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A1 Yes, it does follow. Let P be any point in the plane. Let
ABCD be any square with center P . Let E,F,G,H
be the midpoints of the segments AB,BC,CD,DA,
respectively. The function f must satisfy the equations

0 = f(A) + f(B) + f(C) + f(D)
0 = f(E) + f(F ) + f(G) + f(H)
0 = f(A) + f(E) + f(P ) + f(H)
0 = f(B) + f(F ) + f(P ) + f(E)
0 = f(C) + f(G) + f(P ) + f(F )
0 = f(D) + f(H) + f(P ) + f(G).

If we add the last four equations, then subtract the first
equation and twice the second equation, we obtain 0 =
4f(P ), whence f(P ) = 0.

Remark. Problem 1 of the 1996 Romanian IMO team
selection exam asks the same question with squares re-
placed by regular polygons of any (fixed) number of
vertices.

A2 Multiplying the first differential equation by gh, the
second by fh, and the third by fg, and summing gives

(fgh)′ = 6(fgh)2 + 6.

Write k(x) = f(x)g(x)h(x); then k′ = 6k2 + 6 and
k(0) = 1. One solution for this differential equation
with this initial condition is k(x) = tan(6x + π/4);
by standard uniqueness, this must necessarily hold for
x in some open interval around 0. Now the first given
equation becomes

f ′/f = 2k(x) + 1/k(x)
= 2 tan(6x+ π/4) + cot(6x+ π/4);

integrating both sides gives

ln(f(x)) =
−2 ln cos(6x+ π/4) + ln sin(6x+ π/4)

6
+ c,

whence f(x) = ec
(

sin(6x+π/4)
cos2(6x+π/4)

)1/6

. Substituting

f(0) = 1 gives ec = 2−1/12 and thus f(x) =

2−1/12
(

sin(6x+π/4)
cos2(6x+π/4)

)1/6

.

Remark. The answer can be put in alternate forms
using trigonometric identities. One particularly simple
one is

f(x) = (sec 12x)1/12(sec 12x+ tan 12x)1/4.

A3 The limit is 0; we will show this by checking that dn =
0 for all n ≥ 3. Starting from the given matrix, add the
third column to the first column; this does not change
the determinant. However, thanks to the identity cosx+
cos y = 2 cos x+y2 cos x−y2 , the resulting matrix has the
form

2 cos 2 cos 1 cos 2 · · ·
2 cos(n+ 2) cos 1 cos(n+ 2) · · ·
2 cos(2n+ 2) cos 1 2 cos(2n+ 2) · · ·

...
...

. . .


with the first column being a multiple of the second.
Hence dn = 0.

Remark. Another way to draw the same conclusion is
to observe that the given matrix is the sum of the two
rank 1 matrices Ajk = cos(j − 1)n cos k and Bjk =
− sin(j − 1)n sin k, and so has rank at most 2. One
can also use the matrices Ajk = ei((j−1)n+k), Bjk =
e−i(j−1)n+k.

A4 The answer is no; indeed, S = Q \ {n + 2/5 |n ∈ Z}
satisfies the given conditions. Clearly S satisfies (a) and
(b); we need only check that it satisfies (c). It suffices
to show that if x = p/q is a fraction with (p, q) = 1 and
p > 0, then we cannot have 1/(x(x − 1)) = n + 2/5
for an integer n. Suppose otherwise; then

(5n+ 2)p(p− q) = 5q2.

Since p and q are relatively prime, and p divides 5q2,
we must have p | 5, so p = 1 or p = 5. On the
other hand, p − q and q are also relatively prime, so
p − q divides 5 as well, and p − q must be ±1 or
±5. This leads to eight possibilities for (p, q): (1, 0),
(5, 0), (5, 10), (1,−4), (1, 2), (1, 6), (5, 4), (5, 6). The
first three are impossible, while the final five lead to
5n + 2 = 16,−20,−36, 16,−36 respectively, none of
which holds for integral n.

Remark. More generally, no rational number of the
form m/n, where m,n are relatively prime and neither
of ±m is a quadratic residue mod n, need be in S. If
x = p/q is in lowest terms and 1/(x(x−1)) = m/n+k
for some integer k, then p(p − q) is relatively prime to
q2; q2/(p(p − q)) = (m + kn)/n then implies that
m+ kn = ±q2 and so ±m must be a quadratic residue
mod n.

