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The following are solutions to selected exercises from Walter Rudin’s Principles of Mathematical
Analysis, Third Edition, which I compiled during the Winter of 2008 while a graduate student in
Mathematics at UCLA. Equations are numbered within each Chapter and their labels correspond
to the question number and equation number, so (2.3) refers to the third equation in question #2
of the current Chapter.

Chapter 1: The Real and Complex Number Systems

1. If r ∈ Q, r 6= 0, and x is irrational, prove that r + x and rx are irrational.

Solution: Suppose that r + x ∈ Q. Since Q is a field, −r ∈ Q and we have that −r + r + x =
x ∈ Q, a contradiction. Therefore r+ x ∈ R\Q, i.e. r+ x is irrational. Similarly, suppose that
rx ∈ Q. Since Q is a field, 1

r ∈ Q and we have that 1
r · rx = x ∈ Q, a contradiction. Therefore

rx ∈ R\Q, i.e. rx is irrational. �

2. Prove that there is no rational number whose square is 12.

Solution: Suppose there exist m,n ∈ Z such that neither are divisible by 3 (i.e. we assume
their ratio is in simplified form) and

m

n
=
√

12 =⇒ m2 = 12n2 = 22 · 3n2.

Therefore, 3 | m2 =⇒ 3 | m because 3 is prime. Therefore, 32 | m2 =⇒ 32 | 12n2 =⇒
3 | n2 =⇒ 3 | n, again because 3 is prime. This contradicts that m and n were chosen such
that their ratio is in simplified form because both are divisible by 3.

We can investigate this further, discovering that Q lacks the greatest/least upper bound
property, as is done analogously in Example 1.1 on page 2 of the text. Let A = {p ∈ Q | p >
0, p2 < 12} and B = {p ∈ Q | p > 0, p2 > 12}. Define

q = p− p2 − 12
p+ 12

=
p(p+ 12)− p2 + 12

p+ 12
=

12(p+ 1)
p+ 12

. (2.1)

Then, we have that

q2 − 12 =
144(p+ 1)2 − 12(p+ 12)2

(p+ 12)2
=

132(p2 − 12)
(p+ 12)2

. (2.2)

Now, if p ∈ A then p2 − 12 < 0 so by Equation (2.1) q > p and by Equation (2.2) q2 < 12 so
q ∈ A. Therefore, A contains no largest number. Similarly, if p ∈ B then p2 − 12 > 0 so by
Equation (2.1) 0 < q < p and by Equation (2.2) q2 > 12 so q ∈ B. Therefore, B contains no
smallest number. The elements of B are precisely the upper bounds of A, therefore, since B
has no least element, A has no least upper bound. Similarly, the elements of A are the lower
bounds of B and since A has no greatest element, B has no greatest upper bound. �

3. Prove the following using the axioms of multiplication in a field.

(a) If x 6= 0 and xy = xz then y = z.

(b) If x 6= 0 and xy = x then y = 1.

(c) If x 6= 0 and xy = 1 then y = 1/x.

(d) If x 6= 0 the 1/(1/x) = x.
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Solution: To show part (a) we simply use associativity of multiplication and the existence
of multiplicative inverses.

y = 1y =
(

1
x
· x
)
y =

1
x

(xy) =
1
x

(xz) =
(

1
x
· x
)
z = 1z = z.

The statement of (b) and (c) follow directly from (a) if we let z = 1 and z = 1/x, respectively.
Part (d) follows from (c) if we replace x with 1/x and y with x. �

4. Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an
upper bound of E. Prove that α ≤ β.

Solution: Since E is nonempty, let x ∈ E. Then, by definition of upper and lower bounds,
we have that α ≤ x ≤ β. �

5. Let A be a nonempty set of real numbers which is bounded below. Let −A be the set of all
numbers −x, where x ∈ A. Prove that inf A = − sup(−A).

Solution: Let β = sup(−A), which exists because A is a nonempty subset of the real num-
bers which is bounded below, hence −A is a nonempty subset of the real numbers which is
bounded above. Thus,

∀ x ∈ A,−x ≤ β =⇒ x ≥ −β

so −β is a lower bound for A. Now, suppose there exists γ such that γ > −β and ∀ x ∈
A, x ≥ γ. This implies that −γ < β and −x ≤ −γ, ∀ x ∈ A. But then, −γ is a smaller
upper bound (than β) for −A, contradicting that β = sup(−A). Therefore no such γ exists
and so − sup(−A) = −β = inf(A). The reversing of inequalities throughout follows from
Proposition 1.18 on page 8 of the text. �

6. Fix b > 1.

(a) If m,n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

(bm)1/n = (bp)1/q.

Hence it makes sense to define br = (bm)1/n.

(b) Prove that br+s = brbs if r and s are rational.

(c) If x is real, define B(x) to be the set of all numbers bt, where t is rational and t ≤ x.
Prove that

br = supB(r)

where r is rational. Hence, it makes sense to define

bx = supB(x)

for every real x.

(d) Prove that bx+y = bxby for every real x and y.

Solution:

(a) Frst observe that (bn1)n2 = bn1n2 for n1, n2 ∈ Z by direct expansion of either term. Let
yn = bm so that y = (bm)1/n. Then, ynq = bmq = bnp =⇒ (yq)n = (bp)n, because
m/n = p/q =⇒ mq = np. By Theorem 1.12 on page 10, since nth roots are unique, we
have yq = bp. Then, (bm)1/n = y = (bp)1/q.
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(b) Let r, s ∈ Q and write r = m/n and s = p/q form,n, p, q ∈ Z. Then, r+s = m/n+p/q =
(mq + np)/nq. Note, for n1, n2 ∈ Z we have bn1bn2 = bn1+n2 by direct expansion.
Then, by (a), br+s = (bmq+np)1/nq = (bmqbnp)1/nq = (bmq)1/nq(bnp)1/nq, where the last
equality follows from the Corollary to Theorem 1.12 on page 11 of the text. Again using
the result of (a) we can simplify this last expression and obtain (bmq)1/nq(bnp)1/nq =
(bm)1/n(bp)1/q = brbs, showing (b).

(c) Let t, r ∈ Q and write t = p/q, r = m/n, where p, q,m, n ∈ Z. Then, t < r =⇒ p/q <
m/n =⇒ pn < mq. Thus, since b > 1, we have that bpn < bmq =⇒ bp < (bmq)1/n =⇒
(bp)1/q < ((bmq)1/n)1/q. Using the result of part (a), we can simplify the last expression
to obtain bt = (bp)1/q < (bm)1/n = br, showing that

br > {bt | t < r} =⇒ br = sup {bt | t ≤ r} = B(r)

and proving part (c).

(d) We first observe that brbt = br+t by part (b) and so

bxby = sup
r≤x,t≤y

brbt = sup
r≤x,t≤y

br+t ≤ sup
r+t≤x+y

br+t = bx+y.

Here, supr≤x,t≤y br+t ≤ supr+t≤x+y br+t because we are taking the sup over a more re-
stricted set on the right since r ≤ x, t ≤ y =⇒ r + t ≤ x + y but r + t ≤ x + y doesn’t
imply r ≤ x and t ≤ y. But, we in fact have equality because if supr≤x,t≤y br+t <
supr+t≤x+y br+t then there exist r′, t′ ∈ Q such that r′ + t′ ≤ x+ y and

sup
ρ≤x,τ≤y

bρ+τ < br
′+t′ ≤ sup

r+t≤x+y
br+t. (6.1)

If r′ + t′ = x + y we get a contradiction to Equation (6.1) by choosing ρ = x, τ = y
(this follows from Exercise 1 above). Otherwise, r′ + t′ < x+ y and then we can choose
ρ < x, τ < y such that r′ + t′ < ρ + τ < x + y, because Q is dense in R. But then,
bρ+τ > br

′+t′ , also contradicting Equation (6.1). Therefore we have equality and part (d)
is shown. �

7. Omitted.

8. Prove that no order can be defined in the complex field that turns it into an ordered field.
Hint: −1 is a square.

Solution: Suppose there is an ordered defined on the complex field that turns it into an
ordered field. Then, we get a contradiction to Proposition 1.18(d) on page 8 because i 6= 0
yet i2 = −1 < 0, where −1 < 0 is forced by part (a) of the same Proposition. �

9. Suppose z = a+ bi, w = c+ di. Define z < w if a < c, and also if a = c but b < d. Prove that
this turns the set of all complex numbers into an ordered set. (This type of order relation
is called a dictionary order, or lexicographic order, for obvious reasons.) Does this ordered set
have the least-upper-bound property?

Solution: Let z = a+ bi, w = c+ di ∈ C. Then, since R is an ordered set, either a < b, a = b,
or a > b. If a < b, then z < w. If a > b then z > w. If a = b we check the relationship between
b and d and similarly will conclude that either z < w if b < d, z > w if b > d, or z = w if b = d.
To check transitivity, let u = e + fi ∈ C and suppose that z < w and w < u. Thus a < c or
a = c and b < d. Also, c < e or c = e and d < f . If a < c and c < e then a < e because R is an
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ordered set and in this case z < u. If a < c and c = e with d < f then a < c = e so z < u. If
a = c and b < d with c < e then a = c < e and z < u. If a = c and b < d with c = e and d < f
then a = e but b < d < f so b < f because R is an ordered set and therefore z < u. Thus, C
is an ordered set under this order.

This ordered set does have the least-upper-bound property. To see this, let E ⊆ C and define
α = sup {a | a+bi ∈ E} and β = sup {b | a+bi ∈ E}. Then, it is clear α+βi ∈ C becauseR has
the least-upper bound property and furthermore ∀ a+bi ∈ E, a+bi ≤ α+βi, (because a ≤ α
and b ≤ β) so α+βi is an upper bound for E. Now, suppose there exists γ+ δi ∈ C such that
γ + δi < α + βi and γ + δi is an upper bound for E. If γ < α, then we have a ≤ γ < α ∀ a
such that a + bi ∈ E, contradicting the definition of α. An identical contradiction with the
definition of β occurs if γ = α and δ < β. Therefore, α + βi = sup(E) ∈ C and this ordered
set does indeed have the least-upper-bound property. �

10. Suppose z = a+ bi, w = u+ vi, and

a =
(
|w|+ u

2

)1/2

, b =
(
|w| − u

2

)1/2

.

Prove that z2 = w if v ≥ 0 and that (z̄)2 = w if v ≤ 0. Conclude that every complex number
(with one exception!) has two complex square roots.

Solution: First, suppose that v ≥ 0. Then

z2 = (a+ bi)(a+ bi) = (a2 − b2) + 2abi =
(

(u2 + v2)1/2 + u

2

)
−
(

(u2 + v2)1/2 − u
2

)
+ 2abi

= u+ 2
(

(u2 + v2)− u2

4

)1/2

i

= u+ vi

= w

where we needed to use that v ≥ 0 because (v2)1/2 = |v|. If v ≤ 0 then

(z̄)2 = (a− bi)(a− bi) = (a2 − b2)− 2abi = u− 2abi = u− 2
(

(u2 + v2)− u2

4

)1/2

i

= u− |v|i
= w.

Then it is clear each complex number (except 0 of course!) has two complex roots because
we can take either both positive or both negative square roots defining a and b above since if
we choose−a and−b, the minus signs vanish in w = (a2−b2)±2abi. It is clear we can’t have
more than 2 complex roots because if we mixed taking the positive square root defining a
and the negative square root defining b, or vice versa, the minus signs would not cancel in
the ±2abi term. �

11. If z is a complex number, prove that there exists an r ≥ 0 and a complex number w with
|w| = 1 such that z = rw. Are w and r always uniquely determined by z?

Solution: Simply let w = z/|z| and r = |z|. w is not always uniquely determined since
if z = 0 we can choose any w ∈ C such that |w| = 1 and r = 0. r is always uniquely
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determined since |z| = |rw| = |r||w| = |r| = r because r ≥ 0 by hypothesis. If z 6= 0 then w
is uniquely determined because it must lie on the radius which z lies on, where it intersects
the unit circle. To see this, let z = a+ bi and w = c+ di. Then, a+ bi = rc+ rdi and therefore
c = a/r and d = b/r. Hence, since r is uniquely determined, so is w provided z 6= 0. �

12. If z1, . . . , zn are complex, prove that

|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|.

Solution: We proceed by induction on n. For n = 1 there is nothing to show and the case
n = 2 is the triangle inequality which is given by Theorem 1.33 on page 14 of the text.
Suppose the result holds for n− 1. Then

|z1 + · · ·+ zn| = |z1 + (z2 + · · ·+ zn)| ≤ |z1|+ |z2 + · · ·+ zn| ≤ |z1|+ |z2|+ · · ·+ |zn|

where the last inequality follows by the inductive hypothesis applied to the term |z2 + · · ·+
zn|. �

13. If x, y are complex, prove that ∣∣|x| − |y|∣∣ ≤ |x− y|.
Solution: Let x, y ∈ C and let z = y − x. Then, by the triangle inequality we have that

|x+ z| ≤ |x|+ |z| =⇒ |x+ z| − |x| ≤ |z|,

hence substituting in the expression for z we obtain that

|y| − |x| ≤ |y − x|. (13.1)

Now, set z = x− y and proceeding analogously we find that

|y + z| ≤ |y|+ |z| =⇒ |y + z| − |y| ≤ |z|,

hence substituting in the expression for z we obtain that

|x| − |y| ≤ |x− y| = |y − x|,

thus combined with Equation (13.1) above we see that∣∣|x| − |y|∣∣ ≤ |x− y|,
as desired.

Alternate Solution: Let x = a+ bi and y = c+diwith a, b, c, d ∈ R. By the triangle inequality
(Theorem 1.33(e) on page 14 of the text) we have that

|x+ y| ≤ |x|+ |y| ⇐⇒ |x+ y|2 ≤ |x|2 + |y|2 + 2|x||y|.

Substituting our expressions for x and y and noting that by Definition 1.32 on page 14 of the
text we have that |x| = (a2 + b2)1/2 we find

a2 + c2 + 2ac+ b2 + d2 + 2bd = (a+ c)2 + (b+ d)2

= |(a+ c) + (b+ d)i|2

= |x+ y|2

≤ |x|2 + |y|2 + 2|x||y|
= a2 + b2 + c2 + d2 + 2(a2 + b2)1/2(c2 + d2)1/2
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which immediately implies that

ac+ bd ≤ (a2 + b2)1/2(c2 + d2)1/2. (13.2)

Therefore,∣∣|x| − |y|∣∣2 =
∣∣(a2 + b2)1/2 − (c2 + d2)1/2

∣∣2 =
[
(a2 + b2)1/2 − (c2 + d2)1/2

]2
= a2 + b2 + c2 + d2 − 2

(
(a2 + b2)1/2(c2 + d2)1/2

)
≤ a2 + b2 + c2 + d2 − 2(ac+ bd)

= a2 + c2 − 2ac+ b2 + d2 − 2bd

= (a− c)2 + (b− d)2

= |(a− c) + (b− d)i|2

= |(a+ bi)− (c+ di)|2

= |x− y|2

hence we have ∣∣|x| − |y|∣∣ ≤ |x− y|.
Since the triangle inequality was the fundamental trick in both solutions, we might suspect
that there is a geometric interpretation. There is and it is easy to visualize if we treat x and
y as vectors in R2. Then, this merely states that the magnitude of the vector given by their
difference is greater than or equal to the difference in their magnitudes. This makes sense if
we consider x and y to point in opposite directions (i.e. y = −αx where α > 0). Then the
magnitude of the vector given by their difference is the sum of their magnitudes which is
greater than or equal to the difference of their magnitudes because magnitudes are positive
or zero. When x and y point in the same direction, we get equality, otherwise we have
inequality. When they point in opposite directions we get “maximal inequality”. �

14. If z is a complex number such that |z| = 1, that is, such that zz = 1, compute

|1 + z|2 + |1− z|2.

Solution: Write z = a+ bi with a, b ∈ R. Then

|1 + z|2 + |1− z|2 = |(1 + a) + bi|2 + |(1− a) + bi|2 = (1 + a)2 + b2 + (1− a)2 + b2

= 1 + a2 + 2a+ b2 + 1 + a2 − 2a+ b2

= 2 + 2a2 + 2b2

= 2(a2 + b2) + 2

= 2|z|2 + 2
= 4. �

15. Under what conditions does equality hold in the Schwarz inequality?

Solution: If a1, . . . , an and b1, . . . , bn are complex numbers then the Schwarz inequality states
that ∣∣∣∣ n∑

i=1

aibi

∣∣∣∣2 ≤ n∑
i=1

|ai|2
n∑
i=1

|bj |2.
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We claim that equality holds if there exists λ ∈ C such that bi = λai ∀ i = 1, . . . , n. Supposing
this condition holds we have∣∣∣∣ n∑

i=1

aibi

∣∣∣∣2 =
∣∣∣∣ n∑
i=1

aiaiλ

∣∣∣∣2 = |λ|2
∣∣∣∣ n∑
i=1

|ai|2
∣∣∣∣2 = |λ|2

(
n∑
i=1

|ai|2
)(

n∑
i=1

|ai|2
)

=

(
n∑
i=1

|ai|2
)(

n∑
i=1

|λ|2|ai|2
)

=

(
n∑
i=1

|ai|2
)(

n∑
i=1

|λai|2
)

=
n∑
i=1

|ai|2
n∑
i=1

|bi|2. �

16. Suppose k ≥ 3,x,y ∈ Rk, |x− y| = d > 0, and r > 0. Prove:

(a) If 2r > d, there are infinitely many z ∈ Rk such that

|z− x| = |z− y| = r.

(b) If 2r = d, there is exactly one such z.

(c) If 2r < d, there are no such z.

How must these statements be modified if k is 2 or 1?

Solution:

(a) If z ∈ Rk such that |z− x| = |z− y| = r then z ∈ ∂B(x, r) ∩ ∂B(y, r), where ∂B(x, r) =
{z ∈ Rk | |z−x| = r} is the boundary of the ball of radius r centered at x. If 2r > d =⇒
r > d/2 then the two boundaries intersect in a surface (of dimension k − 2) and thus
there are infinitely many points in this intersection which satisfy the given equation
because k ≥ 3.

