THE LOVE MAKES US STRONGER

PROOF OF HUNGKHTN’S CONJECTURE

Bai toan 1 Let a, b, c be nonnegative real numbers, no two of which are zero. Prove that
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(Hungkhtn's conjecture)

LO1 GIAL The inequality is equivalent to
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From this, we can easily check that it suffices for us to consider the inequality in the case a > ¢ > b, but if a = c or
b = c, then the inequality is trivial. So we will consider the case a > ¢ > b, then our inequality is equivalent to
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Hence, it suffices to prove that
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Hence f’(a) is increasing. Therefore, if f'(c) > 0, then f’(a) > f'(c) > 0 = f(a) is increasing, and thus
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If f'(¢) < 0, then there exist ag (ap is the unique) such that f’(ag) = 0, that is
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From now, we can easily check that
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Hence, it suffices to prove that
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I have checked that this inequality is valid for all £ > 1 but I could not find any simple proofs for it. So I hope someone
will helps me to do this thing. 0
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