

Historically, at the beginning of category theory, it is just considered as a language to interpret and
unify several branches of modern mathematics. Until Daniel Kan defined the so-called Kan extension
it became truly a research field of higher mathematics. Kan extension is closely related to simplicial
objects and we leave here a famous quotation:

Everything is just a Kan extension.

Let ∆ be the simplex category whose objects are posets n, n ∈ N and morphisms are convariant
functors (equivalently, continuous functions preserve order).

Definition 5.1 (Simplicial object). A simplicial object X in a category C is a contravariant
functor X : ∆ → C or equivalently a convariant functor X : ∆op → C and hence a presheaf. A
simplicial set is just a simplicial object in Sets.

A morphism between two simplicial objects is just a natural transformation between them. Denote
the category of simplicial objects in C by SimC.

If we work out the above condition for a simplicial set then we have an alternative definition.

Definition 5.2 (Alternative definition). A simplicial set X is a sequence of sets (Xn) together
with functions:

di : Xn → Xn−1, i = 0, n− 1

sj : Xn → Xn+1, j = 0, n− 1

the face and degenacy map, respectively, which satisfy the simplicial identities:

di ◦ sj =


sj−1 ◦ di, for i < j

identity, for i = j, j + 1

sj ◦ di−1, for i > j + 1

di ◦ dj = dj−1 ◦ di for i < j

si ◦ sj = sj+1 ◦ si for i ≤ j + 1

Definition 5.3 (Standard n - simplex). The standard n - simplex is defined to be the functor
∆n = Hom∆( ,n).

Example 5.4 (Horn of simplex). The ith - horn of ∆n, written Λni , is the subsimplex containning
the union of faces of ∆n except the ith one.
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By theorem 5.2 with C = ∆ we see that:

X ∼= colim∆n→X∆n

where the colimit is taken in the slice category (∆ ↓ X), that is, X is the colimit of a functor

S : (∆ ↓ X)→ Sets∆op

and

Xn = X(n) ∼= Nat(Hom∆( ,n), X) = HomSimSets(∆
n, X)

A morphism in SimC can be described as a sequence of maps fn : Xn → Yn that commute with face
and degenacy maps.

Definition 5.5 (Nerve of a simplicial set). The nerve of a small category C is a simplicial set
defined by the following data. Its n - simplicies (NC)n is the functor category Cn. Concretely, (NC)n
can be thought as sequences of n + 1 composable morphism in C : c0 → c1 → ... → cn and the face
maps di drops the ith - position from such sequences and the degenacy maps sj lengthen the sequence
by inserting an identity at position i.

Define the geometric realization of standard n - simplex to be

|∆n| =
{

(x0, ...xn) ∈ Rn : xi ∈ [0, 1],
∑

xi = 1
}

Example 5.6. For each n ≥ 0 there is a funtor Singn : Top → Sets sending X to continuous maps
|∆n| → X and these functors form a simplicial set, called singular simplicial set.

Definition 5.7 (Geometric realiztion of a simplicial set). With the same notations as in the
definition 5.2 we define geometric realization of X to be

|X| = colim∆n→X |∆n|

that is, |X| is the colimit of the functor S : (∆ ↓ X) → Top where objects of |∆| are |∆n| and
morphisms are induced from morphisms in ∆.

Theorem 5.8. The functor realization |.| is left adjoint to the singular functor Sing. That is:

|.| : Sets∆op

↔ Top : Sing

is an adjoint pair.

Proof.
HomTop(|X| , Y ) ∼= HomTop(colim∆n→X |∆n| , Y )

∼= lim
(∆↓X)

HomTop(|∆n| , Y )

∼= lim
(∆↓X)

HomSets(∆
n,Sing(Y ))

∼= HomSets(colim(∆↓X)∆
n, Sing(Y ))

∼= HomSets(X,Sing(Y ))

The singular functor has another property, it is a Kan complex.