(b) If r = d/2 then the two boundaries intersect in a single point, the midpoint of the
segment joining x and y.

(c) If r < d/2 then the boundaries never intersect and so no z ∈ Rk can be on both bound-
aries simultaneously.

If k = 1 then there are no z ∈ R satisfying both equations simultaneously unless r = d/2.
This is because there are only two points that are a distance r from x for a given x ∈ R.
Without loss of generality we can assume x < y. If r = d/2, we see that z = x+ r is the only
point that is a distance r from both x and y. If r > d/2 or r < d/2 then the boundaries (set’s
of two points) never intersect. This is because the points of distance r from x are x + r and
x− r. But, y − (x+ r) = y − x− r = d− r < d− d/2 = d/2 < r so x+ r is not of distance r
from y. Similarly y− (x− r) = y− x+ r = d+ r > r so x− r is also not of distance r from y.
Analogous results hold when r < d/2 with inequalities reversed.

If k = 2 then when r > d/2 instead of infinitely many points in the intersection of the
boundaries, there are just two since in this case the boundaries of the ball’s around x and
y are circles and two different circles can maximally intersect in only 2 points. The cases
r = d/2 and r < d/2 give the same results as they did for k ≥ 3. �
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17. Prove that
|x + y|2 + |x− y|2 = 2|x|2 + 2|y|2

if x,y ∈ Rk. Interpret this geometrically, as a statement about parallelograms.

Solution: If we write x = (x1, . . . , xk) and y = (y1, . . . , yk) then expanding the left hand side
gives

|x + y|2 + |x− y|2 =
k∑
i=1

(xi + yi)2 +
k∑
i=1

(xi − yi)2

=
k∑
i=1

(xi + yi)2 + (xi − yi)2

=
k∑
i=1

(x2
i + 2xiyi + y2

i + x2
i − 2xiyi + y2

i )

=
k∑
i=1

(2x2
i + 2y2

i )

= 2
k∑
i=1

x2
i + 2

k∑
i=1

y2
i

= 2|x|2 + 2|y|2.

If we consider the vectors x and y as representing two sides of a parallelogram then x− y
and x + y represent the diagonals. The equation above is then seen to be nothing more then
the generalized Pythagorean Theorem. Considering the case k = 2 the equation is merely the
sum of the ordinary Pythagorean Theorem for the two diagonals. Since for both diagonals
the sides of the triangle for which they are the hypotenuse are x and y we have that

|x + y|2 = |x|2 + |y|2

|x− y|2 = |x|2 + |y|2

hence our original equation is just the sum of these two. �

18. If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk such that y 6= 0 but x · y = 0. Is this also
true if k = 1?

Solution: We can see right away that the statement must fail for k = 1 because in this case
the dot product is nothing more than multiplication of real numbers and since the reals are
a field xy = 0 =⇒ x = 0 or y = 0, i.e. fields have no zero divisors. This means there is no
notion of perpendicularity in a 1-dimensional space as we’d expect since perpendicularity
implies linear independence and hence extra dimension.

For k ≥ 2 let x = (x1, . . . , xk) and without loss of generality suppose x 6= 0 because other-
wise any non-zero y ∈ Rk will suffice. We consider two cases based on the parity of k. If k is
even then we let y = (x2,−x1, x4,−x3, . . . , xj+1,−xj , . . . , xk,−xk−1) where xj+1 is in the jth

slot. We then have

x · y = x1x2 − x2x1 + · · ·+ xjxj+1 − xj+1xj + · · ·+ xk−1xk − xkxk−1 = 0

and y 6= 0 because x 6= 0 by hypothesis. Now, suppose that k is odd. Since x 6= 0 by hypothe-
sis we have that xj 6= 0 for some 1 ≤ j ≤ k. Supposing that xj is not the only non-zero entry,
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we repeat the same argument and choose y = (x2,−x1, . . . , xj+1, 0,−xj−1, . . . , xk,−xk−1)
where the 0 is in the jth slot and y 6= 0 because we have supposed that xj is not the only
non-zero entry. Then we have

x · y = x1x2 − x2x1 + · · ·+ xj−1xj+1 + 0− xj+1xj−1 + · · ·+ xk−1xk − xkxk−1 = 0.

If xj is the only non-zero entry then we simply choose y = (1, . . . , 1, 0, 1, . . . , 1) where the 0
is in the jth slot. �

Chapter 2: Basic Topology

1. Prove that the empty set is a subset of every set.

Solution: Let A be a set and let ∅ be the empty set. To show ∅ ⊂ A we need to show that
∀ p ∈ ∅, p ∈ A. Since there are no p ∈ ∅, this statement is vacuously true and therefore ∅ ⊂ A.
�

2. A complex number z is said to be algebraic if there are integers a0, . . . , an not all zero such
that

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0.

Prove that the set of all algebraic numbers is countable.

Solution: Let

Pn =
{ n∑
i=0

ait
i

∣∣∣∣ ai ∈ Z, i = 0, . . . , n
}

so Pn is the set of all degree n or smaller polynomials with integer coefficients. It is clear that

Pn ∼ Zn+1 given by
n∑
i=0

ait
i 7→ (a0, . . . , an)

where ∼means bijective as sets, so that in particular, Pn is countable for each n. Now, let

Rn = {a ∈ C | p(a) = 0 for some p ∈ Pn}

so that Rn is the set of all complex roots of all degree n or smaller polynomials with integer
coefficients. Since Pn is countable we have that Pn ∼ N so that in particular to each poly-
nomial in Pn we can associate a unique natural number. Since every degree n or smaller
polynomial has at most n complex roots we see that

|Rn| ≤
∣∣∣∣ ∞⋃
m=0

{1m, . . . , nm}
∣∣∣∣

where m ∈ N is the index for the elements of the countable set Pn and the set {1m, . . . , nm}
is a set of n elements for each m representing the maximum number of roots of any degree
n or smaller polynomial. Since the set above on the right is a countable union of countable
sets it is also countable by Theorem 2.12 on page 20 of the text and so we have that Rn is
countable. But since the set of all complex roots of all polynomials with integer coefficients
is simply ∪∞n=0Rn, it is also countable by the same Theorem. �
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3. Prove that there exist real numbers which are not algebraic.

Solution: We see that the set of all real algebraic numbers is at most countable because it is
a subset of the set of all complex algebraic numbers which is countable by Exercise 3 above.
But, since R is uncountable (see Theorem 2.14 on page 30 of the text) there must exist real
numbers which are not algebraic. �

4. Is the set of all irrational real numbers countable?

Solution: We have by the Corollary to Theorem 2.13 on pages 29-30 of the text that Q is
countable. Since R is uncountable (see Theorem 2.14 on page 30 of the text) we must have
that the irrationals are uncountable because the union of two countable sets is countable by
Theorem 2.12 on page 29 of the text. �

5. Construct a bounded set of real numbers with exactly three limit points.

Solution: Consider the set S = {1/n | n ∈ N} ∪ {1 + 1/n | n ∈ N} ∪ {2 + 1/n | n ∈ N}. Then
S is bounded because d(p, 0) < 3 ∀ p ∈ S. It is also clear that 0, 1, and 2 are limit points of
S. No other points are limit points of S since around any other real number we can choose
a small enough neighborhood such that it excludes all the points of S, except possibly itself,
since we can always choose a radius smaller then 1

n −
1

n+1 for any fixed n. �

6. Let E′ be the set of all limit points of a set E. Prove that E′ is closed. Prove that E and E
have the same limit points. (Recall that E = E ∪ E′). Do E and E′ always have the same
limit points?

Solution: Let p be a limit point of E′. Thus, for each n ∈ N there exists pn ∈ E′ such that
pn 6= p and d(p, pn) < 1

2n . Since each pn ∈ E′ we have that for each pn there exists a point
sn ∈ E such that sn 6= pn and d(pn, sn) < min{ 1

2n , d(pn, p)}. Since d(pn, sn) < d(pn, p) we
have that sn 6= p. By the triangle inequality we then have that

d(p, sn) ≤ d(p, pn) + d(pn, sn) <
1

2n
+

1
2n

=
1
n
.

Thus, every neighborhood of p contains a point in E not equal to p itself so p is a limit point
of E and hence p ∈ E′. Therefore, E′ is closed.

Now, let p be a limit point of E. Then any neighborhood of p contains a point q ∈ E such
that q 6= p. Since E ⊂ E we have that q ∈ E so that in particular p is also a limit point of E.
Now, suppose that p is a limit point of E. Then, for each n ∈ N there exists a point pn ∈ E
such that pn 6= p and d(p, pn) < 1

2n . If pn /∈ E then pn ∈ E′ because pn ∈ E and we replace
pn with an element qn ∈ E such that qn 6= pn and d(pn, qn) < min{ 1

2n , d(pn, p)}. Then qn 6= p
because d(pn, qn) < d(pn, p) and d(p, qn) ≤ d(p, pn) + d(pn, qn) < 1

2n + 1
2n = 1

n . Therefore, p is
also a limit point of E and so E and E have the same limit points.

We can see that E and E′ do not always have the same limit points by the simple example
E = (0, 1). Here, the limit points of E are 0 and 1 so that E′ = {0, 1}. But, E′ itself has no
limit points by the Corollary to Theorem 2.20 on pages 32-33 of the text because it is a finite
point set. We can see this directly because if s 6= 0, 1 then any neighborhood of s of radius
r < min{d(s, 0), d(s, 1)} contains no elements of E′ and any neighborhood of 0 or 1 of radius
less than 1 contains no other points of E′ except 0 and 1, respectively, hence E′ has no limit
points. �

7. Let A1, A2, . . . be subsets of a metric space.
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(a) If Bn =
⋃n
i=1Ai, prove that Bn =

⋃n
i=1Ai, for n = 1, 2, . . .

(b) If B =
⋃∞
i=1Ai, prove that B ⊃

⋃∞
i=1Ai.

Show, by an example, that the inclusion in (b) can be proper.

Solution:

(a) We use the notation B′ for the set of limit points of B. For (a), suppose that p ∈ Bn.
Then, either p ∈ Bn or p ∈ B′n (or both). If p ∈ Bn =

⋃n
i=1Ai =⇒ p ∈ Ai for some i

hence p ∈ Ai =⇒ p ∈
⋃n
i=1Ai. So, suppose that p ∈ B′n so that p is a limit point of Bn.

Now, suppose that p /∈ Ai ∀ i = 1, . . . , n, i.e. that p is not a limit point for any of the
Ai’s. This means that for each i ∃ εi > 0 such that N(p, εi) ∩Ai ⊂ {p}. Here N(p, εi) is
the ball around p of radius εi. That is, there is some non-zero neighborhood of p which
intersects Ai in at most p itself. Letting 0 < ε < mini{εi} we see that N(p, ε) ∩ Ai ⊂
{p} ∀ i = 1, . . . , n =⇒ N(p, ε)∩∪ni=1Ai = Bn ⊂ {p} contradicting that p is a limit point
of Bn. Therefore, we must have that p ∈ Ai for at least one i hence p ∈ ∪ni=1Ai and we
obtain the inclusion Bn ⊆ ∪ni=1Ai. Now, let p ∈ ∪ni=1Ai. Then we have that p ∈ Ai for
some i. If p ∈ Ai ⊂ Bn then p ∈ Bn. If p ∈ A′i then every neighborhood of p contains a
point q ∈ Ai such that q 6= p. Since Ai ⊂ Bn, we have that q ∈ Bn also and hence p ∈ Bn

showing the other inclusion ∪ni=1Ai ⊆ Bn and completing part (a).

(b) The proof is identical to the second inclusion just shown in (a).

As an example, if we let Ai = {1/i} and B = ∪∞i=1Ai we see that 0 ∈ B′ yet 0 /∈ A′i for any i
because for each i we can choose 0 < ε < 1/i and then N(0, ε)∩Ai = ∅. Hence the inclusion
in part (b) is proper. �

8. Is every point of every open set E ⊂ R2 a limit point of E? Answer the same question for
closed sets in R2.

Solution: Let p ∈ E and let δ > 0 be such that B(p, δ) ⊂ E so that in particular there exists
q ∈ B(p, δ) such that q 6= p and of course q ∈ E because B(p, δ) ⊂ E. For example, if
p = (p1, p2) we can choose q = (p1 + δ/2, p2). Now, let ε > 0 be given. If ε = δ then by
construction B(p, ε) contains a point of E distinct from p. If ε < δ then B(p, ε) ⊂ B(p, δ) ⊂ E
and so p 6= q = (p1 + ε/2, p2) ∈ B(p, ε) ⊂ E so that B(p, ε) contains a point of E distinct from
p. If ε > δ thenB(p, δ) ⊂ B(p, ε) and so choosing q = (p1 +δ/2, p2) ∈ B(p, δ) ⊂ B(p, ε) shows
that B(p, ε) contains a point in E distinct from p. Thus every neighborhood of p contains a
point of E distinct from p hence p is a limit point of E and so every point of E is a limit point
of E. The same is not true of closed sets. Consider A = {(n, 0) | n ∈ Z} ⊂ R2. Then A is
closed because A contains no limit points at all. This is because any neighborhood of any
point in A with radius less than 1 contains no other points of A. Yet, since A is not empty, it
contains points which are not limit points. �

9. Let E◦ denote the set of all interior points of a set E. [See Definition 2.18(e) on page 32 of the
text; E◦ is called the interior of E.]

(a) Prove that E◦ is always open.

(b) Prove that E is open if and only if E = E◦.

(c) If G ⊂ E and G is open, prove that G ⊂ E◦.
(d) Prove that the complement of E◦ is the closure of the complement of E.

(e) Do E and E always have the same interiors?
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(f) Do E and E◦ always have the same closures?

Solution:

(a) Let p ∈ E◦. Then by definition there exists δ > 0 such that N(p, δ) ⊂ E. By Theorem
2.19 on page 32 of the text we know that every neighborhood is open and thus if q ∈
N(p, δ) there exists ε > 0 such that N(q, ε) ⊂ N(p, δ) ⊂ E. Therefore q ∈ E◦ and so
N(p, δ) ⊂ E◦ and hence E◦ is open.

(b) If E = E◦ then E is open by part (a). Now, suppose that E is open. If p ∈ E then there
exists δ > 0 such that N(p, δ) ⊂ E and therefore p ∈ E◦ by definition. Thus we have
the inclusion E ⊂ E◦. By definition, interior points of E are elements of E because any
neighborhood of a point contains that point. Therefore E◦ ⊂ E and we obtain E = E◦.

(c) Now, let p ∈ G ⊂ E. If G is open, there exists δ > 0 such that N(p, δ) ⊂ G ⊂ E. Thus,
p ∈ E◦ by definition and we obtain G ⊂ E◦, showing part (c).

(d) The result follows from

p ∈ (E◦)c ⇐⇒ ∀ ε > 0, N(p, ε) ∩ Ec 6= ∅
⇐⇒ p ∈ Ec or ∀ ε > 0, ∃ q ∈ N(p, ε) ∩ Ec such that q 6= p

⇐⇒ p ∈ Ec or p ∈ (Ec)′

⇐⇒ p ∈ Ec.

(e) Consider Q, which has no interior points because any neighborhood of a rational must
contain irrationals because irrationals are dense in R, hence any such neighborhood
cannot be contained entirely in Q. Thus Q◦ = ∅. But, since Q = R (because the limit
points of Q are precisely irrationals) we see that (Q)◦ = R◦ = R (because R is open in
itself) hence Q◦ 6= (Q)◦.

(f) The same example of Q shows that (f) is also false. Q = R 6= ∅ = ∅ = Q◦. �

10. Let X be an infinite set. For p, q ∈ X , define

d(p, q) =
{

1 if p 6= q
0 if p = q

.

Prove that this is a metric. Which subsets of the resulting metric space are open? Which are
closed? Which are compact?

Solution: To show it is a metric, only the triangle inequality is not obvious from the defini-
tion. So, let p, q, r ∈ X . Then if p = q we have that d(p, q) = 0 ≤ d(p, r) + d(r, q) because
d(p, r), d(r, q) ≥ 0. If p 6= q we have that d(p, q) = 1 ≤ d(p, r) + d(r, q) because if r = q we
have that r 6= p and then d(p, r) = 1 and d(r, q) = 0 so the inequality holds. If r = p then
we similarly get that r 6= q so d(p, r) = 0 and d(r, q) = 1 so the inequality still holds. If we
finally have that r 6= p, q then both d(p, r) = 1 = d(p, q) and the inequality holds. Thus, this
is a metric. First, note that N(p, r) = X if r ≥ 1 for any p ∈ X and N(p, r) = {p} if r < 1
for any p ∈ X . Now, let ∅ 6= A ⊂ X and let p ∈ A. Then N(p, 0.5) = {p} ⊂ A thus every
point in A has a neighborhood entirely contained in A, thus A is open and so every subset
of X is open. Since a set is closed if and only if its complement is open by Theorem 2.23 on
page 34 of the text, we see that every subset of X is also closed. It is clear from the definition
that any finite subset of X will be compact. But, if A ⊂ X is infinite we see that it cannot
be compact since by Theorem 2.37 on page 38 of the text an infinite subset of a compact set
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has a limit point in the compact set, yet from this metric we see that there are no limit points
for any sets. This is because any neighborhood of any point of radius less then 1 contains no
other points. Hence, the only compact subsets of X are finite ones. �

11. For x ∈ R and y ∈ R, define

d1(x, y) = (x− y)2

d2(x, y) =
√
|x− y|

d3(x, y) = |x2 − y2|
d4(x, y) = |x− 2y|

d5(x, y) =
|x− y|

1 + |x− y|
.

Determine, for each of these, whether it is a metric or not.

