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2 Belarus

1.1 Belarus

Problem 1 The problem committee of a mathematical olympiad
prepares some variants of the contest. Each variant contains 4
problems, chosen from a shortlist of n problems, and any two variants
have at most one problem in common.

(a) If n = 14, determine the largest possible number of variants the
problem committee can prepare.

(b) Find the smallest value of n such that it is possible to prepare
ten variants of the contest.

Solution:

(a) The problem committee can prepare 14 variants, and no more.
We prove that given a shortlist of n problems, the committee

prepares at most bn−1
3 c · n

4 variants. Consider any one of the
n problems, and suppose that k variants contain that problem.
The other 3k problems in these variants are distinct from each
other and from the chosen problem, implying that 3k ≤ n − 1
and k ≤ bn−1

3 c. Now, summing the number of variants containing
each problem over the n possible problems, we obtain a maximum
count of bn−1

3 c ·n problems in all the variants combined. Because
each variant has 4 problems, there are at most bn−1

3 c · n
4 variants.

In particular, when n = 14, the problem committee can prepare
at most b 14

3 c · 14
4 = 14 variants. We now show that this is

indeed possible. Label the problems 1, . . . , 14, with labels taken
modulo 14. Then consider the following fourteen variants for
t = 0, 1, . . . , 13:

{1 + t, 2 + t, 5 + t, 7 + t}.

Take any pair A,B of distinct problems. It suffices to show that
the pair A,B appears in at most one variant; i.e., that there is
at most one way to write (A,B) ≡ (a + t, b + t) (mod 14) with
a, b ∈ {1, 2, 5, 7} and 0 ≤ t ≤ 13.

Consider the 12 pairs (a, b) with a, b ∈ {1, 2, 5, 7} and a 6= b.
The differences b − a take on 12 distinct values ±1,±2, . . . ,±6
over these 12 pairs. Thus, there is at most one pair of values a, b ∈
{1, 2, 5, 7} with b − a ≡ B − A (mod 14). With this pair, there
is at most one value t ∈ {0, 1, . . . , 13} with A ≡ a + t (mod 14).
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This completes the proof.

(b) Using the result in part (a), if n ≤ 12, then there are at most
bn−1

3 c · n
4 ≤ b 11

3 c · 12
4 = 9 variants. Hence, n ≥ 13.

Indeed, n = 13 problems suffice: take the 14 variants described
in part (a) and remove the four variants that contain problem 14.
We are left with 10 variants, as required.

Problem 2 Let x1, x2, and x3 be real numbers in [−1, 1], and let
y1, y2, and y3 be real numbers in [0, 1). Find the maximum possible
value of the expression

1− x1

1− x2y3
· 1− x2

1− x3y1
· 1− x3

1− x1y2
.

Solution: The maximum possible value of the expression is 8. We
first rewrite the expression as follows:

1− x1

1− x1y2
· 1− x2

1− x2y3
· 1− x3

1− x3y1
. (∗)

Under the given restraints, the three numerators are nonnegative
and the three denominators are positive. Thus, the three fractions in
the above product are nonnegative.

By the given inequalities,

x1(2y2 − 1) ≤ |x1||2y2 − 1| ≤ 1,

or
1− x1 ≤ 2(1− x1y2).

Dividing by 1 − x1y2 (which is positive under the given restraints),
we find that 1−x1

1−x1y2
≤ 2. Applying similar reasoning shows that all

three fractions in (∗) are at most 2.
Therefore, the three fractions in (∗) are between 0 and 2, implying

that their product is at most 8. When x1 = x2 = x3 = −1 and
y1 = y2 = y3 = 0, this bound is attained.

Problem 3 Let ABCD be a convex quadrilateral circumscribed
about a circle. Lines AB and DC intersect at E, and B and C lie
on AE and DE, respectively; lines DA and CB intersect at F, and
A and B lie on DF and CF, respectively. Let I1, I2, and I3 be the
incenters of triangles AFB, BEC, and ABC, respectively. Line I1I3

intersects lines EA and ED at K and L, respectively, and line I2I3
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intersects lines FC and FD at M and N, respectively. Prove that
EK = EL if and only if FM = FN.

Solution: Let I be the incenter of quadrilateral ABCD.
Observe that EK = EL if and only if line KL is perpendicular to

the internal angle bisector of angle AED. Line KL is the same as
line I1I3, and the internal angle bisector of angle AED is line II2.
Thus, EK = EL if and only if I1I3 ⊥ II2. Likewise, FM = FN if
and only if I2I3 ⊥ II1. Hence, it suffices to show that I1I3 ⊥ II2 if
and only if I2I3 ⊥ II1.

Observe that lines II3 and I1I2 are the angle bisectors of the pair of
vertical angles formed at B. Hence, II3 ⊥ I1I2. Thus, if I1I3 ⊥ II2,
then I3 is the orthocenter of triangle II1I2, implying that I2I3 ⊥ II1.
Likewise, if I2I3 ⊥ II1, then I1I3 ⊥ II2.

Problem 4 On the Cartesian coordinate plane, the graph of the
parabola y = x2 is drawn. Three distinct points A, B, and C are
marked on the graph with A lying between B and C. Point N is
marked on BC so that AN is parallel to the y-axis. Let K1 and K2

be the areas of triangles ABN and ACN, respectively. Express AN

in terms of K1 and K2.

Solution: We will show that AN = 3
√

4K1K2. Let A = (a, a2),
B = (b, b2), and C = (c, c2). Without loss of generality, assume that
b < c.

It is easy to verify that the point

(a, (a− b)(b + c) + b2) = (a, ab + ca− bc) = (a, (a− c)(b + c) + c2)

is on BC, implying that this point is N . Thus,

AN = ab + ca− bc− a2 = (a− b)(c− a).

Also, we have K1 = 1
2AN(a − b) and K2 = 1

2AN(c − a). Thus,
a − b = 2K1/AN and c − a = 2K2/AN . Combining this with our
above result gives

AN = (a− b)(c− a) =
2K1

AN
· 2K2

AN
,

or AN = 3
√

4K1K2.
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Problem 5 Prove that for every positive integer n and every
positive real a,

an +
1
an

− 2 ≥ n2

(
a +

1
a
− 2

)
.

Solution: By the AM-GM inequality, we know that xn−k+ 1
xn−k ≥ 2

when 0 < k < n and x > 0. If n is even, we sum the inequalities for
k = 1, 3, . . . , n− 1 to obtain

xn−1 + xn−3 + · · ·+ 1
xn−1

≥ n

2
· 2 = n.

When n is odd, we add one to the sum of the inequalities for k =
1, 3, . . . , n− 2 to obtain

xn−1 + xn−3 + · · ·+ x2 + 1 +
1
x2

+ · · ·+ 1
xn−1

≥ n− 1
2

· 2 + 1 = n.

In either case, we have

xn − 1/xn

x− 1/x
= xn−1 + xn−3 + · · ·+ 1

xn−1
≥ n.

In particular, setting x = a1/2 yields

an/2 − 1/an/2

a1/2 − 1/a1/2
≥ n.

Squaring both sides and rearranging, we obtain
(

an/2 − 1
an/2

)2

≥ n2

(
a1/2 − 1

a1/2

)2

,

which, when expanded, is exactly the desired inequality.

Problem 6 Three distinct points A, B, and N are marked on
the line `, with B lying between A and N. For an arbitrary angle
α ∈ (0, π

2 ), points C and D are marked in the plane on the same side
of ` such that N, C, and D are collinear; ∠NAD = ∠NBC = α;
and A, B, C, and D are concyclic. Find the locus of the intersection
points of the diagonals of ABCD as α varies between 0 and π

2 .

Solution: Let R be the point between A and B satisfying AR/RB =
AN/NB. The locus is the circle ω with diameter NR, with N and R

removed.
We first show that given points C, D satisfying the conditions, the

intersection P of the diagonals of quadrilateral ABCD lies on ω.
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Because quadrilateral ABCD is a trapezoid (with AD ‖ BC) and
cyclic, it is an isosceles trapezoid symmetric about the perpendicular
bisector of AD and BC. By symmetry, N and P lie on this line, and
line NP is the internal angle bisector of angle BPC (and the external
angle bisector of angle BPA).

Draw the line through P parallel to BC and perpendicular to PN ,
and let it intersect AB at R′. Because line PR′ is perpendicular to
line PN (the external angle bisector of angle BPA), line PR′ must
be the internal angle bisector of angle BPA. By the Internal and
External Angle Bisector Theorems, we have

AR′

R′B
=

AP

PB
=

AN

NB
,

implying that R = R′. Because ∠NPR = ∠NPR′ = π/2, P lies on
the circle with diameter NR, as claimed.

(Alternatively, it is easy to show that line PR′ is the image of
N under the polar transformation through circle ABCD. Hence,
A, R′, B,N are a harmonic range and AR′/R′B = AN/NB.)

It remains to show that any point P on ω \ {N, R} is in the locus.
This is simple: given such a P , reflect AB across line NP to form
segment CD; C, D satisfy the required conditions. Let P ′ be the
intersection of diagonals AC and BD. Then P, P ′ lie on the same line
through N , and ∠NPR = ∠NP ′R = π/2, implying that P = P ′.

Problem 7 In the increasing sequence of positive integers a1, a2,
. . . , the number ak is said to be funny if it can be represented as the
sum of some other terms (not necessarily distinct) of the sequence.

(a) Prove that all but finitely terms of the sequence are funny.

(b) Does the result in (a) always hold if the terms of the sequence
can be any positive rational numbers?

Solution:

(a) Without loss of generality, 1 is the greatest integer that divides ak

for all k. (Otherwise, if d > 1 divides every term of the sequence,
then dividing each term by d does not change the problem.)

Let A > 1 be some term in the sequence, and let p1, . . . , pn be
the primes that divide A. For each k = 1, 2, . . . , n, we can find
a term Ak in the sequence such that pk 6 | Ak. We claim that all
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but finitely terms in the sequence can be written as the sum of
various terms (with repetition allowed) in {A,A1, A2, . . . , An}.

Let B equal the following sum of n values:

B =
∏n

k=1 pk

p1
A1 +

∏n
k=1 pk

p2
A2 + · · ·+

∏n
i=1 pk

pn
An.

Observe that p1 6 | B, because p1 divides all n summands except
the first. Likewise, pk 6 | B for k = 2, 3, . . . , n. Therefore, A and
B are relatively prime.

Let C be any integer greater than 2AB. There exist integers
0 ≤ x < A, 0 ≤ y < B such that xB ≡ C (mod A) and
yA ≡ C (mod B). Then xB+yA ≡ C (mod lcm(A,B)), implying
that C = xB+yA+zAB for some integer z. Because C > 2AB >

xB + yA, z is positive. Thus, C = (x + zA)B + yA is a linear
combination of A and B with non-negative integer coefficients.

All but finitely may of the ak satisfy ak > 2AB. From above,
any such ak can be written as a linear combination of A and
B with non-negative integer coefficients. Because each of A

and B is the sum of various terms (with repetition allowed) in
{A,A1, A2, . . . , An}, it follows that any ak greater than 2AB can
also be expressed as a sum of this form.

(b) The result does not hold if we allow the ak to be rational numbers.
One counterexample is the sequence ak = k

k+1 . The sequence is
clearly increasing, with each term in [1/2, 1). Thus, the sum of
two or more terms of the sequence is always at least 1, so no
terms of the sequence are funny.

Problem 8 Let n be a positive integer. Each square of a (2n−1)×
(2n − 1) square board contains an arrow, either pointing up, down,
to the left, or to the right. A beetle sits in one of the cells. Each year
it creeps from one square in the direction of the arrow in that square,
either reaching another square or leaving the board. Each time the
beetle moves, the arrow in the square it leaves turns π/2 clockwise.
Prove that the beetle leaves the board in at most 23n−1(n − 1)! − 4
years after it first moves.

Solution: In other words, we wish to prove that the beetle leaves a
(2n− 1)× (2n− 1) board after at most 23n−1(n− 1)!− 3 moves. We
prove this by induction on n. The base case n = 1 is trivial — the
beetle is guaranteed to leave the board on its first move.
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Now assume that we have proved the claim for n = k; we show that
the statement is true for the case n = k + 1. Call the squares on the
edge of the (2k + 1) × (2k + 1) board boundary squares and call the
rest of the squares interior squares.

Observe that the beetle cannot visit the same boundary square
twice and encounter an arrow pointing in the same direction both
times. Otherwise, between these two visits, the arrow must turn
through at least one full rotation. Then at some point the arrow
pointed off the board and the beetle should have left, a contradiction.

Thus, the beetle moves at most:

(i) once from any non-corner boundary square to an interior square,

(ii) three times from any non-corner boundary square to another
square on the board, and

(iii) twice from any corner square to another square on the board.

From (i), the beetle can move from a boundary square to an interior
square at most 4(2k − 1) = 8k − 4 times, the number of boundary
squares that are adjacent to interior squares. Adding 1 for the case
in which the beetle started out in the interior, we see that the beetle
stays consecutively on interior squares for at most 8k−3 < 8k periods.
By the induction hypothesis, each period lasts at most 23k−1(k−1)!−3
moves. Thus, the beetle makes fewer than 23(k+1)−1k!− 24k or

[23(k+1)−1k!− 3]− (24k − 3)

moves from interior squares.
From (ii) and (iii), the beetle makes at most 2 · 4 + 3 · 4(2k − 1) =

24k−4 moves from boundary squares. Thus, in total the beetle makes
fewer than

23(k+1)−1k!− 4

times. This completes the inductive step and the proof.

Problem 9 The convex quadrilateral ABCD is inscribed in the
circle S1. Let O be the intersection of AC and BD. Circle S2 passes
through D and O, intersecting AD and CD at M and N, respectively.
Lines OM and AB intersect at R, lines ON and BC intersect at T,

and R and T lie on the same side of line BD as A. Prove that O, R,

T, and B are concyclic.
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Solution: Because quadrilateral ABCD is cyclic in circle S1, we
have ∠TBR = ∠CDA. Furthermore, quadrilateral MOND is cyclic
in S2, implying that ∠CDA = ∠TOR. Hence, ∠TBR = ∠TOR.
Because T and R lie on the same side of line OB, it follows that O,
R, T , and B are concyclic.

Problem 10 There are n aborigines on an island. Any two of them
are either friends or enemies. One day, the chieftain orders that all
citizens (including himself) make and wear a necklace with zero or
more stones so that (i) given a pair of friends, there exists a color
such that each has a stone of that color; (ii) given a pair of enemies,
there does not exist a color such that each has a stone of that color.

(a) Prove that the aborigines can carry out the chieftain’s order.

(b) What is the minimum number of colors of stones required for the
aborigines to carry out the chieftain’s order?

Solution:

(a) Assign to each pair of friends a distinct color, and have each
member of the pair add a stone of that color to his necklace.
This arrangement clearly satisfies both required conditions.

(b) The minimum number of colors required in the worst case is
bn

2 cdn
2 e. We introduce graph-theoretic notation: define a graph

on n vertices, each vertex corresponding to a different aborigine,
so that an edge exists between a pair of vertices if and only if the
corresponding aborigines are friends.

First we show that in one scenario, at least bn
2 cdn

2 e colors are
required. Suppose the aborigines form a bipartite graph with
parts of size bn

2 c and dn
2 e and an edge between each pair of

vertices from opposite parts. In this case, no color can be shared
by more than two aborigines, because there does not exist a triple
of mutual friends (i.e., the graph does not contain a triangle). It
follows that each of the bn

2 cdn
2 e pairs of friends requires a distinct

color.
We are left with proving that no case requires more than the

above number of colors. We show by induction on n that no graph
with n vertices requires more than bn

2 cdn
2 e colors. The base cases

n = 1, 2, 3 are easily checked. Now suppose that k ≥ 4 and that
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the claim is true for n = k− 3. We prove that it holds for n = k.
If the graph has no triangles, let m be the maximum degree of

the vertices. Let V be a vertex adjacent to V1, V2, . . . Vm. The
latter m vertices cannot be adjacent to each other, so each has
degree at most k−m and their degrees sum to at most m(k−m).
The other k − m vertices each has degree at most m, so their
degrees sum to at most m(k −m). The number of edges equals
half the sum of all the degrees, or at most m(k −m) ≤ bk

2 cdk
2 e.

Thus, we may assign each pair of friends a distinct color of beads
to use at most bk

2 cdk
2 e beads.

If the graph does have a triangle, then we need only the
following colors of beads:

• one color shared by the three aborigines in the triangle;

• k−3 colors, one for each aborigine not in the triangle, to use
whenever that aborigine is friends with an aborigine in the
triangle; and

• bk−3
2 cdk−3

2 e colors for the friendships among aborigines out-
side the triangle (this is possible by the induction hypothesis).

Therefore, we need at most bk−3
2 cdk−3

2 e+ k − 2 < bk
2 cdk

2 e colors
in total, completing the induction.
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1.2 Bulgaria

Problem 1 Diagonals AC and BD of a cyclic quadrilateral ABCD

intersect at point E. Prove that if ∠BAD = π/3 and AE = 3CE,

then the sum of some two sides of the quadrilateral equals the sum
of the other two.

Solution: Because quadrilateral ABCD is cyclic, angles BAD and
BCD are supplementary. Applying the Law of Cosines to triangles
ABD and CBD gives

AB2 + AD2 −BD2 = 2AB ·AD cos ∠BAD = AB ·AD

and

CB2 + CD2 −BD2 = 2CB · CD cos∠BCD = −CB · CD.

We also have
AB ·AD

CB · CD
=

1/2 ·AD ·AD sin ∠BAD

1/2 · CB · CD sin ∠DCB
=

[ABD]
[BCD]

=
AE

EC
= 3.

Therefore,

(AB −DA)2 = AB2 + AD2 − 2AB ·AD

= BD2 −AB ·AD = BD2 − 3CB · CD

= CB2 + CD2 − 2CB · CD = (BC − CD)2,

implying the desired result.

Problem 2 Find the least positive integer n such that it is possible
for a set of n people to have the following properties: (i) among any
four of the n people, some two are not friends with each other; (ii)
given any k ≥ 1 of the n people among whom there is no pair of
friends, there exists three people among the remaining n − k people
such that every two of the three are friends. (If a person A is a friend
of a person B, then B is a friend of A as well.)

Solution: The answer is n = 7.
A situation in which 7 people are standing in a circle and two people

are friends if they are neighbors or if there is only one person between
them demonstrates that n = 7 is possible.

Call a group of three people of which every two are friends a
triangle.
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It is not difficult to see that n cannot be 4 or less.
Suppose for the purpose of contradiction that there is some sce-

nario, satisfying (i) and (ii), in which n = 5. Consider, then, the
person A with the most friends. If A has four friends, then by (ii)
some triangle must exist among the four people other than A, and
(i) is thus violated. If A has three friends, then by (ii) some triangle
must exist among the three people other than A and the person who
is not one of A’s friends, and (i) is again violated. It is not difficult
to see that A cannot have only two friends or fewer. Therefore, n

cannot be 5.
Now suppose for the purpose of contradiction that there is some

scenario, satisfying (i) and (ii), in which n = 6. Consider, then, the
person A with the most friends. The possibility of A having five or
four friends is ruled out in a way similar to the reasoning presented in
the case n = 5. Suppose that A has three friends, B, C, and D, and
that A is not a friend of either E or F . Then (i) implies that some two
of the friends of A are not friends with each other. Assume without
loss of generality that B, C are such. Then, by (ii), there exists a
triangle among A,D,E, F , and this triangle can only be D,E, F .
Then D is friends with A,E, F , and, because A was assumed to be
the one with the most friends, D cannot be friends with either B or C.
Then (ii) implies that A,E, F is a triangle, which is a contradiction.
Thus, A cannot have three friends. It is not difficult to see that A

cannot have only two or fewer friends, either. Therefore, n cannot be
6.

Problem 3 Let ABC be a right triangle with hypotenuse AB. A
point D distinct from A and C is chosen on ray

⇀

AC such that the line
through the incenter of triangle ABC parallel to the internal bisector
of angle ADB is tangent to the incircle of triangle BCD. Prove that
AD = BD.

Solution: Let the incircle ω of triangle BCD have center J and
radius ρ. Let lines g, γ be the internal and external angle bisectors of
∠BCD, respectively. Let lines τB , τC be the tangents to ω parallel to
the internal bisector of angle BDC closer to B and to C, respectively.
Let lines tB , tD be the tangents to ω parallel to the external bisector
of angle BDC closer to B and to D, respectively.
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Let I be the incenter of triangle ABC. Then we distinguish between
four cases:

1. D lies on segment AC and I is the intersection between g and tB.
Actually, this is not possible because the intersection between g

and tB is on the opposite side of line BC as point D, but A is
supposed to be on the same side of line BC as point D.

2. D lies on segment AC and I is X, the intersection between g and
tC . This is not possible. Note that the angle φ between tC and
g is equal to the angle between lines JB and CB. Therefore,
JX = ρ csc φ = JB, and ∠CXB = ∠XBJ < 90◦, so X is too far
away from C to be the incenter of any triangle with B and C as
two of its vertices.

3. D does not lie on segment AC and I is Ξ, the intersection between
γ and τB. This is not possible. Let K be the intersection of lines
DJ and γ. Note that CK > CJ because in triangle CJK, angle
C is right and angle J is equal to ∠JCD + ∠CDJ , which is
greater than π/4. On the other hand, KΞ = JX because the
angle between γ and τB is equal to the angle between g and tD.
Therefore, CΞ > CX, and as X is too far away from C to be the
incenter of any triangle with B and C as two of its vertices, Ξ is
also too far.

4. D does not lie on segment AC and I is the intersection between
γ and τD. This is possible. Let A′ be the point on ray DC such
that DA′ = DB. Let the incircle of triangle A′BC have center
I ′ and touch A′B at P .

Let b = CD, c = BD, d = BC, and e = A′B. Note that
A′C = c − b. Say the directed distance from A′ to line DJ is
+e/2. Then the directed distance from B to that line is −e/2.
Now 2A′P = e+c−b−d, and 2PB = e−c+b+d, so the directed
distance from I ′ to line DJ , which is equal to the directed distance
from P to line DJ , is

PB ·+e/2 + A′P · −e/2
e

=
−c + b + d

2
= +ρ,

so I ′ lies on τC as well as γ, so I ′ = I, and A′ = A, and DA = DB,
as desired.

Problem 4 Find all triples of positive integers (a, b, c) such that
a3 + b3 + c3 is divisible by a2b, b2c, and c2a.
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Solution: Answer: triples of the form (k, k, k) or (k, 2k, 3k) or
permutations thereof.

Let g be the positive greatest common divisor of a and b. Then g3

divides a2b, so g3 divides a3 + b3 + c3, and g divides c. Thus, the gcd
of any two of a, b, c is the gcd of all three.

Let (l, m, n) = (a/g, b/g, c/g). Then (l, m, n) is a triple satisfying
the conditions of the problem, and l, m, n are pairwise relatively
prime. Because l2, m2, and n2 all divide l3 + m3 + n3, we have

l2m2n2 | (l3 + m3 + n3).

We will prove that (l, m, n) is either (1, 1, 1) or a permutation of
(1, 2, 3).

Assume without loss of generality that l ≥ m ≥ n. Because a
positive integer is at least as great as any of its divisors, we have

3l3 ≥ l3 + m3 + n3 ≥ l2m2n2,

and, therefore, l ≥ m2n2/3. Because l2 | (m3 + n3), we also have

2m3 ≥ m3 + n3 ≥ l2 ≥ m4n4/9.

If n ≥ 2, then m ≤ 2·9/24 < 2 ≤ n, which contradicts the assumption
that m ≥ n. Therefore, n must be 1. It is not difficult to see that
(1, 1, 1) is the unique solution with m = 1.

If m ≥ 2, then l > m because l and m are relatively prime, so

2l3 > l3 + m3 + 1 ≥ l2m2,

and l > m2/2, so
m3 + 1 ≥ l2 > m4/4,

and m ≤ 4. It is not difficult to check that the only solution here is
(3, 2, 1).

Problem 5 Consider the sequence {an} such that a0 = 4, a1 = 22,

and an−6an−1+an−2 = 0 for n ≥ 2. Prove that there exist sequences
{xn} and {yn} of positive integers such that

an =
y2

n + 7
xn − yn

for any n ≥ 0.



2001 National Contests: Problems 15

Solution: Consider the sequence {cn} of positive integers such that
c0 = 2, c1 = 1, and cn = 2cn−1 + cn−2 for n ≥ 2.

We prove by induction that an = c2n+2 for n ≥ 0. We check the
base cases of a0 = 4 = c2 and a1 = 9 = c4. Then, for any k ≥ 2,
assuming the claim holds for n = k − 2 and n = k − 1,

c2k+2 = 2c2k+1 + c2k

= 2(2c2k + c2k−1) + ak−1

= 4c2k + (c2k − c2k−2) + ak−1

= 6ak−1 − ak−2

= ak,

so the claim holds for n = k as well, and induction is complete.
For n ≥ 1,

(
an+1 an

an+2 an+1

)
=

(
0 1
1 2

)(
an an−1

an+1 an

)
,

and
∣∣∣∣
an+1 an

an+2 an+1

∣∣∣∣ =
∣∣∣∣
0 1
1 2

∣∣∣∣
∣∣∣∣

an an−1

an+1 an

∣∣∣∣ = −
∣∣∣∣

an an−1

an+1 an

∣∣∣∣

Thus, for n ≥ 0,

c2
n+1 − cncn+2 = (−1)n(c2

1 − c0c2) = (−1)n(12 − 2 · 4) = (−1)n · −7.

In particular, for all n ≥ 0,

c2
2n+1 − c2nan = c2

2n+1 − c2nc2n+2 = (−1)2n · −7 = −7,

and

an =
c2
2n+1 + 7

c2n
.

We may therefore take yn = c2n+1 and xn = c2n + yn.

Problem 6 Let I be the incenter and k be the incircle of nonisosce-
les triangle ABC. Let k intersect BC, CA, and AB at A1, B1, and C1,

respectively. Let AA1 intersect k again at A2, and define B2 and C2

similarly. Finally, choose A3 and B3 on B1C1 and A1C1, respectively,
such that A1A3 and B1B3 are angle bisectors in triangle A1B1C1.

Prove that (a) A2A3 bisects angle B1A2C1; (b) if the circumcircles of
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triangles A1A2A3 and B1B2B3 intersect at P and Q, then I lies on
line

←→
PQ .

Solution: Because triangles AB1A2 and AA1B1 are similar, we
have

A2B1

A1B1
=

AA1

AB1
=

AA1

AC1
=

A2C1

A1C1
,

and A2B1/A2C1 = A1B1/A1C1. By the angle bisector theorem,
A1B1/A1C1 = A3B1/A3C1, so A2B1/A2C1 = A3B1/A3C1, and,
by the converse of the angle bisector theorem, A2A3 bisects angle
B1A2C1, proving (a).

Let ω be the circumcircle of triangle A1A2A3, and let O be its
center and R its radius. Denote by P (X) the power of any point X

with respect to ω. Let A4 be the second intersection of ray A1A3 with
k, and let A5 be the second intersection of ray A2A3 with k. Note
that A4, A5 are the midpoints of the two arcs B1C1 in k. [Here we
used the result from (a).] Therefore, A4A5 is a diameter of k, and,
by the median formula,

IO2 =
A4O

2 + A5O
2

2
− r2,

where r is the radius of k. It follows that

P (I) = IO2 −R2 =
A4O

2 + A5O
2

2
− r2 −R2

=
P (A4) + P (A5)

2
− r2.

Because A4 is the midpoint of the arc B1C1 in k not containing A1,
we have ∠A4A1B1 = ∠A4C1B1 = ∠C1B1A4, and, therefore, triangles
A4B1A3 and A4A1B1 are similar. Thus, P (A4) = A4A3 · A4A1 =
(A4B1)2. Similarly, P (A5) = (B1A5)2. Therefore, the power of I

with respect to the circumcircle of triangle A1A2A3 is

P (I) =
(A4B1)2 + (B1A5)2

2
− r2 =

(2r)2

2
− r2 = 3r2.

The same holds for the power of I with respect to the circumcircle of
triangle B1B2B3. Therefore, I lies on the radical axis of those two
circumcircles, that is, the line PQ, proving (b).

Problem 7 Given a permutation (a1, a2, . . . , an) of the numbers
1, 2, . . . , n, one may interchange any two consecutive “blocks” — that
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is, one may transform

(a1, . . . , ai, ai+1, . . . , ai+p︸ ︷︷ ︸
A

, ai+p+1, . . . , ai+q︸ ︷︷ ︸
B

, ai+q+1, . . . , an)

into

(a1, . . . , ai, ai+p+1, . . . , ai+q︸ ︷︷ ︸
B

, ai+1, . . . , ai+p︸ ︷︷ ︸
A

, ai+q+1, . . . , an)

by interchanging the “blocks” A and B. Find the least number of
such changes which are needed to transform (n, n − 1, . . . , 1) into
(1, 2, . . . , n).

Solution: The answer is 0 for n = 1, 1 for n = 2, and d(n + 1)/2e
for n ≥ 3. The cases of n = 1 and n = 2 are not difficult to show, so
assume from now on that n ≥ 3.

We first show that d(n + 1)/2e is possible.
If n is even, then write n = 2m, and for the first m moves, swap

block ai, . . . , ai+m−2 with ai+m−1, . . . , ai+m for i = 1, 2, . . . ,m. After
this, the sequence is

m,m− 1,m− 2, . . . , 1; n, n− 1, n− 2, . . . , m + 1.

Next swap block a1, . . . , am with am+1, . . . , an. The total number of
moves is m + 1, as desired.

If n is odd, then write n = 2m+1, and for the first m moves, swap
block ai, . . . , ai+m−1 with ai+m, ai+m+1 for i = 1, 2, . . . , m. After
this, the sequence is

m + 1,m, m− 1, . . . , 2; n, n− 1, n− 2, . . . , m + 2; 1.

Next swap block a1, . . . , am with am+1, . . . , a2m. The total number
of moves is m + 1, as desired.

Now we show that d(n + 1)/2e is the minimum possible number of
moves. Consider the number X of neighboring terms of the sequence
that are in increasing order. For n ≥ 3, at least 2 swaps are necessary.
The first and last swaps increase X by exactly one. For any other
swap, say from

. . . , a, b, . . . , e,︸ ︷︷ ︸ f, . . . , c,︸ ︷︷ ︸ d, . . . ,

to
. . . , a, f, . . . , c,︸ ︷︷ ︸ b, . . . , e,︸ ︷︷ ︸ d, . . . ,
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if X were to increase by 3, then it would have to be the case that

a > b, b > c, c > d, d > e, e > f, f > a,

which is not possible. Therefore, X increases by at most 2 with any
given move. Because X starts at 0 and must finish at n− 1, it is not
difficult to see that the number of moves must be at least d(n+1)/2e.

Problem 8 Let n ≥ 2 be a fixed integer. At any lattice point
(i, j) we write the unique integer k ∈ {0, 1, . . . , n − 1} such that
i+ j ≡ k (mod n). Find all pairs a, b of positive integers such that the
rectangle with vertices (0, 0), (a, 0), (a, b), and (0, b) has the following
properties: (i) the numbers 0, 1, . . . , n − 1 appear in its interior an
equal number of times; (ii) the numbers 0, 1, . . . , n− 1 appear on its
boundary an equal number of times.

Solution: The necessary and sufficient condition is

• a and b are not both even, if n = 2, or

• one of a and b is one more than a multiple of n and the other is
one less than a multiple of n, if n > 2.

Erase the label of each point (i, j) and relabel it with the number
ζi+j instead, where ζ = e2πi/n.

The condition (ii) implies that

a−1∑

i=1

b−1∑

j=1

ζi+j =
(a− 1)(b− 1)

n
·

n−1∑

k=0

ζk = 0.

Because the left hand side is none other than the product of
∑a−1

i=1 ζi

and
∑b−1

j=1 ζj , one of these two factors must equal 0. Assume that it
is the former; the other case is similar. Then a is one more than a
multiple of n.

The conditions (i) and (ii) together imply that the n n-th roots of
unity appear an equal number of times in the entire rectangle (i.e.,
boundary and interior), so

a∑

i=0

b∑

j=0

ζi+j =
(a + 1)(b + 1)

n
·

n−1∑

k=0

ζk = 0.

It follows that either
∑a

i=0 ζi or
∑b

j=0 ζj must equal zero, and except
when n = 2 the former cannot, so for n > 2 the latter must; i.e., b

must be one less than a multiple of n.
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It is not difficult to see that the conditions established are not only
necessary, but also sufficient.

Problem 9 Find all real numbers t for which there exist real
numbers x, y, z such that

3x2 + 3xz + z2 = 1,

3y2 + 3yz + z2 = 4,

x2 − xy + y2 = t.

Solution: Answer: t can be any number in the interval [1/3, 3].
If x, y, z must all be nonnegative, then t is restricted to the interval
[(3−√5)/2, 1].

Note that, whenever (x, y, z) is a solution, so is (−x,−y,−z), so we
can assume without loss of generality that z ≥ 0.

In the plane, let X be the point with polar coordinates (
√

3x, 150◦).
[If x is negative, then X will be (−√3x,−30◦).] Let Y be the point
(
√

3y,−150◦). [If y is negative, then Y will be (−√3y, 30◦).] Let Z

be the point (z, 0◦). Let O be the origin.
By the law of cosines,

XZ =
√

OX2 − 2OX ·OZ cos ∠ZOX + OZ2

=
√

3x2 + 3xz + z2 = 1.

(Note that this holds regardless of the sign of x.) Similarly, Y Z = 2,

and XY =
√

3t, so t = XY 2/3.
If we restrict our attention to nonnegative x, y, ∠XZY can range

from its minimum when z = 1 to its maximum when z = 0. When
z = 1, we have x = 0, and, in the triangle XZY ,

XY 2 +
√

3XY − 1 = 4,

so XY = (−√3+
√

15)/2, and t = XY 2/3 = (3−√5)/2. When z = 0,
we have OX = 1, and OY = 2, so because ∠XOY = 60◦, XY =

√
3,

and t = 1. Therefore, if x, y ≥ 0, then t ∈ [(3−√5)/2, 1], and because
z is allowed any value in [0, 1] and t is a continuous function of z, any
value of t in that interval is possible.

If, on the other hand, we allow x, y to be negative, then XY is at
a minimum when Z, X, Y lie on a line in that order. This actually
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happens when

(x, y, z) =

(
−1√
21

,
2√
21

,
2
√

3√
7

)
,

and t = XY 2/3 = 12/3 = 1/3. From this situation we can slide X, Y ,
and Z continuously so that x and y increase while z decreases until
(x, y, z) = (0, (−1+

√
5)/2, 1), where we have as before t = (3−√5)/2.

