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Preface

This is a focused exercise book in algebra.
Facility in algebra is important for any student who wants to study advanced

mathematics or science. An algebraic expression is a carrier of information.
Sometimes it is easy to extract the information from the form of the expression;
sometimes the information is latent, and the expression has to be altered to yield
it up. Thus, students must learn to manipulate algebraic expressions judiciously
with a sense of strategy. This sense of working towards a goal is lacking in many
textbook exercises, so that students fail to gain a sense of the coherence of math-
ematics and so find it difficult if not impossible to acquire any significant degree
of skill.

Pell’s equation seems to be an ideal topic to lead college students, as well
as some talented and motivated high school students, to a better appreciation of
the power of mathematical technique. The history of this equation is long and
circuituous. It involved a number of different approaches before a definitive theory
was found. Numbers have fascinated people in various parts of the world over
many centuries. Many puzzles involving numbers lead naturally to a quadratic
Diophantine equation (an algebraic equation of degree 2 with integer coefficients
for which solutions in integers are sought), particularly ones of the form x2 −dy2 �
k, where d and k are integer parameters with d nonsquare and positive. A few
of these appear in Chapter 2. For about a thousand years, mathematicians had
various ad hoc methods of solving such equations, and it slowly became clear
that the equation x2 − dy2 � 1 should always have positive integer solutions
other than (x, y) � (1, 0). There were some partial patterns and some quite
effective methods of finding solutions, but a complete theory did not emerge until
the end of the eighteenth century. It is unfortunate that the equation is named after
a seventeenth-century English mathematician, John Pell, who, as far as anyone can
tell, had hardly anything to do with it. By his time, a great deal of spadework had
been done by many Western European mathematicians. However, Leonhard Euler,
the foremost European mathematician of the eighteenth century, who did pay a lot
of attention to the equation, referred to it as “Pell’s equation” and the name stuck.

In the first three chapters of the book the reader is invited to explore the situation,
come up with some personal methods, and then match wits with early Indian and
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viii Preface

European mathematicians. While these investigators were pretty adept at arith-
metic computations, you might want to keep a pocket calculator handy, because
sometimes the numbers involved get pretty big. Just try to solve x2 − 61y2 � 1!
So far there is not a clean theory for the higher-degree analogues of Pell’s equation,
although a great deal of work was done on the cubic equation by such investigators
as A. Cayley, P.H. Daus, G.B. Mathews, and E.S. Selmer in the late nineteenth and
early twentieth century; the continued fraction technique seems to be so special
to the quadratic case that it is hard to see what a proper generalization might be.
As sometimes happens in mathematics, the detailed study of particular cases be-
comes less important and research becomes more focused on general structure and
broader questions. Thus, in the last fifty years, the emphasis has been on the prop-
erties of larger classes of Diophantine equations. Even the resolution of the Fermat
Conjecture, which dealt with a particular type of Diophantine equation, by Andrew
Wiles was done in the context of a very broad and deep study. However, this should
not stop students from going back and looking at particular cases. Just because
professional astronomers have gone on to investigating distant galaxies and seek-
ing knowledge on the evolution of the universe does not mean that the backyard
amateur might not find something of interest and value about the solar system.

The subject of this book is not a mathematical backwater. As a recent paper of
H.W. Lenstra in the Notices of the American Mathematical Society and a survey
paper given by H.C. Williams at the Millennial Conference on Number Theory in
2000 indicate, the efficient generation of solutions of an ordinary Pell’s equation
is a live area of research in computer science. Williams mentions that over 100
articles on the equation have appeared in the 1990s and draws attention to interest
on the part of cryptographers. Pell’s equation is part of a central area of algebraic
number theory that treats quadratic forms and the structure of the rings of integers
in algebraic number fields. Even at the specific level of quadratic Diophantine
equations, there are unsolved problems, and the higher-degree analogues of Pell’s
equation, particularly beyond the third, do not appear to have been well studied.
This is where the reader might make some progress.

The topic is motivated and developed through sections of exercises that will al-
low the student to recreate known theory and provide a focus for algebraic practice.
There are several explorations that encourage the reader to embark on individual
research. Some of these are numerical, and often require the use of a calculator or
computer. Others introduce relevant theory that can be followed up on elsewhere,
or suggest problems that the reader may wish to pursue.

The opening chapter uses the approximations to the square root of 2 to indicate
a context for Pell’s equation and introduce some key ideas of recursions, matrices,
and continued fractions that will play a role in the book. The goal of the second
chapter is to indicate problems that lead to a Pell’s equation and to suggest how
mathematicians approached solving Pell’s equation in the past. Three chapters then
cover the core theory of Pell’s equation, while the sixth chapter digresses to draw
out some connections with Pythagorean triples. Two chapters embark on the study
of higher-degree analogues of Pell’s equation, with a great deal left to the reader
to pursue. Finally, we look at Pell’s equation modulo a natural number.
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Preface ix

I have used some of the material of this book in a fourth-year undergraduate
research seminar, as well as with talented high school students. It has also been
the basis of workshops with secondary teachers. A high school background in
mathematics is all that is needed to get into this book, and teachers and others
interested in mathematics who do not have (or have forgotten) a background in
advanced mathematics may find that it is a suitable vehicle for keeping up an
independent interest in the subject. Teachers could use it as a source of material
for their more able students.

There are nine chapters, each subdivided into sections. Within the same chapter,
Exercise z in Section y is referred to as Exercise y.z; if reference is made to an
exercise in a different chapter x, it will be referred to as Exercise x.y.z. The end
of an exercise may be indicated by ♠ to distinguish it from explanatory text that
follows. Within each chapter there are a number of Explorations; these are designed
to raise other questions that are in some way connected with the material of the
exercises. Some of the explanations may be thought about, and then returned to later
when the reader has worked through more of the exercises, since occasionally later
work may shed additional light. It is hoped that these explorations may encourage
students to delve further into number theory. A glossary of terms appears at the
end of the book.

I would like to thank anonymous reviewers for some useful comments and
references, a number of high school and undergraduate university students for
serving as guinea pigs for some of the material, and my wife, Eileen, for her
support and patience.
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1

The Square Root of 2

To arouse interest in Pell’s equation and introduce some of the ideas that will be
important in its study, we will examine the question of the irrationality of the square
root of 2. This has its roots in Greek mathematics and can be looked at from the
standpoint of arithmetic, geometry, or analysis.

The standard arithmetical argument for the irrationality of 2 goes like this.
Suppose that

√
2 is rational. Then we can write it as a fraction whose numerator

and denominator are positive integers. Let this fraction be written in lowest terms:√
2 � p/q, with the greatest common divisor of p and q equal to 1. Then p2 �

2q2, so that p must be even. But then p2 is divisible by 4, which means that q

must be even along with p. Since this contradicts our assumption that the fraction
is in lowest terms, we must abandon our supposition that the square root of 2 is
rational.

Another way of looking at this argument is to note that if
√

2 � p/q as above,
then, since numerator and denominator are both even, we can write it as a fraction
with strictly smaller numerator and denominator, and can continue doing this
indefinitely. This is impossible. This “descent” approach has an echo in a geometric
argument given below. This will, in turn, bring into play the role of recursions.

1.1 Can the Square Root of 2 Be Rational?

Two alternative arguments, one in Exercise 1.1 and the other in Exercises 1.2–1.4,
are presented. The second argument introduces two sequences, defined recursively,
that figure in solutions to the equation x2 − 2y2 � ±1.

Exercise 1.1. An attractive argument that
√

2 is not a rational number utilizes the
geometry of the square. Let ABCD be a square with diagonal AC.
(a) Determine a point E on AC for which AE � BC. Let F be a point selected

on BC such that EF ⊥ AC. Prove that BF � FE.
(b) Complete the square CEFG. Suppose that the lengths of the side and diagonal

of square ABCD are a1 and b1, respectively. Prove that the lengths of the side
and diagonal of the square CEFG are b1 − a1 and 2a1 − b1, respectively.

1
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2 1. The Square Root of 2

Figure 1.1.

(c) We can perform the same construction on square CEFG to produce an even
smaller square and so continue indefinitely. Suppose that the sides of the
successive squares have lengths a1, a2, a3, . . . , and their corresponding di-
agonals have lengthsb1, b2, b3, . . . .Argue that both sequences are decreasing
and that they jointly satisfy the recursion relations

an � bn−1 − an−1,

bn � 2an−1 − bn−1,

for n ≥ 1.
(d) Suppose that the ratio b1/a1 of the diagonal and side lengths of the square

ABCD is equal to the ratio p/q of positive integers p and q. This means that
there is a length λ for which a1 � qλ and b1 � pλ (or as the Greeks might
have put it, the length λ “measures” both the side and diagonal of the square).
Verify that a2 � (p − q)λ and b2 � (2q − p)λ.

(e) Prove that for each positive integer n, both an and bn are positive integer
multiples of λ.

(f) Arithmetically, observe that there are only finitely many pairs smaller than
(p, q) that can serve as multipliers of λ when we construct smaller squares
as described. Deduce that only finitely many squares are thus constructible.

Geometrically, note that we can repeat the process as often as desired. Now
complete the contradiction argument and deduce that the ratio of the lengths of the
diagonal and side of a square is not rational. ♠

We can pick up the recursion theme in another way, in this case getting a sequence
of pairs of integers that increase rather than decrease in size and whose ratio will
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1.1. Can the Square Root of 2 Be Rational? 3

approximate
√

2 more and more closely. We begin with the simple observation
that (

√
2 − 1)(

√
2 + 1) � 1. This will give us an equation involving the square

root of 2 that will form the basis of a recursion.

Exercise 1.2.
(a) Verify that

√
2 � 1 + 1

1 + √
2

.

(b) Replace the
√

2 on the right side by the whole of the right side to obtain

√
2 � 1 + 1

1 + 1 + 1
1+√

2

� 1 + 1

2 + 1
1+√

2

. ♠

For convenience, we will write this as
√

2 � 1 + 1/2 + 1/1 +
√

2,

where each slash embraces all of what follows it as the denominator of a fraction.
On the basis of Exercise 1.2(b), we are tempted to write an infinite continued

fraction representation
√

2 � 1 + 1/2 + 1/2 + 1/2 + 1/2 + · · · .
This can be justified by defining the infinite representation as the limit of a
sequence, as we shall see in the next exercise.

Exercise 1.3.
(a) Let r1 � 1 and define recursively, for each integer n � 2, 3, 4, . . .,

rn � 1 + 1

1 + rn−1
.

Write out the first ten terms of this sequence. Observe that for each positive
integer n, rn � pn/qn, where pn and qn are coprime integers. Construct a
table, listing beside each index n the values of rn as both a common and a
decimal fraction, as well as the values of pn and qn. Look for patterns. Is the
sequence {rn} increasing? decreasing? What happens to rn as n gets larger?
(You should verify that each rn has a terminating representation of the form
1 + 1/2 + 1/2 + 1/2 + · · · + 1/2 + 1/2.)

(b) Verify that for each positive integer n,

rn+1 − rn � − (rn − rn−1)

(1 + rn)(1 + rn−1)
.

(c) Prove that for each pair of positive integers k and l,

1 ≤ r1 ≤ r3 ≤ · · · ≤ r2k+1 ≤ · · · ≤ r2l ≤ · · · ≤ r4 ≤ r2 ≤ 3

2
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4 1. The Square Root of 2

and

|rn+1 − rn| ≤ 1

4
|rn − rn−1|.

(d) From (c), we find that as n increases, rn oscillates around and gets closer to
a limiting value α that lies between 1 and 3

2 . Argue that

α � 1 + 1

1 + α

and deduce that α2 � 2, so that α � √
2. ♠

For each n, the number rn can be represented as a finite continued fraction that
is the beginning of the representation for

√
2 obtained in Exercise 1.2. Since the

limit of the sequence {rn} is
√

2, the infinite continued fraction representing
√

2 is
the limit of finite ones of increasing length.

Exercise 1.4. The representation of
√

2 as a continued fraction suggests an
alternative method of verifying that

√
2 is not equal to a common fraction p/q.

(a) Let s be an arbitrary positive real number and let

a0 � �s�
represent the largest integer that does not exceed s. (This is called the “floor”
of s.) Then

s � a0 + b1,

where 0 ≤ b1 < 1. If b1 > 0, let s1 � 1/b1, so that s1 > 1. Verify that

s � a0 + 1

s1
.

Show that s1 is either an integer or can be written in the form

a1 + 1

s2
,

where a1 � �s1� and s2 > 1. Thus, verify that

s � a0 + 1/a1 + 1/s2.

This process can be continued. At the nth stage, suppose that a0,
a1, . . . , an−1, sn have been chosen such that

s � a0 + 1/a1 + 1/a2 + 1/a3 + · · · + 1/an−1 + 1/sn.

If sn is an integer, the process terminates. Otherwise, let an � �sn� and let
sn+1 > 1 satisfy

sn � an + 1

sn+1
.

If sn is not an integer, the process continues.
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1.1. Can the Square Root of 2 Be Rational? 5

(b) Verify that when s � 17/5, the process just described yields 3 + 1/2 + 1/2.
(c) Carry out the process when s � 347/19.
(d) Observe that �√2� � 1. Carry out the process when s � √

2. Does it
terminate? Why?

(e) Let s � p0/p1 be a rational number with p0 and p1 coprime positive integers.
Write

p0

p1
� a0 + p2

p1
,

where a0 is a nonnegative integer and where 0 ≤ p2 < p1. If p2 	� 0, we
can similarly write

p1

p2
� a1 + p3

p2

with 0 ≤ p3 < p2. Suppose that s is developed as a continued fraction as in
(a). Show that for n ≥ 1, either pn+1 � 0 or sn can be written in the form
pn/pn+1, where

pn−1 � an−1pn + pn+1

and 0 < pn+1 < pn. Deduce from this that the continued fraction process
must terminate.

(f) Deduce from (d) and (e) that
√

2 is not rational.

Exercise 1.5. Let {pn}, {qn}, and {rn} be the sequences defined in Exercise 1.3.
(a) Prove that for n ≥ 2,

pn � pn−1 + 2qn−1,

qn � pn−1 + qn−1.

(b) Prove, by induction, that

p2
n − 2q2

n � (−1)n,

so that

r2
n − 2 � (−1)n

q2
n

and

rn −
√

2 � (−1)n

q2
n

(
rn + √

2
) .

(c) Use (b) to show that as n gets larger and larger, rn gets closer and closer to√
2.

Exercise 1.6. Previous exercises introduced two sets of recursions,

an � bn−1 − an−1; bn � 2an−1 − bn−1,



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

6 1. The Square Root of 2

and

pn � pn−1 + 2qn−1; qn � pn−1 + qn−1.

The first recursion produced decreasing pairs of positive real numbers, while the
second produced increasing pairs. Verify that

bn−1 � bn + 2an and an−1 � bn + an,

and

qn−1 � pn − qn and pn−1 � 2qn − pn,

so that each recursion is the inverse of the other in the sense that the recursion
relation for each gives the recursion relation for the other for decreasing rather
than increasing values of the index n.

Exercise 1.7. From Exercise 1.5, we see that (x, y) � (p2k−1, q2k−1) satisfies
the equation x2 − 2y2 � −1, while (x, y) � (p2k, q2k) satisfies the equation
x2 − 2y2 � 1.
(a) Do you think that these constitute a complete set of solutions to the two

equations in positive integers x and y? Why?
(b) Argue that for each index n, pn is odd, while qn has the same parity as n.
(c) Use the result of (b) to find solutions in positive integers x and y to x2 −8y2 �

1.
(d) Are there any solutions in positive integers to x2 − 8y2 � −1?

Exploration 1.1. Many people are attracted to mathematics by its fecundity. In
particular, the sequences {pn} and {qn} have a richness that is fun to investigate.

Consider the table
n pn qn pnqn

0 1 0 0
1 1 1 1
2 3 2 6
3 7 5 35
4 17 12 204
5 41 29 1189
6 99 70 6930
· · · · · · · · · · · ·

where p2
n − 2q2

n � (−1)n. Using and extending this table, one can find an abun-
dance of patterns. Describe as many of these as you can and try to prove whether
they hold in general. In Exercise 1.5 we found that each of the sequences {pn} and
{qn} can be determined recursively by relations that involve both sequences. Try
to establish recursions for each sequence that involve only its own earlier entries
and not those of the other ones. You may find that discovering the patterns is more
difficult than proving them; in many cases, an induction argument will do the job.
Use these patterns to extend the table further; check your results by computing
p2

n − 2q2
n .
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Here is a rather interesting pattern for you to describe and try to prove a
generalization for:

34 − 5 × 42 � 1,

74 − 24 × 102 � 1,

174 − 145 × 242 � 1,

414 − 840 × 582 � 1.

Exploration 1.2. What are the possible values that x2 − 2y2 can assume when x

and y are integers? In particular, can x2 − 2y2 be equal to 2? −2? 3? −3?

1.2 A Little Matrix Theory

We can think of the sequences {pn} and {qn} of the first section as being paired, so
that there is an operation that acts upon them jointly that allows us to derive each pair
(pn, qn) from its predecessor (pn−1, qn−1). This operation involves the coefficients
1, 2; 1, 1 that occur in the relations pn � pn−1 + 2qn−1 and qn � pn−1 + qn−1.

A convenient way to encode this operation is through a display of the coefficients
in a square array. Indeed, the entities we shall define are more than merely a vehicle
for coding; they permit the definition of algebraic manipulations that will enable
us to obtain new results.

In order to represent the relation between successive pairs {pn, qn} by a single
equation, we introduce the concept of a matrix. An array

(
a b

c d

)

is called a 2 × 2 matrix and
(
u

v

)
a column vector. We define

(
a b

c d

) (
u

v

)
�
(

au + bv

cu + dv

)
.

This equation can be regarded as recording the result of performing an operation
on a column vector to obtain another column vector.

The power of this method of expressing the transformation resides in our ability
to impose an algebraic structure on the sets of vectors and matrices. The sum of
two vectors and the product of a constant and a vector are defined coordinatewise:

(
u

v

)
+
(

r

s

)
�
(

u + r

v + s

)

and

k

(
u

v

)
�
(

ku

kv

)
.
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8 1. The Square Root of 2

We can make a similar definition for the sum of two matrices and the product of a
number and a matrix:

(
p q

r s

)
+
(

a b

c d

)
�
(

p + a q + b

r + c s + d

)

and

k

(
a b

c d

)
�
(

ka kb

kc kd

)
.

There is nothing to stop us from performing two successive operations on a
column vector, by multiplying it on the left by two matrices one after the other. As
we will see in the first exercise, the result of doing this is equivalent to multiplying
the vector by a single matrix. We use this fact to define the product of matrices.
There are many ways to define such a product, and the one used here does not seem
to be the most natural, but it is the standard one and reflects the role of matrices as
entities that act upon something.

Exercise 2.1. Verify that
(

p q

r s

) [ (
a b

c d

) (
u

v

) ]
�
(

pa + qc pb + qd

ra + sc rb + sd

) (
u

v

)
. ♠

This motivates the definition of the product of two 2 × 2 matrices by
(

p q

r s

) (
a b

c d

)
�
(

pa + qc pb + qd

ra + sc rb + sd

)
.

This definition produces that matrix that has the same effect on a vector as the
application of its two multipliers one after another. As you will see in the following
exercises, it is the appropriate definition to use in pursuit of recursions for the
sequences {pn} and {qn}, and in fact, it helps us understand why both sequences
satisfy the same recursion relation.

Exercise 2.2.
(a) Verify that for n ≥ 2,

(
pn

qn

)
�
(

1 2
1 1

) (
pn−1

qn−1

)
.

(b) Verify that
(

3 4
−2 1

) (−1 3
5 2

)
�
(

17 17
7 −4

)

and that
(−1 3

5 2

) (
3 4

−2 1

)
�
(−9 −1

11 22

)
. ♠
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1.2. A Little Matrix Theory 9

Exercise 2.3.
(a) Defining the square of a matrix to be the product of the matrix with itself,

verify that
(

a b

c d

)2

�
(

a2 + bc b(a + d)

c(a + d) d2 + bc

)

� (a + d)

(
a b

c d

)
− (ad − bc)

(
1 0
0 1

)
.

In particular, verify that
(

1 2
1 1

)2

� 2

(
1 2
1 1

)
+
(

1 0
0 1

)
.

(b) Verify that
(

pn+1

qn+1

)
�
(

3 4
2 3

) (
pn−1

qn−1

)
�
(

1 2
1 1

)2 (
pn−1

qn−1

)
.

(c) Use (b) and (c) to prove that

pn+1 � 2pn + pn−1 and qn+1 � 2qn + qn−1

for n ≥ 1.

Exercise 2.4.
(a) Prove that for n ≥ 1,

pnqn � pnqn−1 + pn−1qn + pn−1qn−1.

(b) Prove that for n ≥ 1,

pn+1qn+1 � 6pnqn − pn−1qn−1. ♠

The quadratic form x2 − 2y2 can also be expressed in terms of matrices. We
have seen how to define the product of a matrix and a column vector on the right.
In an analogous way, it is possible to define the product of a matrix and a row
vector on the left:

(u, v)

(
a b

c d

)
� (ua + vc, ub + vd).

The product of a row vector and a column vector is defined to be the number

(u1, u2)

(
v1

v2

)
� u1v1 + u2v2.

Let

U � (u1, u2), A �
(

a b

c d

)
, and V �

(
v1

v2

)
.

The threefold product UAV can be interpreted as (UA)V or U(AV ). Is it possible
that these are different?
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10 1. The Square Root of 2

Exercise 2.5.
(a) Verify that with the notation as defined above, (UA)V and U(AV ) are both

equal to au1v1 + bu1v2 + cu2v1 + du2v2.
(b) Verify that

(x, y)

(
1 0
0 −2

) (
x

y

)
� x2 − 2y2.

Exercise 2.6.
(a) Verify that the mapping

(
x

y

)
−→

(
3 4
2 3

) (
x

y

)

preserves the value of the form x2 − 2y2. This means that you must show that

(3x + 4y)2 − 2(2x + 3y)2 � x2 − 2y2. ♠

We can gain further understanding of this invariance of the formx2−2y2 through
an analysis of the interrelations among the matrices involved. The mapping acting
on the pair (x, y) discussed earlier can be expressed in the alternative format

(x, y) −→ (x, y)

(
3 2
4 3

)
.

The matrix
(3 2

4 3

)
obtained by reflecting the matrix

(3 4
2 3

)
about its diagonal is

called the transpose of the latter matrix.

Exercise 2.7. Verify that the result of Exercise 2.6 amounts to the assertion that

(x, y)

(
3 2
4 3

) (
1 0
0 −2

) (
3 4
2 3

) (
x

y

)
� (x, y)

(
1 0
0 −2

) (
x

y

)

and check that indeed
(

3 2
4 3

) (
1 0
0 −2

) (
3 4
2 3

)
�
(

1 0
0 −2

)
.

1.3 Pythagorean Triples

According to Pythagoras’s theorem, the area of the square raised on the hypotenuse
of a right triangle is equal to the sum of the areas of the squares inscribed on the
legs (other two sides). If the lengths of the legs and hypotenuse are, respectively,
a, b, c, then

a2 + b2 � c2.

When a, b, c are integers, we say that (a, b, c) is a Pythagorean triple. Many
readers will be familiar with the triples (3, 4, 5), (5, 12, 13), and (8, 15, 17). What
other ones are there?
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It is not possible to have Pythagorean triples with the smallest two numbers
equal. For this would correspond to isosceles right triangles for which the length
of the hypotenuse is

√
2 times the length of either arm, and we have seen that

√
2

is not equal to the ratio of two integers. However, we can come pretty close in
that it is possible for the smallest two numbers of a Pythagorean triple to differ by
only 1. One familiar example is the triple (3, 4, 5), but there are infinitely many
others. Before investigating this, we will review the parametric formula that gives
all possible Pythagorean triples.

Exercise 3.1.
(a) Prove that for any integers k, m, n,

(k(m2 − n2), 2kmn, k(m2 + n2))

is a Pythagorean triple.
(b) Suppose that (a, b, c) is a Pythagorean triple with b even. Is it possible to

find integers k, m, n for which

a � k(m2 − n2), b � 2kmn, c � k(m2 + n2)?

Experiment with specific examples.

Exercise 3.2.
(a) Consider the case of Pythagorean triples (a, b, c) in which the two smallest

entries differ by 1. These entries must be of the form m2 − n2 and 2mn with
difference equal to +1 or −1. Derive, for each case, a condition of the form
x2 − 2y2 � 1 where x and y are dependent on m and n.

(b) (x, y) � (3, 2) satisfies x2 − 2y2 � 1. Determine from this equation two
possible corresponding values of the pair (m, n) and their Pythagorean triples.

(c) Use solutions in integers for x2 − 2y2 � 1 to obtain other Pythagorean triples
(a, b, c) with b � a + 1, and look for patterns. We will explore some of these
in Exercise 3.4.

Exercise 3.3. Franz Gnaedinger in Zurich has given an interesting method of
generating triples (a, a + 1, c) for which either a2 + (a + 1)2 � c2 or a2 +
(a + 1)2 � c2 + 1. Begin with the triple (0, 1, 0) and repeatedly apply the
transformation

(a, a + 1, c) −→ (a + c, a + c + 1, 2a + c + 1).

(a) Verify that (0, 1, 0) → (0, 1, 1) → (1, 2, 2) → (3, 4, 5) → (8, 9, 12) →
(20, 21, 29).

(b) Prove that one obtains solutions to x2 + y2 � z2 and x2 + y2 � z2 + 1
alternately.

Exercise 3.4. Consider the sequence 0, 1, 2, 5, 12, 29, 70, . . . . This is the
sequence {qn} given in Section 1. Recall that qn+1 � 2qn + qn−1 for n ≥ 2.
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(a) Show that if we take n and m to be two consecutive terms in this sequence,
then

(m2 − n2, 2mn, m2 + n2)

is a Pythagorean triple whose smallest entries differ by 1.
(b) Verify that this process yields the following list of parametric pairs with their

corresponding Pythagorean triples. Extend the list further.

(m, n) (a, b, c)

(2, 1) (3, 4, 5)

(5, 2) (21, 20, 29)

(12, 5) (119, 120, 169)

(29, 12) (697, 696, 985)

(c) Justify the following rule for finding Pythagorean triples of the required type:
Form the sequence {1, 6, 35, 204, 1189, . . .}. It starts with the numbers 1
and 6. Subsequent terms are obtained as follows: Let u and v be two con-
secutive terms in this order; the next term is 6v − u. The largest number of
the Pythagorean triple to be determined is v − u; the two smaller terms are
consecutive integers whose sum is v +u. Thus, 35 and 204 are adjacent terms
whose difference is 169 and whose sum is 239 = 119 + 120.

Exercise 3.5. Extend the definition of Pythagorean triple to involve negative as
well as positive integers. (−3, 4, 5) and (8, 15, 17) are triples (a, b, c) for which
b � a + 7. Show that the problem of finding other triples with this property leads
to the equation x2 − 2y2 � 7. Determine solutions of this equation and derive
from them more triples with the desired property.

Exercise 3.6. Show that there are infinitely many pairs {(a, b, c), (p, q, r)} of
primitive Pythagorean triples such that |a − p|, |b − q|, and |c − r| are all equal to
3 or 4. (Problem 10704 in American Mathematical Monthly 106 (1999), 67; 107
(2000), 864).

Exploration 1.3. Just as
√

2 can be realized as the ratio of the hypotenuse of
an isosceles right triangle to one of the equal sides, so

√
3 can be realized as the

ratio of the longest side of an isosceles triangle with apex angle equal to 120◦

to one of the equal sides. In both cases, it is not possible to realize these as the
ratios of the longest side to the equal side for similar triangles whose side lengths
are integers. However, we can approximate the situation by an “almost isosceles”
integer triangle with side lengths v, v + 1, and u, with the angle opposite the
side u equal to 120◦. We have the relation 3v2 + 3v + 1 � u2, which can be
written in the form (2u)2 − 3(2v + 1)2 � 1. Thus, we are led to solving the
equation x2 − 3y2 � 1. Investigate solutions of this equation and determine the
corresponding triangles. Does the ratio of u to v turn out to be a good approximation
to

√
3?
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Exploration 1.4. The quadratics x2 +5x +6 � (x +2)(x +3) and x2 +5x −6 �
(x + 6)(x − 1) can both be factored as a product of linear polynomials with integer
coefficients. Determine other integer pairs (m, n) for which x2 + mx + n and
x2 + mx − n can both be so factored.

Exploration 1.5. This follows on from Exercise 3.6. For which positive integers
a is it possible to find pairs of Pythagorean triples [(x, y, z), (x + a, y + a, z +
a + 1)]?

1.4 Notes

See the monograph The Great Mathematicians by Herbert Westren Turnbull,
reproduced in Volume I of The World of Mathematics, edited by James R. New-
man, pages 75–168, for an account of the Greek contribution to the equation
x2 − 2y2 � 1 (pages 97–98) in the context of sides and diagonals of squares. D.H.
Fowler, in his book The Mathematics of Plato’s Academy: A New Reconstruction
(Oxford University Press, New York, 1987; second edition, 1999) discusses how
ratio could be described and analyzed through the process of anthyphairesis, an
iterative process akin to the Euclidean algorithm that produces for each magnitude
a sequence of positive integers analogous to the sequence produced by the modern
continued fraction algorithm. This process, applied to the diagonal and side of a
square, is essentially the material given in Section 1.

2.3. The result of Exercise 2.3(a) is a special case of an important and general
result on matrices, the Cayley–Hamilton theorem. We can define square matrices
with n rows and n columns, where n is a positive integer, along with their addition
and multiplication. Checking mechanically the analogue of the theorem, as we
have done here, is not feasible, and in order to formulate and give an argument,
we need to develop the theory of determinants and of characteristic polynomials,
main topics in a first course on theoretical linear algebra.

1.5 Hints

1.1(a). Triangles ABF and AEF are right triangles with a common hypotenuse
and a pair of corresponding equal sides.

1.7(d). Consider what the remainders of the terms are when divided by 8.

2.4(a). Use the fact that pn � pn−1 + 2qn−1 and qn � pn−1 + qn−1.

2.4(b). Observe that pn+1qn+1 � 6pnqn − pn−1qn−1 + 2(pn−1qn−1 + pnqn−1 +
pn−1qn − pnqn).

3.1(b). There are many ways of obtaining the general form for Pythagorean triples.
One way is to note that each such triple consists of multiples of a triple a, b, c with
greatest common divisor 1. Rewriting the Pythagorean equation as a2 � c2 − b2,
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where c is odd and b is even, factor the right side; show that the factors are coprime
and therefore perfect squares. An alternative argument that reveals more clearly
the links with geometry and trigonometry is sketched below:

(i) Consider a right triangle ABC with ∠C � 90◦, arms a and b, and hypotenuse
c. Let 2θ be the angle opposite the side b and t � tan θ . Verify that

CD � tBC,

CD : AD � CB : AB,

AD � tAB,

b � t (c + a),

t � b

c + a
� c − a

b
,

a

c
� cos 2θ � 1 − t2

1 + t2
,

b

c
� sin 2θ � 2t

1 + t2
.

(ii) Suppose that t is a rational number n/m, where m and n are positive integers.
Verify that

a

c
� m2 − n2

m2 + n2
,

b

c
� 2mn

m2 + n2
,

and deduce that the given triangle is similar to one corresponding to the
Pythagorean triple

(m2 − n2, 2mn, m2 + n2) .

q
q

Figure 1.2.
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(iii) Deduce from (a) and (b) that the triangles for which the quantity t is rational
are precisely those that are similar to triangles corresponding to Pythagorean
triples.

(iv) Suppose that (a, b, c) is a Pythagorean triple whose entries have greatest
common divisor 1. Argue that exactly one of a and b is even; suppose it to
be b. Let the corresponding value of t written as a fraction in lowest terms be
n/m. Show that the greatest common divisor of m2 − n2, 2mn, and m2 + n2

is either 1 or 2 and deduce that either

(a, b, c) � (m2 − n2, 2mn, m2 + n2)

or

(2a, 2b, 2c) � (m2 − n2, 2mn, m2 + n2).

The second possibility can be eliminated. Argue that when m2 ± n2 are even,
m and n must be odd, so that m2 − n2 is divisible by 4. Observe that this
contradicts that a is odd.

(v) We have now demonstrated that every Pythagorean triple of numbers with
greatest common divisor 1 has the form (m2 −n2, 2mn, m2 +n2). Experiment
with various values of m and n to obtain new Pythagorean triples. Which
values of m and n will produce the triples you identified in Exercise 3.1(a)?

3.2(a). Complete the square of the quadratics m2 − n2 − 2mn � m2 − 2mn − n2

and 2mn − m2 + n2 � n2 + 2mn − m2.

3.4. Consider q2
n+1 − q2

n − 2qnqn+1. You will need to know something about
qn+1qn−1 − q2

n .

3.6. Two examples are {(a, b, c), (p, q, r)} � {(5, 12, 13), (8, 15, 17)},
{(36, 77, 85), (39, 80, 89)}.
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2

Problems Leading to Pell’s Equation
and Preliminary Investigations

The first chapter presented a situation that led to pairs of integers (x, y) that satisfied
equations of the form x2 − 2y2 � k for some constant k. One of the reasons for the
popularity of Pell’s equation as a topic for mathematical investigation is the fact
that many natural questions that one might ask about integers lead to a quadratic
equation in two variables, which in turn can be cast as a Pell’s equation. In this
chapter we will present a selection of such problems for you to sample.

For each of these you should set up the requisite equation and then try to find
numerical solutions. Often, you should have little difficulty in determining at least
one and may be able to find several. These exercises should help you gain some
experience in handling Pell’s equation. Before going on to study more systematic
methods of solving them, spend a little bit of time trying to develop your own
methods.

While a coherent theory for obtaining and describing the solutions of Pell’s
equation did not appear until the eighteenth century, the equation was tackled
ingeniously by earlier mathematicians, in particular those of India. In the third
section, inspired by their methods, we will try to solve Pell’s equation.

2.1 Square and Triangular Numbers

The numbers 1, 3, 6, 10, 15, 21, 28, 36, 45, . . . , tn ≡ 1
2 n(n + 1), . . . are

called triangular, since the nth number counts the number of dots in an equilateral
triangular array with n dots to the side.

It is not difficult to see that the sum of two adjacent triangular numbers is square.

Figure 2.1.

16
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Figure 2.2.

But does it often happen that an individual triangular number is square? We will
examine this and similar questions.

Exercise 1.1. Verify that the condition that the nth triangular number tn is equal
to the mth square is that 1

2 n(n + 1) � m2. Manipulate this equation into the form

(2n + 1)2 − 8m2 � 1.

Thus, we are led to solving the equation x2 − 8y2 � 1 for integers x and y.
It is clear that for any solution, x must be odd (why?), so that we can then find
the appropriate values of m and n. Observe that 1 and 36 are included in the list
of triangular numbers. What are the corresponding values of x, y, m, n? Use the
results of Exercise 1.1.7(c) to generate other solutions.

Exercise 1.2. There are triangular numbers that differ from a square by 1, such
as 3 � 22 − 1, 10 � 32 + 1, 15 � 42 − 1, and 120 � 112 − 1. Determine other
examples.

Exercise 1.3. Find four sets of three consecutive triangular numbers whose
product is a perfect square.

Exercise 1.4. Find four sets of three consecutive triangular numbers that add up
to a perfect square.

Exercise 1.5. Determine integers n for which there exists an integer m for which
1 + 2 + 3 + · · · + m � (m + 1) + (m + 2) + · · · + n.

Exercise 1.6. Determine positive integers m and n for which

m + (m + 1) + · · · + (n − 1) + n � mn

(International Mathematical Talent Search 2/31).



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

18 2. Problems Leading to Pell’s Equation and Preliminary Investigations

Exploration 2.1. The triangular numbers are sums of arithmetic progressions. We
can ask similar questions about other arithmetic progressions as well. Determine
the smallest four values of n for which the sum of n terms of the arithmetic series
1 + 5 + 9 + 13 + · · · is a perfect square. Compare these values of n with the terms
of the sequence {qn} listed in Exploration 1.1. Experiment with other initial terms
and common differences.

Exploration 2.2. Numbers of the form n(n + 1) (twice the triangular numbers)
are known as oblong, since they represent the area of a rectangle whose sides
lengths are consecutive integers. The smallest oblong numbers are

2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156.

A little experimentation confirms that the product of two consecutive oblong num-
bers is oblong; can you give a general proof of this result? Look for triples (a, b, c)

of oblong numbers a, b, c for which c � ab. For each possible value of a,
investigate which pairs (b, c) are possible.

An interesting phenomenon is the appearance of related triples of solutions. For
example, we have (a, b, c) equal to

(14 × 15, 782 × 783, 11339 × 11340),

(14 × 15, 13 × 14, 195 × 196),

(13 × 14, 782 × 783, 10556 × 10557),

while

(11339 × 11340)(13 × 14)2 � (195 × 196)(10556 × 10557).

Are there other such triples?

2.2 Other Examples Leading to a Pell’s Equation

The following exercises also involve Pell’s equation. For integers n and k with
1 ≤ k ≤ n, we define

(
n

k

)
� n(n − 1) · · · (n − k + 1)

1 · 2 · · · k � n!

k!(n − k)!
.

Also, we define
(
n

0

) � 1 for each positive integer n. Observe that 1+2+· · ·+n �(
n+1

2

)
.

Exercise 2.1. Determine nonnegative integers a and b for which
(

a

b

)
�
(

a − 1

b + 1

)
.
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Exercise 2.2. Suppose that there are n marbles in a jar with r of them are red
and n − r blue. Two marbles are drawn at random (without replacement). The
probability that both have the same color is 1

2 . What are the possible values of n

and r?

Exercise 2.3. The following problem appeared in the American Mathematical
Monthly (#10238, 99 (1992), 674):
(a) Show that there exist infinitely many positive integers a such that both a + 1

and 3a + 1 are perfect squares.
(b) Let {an} be the increasing sequence of all solutions in (a). Show that anan+1 +1

is also a perfect square.

Exercise 2.4. Determine positive integers b for which the number (111 . . . 1)b
with k digits all equal to 1 when written to base b is a triangular number, regardless
of the value of k.

Exercise 2.5. Problem 2185 in Crux Mathematicorum (22 (1996), 319) points out
that

22 + 42 + 62 + 82 + 102 � 4 · 5 + 5 · 6 + 6 · 7 + 7 · 8 + 8 · 9

and asks for other examples for which the sum of the first n even squares is the
sum of n consecutive products of pairs of adjacent integers.

Exercise 2.6. Determine integer solutions of the system

2uv − xy � 16,

xv − uy � 12

(American Mathematical Monthly 61 (1954), 126; 62 (1955), 263).

Exercise 2.7. Problem 605 in the College Mathematics Journal (28 (1997), 232)
asks for positive integer quadruples (x, y, z, w) satisfying x2 + y2 + z2 � w2

for which, in addition, x � y and z � x ± 1. Some examples are (2, 2, 1, 3) and
(6, 6, 7, 11). Find others.

Exercise 2.8. The root-mean-square of a set {a1, a2, . . . , ak} of positive integers
is equal to

√
a2

1 + a2
2 + · · · + a2

k

k
.

Is the root-mean-square of the first n positive integers ever an integer? (USAMO,
1986)

Exercise 2.9. Observe that (1 + 12)(1 + 22) � (1 + 32). Find other examples of
positive integer triples (x, y, z) for which (1 + x2)(1 + y2) � (1 + z2).
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Exercise 2.10. A problem in the American Mathematical Monthly (#6628, 98
(1991), 772–774) asks for infinitely many triangles with integer sides whose area
is a perfect square. According to one solution, if m is chosen to make 1

2 (m2 − 1) a
square, then the triangles with sides ( 1

2 (m3 + m2) − 1, 1
2 (m3 − m2) + 1, m2) and

with sides (m3− 1
2 (m−1), m3− 1

2 (m+1), m)have square area. Recalling Heron’s
formula

√
s(s − a)(s − b)(s − c) for the area of a triangle with sides (a, b, c)

and perimeter 2s, verify this assertion and give some numerical examples.

Exercise 2.11.
(a) Suppose that the side lengths of a triangle are consecutive integers t − 1, t ,

t + 1, and that its area is an integer. Prove that 3(t2 − 4) must be an even
perfect square, so that t � 2x for some x. Thus show that x2 − 3y2 � 1 for
some integer y. Determine some examples.

(b) In the situation of (a), prove that the altitude to the side of middle length is
an integer and that this altitude partitions the side into two parts of integer
length that differ by 4.

(c) Suppose that the sides of a triangle are integers t − u, t , and t + u. Verify
that 3(t2 − 4u2) is a square (3v)2 and obtain the equation t2 − 3v2 � 4u2.
Determine some examples with u 	� 1.

Exercise 2.12. Here is one approach to constructing triangles with integer sides
whose area is an integer. Such a triangle can be had either by slicing one right
triangle from another or by juxtaposing two right triangles. (See figure 2.3.)

We suppose that m, r , a, b � ma + r and c � ma − r are integers.

(a) Prove that 4mr � a ± 2q and deduce that 2q is an integer.
(b) Prove that 2p must be an integer.
(c) By comparing two expressions for the area of the triangle (a, b, c), verify

that

(4m2 − 1)(a2 − 4r2) � 4p2.

Take a � 2t and obtain the equation

p2 − (4m2 − 1)t2 � −(4m2 − 1)r2.

(d) Determine some solutions of the equation in (c) and use them to construct
some examples of triangles of the desired type.

Exercise 2.13. A Putnam problem (A2 for the year 2000) asked for a proof that
there are infinitely many sets of three consecutive positive integers each of which
is the sum of two integer squares. An example of such a triple is 8 � 22 + 22,
9 � 02 + 32 and 10 � 12 + 32.
(a) One way to approach the problem is to let the three integers be n2 − 1 � 2m2,

n2, and n2 + 1. Derive a suitable Pell’s equation for m and n and produce
some numerical examples.

(b) However, it is possible to solve this problem without recourse to Pell’s
equation. Do this.
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Figure 2.3.

Exploration 2.3. Let {Fn} be the Fibonacci sequence determined by F0 � 0,
F1 � 1, and Fn+1 � Fn + Fn−1 for each integer n. It turns out that

F 2
2n−1 + F 2

2n+1 + 1 � 3F2n−1F2n+1

(can you prove this?), so that (F2n−1, F2n+1) is an example of a pair (a, b) for
which a2 + b2 + 1 is a multiple of ab. Thus we have the instances (a, b) �
(1, 1), (1, 2), (2, 5), (5, 13), (13, 34). What other pairs can be found?

Problem #10316 in the American Mathematical Monthly (100 (1993), 589; 103
(1996), 905) asks for conditions under which ab divides a2 + b2 + 1. Suppose for
some integer k that a2 + b2 + 1 � kab. If (a, b) satisfies the equation, then so also
do (b, kb − a) and (a, ka − b), so we have a way of generating new solutions from
old. Show that the multiple k must exceed 2, and that the Diophantine equation for
a and b can be rewritten

(2a − kb)2 − (k2 − 4)b2 � −4.

We can rule out certain values of k. For example, k must be a multiple of 3, but
cannot be twice an odd number.

What are all the solutions for k � 3? Are there any solutions for k � 15? Are
there solutions for any other values of k?
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Exploration 2.4. The triple (1, 8, 15) has the interesting property that the three
numbers are in arithmetic progression and the product of any two of them plus one
is a perfect square. Find other triples that have the same property.

Exploration 2.5. Note that 152 + 162 + 172 � 7 × (52 + 62 + 72) and 82 + 92 +
102 + 112 + 122 � 2 × (52 + 62 + 72 + 82 + 92). Determine generalizations.

2.3 Strategies for Solutions and a Little History

It is perverse that equations of the type x2 − dy2 � k became associated with
the name of Pell. John Pell (c. 1611–1683) was indeed a minor mathematician,
but he does not appear to have seriously studied the equation. Kenneth Rosen,
on page 459 of his Elementary Number Theory, mentions a book in which Pell
augmented work of other mathematicians on x2 − 12y2 � n, and D.E. Smith, in
his Source Book, says that there is weak indication of his interest in the equation
x2 � 12y2 − 33 is considered in a 1668 algebra book by J. H. Rahn to which
Pell may have contributed. H.C. Williams provides a full description of this in
his millennial paper on number theory. However, many mathematical historians
agree that this is a simple case of misattribution; these equations were ascribed
to Pell by Leonhard Euler in a letter to Goldbach on August 10, 1730, and in
one of his papers. Since Euler was one of the most influential mathematicians in
Europe in the eighteenth century, the name stuck. There were others very interested
in the equation, many earlier than Pell. Pierre de Fermat (1601?–1665) was the
first Western European mathematician to give the equation serious attention, and
he induced his contemporaries John Wallis (1616–1703) and Frénicle de Bessy
(1602–1675) to study it. Actually, Pell’s equations go back a long way, before the
seventeenth century. The Greeks seem to have come across some instances of it; in
particular, Archimedes posed a problem about cattle that led to an equation of the
type. The Indian mathematician Brahmagupta in the sixth century had a systematic
way of generating infinitely many solutions from a particular one, while in the
eleventh century, Jayadeva and Bhaskara II had algorithms for finding the first
solution.

Exercise 3.1. In our definition of Pell’s equation we specified that d had to be
positive and nonsquare. Let us see why this restriction is a natural one. First,
suppose that d is a negative number, say −p.
(a) Consider the equation x2 + 3y2 � 7. Find all solutions to this equation. How

do you know that you have a complete set? In the Cartesian plane, sketch
the curve with equation x2 + 3y2 � 7. Indicate all points on it with integer
coordinates. What is this curve?

(b) For a given positive integer p and integer k, sketch the graph of the equation
x2 + py2 � k. Corresponding to every point (x, y) on the graph with integer
coordinates there is a solution to the equation. Determine an upper bound on
the number of solutions that this equation can possibly have. ♠
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Thus, when d is negative, the solutions of x2 − dy2 � k in integers x and y

are finite in number and can be found by inspection. Characterizing those values
of k for which there is a solution for a given d is in itself an interesting question,
though it is not within the scope of this book.

Exercise 3.2. Consider the equation x2 − dy2 � k where d � q2, the square of
an integer.
(a) Determine all the solutions in integers that you can for each of the following

equations:

x2 − 4y2 � 45,

x2 − y2 � 6,

x2 − 9y2 � 7.

(b) Argue that that equation x2 − q2y2 � k can have at most finitely many
solutions in integers x and y. Give an upper bound for this number of solutions
in terms of the number of positive integers that divide k evenly.

(c) Sketch the graph of the hyperbola with equation x2 − q2y2 � k along with
the graphs of its asymptotes with equations x + qy � 0 and x − qy � 0.
What are the points with integer coordinates lying on the asymptotes? What
insight does this give as to why there are so few points on the hyperbola with
integer coordinates?

Exercise 3.3. The eleventh century Indian mathematician Bhaskara was able to
solve the equation x2 − 61y2 � 1 for integers x and y. One might think that
since it easy to find a solution of x2 − 63y2 � 1 (do it!), there should not be
too much difficulty solving Bhaskara’s equation. However, simple trial and error
is likely to lead to abject failure, and Bhaskara needed considerable numerical
skill to handle the job—this at a time when there were no calculators or even the
convenient notation we enjoy today. In this exercise we will indicate the type of
strategy followed by Bhaskara, but avail ourselves of modern notation.
(a) Suppose that k, d , x, y are integers for which x2 − dy2 � k. Show that

(mx + dy)2 − d(ym + x)2 � k(m2 − d)

for each positive integer m.
(b) Suppose, in (a), that the greatest common divisor of k and y is 1, and that

ym + x is a multiple of k. Use the equations

(m2 − d)y2 � k − (x2 − m2y2) � k − (x + my)(x − my)

and

mx + dy � m(x + my) − (m2 − d)y
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to show that m2 − d and mx + dy are also multiples of k. Thus, the result in
(a) can be rewritten

(
mx + dy

k

)2

− d

(
ym + x

k

)2

� m2 − d

k
,

where the quantities in parentheses can be made all integers when m is suitably
chosen.

(c) Derive from 82 − 61(1)2 � 3 the equation
(

8m + 61

3

)2

− 61

(
m + 8

3

)2

� m2 − 61

3
.

Choose m so that (m + 8)/3 is an integer and |(m2 − 61)/3| is as small as
possible. Hence derive

392 − 61(5)2 � −4.

(d) Now obtain the equation
(

39m + 305

−4

)2

− 61

(
5m + 39

−4

)2

� m2 − 61

−4
.

Choose m so that (5m + 39)/4 is an integer and |(m2 − 61)/4| is as small as
possible. Using a pocket calculator, if you wish, obtain

1642 − 61(21)2 � −5.

(e) We can continue on in this way to successively derive the following numer-
ical equations. Check the derivation of as many of them as you need to feel
comfortable with the process.

4532 − 61(58)2 � 5,

15232 − 61(195)2 � 4,

56392 − 61(722)2 � −3,

297182 − 61(3805)2 � −1,

4698492 − 61(60158)2 � −3,

23195272 − 61(296985)2 � 4,

97479572 − 61(1248098)2 � 5,

269243442 − 61(3447309)2 � −5,

905209892 − 61(11590025)2 � −4,

3351596122 − 61(42912791)2 � 3,

17663190492 − 61(226153980)2 � 1.

It is interesting to note that the equation x2 − 61y2 � 1 was proposed by the
Frenchman Pierre Fermat to Frénicle in February, 1657. The first European to
publish a solution was Leonhard Euler, in 1732.
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Exercise 3.4. There are devices known to Bhaskara by which the process can be
shortened. One depends on the identity

(x2 − dy2)(u2 − dv2) � (xu + dyv)2 − d(xv + yu)2.

(a) Verify this identity and draw from it the conclusion that if two integers can be
written in the form x2 − dy2 for integers x and y, then so can their product.

(b) Explain how a solution of x2 − dy2 � −1 can be used to obtain a solution
of x2 − dy2 � +1.

(c) Determine a solution to the equation x2 − 65y2 � 1 in integers x and y.
(d) From the identity and the pair of equations, derive

x2 − dy2 � k, m2 − d(1)2 � m2 − d,

the equation in Exercise 3.3(a).

Exercise 3.5. Refer to Exercise 3.3.
(a) From the numerical equation 392 − 61(5)2 � −4, deduce that

(
39

2

)2

− 61

(
5

2

)2

� −1.

(b) Substituting x � u � 39/2, y � v � 5/2, d � 61 in the identity of
Exercise 3.4(a), derive

(
1523

2

)2

− 61

(
195

2

)2

� 1.

(c) Substituting x � 39/2, y � 5/2, u � 1523/2, v � 195/2 in the identity
of Exercise 3.4(a), obtain

297182 − 61(3805)2 � −1.

(d) Now obtain a solution to x2 − 61y2 � 1 using Exercise 3.4(b).

Exercise 3.6. Another equation solved by Bhaskara was x2 − 67y2 � 1.
(a) Following the procedure of Exercise 3.3, derive the equations

82 − 67(1)2 � −3,

412 − 67(5)2 � 6,

902 − 67(11)2 � −7,

2212 − 67(27)2 � −2.

(b) Using the identity of Exercise 3.4, derive a solution of x2 − 67y2 � 4 and
deduce from this a solution in integers x, y to x2 − 67y2 � 1.

Exercise 3.7. In 1658, Frénicle claimed that he had found a solution in integers
x and y to x2 − dy2 � 1 for all nonsquare values of d up to 150, but mentioned
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that he was looking in particular for solutions in the cases d � 151 and d � 313.
In response, John Wallis found that

(1728148040)2 − 151(140634693)2 � 1,

and Lord Brouncker commented that within an hour or two, he had discovered that

(126862368)2 − 313(7170685)2 � −1.

Check that these results are correct. Doing this in this obvious way may not be most
efficient, particularly if they lead to overflow of your pocket calculator. A better
way may be to set things up so that you can use division rather than multiplication.
This might involve manipulating the equation to be checked into forms leading to
easy factorization, such as those involving differences of squares. It might involve
checking for small prime factors of terms involved. Be creative and use some
ingenuity.

Exercise 3.8. How might Wallis and Brouncker have solved a Pell’s equation?
Consider the example x2 − 7y2 � 1.
(a) The smallest square exceeding 7 is 9 � 32; we have that 7 � 32 − 2.

Deduce from this 7(2)2 � 62 − 8, 7(3)2 � 92 − 18, and more generally
7m2 � (3m)2 − 2m2.

(b) Observe that 92 − 18 � (9 − 1)2 − 1, so that 92 − 18 is just 1 shy of being
a perfect square. Transform 7(3)2 � 92 − 18 to 7(3)2 � (9 − 1)2 − 1 and
thence derive a solution to x2 − 7y2 � 1.

Exercise 3.9. Let us apply the Wallis–Brouncker approach to the general equation
x2 −dy2 � 1. Let positive integers c and k be chosen to satisfy (c−1)2 < d < c2

and c2 −d � k, so that c2 is the smallest square exceeding d, and k is the difference
between this square and d .
(a) Show that for any integer m, dm2 � (cm)2 − km2.
(b) The quantity dm2 � (cm)2 − km2 is certainly less than (cm)2, but it may not

be less than any smaller square, in particular (cm − 1)2. However, as m grows
larger, the distance between dm2 and (cm)2 increases, so that eventually dm2

will become less than (cm − 1)2. This will happen as soon as

(cm)2 − km2 ≤ (cm − 1)2 − 1.

Verify that this condition is equivalent to 2c ≤ km.
(The strategy is to select the smallest value of m for which this occurs and

hope that dm2 − (cm − 1)2 � −1, in which case (x, y) � (cm − 1, m) will
satisfy x2 − dy2 � 1. This, of course, need not occur, and we will need to
modify the strategy.)

(c) Start with 13 � 42 − 3 and determine the smallest value of m for which
13m2 − (4m − 1)2 has a negative value, and write the numerical equation
that evaluates this.

(d) Suppose dm2 − (cm−1)2 is not equal to −1 when it first becomes negative. It
will take larger and larger negative values as m increases (why?). Eventually,
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there will come a time when dm2 − (cm − 2)2 will not exceed −1. Verify
that this occurs when 4c ≤ km + (3/m).

(e) This process can be continued. If dm2 − (cm − 2)2 fails at any point to equal
−1, then we can try for a solution with x � cm − 3 for some value of m.
This process can be continued until (hopefully) a solution is found. Try this
in the case that d � 13.

(f) Which method do you consider more convenient, this or Bhaskara’s?

Exercise 3.10. Here is a systematic way to obtain solutions of x2 − dy2 � 1 for
a great many values of d .
(a) Verify the identity

(zy + 1)2 −
(

z2 + 2z

y

)
y2 � 1.

(b) Suppose that integers y and z are selected so that 2z is a multiple of y; let
d � z2 + (2z/y) and x � zy +1. Without loss of generality, we may suppose
that z > 0 and that y can be either positive or negative. If 1 ≤ y ≤ 2z, show
that z2 + 1 ≤ d ≤ (z + 1)2 − 1, while if −2z ≤ y ≤ −1, show that
(z − 1)2 − 1 ≤ d ≤ z2 + 1.

(c) Describe how, for a given value of d, one might determine solutions to x2 −
dy2 � 1. Apply this method to obtain solutions when d � 3, 27, 35, 45.

(d) List values of d up to 50 for which solutions cannot be found using this
method.

2.4 Explorations

Exploration 2.6. Archimedes’ Cattle Problem. In the eighteenth century, a
German dramatist, G.E. Lessing, discovered a problem posed by Archimedes to
students in Alexandria. A complete statement of the problem and comments on its
history and solution can be found in the following sources:

H.W. Lenstra, Jr., Solving the Pell’s equation. Notices of the American
Mathematical Society 49:2 (February, 2002), 182-192.

James R. Newman (ed.), The World of Mathematics, Volume 1 (Simon &
Schuster, New York, 1956) pages 197–198, 105–106.

H.L. Nelson, A solution to Archimedes’ cattle problem, Journal of Recreational
Mathematics 13:3 (1980–81), 162–176.

Ilan Vardi, Archimedes’ Cattle Problem, American Mathematical Monthly 106
(1998), 305–319.