Solution: For each of these we must determine whether di(x, y) > 0 for x 6= y, di(x, x) =
0 ∀ x ∈ R, di(x, y) = di(y, x), and di(x, y) ≤ d(x, z) + d(z, y).

d1(x, y) is not a metric because it does not satisfy the triangle inequality since d1(0, 2) =
4, d1(0, 1) = 1, and d1(1, 2) = 1 thus 4 = d1(0, 2) > d1(0, 1) + d1(1, 2) = 1 + 1 = 2.

d2(x, y) is a metric from the following: d2(x, y) > 0 if x 6= y and d2(x, x) = 0 for all x ∈ R.
Also, d2(x, y) =

√
|x− y| =

√
|y − x| = d2(y, x). Finally, since |x− y| ≤ |x− z|+ |z − y| we

have that
√
|x− y| ≤

√
|x− z|+ |z − y| ≤

√
|x− z| +

√
|y − z|. The last inequality follows

since a+ b ≤ a+ b+ 2
√
ab = (

√
a+
√
b)2 =⇒

√
a+ b ≤

√
a+
√
b.

d3(x, y) is not a metric since d(1,−1) = 0.

d4(x, y) is not a metric since d4(1, 1) = 1 6= 0.

To show that d5(x, y) is a metric we prove the more general result that whenever d(x, y) is a
metric then

d′(x, y) =
d(x, y)

1 + d(x, y)

is also be a metric. Since d(x, y) = |x − y| is the ordinary metric on R, it will follow that
d5(x, y) is a metric. Because d(x, y) is a metric we have that d′(x, y) > 0 if x 6= y, d′(x, x) = 0
for all x ∈ R, and d′(x, y) = d′(y, x). Now, let p = d(x, y), q = d(x, z), r = d(z, y). Since d(x, y)
is a metric we have that p, q, r ≥ 0 and

p ≤ q + r =⇒ p ≤ q + r + 2qr + pqr

=⇒ p+ pq + pr + pqr ≤ (q + pq + qr + pqr) + (r + pr + qr + pqr)
=⇒ p(1 + q)(1 + r) ≤ q(1 + r)(1 + p) + r(1 + q)(1 + p)

=⇒ p

1 + p
≤ q

1 + q
+

r

1 + r

=⇒ d′(x, y) ≤ d′(x, z) + d′(z, y).

Thus, d′(x, y) is a metric. �

12. Let K ⊂ R consist of 0 and the numbers 1/n, for n = 1, 2, 3, . . . Prove that K is compact
directly from the definition (without using the Heine-Borel theorem).

Solution: Let {Uα} be an open cover of K. Let 0 ∈ Uα0 . Since Uα0 is open there exists
δ > 0 such that B(0, δ) ⊂ Uα0 hence we can choose any n such that 1/n < δ and then
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1/n ∈ B(0, δ) ⊂ Uα0 . Thus, we also have that 1/m ∈ B(0, δ) ⊂ Uα0 for all m > n. Then,
let 1/i ∈ Uαi for i = n − 1, n − 2, . . . , 1. Since there are only finitely many i’s we have that
{Uαj}n−1

j=1 ∪ Uα0 is a finite subcover. �

13. Construct a compact set of real numbers whose limit points form a countable set.

Solution: Consider the set

Am = {m+ 1/n | n = 1, 2, . . .}.

Then Am is compact for all m ∈ N by Exercise 12 above (it is merely a translation of the set
in that exercise) and the set of limit points of Am is {m}. Therefore, if we let

A =
∞⋃
i=1

Ai

A is a countable union of countable sets so it is countable by Theorem 2.12 on page 29 of the
text. The set of limit points of A is then precisely N so is countable also. �

14. Give an example of an open cover of the segment (0, 1) which has no finite subcover.

Solution: Consider the open cover {(1/n, 1)}∞n=2. This covers (0, 1), because if r ∈ (0, 1), let
n ≥ 2 be such that 1/n < r. Then r ∈ (1/n, 1). Now, consider any finite collection in this
open cover {(1/i, 1)}i∈I where |I| <∞. Let n ≥ 2 be such that n > maxi∈I{i}. Then we have
that 1/n ∈ (0, 1) yet 1/n < 1/i ∀ i ∈ I and thus 1/n /∈ ∪i∈I(1/i, 1) hence {(1/i, 1)}i∈I is not
an open cover of (0, 1). Therefore, no finite subcover of this cover exists. �

15. Show that Theorem 2.36 and its Corollary become false (in R, for example) if the word
“compact” is replaced by “closed” or by “bounded”.

Solution: Theorem 2.36, on page 38 of the text, states that If {Kα} is a collection of com-
pact subsets of a metric space X such that the intersection of every finite subcollection of
{Kα} is nonempty, then

⋂
Kα is nonempty. Its Corollary states that if {Kn} is a sequence of

nonempty compact sets such that Kn ⊃ Kn+1(n = 1, 2, . . .), then
⋂∞
n=1Kn is nonempty.

Consider the sets Kn = (0, 1/n). Then each Kn is bounded and for any finite subcollection
{Ki}i∈I where |I| < ∞ let n = mini∈I{i}. Then

⋂
i∈I Ki = (0, 1/n) 6= ∅. Yet we have

that
⋂∞
n=1Kn = ∅ since if 0 < r ∈ R we can choose n ∈ N such that 1/n < r. But then

r /∈ (0, 1/n) =⇒ r /∈
⋂∞
n=1Kn.

Now, let Kn = {m ∈ N |m ≥ n}. Then each Kn is closed since it has no limit points (because
it is discrete), so it vacuously contains them. Then, if {Ki}i∈I is a finite subcollection where
|I| <∞, let m ∈ N such that m > maxi∈I{i}. Then, m ∈ Ki ∀ i ∈ I and so m ∈

⋂
i∈I Ki. But,

we have that
⋂∞
n=1Kn = ∅ because if m ∈ N, let i ∈ N be such that i > m. Then m /∈ Ki and

so m /∈
⋂∞
n=1Kn. �

16. Omitted.

17. Omitted.

18. Omitted.

19. Omitted.

20. Omitted.
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21. Omitted.

22. A metric space is called separable if it contains a countable dense subset. Show that Rk is
separable. Hint: Consider the set of points which have only rational coordinate.

Solution: Let Qk = {(x1, . . . , xk) ∈ Rk | xi ∈ Q ∀ i = 1, . . . , k}. If (x1, . . . , xk) ∈ Rk let ε > 0
be given. Then, since Q is dense in R, choose p1, . . . , pn ∈ Q such that |xi − pi| < 1√

k
ε. Then,

writing p = (p1, . . . , pn) ∈ Qk and x = (x1, . . . , xn) ∈ Rk we see that

d(p,x) =
( k∑
i=1

|xi − pi|2
)1/2

<

( k∑
i=1

1
k
ε2
)1/2

= ε.

Therefore, Qk is dense in Rk and Qk is countable because it can be realized as the disjoint
union of Q, k times. �

23. A collection {Vα} of open subsets of X is said to be a base if the following is true: For every
x ∈ X and every open set G ⊂ X such that x ∈ G, we have x ∈ Vα ⊂ G for some α. In
other words, every open set in X is the union of a subcollection of {Vα}. Prove that every
separable metric space has a countable base. Hint: Take all neighborhoods with rational
radius and center in some countable dense subset of X .

Solution: Since X is separable, by definition it has a countable dense subset S ⊂ X . Let
S = {p1, p2, . . .} and enumerate Q = {q1, q2, . . .}. Let Vij = N(pi, qj). Then, {Vij}∞i,j=1 is a
countable collection of open sets in X by Theorem 2.12 on page 29 of the text. Let x ∈ X
and let G ⊂ X be open such that x ∈ G. Since G is open, there exists δ > 0 such that
N(x, δ) ⊂ G. Let pi ∈ S such that d(pi, x) = ε < δ/2 and then choose qj ∈ Q such that
ε < qj < δ/2, both of which are possible because S is dense in X and Q is dense in R. Then,
consider Vij = N(pi, qj). Since d(x, pi) = ε < qj we see that x ∈ Vij . Now, let a ∈ Vij . Then,
d(a, x) ≤ d(a, pi) + d(pi, x) < qj + δ/2 < δ. Therefore a ∈ N(x, δ) ⊂ G and so we have that
x ∈ Vij ⊂ N(x, δ) ⊂ G showing that {Vij}∞i,j=1 is a countable base. �

Chapter 3: Numerical Sequences and Series

1. Prove that convergence of {sn} implies convergence of {|sn|}. Is the converse true?

Solution: Suppose that sn → s. Let ε > 0 be given and let N be such that

|sn − s| < ε ∀ n ≥ N.

Then, by Exercise #13 in Chapter 1 above, we have that∣∣|sn| − |s|∣∣ ≤ |sn − s| < ε ∀ n ≥ N

Thus |sn| → |s|. The converse is false because if we let sn = (−1)n then |sn| converges, yet
sn does not. �

2. Omitted.

3. If s1 =
√

2 and
sn+1 =

√
2 +
√
sn

prove that {sn} converges, and that sn < 2 for all n ≥ 1.
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Solution: s1 =
√

2 < 2. Suppose inductively that sn < 2. Then,

sn+1 =
√

2 +
√
sn <

√
2 +
√

2 < 2

because 2 +
√

2 < 2 + 2 = 4 =⇒
√

2 +
√

2 <
√

4 = 2. Thus we see that sn < 2 for all n ≥ 1.
We also have that

s2 =

√
2 +

√√
2 >
√

2 = s1.

Suppose inductively that sn > sn−1. Then

sn+1 =
√

2 +
√
sn >

√
2 +
√
sn−1 = sn

and therefore we have that sn > sn−1 for all n ≥ 1 by induction. Thus the sequence is
increasing and since · · · > sn > sn−1 > · · · > s1 > 0 we have an increasing sequence of
nonnegative terms which is bounded above. Hence by Theorem 3.24 on page 60 of the text
{sn} converges. �

4. Find the upper and lower limits of the sequence {sn} defined by

s1 = 0, s2m =
s2m−1

2
, s2m+1 =

1
2

+ s2m.

Solution: If we write out the first few terms we obtain

s1 = 0
s2 = 0

s3 =
1
2

s4 =
1
4

s5 =
1
2

+
1
4

s6 =
1
4

+
1
8

s7 =
1
2

+
1
4

+
1
8

s8 =
1
4

+
1
8

+
1
16

thus we are lead to write

s2m+1 =
m∑
k=1

(
1
2

)k
m ≥ 1

s2m =
m∑
k=2

(
1
2

)k
m ≥ 2.

(4.1)

To prove this we proceed by induction onm. Form = 1 we have that s3 = 1/2 =
∑1

k=1(1/2)k.
For m = 2 we have that s5 = 1/2 + 1/4 =

∑2
k=1(1/2)k and s4 = 1/4 =

∑2
k=2(1/2)k. Now,
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suppose inductively that Equation (4.1) holds for m ≥ 2. Then,

s2(m+1)+1 =
1
2

+ s2(m+1) =
1
2

+
s2m+1

2
=

1
2

+
m∑
k=1

(
1
2

)k+1

=
m+1∑
k=1

(
1
2

)k

s2(m+1) =
s2m+1

2
=

1
2

m∑
k=1

(
1
2

)k
=

m∑
k=1

(
1
2

)k+1

=
m+1∑
k=2

(
1
2

)k
and so Equation (4.1) holds. We thus see that there are only two subsequential limits

lim
m→∞

s2m =
∞∑
k=2

(
1
2

)k
=

1
2

(4.2)

lim
m→∞

s2m+1 =
∞∑
k=1

(
1
2

)k
= 1 (4.3)

where the two limiting values are given by Theorem 3.26 on page 61 of the text (geometric
series). These are the only possible limits because if we have a subsequence {snk

} then
either {nk} has infinitely many evens, infinitely many odds, or infinitely many of both. If
there are infinitely many of both even and odd numbers, then {snk

} wouldn’t be Cauchy
sequence because for all N ≥ 1 we could find nk1 , nk2 ≥ N such that nk1 was even and
nk2 was odd and then we would have that |snk1

− snk2
| ≥ 1/2. If there are only finitely

many odds in {nk} then we would have that limk→∞ snk
= limm→∞ s2m. Specifically, letting

N > maxk{nk odd } we see that |snk
− snj | =

∑nk
k=nj

(1/2)k for all nk ≥ nj ≥ N precisely
because both nj and nk are even. Since

∑∞
k=2(1/2)k converges, it is a Cauchy sequence by

Theorem 3.11 on page 53 of the text and so
∑nk

k=nj
(1/2)k can be made arbitrarily small for

large enough nj and nk. If there are only finitely many evens in {nk} then we would have
that limk→∞ snk

= limm→∞ s2m+1. Specifically, letting N > maxk{nk even } we see that
|snk
− snj | =

∑nk
k=nj

(1/2)k for all nk ≥ nj ≥ N precisely because both nj and nk are odd.
Since

∑∞
k=1(1/2)k converges, it is a Cauchy sequence by Theorem 3.11 on page 53 of the

text and so
∑nk

k=nj
(1/2)k can be made arbitrarily small for large enough nj and nk. Since

Equations (4.2) and (4.3) are the only two subsequential limits we find that the upper and
lower limits are

lim inf
m→∞

sm =
1
2

lim sup
m→∞

sm = 1.

�

5. For any two real sequences {an}, {bn}, prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

(an) + lim sup
n→∞

(bn),

provided the sum on the right is not of the form∞−∞.

Solution: If either lim sup on the right side above is infinite, we are done, so we can assume
that both are finite. Assume also that the left side is finite (hence our discussion here is
incomplete). We make some general remarks about this statement, but we will prove it by
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actually using an equivalent definition of lim sup which is nonetheless easier to work with
than Rudin’s. First, let a = lim supn→∞(an), b = lim supn→∞(bn), and c = lim supn→∞(an +
bn). Then, let ank

+ bnk
→ γ be a convergent subsequence of the sequence {an + bn}. If the

component subsequences {ank
} and {bnk

} both converge, say to α and β, respectively, then
by Theorem 3.3 on page 49 of the text, we have that

γ = lim
k→∞

(ank
+ bnk

) = lim
k→∞

ank
+ lim
k→∞

bnk
= α+ β ≤ a+ b.

where the last inequality follows by the definition of a and b as lim sup’s. Thus, we need only
consider subsequences {ank

+bnk
}where one, or both, of the the component subsequences do

not converge. But, we can actually do better than this because we can show that if one of the
component subsequences converges, then both must. To see this, without loss of generality,
let ank

+ bnk
→ γ and suppose that bnk

→ β. Then, by the triangle inequality,

|ank
− (γ − β)| ≤ |ank

− (γ − bnk
)|+ |(γ − bnk

)− (γ − β)|
= |(ank

+ bnk
)− γ|+ |(γ − bnk

)− (γ − β)|.

Since bnk
→ β we see that γ − bnk

→ γ − β because γ is a constant and so both terms on
the right above can be made arbitrarily small for large enough k. This shows that ank

→
γ − β and therefore if one of the component subsequences of the convergent subsequence
{ank

+ bnk
converges, both must. Hence, we are reduced to considering only those conver-

gent subsequences {ank
+ bnk

} in which both component subsequences do not converge. That
is, sequences such as ank

= (−1)k and bnk
= (−1)k+1 so that neither converges individually,

but their sum does. Now, we would be done if we could show that γ = limk→∞(ank
+ bnk

) =
lim supk→∞(ank

+ bnk
) ≤ lim supk→∞(ank

) + lim supk→∞(bnk
) ≤ a+ b which is the statement

of the problem, but restricted to the subsequence {ank
+ bnk

}. Thus, we could say repeat
the above argument and for every convergent sub-subsequence ankj

+ bnkj
such that nei-

ther component sub-subsequence converges, repeat the argument again. Eventually, it will
end because eventually some sub-· · · -subsequence will have only convergent component
sequences, since we are assuming that a, b, and c are finite. But, this is hard to make rigorous
and so we will now prove the result by resorting to a different, but equivalent, definition of
the lim sup.

Consider a sequence {an} and let Ak = sup{am |m ≥ k} and define A = limk→∞Ak (allow-
ing it to be ±∞). Now, choose n1 such that |an1 − A1| < 1, which is possible by the defini-
tion of A1 as the sup, so n1 ≥ 1. Now, choose ank

inductively such that |ank
− Ak| < 1/k

and such that ank
> ank−1

. That is, by definition of Ak, we have that there exists K such
that |am − Ak| < 1/k for all m ≥ K. So, simply require that nk > max{K,nk−1}. Then,
this defines a subsequence of {an} which by construction converges to A, thus we have
that lim supn→∞(an) ≥ A. Now, by Theorem 3.17(a) on page 56 of the text we see that
lim supn→∞(an) is actually a subsequential limit of the sequence {an} hence there exists some
subsequence ank

→ lim supn→∞(an). Since by construction we have that ank
≤ Ank

taking
the limit as k → ∞ of both sides gives lim supn→∞(an) ≤ A thus A = lim supn→∞(an) and
our A is an equivalent formulation of the lim sup to Rudin’s. The proof of the above inequal-
ity is now nearly trivial since if ank

+ bn+k is any subsequence of {an+ bn}whose limit exists
then we of course have that ank

+ bnk
≤ supm≥k{anm}+ supm≥k{bnm} = Ank

+Bnk
. Taking

the limit of both sides gives limk→∞(ank
+bnk

) ≤ A+B, whereB is defined analogously toA
above. Since {ank

+bnk
}was any subsequence with a limit we see that lim supn→∞(an+bn) ≤

A+B = lim supn→∞(an) + lim supn→∞(bn). �
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6. Omitted.

7. Prove that the convergence of
∑∞

n=1 an implies the convergence of

∞∑
n=1

√
an
n

,

if an ≥ 0.

Solution: By the Cauchy-Schwarz inequality (Theorem 1.35 on page 15 of the text), we have
that

n∑
j=1

ajbj ≤
( n∑
j=1

|aj |2
)( n∑

j=1

|bj |2
)
.

Thus, for each n = 1, 2, . . . we have

n∑
j=1

√
an ·

1
n
≤
( n∑
j=1

an

)( n∑
j=1

1
n2

)
≤
( ∞∑
j=1

an

)( ∞∑
j=1

1
n2

)
<∞

where the second inequality follows because all terms are positive and the last inequality
follows because both sequences on the right are convergent. Thus the partial sums, sn =∑n

i=1

√
an · 1

n , form a bounded sequence. Since all the terms are nonnegative, by Theorem
3.24 on page 60 of the text the series

∑∞
i=1

√
an · 1

n converges. �

8. If
∑∞

n=1 an converges, and if {bn}∞n=1 is monotonic and bounded, prove that
∑∞

n=1 anbn con-
verges.