Therefore, t can be any value in the interval [1/3, (3−√5)/2]. It can
also take any value in [(3−√5)/2, 1], as shown above.

When X, Z, Y lie on a line in that order, XY reaches a maximum;
this happens when (x, y, z) = (−1,−2, 2), and t = 3 here. From this
situation we can slide X, Y , and Z continuously so that x and y

increase while z decreases until (x, y, z) = (−1/
√

3,−2/
√

3, 0), where
t = 1 as before. Therefore t can take any value in [1, 3].

Putting it all together, we see that if x, y, z are allowed to be
negative, then t can take any value in [1/3, 3].

Problem 10 Let p be a prime number congruent to 3 modulo 4,
and consider the equation

(p + 2)x2 − (p + 1)y2 + px + (p + 2)y = 1.

Prove that this equation has infinitely many solutions in positive
integers, and show that if (x, y) = (x0, y0) is a solution of the equation
in positive integers, then p | x0.

Solution: We show first that p|x. Substituting y = z + 1 and
rewriting, we obtain

x2 = (z − x)((p + 1)(z + x) + p).

Let q = gcd(z − x, (p + 1)(z + x) + p). Then q|x, therefore q|z,
and therefore q|p. On the other hand, q 6= 1, because otherwise
both factors on the right hand side must be perfect squares, yet
(p + 1)(z + x) + p ≡ 3 (mod 4). Thus q = p and p|x as desired.

Now, write x = px1 and z = pz1 to obtain

x2
1 = (z1 − x1)((p + 1)(z1 + x1) + 1).

By what we showed above, the two terms on the right are coprime
and must be perfect squares. Therefore, for some a, b we have

z1 − x1 = a2, (p + 1)(z1 + x1) + 1 = b2, x1 = ab
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The above equality implies

b2 = (p + 1)((a2 + 2ab) + 1, i.e.

(p + 2)b2 − (p + 1)(a + b)2 = 1.

Vice versa, given a and b satisfying the last equation, there exists a
unique pair (x1, y1) satisfying the equation above, and hence a unique
pair (x, y) satisfying the original equation.

Thus, we reduced the original equation to a “Pell-type” equation.
To get some solutions, look at the odd powers of

√
p + 2+

√
p + 1. It

follows easily that

(
√

p + 2 +
√

p + 1)2k+1 = mk

√
p + 2 + nk

√
p + 1

for some positive integers mk, nk. Then

(
√

p + 2−
√

p + 1)2k+1 = mk

√
p + 2− nk

√
p + 1,

and, multiplying the left and right sides gives

(p + 2)m2
k − (p + 1)n2

k = 1.

Clearly, nk > mk, so setting bk = mk, ak = nk −mk gives a solution
for (a, b). Finally, it is easy to see that the sequences {mk}, {nk} are
strictly increasing, so we obtain infinitely many solutions this way.
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1.3 Canada

Problem 1 Let ABC be a triangle with AC > AB. Let P be
the intersection point of the perpendicular bisector of BC and the
internal angle bisector of angle CAB. Let X and Y be the feet of the
perpendiculars from P to lines AB and AC, respectively. Let Z be
the intersection point of lines XY and BC. Determine the value of
BZ
ZC .

Solution: We denote the foot of the perpendicular from P to line
BC by Z ′, and the intersection of line Z ′P with the circumcircle of
ABC by P ′. Then P̂ ′B = P̂ ′C, implying that P ′ is on the angle
bisector of angle CAB and is therefore equal to P. We see that X,

Y, and Z ′, being the feet of the perpendiculars from P to lines AB,

AC, and BC, respectively, make up the Simson line of triangle ABC

and must therefore be collinear. Since Z ′ is on both XY and BC, we
must have Z ′ = Z. Thus BZ

ZC = 1.

Problem 2 Let n be a positive integer. Nancy is given a matrix
in which each entry is a positive integer. She is permitted to make
either of the following two moves:

(i) select a row and multiply each entry in this row by n;

(ii) select a column and subtract n from each entry in this column.

Find all possible values of n for which given any matrix, it is possible
for Nancy to perform a finite sequence of moves to obtain a matrix
in which each entry is 0.

Solution: First we give an example of a matrix that will not satisfy
the conditions for n ≥ 3. We examine the (n−1)×1 matrix with first
entry n and all other entries equal to (n − 1), and consider how the
sum of all entries changes with respect to each of the operations. The
first operation, multiplying a row by n, increases the total sum by
(n− 1) times the sum of the entries in the selected row. The second
operation decreases the total sum by n(n−1). In either case, the sum
of all entries is invariant modulo (n− 1). Since the sum of the entries
in the given matrix is congruent to 1 modulo (n − 1), we see that it
is impossible to obtain the matrix in which all entries are 0.

For the case n = 1, we examine the 2× 1 matrix with first entry 2
and second entry 1. The first operation has no effect, and it is clear
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that the zero matrix cannot be obtained by using only the second
operation.

In the case n = 2, we describe an algorithm for attaining the zero
matrix from any given matrix. Working from left to right with respect
to the columns in the matrix, we see that because the first operation
has no effect on entries that are already equal to 0, it is enough to
devise a strategy for converting all entries of a given column to 0’s.
With this in mind, we first multiply each entry of the column by 2, by
applying the second operation to each row of the matrix. Since each
of the original entries is a positive integer, each of the entries becomes
an even integer greater than or equal to 2. We now work from the top
of the column to the bottom, our aim being to convert each entry to 2.

If an entry is greater than 2, say (2k +2) for k ≥ 1, we see that it can
be reduced to 2 by repeating the second operation k times. We want
to do this, however, without making any other entries in the column
negative or changing an entry that is already 2 into another number.
Thus, whenever this is in danger of happening—that is, whenever we
have an entry equal to 2—we multiply the entry’s row by 2 before
performing the subtraction on the column. In this way, each entry
that is already equal to 2 will again be equal to 2 after applying both
operations (2·2−2 = 2). After performing the algorithm on all entries
of the column, we are left with a column of 2’s, which can easily be
reduced to a column of 0’s by applying the first operation. Thus we
see that n = 2 is the only solution.

Problem 3 Let P0, P1, and P2 be three points on a circle with
radius 1, where P1P2 = t < 2. Define the sequence of points P3, P4, . . .

recursively by letting Pi be the circumcenter of triangle Pi−1Pi−2Pi−3

for each integer i ≥ 3.

(a) Prove that the points P1, P5, P9, P13, . . . are collinear.

(b) Let x = P1P1001 and y = P1001P2001. Prove that 500
√

x/y depends
only on t, not on the position of P0, and determine all values of
t for which 500

√
x/y is an integer.

Solution: (a) From the definition of circumcenter, we know that line
P3P4 is perpendicular to P1P2, line P4P5 is perpendicular to P2P3,

and triangle P3P4P5 is isosceles. Therefore triangle P3P4P5 is a spiral
similarity of P1P2P3 through an angle of rotation of π/2. Since the
position of each point is determined solely by the positions of the
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three previous points, we can deduce that triangle P5P6P7 will also
be a spiral similarity of P3P4P5 through an angle of π/2, making
it a spiral similarity through an angle π of triangle P1P2P3, and
therefore a homothety. Because the composition of two homotheties
is still a homothety, we see that any triangle P4n+1P4n+2P4n+3, n

a positive integer, must then be a homothety of P1P2P3. Since the
center of a homothetic relation is mapped to itself from one figure to
the next, we also see that the center of homothety must be the same
for all triangles. This in turn implies that all points P1, P5, P9, P13, . . .

are collinear, on a line that passes through the common center of
homothety.

(b) The point P3 is easily seen to be the center of the given
circle, and each point thereafter depends only on the positions of
the three previous points. Thus we see that none of the points
P1, P1001, P2001 depend on the location of P0, making the values of
x and y independent of P0 as well.

Since the family of homothetic triangles P4n+1P4n+2P4n+3 is re-
lated through a constant ratio of dilation, we may write

P4n−3P4n+1

P4n+1P4n+5
=

1
k

for some nonzero constant k. Since applying the homothety 250 times
takes P1P1001 to P1001P2001, we see that x/y = k250. The value we
seek is |k|1/2.

Recall that we found the homothety taking Pi to Pi+4 (for all i)
by composing the pair of identical spiral similarities taking P1P2P3

to P3P4P5 and P3P4P5 to P5P6P7. Thus,
√
|k| is equal to the ratio

of similarity in each of the spiral similarities. This in turn is equal to
P3P4
P1P2

. Now, P1P2 = t by definition, and P3P4 is the circumradius of
P1P2P3, which is

1 · 1 · t
4 · [P1P2P3]

.

Thus

500

√
x

y
=

√
|k| = 4 · [P1P2P3] = 4 · 1

2
· 1 · 1 · sin ∠P1P3P2.

For 0 < ∠P1P3P2 < π, 0 < sin∠P1P3P2 ≤ 1. In order for 500
√

x/y

to be an integer, we must have sin ∠P1P3P2 = 1/2 or 1, generating
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the solutions ∠P1P3P2 = π/6, 5π/6, or π/2. Since

t = 2 · sin ∠P1P3P2

2
,

we find the corresponding values of t to be (
√

6−√2)/2, (
√

6+
√

2)/2,

and
√

2.
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1.4 China

Problem 1 Let a be a fixed real number with
√

2 < a < 2, and
let ABCD be a convex cyclic quadrilateral whose circumcenter O

lies in its interior. The quadrilateral’s circumcircle ω has radius 1,
and the longest and shortest sides of the quadrilateral have lengths
a and

√
4− a2, respectively. Lines `A, `B , `C , `D are tangent to ω

at A, B,C, D, respectively. Let lines `A and `B , `B and `C , `C and
`D, `D and `A intersect at A′, B′, C ′, D′, respectively. Determine the
minimum value of

[A′B′C ′D′]
[ABCD]

.

Solution: The minimum is 4
a
√

4−a2 .
Observe that the areas of triangles AOB and AA′B are determined

solely by the measure of central angle ∠AOB, and hence by the
length of side AB. Likewise, [BOC] and [BB′C] are determined
by the length of BC, and so on. Because O lies within quadrilateral
ABCD, we have [ABCD] = [AOB] + [BOC] + [COD] + [DOA] and
[A′B′C ′D′] = [AOB] + [AA′B] + · · ·+ [DOA] + [DD′A]. Thus, these
areas depend only on the lengths of the sides of ABCD and not on
their order. Hence, we may assume without loss of generality that
AB = a, BC =

√
4− a2. Because the length of the diameter of ω is

2, it then follows that AC is a diameter. Therefore, `A and `C are
each perpendicular to AC and hence parallel to each other.

We must now choose D to complete cyclic quadrilateral ABCD and
minimize the ratio of [A′B′C ′D′] and [ABCD], obeying

√
4− a2 ≤

CD, DA ≤ a. We claim that the minimal choice of D is the midpoint
of arc ÂC on the opposite side of AC as B. This choice of D

clearly satisfies the latter restriction, because CD = DA =
√

2
in this case. To show that it is indeed minimal, we decompose
the areas [A′B′C ′D′] and [ABCD] into [A′ACB′] + [D′ACC ′] and
[ABC]+[ADC], respectively. The first summand in each expression is
fixed, and only the second depends on D. Furthermore, [D′ACC ′] =
1
2AC(AD′ + CC ′) = 1

2 · 2(DD′ + DC ′) = D′C ′, and because AC is
the projection of D′C ′ onto line AC, D′C ′ ≥ AC with equality when
D′C ′ ‖ AC. This occurs when DO ⊥ AC, so we see that our choice
of D minimizes [D′ACC ′] and hence [A′B′C ′D′]. On the other hand,
our choice of D clearly maximizes the length of the altitude from D
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to AC, and hence the area [ADC]. Thus, it maximizes [ABCD]. It
follows that this D minimizes [A′B′C ′D′]/[ABCD], as claimed.

It remains to calculate the minimal ratio. Because AB ⊥ BC,
we have [ABC] = 1

2a
√

4− a2. Because OA′ ⊥ AB, ∠A′OA =
∠BCA, and hence triangles ABC and A′AO are similar. It follows
that AA′ = a√

4−a2 and likewise CB′ =
√

4−a2

a . Thus, we compute

[A′ACB′] = 1
2AC(AA′+CB′) = a√

4−a2 +
√

4−a2

a . We also easily have
[ADC] = 1, [D′ACC ′] = 2. Substituting these into [A′B′C ′D′] =
[A′ACB′] + [D′ACC ′] and [ABCD] = [ABC] + [ADC], taking the
ratio, and doing some algebra yield the answer of 4

a
√

4−a2 .

Problem 2 Determine the smallest positive integer m such that
for any m-element subsets W of X = {1, 2, . . . , 2001}, there are two
elements u and v (not necessarily distinct) in W with u + v = 2n for
some positive integer n.

Solution: The smallest m is 999. Our approach is to partition X

into subsets of size 1 and 2, with the singleton sets containing powers
of 2 and the doubleton sets of the form {u, v}, with u + v = 2n for
some n. We begin by forming sets {u, v} with u+v = 2048. We work
down from u = 2001 to 1025, forming the doubleton sets

{2001, 47}, {2000, 48}, . . . , {1025, 1023}

and then the singleton set {1024}. Having used up all the numbers
greater than 46, we now repeat the procedure with u + v = 64, the
smallest power of 2 greater than 46. This time we obtain

{46, 18}, {45, 19}, . . . , {33, 31}, {32}.

Continuing in the same manner starting from 17, we form {17, 15}
and {16}. Finally, beginning with 14, we produce

{14, 2}, {13, 3}, . . . , {9, 7}, {8},

with {1} as our final set.
Now, consider any subset W ⊂ X with |W | = 999. If any of the

singletons we formed (1, 8, 16, 32, and 1024) are in W , then we
immediately have two (equal) elements of W that sum to a power of
2. On the other hand, there are 2001−5

2 = 998 doubleton sets, and if
both elements of any doubleton are in W , we again have two elements
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that sum to a power of 2. Hence by the pigeonhole principle, m = 999
works.

It remains to exhibit a set of S of size 998 that has no two elements
summing to a power of 2. We do this by putting the larger element
of each doubleton in S. That is, letting

S3 = {9, . . . , 14}, S4 = {17}, S5 = {33, . . . , 46},

S10 = {1025, . . . , 2001},
we have

S = S3 ∪ S4 ∪ S5 ∪ S10.

Now it is easy to see that if u ∈ Sj , v ∈ Sk, j < k, we have
2k < u + v < 2k+1, while if j = k, we have 2k+1 < u + v < 2k+2.
Thus no two elements of S sum to a power of 2, as wanted.

Problem 3 Two triangle are said to be of the same type if they are
both acute triangles, both right triangles, or both obtuse triangles.
Let n be a positive integer and let P be a n-sided regular polygon.
Exactly one magpie sits at each vertex of P. A hunter passes by, and
the magpies fly away. When they return, exactly one magpie lands
on each vertex of P, not necessarily in its original position. Find all n

for which there must exist three magpies with the following property:
the triangle formed by the vertices the magpies originally sit at, and
the triangle formed by the vertices they return to after the hunter
passes by, are of the same type.

Solution: The property holds for all n but 5. We first consider
even n. In this case, for each vertex of P, there is another vertex di-
ametrically opposite it. Moreover, any pair of diametrically opposite
vertices forms only right triangles with other vertices of P. So, let
A be any vertex of P and let B be the vertex opposite it. For any
vertex V of P, let V ′ denote the vertex that the magpie originally
on V lands on after the hunter passes. Then if A′ and B′ are still
diametrically opposite after the permutation of vertices, take C to be
any vertex of P. Then both triangles ABC and A′B′C ′ are right,
so we have found two triangles of the same type. Otherwise, if B′

is not opposite A′, let C be the vertex such that C ′ is diametrically
opposite A′. Then we again have that ABC and A′B′C ′ are right.
This completes the proof of the even case.



2001 National Contests: Problems and Solutions 29

For odd n, we first handle the small cases. The property holds
trivially for n = 3. For n = 5, the property does not hold, as
can be seen from the following example. Label the vertices of P
A1, A2, . . . , A5 in clockwise order. Then the permutation that sends
Ai to Ai+2 (mod 5) sends all acute triangles to obtuse triangles, and
vice versa.

We are left with showing that all odd n ≥ 7 satisfy the property.
Begin with any vertex A. Let B, C, and D be the next three vertices
in clockwise order. Then all of the triangles ABC, ABD,ACD are
obtuse. Now consider the positions of B′, C ′, D′ relative to A′. Let
` be the line through A and the center of P; then two of B′, C ′, D′

must be on the same side of `. Without loss of generality, let these be
B′ and C ′. Then A′B′C ′ is obtuse, as is ABC, completing the proof.

Problem 4 We are given three integers a, b, c such that a, b, c,
a + b − c, a + c − b, b + c − a, and a + b + c are seven distinct
primes. Let d be the difference between the largest and smallest of
these seven primes. Suppose that 800 ∈ {a+b, b+c, c+a}. Determine
the maximum possible value of d.

Solution: Answer: 1594.
First, observe that a, b, c must all be odd primes; this follows from

the assumption that the seven quantities listed are distinct primes
and the fact that there is only one even prime, 2. Therefore, the
smallest of the seven primes is at least 3. Next, assume without loss
of generality that a + b = 800. Because a + b− c > 0, we must have
c < 800. We also know that c is prime; therefore, since 799 = 17 · 47,
we have c ≤ 797. It follows that the largest prime, a + b + c, is
no more than 1597. Combining these two bounds, we can bound d

by d ≤ 1597 − 3 = 1594. It remains to observe that we can choose
a = 13, b = 787, c = 797 to achieve this bound. The other four primes
are then 3, 23, 1571, and 1597.

Problem 5 Let P1P2 . . . P24 be a regular 24-sided polygon inscribed
in a circle ω with circumference 24. Determine the number of ways
to choose sets of eight distinct vertices {Pi1 , Pi2 , . . . , Pi8 } such that
none of the arcs Pij Pik

has length 3 or 8.

Solution: There are 258 ways to choose the vertices. We begin
by observing that the condition that none of the arcs has length 8
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means that at most one vertex from each of the equilateral triangles
{Pi, Pi+8, Pi+16} can be chosen. Since there are only 8 such triangles,
exactly one vertex from each triangle is chosen. Next, label each
vertex Pi with the least residue of i mod 3. Then each equilateral
triangle has one vertex labeled with each of 0, 1, 2. Label the triangles
themselves T1, T2, . . . , T8, so that P1 ∈ T1, P4 ∈ T2, P7 ∈ T3, and so
on, skipping 3 vertices each time. Thus, for each choice of 8 vertices
satisfying the given conditions, we can create an ordered 8-tuple such
that the jth coordinate is the label (0, 1, or 2) of the vertex selected
from Tj . Furthermore, the condition that no arc has length 3 reduces
to the statement that no two consecutive coordinates of the 8-tuple
(where the 8th and 1st are also considered to be “consecutive”) can
be the same. Our task now is to find the number of legal 8-tuples of
the above form.

We do so by creating a generating function. For any legal 8-tuple
(x1, . . . , x8), consider the differences di = xi+1 − xi, i = 1, . . . , 8 be-
tween consecutive coordinates. Since no two consecutive coordinates
are the same, for all di, we have di ≡ ±1 (mod 3). Clearly, we must
also have d1 + · · · + d8 = 0. Going in the other direction, given the
8 differences di = ±1, which are understood to be taken modulo 3,
and the first coordinate x1, we can reconstruct the rest of the xi’s to
form a legal 8-tuple, provided 3 | d1 + · · ·+ d8.

Representing our choices di = 1 and di = −1 by x1 and x−1, we
now construct the generating function

g(x) = (x + x−1)8.

Then the coefficient of xn in g(x) is the number of choices of di’s that
sum to n. It follows that the total number of legal choices—those
that sum to a multiple of 3—is the sum of the coefficients of the x3k

terms.
To find this sum, we evaluate g(x) at the cube roots of unity.

Letting ω = e2πi/3, the sum

g(1) + g(ω) + g(ω2)

causes all terms xn with 3 6 | n to disappear (since 1 + ω + ω2 = 0),
while all terms x3k evaluate to 1 each time, so that the coefficients
of x3k terms are multiplied by 3. As we have not yet chosen x1 and
there are 3 choices for it, we need to multiply by 3 anyway; hence our
answer is in fact g(1) + g(ω) + g(ω2) = 28 + (−1)8 + (−1)8 = 258.
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Problem 6 Let a = 2001. Consider the set A of all pairs of positive
integers (m,n) such that

(i) m < 2n;

(ii) 2am−m2 + n2 is divisible by 2n;

(iii) n2 −m2 + 2mn ≤ 2a(n−m).

For (m,n) ∈ A, let

f(m,n) =
2am−m2 −mn

n
.

Determine the maximum and minimum values of f , respectively.

Solution: The maximum is 3750 and the minimum is 2.
We begin by proving that m < n. Rearranging condition (iii), we

have 2mn ≤ (n−m)(2a−n−m). On the other hand, (i) multiplied by
m gives us m2 ≤ 2mn. Thus, we have m2 ≤ (n−m)(2a−n−m). Now
if m ≥ n, we can write (n−m)(2a−n−m) = (m−n)(m+n− 2a) ≤
(m − n)(m + n) = m2 − n2 < m2, a contradiction. Hence, m < n,
and it follows from 0 < m2 ≤ (n−m)(2a− n−m) that m + n < 2a.

Next, we prove that 2 is the minimum value of f . By condition
(ii), 2am−m2 +n2 is divisible by 2n. It follows that n2−m2 is even,
so m and n must be of the same parity. Thus, 2 | (m + n), so that
2n | (n2 + mn). Subtracting, we have 2n | (2am − m2 − mn), the
numerator of the expression for f . Thus, f(m, n) is an even integer
for all (m,n) ∈ A.

Factoring out m from the numerator, we have

f(m,n) =
(2a−m− n)m

n
.

We saw earlier that 2a−m−n > 0. We also are given that m,n > 0,
so f(m,n) > 0, from which we obtain f(m,n) ≥ 2 because f is even.
It is now easy to check that the lower bound of 2 is achieved when
(m, n) = (2, 2000) ∈ A.

To prove the upper bound, first set m = n − k, with k a positive
even integer from the previous. Substituting into the expression for
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f , we have

f(m,n) =
(2a− n− (n− k))(n− k)

n

=
−2n2 + (2a + 3k)n− k(2a + k)

n

= 2a + 3k − 2

(
n +

k
2 (2a + k)

n

)
.

Next, we translate conditions (ii) and (iii) in terms of n and k. ¿From
(ii), we know that 2am − m2 + n2 = 2a(n − k) − (n − k)2 + n2 =
2n(a + k) − k(2a + k) is divisible by 2n, so that 2n | k(2a + k), or
equivalently,

n | k

2
(2a + k).

Condition (iii) becomes n2 − (n − k)2 + 2(n − k)n ≤ 2ak, so that
2n2 − k2 ≤ 2ak, or

n2 ≤ k

2
(2a + k).

Now, for k fixed, maximizing f is equivalent to minimizing n +
k
2 (2a + k)/n. The product of these two terms is fixed at k

2 (2a + k).
Thus, their sum will be minimized when n is as close as possible
to

√
k
2 (2a + k), subject to restrictions (ii) and (iii). It follows that

for fixed k, the choice of n that maximizes f is the largest factor of
k
2 (2a + k) less than

√
k
2 (2a + k).

When k = 2, k
2 (2a + k) = 4004, and the best choice of n is 52.

Then m = n − k = 50, which yields f(50, 52) = 3750. Otherwise,
because k is even, we must have k ≥ 4. Also, because m+n < 2a, we
must have k < 2a = 4002. For these k we can bound f from above
by substituting n =

√
k
2 (2a + k), producing

f(m,n) ≤ 2a + 3k − 4

√
k

2
(2a + k).

We wish to show that 2a+3k−4
√

k
2 (2a + k) ≤ 3750 for 4 ≤ k < 4002.

Rearranging terms and substituting a = 2001, we must show that

3k + 252 ≤ 4

√
k

2
(4002 + k).
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Squaring both sides, we need

9k2 + 6 · 252k + 2522 ≤ 8k2 + 8 · 4002k,

or, rearranging, k2−30504+2522 ≤ 0. Now it is easy to check by the
quadratic formula that this is indeed true for 4 ≤ k < 4002, proving
that 3750 is the required maximum.

Problem 7 For each integer k > 1, find the smallest integer m

greater than 1 with the following property: there exists a polynomial
f(x) with integer coefficients such that f(x)− 1 has at least 1 integer
root and f(x)−m has exactly k distinct integer roots.

Solution: The smallest m is bk/2c!dk/2e!+1. Let x1, . . . , xk be the
integer roots of f(x)−m. Then

f(x)−m = (x− x1) · · · (x− xk)q(x)

for some integer-coefficient polynomial q(x). Thus,

m = (f(x)− 1) + 1− (x− x1) · · · (x− xk)q(x).

Now let a be an integer root of f(x)− 1. Plugging it into the above
equation, we have

m = 1− (a− x1) · · · (a− xk)q(a).

Because m > 1, we must have

−(a− x1) · · · (a− xk)q(a) > 0.

Then, since all terms involved are integers, it is not hard to see that
|a−x1| · · · |a−xk| is minimized when a, x1, . . . , xk are k+1 consecutive
numbers with a as close as possible to the middle. This gives us

|a− x1| · · · |a− xk| ≥ bk/2c!dk/2e!.
Combining this with |q(a)| ≥ 1, we have

−(a− x1) · · · (a− xk)q(a) ≥ bk/2c!dk/2e!,
from which the desired result follows.

Problem 8 Given positive integers k, m, n such that k ≤ m ≤ n,
express

n∑

i=0

(−1)i 1
n + k + i

· (m + n + i)!
i!(n− i)!(m + i)!
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in closed form.

Solution: The answer is 0.

Lemma. If f(x) is a polynomial of degree less than n, define ∆nf =∑n
i=0(−1)i

(
n
i

)
f(i) (the nth finite difference of f). Then ∆nf = 0.

Proof. Induct on n. If n = 1, then f has degree 0, so it is a constant.
Hence, ∆1f = −f(1) + f(0) = 0.

For the induction step, assume ∆n−1g = 0 for all polynomials g of
degree less than n− 1. For a polynomial f of degree n, we have

∆nf =
n∑

i=0

(−1)i

(
n

i

)
f(i)

=
n∑

i=0

(−1)i

((
n− 1
i− 1

)
+

(
n− 1

i

))
f(i)

=
n−1∑

i=0

(−1)i

(
n− 1

i

)
(−f(i + 1) + f(i)).

Let g(i) = −f(i + 1) + f(i). Then g(i) is a polynomial of degree less
than n− 1. Therefore, by the induction hypothesis, ∆nf = ∆n−1g =
0.

Returning to the problem at hand, we observe that we can write
the given expression as follows:

n∑

i=0

(−1)i 1
n + k + i

· (m + n + i)!
i!(n− i)!(m + i)!

=
1
n!

n∑

i=0

(−1)i

(
n

i

)
(m+1+i)(m+2+i) · · · (n+k−1+i)(n+k+1+i) · · · (m+n+i)

(∗)
Note that n + k + i ≥ m + 1 + i because n ≥ m and k ≥ 1, while
n + k + i ≤ m + n + i because k ≤ m, so that the products on the
right make sense.

Now consider the polynomial

f(x) = (m+1+x)(m+2+x) · · · (n+k−1+x)(n+k+1+x) · · · (m+n+x).

Observe that f is a polynomial of degree n− 1. Furthermore, ∆nf is
exactly the sum that appears on the right side of (∗). Thus, the sum
is indeed equal to 0, as claimed.
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Problem 9 Let a be a positive integer with a ≥ 2, and let Na be
the number of positive integers k such that

k2
n−1 + k2

n−2 + · · ·+ k2
0 = k,

where kn−1kn−2 . . . k0 is the base a representation of k. Prove that:

(a) Na is odd;

(b) for any positive integer M , there is some a for which Na ≥ M .

Solution: We first prove that any k satisfying the given conditions
has no more than two digits in base a. The condition translates to

n−1∑

i=0

k2
i =

n−1∑

i=0

aiki,

from which we obtain
n−1∑

i=0

ki(ki − ai) = 0.

Then only the i = 0 term, k0(k0−1), can be nonnegative. Also, since
k0 < a, it is bounded above by (a − 1)(a − 2) ≤ a(a − 2) < a2 − 2.
Now if n ≥ 3, we consider the i = 2 term, k2(k2 − a2). If k2 = 1, this
term is 1 − a2. Otherwise, k2 ≥ 2, so k2

2 < a2 while k2a
2 ≥ 2a2, so

k2(k2 − a2) < −a2. Thus we see in either case that the i = 2 term is
at most 1− a2, from which it follows that the whole sum is negative,
a contradiction.

Clearly, the only positive one-digit number that works is 1. Thus
we turn our attention to the only remaining possibility, the two-digit
numbers. To prove part (a), we must show that the number of these
solutions is even. The equation the digits must satisfy for n = 2 is

k2
1 + k2

0 = ak1 + k0.

Rearranging, we have

k0(k0 − 1) = k1(a− k1).

Since 1 ≤ k1 ≤ a− 1, we see that the number k1k0 (in base a) works
if and only if the number (a − k1)k0 works. Furthermore, these two
numbers are distinct, because if k1 = a− k1, then the left side of our
equation above is the product of two consecutive numbers while the
right side is a positive perfect square, an impossibility. Thus, we can
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split the set of two-digit solutions into pairs as indicated above, and
the number of such solutions must indeed be even.

For part (b), we wish to find an a such that our equation

k0(k0 − 1) = k1(a− k1).

has a large number of solutions. We consider possible solutions
(k0, k1) of the form (hz + 1, h), where h > 0. Substituting into the
equation above, we need

(hz + 1)hz = h(a− h).

Cancelling h and rearranging, this is equivalent to

a = h(z2 + 1) + z.

Thus, if we fix z, any a larger than z2 + 1 satisfying

a ≡ z (mod z2 + 1)

will produce an h forming a solution (hz + 1, h). Furthermore, the
ratio of the two digits forming the solution is hz+1

h = z + 1
h ∈

(z, z+1), so two distinct values of z are guaranteed to produce distinct
solutions. Thus, if we can find M relatively prime numbers of the form
z2 + 1, we will be done by applying the Chinese Remainder Theorem
to find a. We can do this by constructing the sequence

z1 = 2, zn+1 = (z1 · · · zn)2 + 1.

Clearly, each term zn+1 is relatively prime to all of the terms before
it.

Problem 10 Let n be a positive integer, and define

M = {(x, y) | x, y ∈ N, 1 ≤ x, y ≤ n}.
Determine the number of functions f defined on M such that

(i) f(x, y) is a nonnegative integer for any (x, y) ∈ M ;

(ii) for 1 ≤ x ≤ n,
∑n

y=1 f(x, y) = n− 1;

(iii) if f(x1, y1)f(x2, y2) > 0, then (x1 − x2)(y1 − y2) ≥ 0.

Solution: There are
(
n2−1
n−1

)
possible functions f . We treat a

function f on M as an n × n matrix Mf . Condition (i) requires
that all of the entries of Mf be nonnegative integers, while condition
(ii) means that the sum of the entries in each row of Mf must be



2001 National Contests: Problems and Solutions 37

n−1. Condition (iii) asserts that all of the positive entries of Mf can
be traversed along a path from the northwest entry to the southeast
entry by only moving south or east at each step. With this in mind,
we consider the following scenario.

A park is divided into an n × n grid of unit squares. The park
gardener must plant n−1 trees in each row of the grid. The gardener
works his way from the northwest corner of the park to the southeast
corner. He plants one row of trees at a time, and once he finishes a
row, he automatically moves south one square to the next row. Thus,
at any stage, he has two options: to plant a tree in the square he is in,
or to move one square east. He stops once he reaches the southeast
corner.

Now we consider the number of each type of “operation” the
gardener performs. He plants n − 1 trees in each row for a total
of n(n− 1) trees planted. As for eastward moves, he travels from the
western edge of the park to the eastern edge, never moving back west,
so he makes a total of n − 1 eastward moves. Since he can perform
these operations in whatever order he chooses, the number of ways in
which he can complete his task is

(
n2−1
n−1

)
.

Taking the number of trees planted in each grid square to be the
corresponding entry of the matrix Mf , it is not hard to see that there
is a one-to-one correspondence between the legal matrices Mf and the
gardener’s tree-planting options. Therefore, the number of matrices
Mf , and hence the number of functions f , is also equal to

(
n2−1
n−1

)
.
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1.5 Czech and Slovak Republics

Problem 1 Find all triples a, b, c of real numbers for which a real
number x satisfies √

2x2 + ax + b > x− c

if and only if x ≤ 0 or x > 1.

Solution: The appropriate triples (a, b, c) are those with a =
(1− c)2 − 2, b = 0 and 0 < c ≤ 1.

Suppose that a, b, c satisfy the given conditions — that is,
√

2x2 + ax + b > x− c (1)

if and only if x ≤ 0 or x > 1.

First, we analyze (1) near x = 0. Because (1) holds for x = 0 (that
is,
√

b > −c) we must have b ≥ 0.
Suppose for sake of contradiction that b > 0. Then 2x2+ax+b > 0

for all small positive x, so that
√

2x2 + ax + b is well-defined. Because
a, b, c satisfy the given conditions, we then have

√
2x2 + ax + b− (x−

c) ≤ 0 for all small positive x; by continuity,
√

2x2 + ax + b−(x−c) ≤
0 for x = 0 as well, a contradiction. Hence, our assumption that b > 0
was false, and instead b = 0.

Because
√

b > −c, it also follows that 0 > −c, or c > 0.

Next, we analyze (1) near x = 1. Because all x > 1 satisfy (1), we
have 2x2 + ax + b ≥ 0 for all x > 1; it follows that 2x2 + ax + b ≥ 0
for x = 1 as well. We already know that b = 0, so this implies that
2 + a ≥ 0. Thus, a ≥ −2.

If c > 1, then at x = 1 we have
√

2x2 + ax + b =
√

2 + a ≥ 0 >

1− c = x− c, a contradiction. Hence, c ≤ 1.
For x ≥ 1, note that when a ≥ −2, b = 0, and x ≥ 1, (1) is

equivalent to
2x2 + ax + b > (x− c)2. (2)

This is because 2x2 + ax + b and x− c are both non-negative, so that
we can square both sides of (1) to obtain the equivalent inequality
(2). Because (2) must hold for x > 1 but not x = 1, the two sides of
(2) must be equal when x = 1. That is, 2 + a = (1− c)2.
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Combining all of the above results, we find that a, b, c satisfy:

a = (1− c)2 − 2, b = 0, 0 < c ≤ 1.