The paper of H.C. Williams on solving Pell’s equation, delivered to the Millennial
Conference on Number Theory in 2002 and listed in the historical references,
discusses the cattle problem and lists additional references by P. Schreiber and W.
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Waterhouse. In modern symbolism, this problem amounts to finding eight positive
integers to satisfy the conditions

W � 5
6 X + Z, X � 9

20 Y + Z, Y � 13
42 W + Z,

w � 7
12 (X + x), x � 9

20 (Y + y), y � 11
30 (Z + z), z � 13

42 (W + w),

with the additional requirements that W + X is to be square and Y + Z triangular.
Solving this problem involves obtaining a solution to the Pell’s equation p2 −
4,729,494q2 � 1, a feat that was not accomplished until 1965. Now, of course,
we have sophisticated software available to do the job. Can you find a solution to
the equation?

Exploration 2.7. There are certain values of d for that it is easy to find a solution
of x2 − dy2 � 1. One does not have to look very far to solve x2 − 3y2 � 1 or
x2 − 8y2 � 1. Indeed, there are categories of values of d for which some formula
for a solution can be given. For example, 3 and 8 are both of the form t2 − 1; what
would a solution of x2 − (t2 − 1)y2 � 1 be for an arbitrary value of the parameter
t? Can you find more than one solution?

Determine the smallest pair (x, y) of positive integers that satisfies x2 −dy2 � 1
in each of the following special cases.

(a) d � 2, 5, 10, 17, 26, . . . , t2 + 1, . . ..

(b) d � 3, 6, 11, 18, 27, . . . , t2 + 2, . . ..

(c) d � 2, 7, 14, 23, . . . , t2 − 2, . . ..

(d) d � 2, 6, 12, 20, 30, . . . , t2 + t, . . ..

(e) d � 7, 32, 75, . . . , t2 + (4t + 1)/3, . . . (where t is 1 less than a multiple
of 3.

(f) d � 3, 14, 33, . . . , t2 + (3t + 1)/2, . . . (where t is odd) .
Now we come to some tougher cases that do not seem to follow an easy pattern.
Find at least one solution in positive integers to each of the following:

(g) x2 − 21y2 � 1.

(h) x2 − 22y2 � 1.

(i) x2 − 28y2 � 1.

(j) x2 − 19y2 � 1.

(k) x2 − 13y2 � 1.

(l) x2 − 29y2 � 1.

(m) x2 − 31y2 � 1.

Exploration 2.8. For which values of the integer d is x2 − dy2 � −1 solvable?
In particular, is there a solution when d is a prime exceeding a multiple of 4 by
1? Do not look at the discussion for this exploration until you have completed
working through Chapter 5.
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Exploration 2.9. Which integers can be written in the form x2 − y2? x2 − 2y2?
x2 − 3y2? x2 − dy2?

Exploration 2.10. Let xn � a + (n − 1)d be the nth term of an arithmetic
progression with initial term a and common difference d. The quantity sn �
x1 + x2 + · · · + xn is called a partial sum of the series x1 + x2 + x3 + · · ·. Must
there be at least one partial sum that is a square? Even if the a and d are coprime?
For which progressions is it true that every partial sum is a square? Suppose that
there is one square partial sum; must there be infinitely many more?

Exploration 2.11. In Exploration 1.4 the equation x2 − 3y2 � 1 was considered.
Its solutions are given by

(x, y) � (1, 0), (2, 1), (7, 4), (26, 15), (97, 56), (362, 209), . . . .

What is special about the numbers 2, 26, and 362? The solutions for x2 − 6y2 � 1
are

(x, y) � (1, 0), (5, 2), (49, 20), (485, 198), (4801, 1960), . . . .

Note the appearance of 5 and 485. You may also wish in this context to look at
the solutions of x2 − 7y2 � 1 and x2 − 8y2 � 1. Are there other values of d for
which the solutions of x2 − dy2 � 1 exhibit similar behavior?

2.5 Historical References

There are several books and papers concerned with the history of Pell’s equation:

David M. Burton, The History of Mathematics: An Introduction. Allyn and
Bacon, Newton, MA, 1985 [pp. 243, 250, 504].

Bibhutibhusan Datta and Avadhesh Narayan Singh, History of Hindu Mathe-
matics, A Source Book, Asia Publishing House, Bombay, 1962.

Leonard Eugene Dickson, History of the Theory of Numbers, Volume II: Dio-
phantine Analysis. Chelsea, New York, 1952 (reprint of 1920 edition) [Chapter
XII].

Victor J. Katz, A History of Mathematics: An Introduction. (Harper-Collins,
New York, 1993) [pp. 208–211, 555–556].

Morris Kline, Mathematical Thought from Ancient to Modern Times. Oxford
University Press, New York, 1972 [pp. 278, 610, 611].

James R. Newman editor, The World of Mathematics, Volume 1. Simon and
Schuster, New York, 1956 [pp. 197–198].

C.O. Selenius, Rationale of the Chakravala process of Jayadeva and Bhaskara
II, Historia Mathematica 2 (1975), 167–184.

David E. Smith ed., A Source Book in Mathematics, Volume One Dover, 1959
[pp. 214–216].
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D.J. Struik ed., A Source Book in Mathematics, 1200–1800, Harvard University
Press, Cambridge, MA, 1969 [pages 29–31].

André Weil, Number Theory: An Approach Through History from Hammurapi
to Legendre. Birkhäuser, Boston, 1983.

H.C. Williams, Solving the Pell’s equation. Proceedings of the Millennial Con-
ference on Number Theory (Urbana, IL, 2000) (M.A. Bennett et al., editors), A.K.
Peters, Boston, 2002.

Weil describes how rational approximations to the square root of 3 involved ob-
taining some solutions to Pell’s equation. Burton, Dickson (pp. 342–345), and
Newman mention the Archimedean cattle problem. Datta and Singh, Dickson (pp.
346–350), Katz, and Weil give quite a bit of attention to Indian mathematics, with
Selenius giving an analysis of their method. Dickson and Weil give a lot of detail
on European developments in the seventeenth and eighteenth centuries. Smith and
Struik document a 1657 letter of Fermat in which he asserts that given any number
not a square, there are infinitely many squares that when multiplied by the given
number are one less than a square.

2.10, 2.11. See A.R. Beauregard and E.R. Suryanarayan, Arithmetic triangle,
Mathematics Magazine (1997) 106–116.

5.9. Oeuvres de Fermat III, 457-480, 490-503; Dickson, p. 352.

2.6 Hints

2.3(a). If the two numbers are y2 and x2, what is x2 − 3y2?

2.4. In particular, 1 + b + b2 � 1
2 v(v + 1) for some integer v.

2.5. Suppose that 22 + 42 +· · ·+ (2n)2 � m(m+ 1)+· · ·+ (m+n− 1)(m+n).
The left side can be summed using the formula for the sum of the first r squares:
1
6 r(r + 1)(2r + 1). The right side can be summed by expressing each term as a
difference: 3x(x + 1) � x(x + 1)(x + 2) − (x − 1)x(x + 1). Show that this
equation leads to (n + 1)2 � m(n + m), which can be rewritten as a Pythagorean
equation: n2 + [2(n + 1)]2 � (2m + n)2. At this point you can use the general
formula for Pythagorean triples to get an equation of the form x2 − 5y2 � 4.

2.6. Square each equation and eliminate terms that are linear in each variable.

3.7. Rearrange the terms in the equation involving 151 to obtain a difference of
squares on one side. The equation involving 313 is trickier. It may help to observe
that 313 � 122 + 132. It is easy to check divisibility of factors by powers of
2. Casting out 9’s will help check divisibility by powers of 3. Check also for
divisibility of factors by other small primes. Another way to compare divisors is
as follows. Suppose we wish to show that ab � cd . We might look for common
divisors of the two sides; one such would be the greatest common divisor of
a and c. Finding such a greatest common divisor need not involve knowing the
prime-power decomposition of the numbers. The Euclidean algorithm can be used.
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Suppose a > c. Divide c into a and get a remainder r � a − cq, where q is the
quotient. Then gcd(a, c) � gcd(c, r). Now we have a smaller pair of numbers to
work with. We can continue the process with c and r . Eventually, we will come to
a pair of numbers one of which divides the other.
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3

Quadratic Surds

Once a solution in integers to Pell’s equation x2 − dy2 � 1 is given, it is possible
to generate infinitely many others. Underlying this is an algebraic structure that
can be revealed through operations on surds.

3.1 Quadratic Surds

Let a, b, d be rational numbers with d a nonsquare positive integer. A quadratic

surd is a number of the form a +b
√

d; its surd conjugate is a + b
√

d � a − b
√

d.
Multiplying the quadratic surd by its conjugate gives its norm N(a + b

√
d) �

a2 − b2d . Since the norm has the same form as the left side of Pell’s equation, it
is not surprising that surds have a role to play in the analysis of that equation.

Exercise 1.1.
(a) Write the product of 2 + 7

√
3 and 3 − 4

√
3 in the form a + b

√
3, where a

and b are integers.
(b) What are the norms of 2 + 7

√
3, 3 − 4

√
3, and the product of these surds?

(c) Write (2 + 7
√

3)−1 in the form u + v
√

3, where u and v are rational numbers.
(d) Observe that 2 + √

3 has a multiplicative inverse p + q
√

3, where p and q

are not merely rationals, but integers. Determine other numbers of the form
a + b

√
3, where a and b are integers, whose multiplicative inverses also have

integer coefficients.

Exercise 1.2. Let c � a + b
√

d and w � u + v
√

d. Verify that:
(a) cw � c̄ × w̄.
(b) N(cw) � N(c)N(w).
(c) N(c + w) + N(c − w) � 2(N(c) + N(w)).
(d) c/w � (cw̄)/(N(w)).

Exercise 1.3. Verify that Pell’s equation x2 − dy2 � k can be written in the form
N(x + y

√
d) � k.

32
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Exercise 1.4. Suppose that x2 − dy2 � k and u2 − dv2 � l are two given integer
equations. Define the integers m and n by

m + n
√

d � (x + y
√

d)(u + v
√

d).

Verify that m � xu + dyv, n � xv + yu, and m2 − dn2 � kl.

Exercise 1.5.
(a) Suppose that (x, y) � (x1, y1) is a solution to x2 − dy2 � 1. Define the

integer pair (x2, y2) by the equation

x2 + y2

√
d � (x1 + y1

√
d)2.

Verify that x2 � x2
1 +dy2

1 , y2 � 2x1y1 and (x2, y2) is a solution of x2 −dy2 �
1.

(b) More generally, suppose that (xn, yn) is defined by

(xn + yn

√
d) � (x1 + y1

√
d)n for n ≥ 2.

Note that xn + yn

√
d � (xn−1 + yn−1

√
d)(x1 + y1

√
d) and deduce that

xn � x1xn−1 + dy1yn−1, yn � x1yn−1 + y1xn−1.

Prove that (xn, yn) is a solution of x2 − dy2 � 1.
(c) Deduce that if x2 − dy2 � 1 has a solution other than (x, y) � (±1, 0), then

it has infinitely many solutions in positive integers.

Exercise 1.6. Given that (x, y) � (3, 2) is a solution of x2 − 2y2 � 1, generate
a sequence of solutions by applying Exercise 1.5.

Exercise 1.7. Given that (x, y) � (1, 1) is a solution of x2 −2y2 � −1, generate
an infinite sequence of solutions to this equation.

Exercise 1.8. Given that (x, y) � (3, 1) is a solution of x2 − 2y2 � 7, generate
an infinite sequence of solutions to this equation.

Exercise 1.9. The surd technique can be used in a more general way. Consider
problem #2219 from Crux Mathematicorum: Show that there are an infinite number
of solutions in integers of the simultaneous equations

x2 − 1 � (u + 1)(v − 1),

y2 − 1 � (u − 1)(v + 1).

(a) Suppose that the two equations are satisfied. Deduce that

(v + 1)x2 − (v − 1)y2 � 2v2.

(b) Making the substitution v � 2w, r � x/v, s � y/v, obtain from (a) that
(

w + 1

2

)
r2 −

(
w − 1

2

)
s2 � 1.
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(c) Let w be arbitrary. Determine a simple numerical solution of the equation in
(b).

(d) Observe that the odd positive integer powers of r

√
w + 1

2 + s

√
w + 1

2 have

the form R

√
w + 1

2 + S

√
w + 1

2 .
(e) Explain how (c) and (d) lead to the result that if (r, s) � (r0, s0) satisfies the

equation in (b), then so also does (r, s) � (rn, sn) defined recursively by

rn+1 � 2wrn + (2w − 1)sn,

sn+1 � (2w + 1)rn + 2wsn.

(f) Using (e) and the transformation xn � rnv and yn � snv, prove that if
(x0, y0) satisfies the equation in (a), then so also does (x, y) � (xn, yn)

defined recursively for n ≥ 0 by

xn+1 � vxn + (v − 1)yn,

yn+1 � (v + 1)xn + vyn.

(g) Verify that if (v + 1)x2
n − (v − 1)y2

n � 2v2 and |v| 	� 1, then

x2
n − v

v − 1
� y2

n + v

v + 1
.

(h) Verify that

y2
n+1 + v � (v + 1)[(v + 1)x2

n + 2vxnyn + vy2
n + v] − v(y2

n + v).

(i) Let v be a fixed integer, and suppose that (x, y) � (x0, y0) is a solution of
the equation in (a) for which y2

0 + v is a multiple of v + 1. With (xn, yn) as
already defined, let

un � y2
n + v

v + 1
.

Prove that (x, y, u, v) � (xn, yn, un, v) is a quadruple of integers satisfying
the system given in the problem.

(j) For each integer value of v, explicitly display an infinite system of solutions
of the system. What happens if v � 1?

Exercise 1.10.
(a) Let m be a positive integer. Determine a positive integer r such that mr + 1

and (m + 1)r + 1 are both perfect squares.
(b) Suppose that mr + 1 � x2 and (m + 1)r + 1 � y2. Verify that (m + 1)x2 −

my2 � 1. On the other hand, if (m + 1)x2 − my2 � 1, deduce that m must
divide x2 − 1 and show how a solution of the system

mr + 1 � x2 and (m + 1)r + 1 � y2

can be found.
(c) Determine a solution of (m + 1)x2 − my2 � 1.
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(d) One way to find an infinite sequence of solutions to the equation in (c) is to
consider odd powers of

√
m + 1 + √

m.

(Why?) Suppose that this generates sequences {xn}, {yn}, and {rn} for which

mrn + 1 � x2
n and (m + 1)rn + 1 � y2

n.

Write out the first few terms of this sequence.

Exploration 3.1. In Exercise 1.10, try to find a recursion relation for the sequence
{rn}.

3.2 Existence of Rational Solutions

It is natural to ask whether x2 − dy2 � 1 has a solution other than the trivial
(x, y) � (±1, 0) when d is a positive nonsquare integer. The empirical investi-
gation in Chapter 2 suggests an affirmative answer, although for some values of d

the search was arduous. Here is a table of smallest solutions for low values of d:

d (x, y) d (x, y)

2 (3, 2), (17, 12) 10 (19, 6)
3 (2, 1), (7, 4) 11 (10, 3)
5 (9, 4), (161, 72) 12 (7, 2), (97, 28)
6 (5, 2), (49, 20) 13 (649, 180)
7 (8, 3), (127, 48) 14 (15, 4)
8 (3, 1), (17, 6) 15 (4, 1), (31, 8)

One way to approach the situation is to ask first for solutions that are rational,
and perhaps use these to obtain integer solutions. In this case, the task becomes
much easier.

Exercise 2.1. We first establish that x2 −dy2 can assume square values for suitable
integers x and y. Observe that if c is any integer, then when (x, y) � (c, 1), then
x2 − dy2 assumes the value k � c2 − d.
(a) Determine a solution of the equation x2 − dy2 � (c2 − d)2.
(b) Describe how to determine solutions of x2 − dy2 � 1 for which x and y are

rational, but not necessarily integers.

Exercise 2.2.
(a) Solve in positive integers the equation x2 − 13y2 � 32 and derive a rational

solution of x2 − 13y2 � 1.
(b) Find the smallest solution in positive integers of x2 − 13y2 � 22 and derive

the rational solution (x, y) � ( 11
2 , 3

2 ) of x2 − 13y2 � 1.
(c) By considering (11 + 3

√
13)2, determine a second rational solution (x, y) �

( 119
2 , 33

2 ) of x2 − 13y2 � 1.
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(d) From (b) and (c), we have 112 − 13 × 32 � 4 and 1192 − 13 × 332 � 4.
Write

119 + 33
√

13

11 − 3
√

13

in the form u + v
√

13 where u and v are rational. Verify that in fact, u and v

are integers for which u2 − 13v2 � 1.

Exercise 2.3. Here is another way to solve x2 − 13y2 � −1.
(a) Observe that 42 − 13 × 12 � 3, while 72 − 13 × 22 � −3. From these facts,

determine a solution of x2 − 13y2 � −9.
(b) From (a), determine a solution in integers for x2 − 13y2 � −1.

Exercise 2.4.
(a) From the equation 82 − 61 × 12 � 3 and 72 − 61 × 12 � −22 × 3, determine

a solution in integers for x2 − 61y2 � −4.
(b) Solve x2 − 61y2 � −1 in rational numbers and use this to determine a

solution in integers.

Exercise 2.5. Let d be a nonsquare positive integer. Consider the set of numbers

D � {x + y
√

d : x and y are rational and x2 − dy2 � 1}.
Verify that for this set of numbers, the product and quotient of any pair of nonzero

numbers in the set also belong to the set. This is often described as closure under
multiplication and division.

Exercise 2.6.
(a) Taking c � 5 andd � 19 in Exercise 2.1, obtain the solution (x, y) � (22, 5)

for x2 − 19y2 � 9.
(b) Taking c � 4 and d � 19, obtain the solution (x, y) � (35, 8) for x2 −

19y2 � 9.
(c) By considering the quotients of 22 ± 5

√
19 and 35 ± 8

√
19, obtain a solution

in integers (x, y) for x2 − 19y2 � 1.

Exercise 2.7. Follow the procedures of the previous exercise to determine
solutions for x2 − dy2 � 1 when d � 21, 22, 28.

Exercise 2.8. We can follow the strategy of Exercise 2.3 in finding rational
solutions for x2 − dy2 � 1. Letting x � u/w and y � v/w, we obtain
u2 − w2 � dv2.
(a) Consider the case d � 2. By factoring the left side, argue that v must be

even and that if we can take v to be an arbitrary product 2rs, then we can set
u − w � 2r2, u + w � 4s2 or u − w � 4r2, u + w � 2s2. Obtain the
parametric solutions

(u, v, w) � (r2 + 2s2, 2rs, 2s2 − r2)
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and

(u, v, w) � (2r2 + s2, 2rs, s2 − 2r2).

(b) Obtain a parametric set of solutions for u2 − dv2 � w2.

Exercise 2.9. Here is a recent method due to Charles Galloway, a Toronto actuary,
for obtaining rational and possibly integer solutions for x2 − dy2 � 1. Write
d � k2 + c, where k2 is not necessarily the nearest square to d nor even an integer.
(a) Verify that (x, y) � (1 + 2k2/c, 2k/c) is a solution.
(b) We try to find values of k such that 2k/c � 2k/(d − k2) is an integer. For

d � 13, verify that k � 3.6 works and yields integer values of x and y. (Cf.
Exercise 2.3.10.)

Exploration 3.2. Try the Galloway method of Exercise 2.9 to obtain solutions of
x2 − dy2 � 1 for other values of d.

3.3 “Powers” of a Solution

Suppose d is a nonsquare positive integer and that (x, y) � (u, v) is a solution
of x2 − dy2 � 1. For each positive integer n, let (xn, yn) be determined by
xn + yn

√
d � (u + v

√
d)n. The numbers xn and yn can be determined recursively

by

xn+1 � uxn + dvyn,

yn+1 � vxn + uyn.

However, it is possible to derive expressions for xn and yn as polynomials in u

and v.

Exercise 3.1. Using the fact that dv2 � u2 − 1, verify that

(x1, y1) � (u, v),

(x2, y2) � (2u2 − 1, 2uv),

(x3, y3) � (4u3 − 3u, (4u2 − 1)v),

(x4, y4) � (8u4 − 8u2 + 1, (8u3 − 4u)v).

Exercise 3.2. Prove that (xn, yn) can be written in the form

(Tn(u), Un(u)v),

where Tn(u) and Un(u) are both polynomials in u of respective degrees n and
n − 1. Determine a recursion for the sequence of pairs (Tn(u), Un(u)).

Exercise 3.3. Make a list of the functions Tn(u) and Un(u). Each of the sequences
individually satisfies a recursion that does not involve entries in the other sequence.
Make a conjecture and prove it.
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Exercise 3.4. Express cos 2θ , cos 3θ , and cos 4θ as polynomials in cos θ .

Exercise 3.5. Show that for each positive integer n, sin nθ can be written as the
product of sin θ and a polynomial in cos θ . Determine what this polynomial is
when n � 2, 3, 4.

Exercise 3.6. Compare the polynomials obtained in Exercises 3.4 and 3.5 with
the polynomials Tn(u) and Un(u).

Exercise 3.7. As in Exercise 1.2.3, it is posible to use matrix theory to derive
recursions for the sequences {xn} and {yn}. Observe that

(
xn+1

yn+1

)
�
(

u dv

v u

) (
xn

yn

)
.

Verify that
(

u dv

v u

)2

� 2u

(
u dv

v u

)
−
(

1 0
0 1

)

and deduce that

xn+1 � 2uxn − xn−1,

yn+1 � 2uyn − yn−1,

for n ≥ 1, where (x0, y0) � (1, 0) and (x1, y1) � (u, v).

Exploration 3.3. Suppose u2 − dv2 � −1. Then if xn + yn

√
d � (u + v

√
d)n,

then x2
n − dy2

n � (−1)n. Investigate expressions for xn and yn in terms of u and v.
What recursions are satisfied by the sequences {xn} and {yn}.

3.4 Chebyshev Polynomials

The polynomials of Section 3.3 are well known. The Tn are called Chebyshev
polynomials (or Chebyshev polynomials of the first kind), and the Un are called
Chebyshev polynomials of the second kind. They turn up in a variety of mathe-
matical contexts and have a number of remarkable properties. We look at a few of
them here. In this section we will define them anew and show that our definition
is consistent with that of Section 3.3.

For −1 < t < 1, determine θ such that 0 < θ < π and t � cos θ (i.e.,
θ � arccos t). Define

Tn(t) � cos nθ � cos(n arccos t)

and

Un(t) � sin nθ

sin θ
� (1 − t2)−

1
2 sin(n arccos t).
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While these functions are initially defined on a restricted domain, they turn out to
be polynomials in t and so have meaning for all real values of t .

Exercise 4.1. Consider the equation x2 − (t2 − 1)y2 � 1 where t is a parameter.
An obvious solution is (x, y) � (t, 1). Other solutions can be obtained from

xn +
√

t2 − 1yn � (
t +

√
t2 − 1

)n � (
t + i

√
1 − t2

)n
.

Writing t � cos θ and using de Moivre’s theorem, verify that

(xn, yn) � (Tn(t), Un(t)).

Exercise 4.2.
(a) Verify that T0(t) � 1, T1(t) � t and establish the recursion, for n ≥ 2,

Tn(t) � 2tTn−1(t) − Tn−2(t).

(b) Use (a) to determine T2(t), T3(t), and T4(t).
(c) Through the substitution t � cos θ , check your answers for (b) against your

answers for Exercise 3.4.
(d) Prove that Tn(t) is a polynomial of degree n with integer coefficients, leading

coefficient 2n, and n distinct real roots lying in the closed interval [−1, 1].
(e) Let k be a nonnegative integer. Prove that T2k+1(0) � 0 and T2k(0) � (−1)k .

Exercise 4.3.
(a) Verify that U0(t) � 0, U1(t) � 1 and establish the recursion, for n ≥ 2,

Un(t) � 2tUn−1(t) − Un−2(t).

(b) Use (a) to determine U2(t), U3(t), and U4(t).
(c) Compare your answers for (b) with your answers to Exercise 3.1.
(d) Prove that Un(1) � n for each positive integer n.
(e) What is the degree of Un(t)? Its leading coefficient? Discuss the roots of

Un(t).

Exercise 4.4.
(a) From the expansions of cos(n + 1)θ and sin(n + 1)θ , obtain the equations

Tn+1(t) � tTn(t) + (t2 − 1)Un(t),

Un+1(t) � Tn(t) + tUn(t),

for n ≥ 0.

Exercise 4.5. Prove that d
dt

Tn(t) � nUn(t) for n ≥ 1.

Exercise 4.6.
(a) Prove that T2n(t) � 1 + 2(t2 − 1)U 2

n (t) for n ≥ 0.
(b) Prove that U2n(t) � 2Tn(t)Un(t) for n ≥ 0.
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Exercise 4.7. Prove that T2n+1(t) � 1 + (t − 1)(Un+1(t) + Un(t))
2 for n ≥ 0.

Exercise 4.8. For positive integers m, n, prove that:
(a) Tmn(t) � Tm(Tn(t)).

Exercise 4.9. Suppose that w and z are indeterminates related by the equation

w � (z2 − 1)
1
2 .

(a) Expand each of the functions (z + w)2, (z + w)2, (z + w)3, and (z + w)4 in
the form p(z) + q(z)w, where p(z) and q(z) are polynomials.

(b) Make a conjecture, and prove it, about a similar expansion for (z + w)n.

Exercise 4.10. Using de Moivre’s theorem and the fact that for t � cos θ ,

Tn(t) + i(1 − t2)
1
2 Un(t) � cos nθ + i sin nθ,

provide a determination of Tn(T ) and Un(t) as polynomials in t that will lead to
an alternative proof of the result of Exercise 4.9.

Exercise 4.11. Prove that for d a positive nonsquare integer and n a positive
integer,

(
u + v

√
d
)n

� Tn(u) + vUn(t)
√

d

whenever u2 − dv2 � 1. Compare the results of Section 3.♠

In the next two exercises we require some terminology that will be reviewed in
detail in Section 4.1. We say that a ≡ b modulo m if a − b is a multiple of m,
for integers a, b, m. Each number is congruent, modulo m, to its remainder upon
division by m, that is, to one of the numbers 0, 1, 2, . . . , m − 1.

Exercise 4.12. Let {an} be a sequence of integers defined for n � 0, ±1, ±2, . . .

that satisfies a recursion of the type

an+1 � 2can − an−1

where c is a constant integer. Observe that the recursion is symmetric in that given
two consecutive terms of the sequence, we can “go backward” by the same rule:

an−1 � 2can − an+1.

Let m be a positive integer exceeding 1, so that modulo m, each term is congruent
to one of 0, 1, 2, . . . , m − 1.
(a) Argue that there are only finitely many incongruent pairs (an, an+1) of

consecutive terms, modulo m.
(b) Prove that there are integers r and s for which r < s and ar ≡ as , ar+1 ≡

as+1.
(c) Deduce that a0 � as−r and a1 � as−r+1, so that {an} is periodic, modulo m.
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Exercise 4.13. Suppose that u and m are positive integers. Prove that there is a
positive integer n such that Tn(u) ≡ 1 and Un(u) ≡ 0, modulo m.

Exercise 4.14. Let m be an integer exceeding 1, and let Sm be the set of all natural
numbers n for which both (m2 − 1)n + 1 and m2n + 1 are perfect squares. For
example, S2 contains the number 56. Prove that Sm is a nonempty set and determine
the greatest common divisor of the numbers in Sm. (Problem 10879 in the American
Mathematical Monthly 108 (2001), 565.)

3.5 Related Pell’s Equations

While getting a starting solution will be dealt with in Chapter 4, the exercises in
this section will indicate how we can find solutions when the parameter is simply
related to other parameters for which a solution is known.

Exercise 5.1. Let d be a nonsquare integer whose largest square divisor is m, so
that d � m2e for some square-free integer e.
(a) Prove that a Pell’s equation x2 −dy2 � k is solvable if and only if x2 −ey2 �

k is solvable.
(b) Given a solution of x2 −ey2 � 1, explain how to find a solution of x2 −dy2 �

1.

Exercise 5.2. From the smallest positive solution (x, y) � (3, 2)ofx2−2y2 � 1,
determine the smallest positive solution of x2 − dy2 � 1 for d � 8, 18, 32, 50,
72, 98, 128, 162, 200.

Exercise 5.3. From the solution of (x, y) � (2, 1) of x2 − 3y2 � 1, determine
the solutions of x2 − dy2 � 1 for d � 12, 27, 48, 75, 108.

3.6 Notes

1.9. The two equations in the system imply that

(x2 − 1)(y2 − 1) � (u2 − 1)(v2 − 1).

Note that every solution of this equation is a solution of the original system.
However, this equation, but not the system, is satisfied by

(x, y, u, v) � (F2n−1, F2n−3, F2n, F2n−2),

where {Fn} is the Fibonacci sequence (F0 � F1 � 0 and Fn+1 � Fn + Fn−1

for each n). This is a consquence of the general equations Fn+2 � 3Fn − Fn−2,
F 2

2n − 1 � F2n−2F2n+2 and F 2
2n−1 − 1 � F2n+2F2n.
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3.7 Hints

1.7. Note that (x, y) � (3, 2) satisfies x2 − 2y2 � 1 and make repeated use of
Exercise 1.4.

1.9(a). Multiply the first equation by v + 1 and the second by v − 1 and subtract.

1.10(a). Look at m � 1, 2, 3, 4. It is not hard to find suitable values of r (not
exceeding 100); now guess what a general formula for r in terms of m might be.

2.1. Note that N
(
c + √

d
) � k. For (b), divide the equation x2 − dy2 � r2 by r2.

2.2(a). To narrow the search, observe that 13y2 � (x + 3)(x − 3), so that 13
must divide either x − 3 or x + 3. Use this factorization to find a solution without
recourse to a calculator.

2.2(d). Multiply numerator and denominator by 11 + 3
√

13 (why?).
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The Fundamental Solution

4.1 Existence of a Solution in Integers

In Section 3.2, we saw how, using various tricks, solutions in rational x and y of
x2 − dy2 � 1 could be obtained from two solutions of an equation x2 − dy2 � k.
Sometimes, the rational numbers turned out to be integers. The chances of this
happening would apparently improve with the number of solutions of x2 −dy2 � k

for a particular k. This suggests that it might be useful to look for values of k for
which there are a lot of solutions. This strategy succeeds spectacularly; there are
infinitely many solutions for suitable k.

Before turning to the exercises, there is a little background to be reviewed. Some
of the exercises depend on the application of the pigeonhole principle, whose first
explicit application was made in 1842 in a number theory context by Gustav Peter
Lejeune Dirichlet (1805–1859). (The reader may be interested in learning that, in
1831, he married Rebecca Mendelssohn, a sister of the famous composer Felix
Mendelssohn.) This innocuous-sounding but highly useful principle states that if
we have to sort n objects (pigeons) among m categories (the pigeonholes) and n

exceeds m, then there must be two objects that fall into the same category.
In some of the exercises it is helpful to have access to the notion of modular

arithmetic. Let a, b, and m be integers, with m nonzero. We say that a ≡ b (mod
m) (read a is congruent to b modulo m) if a − b is a multiple of m. Another way
of putting it is that m is a divisor of a − b; if we divide m into each of a and
b, obtaining nonnegative remainders less than m, then these remainders must be
equal.

In what follows, d is a nonsquare positive integer and k is an integer.

Exercise 1.1. Verify the following:
(a) 17 ≡ 35 (mod 6).
(b) −13 ≡ 33 (mod 23).
(c) Every even number is congruent to 0 modulo 2.

43
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Exercise 1.2. Suppose that a ≡ b (mod m) and c ≡ d (mod m). Show that

a + c ≡ b + d (mod m),

ac ≡ bd (mod m).

Exercise 1.3. Suppose that (x1, y1) and (x2, y2) are solutions in integers of the
equation x2 − dy2 � k for which

x1 ≡ x2 (mod k) and y1 ≡ y2 (mod k).

Verify that:

(a) x1x2 − dy1y2 ≡ x2
1 − dy2

1 ≡ 0 (mod k).
(b) x1y2 − x2y1 ≡ 0 (mod k).
(c) (x, y) � (x1x2 − dy1y2, x1y2 − x2y1) is a solution of x2 − dy2 � k2.
(d) x2 − dy2 � 1 has an integer solution.

Exercise 1.4. Suppose that m ≥ k2 + 1 and that (x, y) � (x1, y1), (x2, y2), . . . ,

(xm, ym) are solutions in integers of the equation x2 − dy2 � k. Prove that there
exist solutions (xi, yi) and (xj , yj ) for which 1 ≤ i, j ≤ m, xi ≡ xj , and yi ≡ yj

(mod k). ♠

For any real number α, denote by �α� the largest integer that does not exceed α

and by 〈α〉 the fractional part α − �α� of α. Observe that 0 ≤ 〈α〉 < 1.

Exercise 1.5. Consider the numbers 〈√3〉, 〈2√
3〉, . . . , 〈10

√
3〉, and 〈11

√
3〉.

(a) Why would you expect to find that two of these eleven numbers have the same
first digit after the decimal point?

(b) Indeed, verify that 〈3√
3〉 � 3

√
3 − 5 � 0.196152 . . . and 〈7√

3〉 � 7
√

3 −
12 � 0.124355 . . . .

(c) From the two equations in (b), deduce that |7 − 4
√

3| � 0.071 . . . < 1
10 <

1
4 .

Exercise 1.6. Let N be a given integer. We will show that there are positive
integers u and v for which

|u − v
√

d| <
1

N
≤ 1

v
.

(a) Consider the N +1 numbers 〈√d〉, 〈2√
d〉, . . . , 〈N√

d〉, 〈(N +1)
√

d〉. Show
that for some value of i with 0 ≤ i ≤ N − 1, two of these numbers, say
〈q√

d〉 and 〈s√d〉, must fall in the interval {t : i/N < t < (i + 1)/N}. We
may suppose that q > s.

(b) Deduce from (a) that there are positive integers p, q, r , s for which

i

N
< q

√
d − p <

i + 1

N
and

i

N
< s

√
d − r <

i + 1

N
.

Verify that p � �q√
d�, r � �s√d�, and that p > r .
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(c) Show that |q − s| ≤ N and |(p − r) − (q − s)
√

d| < 1/N , and deduce the
existence of numbers u and v as specified.

(d) By noting that u + v
√

d � (u − v
√

d) + 2v
√

d, prove that

|u2 − dv2| ≤ 2
√

d + 1.

Exercise 1.7. Show that there are infinitely many pairs (u, v) of integers for which
|u − v

√
d| < 1/v.

Exercise 1.8. Use the results of Exercises 1.6 and 1.7 to conclude that there is an
integer k not exceeding 2

√
d + 1 in absolute value for which x2 − dy2 � k has

infinitely many solutions.

Exercise 1.9. Use the results of Exercises 1.8, 1.4, and 1.3 to conclude that x2 −
dy2 � 1 has a solutions in positive integers x and y. ♠

The following argument for deducing the existence of an integer solution to
x2 − dy2 � 1 in the event that x2 − dy2 � k, for k prime, has two solutions, is
due to J.L. Lagrange. The ideas behind this argument were extended by him to the
case that k is a product of distinct primes, then of prime powers.

Exercise 1.10. Suppose that u2 − dv2 � w2 − dz2 � k, where k is prime.
(a) Verify that

(uw ± dvz)2 − d(uz ± vw)2 � k2

and that

k(z2 − v2) � (uz + vw)(uz − vw).

(b) Deduce from (a) that k must divide uw + dvz or uw − dvz and thence obtain
a solution in integers to x2 − dy2 � 1.

(c) Adapt the foregoing argument to the case that k is a product of two or more
distinct primes.

(d) Adapt the foregoing argument to the case that k is a power of a prime.

4.2 The Fundamental Solution

When d is a nonsquare positive integer, the equation x2 − dy2 � 1 is solvable
in integers. More can be said: There is a fundamental solution from which every
other solution can be obtained. Specifically, there are positive integers x1 and y1

such that

{(±xn, yn) : xn and yn are integers;
xn + yn

√
d � (x1 + y1

√
d)n; n � 0, ±1, ±2, . . .}

yields a complete set of solutions.
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Exercise 2.1. Let x1 > 1, y1 ≥ 1, and (xn + yn

√
d) � (x1 + y1

√
d)n. Show that

when n is a positive integer, then xn+1 > xn and yn+1 > yn. ♠

Exercise 2.1 suggests that if (x1, y1) is to do the job required of it, then these
numbers should be as small as possible. We select x1 and y1 so that both are positive
and x1 is the smallest positive integer satistying the equation x2

1 − dy2
1 � 1.

Exercise 2.2. Show that if p, q, r , s are positive integers for which p > r and
p2 − dq2 � r2 − ds2 � 1, then q > s and p + q

√
d > r + s

√
d.

Exercise 2.3. Suppose that u > 0, v > 0, u2 − dv2 � 1.
(a) Argue from the definition of (x1, y1) that

u + v
√

d ≥ (x1 + y1

√
d).

(b) Define the positive integer m by the condition

(x1 + y1

√
d)m ≤ (u + v

√
d) < (x1 + y1

√
d)m+1.

Deduce that

1 ≤ (u+v
√

d)(x1+y1

√
d)−m � (u+v

√
d)(x1−y1

√
d)+m < (x1+y1

√
d).

(c) Suppose the integers a and b are determined by

a + b
√

d � (u + v
√

d)(x1 − y1

√
d)m.

Observe that

a2 − db2 � 1,

a − b
√

d � (a + b
√

d)−1 > 0,

and

a − b
√

d ≤ 1 ≤ a + b
√

d.

(d) Deduce that a > 0.
(e) From the minimality of (x1, y1) and Exercise 2.2, conclude that b � 0 and

a � 1, so that u + v
√

d � (x1 + y1

√
d)m.

Exercise 2.4. Suppose that the integer pair (u, v) is an arbitrary solution of x2 −
dy2 � 1. Deduce from Exercise 2.3 that:
(a) |u| + |v|√d � (x1 + y1

√
d)m for some nonnegative integer m.

(b) |u| − |v|√d � (x1 + y1

√
d)m for some negative integer m.

(c) Either (u, v) or (−u, v) is of the form (xm, ym) for some integer m.

Exercise 2.5. Suppose that x2 − dy2 � −1 is solvable and that the solution with
smallest positive integers is (x, y) � (r1, s1). With (x1, y1) as the fundamental
solution of x2 − dy2 � 1, prove that:
(a) x1 + y1

√
d � (r1 + s1

√
d)2.
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(b) Every solution (x, y) of x2 − dy2 � −1 in positive integers has the form
(rn, sn), where n is odd and rn + sn

√
d � (r1 + s1

√
d)n.

Exercise 2.6. Newton’s algorithm for approximating the square root of a positive
integer d can be formulated as follows. Suppose you begin with the positive approx-
imation r . Then for the next approximation, take the average of r and d/r , namely
1
2 (r + d/r). Observe that the average is taken of one number less than and one
number greater than

√
d . Repeat this process to get a sequence of approximations.

(a) Prove that
√

d lies between r and d/r , and that the average 1
2 (r + d/r) is

greater than
√

d and is closer to
√

d than one of r and d/r .
(b) Suppose that the first guess is the rational number x1/y1, where (x1, y1)

is the fundamental solution of x2 − dy2 � 1. Describe the sequence of
approximants obtained by iterating Newton’s method.

Exercise 2.7. Let {an} be a sequence of integers defined for n � 0, ±1, ±2, . . .

that satisfies a recursion of the type

an+1 � 2can − an−1,

where c is a constant integer. Observe that the recursion is symmetric in that given
two consecutive terms of the sequence, we can “go backward” by the same rule:

an−1 � 2can − an.

Let m be a positive integer exceeding 1, so that, modulo m, each term is congruent
to one of 0, 1, 2, . . . , m − 1.
(a) Argue that there are only finitely many incongruent pairs (an, an+1) of

consecutive terms, modulo m.
(b) Prove that there are integers r and s for which r < s and ar ≡ as , ar+1 ≡ as+1

(mod m).
(c) Deduce that a0 ≡ as−r and a1 ≡ as−r+1, so that {an} is periodic, modulo m.

♠

3.3 Algebraic Integers

There is a more natural setting in which to consider solutions of Pell’s equation. The
set Q

(√
d
)

of numbers of the form r + s
√

d, with r and s rational, is closed under
the arithmetic operations of addition, subtraction, multiplication, and division by
nonzero numbers. The integers consitute a special subset of the ordinary rationals,
and we seek a subset of this larger family Q

(√
d
)

of numbers that generalizes the
integers.

We will suppose that d is square-free. This means that d is a product of distinct
primes, so that it is not evenly divisible by any square number other than 1.

Exercise 3.1. How much of a loss of generality is imposed by the condition that
d be square-free?
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Exercise 3.2.
(a) Consider the quadratic equation t2 + bt + c � 0, where b and c are integers.

Suppose that it has a rational root r; prove that this root must in fact be an
integer.

(b) Show that all of the rational roots of a polynomial equation tn + an−1t
n−1 +

an−2t
n−2 + · · · + a1t + a0 � 0 with integer coefficients are in fact integers.

♠

Taking our cue from Exercise 3.1, we say that a number θ is a quadratic integer if
it is a root of a monic quadratic equation t2 + bt + c � 0 with integer coefficients.
More generally, θ is an algebraic integer if it is a root of a monic polynomial
equation tn + an−1t

n−1 + an−2t
n−2 + · · ·+ a1t + a0 � 0 with integer coefficients.

A unit is an algebraic integer whose reciprocal is also an algebraic integer.

Exercise 3.3. By finding a monic quadratic equation with integer coefficients of
which it is a root, verify that u + v

√
d is an algebraic integer whenever u and v

are integers.

Exercise 3.4. Let b and c be integers and u and v be rationals with v 	� 0. Suppose
that u + v

√
d satisfies the equation t2 + bt + c � 0.

(a) Prove that 2u must be an integer and that 4dv2 � b2 − 4c.
(b) Prove that 4v2, and hence 2v, is an integer.
(c) If b is odd, prove that d ≡ 1 (mod 4) and that 2v is an odd integer.

Exercise 3.5. Using Exercise 3.4, deduce the following result:
If d is a squarefree integer, then u + v

√
d is a quadratic integer if and only if

either

(a) d 	≡ 1 (mod 4) and u and v are integers or
(b) d ≡ 1 (mod 4) and u � p/2 and v � q/2, where p and q are integers with

the same parity.

Exercise 3.6. Show that a quadratic integer r + s
√

d is a unit if and only if its
norm r2 − ds2 is equal to ±1.

Exercise 3.7. Let d ≡ 1 (mod 4). Show that the solutions of x2 −dy2 � 1, where
x +y

√
d is a quadratic integer, can be obtained from the solutions of x2 −dy2 � 4,

for which x and y have the same parity.

Exercise 3.8. Show that if x2 − dy2 � 4 can be solved for odd integers x and y,
then d ≡ 5 (mod 8).

Exercise 3.9. Consider values of d congruent to 5 modulo 8, i.e., of the form
8k + 5. For each value d � 5, 13, 21, 29, 37, 45, 53, . . ., try to determine the
smallest positive solution of x2 − dy2 � 4 in odd integers x and y. By considering
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the positive powers of x + y
√

d , determine other solutions of the same equation.
Can you derive solutions of the equation x2 −dy2 � 1 from any of these solutions?

Exercise 3.10. For d ≡ 5 (mod 8), modify the proof in Section 4.2 to obtain the
existence of an algebraic integer u + v

√
d with u ≥ 0 such that its integer powers

constitute exactly the set of algebraic integers x + y
√

d with norm 1 and x > 0.

Exercise 3.11. Suppose that m is an odd positive integer and that d � m2 − 4.
(a) Verify that d is congruent to 5 modulo 8, and determine two solutions for

x2 − dy2 � 4 for which x and y are positive odd integers.
(b) Prove that d must be divisible by a prime congruent to 3 modulo 4, and deduce

that x2 − dy2 � −4 has no solutions in integers x and y.

Exercise 3.12. Suppose that m is an odd positive integer and that d � m2 + 4.

Verify that d is congruent to 5 modulo 8, and determine solutions in positive
odd integers to each of the equations

x2 − dy2 � −4,

x2 − dy2 � 4.

Exercise 3.13. Suppose that d ≡ 5 (mod 8), and let p and q be odd integers for
which p2 − dq2 � 4. This will yield a rational solution (x, y) � (

p

2 ,
q

2

)
for

x2 − dy2 � 1. Prove that if u + v
√

d � (
p

2 + q

2

√
d
)3

, then (x, y) � (u, v) is
a solution of x2 − dy2 � 1 in positive integers.

4.4 A Bilateral Sequence

In this section we examine solutions of x2 − dy2 � k. In particular, we find that if
there is a solution to this equation, then we can find one for which x and y do not
exceed certain computable bounds that depend on k and the fundamental solution
of x2 − ky2 � 1.

Suppose that (x, y) � (u, v) is the fundamental solution of x2 − dy2 � 1. Let
(x, y) � (r, s) be a solution of x2 − dy2 � k; then (x, y) � (ru + dsv, rv + su)

is another solution. Suppose that z � rv + su. We form a symmetric quadratic
equation involving s and z that is the tool for defining a bilateral sequence.

Exercise 4.1.
(a) By setting r � (z − su)/v, obtain

(z − su)2 − dv2s2 � v2k

and deduce that

z2 − 2usz + s2 − v2k � 0. ♠
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Let p(y, z) � y2 − 2uyz + z2 − v2k. Observe that p(y, z) is symmetric in
y and z. We define a sequence {sn} as follows. Let s0 � s. Let s−1 and s1 be the
two solutions of p(s0, z) � 0 with s−1 ≤ s1. Suppose that si has been defined for
|i| ≤ n, so that p(si, si+1) � 0 for −n ≤ i ≤ n − 1. Verify that sn−1 is a root
of the equation p(sn, z) � 0. Define sn+1 to be the second root. Verify that s−n+1

is a root of the equation p(s−n, z) � 0. Define s−n−1 to be the second root of the
equation.

Exercise 4.2.
(a) Verify that {sn} is a sequence of integers for which ds2

n +k is always an integer
square.

(b) Prove that {sn} satisfies the recursions

sn+1 + sn−1 � 2usn,

sn+1sn−1 � s2
n − v2k.

Exercise 4.3. Let k < 0 and suppose a sequence {sn} has been defined as in
Exercise 5.1.
(a) Suppose that {sn} contains a positive integer. Prove that {sn} consists entirely of

positive integers. We will suppose that s0 is the smallest term in the sequence,
and that s−1 ≤ s1.

(b) Prove that
sn+1

sn

>
sn

sn−1

and deduce that sn+1 > sn when n ≥ 0 and sn+1 ≤ sn when n ≤ −1.
(c) Prove that when n ≥ 0,

sn+1 � usn + v

√
ds2

n + k,

sn−1 � usn − v

√
ds2

n + k,

while if n < 0,

sn+1 � usn − v

√
ds2

n + k,

sn−1 � usn + v

√
ds2

n + k.

Exercise 4.4. Let k < 0 and {sn} be as above.
(a) Prove that

∣∣∣∣v
√

ds2
0 + k

∣∣∣∣ ≤ (u − 1)s0.

(b) Obtain the inequality

s0 ≤ v

√
|k|

2(u − 1)
.
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Exercise 4.5.
(a) Prove that p(sn, z) � 0 can have a double root if and only if k � −dm2 for

some m.
(b) If k � −dm2 and s0 � m, prove that s−n � sn for each integer n.
(c) Prove that x2 − dy2 � −dm2 if x � dz for an integer satisfying y2 − dz2 �

m2.

Exercise 4.6. Suppose that k > 0 and that a sequence {sn} has been defined as in
Exercise 5.1 and contains at least one nonnegative term. Suppose that the indexing
of the sequence is such that s0 is the smallest nonnegative term.
(a) Prove that for any real y, p(y, y) < 0, and deduce that y must lie strictly

between the two solutions z of the equation p(y, z) � 0.
(b) If s−1 < s0 < s1, prove that {sn} is an increasing sequence and that it contains

both positive and negative terms.
(c) Prove that s2

0 < v2k, and so deduce that if x2 − dy2 � k has a solution, then
there is at least one solution for which 0 ≤ y < v

√
k, 0 ≤ |x| < u

√
k.

(d) Prove that when n 	� 0, −1, then s2
n ≥ v2k.

Exercise 4.7. We can sharpen the bounds on the smallest solutions of x2 − dy2 �
k when k > 0. Consider the positive solution (x, y) � (r, s) with r assuming
the smallest positive value of x. (This can occur when s � s0 or s � s−1 in the
notation of Exercise 4.6.)

Recall that (r, s) ∗ (u, −v) � (ur − dvs, us − vr).

(a) Prove that d2v2s2 < u2r2, so that ur > dvs.
(b) Deduce that ur − dvs ≥ r , whence

r2(u − 1) ≥ (u + 1)(r2 − k).

(c) Conclude that 2r2 ≤ k(u + 1).
(d) Prove that

s2 ≤ kv2

2(u + 1)
.

(e) Deduce that either s0 or |s−1| does not exceed v
√

k/(2(u + 1)), so that x2 −
dy2 � k has a solution for which

|x| ≤
√

k(u + 1)

2
and |y| ≤ v

√
k/(2(u + 1)).

Exercise 4.8. Consider the equation x2 − 2y2 � 7. This has solution (x, y) �
(3, 1). Follow the process of Exercise 4.1 with s0 � 1 to obtain the sequence

{. . . , −3771, −647, −111, −19, −3, 1, 9, 53, 309, 1801, 10497, . . .}.
Check that it satisfies the recursions of Exercise 4.2(b) and yields solutions to
x2 − 2y2 � 7.
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Exercise 4.9. Consider the equation x2 − 2y2 � −7. This has solution (x, y) �
(1, 2). Follow the process of Exercise 5.1 with s0 � 2 to obtain the sequence

{. . . , 4348, 746, 128, 22, 4, 2, 8, 46, 268, 1562, . . .}.

Exercise 4.10. Study the solutions of the following equations: x2 − 2y2 � k with
k � −2, −8, 4, 1022.

4.5 Explorations

Exploration 4.1. The Legendre symbol. If the equation x2 − dy2 � k is solvable
in integers, then in particular x2 ≡ k (mod d), so that k must be a square modulo
d, and a fortiori a square modulo p for any prime divisor p of d. We define the
Legendre symbol ( k

p
) by

(
k

p

)
�






1 if k is not a multiple of p and k ≡ m2 (mod p)
for some integer m;

−1 if k 	≡ m2 (mod p) for each integer m;
0 if k is a multiple of p.

For example, regardless of the prime p,
(

1
p

)
and

(
4
p

)
are both equal to 1. What

can be said about
( −1

p

)
and

(
2
p

)
? Is

(
uv
p

) � (
u
p

)(
v
p

)
?

Exploration 4.2. Examine the sequence of solutions of x2 − 5y2 � ±4. What is
interesting about the values of x and y that appear?

Exploration 4.3. In Exercise 3.8 it was found that a necessary condition on d for
x2 − dy2 � 4 to have a solution (x, y) in odd integers was that d ≡ 5 (mod 8). Is
this condition also sufficient? Can you determine other conditions on d that will
provide for such a solution?

Exploration 4.4. For each prime number p, examine the structure of the set Np

of numbers of the form x2 − py2, where x and y range over the integers. This set
is closed under multiplication; is there a set of “prime” elements such that every
number in Np can be uniquely representable as a product of these “primes”? How
about the ordinary primes?

Exploration 4.5. Quadratic forms. The function x2 − dy2 is a homogeneous
polynomial of degree 2, and as such is a quadratic form in two variables. The
general quadratic form is given by ax2 + hxy + by2, where a, b, and h are
integers. Other examples are x2 − y2, x2 + y2, x2 + xy + y2, and x2 − xy + y2.
Given a quadratic form, what can be said about the set of values assumed by the
form when x and y are integers?
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It is particularly easy to characterize the numbers that can be written in the form
x2 − y2 � (x + y)(x − y). Any such number must be expressible as the product
of two integers of the same parity. Is the converse true? Is the set of numbers of
the form x2 − y2 closed under multiplication?

The numbers of the form x2+y2 present more of a challenge. If we let z � x+yi

and w � u+vi, then using the fact that |zw| � |z||w|, one can express the product
(x2 + y2)(u2 + v2) as a sum of two squares. Thus, the collection of numbers so
representable is closed under multiplication. What numbers are so representable?
What primes? What squares?

Examine the forms x2 +xy+y2 and x2 −xy+y2. These are essentially the same
form, since we can obtain the second from the first by the transformation x � X

and y � Y − X and the first from the second by the inverse of this substitution,
namely x � X, y � X + Y . Thus, anything that we can say about the numbers
representable by the first form can be said about the numbers representable by the
second.

Study forms of the type x2 + by2, or more generally of the type ax2 + by2.
Note that if x � 2u and y � 2v are even, then x2 + xy + y2 � (2u + v)2 + 3v2,
so we can partially relate the forms x2 + xy + y2 and x2 + 3y2. More generally,
if we start with ax2 + hxy + by2 and make the substitution X � px + qy and
Y � rx + sy, we get the form AX2 + HXY + BY 2; under what circumstances
is there an inverse substitution?

Exploration 4.6. Look at some examples of Pell’s equation of the form x2 −
dy2 � 1 and list the solution pairs (xn, yn) in nonnegative integers in increasing
order of magnitude, with (x0, y0) � (1, 0). Let zn � xnyn. Look for patterns
among the xn, yn, and zn, perhaps using the case d � 2 as a model (see Exercise
1.2.4). In particular, check whether the sequences satisfy recursions of the form
tn+1 � atn + btn−1, and look for relationships among the pairs (xn+1 + xn, yn+1 −
yn) and (xn+1 − xn, yn+1 + yn). Try to prove the generality of these patterns.
Can you derive a process that will allow you to generate an unlimited number of
solutions to the Pell’s equation. Refer to Exploration 1.1 and compare the column
headed pnqn with the solutions to x2 − 8y2 � 1. Can this be generalized?

Exploration 4.7. Let p be prime and (x, y) � (u, v) be the fundamental solution
of x2 − py2 � 1. Must p fail to divide v? This is an open question. The answer
is yes for all primes not exceeding 6,000,000. If p is not prime, the answer is no.
If you have access to a computer, try to find a counterexample.

4.6 Notes

1.10. See J.L. Lagrange, Solutions d’un problème d’arithmétique. Misc. Taurinen-
sia 4 (1766-1769) = Oeuvres I, 671–731.
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Section 4. A treatment of the bounds on the smallest solutions of x2 − dy2 � k

can be found in Mollin, pages 294–307.

4.7 Hints

1.2. Note that ac − bd � a(c − d) + (a − b)d; which factors are multiples of k?

1.3(d). Divide the integers in the solutions given in (c) by k.

1.4. Use the pigeonhole principle. Label k2 “slots” by pairs (r, s), where 0 ≤
r, s ≤ k − 1. Put the pair (xi, yi) in the slot (r, s) if and only if xi ≡ r and yi ≡ s

(mod m).

1.6(a). Use the pigeonhole principle.

1.6(d). Use |u2 − dv2| � |(u − v
√

d)(u + v
√

d)| < (1/v)(1/v + 2v
√

d).

1.7. Use an induction argument. Suppose we have found already n distinct pairs.
Since |ui − vi

√
d| can never be zero, choose an integer N for which 1/N <

|ui − vi

√
d| for i � 1, . . . , n. Now apply Exercise 1.6.

1.8. Use the pigeonhole principle.

2.5. Follow the approach of Exercise 2.3.

3.13. Observe that (p + q
√

d)3 � p(p2 + 3q2d) + q(3p2 + q2d)
√

d. Consider
the parenthetical terms modulo 8.

4.4. Use the fact that s0 exceeds neither s1 nor s−1.

4.7(a). d2v2s2 � (dv2)(ds2) � (u2 − 1)(r2 − k).

4.7(b). Square (u − 1)r ≥ dvs.
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5

Tracking Down the Fundamental
Solution

When d is a positive nonsquare integer, Section 4.1 assures us that there is a solution
for x2 − dy2 � 1. However, we do not have much guidance on how actually to
lay our hands on it. In this chapter we will develop algorithms that will lead to a
solution.

If x and y are large positive integers for which x2 − dy2 � 1, then
∣
∣∣∣
x

y
−

√
d

∣
∣∣∣ � 1

y|x + y
√

d|
will be pretty small. This means that x/y will be close to

√
d so that we should be

looking at close rational approximations to
√

d.