Solution: Since
∑∞

n=1 an converges, its partial sums form a bounded sequence by defini-
tion. By Theorem 3.14 on page 55 of the text, we see that {bn}∞n=1 converges because it is
monotonic and bounded, so let bn → b. Since {bn}∞n=1 is monotonic, it is either increasing
or decreasing. If it is increasing, define cn = b − bn and in this case the sequence {cn}∞n=1 is
decreasing and we have that c1 ≥ c2 ≥ · · · and also cn → 0 because bn → b. On the other
hand, if {bn}∞n=1 is decreasing then let cn = bn−b and in this case {cn}∞n=1 is still a decreasing
sequence so c1 ≥ c2 ≥ · · · and we still have that cn → 0. Thus, in either case, by Theorem
3.42 on page 70 of the text, we have that the sequence

∑∞
n=1 ancn converges. First, suppose

that {bn}∞n=1 was increasing and so cn = b− bn. Then, the partial sums

Cm =
m∑
n=1

ancn =
m∑
n=1

(anb− anbn) = b
m∑
n=1

an −
m∑
n=1

anbn

are a convergent sequence, say Cm → c. But then

m∑
n=1

anbn → b

∞∑
n=1

an − c,

hence
∑∞

n=1 anbn converges. In the other case we would obtain

m∑
n=1

anbn → c′ + b

∞∑
n=1

an

where here c′ =
∑∞

n=1 ancn and cn = bn − b and so
∑∞

n=1 anbn still converges. �
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9. Omitted.

10. Omitted.

11. Suppose that an > 0 and sn = a1 + · · ·+ an, and
∑∞

n=1 an diverges.

(a) Prove that
∑∞

n=
an

1+an
diverges.

(b) Prove that
aN+1

sN+1
+ · · ·+ aN+k

sN+k
≥ 1− sN

sN+k

and deduce that
∑∞

n=1
an
sn

diverges.

(c) Prove that
an
s2n
≥ 1
sn−1

− 1
sn

and deduce that
∑∞

n=1
an
s2n

converges.

(d) What can be said about

∞∑
n=1

an
1 + nan

and
∞∑
n=1

an
1 + n2an

?

Solution:

(a) Suppose that
∑∞

n=1
an

1+an
converges. Observe that

an
1 + an

→ 0 ⇐⇒ 1
1
an

+ 1
→ 0 ⇐⇒ 1

an
→∞ ⇐⇒ an → 0.

Since we are supposing that
∑∞

n=1
an

1+an
converges we have by Theorem 3.23 on page

60 0f the text that an
1+an

→ 0 =⇒ an → 0 by the above. Hence, there exists N1 such that
an < 1 for all n ≥ N1. Now, let ε > 0 be given. Then there exists N2 such that

am
1 + am

+ · · ·+ an
1 + an

<
ε

2
∀ n,m ≥ N2.

Letting N = max{N1, N2}we have that

ε

2
>

am
1 + am

+ · · ·+ an
1 + an

>
am

1 + 1
+ · · ·+ an

1 + 1
=
am
2

+ · · ·+ an
2

for all n,m ≥ N thus

ε > am + · · ·+ an ∀ n,m ≥ N =⇒
∞∑
n=1

an converges,

a contradiction. Thus
∑∞

n=1
an

1+an
diverges.

(b) Because an > 0 for all n we have that sn+1 > sn for all n. Thus,

aN+1

sN+1
+ · · ·+ aN+k

sN+k
>
aN+1 + · · ·+ aN+k

sN+k
=
sN+k − sN
sN+k

= 1− sN
sN+k

.
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Suppose now that
∑∞

n=1
an
sn

converges and let ε > 0 be given. Then, there exists an N
such that for all n,m ≥ N we have that

ε >
am
sm

+ · · ·+ an
sn
.

In particular, for m = N + 1 and n = N + k we obtain that

ε >
aN+1

sN+1
+ · · ·+ aN+k

sN+k
> 1− sN

sN+k
.

Now, since
∑∞

n=1 an diverges and an > 0 so the sn are increasing, we see that sN+k →∞
as k → ∞. Thus we can choose k large enough such that sN+k > 2sN =⇒ sN

sN+k
< 1

2

because N is fixed. But then, we would obtain

ε > 1− sN
sN+k

> 1− 1
2

=
1
2
,

contradicting that ε can be chosen arbitrary, i.e. just choose ε = 1
2 at the beginning.

Thus,
∑∞

n=1
an
sn

diverges.

(c) As in part (b), since an > 0 for all n we have that sn > sn−1 for all n. Thus

1
sn−1

− 1
sn

=
sn − sn−1

snsn−1
>
sn − sn−1

s2n
=
an
s2n

∀ n ≥ 2.

Then since sn > 0 for all n,

k∑
n=2

an
s2n

<
k∑

n=2

(
1

sn−1
− 1
sn

)
=

1
s1
− 1
sk

<
1
s1

=
1
a1
, (11.1)

thus
k∑

n=1

an
s2n

<
2
a1

so the partial sums of
∑∞

n=1
an
s2n

form a bounded sequence and since an > 0 for all n,
we have that

∑∞
n=1

an
s2n

converges by Theorem 3.24 on page 60 of the text. We could also
take the limit of both sides of Equation (11.1) as k →∞ and note that 1

sk
→ 0 as k →∞

because
∑∞

n=1 an diverges and an > 0 for all n so sn →∞.

(d)
∑∞

n=1
an

1+nan
may either diverge or converge. If we let an = 1

n then

∞∑
n=1

an
1 + nan

=
∞∑
n=1

1/n
2

=
1
2

∞∑
n=1

1
n

=∞.

On the other hand, if we let an = 1
n log(n)p where p > 1 and n ≥ 2 then

an
1 + nan

=
1

n log(n)p
· 1

1 + n
(

1
n log(n)p

) =
1

n log(n)p(1 + log(n)−p)

=
1

n log(n)p + n

<
1

n log(n)p
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thus
∑∞

n=1
an

1+nan
converges by Theorem 3.29 on page 62 of the text for this choice of an.

On the other hand,
∞∑
n=1

an
1 + n2an

=
∞∑
n=1

1
1/an + n2

≤
∞∑
n=1

1
n2

where the inequality follows because an > 0 for all n. Thus,
∑∞

n=1
an

1+n2an
converges. �

Chapter 4: Continuity

1. Suppose f is a real function defined on Rwhich satisfies

lim
h→0

[f(x+ h)− f(x− h)] = 0

for every x ∈ R. Does this imply f is continuous?

Solution: No, this does not imply f is continuous because this statement merely says that
limt→x+ f(t) = limt→x− f(t), that is, the right and left handed limits of f are equal, but it says
nothing about whether these actually equal f(x) itself. That is, by Theorem 4.6 on page 86,
f is continuous at x ⇐⇒ limt→x f(t) = f(x) and by the comment in Definition 4.25 on page
94 we see that limt→x f(t) exists ⇐⇒ limt→x+ f(t) = limt→x− f(t) = limt→x f(t). So, if we
define

f(x) =
{

1 if x ∈ Z
0 if x /∈ Z

then at any x ∈ Z we have that limh→0 f(x + h) = limt→x+ f(t) = 0 = limt→x− f(t) =
limh→0 f(x − h) but of course limt→x+ f(t) = limt→x− f(t) = 0 6= 1 = f(x). That is,
limt→x f(t) = 0 6= 1 = f(x) so f is not continuous at any x ∈ Z. �

2. If f is a continuous mapping of a metric space X into a metric space Y , prove that f(E) ⊂
f(E). Show by an example that f(E) can be a proper subset of f(E).

Solution: If E is empty then the inclusion holds trivially, so suppose that it is not empty. Let
x ∈ E so f(x) ∈ f(E) ⊂ f(E). Thus, x ∈ f−1(f(E)) and since x was arbitrary we see that
E ⊂ f−1(f(E)). But, f(E) is closed in Y (Theorem 2.27(a) on page 35 of the text) and since f
is continuous we have that f−1(f(E)) is then closed inX by the Corollary to Theorem 4.8 on
page 87 of the text. But, this implies that E ⊂ f−1(f(E)) because E is the smallest closed set
containing E so it is a subset of any closed set containing E, i.e. this follows from Theorem
2.27(c) on page 35 of the text. But, this is precisely the statement that f(E) ⊂ f(E)).

To see that this inclusion can be proper, let E = Z and define f : Z → R by f(n) = 1/n.
Then, f is continuous (in fact, it is uniformly continuous if we take δ < 1 because then
d(n,m) < 1 =⇒ n = m when n,m ∈ Z and thus d(f(n), f(m)) = 0 < ε ∀ ε > 0). See the
comment at the end of the proof of Theorem 4.20, on page 92 of the text. But, sinceZ is closed,
we have that f(Z) = f(Z) = {1/n | n ∈ Z} ( f(Z) = {1/n | n ∈ Z} = {1/n | n ∈ Z} ∪ {0},
hence the inclusion is proper. �

Alternate Solution: If f(E) is empty then the conclusion holds trivially, so suppose that it is
not and let y ∈ f(E). Thus, there exists a point p ∈ E such that f(p) = y. If p ∈ E then we
have that y = f(p) ∈ f(E) ⊂ f(E). So, suppose that p ∈ E′, so p is a limit point of E. Since f
is continuous at p, for all ε > 0 there exists a δ > 0 such that d(x, p) < δ =⇒ d(f(x), f(p)) <
ε. But, since p is a limit point of E we see that there always exists x ∈ N(p, δ) for some x ∈ E
and for any δ > 0. Thus, for such an x, we have that d(f(x), f(p)) < ε which implies that
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f(p) is a limit point of f(E) since we can always find points in f(E) arbitrarily close to it.
Thus y = f(p) ∈ f(E) and so f(E) ⊂ f(E). �

3. Let f be a continuous real function on a metric space X . Let Z(f) (the zero set of f ) be the set
of all p ∈ X at which f(p) = 0. Prove that Z(f) is closed.

Solution: Let pn → p in Z(f) so that pn ∈ Z(f) for all n = 1, 2, . . . Of course p ∈ X and since
f is continuous on X we see that limq→p f(q) = f(p) by Theorem 4.6 on page 86 of the text.
Then, by Theorem 4.2 on page 84 of the text, we see that 0 = limn→∞ f(pn) = f(p) (where
pn 6= p ∀ n because otherwise we are done) hence p ∈ Z(f) and so Z(f) is closed.

Another approach is to show that Z(f)c = X\Z(f) is open. To this end, let x ∈ E = Z(f)c

so that f(x) 6= 0. Without loss of generality, suppose that f(x) > 0. Since f is continuous
on X we see that for ε = f(x)/2 > 0 there exists a δ > 0 such that d(f(x), f(y)) = |f(x) −
f(y)| < ε = f(x)/2 whenever d(x, y) < δ. But, this implies that f(y) 6= 0 because otherwise
|f(x)− f(y)| = f(x) > ε, a contradiction. This means that N(x, δ) ⊂ E so that in particular,
E is open. Thus, Z(f) = Ec is closed. If we had that f(x) < 0 we would simply let ε =
−f(x)/2 > 0. �

4. Let f and g be continuous mappings of a metric space X into a metric space Y , and let E be
a dense subset of X . Prove that f(E) is dense in f(X). If g(p) = f(p) for all p ∈ E, prove
that g(p) = f(p) for all p ∈ X . (In other words, a continuous mapping is determined by its
values on a dense subset of its domain.)

Solution: First, let y ∈ f(X), let y = f(x) and let ε > 0. Then, because f is continuous, there
exists a δ > 0 such that d(f(x), f(p)) < ε whenever d(x, p) < δ. But, since E is dense in X
there exists a p ∈ E such that d(x, p) < δ, which gives that d(y, f(p)) = d(f(x), f(p)) < ε
hence f(E) is dense in f(X) because we can find an element of f(E) arbitrarily close to any
element of f(X).

Now, let ε > 0 be given and suppose that g(p) = f(p) for all p ∈ E. Let q ∈ X . Because f is
continuous at q, there exists δ1 > 0 such that d(f(p), f(q)) < ε/2 whenever d(p, q) < δ1. Since
g is also continuous at q let δ2 > 0 be such that d(g(p), g(q)) < ε/2 whenever d(p, q) < δ2 and
let δ = min{δ1, δ2}. Since E is dense in X we can find p ∈ E such that d(p, q) < δ. Then,

d(g(q), f(q)) ≤ d(g(q), g(p)) + d(g(p), f(p)) + d(f(p), f(q))
= d(g(q), g(p)) + d(f(p), f(q))

<
ε

2
+
ε

2
= ε,

where p ∈ E so g(p) = f(p). Thus, since εwas arbitrary we must have that g(q) = f(q) hence
they agree on all of X .

Another way to see this is that if q ∈ X\E then we can find a sequence pn → q such that
pn ∈ E for all n and pn 6= q for all n because E is dense in X , i.e. every element of X is a
point or a limit point of E, so q must be a limit point of E. But then because g and f are both
continuous we can interchange limits (by Theorem 4.6 on page 86 and Theorem 4.2 on page
84 of the text) so we obtain,

g(q) = g( lim
n→∞

pn) = lim
n→∞

g(pn) = lim
n→∞

f(pn) = f( lim
n→∞

pn) = f(q)

because g(pn) = f(pn) ∀ n since they agree on E. �
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5. If f is a real continuous function defined on a closed set E ⊂ R, prove that there exist
continuous real functions g on R such that g(x) = f(x) for all x ∈ E. (Such functions g are
called continuous extensions of f fromE to R.) Show that the result becomes false if the world
“closed” is omitted. Extend the result to vector-valued functions. Hint: Let the graph of g
be a straight line on each of the segments which constitute the complement of E (compare
Exercise 29, Chapter 2). The result remains true if R is replaced by any metric space, but the
proof is not so simple.

Solution: By Exercise 20 in Chapter we see that every open set of R is an at most countable
union of disjoint open sets. Hence, since E is closed, we can write

Ec =
n⋃
i=1

(ai, bi)

where ai < bi < ai+1 < bi+1 and we allow n to be∞. Then, on each (ai, bi) define

g(x) = f(ai) + (x− ai)
f(bi)− f(ai)

bi − ai
(5.1)

for x ∈ (ai, bi). That is, the graph of g is nothing more than the straight line connecting
the points f(ai) and f(bi), where ai, bi ∈ E because ai, bi /∈ Ec. We let g(x) = f(x) for
x ∈ E. Then it is clear that g is continuous on the interior of E and since it is a linear
function on Ec it is continuous there also. Hence, we need only check that it is continuous
at the boundary of E, namely the points {ai, bi}ni=1. But, from Equation (5.1) we see that
limt→ai g(t) = f(ai) = g(ai) because ai ∈ E, hence g is continuous at ai by Theorem 4.6
on page 86 of the text. Similarly limt→bi g(t) = f(bi) = g(bi) because bi ∈ E hence g is a
continuous extension of f .

The fact that E is closed is essential because if we consider f(x) = 1/x on E = (0, 1), for
example, then f is continuous on E yet there is no continuous extension g of f to R such that
g = f on E yet g(0) ∈ R since as x → 0 we have that f(x) → ∞ hence we would also have
that g(x)→∞ as x→ 0.

The vector-valued case is simply a natural extension of the single variable case since if f is a
continuos vector valued function on R we can write f = (f1, . . . , fn) and so fi is continuous
for each i = 1, . . . , n because f is continuous. Hence, by the above, we can extend each fi to
a continuous function gi on R and letting g = (g1, . . . , gn) we see that g is then a continuous
extension of f to Rn. �

6. Omitted.

7. Omitted.

8. Let f be a real uniformly continuous function on the bounded set E in R. Prove that f is
bounded on E. Show that the conclusion is false if boundedness of E is omitted from the
hypothesis.

Solution: Since f is uniformly continuous, there exists a single δ > 0 such that whenever
|x − y| < δ we have that |f(x) − f(y)| < 1 for all x, y ∈ E. Since E is bounded there
exists M > 0 such that −M < x < M for all x ∈ E. Now, note that if N ≥ 2M/δ is
an integer, then N neighborhoods of size δ put side by side cover at least all but a finite
number of points in (−M,M) (missing the points that lie between the boundaries of two
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adjacent neighborhoods). Thus, we can cover (−M,M) with finitely many neighborhoods
of radius δ, and so we must be able to do the same with E but centering the neighborhoods
at elements of E. Hence, some finite subcollection of {B(x, δ) | x ∈ E} must cover E, say
E ⊆ {B(xi, δ)}ni=1. Now, let x ∈ E. Then, for some 1 ≤ i ≤ n we have that x ∈ B(xi, δ) hence
|f(x)− f(xi)| < 1 and thus −1 < f(x)− f(xi) < 1. If we let M ′ = maxi{f(xi)} then we see
that −1 < f(x)−M ′ < 1 =⇒ |f(x)| < M ′ + 1. Hence, f is bounded.

To see that boundedness ofE is crucial, consider f(x) = x defined on R. Then f is uniformly
continuous because if ε > 0 is given simply let δ = ε. Then if |x − y| < δ we have that
|f(x)− f(y)| = |x− y| < δ = ε. But, f is clearly unbounded. �

9. Omitted.

10. Omitted.

11. Suppose f is a uniformly continuous mapping of a metric spaceX into a metric space Y and
prove that {f(xn)}∞n=1 is a Cauchy sequence in Y for every Cauchy sequence {xn}∞n=1 in X .
Use this to prove the following theorem (Exercise 13): If E ⊂ X is a dense subset of a metric
space X and f is a uniformly continuous function with values in a complete metric space Y
then f has a continuous extension from E to X . By Exercise 4 then, this extension will be
unique because if we have two such extensions they agree on a dense subset ofX hence they
agree on all of X .

Solution: Let ε > 0 be given and let δ > 0 be such that d(f(x), f(y)) < ε whenever d(x, y) <
δ. Let {xn}∞n=1 be a Cauchy sequence in X . Thus, there exist N such that d(xn, xm) < δ for
all n,m ≥ N . But this implies that d(f(xn), f(xm)) < ε for all n,m ≥ N , hence {f(xn)}∞n=1 is
a Cauchy sequence.