A5 No, there is no such group. By the structure theorem
for finitely generated abelian groups, G can be written
as a product of cyclic groups. If any of these factors has
odd order, then G has an element of odd order, so the
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product of the orders of all of its elements cannot be a
power of 2.
We may thus consider only abelian 2-groups hereafter.
For such a group G, the product of the orders of all of
its elements has the form 2k(G) for some nonnegative
integer G, and we must show that it is impossible to
achieve k(G) = 2009. Again by the structure theorem,
we may write

G ∼=
∞∏
i=1

(Z/2iZ)ei

for some nonnegative integers e1, e2, . . . , all but finitely
many of which are 0.
For any nonnegative integer m, the elements of G of
order at most 2m form a subgroup isomorphic to

∞∏
i=1

(Z/2min{i,m}Z)ei ,

which has 2sm elements for sm =
∑∞
i=1 min{i,m}ei.

Hence

k(G) =
∞∑
i=1

i(2si − 2si−1).

Since s1 ≤ s2 ≤ · · · , k(G) + 1 is always divisible by
2s1 . In particular, k(G) = 2009 forces s1 ≤ 1.
However, the only cases where s1 ≤ 1 are where all of
the ei are 0, in which case k(G) = 0, or where ei = 1
for some i and ej = 0 for j 6= i, in which case k(G) =
(i − 1)2i + 1. The right side is a strictly increasing
function of i which equals 1793 for i = 8 and 4097 for
i = 9, so it can never equal 2009. This proves the claim.
Remark. One can also arrive at the key congruence
by dividing G into equivalence classes, by declaring
two elements to be equivalent if they generate the same
cyclic subgroup of G. For h > 0, an element of order
2h belongs to an equivalence class of size 2h−1, so the
products of the orders of the elements of this equiva-
lence class is 2j for j = h2h−1. This quantity is di-
visible by 4 as long as h > 1; thus to have k(G) ≡ 1
(mod 4), the number of elements of G of order 2 must
be congruent to 1 modulo 4. However, there are exactly
2e− 1 such elements, for e the number of cyclic factors
of G. Hence e = 1, and one concludes as in the given
solution.

A6 We disprove the assertion using the example

f(x, y) = 3(1 + y)(2x− 1)2 − y.

We have b − a = d − c = 0 because the identity
f(x, y) = f(1− x, y) forces a = b, and because

c =
∫ 1

0

3(2x− 1)2 dx = 1,

d =
∫ 1

0

(6(2x− 1)2 − 1) dx = 1.

Moreover, the partial derivatives

∂f

∂x
(x0, y0) = 3(1 + y0)(8x0 − 4)

∂f

∂y
(x0, y0) = 3(2x0 − 1)2 − 1.

have no common zero in (0, 1)2. Namely, for the first
partial to vanish, we must have x0 = 1/2 since 1 + y0
is nowhere zero, but for x0 = 1/2 the second partial
cannot vanish.
Remark. This problem amounts to refuting a potential
generalization of the Mean Value Theorem to bivariate
functions. Many counterexamples are possible. Kent
Merryfield suggests y sin(2πx), for which all four of
the boundary integrals vanish; here the partial deriva-
tives are 2πy cos(2πx) and sin(2πx). Catalin Zara sug-
gests x1/3y2/3. Qingchun Ren suggests xy(1− y).

B1 Every positive rational number can be uniquely written
in lowest terms as a/b for a, b positive integers. We
prove the statement in the problem by induction on the
largest prime dividing either a or b (where this is con-
sidered to be 1 if a = b = 1). For the base case, we can
write 1/1 = 2!/2!. For a general a/b, let p be the largest
prime dividing either a or b; then a/b = pka′/b′ for
some k 6= 0 and positive integers a′, b′ whose largest
prime factors are strictly less than p. We now have
a/b = (p!)k a′

(p−1)!kb′
, and all prime factors of a′ and

(p− 1)!kb′ are strictly less than p. By the induction as-
sumption, a′

(p−1)!kb′
can be written as a quotient of prod-

ucts of prime factorials, and so a/b = (p!)k a′

(p−1)!kb′

can as well. This completes the induction.
Remark. Noam Elkies points out that the representa-
tions are unique up to rearranging and canceling com-
mon factors.