5.1 Adding Numerators and Denominators

In this section p, q, r , s will denote positive integers, and z a nonrational real
number. We denote by [a, b] the closed interval {t : a ≤ t ≤ b}.

Exercise 1.1. Suppose p

q
< r

s
. Explain why p

q
<

p+r

q+s
< r

s
.

Exercise 1.2. A weighted average of two real numbers u and v is a number of the
form (1 − t)u + tv, where 0 ≤ t ≤ 1.
(a) Verify that the usual average is obtained when t � 1

2 .
(b) Prove that a weighted average of u and v lies inside the interval (possibly at

the endpoints) bounded by u and v.
(c) Let p, q, r, s be positive numbers. Express

p + r

q + s

as a weighted average of p/q and r/s.

55
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Exercise 1.3. Suppose that 0 <
p

q
< z < r

s
.

(a) On a straight line segment of the real axis, illustrate possible positions of p

q
,

r
s

, z, and p+r

q+s
. Give numerical examples illustrating the possibilities.

(b) Is it always true that |z − (p + r)/(q + s)| is smaller than at least one of
|z − p/q| and |z − r/s|? Explain.

(c) Observe that if z belongs to the interval [p/q, r/s], then z belongs to one of the
strictly smaller intervals [p/q, (p + r)/(q + s)] and [(p + r)/(q + s), r/s].

Exercise 1.4.
(a) Observe that 3

1 < π < 4
1 . Consider the intermediate fraction 3+4

1+1 � 7
2 .

Which of the intervals
[
3, 7

2

]
and

[
7
2 , 4

]
contains π?

(b) The successive approximations for π will be the intermediate fractions formed
by adding the numerators and denominators of under- and overestimates for
π � 3.1415926535 . . . . Verify that when this is done, we obtain a sequence
of approximations that begins 3/1, 4/1, 7/2, 10/3, 13/4, 16/5, 19/6, 22/7, 25/8,
47/15. Continue this sequence until you reach the term 1043/332.

(c) In this process, replacing a fraction by an equivalent fraction makes a differ-
ence to what follows. Verify that if in (b) we begin the sequence with 6/2 and
4/1, then the sequence begins with 6/2, 4/1, 10/3, 16/5, 22/7, 28/9, 50/16.

Exercise 1.5. Let us try to approximate
√

29 using the same process.
(a) Beginning with the under- and over-estimates 5/1 and 6/1 and continuing to

produce new approximants by suitably adding numerators and denominators,
obtain the sequence

5

1
,

6

1
,

11

2
,

16

3
,

27

5
,

43

8
,

70

13
,

97

18
,

167

31
,

237

44
,

307

57
,

377

70
, . . . .

(b) Let us assign to each of the fractions in the sequence one of the signs − and
+ according as it is less than or greater than

√
29. Verify that the assignment

is

−, +, +, −, +, −, −, +, +, +, +, +
and that each fraction is obtained from the most recent − fraction and the
most recent + fraction from among its predecessors.

(c) Verify that the positive rational x/y is less than
√

29 if and only if x2 − 29y2

is negative.
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(d) Observe that we can rewrite the information given in (a) in a table

x y x2 − 29y2

5 1 −4
6 1 7
11 2 5
16 3 −5
27 5 4
43 8 −7
70 13 −1
97 18 13
167 31 20
237 44 25
307 57 28
377 70 29

(e) We can continue this table without making explicit reference to either
√

29
or fractions. The algorithm we are developing can be continued as follows:
To find the next values of x and y, look at the last (x, y) in the list for which
x2 − 29y2 < 0 and the last for which x2 − 29y2 > 0; add the corresponding
values of x and the corresponding values of y together. Continue the list until
you come to a solution in integers x and y of x2 − 29y2 � 1.

Exercise 1.6. Replace 29 in Exercise 1.4 by other values of d, in particular d �
2, 3, 5, 6, 7, 8. In each case, taking k to be the largest integer less than

√
d, continue

the table

x y x2 − dy2

k 1 k2 − d ≡ a < 0
k + 1 1 (k + 1)2 − d ≡ b > 0
2k + 1 2 (2k + 1)2 − 4d � 2(a + b) − 1

until you determine a solution of the equation x2 − dy2 � 1.

Exercise 1.7. It is possible to determine the list of values of x2 − dy2 in the table
without having to compute the values of x and y each time. Using the notation of
Exercise 1.5, determine first a � k2 − d and b � (k + 1)2 − d. The third entry
is 2(a + b) − 1.
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Now we continue as follows:
Suppose we have obtained the value m in the list of values of x2 − dy2. Let h

be the most recent value of the same sign as m, and p the most recent value of the
opposite sign. We form a “difference” table:

h

m − h

m 2p

m − h + 2p

2m − h + 2p

The order of filling in the entries is m, h, m − h, 2p, m − h + 2p, 2m − h + 2p.
The first column starts off with h, m. The second column consists of differences

of consecutive entries of the first column. The top element of the third column is
2p; this column consists of differences of consecutive entries of the second column
and its entries are set constantly to 2p. Continue the table, working left from each
occurrence of the constant second difference 2p, until a change of sign occurs in
the first column; the elements of the first column (including the first one with the
new sign) constitute the extension of the sequence of values of x2 − dy2.

Here is what happens with d � 29. Start with −4, 7, 5. The first table is

7
−2

5 −8
−10

−5

We have extended the sequence to −4, 7, 5, −5.
The second table is

−4
−1

−5 10
9

4

which gives the extention to −4, 7, 5, −5, 4.
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The next few tables are

5 4
−1 9

4 −10 13 −2
−11 7

−7 20 −2
5

25 −2
3

−5 28 −2
−24 1

−74 8 29 −2
6 −1

−1 8 28 −2
14 −3

13 25 −2
−5

20 −2
−7

13 −2
−9

4 −2
−11

−7

Compare with the table in Exercise 1.5.

Exercise 1.8. Having obtained the third column in the table of Exercise 1.4(d),
explain how to reconstruct the entries in the first two columns from the third entry
on down.

Exercise 1.9. Verify that when d � 54, the sequence of values of x2 − 54y2 is

− 5, 10, 9, −2, 19, 25, 27, 25, 19, 9, −5, 10, 1,

− 18, −29, −38, −45, −50, −53, −54, −53, . . . .

(Although the number 1 is our goal, the sequence can, of course, be continued fur-
ther. You may wish to do this for a while to see what happens.) Use the information
implicit in this sequence to construct a solution for x2 − 54y2 � 1.

Exercise 1.10. We can look at the generation of the sequence of values of x2 −dy2

in another way. Verify that the result of Exercise 3.1.2.(c) can be written

[(a + u)2 − (b + v)2d] + [(a − u)2 − (b − v)2d] � 2[(a2 − b2d) + (u2 − v2d)].
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Figure 5.1.

Suppose, in the notation of Exercise 1.7, that m � a2 − b2d and p � u2 − v2d.

(a) Explain why h � (a − u)2 − (b − v)2d. (It might be helpful to refer to the
table of Exercise 1.5(d).)

(b) Argue from the identity at the head of this exercise and Exercise 1.6 that the
next entry after m is (a + u)2 − (b + v)2d � 2(m + p) − h. This allows for
a pictorial view. We can think of the values of x2 − dy2 as sitting in the cells
surrounded by edges, where the values along a given edge are related to the
values at the end of the edge by the following diagram:

For the case d � 29 we have the following diagram, where the values of x2 −dy2

are located on either side of a tree of edges separating positive and negative values:
Make similar diagrams for other values of d.

Figure 5.2.
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5.2 Euclid’s Algorithm

The algorithm of the last section can be accelerated. As a first step to this end, we
study an algorithm introduced by Euclid in his Elements (VII:1,2; X:2). Suppose
that z and w are two positive real numbers. We say that they are commensurable
if both are positive integer multiples of the same number g; such a number g is
said to be a common divisor of z and w. Not every pair of positive numbers is
commensurable. Euclid’s algorithm is a test to determine whether a given positive
pair is commensurable and, if so, their greatest common divisor.

Exercise 2.1. Verify that 486 and 189 are commensurable and determine all of
their common divisors. What is their greatest common divisor?

Exercise 2.2. Are the numbers 1 and
√

2 commensurable? (See Exercise 1.1.1.)

Exercise 2.3. A systematic way to find the greatest common divisor of two com-
mensurable positive numbers z and w (not necessarily integers) with z > w is to
form a sequence of pairs (x, y) with x > y ≥ 0 through this recursive process:

(i) the first pair is (z, w);
(ii) given a pair (x, y) in the sequence, the next pair is (x − y, y) if x − y ≥ y

and (y, x − y) if x − y < y;
(iii) if a pair occurs in which the second entry is 0, then the process terminates.

We will show that the process terminates if and only if the pair (z, w) is com-
mensurable, in which case the greatest common divisor is the first entry in the last
pair (whose second entry is 0). The parts of this exercise will help you understand
why this is so.

(a) Verify that the pair (486, 189) gives rise to the sequence (486, 189), (297,
189), (189, 108), (108, 81), (81, 27), (54, 27), (27, 27), (27, 0). Argue that
any common divisor of the two numbers in any pair is a common divisor of
the two numbers in the adjacent pair(s).

(b) For the pair (z, w), let (x, y) and (u, v) be consecutive pairs in its Euclidean
sequence (generated using Euclid’s algorithm). Show that any common divi-
sor of x and y is a common divisor of u and v, and vice versa. Deduce that the
greatest common divisor of x and y is equal to the greatest common divisor
of u and v.

(c) Suppose that z and w are commensurable and that their greatest common divi-
sor is d . Suppose that (x, y) and (u, v) are consecutive pairs in the Euclidean
sequence with x > y > 0, u > v > 0. Prove that u ≤ x − d. Deduce that
if Euclid’s algorithm is repeated often enough, we must arrive at a pair (r, 0).
Show that r � d .

(d) Suppose that the Euclidean sequence beginning with (z, w) terminates with
the pair (d, 0). Prove that d is the greatest common divisor of z and w.
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Exercise 2.4. Use Euclid’s algorithm to obtain the greatest common divisor of
27473 and 5627.

Exercise 2.5. We relate the problem of approximating the ratio z/w by common
fractions a/b to Euclid’s algorithm. The example we discuss is z � 38 and w � 7.

(a) Verify that the pairs obtained through Euclid’s algorithm applied to 38 and 7
are (38, 7), (31, 7), (24, 7), (17, 7), (10, 7), (7, 3), (4, 3), (3, 1), (2, 1), (1, 1),
(1, 0).

(b) Consider the process described in Section 1 for approximating the fraction
38/7 by the fraction x/y. Begin with the pairs (x, y) � (0, 1) and (x, y) �
(1, 0). Observe that x/y < 38/7 if and only if 7x − 38y < 0. [Note that 1/0
is strictly speaking undefined; but for the sake of convention we can take it as
larger than any real number and use it as a convenient starting upper bound
for the number to be approximated.]

Verify that we can set out the numerators and denominators in the following
table, analogous to that appearing in Exercise 5.1.5(d). In the fourth column
we enter corresponding pairs from Euclid’s algorithm.

x y 7x − 38y

0 1 −38
1 0 7
1 1 −31 (38, 7)

2 1 −24 (31, 7)

3 1 −17 (24, 7)

4 1 −10 (17, 7)

5 1 −3 (10, 7)

6 1 4 (7, 3)

11 2 1 (4, 3)

16 3 −2 (3, 1)

27 5 −1 (2, 1)

38 7 0 (1, 1)

(c) Examine the data in parts (a) and (b). In (a), note how many consecutive pairs
there are whose second entries are the same and compare this with the number
of consecutive terms in the third column of the table in (b) of the same sign.
How do you account for your observation?

Exercise 2.6. Examine the general situation in which we require only that z and
w be positive real numbers (not necessarily integers or even rationals) with (r +
1)w > z > rw for some positive integer r .

(a) Verify that the table of numerators and denominators of fractions approxi-
mating z/w begins as follows; in the fourth column we list the pairs arising
in Euclid’s algorithm for the greatest common divisor of z and w.
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x y wx − zy Euclid′s algorithm

0 1 −z < 0
1 0 w > 0
1 1 w − z < 0 (z, w)

2 1 2w − z < 0 (z − w, w)

3 1 3w − z < 0 (z − 2w, w)

· · · · · · · · · · · ·
r 1 rw − z < 0 (z − (r − 1)w, w)

r + 1 1 (r + 1)w − z > 0 (w, z − rw)

2r + 1 2 (2r + 1)w − 2z · · ·
Observe that the number of pairs with second entry w is equal to the number
of consecutive negative terms in the third column. Compare the difference in
the entries of the pairs in the fourth column to the values in the third column.

(b) Let us imagine that the table of part (a) is continued to some point at which a
sign change again occurs in the value of wx − zy. As an induction hypothesis,
we suppose that the entries appear in the form below; with no loss of generality,
suppose that the sign in the third column changes from negative to positive.

x y wx − zy Euclid′s algorithm

a b aw − by � u − t < 0 (t, u)

c d cw − dz � u − v > 0 (u, v) � (u, t − u)

Suppose that (s + 1)v > u > sv for some positive integer s. Argue that the
table continues, yielding s consecutive positive terms in the third column.

x y wx − zy Euclid′s algorithm

a b aw−by �u−t <0 (t, u)

c d cw−dz�u−v >0 (u, v)� (u, t−u)

a+c b+d 2u−(t+v)�u−2v >0 (u−v, v)

2a+c 2b+d 3u−(2t+v)�u−3v >0 (u−2v, v)

3a+c 3b+d 4u−(3t+v)�u−4v >0 (u−3v, v)

· · · · · · · · · · · ·
(s−1)a+c (s−1)b+d u−sv >0 (u−(s−1)v, v)

sa+c sb+d u−(s + 1)v <0 (v, u−sv)

(If the sign change at the top is from positive to negative, the table is easily
adapted. If u� sv, the table terminates with a 0 in the third column.)

(c) Observe that each block of consecutive terms of the same sign in the third
column corresponds to a block of consecutive terms in Euclid’s algorithm for
which the second entry remains the same.

(d) Fill in the fourth column of the table in Exercise 2.4.

Exercise 2.7.
(a) Euclid’s algorithm proceeds by a succession of subtractions. We can stream-

line the method by using division in place of repeated subtractions of the same
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quantity. Suppose that

z � a0w + w1,

where a0w ≤ z < (a0 + 1)w, 0 ≤ w1 < w. Then a0 � �z/w�. Then
Euclid’s algorithm gives rise to the pairs (z, w), (z − w, w), . . ., (z − (a0 −
1)w, w), (w, w1). We can proceed with

w � a1w1 + w2,

where a1w1 ≤ w < (a1 + 1)w1, 0 ≤ w2 < w1 (so that a1 � �w/w1�). This
relation encapsulates the next block of a1 pairs whose second entries are w1.

Argue that Euclid’s algorithm can be abbreviated to a succession of
equations and corresponding pairs

z � a0w + w1 (z, w)

w � a1w1 + w2 (w, w1)

w1 � a2w2 + w3 (w1, w2)

w2 � a3w3 + w4 (w2, w3)

· · · · · ·
where z > w > w1 > w2 > · · · and ai � �wi−1/wi� for each positive i

(w0 ≡ w).
(b) Prove that z and w are commensurable if and only if some wk+1 is zero, in

which case the process terminates with an equation wk−1 � akwk . Argue that
in this case the greatest common divisor of z and w is wk .

(c) Prove that the positive reals z and w are not commensurable if and only if z/w

is irrational if and only if the process fails to terminate with a zero remainder.
(d) Apply the abbreviated algorithm to finding the greatest common divisor of

38 and 7, and of 27473 and 5627.

5.3 Continued Fractions

This section pursues the work of the last in the special case that w � 1. Suppose
that z is a positive irrational and that a0 is the largest nonnegative integer that does
not exceed z. We can write z � a0 + w1, where w1 is positive and less than 1.
This decomposition will be the seed that generates the algorithm discussed in this
section.

Exercise 3.1.
(a) Show that z � a0 + 1/u1 where u1 > 1.
(b) Repeat the process for u1 to obtain a representation of the form

u1 � a1 + 1

u2
,
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where u2 > 1. Deduce that

z � a0 + 1

a1 + 1
u2

or, for short,

z � a0 + 1/a1 + 1/u2.

(c) Verify that we can repeat the process repeatedly to obtain

z� a0 + 1/a1 + 1/a2 + 1/u3 � a0 + 1/a1 + 1/a2 + 1/a3 + 1/u4 � · · ·
� a0 + 1/a1 + 1/a2 + 1/a3 + · · · + 1/an + 1/un+1,

where a1, a2, . . . , an are positive integers and u3, . . . , un+1 are real numbers
exceeding 1. We adopt the convention that each slash is the bar of a fraction
whose denominator is everything that follows it.

Exercise 3.2. Verify that the process of Exercise 3.1 applied to π yields π �
3 + 1/7 + 1/15 + 1/1 + 1/292 + 1/1 + 1/1 + 1/1 + 1/2 + · · ·.

This can be done conveniently on a pocket calculator or computer by entering
the number π (i.e., a sufficiently close decimal approximation) and repeating the
following loop:

(i) record the integer part of the number;
(ii) subtract the integer part of the number;

(iii) invert (press the 1/x button);
(iv) return to (i).

Exercise 3.3.
(a) Using a pocket calculator, apply the process of Exercise 3.1 to the number√

29.
(b) An alternative way of doing part (a) is available to us because of the form of√

29 as a surd. Verify the following:
√

29 � 5 + (√
29 − 5

) � 5 + 4√
29 + 5

,

√
29 + 5

4
� 2 +

√
29 − 3

4
� 2 + 5√

29 + 3
,

√
29 + 3

5
� 1 +

√
29 − 2

5
� 1 + 5√

29 + 2
,

√
29 + 2

5
� 1 +

√
29 − 3

5
� 1 + 4√

29 + 3
,

√
29 + 3

4
� 2 +

√
29 − 5

4
� 2 + 1√

29 + 5
,

√
29 + 5 � 10 + (√

29 − 5
) � 10 + 4√

29 + 5
,
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and use these computations to check the result of (a).

Exercise 3.4. From the previous exercises, we see that
√

29 can be written in
continued fraction form as 5+1/2+1/1+1/1+1/2+1/10+1/2+1/1+1/ · · ·
where the underlined numbers cycle through 2, 1, 1, 2, 10. We form successive
approximations

(
called convergents to

√
29
)

by stopping the representation at each
of the underlined numbers, thus:

5, 5+1/2, 5+1/2+1/1, 5+1/2+1/1+1/1, 5+1/2+1/1+1/1+1/2, . . . .

(a) Verify that the sequence of convergents is

5

1
,

11

2
,

16

3
,

27

5
,

70

13
,

727

135
,

1524

283
,

2251

418
,

3775

701
,

9801

1820
, . . . .

(b) Explain why these convergents are alternately less than and greater than
√

29.

Exercise 3.5. For irrational z we can carry out the same procedure to get z �
a0 + 1/a1 + 1/a2 + 1/a3 + 1/a4 + · · · + 1/an + · · ·. Define pn and qn to be the
numerator and denominator of the nth convergent when written in lowest terms:

pn

qn

� a0 + 1/a1 + 1/a2 + 1/a3 + · · · + 1/an (n � 0, 1, 2, . . .).

Verify that

p0 � a0, q0 � 1,
p1 � a0a1 + 1, q1 � a1,
p2 � a0a1a2 + a0 + a2, q2 � a1a2 + 1,
p3 � a0a1a2a3 + a0a3 + a2a3 + a0a1 + 1, q3 � a1a2a3 + a1 + a3.

Be sure to check that the greatest common divisor of pi and qi is 1 in each case.

Exercise 3.6. There is a convenient algorithm for obtaining each pn and each qn

from its predecessor, once p0, q0, p1, and q1 are known. For n ≥ 2, it turns out
that

pn � anpn−1 + pn−2, qn � anqn−1 + qn−2.

Let us understand why this is so.

Suppose we define φn(a0, a1, . . . , an) for n � −1, 0, 1, 2, . . . by the
following:

φ−1 � 1, φ0(a0) � a0, φ1(a0, a1) � a0a1 + 1,

φn(a0, a1, a2, . . . , an) � anφn−1(a0, a1, . . . , an−1) + φn−2(a0, a1, . . . , an−2).

Observe that when n � 0, 1, 2, 3, then pn � φn(a0, a1, a2, . . . , an) and qn �
φn−1(a1, a2, . . . , an).

(a) Suppose that

pn

qn

� φn(a0, a1, . . . , an)

φn−1(a1, . . . , an)
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has been established for n � 1, 2, 3, . . . , m, where m is a positive integer.
By considering am + 1

am+1
as a single entity, verify that

pm+1

qm+1
� φm(a0, a1, . . . , am + 1/am+1)

φm−1(a1, . . . , am + 1/am+1)

� (am+1/am+1)φm−1(a0, a1, . . . , am−1)+φm−2(a0, a1, . . . , am−2)

(am+1/am+1)φm−2(a1, . . . , am−1)+φm−3(a1, . . . , am−2)

� am+1φm(a0, a1, . . . , am) + φm−1(a0, a1, . . . , am−1)

am+1φm−1(a1, a2, . . . , φm) + φm−2(a1, a2, . . . , am−1)

� φm+1(a0, a1, . . . , am+1)

φm(a1, . . . , am+1)
.

(b) Prove that φn(a0, a1, . . . , φn) � φn(an, an−1, . . . , φ0) and deduce that

φn(a0, a1, . . . , an) � a0φn−1(a1, a2, . . . , an) + φn−2(a2, a3, . . . , an).

(c) Prove by induction that for any choice of positive integers a0, a1, . . ., the
greatest common divisor of any two consecutive terms in the sequence
{φn(a0, a1, . . . , an) : n � 0, 1, 2, . . .} is 1.

(d) Prove, forn�1, 2, . . . , thatpn �φn(a0, . . . , an) andqn �φn−1(a1, . . . , an).
(e) Prove the recursion formula for pn and qn given at the beginning of the

exercise.

Exercise 3.7.
(a) Prove by induction that for each positive integer n,

pn+1qn − pnqn+1 � (−1)n.

(b) Deduce from (a) that

lim
n→∞

[
pn+1

qn+1
− pn

qn

]
� 0.

(c) Prove that the convergents pn/qn are alternately less than and greater than z.
(d) Deduce that

∣∣∣∣z − pn

qn

∣∣∣∣ ≤
∣∣∣∣
pn+1

qn+1
− pn

qn

∣∣∣∣ <
1

q2
n

,

so that

z � lim
n→∞

pn

qn

.

(e) Prove that

un � lim
k→∞

φk(an, an+1, . . . , an+k)

φk−1(an+1, an+2, . . . , an+k)
.
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Exercise 3.8. Using the formula given in Exercise 3.6 and d � 29, verify the
following table:

an an pn qn p2
n − 29q2

n

0 5 5 1 −4
1 2 11 2 5
2 1 16 3 −5
3 1 27 5 4
4 2 70 13 −1
5 10 727 135

Continue the table until the number 1 appears in the final column.

Exercise 3.9. Compare the table in Exercise 3.8 with the table in Exercise 1.5(d).
What is the significance of the numbers an with respect to the earlier table? Review
Exercise 2.5 to understand the role of an.

Exercise 3.10. Use the procedure of Exercise 3.8 to determine the fundamental
solution of x2 − dy2 � 1 for other values of d.

Exercise 3.11. Suppose that z � a0 + 1/a1 + 1/a2 + · · · + 1/an + · · · and
w � b0 + 1/b1 + 1/b2 + · · · + 1/bn + · · ·, where either development could be
finite. Let the convergents for z be pn/qn.

(a) Prove that if

p0

q0
≤ w <

p1

q1
,

then b0 � a0.

(b) Prove that if

p2

q2
≤ w <

p1

q1
,

then b0 � a0 and b1 � a1.

(c) Prove, by induction on m, that if w lies between pm/qm and pm+1/qm+1, then
b0 � a0, b1 � a1, . . . , bm � am, so that the first m + 1 convergents for w

are pi/qi , where i � 0, 1, . . . , m. ♠

In the following exercises we show that the convergents of the continued fraction
for a irrational z are best approximations for the size of the denominators. In the
following, {pn/qn} is the sequence of convergents for the irrational number z.
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Exercise 3.12. Suppose that a and b are integers with b > 0 and |zb − a| <

|zqn − pn| for some positive integer n. We wish to show that b ≥ qn+1. The
argument will be by contradiction, so we assume the contrary, i.e., that b < qn+1.
(a) Prove that the system

qnx + qn+1y � b,

pnx + pn+1y � a,

has a solution (x, y) in integers.
(b) Prove that this solution cannot have x � 0.
(c) Verify that

|zb − a| � |x(qnz − pn) + y(qn+1z − pn+1)|
and argue that y 	� 0 for any solution of (a).

(d) Prove that xy < 0 for any solution of (a).
(e) From (d), note that

|zb − a| � |x(qnz − pn)| + |y(qn+1z − pn+1| ≥ |x||qnz − pn|
and obtain a contradiction to our hypothesis. Deduce that b < qn+1.

Exercise 3.13. Prove that if a and b are integers with b > 0, and |z − a/b| <

|z − pn/qn| for some n ≥ 1, then b > qn.

Exploration 5.1. The following is an algorithm due to Tenner for obtaining the
values {an} involved in the continued fraction representation for

√
d. Suppose that

k � �√d� and d � k2 + r . We form a table with six columns:

I II III IV V VI
k × k � d − r

· · ·
a b c u v w

A B C U V W

where a given row (uppercase letters) is obtained from the previous row (lowercase
letters) by the following relations:

k + c � Aw + B, 0 ≤ B < w,

C � k − B,

U � C2,

V � d − U,

W � V/w.

Column I gives the successive values of an.
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Verify that the table for d � 29 is the following:

I II III IV V VI
5 × 5 = 29 − 4
2 2 3 9 20 5
1 3 2 4 25 5
1 2 3 9 20 4
2 0 5 25 4 1
10 0 5 25 4 4
2 2 3 9 20 5

· · ·
Try this method for other values of d. Why does it work? What is the significance

of the numbers in Column VI?

5.4 Periodic Continued Fractions

Does the continued fraction expansion of
√

d always deliver a fundamental solution
of Pell’s equation? It turns out that those z that are roots of quadratic equations
with integer coefficients are characterized by sequences {an} that are eventually
periodic. In this section the symbols z, ui, ai have the meanings assigned to them
in Section 5.3.

Exercise 4.1. Suppose that in the continued fraction expansion of z we obtain a
sequence {an} of integers that is periodic from the term ar on; i.e., for some positive
integer h, an+h � an for n ≥ r .
(a) Prove that un � un+h for n ≥ r .
(b) Using z � a0 + 1/a1 + 1/a2 + · · · + 1/an−1 + 1/un and Exercise 3.6, prove

that

z � urpr−1 + pr−2

urqr−1 + qr−2
� urpr+h−1 + pr+h−2

urqr+h−1 + qr+h−2
.

(c) Show that there are integers A, B, C with A 	� 0 for which ur is a root of
the quadratic equation At2 + Bt + C � 0, so that ur � p ± √

q for some
rationals p and q. Deduce that z has the same form.

(d) Verify that a number z has the form p ± √
q for some rationals p and q if

and only if z is a root of a quadratic equation with integer coefficients.

Exercise 4.2.
(a) Suppose that z is irrational and that Az2 + Bz + C � 0 for some integers A,

B, C. Prove that there are integers An, Bn, Cn such that

Anu
2
n + Bnun + Cn � 0.
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Indeed, verify that

An � Ap2
n−1 + Bpn−1qn−1 + Cq2

n−1,

Bn � 2Apn−1pn−2 + B(pn−1qn−2 + pn−2qn−1) + 2Cqn−1qn−2,

Cn � Ap2
n−2 + Bpn−2qn−2 + Cq2

n−2.

(b) Why is An 	� 0?
(c) Verify that B2

n − 4AnCn � B2 − 4AC.
(d) The next step is to deduce that the numbers An, Bn, Cn have an upper bound

independent of n, so that there are finitely many possibilities for the triple
(An, Bn, Cn). Recall from Exercise 3.7 that

∣
∣
∣
∣z − pn

qn

∣
∣
∣
∣ <

1

q2
n

,

so that

− 1

qn

< pn − zqn <
1

qn

for all n. Use this to deduce that

|An| < 2|Az| + |A| + |B|,
|Cn| � |An+1| < 2|Az| + |A| + |B|,

|Bn|2 < 4[2|Az| + |A| + |B|]2 + |B2 − 4AC|.
(e) Use the pigeonhole principle to deduce that the triple (An, Bn, Cn) can assume

at most finitely many values, so that for some positive integers r and h, we
must have that

(Ar, Br, Cr) � (Ar+h, Br+h, Cr+h).

Deduce that {un} and therefore that {an} is periodic with period h from some
point on. ♠

The following exercises investigate the same result another way. We will focus
on using surd manipulations in obtaining the continued fraction expansion. To get
a feel for the result of the next exercise, review the data given in Exercise 3.3 for
the continued fraction expansion of

√
29. When the numerators are rationalized,

observe that a fraction is obtained whose numerator is an integer. For example,
(
√

29 − 3)/4 is such that 4 divides 29 − 32, and so (
√

29 − 3)/4 equals a fraction
with denominator

√
29 + 3 whose numerator is the integer 5.

Exercise 4.3. Suppose that z is a positive irrational real solution of a quadratic
equation with integer coefficients.
(a) Prove that z has the form (k0 + √

d)/h0, where d is a positive integer, h0 and
k0 are integers, and d − k2

0 is a multiple of h0. Give this form for both of the
roots of the quadratic equation 7x2 − 8x + 2 � 0.
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(b) Suppose that z � a0 + (1/u1) with a0 an integer and u1 > 1. Verify that

u1 � h0[−(k0 − a0h0) + √
d]

d − (k0 − a0h0)2
.

Express this in the form (k1 + √
d)/h1, where h1 and k1 are integers with

h1 	� 0 and d − k2
1 is a multiple of h1.

(c) Continue in this fashion to show that each ui arising in the continued fraction
expansion of z has the form

ki + √
d

hi

,

where hi and ki are integers, hi 	� 0, and hihi−1 � d − k2
i .

(d) Illustrate (c) for each of the roots of the equation 7x2 − 8x + 2 � 0.

Exercise 4.4. Following the notation of Exercise 4.3, let vi � (ki − √
d)/hi be

the “surd conjugate” of ui and w be the surd conjugate of z.
(a) Explain why

w � vnpn−1 + pn−2

vnqn−1 + qn−2
.

(b) Verify that

vn � − qn−2

qn−1

(
w − (pn−2/qn−2)

w − (pn−1/qn−1)

)

and argue that vn is negative when n exceeds some positive integer N .
(c) Show that un − vn is positive for n > N , so that hn is also positive for these

values of n.
(d) Use the fact that hnhn−1 � d − k2

n to deduce that the pair (hn, kn) can assume
at most finitely many distinct values.

(e) Show that there are positive integers r and s for which s > r and (hr , kr) �
(hs, ks). Deduce that ur � us , so that for n ≥ r , an+s−r � an (i.e., the
sequence {an} is eventually periodic).

Exercise 4.5. This exercise will investigate when the continued fraction expansion
of the positive irrational z is purely periodic, so that for some positive integer s,

z � a0 + 1/a1 + 1/a2 + · · · + 1/as−1 + 1/a0 + 1/a1 + · · · .
This occurs when

z � a0 + 1/a1 + 1/a2 + · · · + 1/as−1 + 1/z,

or when

z � zps−1 + ps−2

zqs−1 + qs−2
.
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Determine a quadratic equation f (x) � 0 with integer coefficients for which z

and w are the roots. By looking at f (0) and f (−1), deduce that −1 < w < 0.
Explain why a0 must be positive. Deduce that z > 1.

Exercise 4.6. The converse of the result in Exercise 4.5 also holds. Suppose
that z and its surd conjugate w are the roots of a quadratic equation with integer
coefficients and that

−1 < w < 0 < 1 < z.

(a) Explain why 1/vi+1 � vi − ai for each positive integer i and prove by
induction that −1 < vi < 0. Deduce that ai � �−1/vi+1�. (Note that this
relates ai to vi+1, which has a greater index.)

(b) By Exercises 4.2 and 4.3, since z is a root of a quadratic equation with integer
coefficients, there exist integers r and s for which ur � us with r < s.
Deduce from vr � vs that ar−1 � as−1, so that ur−1 � us−1.

(c) Prove that z � us−r , so that {an} is periodic with the initial segment
{a0, a1, . . . , as−r−1} repeated.

(d) Let d be a positive nonsquare integer. Prove that
√

d + �√d� has a purely
periodic continued fraction expansion of the form
√

d+�
√

d��2a0+1/a1+1/a2+1/a3+· · ·+1/as−1+1/2a0+1+a1/1+· · ·
with a0 � �√d�. What is the continued fraction expansion of

√
d?

Exercise 4.7. In Exercise 4.3, suppose that z � √
d, so that k0 � 0 and h0 � 1.

(a) Prove that for n ≥ 0,

√
d � (kn+1 + √

d)pn + hn+1pn−1

(kn+1 + √
d)qn + hn+1qn−1

.

(b) Manipulate the equation in (a) into the form A + B
√

d � 0, where A and B

are integers. Why should A and B vanish? Deduce that

p2
n − dq2

n � (−1)n−1hn+1.

(c) If the continued fraction expansion of
√

d has ultimate period s, prove that
for each positive integer m,

p2
ns−1 − dq2

ns−1 � (−1)ns .♠

We have thus established that x2 − dy2 � 1 is solvable whenever d is a posi-
tive nonsquare integer and shown how the continued fraction method provides an
algorithm for obtaining it. You might try this to obtain solutions for x2 − dy2 � 1
for values of d that otherwise have presented difficulties.

Exploration 5.2. Factoring integers. Suppose that we wish to factor the integer
1037. If we can find p and q for which p2 − 1037q2 � r2, a perfect square, then
1037q2 � p2 − r2 � (p− r)(p+ r), and it may be possible to find factors of 1037
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distributed among those of p−r and p+r . The Euclidean algorithm can be used to
find the greatest common divisor of the pairs (1037, p−r) and (1037, p+r). Thus,
we can search among the values ofp2

n−1037q2
n (or equivalently, by Exercise 4.7(b),

among the values of (−1)n−1hn+1) for perfect squares. Use the algorithm to obtain
the possibility (p, q, r) � (129, 4, 7); observe that 1037 × 16 � 1292 − 72 �
122 × 136. Now find the greatest common divisor of the pairs (1037, 122) and
(1037, 136). Try this out to factor other large integers d. If you are unsuccessful,
consider replacing d by a multiple md with m and d coprime.

5.5 The Polynomial Case

We can look at an equation x2 −d(t)y2 � 1 in two ways: either as a parameterized
numerical equation or as a polynomial equation. (Go back to Exploration 2.7 for
some examples.) In the former case we can let t have numerical values and the
look for patterns in the solutions that can then be expressed in polynomial form.

We can look at polynomials as more than carriers of numerical patterns. They
are mathematical entities in their own right. Polynomials can be added, sub-
tracted, multiplied, and divided in the way that integers can, and we can consider
x2 − d(t)y2 � 1 as an equation in which polynomial solutions are to be found.
Not every possibility for d(t) will admit nontrivial solutions; can you think of any?
The polynomial version of Pell’s equation does not seem to be well treated in the
literature, and in this section we will study a few examples. We can try to imitate
the continued fraction approach, but this is hampered by the lack of a magnitude
for polynomials, which allows us to use the floor function for numbers. We can
try comparing possible developments with those obtained when numbers are sub-
stituted for the variable. A final approach is to use the method of undetermined
coefficients; assume that you have a Pell’s equation with polynomials of various
degrees, and then equate coefficients of various powers of the variable t that arise
in the expansion. We do not pursue this in the exercises, but you might want to look
at some examples, particularly if you have computer software capable of dealing
with algebraic expressions.

Exercise 5.1. Beginning with the observation that

√
t2 + 1 � t + (√

t2 + 1 − t
) � t + 1√

t2 + 1 + t
,

obtain the continued fraction development
√

t2 + 1 � t + 1/2t + 1/2t + 1/2t + · · · .
By examining its convergents, obtain polynomial solutions of

x2 − (t2 + 1)y2 � ±1.
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Exercise 5.2.
(a) Imitate the process of Exercise 5.1 for

√
t2 + c to generate polynomial solu-

tions for x2 − (t2 + c)y2 � 1. Compare your solution with what you found
in Exercise 5.1.

(b) Do (a) in the special case c � 2.

Exercise 5.3. Beginning with the observation that
√

t2 − 1 � (t − 1) + [√
t2 − 1 − (t − 1)

] � (t − 1) + 2(t − 1)√
t2 − 1 + (t − 1)

,

obtain the continued fraction development
√

t2 − 1 � (t − 1) + 1/1 + 1/2(t − 1) + 1/1 + 1/2(t − 1) + 1/1 + · · · .
Use this to obtain polynomial solutions to x2 − (t2 − 1)y2 � 1.

Exercise 5.4. Consider the equation x2 − (4t2 + 12t + 5)y2 � 1.
(a) Verify, for t > 0, that

2t + 2 <
√

4t2 + 12t + 5 < 2t + 3.

(b) Use the observation in (a) to imitate the continued fraction algorithm and
obtain a solution for the equation.

Exercise 5.5.
(a) Let p(t) � m2t4 + 2mnt3 + n2t2 + mt + n � (mt2 + nt)2 + (mt + n)

where mn 	� 0. Obtain the continued fraction
√

p(t) � (mt2 + nt)+ 1/2t +
1/2(mt2 + nt) + 1/2t + · · · and the solution

(x, y) � (2mt3 + 2nt2 + 1, 2t)

for x2 − p(t)y2 � 1.
(b) Find a solution for

x2 − (m2t4 + 2mnt3 + n2t2 + 2mt + 2n)y2 � 1.

Exercise 5.6.
(a) Solve x2 − (4t2 + 4t + 5)y2 � −1.
(b) Solve x2 − (4t4 + 4t + 2)y2 � −1.
(c) Solve x2 − (16t4 + 8t3 + 9t2 + 6t + 2)y2 � −1. ♠

Next we look at the case d(t) � t2 + 3. The continued fraction approach begins
with

√
t2 + 3 � t + 3√

t2 + 3 + t
,

so we need to deal with
(√

t2 + 3 + t
)
/3 at the next stage. This is about equal to

2t/3, not always an integer when t is an integer. In order to clarify the situation,
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we subdivide the problem into three cases corresponding to the remainder that a
numerical value of t might have upon division by 3: t � 3s, t � 3s + 1, and
t � 3s + 2. We then make a similar analysis when d(t) � t2 − 4.

Exercise 5.7.
(a) Verify that the continued fraction expansion for

√
9s2 + 3 is

3s + 1/2s + 1/6s + 1/2s + 1/6s + · · ·
and thus obtain solutions for x2 − (9s2 + 3)y2 � 1.

(b) Generalize (a) to the situation d � t2 + k with t � ks.
(c) For which numerical values of d can we obtain solutions to x2 − dy2 � 1 by

making substitutions for s and k in (a) and (b)?

Exercise 5.8. When t � 3s + 2, then t2 + 3 � 9s2 + 12s + 7.
(a) Prepare a table giving the values of an when

√
3s + 2 has the form a0 +

1/a1 + 1/a2 + 1/a3 + · · · for s � 0, 1, 2, 3, 4, 5, . . . . (See Exploration 5.1
at the end of Section 3 for a convenient algorithm.)

(b) Verify that
√

9s2 + 12s + 7 � (3s + 2) + 1/(2s + 1) + 1/2 + 1/1 + · · ·
when s takes numerical values not less than 2. Why does this fail for s � 0
and s � 1?

(c) Determine a solution (x, y) in polynomials with rational coefficients for

x2 − (9s2 + 12s + 7)y2 � 1.

Exercise 5.9. When t � 3s + 1, then t2 + 3 � 9s2 + 6s + 4. Determine a
solution (x, y) in polynomials with rational coefficients for

x2 − (9s2 + 6s + 4)y2 � 1.

Exercise 5.10. Consider the case d � t2 −4. For numerical values of t , determine
the quantities ai that occur in the continued fraction expansion of

√
d. Look for

patterns and use them to obtain polynomial results.

Exercise 5.11. When t � 2s + 1, t2 − 4 � 4s2 + 4s − 3. Use the continued
fraction expansion of

√
4s2 + 4s − 3 to solve x2 − (4s2 + 4s − 3)y2 � 1. For

which numerical values of s does this give a valid continued fraction expansion?

Exercise 5.12. When t � 2s, t2 − 4 � 4s2 − 4. Prove that
√

4s2 − 4 � (2s − 1) + 1/1 + 1/(s − 2) + 1/2(2s − 1) + 1/1 + · · · .
For which numerical values of s does this give a valid continued fraction expansion?
Solve

x2 − (4s2 − 4)y2 � 1.
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5.6 Low Values Assumed by x2 − dy2

The continued fraction algorithm provides us not only with solutions of x2 −dy2 �
1 but also of x2 − dy2 � k for every integer k for which |k| <

√
d. Let us see

why this is so.

Exercise 6.1.
(a) Suppose a, r , s are positive integers for which a <

√
d and r2 − ds2 � a.

Prove that

0 < r − s
√

d <
1

2s

and deduce that

r

s
−

√
d <

1

2s2
.

(b) Suppose b, r , s are positive integers for which b <
√

d and r2 − ds2 � −b.
Prove that

0 <
s

r
− 1√

d
<

1

2r2
. ♠

Let z be a positive irrational number and let r and s be coprime positive integers.
Suppose that

z � a0 + 1/a1 + 1/a2 + · · · + a/an−1 + 1/un

and
r

s
� b0 + 1/b1 + 1/b2 + · · · + 1/bn−1 + 1/vn

are the developments of z and r/s as finite continued fractions for each positive
integer n with ai and bi nonnegative integers and un and vn each real numbers at
least equal to 1. Note that since r/s is rational, its continued fraction development
will terminate, so that r/s � b0 + 1/b1 + · · · + 1/bm. Let its convergents be ri/si

(0 ≤ i ≤ m); observe that r1 < r2 < · · · < rm � r , s1 < s2 < · · · < sm � s.
How close do z and r/s have to be for their convergents up to r/s to agree? In

view of our overall goal and Exercise 6.1, we would like this to happen when
∣∣∣∣z − r

s

∣∣∣∣ <
1

2s2
.

Exercise 6.2. Suppose that
√

d � a0 + 1/a1 + 1/a2 + 1/a3 + · · · .
What is the continued fraction of 1/

√
d? How do the convergents of 1/

√
d compare

with the convergents of
√

d?
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Exercise 6.3. Let r and s be coprime positive integers for which
∣∣∣∣
√

d − r

s

∣∣∣∣ <
1

2s2
.

Select the positive integer n for which qn ≤ s < qn+1. Suppose that r/s 	� pn/qn.
(a) From Exercise 3.12, deduce that

∣∣∣qn

√
d − pn

∣∣∣ ≤
∣∣∣s

√
d − r

∣∣∣ .

(b) Prove that
∣∣
∣
∣
√

d − pn

qn

∣∣
∣
∣ <

1

2sqn

.

(c) Use the fact that |spn − rqn| ≥ 1 to prove that

1

sqn

≤
∣
∣
∣
∣
pn

qn

− r

s

∣
∣
∣
∣ <

1

2sqn

+ 1

2s2

and then s < qn.
(d) From the contradiction in (c), deduce that r/s � pn/qn.
(e) What happens if we drop the condition that r and s are coprime?

Exercise 6.4. Prove a result analogous to Exercise 6.3 in the event that
∣∣∣∣
s

r
− 1√

d

∣∣∣∣ <
1

2r2
.

Exercise 6.5. Suppose that |k| <
√

d. Argue that we can obtain every solution in
integers x and y to x2 − dy2 � k from the continued fraction expansion of

√
d.

5.7 Explorations

Exploration 5.3. A variant on the continued fraction algorithm is to overshoot
rather than undershoot at each step. We can formulate it as follows. Start with an
irrational number z and let

z � b0 − 1

v − 1
,

where b0 � �x� and v1 > 1. Continue as follows

v1 � b1 − 1

v2
, . . . vn � bn − 1

vn+1
,

where for each n, bn � �vn� and vn > 1. Note that bi > 2. For example,
when z � √

13, the sequence {bn} is {4, 3, 3, 2, 2, 2, 2, 2, 3, 3, 8, 3, 3, . . .}. As
before, we can define convergents pn/qn for the continued fraction. How do these
convergents compare to the value of z? Do we still obtain solutions of x2 −dy2 � 1
for nonsquare values of d from this approach?
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Exporation 5.4. Another variant to the continued fraction method is to take the
nearest integer at each iteration. Thus, for irrational z,

z � c0 ± 1

w1
,

where c0 is the nearest integer and w1 > 2; generally,

wn � cn ± 1

wn+1
,

where cn is the nearest integer to wn and wn+1 > 2. When z � √
13, then {cn} is

{4, 3, 2, 7, 3, 2, . . .} and the sequence of convergents is {4/1, 11/3, 18/5, 137/18,
393/109, 649/180, . . .}. Is this a good method for getting a fundamental solution
to Pell’s equation?

5.8 Notes and References

The topic of continued fractions and Pell’s equation is covered in many number
theory textbooks. The following may be consulted:

William J. LeVeque, Topics in Number Theory, Volume 1. Addison-Wesley,
Reading, MA 1956 (Chapters 8 and 9).

Richard A. Mollin, Fundamental Number Theory with Applications. CRC Press,
1998 (Chapters 5 and 6).

Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An Introduction
to the Theory of Numbers, 5th edition. John Wiley, 1991 (Chapter 7).

6.4–6.6. A.M.S. Ramasamy, Polynomial solutions for the Pell’s equation. Indian
Journal of Pure and Applied Mathematics 25 (1994), 577–581.

Exploration 5.1. The method of Tenner is described on page 372 of Volume II
of L.E. Dickson, History of the Theory of Numbers (Chelsea, NY, 1951).

Exploration 5.3, 5.4. Recent work of A. Mollin explores alternative ways of
handling continued fractions to obtain solutions of Pell’s equation. See also the
survey paper of H.C. Williams.

5.9 Hints

3.6(a). To handle the third equality, multiply numerator and denominator by am+1

and remember the recursion that defines φn and φm−1.

3.6(b). For the symmetry property, use induction on n.

3.6(c). The proof is similar to the corresponding result for the Euclidean algorithm
for a coprime pair of integers.
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4.2(d). Note that An � An − (Az2 + Bz + c)q2
n+1. Try to get an expression

involving pn+1 − zqn−1.

4.3(d). Observe that (Az2 + Bz + c)q2
n−1 � 0 and subtract this quantity from both

sides of the equation to determine An in (a).

5.6(a). 4t2 + 4t + 5 is close to (2t + 1)2.

5.6(b). 4t4 + 4t + 2 is close to (2t2)2.

5.6(c). 16t4 + 8t3 + 9t2 + 6t + 2 is close to (4t2 + t + 1)2.
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6

Pell’s Equation and Pythagorean
Triples

As we have seen in Chapter 1, Pell’s equation comes up in situations requir-
ing integer solutions to quadratic equations. One well-known equation is that of
Pythagoras, x2 + y2 � z2; this is closely related to Pell’s equation. We continue
an investigation begun in Section 1.3.

6.1 A Special Second-Order Recursion

In this section we study the sequence {tn} defined by the following relations

t1 � 1, t2 � 6, tn � 6tn−1 − tn−2 (n ≥ 3).

The terms of this sequence can be used to generate Pythagorean triples whose
smallest numbers differ by 1. Later sections will show how to find other classes of
Pythagorean triples.

Exercise 1.1. List the first seven terms of the sequence {tn} in a column. Leave
room for other columns of data.

Exercise 1.2. For each n, prove that tn+1 + tn is odd and therefore can be expressed
as the sum of two consecutive integers: tn+1 + tn � an + bn.

Exercise 1.3. Let cn � tn−1 − tn. Check that a2
n + b2

n � c2
n for low values of n.

♠

It is interesting that each tn can be expressed as a product of corresponding terms
of sequences we have already studied. Recall from Chapter 1 the sequences {pn}
and {qn} satisfying the recursions

p1 � 1 p2 � 3 pn � 2pn−1 + pn−2 (n ≥ 3),

q1 � 1 q2 � 2 qn � 2qn−1 + qn−2 (n ≥ 3).

From Exercise 1.2.4 we have that

pnqn � 6pn−1qn−1 − pn−2qn−2 (n ≥ 3).

81
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Exercise 1.4. Prove by induction that tn � pnqn for n ≥ 3.

Exercise 1.5. Recall that the recursions for {pn} and {qn} satisfy

pn � pn−1 + 2qn−1 and qn � pn−1 + qn−1

for n ≥ 2. Prove that:
(a) pn � 6pn−2 − pn−4 and qn � 6qn−2 − qn−4 for n ≥ 5.
(b) p2n+1 � an + bn and q2n+1 � cn for n ≥ 1.
(c) q2n � 2pnqn for n ≥ 1.
(d) p2

n + p2
n+1 � 2q2n+1 and q2

n + q2
n+1 � q2n+1 for n ≥ 1.

Exercise 1.6. Consider the sequence {sn} defined by

s1 � 3, s2 � 17, sn � 6sn−1 − sn−2, (n ≥ 3).

Verify that sn � p2n and that the Pell’s equation s2
n − 8t2

n � 1 holds for small
values of n. Try to establish it for general n.

Exploration 6.1. With the notation of Exercise 1.3, does a2
n + b2

n � c2
n for each

value of n? Do the (an, bn, cn) give a complete set of solutions of x2 + y2 � z2

with y − x � 1?

5.2 A General Second-Order Recursion

A second-order recursion is a sequence {tn} whose terms satisfy, for integers n,

tn � αtn−1 + βtn−2 (1)

for constant multipliers α, β independent of n. Examples are the sequences {tn},
{pn}, {qn}, and {sn} encountered in Section 1. In this section we will suppose that
α and β are integers, and that n ranges over all the integers.

Exercise 2.1. When β � 0 in (1), the recursion becomes tn � αtn−1. For how
many values of n must tn be known to determine a solution? Suppose t0 is known.
What is tn?

Exercise 2.2. When α � 0, the recursion becomes tn � βtn−2. Suppose that t0 is
known. Which values of tn are determined? What are they? How much additional
information is needed to determine the sequence {tn} completely? Experiment with
the case β � 1, β � 4, β � −1.

Exercise 2.3. Let α and β both be nonzero. Show that the recursion (1) is satisfied
by tn � rn for some constant r if and only if r is a root of the quadratic equation

x2 � αx + β, or x2 − αx − β � 0. ♠
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The expression x2 − αx − β is called the characteristic polynomial of the
recursion.

Exercise 2.4.
(a) Suppose that {t ′n} and {t ′′n } both satisfy the recursion (1). Verify that

tn � γ t ′n + δt ′′n
is also a solution of (1) for any constants γ and δ.

(b) Suppose that the characteristic polynomial x2 −αx −β has two distinct roots
r and s. Deduce that tn � γ rn + δsn satisfies (1) for any constants γ and
δ. (We will show in the next exercise that this picks up all solutions to the
recursion.)

(c) Suppose that the polynomial x2 − αx − β has a double root r , so that 4β �
−α2 and r � α/2. Verify for each n that

tn − rtn−1 � r(tn−1 − rtn−2),

so that {tn/rn} is an arithmetic progression. Deduce that

tn � (γ n + δ)rn

for some constants γ and δ.

Exercise 2.5. Suppose that {tn} is any solution of (1), and that the characteristic
polynomial has two distinct roots r and s. Verify that the system

γ + δ � t0,

γ r + δs � t1,

is uniquely solvable for the parameters γ and δ. Prove that for these values of γ

and δ, tn � γ rn + δsn for all n.

Exercise 2.6. Establish a result analogous to Exercise 2.5 in the event that the
characteristic polynomial has two equal roots.

Exercise 2.7. Use the theory of the previous exercise to write the general terms
of the following recursions of Section 1 in the form tn � γ rn + δsn. Check that
the formula you obtain works when n � 1, 2, 3, 4:

(1) {1, 6, 35, 204, . . .},
(2) {1, 2, 5, 12, 29, . . .},
(3) {1, 3, 7, 17, 41, . . .},
(4) {3, 17, 99, 577, . . .}.

Another approach to solving the recursion (1) is through matrices. In this formu-
lation, the recursion is revealed as an analogue of a geometric sequence, in which
each term depends on only one predecessor. We can write

(
tn

tn+1

)
�
(

0 1
β α

) (
tn−1

tn

)
,
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so that
(

tn
tn+1

)
�
(

0 1
β α

)n (
t0
t1

)

for each integer n.

Exercise 2.8.
(a) Verify that if r and s are the roots of the quadratic polynomial x2 − αx − β,

then
(

0 1
β α

) (
1

r

)
� r

(
1

r

)

and
(

0 1
β α

) (
1

s

)
� s

(
1

s

)
.

Thus, on the vectors
(1
r

)
and

(1
s

)
, operating with the matrix behaves like a

simple multiplication by a scalar.
(b) Suppose that t0 and t1 are given and that r and s are distinct. Prove that there

are numbers γ and δ such that

t0 � γ + δ and t1 � γ r + δs

and thus
(

0 1
β α

)n (
t0

t1

)
� γ

(
0 1
β α

)n (1

r

)
+ δ

(
0 1
β α

)n (1

s

)

� γ

(
rn

rn+1

)
+ δ

(
sn

sn+1

)

Note that this corroborates the result of Exercise 2.6.

Exercise 2.9. Let

A �
(

0 1
β α

)
, M �

(
1 1
r s

)
, and N � 1

s − r

(
s −1

−r 1

)
,

where r and s are distinct roots of x2 − αx − β.
(a) Verify that A2 − αA − βI � O, where I is the identity matrix

(1 0
0 1

)
. (Cf.

Exercise 1.2.3.)
(b) Verify that NM � MN � I , where I is the identity matrix

(1 0
0 1

)
.

(c) Prove that NAnM � (NAM)n for each positive integer n.
(d) Verify that

NAM �
(

r 0
0 s

)

and deduce that

NAnM �
(

rn 0
0 sn

)
. ♠
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The significance of the result of Exercise 2.9(c) is that A → NAM is a “simi-
larity” transformation of the matrix A into a form where it becomes apparent that
A is a type of amalgam of multiplication by r and multiplication by s, so that the
second-order recursion becomes a sort of two-story geometric sequence.

Exercise 2.10. Let {tn} be a general second order recursion defined by (1). Prove
that

t2
n − tn+1tn−1 � −β(t2

n−1 − tntn−2).

Exercise 2.11. Let rn � αtn + 2βtn−1 � tn+1 + βtn−1 for n ≥ 1, and let
D � α2 + 4β be the discriminant of the characteristic polynomial x2 − αx − β.
Prove that

r2
n − Dt2

n � −4β(t2
n − tn+1tn−1) � (−1)n(t2

1 − t2t0)4βn (n ≥ 1).

Exercise 2.12. Consider the special case β � −1, t0 � 0, t1 � 1, so that

tn � αtn−1 − tn−2 (n ∈ Z),

D � α2 − 4,

rn � αtn − 2tn−1 � tn+1 − tn−1.

(a) Write out the values of rn and tn as functions of α for n � −1, 0, 1, 2, 3, 4.
(b) Prove that rn � αrn−1 − rn−2 and that r2

n − Dt2
n � 4.

Exercise 2.13. In Exercise 2.12, let α � 2γ + 1 be odd. Verify that rn ≡ tn ≡ 0
(mod 2) if and only if n is a multiple of 3. This permits us to find certain solutions
to the Pell’s equation x2 − (α2 − 4)y2 � 1. For example, taking n � 3, check
that we obtain

(4γ 3 + 6γ 2 − 1)2 − (4γ 2 + 4γ − 3)(2γ 2 + 2γ )2 � 1.

Exercise 2.14. In Exercise 2.11, let α � 2γ be even. Define sn � 1
2 rn �

γ tn − tn−1.
Verify that (x, y) � (sn, tn) satisfies the equation

x2 − (γ 2 − 1)y2 � 1.

Cf. Exercise 3.4.1. We have that

sn + (√
γ 2 − 1

)
tn � (

γ +
√

γ 2 − 1
)n

.

Exercise 2.15. In Exercise 2.10, let β � 1, t0 � 0, t1 � 1, so that

tn � αtn−1 + tn−2 (n ∈ Z)

D � α2 + 4,

rn � αtn + 2tn−1 � tn+1 + tn−1 (n ∈ Z).