Now we prove that any triple a, b, c satisfying these constraints also
satisfies the given conditions.

Suppose that x ≤ 0. Because 0 < c ≤ 1, we have a < −1 <

0. Hence, 2x2 + ax + b = x(2x + a) is the product of two non-
positive numbers, implying that

√
2x2 + ax + b is well-defined and

non-negative. Also, x ≤ 0 and c > 0, implying that x − c < 0.
Therefore,

√
2x2 + ax + b ≥ 0 > x− c.

Next suppose that x > 1. As we argued above, when a ≥ −2,
b = 0, and x > 1, inequalities (1) and (2) are equivalent. Because
a = (1− c)2 − 2, inequality (2) fails for x = 1 and holds for x > 1, as
desired.

Third, suppose that 0 ≤ x ≤ 1. Along this interval, (2x2 + ax +
b)− (x− c)2 (a convex function) attains a maximum at either x = 0
or x = 1. Thus, for x ∈ [−0, 1], we have (2x2 + ax + b)− (x− c)2 ≤
max{−c2, 0} = 0. Therefore, 2x2 + ax + b ≤ (x− c)2 for 0 ≤ x ≤ 1.

• If 0 < x < −a
2 , then

√
2x2 + ax + b is undefined because 2x2 +

ax + b = x(2x + a) is negative (it is the product of a positive
number and a negative number). Hence, the given inequality
fails.

• If −a
2 ≤ x < 1, then we claim that x − c ≥ 0. Indeed, x − c ≥

−a
2 − c = 1

2 (2− (1− c)2)− c = 1
2 (1− c2), which is non-negative

because 0 < c ≤ 1. From (2x2 + ax + b) − (x − c)2 ≤ 0 and
x − c ≥ 0, we deduce that

√
2x2 + ax + b ≤

√
(x− c)2 = x − c.

Hence, the given inequality fails.

Problem 2 In a certain language there are n letters. A sequence
of letters is called a word if and only if between any pair of identical
letters, there is no other pair of equal letters. Prove that there exists
a word of maximum possible length, and find the number of words
which have that length.

Solution: Every word contains at most 3n letters, and there are
n! · 2n−1 words with 3n letters.
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Suppose a letter appears 4 or more times in a sequence; then
between the outer two identical letters there are at least two equal
letters, and the sequence is not a word. So each letter appears at
most 3 times, and every word contains at most 3n letters.

We claim that the words with 3n letters are precisely those of the
form

1, 1,

[
1, 2
or
2, 1

]
, 2,

[
2, 3
or
3, 2

]
, 3, . . . , n− 1,

[
n− 1, n

or
n, n− 1

]
, n, n.

(Here, all the letters labelled k are identical.) Once we prove this,
we know that there are n! · 2n−1 words with 3n letters: there are n!
ways to label the n letters 1, 2, . . . , n, and then 2n−1 ways to order

the n− 1 pairs

[
k, k + 1

or
k + 1, k

]
.

First, note that any sequence of the above form is a word, because
between any two identical letters k, there is at most one k − 1, at
most one k, at most one k + 1, and no other letters.

Conversely, suppose that we have a word with 3n letters. Label the
letters 1−, 2−, . . . , n−, 1, 2, . . . , n, 1+, 2+, . . . , n+, where k−, k, k+ are
identical and appear in the word in that order, and where 1, 2, . . . , n

appear in the word in that order:

. . . , 1, . . . , 2, . . . , 3, . . . , . . . , . . . , n− 1, . . . , n, . . . .

We claim that k+ appears between k and k + 1 for each k =
1, 2, . . . , n − 1. Suppose not, for the sake of contradiction. Then
k+ appears after k + 1:

. . . , k, . . . , k + 1, . . . , k+, . . . .

Because (k + 1)− and k + 1 cannot both lie between the identical
letters k, k+, we know that (k + 1)− appears before k:

. . . , (k + 1)−, . . . , k, . . . , k + 1, . . . , k+, . . . .

But now k− can neither come before (k + 1)− (otherwise, between
k− and k+ would come identical letters (k + 1)− and k + 1), and nor
can k− come after (k + 1)− (otherwise, between (k + 1)− and k + 1
would come identical letters k− and k). Hence, our assumption was
false, and k+ appears between k and k + 1.

Likewise, (k + 1)− appears between k and k + 1 for each k =
1, 2, . . . , n− 1.
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It easily follows that every 3n-letter word is of the form described
earlier, as desired.

Problem 3 Let n ≥ 1 be an integer, and let a1, a2, . . . , an be
positive integers. Let f : Z→ R be a function such that f(x) = 1 for
each integer x < 0 and

f(x) = 1− f(x− a1)f(x− a2) · · · f(x− an)

for each integer x ≥ 0. Show that there exist positive integers s and
t such that f(x + t) = f(x) for any integer x > s.

Solution: First we claim that f(x) equals 0 or 1 for all integers
x. This is clearly true for x < 0. If it is true for all x < k, then
f(k − a1)f(k − a2) · · · f(k − an) equals 0 or 1, so that

f(k) = 1− f(k − a1)f(k − a2) · · · f(k − an) ∈ {1− 0, 1− 1} = {0, 1}.
Hence, by induction, f(x) ∈ {0, 1} for all integers x.

Let N be the largest of the ak, and write F (x) = (f(x + 1), f(x +
2), . . . , f(x + N)). Note that each F (x) is one of the finitely many
vectors in {0, 1}N . Hence, some two of F (1), F (2), . . . are the same
— say, F (s) = F (s + t) for positive integers s, t. It follows easily by
induction on x that F (x) = F (x + t) for all integers x ≥ s. Hence,
f(x) = f(x + t) for all integers x > s.
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1.6 Hungary

Problem 1 Let x, y, and z be positive real numbers smaller than
4. Prove that among the numbers

1
x

+
1

4− y
,

1
y

+
1

4− z
,

1
z

+
1

4− x
,

there is at least one which is greater than or equal to 1.

Solution: Note that

1
x

+
1

4− x
=

4
x(4− x)

=
4

4− (x− 2)2
≥ 1.

Similar inequalities hold for y and z. Thus, the sum of the three given
quantities 1

x + 1
4−y , 1

y + 1
4−z , 1

z + 1
4−x is greater than or equal to 3,

implying that at least one of them is greater than or equal to 1.

Problem 2 Find all integers x, y, and z such that 5x2−14y2 = 11z2.

Solution: The only solution is (0, 0, 0).
Assume, for sake of contradiction, that there is a triple of integers

(x, y, z) 6= (0, 0, 0) satisfying the given equation, and let (x, y, z) =
(x0, y0, z0) be a nonzero solution that minimizes |x + y + z| > 0.

Because 5x2
0 − 14y2

0 = 11z2
0 , we have

−2x2
0 ≡ 4z2

0 (mod 7),

or x2
0 ≡ −2z2

0 ≡ 5z2
0 (mod 7). Therefore, we have z0 ≡ 0 (mod 7),

because otherwise we have

5 ≡ (
x0z

−1
0

)2
(mod 7),

which is impossible because 5 is not a quadratic residue modulo 7.
(The squares modulo 7 are 0, 1, 2, and 4.)

It follows that x0 and z0 are divisible by 7, so that 14y2 = 5x2−11z2

is divisible by 49. Therefore, 7 | y0. Then
(

x0
7 , y0

7 , z0
7

)
is also

a solution, but
∣∣x0

7 + y0
7 + z0

7

∣∣ < |x0 + y0 + z0|, contradicting the
minimality of (x0, y0, z0).

Therefore, our original assumption was false, and the only integer
solution is (0, 0, 0).
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Problem 3 Find all triangles ABC for which it is true that the
median from A and the altitude from A are reflections of each other
across the internal angle bisector from A.

Solution: It is easy to check that all triangles in which AB = AC

or ∠CAB = π/2 have the required property.
We now prove the converse: suppose we are given a triangle ABC

with the required property. Let AM, AD, AH be the median, angle
bisector, and altitude from A respectively. Without loss of generality,
assume that AB ≥ AC. Then it is well-known that B, M, D,H, C lie
on BC in that order.

Let α = ∠BAC, β = ∠ABC, γ = ∠CAB, and let θ = ∠HAC =
π
2 −γ. Because lines AM and AH are reflections of each other across
line AD, ∠BAM = θ.

Because M is the midpoint of BC, [ABM ] = [ACM ], or

1
2
AB ·AM sin θ =

1
2
AC ·AM sin(α− θ)

Also, from the Law of Sines, we have

AB

AC
=

sin γ

sin β

Combining these two equations gives

sin γ sin θ = sin β sin(α− θ)

sin γ cos(π/2− θ) = sin β cos(π/2− α + θ)

sin γ cos γ = sin β cos β

sin 2γ = sin 2β,

so that 2β = 2γ or 2β + 2γ = π, i.e., so that β = γ or α = π/2, as
claimed.

Problem 4 Let m and n be integers such that 1 ≤ m ≤ n. Prove
that m is a divisor of

n

m−1∑

k=0

(−1)k

(
n

k

)
.
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Solution: We can rewrite the given expression as follows:

n

m−1∑

k=0

(−1)k

(
n

k

)
= n

m−1∑

k=0

(−1)k

((
n− 1

k

)
+

(
n− 1
k − 1

))

= n

m−1∑

k=0

(−1)k

(
n− 1

k

)
+ n

m−1∑

k=1

(−1)k

(
n− 1
k − 1

)

= n

m−1∑

k=0

(−1)k

(
n− 1

k

)
− n

m−2∑

k=0

(−1)k

(
n− 1

k

)

= n(−1)m−1

(
n− 1
m− 1

)

= m(−1)m−1

(
n

m

)
.

The final expression is clearly divisible by m.

Problem 5 Find all real numbers c with the following property:
Given any triangle, one can find two points A and B on its perimeter
so that they divide the perimeter in two parts of equal length and so
that AB is at most c times the perimeter.

Solution: Answer: All c ≥ 1
4 .

Suppose that A and B lie on the perimeter of triangle XY Z and
divide the perimeter in two parts of equal length. Let s and p be the
semiperimeter and perimeter of the triangle. We claim that if A and
B lie on XY , XZ, then

AB2 ≥ 1
2
s2(1− cos ∠X), (∗)

with equality when XA = XB = s
2 . Let a = XA, XB = b. Then we

have

s2 = (a + b)2 = a2 + 2ab + b2

Also, from the Law of Cosines, we have

AB2 = a2 + b2 − 2ab cos∠X
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Therefore, we have

s2 −AB2 = 2ab + 2ab cos ∠X

= 2ab(cos ∠X + 1)

≤ 2
(

a + b

2

)2

(cos∠X + 1)

=
1
2
s2(cos ∠X + 1),

with equality when XA = XB = s
2 . Rearranging this final inequality

gives the desired inequality.
Suppose now that triangle XY Z is equilateral, and that A and B

lie on the perimeter and divide it into two equal pieces. A and B

cannot lie on the same side of the triangle, since each side has length
less than s/2. Then from (∗), we have

AB2 ≥ 1
2
s2

(
1− cos

π

3

)
=

1
4
s2 =

1
16

p2,

so that AB ≥ 1
4p. Therefore, any c with the required property must

be at least 1
4 .

Conversely, given any c ≥ 1
4 and any triangle XY Z, let x = Y Z,

y = ZX, z = XY . Without loss of generality assume that x ≤ y, z,
so that ∠X ≤ π/3. Then (using the inequalities x+z > y and z ≥ x),
z− s

2 = (x+z−y)+2(z−x)
4 > 0, so we may locate a point A on XY such

that XA = s
2 . Similarly, we may locate a point B on XZ such that

XB = s
2 . Then A and B divide the perimeter into two equal pieces,

and

AB2 =
1
2
s2(1− cos∠X) ≤ 1

2
s2(1− cos∠π/3) =

1
4
s2 =

1
16

p2,

so that AB ≤ 1
4p ≤ cp, as desired.

Problem 6 The circles k1 and k2 and the point P lie in a plane.
There exists a line ` and points A1, A2, B1, B2, C1, C2 with the fol-
lowing properties: ` passes through P and intersects ki at Ai and Bi

for i = 1, 2; Ci lies on ki for i = 1, 2; C1 and C2 lie on the same side
of `; and A1C1 = B1C1 = A2C2 = B2C2. Describe how to construct
such a line and such points given only k1, k2, and P .
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Solution: Let Oi be the center of ki and let Di be the midpoint of
AiBi. Also let ri be the radius of ki and let di = DiCi, the distance
from Ci to `.

Because OiDiCi ⊥ AiBi, we can apply the Pythagorean Theorem
twice to find that

AiC
2
i = AiD

2
i + DiC

2
i = (AiO

2
i −DiO

2
i ) + DiC

2
i

= r2
i − (ri − di)2 + d2

i = 2ridi.

Because A1C1 = A2C2, this implies that r1d1 = r2d2, or d1 = d2
r2
r1

.
Dilate k2 about P with ratio r2

r1
to produce k′2. The distance from

the image C ′2 of C2 to ` is d2
r2
r1

= d1. Also, because C1 and C2 are on
the same side of `, so are C1 and C ′2. Hence, there is a line m parallel
to ` that passes through C1 and C ′2.

Temporarily assume, without loss of generality, that ` is vertical
and that the Ci lie to its right. Then the tangent line to ki at Ci is
vertical and lies to the right of ki. With i = 1, this line must be m

because m passes through C1 and is parallel to `. With i = 2, this
implies that the tangent to k′2 at C ′2 is vertical and lies to the right
of k′2; again, this line must be m because m passes through C ′2 and
is parallel to `. Hence, there exists a common external tangent to k1

and k′2 that is parallel to `.
This gives us the following method of constructing ` if we are only

given k1, k2, and P . First, dilate k2 about P with ratio r2
r1

to produce
k′2. Draw the two external tangents to k1 and k′2 (we showed above
that one must exist). Then, draw the two lines through P parallel to
these external tangents. It is easy to check each line to see if it has
the required properties, and at least one (if not both) must because
one of the lines is `.

Problem 7 Let k and m be positive integers, and let a1, a2, . . . , ak

and b1, b2, . . . , bm be distinct integers greater than 1. Each ai is
the product of an even number of primes, not necessarily distinct,
while each bi is the product of an odd number of primes, again not
necessarily distinct. How many ways can we choose several of the
k+m given numbers such that each bi has an even number of divisors
among the chosen numbers?
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Solution: The answer is 2k. We show that for any given T ⊆
{a1, . . . , ak}, there exists exactly one S ⊆ {b1, . . . , bm} such that each
bi has an even number of divisors among the numbers in T ∪ S.

Fix T . Without loss of generality, assume bi < bj for i < j.
Therefore, bj 6 | bi for i < j. Thus, for any S such that T ∪ S

satisfies the given condition, all divisors of bi that are in T ∪ S are in
T ∪ {bj | j ≤ i}. From the given assumption that the ai and bi are
distinct, we have bi /∈ {bj | j < i} and bi /∈ T . Also, bi | bi. Therefore,
if T and S ∩ {bj | j < i} have been chosen, exactly one of the choices
bi ∈ S, bi /∈ S will result in bi having an even number of divisors in
S ∪ T . Therefore, as i runs from 1 to m, each choice between bi ∈ S,
bi /∈ S is forced — and if we construct S this way, then each bi will
in fact have an even number of divisors in S ∪ T .

Thus, for T fixed, there exists exactly one set S that works. Because
for each ai we can have ai ∈ T or ai /∈ T , there are 2k possible sets
T . Therefore 2k possible sets T ∪ S that satisfy the given condition.
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1.7 India

Problem 1 Every vertex of the unit squares on an m×n chessboard
is colored either blue, green, or red, such that all the vertices on the
boundary of the board are colored red. We say that a unit square of
the board is properly colored if exactly one pair of adjacent vertices
of the square are the same color. Show that the number of properly
colored squares is even.

Solution: We introduce a coloring of the segments forming the
edges of the grid squares. Color an edge black if its endpoints are
of the same color, and white otherwise. Then a square is properly
colored if and only if exactly one of its four sides is colored black. Let
si be the number of squares with i sides colored black, i = 0, 1, . . . , 4.

Then the sum

0 · s0 + 1 · s1 + 2 · s2 + 3 · s3 + 4 · s4

counts each black edge on the boundary of the board once and each
black edge in the interior twice. Let k be the number of black edges
in the interior. All 2(m + n) edges on the boundary of the board are
black, so we have

4∑

i=0

i · si = 2(m + n) + 2k.

Hence,
s1 + 3s3 ≡ 0 (mod 2).

It is impossible for exactly three edges of a square to be colored
black, because then all vertices of the square must be the same color,
implying that all four edges of the square should be black. Thus
s3 = 0, and it follows that s1, the number of properly colored squares,
is even.

Problem 2 Let ABCD be a rectangle, and let Γ be an arc of a
circle passing through A and C. Let Γ1 be a circle which is tangent
to lines CD and DA as well as tangent to Γ. Similarly, let Γ2 be a
circle lying completely inside rectangle ABCD which is tangent to
lines AB and BC as well as tangent to Γ. Suppose that Γ1 and Γ2

both lie completely in the closed region bounded by rectangle ABCD.
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Let r1 and r2 be the radii of Γ1 and Γ2, respectively, and let r be the
inradius of triangle ABC.

(a) Prove that r1 + r2 = 2r.

(b) Show that one of the common internal tangents to Γ1 and Γ2 is
parallel to AC and has length |AB −BC|.

Solution:

(a) Let E denote the center of ABCD. We introduce a coordi-
nate system centered at E, so that A, B,C, D have coordinates
(−x, y), (x, y), (x,−y), (−x,−y) respectively. We suppose with-
out loss of generality that the center of Γ is on the same side of
line AC as D. Letting that center be O, we know that O is on the
perpendicular bisector of AC, so its coordinates are (−ty,−tx)
for some t ≥ 0. Let O1 and O2 be the respective centers of Γ1

and Γ2. Then O1 = (−x + r1,−y + r1) and O2 = (x− r2, y− r2).
We now proceed to compute r1 and r2 in terms of t, x, and y.

Letting the radius of Γ be R, we have

OO1 = R− r1.

Calculating OO1 and R = OA with the distance formula, we have
√

(r1 + ty − x)2 + (r1 + tx− y)2 =
√

(ty − x)2 + (tx + y)2 − r1

Squaring the left side gives

2r2
1 + 2r1(t− 1)(x + y) + (t2 + 1)(x2 + y2)− 4txy.

Squaring the right side gives

r2
1 − 2r1

√
(−x + ty)2 + (y + tx)2 + (t2 + 1)(x2 + y2).

This two expressions are equal, so after simplifying we obtain the
quadratic equation in r1

r2
1 + 2r1

[
(t− 1)(x + y) +

√
(t2 + 1)(x2 + y2)

]
− 4txy = 0.

Letting D denote the discriminant, we have

D

4
=

(
(t− 1)(x + y) +

√
(t2 + 1)(x2 + y2)

)2

+ 4txy

= (t− 1)2(x + y)2 + (t2 + 1)(x2 + y2) + 4txy

+ 2(t− 1)(x + y)
√

(t2 + 1)(x2 + y2).
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Hence, D
4 − 2(t− 1)(x + y)

√
(t2 + 1)(x2 + y2) equals to

(t2 + 1)(x + y)2 − 2t(x + y)2 + (t2 + 1)(x2 + y2) + 4txy,

which can be rewritten as

(t2 + 1)(x + y)2 − 2t(x2 + y2)− 4txy + (t2 + 1)(x2 + y2) + 4txy.

Finally after simplifying we come to

(t2 + 1)(x + y)2 + (t− 1)2(x2 + y2),

so that
D

4
=

(√
t2 + 1(x + y) + (t− 1)

√
x2 + y2

)2

.

Observing that the product of the roots of our quadratic is
−4txy < 0, we must take r1 to be the positive root. Thus,
applying the quadratic formula, we obtain

r1 = −
[
(t− 1)(x + y) +

√
(t2 + 1)(x2 + y2)

]

+
[√

t2 + 1(x + y) + (t− 1)
√

x2 + y2
]
.

The calculation of r2 is similar; the quadratic we obtain is

r2
2 − 2r2

[
(t + 1)(x + y) +

√
(t2 + 1)(x2 + y2)

]
+ 4xyt = 0,

and the discriminant again simplifies to a square, ultimately
yielding

r2 =
[
(t + 1)(x + y) +

√
(t2 + 1)(x2 + y2)

]

−
[√

t2 + 1(x + y) + (t + 1)
√

x2 + y2
]
.

Note that this time we took the negative square root of the
discriminant, because the first term on the right, (t+1)(x+y), is
already larger than x + y, while the radius r2 is bounded by 1

2x.

Finally, adding our expressions for r1 and r2, we obtain

r1 + r2 = 2(x + y)− 2
√

x2 + y2.

On the other hand, equating the area formulas A = rs = 1
2bh for

triangle ABC, we obtain

r(x + y +
√

x2 + y2) =
(2x)(2y)

2
.
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Multiplying through by x + y −
√

x2 + y2 and simplifying gives

r = x + y −
√

x2 + y2,

giving r1 + r2 = 2r, as wanted.

(b) Let C1 and C2 be the incircles of triangles ADC and ABC, and
let T1 and T2 be their points of tangency with AC. Let U1 be the
image of T1 under the homothety H1 about D that takes C1 to
Γ1, and define U2 and H2 analogously. We claim that the vectors−−→
T1T2 and

−−−→
U1U2 are equal.

Because
−−→
DT1 +

−−→
T1T2 +

−−→
T2B =

−−→
DB =

−−→
DU1 +

−−−→
U1U2 +

−−→
U2B, it

suffices to show that
−−→
DT1 +

−−→
T2B =

−−→
DU1 +

−−→
U2B. Observe that all

of these vectors are parallel and oriented in the same direction:
in fact,

−−→
DT1 =

−−→
T2B by symmetry, and

−−→
DU1 and

−−→
U2B are the

images of
−−→
DT1 and

−−→
T2B under homothety. Hence, it suffices to

show that the sums of the lengths of the vectors on each side are
the same. Now, because H1, which takes T1 to U1, also takes C1

to Γ1, its ratio is r1/r. Hence,

DU1 =
r1

r
·DT1.

Likewise,

U2B =
r2

r
· T2B.

But because DT1 = T2B, we have

DU1 + U2B =
r1 + r2

r
·DT1 = 2DT1 = DT1 + T2B,

substituting r1 + r2 = 2r from part (a). This proves the claim.
To complete the proof, observe first that

−−−→
U1U2 =

−−→
T1T2 implies

that lines U1U2 and AC are parallel. It follows that line U1U2

is the image of line AC under homothety H1. Because C1 was
tangent to AC, Γ1 must therefore be tangent to U1U2. Likewise,
Γ2 is tangent to U1U2 as well. Furthermore, again by considering
the homotheties, U1 and U2 must be the points of tangency of Γ1

and Γ2 with line U1U2. Hence U1U2 is a common internal tangent
to Γ1 and Γ2, and is parallel to line AC. All that remains to be
shown now is that U1U2 = |AB −AC|.

Reusing our result
−−−→
U1U2 =

−−→
T1T2, we have U1U2 = T1T2. By

a standard computation involving equal tangents, we compute
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AT2 = CT1 = 1
2 (AB + AC −BC). Hence,

T1T2 = |AT2 + CT1 −AC| = |AB −BC|,

as desired.

Problem 3 Let a1, a2, . . . be a strictly increasing sequence of
positive integers such that gcd(am, an) = agcd(m,n) for all positive
integers m and n. There exists a least positive integer k for which
there exist positive integers r < k and s > k such that a2

k = aras.

Prove that r divides k and that k divides s.

Solution: We begin by proving a lemma:

Lemma. If positive integers a, b, c satisfy b2 = ac, then

gcd(a, b)2 = gcd(a, c) · a.

Proof. Consider any prime p. Let e be the highest exponent such that
pe divides b, and let e1 and e2 be the corresponding highest exponents
for a and c, respectively. Because b2 = ac, we have 2e = e1 + e2. If
e1 ≥ e, then the highest powers of p that divide gcd(a, b), gcd(a, c),
and a are e, e2, and e1, respectively. Otherwise, these highest powers
are all e1. Therefore, in both cases, the exponent of p on the left side
of the desired equation is the same as the exponent of p on the right
side. The desired result follows.

Applying the lemma to the given equation a2
k = aras, we have

gcd(ar, ak)2 = gcd(ar, as)ar.

It now follows from the given equation that

a2
gcd(r,k) = agcd(r,s)ar.

Assume, for sake of contradiction, that gcd(r, k) < r, so that
agcd(r,k) < ar. Then from the above equation, it follows that
agcd(r,k) > agcd(r,s), so that gcd(r, k) > gcd(r, s). But then we
have (k0, r0, s0) = (gcd(r, k), gcd(r, s), r) satisfies a2

k0
= ar0as0 with

r0 < k0 < s0 and k0 < r < k, contradicting the minimality of k.

Thus, we must have gcd(r, k) = r, implying that r | k. Then

gcd(ar, ak) = agcd(r,k) = ar,
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so ar | ak. Thus as = ak
ak

ar
is an integer multiple of ak, and

agcd(k,s) = gcd(ak, as) = ak.

Because a1, a2, . . . is increasing, it follows that gcd(k, s) = k. There-
fore, k | s, completing the proof.

Problem 4 Let a ≥ 3 be a real number and p(x) be a polynomial
of degree n with real coefficients. Prove that

max
0≤j≤n+1

{|aj − p(j)|} ≥ 1.

Solution: Let yj = p(j) for j = 0, 1, . . . , n + 1. Then p(x) is the
unique polynomial of degree at most n + 1 that passes through all of
the points (j, yj). By Lagrange Interpolation, this polynomial is

p(x) =
n+1∑

j=0

yj · (x− 0) · · · (x− (j − 1))(x− (j + 1)) · · · (x− (n + 1))
(j − 0) · · · (j − (j − 1))(j − (j + 1)) · · · (j − (n + 1))

.

Because p has degree n, the coefficient of xn+1 is
n+1∑

j=0

yj

j!(n + 1− j)!(−1)n+1−j
= 0.

Multiplying by (n + 1)!, we have
n+1∑

j=0

(
n + 1

j

)
(−1)n+1−jyj = 0. (*)

Now assume, for sake of contradiction, that

aj − 1 < yj < aj + 1

for all j. Then

(−1)n+1−jaj − 1 < (−1)n+1−jyj < (−1)n+1−jaj + 1

for all j. Therefore,
n+1∑

j=0

(
n + 1

j

)
(−1)n+1−jyj >

n+1∑

j=0

(
n + 1

j

)
((−1)n+1−jaj − 1)

= (a− 1)n+1 − 2n+1

≥ (3− 1)n+1 − 2n+1

= 0,
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which contradicts our earlier calculation (∗). Therefore, our initial
assumption was false. The desired result follows.
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1.8 Iran

Problem 1 Let α be a real number between 1 and 2, exclusive.
Prove that α has a unique representation as an infinite product

α =
∞∏

k=1

(
1 +

1
nk

)
,

where each nk is a natural number and n2
k ≤ nk+1 for all k ≥ 1.

Solution:

Lemma. If the integers n1, n2, . . . satisfy nk > 1 and n2
k ≤ nk+1 for

all k ≥ 1, then
∞∏

k=j

(
1 +

1
nk

)
∈

(
1 +

1
nj

, 1 +
1

nj − 1

]

for each j.

Proof. The lower bound is clear. For the upper bound, observe that

∞∏

k=j

(
1 +

1
nk

)
≤

∞∏

k=0

(
1 +

1
n2k

j

)
=

∞∏

k=0

(
1 +

(
1
nj

)2k)
.

Observe that for 0 < a < 1, we have

(1+a)(1+a2)(1+a4) · · · (1+a2k

) · · · = 1+a+a2 +a3 + · · · = 1
1− a

.

(The first equality holds because the monomial aj can be written
uniquely as a product of finitely many, distinct a2k

, according to the
binary representation of j.) Applying this with a = 1

nj
above, we find

that
∞∏

k=j

(
1 +

1
nk

)
≤ 1

1− 1
nj

= 1 +
1

nj − 1
.

Fix α ∈ (1, 2). Suppose that we can write

α =
∞∏

k=1

(
1 +

1
nk

)
,
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where n2
k ≤ nk+1 for all k ≥ 1. Because α < 2, we have nk > 1 for

all k. Also observe that for any x ∈ (1, 2), there exists a unique value
n > 1 such that x ∈ (1 + 1

n , 1 + 1
n−1 ].

Define α1, α2, . . . recursively by setting α1 = α and

αk+1 =
αk

1 + 1
nk

(∗)

for k ≥ 1. We know that α1 ∈ (1, 2), and for k ≥ 1 we have
αk+1 ∈ (1, 2) because 1 + 1

nk
< αk ≤ 2 < 2(1 + 1

nk
).

By the lemma, for each k ≥ 1 we have

αk ∈
(

1 +
1
nk

, 1 +
1

nk − 1

]
. (†)

There is exactly one value nk > 1 such that the above condition holds.
Therefore, α can be written in the desired form in at most one way.

Even if we do not know that α can be written in the desired form,
we can set α1 and recursively define α1, n1, α2, n2, . . . using (∗) and
(†) above. Then for k ≥ 1, we have

1 +
1

nk+1
< αk+1 =

αk

1 + 1
nk

≤ 1 + 1
nk−1

1 + 1
nk

= 1 +
1

n2
k − 1

.

Thus, nk+1 > n2
k − 1, or nk+1 ≥ n2

k, as required.
By the definition of the nk and by the lemma,

1 <
α

∏N
k=1

(
1 + 1

nk

) =
∞∏

k=N+1

(
1 +

1
nk

)
≤ 1 +

1
nN+1 − 1

.

As N →∞, nN+1 →∞. Hence, the partial product
∏N

k=1

(
1 + 1

nk

)

converges to α.
Therefore, any α ∈ (1, 2) can be written in the desired form, and

in exactly one way.

Problem 2 We flip a fair coin repeatedly until encountering three
consecutive flips of the form (i) two tails followed by heads, or (ii)
heads, followed by tails, followed by heads. Which sequence, (i) or
(ii), is more likely to occur first?

Solution: For either (i) or (ii) to occur, the coin must show tails at
some point. The first time tails comes up, exactly one of the following
cases occurs: (a) the flip immediately before was a heads; (b) the tails
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is the first flip, and it is followed by heads; (c) the tails was the first
flip, and it is followed by tails.

In case (a), if the next flip is a heads, then (ii) occurs before (i).
However, if the next flip is a tails, then (i) will occur before (ii). So,
(i) and (ii) are equally likely to occur first in this case.

In case (b), we are forced into position (a) eventually before either
(i) or (ii) occurs, so again (i) and (ii) are equally likely to occur first
in this case.

In case (c), (i) will occur before (ii).
Therefore, (i) is more likely to occur first.

Problem 3 Suppose that x, y, and z are natural numbers such that
xy = z2 + 1. Prove that there exist integers a, b, c, and d such that
x = a2 + b2, y = c2 + d2, and z = ac + bd.

Solution: We prove the claim by strong induction on z. For z = 1,
we have (x, y) = (1, 2) or (2, 1); in the former (resp. latter) case, we
can set (a, b, c, d) = (1, 0, 1, 1) (resp. (0, 1, 1, 1)).

Suppose that the claim is true whenever z < z0, and that we
wish to prove it for (x, y, z) = (x0, y0, z0) where x0y0 = z2

0 + 1.
Without loss of generality, assume that x0 ≤ y0. Consider the
triple (x1, y1, z1) = (x0, x0 + y0 − 2z0, z0 − x0), so that (x0, y0, z0) =
(x1, x1 + y1 + 2z1, x1 + z1).

First, using the fact that x0y0 = z2
0 + 1, it is easy to check that

(x, y, z) = (x1, y1, z1) satisfies xy = z2 + 1.
Second, we claim that x1, y1, z1 > 0. This is obvious for x1. Next,

note that y1 = x0 +y0−2z0 ≥ 2
√

x0y0−2z0 > 2z0−2z0 = 0. Finally,
because x0 ≤ y0 and x0y0 = z2

0+1, we have x0 ≤
√

z2
0 + 1, or x0 ≤ z0.

However, x0 6= z0, because this would imply that z0y0 = z2
0 + 1, but

z0 6 | (z2
0 + 1) when z0 > 1. Thus, z0 − x0 > 0, or z1 > 0.

Therefore, (x1, y1, z1) is a triple of positive integers (x, y, z) satis-
fying xy = z2 + 1 and with z < z0. By the induction hypothesis, we
can write x1 = a2 + b2, y1 = c2 + d2, and z1 = ac + bd. Then

(ac + bd)2 = z2
1 = x1y1 − 1

= (a2 + b2)(c2 + d2)− 1

= (a2c2 + b2d2 + 2abcd) + (a2d2 + b2c2 − 2abcd)− 1

= (ac + bd)2 + (ad− bc)2 − 1,
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so that |ad− bc| = 1.
Now, note that x0 = x1 = a2 + b2 and y0 = x1 + y1 + 2z1 =

a2 + b2 + c2 + d2 + 2(ac + bd) = (a + c)2 + (b + d)2; in other words,
x0 = a′2 + b′2 and y0 = c′2 + d′2 for (a′, b′, c′, d′) = (a, b, a + c, b + d).
Then |a′d′− b′c′| = |ad− bc| = 1, implying (by logic analogous to the
reasoning in the previous paragraph) that z0 = a′c′+ b′d′, as desired.
This completes the inductive step, and the proof.

Problem 4 Let ACE be a triangle, B be a point on AC, and D

be a point on AE. Let F be the intersection of CD and BE. If
AB + BF = AD + DF , prove that AC + CF = AE + EF .

Solution: Let ω be the excircle of triangle BCF opposite B, tangent
to line CD at V , line BFE at W , and line ABC at X.

We show that ω is also the excircle of triangle DEF opposite D

(i.e., that ω is tangent to line ADE). By equal tangents, we have

AX = AB + BX = AB + BW = AB + BF + FW

= AD + DF + FV = AD + DV.

Consider the following two distinct circles: the circle centered at A

with radius AD, and the circle concentric to ω, consisting of the points
P such that the tangent from P to ω has length DV . Because the
length of each tangent from A to ω is AX = AD + DV , these two
circles intersect on each tangent from A to ω (at the point a distance
AD from A and a distance DV from the tangent point). These circles
also intersect at D. But two distinct circles intersect in at most two
points, implying that D must lie on a tangent from A to ω. That is,
line AD is tangent to ω at some point Y , as claimed.