Now, let x ∈ X and let {pn}∞n=1 be a sequence in E such that pn → x, which exists because E
is dense inX so every element ofX is a limit point ofE or a point ofE, or both (see Definition
2.18(j) on page 32 of the text). If x ∈ E then let pn = x for all n. Since pn → x we have that
{pn}∞n=1 is a Cauchy sequence by Theorem 3.11(a) on page 53 of the text. By the first result
we showed above we then have that {f(pn)}∞n=1 is Cauchy in Y , hence converges because
Y is complete by hypothesis. Therefore, for x ∈ X we can define g(x) = limn→∞ f(pn)
where pn → x and pn ∈ E for all n. We have to verify that this definition is well-defined,
i.e. it does not depend on the choice of the sequence {pn}∞n=1 converging to x. So, suppose
that sn → x ← pn both converge to x. Let ε > 0 be given and choose δ > 0 such that
d(f(x), f(y)) < ε whenever d(x, y) < δ. Let N1 be such that d(pn, x) < δ/2 for all n ≥ N1 and
similarly choose N2 such that d(sn, x) < δ/2 for all n ≥ N2. Letting N = max{N1, N2} we
see that

d(pn, sn) ≤ d(pn, x) + d(x, sn) <
δ

2
+
δ

2
= δ ∀ n ≥ N =⇒ d(f(pn), f(sn)) < ε ∀ n ≥ N.

Since ε was arbitrary this means that

lim
n→∞

d(f(pn), f(sn)) = 0. (11.1)

We now show the following general result: if xn → x and yn → y in a metric space X then
d(xn, yn)→ d(x, y). Let ε > 0 be given and choose N such that d(xn, x) < ε/2 for all n ≥ N .
Then, for y ∈ X , we have that

d(x, y) < d(x, xn) + d(xn, y) =⇒ d(x, y)− d(xn, y) < d(x, xn) < ε. (11.2)
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Reversing the roles of xn and x we obtain

d(xn, y) < d(xn, x) + d(x, y) =⇒ d(xn, y)− d(x, y) < d(xn, x) < ε. (11.3)

Thus, combining Equations (11.2) and (11.3) we see that |d(x, y) − d(xn, y)| < ε and since
ε was arbitrary this shows that d(xn, y) → d(x, y) for all y ∈ X . In particular, it holds
for yj ∈ {yn}∞n=1 hence we obtain that limn→∞ d(xn, yn) = limm→∞(limn→∞ d(xn, ym)) =
limm→∞ d(x, ym) = d(x, y). Applying this to our result in Equation (11.1) we have that

d
(

lim
n→∞

f(pn), lim
n→∞

f(sn)
)

= lim
n→∞

d(f(pn), f(sn)) = 0.

Thus, limn→∞ f(pn) = limn→∞ f(sn) and so defining g(x) = limn→∞ f(pn) is well-defined
since it does not depend on the particular choice of sequence converging to x. Observe that
if x ∈ E then letting pn = x for all n we see that g(x) = limn→∞ f(pn) = f(x) hence g = f
on E. Now, we have only to verify that g is continuous. To this end, let x ∈ X and let ε > 0
be given. Let δ > 0 be such that d(x, y) < δ =⇒ d(f(x), f(y)) < ε/3, for all x, y ∈ X . Let
y ∈ X such that d(x, y) < δ/3 and let pn → x and sn → y where {pn}∞n=1 and {sn}∞n=1 are
sequences in E. Choose N1 such that d(pn, x) < δ/3 and N2 such that d(sn, y) < δ/3. Let
N = max{N1, N2}. Then,

d(pn, sn) ≤ d(pn, x) + d(x, y) + d(y, sn) <
δ

3
+
δ

3
+
δ

3
= δ ∀ n ≥ N. (11.4)

Now, since g(x) = limn→∞ f(pn) and g(y) = limn→∞ f(sn) let M1 and M2 be such that
d(g(x), f(pn)) < ε/3 for all n ≥ M1 and d(g(y), f(sn)) < ε/3 for all n ≥ M2. Let M =
max{M1,M2} and set K = max{M,N}. Then, fixing n ≥ K we have that

d(g(x), g(y)) ≤ d(g(x), f(pn)) + d(f(pn), f(sn)) + d(f(sn), g(y)) <
ε

3
+
ε

3
+
ε

3
= ε,

where d(f(pn), f(sn)) < ε/3 because of Equation (11.4) which holds since n ≥ K ≥ N . Thus,
g is continuous on X and is the desired extension of f . �

12. A uniformly continuous function of a uniformly continuous function is uniformly continu-
ous. State this more precisely and prove it.

Solution: The statement can be rephrased as follows. Let f : X → Y and g : Y → Z be two
uniformly continuous functions such that the image of f is in the domain of g. Then, the
composition (g ◦ f) : X → Z is uniformly continuous. To see this, let ε > 0 be given. Then,
there exists δ1 > 0 such that d(g(y1), g(y2)) < ε whenever d(y1, y2) < δ1. Similarly, there
exists δ2 > 0 such that d(f(x1), f(x2)) < δ1 whenever d(x1, x2) < δ2. But, this means that if
we choose x1, x2 ∈ X such that d(x1, x2) < δ2 then we have that d(g(f(x1)), g(f(x2))) < ε
because d(f(x1), f(x2)) < δ1. Hence, (g ◦ f) is uniformly continuous. �

13. Omitted.

14. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I into I .
Prove that f(x) = x for at least one x ∈ I .

Solution: Let g(x) = f(x) − x be defined on I . If g(1) = 0 or g(0) = 0 then we are finished
so suppose this doesn’t happen. Then, since f maps into I we see that f(1) ∈ [0, 1) since
f(1) 6= 1 by hypothesis, and therefore g(1) = f(1) − 1 < 0. Similarly, g(0) = f(0) − 0 > 0
because f(0) ∈ (0, 1] since f maps into I and f(0) 6= 0 by hypothesis. But, g is continuous
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on I by Theorem 4.4(a) on page 85 of the text, and by Theorem 4.6 on page 86 of the text.
Hence, by the Intermediate Value Theorem (Theorem 4.23 on page 93 of the text), there exists
a c ∈ (0, 1) such that g(c) = 0. But this says precisely that f(c) = c, hence f has a fixed point.
�

15. Call a mapping of X into Y open if f(V ) is an open set in Y whenever V is an open set in X .
Prove that every continuous open mapping of R into R is monotonic.

Solution: Suppose that we have a continuous open mapping f : R→ R which is not mono-
tonic. This means that there exists x1 < x2 < x3 such that f(x2) > f(x1) and f(x2) > f(x3),
or f(x2) < f(x1) and f(x2) < f(x3). More precisely, there exists two points x0 < x1 such
that f(x0) < f(x1), and two other points x2 < x3 such that f(x2) > f(x3). But, since f is con-
tinuous, by the Intermediate Value Theorem (Theorem 4.23 on page 93 of the text) f achieves
all values in [f(x0), f(x3)], and so we simply choose x2 and then we have that f(x2) > f(x1)
and f(x2) > f(x3).

First, consider the case f(x2) > f(x1) and f(x2) > f(x3). Since f is continuous on R, for

ε =
f(x2)− f(x1)

2
> 0

there exists δ1 > 0 such that |f(x)− f(x1)| < ε whenever |x− x1| < δ1. In particular,

f(x) <
f(x1) + f(x2)

2
< f(x2), x1 < x < x1 + δ1 (15.1)

Note that δ1 < x2−x1 since otherwise we could choose x2 itself, but then the above inequality
would fail. That is, f(x2)− f(x1) ≮ (f(x2)− f(x1))/2. So, let y1 ∈ (x1, x1 + δ1). Similarly, for

ε =
f(x2)− f(x3)

2
> 0

there exists a δ2 > 0 such that |f(x)− f(x3)| < ε whenever |x− x3| < δ2. In particular,

f(x) <
f(x2) + f(x3)

2
< f(x2), x3 − δ2 < x < x3. (15.2)

Again, note that δ2 < x3− x2 as before since otherwise we could choose x2 itself and contra-
dict the above inequality. That is, f(x2)−f(x3) ≮ (f(x2)−f(x3))/2. Choose y2 ∈ (x3−δ2, x3).
Then, because δ1 < x2 − x1 and δ2 < x3 − x2 we have that y2 > y1. Since f is continuous on
the compact set [y1, y2] by Theorem 4.16 on page 89 of the text, f achieves a maximum value
at some p ∈ [y1, y2]. Now, observe that

sup
x∈(x1,x3)

f(x) ≤ sup
x∈[y1,y2]

f(x)

because of Equations (15.1) and (15.2). That is, f(x) < f(x2) for all x ∈ (x1, x1 + δ1) and
for all x ∈ (x3 − δ2, x3) hence the sup must occur on (x1 + δ1, x3 − δ2) ⊂ [y1, y2] because
x2 ∈ (x1, x3) . But, since [y1, y2] ⊂ (x1, x3) we have that other inclusion

sup
x∈(x1,x3)

f(x) ≥ sup
x∈[y1,y2]

f(x)

hence
sup

x∈(x1,x3)
f(x) = sup

x∈[y1,y2]
f(x) = f(p), (15.3)
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since f achieves its maximum on the compact set [y1, y2]. Now, f(p) ∈ f((x1, x3)) hence f(p)
must be an interior point because (x1, x3) is open and f is an open mapping. Thus, there
exists some ε > 0 such that f(p) + ε ∈ f((x1, x3)). But, since f(p) + ε > f(p) this contradicts
Equation (15.3) above which shows that f(p) is the maximum value of f on (x1, x3). Hence
f must be monotonic. �

16. Omitted.

17. Omitted.

18. Every rational x can be written in the form x = m/n, where n > 0, and m and n are integers
without any common divisors. When x = 0, we take n = 1. Consider the function f defined
on R by

f(x) =
{

0 if x is irrational
1
n if x = m

n

.

Prove that f is continuous at every irrational point, and that f has a simple discontinuity at
every rational point.

Solution: Let x be irrational. Then, we see that for any other irrational y we have that |f(x)−
f(y)| = 0 hence to show continuity at xwe need only consider the difference |f(x)−f(r)| for
r a rational. Let ε > 0 be given and choose n such that 1/n < ε. For each 1 ≤ j ≤ n, consider
a neighborhood of x of radius 1/j. Then, there are at most two rational numbers in lowest
terms having j as a denominator in this neighborhood, because the size of the neighborhood
is 2/j and x is irrational, and the distance between any two adjacent rationals with j in the
denominator, i.e. between an m/j and (m+ 1)/j, is 1/j. That is, if there were three rationals
having j as a denominator in this neighborhood, then that would force x to be the middle
one, contradicting that x was irrational. Hence we can write

mj

j
< x <

mj + 1
j

,

for some mj so there are no rationals in lowest terms having a denominator j between mj/j
and (mj + 1)/j because this gap is of size 1/j and rationals with denominators j are evenly
spaced, i.e. the distance between any such two is at least 1/j. Then, let

Ij =
(
mj

j
,
mj + 1
j

)
,

and consider I = ∩nj=1Ij . Then, I contains no rationals with denominator j for all 1 ≤ j ≤ n
by construction (because each Ij excludes all rationals with denominator j) yet still contains
x because x ∈ Ij for all 1 ≤ j ≤ n and is open because it is a finite intersection of open sets.
Now, let δ > 0 be such that B(x, δ) ⊂ I . Then, for all rational r ∈ B(x, δ) ⊂ I we see that
r has a denominator which is larger than n when written in lowest terms, say r = p/q with
q > n, for otherwise if q ≤ n then q = j for some 1 ≤ j ≤ n, a contradiction that I contains
no rationals with any such j in the denominator. Therefore,

|f(x)− f(r)| = 1
q
<

1
n
< ε,

and since r was arbitrary in B(x, δ), ε was arbitrary, and x was arbitrary, we see that f is
therefore continuous at all irrational x.
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Another way to say this is, pick mj such that

δj =
∣∣∣∣x− mj

j

∣∣∣∣ is smallest.

We know it is greater than 0 because x is irrational, and there exists a smallest one because
rationals with denominator j do not get arbitrarily close but are always separated by a dis-
tance of at least 1/j hence there exists a closest rational with denominator 1/j to x. Then, if
we let 0 < δ < min{δ1, . . . , δn} we see that B(x, δ) has the same property as the analogous
neighborhood constructed above.

Now, suppose that r = p/q ∈ R is rational. Then, since the irrationals are dense in R any
neighborhood around r will contain an irrational x. But then, |f(r) − f(x)| = 1/q for any
such rational and we see that no matter how small a neighborhood we choose around r
there will be points in it such that |f(r) − f(x)| cannot be made arbitrarily small, hence f
is discontinuous at every rational point. To see that this is a simple discontinuity, i.e. that
f(x+) and f(x−) exist, we observe that limx→y f(x) = 0 for any point y ∈ R, in particular a
rational point, because as discussed above, approaching any number arbitrarily close with
rationals implies their denominators in lowest terms are getting arbitrarily large, and if we
approach with irrationals then f is 0 when evaluated at them. Since the value f(r) at a
rational point is never zero, this shows the discontinuity is simple because both limits exist,
they just don’t equal the value of the function at the point. In particular, this also shows that
f is continuous at irrational points because then there, the value of the limits does equal the
value of the function. �

19. Suppose f is a real function with domain R which has the intermediate value property: If
f(a) < c < f(b), then f(x) = c for some a < x < b. Suppose also for every rational r, that
the set of all x with f(x) = r is closed. Prove that f is continuous.

Hint: If xn → x0 but f(xn) > r > f(x0) for some r and for all n ≥ 1, then f(tn) = r for some
tn between x0 and xn; thus tn → x0. Find a contradiction.

Solution: If f is not continuous at some x0 ∈ R then that means that f(xn) 9 f(x0) for some
sequence xn → x0, by Theorem 4.6 on page 86 with Theorem 4.2 on page 84 of the text. Since
f is not constant (otherwise it is continuous), we can assume without loss of generality that
f(xn) > r > f(x0) for some rational r for all n ≥ 1. That is, we rename our sequence to only
include terms such that f(xn) > f(x0) and if there are only finitely many such terms then
we choose r such that f(x0) > r > f(xn). This is possible because Q is dense in R, and if
we only include terms where f(xn) 6= f(x0) (there are infinitely many such terms otherwise
we’d have convergence). Since f has the intermediate value property we see that there exists
tn between xn and x0 such that f(tn) = r for all n ≥ 1. But, since xn → x0 we must have that
tn → x0 because d(tn, x0) ≤ d(xn, x0), which goes to 0. Since S = {x | f(x) = r} is closed by
hypothesis and tn ∈ S for all n ≥ 1 by construction we see that x0 ∈ S so that f(x0) = r, a
contradiction to the choice of r. Therefore, f is continuous at every x ∈ R. �

20. If E is a nonempty subset of a metric space X , define the distance from x ∈ X to E by

ρE(x) = inf
z∈E

d(x, z)

(a) Prove that ρE(x) = 0 if and only if x ∈ E.
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(b) Prove that ρE(x) is a uniformly continuous function on X , by showing that

|ρE(x)− ρE(y)| ≤ d(x, y)

for all x, y ∈ X .
Hint: ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z), so that ρE(x) ≤ d(x, y) + ρE(y).

Solution:

(a) First, suppose that ρE(x) = 0. This means that for all n ≥ 1 there exists zn ∈ E such
that d(x, zn) < 1/n by definition of inf hence zn → x and so x is a limit point of E
thus x ∈ E. On the other hand, suppose that x ∈ E so there exists a sequence zn → x
with {zn}∞n=1 ⊂ E. Then, for all ε > 0 there exists an N such that d(x, zn) < ε for all
n ≥ N , hence the distance from x to some point of E can be made arbitrarily small, i.e.
ρE(x) = infz∈E d(x, z) = 0. Otherwise, if ρE(x) = δ > 0 simply choose 0 < ε < δ. Then,
we can find n such that d(x, zn) < ε < δ = infz∈E d(x, z), contradicting the definition of
the inf .

(b) By the triangle inequality for x ∈ X we have that for all z ∈ E and for all y ∈ X

ρE(x) = inf
z′∈E

d(x, z′) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Since z was arbitrary we must have that

ρE(x) ≤ d(x, y) + inf
z∈E

d(y, z) = d(x, y) + ρE(y).

Hence
ρE(x)− ρE(y) ≤ d(x, y).

Reversing the roles of x and y above we obtain ρE(y)− ρE(x) ≤ d(x, y) hence we have

|ρE(x)− ρE(y)| ≤ d(x, y).

This is precisely uniform continuity because if ε > 0 is given and x, y ∈ X let δ = ε.
Then, d(x, y) < δ = ε =⇒ |ρE(x)− ρE(y)| ≤ d(x, y) < δ = ε, hence ρE(x) is uniformly
continuous on X . �

21. Suppose K and F are disjoint sets in a metric space X such that K is compact and F is
closed. Prove that there exists δ > 0 such that d(p, q) > δ if p ∈ K and q ∈ F . Show that the
conclusion may fail for two disjoint closed sets if neither is compact.

Solution: We show that inf{d(p, q) | p ∈ K, q ∈ F} > 0 and hence is greater than some
positive δ. Since K ∩ F = ∅ we have that d(x, y) > 0 for all x ∈ K, y ∈ F because d(x, y) =
0 ⇐⇒ x = y. Therefore

0 ≤ inf{d(x, y) | x ∈ K, y ∈ F}.

So, suppose that
0 = inf{d(x, y) | x ∈ K, y ∈ F}.

This means that for each n ∈ N, there exists xn ∈ K, yn ∈ F such that d(xn, yn) < 1/n by
definition of the inf . Then, {xn} ⊂ K is a sequence and since K is compact, there exists a
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convergent subsequence {xnk
} → x0 ∈ K. Then, {ynk

} ⊂ F is a sequence. Let ε > 0 be
given. Then, there exists a K1 such that

d(xnk
, ynk

) <
ε

2
, k ≥ K1

and since xnk
→ x0, there exists an K2 such that

d(xnk
, x0) <

ε

2
, k ≥ K2.