(a) Verify that r2
n − Dt2

n � (−1)n4.
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(b) Show that, if α � 2γ , sn � 1
2 rn, then (x, y) � (sn, tn) satisfies

x2 − (γ 2 + 1)y2 � ±1.

(c) What are {sn} and {tn} when γ � 1?

Exercise 2.16. Consider the case α � 3, β � −1, t0 � 1, t1 � 5, so that

tn � 3tn−1 − tn−2,

D � 5,

rn � 3tn − 2tn−1 � tn+1 − tn−1.

Determine the terms rn and tn for positive and negative values of n using the
recursion equation to extrapolate both forwards and backwards from n � 0 and
n � 1. Obtain integer solutions to the Pell’s equation

x2 − 5y2 � 44.

Exploration 6.2. Does this method ever provide a complete set of solutions to
x2 − dy2 � k?

5.3 Pythagorean Triples

The example in Section 6.1 gives an illustration of how to find solutions to a system
of Diophantine equations of the form

rx + sy � w,

rx2 + sy2 � z2,

y − x � e

where r, s, e are given coefficients. In that example we had r � s � e � 1
and {x, y} � {an, bn}. In the solutions, w was the sum of consecutive terms in a
recursion, and z was their difference.

To set this up more generally, let us find conditions on the multipliers α and β

of a second-order recursion and on the coefficients r and s to make such a solvable
system possible. Let a, b, and αb+βa be three consecutive terms of a second-order
recursion. We want to ensure the existence of u and v for which

ru + s(u + e) � a + b, (1)

rv + s(v + e) � b + (αb + βa), (2)

ru2 + s(u + e)2 � (b − a)2, (3)

rv2 + s(v + e)2 � (αb + βa − b)2. (4)

Exercises 3.1. Suppose (1) holds. Subtract (1) from (2) to obtain

v � u + αb + (β − 1)a

r + s
. (5)
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Exercise 3.2. We eliminate u and v from the system (1)–(4). Substitute (5) into
(4) and take account of (1) and (3) to get

[αb + (β − 1)a]2 + 2[αb + (β − 1)a][a + b]

� k
[
(α2 − 2α)b2 + 2(αβ − β + 1)ab + (β2 − 1)a2

]
(6)

where k � r + s.

Exercise 3.3. We want to make (6) hold for any three consecutive terms of a
recursion with multipliers α and β. Accordingly, (6) should be an identity in a and
b. Equate coefficients of b2, ab and a2 in both sides to obtain

α2 + 2α � k(α2 − 2α), (7)

αβ + β − 1 � k(αβ − β + 1), (8)

β2 − 1 � k(β2 − 1). (9)

Exercise 3.4. One obvious possibility for the system (7)–(9) is α � 0, β � 1.
This corresponds to the sequence a, b, a, b, a, b, . . .. In this case, u � v, and we
have to satisfy rx + sy � a + b, rx2 + sy2 � (b − a)2 for integers x and y

where r and s are given, a system that may or may not be solvable in integers.
(a) Suppose that α � 0 and β 	� 1. Show that (7)–(9) require that k � β � −1

and that the three consecutive terms be a, b, −a. Verify that v � 2a + u and
that any choice of r , s, u, v satisfying (1) and (3) will also give a solution to
(2) and (4).

(b) Suppose α � −2. Show that k � 0 and β � −1 are needed to satisfy (7)–(9),
and that this corresponds to the case r � −s and the sequence a, b, a − 2b.
Verify in this case that (1) and (2) are not consistent unless a + b � 0.

Exercise 3.5. Suppose that α and k are both nonzero.
(a) Deduce from (7) that α 	� 2 and k 	� 1, so that β2 � 1.
(b) Use (7) and (8) to deduce that

(α + 2)(αβ − β + 1) � (α − 2)(αβ + β − 1)

whence α(β + 1) � 0. Deduce that β � −1 and k � α+2
α−2 .

Exercise 3.6. Deduce from the foregoing exercises the following result:
Suppose that {tn : n � 0, ±1, ±2, . . .} is a sequence for which

t1 � a, t2 � b, tn � αtn−1 − tn−2, (n ∈ Z)

where α 	� 2. Let k � α+2
α−2 , r , and s be such that k � r + s and the system

rx + sy � w,

rx2 + sy2 � z2,

y − x � e,
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has a solution (x0, y0, z0, w0) with z0 � t1 − t0 and w0 � t1 + t0, where e is a
constant. Then there are additional solutions (xn, yn, zn, wn) to the system with

zn � tn+1 − tn,

wn � tn+1 + tn,

xn � xn−1 + αtn − 2tn−1

k
,

yn � xn + e. ♠

The example in Section 1 corresponds to the case (e, r, s, k, α)� (1, 1, 1, 2, 6).

Exercise 3.7. We can determine Pythagorean triples (x, y, z) for which y − x �
7. In this case, show that we ought to take e � 7, r � s � 1, k � 2, and
α � 6. Noting that one such triple is (−4, 3, 5), we select a and b such that
a + b � (−4) + 3 � −1 and b − a � 5. Embed these values of a and b as
adjacent terms in a suitable recursion and generate infinitely many solutions of the
system

x + y � w,

x2 + y2 � z2,

y − x � 7.

Exercise 3.8. Let κ be an arbitrary parameter. The first two terms of the
Pythagorean triple (2κ + 1, 2κ2 + 2κ, 2κ2 + 2κ + 1) differ by 2κ2 − 1. Generate
infinitely many solutions of the system

x + y � w,

x2 + y2 � z2

y − x � 2κ2 − 1.

Exercise 3.9. Let m and n be parameters. The first two terms of the Pythagorean
triple (m2 −n2, 2mn, m2 +n2) differ by 2mn+n2 −m2. Verify that the sequence tn
used to generate other triples whose smallest two numbers have the same difference
contains the consecutive terms

mn − n2 � (m − n)n,

m2 + mn � (m + n)m,

6m2 + 5mn + n2 � (3m + n)(2m + n),

35m2 + 29mn + 6n2 � (7m + 3n)(5m + 2n).

Exercise 3.10. Consider the Diophantine equation x2 + 2y2 � z2.
(a) What values of r , s, k, and α should be used in generating solutions?
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(b) Consider the sequence {1, 4, 15, 56, 209, . . .}. We create the following table:

zn tn wn equation

1
3 5 � 1 + 2 · 2 32 � 12 + 2 · 22

4
11 19 � 7 + 2 · 6 112 � 72 + 2 · 62

15
41 71 � 23 + 2 · 24 412 � 232 + 2 · 242

56
153 265 � 89 + 2 · 88 1532 � 892 + 2 · 882

209

If we look carefully, we observe that the y − x difference takes the alternate
values +1 and −1. Readjust to get two tables, one for y − x � 1 always
occurring and the other for y − x � −1 always occurring. In these new tables
you will find that x and y will not always be integers.

Exercise 3.11. To explain the ambiguity arising in Exercise 3.10, suppose that we
already know a, b, r, s, and k. Then u and e have to satisfy ku + se � a + b and
ru2 + s(u + e)2 � (b − a)2. Eliminate u from these equations to obtain

rse2 � (k − 1)(a2 + b2) − 2(k + 1)ab.

Argue that there may be two different possible values of e, one the negative of the
other, that can be used for the given values of the remaining parameters. However,
note that the ambiguity is masked when r � s; why is this?

Exercise 3.12. Show that, corresponding to the diophantine equation x2 + 3y2 �
z2, the solution (x, y, z) � (1, 4, 7) leads to the sequence {. . . , 3, 10, 91/3, . . .}.
Generate other solutions in integers to the equation x2 + 3y2 � z2.

Exercise 3.13. Starting with the solution (x, y, z) � (4, 5, 7) to the equation
3x2 + 2y2 � 2z2, generate other solutions in integers to this equation.

6.4 A Method of Euler

Over two centuries ago, Leonhard Euler was able to exploit Pythagorean triples
and some analogues of them to generate solutions to various Pell’s equations. Here
is how he did it.

Exercises 4.1.
(a) Suppose that (x, y) � (q, p) is a solution of x2 − dy2 � −1. Verify that

(x, y) � (2q2 + 1, 2pq) satisfies x2 − dy2 � 1.
(b) Thus, from values of p and q for which dp2 − 1 � q2, we can generate

solutions to x2 − dy2 � 1. Our standpoint is to fix a value of p and find
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solutions of Pell’s equation for integers of the form d � (q2 + 1)/p2. We
observe that q2 + 1 is (trivially) a sum of two squares and that the product of
the sum of two squares is also a sum of two squares. So we ask the same of
p2; thus, p is the largest integer of a Pythagorean triple.

Suppose that p2 � b2 + c2. In order for d to be an integer, we ask that

q2 + 1 � (b2 + c2)(f 2 + g2) � (bf + cg)2 + (bg − cf )2.

Given p, b, c, we determine solutions (g, f ) of bg − cf � ±1 and then set
q � bf + cg. Beginning with 52 � 32 + 42, explain how Euler arrived at
the following table and check in each case that x2 − dy2 � 1.

f 1 2 4 5 7 8
g 1 3 5 7 9 11
q 7 18 32 43 57 68
d 2 13 41 74 130 185
x 99 649 2049 3699 6499 9249
y 70 180 320 430 570 680

(c) Take p � 13 and use Euler’s method to determine solutions to Pell’s
equations.

(d) Take p � 17 and use Euler’s method to determine solutions to Pell’s
equations.

Exercise 4.2.
(a) Suppose that (x, y) � (q, p) satisfies x2 − dy2 � −2. Verify that (x, y) �

(q2 + 1, pq) satisfies x2 − dy2 � 1.
(b) In this case, we find that d � (q2 + 2)/p2, so that we try to arrange that both

p2 and q2 + 2 have the form x2 + 2y2. Verify that the set of numbers of this
form is closed under multiplication.

(c) Start with p2 � b2 + 2c2 and

q2 + 2 � (b2 + 2c2)(f 2 + 2g2) � (bf + 2cg)2 + 2(cf − bg)2,

taking cf − bg � ±1 and bf + 2cg � q. Explain how Euler might have
completed a table analogous to that of Exercise 4.1 of the case p � 3.

Exercise 4.3. Other starting relations for p and q used by Euler were dp2 + 2 �
q2, dp2 + 4 � q2, and dp2 − 4 � q2. Explain, in each case, how the pair (p, q)

can be used to generate solutions to certain Pell’s equations x2 − dy2 � 1 and
imitate the method of Exercises 4.1 and 4.2.

6.5 Notes

Section 4: The method described is in the paper Leonhard Euler, Nova subsida pro
resolutione formulae axx + 1 � yy. Opuscula analytica 1 (1783), 310–328 �
Opera Omnia (1) 4, 76–90 (Enestrom No. 559).
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6.6 Hints

2.5. Use the fact that {tn} and {γ rn + δsn} satisfy the same recursion along with
an induction argument.

2.8(b). If M is a matrix, v and w are vectors, and λ and µ are scalars, then M(λv +
µw) � λM(v) + µM(w).

2.9. Start with n � 2, and note that NA2M � NAMNAM .

3.12. Note that x2 + 3y2 � z2 is homogeneous, so that any integer multiple of a
solution is also a solution. Thus, we can generate integer solutions from rational
solutions.

3.13. Consider the equation 3
2 x2 + y2 � z2.
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The Cubic Analogue of Pell’s
Equation

In looking for a higher-degree version of Pell’s equation, a natural choice is the
equation

x3 − dy3 � k,

where d is a noncubic integer. However, it turns out that the solutions of such
equations are not very numerous, nor do they exhibit the nice structure found in
the quadratic case. This chapter will begin with an investigation of this type before
treating a better analogue that admits a theory comparable to the quadratic version.
This is the equation:

x3 + cy3 + c2z3 − 3cxyz � k,

where c is any integer other than a perfect cube and k is an integer. In this chapter
we will see how this equation comes about and examine its theory. It will turn out,
as in the quadratic case, that there is a fundamental solution; however, this solution
is not so neatly obtained and some ad hoc methods are needed.

Sections 6.2 and 6.3 can be skipped, since they are independent of the rest of
the chapter.

6.1 The Equation x3 − dy3 � 1: Initial Skirmishes

Exercise 1.1. Suppose d � r3, a cubic integer. By using the factorization x3 −
r3y3 � (x − ry)(x2 + rxy + r2y2), prove that any solution (x, y) in integers of
x3 − dy3 � ±1 must satisfy x2 + rxy + r2y2 � 1. Use this fact to deduce that
either x or y must vanish and so obtain all possible solutions of x3 − r3y3 � ±1.

Exercise 1.2.
(a) Verify that x3 − dy3 � 1 has a solution with x and y both nonzero when d

has the form s3 − 1 for some integer s.
(b) Try to determine solutions of x3 −7y3 � 1 other than (x, y) � (1, 0), (2, 1).

92
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Exercise 1.3.
(a) Prove that x3 − dy3 � 1 has a solution for which y � 2 if and only if

d � u(64u2 + 24u + 3) for some integer u.
(b) Determine a solution in nonzero integers of x3 − 43y3 � 1.

Exercise 1.4.
(a) Prove that x3 − dy3 � 1 has a solution for which y � 3 if and only if

d � u(27u2 + 9u + 1).
(b) Determine a solution in nonzero integers for x3 − 19y3 � 1 and for x3 −

37y3 � 1.

Exercise 1.5. Suppose that x and y are nonzero intgers for which x3 − dy3 � 1.
This equation can be rewritten as dy3 � (x − 1)(x2 + x + 1).
(a) Verify that the greatest common divisor of x − 1 and x2 + x + 1 is equal to

3 when x ≡ 1 (mod 3) and to 1 otherwise.
(b) Prove that x2 + x + 1 is never divisible by 9.
(c) Deduce from (a) and (b) that x2 + x + 1 must be of the form rv3 or 3rv3,

where r is an odd divisor of d .

Exercise 1.6. Suppose in Exercise 1.5 that x2 + x + 1 � v3.
(a) Give a numerical example to show that this equation actually has a solution

for which x and v are both nonzero.
(b) Find nonzero integers x and y for which x3 − 17y3 � 1.

Exercise 1.7. Suppose in Exercise 1.5 that x2 + x + 1 � 3v3, so that x ≡ 1
(mod 3). Setting x � 3u + 1, obtain the equation (u + 1)3 � u3 + v3 and obtain
from Fermat’s last theorem that this case is not possible. (See Exploration 7.1.)

Exercise 1.8. Make a table of some integers d with 2 ≤ d ≤ 100 for which
x3 − dy3 � 1 has at least one solution with xy 	� 0. List the solutions. Did you
find any values of d for which there are two such solutions?

7.2 The Algebraic Integers in Q
(√−3

)

We have seen that x3 − dy3 � 1 is nontrivially solvable for certain values of
d. Rewriting this equation as x3 + (−1)3 � dy3, we see that we have to study
equations of the form x3 + z3 � dy3. One way to approach this is to factor the left
side as (x + z)(x + ωz)(x + ω2z), where ω � 1

2

(−1 + √−3
)

is an imaginary
cube root of unity; thus, ω3 � 1 and ω2 + ω + 1 � 0. This can be treated as a
factorization in the quadratic field Q

(√−3
) ≡ {

p+q
√−3 : p, q ∈ Q

}
treated in

Section 4.3. The set Q
(√−3

)
is closed under addition, subtraction, multiplication,

and division by nonzero elements. The norm N
(
a + b

√−3
)

of numbers of the



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

94 7. The Cubic Analogue of Pell’s Equation

form a + b
√−3 is defined by the product of the number and its surd conjugate

a − b
√−3, namely a2 + 3b2. Note that the norm is always nonnegative.

Recall that a number θ is an algebraic integer in Q
(√−3

)
if and only if it is a root

of a quadratic equation of the form t2 + bt + c � 0, where b and c are integers.
Normally, the reciprocal of an algebraic integer is not an algebraic integer. An
algebraic integer θ is a unit if θ and its reciprocal 1/θ are both algebric integers.
The set of algebraic integers in Q

(√−3
)

will be denoted by I . This set contains
the ordinary integers.

Exercise 2.1.
(a) Explain why ω2 + ω + 1 � 0.
(b) Verify that

√−3 � ω − ω2 � 1 + 2ω.
(c) Prove that Q

(√−3
)

is the set of numbers of the form r + sω, where r and s

are rational.
(d) Prove that the surd conjugate of ω is ω2, and thus the surd conjugate of r + sω

is r + sω2.

Exercise 2.2. Let α and β be members of Q
(√−3

)
. Prove that N(αβ) �

N(α)N(β).

Exercise 2.3. Let θ � r + sω. Verify that its reciprocal 1/θ is equal to (r +
sω2)/(r2 − rs + s2).

Exercise 2.4.
(a) Suppose that θ belongs to I . Prove that N(θ) is an ordinary nonnegative

integer and vanishes only when θ � 0.
(b) Prove that θ is a unit if and only if N(θ) � 1.
(c) Suppose that r + sω is a unit, so that r2 − rs + s2 � 1. Prove that 2r − s is an

ordinary integer. Deduce that r and s are integers for which (2r − s)2 +3s2 �
4, so that (r, s) � (±1, 0), (0, ±1), (±1, ±1).

(d) Prove that the only units in I are ±1, ±ω and ±ω2. ♠

Analyzing the equation x3 + z3 � dy3 involves examining the factorization of
x3 + z3. In the following exercises we will develop a theory of factorization for
the system I that is similar to that for ordinary integers. This will involve notions
of divisibility and primality as well as a version of the fundamental theorem of
arithmetic that allows each algebraic integer to be decomposed as a product of
primes. The development will involve an adaptation of the Euclidean algorithm.

Let α and β be members of I . We say that β|α (“β divides α”) if α � βγ for
some γ in I . Every member of I divides 0 and is divisible by each of the units.
We say that ρ in I is prime if N(ρ) 	� 1 and it is divisible only by numbers of the
form ε and ερ, where ε is a unit. We will see that an ordinary prime integer may
or may not be a prime in I .



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

7.2. The Algebraic Integers in Q
(√−3

)
95

Exercise 2.5.
(a) Suppose that ρ belongs to I and that N(ρ) is an ordinary prime integer. Prove

that ρ must be prime.
(b) Deduce from (a) that 1 − ω is a prime.

Exercise 2.6. We show that although N(2) is composite, 2 is actually prime in I .
This demonstrates that the converse of Exercise 2.5(a) is not true.
(a) Prove that N(2) � 4.
(b) Suppose that 2 � (p+qω)(r + sω) is a product of two members of I , neither

of which is a unit. Prove that p2 −pq + q2 � ±2, so that (2p − q)2 + 3q2 �
±8. Show that this equation has no solutions in integers p and q and deduce
from the contradiction that 2 must be prime in I .

Exercise 2.7. Verify that 3 � −[ω(1 − ω)]2, so that 3 is not prime in I (although
it is an ordinary prime).

Exercise 2.8. Let α and β be two members of I . We can write α/β in the form
u + vω, where u and v are rational (check that this can be done!). Suppose that m

and n are integers for which |u − m| ≤ 1
2 and |v − n| ≤ 1

2 .
(a) Verify that N((u − m) + (v − n)ω) ≤ 3

4 .
(b) Let γ � m + nω and δ � α − βγ . Verify that α � γβ + δ and that

N(δ) ≤ 3
4 N(β) < N(β). ♠

The result of Exercise 2.7(b) is the analogue of the ordinary division algorithm
in which we divide a number β into α and get a quotient γ and a remainder δ

“smaller” than the divisor. In this case, the measure of size of a number is not
the absolute value but the norm. We can now set up the Euclidean algorithm in
the same way as for ordinary integers. Suppose that we are given two algebraic
integers α and β. By repeating division, we can obtain

α � γβ + β1,

β � γ1β1 + β2,

β1 � γ2β2 + β3,

and so on, where N(β) > N(β1) > N(β2) > N(β3) > · · · ≥ 0. Since the norms
constitute a decreasing sequence of nonnegative integers, the process cannot go
on forever, and we will eventually arrive at an exact division:

βk−2 � γk−1βk−1 + βk,

βk−1 � γkβk,

where βk is nonzero.

Exercise 2.9.
(a) Prove that βk must be a common divisor of α and β.
(b) Suppose δ is a divisor of α and β. Prove that δ is a divisor of βk . ♠
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Let α and β belong to I . A greatest common divisor of α and β is an element
of I that divides both α and β, and in turn is divisible by every common divisor
of α and β. The number βk produced by the Euclidean algorithm in Exercise 2.8
is a greatest common divisor of α and β. We say that α and β are coprime if the
only common divisors of α and β are units.

Exercise 2.10. Let α, β belong to I . Suppose ρ and σ are two greatest common
divisors of α and β. Prove that ρ � σε for some unit ε.

Exercise 2.11.
(a) Suppose that the Euclidean algorithm of Exercise 2.8 is carried out. Observe

that

βi+1 � βi−1 − γiβi

for 1 ≤ i ≤ k − 1 (where β0 � β). Use these facts to show that βk can be
written in the form ξα + ηβ, where ξ and η belong to I .

(b) Prove that every greatest common divisor of α and β can be written in this
form.

Exercise 2.12. Let α and β be a coprime pair in I .
(a) Prove that there are numbers ξ, η ∈ I for which

1 � ξα + ηβ.

(b) Let µ ∈ I and β|αµ. Prove that β|µ. ♠

With these results in hand, we are in a position to prove the fundamental theorem
of arithmetic for I , that, up to units, each member of I can be uniquely written as
a product of primes in I .

Exercise 2.13.
(a) Let α be a nonprime member of I . Prove that α can be written as a product

βγ where the norms N(β) and N(γ ) are strictly less than N(α). Extend this
result to show that α can be written as a product ρ1ρ2 · · · ρk of primes.

(b) Suppose that α � ρ1ρ2 · · · ρk � σ1σ2 · · · σl are two representations of α

as a product of primes in I . Use Exercise 2.12(b) to show that each ρi must
divide one of the σj , so that ρi � εσj for some unit ε.

(c) Prove, in (b), that k � l and that the primes ρi and σj can be paired so that
each ρi is the product of σj and a unit.

Exercise 2.14. Suppose that α � δk for some positive integer k and for some δ

in I and that α � βγ , where all the common divisors of β and γ are units. Prove
that β and γ must both be kth powers, up to a unit factor.
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7.3 The Equation x3 − 3y3 � 1

We apply the theory of the last section to show that x3 −3y3 � 1 has no solutions in
integers except for (x, y) � (1, 0). Writing the equation in the form x3 −1 � 3y3,
we can factor the left side over I and consider it as

(x − 1)(x − ω)(x − ω2) � −ω2(1 − ω)2y3 � −ω2(1 − ω)3m+2z3,

where y � (1 − ω)mz for some nonnegative integer m, and z is in I and not
divisible by 1 − ω.

Exercise 3.1.
(a) Verify that the difference of any two of x − 1, x − ω, and x − ω2 is the

product of 1 − ω and a unit.
(b) Prove that 1 − ω must divide at least one of the factors x − 1, x − ω, and

x − ω2, and so it must divide each of the factors.
(c) Prove that a greatest common divisor of any pair of x − 1, x − ω, and x − ω2

is 1 − ω.
(d) Prove that (1 − ω)2 cannot divide more than one of x − 1, x − ω, and x − ω2.
(e) Prove that 1 − ω must divide y3, so that m > 0.
(f) Prove that x −1, x −ω, and x −ω2 in some order have the forms ε1(1−ω)γ 3

1 ,
ε2(1 − ω)γ 3

2 , and ε3(1 − ω)3mγ 3
3 for units εi and numbers γi in I for which

z is a unit times γ1γ2γ3 and where each γi is not divisible by 1 − ω.

Exercise 3.2.
(a) Verify that (x − 1) + ω(x − ω) + ω2(x − ω2) � 0 and deduce that

γ 3
1 + εγ 3

2 � ζ(1 − ω)3m−1γ 3
3 � 3η[(1 − ω)m−1γ3]3

for some units ε, ζ , and η, where γ1, γ2, γ3 are the quantities of Exercise
3.1(f).

(b) Prove that γ1 and γ2 are each congruent to ±1, modulo (1 − ω), and deduce
that for some choice of signs, ±1 ± ε ≡ 0 (mod (1 − ω)2).

(c) Check the possibilities ±1, ±ω, ±ω2 of units and conclude that ε ≡ ±1. ♠

By relabeling γ2 so that the minus sign is absorbed if necessary, we may assume
that

γ 3
1 + γ 3

2 � 3η[(1 − ω)m−1γ3]3.

Exercise 3.3.
(a) By factoring γ 3

1 +γ 3
2 � (γ1 +γ2)(γ1 +ωγ2)(γ1 +ω2γ2), imitate the argument

in Exercise 3.1 to show that m > 1.
(b) By iterating the process that takes us from x3 − 1 � 3y3 to γ 3

1 + γ 3
2 �

3η[(1 − ω)m−1γ3]3, obtain by descent a succession of equations of the latter
type involving lower positive powers of 1 − ω on the right. Deduce that the
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assumption of a solution in I for x3 +1 � 3y3 must be false and that therefore
x3 − 3y3 � 1 has no nontrivial solution in ordinary integers.

Exploration 7.1. Extend the method of this section to prove that x3 + y3 � z3

cannot be solved in I and so the equation (u + 1)3 � u3 + v3 in Exercise 1.8 has
no solution with (u, v) 	� (−1, 1), (0, 1). Does x3 − 2y3 � 1 have a solution
with xy 	� 0?

7.4 Obtaining the Cubic Version of Pell’s Equation

Let c be any integer that is not a perfect cube, and let θ be its real cube root. In
Chapter 2 we noted that the quadratic Pell’s equation could be written in terms of
a norm function involving the square root of d. We can proceed the same way for
the cubic case. The number θ is the real root of the cubic equation

t3 − c � 0.

This equation has three roots, namely θ , θω, and θω2, where ω is the imaginary
cube root of unity, 1

2 (−1 + i
√

3).
Consider the expression x + yθ + zθ2, where x, y, and z are integers. We define

its norm by

N
(
x + yθ + zθ2

) � (
x + yθ + zθ2

)(
x + yθω + z(θω)2

)(
x + yθω2 + z

(
θω2

)2)
.

This will turn out to be a homogeneous polynomial of degree three in x, y, and z

with integer coefficients. The analogue of Pell’s equation will therefore be

N
(
x + yθ + zθ2

) � k.

Exercise 4.1. Noting that θ3 � c, ω2 + ω + 1 � 0, and ω3 � 1, verify that
N(x + yθ + zθ2) � (x + yθ + zθ2)[(x2 − cyz) + (cz2 − xy)θ + (y2 − xz)θ2] �
x3 + cy3 + c2z3 − 3cxyz.

Exercise 4.2. Verify that N((x + yθ + zθ2)(u + vθ + wθ2)) � N(x + yθ +
zθ2) · N(u + vθ + wθ2).

Exercise 4.3. Suppose that (x, y, z) � (u1, v1, w1) is a solution of x3 + cy3 +
c2z3 − 3cxyz � 1. For each positive integer n, we can expand (u1 + v1θ +w1θ

2)n

in the form un + vnθ + wnθ
2, by making the reduction θ3 � c. From Exercise

4.2, argue that (un, vn, wn) is also a solution of x3 + cy3 + c2z3 − 3cxyz � 1.

Exercise 4.4. Observe that (x, y, z) � (1, 1, 1) is a solution of the equation
x3 + 2y3 + 4z3 − 6xyz � 1. Use Exercise 4.3 to derive other solutions of this
equation in positive integers. Check these.



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

7.5. Units 99

Exercise 4.5.
(a) Verify the factorization

a3 + b3 + c3 − 3abc � (a + b + c)(a2 + b2 + c2 − ab − ac − bc).

(b) Use (a) to obtain the factorization

x3 + cy3 + c2z3 − 3cxyz

� 1

2

(
x + yθ + zθ2

)(
(x − yθ)2 + (

yθ − zθ2
)2 + (

x − zθ2
)2)

.

(c) Deduce from (b) that if (x, y, z) is a triple of large positive integers that satisfy
the equation x3 + cy3 + c2z3 − 3cxyz � 1, then x − yθ and y − zθ must
be close to zero, so that x/y and y/z are approximations of θ .

Exercise 4.6. Let x, y, and z be integers. Use the factorization of Exercise 4.5(b)
to show that (x + yθ + zθ2)−1 has the form (p + qθ + rθ2)/K , where p, q, r, K

are all integers. Indeed, verify that

K � x3 + cy3 + c2z3 − 3cxyz,

p � x2 − cyz,

q � cz2 − xy,

r � y2 − xz.

Exercise 4.7. Note that if (u, v, w) is a solution of x3 + cy3 + c2z3 − 3cxyz � 1,
then other solutions can be found from the expansion of negative integer powers
of u + vθ + wθ2. Use this to find solutions of x3 + 2y3 + 4y3 − 6xyz � 1 in
integers, not all of which are positive.

Exercise 4.8. So far, we have assumed that c is not a perfect cube. In this exercise
we will see that when c � a3 for some integer a, the behavior is quite different.
(a) Verify that

2(x3 + a3y3 + a6z3 − 3a3xyz)

� (x + ay + a2z)
[
(x − ay)2 + a2(y − az)2 + (

a2z − x
)2]

.

(b) Suppose that |a| ≥ 2 and that the integer triple (x, y, z) satisfies x3 + cy3 +
c2z3 − 3cxyz � 1. Prove that y � az and deduce that x � a2z ± 1. What
do you conclude about the set of solutions in this case?

(c) Analyze the case |a| � 1.

7.5 Units

Let Q(θ) be the set of real numbers of the form u + vθ + wθ2, where u, v, w

are rational numbers and θ3 is the integer c; Z(θ) is the subset of Q(θ) for which



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

100 7. The Cubic Analogue of Pell’s Equation

u, v, w are integers. An element ε of Z(θ) is called a unit if |N(θ)| � 1. Since
u3 + cv3 + c2w3 − 3cuvw � 1 if and only if u + vθ + wθ2 is a unit, we begin
our study of the cubic Pell’s equation by looking at the structure of the units in
Z(θ). The treatment is similar to that of the quadratic case in Section 4.1.

Exercise 5.1.
(a) Verify that Q(θ) is a field; that is, the sum, difference, product, and quotient

(with nonzero denominator) of two numbers in Q(θ) also belong to Q(θ).
(b) Verify that Z(θ) is a ring; that is, the sum, difference, and product of two

numbers in Z(θ) also belong to Z(θ).
(c) Prove that if α ∈ Z(θ), then also N(α)/α ∈ Z(θ).
(d) Show that an element ε ∈ Z(θ) is a unit if and only if 1/ε ∈ Z(θ). (Cf. the

definition of unit in Section 7.2.)
(e) Show that if ε and η are units, then so is εη.

Exercise 5.2.
(a) Let u + vθ + wθ2 ∈ Q(θ). Define

τ1(u + vθ + wθ2) � u + vωθ + wω2θ2,

τ2(u + vθ + wθ2) � u + vω2θ + wωθ2,

where ω is an imaginary cube root of 1. Prove that for α, β ∈ Q(θ) and
i � 1, 2;

τi(α ± β) � τi(α) ± τi(β), τi(αβ) � τi(α)τi(β), τi(1/α) � 1/τi(α).

(These equations specify that τ1 and τ2 are isomorphisms of Q(θ) into the field
of complex numbers. The norm of an element α is the product α · τ1α · τ2α.)

(b) Verify that τ1(α) is the complex conjugate of τ2(α) for α ∈ Q(θ).
(c) Verify that if α � u + vθ + wθ2, then α, τ1(α), and τ2(α) are the three roots

of the cubic equation

t2 − 3ut2 + 3(u2 − cvw)t − (u3 + cv3 + c2w3 − 3cuvw) � 0

with rational coefficients. Observe that if α ∈ Z(θ), then the cubic polynomial
has integer coefficients.

Exercise 5.3. Determine all units ε ∈ Z(θ) whose absolute values |ε| are equal
to 1.

Exercise 5.4. Let E be the set of units in Z(θ) and suppose that E contains
elements other than 1 and −1.
(a) Let M be a positive number exceeding 1. Prove that there are at most finitely

many elements ε of E for which 1 ≤ |ε| ≤ M .
(b) Prove that E contains a smallest element γ that exceeds 1.
(c) Let ε ∈ E, |ε| 	� 1. Suppose that δ is the element among ε, −ε, 1/ε, and

−1/ε that exceeds 1. Prove that δ � γ m for some positive integer m. Deduce
that ε � ±γ n for some integer n. ♠
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We turn to the question of the existence of a nontrivial unit whenever c is not a
cube. The basic approach is similar to that used for the quadratic case in Section
4.2. From Exercise 4.1, we recall that

N
(
x + yθ + zθ2

) � (
x + yθ + zθ2

)[(
x2 − cyz

)+ (
cz2 − xy

)
θ + (

y2 − xz
)
θ2
]
.

The strategy is to first show that for some real number M , N(x + yθ + zθ2) ≤ M

occurs for infinitely many triples (x, y, z), so that N(x + yθ + zθ2) must assume
some value infinitely often.

Exercise 5.5. Let n be an arbitrary positive integer and let the indices i and j

satisfy −n ≤ i, j ≤ n.
(a) Explain why for each of the (2n + 1)2 possible choices of the pair i, j we

can select an integer aij for which 0 ≤ aij + iθ + jθ2 < 1.
(b) Use the pigeonhole principle to argue that for some positive integer k not

exceeding 4n2, there are two distinct pairs of indices (i, j) for which the
corresponding numbers aij + iθ + jθ2 fall in the same interval

{
t :

k − 1

4n2
≤ t ≤ k

4n2

}
.

(c) Deduce from (b) that there are integersu,v,w, not all zero, for which |v| ≤ 2n,
|w| ≤ 2n, and |u + vθ + wθ2| ≤ 1/4n2 ≤ 1/k(v, w)2, where k(v, w) �
max(|v|, |w|). (Note that k(v, w) ≥ 1.)

(d) Use the fact that

u + vωθ + wω2θ2 � (u + vθ + wθ2) + v(ω − 1)θ + w(ω2 − 1)θ2

to show that
∣∣∣u + vωθ + wω2θ2

∣∣∣ ≤ 1

k(v, w)2
+ 4k(v, w)|c| ≤ 5k(v, w)|c|

and prove that
∣∣∣N

(
u + vθ + wθ2

)∣∣∣ ≤ 25c2.

(e) Prove that there are infinitely many triples (u, v, w) of integers for which∣∣N
(
u + vθ + wθ2

)∣∣ ≤ 25c2.
(f) Prove that there exists a positive integer m for which N(x + yθ + zθ2) � m

has infinitely many solutions, with x, y, z integers.

Exercise 5.6. Let m be the positive integer found in Exercise 5.5.
(a) Prove that there are two distinct triples (u1, v1, w1) and (u2, v2, w2) of

integers such that

N(u1 + v1θ + w1θ
2) � N(u2 + v2θ + w2θ

2) � m

and

u1 ≡ u2, v1 ≡ v2, w1 ≡ w2,
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modulo m.
(b) Suppose that

m

[
u1 + v1θ + w1θ

2

u2 + v2θ + w2θ2

]
� u3 + v3θ + w3θ

2.

Prove that u3, v3, w3 are integers each divisible by m.
(c) Let u � u3/m, v � v3/m, and w � w3/m. Verify that (u, v, w) is a triple

of integers distinct from (1, 0, 0) for which N(u + vθ + wθ2) � 1. This
establishes that x3 + cy3 + c2z3 − 3cxyz � 1 is always solvable nontrivially
for integers when the parameter c is not a cube.

7.6 Matrix and Vector Considerations

As for the quadratic Pell’s situation, we induce from the multiplication of u+vθ +
wθ2 and x + yθ + zθ2 a corresponding *-multiplication for triples (u, v, w) and
(x, y, z) by

(u, v, w) ∗ (x, y, z) � (ux + cvz + cwy, uy + vx + cwz, uz + vy + wx).

Let (u, v, w)−1 be the triplet that corresponds to (u + vθ + wθ2)−1. If we think
of (u, v, w) as being a fixed multiplier, we can describe its effect in matrix–vector
form by

M




x

y

z



 �



ux + cwy + cvz

vx + uy + cwz

wx + vy + uz



 ,

where M is the 3 × 3 matrix



u cw cv

v u cw

w v u



 .

For n an integer, let (u, v, w)n � (un, vn, wn) if (u + vθ + wθ2)n � un +
vnθ + wnθ

2.
Setting gc(u, v, w) � u3 + cv3 + c2w3 − 3cuvw, we define (u, v, w)0 �

(1, 0, 0),

(u, v, w)−1 �
(

u2 − cvw

gc(u, v, w)
,

cw2 − uv

gc(u, v, w)
,

v2 − uw

gc(u, v, w)

)

(cf. Exercise 4.1), and

(u, v, w)−n � [(u, v, w)−1]n.

Suppose now that gc(x, y, z) � 1 has solutions other than (x, y, z) � (1, 0, 0)

and that (x, y, z) � (u, v, w) is the solution for which u + vθ + wθ2 has the
smallest positive value exceeding 1 (the fundamental solution). Then by Exercise
5.4, the entire set of solutions is given by (x, y, z) � (un, vn, wn) � (u, v, w)n,
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where n is an integer. As in the quadratic case, we can find recursions satisfied by
each of the sequences {un}, {vn}, and {wn}.

The sum of two 3 × 3 matrices and the product of a number and a matrix are
defined componentwise as was done for 2 × 2 matrices in Section 1.2. The product
of two 3 × 3 matrices is given by



a11 a12 a13

a21 a22 a23

a31 a32 a33








b11 b12 b13

b21 b22 b23

b31 b32 b33





�



a11b11+a12b21+a13b31 a11b12+a12b22+a13b32 a11b13+a12b23+a13b33

a21b11+a22b21+a23b31 a21b12+a22b22+a23b32 a21b13+a22b23+a23b33

a31b11+a32b21+a33b31 a31b12+a32b22+a33b32 a31b13+a32b23+a33b33



.

Note that in the exercises, M is the matrix defined above and gc(u, v, w) � 1.

Exercise 6.1. Let

I �



1 0 0
0 1 0
0 0 1



 .

Verify that for any 3 × 3 matrix A, AI � IA � A.

Exercise 6.2. Verify that

un+1 � uun + cwvn + cvwn,

vn+1 � vun + uvn + cwwn,

wn+1 � wun + vvn + uwn.

Exercise 6.3.
(a) Define

M−1 �



u2 − cvw cv2 − cuw c2w2 − cuv

cw2 − uv u2 − cvw cv2 − cuw

v2 − uw cw2 − uv u2 − cvw



 .

Verify that this definition is appropriate in that MM−1 � M−1M � I .
(b) Verify that

M2 �



u2 + 2cvw 2cuw + cv2 2cuv + c2w2

2vu + cw2 2cvw + u2 cv2 + 2cuw

2wu + v2 cw2 + 2uv 2cvw + u2



 .

(c) Verify that

M2 − 3uM + 3(u2 − cvw)I − M−1 � 0

and deduce that

M3 − 3uM2 + 3(u2 − cvw)M − I � 0.
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(d) Verify that

M




θ2

θ

1



 � (u + vθ + wθ2)




θ2

θ

1



 .

(e) Use (c) to deduce that the sequences {un}, {vn}, and {wn} each satisfy the
recursion

xn+3 � 3uxn+2 − 3(u2 − cvw)xn+1 + xn.

Exercise 6.4. In Exercise 4.4, the solution (x, y, z) � (1, 1, 1) was given for
g2(x, y, z) � 1. Determine (1, 1, 1)−1 and use the recursion in Exercise 6.3(e) to
derive other solutions. Check these.

Exercise 6.5.
(a) Verify that g3(x, y, z) � 1 can be rewritten as

(x3 − 1) + 3y2 + 9(z2 − xy)z � 0.

(b) Deduce that for any solution of (a), x ≡ 1 and y ≡ 0 modulo 3. Use these
facts to obtain a solution by inspection.

(c) Determine other solutions by taking *-powers and check that the sequence of
solutions you get satisfies the recurion in Exercise 6.3(e).

7.7 Solutions for Special Cases of the Parameter c

As in our initial investigation of the quadratic Pell’s equation, it is possible to find
solutions for

gc(x, y, z) ≡ x3 + cy3 + c2z3 − 3cxyz � 1 (1)

quite readily for certain values of c. This section will examine some ways of doing
this.

Exercise 7.1.
(a) One strategy for locating a solution is to try x � 1. Then y and z must satisfy

y3 + cz3 − 3yz � 0. (2)

Verify that if (2) is to be satisfied, then

c � −y(y2 − 3z)

z3
� y(3z − y2)

z3
.

Use this fact to determine values of c for which (2) has solutions with z � 1
and for which (1) has a solution with x � z � 1.

(b) Determine values of c for which (1) has a solution with x � 1, z � −1.
(c) Determine values of c for which (1) has a solution with x � 1, z � ±2, ±3.
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(d) Make a table of some of these solutions (x, y, z) along with the inverse
solutions (x, y, z)−1 as defined in Section 7.6.

Exercise 7.2. Suppose that c � −d. Prove that (x, y, z) � (u, v, w) is a solution
of x3 + cy3 + c2z3 − 3cxyz � 1 if and only if (x, y, z) � (u, −v, w) is a solution
of x3 + dy3 + d2z3 − 3dxyz � 1. Thus, in analyzing Pell’s equation, we can get
the whole story essentially by looking at positive values of c.

Exercise 7.3.
(a) Suppose c � k3 + r where k and r are integers. Let s satisfy rs � 3k. Verify

that (x, y, z) � (1, ks, −s) is a solution of (1).
(b) The formula in (a) will always generate a rational solution for (1). Verify that

for c � 29, a solution is (x, y, z) � (1, 27/2, −9/2).
(c) We can specialize to k � rt , s � 3t in (a), so that c � r3t3 + r and

(x, y, z) � (1, 3rt2, −3t) is a solution. List all of the positive values less than
300 for which we can find a solution in this way along with the corresponding
solutions and inverse solutions.

(d) Specialize to the case that r is a multiple of 3 and obtain solutions for further
values of c.

(e) Are there any other positive values of c not exceeding 100 for which we may
obtain solutions? Try letting k be other than an integer.

Exercise 7.4. Consider the equation

x3 + cy3 + c2z3 − 3cxyz � 8, (3)

where c � a3 + 2a.
(a) Verify that this equation is satisfied by (x, y, z) � (2, 3a, −3).
(b) By considering (2 + 3aθ − 3θ2)2, deduce and check that

(x, y, z) � (4 − 18ac, 12a + 9c, −12 + 9a2)

is a solution of

x3 + cy3 + c2z3 − 3cxyz � 64. (4)

(c) Show that when a � 2b is even, the values of x, y, z in (b) are divisible by
4. In this case, verify that c � 4b(2b2 + 1) and that

(x, y, z) � (1 − 36b2(2b2 + 1), 3b(6b2 + 5), 3(3b2 − 1))

satisfies (1).
(d) Determine a solution of (1) in positive integers when c � 12, 72, and 228.

Exercise 7.5.
(a) Suppose that c � r2. Prove that (x, y, z) � (u, v, w) satisfies

x3 + cy3 + c2z3 − 3cxyz � 1
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if and only if (x, y, z) � (u, rw, v) satisfies

x3 + ry3 + r2z3 − 3rxyz � 1.

(b) Verify that (x, y, z) � (4, 3, 2) satisfies (1) when c � 3 and use this result
to obtain a solution to (1) when c � 9.

(c) Exercise 7.1 gave a method of solving equation (1) for c � 5. Use this solution
to generate a solution (x, y, z) for which y is divisible by 5. From this, deduce
a solution to (1) for c � 25.

Exercise 7.6.
(a) Suppose that c � r3s. Prove that (x, y, z) � (u, v, w) is a solution to

x3 + cy3 + c2z3 − 3cxyz � 1

if and only if (x, y, z) � (u, rv, r2w) is a solution to

x3 + sy3 + s2z3 − 3sxyz � 1.

(b) Find a solution in integers to the equation

x3 + 16y3 + 256z3 − 48xyz � 1.

Exercise 7.7. Consider solutions of (1) with z � 0. In this case, the equation
simplifies to x3 + cy3 � 1. With reference to Section 7.1, determine values of c

for which a solution of this type is available along with some solutions and their
inverses.

Exercise 7.8. Investigate solutions of x3 + cy3 + c2z3 − 3cxyz � 1 in the special
cases that c � k3 ± 1 and c � k3 ± 3, and see whether you can find solutions
that depend algebraically on the parameter k.

Exercise 7.9.
(a) Verify that

gc(x + cz, x + y, y + z) � (c + 1)gc(x, y, z).

(b) Starting with the fact that gc(1, 0, 0) � 1, use (a) to determine at least two
solutions to gc(x, y, z) � 1 in positive rationals. Are there any situations in
which integer solutions can be found in this way?

(c) Is one of the two solutions found in (b) a power of the other?

Exploration 7.2. Are there any values of c for which gc(x, y, z) � 1 does not
have a solutions with x � 1?

7.8 A Procedure That Often, but Not Always, Works

As seen in Exercise 1.5(b), when x, y, z are large positive integers, then x3 +
cy3 + c2z3 − 3cxyz � 1 implies that x is close to yθ and y is close to zθ . This
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suggests that we generate triple of integers (x, y, z) with these properties and hope
that some of them will give us a solution. We start with four triples for which the
signs of x3 − cy3 and y3 − cz3 together cover all four possibilities. Let p � �θ�,
the largest integer whose cube is less than c; let q � �pθ� and r � �(p + 1)θ�.

We form a table that begins

(x, y, z) x3 − cy3 y3 − cz3

(q, p, 1) − −
(q + 1, p, 1) + −
(r, p + 1, 1) − +
(r + 1, p + 1, 1) + +

From this seed, we proceed as follows: Suppose the final entry in the table so far
is (u, v, w). Let (u′, v′, w′) be that last of the previous entries for which

u3 − cv3 and u′3 − cv′3

have opposite signs and also

v3 − cw3 and v′3 − cw′3

have opposite signs. The next entry is (u + u′, v + v′, w + w′).
Thus, the fifth entry in the table will have (x, y, z) � (q + r + 1, 2p + 1, 2).

The hope is that adding triples with opposite signs will keep bringing x3 − cy3 and
y3 − cz3 relatively close to zero and so, in due course, make x3 + cy3 + c2z3 −
3cxyz � 1. Surprisingly, this works quite often; more surprisingly, it does not
work all the time.

Exercise 8.1. For c � 2, verify that the algorithm yields the following table:

(x, y, z) x3 − 2y3 y3 − 2z3 x3 + 2y3 + 4z3 − 6xyz

(1, 1, 1) − − 1
(2, 1, 1) + − 2
(2, 2, 1) − + 4
(3, 2, 1) + + 11
(4, 3, 2) + + 6
(5, 4, 3) − + 1
(7, 5, 4) + − 9
(12, 9, 7) + + 22
(13, 10, 8) + − 5

Continue the table to generate more solutions to x3 + 2y3 + 4z3 − 6xyz � 1,
but check that the algorithm does not pick up (x, y, z) � (281, 223, 177).
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Exercise 8.2. For c � 5, verify that the algorithm yields

(x, y, z) x3 − 5y3 y3 − 5z3 x3 + 5y3 + 25z3 − 15xyz

(1, 1, 1) − − 16
(2, 1, 1) + − 2
(3, 2, 1) − + 8
(4, 2, 1) + + 9
(5, 3, 2) − − 10
(9, 5, 3) + − 4

Continue this table until a solution to x3 + 5y3 + 25z3 − 15xyz � 1 is found.

Exercise 8.3. Try the algorithm to obtain solutions to

x3 + cy3 + c2z3 − 3cxyz � 1

when c � 3, 4, 6, 7, 9, 10, 11, 12, 13, 14. For the cases c � 6, 10, 11, 13, a pocket
calculator is especially useful, and for the case c � 12, a programmable calculator
or computer is desirable.

Exercise 8.4.
(a) The smallest positive solution of

x3 + 15y3 + 225z3 − 45xyz � 1

is (x, y, z) � (5401, 2190, 888). Check this solution and verify that the
algorithm fails to find it.

(b) The smallest positive soution of

x3 + 16y3 + 256z3 − 48xyz � 1

is (x, y, z) � (16001, 6350, 2520). Check this solution and verify that the
algorithm fails to find it.

Exercise 8.5. If you have suitable computational power at your disposal, check
the efficacy of the algorithm for higher values of c.

7.9 A More General Cubic Version of Pell’s Equation

So far, we have examined Pell’s equation in the form N(x + yθ + zθ2) � 1,
where θ is a root of the special equation t2 − c � 0. We extend our investigation
to equations derived from roots of the cubic equation

t3 + at2 + bt + c � 0,

where a, b, and c are arbitrary integers. Suppose that the cubic polynomial cannot
be factored as a product of polynomials of lower degree with integer coefficients
and that its roots are θ � θ1, θ2, and θ3 with θ real. Define

g(x, y, z) � (x + yθ1 + zθ2
1 )(x + yθ2 + zθ2

2 )(x + yθ3 + zθ2
3 ).
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The analogue of Pell’s equation is g(x, y, z) � 1.

Exercise 9.1. Recall that a � −(θ1 + θ2 + θ3), b � θ1θ2 + θ1θ3 + θ2θ3, and
c � −θ1θ2θ3. Show that

g(x, y, z) � x3 − cy3 + c2z3 − ax2y + (a2 − 2b)x2z + bxy2 + acy2z

+ (b2 − 2ac)xz2 − bcyz2 + (3c − ab)xyz.

Exercise 9.2. Let θ be a root of the equation t3 � t + 1.
(a) Verify that

g(x, y, z) � x3 + y3 + z3 + 2x2z + xz2 − xy2 − yz2 − 3xyz.

(b) It turns out to be uncommonly easy to find solutions of g(x, y, z) � 1. By
inspection, see how many you can get.

(c) We can obtain all solutions as ∗-powers of a fixed one (u, v, w), where u +
vθ + wθ2 has the smallest value exceeding 1. Do this.

(d) Using matrix techniques, determine a recursion satisfied by the sequence of
solutions.

Exercise 9.3. Let θ be a root of the equation t3 − 7t2 + 14t − 7 � 0.
(a) Verify that g(x, y, z) � x3 +7y3 +49z3 +7x2y +21x2z+14xy2 +49y2z+

98xz2 + 98yz2 + 77xyz.
(b) Determine some solutions of g(x, y, z) � 1 with z � 0.
(c) Determine some solutions of g(x, y, z) � 1 with x � z � 1.
(d) List other solutions. Do you think that they are all obtainable as ∗-powers of

a single solution?

7.10 More Explorations

Exploration 7.3. Consider the function g2(x, y, z) � x3 + 2y3 + 4z3 − 6xyz.
There appear to be a number of interesting regularities that occur, as, for example,
in the following table:

n (x, y, z) g2(x, y, z)

0 (1, 0, 0) 1
1 (1, 1, 0) 3
2 (1, 1, 1) 1
3 (3, 2, 2) 3
4 (5, 4, 3) 1
5 (11, 9, 7) 3

If (xn, yn, zn) is the nth triple, then {xn}, {yn}, and {zn} each appear to satisfy the
recursion

t2m � t2m−1 + t2m−2 + t2m−3,

t2m+1 � 2t2m + t2m−2,
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for m ≥ 2.
Another table of regularities is

n (x, y, z) g2(x, y, z)

0 (1, 0, 0) 1
1 (0, 1, 0) 2
2 (1, −1, 1) 9
3 (0, 0, 1) 4
4 (1, 0, 1) 5
5 (1, 1, 1) 1
6 (2, 1, 1) 2
7 (1, 2, 1) 9
8 (2, 2, 1) 4
9 (3, 3, 2) 5
10 (5, 4, 3) 1

In this case, the recursion seems to be, for m ≥ 1,

t5m−1 � t5m−3 + t5m−4,

t5m � t5m−1 + t5m−4,

t5m+1 � t5m + t5m−5,

t5m+2 � t5m + t5m−4,

t5m+3 � t5m+1 + t5m−4.

It seems to happen more frequently than one would expect that

g2(x1, y1, z1) + g2(x2, y2, z2) � g2(x1 + x2, y1 + y2, z1 + z2).

For example,

g2(1, 1, 1) + g2(5, 4, 3) � g2(6, 5, 4),

g2(5, 4, 3) + g2(8, 6, 5) � g2(13, 10, 8),

g2(1, 1, 0) + g2(1, 1, 1) � g2(2, 2, 1),

g2(1, 0, 0) + g2(3, 3, 2) � g2(4, 3, 2).

Can anything be said in general?

Exploration 7.4. Let c be a noncubic integer and θ its real cube root. The number
x + yθ + zθ2 in Q(θ) is an algebraic integer if and only if it is a root of a monic
polynomial with integer coefficients. The monic cubic polynomial whose roots are
x + yθ + zθ2, x + yωθ + zω2θ2, x + yω2θ + zωθ2 is t3 − pt2 + qt − r where
p � 3x, q � 3(x2 − cyz), and r � x3 + cy3 + c2z3 − 3cxyz. Now, p, q, r

are certainly integers when x, y, z are themselves integers. Are there values of c

for which algebraic integers exist where x, y, z are not all (ordinary) integers, but
p, q, r are integers?



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

7.12. Hints 111

7.11 Notes

Section 3. For an account of Q
(√−3

)
, consult G.H. Hardy and E.M. Wright,

An Introduction to the Theory of Numbers (Oxford), Chapter XIII. In the fourth
edition (1960), the relevant material is found on pages 188–189 and 192–196. This
chapter gives a treatment of a few special cases of Fermat’s “theorem” that there
are no nontrivial solutions in integers of xn + yn � zn when n is a positive integer
exceeding 2. This is the theorem that was finally settled by Andrew Wiles in the
last decade of the twentieth century.

5.5–5.6. See G.B. Mathews, On the Arithmetic Theory of the Form x3 + ny3 +
n2z3 − 3nxyz, Proc. London Mathematical Society 21 (1890), 280–287.

7.9. When x, y, z are positive and gc(x, y, z) � 1, then y/z, x/y, and cz/x

are approximations to c1/3 whose product is c. Thus some are over- and others
under-approximations. We can add numerators and denominators to get better ap-
proximations (x +y)/(y +z), (x +cz)/(y +x). We select the third approximation
to make the product of the three to be equal to c: c(y + z)/(x + cz). This motivates
the transformation

S(x, y, z) � (x + cz, y + x, z + y).

Compare the values of gc(x + cz, y + x, z + y), gc(cz, x, y), and gc(x, y, z).
The tranformation is related to the following algorithm for determining the cube

root of any positive number c. Begin with the quadruple (1, 1, 1, c). We form a
sequence of quadruples in which (p, q, r, cp) is followed by (p + q, q + r, r +
cp, c(p + q)). It turns out that as one proceeds along the sequence, q/p, r/q, cp/r

all approach c1/3. This can be generalized to higher roots. Thus, for the kth root of
c, start with (1, 1, 1, . . . , 1, c) (with k ones) and apply the transformation

(p, q, r, . . . , s, cp) −→ (p + q, q + r, . . . , s + cp, c(p + q)),

where each of the first k entries is the sum of the corresponding entry and its
successor in the previous vector.

Section 9. A recent researcher who has done a significant amount of work on
the determination of cubic fields is T.W. Cusick; an example of the work of him
and his colleagues is listed in the bibliography.

7.12 Hints

2.2. Let φ(x + yω) � x + yω2, the surd conjugate of x + yω. Show that φ(r) � r

for each rational r , φ(α ± β) � φ(α) ± φ(β), φ(αβ) � φ(α)φ(β). Note that
N(α) � αφ(α).

2.10. Since σ |ρ, ρ � σε for some algebraic integer ε. Since ρ|σ , deduce that ε−1

must also be an algebraic integer.

2.12(b). Note that µ � ξαµ + ηβµ and that β divides each term on the right side.
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3.2(b). Let γ1 � r1 + s1ω � (r1 + s1) − s1(1 − ω) and note that r1 + s1 is not
divisible by 3 � (1 − ω)(1 − ω2).

5.1(a). Use the fact that θ3 � c to check products and refer to Exercise 1.7 to show
that the reciprocal of an element in Q(θ) is also in Q(θ).

5.1(d). Observe that if α ∈ Z(θ), then N(α) must be an integer. Use the fact that
N(1/α) � 1/N(α).