Therefore,

AC + CF = AC + (CV + V F ) = (AC + CX) + V F = AX + V F

and

AE + EF = AE + (EW + WF ) = (AE + EY ) + WF = AY + WF.

Because AX = AY and V F = WF , we have AC + CF = AE + EF ,
as desired.

Problem 5 Suppose that a1, a2, . . . is a sequence of natural num-
bers such that for all natural numbers m and n, gcd(am, an) =
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agcd(m,n). Prove that there exists a sequence b1, b2, . . . of natural
numbers such that an =

∏
d|n bd for all integers n ≥ 1.

Solution: For each n, let rad(n) denote the largest square-free
divisor of n (i.e., the product of all distinct prime factors of n). We
let bn equal to the ratio of the following two numbers:

• En, the product of all an/d such that d is square-free, divides n,
and has an even number of prime factors.

• On, the product of all an/d such that d is square-free, divides n,
and has an odd number of prime factors.

Lemma.
∏

d|an
bd = an.

Proof. Fix n, and observe that
∏

d|n bn equals
∏

d|n Ed∏
d|n Od

. (∗)

In the numerator of (∗), each Ed is the product of am such that
m | d. Also, d | n, implying that the numerator is the product of
various am such that m | n. For fixed m that divides n, how many
times does am appear in the numerator

∏
d|n Ed of (∗)?

If am appears in Ed and d | n, then let t = d/m. By the definition
of Ed, we know that (i) t is square-free and (ii) t has an even number
of prime factors. Because d | n and t = d/m, we further know that
(iii) t divides n/m.

Conversely, suppose that t is any positive integer satisfying (i), (ii),
and (iii), and write d = tm. By (iii), d is a divisor of n. Also, t is
square-free by (i), is a divisor of d, and has an even number of prime
factors by (ii). Thus, am appears in Ed.

Suppose that n/m has ` distinct prime factors. Then it has
(

`
0

)
+(

`
2

)
+ · · · factors t satisfying (i), (ii), and (iii), implying that am

appears in the numerator of (∗) exactly
(

`

0

)
+

(
`

2

)
+ · · ·

times. Similarly, am appears in the denominator of (∗) exactly
(

`

1

)
+

(
`

3

)
+ · · ·

times. If m < n, then ` ≥ 1 and these expressions are equal, so that
the am’s in the numerator and denominator of (∗) cancel each other
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out. If m = n, then ` = 0, so that an appears in the numerator once
and in the denominator zero times. Therefore,

∏

d|n
bd =

∏
d|n Ed∏
d|n Od

= an,

as desired.

Lemma. For any integer α that divides some term in a1, a2, . . . ,
there exists an integer d such that

α | an ⇐⇒ d | n.

Proof. Of all the integers n such that α | an, let d be the smallest.
If α | an, then α | gcd(ad, an) = agcd(d,n). By the minimal

definition of d, gcd(d, n) ≥ d. But gcd(d, n) | n as well, implying
that gcd(d, n) = d. Hence, d | n.

If d | n, then gcd(ad, an) = agcd(d,n) = ad. Thus, ad | an. Because
α | ad, it follows that α | an as well.

Lemma. For each positive integer n, bn = En/On is an integer.

Proof. Fix n. Call an integer d a top divisor (resp. a bottom divisor)
if d | n, n/d is square-free, and n/d has an even (resp. odd) number
of prime factors. By definition, Ed is the product of ad over all top
divisors d, and Od is the product of ad over all bottom divisors d.

Fix any prime p. We show that p divides En at least as many times
as it divides On. To do this, it suffices to show the following for any
positive integer k:

(†) The number of top divisors d with an/d divisible by pk

is greater than or equal to the number of bottom divisors d

with an/d divisible by pk.

Let k be any positive integer. If pk divides none of a1, a2, . . . , then
(†) holds trivially. Otherwise, by the previous lemma, there exists an
integer d0 such that

pk | am ⇐⇒ d0 | m.

Hence, to show (†) it suffices to show:

(‡) The number of top divisors d such that d0 | (n/d), is
greater than or equal to the number of bottom divisors d

such that d0 | (n/d).
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If d0 6 | n, then (‡) holds because d0 does not divide n/d for any
divisor d of n, including top or bottom divisors.

Otherwise, d0 | n. For which top and bottom divisors d does d0

divide n/d? Precisely those for which d divides n/d0. If n/d0 has
` ≥ 1 distinct prime factors, then there are as many top divisors with
this property as there are bottom divisors, namely

(
`

0

)
+

(
`

2

)
+ · · · = 2`−1 =

(
`

1

)
+

(
`

3

)
+ · · · .

If instead d0 = n and ` = 0, then the top divisor 1 is the only value d

with d | (n/d0). In either case, there are at least as many top divisors
d with d | (n/d0) as there are bottom divisors with the same property.
Therefore, (‡) holds. This completes the proof.

Therefore, an =
∏

d|n bd, and bn = En/On is an integer for each n.

Problem 6 Let a generalized diagonal in an n× n matrix be a set
of entries which contains exactly one element from each row and one
element from each column. Let A be an n × n matrix filled with 0s
and 1s which contains exactly one generalized diagonal whose entries
are all 1. Prove that it is possible to permute the rows and columns
of A to obtain an upper-triangular matrix, a matrix (bij)1≤i,j≤n such
that bij = 0 whenever 1 ≤ j < i ≤ n.

Solution: Because there is a generalized diagonal, every column
has at least one 1.

First we claim that some column of A contains only one 1. Suppose,
for sake of contradiction, that every column has at least two 1’s.
We then permute all of the rows and columns to let the generalized
diagonal occupy (k, k) for all k ≤ n, and so that 1’s occupy (dk, k)
for some d1 6= 1, . . . , dk 6= k. We claim that some combination of the
(dk, k) and (k, k) give a second generalized diagonal. Draw a directed
graph on the n vertices (dk, k), drawing directed edges from (dk, k)
to (ddk

, dk). Every vertex of this graph has outdegree 1, so there is a
cycle. (If we follow the vertices along the edges, eventually there must
be a repeated vertex because we never reach a dead end). Letting C

be the set of squares in this cycle, note that C ∪{(k, k) | (dk, k) 6∈ C}
forms a generalized diagonal, as desired. This contradicts the given
condition that there is only one generalized diagonal. Therefore, our
original assumption was false, and some column contains only one 1.
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We now prove the claim by induction on n. Clearly, when n = 1,
the problem statement’s permutation can be satisfied. Now, we look
at n = k + 1 for some positive integer k. We find a column with
a single 1, and permute rows and columns so that the 1 lies in the
upper-left hand corner and the remainder of the first column contains
0’s. Then the bottom-right k × k submatrix contains exactly one
generalized diagonal, and applying the induction hypothesis we can
permute rows and columns (without changing the first column) to
make that k × k submatrix upper-triangular. Doing so makes the
entire n× n matrix upper-triangular, as desired.

Problem 7 Let O and H be the circumcenter and orthocenter,
respectively, of scalene triangle ABC. The nine-point circle of triangle
ABC is the circle passing through the midpoints of the sides, the feet
of the altitudes, and the midpoints of AH, BH, and CH. Let N be
the center of this circle, and assume that N does not lie on any of the
lines AB, BC, CA. Let N ′ be the point such that

∠N ′BA = ∠NBC and ∠N ′AB = ∠NAC.

Let the perpendicular bisector of OA intersect line BC at A′, and
define B′ and C ′ similarly. Prove that A′, B′, and C ′ lie on a line `

which is perpendicular to line ON ′.

Solution: We use directed angles modulo π. Let D and M be
the midpoints of BC and AO, respectively. Let P be the foot of
the altitude from A to BC. It is well-known that OH = 2ON ,
AH = 2OD, and ∠BAP = ∠OAC.

It is also well-known that if X does not lie on any of the lines AB,
BC, CA, then there is a unique point X ′ (the isogonal conjugate of
X) that satisfies any given two of the equalities ∠X ′AB = ∠XAC,
∠X ′BC = ∠XBA, ∠X ′CA = ∠XAB. It is easy to see that N ′ is
the isogonal conjugate of N .

We have OA = 2OM and (by a well-known fact) OH = 2ON ,
implying that triangles OAH and OMN are similar with ratio 2.
Thus, MN ‖ AH and 2MN = AH.

In addition, AH ‖ OD and AH = 2OD (the latter is a well-known
fact). Hence, MN ‖ OD and MN = OD, and quadrilateral MNDO

is a parallelogram.
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Because OH = 2ON , N lies halfway between lines AHP and OD.
Hence,

∠NPA = ∠ODN = ∠OMN = ∠MAP.

(The first equality holds by symmetry because N lies halfway between
lines AP and OD; the second equality holds because quadrilateral
MNDO is a parallelogram; and the third equality holds because
line OMA cuts parallel lines MN and AP .) Therefore, quadrilateral
AMNP is an isosceles trapezoid with PA ‖ MN and AM = NP .

Because A,M, N, P form an isosceles triangle, they lie on a single
circle. Also, ∠AMA′ = ∠APA′ = π/2, implying that A′ lies on the
same circle. Because MA = PN , it follows that ∠MA′A = ∠PA′N .
Hence,

π/2− ∠AOA′ = ∠MA′A = ∠PA′N = ∠PAN. (∗)
(The first equality comes from the properties of isosceles triangle
A′AO, and the third equality holds because A,A′,M,N, P are con-
cyclic.)

Now, the equality ∠BAN ′ = ∠NAC and the well-known equality
∠BAP = ∠OAC together imply ∠PAN = ∠NA′O. Substituting
this into (∗) yields

π/2 = ∠AOA′ + ∠NA′O,

implying that A′O ⊥ AN ′.

Lemma. If WX ⊥ Y Z, then WY 2 −WZ2 = XY 2 −XZ2.

Proof. If D is the intersection of lines WX and Y Z, then repeatedly
applying the Pythagorean Theorem shows that both sides of the
desired equality equal DY 2 −DZ2.

Applying the lemma to A′O and AN yields

OA2 −ON ′2 = A′A2 −A′N ′2 = A′O2 −A′N ′2.

Writing r = OA = OB = OC, we have

A′O2 −A′N ′2 = r2 −ON ′2.

Previously we observed that N ′ is the isogonal conjugate of N , so
both N and N ′ are defined symmetrically with respect to A,B,C.
Hence, the above proof and two proofs analogous to the one above
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yield

A′O2 −A′N ′2 = B′O2 −B′N ′2 = C ′O2 − C ′N ′2 = r2 −ON ′2.

Therefore, A′, B′, C ′ lie in the set of points X with XO2−XN ′2 equal
to the constant R2−O′N2. This set of points is a line perpendicular
to ON ′, as desired.

Problem 8 Let n = 2m + 1 for some positive integer m. Let
f1, f2, . . . , fn : [0, 1] → [0, 1] be increasing functions. Suppose that
for i = 1, 2, . . . , n, fi(0) = 0 and

|fi(x)− fi(y)| ≤ |x− y|
for all x, y ∈ [0, 1]. Prove that there exist distinct integers i and j

between 1 and n, inclusive, such that

|fi(x)− fj(x)| ≤ 1
m

for all x ∈ [0, 1].

Solution:

Lemma. There exist distinct i1, i2 and integers σ0, σ1, . . . , σm+1 such
that

fi1

(
j

m + 1

)
, fi2

(
j

m + 1

)
∈

[
σj

m + 1
,
σj + 1
m + 1

]

for j = 0, 1, . . . , m + 1.

Proof. Consider any i ∈ {1, 2, . . . , 2m + 1}. Define the sequence

σ0, σ1, . . . , σm, σm+1

as follows: σj is the smallest integer t ≥ 0 such that

fi

(
j

m + 1

)
∈

[
t

m + 1
,

t + 1
m + 1

]
.

With the given conditions, it is easy to show that σ0 = σ1 = 0
independent of the choice of i.

By the restrictions that fi is increasing and that |fi(x) − fi(y)| ≤
|x− y|, we have σj+1 − σj ∈ {0, 1} for j = 1, 2, . . . , m. Thus,

(σ2 − σ1, σ3 − σ2, . . . , σm+1 − σm) (∗)
is one of the 2m m-tuples in {0, 1}m.
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By the Pigeonhole Principle, some two values i = i1 and i = i2 give
rise to the same m-tuples in (∗). These values of i also give rise to the
same values σ0 = 0 and σ1 = 0. Hence, i = i1 and i = i2 correspond
to the same

(σ0, σ1, . . . , σm+1),

as desired.

Choose i1, i2, and the σj as given by the lemma. Without loss of
generality, assume that i1 = 1 and i2 = 2. We claim that

|f1(x)− f2(x)| ≤ 1
m + 1

(∗)

for all x ∈ [0, 1].
Connect the points ( j

m+1 ,
σj

m+1 ) with one piecewise linear path P+

and the points ( j
m+1 ,

σj+1
m+1 ) with another piecewise linear path P−.

We show that the graphs of f1, f2 lie within the region between the
two paths so they never differ by more than 1, the vertical distance
between the paths.

We first prove that any point (x0, f1(x0)) lies on or above the lower
path P−. This is trivial when x0 is a multiple of 1

m+1 , so assume
otherwise. Write j

m+1 < x0 < j+1
m+1 , and let A1, A2, A3 be the points

on the graph of f1 at x = j
m+1 , x0,

j
m+1 , respectively. Also write

P = ( j
m+1 ,

σj

m+1 ) and Q = ( j+1
m+1 ,

σj+1
m+1 ), so that PQ is one piece of

the lower path P−.
Suppose that σj+1 = σj . By the given conditions, line A1A2 has

non-negative slope, so A2 lies on or above the horizontal line through
A1. This line, in turn, lies on or above the horizontal line PQ through
P , because A1 lies directly above P (or A1 = P ). Hence A2 lies on
or above PQ in this case.

Otherwise, σj+1 = σj + 1. By the given conditions, line A2A3 has
slope at most 1, so A2 lies on or above the line through A3 with slope
1. This line, in turn, lies on or above the line PQ through Q with
slope 1, because A3 lies directly above Q (or A3 = Q). Hence, A2 lies
on or above PQ in this case as well.

Therefore, f1 lies on or above the lower path P−. Analogous proofs
show that f1 lies on or below the upper path P+, and that f2 lies
between the two paths. This completes the proof.

Problem 9 In triangle ABC, let I be the incenter and let Ia be the
excenter opposite A. Suppose that IIa meets BC and the circumcircle
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of triangle ABC at A′ and M , respectively. Let N be the midpoint
of arc MBA of the circumcircle of triangle ABC. Let lines NI and
NIa intersect the circumcircle of triangle ABC again at S and T,

respectively. Prove that S, T, and A′ are collinear.

Solution: We use directed angles modulo π (where arc measures
are directed modulo 2π). Note that ∠ICIa = π/2 = ∠IBIa, so that
I, Ia, B, and C are cyclic on some circle ω1. Since angle ∠TIaI cuts
off ω1 at the arcs NA and TM , it satisfies

∠TIaI =
1
2
(N̂A−M̂T ) =

1
2
(M̂N−M̂T ) =

1
2
T̂N = ∠TSN = ∠TSI.

Thus, S, T, I, Ia lie on a single circle ω2.
Because I and Ia lie on both circles ω1, ω2, line IIa is the radical

axis of these circles. Thus, A′ lies on the radical axis of ω1 and ω2.
It also lies on line BC, the radical axis of ω1 and the circumcircle of
ABC. Therefore, by the Radical Axis Theorem, A′ also lies on the
radical axis of ω2 and the circumcircle of ABC. This radical axis is
line ST , implying that S, T, and A′ are collinear.

Problem 10 The set of n-variable formulas is a subset of the
functions of n variables x1, . . . , xn, and it is defined recursively as
follows: the formulas x1, . . . , xn are n-variable formulas, as is any
formula of the form

(x1, . . . , xn) 7→ max{f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)}
or

(x1, . . . , xn) 7→ min{f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)},
where each fi is an n-variable formula. For example,

max(x2, x3, min(x1, max(x4, x5)))

is a 5-variable formula. Suppose that P and Q are two n-variable
formulas such that

P (x1, . . . , xn) = Q(x1, . . . , xn) (∗)
for all x1, . . . , xn ∈ {0, 1}. Prove that (∗) also holds for all x1, . . . ,
xn ∈ R.

Solution: Consider the function p(a, x), which takes the value 0 if
x < a and 1 otherwise. We can see that p(a,max{x1, x2, . . . xn}) =
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max{p(a, x1), p(a, x2), . . . p(a, xn)}. The similar result holds if “max”
is replaced by “min”.

Lemma. If f is an n-variable formula, then

f(p(a, x1), p(a, x2), . . . p(a, xn)) = p(a, f(x1, x2, . . . xn)).

Proof. We induct on the “depth” of f , defined as the maximum
number of levels of nesting in the definition of f .

The claim is trivial if the depth of f is 0, so now suppose that f

has depth d > 0. If f is of the form

f(x) = max{f1(x), . . . fk(x)},
where we write x = (x1, . . . , xn) for convenience, then

p(a, f(x)) = p(a,max{f1(x), . . . , fk(x)})
= max{p(a, f1(x)), . . . , p(a, fk(x))}
= max{f1(p(a, x1), . . . , p(a, xn)), . . . , fk(p(a, x1), . . . , p(a, xn))}
= f(p(a, x1), . . . , p(a, xn)),

where we have applied the induction hypothesis to the formulas fi of
depth less than d. If f is of the form

min{f1(x), . . . fk(x)},
a similar argument can be used. This completes the inductive step.

Suppose we are given P and Q that satisfy (∗). Suppose that
x = (x1, . . . , xn) and let a be a real number. By the lemma,

p(a, P (x)) = P (p(a, x1), . . . p(a, xn)),

p(a,Q(x)) = Q(p(a, x1), . . . p(a, xn)).

Because the p(a, xi) all equal 0 or 1, by (∗) we have

P (p(a, x1), . . . p(a, xn)) = Q(p(a, x1), . . . p(a, xn)).

Thus, p(a, P (x)) = p(a,Q(x)). Varying a shows that P (x) = Q(x).
This holds for all x, as desired.
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1.9 Japan

Problem 1 Each square of an m×n chessboard is painted black or
white. Each black square is adjacent to an odd number of black
squares. Prove that the number of black squares is even. (Two
squares are adjacent if they are different and share a common edge.)

Solution: Construct a graph whose vertices are the black squares,
where two vertices are adjacent if the corresponding squares border
each other. We are given that every vertex has odd degree. The sum
of all degrees in any graph is twice the number of edges of the graph.
So this number must be even. Since in our graph all vertices have
odd degrees, its number of vertices must be even. Thus, the board
has an even number of black squares.

Problem 2 Find all positive integers n such that

n =
m∏

k=0

(ak + 1),

where amam−1 . . . a0 is the decimal representation of n — that is,
where a0, a1, . . . , am is the unique sequence of integers in {0, 1, . . . , 9}
such that n =

∑m
k=0 ak10k and am 6= 0.

Solution: We claim that the only such n is 18. If n = am · · · a1a0,

then let

P (n) =
m∏

j=0

(aj + 1).

Note that if s ≥ 1 and t is a single-digit number, then P (10s + t) =
(s + 1)P (t). Using this we will prove two following statements.

Lemma. If P (s) ≤ s, then P (10s + t) < 10s + t.

Proof. Indeed, if P (s) ≤ s, then

10s + t ≥ 10s ≥ 10P (s) ≥ (t + 1)P (s) = P (10s + t).

Equality must fail either in the first inequality (if t 6= 0) or in the
third inequality (if t 6= 9).

Lemma. P (n) ≤ n + 1 for all n.



2001 National Contests: Problems 69

Proof. We prove this by induction on the number of digits of n. First,
we know that for all one-digit n, P (n) = n + 1. Now suppose that
P (n) ≤ n + 1 for all m-digit numbers n. Any (m + 1)-digit number n

is of the form 10s + t, where s is an m-digit number. Then

t(P (s)− 1) ≤ 9((s + 1)− 1)

tP (s)− 10s− t ≤ −s

P (s)(t + 1)− 10s− t ≤ P (s)− s

P (10s + t)− (10s + t) ≤ P (s)− s ≤ 1,

completing the inductive step. Thus, P (n) ≤ n + 1 for all n.

If P (n) = n, then n has more than one digit and we may write
n = 10s + t. From the first statement, we have P (s) ≥ s + 1. From
the second one, we have P (s) ≤ s + 1. Thus, P (s) = s + 1. Hence,

(t + 1)P (s) = P (10s + t) = 10s + t

(t + 1)(s + 1) = 10s + t

1 = (9− t)s.

This is only possible if t = 8 and s = 1, so the only possible n such
that P (n) = n is 18. Indeed, P (18) = (1 + 1)(8 + 1) = 18.

Problem 3 Three real numbers a, b, c ≥ 0 satisfy the inequalities
a2 ≤ b2 + c2, b2 ≤ c2 + a2, and c2 ≤ a2 + b2. Prove that

(a + b + c)(a2 + b2 + c2)(a3 + b3 + c3) ≥ 4(a6 + b6 + c6),

and determine when equality holds.

Solution: We claim that equality holds if and only if a = b = c = 0,

or two of a, b, c are equal and the third is zero.
Without loss of generality, suppose that c ≥ b ≥ a. Then we know

that
4c6 + 4a2c4 + 4b2c4 ≥ 4(a6 + b6 + c6).

Thus,

4(a6 + b6 + c6) ≤ 4c6 + 4a2c4 + 4b2c4

= 2c2((c2)2 + c4 + 2a2c2 + 2b2c2).
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Applying the given inequality c2 ≤ a2+b2 to the right hand side gives

4(a6 + b6 + c6) ≤ 2c2((a2 + b2)2 + c4 + 2a2c2 + 2b2c2)

= 2c2(a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2)

= 2c2(a2 + b2 + c2)2.

By Cauchy-Schwartz,

2c2(a2 + b2 + c2)2 ≤ 2c2(a + b + c)(a3 + b3 + c3). (∗)
Because c2 ≤ a2 + b2,

2c2(a+b+c)(a3 +b3 +c3) ≤ (a+b+c)(a2 +b2 +c2)(a3 +b3 +c3). (†)
Combining all these inequalities yields the desired result. Equality

holds only if equality holds in (∗) and (†). For equality to hold in (∗),
(a3, b3, c3) must be a multiple of (a, b, c) — that is, either a = b = c,

a = 0 < b = c, or a = b = 0 < c. For equality to hold in (†), we must
have either (a + b + c)(a3 + b3 + c3) = 0 or c2 = a2 + b2, i.e., either
a = b = c = 0 or c2 = a2 + b2. Combining these conditions yields
a = b = c = 0 or a = 0 < b = c, and indeed equality holds in both
these cases.

Removing the constraint c ≤ b ≤ a and permuting the equality
cases, gives the conditions for equality presented at the beginning of
the solution.

Problem 4 Let p be a prime number and m be a positive integer.
Show that there exists a positive integer n such that there exist m

consecutive zeroes in the decimal representation of pn.

Solution: It is well-known that if gcd(s, t) = 1, then sk ≡ 1 (mod t)
for some k: indeed, of all the positive powers of s, some two sk1 < sk2

must be congruent modulo t, and then sk2−k1 ≡ 1 (mod t).
First suppose that p 6= 2, 5. Then gcd(p, 10m+1) = 1, so there exists

such k that pk ≡ 1 (mod 10m+1). Then pk = a · 10m+1 + 1, so there
are m consecutive zeroes in the decimal representation of pk.

Now suppose that p = 2. We claim that for any a, some power
of 2 has the following final a digits: a − dlog 2ae zeroes, followed by
the dlog 2ae digits of 2a. Because gcd(2, 5a) = 1, there exists k such
that 2k ≡ 1 (mod 5a). Let b = k + a. Then 2b ≡ 2a (mod 5a), and
2b ≡ 0 ≡ 2a (mod 2a). Hence, by the Chinese Remainder Theorem,
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2b ≡ 2a (mod 10a). Because 2a < 10a, it follows that 2b has the
required property.

Now, simply choose a such that a− dlog 2ae ≥ m (for instance, we
could choose a = d m+1

1−log 2e). Then 2b contains at least m consecutive
zeroes, as desired.

Finally, the case p = 5 is done analogously to the case p = 2.

Problem 5 Two triangles ABC and PQR satisfy the following
properties: A and P are the midpoints of QR and BC, respectively,
and lines QR and BC are the internal angle bisectors of angles BAC

and QPR, respectively. Prove that AB + AC = PQ + PR.

Solution: Let X be the intersection of lines BC and QR, let
the circumcircle of triangle PQR intersect BC at D, and let the
circumcircle of triangle ABC intersect QR at S. Then D is the
midpoint of arc Q̂R and S is the midpoint of arc B̂C, so DA ⊥ QR

and SP ⊥ BC. Therefore, quadrilateral PADS is cyclic. Now,
QX ·XR = PX ·XD = AX ·XS = BX ·XC, so BQCR is cyclic.
Let O be the circumcenter of BQCR. Then O lies on AD and PS,

and since OP ⊥ PD, OPQDR must be inscribable in a circle with
diameter OD. Likewise, OACSB is cyclic.

Reflect C about OD to get C ′ and Q about OS to get Q′. Then
R, P,Q′ are collinear, B, A, C ′ are collinear, and RCC ′QQ′B is cyclic.
But ∠OBC ′ = ∠OSA = ∠ODP = ∠ORQ′, so BC ′ = RQ′. This
means that

BA + AC = BA + AC ′ = BC ′ = RQ′ = RP + PQ′ = RP + PQ,

as desired.
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1.10 Korea

Problem 1 Given an odd prime p, find all functions f : Z → Z
satisfying the following two conditions:

(i) f(m) = f(n) for all m,n ∈ Z such that m ≡ n (mod p);

(ii) f(mn) = f(m)f(n) for all m,n ∈ Z.

Solution: The only such functions are:

• f(x) = 1;

• f(x) = 0;

• f(x) =

{
0 if p | x,

1 otherwise;

• f(x) =





0 if p | x,

1 if x is a quadratic residue modulo p,

−1 otherwise.

It is easy to verify that these satisfy conditions (i) and (ii).
Suppose that f : Z→ Z satisfies (i) and (ii). Setting m = n = 0 in

(ii) yields f(0) · f(0) = f(0), so that f(0) = 0 or f(0) = 1.
If f(0) = 1, then for all x we may set (m,n) = (x, 0) in condition

(ii) to find f(0) = f(x)f(0), or 1 = f(x). This yields one of our
solutions.

Otherwise, f(0) = 0. Let g be a primitive root modulo p. By
(i), f(x) = 0 for all x ≡ 0 (mod p). For all other values x, f(x)
must equal f(g)t, where x ≡ gt (mod p); i.e., f is determined by the
value f(g). Note that f(g) = f(gp), and (applying (ii) repeatedly)
f(gp) = (f(g))p; that is, f(g) = (f(g))p. Therefore, f(g) = 0,
f(g) = 1, or f(g) = −1. These three cases yield the other three
presented solutions.

Problem 2 Let P be a point inside convex quadrilateral O1O2O3O4,
where we write O0 = O4 and O5 = O1. For each i = 1, 2, 3, 4, consider
the lines ` that pass through P and meet the rays OiOi−1 and OiOi+1

at distinct points Ai(`) and Bi(`). Let fi(`) = PAi(`)·PBi(`). Among
all such lines `, let mi be a line for which fi is the minimum. Show
that if m1 = m3 and m2 = m4, then the quadrilateral O1O2O3O4 is
a parallelogram.
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Solution: Fix i. We claim that mi is the line ` through P

perpendicular to the angle bisector of angle Oi−1OiOi+1. This line
intersects rays OiOi−1 and OiOi+1 at two points A and B equidistant
from Oi, so that there is a circle ωi tangent to rays OiOi−1 and
OiOi+1 at A and B. Given any other line `′ intersecting ray OiOi−1

and OiOi+1 at A′ and B′, respectively, let `′ intersect ω at A′′ and
B′′, with A′, A′′, P,B′′, B on a line in that order. Then OA · OB =
OA′′ ·OB′′ by Power of a Point, and OA′′ ·OB′′ < OA′ ·OB′. Hence,
the given ` minimizes fi(`), as claimed.

Suppose now that m1 = m3. From above, this line is perpendicular
to the angle bisector n1 of angle O4O1O2 and perpendicular to the
angle bisector n3 of angle O2O3O1. Let n1 intersect ray O4O3 at C,
and let n3 intersect ray O2O1 at D. Then (using angle bisectors and
parallel lines)

∠O2O3D = ∠DO3O4 = ∠O1CO4,

∠O3DO2 = ∠CO1O2 = ∠O4O1C.

Hence, ∠DO2O3 = ∠CO4O1, or ∠O1O2O3 = ∠O3O4O1.
Similarly, if m2 = m4, then ∠O2O3O4 = ∠O4O1O2. Therefore, if

m1 = m3 and m2 = m4, then the opposite angles of quadrilateral
O1O2O3O4 are congruent, and the quadrilateral is a parallelogram.

Problem 3 Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers
satisfying

∑n
i=1 x2

i =
∑n

i=1 y2
i = 1. Show that

(x1y2 − x2y1)2 ≤ 2

∣∣∣∣∣1−
n∑

i=1

xiyi

∣∣∣∣∣ ,

and determine when equality holds.

Solution: By Cauchy-Schwarz,

1−
n∑

i=1

xiyi ≥ 1−
√√√√

n∑

i=1

x2
i

n∑

i=1

y2
i = 0,

so that ∣∣∣∣∣1−
n∑

i=1

xiyi

∣∣∣∣∣ = 1−
n∑

i=1

xiyi.
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Hence, applying Cauchy-Schwarz again (but to fewer of the numbers),

2

∣∣∣∣∣1−
n∑

i=1

xiyi

∣∣∣∣∣ = 2− 2(x1y1 + x2y2 +
n∑

i=3

xiyi)

≥ 2− 2


x1y1 + x2y2 +

√√√√
n∑

i=3

x2
i

n∑

i=3

y2
i


 .

Consider the vectors x = (x1, x2,
√∑n

i=3 x2
i ) and y = (y1, y2,

√∑n
i=3 y2

i ),
with dot product x · y and cross product x × y. We are given that
‖x‖ = ‖y‖ = 1, and the above inequality gives

2

∣∣∣∣∣1−
n∑

i=1

xiyi

∣∣∣∣∣ ≥ 2− 2x · y. (∗)

Notice that the third coordinate of x× y is x1y2 − x2y1, so that

(x1y2 − x2y1)2 ≤ ‖x× y‖2. (†)

Combining (∗) and (†), we see that to prove the desired claim it
suffices to prove that

2(1− x · y) ≥ ‖x× y‖2. (‡)

Letting θ be the angle between x and y, this inequality becomes

2(1− cos θ) ≥ sin2 θ

2− 2 cos θ ≥ 1− cos2 θ

1− 2 cos θ + cos2 θ ≥ 0

(1− cos θ)2 ≥ 0.

The last inequality is clearly true, and hence (‡) indeed holds.
Equality holds in the desired inequality only if cos θ = 1, i.e., x = y.

In this case, x1 = y1, x2 = y2. Also, in order for equality to hold
in the desired inequality, equality must hold in the application of
Cauchy-Schwarz; that is, (x3, x4, . . . , xn) and (y3, y4, . . . , yn) must be
nonnegative multiples of each other. Because

∑n
i=3 x2

i =
∑n

i=3 y2
i , we

must actually have (x3, x4, . . . , xn) = (y3, y4, . . . , yn).
Hence, equality holds only if xi = yi for all i, and it is easy to check

that in this case both sides of the given inequality equal 0.
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Problem 4 Given positive integers n and N, let Pn be the set of
all polynomials f(x) = a0 + a1x + · · ·+ anxn with integer coefficients
satisfying the following two conditions:

(i) |aj | ≤ N for j = 0, 1, . . . , n;

(ii) at most two of a0, a1, . . . , an equal N.

Find the number of elements in the set {f(2N) | f(x) ∈ Pn}.

Solution: The answer is (2N)n−1 + (2N)n + (2N)n+1.
Let bk . . . b1b0 denote the base-2N representation of

∑k
j=0 bj(2N)j .

Let Qn be the set of degree-n polynomials in x satisfying the
following conditions:

(i′) each coefficient is an integer in [0, 2N ];

(ii′) at most two coefficients equal 2N .

Notice that f(x) ∈ Pn if and only if f(x) + N
∑n

j=0 xj ∈ Qn.
Therefore, the size of

{f(2N) | f(x) ∈ Pn}
equals the size of

{f(2N) | f(x) ∈ Qn}.
It suffices, then, to prove the following lemma.

Lemma.

{f(2N) | f(x) ∈ Qn} = {0, 1, . . . , 111 00 . . . 0︸ ︷︷ ︸
n−1

− 1}.

Proof. Suppose that f(x) ∈ Qn. Then

0 ≤ f(2N)

≤ (2N) · (2N)n + (2N) · (2N)n−1

+ (2N − 1)(2N − 1) . . . (2N−1)︸ ︷︷ ︸
n−1

= 111 00 . . . 0︸ ︷︷ ︸
n−1

− 1.

Conversely, we now prove that any B = bn+1bn . . . b0 satisfying

0 ≤ B ≤ 111 00 . . . 0︸ ︷︷ ︸
n−1

− 1
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can be written in the form f(2N) for some f(x) =
∑n

j=0 ajx
j in Qn.

There are three cases:

• bn+1 = bn = 1. By the upper bound on B, we have bn−1 = 0.
Then

B = 110bn−2bn−3 . . . b0

= (2N) · (2N)n + (2N) · (2N)n−1 + bn−2bn−3 . . . b0.

Hence, we may set aj = bj for j ≤ n−2 and set an−1 = an = 2N .

• bn+1 = 1, bn = 0. Then

B = 10bn−1bn−2 . . . b0

= (2N) · (2N)n + bn−1bn−2 . . . b0.

Hence, we may set aj = bj for j ≤ n− 1 and set an = 2N .

• bn+1 = 0. Then we may set aj = bj for j ≤ n.

Problem 5 In isosceles triangle ABC, AB = BC and ∠ABC <

π/3. Point D lies on BC so that the incenter of triangle ABD

coincides with the circumcenter O of triangle ABC. Let ω be the
circumcircle of triangle AOC. Let P be the point of intersection of the
two tangent lines to ω at A and C. Let Q be the point of intersection
of lines AD and CO, and let X be the point of intersection of line
PQ and the tangent line to ω at O. Show that XO = XD.

Solution:

Lemma. AD = BD.