If we let K = max{K1,K2} then

d(ynk
, x0) ≤ d(ynk

, xnk
) + d(xnk

, x0) <
ε

2
+
ε

2
= ε, ∀ k ≥ K.

Thus, ynk
→ x0 also. Since F is closed it contains its limit points and therefore x0 ∈ F ,

contradicting that K ∩ F = ∅. Therefore, we must have that 0 < inf{d(x, y) | x ∈ K, y ∈ F}.
Now, consider the sets A = Z+\{1, 2} = {n ∈ Z | n ≥ 3} and B = {n + 1/n | n ∈ Z+}.
Both are closed and A ∩ B = ∅. But, for all ε > 0 if we choose n > 1/ε then we see that
|n + 1/n − n| = 1/n < ε hence the conclusion fails because we can find points in A and B
that are arbitrarily close. �

Alternate Solution: We can see this result in another way by using the results of Exercise 20
above. First, by Exercise 20(a) we see that ρF (x) = 0 ⇐⇒ x ∈ F = F because F is closed,
hence we have that ρF (k) > 0 for all k ∈ K because K ∩ F = ∅. By Exercise 20(b) ρF (k) is
continuous on K and so by Theorem 4.16 on page 89 of the text, since K is compact, ρF (k)
achieves its minimum on K, namely there exists k ∈ K such that ρF (k) = m > 0, where we
have the inequality because k ∈ K and we saw above that ρF was positive on K. Hence, for
p ∈ K and q ∈ F we have that 0 < m/2 < ρF (p) = infq′∈F d(p, q′) ≤ d(p, q). �

Chapter 5: Differentiation

1. Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is a constant.

Solution: We can rewrite this condition as

|f(x)− f(y)| ≤ |x− y||x− y|,

and therefore we can divide by |x−y| since it is positive and preserve the inequality to obtain∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣ =
|f(x)− f(y)|
|x− y|

≤ |x− y|.

Thus the limit as x→ y of the left hand side exists (for a given ε > 0 choose δ = ε) and taking
this limit gives

|f ′(y)| ≤ 0 =⇒ f ′(y) = 0.

Since y was arbitrary we see that f is constant by Theorem 5.11 on page 108 of the text. �
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2. Suppose that f ′(x) > 0 on (a, b). Prove that f is strictly increasing in (a, b), and let g be its
inverse function. Prove that g is differentiable, and that

g′(f(x)) =
1

f ′(x)
(a < x < b).

Solution: Let a < x < y < b. Then, f is continuous on [x, y] (because it is differentiable on
(a, b) ) [x, y]) and differentiable on (x, y). Thus, by The Mean Value Theorem (Theorem 5.10
on page 108 of the text), there exists c ∈ (x, y) such that

f(y)− f(x) = (y − x)f ′(c) > 0,

where the inequality follows because f ′(c) > 0 by hypothesis and y− x > 0 by construction.
Since f is strictly increasing on (a, b), it is injective and therefore the inverse function g is
well-defined. Let a < x < y < b. Then,

g′(f(x)) = lim
f(y)→f(x)

g(f(y))− g(f(x))
f(y)− f(x)

= lim
y→x

y − x
f(y)− f(x)

=
1

f ′(x)
,

where the second equality follows since f is injective (because it is strictly increasing) thus
f(y)→ f(x) ⇐⇒ y → x. �

3. Suppose g is a real function on R, with bounded derivative (say |g′| ≤ M ). Fix ε > 0, and
define f(x) = x+ εg(x). Prove that f is one-to-one if ε is small enough. (A set of admissible
values of ε can be determined which depends only on M .)

Solution: Let x < y. By the Mean Value Theorem (Theorem 5.10 on page 108 of the text),
there exists a x < c < y such that

g(x)− g(y) = g′(c)(x− y).

Thus, we obtain

f(x)− f(y) = x− y + ε(g(x)− g(y))
= x− y + εg′(c)(x− y)
= (x− y)(1 + εg′(c)).

(3.1)

Since |g′| ≤ M we have that −M ≤ g′(x) ≤ M for all x ∈ R. Thus, 1 − εM ≤ 1 + εg′(x) ≤
1 + εM . If we choose ε ≤ 1

2M then this inequality becomes

1
2

= 1− 1
2
≤ 1− εM ≤ 1 + εg′(x) ≤ 1 + εM ≤ 1 +

1
2

=⇒ 1 + εg′(x) > 0, ∀ x ∈ R. (3.2)

In particular, this holds for x = c and thus from Equation (3.1) we see that f(x) − f(y) < 0
since x − y < 0 by construction and we see in Equation (3.2) that 1 + εg′(c) > 0. That is,
f(x) 6= f(y) so f is one-to-one. �

4. If
C0 +

C1

2
+ · · ·+ Cn−1

n
+

Cn
n+ 1

= 0,

where C0, . . . , Cn are real constants, prove that the equation

C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0
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has at least one real root between 0 and 1.

Solution: Consider the polynomial defined by

p(x) = C0x+
C1

2
x2 + · · ·+ Cn

n+ 1
xn+1, x ∈ [0, 1].

Then, p(1) = C0 + C1
2 + · · · + Cn−1

n + Cn
n+1 = 0 = p(0) and by The Mean Value Theorem

(Theorem 5.10 on page 108 of the text) we see that

C0 + C1c+ · · ·+ Cn−1c
n−1 + Cnc

n = p′(c) =
p(1)− p(0)

1− 0
= 0, c ∈ (0, 1),

hence c is a root of C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n. �

5. Suppose f is defined and differentiable for every x > 0, and f ′(x) → 0 as x → ∞. Put
g(x) = f(x+ 1)− f(x). Prove that g(x)→ 0 as x→∞.

Solution: Let ε > 0 be given and let N be such that |f ′(x)| < ε for all x ≥ N . Then, for such
x, by The Mean Value Theorem (Theorem 5.10 on page 108 of the text) we have that

|g(x)| = |f(x+ 1)− f(x)| =
∣∣∣∣f(x+ 1)− f(x)

x+ 1− x

∣∣∣∣ = |f ′(c)|, c ∈ (x, x+ 1).

Thus |g(x)| = |f ′(c)| < ε since c > x ≥ N . Since ε was arbitrary we have that g(x) → 0 as
x→∞. �

6. Suppose

(a) f is continuous for x ≥ 0,

(b) f ′(x) exists for x > 0,

(c) f(0) = 0,

(d) f ′ is monotonically increasing.

Put

g(x) =
f(x)
x

x > 0

and prove that g is monotonically increasing.

Solution: Let 0 < x < y. By The Mean Value Theorem (Theorem 5.10 on page 108 of the text)
we see that there exist c1 ∈ (0, x) and c2 ∈ (0, y) such that

f(x)
x

=
f(x)− f(0)

x− 0
= f ′(c1),

f(y)
y

=
f(y)− f(0)

y − 0
= f ′(c2).

Therefore,

g(y)− g(x) =
f(y)
y
− f(x)

x
= f ′(c2)− f ′(c1) ≥ 0,

where the inequality follows since c2 ≥ c1 (because y > x) and f ′ is monotonically increas-
ing. Therefore, g is monotonically increasing. �
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7. Suppose f ′(x), g′(x) exist, g′(x) 6= 0, and f(x) = g(x) = 0. Prove that

lim
t→x

f(t)
g(t)

=
f ′(x)
g′(x)

.

(This holds also for complex functions.)

Solution: Simply consider

f ′(x)
g′(x)

=
limt→x

f(t)−f(x)
t−x

limt→x
g(t)−g(x)
t−x

= lim
t→x

f(t)
g(t)

.

Note, we cannot trivially use L’Hospital’s Rule because we don’t know that limt→x
f ′(t)
g′(t) =

f ′(x)
g′(x) , that is, we don’t know that the derivatives are continuous at x, only that they exist at
x. We can see that the same proof works for complex functions if we write f(x) = f1(x) =
if2(x) where f1, f2 are real-valued functions. �

8. Suppose f ′ is continuous on [a, b] and ε > 0. Prove that there exists δ > 0 such that∣∣∣∣f(t)− f(x)
t− x

− f ′(x)
∣∣∣∣ < ε

whenever 0 < |t − x| < δ, a ≤ x ≤ b, a ≤ t ≤ b. (This could be expressed by saying that f is
uniformly differentiable on [a, b] if f ′ is continuous on [a, b].) Does this hold for vector-valued
functions too?

Solution: Since f ′ is continuous on the compact set [a, b] it is uniformly continuous on [a, b]
and therefore there exists δ > 0 such that |f ′(t) − f ′(x)| < ε for all 0 < |t − x| < δ, a ≤
t ≤ b, a ≤ x ≤ b. By The Mean Value Theorem (Theorem 5.10 on page 108 of the text) there
exists a c between t and x such that f ′(c) = f(t)−f(x)

t−x . Since c is between t and x we have that

0 < |c− x| < δ because |c− x| < |t− x|. Therefore
∣∣f(t)−f(x)

t−x − f ′(x)
∣∣ = |f ′(c)− f ′(x)| < ε.

This does not hold for vector-valued functions. We can use f(x) = (cos(x), sin(x)) as a
counter example. �

9. Let f be a continuous real function on R, of which it is known that f ′(x) exists for all x 6= 0
and that f ′(x)→ 3 as x→ 0. Does it follow that f ′(0) exists?

Solution: Yes, f ′(0) must exist. This follows from Corollary to Theorem 5.12 on page 109
of the text. For suppose that f ′(0) did not exist. Since f ′(x) → 3 as x → 0 this means that
f ′ has a discontinuity of the first kind (i.e. a simple discontinuity) at x = 0 because the left
and right hand limits exist yet f ′ is not continuous at 0 because it is not defined there. But
this contradicts the Corollary. We also give a direct proof of the following more general
statement: Suppose that f is continuous on an open interval I containing x0, and let f ′ be
defined on I except possibly at x0 and f ′(x)→ L as x→ x0. Then f ′(x0) = L. To see this, let
g(x) = x. Then we have that limh→0 g(h) = 0 and limh→0 f(x0 + h) − f(x0) = 0. Therefore,
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we can apply L’Hospital’s Rule (Theorem 5.13 on page 109 of the text) and obtain that

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

= lim
h→0

f(x0 + h)− f(x0)
g(h)

= lim
h→0

(f(x0 + h)− f(x0))′

g′(h)
= lim

h→0
f ′(x0 + h)

= L,

where the last equality follows because by hypothesis f ′(x) → L as x → x0 so we have that
limh→0 f

′(x0 + h) = L. �

10. Suppose f and g are complex differentiable functions on (0, 1), f(x) → 0, g(x) → 0, f ′(x) →
A, g′(x)→ B as x→ 0, where A and B are complex numbers and B 6= 0. Prove that

lim
x→0

f(x)
g(x)

=
A

B
.

Compare with Example 5.18 on page 112 of the text. Hint:

f(x)
g(x)

=
(
f(x)
x
−A

)
· x

g(x)
+A · x

g(x)
.

Apply Theorem 5.13 on page 109 of the text to the real and imaginary parts of f(x)/x and
g(x)/x.

Solution: Write f(x) = f1(x) + if2(x) where f1, f2 are real-valued functions. Then, we have
that

df

dx
=

d

dx
(f1(x) + if2(x)) =

df1(x)
dx

+ i
df2(x)
dx

. (10.1)

Now, since f1 and f2 are real-valued, we can apply L’Hospital’s Rule (Theorem 5.13 on page
109 of the text) to the functions f1(x)

x and f2(x)
x , since f1(x), f2(x), x→ 0 as x→ 0. This shows

that

lim
x→0

f1(x)
x

= lim
x→0

f ′1(x)

lim
x→0

f2(x)
x

= lim
x→0

f ′2(x).

Therefore, we obtain that

lim
x→0

f(x)
x

= lim
x→0

(
f1(x)
x

+ i
f2(x)
x

)
= lim

x→0
(f ′1(x) + if ′2(x)) = lim

x→0
f ′(x) = A,

where the last equality follows from Equation (10.1). An analogous construction shows that
limx→0 g(x)/x = g′(x) = B thus limx→0 x/g(x) = 1/B. Then, we have that

lim
x→0

f(x)
g(x)

= lim
x→0

(
f(x)
x
−A

)
· x

g(x)
+A · x

g(x)
= (A−A) · 1

B
+A · 1

B
=
A

B
.

In Example 5.18, we have that g′(x)→∞ as x→ 0, not a complex number. �
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11. Suppose f is defined in a neighborhood of x, and suppose that f ′′(x) exists. Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)
h2

= f ′′(x).

Show by an example that the limit may exist even if f ′′(x) does not. Hint: Use Theorem 5.13
on page 109 of the text.

Solution: Applying L’Hospital’s Rule (Theorem 5.13 on page 109 of the text), with respect to
h, to the functions F (h) = f(x+ h) + f(x− h)− 2f(x) and G(h) = h2 we see that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)
h2

= lim
h→0

F (h)
G(h)

= lim
h→0

F ′(h)
G′(h)

= lim
h→0

f ′(x+ h)− f ′(x− h)
2h

,

(11.1)
where we have a minus sign in the numerator of the last expression from the chain rule:
(f(x− h))′ = −f ′(x− h). Now, we have that

f ′′(x) =
1
2

(f ′′(x) + f ′′(x))

=
1
2

(
lim
h→0

f ′(x+ h)− f ′(x)
h

+ lim
h→0

f ′(x− h)− f ′(x)
−h

)
=

1
2

lim
h→0

f ′(x+ h)− f ′(x− h)
h

= lim
h→0

f ′(x+ h)− f ′(x− h)
2h

= lim
h→0

f(x+ h) + f(x− h)− 2f(x)
h2

,

where the last equality follows by Equation (11.1). To see that the limit may exist even when
f ′′(x) does not, consider the function f(x) = x|x|. Then f ′′(0) does not exist yet

lim
h→0

f(0 + h) + f(0− h)− 2f(0)
h2

= lim
h→0

h|h| − h|h|
h2

= 0.

�

12. Omitted.

13. Omitted.

14. Let f be a differentiable real function defined on (a, b). Prove that f is convex if and only
if f ′ is monotonically increasing. Assume next that f ′′(x) exists for all x ∈ (a, b), and prove
that f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

Solution: First, suppose that f is convex so that f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) for all
0 < λ < 1 and a < x < b, a < y < b. This means that f(λ(x− y) + y) ≤ λ(f(x)− f(y)) + f(y).
If we choose a < y < x < b so that x − y > 0 then subtracting f(y) from both sides and
dividing by λ(x− y) gives

f(λ(x− y) + y)− f(y)
λ(x− y)

≤ f(x)− f(y)
x− y

,

where the inequality is preserved because λ(x − y) > 0. Taking the limit as y → x of both
sides then shows that

f ′(y) ≤ f ′(x), a < y < x < b,
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where we get f ′(y) on the left because y → x =⇒ λ(x− y)→ 0. Hence, f ′(x) is monotoni-
cally increasing on (a, b).

Now, suppose that f ′ is monotonically increasing on (a, b). Let x, y ∈ (a, b) and 0 < λ < 1.
Without loss of generality assume x < y. Set x0 = y − λ(y − x) which means that

λ =
y − x0

y − x
,

1− λ =
y − x
y − x

− y − x0

y − x
=
y − x− y + x0

y − x
=
x0 − x
y − x

.

(14.1)

This shows that

λx+ (1− λ)y = x

(
y − x0

y − x

)
+ y

(
x0 − x
y − x

)
=
xy − xx0 + yx0 − yx

y − x

=
yx0 − xx0

y − x
= x0.

(14.2)

Write F (x, y, λ) = f(λx + (1 − λ)y) − (λf(x) + (1 − λ)f(y)) for notational purposes (so
F (x, y, λ) is the convexity relation). Then, using Equations (14.1) and (14.2) we have that

F (x, y, λ) = f(x0)−
(
y − x0

y − x

)
f(x)−

(
x0 − x
y − x

)
f(y)

=
(
y − x0

y − x

)
(f(x0)− f(x)) +

(
x0 − x
y − x

)
(f(x0)− f(y)),

(14.3)

where the second equality follows because y−x0

y−x + x0−x
y−x = 1. Now, two applications of the

Mean Value Theorem yields

f(x0)− f(x) = f ′(η)(x0 − x) η ∈ (x, x0)
f(x0)− f(y) = f ′(ξ)(x0 − y) ξ ∈ (x0, y).

(14.4)

Substituting this into Equation (14.3) we obtain

F (x, y, λ) =
(
y − x0

y − x

)
(x0 − x)f ′(η) +

(
x0 − x
y − x

)
(x0 − y)f ′(ξ)

=
(
y − x0

y − x

)
(x0 − x)f ′(η)−

(
x0 − x
y − x

)
(y − x0)f ′(ξ)

=
[(

y − x0

y − x

)
(x0 − x)

]
(f ′(η)− f ′(ξ))

≤ 0,

(14.5)

where the inequality follows because y−x0, y−x, x0−x > 0 but from Equation (14.4) we see
that η < ξ =⇒ f ′(η) ≤ f ′(ξ) (because f ′ is monotonically increasing by hypothesis) =⇒
f ′(η)− f ′(ξ) ≤ 0. But, Equation (14.5) is precisely

f(λx+ (1− λ)y)− (λf(x) + (1− λ)f(y)) ≤ 0,
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by the definition of F (x, y, λ), hence f is convex. By Theorem 5.11(a) on page 108 we see
that f ′′(x) ≥ 0 ⇐⇒ f ′(x) is monotonically increasing because f ′′(x) = (f ′(x))′, hence f is
convex if and only if f ′′(x) ≥ 0 by the above result. �

Chapter 6: The Riemann-Stieltjes Integral

Before we present the solutions to selected exercises in this chapter, we prove one property of the
integral which was not shown in the text, namely Theorem 6.12(c) which states that if f ∈ R(α)
on [a, b] and a < c < b then f ∈ R(α) on [a, c] and on [c, b] and∫ b

a
fdα =

∫ c

a
fdα+

∫ b

c
fdα.

First, since f ∈ R(α) on [a, b] we can choose a partition P = {a = x0 ≤ x1 ≤ · · · ≤ xn = b} of [a, b]
such that

U(P, f, α)− L(P, f, α) < ε.