5.2(c). Determine the coefficients by looking at the sum, sum of products of pairs,
and products of the roots. Use the fact that ω3 � 1 and ω + ω2 � −1.

5.4(a). Observe that τ1(ε) and τ2(ε) are complex conjugates and use the fact that
ετ1(ε)τ2(ε) � 1 to determine bounds for |τ1(ε)| and |τ2ε|. Now use the symmetric
functions of ε, τ1(ε), and τ2(ε) to find bounds for the coefficients of ε (cf. Exercise
5.2(b)).

5.5(c). Take the difference of the numbers in the pair found in (b).

5.5(e). Select (u1, v1, w1) such that N(u1 + v1θ + w1θ
2) ≤ 25|c|2. Determine

an integer n such that 1/4n2 < |u1 + v1θ + w1θ
2|, and use (c) to find a distinct

triple (u2, v2, w2) with N(u2 + v2θ + w2θ ≡ 2) ≤ 25c2. Continue on in this
way, churning out an infinite sequence of triples.

5.6(a). Note that there are only finitely many equivalence classes, modulo m,
available for the triple (u, v, w). Use the pigeonhole principle.
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8

Analogues of the Fourth and Higher
Degrees

In this chapter, we consider analogues of Pell’s equation of higher degree, partic-
ularly the fourth. Throughout, n is a positive integer and c is an integer which has
a real nth root θ of the same sign. Define

gc(x1, x2, . . . , xn) ≡ N(x1 + x2θ + x3θ
2 + · · · + xnθ

n−1)

≡
n∏

i�0

(
x1 + x2(ζ

iθ) + · · · + xn(ζ
iθ)n−1

)

where ζ � cos 2π
n

+ i sin 2π
n

is a primitive nth root of unity. The analogue of
Pell’s equation that we want to examine is

gc(x1, x2, . . . , xn) � 1.

8.1 Solution of Some Special Cases for General n

After reviewing some basic properties of roots of unity, we consider the solutions
to Pell’s equation for c � 2, 3 and kn ± 1, where k is a positive integer.

Exercise 1.1.
(a) Verify that 1, ζ , ζ 2, . . . , ζ n−1 are distinct complex numbers that satisfy the

equation tn � 1.
(b) Deduce, from the factor theorem, that tn −1 � (t −1)(t −ζ )(t −ζ 2) · · · (t −

ζ n−1).
(c) Show that ζ i (1 ≤ i ≤ n−1) satisfies the equation 1+t+t2 +· · ·+tn−1 � 0.

Exercise 1.2. Let c and θ be real numbers for which θn � c.
(a) Prove that the nth roots of c are θ , ζθ , ζ 2θ, . . . , ζ n−1θ and that

tn − c � (t − θ)(t − ζθ) · · · (t − ζ n−1θ).

(b) When n is odd, prove that

tn + c � (t + θ)(t + ζθ) · · · (t + ζ n−1θ).

113



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

114 8. Analogues of the Fourth and Higher Degrees

Exercise 1.3.
(a) Verify that

un−1 + un−2v + · · · + uvn−2 + vn−1 � un − vn

u − v
.

(b) Deduce from (a) that with θn � c,

kn−1 + kn−2(ζ iθ) + · · · + k(ζ iθ)n−2 + (ζ iθ)n−1 � kn − c

k − ζ iθ
.

Exercise 1.4. Prove that

gc

(
kn−1, kn−2, . . . , k, 1

) �
n−1∏

i�0

(
kn − c

k − ζ iθ

)
� (kn − c)n−1.

Exercise 1.5. Let c � kn − 1.
(a) Prove that N(k − θ) � 1 and so gc(k, −1, 0, 0, . . . , 0) � 1.
(b) Verify that (a) corroborates known results when n � 2, 3.
(c) Deduce from Exercise 1.4 that (x1, x2, . . . , xn) � (

kn−1, kn−2, . . . , k, 1
)

is
a solution of gc(x1, x2, . . . , xn) � 1.

Exercise 1.6. Let c � kn + 1.
(a) Prove that N(k − θ) � −1, and so gc(k, −1, 0, 0, . . . , 0) � −1.
(b) Verify that (a) corroborates known results when n � 2, 3.
(c) Deduce from Exercise 1.4 that (x1, x2, . . . , xn) � (kn−1, kn−2, . . . , 1) is a

solution of gc(x1, x2, . . . , xn) � (−1)n−1.

Exercise 1.7.
(a) Verify that N(k + θ) � kn − (−1)nc.
(b) Deduce from (a) that when n is even, gkn−1(k, 1, 0, . . . , 0) � 1 and

gkn+1(k, 1, 0, . . . , 0) � −1.

Exercise 1.8.
(a) Prove that

N(k2 + kθ + θ2) �






k3n − c3

kn − c
, when n is not a multiple of 3,

(kn − c)2, when n is a multiple of 3.

(b) If n is a multiple of 3 and c � kn ± 1, verify that

gkn±1(k
2, k, 1, 0, . . . , 0) � 1.

Exercise 1.9. If ξ � x1 + x2θ + · · · + xnθ
n−1 and η � y1 + y2θ + · · · + ynθ

n−1,
prove that N(ξη) � N(ξ)N(η). Deduce that if N(ξ) � −1, then N(ξ 2) � +1.
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Exercise 1.10.
(a) If ξ � kn−1 + kn−2θ + · · · + kθn−2 + θn−1, show that

ξ 2 � [
k2n−2 + (n − 1)ckn−2

] + [
2k2n−3 + (n − 2)ckn−3

]
θ

+ [
3k2n−4 + (n − 3)ckn−4

]
θ2 + · · · + nkn−1θn−1.

(b) Suppose that n is even and that c � kn + 1 for some positive integer k.
Explain how to find a solution to gc(x1, x2, . . . , xn).

Exercise 1.11. Suppose that n is even and c � kn ± 2. Prove that

gc(k
n ± 1, kn−1, kn−2, . . . , k) � 1.

Exercise 1.12. Consider the case c � 2.
(a) Using the fact that g2(1, 1, 1, . . . , 1) � (−1)n−1, show that

(x1, x2, . . . , xn) � (2n − 1, 2n − 2, . . . , n + 1, n) satisfies
g2(x1, x2, . . . , xn) � 1. Check directly from the definition of N that

N
(
(2n − 1) + (2n − 2)θ + · · · + nθn−1

) � 1.

(b) Determine N(3 + 2θ + 2θ2 + · · · + 2θn−1). For which values of n do we
obtain a solution of g2(x1, x2, . . . , xn) � 1?

Exercise 1.13.
(a) Verify that

g3(2, 1, 1, . . . , 1) �
n−1∏

i�0

(
2 + (ζ iθ) + · · · + (ζ iθ)n−1

)

� (−1)n
n−1∏

i�0

(1 + ζ iθ)

(1 − ζ iθ)
.

(b) Suppose that n is even. Show that {−ζ i : i � 0, . . . , n − 1} consists of all
the nth roots of unity. Deduce from (a) that g3(2, 1, 1, . . . , 1) � 1.

Exercise 1.14. Verify that g3(3k−2, 3k−3, . . . , k+1, k) � 1 when n � 2k−1.

8.2 The Quartic Pell’s Equation with Positive Parameter

The norm form of x + yθ + zθ2 + wθ3, for θ4 � c, is equal to

gc(x, y, z, w) � (x + yθ + zθ2 + wθ3)(x − yθ + zθ2 − wθ3)

× (x + iyθ − zθ2 − iwθ3)(x − iyθ − zθ2 + iwθ3).

As for the cases of the quadratic and cubic Pell’s equations, we can induce a
*-product for quadruples (x, y, z, w) from the ordinary multiplication of reals
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x + yθ + zθ2 + wθ3. The powers (x, y, z, w)n for integer n can be defined as
before with (x, y, z, w)0 � (1, 0, 0, 0).

For most of this section we restrict attention to positive values of c. Negative
values of c are considered in the next section.

Exercise 2.1. Verify that

gc(x, y, z, w) � (x2 + cz2 − 2cyw)2 − c(2xz − y2 − cw2)2.

Exercise 2.2. Verify that

(x1, y1, z1, w1) ∗ (x2, y2, z2, w2)

� (x1x2 + cy1w2 + cz1z2 + cw1y2, x1y2 + y1x2 + cz1w2 + cw1z2,

x1z2 + y1y2 + z1x2 + cw1w2, x1w2 + y1z2 + z1y2 + w1x2)

and that

gc(x, y, z, w)(x, y, z, w)−1 � (x3 + cy2z + c2zw2 − cxz2 − 2cxyw,

cy2w + 2cxzw − x2y − cyz2 − c2w3,

xy2 + cxw2 + cz3 − x2z − 2cyzw,

cyw2 + 2xyz − y3 − x2w − cz2w).

Exercise 2.3. Verify that if gc(x, y, z, w) � 1, then

(x, y, z, w)−1 � (x, −y, z, −w) ∗ (x2 + cz2 − 2cyw, 0, y2 + cw2 − 2xz, 0).

Exercise 2.4. Suppose that c � b4 for some positive integer b. Does the equation
gc(x, y, z, w) � 1 have only finitely many solutions in this case? Explain.

Exercise 2.5. Suppose that c � a2 for some positive nonsquare integer a. Then
θ � a1/2, and x + yθ + zθ2 + wθ3 collapses to (x + az) + (y + aw)θ , where θ is
now an irrational number satisfying a quadratic equation with integer coefficients.
The quadratic norm form is (x + az)2 − (y + aw)2a. In this situation, the quartic
Pell’s equation gc(x, y, z, w) � 1 will be of a different character from that when
c is not a perfect square. However, we can still see what can be said about its
solutions.
(a) Verify that in this case, the equation to be solved is

(x2 + a2z2 − 2a2yw)2 − a2(2xz − y2 − a2w2)2 � 1.

(b) Argue that the equation in (a) is equivalent to the system

x2 + a2z2 − 2a2yw � ±1,

y2 + a2w2 − 2xz � 0.
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(c) Deduce from (b) that

(x − az)2 + a(y − aw)2 � ±1,

(x + az)2 − a(y + aw)2 � ±1,

and note that this implies that the sign on the right side must be +.
(d) Deduce from (c) that y � aw and x − az � ±1.

Exercise 2.6. For the equation of Exercise 2.5, we consider the case that x −az �
1 and y � aw.
(a) Obtain the equation a2w2 � z(1 + az).
(b) From (a), show that there are integers r and s for which z � a2s2 and

1 + az � r2, so that

r2 − a3s2 � 1.

(c) Suppose that (r, s) satisfies r2 − a3s2 � 1. Show that (x, y, z, w) �
(r2, ars, a2s2, rs) is a solution of ga2(x, y, z, w) � 1.

(d) Use the foregoing to determine solutions to gc(x, y, z, w) � 1, when c �
4, 9, 25.

Exercise 2.7. For the equation of Exercise 2.5, carry out an analysis similar to
that in Exercise 2.6 for the possibility that x − az � −1 and y � aw, and thence
determine a solution to g25(x, y, z, w) � 1. ♠

Henceforth, we will assume that c is a positive integer that is not a perfect square.
Let pc(x, y, z, w) � x2 + cz2 − 2cyw and qc(x, y, z, w) � 2xz − y2 − cw2.
Then gc(x, y, z, w) � pc(x, y, z, w)2 − cqc(x, y, z, w)2, so that every solution
of gc(x, y, z, w) � 1 gives rise to a solution (r, s) � (pc, qc) of the quadratic
Pell’s equation r2 − cs2 � 1. Some of these quartic solutions lead to the trivial
(r, s) � (±1, 0) (we will call these Type A), while others lead to nontrivial
quadratic solutions (Type B). What can be said about the relation between the two
types of Pell’s equation? We begin by getting some numerical information.

We try an algorithm similar to that used for the cubic case. Let θ be the pos-
itive fourth root of c. We begin with a “base” of eight quadruples (x, y, z, w)

corresponding to the sign combinations (±, ±, ±). In each case, w � 1. For
each sign combination (±, ±, −), let z � �θ�, i.e., the largest integer for which
z4 − cw4 < 0; for (±, ±, +), let z � �θ�, i.e., the smallest integer for which
z4 − cw4 > 0.

We have indicated how w and z are to be found in each case. For (±, −, ±), y is
the largest integer for which y4 − cz4 < 0, while for (±, +, ±), y is the smallest
integer for which y4 − cz4 > 0. Finally, for (−, ±, ±), x is the largest integer
for which x4 − cy4 < 0, and for (+, ±, ±), x is the smallest integer for which
x4 − cy4 > 0.
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Exercise 2.8.
(a) Verify that for c � 8, the base is given in the following table:

(x, y, z, w) (x4 − 8y4) (y4 − 8z4) (z4 − 8w4) sign pc qc gc

(1, 1, 1, 1) −7 −7 −7 (−, −, −) −7 −7 −343
(2, 1, 1, 1) 8 −7 −7 (+, −, −) −4 −5 −184
(3, 2, 1, 1) −47 8 −7 (−, +, −) −15 −6 −63
(4, 2, 1, 1) 128 8 −7 (+, +, −) −8 −4 −64
(5, 3, 2, 1) −23 −47 8 (−, −, +) 9 3 9
(6, 4, 2, 1) −752 128 8 (−, +, +) 4 0 16
(6, 3, 2, 1) 648 −47 8 (+, −, +) 20 7 8
(7, 4, 2, 1) 353 128 8 (+, +, +) 17 4 161

To continue the table, take any two vectors (x, y, z, w) with opposite sign
combinations, say (+, −, +), and (−, +, −) and take the vector sum. This
may yield only one vector; if not, construct a different table for each possi-
bility. After this, obtain each subsequent entry by taking the vector sum of
the last entry found and the previous entry of the opposite sign combination.
Verify that the table can proceed with the next entry (8, 5, 3, 2) (−, +, −) or
(9, 5, 3, 2) (+, +, −). Continue in this manner.

Exercise 2.9. From Exercise 2.8, we note that g8(6, 4, 2, 1)�16, p8(6, 4, 2, 1)�
4, and q8(6, 4, 2, 1) � 0. Use these equations to obtain a rational solution to Pell’s
equation g8(x, y, z, w) � 1.

Exercise 2.10.
(a) Follow the procedure just described to obtain three solutions of

g2(x, y, z, w) � ±1. Investigate whether these solutions are related with
respect to *-multiplication.

(b) Follow the procedure just described until it yields three solutions of
g3(x, y, z, w) � 1.

Exercise 2.11. Certain solutions of gc(x, y, z, w) � 1 are easy to find. Verify
that gc(u, 0, v, 0) � 1 whenever u2 − cv2 � ±1. Which of these solutions are
of Type B?

Exercise 2.12. Suppose that u2 − cv2 � 1. Then it is possible to construct a
solution for gc(x, y, z, w) � 1 with (x, z) � (u, v) for certain values of c.
Suppose r and s are selected so that rs � v2.
(a) Verify that pc(u, r, v, s) � 1.
(b) Prove that the condition qc(u, r, v, s) � 0 is equivalent to r2 � v(u + 1) or

r2 � v(u − 1).
(c) Investigate values of c for which a solution to the quartic equation can be

obtained from a solution to the corresponding quadratic equation in the way
outlined above.
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Exercise 2.13. A special case of Exercise 2.12 is c � (2k)4 ± 4 � 4(4k4 ± 1),
where the parameter c differs from an even fourth power by 4. We recall that
when d � (2m)2 ± 4, then x2 − dy2 � 1 is satisfied by (x, y) � (2m2 ±
1, m). Apply this to the case m � 2k2 to verify that u2 − cv2 � 1 holds with
(u, v) � (8k4 ± 1, 2k2). Use the procedure of Exercise 2.12 to obtain solutions
for gc(x, y, z, w) � 1 with xyzw 	� 0.

Exercise 2.14. Suppose that y2 + cw2 − 2xz � 0.
(a) Verify that

x2 + cz2 − 2cyw � (
x − z

√
c
)2 + √

c
(
y − w

√
c
)2

.

Deduce that for any Type A solution, x2 + cz2 − 2cyw � −1 cannot occur.
(b) Here is an alternative way of establishing the result in (a). Assume that Type

A solutions with x2 + cz2 − 2cyw � −1 can occur. When c is odd, observe
that y and w must have the same parity, while x and z must have opposite
parity. If c ≡ 1 (mod 4) with y and w odd, show that xz is also odd and get
a contradiction.

On the other hand, if c ≡ 1 (mod 4) with y and w even, use the fact that
x2 + cz2 − 2cyw ≡ x2 + z2 (mod 4) to get a contradiction. If c ≡ 3 (mod 4),
prove that c must be divisible by a prime p congruent to 3 modulo 4; use the
fact that for such a prime, x2 ≡ −1 (mod p) is not solvable. Next, show that
we get a contradiction when c is divisible by 4. Finally, deal with the cases
c ≡ 2 and c ≡ 6 (mod 8).

Exercise 2.15.
(a) Suppose that x2 + cz2 − 2cyw � p and 2xz − y2 − cw2 � q, where

p2 − cq2 � 1. Using the fact that

p − q
√

c � (
x − z

√
c
)2 + √

c
(
y − w

√
c
)2

,

deduce that p − q
√

c > 0 and thence that p > 0.
(b) Deduce from (a) that for c � 3, 6, 8, gc(x, y, z, w) � 1 has no Type B

solution corresponding to a fundamental solution (x, y) � (p, |q|) of the
corresponding quadratic pellian equation x2 − cy2 � 1.

Exercise 2.16. Prove that gc(x, y, z, w) � 1 has a Type B solution corresponding
to a fundamental solution of x2 − cy2 � 1 whenever x2 − cy2 � −1 is solvable
in integers.

Exercise 2.17. Here is an alternative way of showing that g3(x, y, z, w) � 1 has
no Type B solution corresponding to the solution (±2, ±1) of x2 − 3y2 � 1.
Suppose that

|x2 + 3z2 − 6yw| � 2,

|y2 + 3w2 − 2xz| � 1.
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Deduce that y and w must have opposite parity, and so x2 + 3z2 ≡ 2 (mod 4).
Obtain a contradiction.

Exercise 2.18. If we specialize to solutions for which z � w � 0, the equation
gc(x, y, z, w) � 1 becomes x4 − cy4 � 1. This will not have a solution for every
parameter c. However, there are generic situations in which solutions can be found.
Let d be a (not necessarily positive) integer and suppose that either u2 − dv2 � 1
or u2 + dv2 � −1, and that 2d is a multiple of v2.
(a) Verify that

u4 −
(

d2 + 2d

v2

)
v4 � 1.

(b) Use this to determine values of c for which x4 − cy4 � 1 is solvable and
display the solution.

Exercise 2.19. In this exercise we investigate the structural relationship between
the set of solutions to the quartic Pell’s equation gc(x, y, z, w) � 1 and the
corresponding quadratic Pell’s equation. Let

Z(θ) ≡ {(x + yθ + zθ2 + wθ3 : x, y, z, w ∈ Z}
and

Z
(√

c
) ≡ {p + q

√
c : p, q ∈ Z}.

Each of these is a set of real numbers closed under the arithmetic operations of
addition, subtraction, and multiplication of pairs of its elements. We can think of
each set as generalizing the set of ordinary integers.

Recall that the mappings

λ
(
x + yθ + zθ2 + wθ3

) � (x, y, z, w)

and

µ
(
p + q

√
c
) � (p, q)

are one-to-one mappings from the sets of elements of norm 1 in Z(θ) and Z
(√

c
)
,

respectively, to solutions of the corresponding Pell’s equation that satisfy

λ(αβ) � λ(α) ∗ λ(β)

and

µ(γ δ) � µ(γ ) ∗ µ(δ).

(a) Verify that the mapping

ρ
(
x + yθ + zθ2 + wθ3

) � (
x2 + cz2 − 2cyw

) + √
c
(
y2 + cw2 − 2xz

)

defined on the set of elements of norm 1 in Z(θ) to the elements of norm 1 in
Z
(√

c
)

also satisfies

ρ(αβ) � ρ(α)ρ(β).
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(b) Let σ � µ ◦ ρ ◦ λ−1. Prove that

σ(α ∗ β) � σ(α) ∗ σ(β)

(so that σ is a homomorphism from the group of solutions of gc(x, y, z, w) �
1 to the group of solutions of p2 − cq2 � 1 that takes ∗-products to ∗-
products).

8.3 The Quartic Pell’s Equation with Negative Parameter

Exercise 3.1.
(a) Verify that g−1(x, y, z, w) � (x2 − z2 + 2yw)2 + (y2 − w2 − 2xz)2, so

that g−1(x, y, z, w) � 1 requires either

x2 − z2 + 2yw � ±1, y2 − w2 − 2xz � 0,

or

x2 − z2 + 2yw � 0, y2 − w2 − 2xz � ±1.

Exercise 3.2. Let c � −d for some positive integer d ≥ 2.
(a) Verify that

gc(x, y, z, w) � (x2 − dz2 + 2dyw)2 + d(y2 − dw2 − 2xz)2.

(b) Deduce that gc(x, y, z, w) � 1 requires that

x2 − dz2 � ±1 − 2dyw,

y2 − dw2 � 2xz.

Exercise 3.3. Verify that g−2(1, 4, 4, 2) � 1 and use this fact to obtain other
solutions of g−2(x, y, z, w) � 1.

Exercise 3.4. Determine solutions of g−3(x, y, z, w) � 1. Try either x � 1 or
w � 0.

Exercise 3.5. When x � 1 and x2 − dz2 + 2dyw � 1, the equations in Exercise
4.2(b) become z2 � 2yw and y2 − dw2 � 2z. By trying values of (y, z, w),
determine values of d for which a solution can be found.

Exercise 3.6. When w � 0, the equations in Exercise 3.2(b) become x2 − dz2 �
±1 and y2 � 2xz. For what values of d can solutions to the system be found?

Exercise 3.7. When y � 0, the equations in Exercise 3.2(b) become x2 − dz2 �
±1 and dw2 � −2xz. For what values of d can such solutions to the system be
found?
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8.4 The Quintic Pell’s Equation

Exercise 4.1. Verify that

gc(x, y, z, u, v) � (x5 + cy5 + c2z5 + c3u5 + c4v5)

− 5c(x3yv + x3zu + xy3z)

− 5c2(y3uv + xz3v + yz3u + xyu3)

− 5c3(zu3v + xuv3 + yzv3) + 5c(x2y2u + x2yz2)

+ 5c2(x2u2v + x2zv2 + xy2v2 + xz2u2 + y2z2v + y2zu2)

+ 5c3(yu2v2 + z2uv2) − 5c2(xyzuv).

Exercise 4.2. Prove that

gc2(x, y, z, u, v) � gc(x, cu, y, cv, z),

gc3(x, y, z, u, v) � gc(x, cz, c2v, y, cu),

gc4(x, y, z, u, v) � gc(x, c3v, c2u, cz, y).

Use these to determine solutions for g4(x, y, z, u, v) � 1, g8(x, y, z, u, v) �
1, and g16(x, y, z, u, v) � 1 when it is given that g2(1, 1, 1, 1, 1) �
g2(1, 1, 0, 1, 0) � 1.

Exercise 4.3. For c � 2, 3, 4, 5, try to determine some solutions of
gc(x, y, z, u, v) � 1 by inspection. Try solutions for which all the entries con-
sist of 1, −1, and 0. Use these solutions to obtain other solutions. Make use of a
computer or pocket calculator.

8.5 The Sextic Pell’s Equation

Exercise 5.1. Prove that in the sextic case

gc(x, y, z, u, v, w) � p2 − cq2 � r3 + cs3 + c2t3 − 3crst,

where

p � x3 + (3xu2 + 3y2v + z3 − 3xyw − 3xvz − 3uyz)c

+ (v3 + 3zw2 − 3uvw)c2,

q � (3x2u + y3 − 3xyz)

+ (u3 + 3yv2 + 3z2w − 3xvw − 3uyw − 3uvz)c + w3c2,

r � x2 + 2czv − cu2 − 2cyw,

s � 2xz + cv2 − y2 − 2cuw,

and

t � z2 + 2xv − 2yu − cw2.
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Exercise 5.2.
(a) Suppose x2 − cu2 � 1. Determine gc(x, 0, 0, u, 0, 0).
(b) Suppose x3 + cz3 + c2v3 − 3cxzv � 1. Determine gc(x, 0, z, 0, v, 0).
(c) Use parts (a) and (b) to explicitly determine solutions for gc(x, y, z, u, v, w)�

1 for various values of c.

Exercise 5.3.
(a) Verify that

gc(x, y, 0, 0, 0, 0) � x6 − cy6.

(b) Prove that gc(x, 2, 0, 0, 0, 0) � 1 is solvable if and only if x ≡ ±1 (mod
32). What are the two lowest values of c that occur?

Exercise 5.4. Let c � a2. Using the notation of Exercise 5.1, verify that

p +aq � (x +au)3 +a(y +av)3 +a2(z+aw)3 −3a(x +au)(y +av)(z+aw).

8.6 Explorations

Exploration 8.1. The quartic equation g15(x, y, z, w) � 1 is satisfied by
(x, y, z, w) � (31, 16, 8, 4), while g17(x, y, z, w) � 1 is satisfied by
(x, y, z, w) � (33, 16, 8, 4). Try to generalize.

Exploration 8.2. Determine as many solutions in integers (x, y, z, w) as you can
of g2(x, y, z, w) � 1. How are they related with respect to ∗-multiplication? Are
they all ∗-powers of the same solutions as in the quadratic and cubic cases? Look
at other positive values of c and at rational solutions as well.

Exploration 8.3. The following solutions (x, y, z, w) of g2(x, y, z, w) � 1
follow a pattern: (1, 2, 1, 0), (3, 2, 2, 2), (7, 6, 5, 4), (17, 14, 12, 10), (41, 34,
29, 24). Note also the solutions (x, y, z, w) of g3(x, y, z, w) � 1: (2, 1, 1, 1),
(7, 5, 4, 3), (26, 19, 15, 11), (97, 71, 56, 41). Investigate.

Exploration 8.4. Can one obtain solutions to gc(x, y, z, w) � 1 by looking at
suitable continued fraction expansions of θ where the convergent fractions are ele-
ments of Z

(√
c
)
? For example, it appears that the appropriate continued fractions

for 21/4 and 31/4 are

2
1
4 � 1 + 1/(2

√
2 + 2) + 1/2 + 1/(2

√
2 + 2) + 1/2 + · · ·

and

3
1
4 � 1 + 1/(1 +

√
3) + 1/2 + 1/(1 +

√
3) + 1/2 + · · · .

In a way analogous to the quadratic case, these generate Type A solutions.
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Exploration 8.5. It is possible to get a Type B solution (x, y, z, w) � (u, 0, v, 0)

to gc(x, y, z, w) � 0 from a solution to u2 − cv2 � ±1. Once a Type A solution
is known, other Type B solutions for which y and w are not both equal to zero can
be found by ∗−multiplication. Can we generate Type A solutions when Type B
solutions are known? Given (x, y, z, w) for which gc(x, y, z, w) � 1, show that
(x, −y, z, −w) also satisfies the same equation. How do the corresponding values
of (p, q) relate? Look at (x, y, z, w) ∗ (x, −y, z, −w)−1.

Exploration 8.6. For various values of c, find nontrivial solutions to the equation
gc(x, y, z, w) � 0?

Exploration 8.7. Determine solutions of gc(x, y, z, w) � ±1 for which
c, x, y, z, w are polynomials in one or more variables.

Exploration 8.8. Investigate solutions of the sextic Pell’s equation g2(x, y, z, u,
v, w) � ±1. As in the quartic case, these induce solutions of lower-degree Pell’s
equations, in this case

ξ 3 + cη3 + c2ζ 3 − 3cξηζ � ±1

and ρ2 − cσ 2 � ±1. What possible solutions of these two equations arise? Are
there nontrivial solutions of the sextic that induce the trivial solutions (1, 0, 0) and
(1, 0) of the cubic and quadratic, respectively?

Exploration 8.9. Investigate the solutions to the sextic Pell’s equation when the
parameter c is negative, or square, or cubic, or a sixth power.

Exploration 8.10. Let θ be an nth root of the integer c, and let r be a positive
integer less than n. What is N

(
1 + θ + θ2 + · · · + θr

)
?

Exploration 8.11. Study solutions of the nth-degree Pell’s equation g2(x1, x2,
. . . , xn) � 1, and look for patterns.

Exploration 8.12. Let n � dm for positive integers d and m. Let θn � c1/n and
θm � c1/m. Let Nn and Nm be their respective norms. Compare N

(
x1 + x2θ

d +
· · · + xmθ(m−1)d

)
and N

(
x1 + x2θm + · · · + xmθm−1

m−1

)
. Use this to show how

solutions of the nth-degree Pell’s equation gc � 1 can be found from solutions of
the mth-degree Pell’s equation.

8.7 Notes

In the determination of the units among the integers of the number fields, the
reader will have noticed the situation becoming more complex with the degree of
the Pell’s equation. For the quadratic and cubic equations, the set of units is simply
all the ∗-powers of a fundamental unit multiplied by ±1. For the higher-degree
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cases, the structure is more elaborate. The situation is described by Dirichlet’s Unit
Theorem, a good account of which can be found in Chapter 2 of Number Theory
by Borevich and Shafarevich; the theorem itself appears on page 112. About our
present situation it says the following. Suppose we adjoin to the rationals Q the root
θ of a polynomial equation with integer coefficients and leading coefficient equal
to 1 to form the field Q(θ). Suppose further that this polynomial has s real roots
and 2t nonreal ones (i.e., t complex conjugate pairs of roots). Let r � s + t − 1.
Then every unit among the integers of Q(θ) can be written in the form

ζε
a1
1 ε

a2
2 · · · εar

r ,

where ζ is a root of unity, the εi are fundamental units, and the ai are integers.
Thus, for the quadratic equation x2 − dy2 � 1 with d a positive nonsquare, s � 2
and r � 1. (When d < 0, we get t � 1 and r � 0 and there is only a finite set of
units.) For the cubic equation x3 + cy3 + c2z3 − 3cxyz � 0 with c a noncube,
s � t � 1 and r � 1. What can one expect for the quartic and higher-order Pell
equations, and how can one find the fundamental units?

8.8 Hints

2.1. Write the factors in the form (x + zθ2) + θ(y + wθ2), etc., and arrange it so
you are multiplying a sum by a difference to get a product that is a difference of
squares.

2.5(b). Note that z and 1 + az constitute a coprime pair of integers whose product
is a square.

2.18. Note that the following mapping preserves multiplication:

x + yθ + zθ2 + wθ3 � (x + zθ2) + θ(y + wθ2)

−→ [(x + zθ2) + θ(y + wθ2)][(x + zθ2) � θ(y + wθ2))]

� (x + zθ2)2 − θ2(y + wθ2)2.

and

p − q
√

c → p + q
√

c.
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9

A Finite Version of Pell’s Equation

The material in this chapter was developed by Jeffrey Higham in 1993, when he
was an undergraduate at the University of Toronto. We have already seen that with
respect to the multiplication

(x, y) ∗ (u, v) � (xu + dyv, xv + yu)

defined for pairs of integers, the solutions of Pell’s equation x2 − dy2 � 1 can
be obtained by taking “powers” of an elementary solution. We will explore this
structure when we consider instead pairs (x, y) for which x2 − dy2 differs from
1 by a multiple of some fixed modulus m.

This chapter will begin with a particular case to indicate the setting, and then
look at the situation where the modulus is a prime or prime power.

9.1 Solutions Modulo 11

We recall the notion of modular arithmetic introduced in Section 4.1, and take the
modulus to be 11. Imagine a clock for a day that has only 11 hours. Then two hours
after ten o’clock, it will be one o’clock; five hours after nine o’clock, it will be
three o’clock. Working modulo 11, we consider only the numbers 0, 1, 2, . . . , 10.
The sum of two of these numbers with our new arithmetic is the ordinary sum
when that sum does not exceed 10 and the ordinary sum minus 11 otherwise; thus
the sum is also a member of the set.

We can multiply two numbers, modulo 11, in a similar way. The product is the
ordinary product minus the highest multiple of 11 that does not exceed it. Since,
for example, 5 × 6 � 30 � 22 + 8, we write

5 × 6 ≡ 8 (mod 11)

(read, “5 × 6 is congruent to 8 modulo 11”) to express this new type of product.
For sums, we can write, for example,

3 + 9 ≡ 1 (mod 11)

(read, “3+9 is congruent to 1 modulo 11”).

126
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Exercises 1.1. Verify that 3+8 ≡ 0 (mod 11), 5−9 ≡ 7 (mod 11) and 6×8 ≡ 4
(mod 11). Construct an addition table and a multiplication table, modulo 11; the
rows and columns will be headed by the numbers 0, 1, 2, . . . , 9, 10.

Exercise 1.2. Verify that 52 − 2 × 42 ≡ 4 and 42 − 3 × 42 ≡ 1 (mod 11).

Exercise 1.3. Make a table with columns headed by x, x2, 2x2, 3x2, and 4x2,
where x assumes the values 0, 1, 2, . . . , 9, 10. Fill in the values of these functions
of x, where the square is evaluated modulo 11. Use this table to find solutions to
the following congruences:

x2 − y2 ≡ 1,

x2 − 2y2 ≡ 1,

x2 − 3y2 ≡ 1,

x2 − 4y2 ≡ 1,

modulo 11.

Exercise 1.4. Let d be a positive integer. As was done with the regular Pell’s
equation, we can define a product of pairs by

(x, y) ∗ (u, v) ≡ (z, w),

where z ≡ xu + dyv and w ≡ xv + yu (mod 11). Verify that when d � 2,

(3, 7) ∗ (2, 9) ≡ (0, 8).

Exercise 1.5. In the notation of Exercise 1.4, verify that if x2 − dy2 ≡ 1 and
u2 − dv2 ≡ 1, then z2 − dw2 ≡ 1, modulo 11.

Exercise 1.6. Determine all the solutions of the congruence

x2 − 2y2 ≡ 1 (mod 11)

with 0 ≤ x, y ≤ 10. How many solutions are there? Construct a multiplication
table for the solutions such that the entry in the row headed by (r, s) and the column
headed by (u, v) is (r, s) ∗ (u, v).

Exercise 1.7. Define (u, v)m to be the ∗-product of m terms, each equal to (u, v).
Find a solution (u, v) of x2 − 2y2 ≡ 1 (mod 11) such that every solution can be
written in the form (u, v)m for some nonnegative integer m.

Exercise 1.8. Do Exercises 1.6 and 1.7 with the number 2 replaced by 1, 3, and
4. What property do 1, 3, and 4 share that 2 fails to have?
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9.2 The Case of a Prime Modulus

Let p be an odd prime number. Denote by Zp the set {0, 1, 2, . . . , p − 1}. Addi-
tion and multiplication are defined in Zp from ordinary addition and multiplication,
modulo p; in other words, replace the ordinary sum and product by their remain-
ders upon division by p. In Zp with these operations, we have access to the usual
arithmetic laws of commutativity, associativity, and distributativity. But further-
more, we have a kind of division available to us, since given any nonzero element
a in Zp, it turns out that there is an element u for which au ≡ 1; this reciprocal u

will be denoted by a−1. Given a fixed positive integer d, we can define a *-product
of pairs by the formula

(x, y) ∗ (u, v) ≡ (xu + dyv, xv + yu),

and it can be checked that if (x, y) � (r, s), (u, v) both satisfy x2 −dy2 ≡ 1 (mod
p), then so also does (x, y) ≡ (r, s) ∗ (u, v). Note that (1, 0) ∗ (u, v) � (u, v)

for each pair (u, v), so that (1, 0) is the identity element for the *-product. Each
element (u, v) for which u2 − dv2 ≡ 1 (mod p) also has an “inverse” for this
product, namely (u, p − v) (i.e., (u, v) ∗ (u, p − v) ≡ (1, 0)).

Let G(p, d) denote the set of distinct solutions, modulo p, of the congruence
x2 − dy2 ≡ 1 (mod p). In the first section we found that for 1 ≤ d ≤ 4, G(11, d)

has either 10 or 12 members, and that the solutions were all *-powers of a particular
solution. One might also observe that 1, 3, and 4 are all squares modulo 11, while 2
is not. In this section we will explore the significance of this observation in general.

Exercises 2.1. Suppose that d ≡ r2 (mod p) for some integer r . Verify that
x2 − dy2 ≡ (x − ry)(x + ry) (mod p). Thus, solving x2 − dy2 ≡ 1 involves
determining pairs of reciprocals modulo p. [Note that u and v are reciprocals
modulo p if and only if u and v are not divisible by p and uv ≡ 1 (mod p).]

Exercise 2.2. To find the reciprocal of a number a, modulo p, we must solve a
congruence of the form

ax ≡ b (mod p), (1)

where in finding the reciprocal, b � 1. We will examine the solvability of such
congruences.
(a) Solve the following congruences modulo 11: 5x ≡ 8, 3x ≡ 1, 7x ≡ 0,

0x ≡ 5, 0x ≡ 0.
(b) For a general prime modulus p, discuss the solvability of 0x ≡ b in the cases

where b ≡ 0 and b 	≡ 0.
(c) Suppose that a 	≡ 0 (mod p). Prove that ax ≡ 0 mod p has only the solution

x ≡ 0, and deduce that as x runs through the integers 0, 1, 2, . . . , p − 1,
then ax runs through the same integers in some order, each integer occurring
exactly once. From this, conclude that ax ≡ b has exactly one solution,
modulo p, for each integer b, and that in particular, a has a unique reciprocal
modulo p.
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Exercise 2.3. Return to the congruence x2 − r2y2 ≡ 1, where r 	≡ 0 (mod p).
Suppose u and v are reciprocals modulo p, i.e., u and v are not congruent to 0 and
uv ≡ 1. Prove that the system of two congruences

x − ry ≡ u,

x + ry ≡ v,

is uniquely solvable for x and y (mod p), and deduce that there is a one-to-one
correspondence between solutions of x2 −r2y2 ≡ 1 and pairs (u, v) of reciprocals,
modulo p. Conclude that #G(p, r2) � p −1. (#S means “ the number of elements
in the set S”.)

Exercise 2.4. There is a one-to-one correspondence between solutions (x, y) of
Pell’s congruence x2 − r2y2 ≡ 1 (mod p) and nonzero integers w given by

(x, y) ∼ w ≡ x − ry.

(a) Prove that if (x1, y1) ∼ w1 and (x2, y2) ∼ w2, then (x1, y1) ∗ (x2, y2) ∼
w1w2 where the product w1w2 is taken in Zp.

(b) Prove that every solution of x2 − r2y2 ≡ 1 (mod p) is a *-power of some
fundamental solution (x1, y1) if and only if (x1 − ry1)

k runs through all
the nonzero elements of Zp as k runs through the positive integers. (Such a
number x1 − ry1 is called a primitive root modulo p.) ♠

When d is not congruent to a square, modulo p, we cannot make use of a
factorization of x2 −dy2 to study the solutions of the Pell’s congruence x2 −dy2 ≡
1. However, this strategy can be adapted. For any nonzero element a in Zp, we
define a−1 to be the reciprocal of a, i.e., the unique element c for which ac ≡ 1
(mod p). Such an element is called the (multiplicative) inverse a.

Exercise 2.5.
(a) Prove that (ab)−1 ≡ b−1a−1 (mod p).
(b) Suppose that x2 − dy2 ≡ 1 (mod p) with y 	≡ 0. Verify that this is equivalent

to

(xy−1 − y−1)(xy−1 + y−1) ≡ d (mod p).

(c) Suppose that xy−1 − y−1 ≡ w. Verify that w is a nonzero element in Zp and
that xy−1 + y−1 ≡ dw−1.

(d) Given a nonzero element w in Zp, we wish to show that the system

xy−1 − y−1 ≡ w,

xy−1 + y−1 ≡ dw−1,
(1)

is uniquely solvable for x and y. Rewrite the system as

x − wy ≡ 1,

x − dw−1y ≡ −1.
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This is a linear system of congruences in x and y that can be solved by
eliminating one of the variables. Verify that elimination of y leads to

(d − w2)x ≡ d + w2,

while elimination of x leads to

(d − w2)y ≡ 2w.

(e) Suppose that d is not the square of any element in Zp. Argue that the system
(1) is solvable for any nonzero element w and that such a solution is given by

x ≡ (d + w2)(d − w2)−1,

y ≡ 2w(d − w2)−1.

Deduce that there are p − 1 solutions (x, y) of Pell’s congruence for which
y 	≡ 0.

(f) Suppose that d ≡ r2 for some nonzero element r in Zp. Let s ∈ Zp be such
that s2 ≡ r2. Show that 0 ≡ (s − r)(s + r) and deduce that p divides either
s − r or s + r , so that the only square roots of d modulo p are r and p − r .

(g) Prove that when d ≡ r2, the system (1) is solvable for x and y for any nonzero
w in Zp except for r and p − r . Deduce that there are p − 3 solutions (x, y)

for Pell’s congruence for which y 	≡ 0.

Exercise 2.6. Go through the process of Exercise 2.5 to find solutions of the
congruences x2 − 2y2 ≡ 1 and x2 − 3y2 ≡ 1, modulo 11.

Exercise 2.7. The only remaining case to consider is y ≡ 0, and then we can
count the solutions to Pell’s equation.
(a) Show that if x2 − dy2 ≡ 1 and y ≡ 0 (mod p), then x ≡ 1 or x ≡ p − 1.
(b) Deduce from (a) and Exercises 2.3 and 2.5 that the number of elements of

G(p, d) is given by

#G(p, d) �





p − 1, if d is a nonzero square (mod p);
p + 1, if d is not a square (mod p);
2, if d ≡ 0 (mod p).

9.3 The Structure of Zp

We digress from our study of Pell’s congruence to record some basic facts about
Zp.

A polynomial over Zp is an expression of the form

ant
n + an−1t

n−1 + · · · + a1t + a0,

where t is a variable and ai belongs to Zp for each i. When an 	≡ 0, n is the degree
of the polynomial.
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Our goal is to show that there is a nonzero element of Zp such that every nonzero
element of this set is a power of it.

Exercises 3.1. Suppose that a, b and c are any elements of Zp.
(a) Verify that a + b ≡ b + a, ab ≡ ba, (a + b)c ≡ ac + bc, (a + b) + c ≡

a + (b + c), and (ab)c ≡ a(bc).
(b) Write −a for p − a. Verify that a + (−a) ≡ 0.
(c) Verify that 0 + a ≡ a, 0 · a ≡ 0, and 1 · a ≡ a.
(d) Suppose that ab ≡ 0. Prove that either a ≡ 0 or b ≡ 0.

Exercise 3.2. Let f (t) be a polynomial over Zp, and suppose that a ∈ Zp. In
exactly the same way as for polynomials with real coefficients, we can divide f (t)

by t − a to get a presentation of the form

f (t) ≡ (t − a)q(t) + r,

where r is an element of Zp called the remainder.
(a) Verify that in Z11,

t3 + 7t2 + 2t + 3 ≡ (t − 5)(t2 + t + 7) + 5.

(b) Remainder theorem. Prove that the remainder when f (t) is divided by t − a,
is congruent to f (a).

(c) Factor theorem. Prove that a is a root of f (t) modulo p (i.e., p(a) ≡ 0) if
and only if t − a is a factor of f (t).

(d) Suppose that k is the degree of the polynomial f (t) and that a1, a2, . . . , ar

are pairwise incongruent roots of f (t). Prove that

f (t) ≡ (t − a1)(t − a2) · · · (t − ar)q(t)

for some polynomial q(t) of degree k − r , so that in particular, the number
of incongruent roots of f (t) cannot exceed k.

Exercise 3.3. Little Fermat Theorem. Observe that when a 	≡ 0 (mod p),
the set {a, 2a, 3a, . . . , (p − 1)a} is, modulo p, a rearrangement of the set
{1, 2, 3, . . . , p − 1}. Deduce that

(p − 1)!ap−1 ≡ (p − 1)! (mod p)

and that ap−1 ≡ 1 (mod p).

Exercise 3.4. Prove that tp−1 − 1 ≡ (t − 1)(t − 2) · · · (t − p − 1
)
.

Exercise 3.5.
(a) For each of the nonzero members a in Z11 determine the smallest number k

for which ak ≡ 1 (mod 11).
(b) Answer (a) with 11 replaced by 13.
(c) In (a) and (b), how is k related to the primes 11 and 13, respectively?
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Exercise 3.6. Let a 	≡ 0 (mod p), and suppose that k is the smallest positive
integer for which ak ≡ 1 (mod p). We say that “a belongs to the exponent k

modulo p.” Prove that k is a divisor of p − 1. ♠

In the next few exercises we show that whenever k is a positive divisor of p − 1,
there is some number a ∈ Zp for which ak ≡ 1. To attain this, we define Euler’s
totient function φ(m).

For any positive integer m, φ(m) is the number of positive integers x not ex-
ceeding m for which the greatest common divisor of x and m is equal to 1 (i.e., x

and m are relatively prime).

Exercise 3.7.
(a) Verify that φ(2r ) � 2r−1 for positive integer r .
(b) Verify that for an odd prime p, φ(p) � φ(2p) � p − 1 and φ(pr) �

pr − pr−1 when r ≥ 2.
(c) Verify that φ(6) � 2 and that φ(10) � φ(12) � 4.
(d) When does φ(m) assume an odd value?

Exercise 3.8. Verify that

12 � φ(1) + φ(2) + φ(3) + φ(4) + φ(6) + φ(12).

Make a conjecture and test it for integers other than 12.

Exercise 3.9. Prove that for each positive integer m,

m �
∑

{φ(k) : k is a positive divisor of m}.

Exercise 3.10. Let k be a positive divisor of p − 1.
(a) Prove that tp−1 − 1 ≡ (tk − 1)q(t), where q(t) is a polynomial over Zp of

degree p − 1 − k with (p − 1)/k terms, each a power of tk .
(b) Observe that tp−1 − 1 has exactly p − 1 roots in Zp, while q(t) has at most

p − 1 − k roots. If ak ≡ 1, show that q(a) 	≡ 0. Deduce that there are exactly
k elements of Zp for which ak ≡ 1.

Exercise 3.11. Suppose that a ∈ Zp and a belongs to the exponent k. Prove that
there are exactly φ(k) powers of a that belong to the exponent k, and that these
are the only elements of Zp that belong to the exponent k.

Exercise 3.12. Suppose that k is a divisor of p − 1. Define ψ(k) to be the number
of elements in Zp that belong to the exponent k. Observe, that by Exercise 3.11,
if ψ(k) > 0, then ψ(k) � φ(k).
(a) Prove that

p − 1 �
∑

{ψ(k) : k is a positive divisor of p}.
(b) Note that ψ(k) ≤ φ(k) for each k, and deduce from Exercise 3.9 and (a) that

in fact ψ(k) � φ(k) for every divisor k of p − 1.
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(c) In particular, deduce that Zp contains exactly φ(p−1) elements g that belong
to the exponent p−1. Such an element g is called a primitive root modulo p.

Exercise 3.13.
(a) Prove that Zp � {0, g, g2, . . . , gp−1} whenever g is a primitive root.
(b) Determine all the primitive roots modulo 3, 5, 7, 11, and 13.

Exercise 3.14. Suppose that r is a nonzero element of Zp. Prove that there is a
solution (x, y) ≡ (u, v) of Pell’s congruence x2 − r2y2 ≡ 1 such that all the
distinct solutions are given by

(x, y) ≡ (u, v)k,

where 0 ≤ k ≤ p − 1.

Exercise 3.15. We can use primitive roots to provide an explicit representation of
the solutions of x2 − r2y2 ≡ 1. Select (x1, y1) ∈ G(p, r2) such that

x1 + ry1 ≡ g,

x1 − ry1 ≡ g−1.

(a) Verify that x1 � 2−1(g + g−1) and y1 � (2r)−1(g − g−1).
(b) If (xn, yn) � (x1, y1)

n, prove that

xn ≡ 2−1(gn + g−n),

yn ≡ (2r)−1(gn − g−n),

where g−n means (g−1)n, and is the inverse of gn.
(c) Check (a) and (b) in the special cases that p is equal to 11 and 13.

9.4 The Structure of G(p, d)

As in the previous section, p is an odd prime and d is a positive integer not
exceeding p − 1. This section relies on results about Chebyshev polynomials
obtained in Section 3.4.

Exercises 4.1. Suppose that x2 − dy2 ≡ 1 is satisfied by (x, y) ≡ (u, v). Define
(un, vn) ≡ (u, v)n for each positive integer n. Prove that

(xn, vn) ≡ (Tn(u), vUn(u)),

where Tn and Un denote Chebyshev polynomials of the first and second kinds.
Thus, given a solution of Pell’s congruence, we have obtained a representation of
other solutions.

Exercise 4.2. Verify that the solutions of x2 − 2y2 ≡ 1 mod 11 are given by
(x, y) ≡ (Tn(3), 2Un(3)), where n runs over the positive integers from 1 to 12,
inclusive.
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Exercise 4.3. The set G(p, d) is a finite set of pairs of elements from Zp. Let
(u, v) be one of these.
(a) With −v denoting p − v, verify that (u, −v) ∈ G(p, d) and that (u, v) ∗

(u, −v) ≡ (1, 0).
(b) Observe that at most finitely many powers (u, v)k are distinct, and deduce

that there is a positive integer m for which (u, v)m ≡ (1, 0).
(c) Let (u, v) belong to the exponent m, so that m is the smallest positive integer

for which (u, v)m ≡ (1, 0). Define (ui, vi) ≡ (u, v)i for 1 ≤ i ≤ m. Prove
that each ui occurs exactly twice unless ui ≡ 1 or ui ≡ p − 1, and that
vm−i ≡ −vi .

(d) With the notation of (c), verify that (ui, vi)
m ≡ (1, 0). ♠

The result that we are heading for is that G(p, d) consists of the *-powers of
a “generating element.” We shall follow the strategy used in Section 9.3 to show
that there is a primitive root modulo p. We show that the number of elements of
G(p, d) belonging to the exponent m does not exceed φ(m) for each m.

Exercise 4.4. Suppose that (u, v) ∈ G(p, d) has v 	≡ 0 and belongs to an even
exponent 2k.
(a) Deduce that T2k(u) ≡ 1 and so, from Exercise 3.4.6, Uk(u) ≡ 0.
(b) Regard Uk(t) as a polynomial over Zp. Observe that its degree is exactly k −1

and deduce that it has at most k − 1 roots in Zp.
(c) With (ui, vi) ≡ (u, v)i for 1 ≤ i ≤ 2k, prove that T2k(ui) ≡ 1 for each i,

so that either ui ≡ 1, ui ≡ p − 1, or ui is a root of Uk(t). Deduce that each
root of Uk(t) appears among the ui .

(d) Show that the only elements in G(p, d) that belong to the exponent 2k are
(ui, vi), where gcd(i, 2k) � 1.

Exercise 4.5. Suppose the (u, v) ∈ G(p, d) has v 	≡ 0 and belongs to an odd
exponent 2k + 1.
(a) Deduce that (Uk+1 + Uk)(u) ≡ 0.
(b) Regarding (Uk+1 + Uk)(t) as a polynomial over Zp, prove that its degree is

exactly k and that it has at most k roots in Zp.
(c) With (ui, vi) ≡ (u, v)i for 1 ≤ i ≤ 2k, prove that Tk(ui) ≡ 1 for each i, so

that (Uk+1 + Uk)(ui) ≡ 0 for each i.
(d) Deduce that each root of (Uk+1 + Uk)(t) appears among the ui .
(e) Show that the only elements in G(p, d) that belong to the exponent 2k + 1

are (ui, vi), where gcd(i, 2k + 1) � 1.

Exercise 4.6. Deduce from Exercises 4.4 and 4.5 that if for some positive integer
m there is a solution (u, v) ∈ G(p, d) that belongs to the exponent m, then there
are exactly φ(m) such solutions, namely (u, v)i with i and m relatively prime.
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Exercise 4.7. We show that if (u, v) ∈ G(p, d) belongs to the exponent m, then
m must divide #G(p, d), the number of elements in G(p, d). Let S1 be the set

{(u, v)i : 1 ≤ i ≤ m}.
We form a finite family of sets S1, S2, . . . , Sh that partition G(p, d) as follows.

Suppose that S1, S2, . . . , Si have already been selected. If they do not exhaust
G(p, d), select an element (a, b) of G(p, d) not already included in any of the
sets chosen so far and define

Si+1 � {(a, b) ∗ (u, v)j : 1 ≤ j ≤ m}.
Observe that (a, b) belongs to Si+1.

(a) Go through this process in the case of G(11, 2) and the elements (u, v) �
(0, 4) and (u, v) � (5, 1).

(b) Prove that each Si contains m distinct objects.
(c) Prove that the Si are pairwise disjoint.
(d) Note that G(p, d) is the union of finitely many pairwise disjoint sets Si , each

with the same number of elements, and deduce that m divides G(p, d).

Exercise 4.8. Suppose that G(p, d) has n elements. For each positive integer m,
let f (m) be the number of elements of G(p, d) that belong to the exponent m, so
that in particular, f (m) � 0 when m is not a divisor of p − 1.
(a) Prove that f (1) � f (2) � 1.
(b) Prove that

n �
∑

{f (m) : m is a divisor of n}.
(c) Deduce from (b) and Exercise 4.6 that f (m) � φ(m) for each divisor of n.
(d) Prove that G(p, d) � {(u, v)i : 1 ≤ i ≤ n} for a suitable one (u, v) of its

elements.

9.5 Pell’s Congruence Modulo a Prime Power

Let p be a prime and a any positive integer. We now turn to the set G(pa, d) of
incongruent solutions to Pell’s congruence x2 − dy2 ≡ 1 modulo the power pa

of a prime p.

Exercise 5.1.
(a) Determine the set G(3, 2).
(b) Consider the congruence x2 − 5y2 ≡ 1 (mod 9). Verify that each solution in

fact satisfies x2 − 2y2 ≡ 1 (mod 3).
(c) Write down, modulo 9, all the solutions of x2 − 2y2 ≡ 1 (mod 3) and check

which of them satisfy x2 − 5y2 ≡ 1 (mod 9).
(d) Determine G(9, 2).
(e) Determine G(27, 2) and G(27, 5).
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Exercise 5.2. Let p be an odd prime and let a ≥ 2. Any solution of x2 − dy2 ≡ 1
(mod pa) must satisfy x2 − dy2 ≡ 1 (mod pa−1). Accordingly, to find G(pa, d),
we should first determine G(pa−1, d) and then see which solutions “can be lifted”
to solutions in G(pa, d). Suppose that

u2 − dv2 ≡ 1 (mod pa−1).

This means that there is an integer c such that u2 − dv2 � 1 + cpa−1. Let
w � u + spa−1 and z � v + tpa−1 for integers s and t . Then w2 − dz2 ≡ 1
(mod pa−1).
(a) Determine conditions on s and t to ensure that

w2 − dz2 ≡ 1 (mod pa).

(b) Prove that there are p incongruent pairs (s, t), modulo p, such that the
condition in (b) is satisfied.

(c) Deduce that #G(pa, d) � p#G(pa−1, d) � pa−1#G(p, d).

9.6 Explorations

Exploration 9.1. What can be said about the number of elements in G(2a, d)?
Does G(2a, d) even contain an element whose ∗-powers constitute the whole of
the set?

Exploration 9.2. Examine the structure of G(pa, d) for p an odd prime and
a ≥ 2. For the case a � 2 and d a perfect square, it can be shown that G(p2, d)

consists of all the *-powers of one of its elements by reference to the primitive
root theorem for squares of primes. The primitive root theorem says that there is
a number g such that each number m relatively prime to p is congruent to some
power gk of g (mod p2). There are φ(p2) � p2 −p numbers m relatively prime to
p for which 1 ≤ m ≤ p2 −1, and these can be put into one-to-one correspondence
with the p2 − p elements of G(p2, d), following the strategy of Exercises 2.4 and
3.14.

A tool for accessing higher powers of p is Hensel’s lemma. Let p be a prime
and let f (t) be a polynomial with integer coefficients. Suppose u1 is an integer
for which f (u1) ≡ 0 and f ′(u1) 	≡ 0 modulo p. Then for each positive integer
k, there is a unique integer uk satisfying 0 ≤ uk < pk , uk ≡ u1 (mod p), and
f (uk) ≡ 0 (mod pk).