Proof. Let the incircle of triangle ABD be tangent to side AB at M .
Because the center of this circle is O, we have OM ⊥ AB. We also
know that OA = OB, implying that M is the midpoint of AB. Then

1
2
(AB + AD −BD) = AM = BM =

1
2
(BA + BD −AD),

implying that AD = BD.

By the lemma, ∠ABD = ∠DAB. Then ∠ADC = ∠ABD +
∠BAD = 2∠ABD = 2∠ABC = ∠AOC. Hence, quadrilateral
ACDO is cyclic (and its circumcircle is ω).
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Let X ′ be the intersection of the tangents at O and D to ω; we
claim that X = X ′. Let Y be the intersection of lines AO and CD.
By Pascal’s Theorem applied to the degenerate hexagon ADDCOO,
points Q, X ′, and Y are collinear. By Pascal’s Theorem applied to the
degenerate hexagon AADCCO, P , Q and Y are collinear. Therefore,
both X ′ and P lie on line QY . Therefore, X ′ is the intersection of
line PQ and the tangent line to ω at O; that is, X ′ = X.

Thus XO and XD (which equal X ′O and X ′D) are tangent to ω

by the definition of X ′, implying that XO = XD.

Problem 6 Let n ≥ 5 be a positive integer, and let a1, b1, a2, b2,
. . . , an, bn be integers satisfying the following two conditions:

(i) the pairs (ai, bi) are all distinct for i = 1, 2, . . . , n;

(ii) |aibi+1 − ai+1bi| = 1 for i = 1, 2, . . . , n, where (an+1, bn+1) =
(a1, b1).

Show that there exist i, j with 1 ≤ i, j ≤ n such that 1 < |i−j| < n−1
and |aibj − ajbi| = 1.

Solution: All indices are taken modulo n.
Let Vi = (ai, bi), and think of the Vi as points in a plane with

origin O = (0, 0). Observe that no Vi equals (0, 0). Also notice that
|aibj − ajbi| = 1 if and only if the (unsigned) area of triangle OViVj

equals 1
2 .

Suppose that some two points Vj and Vk are reflections of each
other across the origin. Then [OViVj ] = [OViVk] for all i. Thus,
[OViVj ] = 1

2 for i = j − 1, j + 1, k − 1, k + 1. Because n ≥ 5, one of
these i satisfies 1 < |i− j| < n− 1 and [OViVj ] = 1

2 , as needed.
Otherwise, assume that (iii) no two Vi are reflections of each other

across the origin. Then we can replace any Vi by its reflection across
the origin without affecting the problem: if we do so, then conditions
(i) and (iii) still hold; and the |aibj−ajbi| do not change, so condition
(ii) and the desired result are unaffected.

Without loss of generality, assume V2 has maximum distance from
the origin among the Vi. Because [OV1V2], [OV2V3] > 0, V1 and V3

do not lie on line OV2. Without loss of generality, assume that V1

and V3 are on different sides of line OV2 (otherwise, we could reflect
one of these points across O). Let P be the intersection of lines
OV2 and V1V3; without loss of generality, assume that P lies on ray
OV2 (otherwise, we could reflect V2 across O). Because P lies on the
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interior of V1V3, we have OP < max{OV1, OV3} ≤ OV2. Hence, OV2

and V1V3 intersect at a point different from V2.
Furthermore, we claim that OV2 and V1V3 intersect at a point

different from O. Otherwise, [OV1V2] = [OV2V3] implies OV1 = OV3.
This is impossible because V1, V3 are not equal, and nor are they
reflections of each other across O.

Therefore, OV2 and V1V3 intersect at a point in their interiors,
implying that quadrilateral OV1V2V3 is convex and non-degenerate.
Triangles OV1V2 and OV2V3 each have area 1

2 , so the total area of
quadrilateral OV1V2V3 is 1. Therefore, the area 1

2 |a1b3 − a3b1| of
triangle OV1V3 is strictly between 0 and 1. Because this area is half
of an integer, it must be 1

2 . Therefore, |a1b3 − a3b1| = 1, as desired.
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1.11 Poland

Problem 1 Let n ≥ 2 be an integer. Show that
n∑

k=1

kxk ≤
(

n

2

)
+

n∑

k=1

xk
k

for all nonnegative reals x1, x2, . . . , xn.

Solution: Note that
(

n

2

)
+

n∑

k=1

xk
k =

n∑

k=1

(
xk

k + (k − 1)
)
.

By the AM-GM inequality applied to the k terms xk
k, 1, 1, . . . , 1, we

have
xk

k + (k − 1) ≥ k · k

√
xk

k · 1 · 1 · · · · · 1 = kxk

Summing each side from k = 1 to n, we get the desired result.

Problem 2 Let P be a point inside a regular tetrahedron whose
edges have length 1. Show that the sum of the distances from P to
the vertices of the tetrahedron is at most 3.

Solution:

Lemma. Given a point inside a unit equilateral triangle, the sum of
the distances from the point to the vertices is at most 2.

Proof. Let the point be P0. If P0 is on the boundary of the triangle,
then the result is clear. Otherwise, consider the ellipse {P | AP +
BP = AP0 + BP0} with foci A and B. Let P1 be the intersection of
the ellipse with side BC. Then CP0 ≤ CP1, so that

AP0 + BP0 + CP0 = AP1 + BP1 + CP0

≤ AP1 + BP1 + CP1 = AP1 + 1 ≤ 2,

as desired.

We now extend this proof to three dimensions for a unit regular
tetrahedron ABCD. Because the space of points P in the interior
of, or on the boundary of, tetrahedron ABCD is compact, there is a
maximum value of AP + BP + CP + DP at some point P = P0.
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If P0 is in the interior of the tetrahedron, then consider the ellipsoids
E1 = {P | AP + BP = AP0 + BP0} and E2 = {P | CP + DP =
CP0 + DP0}. If we take a slightly larger ellipsoid E ′2 = {P | CP +
DP = CP0 + DP0 + ε}, then E1 and E ′2 would intersect at a point P1

in the interior of the tetrahedron with AP1 + BP1 + CP1 + DP1 =
AP0 + BP0 + CP0 + DP0 + ε, a contradiction.

Thus, P0 is on the boundary of the tetrahedron — without loss of
generality, on face ABC. By the lemma, AP0+BP0+CP0 ≤ 2. Also,
DP0 ≤ 1. Hence, AP0 + BP0 + CP0 + DP0 ≤ 3, as desired.

Problem 3 The sequence x1, x2, x3, . . . is defined recursively by
x1 = a, x2 = b, and xn+2 = xn+1 +xn for n = 1, 2, . . . , where a and b

are real numbers. Call a number c a repeated value if xk = x` = c for
some two distinct positive integers k and `. Prove that one can choose
the initial terms a and b so that there are more than 2000 repeated
values in the sequence x1, x2, . . . , but that it is impossible to choose
a and b so that there are infinitely many repeated values.

Solution: Define the Fibonacci sequence {Fn} by F1 = F2 = 1
and the recursive relation Fn+1 = Fn + Fn−1 for n ∈ Z. Note
that we define this for negative indices by running the recurrence
relation backwards: F0 = 0, and it is easy to prove by induction that
F−n = Fn for odd n and F−n = −Fn for even n.

If we set a = F−4001 and b = F−4000, then xn = F−4002+n. This
yields a sequence with the 2001 repeated values

x1 = F−4001 = F4001 = x8003,

x3 = F−3999 = F3999 = x8001,

. . . ,

x4001 = F−1 = F1 = x4003.

Now we show there cannot be infinitely many repeated values. Note
that x1 = a + 0 · b = aF−1 + bF0, and x2 = 0 · a + b = aF0 + bF1.
Because xn = xn−1 + xn−2, it follows by induction that

xn = aFn−2 + bFn−1

Writing r = 1
2 (1 +

√
5) and s = 1

2 (1 − √5), Binet’s Formula states
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that Fn = rn−sn√
5

. Thus,

xn+2 = aFn + bFn+1 = a
rn − sn

√
5

+ b
rn+1 − sn+1

√
5

=
rn(a + br)√

5
− sn(a + bs)√

5
.

First suppose that a + br 6= 0. Because |r| > 1 and |s| < 1, we find
that limn→∞

xn+1
xn

equals

lim
x→∞

rn+1(a+br)√
5

− sn+1(a+bs)√
5

rn(a+br)√
5

− sn(a+bs)√
5

= lim
n→∞

rn+1(a + br)
rn(a + br)

= r > 1

This implies that the sequence is strictly increasing in absolute value
after some finite number of terms, and so no two terms after that
point can be equal. Thus there cannot be any repeated values after
that point, and there are finitely many repeated values.

If instead a + br = 0 and a + bs 6= 0, then

lim
n→∞

rn+1(a+br)√
5

− sn+1(a+bs)√
5

rn(a+br)√
5

− sn(a+bs)√
5

= lim
n→∞

sn+1(a + bs)
sn(a + bs)

= s ∈ (0, 1).

In this case, the sequence must have strictly decreasing absolute value
after a finite number of terms, and again there are finitely many
repeated values.

Finally, if a + br = a + bs = 0, then b = 0 and the terms of the
sequence alternate between a and 0. Again, there are finitely many
repeated values.

Problem 4 The integers a and b have the property that for every
nonnegative integer n, the number 2na + b is a perfect square. Show
that a = 0.

Solution: If a 6= 0 and b = 0, then at least one of 21a + b and
22a + b is not a perfect square, a contradiction.

If a 6= 0 and b 6= 0, then each (xn, yn) = (2
√

2na + b,
√

2n+2a + b)
satisfies

(xn + yn)(xn − yn) = 3b.

Hence, (xn+yn) | 3b for each n. But this is impossible because 3b 6= 0
but |xn + yn| > |3b| for large enough n.

Therefore, a = 0.
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Problem 5 Let ABCD be a parallelogram, and let K and L be
points lying on BC and CD, respectively, such that BK · AD =
DL·AB. Let DK and BL intersect at P. Show that ∠DAP = ∠BAC.

Solution: Draw R, S, T, U on sides AB, BC, CD, DA, respectively,
so that RT ‖ AD, SU ‖ AB, and RT ∩ SU = P . Let UP = DT = a

and RP = BS = b. Also let AB = CD = x, BC = DA = y, and
DL = my. We are given BK ·AD = DL ·AB, so BK = mx.

Segments RB, BP , PR are parallel to TL, LP , PT , implying that
4RBP ∼ 4TLP . Note that RB = x − a, RP = b, TL = a −my,
and TP = y − b. Hence,

x− a

a−my
=

RB

TL
=

RP

TP
=

b

y − b
,

or
(x− a)(y − b) = (a−my)b.

Analogous calculations with similar triangles UDP and SKP yield

(x− a)(y − b) = (b−mx)a.

Hence, (a − my)b = (b − mx)a, or a
b = y

x . Thus, parallelogram
AUPR is similar to parallelogram ABCD. Therefore, corresponding
angles UAP and BAC are congruent, so that ∠DAP = ∠BAC, as
desired.

Problem 6 Let n1 < n2 < · · · < n2000 < 10100 be positive integers.
Prove that one can find two nonempty disjoint subsets A and B

of {n1, n2, . . . , n2000} such that |A| = |B|, ∑
x∈A x =

∑
x∈B x, and∑

x∈A x2 =
∑

x∈B x2.

Solution: Given any subset S ⊆ {n1, n2, · · ·n2000} of size 1000, we
have

0 <
∑

x∈S x < 1000 · 10100,

0 <
∑

x∈S x2 < 1000 · 10200.

Thus, as S varies, there are fewer than (1000 · 10100)(1000 · 10200) =
10306 values of (

∑
x∈S x,

∑
x∈S x2).

Because
∑2000

k=0

(
2000

k

)
= 22000 and

(
2000
1000

)
is the biggest term in the

sum,
(
2000
1000

)
> 22000

2001 . There are
(

2000
1000

)
>

22000

2001
>

10600

2001
> 10306
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distinct subsets of size 1000. By the Pigeonhole Principle, there exist
distinct subsets C and D of size 1000, such that

∑
x∈C x2 =

∑
x∈D x2

and
∑

x∈C x =
∑

x∈D x. Removing the common elements from C and
D yields sets A and B with the required properties.
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1.12 Romania

Problem 1 Determine the ordered systems (x, y, z) of positive
rational numbers for which x + 1

y , y + 1
z , and z + 1

x are integers.

Solution: We claim that the desired ordered triples are

(1, 1, 1),
(

2, 1,
1
2

)
,

(
3
2
, 2,

1
3

)
,

(
3,

1
2
,
2
3

)
,

and their cyclic permutations. A simple calculation confirms that all
these triples have the required property.

Let x = a
b , y = c

d , and z = e
f for the pairs (a, b), (c, d), and (e, f),

each consisting of two relatively prime positive integers. We are given
that ac+bd

bc , ce+df
de , and ea+fb

fa are all positive integers. In other words,

bc | (ac + bd), de | (ce + df), fa | (ea + fb). (*)

Because bc | (ac + bd), we deduce that b | ac and c | bd. But b is
relatively prime to a, so we must have b | c and similarly c | b as c

is relatively prime to d. This can only happen if b = c. Similarly,
d = e and a = f . Writing the relations in (∗) in terms of a, c, e and
simplifying yields c | (e + a), e | (a + c), and a | (c + e). Thus, a, c,
and e all divide their sum S = a + c + e.

We will assume for the time being that a ≥ c ≥ e and take into
account the possible permutations later. Then a ≥ S

3 and a < S.
Because a | S, we have a = S

3 or S
2 .

The first case is a = S
3 . Then from S = a + c + e ≤ 3a = S we

obtain a = c = e. Thus, x = y = z = 1, and this solution has the
required properties.

Otherwise, we have a = S
2 . Then S

2 = S−a > c and 2c ≥ e+c = S
2 .

Because c | S, either (i) c = S
4 or (ii) c = S

3 . In the first case,
(a, c, e) = (S

2 , S
4 , S

4 ). Removing the constraint a ≥ c ≥ e, we find that
(x, y, z) equals (2, 1, 1

2 ), (1, 1
2 , 2), or ( 1

2 , 2, 1).
In case (ii), (a, c, e) = (S

2 , S
3 , S

6 ). This triple and its permutations
give the solutions (x, y, z) = ( 3

2 , 2, 1
3 ), (2, 1

3 , 3
2 ), ( 1

3 , 3
2 , 2), (3, 1

2 , 2
3 ),

( 1
2 , 2

3 , 3), ( 2
3 , 3, 1

2 ). This completes the proof.

Problem 2 Let m and k be positive integers such that k < m, and
let M be a set with m elements. Let p be an integer such that there
exist subsets A1, A2, . . . , Ap of M for which Ai ∩ Aj has at most k

elements for each pair of distinct numbers i, j ∈ {1, 2, . . . , p}, i 6= j.
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Prove that the maximum possible value of p is

pmax =
(

m

0

)
+

(
m

1

)
+

(
m

2

)
+ · · ·+

(
m

k + 1

)
.

Solution: We begin by showing that p = pmax is achievable. We
take the collection of sets {A1, A2, . . . , Ap} to be all of the subsets of
M with at most k + 1 elements. Clearly, there are pmax such sets,
because each term

(
m
r

)
in the definition of pmax corresponds to the

number of subsets of M of size r. Also, for distinct Ai, Aj we have
|Ai ∩Aj | < max{|Ai|, |Aj |} ≤ k + 1.

Now assume, for sake of contradiction, that there exist p sets
satisfying the given conditions with p > pmax. Among the p sets,
at most

(
m
0

)
+

(
m
1

)
+ · · ·+ (

m
k

)
have k or fewer elements; thus, there

are at least
(

m
k+1

)
+1 sets in the collection with k+1 or more elements.

We may associate with each such set Ai an arbitrary subset A′i ⊆ Ai

with exactly k + 1 elements. But there are only
(

m
k+1

)
subsets of M

with k + 1 elements. Therefore, two subsets A′i and A′j must be the
same, and Ai ∩Aj has at least k +1 elements, a contradiction. Thus,
pmax is the desired maximum.

Problem 3 Let n ≥ 2 be an even integer, and let a and b be
real numbers such that bn = 3a + 1. Show that the polynomial
p(x) = (x2 + x + 1)n − xn − a is divisible by q(x) = x3 + x2 + x + b if
and only if b = 1.

Solution: We first prove the “if” direction. If b = 1, then
q(x) = x3 + x2 + x + 1 = (x + 1)(x + i)(x − i). Also, a = 0, so
p(x) = (x2 +x+1)n−xn, and it is easy to verify that −1 and ±i are
indeed roots of p(x). Thus, q(x) | p(x).

For the “only if” direction, assume that q(x) | p(x). Then q(x)
divides xnp(x) = (x3 +x2 +x)n−x2n−axn. In addition, q(x) divides

(x3+x2+x)n−(−b)n = (x3+x2+x+b)
n−1∑

i=0

(
(x3 + x2 + x)i(−b)n−1−i

)
.

Subtracting xnp(x) from this polynomial and noticing that n is even
and (−b)n = bn, we have

q(x) | (x2n + axn − bn).
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Call the polynomial on the right side f(x). We now consider the
roots of f(x). Substituting y = xn, we have f(x) = y2 + ay − bn; let
this quadratic in y be g(y). Because n is even, bn is nonnegative, and
it follows that the discriminant of g(y) is nonnegative. Thus, g(y) has
two roots u and v in R, with

u + v = −a, uv = −bn.

It follows that the roots of f(x) are the roots of the equations xn = u,
xn = v, which lie on two (possibly coinciding) circles on the complex
plane centered around the origin. Let the radii of these two circles be

r1 = |u|1/n, r2 = |v|1/n.

Taking absolute values of both sides of the equation uv = −bn, we
have |u||v| = |b|n, so that

r1r2 = |b|.

Because q(x) | f(x), the three complex roots of q(x) must be among
the roots of f(x) and thus also lie on the two circles. Also, the product
of the roots is −b (the negative of the constant coefficient of q(x)).
We now consider two cases.

Case 1: Two of the roots α, β of q(x) lie on one circle and one
root γ lies on the other circle. Without loss of generality, assume
that α and β are on the circle with radius r1. Then taking absolute
values in the relation αβγ = −b, we have |α||β||γ| = |b|, so that
r2
1r2 = |b|. Combining this with our earlier equation r1r2 = |b|, we

obtain r1 = 1, r2 = |b|.
Returning to the roots of the quadratic g(y) and using the fact that

n is even, we have |u| = 1, |v| = |b|n = bn. Because uv = −bn and
u, v are real, we either have u = 1, v = −bn or u = −1, v = bn. Thus,
u + v = ±(1 − bn) = ±(1 − (3a + 1)) = ±3a. On the other hand,
we saw earlier that u + v = −a; thus, either case yields a = 0, from
which it follows that b = ±1.

If b = −1, then q(x) = x3 + x2 + x − 1 while f(x) = x2n − 1. We
know that q(x) has at least one real root because it has odd degree;
however, the only real roots of f(x) are ±1, and neither is a root of
q(x), contradicting the fact that q(x) | f(x). Thus, b = 1 in this case.
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Case 2: All three roots of q(x) lie on one circle. Because their
product is −b, each root has absolute value |b|1/3. On the other
hand, at least one root is real because q(x) has odd degree. Thus,
either b1/3 or −b1/3 must be a root of q(x). Also, it cannot be the
case that b = 0, for then all three roots of q(x) would have to be 0,
which is not the case. Let c = b1/3 6= 0. Then either c or −c is a root
of q(x) = x3 + x2 + x + c3. In the first case, we have 2c3 + c2 + c = 0.
Dividing by c, we obtain 2c2 + c + 1 = 0. This quadratic in c has no
real roots, a contradiction. In the second case, we have c2 − c = 0,
and we may again divide by c to obtain c = 1. Thus, b = c3 = 1.

Therefore, in both cases we have b = 1, as desired.

Problem 4 Show that if a, b, and c are complex numbers such that

(a + b)(a + c) = b,

(b + c)(b + a) = c,

(c + a)(c + b) = a,

then a, b, and c are real numbers.

Solution: We make the substitution x = b + c, y = c + a,
z = a + b, so that a = −x+y+z

2 , b = x−y+z
2 , c = x+y−z

2 . Upon
clearing denominators, our equations become

2yz = x− y + z,

2zx = x + y − z,

2xy = −x + y + z.

Because 2yz = x − y + z, we have 4yz + 2y − 2z − 1 = 2x − 1, or
(2y − 1)(2z + 1) = 2x − 1. Similarly, (2z − 1)(2x + 1) = 2y − 1 and
(2x−1)(2y +1) = 2z−1. We make another substitution: p = 2x+1,
q = 2y + 1, and r = 2z + 1. This gives us

r(q − 2) = p− 2,

p(r − 2) = q − 2,

q(p− 2) = r − 2.

(∗)

To prove that a, b, c are real, it suffices to prove that p, q, r are real.
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First we dispose of the cases in which one of p− 2, q− 2, and r− 2
is 0. If p− 2 = 0, then r− 2 = q(p− 2) = 0 and q− 2 = p(r− 2) = 0,
so that p = q = r = 2. Similarly, p = q = r = 2 if either q − 2 = 0 or
r − 2 = 0. Thus, if one of p− 2, q − 2, and r − 2 is 0, then p, q, and
r are all real, as desired.

If p, q, r 6= 2, then (∗) gives p, q, r 6= 0. Also, multiplying the
equations in (∗) together and dividing both sides by (p−2)(q−2)(r−2)
gives pqr = 1. Thus, p = 1

qr . Applying this to the second equation
gives r−2

r · 1
q = q − 2, or 1− 2

r = q(q − 2). Solving for r gives

r =
2

1− q(q − 2)
.

Plugging r = 2
1−q(q−2) into the last equation in (∗) yields

q(p− 2) =
2q(q − 2)

1− q(q − 2)
.

Cancelling the q’s and substituting in

p =
1
qr

=
1− q(q − 2)

2q

gives
1− q(q − 2)

2q
− 2 =

2(q − 2)
1− q(q − 2)

.

Clearing denominators yields

(1− q(q − 2))2 − 4q(1− q(q − 2)) = 4q(q − 2),

or
q4 − 10q2 + 8q + 1 = 0.

Inspection shows that q = 1 is a root of this equation, and the above
equation factors as

(q − 1)(q3 + q2 − 9q − 1) = 0.

We claim that q is real. If q = 1, this is clear. Otherwise, q is a
root of P (x) = x3 + x2 − 9x − 1, which has three complex roots. A
simple calculation shows that P (−1) = 8, P (0) = −1, and P (3) = 8.
Thus, by the Intermediate Value Theorem, P (x) must have one real
root between −1 and 0 and another between 0 and 3. But P (x) is
a polynomial of odd degree and so must have an odd number of real
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roots. Thus, all three of its roots must be real, and in particular q is
real.

If q is real, then r = 2
1−q(q−2) is real and p = 1

qr is real as well.
Therefore, p, q, r are all real, as desired.

Problem 5

(a) Let f , g: Z → Z be injective maps. Show that the function
h : Z → Z, defined by h(x) = f(x)g(x) for all x ∈ Z, cannot be
surjective.

(b) Let f : Z → Z be a surjective map. Show that there exist
surjective functions g, h: Z → Z such that f(x) = g(x)h(x) for
all x ∈ Z.

Solution: First we prove part (a) by way of contradiction. Suppose
h is surjective. Then there exist distinct integers a1, a2, . . . such
that h(an) = pn, where pn is the nth prime number. Therefore,
f(an)g(an) = h(an) = pn, so that one of f(an) and g(an) equals ±1.
Because this is true for infinitely many n, and because the an are
distinct, one of the functions f and g takes on one of the values 1
and −1 infinitely many times. However, this is not possible because
f and g are surjective, a contradiction.

To solve (b), we define functions g, h as follows:

• When f(n) = m2 for some m ≥ 0, let g(n) = h(n) = m.

• When f(n) = 2m2 for some m > 0, let g(n) = −m, h(n) = −2m.

• When f(n) = −m2 for some m > 0, let g(n) = m, h(n) = −m.

• Otherwise, let g(n) = 1, h(n) = f(n).

This function is well-defined because the square roots of 2, −1, and
−2 are irrational, so that no two of the first three conditions occur
simultaneously. For all n these definitions clearly satisfy the relation
f(n) = g(n)h(n). Also, we have g(f−1(k2)) = h(f−1(k2)) = k for
each integer k > 0, and g(f−1(2k2)) = h(f−1(−k2)) = k for each
integer k < 0. Thus, g and h are both surjective.

Problem 6 Three schools each have 200 students. Every student
has at least one friend in each school. (If student a is a friend of
student b, then b is a friend of a; also, for the purposes of this problem,
no student is a friend of himself.) There exists a set E of 300 students
(chosen from among the 600 students at the three schools) with the
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following property: for any school S and any two students x, y ∈ E

who are not in the school S, x and y do not have the same number
of friends in S. Show that one can find three students, one in each
school, such that any two are friends with each other.

Solution: We name the sets of students in each of the three schools
S1, S2, and S3. There are 600 students among the three schools,
with 300 students in E. Thus, one of the schools must have at most
300
3 = 100 students in E. Without loss of generality, assume that

this school is S1. Then consider the 200 or more students in E \ S1.
We are given that every student has at least one friend in S1, so in
particular every student in E \ S1 has between 1 and 200 friends in
S1. Also, by the restriction on E, no two students in E \ S1 have
the same number of friends in S1. Thus, because there are at least
200 students in E \ S1, one student a ∈ S \E must have exactly 200
friends in S1.

Without loss of generality, assume a ∈ S2. Every student has a
friend in S3, so a is friends with some student b in S3; every student
has a friend in S1, so b is friends with some student c in S1. By our
choice of a, a knows all students in S1, and so a knows c. Thus, of
the three students a, b, and c, any two are friends with each other.

Problem 7 The vertices of square ABCD lie outside a circle
centered at M . Let AA′, BB′, CC ′, DD′ be tangents to the circle. We
assume that these segments can be arranged to be the four consecutive
sides of a quadrilateral p in which some circle is inscribed. Prove that
p has an axis of symmetry.

Solution: Let r be the radius of the circle centered at M , and let
a, b, c, d denote the lengths AA′, BB′, CC ′, DD′, respectively. Then
we have a2 = AM2−r2, and we have similar expressions for b2, c2, d2.

Let P, R be the feet of the altitudes from M to lines AB and
CD, respectively. Because quadrilateral ABCD is a square, we have
AP = DR and CR = BP . Hence, a2 + c2 = AM2 − r2 + CM2 − r2,

and then we have

a2 + c2 = AP 2 + PM2 − r2 + CR2 + RM2 − r2

= DR2 + RM2 − r2 + BP 2 + PM2 − r2

= DM2 − r2 + BM2 − r2 = b2 + d2
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Furthermore, because a, b, c, d are the lengths of the consecutive
sides of the circumscribed quadrilateral p, we have

a + c = b + d.

Squaring both sides and subtracting from 2(a2 + c2) = 2(b2 + d2), we
obtain

(a− c)2 = (b− d)2.

Hence,
a− c = ±(b− d).

Combined with a+c = b+d, this equation yields either (a, c) = (b, d)
or (a, c) = (d, b). Either way, the quadrilateral p is a kite and has an
axis of symmetry.

Problem 8 Find the least number n with the following property:
given any n rays in three-dimensional space sharing a common end-
point, the angle between some two of these rays is acute.

Solution: The least n is 7. First observe that seven rays are
necessary, because the six unit vectors in the directions of the positive
and negative x-, y-, and z-axes form no acute angles.

We now prove that given any 7 vectors emanating from the origin,
some two of them form an acute angle. Without loss of generality,
assume that all the vectors have unit length. For each vector, consider
the closed unit hemisphere centered around it. Each hemisphere has
surface area equal to half the total surface area of the unit sphere, so
the sum of all the surface areas is 7/2 the total area. It follows
that there exists a point closed region of positive surface area in
which 4 or more of the hemispheres intersect. Let P be a point
in the interior of this region, and choose coordinate axes so that
P = (0, 0, 1); then 4 of the 7 vectors, say (xi, yi, zi) for 1 ≤ i ≤ 4, have
endpoints on the open hemisphere {(x, y, z) | x2 +y2 +z2 = 1, z > 0}.
Some two of the four projections (xi, yi) — without loss of generality,
(x1, y1) and (x2, y2) — form an angle less than or equal to π/2. Then
0 ≤ (x1, y1) · (x2, y2) = x1x2 + y1y2. Thus, because z1 and z2 are
positive, we have 0 < x1x2 + y1y2 + z1z2 = (x1, y1, z1) · (x2, y2, z2),
so that vectors (x1, y1, z1) and (x2, y2, z2) meet an acute angle. This
completes the proof.
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Problem 9 Let f(x) = a0 + a1x + · · · + amxm, with m ≥ 2 and
am 6= 0, be a polynomial with integer coefficients. Let n be a positive
integer, and suppose that:

(i) a2, a3, . . . , am are divisible by all the prime factors of n;

(ii) a1 and n are relatively prime.

Prove that for any positive integer k, there exists a positive integer c

such that f(c) is divisible by nk.

Solution: Consider any integers c1, c2 such that c1 6≡ c2 (mod nk).
Observe that if nk | st for some integers s, t where t is relatively prime
to n, then nk | s. In particular, nk 6 | (c1 − c2)t if t is relatively prime
to n.

Note that

f(c1)− f(c2) = (c1 − c2)a1 +
m∑

i=2

ai(ci
1 − ci

2)

= (c1 − c2)


a1 +

m∑

i=2


ai

m−1∑

j=0

(cj
1c

m−1−j
2 )







︸ ︷︷ ︸
t

.

For any prime p dividing n, p divides a2, . . . , am but not a1. Hence,
p does not divide the second factor t in the expression above. This
implies that t is relatively prime to n, so nk does not divide the
product (c1 − c2)t = f(c1)− f(c2).

Therefore, f(0), f(1), . . . , f(nk−1) are distinct modulo nk, and one
of them — say, f(c) — must be congruent to 0 modulo nk; that is,
nk | f(c), as desired.

Problem 10 Find all pairs (m,n) of positive integers, with m,n ≥
2, such that an − 1 is divisible by m for each a ∈ {1, 2, . . . , n}.

Solution: The solution set is the set of all (p, p − 1), for odd
primes p. The fact that all of these pairs are indeed solutions follows
immediately from Fermat’s Little Theorem. Now we show that no
other solutions exist.

Suppose that (m, n) is a solution. Let p be a prime dividing m. We
first observe that p > n. Otherwise, we could take a = p, and then
pn − 1 would not be divisible by p, let alone m. Then because n ≥ 2,
we have p ≥ 3 and hence p is odd.
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Now we prove that p < n + 2. Suppose on the contrary that
p ≥ n + 2. If n is odd, then n + 1 is even and less than p. Otherwise,
if n is even, then n + 2 is even and hence less than p as well, because
p is odd. In either case, there exists an even d such that n < d < p

with d
2 ≤ n. Setting a = 2, d

2 in the given condition, we find that

dn ≡ 2n ·
(

d

2

)n

≡ 1 · 1 ≡ 1 (mod m),

so that dn − 1 ≡ 0 (mod m) as well. Because n < d < p < m, we see
that 1, 2, . . . , n, d are n+1 distinct roots of the polynomial congruence
xn−1 ≡ 0 (mod p). By Lagrange’s theorem, however, this congruence
can have at most n roots, a contradiction.

Thus, we have sandwiched p between n and n + 2, and the only
possibility is that p = n + 1. Therefore, all solutions are of the form
(pk, p−1) with p an odd prime. It remains to prove that k = 1. Using
a = n = p− 1, it suffices to prove that

pk 6 | (
(p− 1)p−1 − 1

)
.

Expanding the term (p−1)p−1 modulo p2, and recalling that p is odd,
we have

(p− 1)p−1 =
p−1∑

i=0

(
p− 1

i

)
(−1)p−1−ipi

≡
(

p− 1
0

)
(−1)p−1 +

(
p− 1

1

)
(−1)p−2p

≡ 1− p(p− 1)

≡ 2 6≡ 0 (mod p2).

It follows immediately that k cannot be greater than 1, completing
the proof.

Problem 11 Prove that there is no function f : (0,∞) → (0,∞)
such that

f(x + y) ≥ f(x) + yf(f(x))

for all x, y ∈ (0,∞).

Solution: Assume, for sake of contradiction, that there does exist
such a function f . Fix x in the given inequality. Then as y varies,
f(x + y) is bounded below by a linear function in y which has a
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positive coefficient of y. Thus, f(x) → ∞ as x → ∞. It follows
that f(f(x)) → ∞ as x → ∞. Hence there exists an a such that
c = f(f(a)) > 1. Let b = f(a); then setting x = a in the given
inequality, we have

f(a + y) ≥ b + cy

for all y. Because c > 1, there exists a y0 such that b+cy0 ≥ a+y0+1.
Letting x0 = a + y0, we have f(x0) ≥ x0 + 1.

Now set x = x0 and y = f(x0) − x0 in the given inequality. We
obtain:

f(f(x0)) ≥ f(x0) + (f(x0)− x0)f(f(x0)).

But because f(x0) ≥ x0 + 1, the right hand side is strictly greater
than f(f(x0)), a contradiction. Therefore, our original assumption
was false, and no function f satisfies the given condition.

Problem 12 Let P be a convex polyhedron with vertices V1, V2,
. . . , Vp. Two vertices Vi and Vj are called neighbors if they are distinct
and belong to the same face of the polyhedron. The p sequences
(vi(n))n≥0, for i = 1, 2, . . . , p, are defined recursively as follows: the
vi(0) are chosen arbitrarily; and for n ≥ 0, vi(n+1) is the arithmetic
mean of the numbers vj(n) for all j such that Vi and Vj are neighbors.
Suppose that vi(n) is an integer for all 1 ≤ i ≤ p and n ∈ N. Prove
that there exist N ∈ N and k ∈ Z such that vi(n) = k for all n ≥ N

and i = 1, 2, . . . , p.

Solution: For each n ≥ 0, let m(n) = min{v1(n), v2(n), . . . , vp(n)}
and let M(n) = max{v1(n), v2(n), . . . , vp(n)}. Clearly m(n) ≤ M(n)
for all n.

Observe that vi(n + 1) is the average of vj(n) over all neighbors Vj

of Vi. Because vj(n) ≥ m(n), we have

vi(n + 1) ≥ m(n), (∗)
with equality if and only if vj(n) = m(n) for all neighbors Vj of Vi.