Definition 5.9 (Kan extension). A simplicial set X is called a Kan complex if it is satisfied the
extension condition, that is for every map f : Λni → X, 0 ≤ i ≤ n can be extended to a f making the
following diagram commutes:

Λni X

∆n

f

f
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Theorem 5.10. The simplicial set Sing(X) is a Kan complex.

Proof. For every inclusion ji : |Λni | → |∆n| admits a retraction p : |∆n| → |Λni | , p ◦ ji = id:

|Λni | |∆n|ji

p

where p is given by projection parallel to the vector from the barycenter of ith face of ∆n to the ith

vertex of ∆n. The extension now is equivalent to the extension of the following diagram:

|Λni | |X|

|∆n|

f ′

which can be solved by setting the dashed arrow by f ′ ◦ p.

We define the so-called Kan fibration to finish this section:

Definition 5.11 (Kan fibration). A morphism of simplicial set f : X → Y is called a Kan fibration
if for every 0 ≤ i ≤ n and a commutative square:

Λni X

∆n Y

f

there exists a dashed morphism making the diagram commutes.

5.2 Homotopy of simplicial set

Now we are able to define homology of simplicial sets. Firstly, let F : Sets → Ab be free standard
functor sending a set to its free abelian with this set as a basis. This functor can be naturally extended
to a functor, which we denote with the same notation F : SimC → SimAb

Definition 5.12 (Homology of simplicial set). With the symbols in definition 5.2 we denote:

Cn(X) = F (Xn), d =

n∑
i=0

(−1)iF (di)

It is easy to see d2 = 0 and hence we define the homology group of X is homology of the chain
complex (C•(X), d•).

Definition 5.13 (Homotopy of simplicial set). Let f, g : X → Y be morphism of simplicial sets.
A homotopy between f and g is a morphism

H : ∆1 ×X → Y

such that H|{0}×X = f,H|{1}×Y = g

Let X be a Kan complex, then we define π0(K) to be equivalent classes of vertices of K (The
imposed condition of X to be a Kan complex is just to ensure the simplicial homotopy is indeed an
equivalent relation) and generally we could ultilize simplicial homotopy to create a model for simplicial
homotopy groups πn(X) but we do not give those constructions explicitly here.

The things π• behavioring exactly like usual homotopy groups and π• form a nonabelian homological
δ - functor. We do not pursue that complex things here and I just give a brief abstract definition of
what an abstract homotopy group is.
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Definition 5.14 (Homotopy groups and normalized complex). For every simplicial object X
in an abelian category A we associate it to the chain complex N (A) where:

Nn(X) =

n⋂
i=0

ker(di : Xn → Xn−1)

and nth differential ∂n = (−1)ndn. The nth - homology of this chain complex is called the nth -
homotopy group πn(X) of X.

The following theorem was discovered independently by both Kan and Doldd in 1957

Theorem 5.15 (Dold-Kan correspondence). For any abelian category A, the normalized chain
complex functor N is an equivalence of categories between SimA and CompA.

For more information, even the inverse functor of N , we refer the reader to Charles Weibel, An
Introduction to homological algebra.

5.3 Geometric realization of a small category

Let C be a small category then we could construct a CW - complex BC naturally out of C. This is
closed related to classifying space of a disrete topological group G which can be considered as a small
category with one object. BC is the geometric realization of the nerve NC and can be characterized
in a simple way.

Definition 5.16 (Geometric realization). The geometric realization of a small category C is
the geometric realization of its nerve.

When we say a category C satisfies a geometrical property P we refer it to its geometric realization.
For instance, say C is contractible meaning BC is contractible as topological space.

Example 5.17. Let G = Z/2 is a group considered as a category with only one object then the
geometric realization of G is infinite projective space RP∞.

A natural transformation between two functors C → D is equivalent to a functor C × 2 → D and
so we have:

Theorem 5.18. A natural transformationn η : S → T between two functors S, T : C → D gives rise
to homotopy BC × [0, 1]→ BD.