B2 The desired real numbers c are precisely those for which
1/3 < c ≤ 1. For any positive integer m and any se-
quence 0 = x0 < x1 < · · · < xm = 1, the cost
of jumping along this sequence is

∑m
i=1(xi − xi−1)x2

i .
Since

1 =
m∑
i=1

(xi − xi−1) ≥
m∑
i=1

(xi − xi−1)x2
i

>

m∑
i=1

∫ xi−1

xi

t2 dt

=
∫ 1

0

t2 dt =
1
3
,

we can only achieve costs c for which 1/3 < c ≤ 1.
It remains to check that any such c can be achieved.
Suppose 0 = x0 < · · · < xm = 1 is a sequence with
m ≥ 1. For i = 1, . . . ,m, let ci be the cost of the
sequence 0, xi, xi+1, . . . , xm. For i > 1 and 0 < y ≤
xi−1, the cost of the sequence 0, y, xi, . . . , xm is

ci + y3 + (xi − y)x2
i − x3

i = ci − y(x2
i − y2),
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which is less than ci but approaches ci as y → 0. By
continuity, for i = 2, . . . ,m, every value in the inter-
val [ci−1, ci) can be achieved, as can cm = 1 by the
sequence 0, 1.

To show that all costs c with 1/3 < c ≤ 1 can be
achieved, it now suffices to check that for every ε > 0,
there exists a sequence with cost at most 1/3 + ε. For
instance, if we take xi = i/m for i = 0, . . . ,m, the
cost becomes

1
m3

(12 + · · ·+m2) =
(m+ 1)(2m+ 1)

6m2
,

which converges to 1/3 as m→ +∞.

Reinterpretation. The cost of jumping along a partic-
ular sequence is an upper Riemann sum of the function
t2. The fact that this function admits a Riemann inte-
gral implies that for any ε > 0, there exists δ0 such that
the cost of the sequence x0, . . . , xm is at most 1/3 + ε
as long as maxi{xi − xi−1} < ε. (The computation of
the integral using the sequence xi = i/m was already
known to Archimedes.)

B3 The answer is n = 2k−1 for some integer k ≥ 1. There
is a bijection between mediocre subsets of {1, . . . , n}
and mediocre subsets of {2, . . . , n+1} given by adding
1 to each element of the subset; thusA(n+1)−A(n) is
the number of mediocre subsets of {1, . . . , n + 1} that
contain 1. It follows thatA(n+2)−2A(n+1)+An =
(A(n + 2) − A(n + 1)) − (A(n + 1) − A(n)) is the
difference between the number of mediocre subsets of
{1, . . . , n+2} containing 1 and the number of mediocre
subsets of {1, . . . , n + 1} containing 1. This differ-
ence is precisely the number of mediocre subsets of
{1, . . . , n + 2} containing both 1 and n + 2, which
we term “mediocre subsets containing the endpoints.”
Since {1, . . . , n+2} itself is a mediocre subset of itself
containing the endpoints, it suffices to prove that this is
the only mediocre subset of {1, . . . , n + 2} containing
the endpoints if and only if n = 2k − 1 for some k.

If n is not of the form 2k − 1, then we can write n +
1 = 2ab for odd b > 1. In this case, the set {1 +
mb | 0 ≤ m ≤ 2a} is a mediocre subset of {1, . . . , n+
2} containing the endpoints: the average of 1+m1b and
1 +m2b, namely 1 + m1+m2

2 b, is an integer if and only
if m1 + m2 is even, in which case this average lies in
the set.

It remains to show that if n = 2k − 1, then the only
mediocre subset of {1, . . . , n + 2} containing the end-
points is itself. This is readily seen by induction on k.
For k = 1, the statement is obvious. For general k,
any mediocre subset S of {1, . . . , n + 2 = 2k + 1}
containing 1 and 2k + 1 must also contain their aver-
age, 2k−1 + 1. By the induction assumption, the only
mediocre subset of {1, . . . , 2k−1 + 1} containing the
endpoints is itself, and so S must contain all integers
between 1 and 2k−1 + 1. Similarly, a mediocre subset
of {2k−1+1, . . . , 2k+1} containing the endpoints gives

a mediocre subset of {1, . . . , 2k−1 + 1} containing the
endpoints by subtracting 2k−1 from each element. By
the induction assumption again, it follows that S must
contain all integers between 2k−1 + 1 and 2k + 1. Thus
S = {1, . . . , 2k + 1} and the induction is complete.