From (∗) it follows that m(n + 1) ≥ m(n) for all n. Likewise,
M(n + 1) ≤ M(n) for all n. These inequalities, together with
m(n) ≤ M(n) and the fact that all the m(n),M(n) are integers,
imply that there exist integers m ≤ M with the following property:
m(n) = m and M(n) = M for all sufficiently large n, i.e., for all
n ≥ N for some N .
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Suppose, for sake of contradiction, that m < M . For any n ≥ N,

some vertices Vi of the polyhedron have vi(n) = m, and other vertices
Vj have vj(n) > m. At least one vertex Vi from the former set is
adjacent to a vertex Vj from the latter set. Then equality cannot
hold in (∗), so vi(n + 1) > m. In other words, the number of vertices
Vi such that vi(n) = m, decreases by at least 1 whenever n increases
by 1. Thus, for large enough n there are no vertices Vi for which
vi(n) = m, a contradiction. Hence, our original assumption was false,
and m = M .

Therefore, vi(n) = m = M for all 1 ≤ i ≤ p and n ≥ N , as desired.
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1.13 Russia

Problem 1 Peter and Alex play a game starting with an ordered
pair of integers (a, b). On each turn, the current player increases or
decreases either a or b: Peter by 1, and Alex by 1 or 3. Alex wins if
at some point in the game the roots of x2 + ax + b are integers. Is it
true that given any initial values a and b, Alex can guarantee that he
wins?

Solution: Yes, Alex can win.
First observe that if |a| > 3 or |b| > 3 immediately before one of

Alex’s turns, then Alex can decrease |a|+ |b| by 3 during his turn: if
|a| > 3, then he can decrease |a| by 3; if |b| > 3, then he can decrease
|b| by 3. On the next turn, Peter can increase |a|+|b| by at most 1, for
a net decrease of at least 2. Because |a|+ |b| cannot decrease forever,
using this strategy eventually Alex forces −3 ≤ a, b ≤ 3 immediately
before one of his turns.

At this point in the game, one of the following four cases holds:

(1) b ∈ {−3,−1, 0, 1, 3}. Then either b already equals 0, or Alex can
set b = 0. Once b = 0, Alex wins.

(2) b = −2 and a ∈ {−3,−1, 1, 3}. Alex sets a = 0 to make the
polynomial x2 − 2. Peter has four possible moves, each resulting
in one of the following polynomials:

x2 − x− 2,

x2 + x− 2,

x2 − 1,

x2 − 3.

The first three polynomials result in Peter’s immediate defeat; if
Peter makes the last polynomial, then Alex sets b = 0 to win.

(3) b = −2 and a = ±2. Then Alex sets b = −3 and wins.

(4) b = 2. Alex sets b = −1. If Peter lets b remain equal to −1
on his next turn, then Alex wins by setting b = 0 on his next
turn. Otherwise, after Peter’s turn, b ∈ {−2, 0} and a remains in
[−3, 3], reducing this case to either (1) or (2). Hence, Alex can
win in this case as well.

Therefore, Alex can guarantee that he wins in all cases, as claimed.
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Problem 2 Let M and N be points on sides AB and BC, respec-
tively, of parallelogram ABCD such that AM = NC. Let Q be the
intersection of AN and CM . Prove that DQ is an angle bisector of
angle CDA.

First Solution: Let line DQ intersect line BC at T . From similar
triangles ADQ and NTQ, we have

DA

TN
=

AQ

NQ
.

By Menelaus’ Theorem, MB
AM · AQ

NQ · NC
CB = 1. Combined with

AM = NC, this gives
AQ

NQ
=

CB

MB
.

Finally,
CB

MB
=

DA

MB

because sides CB and DA of quadrilateral ABCD are congruent.
Combining the above three equations, we find that TN = MB.

Hence,

TC = TN + NC = AM + MB = AB = DC,

leading to the conclusion ∠CDT = ∠DTC = ∠TDA. In other words,
DQ bisects angle CDA, as desired.

Second Solution: Using parallel lines AB and CD, we have

QC sin ∠QCD = QC sin(π − ∠QMA) = QC sin ∠QMA.

Similarly,

QA sin ∠QAD = QA sin∠(π −QNC) = QA sin ∠QNC.

Also, using the Law of Sines and the given condition AM = CN ,
we have

QC

sin ∠QNC
=

CN

sin∠CQN
=

AM

sin ∠AQM
=

QA

sin∠QMA
.

Combining these equations gives

QC sin ∠QCD = QA sin ∠QAD.
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In other words, Q is equidistant from lines DC and DA. Because Q

lies between rays DA and DC, it follows that it lies on the internal
angle bisector of angle ADC.

Problem 3 A target consists of an equilateral triangle broken into
100 equilateral triangles of unit side length by three sets of parallel
lines. A sniper shoots at the target repeatedly as follows: he aims
at one of the small triangles and then hits either that triangle or one
of the small triangles which shares a side with it. He may choose to
stop shooting at any time. What is the greatest number of triangles
that he can be sure to hit exactly five times?

Solution: The answer is 25.
More generally, we prove that given any n, k ∈ Z+ and a target

consisting of (2n)2 small triangles, n2 is the greatest number of
triangles that the shooter can be sure to hit exactly k times.

We can divide the target into n2 target areas, triangles with side
length 2 units (consists 4 unit triangles). For each of these target
areas, we color the unit triangle in the middle black. Notice every
triangle on the target is either a black triangle, or next to one.
Therefore, it is possible that the sniper always end up shooting a
black triangle regardless of where he aims. Therefore, he cannot be
sure that he will hit more than n2 triangles exactly k times.

Now we want to show the sniper can always shoot n2 targets exactly
k times. To do so, for each black triangle he aims at it until one of
the triangles in the corresponding target area is hit exactly k times.
Because the target areas do not overlap, the sniper is guaranteed to
hit one triangle in each of the n2 target areas exactly k times.

Problem 4 Two points are selected inside a convex pentagon.
Prove that it is possible to select four of the pentagon’s vertices so
that the quadrilateral they form contains both points.

Solution: Call the two points X and Y , and let the pentagon’s
vertices be A,B, C, D,E in that order. It is clear that any point in
pentagon ABCDE must lie in at least one of the triangles ABD,
BCE, CDA, DEB, and EAC. Without loss of generality, assume
that point X lies in triangle ABD. If point Y does too, then X

and Y lie in quadrilateral ABDE. If Y does not, then Y lies in
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either triangle ABC or triangle ADE, in which case X and Y lie in
quadrilateral ABCD or quadrilateral ABDE, respectively.

Problem 5 Does there exist a positive integer such that the product
of its proper divisors ends with exactly 2001 zeroes?

Solution: Yes. Given an integer n with τ(n) positive divisors, the
product of all positive divisors of n is equal to

√√√√√

∏

d|n
d





∏

d|n
(n/d)


 =

√∏

d|n
d · (n/d) =

√
nτ(n).

Thus, the product of all proper positive divisors of n equals

n
1
2 τ(n)−1.

If n =
∏k

i=1 pi
qi with the pi’s distinct primes and the qi’s positive

integers, then τ(n) =
∏k

i=1(qi + 1). Hence, if we set n = 21 · 51 · 76 ·
1110 · 1312, then

1
2
τ(n)− 1 =

1
2
(2 · 2 · 7 · 11 · 13)− 1 = 2001.

Thus, the product of the proper divisors of n is equal to 22001 · 52001 ·
76·2001 · 1110·2001 · 1312·2001, an integer ending in exactly 2001 zeroes.

Problem 6 A circle is tangent to rays OA and OB at A and B,

respectively. Let K be a point on minor arc AB of this circle. Let L

be a point on line OB such that OA ‖ KL. Let M be the intersection
(distinct from K) of line AK and the circumcircle ω of triangle KLB.

Prove that line OM is tangent to ω.

Solution: All angles are directed modulo π. Because K,L, M, B

are concyclic and KL ‖ OA, we have ∠AMB = ∠KMB = ∠KLB =
∠AOB. Thus, A,B,M,O are concyclic and hence

∠AMO = ∠ABO, ∠MAO = ∠MBO.

Because K, L,M, B are concyclic,

∠KML = ∠KBL.

Also, because OA is tangent to the circumcircle of triangle AKB,

∠ABK = ∠KAO = ∠MAO.
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From these we have

∠LMO = ∠AMO − ∠KML = ∠ABO − ∠KBL

= ∠ABK = ∠MAO = ∠MBO.

Therefore, OM is tangent to ω.

Problem 7 Let a1, a2, . . . , a106 be nonzero integers between 1 and
9, inclusive. Prove that at most 100 of the numbers a1a2 . . . ak

(1 ≤ k ≤ 106) are perfect squares. (Here, a1a2 . . . ak denotes the
decimal number with the k digits a1, a2, . . . , ak.)

Solution: For each positive integer x, let d(x) be the number of
decimal digits in x.

Lemma. Suppose that y > x are perfect squares such that y =
102bx + c for some positive integers b, c with c < 102b. Then

d(y)− 1 ≥ 2(d(x)− 1).

Proof. Because y > 102bx, we have
√

y > 10b
√

x. Because
√

y and
10b
√

x are both integers,
√

y ≥ 10b
√

x + 1, so that 102bx + c = y ≥
102bx + 2 · 10b

√
x + 1. Thus, c ≥ 2 · 10b

√
x + 1.

Also, 102b > c by assumption, implying that

102b > c ≥ 2 · 10b
√

x + 1.

Hence, 10b > 2
√

x. It follows that

y > 102bx > 4x2.

Therefore,
d(y) ≥ 2d(x)− 1,

as desired.

We claim that there are at most 36 perfect squares a1a2 . . . ak with
an even (resp. odd) number of digits. Let s1 < s2 < · · · < sn be these
perfect squares. Clearly d(sn) ≤ 106. We now prove that if n > 1,
then d(sn) ≥ 1 + 2n−1.

Because s1, s2, · · · , sn all have an even (resp. odd) number of digits,
for each i = 1, 2, . . . , n − 1, we can write si+1 = 102bsi + c for some
integers b > 0 and 0 ≤ c < 102b. Because no ai equals 0, we further
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know that 0 < c. Hence, by our lemma,

d(si+1)− 1 ≥ 2(d(si)− 1)

for each i = 1, 2, . . . , n − 1. Because d(s2) − 1 ≥ 2, we thus have
d(sn)− 1 ≥ 2n−1, as desired.

Thus, if n > 1,
1 + 2n−1 ≤ d(sn) ≤ 106,

and
n ≤

⌊
log(106 − 1)

log 2

⌋
+ 1 = 20.

Hence, there are at most 20 perfect squares a1a2 . . . ak with an even
(resp. odd) number of digits.

Therefore, there are at most 40 < 100 perfect squares a1a2 . . . ak.

Problem 8 The lengths of the sides of an n-gon equal a1, a2, . . . , an.

If f is a quadratic such that

f(ak) = f

((
n∑

i=1

ai

)
− ak

)

for k = 1, prove that this equality holds for k = 2, 3, . . . , n as well.

Solution: Write s =
∑n

i=1 ai. Defining f to be the general
quadratic ax2 + bx + c, some algebra shows that the condition

f(ak) = f

((
n∑

i=1

ai

)
− ak

)
, (1)

or aa2
k + bak + c = a(s − ak)2 + b(s − ak) + c, is equivalent to the

condition
2ak(b + as) = s(b + as).

Because s > 2ak by the triangle inequality, this last condition is
equivalent to the condition that b + as = 0.

If (1) holds for k = 1, then b + as = 0; it follows that (1) holds for
k = 2, 3, . . . , n, as desired.

Problem 9 Given any point K in the interior of diagonal AC of
parallelogram ABCD, construct the line `K as follows. Let s1 be the
circle tangent to lines AB and AD such that of s1’s two intersection
points with AC, K is the point farther from A. Similarly, let s2 be the
circle tangent to lines CB and CD such that of s2’s two intersection
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points with CA, K is the point farther from C. Then let `K be the
line connecting the centers of s1 and s2. Prove that as K varies along
AC, all the lines `K are parallel to each other.

Solution: Let ri be the radius and Oi be the center of si for i = 1, 2.
Note that

r1 + r2 = AK sin
∠A

2
+ KC sin

∠C

2

= AK sin
∠A

2
+ KC sin

∠A

2
= AC sin

∠A

2
,

a constant.
Now we set up a coordinate system with vectors (~x, ~y), such that ~x,

~y are perpendicular to lines AD, AB, respectively. Let Oi = (xi, yi)
in this coordinate system; we claim that (x1−x2, y1−y2) is a constant.
Let the distance between lines AD and BC be t. Because the distance
between O1 and line AD is r1 and the distance between O2 and line
BC is r2, we have x1−x2 = t−(r1−r2), a constant. Similarly, y1−y2

is also constant. Therefore, the lines `K are all parallel to each other.

Problem 10 Describe all possible ways to color each positive inte-
ger in one of three colors such that any positive integers a, b, c (not
necessarily distinct) which satisfy 2000(a + b) = c are colored either
in one color or in three different colors.

Solution: Either all integers are colored the same color; or, 1, 2,
and 3 are colored differently and any number n is colored the same
color as the k ∈ {1, 2, 3} for which n ≡ k (mod 3).

The monochrome coloring clearly satisfies the given conditions;
we now check that the other coloring does as well. Suppose that
2000(a + b) = c. Then 2(a + b) ≡ c (mod 3), or a + b + c ≡ 0 (mod 3).
Thus, either a, b, c are all congruent modulo 3, in which case they are
colored the same color; or, they are pairwise distinct modulo 3, in
which case they are colored three different colors.

It remains to prove that these are the only possible colorings.
Suppose we are given any three consecutive positive integers x−1, x,
x+1. Setting (a, b, c) = (x, x, 4000x) in the given condition shows that
4000x is the same color as x. Setting (a, b, c) = (x− 1, x + 1, 4000x)
shows that x − 1, x + 1, and 4000x are all the same color or are all
different colors; i.e., x− 1, x + 1, and x are all the same color or are
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all different colors. Hence, two consecutive positive integers uniquely
determine the color of the next greatest positive integer. The coloring
of the positive integers is therefore determined uniquely by the colors
of 1 and 2; there are nine possible colorings of the numbers 1 and 2,
and these give rise to the colorings described above.

Problem 11 Three sets of ten parallel lines are drawn. Find the
greatest possible number of triangles whose sides lie along the lines
but whose interiors do not intersect any of the lines.

Solution: Define a proper triangle to be a triangle that satisfies
the given conditions. We claim that the greatest possible number of
proper triangles is 150. We will find a formula for the more general
case, where we have three sets of n parallel lines for some even integer
n.

Through an affine transformation, we reposition the first two sets
of lines so that they lie horizontally and vertically on a coordinate
plane, with equations x = yi, y = xi, i = 1, 2, . . . , n, where the xi and
yi lie in increasing order. We call the (xi, yi) grid points. We also
transform the third set of lines so that they are given by x + y = zi

for i = 1, 2, . . . , n. Observe that any triangle bounded by lines of
the form x = xi, y = yj , x + y = zk has its right-angled vertex
pointing to either the lower-left (if xi + yj < zk) or the upper-right
(if xi + yj > zk).

Lemma. There are at most 3n2

4 proper triangles with right angles in
their upper-right corner.

Proof. Let S be any set of points with the following property:

(∗): If (α1, β1), (α2, β2) lie in S, then either (i) α1 ≤ α2 and
β1 ≤ β2; or (ii) α2 ≤ α1 and β2 ≤ β1. (In other words, any
line connecting two points in S is vertical or has nonnegative
slope.)

We claim that no two proper triangles with upper-right vertices in
S are bounded by the same line x + y = zk. Suppose, for sake
of contradiction, that x + y = zk formed a proper triangle T1 with
upper-right vertex (α1, β1) ∈ S and another proper triangle T2 with
upper-right vertex (α2, β2) ∈ S. Without loss of generality, assume
that α1 ≤ α2 and β1 ≤ β2. The interior of T1 consists of the points
(x, y) such that
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• x + y > zk;

• x < α2;

• y < β2.

Let ε be a tiny positive value. Because T2 is bounded from the lower-
left by the line x + y = zk, both (α1 − ε, β1) and (α1, β1 − ε) satisfy
the first criterion. At least one of these points also satisfies the latter
two criteria, because α1 ≤ α2 and β1 ≤ β2. Hence, at least one of the
lines y = β1 or x = α1 intersects the interior of T1, contradicting the
assumption that T1 is proper. Therefore, our original assumption was
false, and each line x + y = zk bounds at most one proper triangle
whose upper-right vertex is in S.

For k = 1, 2, . . . , n
2 , let Sk consist of (xn+1−k, yk), along with

every grid point due north or due west of (xn+1−k, yk). Each Sk

has property (∗), so for fixed k, at most n proper triangles have an
upper-right vertex in Sk. Also, for each of the remaining n2

4 grid
points P not in any Sk — namely, (xi, yj) where either i ≤ n

2 or
j ≥ n+2

2 — at most one proper triangle has P as its upper-right
vertex. Therefore, at most

n · n

2
+

n2

4
=

3n2

4

proper triangles have a right angle as an upper-right vertex.

Similarly, at most 3n2

4 proper triangles have a right angle as a
lower-left vertex. Therefore, there are at most 3n2

4 + 3n2

4 = 3n2

2 proper
triangles, as claimed.

It remains to show that this bound can be achieved. Let two sets
of parallel lines be x = k and y = k for k = 1, 2, . . . , n, so that their
intersections form an n× n grid. Let the final set of parallel lines be
x+y = k (with ε < 1) for k = n+2

2 + 1
2 , n+4

2 + 1
2 , . . . , 3n

2 + 1
2 , i.e., lines

between the n+1 longest diagonals of the n×n grid. Each of the 3n2

4

grid points on the lower n of these n + 1 diagonals, is the lower-left
vertex of a proper triangle; each of the 3n2

4 grid points on the upper n

of these n+1 diagonals, is the upper-right vertex of a proper triangle.
In total, there are thus 3n2

2 proper triangles, as desired.
For the case n = 10, our formula shows that the maximum number

of proper triangles is 150.
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Note: For odd n, the argument above gives an upper bound of
d 3n2

2 e; however, the actual maximum is b 3n2

2 c. The above argument
can be sharpened to produce this bound.

Problem 12 Let a, b, and c be integers such that b 6= c. If ax2+bx+c

and (c − b)x2 + (c − a)x + (a + b) have a common root, prove that
a + b + 2c is divisible by 3.

Solution: Let f(x) = ax2 + bx+ c and g(x) = (c− b)x2 +(c−a)x+
(a + b). Let ζ be their common root. Then r is also a root of the
difference

f(x)− g(x) = (a + b− c)(x2 + x− 1).

Observe that a + b + 2c ≡ a + b − c (mod 3). Thus, if a + b − c = 0,
then we are done. Otherwise, ζ is a root of x2 + x − 1 and hence is
irrational.

By the Euclidean algorithm, we can write f(x) = q(x)(x2+x−1)+
r(x) for polynomials q(x) and r(x) with integer coefficients, where
deg r < 2. Setting x = ζ yields r(ζ) = 0; because ζ is irrational, r(x)
must equal 0.

Hence, x2 + x − 1 divides f(x). Therefore, a = b = −c, so that
a + b + 2c = 0 and 3 | (a + b + 2c), as desired.

Problem 13 Let ABC be a triangle with AC 6= AB, and select
point B1 on ray AC such that AB = AB1. Let ω be the circle
passing through C, B1, and the foot of the internal bisector of angle
CAB. Let ω intersect the circumcircle of triangle ABC again at Q.

Prove that AC is parallel to the tangent to ω at Q.

Solution: All angles are directed modulo π. Let the angle bisector
from A intersect BC at E and the circumcircle of triangle ABC at
D. Because AB1 = AB, AE = AE, and ∠B1AE = ∠EAB, by SAS
we have that triangles B1AE and BAE are congruent with opposite
orientations. Thus,

∠EDC = ∠ADC = ∠ABC = ∠ABE = ∠EB1A = ∠EB1C,

implying that E, B1, C, D are concyclic. Thus, Q = D, implying that
Q,E,A are collinear.

Now, let line TQ be the line tangent to ω at Q, so that ∠TQE =
∠QCE. Marshalling much of our information so far — Q lies on line
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EA, and E lies on line BC, quadrilateral ABQC is cyclic, and line
AQ bisects angle CAB — we thus have

∠TQA = ∠TQE = ∠QCE = ∠QCB = ∠QAB = ∠CAQ.

Therefore, TQ ‖ AC, as desired.

Problem 14 We call a set of squares in a checkerboard plane rook-
connected if it is possible to travel between any two squares in the set
by moving finitely many times like a rook, without visiting any square
outside of the set. (One moves “like a rook” by moving between two
distinct — not necessarily adjacent — squares which lie in the same
row or column.) Prove that any rook-connected set of 100 squares can
be partitioned into fifty pairs of squares, such that the two squares in
each pair lie in the same row or column.

Solution: Let all the squares in S be white. Then this coloring has
the following property:

(∗) Every row contains an even number of black squares.

Given a coloring satisfying (∗), suppose that some column C1

contains an odd number of white squares. By (∗), the total number of
black squares is even. Because S contains an even number of squares,
the total number of white squares is even as well, implying that
another column C2 also contains an odd number of white squares.
Choose two squares s1, s2 ∈ S in these columns. By the given
condition, one can travel from s1 to s2 via some sequence s of rook
moves in S. Without loss of generality, assume that s does not pass
through the same square twice. Then for each horizontal rook move
in s, change the color of the origin and destination squares of that
move.

Upon this recoloring, note that (∗) still holds, because squares are
recolored in twos, where each recolored pair contains two squares in
the same row. Also, in every column C except C1, C2, the parity of the
number of white squares stays constant; the number of horizontal rook
moves entering C must equal the number of horizontal rook moves
leaving C, so that an even number of squares in C change color. On
the other hand, a similar argument shows that after the recoloring,
C1 and C2 contain an even number of white squares instead of an
odd number. Thus, the recoloring preserves (∗) while increasing the
number of columns that contain an even number of white squares.
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Therefore, repeating this algorithm eventually yields a coloring
satisfying (∗), such that every column contains an even number of
white squares.

Given this coloring, the black squares can be partitioned into pairs,
such that the two squares in each pair lie in the same row; the white
squares can be partitioned into pairs, such that the two squares in
each pair lie in the same column. This completes the proof.

Problem 15 At each of one thousand distinct points on a circle are
written two positive integers. The sum of the numbers at each point
P is divisible by the product of the numbers on the point which is
the clockwise neighbor of P . What is the maximum possible value of
the greatest of the 2000 numbers?

Solution: The maximum value is 2001. One possible configuration
with maximum value 2001 is as follows: label the points with the
pairs (1001, 2), (1003, 1), (1004, 1), . . . , (2001, 1) in clockwise order,
so that the sum of the numbers at each point equals the product of
the numbers at the its clockwise neighbor.

To show that every values is at most 2001, we assume the opposite,
for sake of contradiction. Let m > 2001 be the maximum value of the
2000 numbers, and let P1 be one point at which m occurs. Let the
points be P1, P2, . . . , P1000 in counterclockwise order, where indices
are taken modulo 1000.

First we see that the other number at P1 must be 1. If this were
not the case, the sum of the numbers at P2 would be at least 2m; thus
(using the maximal definition of m), the pair at P2 would be (m,m).
This would in turn make the sum of the numbers at P3 at least m2,
which is impossible if both numbers at P3 are at most m.

Knowing that the numbers at P1 are m and 1, we can now consider
the following cases:

Case 1: The number 1 is included in each of the 1000 pairs.
In this case, we can prove by induction that Pn is labelled with
(m + 1− n, 1) for n = 1, 2, . . . , 1000. Appyling the given condition to
points P1, P1000, we find that (m − 999) | (m + 1). This means that
(m− 999) | 1000, from which we find that m ≤ 1999, a contradiction.

Case 2: The number 1 is not included in all of the 1000 pairs. Let k

be the smallest positive integer such that 1 does not appear at Pk, and
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let (q, 1) be the pair of integers at Pk−1. Then q = m + 1− (k− 1) ≥
m−998. The sum of the numbers at Pk is at least q, and the product
is at least

2 · (q − 2) ≥ 2 · (m− 1000) ≥ m + m− 2000 ≥ m + 2.

The sum of the numbers at Pk+1 is divisible by the product of the
numbers at Pk, and hence is also at least m+2. Then neither number
at Pk+1 equals 1, because otherwise the other number would be at
least m+1, contradicting the maximal definition of m. It follows that
the product of the numbers at Pk+1 is at least 2((m + 2)− 2) = 2m.

The sum of the numbers at Pk+2 is divisible by the product of
the numbers at Pk+1, and hence is also at least 2m. Because both
numbers at Pk+2 are at most m, both numbers must in fact equal m.
But then the sum of the two numbers at Pk+3 is at least m2, which
is impossible because both numbers at Pk+3 are at most m. Hence,
Case 2 is impossible.

Hence, neither case is possible, and our original assumption was
false; the maximum value of the 2000 numbers is at most 2001.

Problem 16 Find all primes p and q such that p + q = (p− q)3.

Solution: The only such primes are p = 5, q = 3.
Because (p − q)3 = p + q 6= 0, p and q are distinct and hence

relatively prime.
Taking the given equation modulo p + q gives 0 ≡ 8p3. Because p

and q are relatively prime, so are p and p + q. Thus, (p + q) | 8.
Taking the given equation modulo p − q gives 2p ≡ 0. Because p

and q are relatively prime, so are p and p− q. Thus, (p− q) | 2.
It easily follows that (p, q) equals (3, 5) or (5, 3); only the latter

satisfies the given equation.

Problem 17 The monic polynomial f(x) with real coefficients has
exactly two distinct real roots. Suppose that f(f(x)) has exactly
three distinct real roots. Is it possible that f(f(f(x))) has exactly
seven distinct real roots?

Solution: Yes, it is possible. We first seek a monic quartic that
contains five points (x1, y1), . . . , (x5, y5) (with x1 < · · · < x5) with
the following properties:
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(a) The quartic curves down from (x1, y1) to a global minimum at
(x2, y2), up to a local maximum at (x3, y3) with y3 < y1, down to
a local non-global minimum at (x4, y4), and back up to (x5, y5).

(b) y1 = y5 and x5 − x1 = y1 − y2. (In other words, the graph of
the quartic for x1 ≤ x ≤ x5 can be inscribed in a square, with
(x1, y1) and (x5, y5) in the upper corners, (x2, y2) on the bottom
side, and (x3, y3) and (x4, y4) in the interior.)

(c) y4 − y2 < x2 − x1 < y3 − y2. (In other words, if we change
coordinates so that (x5, y5) = 0, then the line y = x2 lies between
the lines y = y4 and y = y3, so it intersects the quartic in four
distinct points.)

If we can find one such quartic, then by changing coordinates we can
find another such quartic f(x) for which (x5, y5) = 0. Then the roots
of f(x) = 0 are x1 and x5 = 0; the sole root of f(x) = x1 is x2;
and f(x) = x2 has exactly four roots. It follows easily that f(f(x))
has exactly four real roots and that f(f(f(x))) has exactly seven real
roots.

We now find a monic quartic g with the four properties described
above. Let ε1 ∈ (0, 1) be an extremely small positive values; how
small, we later describe with two conditions (∗) and (†).

Step One: Find a Polynomial That Almost Works. To find
g, we will alter the polynomial

g1(x) = (x− 1)2(x + 1)2.

We claim that there exists fixed −2 < a1 < b1 < − 3
2 such that:

(1) There is exactly one value a2 6= −a1 for which g1(a1) =
g1(a2). For this a2, we have a2 − a1 < g(a1).

(2) There is exactly one value b2 6= −b1 for which g1(b1) =
g1(b2). For this b2, we have b2 − b1 > g(b1).

For any x ∈ (−2,− 3
2 ), g1(x) is greater than the value of g1 at the

local maximum (0, 1), so there is exactly one value x′ 6= x such that
g1(x) = g1(x′): namely, x′ = −x. Because 2− (−2) < 9 = g(−2), (1)
holds for some a1 close to −2; because 3

2 − (− 3
2 ) > 1 = g(− 3

2 ), (2)
holds for some b1 close to − 3

2 .
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(To motivate the remainder of this solution, note that g1(x) nearly
has all the required properties (a)-(c). If we choose (x2, y2) = (−1, 0),
(x3, y3) = (0, 1), and (x4, y4) = (1, 0), then (1) and (2) imply that we
can choose (x1, y1) and (x5, y5) properly so that g1(x) has property
(b). Unfortunately, (x4, y4) is a global minimum, which is not allowed
in (a). We now change g1 slightly so that this is not the case, and
then argue that the modified polynomial has the required properties.)

Step Two: Find a New Polynomial That Satisfies (a) and
(b). Note that g′1(x) = 4(x − 1)x(x + 1). For a fixed ε1, define g(x)
such that

g′(x) = 4(x− 1)x(x + 1 + ε1), min g(x) = 0

Let x2 = −1 − ε1, x3 = 0, x4 = 1. Observe that g(x) dips down
until x = x2, rises up until x = x3, then dips back down until
x = x4, and finally rises up again. Also, it is easy to confirm that
g′2(x) + g′2(−x) = 8x2ε1 > 0 for all x, so that g(x) > g(−x) for
x > 0. Hence, g(1) > g(−1), implying that g(x) does not have a
global minimum at x = 1 but rather only at (x2, 0).

Before we found fixed a1 ≈ −2, b1 ≈ − 3
2 such that (1) and (2) hold

for g1(x); with these same a1, b1, for all small ε1 we have:

(∗) Conditions (1) and (2) continue to hold for g(x).

Hence, there exists x1 ∈ (a1, b1) such that:

There is exactly one value x5 6= x1 such that g(x1) = g(x5).
For this x5, we have x5 − x1 = g(x1).

In other words, the graph of g(x) for x1 ≤ x ≤ x5 can be inscribed
in a square, with (x1, g(x1)) and (x5, g(x5)) in the upper corners and
(x2, 0) at the bottom.

Step Three: Show That the New Polynomial Satisfies (c).
So far, we have confirmed that g(x) has properties (a) and (b); we
now show that it has property (c).

Because g1(0) = 1 and g1(1) = 0, for all small ε1 we have g(0) ≈ 1
and g(1) ≈ 0. That is (recalling that −2 > a1 > b1 > − 3

2 ), for all
small ε1 we have

(†) g(0) > (−1−a1)−ε1 = x2−a1, and g(1) < (−1−b1)−ε1 =
x2 − b1.
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Hence, g(1) < x2 − b1 < x2 − x1 and x2 − x1 < x2 − a1 < g(0),
implying that g has property (c). This completes the proof.

Problem 18 Let AD be the internal angle bisector of A in triangle
BAC, with D on BC. Let M and N be points on the circumcircles
of triangles ADB and ADC, respectively, so that MN is tangent to
these two circles. Prove that line MN is tangent to the circle passing
through the midpoints of BD, CD, and MN .

Solution: All angles are directed modulo π.
Let lines BM and CN meet at X. Let E, F, G be the midpoints of

BD, CD, MN , respectively.
Observe that ∠XMD = π−∠DMB = π−∠DAB = π−∠CAD =

π − ∠CND = ∠DNX, and ∠MDN = π − ∠DNM − ∠NMD =
π−∠DCN −∠MBD = π−∠BCX −∠XBC = ∠CXB = ∠NXM .
Hence, quadrilateral MDNX is a parallelogram, so that MB ‖ ND

and NC ‖ MD.
Because E and G are the midpoints of MN and BD, and MB ‖

ND, we have EG ‖ MB ‖ ND. Similarly, FG ‖ NC ‖ MD. Thus,

∠MGE = ∠MND = ∠NCD = ∠GFE.

Therefore, MG is tangent to the circumcircle of triangle EFG, as
desired.

Problem 19 In tetrahedron A1A2A3A4, let `k be the line connect-
ing Ak with the incenter of the opposite face. If `1 and `2 intersect,
prove that `3 and `4 intersect.

Solution: We denote by Ik the incenter of the face opposite the
vertex Ak. Since `1 and `2 intersect, we know that A1, A2, I1, and I2

lie on a single plane P. Because line A3A4 is obviously not on P, it
intersects P in at most one point.

Line A1I2 is the internal angle bisector of angle A3IA4, so it inter-
sects line A3A4; because line A1I2 lies in P, so does the intersection
point Q1. Similarly, line A2I1 intersects line A3A4 at a point Q2 ∈ P.
Because line A3A4 and P intersect in at most one point, we have
Q1 = Q2; that is, lines A1I2, A2I1, and A3A4 concur.

Applying the angle bisector theorem to triangles A1A3A4 and
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A2A3A4, we see that

A1A3

A1A4
=

Q1A3

Q1A4
=

Q2A3

Q2A4
=

A2A3

A2A4
,

or
A1A3

A2A3
=

A1A4

A2A4
.

Lines A3I4 and A4I3 intersect A1A2 at some points Q3 and Q4,
respectively. Then the above equation and the angle bisector theorem
gives A1Q3

A2Q3
= A1Q4

A2Q4
, so that Q3 = Q4; that is, lines A3I4, A4I3, and

A1A2 concur at some point Q. Then I3 and I4 lie on sides QA4 and
QA3, respectively, of triangle QA3A4, implying that lines A3I3 and
A4I4 — cevians of this triangle — intersect.

Problem 20 An infinite set S of points on the plane has the
property that no 1 × 1 square of the plane contains infinitely many
points from S. Prove that there exist two points A and B from S such
that min{XA, XB} ≥ 0.999AB for any other point X in S.

Solution: Let P1 be any point in S. Given Pk, let Pk+1 be a point
in S with minimal distance from Pk. Such a point must exist, because
otherwise some circle around Pk contains infinitely many points in S

— but this circle can be covered with 1 × 1 squares each containing
finitely many points in S, a contradiction.

We claim that Pk+1Pk+2 ≥ 0.999PkPk+1 for some k. Suppose not;
then the Pk are all distinct, and

P1Pk+1 ≤
∞∑

k=1

PkPk+1 <

∞∑

k=0

0.999kP1P2 =
1

1− 0.999
P1P2 = 1000P1P2.

Hence, the circle of radius 1000P1P2 centered at P1 contains infinitely
many points in S, a contradiction.

Hence, Pk+1Pk+2 ≥ 0.999PkPk+1 for some k, and we can set
(A,B) = (Pk, Pk+1).

Problem 21 Prove that from any set of 117 pairwise distinct three-
digit numbers, it is possible to select 4 pairwise disjoint subsets such
that the sums of the numbers in each subset are equal.

Solution: We examine subsets of exactly two numbers. Clearly, if
two distinct subsets have the same sum, they must be disjoint. The
number of two-element subsets is

(
117
2

)
= 6786. Furthermore, the
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lowest attainable sum is 100 + 101 = 201, while the highest sum is
998 + 999 = 1997, for a maximum of 1797 different sums. By the
Pigeonhole Principle and the fact that 1797 · 3+1 = 5392 < 6786, we
see that there are 4 two-element subsets with the required property.