The theory of primitive roots, modulo a prime, can be found in many standard
number theory texts. For a brief introduction to Hensel’s lemma, consult E.J. Bar-
beau, Polynomials, Springer, New York, 1989, 1995, Exploration E.33 in Section
3.4.

Exploration 9.3. The fundamental solution of x2 − 2y2 � 1 is (3, 2), and the
complete set of solutions of the congruence with x positive is given by the ∗-powers
of (3, 2). If we reduce these solutions, modulo m, for which values of m do we
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obtain a complete set of solutions of the congruence x2 − 2y2 ≡ 1 (mod m). If
m is prime, to which exponent does (3, 2) belong? Look at this issue when 2 is
replaced by other nonsquare numbers d.

9.7 Hints

2.3. Add and subtract the two congruences to get congruences that each involve
just one variable. Proceed as though you were solving ordinary equations.

3.4. By Exercise 3.3, each nonzero element of Zp is a root of tp−1 − 1. Now use
the factor theorem.

3.6. Write p − 1 � kq + r where, q and r are nonnegative integers and 0 ≤ r ≤
k − 1. Use the fact that k is minimal and ap−1 ≡ (ak)qar .

3.9. The idea is to regard the right side of the equation as a count of the set of
integers {1, 2, . . . , m − 1, m}. Let u be one of these and let k be the greatest
common divisor of u and m. Observe that u/k and m/k are relatively prime. Note
that

∑
φ(k) � ∑

φ(m/k) with both sums taken over the positive divisors of m.

3.11. k must be a divisor of p − 1, so tk − 1 has exactly k roots. Prove that these
must be 1, a, a2, . . . , ak−1 (check that these are all incongruent). Suppose b � ar

is one of these. Prove that k is the smallest exponent for which bk ≡ 1 if and only
if r and k are relatively prime.

5.3(b). Argue that there must be two equal *-powers (u, v)r and (u, v)s with
0 < r < s. Multiply each side of the equation (u, v)r � (u, v)s r times by
(u, −v).
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Chapter 1

1.1(a). The point E can be obtained by folding the square along the bisector of
angle BAC, so that AB is folded onto the diagonal with B landing on E. If F is
the point where the bisector intersects BC, then BF folds to EF . Thus EF ⊥ AC

and BF � EF . Since ∠EFC � 45◦ � ∠ECF , FE � EC.

1.1(b). |FC| � |BC| − |BF | � |AE| − |CE| � 2|AE| − |AC| and |EC| �
|AC| − |AE| � |AC| − |BC|.
1.3(a).

n pn qn rn

1 1 1 1
2 3 2 3/2 � 1.5
3 7 5 7/5 � 1.4
4 17 12 17/12 � 1.416666
5 41 29 41/29 � 1.413793

1.3(c). Clearly, rn > 1 for each n, so that from (b), rn+1 − rn and rn − rn−1 have
opposite signs and

|rn+1 − rn| <
1

4
|rn − rn−1|.

Since r2 > 1 � r1, it follows that r1 < r3 < r2. Suppose as an induction
hypothesis that

r1 < r3 < · · · < r2m−1 < r2m < · · · < r2.

Then 0 < r2m − r2m+1 < r2m − r2m−1 and 0 < r2m+2 − r2m+1 < r2m − r2m+1,
so that r2m−1 < r2m+1 < r2m+2 < r2m. Let k, l be any positive integers. Then, for
m > k, l, r2k+1 < r2m−1 < r2m < r2l .

1.3(d). Let α be the least upper bound (i.e., the smallest number at least as great as
all) of the numbers in the set {r1, r3, r5, . . . , r2k+1, . . .}. Then r2m−1 ≤ α ≤ r2m

139
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Figure 1.3.

for each positive integer m, so that |α − r2m−1| and |α − r2m| are both less than

|r2m − r2m−1| ≤ 1

42(m−1)
|r2 − r1| � 1

24m−3
.

It follows that limn→∞ rn � limn→∞ rn−1 � α. Taking limits in the recursion in
(d) leads to

α � 1 + 1

1 + α
,

which reduces to α2 � 2. Since rn > 0 for each n, α > 0.

1.4(c). 347/19 � 18 + 1/3 + 1/1 + 1/4.

1.4(d). Since
√

2 � 1 + (
√

2 − 1) � 1 + 1/1 + √
2, it follows that the process

does not terminate, since we can always replace the final 1 + √
2 by 2 + 1/1 + √

2
to get the continued fraction in Exercise 1.3.

1.7(b). This can be established from Exercise 1.5(a) by induction.

1.7(c). For each positive integer k, let p2k � xk and q2k � 2yk . Then, from
Exercise 1.5(b), x2

k − 8y2
k � p2

2k − 2q2
2k � 1.

1.7(d). If x2 − 8y2 � −1, then x would have to be odd. But then x2 ≡ 1 (mod
8), yielding a contradiction.

2.4(a). Since qn + qn−1 � (qn − qn−1) + 2qn−1 � pn−1 + (pn − pn−1) � pn,
pn(qn − qn−1) � pnpn−1 � pn−1(qn + qn−1).

2.4(b). From Exercise 2.3(c),

pn+1qn+1 � 4pnqn + 2(pnqn−1 + pn−1qn) + pn−1qn−1

� 4pnqn + 2(pnqn − pn−1qn−1) + pn−1qn−1 � 6pnqn − pn−1qn−1.

3.1(b). Yes. It suffices to consider the case for which the greatest common divisor
of a, b, c is 1. Since each odd square leaves a remainer 1 and no square leaves a
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remainder 2 upon division by 4, both of a and b cannot be odd. Suppose b is even
and a is odd. Then b2 � (c − a)(c + a) expresses b as the product of two even
divisors whose greatest common divisor is 2. Thus, there are integers m and n for
which c + a � 2m2 and c − a � 2n2, and the result holds.

3.2(a). 2mn − (m2 − n2) � 1 can be rewritten (m + n)2 − 2m2 � 1, while
(m2 − n2) − 2mn � 1 can be rewritten (m − n)2 − 2n2 � 1. We obtain Pell’s
equation x2 − 2y2 � 1, where (x, y) � (m + n, m), (m, n) � (y, x − y), and
(x, y) � (m − n, n), (m, n) � (x + y, y).

3.2(b). (m, n) � (2, 1) gives the triple (3, 4, 5), while (m, n) � (5, 2) gives the
triple (21, 20, 29).

3.2(c). For example, (x, y) � (17, 12) leads ultimately to the triples (119, 120,
169) and (697, 696, 985).

3.3. (a + c)2 + (a + c + 1)2 − (2a + c + 1)2 � 1 − [
a2 + (a + 1)2 − c2

]
.

3.4(a).

q2
n+1 − q2

n − 2qn+1qn � (qn+1 − 2qn)qn+1 − q2
n � qn−1qn+1 − q2

n

� qn−1(2qn + qn−1) − qn(2qn−1 + qn−2)

� q2
n−1 − qnqn−2

� · · · � (−1)n(q2
1 − q0q2) � (−1)n.

3.5. 2mn − (m2 − n2) � 7 can be rewritten (n + m)2 − 2m2 � 7, and
(m2 − n2) − 2mn � 7 as (m − n)2 − 2n2 � 7. The equation x2 − 2y2 �
7 is satisfied by (|x|, |y|)] � (3, 1), (13, 9), (75, 53), and these yield the
triples (−3, 4, 5), (8, 15, 17), (65, 72, 97), (396, 403, 565), (2325, 2332, 3293),
(13568, 13575, 19193).

3.6. Let a2 + b2 � c2, p2 + q2 � r2 with p � a + 3, q � b + 3, and r � c + 4.
Then we must have 3a + 3b + 1 � 4c. Taking (a, b, c) � (m2 − n2, 2mn, m2 +
n2), we are led to (m − 3n)2 − 2n2 � 1. Suppose that x � m − 3n and y � n.
Then x2 − 2y2 � 1. Some solutions are

(x, y) � (3, 2), (−3, 2), (17, 12), (−17, 12),

which give rise to

(m, n) � (9, 2), (3, 2), (53, 12), (19, 12).

Thus we have some examples:

[(a, b, c), (p, q, r)] � [(77, 36, 85), (80, 39, 89)], [(5, 12, 13), (8, 15, 17)],

[(2665, 1272, 2953), (2668, 1275, 2957)],

[(217, 456, 505), (220, 459, 509)].
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Comments on the Explorations

Exploration 1.2. If x2 − 2y2 � ±2, then x would have to be even, say
x � 2z, so that y2 − 2z2 � ∓1. The equation x2 − 2y2 � 2 is satis-
fied by (x, y) � (2, 1), (10, 7), (58, 41), and x2 − 2y2 � −2 by (x, y) �
(4, 3), (24, 17), (140, 99). As for x2 − 2y2 � 3, if y is even, then x2 ≡ 3 (mod
8), while if y is odd, then x2 ≡ 5 (mod 8); neither congruence for x2 is realizable.
A similar argument shows the impossibility of x2 − 2y2 ≡ −3.

Exploration 1.3. We have to solve the equation x2 − 3y2 � 1, where x � 2u is
even and y � 2v + 1 is odd. The following table gives the first few triangles of
the required type:

(x, y) (v, v + 1, u)

(26, 15) (7, 8, 13)
(362, 209) (104, 105, 181)
(5042, 2911) (1455, 1456, 2521)
(70226, 40545) (20272, 20273, 35113)
(978122, 564719) (282359, 282360, 489061)

Observe that the equation satisfied by u and v implies that (v + 1)3 − v3 � u2. It
is known from this that u must be the sum of two consecutive squares. (See Power
Play by E.J. Barbeau (MAA, 1997) pages 7, 8, 11 for a proof of this.)

13 � 22 + 32,

181 � 92 + 102,

2521 � 352 + 362,

35113 � 1322 + 1332,

489061 � 4942 + 4952.

Adding together the consecutive roots of the squares in each right side gives the
sequence {5, 19, 71, 265, 981, . . .}, which satisfies the recursion tn+1 � 4tn −
tn−1. The terms of the sequence are sums of the consecutive terms of a second
sequence {1, 4, 15, 56, 209, . . .} that satisfies the same recursion. The values of y

when x2 −3y2 � 1 are not only found among its terms, but the numbers x and y are
intricately related in other ways. For example, (5042, 2911) � (712+1, 562−15).
Is there something here that can be generalized?

Exploration 1.4. This exploration can be approached in various ways. For x2 +
mx ± n to be factorizable, the discriminants m2 ∓ 4n must be integer squares,
say m2 − 4n � u2 and m2 + 4n � v2. In particular, we need u2 + v2 � 2m2.
We can achieve this if m2 � p2 + q2. Then 2m2 � (p + q)2 + (p − q)2, so
we can try u � p − q and v � p + q. This leads to n � pq/2. Thus we can
find polynomials involving any number m whose square is the sum of two squares.
Since m is thus the largest of a Pythagorean triple, we can let m � γ (α2 + β2),
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p � γ (α2 − β2), and q � 2γαβ. Then n � pq/2 � γ 2αβ(α2 − β2). This leads
to

x2 + mx + n � (x + γα(α − β))(x + γβ(α + β)),

x2 + mx − n � (x + γα(α + β))(x − γβ(α − β)).

Alternatively, we need to find numbers a, b, c, d for which (x + a)(x + b) �
(x − c)(y + d). This yields m � a + b � d − c and n � ab � cd . Substituting
d � ab/c into the first equation gives c2 + (a + b)c − ab � 0 with discriminant
(a + 3b)2 − 8b2. If this is the square of w, then

8b2 � (a + 3b)2 − w2 � (a + 3b + w)(a + 3b − w).

To construct possibilities, let b be chosen arbitrarily and write 8b2 � (2r)(2s).
Then solving a + 3b + w � 2r , a + 3b − w � 2s gives a + 3b � r + s and
w � r − s, leading to the possibilities

(a, b, c, d) � (r + s − 3b, b, b − s, r − b),

(m, n) � (r + s − 2b, b(r + s) − 3b2).

Thus

x2 + mx + n � (x + b)(x + r + s − 3b)

and

x2 + mx − n � (x + s − b)(x + r − b).

Pell’s equation is at the heart of a third approach. With m2 − 4n � u2 and
m2 + 4n � v2, we obtain v2 − 2m2 � −u2. We could take, for example, u � 1.
A possible solution is (u, v, m) � (1, 41, 29), leading to n � 210 and

x2 + 29x + 210 � (x + 15)(x + 14) and x2 + 29x − 210 � (x + 35)(x − 6).

Exploration 1.5. Note the following chain of equivalent equations:

[k(m2 − n2) + a]2 + [2kmn + a]2 � [k(m2 + n2) + (a + 1)]2,

a2 − 2a − 1 � 2km2 − 4akmn + (4ak + 2k)n2,

(a − 1)2 − 2 � 2k[(m − an)2 − (a2 − 2a − 1)n2],

(a − 1)2 − 2

2k
� (m − an)2 − (a2 − 2a − 1)n2.

If k � 1, we get

(a − 1)2

2
− 1 � (m − an)2 − ((a − 1)2 − 2)n2.

For example, if a � 11, we are led to 49 � (m − 11n)2 − 98n2. Thus, (m, n) �
(7, 0) leads to the pair {(0, 49, 49), (11, 60, 61)}, and (m, n) � (77, 70) to
{(1029, 10780, 10829), (1040, 10791, 10841)}.
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Suppose that a � 2b + 1 and k � 2b2 − 1. Then we get the equation

1 � (m − an)2 − (4b2 − 2)n2,

which is satisfied by (m, n) � (2b + 1, 2b) and (8b2 + 2b − 1, 2b). The first of
these yields the two triples

(8b3 + 2b2 − 4b − 1, 16b4 + 8b3 − 8b2 − 4b, 16b4 + 8b3 − 6b2 − 4b − 1),

(8b3 + 2b2 − 2b, 16b4 + 8b3 − 8b2 − 2b + 1, 16b4 + 8b3 − 6b2 − 2b + 1).

Chapter 2

1.1. For 1, (x, y, m, n) � (3, 1, 1, 1), and for 36, (x, y, m, n) � (17, 6, 6, 8).
Another possibility is (x, y, m, n) � (99, 35, 35, 49), yielding the square and
triangular number 1225 � 352 � 1 + 2 + · · · + 49. The values of n are, in fact
1, 8 � 32 − 1, 49 � 72, 288 � 172 − 1, 1681 � 412, . . ..

1.2. 1
2 n(n + 1) + 1 � m2 can be rewritten (2n + 1)2 − 8m2 � −7. Some

solutions are (m, n) � (1, 0), (2, 2), (4, 5), (11, 15), (23, 32), (64, 90). Also,
1
2 n(n + 1) − 1 � m2 can be rewritten as (2n + 1)2 − 8m2 � 9. Some soutions
are (m, n) � (0, 1), (3, 4), (18, 25), (105, 148).

1.3. The product of 1
2 (n − 1)n, 1

2 n(n + 1) and 1
2 (n + 1)(n + 2) is a

square if and only if 1
2 (n − 1)(n + 2) � m2 for some integer m. This

can be rewritten as (2n + 1)2 − 8m2 � 9. Some solutions are (m, n) �
(0, 1), (3, 4), (18, 25), (105, 148), (612, 865).

1.4. The sum of 1
2 (n − 1)n, 1

2 n(n + 1) and 1
2 (n + 1)(n + 2) is a square if and

only if 3n2 + 3n + 2 � 2m2 for some integer m. This can be rewritten as (4m)2 −
6(2n + 1)2 � 10. Some solutions are (m, n) � (2, 1), (8, 6), (19, 15), (79, 64).

1.5. The condition is that n(n+1) � 2m(m+1) or (2n+1)2 −2(2m+1)2 � −1.
Some solutions are (m, n) � (2, 3), (14, 20), (84, 119).

1.6. We obtain n(n + 1) − m(m − 1) � 2mn, which, after multiplication by 4
and some manipulation, leads to p2 − 8n2 � 1 with p � 2m + 2n − 1. Some
solutions are

(p, m, n)� (3, 1, 1), (17, 3, 6), (99, 15, 35), (577, 85, 204), (3363, 493, 1189).

If (mk, nk) is the kth solution, then

(mk+1, nk+1) � (6mk − mk−1 − 2, 6nk − nk−1) � (mk + 2nk, 2mk + 5nk − 1).

2.1. The condition on a and b is a(b + 1) � (a − b)(a − b − 1), which reduces to
0 � a2 −3ab+b2 −2a +b. We set this up for completing the square. Multiplying
the equation by 4 leads to

0 � (2a − 3b − 2)2 − (5b2 + 8b + 4).
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To complete the square for the second term on the right, multiply the equation by
5 to obtain

0 � 5(2a − 3b − 2)2 − (25b2 + 40b + 20) � 5(2a − 3b − 2)2 − (5b + 4)2 − 4.

Thus, we need to solve x2 −5y2 � −4, where x � 5b+4, y � 2a −3b−2. Two
solutions are (x, y) � (29, 13) and (9349, 4181), which lead to (a, b) � (15, 5)

and (4895, 1869).

2.2. Of the
(
n

2

)
ways of drawing a pair of marbles, r(n − r) will produce marbles

of different colors. We require n(n − 1) � 4r(n − r). While this could be cast
as a Pell’s equation, in this case it is more convenient to render it in the form
n � (n − 2r)2. Then n � m2 for some integer m, so that m2 − 2r � ±m. Thus

r � m2 ∓ m

2
�
(

m

2

)
or

(
m + 1

2

)
.

Each value of m actually yields a solution, so

(n, r) �
(

m2,

(
m

2

))
and

(
m2,

(
m + 1

2

))

covers all cases.

2.3(a). Suppose a + 1 � y2 and 3a + 1 � x2. Then x2 − 3y2 � −2, which is
satisfied by (x, y) � (1, 1). If (x, y) � (u, v) is a solution, then so is (x, y) �
(2u + 3v, u + 2v). This leads to a succession of solutions

(x, y) � (1, 1), (5, 3), (19, 11), (71, 41), (265, 153), (989, 571), . . .

whose corresponding values of a are 0, 8, 120, 1680, 23408, 326040, . . .. This
list extends to include all possibilities.

2.3(b) Let u0 � v0 � 1, a0 � 0, and for n ≥ 0, let

un+1 � 2un + 3vn, vn+1 � un + 2vn, an � v2
n − 1.

Playing around, we note that

8 × 5 × 3 � 120 − 0,

8 × 19 × 11 � 1680 − 8,

8 × 71 × 41 � 23408 − 120, . . . ,

8 × 120 + 1 � 312,

120 × 1680 + 1 � 4492,

1680 × 23408 + 1 � 62712, . . . ,

and

31 � 2×3×5+1, 449 � 2×11×19+31, 6271 � 2×42×71+449, . . . .

This leads to a number of conjectures:

an+1 − an−1 � 8unvn, (1)

anan+1 + 1 � [2(unvn + un−1vn−1 + · · · + u1v1) + 1]2, (2)
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for n ≥ 1. If (1) is true, then (2) is equivalent to

8unvnan + (anan−1 + 1) � 4u2
nv

2
n + 4unvn(2un−1vn−1 + · · · + 2u1v1 + 1)

+ [2(un−1vn−1 + · · · + u1v1) + 1]2

or

2an � unvn + 2un−1vn−1 + · · · + 2u1v1 + 1 (3)

for n ≥ 1. If (1) is true, then (3) is equivalent to

un+1vn+1 − 14unvn + un−1vn−1 � 0 (4)

for n ≥ 1.
It suffices then to establish (1) and (4). Since

(un−1, un, un+1) � (un−1, 2un−1 + 3vn−1, 7un−1 + 12vn−1)

and

(vn−1, vn, vn+1) � (vn−1, un−1 + 2vn−1, 4un−1 + 7vn−1),

then

(un−1vn−1, unvn, un+1vn+1) � (un−1vn−1, 2u2
n−1 + 7un−1vn−1 + 6v2

n−1,

28u2
n−1 + 97un−1vn−1 + 84v2

n−1),

whence (4) holds.
In a similar way, we establish that vn+1 � 4vn − vn−1, whence

an+1 − an−1 � (v2
n+1 − v2

n−1) � (vn+1 + vn−1)(vn+1 − vn−1)

� 4vn(vn+1 − vn−1) � 4vn(4un−1 + 6vn−1)

� 8vn(2un−1 + 3vn−1) � 8vnun,

as desired.
Combining (2) and (1) leads to

16(anan+1 + 1) � (an+1 + an − 4)2.

Since an+1 + an � 8b2
n, we have that anan+1 + 1 � (2b2

n − 1)2, where b0 � 1,
b1 � 4, bn+1 � 4bn − bn−1 for n ≥ 1. The reader may wish to establish this, as
well as an+2 � 14an+1 − an + 8 for n ≥ 1.

2.4. In particular, we require that 1 +b � 1
2 u(u+ 1) and 1 +b +b2 � 1

2 v(v + 1)

for some integers u and v. The second equation can be rewritten in the form
x2 − 2y2 � 7 with x � 2v + 1 and y � 2b + 1. These have solutions

(x, y; v, b) � (3, 1; 1, 0), (5, 3; 2, 1), (13, 9; 6, 4),

(27, 19; 13, 9), (75, 53; 37, 26), (157, 111; 78, 55), . . . .

Of the bases 4, 9, 26, 55, only 9 is one less than a triangular number. In fact, for
any number k of digits, the integer

(111 . . . 1)9 � 1 + 9 + · · · + 9k−1 � 9k − 1

8
� 1

2

[(
3k − 1

2

)(
3k + 1

2

)]
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is a triangular number. Whether any other bases b exist is an open question.

2.5.
∑n

k�1(2k)2 � 2n(n + 1)(2n + 1)/3, while
n∑

r�1

(m + r − 1)(m + r)

� 1

3

n∑

r�1

[(m + r − 1)(m + r)(m + r + 1)

− (m + r − 2)(m + r − 1)(m + r)]

� (m + n − 1)(m + n)(m + n + 1) − (m − 1)m(m + 1)

3

� nm2 + n2m + n3 − n

3
.

Equating the two leads to (n+1)2 � m(n+m), or n2 + [2(n+1)]2 � (2m+n)2.
From Exercise 1.3.1 we can determine positive integers z and y for which n �
y2 − z2 and n + 1 � yz. This leads to z2 + zy − y2 � 1, or x2 − 5y2 � 4, where
x � 2z + y.

(x, y) � (3, 1), (7, 3), (18, 8), (47, 21), (123, 55), (322, 144), (843, 377),

(m, n) � (1, 0), (4, 5), (25, 39), (169, 272), (1156, 1869),

(7921, 12815), (54289, 87840).

We note in passing the intervention of the Fibonacci sequence, with F0 � 0, F1 �
1 and Fn+1 � Fn + Fn−1 for n ≥ 1. The reader is invited to show that (y, z) �
(F2k, F2k−1), whereupon (m, n) � (F 2

2k−1, F2k−2F2k+1).

2.6. Subtracting twice the square of the second equation from the square of the
first equation yields

−32 � 4u2v2 − 2x2v2 − 2u2y2 + x2y2 � (x2 − 2u2)(y2 − 2v2).

Solving equations of the form x2 − 2u2 � ±2r , y2 − 2v2 � ∓2s , where r and
s are nonnegative integers summing to 5, and checking for extraneous solutions
leads to the result.

For example, the system x2 − 2u2 � 2, y2 − 2v2 � −16 along with the given
system is satisfied by

(x, y, u, v) � (2, −4, 1, 4), (10, 4, 7, 4), (2, −28, −1, 20).

Note that (|x|, |y|, |u|, |v|) � (10, 28, 7, 20) also satisfies the pair of Pell’s equa-
tions, but no adjustment of signs of the entries will yield a solution of the original
system.

The pair x2 − 2u2 � ±2r , y2 − 2v2 � ∓2s will arise from any system
2uv − xy � a, xv − uy � b for which a2 − 2b2 � −32. Each of a and b must be
divisible by 4; possible values are given by (|a|, |b|) � (0, 4), (16, 12), (96, 68).

2.7. 2x2 + (x ± 1)2 � w2 can be rewritten as (3x ± 1)2 − 3w2 � −2. Some
solutions are (3x ± 1, w) � (1, 1), (5, 3), (19, 11), (71, 41), (265, 153). Those
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corresponding to integer values of x give the quadruples

(x, y, z, w) � (0, 0, 1, 1), (2, 2, 1, 3), (6, 6, 7, 11),

(24, 24, 23, 41), (88, 88, 89, 153).

There are infinitely many others.

2.8. The condition on n is that (n + 1)(2n + 1) � 6m2 for some integer m. This
can be rewritten as (4n + 3)2 − 3(4m)2 � 1. Thus, we wish to find solutions of
x2 − 3y2 � 1 for which x + 1 and y are multiplies of 4. Two possibilities are
(x, y) � (7, 4), (1351, 780), leading to n � 1 and n � 337.

2.9. We can rewrite the equation in the form z2 − (1 + x2)y2 � x2, which has
the obvious solutions y � 0, z � x and x � 0, z � y. To find nonzero solutions,
try various values of x. For example, x � 1 leads to z2 − 2y2 � 1, x � 2 to
z2 − 5y2 � 4 and (x, y, z) � (2, 1, 3), (2, 8, 18), (2, 21, 47), and x � 3 to
z2 − 10y2 � 9 and (x, y, z) � (3, 18, 57). It is interesting to note that each term
of the triple (2, 8, 18) is twice a square. There are solutions for each value of x.

2.10. Let a � 1
2 (m3 + m2) − 1, b � 1

2 (m3 − m2) + 1, c � m2. Then 2s �
m3 + m2, so s − a � 1, s − b � m2 − 1, s − c � 1

2 (m3 − m2), and the area, �,
is 1

2 m2(m2 − 1). Again, let a � m3 − 1
2 (m − 1), b � m3 − 1

2 (m + 1), c � m.
Then s � m3, s − a � 1

2 (m − 1), s − b � 1
2 (m + 1), s − c � m(m2 − 1), so

that � � 1
2 m2(m2 − 1).

Suppose that 1
2 (m2 − 1) � n2. Then m2 − 2n2 � 1. This is satisfied, for

example, by (m, n) � (3, 2), (17, 12), which yields the triangles

(a, b, c; s, �) � (17, 10, 9; 18, 36), (26, 25, 3; 27, 36),

(2600, 2313, 289; 2601, 41616),

(4905, 4904, 17; 4913, 41616).

2.11(a). With � � √
s(s − a)(s − b)(s − c), we are led to 16�2 � 3t2(t2 − 4),

so that 3(t2 − 4) is an even square. Setting t � 2x, we see that 4 · 3(x2 − 1)

is a square. Hence 3(x2 − 1) must be square, and, being divisible by 3, have
the form 9y2. Hence x2 − 3y2 � 1. Some examples of triangles with integer
areas are (3, 4, 5), (13, 14, 15), (51, 52, 53), (193, 194, 195), (723, 724, 725),
(2701, 2702, 2703), (10083, 10084, 10085), (37633, 37634, 37635). See College
Mathematics Journal 29 (1998), 13–17.

2.11(b). � � 3yt/2, so that the length of the altitude is 3y. The side of length t is
partitioned into sides of lengths
√

(2x − 1)2 − (3y)2 �
√

(4x2 − 4x + 1) − 3(x2 − 1) �
√

x2 − 4x + 4

� x − 2

and
√

(2x + 1)2 − (3y)2 �
√

(4x2 + 4x + 1) − 3(x2 − 1) �
√

x2 + 4x + 4

� x + 2.
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2.12(a). By Pythagoras’ theorem

(ma + r)2 − [(ma − r)2 − q2] � (a ± q)2,

which reduces to 4mar � a2 ± 2aq.

2.12(b). 4c2 � (2p)2 + (2q)2, so that (2p)2 is an integer. Hence 2p must be an
integer.

2.12(c). With s � 1
2 (a + b + c) � ma + a

2 , we obtain
(

ap

2

)2

� a

(
m + 1

2

)
a

(
m − 1

2

)(
a

2
+ r

)(
a

2
− r

)
,

which leads to the desired equation.

2.12(d). An obvious solution to the equation in (c) is (p, t) � (0, r). Other
solutions are

(p, t) � ((4m2 − 1)r, 2mr), (4mr(4m2 − 1), (8m2 − 1)r).

This yields triangles

(a, b, c) � (4mr, (4m2 + 1)r, (4m2 − 1)r),

(2(8m2 − 1)r, (16m3 − 2m + 1)r, (16m3 − 2m − 1)r).

Other solutions appear. For example, (m, r) � (4, 3) leads to p2 − 63t2 � −567,
for which one solution is (p, t) � (21, 4) leading to the triangle (a, b, c) �
(8, 35, 29).

2.13. Solving n2 − 2m2 � 1 leads to the triples (8, 9, 10), (288, 289, 290), (9800,
9801, 9802), for example. Here are some other approaches:

(i) (u2, u2 + 1, 2v2), where u2 − 2v2 � −2, leading to (16, 17, 18), (576, 577,
578).

(ii) (4r2(r2 + 1), (2r2 + 1)2, 4r4 + 4r2 + 2), yielding (8, 9, 10), (80, 81, 82),
(360, 361, 362).

(iii) (n2, n2 + 1, (n − 1)2 + m2), where m2 � 2n + 1, yielding (16, 17, 18),
(144, 145, 146), (576, 577, 578).

Since no number congruent to 3, modulo 4, can be written as the sum of two
squares, triples of the required type must begin with a multiple of 4. Furthermore,
a number can be expressed as the sum of two squares if and only if no prime
congruent to 3, modulo 4, divides it to an odd power.

3.7. (1728148040)2 − 151(140634693)2 � 1 is equivalent to

151(140634693)2 � (1728148041)(1728148039).

Checking for divisibility by 151 yields 1728148039 � 151 × 11444689.
Checking for divisibility by 9, we find that 140634693 � 9 × 15626077 and
1728148041 � 92 × 21335161. Checking for other small prime divisors gives
15626077 � 17 × 919181 and 11444689 � 172 × 39601. To get a han-
dle on further divisions, we take the greatest common divisor of 919181 and
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39601: gcd(919181, 39601)=gcd(39601, 8358)=gcd(8358, 6169) = gcd(6169,
2189)=gcd(2189, 1791)=gcd(1791, 398)=gcd(398, 199) = 199, where gcd(x, y)

is the greatest common divisor of x and y. Accordingly,

151 × 1406346932 � 151 × (9 × 17 × 199 × 4619)2

and

1728148041 × 1728148039 � 92 × 21335161 × 151 × 172 × 1992.

Since 21335161 � 46192, we have finished our checking.
Since 122 + 132 � 313, 12686223682 − 313 × 71706852 � −1 is equivalent

to

1268623682 − 122 × 71706852 � 132 × 71706852 − 1,

or

1268623682 − 860482202 � 932189052 − 1,

or

212910588 × 40814148 � 93218906 × 93218904.

Now

212910588 � 22 × 32 × 11 × 537653,

40814148 � 22 × 3 × 3401179,

93218906 � 2 × 11 × 4237223,

93218904 � 23 × 33 × 431569.

The greatest common divisor of 537653 and 431569 is 2411, and we find that
537653 � 2411 × 223 and 431569 � 2411 × 179. Now verify that 4237223 �
223 × 19001 and 3401179 � 179 × 19001 to finish the checking.

3.10(b). 1 ≤ y ≤ 2z ⇒ z2 + 1 ≤ z2 + (2z/y) ≤ z2 + 2z, while −2z ≤ y ≤
−1 ⇒ z2 − 2z ≤ z2 + (2z/y) ≤ z2 − 1.

3.10(c). d � 3 can be covered by (y, z) � (1, 1), (−4, 2), (−1, 3), yield-
ing solutions (x, y) � (2, 1), (−7, −4), (−2, −1). d � 27 is covered
by (y, z) � (5, 5), yielding the solution (x, y) � (26, 5). d � 35 is
covered by (y, z) � (1, 5), (−12, 6), (−1, 7), yielding solutions (x, y) �
(6, 1), (−71, −12), (−6, −1). As for d � 45, we cannot have 45 � z2 + (2z/y)

for integers y and z, but we note that 45 � 32 × 5. Accordingly, we find (x, y)

such that x2 − 5y2 � 1 and y is divisible by 3. The method gives (x, y) � (9, 4),
but use of the identity in Exercise 3.4(a) leads to the solution (x, y) � (161, 72).
We find that (x, y) � (161, 24) satisfies x2 − 45y2 � 1.

3.10(d). The method does not work for d � 13, 19, 21, 22, 28, 29, 31, 41, 43, 44,
45, 46. However, 28 � 22 × 7 and 45 � 32 × 5, so we can get solutions in these
cases from the solutions for d � 7 and d � 5 respectively.
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Comments on the Explorations

Exploration 2.1. The sum of the first n terms is 2n2 − n, and this is square if and
only if (4n − 1)2 − 8m2 � 1 for some integer m. The smallest values of n are
1, 25, 841, 28561. These are all squares (of 1, 5, 29, 169) and appear to be squares
of terms qk for odd indices k.

Exploration 2.2. We are looking for triples (k, m, n) for which k(k + 1) · m(m +
1) � n(n + 1). This is equivalent to

x2 − k(k + 1)y2 � −k2 − k + 1, (1)

where x � 2n + 1 and y � 2m + 1. Take k as a parameter. Equation (1) has two
obvious solutions: (x, y) � (1, 1), (−1, 1). From the fact that

x2 − k(k + 1)y2 � 1 (2)

is satisfied by (x, y) � (2k + 1, 2), we deduce that if (x, y) � (u, v) satisfies
(1), then so also does (x, y) � ((2k + 1)u + 2k(k + 1)v, 2u + (2k + 1)v). Thus
(x, y) � (1, 1) gives rise to the solutions

(x, y) � (1, 1), (2k2+4k+1, 2k+3), (8k3+20k2+12k+1, 8k2+16k+5), . . . ,

while (x, y) � (−1, 1) yields

(x, y) � (−1, 1), (2k2 − 1, 2k − 1), (8k3 + 4k2 − 4k − 1, 8k2 − 3), . . . .

Using this, we can construct infinitely many oblong triples corresponding to each
value of k:

(k, mi, ni) � (k, 0, 0), (k, k + 1, k2 + 2k),

(k, 4k2 + 8k + 2, 4k3 + 10k2 + 6k), . . . ,

� (k, 0, −1), (k, k − 1, k2 − 1),

(k, 4k2 − 2, 4k3 + 2k2 − 2k − 1), . . . .

The sequences of {mi} and {ni} satisfy the recursion

tn � (4k + 2)tn−1 − tn−2 + 2k.

The solutions of the equations (1) appear to have some interesting linkages. For
example,

x2 − 2y2 � −1 is satisfied by (x, y) � (7, 5), (239, 169);
x2 − 6y2 � −5 is satisfied by (x, y) � (17, 7), (169, 69);

x2 − 12y2 � −11 is satisfied by (x, y) � (17, 5), (239, 69).

There may be other instances of this sort of thing.
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Exploration 2.3. The relationship involving the Fibonacci numbers can be
established using

F 2
m − Fm+1Fm−1 � F 2

m − (Fm + Fm−1)Fm−1 � Fm(Fm − Fm−1) − F 2
m−1

� −[F 2
m−1 − FmFm−2]

and

F 2
2n+1 + F 2

2n−1 + 1 � (F2n+1 − F2n−1)
2 + 2F2n−1F2n+1 + 1

� F 2
2n + 1 + 2F2n−1F2n+1.

With respect to

(2a − kb)2 − (k2 − 4)b2 � −4,

if k 	≡ 0 (mod 3), then (2a − kb)2 ≡ −4 ≡ 2 (mod 3), an impossibility. If k � 2l

with l odd, then

0 � (a − lb)2 − (l2 − 1)b2 + 1 ≡ (a − lb)2 + 1 (mod 8),

again an impossibility.
If k is even with k � 4l for some integer l, the equation becomes

(a − 2lb)2 − (4l2 − 1)b2 � −1.

Now, b cannot be even, since then (a − 2lb)2 ≡ 1 (mod 4), an impossibility. If
b were odd, then (a − 2lb)2 + b2 ≡ 3 (mod 4), again an impossibility. When
k is odd, the equation x2 − (k2 − 4)y2 � 4 has smallest solution in positive
integers (x, y) � (k, 1). As we shall see in Chapter 5, this precludes a solution of
x2 − (k2 − 4)y2 � −4, except for the case k � 3.

Exploration 2.4. This is Problem 10622 in American Mathematical Monthly
[1997, 870; 1999, 867–868]. Other triples along with the squares involved are
(0, 2, 4; 1, 1, 3), (1, 8, 15; 3, 4, 11), (4, 30, 56; 11, 15, 41). This can be gener-
alized by the sets

(an, 2an+1, an+2; an+1 − an, an+1, 3an+1 − an),

where a0 � 1, a1 � 4, an+2 � 4an+1 − an. Alternatively, we can look at solutions
to the Pell’s equation x2 − 3y2 � 1. If xn + yn

√
3 � (2 + √

3)n, then possibilities
are given by

(2yn − xn, 2yn, 2yn + xn; xn − yn, yn, xn + yn).

Exploration 2.5. (n − 1)2 + n2 + (n + 1)2 � k[(m − 1)2 + m2 + (m + 1)2]
leads to 3(n2 − km2) � 2(k − 1). When k � 3u + 1, the equation be-
comes n2 − km2 � 2u. When u � 2, we get n2 − 7m2 � 4 with solutions
(n, m) � (2, 0), (16, 6), (254, 96), . . .. When u � 3, we have n2 − 10m2 � 6
with solutions (n, m) � (4, 1), (136, 43), . . ..



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

Chapter 2 153

For

(n − 2)2 + (n − 1)2 + n2 + (n + 1)2 + (n + 2)2

� 2[(m − 2)2 + (m − 1)2 + m2 + (m + 1)2 + (m + 2)2],

we have to solve n2 − 2m2 � 2 and get solutions (n, m) � (2, 1), (10, 7), (58,
41), . . . .

Exploration 2.8. This discussion involves material in later chapters, and you
should defer reading it until you finish chapter 5. Suppose that p is a prime divisor
of d . Then for any solution of the Pell’s equation, we must have x2 ≡ −1 (mod
p). It is known that this congruence is solvable if and only if p � 2 or p ≡ 1
(mod 4). (See Exploration 4.1.) Thus, it is necessary that every odd prime divisor
of d leave remainder 1 upon division by 4.

If x2 − dy2 � −1 has a solution with x even, then dy2 ≡ 1 (mod 4), so
that y must be odd and d ≡ 1 (mod 4). If there is a solution with x odd, then
dy2 ≡ 2 (mod 8), so y must be odd and d ≡ 2 (mod 8). Thus it is necessary that
d ≡ 1, 2, 5 (mod 8). Some values of d can be settled right away. If d � k2 + 1,
(x, y) � (k, 1) works. For some values of d we can obtain solutions from odd
solutions of x2 − dy2 � −4; it is necessary that d ≡ 5 (mod 8). Suppose, for
example, that d exceeds an odd square by 4, say d � (2k+1)2 +4 � 4k2 +4k+5.
Then we obtain from

1

8

[
(2k + 1) +

√
d
]3

the rather intriguing solution

(x, y) � (4k3 + 6k2 + 6k + 2, 2k2 + 2k + 1) � (2[k3 + (k + 1)3], k2 + (k + 1)2).

(Why does this not work when d exceeds an even square by 4?) On the other hand,
suppose that d � k2 − 2. Then (x, y) � (k2 − 1, k) satisfies x2 − dy2 � 1. If
x2 − dy2 � −1 had a solution, then there would have to be one with 1 ≤ y ≤ k.
This is true for k � 2. Let k > 2. We first argue that (k2 − 1) + k

√
d cannot be

the square of a + b
√

d , where a, b ≥ 1. For otherwise, a2 + b2(k2 − 2) � k2 − 1,
so (b2 − 1)k2 + (a2 + 1 − 2b2) � 0. Since a2 ± 1 � db2, a2 + 1 > 2b2, and we
arrive at a contradiction. Hence (k2 − 1) + k

√
d is not the square of an irrational

a + b
√

d whose norm is ±1, and it follows that x2 − dy2 � −1 has no solution.
This eliminates for example d � 34 and d � 194, not otherwise rejected.

Is there a solution whenever p is an odd prime that exceeds a multiple of 4 by
1?

Another way to look at the problem is to ask what possible values of y can
occur. First of all, y must be odd, and secondly, y must be divisible only by primes
congruent to 1 modulo 4. Thus y can only be 1, 5, 13, 17, 29. This picks up classes
of d for which a solution occurs. For example, when d � 25u2 ±14u+2, (x, y) �
(25u ± 7, 5), and when d � 169u2 ± 140u + 29, (x, y) � (169u ± 70, 13).
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The issue of which values of d admit a solution of x2 − dy2 � −1 is deep and
complex. For an exposition, see Chapter 3 of Binary Quadratic Forms by Duncan
Buelle.

Exploration 2.10. If the first term of the arithmetic progression is 1, then there is
only one possibility for each partial sum to be a square. Let x1 � 1 and x2 � a2 −1.
Then xn � (n − 1)a2 − (2n − 3) and

x1 + x2 + · · · + xn � 1

2
n(n − 1)a2 − (n − 1)2 + 1.

When n � 9, the partial sum is equal to 36a2 − 63 � 9(4a2 − 7). This is square
if and only if 4a2 − 7 � b2 or 7 � (2a − b)(2a + b) for some integer b. The
only possibility is 2a − b � 1, 2a + b � 7, where a � 2.

No partial sum of the arithmetic series 2 + 4 + 6 + · · · is square, since each
is the product of two consecutive positive integers. To get an example for which
the initial term and common difference have greatest common divisor equal to 1,
simply remove 1 from the progression of odd integers to get 3 + 5 + 7 + · · ·.

Exploration 2.11. Let (x0, y0) � (1, 0) and let (xn, yn) be the nth solution of
x2 − dy2 � 1 when d � 3 or d � 6. Then

x2n−1 � (yn−1 + yn)
2 + 1, x2n � 2x2

n − 1.

When d � 3, we also have xn+1 − yn+1 � xn + yn. The solutions of x2 − 7y2 � 1
satisfy

x2n−1 � (yn − yn−1)
2 − 1, x2n � 2x2

n − 1,

while those of x2 − 8y2 � 1 satisfy

x2n−1 � [2(yn − yn−1)]
2 − 1, x2n � [4yn]2 − 1.

Chapter 3

1.1(a). −78 + 13
√

3.

1.1(b). −143, −39, 5577.

1.1(c). −(2/143) + (7/143)
√

3.

1.1(d). (2 + √
3)−1 � 2 − √

3.

1.7. Some are (x, y) � (7, 5), (41, 29).

1.8. Some are (x, y) � (13, 9), (75, 53).

1.9(c). (r, s) � (1, 1).
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1.9(e). Observe that
(

r

√

w + 1

2
+ s

√

w − 1

2

)(
r

√

w + 1

2
− s

√

w − 1

2

)

�
(

w + 1

2

)
r2 −

(
w − 1

2

)
s2,

so that we can obtain solutions to (b) by looking at surd powers. Using (c) and the
fact that

(
r

√

w + 1

2
+ s

√

w − 1

2

)(√

w + 1

2
+
√

w − 1

2

)2

�
(

r

√

w + 1

2
+ s

√

w − 1

2

)(
2w + 2

√

w + 1

2

√

w − 1

2

)

� [2wr + (2w − 1)s]

√

w + 1

2
+ [(2w + 1) + 2ws]

√

w − 1

2

we obtain the answer.

(i) That y2
n + v is a multiple of v + 1 can be established by induction from (h).

Use (g) to establish that both equations of the system hold.
(j) (x, y, u, v) � (v, v, v, v), (2v2 − v, 2v2 + v, 4v3 + v, v), (4v3 − 2v2 −

v, 4v3 + 2v2 − v, 16v5 − 4v3 + v, v), . . .. When v � 1, then x2 must be
equal to 1, and y � 2z + 1 is odd. Then u � 2z2 + 2z + 1, and we obtain the
solution

(x, y, u, v) � (±1, 2z + 1, 2z2 + 2z + 1, 1).

Note that x � 1+2+· · ·+ (2v−1) � v(2v−1) and y � 1+2+· · ·+2v �
v(2v + 1) corresponds to the second of our series of solutions.

1.10(a). Possible values for (m, r) are (1, 24), (2, 40), (3, 56), (4, 72). If r �
8 + 16m, then

mr + 1 � (4m + 1)2, (m + 1)r + 1 � (4m + 3)2.

1.10(b). (m + 1)x2 − my2 � 1 is equivalent to (m + 1)(x2 − 1) � m(y2 − 1).
Now use the fact that m and m + 1 are coprime.

1.10(c). An obvious solution is (x1, y1) � (1, 1). Other solutions are given by

√
m + 1xn+1 + √

myn+1 �
(√

m + 1xn + √
myn

) (√
m + 1 + √

m
)2

.

Thus

xn+1 � (2m + 1)xn + 2myn,

yn+1 � 2(m + 1)xn + (2m + 1)yn.
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1.10(d).

rn+1 � x2
n+1 − 1

m

� rn + 4[(m + 1)x2
n + my2

n + (2m + 1)xnyn]

� rn + 4(xn + yn)[(m + 1)xn + myn]

� (8m2 + 8m + 1)rn + 4(2m + 1)(xnyn + 1).

2.1(a). (x, y) � (c2 + d, 2c).

2.1(b).

(x, y) �
(

c2 + d

c2 − d
,

2c

c2 − d

)
.

2.2(a). Since (x −3)(x +3) � 13y2, x should be 3 more or 3 less than a multiple of
13. Thus we try x � 3, 10, 16, 23, 29. We have that (29−3)(29+3) � 13×26, so
(x, y) � (29, 8) works. A rational solution of x2 −13y2 � 1 is (x, y) � ( 29

3 , 8
3 ).

2.4(a). Consider (7 + √
61)/(8 − √

61).

2.6(a). x2 − 19y2 � 6 is satisfied by (x, y) � (5, 1), so x2 − 19y2 � 36 is
satisfied by (x, y) � (44, 10). The desired result follows from this.

2.6(b). x2 − 19y2 � −3 is satisfied by (x, y) � (4, 1), and the result follows
from this.

2.6(c). Observe that the coefficients of (35 + 8
√

19)(22 + 5
√

19) are divisible by
9, so that

35 + 8
√

19

22 − 5
√

19
� 170 + 39

√
19.

Thus, (x, y) � (170, 39) satisfies x2 − 19y2 � 1. Indeed, 1702 − 1 � 171 ×
169 � 19 × 32 × 132.

3.4. cos 2θ � 2 cos2 θ − 1; cos 3θ � 4 cos3 θ − 3 cos θ , cos 4θ � 8 cos4 θ −
8 cos2 θ + 1.

3.5. sin 2θ � 2 sin θ cos θ , sin 3θ � sin θ [4 cos2 θ − 1] � 3 sin θ − 4 sin3 θ ,
sin 4θ � 4 sin θ [2 cos3 θ − cos θ ]

4.2(a). Let t � cos θ with 0 ≤ θ ≤ π . Note that cos nθ + cos(n − 2)θ �
2 cos θ cos(n − 1)θ .

4.2(d). Tn(t) � 0 if and only if nθ is an odd multiple of π/2. This happens for n

values of θ satisfying 0 ≤ θ ≤ π , namely θ � π/2n, 3π/2n, . . . , (2n−1)π/2n.
All of these yield different values of t � cos θ .
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4.3(a). Let t � cos θ with 0 ≤ θ ≤ π . Then sin nθ + sin(n − 2)θ �
2 cos θ sin(n − 1)θ so that

Un(t) � (sin θ)−1 sin nθ � (sin θ)−1[2 cos θ sin(n − 1)θ − sin(n − 2)θ ]

� 2 cos θ [(sin θ)−1 sin(n − 1)θ ] − (sin θ)−1 sin(n − 2)θ

� 2tUn−1(t) − Un−2(t).

Here is a table of the first few Chebyshev polynomials:

n Tn(t) Un(t)

0 1 0
1 t 1
2 2t2 − 1 2t

3 4t3 − 3t 4t2 − 1
4 8t4 − 8t2 + 1 8t3 − 4t

5 16t5 − 20t3 + 5t 16t4 − 12t2 + 1
6 32t6 − 48t4 + 18t2 − 1 32t5 − 32t3 + 6t

4.5. A straightforward induction argument using the recursions in Exercises 4.2
and 4.3 yields that 2Tn−1(t) � Un(t) − Un−2(t) for n ≥ 1. The exercise can be
solved by induction, the induction step being

T ′
n(t) � 2Tn−1(t) + 2tT ′

n−1(t) − T ′
n−2(t)

� 2Tn−1(t) + 2(n − 1)tUn−1(t) − (n − 2)Un−2(t)

� 2Tn−1(t) + [−2tUn−1(t) + 2Un−2(t)] + n[2tUn−1(t) − Un−2(t)]

� nUn(t) + [2Tn−1(t) − Un(t) + Un−2(t)] � nUn(t).

4.6(a). Use

cos 2nθ � 1 − 2 sin2 nθ � 1 − 2 sin2 θ

(
sin nθ

sin θ

)2

.

4.6(b). Use sin 2nθ � 2 sin nθ cos nθ .

4.7. Since

(1 + cos θ) cos(2n + 1)θ

� (1 + cos θ) + (1 + cos θ)(cos(2n + 1)θ − 1)

� (1 + cos θ) +
(

2 cos2 θ

2

)(
− 2 sin2

(
2n + 1

2

)
θ

)

� (1 + cos θ) −
(

2 cos
θ

2
sin

2n + 1

2
θ)

)2

� (1 + cos θ) − [sin(n + 1)θ + sin nθ ]2,
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we have

cos(2n + 1)θ � 1 − sin2 θ

1 + cos θ

[
sin(n + 1)θ

sin θ
+ sin nθ

sin θ

]2

.

4.8(a). Let t � cos θ , so Tn(t) � cos nθ . Then

Tm(Tn(θ)) � cos m(arccos(cos nθ)) � cos m(nθ)) � Tmn(t).

4.8(b). Um(Tn(t)) � sin m(arccos(cos nθ))

sin(arccos(cos nθ))
� sin mnθ

sin nθ
, so that

Um(Tn(t))Un(t) � sin mnθ

sin nθ
· sin nθ

sin θ
� sin mnθ

sin θ
� Umn(t).

4.9(a). (z + w)2 � z2 + 2wz + w2 � (2z2 − 1) + 2zw; (z + w)3 � z3 + 3z2w +
3zw2 + w3 � z3 + 3z(z2 − 1) + (3z2 + z2 − 1)w � (4z3 − 3z) + (4z2 − 1)w.

4.9(b). In general, (z + w)n � Tn(z) + Un(z)w. This can be established by
induction, using the recursion in Exercise 4.4(a).

4.9–4.10.

cos nθ + i sin nθ �
�n/2�∑

i�0

(−1)i
(

n

2i

)
cosn−2i θ sin2i θ

+ i sin θ

�n/2�∑

j�0

(−1)j
(

n

2j + 1

)
cosn−2j−1 θ sin2j θ

�
�n/2�∑

i�0

(−1)i
(

n

2i

)
cosn−2i θ(1 − cos2 θ)i

+ i sin θ

�n/2�∑

j�0

(−1)j
(

n

2j + 1

)
cosn−2j−1 θ(1 − cos2 θ)j

yields

Tn(t) �
�n/2�∑

i�0

(
n

2i

)
(−1)i tn−2i (1 − t2)i �

�n/2�∑

i�0

(
n

2i

)
tn−2i (t2 − 1)i

and

Un(t) �
�n/2�∑

j�0

(−1)j
(

n

2j + 1

)
tn−2j−1(1− t2)j �

�n/2�∑

j�0

(
n

2j + 1

)
tn−2j−i (t2 −1)j .

It follows that

Tn(z) + Un(z)w �
�n/2�∑

i�0

(
n

2i

)
zn−2iw2i +

�n/2�∑

j�0

(
n

2j + 1

)
zn−2j−1w2j+1

�
n∑

k�0

(
n

k

)
zn−kwk � (z + w)n.
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4.11. This is a direct consequence of Exercise 4.9 with z � u and w � v
√

d.

4.12(b). There are at most m2 possible pairs (an, an+1) modulo m, so that by the
pigeonhole principle, any collection of m2 + 1 pairs must contain two, (ar , ar+1)

and (as, as+1), that are congruent modulo m: ar ≡ as and ar+1 ≡ as+1.

4.12(c). By induction, it can be shown from the recursion an+1 + an−1 � 2can

that ar+k ≡ as+k for each integer k. In particular, it holds for k � −r .

4.13. From Exercises 4.12 and 4.3 we can select an integer n such that Un(u) ≡
U0(u) � 0; Un+1 ≡ U1(u) � 1. Then Tn(u) ≡ Un+1(u) − uUn � 1.

4.14. Let m2n+1 � y2 and (m2 −1)n+1 � z2. Then m2z2 −(m2 −1)y2 � 1 and
n � y2 −z2. Setting x � mz, we see that we seek solutions to x2 −(m2 −1)y2 � 1
with x a multiple of m. From Exercise 4.1 we determine solutions (xr , yr) �
(Tr(m), Ur(m)) for r � 0, 1, 2, 3, . . . , m, and from Exercise 4.2(e), we note
that xr is divisible by m if and only if r is odd; these yield values zr � xr/m and
nr � y2

r − z2
r . Observe the initial cases, (r, nr; zr , yr) � (1, 0; 1, 1), (3, 8(2m2 −

1); 4m2 − 3, 4m2 − 1).
We show that nr is divisible by 8(2m2 − 1) � n3 for all odd values of r . This

is clear for n1 and n3. Since

xr+2 + yr+2

√
m2 − 1 � (m +

√
m2 − 1)2(xr + yr

√
m2 − 1),

we find that

zr+2 � (2m2 − 1)zr + 2(m2 − 1)yr ,

yr+2 � 2m2zr + (2m2 − 1)yr .

It is straightforward to prove by induction that zr and yr are both odd for each odd
value of r , so that yr + zr is a multiple of 2. The desired result not follows from
an induction argument using

nr+2 � y2
r+2 − z2

r+2 � (yr+2 − zr+2)(yr+2 + zr+2)

� (yr + zr)[(4m2 − 1)zr + (4m2 − 3)yr ]

� (yr + zr)[(4m2 − 2)(yr + zr) − (yr − zr)]

� 2(2m2 − 1)(yr + zr)
2 − (y2

r − z2
r )

� n3

[
1

2
(yr + zr)

]2

− nr .

The solution of the problem follows from the fact that (x, y) � (m, 1) is a funda-
mental solution of x2 − (m2 − 1)y2 � 1, so that all values of n are given by the
nr . (See Section 4.2.)

5.1. Suppose that (x, y) � (r, s) satisfies x2 − dy2 � k. Then (x, y) � (r, ms)

satisfies x2 − ey2 � k. On the other hand, let (x, y) � (u, v) be a solution of
x2 − ey2 � k. By Exercise 4.12, we can select n such that Un(u) is divisible by
m. Then (x, y) � (Tn(u), vUn(u)/m) is a solution of x2 − dy2 � k.
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5.1(b). If (u, v) is the smallest solution of x2 −ey2 � 1, then from (a) and Exercise
4.10, every solution of x2 − dy2 � 1 is given by (x, y) � (Tn(u), vUn(u)), where
Un(u) is divisible by m.

5.2. The smallest solutions of x2 −2y2 � 1 are (3, 2), (17, 12), (99, 70), (577, 408),
(3363, 2378), (19601, 13860).

d � 8 (3, 1); d � 18 (17, 4); d � 32 (17, 3); d � 50 (99, 14); d � 72 (17, 2);
d � 98 (99, 10); d � 128 (577, 51); d � 162 (19601, 1540); d � 200 (99, 7).

5.3. The smallest solutions of x2 − 3y2 � 1 are (2, 1), (7, 4), (26, 15), (97, 56),
(362, 209), (1351, 780).

d � 12 (7, 2); d � 27 (26, 5); d � 48 (7, 1); d � 75 (26, 3); d � 108
(1351, 130).

Comments on the Explorations

Exploration 3.1. To make the computations more palatable, let q � 2m + 1.
Then

(
xn+1

yn+1

)
�
(

q q − 1
q + 1 q

) (
xn

yn

)
.