Example 5.19. Any category C with an initial object is contractible since the functor C → 1 has left
adjoint.

In definition 2.52 we set T to be the constant functor at a object A then we have a comma category,
written (S ↓ A). Dually if S is constant functor at an object B we have dual comma category (B ↓ T ).
There is a couple of theorem due to Quillen:

Theorem 5.20 (Theorem A of Quillen). Let S : C → D be a functor such that (A ↓ S) is
contractible for all A ∈ Obj(A) then BS : BC → BD is a homotopy equivalence.

Theorem 5.21 (Theorem B of Quillen). Let S : C → D be a functor such that for every morphism
A → A′ in D, the induced functor (A ↓ S) → (A′ ↓ S) is a homotopy equivalence then we have a
homotopy fibration:

B(A ↓ S)→ BC → BD

In particular, there is a long exact sequence of homotopy groups:

...→ πn+1(B((A ↓ S))→ πn+1(BC)→ πn+1(BD)→ πn(B((A ↓ S))→ ...
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5.4 Localization and groupoid

Definition 5.22 (Localization of a category). For each small category C and a set of morphism
Mthen the localization of C at M is a pair consists of a category C[M−1] and a functor q : C → C[M−1]
satisfies the following properties:

C C[M−1]

D

q

S
SM

• For every m ∈M we have q(m) is an isomorphism.

• For each functor S : C → D such that F (m) is a isomorphism for all m ∈M then there exists an
unique lifting functor SM : C[M−1]→ D and a natural isomorphism SM ◦ q ∼= S.

• The composition functor between two following functor categories is fully faithful:

(−) ◦ q : DC[M
−1] → DC

The universal property above shows that if localization exists then it is unique up to an isomorphism.
In the case M is the set of all morphisms in C we write C[M−1] = LC and call it the global localization
of C.

Definition 5.23 (Groupoid). A groupoid is a category in that every morphism is an isomorphism.

Note.

• Groupoid, localization and Quillen’s theorem have various applications in the topology of finite
spaces.

• Localization always exists and can be constructed explicitly. It appears in model category.

Example 5.24. Every global localization is a groupoid.

Example 5.25. Every group is a groupoid with only one object and arrows are indexed by its elements.

Example 5.26 (Fundamental groupoid). We ascociate each topological space X with the so-called
thing, the fundamental groupoid ΠX whose objects are points in X and:

Hom(x, y) = {[p] : p is a path in X from x to y}

where the relation here is path-homotopy. The fundamental group of X with base point x0 is then:

π1(X,x0) = AutΠX(x0)

Definition 5.27 (Morphism of groupoids). A morphism of two groupoids is just a functor
between them.

By mimicking all the constuction in classical group theory we define the following objects. From now
on, we say an element of a groupoid to mean a morphism in it.

Definition 5.28 (Kernel and image). Given a morphism S : C → D between two groupoids then
its kernel is set of elements a in C such that S(a) is an identity in D and its image is set of element
of form S(a) with a is an element in C.

Definition 5.29 (Normal subgroupoid). Given a groupoid C and a subgroupoid N (consider as a
subcategory) is said to be normal if Obj(C) = Obj(N ) and N is kernal of a morphism with domain
C.
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Definition 5.30 (Quotient groupoid). Given a groupoid C and a normal subgroupoid N we define
a relation in sets of morphisms and objects of C. Two objects x ∼ y iff HomN (x, y) 6= ∅ and two
elements g, h are equivalent iff there exists two elements a, b of N such that agb = h. The coset C/N
then is a groupoid, called quotient groupoid. It is characterized by the follwing universal property:

C C/N

D

p

S
S

that is, give a morphism S : C → D such that S(m) is identity in D for all elements m of N then there
is uniquely a morphism S factoring S through the canonical projection p : C → C/N .
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