Problem 22 The numbers from 1 to 999999 are divided into two
groups. For each such number n, if the square closest to n is odd,
then n is placed in the first group; otherwise, n is placed in the second
group. The sum of the numbers in each group is computed. Which
group yields the larger sum?

Solution: Both groups yield equal sums. First we will prove the
following result.

Lemma. If the numbers in [k2, (k +1)2−1], k a positive integer, are
divided according to the rules, then the sums of the numbers in the
two groups are the same.

Proof. The numbers will be divided depending on whether they are
closer to k2 or (k + 1)2. We call the former group A and the latter
group B. The largest number in A is then

⌊
k2+(k+1)2

2

⌋
= k2 + k,

while the smallest number in B is k2 + k + 1.
Thus, A has k + 1 elements with average value 1

2 (k2 + (k2 + k)) =
1
2k(2k + 1), so the sum of the elements in A is

1
2
k(k + 1)(2k + 1).

B has k elements with average value 1
2 ((k2 + k + 1) + (k2 + 2k)) =

1
2 (2k + 1)(k + 1), so the sum of the elements in B is

1
2
k(2k + 1)(k + 1).

We see that the two sums are equal, proving the lemma.

By applying the lemma for k = 1, 2, 3, . . . , 999, we see that the two
given total sums are equal, as claimed.

Problem 23 Two polynomials P (x) = x4 + ax3 + bx2 + cx + d and
Q(x) = x2+px+q take negative values on some common real interval
I of length greater than 2, and outside of I they take on nonnegative
values. Prove that P (x0) < Q(x0) for some real number x0.
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Solution: We first shift the polynomials so that the smaller root is
at the origin and the other root is at r, for r > 2. Thus Q(x) = x(x−r)
and P (x) = Q(x)R(x) for some monic quadratic R(x). Note that

R(x) = P (x)/Q(x) > 0 (∗)
for all x 6= 0, r.

We claim that R(0) 6= 1 or R(r) 6= 1. If instead R(0) = R(r) = 1,
then R(x) = x(x−r)+1 = x2−rx+1. But then R(r/2) = − r2

4 +1 < 0,
contradicting (∗).

If R(0) 6= 1, then for small ε > 0 either

(i) R(−ε) < 1, or

(ii) R(ε) > 1.

Also, for ε < r note that Q(−ε) > 0 and Q(ε) < 0 for small ε > 0.
Hence, either

(i) P (−ε) = Q(−ε)R(−ε) < Q(−ε), or

(ii) P (−ε) = Q(−ε)R(−ε) < Q(−ε).

Similarly, if R(r) 6= 1, then for small ε > 0 either P (r−ε) < Q(r−ε)
or P (r + ε) < Q(r + ε).

Problem 24 The point K is selected inside parallelogram ABCD

such that the midpoint of AD is equidistant from K and C and such
that the midpoint of CD is equidistant from K and A. Let N be the
midpoint of BK. Prove that ∠NAK = ∠NCK.

Solution: We denote the midpoint of CK by P and the midpoint
of AD by Q. Because QC = QK, PQ ⊥ CK.

Because NP is the midline of triangle KBC, NP = 1
2 ·BC = AQ

and NP ‖ BC ‖ AQ. Thus quadrilateral ANPQ is a parallelogram.
Because PQ ⊥ CK, AN ⊥ CK as well. Similarly, CN ⊥ AK. If we
denote by R the intersection of line AN with line CK and by S the
intersection of line CN with line AK, we see that 4ANS ∼ 4CNR.
It follows that ∠NAK = ∠NCK.

Problem 25 We are given a 2000-sided polygon in which no three
diagonals are concurrent. Each diagonal is colored in one of 999
colors. Prove that there exists a triangle whose sides lie entirely on
diagonals of one color. (The triangle’s vertices need not be vertices
of the 2000-sided polygon.)
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Solution: We disregard one of the 2000 vertices and focus on
the 1999-gon formed among the other vertices. Consider the 1999
diagonals of the new polygon that split the 1999-gon into two halves
with 999 and 1000 sides each. By the Pigeonhole principle, we know
that at least three of these diagonals must be the same color. Because
every two of these diagonals intersect, the three diagonals must form
a triangle with sides of the same color.

Problem 26 Jury lays 2001 coins, each worth 1, 2, or 3 kopecks,
in a row. Between any two k-kopeck coins lie at least k coins for
k = 1, 2, 3. For which n is it possible that Jury lays down exactly n

3-kopeck coins?

Solution: It is possible for Jury to lay down n 3-kopeck coins for
precisely n = 500 and 501. We consider the row of coins as a sequence
of 2001 numbers each of which is 1, 2, or 3.

Suppose that some 3 in the sequence has at least four neighbors
a1, a2, a3, a4 to its right (resp. left). If a1 = 2, then a2 = 1 and a3

cannot equal 3, 2, or 1, a contradiction. Hence, a1 6= 2, and certainly
a1 6= 3. Thus, a1 = 1, and applying the given condition we find that
(a1, a2, a3, a4) = (1, 2, 1, 3).

Therefore, the 3-kopeck coins occupy every fourth slot in the row,
starting with either the first, second, third, or fourth slot. In these
cases, there are b2004/4c, b2003/4c, b2002/4c, or b2001/4c 3-kopeck
coins, respectively; that is, there are either 500 or 501 3-kopeck coins.
These values of n are attainable, by laying out 500 sets of coins with
values 3, 1, 2, 1 from left to right, and then either (i) placing a final
1-kopeck coin to the left, or (ii) placing a final 3-kopeck coin to the
right.

Problem 27 A company of 2n + 1 people has the property that
for each group of n people, there is a person among the other n + 1
who knows everybody in that group. Prove that some person in the
company knows everybody else. (If a person A knows a person B,

then B knows A as well.)

Solution: We begin with the following lemma.

Lemma. Given a graph where every vertex has positive degree, one
may choose a set S of at most half of the vertices, such that every
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vertex not in S is adjacent to at least one vertex in S.

Proof. We prove the claim by strong induction on m, the number of
vertices. For m = 2, 3, the claim is obvious. Assume that the claim
holds for m < k. Then given a graph with k vertices satisfying the
given conditions, choose any vertex v and remove all vertices adjacent
to it, leaving a graph with at most k−2 vertices. The remaining graph
satisfies the condition in the induction hypothesis, so we may apply
the induction hypothesis to choose a set S′ with |S′| ≤ k−2

2 . Thus,
S = S ∪{v} contains at most k/2 vertices, and any vertex not in S is
either adjacent to v or adjacent to some vertex in S′. This completes
the inductive step, and the proof.

Assume, for the sake of contradiction, that no person knows every-
body else. Construct a graph whose vertices are the 2n + 1 people,
where two people are connected by an edge if and only if they do not
know each other. Applying the lemma, it follows that one may choose
n of the 2n+1 vertices such that each of the remaining n+1 vertices
are adjacent to one of the n chosen vertices. In other words, among
the group of the corresponding n people, nobody among the other
n + 1 people knows all the people in that group — contradicting the
conditions given in the problem statement. Therefore, our original
assumption was false, and some person knows everybody else.

Problem 28 Side AC is the longest of the three sides in triangle
ABC. Let N be a point on AC. Let the perpendicular bisector of
AN intersect line AB at K, and let the perpendicular bisector of CN

intersect line BC at M. Prove that the circumcenter of triangle ABC

lies on the circumcircle of triangle KBM.

Solution: We denote the circumcenter of triangle ABC by O, the
projections of O onto lines AB, BC by C1, A1, and the projection of
B onto line AC by P . If N = P , then ∠OKB = ∠OMM = π/2, so
that O,K, B, M are concyclic. Assume now that N 6= P .

Because ∠C1OB = ∠C and ∠A1OB = ∠A, we have

OC1

OA1
=

OB · cos∠C

OB · cos∠A
=

cos∠C

cos∠A
.

Next, observe that — using signed distances — the signed length
of the projection of C1K onto line AC equals 1

2NA (the distance
from the midpoint of NA to A), minus 1

2PA (the distance from the
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projection of K to A), or 1
2NA− 1

2PA = 1
2NP . Similarly, the length

of the projection of A1M equals 1
2NP . Thus,

C1K =
NP

2 cos ∠A

and
A1M =

NP

2 cos ∠C
,

or
C1K

A1M
=

cos ∠C

cos ∠A
=

OC1

OA1
.

Because we also have ∠OC1K = π/2 = ∠OA1M , this means that
4OC1K ∼ 4OA1M . Hence, ∠OKC1 = ∠OMA1.

Because AC is the longest side of triangle ABC, O lies in between
rays BA and BC. This, combined with the fact that the projections
of KC1 and MA1 onto line AC have the same signed length (so that
if AC is horizontal, then K is to the left of C1 if and only if M is
to the left of A1), implies that ∠OKC1 and ∠OMA1 are equal as
directed angles. Then using directed angles modulo π, we have

∠OKB = ∠OKC1 = ∠OMA1 = ∠OMB,

so that O, K,M, B are indeed concyclic.

Problem 29 Find all odd positive integers n greater than 1 such
that for any relatively prime divisors a and b of n, the number a+b−1
is also a divisor of n.

Solution: We will call a number good if it satisfies the conditions
given. It is not difficult to see that all prime powers are good. Suppose
n is a good number that has at least two distinct prime factors. Let
n = prs, where p is the smallest prime dividing n and s is not divisible
by p. Because n is good, p + s − 1 must divide n. For any prime q

dividing s, s < p + s − 1 < s + q, so q does not divide p + s − 1.
Therefore, the only prime factor of p+ s− 1 is p. Then s = pc− p+1
for some c > 1. Because pc must also divide n, pc + s − 1 = 2pc − p

divides n. Because 2pc−1 − 1 has no factors of p, it must divide s.
But p−1

2 2pc−1 − 1 = pc − pc−1 − p−1
2 < pc − p + 1 < p+1

2 2pc−1 − 1 =
pc + pc−1 − p+1

2 . This is a contradiction, so the only good numbers
are prime powers.
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Problem 30 Each of the subsets A1, A2, . . . , A100 of a line is the
union of 100 pairwise disjoint closed intervals. Prove that the inter-
section of these 100 sets is the union of no more than 9901 disjoint
closed intervals. (A closed interval is a single point or a segment.)

Solution: We prove by induction that for m ≥ 1, A1 ∩ · · · ∩ Am

is the union of no more than 99m + 1 disjoint closed intervals. The
base case m = 1 is true by the given condition. Now assuming that
our assertion is true for m = k, we prove it is true for m = k + 1. We
begin by using the induction hypothesis to write

A1 ∩ · · · ∩Ak =
n⋃

i=1

Si,

where n ≤ 99k + 1 and the Si are disjoint closed intervals.
Consider what happens to each Si when we take the intersection

of Ak+1 with the set of intervals we have so far. Some Si’s may
disappear, some may be reduced to smaller intervals, and some may
be split into more than one interval. Of these possibilities, the only
one that increases the number of intervals in our intersection is the
last one. Suppose that Ak+1 ∩ Si consists of t + 1 intervals, thus
increasing the number of intervals by t. Then the t “gaps” between
these intervals must correspond to t “gaps” between intervals of Ak+1.
Now, the total number of gaps between intervals in Ak+1 is at most 99,
because the total number of intervals in Ak+1 is 100. Thus, summing
over all i, the total number of intervals in Ak+1 ∩ (

⋃n
i=1 Si) is at

most 99 more than the number of intervals in
⋃n

i=1 Si, completing
the induction.

Problem 31 Two circles are internally tangent at a point N, and
a point K different from N is chosen on the smaller circle. A line
tangent to the smaller circle at K intersects the larger circle at A

and B. Let M be the midpoint of the arc AB of the larger circle
not containing N. Prove that the circumradius of triangle BMK is
constant as K varies along the smaller circle (and regardless of which
arc MN point B lies on.

Solution: Let the small circles and large circles be ω1 and ω2, with
radii r1 and r2, respectively. Notice that the homothety about N of
ratio R/r takes ω1 to ω2. Letting O be the radius of ω2, line OM is
perpendicular to line AB (because OM is the perpendicular bisector
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of AB) and also to the tangent to ω2 at M . Hence, line AB is parallel
to the tangent at M . Thus, the homothety of ratio R/r about N not
only takes ω1 to ω2, it takes K to M as well.

So, N , K, and M are collinear. This gives us ∠BMN = ∠BMK.
Because M is the midpoint of the arc AB, we also have ∠BNM =
∠MNA = ∠MBA = ∠MBK. Therefore, 4BMN ∼ 4KMB.
Then

BM

KM
=

MN

MB
,

or
MB

MN
=

√
MK

MN
.

Our homothety sends NK to NM , so KN
MN = r

R and MK
MN = 1 − r

R .

Thus, the ratio of triangle KMB to triangle BMN is MB
MN =

√
MK
MN =√

1− r
R . Because the circumradius of triangle BMN is R, the

circumradius of triangle KMB is R
√

1− r
R , a constant.

Problem 32 In a country, two-way roads connect some cities in
pairs such that given two cities A and B, there exists a unique path
from A to B which does not pass through the same city twice. It is
known that exactly 100 cities in the country have exactly one outgoing
road. Prove that it is possible to construct 50 new two-way roads so
that if any single road were closed, it would still be possible to travel
from any city to any other.

Solution: We prove the claim in the more general situation with
100 replaced by 2n and 50 replaced by n, where n is a positive integer.

Consider the network of roads as a graph G with vertices repre-
senting cities and edges representing roads. Then the condition that
a unique non-self-intersecting path exists between each pair of cities
A and B means that the graph is connected and contains no cycles;
that is, G is a tree. Call a vertex of G a leaf if it has degree 1 (so
that G has exactly 2n leaves) and a branch point if it has degree at
least 3. If n > 1, from any given leaf L, we can follow edges of G
until we reach a branch point B — otherwise, we would ultimately
reach another leaf and be unable to reach the other 2n − 2 leaves of
G, contradicting the connectedness of G. Call the set of vertices and
edges on the path from L to B, excluding B, the twig corresponding
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to L. Finally, call a graph that remains connected if any single edge
is removed 2-connected.

In this terminology, we are to show that given a tree G with 2n

leaves, we can add n edges to make it 2-connected.
We induct on n. In the case n = 1, adding an edge between the

two leaves of G suffices: this causes G to become a single cycle, which
is clearly 2-connected. Otherwise, assume the claim is true for graphs
with 2n− 2 leaves, n ≥ 2; we prove that it is true for graphs with 2n

leaves.
Let L1 be any leaf of G. Because n ≥ 2, there exists a twig T1

corresponding to L1. Let B1 be the branch point at the other end of
T1. Now, let G′ = G \ T1, the subgraph of G with T1 removed. Note
that G′ now has 2n − 1 leaves, and that B1 is not necessarily still a
branch point, but certainly does not become a leaf. We claim that we
can find another leaf L2 such that its twig T2 does not contain B1.

In the case that B1 is the only branch point of G′, we can choose L2

to be any of the remaining leaves: each leaf will have its twig end at
B1, and since a twig by definition does not include its branch point,
any leaf suffices.

Otherwise, G′ has some other branch point B. In this case B has 3
or more neighbors, one of which is along the unique path from B to
B1. We choose any neighbor other than that one, and follow edges of
G′ until we reach a leaf. We claim that we can take this leaf to be L2.
Indeed, its twig is a subset of path from L2 to B, and hence cannot
include B1.

Thus, we now have a second leaf L2 of G′ such that its twig T2 does
not contain B1. Therefore, T2 is also the twig of L2 in our original
graph G; we will use this fact later. Cut off T2 from G′, leaving the
subgraph G′′ = G′ \T2. Now G′′ is a tree with 2n−2 leaves, so we can
apply the induction hypothesis to it to obtain a 2-connected graph
G′′2 at the cost of n− 1 added edges.

Going back to G, we add the n − 1 edges that the induction
hypothesis prescribed for G′′ plus one additional edge between L1

and L2. Call this new graph G2; we claim that G2 is 2-connected.
Consider the path between the branch points B1 and B2 (possibly the
same) associated with L1 and L2 in the original graph G. This path
cannot intersect either T1 or T2, because neither T1 nor T2 contains
a branch point. Hence, this path, along with T1, T2, and the added
edge between L1 and L2, forms a cycle C. Furthermore, G2 is the
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union of C and G′′2 . Now, because C and G′′2 share at least one vertex
and each is 2-connected, it follows that G2 is also 2-connected.

Problem 33 The polynomial P (x) = x3 + ax2 + bx + c has three
distinct real roots. The polynomial P (Q(x)), where Q(x) = x2 + x +
2001, has no real roots. Prove that P (2001) > 1

64 .

Solution: We denote the three roots of P (x) by r1, r2, and r3.
Thus we may write P (x) = (x − r1)(x − r2)(x − r3), or P (2001) =
(2001− r1)(2001− r2)(2001− r3). We consider the case where one or
more of the rk’s, say r1, is greater than or equal to (2001− 1

4 ). Because
the minimum of Q(x) is at the point (− 1

2 , 2001 − 1
4 ), we will have

Q(x) = r1 for some x0. Then P (Q(x0)) = 0, a contradiction. Thus
we see that rk < 2001 − 1

4 for k = 1, 2, 3, and P (2001) >
(

1
4

)3 = 1
64 ,

as wanted.

Problem 34 Each number 1, 2, . . . , n2 is written once in an n × n

grid such that each square contains one number. Given any two
squares in the grid, a vector is drawn from the center of the square
containing the larger number to the center of the other square. If
the sums of the numbers in each row or column of the grid are equal,
prove that the sum of the drawn vectors is zero.

Solution: Take coordinates so that the bottom-left square is (1, 1)
and the top right square is (n, n). Let S = {(a, b) | 1 ≤ a, b ≤ n} be
our set of squares, and for x ∈ S let w(x) denote the number written
in square x. The sum P in question satisfies

P =
∑

x,y∈S
w(x)<w(y)

(y − x).

Given y ∈ S, we have w(y)−1 choices of x for which w(x) < w(y),
and n2−w(y) choices of x for which w(x) > w(y). Thus, y appears in
the sum with a coefficient of (w(y)−1)−(n2−w(y)) = 2w(y)−(n2+1).
Therefore,

P =
∑

y∈S

(
2w(y)− (n2 + 1)

)
y.

We claim that the x-coordinate of P equals zero. Let Tk consist of
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the squares in the k-th column. Then the x-coordinate of
∑

y∈Tk

(
2w(y)− (n2 + 1)

)
y (1)

equals

k
∑

y∈Tk

(
2w(y)− (n2 + 1)

)
= k


2

∑

y∈Tk

w(y)− n(n2 + 1)


 . (2)

Now, the sum σ of all the numbers in the grid equals n2(n2+1)
2 .

The sum of the numbers in each column is the same, implying that
the numbers in each column have sum σ

n = n(n2+1)
2 . Specifically,∑

y∈Tk
w(y) = n(n2+1)

2 . Thus, the expression in the right hand side
of (2) is zero, i.e., the x-coordinate of (1) is zero.

Summing (1) for k = 1, 2, . . . , n, we find that P has x-coordinate
0. Similarly, P has y-coordinate 0. This completes the proof.

Problem 35 Distinct points A1, B1, C1 are selected inside triangle
ABC on the altitudes from A, B, and C, respectively. If [ABC1] +
[BCA1] + [CAB1] = [ABC], prove that the circumcircle of triangle
A1B1C1 passes through the orthocenter H of triangle ABC.

Solution: Angles are directed modulo π, lengths are directed (with
HA, HB, HC > 0), and triangle areas a re directed.

We begin by proving a strengthened version of the converse. As-
sume that A1, B1, C1 are distinct points on lines AH, BH, CH

(not necessarily lying inside triangle ABC). Assume that (i) points
A1, B1, C1, H are distinct and concyclic, or that (ii) triangle A1B1C1

is tangent to one of the lines AA1, BB1, CC1 at H. In case (i), be-
cause quadrilateral A1B1C1H are concyclic, two of HA1, HB1, HC1

lie on the boundary of the quadrilateral, and the two corresponding
lengths from HA1,HB1,HC1 will have the same sign. Then by
Ptolemy’s Theorem,

|B1C1| ·HA1 + |A1C1| ·HB1 + |A1B1| ·HC1 = 0. (∗)
This equation also holds in case (ii): if, for instance, C1 = H, then
HA1, HB1 must have opposite same sign, and the left hand side of
(∗) is |B1H| ·HA1 + |A1H| ·HB1 = 0.

Let E and F be the feet of the altitudes from B and C, respectively.
Using directed angles modulo π, note that ∠CAB = π − ∠EHF =
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∠FHB = ∠C1HB1 = ∠C1A1B1. Similarly, we find that ∠CBA =
∠C1B1A1, implying that 4ABC ∼ 4A1B1C1. Together with (∗),
this gives

|BC| ·HA1 + |AC| ·HB1 + |AB| ·HC1 = 0. (†)

Furthermore, we have

|BC| ·HA1 = 2 · ([CA1B]− [CHB]),

|AC| ·HB1 = 2 · ([AB1C]− [AHC]),

|AB| ·HC1 = 2 · ([BC1A]− [BHA]).

Substituting into (†) above yields

[ABC1] + [BCA1] + [CAB1] = [CHB] + [AHC] + [BHA] = [ABC],

as desired.
Now suppose we do not know that A1, B1, C1,H are concyclic.

We draw the circumcircle of triangle A1B1H and denote its second
intersection with line CH by C ′. (If the circle is tangent to line CH,
then C ′ = H.) By the above result, we know that [ABC ′]+[BCA1]+
[CAB1] = [ABC]. Only one point C1 on line CH that satisfies the
area equation, so we see that C ′ = C1. Thus A1, B1, C1, and H must
be concyclic.

Problem 36 We are given a set of 100 stones with total weight 2S.

Call an integer k average if it is possible to select k of the 100 stones
whose total weight equals S. What is the maximum possible number
of integers which are average?

Solution: Observe that k = 0 and 100 cannot be average; and if
the values k = 1 or k = 99 are average then no other values can be
average. Thus, at most 97 integers are average.

Indeed, 97 can be attained: We claim that one set that yields 97
average integers contains four stones of weight 1 and two stones of
weight 2i for i = 1, 2, . . . , 48. In this case, 2S = 2(249 − 1) + 2 = 250.

For k = 2, 3, . . . , 98, we can find a set Tk of k stones with total
weight S = 249 as follows. For k = 2, we let T2 contain the two
stones of weight 248. For 3 < k ≤ 50, we let Tk contain one stone of
each weight 248, 247, · · · , 251−k, and two stones of weight 250−k, for a
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total weight of

250−k +
48∑

i=50−k

2i = 250−k +
48∑

i=50−k

(2i+1 − 2i)

= 250−k + (249 − 250−k) = 249.

(In other words, given k−1 stones of weights 248, 247, . . . , 251−k, 251−k,
we replace one stone of weight 251−k with two stones of weight 250−k.)
Finally, for 51 ≤ k ≤ 98, we simply take all the stones not in T100−k.

Problem 37 Two finite sets S1 and S2 of convex polygons in the
plane are given with the following properties: (i) given any polygon
from S1 and any polygon from S2, the two polygons have a common
point; (ii) each of the two sets contains a pair of disjoint polygons.
Prove that there exists a line which intersects all the polygons in both
sets.

Solution: In this solution, we treat the polygons as two-dimensional
regions rather than the one-dimensional boundaries of such regions.
(The problem statement is the same regardless of which definition of
“polygon” we use.)

We begin by proving the following lemma:

Lemma 1. Given two closed, convex polygons that are disjoint, some
line ` separates the polygons into two open half-planes. (That is, each
open half-plane bounded by ` contains one of the polygons.)

Proof. Choose point A in one polygon P1 and point B in the second
polygon P2 so that the distance between them is minimized, and let
` be the perpendicular bisector of AB. Without loss of generality, `

is vertical with A on its left. Suppose, for sake of contradiction, that
some point C in the first polygon is to the right of A. Segment AC

passes through the interior of the circle centered at B with radius
AB, so some point D ∈ AC lies closer to B than A does. However,
by convexity, D lies inside P1, contradicting the minimal choice of A

and B.
Thus, P1 lies entirely to the left of `. Likewise, P2 lies entirely to

the right of `.

Call the polygons in S1 red, and call the polygons in S2 blue. Define
a red skewer (resp. blue skewer) to be any line that intersects each
polygon in S1 (resp. S2).
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Lemma 2. If a line ` separates two red (resp. blue) polygons into two
closed half-planes, then it is a blue (resp. red) skewer.

Proof. We prove the claim when ` separates two red polygons. Let
the two red polygons be P1 and P2, and take any blue polygon Q.
By assumption, Q intersects polygons P1,P2 at some points A1, A2,
respectively. By convexity, segment A1A2 lies within Q. Because
` separates the Pi, it must intersect A1A2; i.e., ` must intersect Q.
Because this holds for every blue polygon, ` must be a blue skewer.

We are given that there are two disjoint red polygons. By Lemma
1, some line ` separates them into two open half-planes. Set up
coordinate axes where ` is given by the line x = 0. Consider the
set S ⊆ R2 of order pairs (m, b) such that y = mx+ b is a red skewer.
We claim that it is nonempty, closed, and bounded.

We first prove that S is nonempty. We are given that there are two
disjoint blue polygons. By Lemma 1, some line separates them into
two open half-planes; by Lemma 2, this line is a red skewer. Hence,
there exists a red skewer, and S is nonempty.

Next, we prove that S is bounded. Of all the points (x, y) in red
polygons, we have b1 ≤ y ≤ b2 for some b1, b2; it is easy to see that
b1 ≤ b ≤ b2 if (m, b) ∈ S. Hence, b is bounded. As for m, we have
m = y1−y2

x1−x2
for some (x1, y1) in a red polygon strictly to the left of `

and some (x2, y2) in a red polygon strictly to the right of `. Over all
such pairs of points, |x1 − x2| attains some positive minimum value
and |y1 − y2| attains some maximum value. Hence, m is bounded as
well.

Finally, we prove that S is closed. For any red polygon P, consider
the set SP ⊆ R2 of ordered pairs (m, b) such that y = mx + b passes
through P. For each fixed b, the set of m such that (m, b) ∈ SP
is a closed interval [m1,m2] with m1 < m2; also, m1 and m2 are
continuous functions of b. Thus, SP is a closed (infinite) region
bounded by the continuous curves m = m1(b) and m = m2(b). S

is simply the intersection of the sets SP over all (finitely many) red
polygons P. Because each SP is closed, S is closed as well.

Therefore, S is nonempty, closed, and bounded. It follows that
there is a red skewer y = mx + b = m0x + b0 with maximal m. We
claim that y = m0x + b0 is a blue skewer as well.

Suppose, for sake of contradiction, that every polygon passes into
the open half-plane above (resp. below) y = m0x + b0. Fix some
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point to the far left (resp. far right) on this line, and then rotate
the line counter-clockwise by a tiny amount. Then the new line also
passes through every red polygon, giving a red skewer with higher
slope — contradicting the maximal definition of m0. Therefore, some
polygon lies in the closed half-plane below y = m0x + b0, and some
polygon lies in the closed half-plane above y = m0x + b0. By Lemma
2, y = m0x + b0 is a blue skewer. Therefore, y = m0x + b0 is both a
red skewer and a blue skewer, as desired.

Problem 38 In a contest consisting of n problems, the jury defines
the difficulty of each problem by assigning it a positive integral
number of points. (The same number of points may be assigned
to different problems.) Any participant who answers the problem
correctly receives that number of points for that problem; any other
participants receive 0 points. After the participants submitted their
answers, the jury realizes that given any ordering of the participants
(where ties are not permitted), it could have defined the problems’
difficulty levels to make that ordering coincide with the participants’
ranking according to their total scores. Determine, in terms of n,

the maximum number of participants for which such a scenario could
occur.

Solution: The maximum is n. Label the problems 1, 2, . . . , n.
Suppose that there are exactly n participants labelled 1, 2, . . . , n,

where participant i solves problem i and no other problems. It is
clear that the jury can choose the problem weights to produce any
ordering of the participants.

Now assume, for sake of contradiction, that there exists a scenario
involving m > n participants which meets the given conditions.
Assign to participant i the n-tuple xi, where the jth coordinate of
xi is 1 if participant i answered question j correctly and 0 otherwise.
Also, to each possible choice of problem weights, associate an n-tuple
containing in its jth entry the weight of problem j. Then for a given
problem-weight vector p, participant i scores p · xi points.

Because there are m > n participants and the dimension of the
vector space containing the xi’s is n, the xi are linearly dependent.
That is, there exist constants ai, not all 0, such that

∑m
i=1 aixi = 0.

Because all coefficients of each xi are either 0 or 1, there must
be at least one ai > 0 and at least one ai < 0. Without loss
of generality, assume that a1, . . . , ak ≥ 0 and ak+1, . . . , am ≤ 0
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where 1 < k < m; also assume that
∑k

i=1 |ai| ≥
∑m

i=k+1 |ai|. (If
either of these conditions were not true, we could simply relabel the
participants and the indices of the xi.) Writing bi = |ai|, we have

k∑

i=1

bixi =
m∑

i=k+1

bixi,

k∑

i=1

bi ≥
m∑

i=k+1

bi. (∗)

Also, bi ≥ 0 for i = 1, 2, . . . , n, and bi > 0 for some 1 ≤ i ≤ k and for
some k + 1 ≤ i ≤ m.

By assumption, there exists a choice of problem weights such that
the participants are ranked 1, 2, . . . ,m. That is, there exists p such
that

p · x1 > p · x2 > · · · > p · xm.

Taking the dot product of both sides of our equation with p, we obtain
k∑

i=1

bi(p · xi) =
m∑

i=k+1

bi(p · xi).

Each expression p ·xi on the left side is equal to at least p ·xk, while
each such expression on the right side is strictly less. Thus, because
bi ≥ 0 for all i and there is at least one nonzero bi on each side, we
have

k∑

i=1

bi(p · xk) ≤
k∑

i=1

bi(p · xi) =
m∑

i=k+1

bi(p · xi) <

m∑

i=k+1

bi(p · xk).

Also, because k < m, participant k beat at least one other participant,
implying that p ·xk > 0. But then we can cancel this term from both
sides of the above inequality, leaving

k∑

i=1

bi <

m∑

i=k+1

bi,

which contradicts (∗). Therefore, our original assumption was incor-
rect, and n is indeed the largest possible number of participants.

Problem 39 The monic quadratics f and g take negative values
on disjoint nonempty intervals of the real numbers, and the four
endpoints of these intervals are also distinct. Prove that there exist
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positive numbers α and β such that

αf(x) + βg(x) > 0

for all real numbers x.

First Solution: Let (a−u, a+u) and (b− v, b+ v) be the intervals
on which f and g are negative, and assume without loss of generality
that a + u < b− v. We claim that setting (α, β) = (u, v) suffices.

Suppose that x ∈ (b − v, b + v). Then g′(x) = 2(x − b) > −2βv,
and because x > a + u we have f ′(x) = 2(x − a) > 2αu. Hence, the
derivative of αf(x) + βg(x) is greater than 2αu − 2βv = 0. Because
αf(x) + βg(x) is positive at x = b− v, it must be positive along the
entire interval [b− v, b + v].

Likewise, αf(x)+βg(x) is positive along the interval [a−u, a+u].
And because αf(x) + βg(x) is clearly positive outside [a− u, a + u]∪
[b− v, b + v], it is positive everywhere.

Second Solution: Let (r1, r2) and (s1, s2) be the intervals on which
f and g are negative, and assume without loss of generality that r2 <

s1. Then we have f(x) = (x−r1)(x−r2) and g(x) = (x−s1)(x−s2),
so

αf(x) + βg(x) = α(x− r1)(x− r2) + β(x− s1)(x− s2)

= (α + β)x2 − (α(r1 + r2) + β(s1 + s2))x

+ αr1r2 + βs1s2.

The leading coefficient of this quadratic is positive for any α, β > 0,
so the quadratic is always positive if and only if the discriminant D

is negative. Let u = r2 − r1, v = s2 − s1, and w = s1 − r2. Then we
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have

D = (α(r1 + r2) + β(s1 + s2))2 − 4(α + β)(αr1r2 + βs1s2)

= α2(r1 − r2)2 + β2(s1 − s2)2

+ 2αβ((r1 + r2)(s1 + s2)− 2r1r2 − 2s1s2)

= α2u2 + β2v2 + 2αβ((r1 − r2)(s1 − s2)− 2(r1 − s1)(r2 − s2))

= α2u2 + β2v2 + 2αβ(uv − 2(u + w)(v + w))

< α2u2 + β2v2 + 2αβ(uv − 2uv)

= α2u2 + β2v2 − 2αβuv,

where the inequality follows from the fact that all variables involved
are positive. Choosing α = v and β = u causes the last quantity to
be 0, and hence D to be negative.

Problem 40 Let a and b be distinct positive integers such that
ab(a + b) is divisible by a2 + ab + b2. Prove that |a− b| > 3

√
ab.

Solution: We have that a2 + ab + b2 divides

(a2 + ab + b2)a− ab(a + b) = a3,

and similarly that a2 + ab + b2 divides

(a2 + ab + b2)b− ab(a + b) = b3.

Write a = x · g and b = y · g with gcd(x, y) = 1. Then the above
results imply that

(x2 + xy + y2) | gx3 and (x2 + xy + y2) | gy3.

Because x and y are relatively prime,

(x2 + xy + y2) | g,

implying that g ≥ x2 + xy + y2.
Hence,

|a− b|3 = g · g2 · |x− y|3

≥ (x2 + xy + y2) · g2 · 1
> xy · g2 = ab.

It follows that |a− b| > 3
√

ab.
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Problem 41 In a country of 2001 cities, some cities are connected
in pairs by two-way roads. We call two cities which are connected
by a road adjacent. Each city is adjacent to at least one other city,
and no city is adjacent to every other city. A set D of cities is called
dominating if any city not included in D is adjacent to some city
in D. It is known that any dominating set contains at least k cities.
Prove that the country can be divided into 2001 − k republics such
that no two cities in any single republic are adjacent.

Solution: First observe that any city C is adjacent to at most
2001 − k other cities. Otherwise, there are t < k − 1 cities that
C is not adjacent to; taking C together with these t cities gives a
dominating set of fewer than k cities, which is impossible.

We consider two cases:

Case 1: There exists a city C that is adjacent to exactly 2001− k

others. Let S be the set of 2001− k cities that C is adjacent to, and
let T consist of the remaining k cities not in S.

Observe that no two cities A,B in T are adjacent, because otherwise
T − {A} is a dominating set with fewer than k cities.