Now, let P ∗ = P ∪ {c}, a (possible) refinement of P , and let xj = c for some 1 ≤ j ≤ n− 1. Then,
by Theorem 6.4 on page 123 of the text we see that L(P, f, α) ≤ L(P ∗, f, α) and U(P ∗, f, α) ≤
U(P, f, α). If we let P1 = {a = x0 ≤ x1 ≤ · · · ≤ xj = c} then,

ε > U(P, f, α)− L(P, f, α)

=
n∑
i=1

(Mi −mi)∆αi

≥
j∑
i=1

(Mi −mi)∆αi

= U(P1, f, α)− L(P1, f, α),

where the second inequality follows since Mi−mi ≥ 0 for all i. Therefore, f ∈ R(α) on [a, c] since
P1 is a partition of [a, c]. Modifying the above procedure accordingly by letting P2 = {c = xj ≤
xj+1 ≤ · · · ≤ xn = b} and keeping

∑n
i=j+1(Mi −mi)∆αi instead, we similarly see that f ∈ R(α)

on [c, b] also. Now, let P be any partition of [a, b] and P ∗ = P ∪ {c}, with P1 and P2 analogous
definitions as above. Then, we have that

U(P, f, α) ≥ U(P ∗, f, α)

=
n∑
i=1

Mi∆αi

=
j∑
i=1

Mi∆αi +
n∑

i=j+1

Mi∆αi

= U(P1, f, α) + U(P2, f, α)

≥
∫ c

a
fdα+

∫ b

c
fdα.

Since P was arbitrary, we see that∫ b

a
fdα = inf

P
U(P, f, α) ≥

∫ c

a
fdα+

∫ b

c
fdα.

39



Now, if we use L(P, f, α) instead we find that

L(P, f, α) ≤ L(P ∗, f, α)

=
n∑
i=1

mi∆αi

=
j∑
i=1

mi∆αi +
n∑

i=j+1

mi∆αi

= L(P1, f, α) + L(P2, f, α)

≤
∫ c

a
fdα+

∫ b

c
fdα.

Since P was arbitrary, we see that∫ b

a
fdα = sup

P
L(P, f, α) ≤

∫ c

a
fdα+

∫ b

c
fdα,

which together with the result above shows that
∫ b
a fdα =

∫ c
a fdα+

∫ b
c fdα as desired. �

1. Suppose α increases on [a, b], a ≤ x0 ≤ b, α is continuous at x0, f(x0) = 1, and f(x) = 0 if
x 6= x0. Prove that f ∈ R(α) and that

∫ b
a fdα = 0.

Solution: By Theorem 6.10 on page 126 of the text we see that f ∈ R(α) since α is continuous
at the only point where f is discontinuous. Now, we see that

U(P, f, α) =
n∑
i=1

sup
[xi−1,xi]

f(x) ∆αi = ∆αi, x0 ∈ [xi−1, xi],

L(P, f, α) =
n∑
i=1

inf
[xi−1,xi]

f(x) ∆αi = 0,

where L(P, f, α) = 0 because for any partition we have that x0 is contained in some interval
of positive length hence the inf of f on that interval will be 0 since it will contain points not
equal to x0. Since P was arbitrary this implies that

∫ b
a fdα = supP L(P, f, α) = 0, because f

was already shown to be Riemann integrable. We also have that that U(P, f, α) = αi + αi+1

if x0 = xi. So, we see that infP U(P, f, α) = 0 since taking finer and finer partitions means
that ∆αi → 0. Since this is equal to supP L(P, f, α) we again see that

∫ b
a fdα = 0. �

2. Suppose f ≥ 0, f is continuous on [a, b], and
∫ b
a f(x)dx = 0. Prove that f(x) = 0 for all

x ∈ [a, b]. (Compare this with Exercise 1).

Solution: Suppose there exists x0 ∈ [a, b] such that f(x0) = L > 0 (because f ≥ 0). Letting
0 < ε < L we see that there exists δ > 0 such that f(x) ∈ (L − ε, L + ε) whenever x ∈
(x0 − δ, x0 + δ) by the continuity of f . We then have that∫ b

a
f(x)dx =

∫ x0−δ

a
f(x)dx+

∫ x0+δ

x0−δ
f(x)dx+

∫ b

x0+δ
f(x)dx > 0,

where the inequality follows since on (x0 − δ, x0 + δ), f(x) > 0 since L− ε > 0 by the choice
of ε. This contradicts that

∫ b
a f(x)dx = 0, hence no such x0 can exist. Exercise 1 shows that

the continuity of f is necessary for this result since in Exercise 1 we have a function whose
integral is zero, but f(x) 6= 0 for some x ∈ [a, b]. �
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3. Omitted.

4. If f(x) = 0 for all irrational x and f(x) = 1 for all rational x, prove that f /∈ R on [a, b] for
any a < b.

Solution: Let a < b and let P be a partition of [a, b]. Because rational and irrational numbers
are both dense in R we see that any interval of positive length will contain both types of
numbers hence [xi−1, xi] contains both types of numbers for at least one i, because P is a
partition and a < b so there is at least one interval of positive length with endpoints elements
of P . Hence,

U(P, f) =
n∑
i=1

sup
[xi−1,xi]

f(x) ∆xi ≥ 1,

L(P, f) =
n∑
i=1

inf
[xi−1,xi]

f(x) ∆xi = 0.

Therefore, supL(P, f) = 0 < 1 ≤ inf U(P, f) therefore f /∈ R by definition of R. �

5. Suppose f is a bounded real function on [a, b], and f2 ∈ R on [a, b]. Does it follow that
f ∈ R? Does the answer change if we assume f3 ∈ R?

Solution: Defining f(x) = −1 for irrational x and f(x) = 1 for rational x shows that f /∈ R
on [a, b] by Exercise 2 above, yet f2(x) = 1 for all x ∈ [a, b] hence f2 ∈ R on [a, b]. Therefore,
we cannot conclude that f ∈ R if f2 ∈ R.

By Theorem 6.11 on page 127 of the text we see that if f ∈ R on [a, b] and m ≤ f ≤ M , if
φ is continuous on [m,M ] and h(x) = φ(f(x)) on [a, b] then h ∈ R on [a, b]. Thus, suppose
that f3 ∈ R on [a, b]. Since f is bounded we have that m ≤ f ≤ M for some m and
M . The function φ(x) = x1/3 is continuous on [m,M ] because it is continuous on all of R.
Therefore, h(x) = φ(f3(x)) = f(x) ∈ R on [a, b] as desired. This fails if we only assume
f2 ∈ R precisely because x1/2 is not defined for negative x. If f > 0 and bounded, then
f2 ∈ R =⇒ f ∈ R because x1/2 is continuous on [0,M ] for all M . �

6. Omitted.

7. Suppose that f is a real function on (0, 1] and f ∈ R on [c, 1] for every c > 0. Define∫ 1

0
f(x)dx = lim

c→0

∫ 1

c
f(x)dx

if this limit exists (and is finite).

(a) If f ∈ R on [0, 1], show that this definition of the integral agrees with the old one.

(b) Construct a function f such that the above limit exists, although it fails to exist with |f |
in place of f .

Solution:

(a) If f ∈ R on [0, 1] then f is bounded on [0, 1] because the Riemann integral is defined
only for bounded functions. That is, if f were not bounded then the upper-Riemann
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sums would be infinite, hence f would not be integrable. Thus, we can write |f(x)| ≤
M for all x ∈ [0, 1]. Also, (the old)

∫ 1
0 f(x)dx exists hence we can form the difference∣∣∣∣ ∫ 1

0
f(x)dx−

∫ 1

c
f(x)dx

∣∣∣∣ =
∣∣∣∣ ∫ c

0
f(x)dx

∣∣∣∣ ≤ ∫ c

0
|f(x)|dx ≤ cM → 0 as c→ 0.

So, the old integral is the limit of
∫ 1
c f(x)dx as c→ 0.

(b) Let

f(x) = n(−1)n,
1

(n+ 1)
< x ≤ 1

n
.

Then this function works. �

8. Suppose that f ∈ R on [a, b] for every b > a where a is fixed. Define∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a
f(x)dx

if this limit exists (and is finite). In that case, we say that the integral on the left converges. If
it also converges after f has been replaced by |f |, it is said to converge absolutely. Assume
that f(x) ≥ 0 and that f decreases monotonically on [1,∞). Prove that∫ ∞

1
f(x)dx

converges if and only if
∞∑
n=1

f(n)

converges. (This is the so-called “integral test” for convergence of series).

Solution: First, suppose that
∫∞
1 f(x)dx converges. Thus, we can write∫ ∞

1
f(x)dx = C.

Since f ≥ 0 on [1,∞) we have that
∫∞
1 f(x)dx =

∫ N
1 f(x)dx +

∫∞
N f(x)dx ≥

∫ N
1 f(x). Now,

let N ≥ 1 and let P ′ = {x0 = 1, . . . , xN = N} be a partition of [1, N ]. Then,

N∑
i=2

f(i) = L(P ′, f) ≤ sup
P
L(P, f) =

∫ N

1
f(x)dx ≤

∫ ∞
1

f(x)dx = C, (8.1)

where the first equality follows because f is decreasing so inf [n,n+1] f(x) = f(n + 1). Thus,∑N
i=1 f(i) is bounded (because f(1) is finite). Since f ≥ 0 on [1,∞) we see that SN =∑N
i=1 f(i) is an increasing sequence, which is bounded above by Equation (8.1), hence it

converges.

Conversely, suppose that
∑∞

i=1 f(i) converges. Then, because f is decreasing on [1,∞) we
have that

f(x) ≤ f(n) ∀ x ∈ [n, n+ 1].
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Therefore, taking integrals preserves the inequalities, giving∫ n+1

n
f(x)dx ≤

∫ n+1

n
f(n)dx = f(n).

Since f ≥ 0 we arrive at∫ N

1
f(x)dx =

N−1∑
n=1

∫ n+1

n
f(x)dx ≤

N−1∑
n=1

f(n) ≤
∞∑
n=1

f(n) <∞.

Hence, the sequence aN =
∫ N
1 f(x)dx is bounded above. Since f ≥ 0 this sequence is also

increasing
(
aN+1 =

∫ N+1
1 f(x)dx =

∫ N
1 f(x)dx+

∫ N+1
N f(x)dx ≥

∫ N
1 f(x)dx = aN

)
, hence it

converges. �

9. Omitted.

10. Let p and q be real numbers such that

1
p

+
1
q

= 1. (10.1)

Prove the following statements.

(a) If u ≥ 0 and v ≥ 0 then

uv ≤ up

p
+
vq

q
.

Equality holds if and only if up = vq.

(b) If f ∈ R(α), g ∈ R(α), f ≥ 0, g ≥ 0, and∫ b

a
fpdα = 1 =

∫ b

a
gqdα,

then ∫ b

a
fg dα ≤ 1.

(c) If f and g are complex functions in R(α) then∣∣∣∣ ∫ b

a
fg dα

∣∣∣∣ ≤ (∫ b

a
|f |pdα

)1/p(∫ b

a
|g|qdα

)1/q

.

This Hölder’s inequality. When p = q = 2 it is usually called the Schwarz inequality.
(Note that Theorem 1.35 is a very special case of this.)

We omit part (d).

Solution:

(a) If u = 0 or v = 0 then the inequality holds trivially, hence we can assume that both are
positive. From Equation (10.1) we can write

q + p

qp
= 1 =⇒ q + p = pq =⇒ p =

q

q − 1
, (10.2)
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hence we have that 1 < p, q < ∞ because both are positive. Define a = up/vq. By
Equation (10.2) above we have that q/p = q − 1 hence

a1/p =
(
up

vq

)1/p

=
u

vq/p
=

u

vq−1
= uv1−q.

Therefore, if we show that

a1/p ≤ 1
p
a+

1
q
, 0 < a <∞, (10.3)

then this implies that uv1−q ≤ (up/(vq)(1/p) + 1/q which after multiplying through by
vq gives uv ≤ up/p+ vq/q, our desired inequality. Hence, we need only show Equation
(10.3) holds. Consider the continuous function

f(a) =
1
p
a+

1
q
− a1/p,

which is positive at a = 0 and tends to ∞ as a → ∞. It is continuous because x1/p is
continuous for p > 1 and x > 0. Therefore, if it has a minimum on (0,∞) it must occur
where its derivative vanishes. Calculating we have that

f ′(a) =
1
p
− 1
p
a1/p−1.

Finding the zero of this, we wish to solve 1/p = (1/p)a1/p−1 which implies that a1/p−1 =
1 hence a = 1. Since f(1) = 1/p + 1/q − 1 = 0 and f is positive at a = 0 and tends to
infinity as a→∞, we see that f(1) is in fact the minimum of f for 0 < a <∞ hence we
find that

0 = f(1) ≤ f(a) =
1
p
a+

1
q
− a1/p, 0 < a <∞,

which is precisely Equation (10.3), hence the desired inequality also holds.

(b) If f ≥ 0 and g ≥ 0 then fp ∈ R(α) and gq ∈ R(α) by Theorem 6.11 on page 127 of the
text. We also have that fg ∈ R(α) by Theorem 6.13(a) on page 129 of the text. By part
(a) we have that

f(x)g(x) ≤ f(x)p

p
+
g(x)q

q
, a ≤ x ≤ b, (10.4)

hence we find that∫ b

a
fg dα ≤ 1

p

∫ b

a
fpdα+

1
q

∫ b

a
gqdα =

1
p

+
1
q

= 1.

(c) If f and g are complex-valued in R(α) then |f | and |g| are nonnegative elements of
R(α) and as in part (b), fg ∈ R(α) as well. Moreover, by Theorem 6.13(b) on page 129
of the text we have that ∣∣∣∣ ∫ b

a
fg dα

∣∣∣∣ ≤ ∫ b

a
|f ||g| dα.

Now, define

I =
∫ b

a
|f |pdα, J =

∫ b

a
|g|qdα.
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If I 6= 0 and J 6= 0 then let c = I1/p and d = J1/q. Then, we have that∫ b

a

(
|f |
c

)p
dα =

1
cp

∫ b

a
|f |pdα =

1
cp
I = 1,

and similarly for g ∫ b

a

(
|g|
d

)q
dα =

1
dq

∫ b

a
|g|qdα =

1
dq
J = 1.

Hence, we can apply the results of part (b) to the two functions |f |/c and |g|/d to obtain∫ b

a

|f |
c

|g|
d
dα ≤ 1,

which implies that∫ b

a
|f ||g|dα ≤ cd = I1/pJ1/q =

(∫ b

a
|f |pdα

)1/p(∫ b

a
|g|qdα

)1/q

.

If one of I or J vanish, assume without loss of generality that I vanishes. Then, if c > 0
is a constant, applying Equation (10.4) to the two functions |f | and c|g|we obtain that∫ b

a
|f |(c|g|)dα ≤ 1

p

∫ b

a
|f |pdα+

1
q

∫ b

a
cq|g|qdα = cq

1
q

∫ b

a
|g|qdα,

since I = 0 by assumption. Thus, since q > 1 (this comes from part (a) where we saw
that 1 < p, q <∞),∣∣∣∣ ∫ b

a
fg dα

∣∣∣∣ ≤ ∫ b

a
|f ||g|dα ≤ cq−1 1

q

∫ b

a
|g|qdα→ 0 as c→ 0,

thus the inequality still holds. An analogous argument if J = 0 proves the result. Note
that if both I and J vanish the result holds trivially. �

11. Let α be a fixed increasing function on [a, b]. For u ∈ R(α), define

||u||2 =
(∫ b

a
|u|2dα

)1/2

.

Suppose that f, g, h ∈ R(α). Prove the triangle inequality,

||f − h||2 ≤ ||f − g||2 + ||g − h||2

as a consequence of the Schwarz inequality of Exercise 10 above, as in the proof of Theorem
1.37.

Solution: Letting p = 2 = q in Exercise 10 above we obtain∫ b

a
|uv|dα ≤

(∫ b

a
|u|2dα

)1/2(∫ b

a
|v|2dα

)1/2

, (11.1)
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because |uv| ≥ 0 so we don’t need the absolute values on the outside of the term on the left
from Exercise 10. Then, we have that∫ b

a
|u+ v|2dα ≤

∫ b

a
|u|2dα+ 2

∫ b

a
|uv| dα+

∫ b

a
|v|2dα

≤
∫ b

a
|u|2dα+ 2

(∫ b

a
|u|2dα

)1/2(∫ b

a
|v|2dα

)1/2

+
∫ b

a
|v|2dα

=
((∫ b

a
|u|2dα

)1/2

+
(∫ b

a
|v|2dα

)1/2)2

,

appling Equation (11.1) to
∫ b
a |uv| dα. This means that

||u+ v||2 =
(∫ b

a
|u+ v|2dα

)1/2

≤
(∫ b

a
|u|2dα

)1/2

+
(∫ b

a
|v|2dα

)1/2

= ||u||2 + ||v||2.

Letting u = f − g and v = g − h then gives the desired inequality. �

12. Omitted.

13. Omitted.

14. Omitted.

15. Suppose f is a real, continuously differentiable function on [a, b], f(a) = f(b) = 0, and∫ b

a
f2(x)dx = 1.

Prove that ∫ b

a
xf(x)f ′(x)dx = −1

2

and that ∫ b

a
[f ′(x)]2dx ·

∫ b

a
x2f2(x)dx ≥ 1

4
.

Solution: First, if we let F (x) = xf2(x) then F ′(x) = 2xf(x)f ′(x) + f2(x). Since f is con-
tinuously differentiable on [a, b] so is F hence we can apply the Fundamental Theorem of
Calculus, Theorem 6.21 on page 134 of the text, and obtain∫ b

a
[2xf(x)f ′(x) + f2(x)]dx =

∫ b

a
F ′(x)dx = F (b)− F (a) = bf(b)2 − af(a)2 = 0.