Remark. One can also proceed by checking that a
nonempty subset of {1, . . . , n} is mediocre if and only
if it is an arithmetic progression with odd common dif-
ference. Given this fact, the number of mediocre sub-
sets of {1, . . . , n + 2} containing the endpoints is seen
to be the number of odd prime factors of n + 1, from
which the desired result is evident. (The sequenceA(n)
appears as sequence A124197 in the Encyclopedia of
Integer Sequences.)

B4 Any polynomial P (x, y) of degree at most 2009 can
be written uniquely as a sum

∑2009
i=0 Pi(x, y) in which

Pi(x, y) is a homogeneous polynomial of degree i. For
r > 0, let Cr be the path (r cos θ, r sin θ) for 0 ≤ θ ≤
2π. Put λ(Pi) =

∮
C1
P ; then for r > 0,∮

Cr

P =
2009∑
i=0

riλ(Pi).

For fixed P , the right side is a polynomial in r, which
vanishes for all r > 0 if and only if its coefficients
vanish. In other words, P is balanced if and only if
λ(Pi) = 0 for i = 0, . . . , 2009.

For i odd, we have Pi(−x,−y) = −Pi(x, y). Hence
λ(Pi) = 0, e.g., because the contributions to the inte-
gral from θ and θ + π cancel.

For i even, λ(Pi) is a linear function of the coefficients
of Pi. This function is not identically zero, e.g., because
for Pi = (x2 + y2)i/2, the integrand is always positive
and so λ(P ) > 0. The kernel of λ on the space of ho-
mogeneous polynomials of degree i is thus a subspace
of codimension 1.

It follows that the dimension of V is

(1 + · · ·+ 2010)− 1005 = (2011− 1)× 1005 = 2020050.

B5 First solution. If f(x) ≥ x for all x > 1, then the
desired conclusion clearly holds. We may thus assume
hereafter that there exists x0 > 1 for which f(x0) <
x0.

Rewrite the original differential equation as

f ′(x) = 1− x2 + 1
x2

f(x)2

1 + f(x)2
.

Put c0 = min{0, f(x0) − 1/x0}. For all x ≥ x0, we
have f ′(x) > −1/x2 and so

f(x) ≥ f(x0)−
∫ x

x0

dt/t2 > c0.

In the other direction, we claim that f(x) < x for all
x ≥ x0. To see this, suppose the contrary; then by
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continuity, there is a least x ≥ x0 for which f(x) ≥ x,
and this least value satisfies f(x) = x. However, this
forces f ′(x) = 0 < 1 and so f(x−ε) > x−ε for ε > 0
small, contradicting the choice of x.

Put x1 = max{x0,−c0}. For x ≥ x1, we have
|f(x)| < x and so f ′(x) > 0. In particular, the limit
limx→+∞ f(x) = L exists.

Suppose that L < +∞; then limx→+∞ f ′(x) = 1/(1+
L2) > 0. Hence for any sufficiently small ε > 0, we
can choose x2 ≥ x1 so that f ′(x) ≥ ε for x ≥ x2.
But then f(x) ≥ f(x2) + ε(x− x2), which contradicts
L < +∞. Hence L = +∞, as desired.

Variant. (by Leonid Shteyman) One obtains a similar
argument by writing

f ′(x) =
1

1 + f(x)2
− f(x)2

x2(1 + f(x)2)
,

so that

− 1
x2
≤ f ′(x)− 1

1 + f(x)2
≤ 0.

Hence f ′(x)−1/(1+f(x)2) tends to 0 as x→ +∞, so
f(x) is bounded below, and tends to +∞ if and only if
the improper integral

∫
dx/(1+f(x)2) diverges. How-

ever, if the integral were to converge, then as x→ +∞
we would have 1/(1+f(x)2)→ 0; however, since f is
bounded below, this again forces f(x)→ +∞.