Using a method similar to that of Exercise 1.2.3, we find that

xn+1 � 2qxn − xn−1,

yn+1 � 2qyn − yn−1,

for n ≥ 2. The sequence (xn, yn; rn) contains the terms

(1, 1; 0), (2q − 1, 2q + 1; 8q), (4q2 − 2q − 1, 4q2 + 2q − 1; 8q(4q2 − 1)),

(8q3 − 4q2 − 4q + 1, 8q3 + 4q2 − 4q − 1; 16q(2q2 − 1)(4q2 − 1)),

(16q4 − 8q3 − 12q2 + 4q + 1, 16q4 + 8q3 − 12q2 − 4q + 1;
16q(2q2 − 1)[2(4q2 − 1)(2q2 − 1) − 1],

(32q5−16q4−32q3+12q2+6q−1, 32q5+16q4−32q3−12q2+6q+1;
8q(4q2−1)(4q2−3)[2(2q2−1)(4q2−1) − 1]).

Exploration 3.2. Here are a few values: (d, k; x, y) � (2, 1.4; 99, 70),
(3, 1.75; −97, −56), (5, 2.25; −161, −72), (6, 2.5; −49, −20), (6, 2.4; 49, 20),
(12, 3.5; −97, −28). If we take d � 61 and k � 7.8, we find the solution
(x, y) � (761.5, 97.5); can this be parlayed to an integer solution?

Chapter 4

1.4. There are exactly k2 pairs (u, v) for which 0 ≤ u, v ≤ k − 1. For each
solution (xi, yi), there is exactly one such pair (ui, vi) for which xi ≡ ui and
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yi ≡ vi (mod k). Since there are more solutions than pairs, by the pigeonhole
principle there must be some pair to which two solutions correspond. The result
follows.

1.6(a). Apply the pigeonhole principle. Since there are more numbers than
intervals, two of the numbers must fall in the same interval.

1.6(d).

|u2 −dv2| � |u−v
√

d||u+v
√

d| <
1

v

[
1

v
+2v

√
d

]
� 2

√
d+ 1

v2
< 2

√
d+1.

1.7. Suppose finitely many pairs (u1, v1), (u2, v2), . . . , (um, vm) with the desired
property have been found. Let N be a positive integer with 1/N less than |ui −
vi

√
d| for each i. Then, as in Exercise 1.6, select um+1 and vm+1 such that

∣
∣
∣um+1 − vm+1

√
d

∣
∣
∣ <

1

N
≤ 1

vm+1
.

Since |um+1 − vm+1

√
d| < |ui − vi

√
d| for 1 ≤ i ≤ m, we have increased the

number of pairs. The result follows.

1.8. By Exercise 1.7, there are infinitely many pairs (u, v) for which |u − v
√

d| <

1/v, and for each pair |u2 − dv2| ≤ 2
√

d + 1. There are finitely many integers
between −(2

√
d +1) and 2

√
d +1, so by an extension of the pigeonhole principle,

at least one of these must be assumed infinitely often by x2 − dy2.

1.10(a). u2z2 − v2w2 � (k + dv2)z2 − v2(k + dz2).

2.3(a). u2 − dv2 � x2
1 − dy2

1 ⇒ (u2 − x2
1 ) � d(v2 − y2

1 ). Since u ≥ x1 by the
definition of x1, we must have v ≥ y1, so that u + v

√
d ≥ x1 + y1

√
d.

2.6. The (n + 1)th approximant is x2n/y2n , as can be verified by induction.

3.1. Any nonsquare d can be written in the form em2 where e is a squarefree
number, namely, the product of primes that divide d to an odd power. Any number
of the form r + s

√
d can be written as r + sm

√
e.

3.2(a). Suppose r � m/n in lowest terms for integers m and n. Then m2 + bmn +
cn2 � 0, so that any prime divisor of n must divide m2 and hence m. Since m and
n are relatively prime, n must be equal to 1.

3.2(b). A similar argument holds for polynomials in general.

3.3. u + v
√

d is a root of the monic quadratic t2 − 2ut + (u2 − v2d); the other
root is u − v

√
d .

3.4(a). (u2 + dv2 + 2uv
√

d) + bu + bv
√

d + c � 0 so that v(2u + b) � 0 and
u2 + dv2 + bu + c � 0. Hence 2u � −b, so that 4dv2 � −4(u2 + bu + c) �
−4(u2 − 2u2 + c) � 4u2 − 4c � b2 − 4c.

3.4(b). Suppose 2v � m/n in lowest terms. Then, since 4dv2 � dm2/n2 is an
integer, n2 must divide d . But d is squarefree; hence n � 1.

3.4(c). If b is odd, then (2v)2d must be odd, so that both 2v and d are odd. Since
1 ≡ b2 ≡ (2v)2d (mod 4) and (2v)2 ≡ 1 (mod 4), we must have d ≡ 1 (mod 4).
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3.5. Suppose that u + v
√

d is a quadratic integer. Then 2u is even or odd. If 2u is
odd, so is 2v, and d ≡ 1 (mod 4), by Exercise 3.4(c). If 2u is even, so are b, and
4dv2 � b2 − 4c � 4(u2 − c). Since d, being square-free, is not divisible by 4, 2v

must be even. Hence 2u and 2v must be even. We conclude that 2u and 2v have the
same parity, and the necessary condition follows. The converse is straightforward.

3.7. Suppose u2 − dv2 � 1, where u + v
√

d is a quadratic integer. Then (x, y) �
(2u, 2v) are solutions of x2 − dy2 � 4 with integers of the same parity. On the
other hand, suppose that r2 − ds2 � 4 with r and s of the same parity. Then
(x, y) � (r/2, s/2) is a solution of x2 − dy2 � 1. Suppose r and s are even; then
r/2 and s/2 are ordinary integers. Suppose r and s are odd. Then 1

2 (r + s
√

d) is
a root of the monic quadratic polynomial

t2 − rt + r2 − ds2

4

and so is a quadratic integer.

3.9. Solutions of x2 − dy2 � 4 with x, y odd:

d (x, y)

5 (3, 1), (7, 3)
13 (11, 3), (119, 33)
21 (5, 1), (23, 5)
29 —
37 —
45 (7, 1), (47, 7)
53 (51, 7), (2599, 357)
61 (1523, 195), (2319527, 296985)
69 (25, 3), (623, 75)
77 (9, 1), (79, 9)

There are no solutions when d � 29, 37, 83, 91, 99.

3.11(b). Suppose x2 − dy2 � −4 with x and y odd and positive. Then (x/2) +
(y/2)

√
d is a unit, and so must be a power of the minimum positive unit (r/2) +

(s/2)
√

d , whose norm must be −1. (m/2) + 1
2

√
d must be a power of the same

unit. Since s/2 > 1
2 , this cannot occur.

3.13. u � p(p2 + 3dq2)/8 and v � q(3p2 + dq2)/8. Since p and q are both
odd and d ≡ 5 (mod 8), p2 + 3q2d ≡ 1 + 15 ≡ 0 and 3p2 + dq2 ≡ 3 + 5 ≡ 0
(mod 8). Thus u and v are both integers.

4.2(a). Observe that s0 is an integer, and that p(s0, z) is a monic quadratic polyno-
mial with integer coefficients and at least one integer root. ds2

0 +k � ds2 +k � r2,
so that the result holds for n � 0. Suppose r2

n � ds2
n + k for some nonnegative
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integer n. Then

0 � s2
n+1 − 2usn+1sn + s2

n − v2k

� s2
n+1 − 2usn+1sn + u2s2

n − v2(ds2
n + k)

� (sn+1 − snu)2 − v2r2
n,

so that sn+1 � snu ± rnv. Let rn+1 � rnu ± dsnv. Then

r2
n+1 − ds2

n+1 � r2
nu2 + d2s2

nv
2
n − ds2

nu
2 − dr2

nv2

� (r2
n − ds2

n)(u
2 − dv2) � k,

from which we find that ds2
n+1 + k is a square. The result follows for nonnegative

n by induction. Working “backwards” will give the result for negative n as well.

4.2(b). sn+1 and sn−1 are roots of a quadratic polynomial the sum of whose roots
is 2usn and product is s2

n − v2k, as read from the coefficients.

4.3(a). Suppose sn > 0. Then sn+1 + sn−1 and sn+1sn−1 are both positive, as will
be sn+1 and sn−1.

4.3(b). Note that sn+1sn−1 − s2
n > 0. The latter part follows by induction from

s1/s0 ≥ 1 and s0/s−1 ≤ 1.

4.4. From Exercise 4.3(c) we have that

s0 ≤ s1 � us0 + v

√
ds2

0 + k and s0 ≤ s−1 � us0 − v

√
ds2

0 + k,

from which

−(u − 1)s0 ≤ v

√
ds2

0 + k ≤ (u − 1)s0,

whence

|v
√

ds2
0 + k| ≤ (u − 1)s0.

Squaring yields the inequality

dv2s2
0 + v2k ≤ (u2 − 2u + 1)s2

0

�⇒ v2k ≤ (u2 − dv2 − 2u + 1)s2
0 � −2(u − 1)s2

0

�⇒ 2(u − 1)s2
0 ≤ −v2k � v2|k|

�⇒ s0 ≤ v

√
|k|

2(u − 1)
.

4.5(a). p(sn, z) � 0 has a double root if and only if

0 � 4u2s2
n − 4(s2

n − v2k) � 4s2
n(u

2 − 1) + 4v2k

� 4s2
ndv2 + 4v2k � 4v2(ds2

n + k),

which is equivalent to k � −ds2
n .

4.6(a). p(y, y) � 2y2(1 − u) − v2k ≤ 0, since u ≥ 1.
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4.6(b). From (a), s0 must lie between two solutions s1 and s−1 of p(s0, z) � 0. Note
that sn+1 − sn � (2u − 1)(sn − sn−1) + 2(u − 1)sn−1. If n ≥ 1, it can be shown by
induction that sn+1 ≥ sn. Since s0 is the smallest nonnegative term and lies between
s1 and s−1, we have that s−1 < 0. Since sn − sn−1 � −2(u − 1)sn + (sn+1 − sn),
it can be shown by induction that sn ≥ sn−1 for all n ≤ −1.

4.6(c). Since s1s−1 < 0, s2
0 − v2k < 0. If x2 − ds2

0 � k, then x2 � k + ds2
0 <

k(1 + dv2) � ku2.

4.6(d). When n 	� 0, −1, s2
n − v2k � sn−1sn+1 ≥ 0.

4.7(a).

d2v2s2 � (dv2)(ds2) � (u2 − 1)(r2 − k) < u2r2.

Since all variables are positive, this implies that dvs < ur .

4.7(b). Since r is minimal, by (a) we must have that ur − dvs ≥ r , whence
r(u − 1) ≥ dvs. Squaring this yields r2(u − 1)2 ≥ d2v2s2 � (u2 − 1)(r2 − k),
so that r2(u − 1) ≥ (u + 1)(r2 − k) (since u 	� 1).

4.7(d).

s2(u2 − 1)

v2
� ds2 � r2 − k ≤ k(u + 1)

2
− k � k(u − 1)

2
,

whence

s2 ≤ kv2

2(u + 1)
.

4.7(e). Since x2 � dy2 + k, the smallest value of |x| among solutions occurs along
with the smallest value of |y|. Thus, y is equal to s0 or s−1, depending on whether
it is positive or negative.

4.8. In this case, (u, v) � (3, 2) and p(y, z) � y2 − 6yz + z2 − 28.

4.9. In this case, p(y, z) � y2 − 6yz + z2 + 28.

Comments on the Explorations

Exploration 4.1. Most general texts in elementary number theory, such as those
by LeVeque; Mollin; Niven, Zuckerman and Montgomery; Rosen, cover the Leg-
endre symbol. For odd primes (−1/p) � (−1)(p−1)/2 and (2/p) � (−1)(p

2−1)/8.
Thus, x2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4), and x2 ≡ 2
(mod p) is solvable if and only if p ≡ ±1 (mod 8). A deep and useful rule in the
computation of Legendre symbols is the law of quadratic reciprocity:

(
p

q

)(
q

p

)
� (−1)

p−1
2 · q−1

2

for odd primes p and q. For example,
(

19

37

)(
37

19

)
� (−1)9×18 � 1,
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with the result that
(

19
37

) � (
37
19

) � ( −1
19

) � −1, so that x2 ≡ 19 (mod 37) and
x2 − 37y2 � 19 are not solvable for integers x and y.

Exploration 4.2. The solutions are (x, y) � (2, 0), (1, 1), (3, 1), (4, 2), (7, 3),
(11, 5), . . . , where the values of y seem to run through the Fibonacci numbers and
the values of x through the Lucas numbers Ln. The sequences are defined by

L0 � 2, L1 � 1, Ln+1 � Ln + Ln−1 (Lucas sequence);
F0 � 0, F1 � 1, Fn+1 � Fn + Fn−1 (Fibonacci sequence).

Note that Ln � Fn−1 + Fn+1 for n ≥ 1. One conjectures that

(Fn−1 + Fn+1)
2 − 5F 2

n � (−1)n

and

LnLn+1 − 5FnFn+1 � 2(−1)n

for n ≥ 0. Indeed, the left side of the equation is

(2Fn−1 +Fn)
2 −5F 2

n � 4[F 2
n−1 +Fn−1Fn−F 2

n ] � 4[Fn−1Fn+1 −F 2
n ] � 4(−1)n.

Exploration 4.3. By examining the continued fraction development of
√

d to
be discussed in Chapter 5, we find that some values of d for which there are no
solutions of the type desired are numbers of the form (4k + 2)2 + 1, while there
are others such as 141, 189, 269, 333, 349, 373, 381, 389, 405.

Exploration 4.5. The theory of quadratic forms is a long-established and well-
developed area of mathematics. Gauss was the first to embark on a systematic
study in Disquisitiones arithmeticae, written in 1801. An English translation is
now available. Harold Davenport’s The Higher Arithmetic has a chapter (VI) on
the theory of quadratic forms. Duncan A. Buelle, in his Binary Quadratic Forms:
Classical Theory and Modern Computation, provides a summary of the basic
theory that is suitable for undergraduates with some background in modern algebra;
he gives a good treatment of computational issues. Quadratic formsax2+bxy+cy2

with discriminant � � b2 − 4ac can be put into finitely many equivalence classes
determined by linear transformations of the variables, and these equivalence classes
themselves can be given an algebraic structure.

Exploration 4.6. Let (x, y) � (u, v) be a particular solution of x2 − dy2 � 1.
As we have seen in Sections 3.3 and 3.4, x2

n − dy2
n � 1 holds when (xn, yn) �

(Tn(u), Un(u)v). Let Tn(u)Un(u) � Sn(u), so that zn � Sn(u)v; note that Tn(u) is
divisible by u when n is odd, and Un(u) is divisible by u when n is even. Empirical
evidence suggests that

Sn+1(u) � [(2u)2 − 2]Sn(u) − Sn−1(u) for n ≥ 1
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and that 2Sn � U2n. The latter is a consequence of Exercise 3.4.6(b), since Sn �
TnUn. To obtain the recursion, note that

Tn+1Un+1 � (2uTn − Tn−1)(2uUn − Un−1)

� (4u2 − 2)TnUn − Tn−1Un−1

+ 2[(TnUn + Tn−1Un−1) − u(TnUn−1 + Tn−1Un)]

and that

2[(TnUn + Tn−1Un−1) − u(TnUn−1 + Tn−1Un)]

� Tn(Un − 2uUn−1) + Un(Tn − 2uTn−1) + 2Tn−1Un−1

� 2Tn−1Un−1 − TnUn−2 − UnTn−2

� 2[(Tn−1Un−1 + Tn−2Un−2) − u(Tn−1Un−2 + Un−1Tn−2)],

so that by induction it can be shown that 2[· · ·] vanishes.
Let Rn � T2n. Then R2

n − 4d2S2
nv

2 � T 2
2n − d2(U2nv)2 � 1.

A direct argument that does not use Chebyshev polynomials follows:
For an arbitrary value of d , the analogue of the result in Exercise 1.2.3 is

xn+1 � x1xn + dy1yn,

yn+1 � y1xn + x1yn,

with corresponding matrix
(
x1 dy1

y1 x1

)
. One finds that, for n ≥ 1,

xn+1 � 2x1xn − xn−1,

yn+1 � 2x1yn − yn−1.

Then

xn+1yn+1 � 4x2
1xnyn − 2x1(xnyn−1 + xn−1yn) + xn−1yn−1.

Now,

x1xnyn−1 + x1xn−1yn � xn(yn − y1xn−1) + xn−1x1yn

� xnyn − xn−1(y1xn − x1yn)

so

xn+1yn+1 � (4x2
1 − 2)xnyn + xn−1(2y1xn − 2x1yn + yn−1)

� (4x2
1 − 2)xnyn + xn−1(2y1xn − yn+1)

� (4x2
1 − 2)xnyn + xn−1(yn+1 − 2x1yn)

� (4x2
1 − 2)xnyn − xn−1yn−1.

We now look for a number e for which w2
n − ez2

n � 1 for each value of n.
From (x2, y2) � (x2

1 + dy2
1 , 2x1y1) � (2x2

1 − 1, 2x1y1), we have that z2 �
2x1y1(2x2

1 − 1). We need

x2
1y2

1e + 1 � w2
1, (1)

4x2
1y2

1 (2x2
1 − 1)2e + 1 � w2

2 . (2)
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Substituting (1) into (2) yields

4(2x2
1 − 1)2(w2

1 − 1) + 1 � w2
2,

so that

[2(2x2
1 − 1)]2w2

1 − w2
2 � [2(2x2

1 − 1)]2 − 1. (3)

Equation (3) will be satisfied in particular when

2(2x2
1 − 1)w1 − w2 � 1,

2(2x2
1 − 1)w1 + w2 � 4(2x2

1 − 1)2 − 1,

i.e., when w1 � 2x2
1 − 1 and

e � w2
1 − 1

x2
1y2

1

� 4x4
1 − 4x2

1

x2
1y2

1

� 4(x2
1 − 1)

y2
1

� 4d.

Thus, a candidate for e is 4d . Is it true that 4dz2
n + 1 is a square for every value

of n? Yes, since

4dz2
n + 1 � 4dx2

ny
2
n + 1 � 4x2

n(x
2
n − 1) + 1 � (2x2

n − 1)2.

Thus, with wn � 2x2
n − 1 and zn � xnyn, we find that w2

n − 4dz2
n � 1. Does this

pick up all the solutions of x2 − 4dy2 � 1?
If (x, y) � (u, v) is a solution of x2 − dy2 � −1, we can develop an analogous

theory in which

xn+1yn+1 � [4u2 + 2]xnyn − xn−1yn−1.

Chapter 5

1.2(c).

p + r

q + s
�
(

q

q + s

)
p

q
+
(

s

q + s

)
r

s
.

1.3(b). Yes. This is easily established by referring to the diagram in (a).

1.4(b). 47/15 is followed by a sequence in which the numerators increase by 22
and the denominators by 7 until we arrive at 333/106 and 355/113, which straddle
π . The next two fractions are 688/219 and 1043/332.

1.5(e). x2 − 29y2 � 1 is satisfied by (x, y) � (9801, 1820).

1.8. We know the numbers in the column headed x2 − dy2 along with the sign.
Suppose we know the values of x and y yielding the numbers x2 − dy2 up to but
not including the value m. Let h and p be the most recent values of the same and
opposite signs, respectively, and suppose h � r2 − ds2 and p � u2 − dv2. Then
m � (r + u)2 − d(s + v)2.
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1.9. The successive values of (x, y) yielding the values of x2 − 54y2 are (7, 1), (8,
1), (15, 2), (22, 3), (37, 5), (59, 8), (81, 11), (103, 14), (125, 17), (147, 20), (169,
23), (316, 43), (485, 66). The last is the required solution.

1.10(a). In the list, suppose that we have got to m � a2 − b2d. With h � r2 −
s2d and p � u2 − v2d the most recent entries of the same and opposite signs,
respectively, by Exercise 1.4(e) we must have a � u + r and b � v + s, whence
r � a − u and s � b − v.

1.10(b). To find the entry past m, we need to take note of m � a2 − b2d and
p � u2 − v2d to get the number (a + u)2 − (b + v)2d. We can also get it directly
from the table

(a − u)2 − (b − v)2d

(2au − u2) − (2bv − v2)d

a2 − b2d 2u2 − 2v2d

(u2 + 2au) − (v2 + 2bv)d

(a + u)2 − (b + v)2d

2.1. The common divisors are 1, 3, 9, 27.

2.3(b). Suppose, for example, that u � x − y and v � y. If d divides x and y,
then d divides their difference and so must divide u as well as v. Similarly, any
divisor of u and v must divide x and y.

2.3(c). Since y is a multiple of d , y ≥ d, so that x − y ≤ x − d. Since x − y is a
multiple of d , x − y ≥ d , so that y ≤ x − d. Therefore, u � max (y, x − y) ≤
x − d . Hence as long as the pairs have distinct entries, the first entry reduces by
at least d > 0. Since z is finite, this can happen at most finitely often.

2.4. 331.

2.7(b). If the process terminates, then wk−2 � ak−1wk−1 + wk � (ak−1ak +
1)wk . Working up the set of equations in (a), we can eventually show that w

and z are integer multiples of wk , and so are commensurable. Conversely, if z

and w are commensurable, then z � mu and w � nu for some number u and
positive integers m and n. From the equations in (a), we find that w1, w2, . . . are
successively smaller positive integer multiples of u. This cannot continue forever,
and the process terminates.

2.7(c). Suppose that z and w are commensurable. Then there exists a number u

and positive integers m and n for which z � mu and w � nu, so that z/w � m/n

is rational. Conversely, if z/w is rational, say equal to m/n, then z/m � w/n, so
that z � m(z/m) and w � n(z/m) are commensurable.
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3.4(b). More generally, let z � a0 + 1/a1 + 1/a2 + · · · + 1/an + 1/un+1. We
have successively

an <an + 1/un+1,

an−1 + 1/an >an−1 + 1/an + 1/un+1,

an−2 + 1/an−1 + 1/an <an−2 + 1/an−1 + 1/an + 1/un+1,

· · ·
an−2i + 1/an−2i+1 + · · · + 1/an <an−2i + 1/an−2i+1 + · · · + 1/an + 1/un+1,

an−2i−1 + 1/an−2i + · · · + 1/an <an−2i−1 + 1/an−2i + · · · + 1/an + 1/un+1,

with the result that

a0 + 1/a1 + · · · + 1/an < z

when n is even, and

a0 + 1/a1 + · · · + 1/an > z

when n is odd.

3.5. For example, using the results for p2 and q2 with parameters a1, a2, a3,

p3

q3
� a0 + 1

(a1a2a3 + a1 + a3)/(a2a3 + 1)

� a0(a1a2a3 + a1 + a3) + (a2a3 + 1)

a1a2a3 + a1 + a3
.

Noting that p3 � a0q3 + (a2a3 + 1), q3 � a1(a2a3 + 1) + a3, we see that any
common divisor d of p3 and q3 must divide a2a3 + 1, hence a3, hence 1, so that
p3 and q3 must be coprime.

3.6(a). For the third equal sign, multiply numerator and denominator by an+1.

3.6(b). φn(a0, a1, . . . , an) � φn(an, . . . , a1, a0) holds for n � 0, n � 1 and
n � 2. Suppose that it has been established for indices n up to and including
m − 1 ≥ 2. Then

φm(a0, a1, . . . , am) � amφm−1(a0, a1, . . . , am−1) + φm−2(a0, a1, . . . , am−2)

� amφm−1(am−1, . . . , a1, a0) + am−2(am−2, . . . , a1, a0)

� ama0φm−2(am−1, . . . , a1) + amφm−3(am−1, . . . , a2)

+ a0φm−3(am−2, . . . , a1) + φm−4(am−2, . . . , a2)

� a0[amφm−2(a1, . . . , am−1) + φm−3(a1, . . . , am−2)]

+ [amφm−3(a2, . . . , am−1) + φm−4(a2, . . . , φm−2)]

� a0φm−1(a1, a2, . . . , am) + φm−2(a2, a3, . . . , am)

� a0φm−1(am, . . . , a2, a1) + φm−2(am, . . . , a2)

� φm(am, . . . , a2, a1, a0).
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3.6(c). From (b) we can see that any common divisor of φm(a0, . . . , am) and
φm−1(a1, a2, . . . , am) must divide φm−2(a2, . . . , am). Continuing in this way, we
see that it must divide φ1(am−1, am) � am−1am + 1 and φ0(am) � am and so must
divide 1.

3.7(a). We can use pn+1qn − pnqn+1 � anpnqn + pn−1qn − anpnqn − pnqn−1 �
−(pnqn−1 − pn−1qn) and the fact that p1q0 − p0q1 � 1, p2q1 − p1q2 � −1.

3.7(b). It can be seen that the difference is (−1)n/qnqn+1. Since {qn} is a strictly
increasing sequence of positive integers, the result follows.

3.7(c). See the solution to Exercise 3.4(b).

3.7(e). Observe that un � an + 1/an+1 + 1/an+2 + · · ·.
3.9. After the initial negative entry for x2 − 29y2, the column for x2 − 29y2 has
a2 � 2 positive entries, a3 � 1 negative entry, a4 � 1 positive entry, a5 � 2
negative entries, and so on.

3.11. Let z � a0 + 1/a1 + 1/a2 + · · · and w � b0 + 1/b1 + 1/b2 + · · ·. Suppose
that for some index m, w lies between the mth and (m + 1)th convergents of z.
This means that

pm

qm

≤ w ≤ pm+1

qm+1

when m is even and
pm

qm

> w >
pm+1

qm+1

when m is odd, where pm/qm is the mth convergent for z. We show that ai � bi

(1 ≤ i ≤ m), so that the first m convergents for z and w agree.
We prove this by induction on m. For m � 0, the hypothesis is that

a0 ≤ w ≤ a0 + 1

a1
< a0 + 1,

so that b0 � �w� � a0, and the result follows. For m � 1, we have that

a0+ 1

a1
≥ w ≥ a0+ 1

a1+1/a2
>a0+ 1

a1+1
�⇒ 1

a1
≥ w−a0 >

1

a1+1

�⇒a1 ≤ 1

w−a0
<a1+1

�⇒
⌊

1

w−a0

⌋
�b1.

Suppose that the result has been proved for all positive values of z and values
of m up to m � r − 1 ≥ 0 and that w lies between the rth and (r + 1)th
convergents for z. Then in particular, p0/q0 ≤ w ≤ p1/q1, so that a0 � b0.
Since w lies between a0 + 1/a1 + · · · + 1/ar and a0 + 1/a1 + · · · + 1/ar+1,
it follows that 1/(w − a0) � 1/(w − b0) lies between a1 + 1/a2 + · · · + 1/ar

and a1 + 1/a2 + · · · + 1/ar+1, which are the (r − 1)th and rth convergents of
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1/(z − a0). Since 1/(w − b0) � b1 + 1/b2 + · · · + 1/br , it follows from the
induction hypothesis that a1 � b1, . . . , ar � br .

3.12(a). Solve the system to get fractions x and y whose denominators are pn+1qn−
pnqn+1 � (−1)n.

3.12(b). If x � 0, then b � qn+1y, whence y > 0 and b ≥ qn+1, contrary to
hypothesis.

3.12(c). If y � 0, then |zb − a| � |x||qnz − pn| ≥ |qnz − pn|, contrary to
hypothesis.

3.12(d) Suppose y < 0; then b < qnx so x > 0. Suppose y > 0; then b <

qn+1 ≤ yqn+1, so that qnx, and hence x, are negative.

3.12(e). Note that qnz − pn and qn+1z − pn+1 have opposite signs, as do x and y.

3.13. The hypothesis yields |bz − a| < b
qn

|qnz − pn|. If b ≤ qn, then by Exercise
3.12, we must have b ≥ qn+1, which yields a contradiction, since qn < qn+1.

4.1(c). Note that u2
rpr−1qr+h−1 + ur(pr−1qr+h−2 + pr−2qr+h−1) + pr−2qr+h−2 �

u2
r qr−1pr+h−1 + · · · and that pr−1/qr−1 and pr+h−1/qr+h−1 are distinct fractions,

each in lowest terms.

4.1(d). Since z is a root of

0 � (z − p + √
q)(z − p − √

q) � z2 − 2pz + (p2 − q),

z is a root of a quadratic equation with rational coefficients. Multiply by the least
common multiple of the denominator of the coefficients to get the result.

4.2(a). Since

z � unpn−1 + pn−2

unqn−1 + qn−2
,

we find that

A(unpn−1+pn−2)
2+B(unpn−1+pn−2)(unqn−1+qn−2)+C(unqn−1+qn−2)

2 �0,

from which the result follows.

4.2(b). Since z is irrational, so is un. Hence, un cannot be a root of a linear equation
with integer coefficients, so An must be nonzero.

4.2(d).

An � An − (Az2 + Bz + C)q2
n−1

� A(pn−1 − zqn−1)(pn−1 + zqn−1) + B(pn−1 − zqn−1)qn−1

� A(pn−1 − zqn−1)(pn−1 − zqn−1 + 2zqn−1) + B(pn−1 − zqn−1)qn−1.

Since |pn−1 − zqn−1| < 1/qn−1 < 1, we find that

|An| < |A|
(

1

qn−1

)
|1 + 2zqn−1| + |B|

(
1

qn−1

)
qn−1 ≤ |A| + 2|Az| + |B|.

The inequality for Cn is similar to that for An, and the inequality for Bn is a
consequence of B2

n � 4AnCn + B2 − 4AC.
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4.3(a). Suppose that Az2 + Bz + C � 0. Then z � (−B ± √
B2 − 4AC)/2A.

Let d � B2 − 4AC, k0 � ∓B, and h0 � ±2A, depending on the sign before
the surd. The two roots of the quadratic are (k0 + √

d)/h0 and (k0 − √
d)/h0 �

(−k0 + √
d)/(−h0); their product is (k2

0 − d)/h2
0 � C/A. Thus

d − k2
0

h0
� −Ch0

A
� ∓2C

is an integer. For example, the roots of the quadratic 7x2 − 8x + 2 � 0 are
(4 + √

2)/7 and (−4 + √
2)/(−7).

4.3(b).

1

u1
� k0 + √

d − h0a0

h0
� (k0 − h0a0)

2 − d

[(k0 − h0a0) − √
d]h0

,

from which the result follows:

h1 �
(

d − k2
0

h0

)
+ 2a0k0 − a2

0h0

and k1 � −(k0 − a0h0). Observe that d − k2
1 � d − (k0 − a0h0)

2 � h0h1.

4.3(d). For example, z � (4 + √
2)/7. Then a0 � 0, u1 � (−4 + √

2)/(−2),
a1 � 1, u2 � 2 + √

2, a2 � 3, and for i ≥ 3, ui � 1 + √
2 and ai � 2.

4.4(a). The mapping g(x + y
√

d) � x − y
√

d, with x and y rational, satisfies
g(α ± β) � g(α) ± g(β), g(αβ) � g(α)g(β), and g(α/β) � g(α)/g(β). Since
pi and qi are rational, we find that

w � g(z) � g

(
unpn−1 + pn−2

unqn−1 + qn−2

)
� g(unpn−1 + pn−2)

g(unqn−1 + qn−2)

� g(un)pn−1 + pn−2

g(un)qn−1 + qn−2
� vnpn−1 + pn−2

vnqn−1 + gn−2
,

as desired.

4.4(b). Solve the equation in (a) for vn. By Exercise 3.7, limk→∞ pn/qn � z, so
that the quantity in parentheses is close to the positive value 1 when n is large.
Since all qi are positive, the result follows.

4.4(c). Note that un − vn � 2
√

d/hn.

4.4(d). Since k2
n < d for n > N , kn can assume at most 2d + 1 values. For each

value of kn there are only finitely many pairs of integers whose products are d − k2
n.

4.5. f (x) � qs−1x
2 + (qs−2 − ps−1)x − ps−2. The equation f (x) � 0 has

two roots, one of which is z. Any quadratic equation with integer coefficients
satisfied by z must be satisfied by w, so that w is the second root of the equation.
Since zw � −ps−2/qs−1, w must be negative. Since f (0) � −ps−2 < 0 and
f (−1) � (ps−1 − ps−2) + (qs−1 − qs−2) > 0, f (x) must vanish for some value
of x between −1 and 0; this must be w. Observe that for any continued fraction,
each ai for i ≥ 1 must be a positive integer, so that since a0 appears later, a0 ≥ 1.
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4.6(a). We have that ui � ai + 1/ui+1. Passing to the surd conjugate yields the
result. Since −1 < w � a0 + 1/v1 < 0, it follows that −1 − a0 < 1/vi <

−a0 ≤ −1, so that vi must lie between −1 and 0. Suppose it has been shown that
−1 < vi � ai + 1/vi+1 < 0. Then the same argument yields −1 < vi+1 < 0.

4.6(d). If z � √
d + ⌊√

d
⌋

, then w � ⌊√
d
⌋ − √

d; z and w satisfy −1 < w <

0 < 1 < z.

4.7(b). We have that A + B
√

d � 0, where

A � dqn − kn+1pn − hn+1pn−1,

B � kn+1qn + hn+1qn−1 − pn.

Since A and B are integers and
√

d is irrational, it follows that A � B � 0 or

pn � kn+1qn + hn+1qn−1,

dqn � kn+1pn + hn+1pn−1.

Hence p2
n − dq2

n � hn+1(pnqn−1 − pn−1qn) � hn+1(−1)n−1 by Exercise 3.7(a).

4.7(c). hns � h0 � 1 for each positive integer n.

5.1. The first three convergents are t , (2t2 + 1)/2t , (4t3 + 3t)/(4t2 + 1).

5.2(a). We find that
√

t2 + c � t + c√
t2 + c + t

,

√
t2 + c + t

c
� 2t

c
+ 1√

t2 + c + t
,

so that
√

t2 + c � t + 1/(2t/c) + 1/2t + 1/(2t/c) + 1/2t + · · · .
The convergents are pn/qn as given in the following table:

n pn qn p2
n − (t2 + c)qn

1 t 1 −c

2 2t2 + c 2t c2

3 4t3 + 3ct 4t2 + c −c3

4 8t4 + 8ct2 + c2 8t3 + 4ct c4

Dividing p2m and q2m by cm yields solutions (x, y) for x2 − (t2 + c)y2 � 1.

5.2(b). When c � 2, we find that
√

t2 + 2 � t + 1/t + 1/2t + 1/t + 1/2t + · · · ,
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so that in place of the table of (a) we have that

n pn qn p2
n − (t2 + 2)q2

n

1 t 1 −2
2 t2 + 1 t 1
3 2t3 + 3t 2t2 + 1 −2
4 2t4 + 4t2 + 1 2t3 + 2t 1

(x, y) � (t2 + 1, t) satisfies x2 − (t2 + 2)y2 � 1.

5.3. The convergents are pn/qn as given in the following table:

n pn qn p2
n − (t2 − 1)q2

n

1 t − 1 1 2(1 − t)

2 t 1 1
3 2t2 − t − 1 2t − 1 2(1 − t)

4 2t2 − 1 2t 1

5.4. We find that
√

4t2 + 12t + 5 � (2t + 2) + 4t + 1√
4t2 + 12t + 5 + (2t + 2)

,

√
4t2 + 12t + 5 + (2t + 2)

4t + 1
� 1 + 4√

4t2 + 12t + 5 + (2t − 1)
,

√
4t2 + 12t + 5 + (2t − 1)

4
� t + 2t + 1√

4t2 + 12t + 5 + (2t + 1)
,

and so on. Eventually,
√

4t2 + 12t + 5 � (2t + 2) + 1/1 + 1/t + 1/2 + 1/t

+ 1/1 + 1/2(2t + 2) + 1/1 + · · · ,
with periodicity. The convergent

(2t + 2) + 1/1 + 1/t + 1/2 + 1/t + 1/1

is equal to (4t3 + 18t2 + 24t + 9)/(2t2 + 6t + 4), and we find that

(4t3 + 18t2 + 24t + 9)2 − (4t2 + 12t + 5)(2t2 + 6t + 4)2 � 1.

5.5(b). (x, y) � (mt3 + nt2 + 1, t).

5.6(a). (x, y) � (4t3 + 6t2 + 6t + 2, 2t2 + 2t + 1).

5.6(b). (x, y) � (4t4 − 4t3 + 2t2 + 2t − 1, 2t2 − 2t + 1).

5.6(c). (x, y) � (16t4 + 4t3 + 8t2 + 3t + 1, 4t2 + 1).
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5.7(b).
√

k2s2 + k � ks + k√
k2s2 + k + ks

,

√
k2s2 + k + ks

k
� 2s + 1√

k2s2 + k + ks
,

leads to
√

k2s2 + k � ks + 1/2s + 1/2ks + 1/2s + 1/2ks + · · · ,
with convergents

ks,
2ks2 + 1

2s
,

4k2s3 + 3ks

4ks2 + 1
, · · · .

A solution of x2 − (k2s2 + k)y2 � 1 is

(x, y) � (2ks2 + 1, 2s).

5.7(c). d � 2, 5, 6, 10, 12, 17, 18, 20, 26, 37, 38, 39, 50, 66, 68, 84, . . . .

5.8(a).

s 0 1 2 3 4 5 6

t 2 5 8 11 14 17 20
t2 + 3 7 28 67 124 199 292 403
a0 2 5 8 11 14 17 20
a1 1 3 5 7 9 11 13
a2 1 2 2 2 2 2 2
a3 1 3 1 1 1 1 1
a4 4 10 1 1 2 3 3
a5 1 3 7 1 2 8 1
a6 1 2 1 3 5 3 3
a7 1 3 1 1 4 1 1
a8 4 10 2 4 1 2 2
a9 1 3 5 1 1 11 13
a10 1 2 16 3 13 34 40

5.8(b).
√

9s2 + 12s + 7 � (3s + 2) + 3√
9s2 + 12s + 7 + (3s + 2)

,

√
9s2 + 12s + 7 + (3s + 2)

3
� (2s + 1) + 2(s + 1)√

9s2 + 12s + 7 + (3s + 1)
,

√
9s2 + 12s + 7 + (3s + 1)

2(s + 1)
� 2 +

√
9s2 + 12s + 7 − (s + 3)

2(s + 1)

� 2 + 4s − 1√
9s2 + 12s + 7 + (s + 3)

,
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√
9s2 + 12s + 7 + (s + 3)

4s − 1
� 1 +

√
9s2 + 12s + 7 − (3s − 4)

4s − 1

� 1 + 9√
9s2 + 12s + 7 + (3s − 4)

.

When s � 0, the quantity on the left in the third equation is less than 2; when
s � 1, the quantity on the left in the fourth equation exceeds 3.

5.8(c),

n an pn qn p2
n − dq2

n

0 3s + 2 3s + 2 1 −3
1 2s + 1 6s2 + 7s + 3 2s + 1 2(s + 1)

2 2 12s2 + 17s + 8 4s + 3 −4s + 1
3 1 18s2 + 24s + 11 6s + 4 9

The desired solution is (x, y) � (6s2 + 8s + 11
3 , 2s + 4

3 ).

5.9. We have that (3s + 1)2 − (9s2 + 6s + 4) � −3. Since

(3s + 1 +
√

9s2 + 6s + 4)2 � (18s2 + 12s + 5) + (6s + 2)
√

9s2 + 6s + 4,

we find that (18s2 + 12s + 5)2 − (9s2 + 6s + 4)(6s + 2)2 � 9. The desired
solution is (x, y) � (6s2 + 4s + 5

3 , 2s + 2
3 ).

5.11.
√

4s2 + 4s − 3 � 2s + 1/1 + 1/(s − 1) + 1/2 + 1/(s − 1) + 1/1 + 1/4s + · · · .
The convergents yields the relations

(2s + 1)2 − (4s2 + 4s − 3) � (4s2 + 4s − 1)2 − (4s2 + 4s − 3)(2s + 1)2 � 4

and

(4s3 + 6s2 − 1)2 − (4s2 + 4s − 3)(2s2 + 2s)2 � 1.

5.12.
√

4s2 − 4 � (2s − 1) + 1/1 + 1/(s − 2) + 1/1 + 1/2(2s − 1) + 1/1 + · · · .
The convergents yield the relations

(2s)2 − (4s2 − 4) · 1 � 4,

(2s2 − 1)2 − (4s2 − 4) · s2 � 1.

For the numerical substitution s � 2, the continued fraction development given
above is not valid; rather

√
12 � 3 + 1/2 + 1/6 + 1/2 + · · · .

6.1(a). Since r2 − ds2 > 0, clearly r > s
√

d. It follows that

0 < r − s
√

d � a

r + s
√

d
<

√
d

2s
√

d
� 1

2s
.
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6.1(b). Similarly, s
√

d > r and

0 < s − r√
d

� s
√

d − r√
d

� ds2 − r2

√
d(s

√
d + r)

<
b

2r
√

d
<

1

2r
.

6.2. We have 1/
√

d � 0 + 1/
√

d , from which it is clear that 1/
√

d � 0 + 1/a0 +
1/a2 + · · ·, and the convergents are the reciprocals of the convergents for

√
d.

6.3(a). Prove by contradiction.

6.3(c). |(pn/qn) − (r/s)| ≤ |(pn/qn) − √
d| + |√d − (r/s)|.

6.3(e). Let r � gu and s � gv, where g is the greatest common divisor of r and
s. Then

∣
∣
∣
√

d − (u/v)

∣
∣
∣ �

∣
∣
∣
√

d − (r/s)

∣
∣
∣ <

1

2s2
≤ 1

2v2
,

whence u/v � pn/qn.

6.5. If there is a solution (x, y) for which the greatest common divisor of x and y

is 1, then by Exercises 6.2, 6.3, 6.4, (x, y) � (pn, qn) for some n. If the greatest
common divisor of a solution is g, then k is a multiple of g2, i.e., k � g2l. We
have l < k <

√
d , and so we can find (x, y) � (gpn, gqn) for some n.

Chapter 6

1.1. {tn} � {1, 6, 35, 204, 1189, 6930, 40391, . . .}.
1.2. Use the fact that tn+1 + tn � 7(tn + tn−1) − 8tn−1 and an induction argument.

1.3. {(an, bn, cn} � {(3, 4, 5), (20, 21, 29), (119, 120, 169), . . .}.
1.5(a). For n ≥ 4,

pn � 2pn−1 + pn−2 � 2(2pn−2 + pn−3) + pn−2 � 5pn−2 + (pn−2 − pn−4)

� 6pn−2 − pn−4,

with a similar result for qn.

1.5(b). The sequences {p2n+1}, {q2n+1}, {cn � tn+1 − tn}, and {an +bn � tn+1 + tn}
all satisfy the recursion xn � 6xn−1 − xn−2 for n ≥ 3. The desired result follows
by induction.

2.16. (x, y) � (17, −7), (8, −2), (7, 1), (13, 5), (32, 14).

3.2–3.3 Let g � v − u, so that g(r + s) � αb + (β − 1)a, so that v � u + g.
Then (5) becomes

ru2 + s(u + e)2 + 2g[ru + s(u + e)] + (r + s)g2 � (αb + βa − b)2

�⇒ (b − a)2 + 2g(a + b) + kg2 � (αb + βa − b)2.
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Multiplying by k yields

k(b − a)2+2[αb+(β − 1)a](a + b)+[αb+(β − 1)a]2 �k[αb+βa − b]2

⇒ [αb + (β − 1)a]2 + 2[αb + (β − 1)a](a + b)

� k[(α2 − 2α)b2 + 2(αβ − β + 1)ab + (β2 − 1)a2]

⇒ (α2 + 2α)b2 + 2[αβ + β − 1]ab + (β2 − 1)a2

� k(α2 − 2α)b2 + 2k(αβ − β + 1)ab + k(β2 − 1)a2.

3.4(a). Subtract (2) from (1) to obtain (r +s)(u−v) � 2a. Since r +s � k � −1,
v � 2a + u. For equation (4), we check that

r(u + 2a)2 + s(u + 2a + e)2

� ru2 + s(u + e)2 + 4a[ru + s(u + e)] + (r + s)4a2

� (b − a)2 + 4a(a + b) − 4a2 � (b + a)2.

3.7. {tn} � {. . . , −682, −117, −20, −3, 2, 15, 88, 513, 2990, . . .} gives rise
to the Pythagorean triples (−403, −396, 565), (−72, −65, 97), (−15, −8, 17),
(−4, 3, 5), (48, 55, 73), (297, 304, 425), (1748, 1755, 2477), among others.

3.10(a). (r, s, k, α) � (1, 2, 3, 4).

3.10(b). If we want y � x + 1, we use the same sequence {tn}, but
the successive values of (x, y, z) are (1, 2, 3), (17/3, 20/3, 11), (23, 24, 41),
(263/3, 266/3, 153). For y � x − 1, the successive values of (x, y, z) are
(7/3, 4/3, 3), (7, 6, 11), (73/3, 70/3, 41), (89, 88, 153).

3.12. (47, 65, 122).

3.13. (96, 101, 155).

4.1(c). We are led to 12f − 5g � ±1 and the possibilities

(f, g; d, q, x, y) � (2, 5; 29, 70, 9801, 1820), (3, 7; 58, 99, 19603, 2574),

(7, 17; 338, 239, 114243, 6214),

(8, 9; 425, 268, 143649, 6968).

4.2(c). Use 32 � 12 + 2 · 22, and let b � 1, c � 2.

f 1 1 2 2 3 3 4
g 1 3 3 5 5 7 7
q 5 13 14 22 23 31 32
d 3 19 22 54 59 107 114
x 26 170 197 485 530 962 1025
y 15 39 42 66 69 93 96

4.2(d). Use 92 � 72 + 2 · 42 and 112 � 72 + 2 · 62.
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Chapter 7

1.1. x2 + rxy + r2y2 � 1
2 [x2 + (x + ry)2 + r2y2] is a positive divisor of ±1

and so must equal 1. Two of the squares in the sum must take the value 1 and the
third square the value 0. If r 	� ±1, the only possibilities are (x, y) � (±1, 0). If
r � ±1, then we also have (x, y) � (0, ±1) as possible solutions.

1.3(a). Suppose x3 − dy3 � 1 with y � 2. Then x3 ≡ 1 (mod 8), which occurs
if and only if x � 8u + 1 for some integer u. In this case

d � 1

8

[
(8u + 1)3 − 1

] � u
(
64u2 + 24u + 3

)
.

1.3(b). When u � −1, d � −43, and we find that (−7)3 − (−43)23 � 1, which
in turn yields (−7)3 − 43(−2)3 � 1.

1.4(a). Suppose x3 − dy3 � 1 with y � 3. Then x3 ≡ 1 (mod 27), which occurs
if and only if x ≡ 1 (mod 9). If x � 9u + 1, then d � u(27u2 + 9u + 1).

1.4(b). Take u � −1 and u � +1 to obtain solutions for the cases d � 19 and
d � 37.

1.5(a). Note that x2 + x + 1 � (x − 1)(x + 2) + 3.

1.5(b). x2 + x + 1 ≡ 0 (mod 9) ⇔ (2x + 1)2 + 3 ≡ 0 (mod 9) ⇔ −3 is a square
modulo 9. But the only squares, modulo 9, are 0, 1, 4, 7.

1.6(b). (18, 7).

1.8. Values of (d; x, y) for which x3 − dy3 � 1 are (7; 2, 1), (9; −2, −1), (17;
18, 7), (19; −8, −3), (26; 3, 1), (28; −3, −1), (37; 10, 3), (43; −7, −2), (63; 4, 1),
(65; −4, −1), (91; 9, 2).

2.4(c). Let r + sω be an algebraic integer and a unit. The norm of r + sω, namely
r2 − rs + s2, must be equal to 1. The quantity r + sω and its complex conjugate
r + sω2 are roots of the quadratic equation

0 � (x − r − sω)(x − r − sω2) � x2 − (2r − s)t + (r2 − rs + s2).

Hence 2r − s is an integer, so 3s2 � 4 − (2r − s)2 is an integer. Thus, s is an
integer. Since r is a rational root of the quadratic equation x2 − sx + (s2 − 1) � 0,
r must be an integer.

2.5(a). Suppose ρ � στ , where neither σ nor τ is a unit. Then N(ρ) � N(σ)N(τ),
so that N(ρ) is an integer with two nontrivial integer factors. The result follows.

2.5(b). N(1 − ω) � 3.

2.8(b). N(δ) � N(α − βγ ) � N(β)N((α/β) − γ ) � N(β)N((u − m) + (v −
m)ω).

3.1(a). For example, (x − 1) − (x − ω2) � −(1 + ω)(1 − ω) � ω2(1 − ω).

3.1(f). Since (1 − ω)−1(x − 1), (1 − ω)−1(x − ω), and (1 − ω)−1(x − ω2) are
pairwise relatively coprime algebraic integers whose product is a perfect cube, by
Exercise 2.12(d) each must be a cube up to a unit factor.
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3.2(b). Let γ1 � r1 + s1ω � (r1 + s1) − s1(1 − ω), so that γ1 ≡ r1 + s1

(mod (1 − ω)). Since r1 + s1 is not divisible by 1 − ω, it is not divisible by
3 � (1 − ω)(1 − ω2). Hence r1 + s1 ≡ ±1 (mod 3) (with respect to the usual
integers), and so r1 + s1 ≡ ±1 (mod (1 − ω)). A similar result holds for γ2.

4.8(b). Since

(x + ay + a2z)[(x − ay)2 + a2(y − az)2 + (a2z − x)2] � 2

and the terms of the second factor on the left can be only 0, 1, or 2, then a2(y −
az)2 � 0, so that x − ay � x − a2z. Hence the second factor is 2(x − a2z).
Since this cannot vanish, we must have x � a2z ± 1, so that the first factor is
±1 + 3a2z. The plus sign must be taken, and so (x, y, z) � (1, 0, 0).

4.8(c). In the case a � ±1, if any two terms of the second factor vanish, then the
third must as well. Hence two terms of the second factor must be 1, and the third
one 0. Suppose that x � z. Then y − az � ±1, so that the first factor must be
1 � 3z + a. This leads to (a; x, y, z) � (±1; 0, ±1, 0). Suppose x � ay. Then
y − az � ±1, so that a2z � ay ∓ a, and the first factor must be 1 � 3ay ∓ a,
which leads to ∓a � 1 and (x, y, z) � (0, 0, 1). Finally, suppose that y � az.
Then x − ay � x − a2z � ±1, so the first factor must be 3a2z ± 1 � 1,
where the plus sign must be taken and (x, y, z) � (1, 0, 0). Thus, the solutions
are (x, y, z) � (1, 0, 0), (0, a, 0), (0, 0, 1).

5.1(c). Use Exercise 4.5.

5.2(c). Clearly, α + τ1(α) + τ2(α) � 3u and ατ1(α)τ2(α) � u3 + cv3 + c2w3 −
3cuvw.

α(τ1(α) + τ2(α)) + τ1(α)τ2(α)

� (u + vθ + wθ2)(2u − vθ − wθ2)

+ (u2 − cvw) + (cw2 − uv)θ + (v2 − uw)θ2

� (2u2 − 2cvw) + (uv − cw2)θ + (uw − v2)θ2

+ (u2 − cvw) + (cw2 − uv)θ + (v2 − uw)θ2

� 3(u2 − cvw).

The desired equation can be determined from

0 � (t − α)(t − τ1(α))(t − τ2(α)).

5.3. Since ε is real, ε � ±1. N(1) � 1 and N(−1) � −1.

5.4(a) Since |ε||τ1(ε)|2 � 1 and 1 ≤ |ε| ≤ M , it follows that M− 1
2 ≤ |τi(ε)| ≤ 1

for i � 1, 2. If ε � u + vθ + wθ2, then

|3u| � |ε + τ1(ε) + τ2(ε)| ≤ M + 2,
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and since −cvw � (u2 − cvw) − u2,

|3cvw| ≤ |3(u2 − cvw)| + |3u2|
≤ |ε||τ1(ε)| + |ε||τ2(ε)| + |τ1(ε)τ2(ε)| + 3u2

≤ 2M + 1 + 1

3
(M + 2)2 � 1

3
(M2 + 10M + 7) ≤ 6M2.

There are only finitely many possible choices of the integer u, and for each choice
of u, finitely many pairs of integers (v, w) for which |vw| ≤ 2M2/c. Thus there
are only finitely many units ε � u + vθ + wθ2 with |ε| ≤ M .

5.4(b). Let ε ∈ E and |ε| 	� 1. Then one of the elements ε, −ε, 1/ε, −1/ε belongs
to E and exceeds 1; call it δ. There are finitely many elements in E that lie between
1 and δ; let γ be the smallest of these.

5.4(c). Let δ ∈ E with δ > 0. Select that integer n for which γ m ≤ δ < γ m+1.
Then γ mδ−1 is a unit that is not less than 1 but strictly less than γ . Since γ is
minimal, γ δ−1 � 1 so δ � γ .

5.5(d). Note that |θ | and |θ2| do not exceed c and that |ω − 1| and |ω2 − 1| do not
exceed 2.

5.5(f). Given any finite collection of elements u + vθ + wθ2 whose norms do not
exceed 25c2 in absolute value, we can select n such that 4n2 exceeds the largest
value |u + vθ + wθ2|−1. Now apply (c) and (d) to obtain a new element.

5.6(b). We have that
m

u2 + v2θ + w2θ2
� (u2 − cv2w2) + (cw2

2 − u2v2)θ + (v2
2 − u2w2)θ

2,

whereupon

u3 + v3θ + w3θ
2

� [u1(u
2
2 − cv2w2) + cv1(v

2
2 − u2w2) + cw1(cw

2
2 − u2v2)]

+ [u1(cw
2
2 − u2v2) + v1(u

2
2 − cv2w2) + cw1(v

2
2 − u2w2)]θ

+ [u1(v
2
2 − u2w2) + v1(cw

2
2 − u2v2) + w1(u

2
2 − cv2w2)]θ

2

≡ [u3
1 + cv3

1 + c2w3
1 − 3cu1v1w1] + 0 × θ + 0 × θ2 � m,

modulo m.

6.4. (1, 1, 1)−1 � (−1, 1, 0). The recursion gives

(1, 1, 1)2 � 3(1, 1, 1) + 3(1, 0, 0) + (−1, 1, 0) � (5, 4, 3),

(1, 1, 1)3 � 3(5, 4, 3) + 3(1, 1, 1) + (1, 0, 0) � (19, 15, 12).

6.5(b). (x, y, z) � (4, 3, 2), (−2, 0, 1) both work.

7.1. We can try y � −rz, whereupon cz3 � r3z3 − 3rz2, so 3r � (r3 − c)z.
Checking out factorizations of 3r leads to possibilities such as

(c; x, y, z) � (7; 1, −12, 6), (9; 1, 12, −6), (26; 1, −27, 9), (28; 1, 27, −9).
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Another possibility is to let (y, z) � (−rs, r2), whereupon c � r−3s(s2 − 3).
Select (r, s) to make this an integer. For example, (r, s) � (11, 753) yields
(c; x, y, z) � (320778; 1, −8283, 121).

Solutions can be found for c � 2, 4, 5, 6, 10, 11, 14, 18, 24, 30, 36, 52, 58, 61,
67, 70, 76. These can be found in the list for Exercise 7.3(c) and 7.3(d).