Therefore,

2
∫ b

a
xf(x)f ′(x)dx = −

∫ b

a
f2(x)dx = −1 =⇒

∫ b

a
xf(x)f ′(x)dx = −1

2
.
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We can see the same result by using Integration by Parts, Theorem 6.22 on page 134 of the
text, on the functions F (x) = xf(x) and G(x) = f(x) since we’d obtain∫ b

a
(xf(x))f ′(x)dx = −

∫ b

a
(xf ′(x) + f(x))f(x)dx = −

∫ b

a
xf(x)f ′(x)dx−

∫ b

a
f(x)2dx.

Finally, by Exercise 10(c) (with p = 2) we have that

1
4

=
(∫ b

a
xf(x)f ′(x)dx

)2

≤
∫ b

a
(xf(x))2dx ·

∫ b

a
[f ′(x)]2dx.

�

Chapter 7: Sequences and Series of Functions

1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Solution: Suppose that fn → f uniformly on some set E and that for each n there exists an
Mn such that |fn(x)| ≤Mn for all x ∈ E. Let N be such that

|fn(x)− fm(x)| < 1, ∀ n,m ≥ N, ∀ x ∈ E.

Thus, for n > N we have that

|fn(x)| ≤ |fn(x)− fN (x)|+ |fN (x)| < 1 +MN , ∀ x ∈ E.

Letting M = max{M1, . . . ,MN} we also have that |fn(x)| ≤ M for all 1 ≤ n ≤ N and for all
x ∈ E. Therefore, combining these two results we see that |fn(x)| < max{1 +MN ,M} for all
n ≥ 1 and for all x ∈ E, hence {fn} is uniformly bounded. �

2. If {fn} and {gn} converge uniformly on a set E, prove that {fn + gn} converges uniformly
on E. If, in addition, {fn} and {gn} are sequences of bounded functions, prove that {fngn}
converges uniformly on E.

Solution: Let fn → f uniformly and gn → g uniformly. Let ε > 0 be given. Let N1 be
such that |fn(x) − f(x)| < ε/2 for all n ≥ N1 and for all x ∈ E and let N2 be such that
|gn(x) − g(x)| < ε/2 for all n ≥ N2 and for all x ∈ E. Let N = max{N1, N2}. Then, for all
x ∈ E and for all n ≥ N we have that

|fn(x) + gn(x)− f(x)− g(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < ε,

hence fn + gn → f + g uniformly on E.

Now, suppose that for each n there exist Mn and Ln such that |fn(x)| ≤Mn for all x ∈ E and
|gn(x)| ≤ Ln for all x ∈ E. By Exercise 2 above, we therefore have that {fn} and {gn} are
both uniformly bounded so that there exist M and L such that |fn(x)| ≤M for all n ≥ 1 and
for all x ∈ E and |gn(x)| ≤ L for all n ≥ 1 and for all x ∈ E. Let N be such that

|fn(x)− f(x)| < 1, ∀ n ≥ N, ∀ x ∈ E.

Then, we have that
|f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| < 1 +M,
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hence f(x) is bounded. Now, let ε > 0 be given and choose K1 such that

|fn(x)− f(x)| < ε

2L
, ∀ n ≥ K1, ∀ x ∈ E.

Similarly, choose K2 such that

|gn(x)− g(x)| < ε

2(1 +M)
, ∀ n ≥ K2, ∀x ∈ E.

Let K = max{K1,K2}. Then, for all n ≥ K and for all x ∈ E we have that

|fn(x)gn(x)− f(x)g(x)| ≤ |fn(x)gn(x)− f(x)gn(x)|+ |f(x)gn(x)− f(x)g(x)|
= |gn(x)||fn(x)− f(x)|+ |f(x)||gn(x)− g(x)|

< L · ε
2L

+ (1 +M) · ε

2(1 +M)

=
ε

2
+
ε

2
= ε,

hence fngn → fg uniformly on E. Notice, we needed that both {fn} and {gn}were bounded
because we needed that f(x) was bounded and that gn(x) was bounded. �

3. Omitted.

4. Omitted.

5. Omitted.

6. Prove that the series
∞∑
n=1

(−1)n
x2 + n

n2

converges uniformly in every bounded interval, but does not converge absolutely for any
value of x.

Solution: We can write the partial sums of this series as a sum of two series:

N∑
n=1

(−1)n
x2 + n

n2
=

N∑
n=1

(−1)n
x2

n2
+

N∑
n=1

(−1)n
1
n
.

Let x ∈ [a, b]. Then x2 ≤M for some M and so∣∣∣∣(−1)n
x2

n2

∣∣∣∣ ≤ M

n2
, ∀ x ∈ [a, b].

Since
∑∞

n=1M/n2 converges, we see by Theorem 7.10 on page 148 of the text that
∑∞

n=1(−1)nx2/n2

converges uniformly on [a, b]. That is,∣∣∣∣ m∑
n=p

(−1)n
x2

n2

∣∣∣∣ ≤ m∑
n=p

M

n2
,
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and the series on the right can be made arbitrarily small for all x ∈ [a, b] because it converges.
Hence, by the triangle inequality∣∣∣∣ m∑

n=p

(−1)n
x2 + n

n2

∣∣∣∣ ≤ ∣∣∣∣ m∑
n=p

(−1)n
x2

n2

∣∣∣∣+
∣∣∣∣ m∑
n=p

(−1)n
1
n

∣∣∣∣,
and so the term on the left can be made arbitrarily small for all x ∈ [a, b] because each of the
two terms on the right can be, since

∑∞
n=1(−1)n1/n converges. It is clear the series does not

converge absolutely for any value of x because if we write

m∑
n=p

x2 + n

n2
=

m∑
n=p

x2

n2
+

m∑
n=p

1
n
,

we can see that the second term on the right cannot be made arbitrarily small no matter how
large p and m are because the series

∑∞
n=1 1/n diverges, and this of course holds for all x

because that particular series has no dependence on x. Hence also the sum on the left cannot
be made arbitrarily small since the first term on the right is always positive. �

7. For n = 1, 2, . . . and x real, put
fn(x) =

x

1 + nx2
.

Show that {fn} converges uniformly to a function f , and that the equation

f ′(x) = lim
n→∞

f ′n(x)

is correct if x 6= 0, but false if x = 0.

Solution: First we show that fn → 0 uniformly. For each n, we have that

f ′n(x) =
1

1 + nx2
− 2nx2

(1 + nx2)2
=

1− nx2

(1 + nx2)2
. (7.1)

To find the critical points we set f ′n(x) = 0 hence we wish to solve 1− nx2 = 0 which means
that x = ±1/

√
n. Observe that fn(−1/

√
n) < fn(1/

√
n) because of the numerator. Note also

that for every n, limx→±∞ fn(x) = 0 (because we have an x in the numerator but an x2 in
the denominator). Thus, we know that fn achieves its maximum at 1/

√
n. That is, fn(x)

is bounded and goes to 0 at ±∞ thus its maximum is achieved and occurs at one of the
calculated critical points. In particular, we have that

||fn|| = sup
x∈R

fn(x) = fn(1/
√
n) =

1/
√
n

1 + n(1/n)
=

1
2
√
n
→ 0 as n→∞, ∀ x ∈ R,

thus fn → 0 uniformly. Using Equation (7.1) above we have that f ′n(0) = 1 for all n ≥ 1 and
if x 6= 0 then limn→∞ f

′
n(x) = 0 (because we have an n in the numerator but an n2 in the

denominator). So the equality limn→∞ f
′
n(x) = f ′(x) does indeed hold for x 6= 0 but fails at

x = 0 (f being the 0 function here). �

8. If

I(x) =
{

0 if x ≤ 0
1 if x > 0

,
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and if {xn}∞n=1 is a sequence of distinct points in (a, b), and if
∑∞

n=1 |cn| converges, prove
that the series

f(x) =
∞∑
n=1

cnI(x− xn), a ≤ x ≤ b

converges uniformly, and that f is continuous at every x 6= xn.

Solution: Write fn(x) = cnI(x − xn). Then, we wish to show that
∑∞

n=1 fn(x) converges
uniformly. We have that for all x ∈ [a, b]

|fn(x)| = |cn||I(x− xn)| ≤ |cn|,

and by hypothesis
∑∞

n=1 |cn| converges, therefore
∑∞

n=1 fn(x) = f(x) converges uniformly
by the Weierstrass M-Test, Theorem 7.10 on page 148 of the text. Now, let gm(x) =

∑m
n=1 cnI(x−

xn). Since x 6= xn for all n ≥ 1 let 0 < δ < min{|x − x1|, . . . , |x − xm|}. Then, we see that
B(x, δ) ∩ {xn}mn=1 = ∅ and therefore if |t− x| < δ we have that

I(x− xn) = I(t− xn) ∀ n = 1, . . . ,m. (8.1)

This is because if x− xn > 0 then

t− xn = t− x+ x− xn > −δ + x− xn > 0

by the definition of δ and because x− xn > 0. Similarly, if x− xn < 0 then

t− xn = t− x+ x− xn < δ + x− xn < 0

again by the definition of δ and because x − xn < 0. By the definition of I then, Equation
(8.1) holds. Hence, for all ε > 0 we see that if |t− x| < δ then by Equation (8.1) we have that

|gm(x)− gm(t)| =
∣∣∣∣ m∑
n=1

cnI(x− xn)−
m∑
n=1

cnI(t− xn)
∣∣∣∣ = 0 < ε,

therefore gm(x) is continuous at all x such that x 6= xn for all m ≥ 1. But then, as we saw
above, f is the uniform limit of these functions, hence is continuous at the same points. That
is, choosem large enough such that |f(x)−gm(x)| < ε/2 for all x ∈ [a, b]. Then, for |x−t| < δ
we have that

|f(x)− f(t)| = |f(x)− gm(x) + gm(x)− gm(t) + gm(t)− f(t)|
≤ |f(x)− gm(x)|+ |gm(x)− gm(t)|+ |gm(t)− f(t)|

<
ε

2
+ 0 +

ε

2
= ε.

�

9. Let {fn}∞n=1 be a sequence of continuous functions which converges uniformly to a function
f on a set E. Prove that

lim
n→∞

fn(xn) = f(x)

for every sequence of points xn ∈ E such that xn → x, and x ∈ E. Is the converse of this
true?
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Solution: Let ε > 0 be given. Since fn → f uniformly f is also continuous by Theorem 7.11
on page 149 of the text. Specifically, for a large enough (fixed) n we have the inequality

|f(t)− f(x)| ≤ |f(t)− fn(t)|+ |fn(t)− fn(x)|+ |fn(x)− f(x)|,

and all three terms on the right can be made small for t close to x, since fn is continuous,
and because fn → f uniformly. Now, let N1 be such that |f(x)− fn(x)| < ε/2 for all n ≥ N1

and for all x ∈ E, i.e. write ||f − fn||∞ = supx∈E |f(x) − fn(x)| < ε/2 for all n ≥ N1.
Now, let N2 be such that |f(x) − f(xn)| < ε/2 for all n ≥ N2, which is possible because f is
continuous hence f(xn) → f(x) as n → ∞ (see Theorem 4.2 on page 84 of the text). Now,
let N = max{N1, N2}. Then, for each n ≥ N (i.e. fix an n ≥ N ) we have by the triangle
inequality that

|f(x)− fn(xn)| ≤ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ |f(x)− f(xn)|+ ||f − fn||∞
<
ε

2
+
ε

2
= ε,

where we obtain the second inequality with the sup norm because we have fixed an n ≥ N ,
hence xn isn’t changing. But, since n was arbitrary, this means that |f(x)−fn(xn)| < ε for all
n ≥ N , i.e. fn(xn)→ f(x) as n→∞. Note, we needed that x ∈ E because it was continuity
of f at x that allows us to write f(xn) → f(x) as n → ∞ and f must be defined at x to be
continuous there.

�

10. Omitted.

11. Omitted.

12. Omitted.

13. Omitted.

14. Omitted.

15. Suppose f is a real continuous function on R and fn(t) = f(nt) for n = 1, 2, . . . and suppose
also that {fn}∞n=1 is equicontinuous on [0, 1]. What conclusion can you draw about f?

Solution: We must have that f is constant on [0,∞). This follows from the following. Let
x, y ∈ [0,∞) such that x 6= y and suppose that f(x) 6= f(y). Let ε < |f(x) − f(y)| and let
δ > 0 be such that |f(nt)− f(ns)| = |fn(t)− fn(s)| < ε for all t, s ∈ [0, 1] such that |t− s| < δ
and for all n ≥ 1. There exists an N1 such that

|x− y|
N1

< δ.

Furthermore, since both x and y are greater than or equal to 0 we see that there exist N2 and
N3 such that

x

N2
∈ [0, 1] and

y

N3
∈ [0, 1].
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If we choose N > max{N1, N2, N3} then all three of these conditions hold simultaneously.
But then we have that

|f(x)− f(y)| =
∣∣∣∣f(N x

N

)
− f

(
N
y

N

)∣∣∣∣ =
∣∣∣∣fN( x

N

)
− fN

(
y

N

)∣∣∣∣ < ε,

because |x/N − y/N | = |x − y|/N < δ and x/N, y/N ∈ [0, 1]. But, this contradicts the
choice of ε to be smaller than |f(x) − f(y)|, hence we must have that f(x) = f(y). Since
x, y ∈ [0,∞) were arbitrary this shows that f is constant on [0,∞). Note that we cannot
use the equicontinuity to conclude anything about the behavior of f(x) when x < 0 since
t ∈ [0, 1] and n ≥ 1 hence nt ≥ 0 for all n and t where the equicontinuity is known. If,
though, we had that the fn’s were equicontinuous on [−1, 1] then we would have found that
f was constant on all of R by analogous arguments. �

16. Suppose {fn}∞n=1 is an equicontinuous sequence of functions on a compact setK and {fn}∞n=1

converges pointwise on K. Prove that {fn}∞n=1 converges uniformly on K.

Solution: Let ε > 0 be given and let δ > 0 be such that |fn(x) − fn(y)| < ε/3 whenever
|x − y| < δ for all n ≥ 1 and for all x, y ∈ K, which is possible by the equicontinuity of the
sequence {fn}∞n=1. Since K is compact and {B(x, δ)}x∈K is an open cover of K there exists a
finite subcover, {B(pi, δ)}ki=1. Since fn(x) → f(x) for every x ∈ K we have that {fn(x)}∞n=1

is a Cauchy sequence for every x ∈ K so, specifically, if 1 ≤ i ≤ k then there exists an Ni

such that
|fn(pi)− fm(pi)| <

ε

3
, ∀ n,m ≥ Ni,

hence if we let N = maxi{Ni} then we see that

|fn(pi)− fm(pi)| <
ε

3
, ∀ n,m ≥ N, ∀ 1 ≤ i ≤ k. (16.1)

Now, let x ∈ K be arbitrary and let n,m ≥ N . Since {B(pi, δ)}ki=1 cover K we see that
x ∈ B(pj , δ) for some 1 ≤ j ≤ k. Thus, we have that

|fn(x)− fm(x)| ≤ |fn(x)− fn(pj)|+ |fn(pj)− fm(pj)|+ |fm(pj)− fm(x)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Here, we have that |fn(x) − fn(pj)| < ε/3 because |x − pj | < δ by construction of the open
cover {B(pi, δ)}ki=1 hence the inequality follows from equicontinuity, and identically for the
last term, |fm(pj) − fm(x)| < ε/3 also by equicontinuity. The inequality |fn(pj) − fm(pj)| <
ε/3 follows from Equation (16.1) and hence our choice of N does not depend on x because
Equation (16.1) holds for all 1 ≤ i ≤ k and every x ∈ K is in someB(pj , δ) because they cover
K. Hence {fn(x)}∞n=1 is uniformly Cauchy and therefore converges uniformly by Theorem
7.8 on page 147 of the text. Note, we could not have done the analog of applying the triangle
inequality to |fn(x)− f(x)| instead (where f(x) is defined as the pointwise limit of fn(x) for
each x) because this would have produced

|fn(x)− f(x)| ≤ |fn(x)− fn(pj)|+ |fn(pj)− f(pj)|+ |f(pj)− f(x)|.

Here, we can make the first term on the right small by equicontinuity and we can make the
middle term small by choosing N larger than the finitely many Ni’s which make each of
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|fn(pi)− f(pi)| small, which can be done for each 1 ≤ i ≤ k because fn(pi)→ f(pi) for each
such i. But, we have no control over the behavior of the last term |f(pj)− f(x)| since we do
not know that f is continuous (because we don’t yet know that fn → f uniformly). �

17. Omitted.

18. Omitted.

19. Omitted.

20. If f is continuous on [0, 1] and if∫ 1

0
f(x)xndx = 0, n = 0, 1, 2 . . . ,

prove that f(x) = 0 on [0, 1]. Hint: The integral of the product of f with any polynomial is
zero. Use the Weierstrass theorem to show that

∫ 1
0 f

2(x)dx = 0.

Solution: Let P (x) be any polynomial. Then, we can write

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Hence, we have, by linearity of the integral, that∫ 1

0
f(x)P (x)dx =

∫ 1

0
f(x)(anxn + an−1x

n−1 + · · ·+ a1x+ a0)dx

= an

∫ 1

0
f(x)xndx+ · · ·+ a1

∫ 1

0
f(x)x dx+ a0

∫ 1

0
f(x)x0dx

= 0.

By The Weierstrass Theorem (Theorem 7.26 on page 159 of the text) we see that there exists
a sequence of polynomials Pn such that Pn(x) → f(x) uniformly on [0, 1]. By the above, we
have that

∫ 1
0 f(x)Pn(x)dx = 0 for all n ≥ 1. By Theorem 7.16 on page 151 of the text, because

this convergence is uniform we can interchange limits and integration and obtain

0 = lim
n→∞

∫ 1

0
f(x)Pn(x)dx =

∫ 1

0
lim
n→∞

f(x)Pn(x)dx =
∫ 1

0
f2(x)dx.

But, f2(x) ≥ 0 for all x ∈ [0, 1] and since f2 is continuous (because f is and so is the function
x2) we must have that f2(x) = 0 for all x ∈ [0, 1], because otherwise it would be nonzero in
some neighborhood within [0, 1] by continuity, hence the integral would be positive because
it would be positive over that neighborhood and greater than or equal to zero over the rest
of [0, 1]. But, f2 = 0 on [0, 1] =⇒ f = 0 on [0, 1]. �
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