Second solution. (by Catalin Zara) The function
g(x) = f(x) + x satisfies the differential equation

g′(x) = 1 +
1− (g(x)/x− 1)2

1 + x2(g(x)/x− 1)2
.

This implies that g′(x) > 0 for all x > 1, so
the limit L1 = limx→+∞ g(x) exists. In addition,
we cannot have L1 < +∞, or else we would have
limx→+∞ g′(x) = 0 whereas the differential equa-
tion forces this limit to be 1. Hence g(x) → +∞ as
x→ +∞.

Similarly, the function h(x) = −f(x) + x satisfies the
differential equation

h′(x) = 1− 1− (h(x)/x− 1)2

1 + x2(h(x)/x− 1)2
.

This implies that h′(x) ≥ 0 for all x, so the limit L2 =
limx→+∞ h(x) exists. In addition, we cannot have
L2 < +∞, or else we would have limx→+∞ h′(x) = 0
whereas the differential equation forces this limit to be
1. Hence h(x)→ +∞ as x→ +∞.

For some x1 > 1, we must have g(x), h(x) > 0 for
all x ≥ x1. For x ≥ x1, we have |f(x)| < x and
hence f ′(x) > 0, so the limit L = limx→+∞ f(x) ex-
ists. Once again, we cannot have L < +∞, or else we
would have limx→+∞ f ′(x) = 0 whereas the original
differential equation (e.g., in the form given in the first

solution) forces this limit to be 1/(1 + L2) > 0. Hence
f(x)→ +∞ as x→∞, as desired.

Third solution. (by Noam Elkies) Consider the func-
tion g(x) = f(x) + 1

3f(x)3, for which

g′(x) = f ′(x)(1 + f(x)2) = 1− f(x)2

x2

for x > 1. Since evidently g′(x) < 1, g(x) − x is
bounded above for x large. As in the first solution, f(x)
is bounded below for x large, so 1

3f(x)3−x is bounded
above by some c > 0. For x ≥ c, we obtain f(x) ≤
(6x)1/3.

Since f(x)/x → 0 as x → +∞, g′(x) → 1 and so
g(x)/x → 1. Since g(x) tends to +∞, so does f(x).
(With a tiny bit of extra work, one shows that in fact
f(x)/(3x)1/3 → 1 as x→ +∞.)

B6 First solution. (based on work of Yufei Zhao) Since
any sequence of the desired form remains of the desired
form upon multiplying each term by 2, we may reduce
to the case where n is odd. In this case, take x = 2h for
some positive integer h for which x ≥ n, and set

a0 = 0
a1 = 1
a2 = 2x+ 1 = a1 + 2x

a3 = (x+ 1)2 = a2 + x2

a4 = xn + 1 = a1 + xn

a5 = n(x+ 1) = a4 mod a3

a6 = x

a7 = n = a5 mod a6.

We may pad the sequence to the desired length by tak-
ing a8 = · · · = a2009 = n.

Second solution. (by James Merryfield) Suppose first
that n is not divisible by 3. Recall that since 2 is a prim-
itive root modulo 32, it is also a primitive root modulo
3h for any positive integer h. In particular, if we choose
h so that 32h > n, then there exists a positive integer
c for which 2c mod 32h = n. We now take b to be a
positive integer for which 2b > 32h, and then put

a0 = 0
a1 = 1
a2 = 3 = a1 + 2

a3 = 3 + 2b

a4 = 22hb

a5 = 32h = a4 mod a3

a6 = 2c

a7 = n = a6 mod a5.

If n is divisible by 3, we can force a7 = n− 1 as in the
above construction, then put a8 = a7 + 1 = n. In both
cases, we then pad the sequence as in the first solution.
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Remark. Hendrik Lenstra, Ronald van Luijk, and
Gabriele Della Torre suggest the following variant of
the first solution requiring only 6 steps. For n odd and
x as in the first solution, set

a0 = 0
a1 = 1
a2 = x+ 1 = a1 + x

a3 = xn + x+ 1 = a2 + xn

a4 = x(n−1)(φ(a3)−1)

a5 =
xn + 1
x+ 1

= a4 mod a3

a6 = n = a5 mod a2.

It seems unlikely that a shorter solution can be con-
structed without relying on any deep number-theoretic
conjectures.