7.3(c). Note that we can use Exercise 7.2 to obtain solutions for positive values of
c from those for −c.

c r t (x, y, z) (x, y, z)−1

2 1 1 (1, 3, −3) (19, 15, 12)
6 −2 −1 (1, −6, 3) (109, 60, 33)
7 −1 −2 (1, −12, 6) (505, 264, 138)
9 1 2 (1, 12, −6) (649, 312, 150)
10 2 1 (1, 6, −3) (181, 84, 39)
24 −3 −1 (1, −9, 3) (649, 225, 78)
26 −1 −3 (1, −27, 9) (6319, 2133, 720)
28 1 3 (1, 27, −9) (6805, 2241, 738)
30 3 1 (1, 9, −3) (811, 261, 84)
60 −4 −1 (1 − 12, 3) (2161, 552, 141)
62 −2 −2 (1, −24, 6) (8929, 2256, 570)
63 −1 −4 (1, −48, 12) (36289, 9120, 2292)
65 1 4 (1, 48, −12) (37441, 9312, 2316)
66 2 2 (1, 24, −6) (9505, 2352, 582)
68 4 1 (1, 12, −3) (2449, 600, 147)
120 −5 −1 (1, −15, 3) (5401, 1095, 222)
124 −1 −5 (1, −75, 15) (139501, 27975, 5610)
126 1 5 (1, 75, −15) (141751, 28275, 5640)
130 5 1 (1, 15, −3) (5851, 1155, 228)
213 −3 −2 (1, −36, 6) (46009, 7704, 1290)
214 −2 −3 (1, −54, 9) (104005, 17388, 2907)
215 −1 −6 (1, −108, 18) (417961, 69768, 11646)
217 1 6 (1, 108, −18) (421849, 70200, 11682)
218 2 3 (1, 54, −9) (105949, 17604, 2925)
219 3 2 (1, 36, −6) (47305, 7848, 1302)
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7.3(d). Let r � 3t so that k � ts. Then c � t3s3 + 3t and (x, y, z) �
(1, ts2, −s).

c t s (x, y, z) (x, y, z)−1

2 −2 −1 (1, −2, 1) (5, 4, 3)
4 1 1 (1, 1, −1) (5, 3, 2)
5 −1 −2 (1, −4, 2) (41, 24, 14)
11 1 2 (1, 4, −2) (89, 40, 18)
14 2 1 (1, 2, −1) (29, 12, 5)
18 −3 −1 (1, −3, 1) (55, 21, 8)
30 1 3 (1, 9, −3) (811, 261, 84)
36 3 1 (1, 3, −1) (109, 33, 10)
52 −4 −1 (1, −4, 1) (209, 56, 15)
58 −2 −2 (1, −8, 2) (929, 240, 62)
61 1 −4 (1 − 16, 4) (3905, 992, 252)
67 1 4 (1, 16, −4) (4289, 1056, 260)
70 2 2 (1, 8, −2) (1121, 272, 66)
76 4 1 (1, 4, −1) (305, 72, 17)
110 −5 −1 (1, −5, 1) (551, 115, 24)
122 −1 −5 (1, −25, 5) (15251, 3075, 620)
128 1 5 (1, 25, −5) (16001, 3175, 630)
140 5 1 (1, 5, −1) (701, 135, 26)
198 −6 −1 (1, −6, 1) (1189, 204, 35)
207 −3 −2 (1, −12, 2) (4969, 840, 142)
210 −2 −3 (1, −18, 3) (11341, 1908, 321)
213 −1 −6 (1, −36, 6) (46009, 7704, 1290)
219 1 6 (1, 36, −6) (47305, 7848, 1302)
222 2 3 (1, 18, −3) (11989, 1980, 327)
225 3 2 (1, 12, −2) (5401, 888, 146)
234 6 1 (1, −6, 1) (1405, 228, 37)

7.3(e). If we let k � u/v, then r � c − (u3/v3) � (cv3 − u3)/v3 and s �
3k/(c − k3). We have the solution

(x, y, z) �
(

1,
3u2v

cv3 − u3
,

−3uv2

cv3 − u3

)
.
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Try different values of c and select u and v to give integer entries. This table
gives some examples.

c u v (x, y, z) (x, y, z)−1

2 5 4 (1, 100, −80) (16001, 12700, 10080)
3 3 2 (1, −18, 12) (649, 450, 312)
9 4 2 (1, 12, −6) (649, 312, 150)
15 5 2 (1, −30, 12) (5401, 2190, 888)
16 5 2 (1, 50, −20) (16001, 6350, 2520)
19 8 3 (1, 576, −216) (2363905, 885888, 331992)
37 10 3 (1, −900, 270) (8991001, 2698200, 809730)
43 7 2 (1, 294, −84) (1061929, 303114, 86520)
91 9 2 (1, −486, 108) (4776409, 1061910, 236088)
152 16 3 (1, 288, −54) (2363905, 442944, 82998)
166 11 2 (1, −242, 44) (1767569, 321618, 58520)
182 17 3 (1, 2601, −459) (217282339, 38341341, 6765660)
275 13 2 (1, 338, −52) (4833401, 743262, 114296)

In more generality, let v � 2. If u � 8w ± 1, then u3 � 8(64w3 ± 24w2 +
3w) ± 1, so we can take c � 64w3 ± 24w2 + 3w. If u � 8w ± 3, then u3 �
8(64w3 ± 72w2 + 27w + 3) + 3, so we can take c � 64w3 ± 72w2 + 27w + 3.

7.5(c). c � 5. (x, y, z) � (1, −4, 2). The quantity (1 − 4θ + 2θ2)5 yields
the solution (x, y, z) � (70001, −64620, 13850). For c � 25, a solution is
(x, y, z) � (70001, 13850, −12924). The “inverse” solution is

(x, y, z) � (9375075001, 3206230550, 1096515424).

7.7. See also Exercise 1.8.

c (x, y, z) (x, y, z)−1

7 (2, −1, 0) (4, 2, 1)
9 (−2, 1, 0) (4, 2, 1)
17 (18, −7, 0) (324, 126, 49)
19 (−8, 3, 0) (64, 24, 9)
26 (3, −1, 0) (9, 3, 1)
28 (−3, 1, 0) (9, 3, 1)
37 (10, −3, 0) (100, 30, 9)
43 (−7, 2, 0) (49, 14, 4)
91 (9, −2, 0) (81, 18, 4)
254 (19, −3, 0) (361, 57, 9)
614 (17, −2, 0) (289, 34, 4)
651 (−26, 3, 0) (676, 78, 9)
813 (28, −3, 0) (784, 84, 9)

7.8. When c � k3 ± 1, a solution is (x, y, z) � (k2, k, 1); when c � k3 + 3, a
solution is (x, y, z) � (1, k2, −k), and when c � k3 − 3, a solution is (x, y, z) �
(1, −k2, k).
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7.9(b). We find that gc(c + 1, 3, 3) � (c + 1)3 and gc(c
2 + 20c + 1, 15c + 6, 6c +

15) � (c + 1)6, so that two solutions of gc(x, y, z) � 1 are

(x, y, z) �
(

1,
3

c + 1
,

3

c + 1

)
,

(
1 + 18c

(c + 1)2
,

3(5c + 2)

(c + 1)2
,

3(2c + 5)

(c + 1)2

)
.

We get integer entries when c � 2, −2 and −4. From these, we deduce that

1 � g2(1, 1, 1) � g2(5, 4, 3) � g2(1, 3, −3)

� g4(1, 1, −1) � g4(−7, 6, −1).

7.9(c).
(

1,
3

c + 1
,

3

c + 1

)2

�
(

1 + 18c

(c + 1)2
,

3(5c + 2)

(c + 1)2
,

3(2c + 5)

(c + 1)2

)
.

7.9(d). The transformation

S : (x, y, z) −→ (x + cz, x + y, y + z)

corresponds to multiplication of x + yθ + zθ2 by 1 + θ , so if we commence the
sequence with (1, 0, 0), then the nth term is the triple corresponding to (1 + θ)n.
gc(x + cz, x + y, y + z) � N(1 + θ)N(x + yθ + zθ2) � (1 + c)gc(x, y, z).

It turns out that S2(x, y, z) � (x + cy + 2cz, 2x + y + cz, x + 2y + z) and
S3(x, y, z) � ((1 + c)x + 3cy + 3cz, 3x + (1 + c)y + 3cz, 3x + 3y + (1 + c)z),
and also that gc(x + cz, y + x, z + y) � (1 + c)gc(x, y, z) � gc(x, y, z) +
gc(cz, x, y). Hence gc(S

3(x, y, z)) � (1 + c)3g(x, y, z). If gc(u, v, w) � 1, we
can divide the entries of S3(u, v, w) by 1 + c to get another rational solution of
gc(x, y, z) � 1. When c � 2, the solution is actually an integer. The action of S

on (1, 0, 0) in this case is

(1, 0, 0) → (1, 1, 0) → (1, 2, 1) → (3, 3, 3).

Then we can proceed to

(1, 1, 1) → (3, 2, 2) → (7, 5, 4) → (15, 12, 9)

and

(5, 4, 3) → (11, 9, 7) → (25, 20, 16) → (57, 45, 36)

and so on to find infinitely many solutions.

9.3(a).

g(x, y, z) � (x + yθ1 + zθ2
1 )(x + yθ2 + zθ2

2 )(x + yθ3 + zθ2
3 )

� x3 + (θ1 + θ2 + θ3)x
2y + (θ2

1 + θ2
2 + θ2

3 )x2z

+ (θ1θ2 + θ1θ3 + θ2θ3)xy2

+ (θ2
1 θ2

2 + θ2
1 θ2

3 + θ2
2 θ2

3 )xz2

+ (θ1θ
2
2 + θ2

1 θ2 + θ1θ
2
3 + θ2

1 θ3 + θ2θ
2
3 + θ2

2 θ3)xyz

+ (θ1θ2θ3)y
3 + (θ1θ2θ3)(θ1 + θ2 + θ3)y

2z

+ (θ1θ2θ3)(θ1θ2 + θ1θ3 + θ2θ3)yz2 + (θ1θ2θ3)
2z3.
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Since

θ1 + θ2 + θ3 � 7,

θ1θ2 + θ1θ3 + θ2θ3 � 14,

θ1θ2θ3 � 7,

θ2
1 + θ2

2 + θ2
3 � (θ1 + θ2 + θ3)

2 − 2(θ1θ2 + θ1θ3 + θ2θ3) � 21,

θ2
1 θ2

2 + θ2
1 θ2

3 + θ2
2 θ2

3 � (θ1θ2 + θ1θ3 + θ2θ3)
2 − 2(θ1θ2θ3)(θ1 + θ2 + θ3)�98,

∑
θiθ

2
j � (θ1 + θ2 + θ3)(θ1θ2 + θ1θ3 + θ2θ3) − 3θ1θ2θ3 � 77,

the result follows.

9.3(b). With z � 0, the equation becomes x3 + 7y3 + 7x2y + 14xy2 � 1. One
solution is (x, y, z) � (1, −1, 0). Taking y � −1 yields that

0 � x3 − 7x2 + 14x − 8 � (x − 1)(x − 2)(x − 4),

so we obtain (x, y, z) � (1, −1, 0), (2, −1, 0), (4, −1, 0).

9.3(c). Setting x � z � 1 leads to

0 � y3 + 9y2 + 26y + 24 � (y + 2)(y + 3)(y + 4)

and the solutions (x, y, z) � (1, −2, 1), (1, −3, 1), (1, −4, 1).

9.3(d). A unit in Z(θ) is 1 − θ and we note that

(1 − θ) ∗ (u + vθ + wθ2)

� u + (v − u)θ + (w − v)θ2 − wθ3

� u + (v − u)θ + (w − v)θ2 − w(7θ2 − 14θ + 7)

� (u − 7w) + (v − u + 14w)θ + (−v − 6w)θ2.

Thus, if (x, y, z) � (u, v, w) satisfies g(x, y, z) � 1, then so also does

(x, y, z) � (u − 7w, −u + v + 14w, −v − 6w).

Starting with (x, y, z) � (1, 0, 0), this process yields in turn

(x, y, z) � (1, −1, 0), (1, −2, 1), (−6, 11, −4), (22, −39, 13), . . . .

Chapter 8

1.1(c). Since tn − 1 � (t − 1)(tn−1 + tn−2 + · · · + t + 1), ζ i 	� 1, and the left
side vanishes for t � ζ i , the second factor on the right must vanish for this value
of t .

1.4. Use Exercise 1.2 to show that �n−1
i�0 (k − ζ iθ) � kn − c.

1.5(a), 1.6(a). Note that N(k − θ) � ∏n−1
i�0 (k − ζ iθ) � kn − c from Exercise 1.2.

1.7(a). N(k + θ) � ∏n−1
i�0 (k + ζ iθ) � kn − (−θ)n � kn − (−1)nc.
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1.8.

N(k2 + kθ + θ2) �
n−1∏

i�0

(k2 + kζ iθ + ζ 2iθ2)

�
n−1∏

i�0

k3 − ζ 3iθ3

k − ζ iθ
� 1

kn − c

n−1∏

i�0

(k3 − ζ 3iθ3).

When n is not a multiple of 3, the set {3i : 0 ≤ i ≤ n − 1} constitutes a complete
set of residues modulo n. This means that for any j between 0 and n − 1 inclusive,
there is a unique integer i in the same range for which 3i ≡ j (mod n). Thus ζ 3iθ3

runs through all the nth roots of c3. Thus,
∏n−1

i�0 (k3 − ζ 3iθ3) � k3n − c3. Suppose
that n � 3m. Then ζ 3i is an mth root of unity. When 0 ≤ i, j ≤ n − 1, ζ 3i � ζ 3j

if and only if i ≡ j (mod m), and so ζ 3iθ3 (0 ≤ i ≤ n − 1) runs through all
the mth roots of c three times. Thus

∏n−1
i�0 (k3 − ζ 3iθ3) � (kn − c)3. The result

follows.

1.10(a).

ξ 2 � k2n−2 + 2k2n−3θ + 3k2n−4θ2 + · · ·
+ nkn−1θn−1 + (n − 1)kn−2θn + (n − 2)kn−3θn+1

+ · · · + 2kθ2n−3 + θ2n−2.

Now use the fact that θn � c to get the result.

1.10(b). When n is even and c � kn + 1, then by Exercise 1.4,

gc(k
n−1, kn−2, . . . , k, 1) � −1.

Using Exercise 1.7, we find that

gc(k
2n−2 + (n − 1)ckn−2, 2k2n−3 + (n − 2)ckn−3, . . . , nkn−1) � 1.

1.11. Let α � (kn ± 1) + kn−1(ζ iθ) + kn−2(ζ iθ)2 + · · · + k(ζ iθ)n−1. Then

α � k[kn−1 + kn−2(ζ iθ) + · · · + (ζ iθ)n−1] ± 1

� k(kn − c)

k − ζ iθ
± 1 � ∓2k ± 1 ∓ ζ iθ

k − ζ iθ

� ±[(−k) − ζ iθ ]

k − ζ iθ
.

Hence

N(α) � (−k)n − c

kn − c
� 1

when n is even. (When n is odd, c � kn + 2, this becomes N(α) � −(kn +
c)/(kn − c) � kn + 1, while if n is odd, c � kn − 2, it becomes N(α) �
−(kn + c)/(kn − c) � −kn + 1).
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1.12(a). This is a consequence of Exercise 1.10(b) with k � 1, c � 2. For the
direct verification, we have for any positive integer r ,

[r + (n − 1)] + [r + (n − 2)]t + · · · + rtn−1

� r(1 + t + · · · + tn−1) + (1 + t + · · · + tn−2) + · · · + (1 + t) + 1

� 1

t − 1
[r(tn − 1) + (tn−1 − 1) + · · · + (t2 − 1) + (t − 1)]

� 1

t − 1
[r(tn − 1) + tn − 1

t − 1
− n]

� 1

(t − 1)2
[r(tn − 1)(t − 1) + (tn − 1) − n(t − 1)].

When r � n, θn � c � 2, and t � ζθ , this becomes (1 − ζθ)−2, so

N
(
(2n − 1) + (2n − 2)θ + · · · + nθn−1

) �
n∏

i�0

(1 − ζ iθ)−2 � (−1)−2 � 1.

1.12(b).

N
(
3 + 2θ + · · · + 2θn−1

) �
n−1∏

i�0

(
1 + 2(1 − θn)

(1 − ζ iθ)

)

�
n−1∏

i�0

(−1 − ζ iθ)

(1 − ζ iθ)

� (−1)n − 2

1 − 2
� 2 + (−1)n−1.

This assumes the value 3 when n is odd and 1 when n is even. Thus
g2(3, 2, . . . , 2) � 1 when n is even.

1.14. In the solution to Exercise 1.11(a), take r � k and n � 2k − 1 to obtain

(3k − 2) + (3k − 3)t + · · · + ktn−1

� 1

(t − 1)2
[k(t2k−1 − 1)(t − 1) + (t2k−1 − 1) − (2k − 1)(t − 1)].

When θn � c � 3 and t � ζ iθ , this becomes

1

(ζ iθ − 1)2
(2k − 2k + 1)(ζ iθ − 1) + 2] � (ζ iθ − 1) + 2

(ζ iθ − 1)2
� 1 + ζ iθ

(1 − ζ iθ)2
,

and the result follows.

2.1.

gc(x, y, z, w) � [(x + zθ2)2 − θ2(y + wθ2)2][(x − zθ2)2 + θ2(y − wθ2)2]

� [(x2 + cz2 − 2cyw) + θ2(2xz − y2 − cw2)]

× [(x2 + cz2 − 2cyw) − θ2(2xz − y2 − cw2)]

� (x2 + cz2 − 2cyw)2 − c(2xz − y2 − cw2)2.
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2.3. Observe that

(x, y, z, w) ∗ (x, −y, z, −w) � (x2 − 2cyw + cz2, 0, 2xz − y2 − cw2, 0).

2.4. Let c � 1. Then [(x −z)2 + (y −w)2] · [(x +z)2 − (y +w)2] � 1. Each factor
on the left must be 1, and we have that (x, y, z, w) � (±1, 0, 0, 0), (0, 0, ±1, 0).
Now let 1 < c � b4. Then

(x − b2z)2 + b2(y − b2w)2 � (x + b2z)2 − b2(y + b2w)2 � 1.

The only way two integer squares can have sum or difference equal to 1 is for
them to be 1 and 0. Hence (x − b2z)2 � (x + b2z)2 � 1 and b2(y − b2w) �
b2(y + b2w)2 � 0, so that (x, y, z, w) � (±1, 0, 0, 0).

2.6(a). a2w2 � y2 � 1
2 (y2 + a2w2) � zx � z(1 + az).

2.6(b). The greatest common divisor of z and 1 + az is 1. Since their product is
square, each factor is square. Since a2 divides z(1 + az) and the greatest common
divisor of a and 1 + az is 1, a2 must divide z. Hence there are integers r and s for
which z � a2s2 and 1 + az � r2, whence 1 � r2 − az � r2 − a3s2.

2.6(c). x2 + a2z2 − 2a2yw � r4 + a6s4 − 2a3r2s2 � (r2 − a3s2)2 � 1 and
y2 + a2w2 � 2a2r2s2 � 2xz.

2.6(d). r2 − a3s2 � 1 is satisfied by

(a; r, s) � (2; 3, 1), (3; 26, 5), (5; 930249, 83204).

[For the last, we look for a solution of x2 − 5y2 � 1 where y is divisible by 5; we
find that 930249 + 5 × 83204

√
5 � (9 + 4

√
5)5.] These yield

g4(9, 6, 4, 3)

� g9(676, 390, 225, 130)

� g25(865363202001, 387002188980, 173072640400, 77400437796)

� 1.

2.7. We have a2w2 � y2 � zx � z(az − 1). Hence z � a2s2 and az − 1 �
r2 for some integers r and s, whence r2 − a3s2 � −1. On the other hand, if
r2−a3s2 � −1 and (x, y, z, w) � (r2, ars, a2s2, rs), thenx2+a2z2−2a2yw �
(r2 −a3s2)2 � 1 and y2 +a2w2 � 2xz, so we get the desired solution. Let a � 5.
x2 − 5y2 � −1 is satisfied by (x, y) � (2, 1) and (2 + √

5)5 � (682, 305).
We find that r2 − 125s2 � −1 is satisfied by (r, s) � (682, 61). This leads to
g25(465124, 208010, 93025, 41602) � 1.

2.9. g8(3, 2, 1, 0.5) � 1.
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2.10(a).

(x, y, z, w) Type g2(x, y, z, w)

(1, 1, 1, 1)* (−, −, −) −1
(2, 1, 1, 1) (+, −, −) 2
(2, 2, 1, 1) (−, +, −) −4
(2, 2, 2, 1) (−, −, +) 8
(3, 3, 2, 1) (−, +, +) 23
(3, 2, 2, 1) (+, −, +) 9
(3, 2, 1, 1) (+, +, −) 9
(4, 3, 2, 1) (+, +, +) 94
(5, 4, 3, 2) (+, +, +) 49
(6, 5, 4, 3) (+, +, +) 14
(7, 6, 5, 4)* (−, +, +) 1
(9, 7, 6, 5) (+, −, +) 7
(11, 9, 7, 6) (+, +, −) 7
(13, 11, 9, 7) (−, +, +) 79
(15, 12, 10, 8) (+, +, +) 113
(16, 13, 11, 9) (+, −, +) 18
(18, 15, 12, 10) (+, +, +) 46
(19, 16, 13, 11) (−, +, −) −7
(35, 29, 42, 20) (+, +, +) 207
(36, 30, 25, 21) (+, +, +) 28
(37, 31, 26, 22)* (+, +, −) −1

2.10(b)

(x, y, z, w) Type g3(x, y, z, w)

(1, 1, 1, 1) (−, −, −) −8
(2, 1, 1, 1)* (+, −, −) 1
(2, 2, 1, 1) (−, +, −) −2
(2, 2, 2, 1) (−, −, +) 13
(3, 2, 1, 1) (+, +, −) −3
(3, 2, 2, 1) (+, −, +) 6
(3, 3, 2, 1) (−, +, +) 9
(4, 3, 2, 1) (+, +, +) 52
(5, 4, 3, 2) (−, +, +) 4
(7, 5, 4, 3)* (+, −, +) 1
(9, 7, 5, 4) (−, +, −) −3
(16, 12, 9, 7) (+, +, −) −2
(18, 14, 11, 8) (−, −, +) 33
(34, 26, 20, 15) (−, −, +) 13
(50, 38, 29, 22)* (−, −, +) 1

2.11. pc(u, 0, v, 0) � u2 + cv2 and qc(u, 0, v, 0) � 2uv.
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2.12(b).

qc(u, r, v, s) � 0 ⇔ 0 � 2uv − r2 − (cv4/r2) ⇔
0 � (r2 − uv)2 − v2(u2 − cv2) � (r2 − uv)2 − v2

� (r2 − uv − v)(r2 − uv + v).

2.12(c). Solutions with r2 � (u + 1)v:

(c; u, r, v, s) � (5; 161, 108, 72, 48),
(
8; 3, 2, 1, 1

2

)
, (12; 7, 4, 2, 1),

(14; 15, 8, 4, 2), (39; 1249, 500, 200, 80).

Solutions with r2 � (u − 1)v:

(c; u, r, v, s) � (2; 3, 2, 2, 2), (3; 2, 1, 1, 1), (18; 17, 8, 4, 2),

(20; 9, 4, 2, 1),
(
24; 5, 2, 1, 1

2

)
.

2.13. gc(8k4 + 1, 4k3, 2k2, k) � 1 (Type A), when c � 16k4 − 4.

2.14(b). Let c ≡ 2 (mod 8). Since y must be even, x2 + 2z2 ≡ 7 (mod 8), which
is impossible. If c ≡ 6 (mod 8), then c � 8k + 6 � 2(4k + 3) is divisible by
a prime congruent to 3 (mod 4). Since x2 cannot be congruent to −1 for such a
prime, the desired result follows.

2.15(a). If p < 0, then q
√

c < p < 0, so that p2 < cq2 � p2 − 1, giving a
contradiction.

2.15(b). The fundamental quadratic solution for c � 3 is (2, 1) and this cannot be
had since p ≡ x2 	≡ 2 (mod 3). Similarly, the fundamental quadratic solutions
for c � 6 and for c � 8 are, respectively, (5, 2) and (3, 1). Neither 5 nor 3 is
congruent to a square modulo the corresponding value of c.

2.16. Let r2 − cs2 � −1 and suppose (x, y, z, w) � (r, 0, s, 0).

2.18(a).

u4−
(

d2+ 2d

v2

)
v4 � u4−(dv2+1)2+1 � (u2−dv2−1)(u2+dv2+1)+1 � 1.
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2.18(b). If v � 1, then we can take d � ±u2 − 1, so that x4 − cy4 � 1 with
c � u4 − 1 has solution (x, y) � (u, 1).

u v d c � d2 + 2d/v2 u4 − cv4 � 1

3 2 2 5 34 − 5 · 24 � 1
5 2 6 39 54 − 39 · 24 � 1
7 2 12 150 74 − 150 · 24 � 1
9 2 20 410 94 − 410 · 24 � 1
80 3 711 505679 804 − 505679 · 34 � 1
82 3 747 558175 824 − 558175 · 34 � 1
63 4 248 61535 634 − 61535 · 44 � 1
65 4 264 69729 654 − 69729 · 44 � 1
182 5 −1325 1755519 1824 − 1755519 · 54 � 1
624 5 15575 242581871 6244 − 242581871 · 54 � 1
626 5 15675 245706879 6264 − 245706879 · 54 � 1

3.1. The units of Q
(

4
√−1

)
are θ i , where θ4 � −1 and 0 ≤ i ≤ 7. These units give

rise to the solutions (±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), (0, 0, 0, ±1). But
there are other solutions, such as (1, 1, 0, −1) and (3, 2, 0, −2) � (1, 1, 0, −1)2.
Any solution (x, y, z, w) gives rise to related solutions (y, x, −w, −z) and
(z, w, −x, −y).

3.4. x � 1 leads to z2 � 2yw and 2z � y2 − 3w2; some experimentation yields
(x, y, z, w) � (1, 8, 8, 4). On the other hand, w � 0 leads to x2 − 3z2 � 1,
y2 � 2xz and the solution (x, y, z, w) � (2, 2, 1, 0).

3.5. We require w � z2/2y, d � (y2 − 2z)4y2/z4. For example, let
(d; x, y, z, w) � (4t (t3 − 1); 1, 2t2, 2t, 1).

3.6. (d; x, y, z, w) � (3; 2, 2, 1, 0), (20; 9, 6, 2, 0).

3.7. The greatest common divisor of d and x must be 1, so that z � dr for some
value of r . Hence x2 − d3r2 � ±1 and w2 � −2xr .

4.2. Note that, when θ5 � c,

x + yθ2 + zθ4 + uθ6 + vθ8 � x + cuθ + yθ2 + cvθ3 + zθ4,

x + yθ3 + zθ6 + uθ9 + vθ12 � x + czθ + c2vθ2 + yθ3 + cuθ4,

x + yθ4 + zθ8 + uθ12 + vθ16 � x + c3vθ + c2uθ2 + czθ3 + yθ4.

For example, some solutions to g2(x, y, z, u, v) � 1 are

(x, y, z, u, v) � (1, 1, 1, 1, 1) ∗ (1, 1, 1, 1, 1)

� (9, 8, 7, 6, 5) � (9, 2 × 4, 7, 2 × 3, 5)

and

(x, y, z, w) � (1, 1, 0, 1, 0) ∗ (1, 1, 0, 1, 0)

� (1, 4, 1, 2, 2) � (1, 2 × 2, 1, 2 × 1, 2),

whence we find that g4(9, 7, 5, 4, 3) � g4(1, 1, 2, 2, 1) � 1.
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4.3.

c � 2 : (1, 1, 0, 1, 0), (1, 1, 1, 1, 1), (1, −2, 1, 0, 0), (1, 4, 1, 2, 2),

(5, 4, 4, 3, 3), (9, 8, 7, 6, 5), (33, 29, 25, 22, 19).

c � 3 : (1, 1, 0, 1, 0), (7, 6, 5, 4, 3), (1, 5, 1, 2, 2).

c � 4 : (1, 1, 0, −1, 0), (9, 7, 5, 4, 3), (1, 1, 2, 2, 1).

c � 5 : (1, 0, 0, 1, −1), (76, 55, 40, 29, 21).

5.3(b). g13867245(31, 2, 0, 0, 0, 0) � g20179187(33, 2, 0, 0, 0, 0) � 1.

Comments on the Explorations

Exploration 8.1. Some experimentation yields

g80(161, 54, 18, 6) � g82(163, 54, 18, 6) � 1

and

g255(511, 128, 32, 8) � g257(513, 128, 32, 8) � 1.

This suggests the generalization, for c � k4 ± 1:

gc(2k4 ± 1, 2k3, 2k2, 2k) � 1.

Can this be generalized further, either for the quartic case or with respect to degree?

Exploration 8.2. For small values of c, we present the smallest Type A solution
found along with a Type B solution corresponding to the fundamental solution of
the corresponding quadratic Pell’s equation.

c (x, y, z, w) A (x, y, z, w) B

2 (3, 2, 2, 2) (1, 0, 1, 0)

3 (2, 1, 1, 1) (7, 5, 4, 3)

4 (9, 6, 4, 3) —
5 (6, 4, 3, 2) (2, 0, 1, 0), (3, 2, 0, 0)

6 (53, 34, 22, 14) (5, 0, 2, 0)

7 (43, 26, 16, 10) (13, 8, 5, 3), (1, 1, −1, 0)

8 (33, 20, 12, 7) (3, 0, 1, 0)

9 (676, 390, 225, 130) —
10 (3, 0, 1, 0)

11 (10, 0, 3, 0)

12 (7, 4, 2, 1) (7, 0, 2, 0)

13 (18, 0, 5, 0)

14 (15, 8, 4, 2) (15, 0, 4, 0)

15 (31, 16, 8, 4) (8, 4, 2, 1), (2, 1, 0, 0)

17 (33, 16, 8, 4) (4, 0, 1, 0), (2, 1, 0, 0), (8, 4, 2, 1)
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One strategy is to use the equation 1 � (x − z
√

c)2 +√
c(y −w

√
c)2 to deduce

that |x − z
√

c| < 1 and |y − w
√

c| < c−1/4 along with parity considerations to
reduce the number of quadruples (x, y, z, w) to be tried.

Exploration 8.3. One way to generalize is to let (u, v) be a fundamental solution
of u2 − cv2 � ±1, and let

xn + zn

√
c � (h + k

√
c)(u + v

√
c)n,

yn + wn

√
c � (r + s

√
c)(u + v

√
c)n.

With pn � x2
n + cz2

n − 2cynwn and qn � 2xnzn − y2
n − cz2

n, we have pn +
qn

√
c � (u + v

√
c)2n[(h2 + ck2 − 2crs) − √

c(2hk − r2 − cs2)]. Now select
(h, r, k, s) such that gc(h, r, k, s) � 1. The examples given correspond to c � 2,
(u, v) � (1, 1), (h, r, k, s) � (1, −2, 0, 2) with xn + √

2zn � (1 + √
2)n and

yn + √
2wn � −2(1 − √

2)(1 + √
2)n � 2(1 + √

2)n−1, as well as to c � 3,
(u, v) � (2, 1), (h, r, k, s) � (1, −1, 0, 1) with xn + √

3zn � (2 + √
3)n and

yn + √
3wn � (−1 + √

3)(2 + √
3)n.

Exploration 8.4. We have g−4(6, 4, 1, −1) � 0. However, when c is a positive
nonsquare, then x2 + cz2 − 2cyw � 2xz − y2 − cw2 � 0 leads to (x + √

cz)2 �√
c(y + √

cw)2. Since x, y, z, w are rational and
√

c is irrational, we have that

θ � x + √
cz

y + √
cw

.

This can be rewritten as
√

c(wθ − z) � x − yθ , squared and transformed to a
quadratic equation in θ with integer coefficients. However, the polynomial equation
of lowest degree with integer coefficients with root θ has fourth degree.

Exploration 8.7. Cuong Nguyen, while an undergraduate at the University of
Toronto, found the following polynomial solutions to p2 − cq2 � ±1, where
p � x2 + cz2 − 2cyw and q � 2xz − y2 − cw2:
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c (x, y, z, w) (p, q)

t4 ± 1 (t2, 0, 1, 0) (2t4 ± 1, 2t2)

(t3, t2, t, 1) (∓t2, ∓1)

(t3, t2, −t, −1) (4t6 ± 3t2, −4t4 ∓ 1)

(1, −2t3, 0, 2t) (8t8 ± 8t4 + 1, −8t6 ∓ 4t2)

t4 ± 2t (t3 ± 1, t2, t, 1) (1,0)
t4 ± 2 (t4 ± 1, t3, t2, t) (1,0)

(1, t3, 0, −t) (2t8 ± 4t4 + 1, −2t6 ∓ 2t2)

(t4 ± 1, 0, t2, 0) (2t8 ± 4t4 + 1, 2t6 ± 2t2)

t4 ± t (1 ± 2t3, 0, ±2t, 0) (8t6 ± 8t3 + 1, 8t4 ± 4t)

(1, −2t2, 0, 2) (8t6 ± 8t3 + 1, −8t4 ∓ 4t)

s4t4 − s (1, −2s2t3, 0, 2t) (8s6t8 − 8s3t4 + 1, −8s4t6 + 4st2)

(2s3t4 − 1, 0, 2st2, 0) (8s6t8 − 8s3t4 + 1, 8s4t6 − 4st2)

s4t4 − 2s (1, −s2t3, 0, t) (2s6t8 − 4s3t4 + 1, −2s4t6 + 2st2)

(s3t4 − 1, 0, st2, 0) (2s6t8 − 4s3t4 + 1, 2s4t6 − 2st2)

Exploration 8.8.

(x, y, z, u, v, w) (ρ, σ ) (ξ, η, ζ ) g2(x, y, z, u, v, w)

(1, 1, 0, 0, 0, 0) (1, 1) (1, −1, 0) −1
(1, 0, 0, 1, 0, 0) (7, 5) (−1, 0, 0) −1
(1, 0, 1, 0, 1, 0) (1, 0) (5, 4, 3) +1
(1, 1, 1, 0, 0, 0) (3, −2) (1, 1, 1) +1
(1, 1, 1, 1, 1, 1) (1, 1) (−1, −1, −1) −1
(3, 2, 2, 2, 2, 2) (3, 2) (1, 0, 0) +1
(11, 10, 9, 8, 7, 6) (3, 2) (5, 4, 3) +1
(145, 138, 126, 108, 90, 78) (1, 0) (1, 0, 0) +1

The last solution is obtained by *-multiplication. Let X, Y, Z be the respective
solutions (3, 2, 2, 2, 2, 2), (1, 1, 1, 0, 0, 0), (1, 0, 1, 0, 1, 0). By looking at
the solutions to the induced quadratic and cubic Pell’s equations, we find that
X2Y 2Z−1 � (145, 138, 126, 108, 90, 78) induces the trivial solution to the lower-
degree equations. Is this the solution with the smallest positive integers?



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

196 Answers and Solutions

Chapter 9

1.1. The multiplication table, modulo 11, is

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10
2 0 2 4 6 8 10 1 3 5 7 9
3 0 3 6 9 1 4 7 10 2 5 8
4 0 4 8 1 5 9 2 6 10 3 7
5 0 5 10 4 9 3 8 2 7 1 6
6 0 6 1 7 2 8 3 9 4 10 5
7 0 7 3 10 6 2 9 5 1 8 4
8 0 8 5 2 10 7 4 1 9 6 3
9 0 9 7 5 3 1 10 8 6 4 2
10 0 10 9 8 7 6 5 4 3 2 1

1.3. The solutions of x2 − y2 ≡ 1 are (2, 5), (7, 9), (4, 9), (9, 5), (10, 0), (9, 6),
(4, 2), (7, 2), (2, 6), (1, 0).

The solutions of x2 − 3y2 ≡ 1 are (2, 1), (7, 4), (4, 4), (9, 1), (10, 0), (9, 10),
(4, 7), (7, 7), (2, 10), (1, 0).

The solutions of x2 − 4y2 ≡ 1 are (2, 3), (7, 1), (4, 1), (9, 3), (10, 0), (9, 8),
(4, 10), (7, 10), (2, 8), (1, 0).

1.3, 1.6, 1.7. The solutions of x2 − 2y2 ≡ 1 are (3, 2), (6, 1), (0, 4), (5, 1), (8, 2),
(10, 0), (8, 9), (5, 10), (0, 7), (6, 10), (3, 9), (1, 0), listed in ascending ∗-powers
of (3, 2), so that, for example, (8, 2) ≡ (3, 2)5.

2.2(c) Suppose that ai ≡ aj with 0 ≤ i < j ≤ p − 1. Then a(i − j) ≡ 0, so that
i ≡ j . (Since p divides the product of a and i − j , it divides one of the factors.)
Thus, 0, a, 2a, . . . , (p − 1)a are p incongruent elements. Since a complete set
of incongruent elements has exactly p entries, the result follows.

2.3. Since 2x ≡ u + v and 2ry ≡ v − u, and 2 	≡ 0 (mod p), we can solve
these congruences uniquely for x and y by Exercise 2.2. Thus, given any solution
to x2 − r2y2 ≡ 1, we can find a pair of reciprocals and vice versa. Since each
nonzero element of Zp has a reciprocal, there are p − 1 such ordered pairs, and
the result follows.

2.4(a).

(x1, y1) ∗ (x2, y2) � (x1x2 + dy1y2, x1y2 + x2y1)

corresponds to

(x1x2 + r2y1y2) − r(x1, y2 + x2y1) � (x1 − ry1)(x2 − ry2).

2.5(a). a−1 and b−1 satisfy aa−1 � a−1a ≡ 1 and bb−1 � b−1b ≡ 1 (mod p).
Therefore,

(ab)(b−1a−1) � a(bb−1)a−1 ≡ a · 1 · a−1 � aa−1 ≡ 1
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modulo p, so b−1a−1 is the inverse of ab.

2.5(b).

x2 − dy2 ≡ 1 ⇐⇒ dy2 ≡ x2 − 1 � (x − 1)(x + 1)

⇐⇒ d ≡ y−1(x − 1) · y−1(x + 1)

� (xy−1 − y−1)(xy−1 + y−1).

3.2(d). Note that we can write f (t) ≡ (t − a1)g(t) for some polynomial g(t) over
Zp. Then 0 ≡ f (a2) ≡ (a2 − a1)g(a2). Since a2 − a1 	≡ 0, g(a2) ≡ 0, so that
g(t) is divisible by t − a2 modulo p.

3.4. The little Fermat theorem says that each nonzero element of Zp is a root of
the polynomial tp−1 − 1. Now use the factor theorem.

3.5(c). For each prime p � 11, 13, k turns out to be a divisor of p − 1.

3.6. First, we need to establish that such an integer k exits. Since Zp is finite, the
powers an with integer n cannot all be distinct. Select r and s with r < s and
ar ≡ as . Then as−r ≡ 1, so that some positive power of a is congruent to 1. There
is a smallest positive exponent k for which ak ≡ 1. Suppose that p − 1 � uk + v,
where u and v are nonnegative integers with 0 ≤ v < k. Then

1 ≡ ap−1 ≡ auk+v ≡ (ak)uav ≡ av.

Since k is the smallest positive integer with ak ≡ 1, we must have v � 0.

3.7(b). a and pr are relatively prime if and only if a is not divisible by p. For
0 ≤ a ≤ pr − 1, this occurs only if a is not one of the pr−1 multiples of p.

3.7(d). φ(1) � φ(2) � 1. Suppose that m ≥ 3. Then when m is even, 1
2 m and

m are not relatively prime. When 1 ≤ a ≤ m − 1, a and m are relatively prime
if and only if m − a and m are relatively prime; when this occurs, a and m − a

are unequal. Thus, the relatively prime positive integers not exceeding m come in
pairs of distinct elements, so that φ(m) is even. Thus, φ(m) is odd if and only if
m � 1, 2.

3.9. Let Qk be the set of positive integers x not exceeding m for which the greatest
common divisor of x and m is k. Each of the numbers 1, 2, . . . , m belongs to
exactly one Qk , with k a divisor of m. If x ∈ Qk , then 1 ≤ x/k ≤ m/k, and
the greatest common divisor of x/k and m/k is 1. On the other hand, suppose
that 1 ≤ y ≤ m/k and y and m/k are relatively prime. Then 1 ≤ ky ≤ m, and
the greatest common divisor of ky and m is k. It follows from this pairing that
#Qk � φ(m/k), from which the result follows.

3.10(a). Let p − 1 � kl. Then tp−1 − 1 � t kl − 1 � (tk − 1)
(
tk(l−1) + tk(l−2) +

· · · + tk + 1
)
.

3.10(b). We know that tp−1 − 1 has exactly p − 1 roots; each one is a root of either
tk − 1 or q(t). Since tk − 1 and q(t) can have no more roots that their respective
degrees k and p − 1 − k, and since p − 1 � k + (p − 1 − k), tk − 1 must have
exactly k roots and q(t) exactly p − 1 − k roots.
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3.11. Suppose that ak ≡ 1, while ai 	≡ 1 for 1 ≤ i ≤ k − 1. Then (ai)k ≡
(ak)i ≡ 1, so that

{
1, a, a2, . . . , ak−1

}
are k distinct roots of tk − 1.

Let 1 ≤ i ≤ k and suppose that r is the greatest common divisor of k and i; let
k � rs and i � rj . Then (ai)s ≡ ajrs ≡ akj ≡ 1. If r > 1, then s < k, so that
ai does not belong to the exponent k. On the other hand, suppose r � 1. Let ai

belong to the exponent w. Then aiw ≡ 1, so that by the reasoning of Exercise 3.6,
k must be a divisor of iw. Since k and i are relatively prime and w ≤ k, it follows
that w � k. We obtain the desired result.

3.13(b). Primes and primitive roots: (3 : 2), (5 : 2, 3), (7 : 3, 5), (11 : 2, 6, 7, 8),
(13 : 2, 6, 7, 11).

3.14. By Exercise 2.4, there is a one-to-one correspondence between solutions of
x2 − r2y2 ≡ 1 and nonzero integers w. Suppose g is a primitive root modulo p

and (u, v) ∼ g. Then (u, v)i ∼ gi yield the p − 1 incongruent solutions of Pell’s
congruence.

3.15(b). Suppose the result holds for 1 ≤ n ≤ m. Then

(xm+1, ym+1) ≡ (x1, y1) ∗ (xm, ym)

� (x1xm + r2y1ym, x1ym + xmy1)

�
(

2−2
(
gm+1 + gm−1 + g−(m−1) + g−(m+1)

)

+ r2
(
2−2r−2

)(
gm+1 − gm−1 − g−(m−1) + g−(m+1))

)
,

2−2r−1
(
gm+1 + gm−1 − g−(m−1) − g−(m+1)

+ gm+1 − gm−1 + g−(m−1) − g−(m+1)
))

� (
2−2

(
2gm+1 + 2g−(m+1)

)
, 2−2r−1

(
2gm+1 − 2g−(m+1)

))

�
(

2−1
(
gm+1 + g−(m+1)

)
, (2r)−1

(
gm+1 − g−(m+1)

))

4.1. See Exercise 3.4.11.

4.3(b). If r and s are selected with 1 ≤ r < s and (u, v)r ≡ (u, v)s , then
*-multiplying both sides of the equation by (u, −v)r yields (1, 0) ≡ (u, v)s−r .

4.3(c). If x2 − dy2 ≡ 1 and x ≡ 1 or x ≡ p − 1, then y must be congruent to
0. Hence there is a unique solution with x ≡ 1 and with x ≡ p − 1. Suppose
x2 	≡ 1. Then y2 ≡ d−1(x2 − 1) is a quadratic equation in y that has two distinct
solutions. Now (u, v)m−1 ≡ (u, v)m ∗ (u, −v) ≡ (1, 0) ∗ (u, −v) ≡ (u, −v).
By induction, it can be shown that (u, v)m−i ≡ (u, −v)i , and the result follows
from this.

4.4(b). From Exercise 3.4.3 we see that Uk(t) is a polynomial of degree k − 1 with
leading coefficient 2k−1 that is not congruent to 0.

4.4(c). (ui, vi)
2k ≡ (u, v)i(2k) ≡ (u, v)2ki ≡ (1, 0)i ≡ (1, 0), whence T2k(ui) ≡

1. Hence (ui − 1)(ui + 1)Uk(ui) ≡ 0. Among the 2k values of ui , at most two
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are equal to ±1. The remaining 2(k − 1) are roots of Uk(t); since each ui appears
only twice, all roots of Uk(t) must be involved.

4.4(d). Suppose (u′, v′) belongs to the exponent 2k. Then Uk(u
′) � 0, so that by

(c), u′ � ui for some i. Then v′ � ±vi , so that (u′, v′) is equal to one of (ui, vi)

or (ui, −vi) � (u2k−i , v2k−i ). In a way analogous to that of Exercise 3.11, it can
be shown that (ui, vi) belongs to the exponent 2k if and only if gcd(i, 2k) � 1.

4.7(b). The elements of each Si are distinct, since (a, b)∗ (u, v)i ≡ (a, b)∗ (u, v)j

implies that

(u, v)i ≡ (a, −b) ∗ (a, b) ∗ (u, v)i ≡ (a, −b) ∗ (a, b) ∗ (u, v)j ≡ (u, v)j .

4.7(c). Suppose that Sr ∩ Ss is nonvoid. Then there are pairs (ar , br) ∈ Sr and
(as, bs) ∈ Ss (used as (a, b) in the definition of these sets) and indices j and k

with j < k and

(ar , br) ∗ (u, v)j ≡ (as, bs) ∗ (u, v)k,

so that

(ar , br) ≡ (as, bs) ∗ (u, v)k−j

and

(as, bs) ≡ (ar , br) ∗ (u, v)m+j−k.

This says that (ar , br) ∈ Ss and (as, bs) ∈ Sr , contradicting the choice of either
(ar , br) or (as, bs).

5.1(a). G(3, 2) � {(1, 0), (2, 0), (0, 1), (0, 2)}.
5.1(c). x2 − 2y2 ≡ 1 (mod 3) is satisfied by (x, y) ≡ (a, 0) and (0, a), where
a ≡ 1, 2, 4, 5, 7, 8 (mod 9).

G(9, 5) � {(1, 0), (1, 3), (1, 6), (8, 0), (8, 3), (8, 6), (0, 4), (3, 4), (6, 4),
(0, 5), (3, 5), (6, 5)}.
5.1(d). G(9, 2) � {(1, 0), (1, 3), (1, 6), (8, 0), (8, 3), (8, 6), (0, 7), (3, 7), (6, 7),
(0, 2), (3, 2), (6, 2)}.
5.2(a). Since 2(a − 1) ≥ a, p2(a−1) ≡ 0 (mod pa). Thus

w2 − dz2 ≡1 (mod pa) ⇐⇒ u2 + 2uspa−1 − dv2 − 2dvtpa−1 ≡ 1 (mod pa)

⇐⇒ 2us − 2dvt + c ≡ 0 (mod p).

5.2(b). Since u2 − dv2 ≡ 1 (mod pa−1), at least one of u and v is not divisible
by p. If u is not divisible by p, then for each of the p choices of t , we can solve
the congruence 2us ≡ 2dvt − c for a unique value of s. Similarly, if v is not
divisible by p, then for each of the p choices of s, we can solve the congruence
for a unique value of t . Thus, for each (u, v), there are p choices of the (s, t) for
which w2 − dz2 ≡ 1 (mod pa).
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a is congruent to b modulo m (Symbolically: a ≡ b (mod m)): a −b is a multiple
of m

[a, b]: The closed interval whose endpoints are the real numbers a and b, namely
{x : a ≤ x ≤ b}.

#S: The number of elements in the set S

|XY |: Length of the line segment XY

Q(α): The set of numbers of the form p(α), where α is a real number and p is
a polynomial with rational coefficients.

Zp: For a prime p, Zp � {0, 1, 2, . . . , p − 1} is a field in which the arithmetic
operations are defined modulo p.

algebraic number/integer: An algebraic number is a root of a polynomial
whose coefficients are integers; it is an algebraic integer if the leading coefficient
of the polynomials is 1.

ceiling: The ceiling of the real number x, denoted by �x� is that integer n for
which n − 1 < x ≤ n.

closed: A set of numbers is closed under addition (resp. multiplication) is it
contains along with any two elements their sum (resp. product).

common divisor: A common divisor of two numbers is any number for which
each of the two numbers is an integer multiple. The greatest common divisor is
the largest of such numbers. The greatest common divisor of a and b is denoted
by gcd(a, b).

common fraction: A common fraction is a rational number written with an
integer numerator divided by an integer denominator.

complete set of residues modulo m: {r1, r2, . . . , rm} is a complete set of
residues if, for each integer n, there is exactly one index i for which n ≡ ri

(mod m).

coprime: Two integers are coprime if their greatest common divisor is equal
to 1.

201
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cubic polynomial: A cubic polynomial is one for which the term of maximal
degree has degree 3.

de Moivre’s theorem; If n is an integer and i is a square root of −1, then
(cos θ + i sin θ)n � cos nθ + i sin nθ .

diophantine equation: A diophantine equation is an algebraic equation with
integer coefficients for which integer solutions are sought.

divides: “ a divides b” (written a|b) means that a is a divisor of b or that b is a
multiple of a.

discriminant: The discriminant of a quadratic polynomial ax2 + bx + c is the
quantity b2 − 4ac.

Factor theorem: Let p(x) be a polynomial in a single variable x with co-
efficients in a field (usually real or complex). Then p(r) � 0 if and only if
p(x) � (x − r)q(x) for some polynomial q(x).

field: A field is a set of entities upon which there are two operations defined,
called addition and multiplication. Both operations are commutative and associa-
tive; multiplication is distributive over addition (i.e., a(b + c) � ab + ac for
any three elements); each element has an additive inverse (or opposite) and each
nonzero element has a multiplicative inverse (or reciprocal). A quadratic field
Q(

√
d) is the set of numbers of the form a + b

√
d, where a and b are rationals.

floor: The floor of the real number x, denoted by �x� is that integer n for which
n ≤ x < n + 1.

fractional part: The fractional part of a real number is the number obtained by
subtracting its floor from it.

homomorphism: A homomorphism φ from one field or ring to another is a
function that preserves sums and products in the sense that φ(a+b) � φ(a)+φ(b)

and φ(ab) � φ(a)φ(b) for any pair a, b of elements.

irreducible polynomial: A polynomial with integer or rational coefficients is
irreducible if and only if it cannot be factored as a product of two polynomials of
strictly lower degree with rational coefficients.

limit of a sequence: Let xn be a sequence. Formally, lim xn � u if and only if,
for each given positive real number ε, a number N (depending on ε) can be found
for which |xn − u| < ε whenever the index n exceeds N . More informally, xn

tends towards u as n increases iff xn gets arbitrarily close to u as we take larger
and larger values of n.

lowest terms: A common fraction is in lowest terms if its numerator and
denominator are coprime.

matrix: A matrix is a rectangular array of numbers.

monic polynomial: A monic polynomial is a polynomial for which the co-
efficient of the highest power of the variable (leading coefficient) is equal to
1.

nonempty (nonvoid) set: A set is nonempty if it contains at least one element.
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norm: The norm of a quadratic surd a + b
√

d is the product of the surd with its
surd conjugate, namely a2 −bd2. The norm of an algebraic number θ is the product
of θ and all the other roots of an irreducible polynomial with integer coefficients
with θ as a root.

parameter: A parameter in an equation is an algebraic quantity whose value
may be one of a specific set of numbers, but which is regarded as being constant
with respect to other variables in the equation.

parity: The parity of an integer refers to the characteristic of being even or odd.

pigeonhole principle: If you distribute n objects into m categories, and n > m,
then there is a category that receives at least two objects.

polynomial: A polynomial is an expression of the form anx
n + an−1x

n−1 +
· · · + a1x + a0 where n is a nonnegative integer, ai are numbers (coefficients),
an 	� 0 and x is a variable. The degree of the polynomial is n, the highest exponent
of the variable.

quadratic polynomial: A quadratic polynomial is a polynomial of degree 2.

quadratic surd: A quadratic surd is a number of the form a + b
√

d where a,
b are rationals and d is an integer.

rational: A real number is rational iff it can be written in the form p/q where p

and q are integers; each rational number can be written in lowest terms, for which
the greatest common divisor of the numerator p and denominator q is equal to 1.

recursion: A recursion is a sequence {xn} which is defined by specifying a
certain number of initial terms and then by giving some general rule by which
each term is written as a function of its predecessors. An example is a linear
second order recursion where the first two terms of the sequence are given and
each subsequent term has the form xn � axn−1 + bxn−2, where a and b are fixed
multipliers. If x1 � x2 � 1 and the multipliers a and b are both 1, then we get the
Fibonacci sequence.

ring: A subset of numbers is a ring if and only if it is closed under addition,
subtraction and multiplication.

root of a polynomial: A root of a polynomial of a single variable is a number
at which the polynomial takes the value zero. A multiple root r is one for which
(x − r)n is a factor of the polynomial with variable x for some positive integer n

exceeding 1.

root of unity: A complex number z is an nth root of unity if and only if it
satisfies zn � 1. Such a root is primitive iff it is not an mth root of unity with m

less than n.

sequence: A sequence is an ordered set of numbers {xn}, where n ranges over
a set of consecutive integers, usually the positive or nonnegative integers, but
sometimes the set of all integers. If the index n ranges over all integers, the sequence
is said to be bilateral.
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squarefree; An integer is squarefree iff it is not divisible by any square except
1.

surd conjugate: The surd conjugate of the quadratic surd a + b
√

d is a − b
√

d.

upper bound; An upper bound of a set of numbers is a number which is at least
as big as each number in the set. The least upper bound of the set of the smallest
of the upper bounds.
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A. Fröhlich and M.J. Taylor, Algebraic Number Theory. Cambridge, 1991.
Chapter IV: Units (Dirichlet unit theorem: section 4)
Chapter V: Fields of low degree (quadratic, biquadratic, cubic, and sextic)

Karl F. Gauss, Disquisitiones arithmeticae. Transl. Arthur A. Clarke, Springer,
1986.

A.O. Gelfond, The Solution of Equations in Integers. Translated by J.B. Roberts,
Golden Gate, W.H. Freeman, 1961.

George Gheverghese Joseph, The Crest of the Peacock: Non-European Roots of
Mathematics. I.B. Tauris, London and New York, 1991.

Anthony A. Gioia, The Theory of Numbers. Markham, Chicago, 1970.
Chapter 6: Continued fractions; Farey sequences; The Pell equation

Emil Grosswald, Topics from the Theory of Numbers. (Second edition). Birkhäuser,
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André Weil, Number Theory: An Approach Through History from Hanmurapi to
Legendre. (Birkhäuser, 1984).
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Lionel Bapoungué, Un critère de résolution pour l’équation diophantienne ax2 +
2bxy − kay2 � ±1. Expositiones Mathematicae 16 (1998) 249–262.

J.M. Barbour, Music and ternary continued fractions. Amer. Math. Monthly 55
(1948) 545–555 MR 10 284.

Viggo Brun, Music and Euclidean algorithms. Nordisk Mat. Tidskr. 9 (1961) 29–36,
95 MR 24 (1962) A705.

Zhenfu Cao, The diophantine equations x4 − y4 � zp and x4 − 1 � dyq . C.R.
Math. Rep. Acad. Sci. Canada 21:1 (1999) 23–27.

A. Cayley, Note sur l’équation x2 − Dy2 � ±4, D ≡ 5 (mod 8). Journal für die
reine und angewandte Mathematik 53 (1857) 319–371.

C.C. Chen, A recursive solution to Pell’s equation. Bulletin of the Institute of
Combinatorics and Applications 13 (1995) 45–50.

T.W. Cusick, The Szekeres multidimensional continued fraction. Mathematics of
Computation 31 (1977), 280–317.

T.W. Cusick, Finding fundamental units in cubic fields. Math. Proc. Camb. Phil.
Soc. 92 (1982), 385–389.

T.W. Cusick, Finding fundamental units in totally real fields. Math. Proc. Camb.
Phil. Soc. 96 (1984), 191–194.

T.W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally
real cubic fields. Mathematics of Computation 48 (1987) 147–158.

P.H. Daus, Normal ternary continued fraction expansion for the cube roots of
integers. Amer. J. Math. 44 (1922) 279–296.

P.H. Daus, Normal ternary continued fraction expansions for cubic irrationals.
Amer. J. Math. 51 (1929) 67–98.

Leonard Euler, De usu novi algorithmi in problemate pelliano solvendo. Novi
comm. acad. scientarium Petropolitanae 11 (1765) 1767, 28–66=O.O. (1) 3, 73–
111.

Leonard Euler, De solutione problematum diophanteorum per numeros inte-
gros. Commentarii academiae scientarium Petropolitanae 6 (1732/3) 1738,
175–188=O.O. (1) 2, 6–17.

Leonard Euler, Nova subsida pro resolutione formulae axx + 1 � yy. Opscula
analytica 1 (1783) 310–328=O.O. (1) 4, 76–90.



Springer-Verlag Electronic Production barbeau 6 · xi · 2002 9:42 a.m.
Email texhelp@springer-ny.com for help

Papers 209

M.J. Jacobson, Jr. and H.C. Williams, The size of the fundamental solutions of
consecutive Pell equations. Experimental Math 9 (2000), 631–640.

J.L. Lagrange, Solution d’un problème d’arithmétique. Misc. Taurinensia 4 (1766–
1769)=Oeuvres I, 671–731.

J.L. Lagrange, Sur la solution des problèmes indéterminés du second degré.
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