Also, we claim that some two cities X,Y in S are not adjacent.
Otherwise, take any city A in T ; it is adjacent to some city B. From
the previous paragraph, B ∈ S. Then B is adjacent to more than
2001 − k cities: it is adjacent to the 2001 − k cities in S, and it is
adjacent to A. This contradicts our initial observation.

Hence, we can form 2001− k republics with the required property
as follows: T is one republic; X and Y form another republic; and
the remaining 1999− k cities in S each lie in their own republic.

Case 2: Each city is adjacent to fewer than 2001 − k others. In
this case, we start with 2001− k empty republics and then add cities
one by one. By the time we add a city C, because C is adjacent to
fewer than 2001 − k others, some republic does not yet contain any
of C’s neighbors; we place C in that republic. When all 2001 cities
are placed, no two cities in a republic are adjacent, as desired.

Problem 42 Let SABC be a tetrahedron. The circumcircle of
ABC is a great circle of a sphere ω, and ω intersects SA, SB, and
SC again at A1, B1, and C1, respectively. The planes tangent to



2001 National Contests: Problems 131

ω at A1, B1, and C1 intersect at a point O. Prove that O is the
circumcenter of tetrahedron SA1B1C1.

Solution: Consider the inversion about point S that fixes ω. This
inversion interchanges A with A1, B with B1, and C with C1. Thus,
it takes the circumsphere of SA1B1C1 to the plane ABC, which
passes through the center of ω by assumption. It follows that the
circumcenter of SA1B1C1 is taken to the reflection S′ of S across
plane ABC.

It suffices, then, to show that S′ is the image of O with respect to
the inversion. O lies on the three given planes tangent to ω; these
three planes can meet only at one point, however. Thus, it suffices to
show that S′ lies on the images of the three given planes under the
inversion.

The plane tangent to ω at A1 inverts to the sphere ωA which passes
through S and which is tangent to ω at A. Because ω is symmetric
about plane ABC, it follows that ωA is also symmetric with respect
to plane ABC. Hence, it passes through S′. Likewise, we see that
ωB and ωC , the corresponding images of the planes tangent to ω at
A1 and B1, pass through S′ as well. This completes the proof.
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1.14 Taiwan

Problem 1 Let O be the excenter of triangle ABC opposite A. Let
M be the midpoint of AC, and let P be the intersection point of MO

and BC. Prove that AB = BP if ∠BAC = 2∠ACB.

First Solution: We let a, b, c be the lengths of segments BC, CA, AB

respectively. Let Γ be the excircle of triangle ABC opposite A and
T, U, and V the points of tangency of Γ to lines AC, AB and BC

respectively. Let X be the intersection of line AO and BC, N the
foot of the perpendicular from P to AC, and Q the intersection of
MO with the perpendicular to AC from C. Finally, let θ = ∠ACB

so ∠BAC = 2θ.

First we prove some relations among the lengths a, b and c and the
angle θ that will later be useful in calculating the length BP. If R is
the circumradius of ABC, by the extended law of sines sin θ = c

2R

and sin 2θ = 2 sin θ cos θ = a
2R . Dividing these two equations yields

cos θ = a
2c .

Now, construct point D such that ABDC is an isosceles trapezoid
with AB and DC as equal legs. Then

∠BAD = ∠BAC − ∠DAC = ∠BAC − ∠ACB = 2θ − θ = θ.

Now, ABDC is a cyclic quadrilateral (as it is an isosceles trapezoid)
and chords AB and BD both subtend angles of θ. Therefore they are
equal in length and so BD = AB = DC = c. Also AD = BC = a.

Now, by Ptolemy’s Theorem, AB · DC + AC · AB = AD · BC, or
c2 + cb = a2. This can be rewritten as b + c = a2

c or b = a2−c2

c .

By equal tangents, we have AT = AU, but

AT = AC + CT = AC + CV and AU = AB + BU = AB + BV

by two more applications of equal tangents. So

2AT = AB + AC + BV + CV = AB + AC + BC = a + b + c.

It implies AT = a+b+c
2 . But as b + c = a2

c , AT = a(a+c)
2c .

Because ∠XAC = ∠XCA = θ, triangle AXC is isosceles with
AX = XC. This means that the median XM is perpendicular to side
AC. Thus, triangle AMX has a right angle at M, and so

XM = AM tan ∠XAM =
b

2
tan θ =

(a2 − c2) tan θ

2c
.
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As well, since T is the point of tangency of Γ and AC, OT ⊥ AC.

Thus we also have OT = AT tan θ = a(a+c)(tan θ)
2c . Now, triangles

MCQ and MTO are similar since they share the angle OAM and
their bases, being both perpendicular to AT, are parallel. Hence
QC = OT MC

MT . Now, MC = b
2 = a2−c2

2c as M bisects AC, and
MT = AT −AM = a+b+c

2 − b
2 = a+c

2 . So,

QC =
OT ·MC

MT

=
a(a + c)(a2 − c2) tan θ

2c2(a + c)

=
a(a2 − c2) tan θ

2c2

Now we wish to calculate PN. Because triangles PMN and QMC

are similar, PN
QC = MN

MC . But also triangles PCN and XCM are
similar, so that PN

XM = CN
MC . Summing these two equations gives

PN
QC + PN

XM = MN+CN
MC = 1. Dividing by PN gives 1

QC + 1
XM = 1

PN .

We plug in our previously calculated values for QC and XM, and get

1
PN

=
1

QC
+

1
XM

=
2c2

a(a2 − c2) tan θ
+

2c

(a2 − c2) tan θ

=
2c(c + a)

a(a2 − c2) tan θ

=
2c

a(a− c) tan θ

and so PN = a(a−c) tan θ
2c . Now, since angle CNP is right, we have

CP = PN
sin∠PCN = PN

sin θ . Substituting in our value for PN into
this equation yields CP = a(a−c) tan θ

2c sin θ = a(a−c)
2c cos θ) . But as previously

calculated, cos θ = a
2c , so

CP =
a(a− c)

2c a
2c

= a− c.

This implies that BP = BC − CP = a− (a− c) = c = AB, which is
what we wanted.

Second Solution: As before, let ∠ACB = θ, so that ∠BAC = 2θ.

Let T be the intersection of lines AO and BC. Then we have
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∠BAT = ∠TAC = θ, so ∠BTA = 2θ. It follows that triangles ABC

and BTA are similar and hence
AT

AC
=

BT

AB
.

Applying the exterior angle bisector theorem to triangle ABT and
bisector BO, we obtain

BT

AB
=

TO

AO
.

Combining this with the previous equation and rearranging gives

AT

TO
=

AC

AO
.

Let d(X,PQ) denote the distance from point X to line PQ. Then
we have

MP

PO
=

d(M, BC)
d(O,BC)

=
1
2
· d(A,BC)
d(O, BC)

=
1
2
· AT

TO
,

where in the second step we used the fact that M is the midpoint of
AC. We also have

AM

AO
=

1
2
· AC

CO
.

Thus, we see that
MP

PO
=

AM

AO
,

from which it follows that AP is the angle bisector of ∠OAM. Hence,

∠BAP = ∠BAT + ∠TAP = θ +
1
2
θ =

3
2
θ.

Since
∠ABC = 180− ∠BAC − ∠ACB = 180− 3θ,

we have ∠BPA = 3
2θ as well. This proves that AB = BP as wanted.

Problem 2 Let n ≥ 3 be an integer, and let A be a set of n distinct
integers. Let the minimal and maximal elements of A be m and M,

respectively. Suppose that there exists a polynomial p with integer
coefficients such that (i) m ≤ p(a) < M for all a ∈ A, and (ii)
p(m) < p(a) for all a ∈ A−{m,M}. Show that n ≤ 5, and prove that
there exist integers b and c such that each element of A is a solution
to the equation p(x) + x2 + bx + c = 0.

Solution: We begin by proving a lemma.
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Lemma. If p is a polynomial with integer coefficients, then for any
integers a, b, we have (a− b) | (p(a)− p(b)).

Proof. Let p(x) =
∑d

i=0 cix
i, where d is the degree of p. Then

p(a)− p(b) =
d∑

i=0

ci(ai − bi)

=
d∑

i=0

ci(a− b)(ai−1 + ai−2b + · · ·+ bi−1)

= (a− b)
d∑

i=0

ci((ai−1 + ai−2b + · · ·+ bi−1),

so we have expressed p(a)− p(b) as an integer multiple of a− b.

Applying the lemma to our polynomial p at points m and M, we
obtain (M −m) | (p(M)− p(m)) . On the other hand, by condition
(i), m ≤ p(m) < M and m ≤ p(M) < M, so |p(M)−p(m)| < M −m.

Thus, we must have p(M)− p(m) = 0, or p(m) = p(M).
Now the polynomial f(x) = p(x) − p(m) has m and M as roots,

so we can write f(x) = (x − m)(M − x)q(x), where q is another
polynomial with integer coefficients. Let a be any element of set
A − {m,M}. Then by (ii), we have p(a) > p(m), so f(a) > 0.

Because m < f(a) < M, both x−m and M − x are positive; hence,
q(a) > 0 as well. On the other hand, q has integer coefficients,
so we have q(a) ≥ 1 and hence f(a) ≥ (a − m)(M − a). Also,
f(a) = p(a) − p(m) < M − p(m) ≤ M − m, by applying (ii)
in the first inequality and (i) in the second. Therefore, we have
(a−m)(M − a) ≤ M −m− 1. The left side is a concave quadratic in
a which equals M −m− 1 when a = m + 1 or a = M − 1. It follows
that these are the only possible values for a. Thus, n ≤ 4: A contains
m,M, and possibly m+1 and M −1. Furthermore, f(x) matches the
quadratic (x − m)(M − x) at m and M, and it also does at m + 1
and M − 1 if either is in A. Because f(x) = p(x) − p(m), we have
p(x)− (x−m)(M −x)− p(m) = 0 at all elements of A, satisfying the
second claim.

Problem 3 Let n ≥ 3 be an integer and let A1, A2, . . . , An be n

distinct subsets of S = {1, 2, . . . , n}. Show that there exists an element
x ∈ S such that the n subsets A1 \ {x}, A2 \ {x}, . . . , An \ {x} are
also distinct.
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Solution: We construct a graph whose vertices are A1, A2, . . . , An

as follows. For each x, if there exist distinct sets Ai, Aj such that
Ai \ {x} = Aj \ {x}, then choose one such pair of sets Ai, Aj and
draw an edge between them. (Even if there are multiple pairs of sets
Ai, Aj with the required property, we only draw one edge.)

For sake of contradiction, suppose that the resulting graph contains
a cycle — without loss of generality, suppose that A1, A2, . . . , Ak form
a cycle and

A1\{x1} = A2\{x1}, A2\{x2} = A3\{x2}, . . . , Ak\{xk} = A1\{x1}.
By construction, x1, x2, . . . , xk are distinct. Without loss of general-
ity, assume that x1 6∈ A1 and x1 ∈ A2. Because A2 \{x2} = A3 \{x2}
and x1 ∈ A2, we have x1 ∈ A3 as well. Similarly, x1 lies in A4, A5,

. . . , Ak, and finally x1 ∈ A1, a contradiction.
Thus, the resulting graph is a tree with n vertices. Any such graph

has at most n−1 edges. Therefore, for some x ∈ S, there do not exist
distinct sets Ai, Aj such that Ai \ {x} = Aj \ {x}, as desired.

Problem 4 Let Γ be the circumcircle of a fixed triangle ABC.

Suppose that M and N are the midpoints of arcs B̂C and ĈA,

respectively, and let X be any point on arc ÂB. (Here, arc ÂB refers
to the arc not containing C; analogous statements hold for arcs B̂C

and ĈA.) Let O1 and O2 be the incenters of triangles XAC and XBC,

respectively. Let Γ and the circumcircle of triangle XO1O2 intersect
at Q. Prove that 4QNO1 ∼ 4QMO2, and determine the locus of Q.

Solution: We claim that the locus of Q consists of a single point.
To locate this point, we let Γ1 be the circle centered at M with radius
MB = MC, let Γ2 be the circle centered at N with radius NA = NC,

and let T be the intersection of Γ1 and Γ2. We will prove the Q is the
center of the unique spiral similarity taking M to N and B to T.

First, we prove that triangles QNO1 and QMO2 are similar.
Because arcs ÂN and N̂C of Γ are equal, the angles AXN and NXC

that subtend them are also equal. Thus XN bisects AXC, and since
O1 is the incenter of XAC, O1 lies on XN. Thus X, O1, and N are
collinear, and similarly X, O2, and M are collinear.

Now, since X, N, M, and Q are concyclic,

∠O1NQ = ∠XNQ = ∠XMQ = ∠O2MQ.
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As well, since X, O1, O2, and Q are concyclic,

∠QO1N = π − ∠QO1X = π − ∠QO2X = ∠QO2M.

So because ∠O1NQ = ∠O2MQ and ∠QO1N = ∠QO2M, triangles
QNO1 and QMO2 are similar, proving the first half of the problem.
As well, it implies that Q is the center of a spiral similarity taking M

to N and O2 to O1. It suffices to show that this similarity takes B to
T to complete the solution.

First, we show that B, N, and T are collinear. To do this, let T ′

be the intersection of BN with Γ1. We must show that T ′ = T. Let
α = ∠CBM. Then as BM = CM, ∠BCM = ∠CBM = α and

∠BMC = π − ∠CBM − ∠BCM = π − 2α.

Now, ∠BT ′C = 2π−∠BMC
2 = π

2 + α. So,

∠NT ′C = π − ∠BT ′C =
π

2
− α.

Also, quadrilateral BMCN is cyclic and so

∠T ′NC = ∠BNC = π − ∠CMB = 2α.

Because the sum of the angles of triangle NT ′C is π,

∠NCT ′ = π−∠T ′NC−∠NT ′C = π−2α−(
π

2
−α) =

π

2
−α = ∠NT ′C.

Hence, triangle NT ′C is isosceles with NT ′ = NC. Hence, T ′ lies on
Γ2, and so T ′ = T.

We now show that O1 lies on Γ2 and O2 lies on Γ1. Because AO1 bi-
sects ∠XAC, ∠O1AC = ∠XAC

2 and also ∠CAN = ∠CXN = ∠CXA
2

as XN bisects ∠CXA. Putting these two together gives

∠O1AN =
∠CXA + ∠XAC

2
=

π − ∠ACX

2
.

Now, ∠ANO1 = ∠ANX = ∠ACX. Because the sum of the angles of
triangle ANO1 is π, we have

∠NO1A = π − ∠O1AN − ∠ANO1

= π − π − ∠ACX

2
− ∠ACX

=
π − ∠ACX

2
= ∠O1AN.

This means that triangle ANO1 is isosceles with NO1 = NA, so O1

lies on Γ2 and similarly O2 lies on Γ1.
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Now, ∠O1NT = ∠XNB = ∠XMB = ∠O2MB by equal inscribed
angles. Because O1N and NT are both radii of Γ2, triangle O1NT

is isosceles and similarly triangle O2MB is also isosceles. This
implies that triangles O1NT and O2MB are similar. Thus the spiral
similarity around Q taking M to N and O2 to O1 must also take B

to T. Thus Q is the center of the unique spiral similarity taking M

to N and B to T. Because this does not depend on X, the locus of Q

is that single point, as desired.

Problem 5 Let x, y be distinct real numbers, and let f : N → R
be defined by f(n) =

∑n−1
k=0 ykxn−1−k for all n ∈ N. Suppose that

f(m), f(m+1), f(m+2), and f(m+3) are integers for some positive
integer m. Prove that f(n) is an integer for all n ∈ N.

Solution:
First of all, we note that f(n) =

∑n−1
k=0 ykxn−1−k = xn−yn

x−y . Denote
x + y and xy by a and b respectively. Consider two functions from
N to R : g(n) = xn and h(n) = yn. Since x and y are the roots of
q(t) = t2−at+b, f(n) and g(n) satisfy g(n+1) = ag(n)−bg(n−1) and
h(n + 1) = ah(n)− bh(n− 1). Function f(n) is a linear combination
of g(n) and h(n), so it satisfies the same condition:

f(n + 1) = af(n)− bf(n− 1). (*)

Moreover, we have f(1) = 1 and f(2) = a. Hence, it suffices to prove
that a and b are integers.

Consider d = f(m)f(m + 2)− f(m + 1)2, which is an integer. On
the other hand

d =
(xm − ym)(xm+2 − ym+2)− (xm+1 − ym+1)2

(x− y)2

=
−xmym+2 − ymxm+2) + 2xm+1ym+1

(x− y)2
= −(xy)m.

It means that bm is an integer. Similarly through the calculation of
f(m + 1)f(m + 3)− f(m + 2)2, we obtain that bm+1 is integer too. If
bm = 0, then b = 0 too. Otherwise b = bm+1/bm is rational. Since b

is rational and bm is an integer, it follows that b is an integer too. We
have f(m+2) = af(m+1)− bf(m) and a = f(m+2)+bf(m)

f(m+1) is rational
(f(m + 1) 6= 0 because x 6= y).
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We claim that if we define f(n) as

f(1) = 1, f(2) = a, f(n + 1) = af(n)− bf(n− 1)

with b fixed integer, f(k) is a polynomial of a of degree k − 1 with 1
as the coefficient of ak−1. We proceed by induction on k. For k = 1, 2
the statement is true. Now let f(k) and f(k − 1) satisfy the desired
condition. Then f(k + 1) = af(k)− bf(k − 1) which is a polynomial
with integer coefficients of degree k and coefficient of xk the same as
the coefficient of xk−1 in f(k) that is 1. This completes the induction
step. Note that from (∗) this definition agrees with the definition in
the problem statement.

Since l = f(m + 1) is an integer, a is a root of f(m + 1)− l, which
is a polynomial with integer coefficients and 1 as the coefficient of
xm. Because a is rational root, it must be an integer by the Gauss’
lemma.

So, a and b are integers as desired.

Problem 6 We are given n stones A1, A2 . . . , An labeled with
distinct real numbers. We may compare two stones by asking what
the order of their corresponding numbers are. We are given that the
numbers on A1, A2, . . . , An−1 are increasing in that order; the n order-
ings of the numbers on A1, A2, . . . , An which satisfy this condition are
assumed to be equally likely. Based on this information, an algorithm
is created that minimizes the expected number of comparisons needed
to determine the order of the numbers on A1, A2, . . . , An. What is this
expected number?

Solution: Let a = dlog2 ne. Then the answer is a + 1− 2a

n .

Let f(n) be the minumum expected number of comparisons for the
case n. We will derive a recursive formula for f(n) and then prove
that its explicit formula is the answer above.

Denote the number on stone An by an. By the given condition,
a1 < a2 < · · · < an−1 and an is equally likely to fall in each of
the n intervals (−∞, a1), (a1, a2), . . . , (an−1,∞). Thus, if we start by
comparing stone An to stone Ak, the probability that an < ak is k

n

and the probability that an > ak is n−k
n . In the first case, we are left

with k equally likely intervals for an to fall in, a situation analogous to
having started with k stones. Likewise, the second case is analogous
to having started with n− k stones. Thus, by the definition of f, the
minimum expected number of comparisons for the remainder of the
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first case is f(k), and for the second, f(n−k). Remembering to count
in our first comparison, the total expected number of comparisons
with this strategy is 1 + k

nf(k) + n−k
n f(n − k). Finally, minimizing

this quantity over all choices for k gives us our recursive formula:

f(n) = 1 + min
1≤k≤n−1

{
k

n
f(k) +

n− k

n
f(n− k)

}
.

Before we prove the explicit formula, we convert our recursive
formula into a nicer form by setting g(n) = nf(n). Then we obtain

g(n) = n + min
1≤k≤n−1

{g(k) + g(n− k)}.

We wish to show that f(n) = a + 1 − 2a

n , where a = dlog2 ne. In
terms of g, we want g(n) = n(a+1)−2a. To prove this, we use strong
induction on n. The base case, n = 1, is trivial: there is only one stone,
so we do not need any comparisons. This matches 1(0 + 1)− 20 = 0.

Now we assume that the formula for g holds for 1, 2, . . . , n−1 stones.
We wish to show that it also holds for n, n > 1. To do this, we will
show that k = bn

2 c minimizes g(k) + g(n − k). First, we consider
the consecutive differences g(x) − g(x − 1) and prove that they are
nondecreasing for x = 2, 3, . . . , n− 1. Indeed, if x− 1 is not a power
of 2, then dlog2 xe = dlog2(x− 1)e = a, so

g(x)− g(x− 1) = (x(a + 1)− 2a)− ((x− 1)(a + 1)− 2a)

= a + 1 = dlog2 xe+ 1.

Otherwise, x− 1 = 2a, from which we have g(x− 1) = 2a(a + 1)− 2a

and g(x) = (2a + 1)(a + 2)− 2a+1. Subtracting now gives

g(x)− g(x− 1) = a + 2 = dlog2 xe+ 1

again. Hence, because log2 x is increasing and dxe is nondecreasing,
we see that g(x) − g(x − 1) is nondecreasing as x ranges from 2 to
n− 1.

It follows now that g(x) + g(y) ≥ g(x + 1) + g(y − 1) holds for
all 1 ≤ x < y ≤ n − 1. Indeed, this is equivalent to inequality
g(x + 1) − g(x) ≤ g(y) − g(y − 1), which is true because x + 1 ≤ y.

Thus, applying this repeatedly, we have

g(1) + g(n− 1) ≥ g(2) + g(n− 2) ≥ · · · ≥ g
(⌊n

2

⌋)
+ g

(⌈n

2

⌉)
,

which proves that k = bn
2 c minimizes g(k) + g(n− k).
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To complete the proof, we need only check that n+g(bn
2 c)+g(dn

2 e)
coincides with our formula for g(n). Letting a = dlog2 ne, we have
a− 1 = dlog2bn

2 ce = dlog2dn
2 ee. Thus,

n + g
(⌊n

2

⌋)
+ g

(⌈n

2

⌉)
= n +

⌊n

2

⌋
((a− 1) + 1)− 2a−1

+
⌈n

2

⌉
((a− 1) + 1)− 2a−1

= n(a + 1)− 2a,

completing the induction and the proof.
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1.15 United States of America

Problem 1 Each of eight boxes contains six balls. Each ball has
been colored with one of n colors, such that no two balls in the same
box are the same color, and no two colors occur together in more
than one box. Determine, with justification, the smallest integer n

for which this is possible.

First Solution: The smallest such n is 23.
We first show that n = 22 cannot be achieved.
Assume that some color, say red, occurs four times. Then the

first box containing red contains 6 colors, the second contains red
and 5 colors not mentioned so far, and likewise for the third and
fourth boxes. A fifth box can contain at most one color used in each
of these four, so must contain 2 colors not mentioned so far, and a
sixth box must contain 1 color not mentioned so far, for a total of
6+5+5+5+2+1=24, a contradiction.

Next, assume that no color occurs four times; this forces at least
four colors to occur three times. In particular, there are two colors
that occur at least three times and which both occur in a single box,
say red and blue. Now the box containing red and blue contains
6 colors, the other boxes containing red each contain 5 colors not
mentioned so far, and the other boxes containing blue each contain 3
colors not mentioned so far (each may contain one color used in each
of the boxes containing red but not blue). A sixth box must contain
one color not mentioned so far, for a total of 6+5+5+3+3+1=23,
again a contradiction.

We now give a construction for n = 23. We still cannot have a color
occur four times, so at least two colors must occur three times. Call
these red and green. Put one red in each of three boxes, and fill these
with 15 other colors. Put one green in each of three boxes, and fill each
of these boxes with one color from each of the three boxes containing
red and two new colors. We now have used 1+15+1+6 = 23 colors,
and each box contains two colors that have only been used once so
far. Split those colors between the last two boxes. The resulting
arrangement is:
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1 3 4 5 6 7
1 8 9 10 11 12
1 13 14 15 16 17
2 3 8 13 18 19
2 4 9 14 20 21
2 5 10 15 22 23
6 11 16 18 20 22
7 12 17 19 21 23

Note that the last 23 can be replaced by a 22.
Now we present a few more methods of proving n ≥ 23.

Second Solution: As in the first solution, if n = 22 is possible, it
must be possible with no color appearing four or more times. By the
Inclusion-Exclusion Principle, the number of colors (call it C) equals
the number of balls (48), minus the number of pairs of balls of the
same color (call it P ), plus the number of triples of balls of the same
color (call it T ); that is,

C = 48− P + T.

For every pair of boxes, at most one color occurs in both boxes, so
P ≤ (

8
2

)
= 28. Also, if n ≤ 22, there must be at least 48− 2(22) = 4

colors that occur three times. Then C ≥ 48 − 28 + 4 = 24, a
contradiction.

Third Solution: Assume n = 22 is possible. By the Pigeonhole
Principle, some color occurs three times; call it color 1. Then there
are three boxes containing 1 and fifteen other colors, say colors 2
through 16. The other five boxes each contain at most three colors
in common with the first three boxes, so they contain at least three
colors from 17 through 22.

Since 5×3 > 2×6, one color from 17 to 22 occurs at least three times
in the last five boxes; say it’s color 17. Then two balls in each of those
three boxes have colors among those labeled 18 through 22. But then
one of these colors must appear together with 17, a contradiction.

Fourth Solution: Label the colors 1, 2, . . . , n, and let a1, a2, . . . ,
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an be the number of balls of color 1, 2, . . . , n, respectively. Then
n∑

i=1

ai = 48.

Since
(
ai

2

)
is the number of boxes sharing color i and there are

(
8
2

)
= 28

pairs of boxes, each of which can only share at most one color,

28 =
(

8
2

)
≥

n∑

i=1

(
ai

2

)
=

n∑

i=1

ai(ai − 1)
2

=
1
2

n∑

i=1

a2
i −

1
2

n∑

i=1

ai =
1
2

n∑

i=1

a2
i − 24,

or
n∑

i=1

a2
i ≤ 104. By the RMS-AM Inequality,

(
1
n

n∑

i=1

a2
i

) 1
2

≥ 1
n

n∑

i=1

ai.

It follows that

104n ≥ 482 or n ≥ 288
13

> 22.

Fifth Solution: Let mi,j be the number of balls which are the same
color as the jth ball in box i (including that ball). For a fixed box i,
1 ≤ i ≤ 8, consider the sums

Si =
6∑

j=1

mi,j and si =
6∑

j=1

1
mi,j

.

For each fixed i, since no pair of colors is repeated, each of the remain-
ing seven boxes can contribute at most one ball to Si. Thus Si ≤ 13.
It follows by the convexity of f(x) = 1/x (and consequently, by the
Jensen’s Inequality) that si is minimized when one of the mi,j is
equal to 3 and the other five equal 2. Hence si ≥ 17/6. Note that

n =
8∑

i=1

6∑

j=1

1
mi,j

≥ 8 · 17
6

=
68
3

= 22
2
3
.

Hence there must be at least 23 colors.

Problem 2 Let ABC be a triangle and let ω be its incircle. Denote
by D1 and E1 the points where ω is tangent to sides BC and AC,
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respectively. Denote by D2 and E2 the points on sides BC and AC,
respectively, such that CD2 = BD1 and CE2 = AE1, and denote by
P the point of intersection of AD2 and BE2. Circle ω intersects AD2

at two points, the closer of which to the vertex A is denoted by Q.
Prove that AQ = D2P .

First Solution: The key observation is the following Lemma.
Lemma Segment D1Q is a diameter of circle ω.
Proof: Let I be the center of circle ω, that is, I is the incenter of

triangle ABC. Extend segment D1I through I to intersect circle ω

again at Q′, and extend segment AQ′ through Q′ to intersect segment
BC at D′. We show that D2 = D′, which in turn implies that Q = Q′,
that is, D1Q is a diameter of ω.

Let ` be the line tangent to circle ω at Q′, and let ` intersect
segments AB and AC at B1 and C1, respectively. Then ω is an
excircle of triangle AB1C1. Let H1 denote the dilation with center
A and ratio AD′/AQ′. Since ` ⊥ D1Q

′ and BC ⊥ D1Q, ` ‖ BC.
Hence, AB/AB1 = AC/AC1 = AD′/AQ′. Thus, H1(Q′) = D′,
H1(B1) = B, and H1(C1) = C. It also follows that the excircle
Ω of triangle ABC opposite vertex A is tangent to side BC at D′.

It is well known that

CD1 =
1
2
(BC + CA−AB). (1)

We compute BD′. Let X and Y denote the points of tangency of
circle Ω with rays AB and AC, respectively. Then by equal tangents,
AX = AY , BD′ = BX, and D′C = Y C. Hence,

AX = AY =
1
2
(AX + AY )

=
1
2
(AB + BX + Y C + CA)

=
1
2
(AB + BC + CA).

It follows that

BD′ = BX = AX −AB =
1
2
(BC + CA−AB). (2)

Combining (1) and (2) yields BD′ = CD1. Thus,

BD2 = BD1 −D2D1 = D2C −D2D1 = D1C = BD′,
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that is, D′ = D2, as desired.
Now we prove our main result. Let M1 and M2 be the midpoints

of segments BC and CA, respectively. Then M1 is also the midpoint
of segment D1D2, from which it follows that IM1 is the midline of
triangle D1QD2. Hence,

QD2 = 2IM1 (3)

and AD2 ‖ M1I. Similarly, we can prove that BE2 ‖ M2I.
Let G be the centroid of triangle ABC. Thus, segments AM1

and BM2 intersect at G. Define transformation H2 as the dilation
with center G and ratio −1/2. Then H2(A) = M1 and H2(B) =
M2. Under the dilation, parallel lines go to parallel lines and the
intersection of two lines goes to the intersection of their images. Since
AD2 ‖ M1I and BE2 ‖ M2I, H maps lines AD2 and BE2 to lines
M1I and M2I, respectively. It also follows that H2(P ) = I and that

IM1

AP
=

GM1

AG
=

1
2

or
AP = 2IM1. (4)

Combining (3) and (4) yields

AQ = AP −QP = 2IM1 −QP = QD2 −QP = PD2,

as desired.

Second Solution: From the Lemma, we have

AQ

AD2
=

r

ra
,

where r and ra are the radii of circles ω and Ω, respectively. Note
that

r(AB + BC + CA) = 2[ABC]

and that

ra(AB + AC −BC) = 2[IaAB] + 2[IaAC]− 2[IaBC]

= 2[IaBAC]− 2[IaBC] = 2[ABC],

where Ia is the center of Ω and [R] is the area of region R. Thus,

AQ

AD2
=

AB + AC −BC

AB + BC + CA
. (5)
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Applying the Menelaus’s Theorem to triangle AD2C and line BE2

gives
AP

PD2
· D2B

BC
· CE2

E2A
= 1,

or
AP

PD2
=

BC · E2A

D2B · CE2
=

BC · CE1

CD1 ·AE1

=
BC

AE1
=

2BC

AB + AC −BC
.

Hence,
AD2

PD2
= 1 +

AP

PD2
=

AB + AC + BC

AB + AC −BC
,

or
PD2

AD2
=

AB + AC −BC

AB + AC + BC
. (6)

The desired result now follows from (5) and (6).

Problem 3 Let a, b, and c be nonnegative real numbers such that

a2 + b2 + c2 + abc = 4.

Prove that
0 ≤ ab + bc + ca− abc ≤ 2.

First Solution: From the condition, at least one of a, b, and c does
not exceed 1, say a ≤ 1. Then

ab + bc + ca− abc = a(b + c) + bc(1− a) ≥ 0.

To obtain equality, we have a(b + c) = bc(1 − a) = 0. If a = 1,
then b + c = 0 or b = c = 0, which contradicts the given condition
a2 + b2 + c2 + abc = 4. Hence 1 − a 6= 0 and only one of b and c is
0. Without loss of generality, say b = 0. Therefore b + c > 0 and
a = 0. Plugging a = b = 0 back into the given condition gives c = 2.
By permutation, the lower bound holds if and only if (a, b, c) is one
of the triples (2, 0, 0), (0, 2, 0), and (0, 0, 2).

Now we prove the upper bound. Let us note that at least two of
the three numbers a, b, and c are both greater than or equal to 1 or
less than or equal to 1. Without loss of generality, we assume that
the numbers with this property are b and c. Then we have

(1− b)(1− c) ≥ 0. (1)
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The given equality a2+b2+c2+abc = 4 and the inequality b2+c2 ≥ 2bc

imply

a2 + 2bc + abc ≤ 4, or bc(2 + a) ≤ 4− a2.

Dividing both sides of the last inequality by 2 + a yields

bc ≤ 2− a. (2)

Combining (1) and (2) gives

ab + bc + ac− abc ≤ ab + 2− a + ac(1− b)

= 2− a(1 + bc− b− c)

= 2− a(1− b)(1− c) ≤ 2,

as desired.
The last equality holds if and only if b = c and a(1− b)(1− c) = 0.

Hence, equality for the upper bound holds if and only if (a, b, c) is one
of the triples (1, 1, 1), (0,

√
2,
√

2), (
√

2, 0,
√

2), and (
√

2,
√

2, 0).

Second Solution: We prove only the upper bound here. Either
two of a, b, c are less than or equal to 1, or two are greater than or
equal to 1. Assume b and c have this property. Then

b + c− bc = 1− (1− b)(1− c) ≤ 1. (3)

Viewing the given equality as a quadratic equation in a and solving
for a yields

a =
−bc±

√
(b2 − 4)(c2 − 4)

2
.

Note that

(b2 − 4)(c2 − 4) = b2c2 − 4(b2 + c2) + 16

≤ b2c2 − 8bc + 16 = (4− bc)2.

For the given equality to hold, we must have b, c ≤ 2 so that 4−bc ≥ 0.

Hence,

a ≤ −bc + |4− bc|
2

=
−bc + 4− bc

2
= 2− bc,

or

2− bc ≥ a. (4)
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Combining (3) and (4) gives

2− bc ≥ a(b + c− bc) = ab + ac− abc,

or
ab + ac + bc− abc ≤ 2,

as desired.

Third Solution: We prove only the upper bound here. Define
functions f , g as

f(x, y, z) = x2 + y2 + z2 + xyz = (x + y)2 + z2 − (2− z)xy,

g(x, y, z) = xy + yz + zx− xyz = z(x + y) + (1− z)xy

for all nonnegative numbers x, y, z. Observe that if z ≤ 1, then both
f and g are unbounded, increasing functions of x and y.

Assume that f(a, b, c) = 4 and, without loss of generality, that
a ≥ b ≥ c ≥ 0. Then c ≤ 1.

Let a′ = (a+ b)/2. Because a+ b = a′+ a′ and ab ≤ (
a−b
2

)2
+ ab =

a′2, we have

f(a′, a′, c) ≤ f(a, b, c) = 4 and g(a′, a′, c) ≥ g(a, b, c).

Now increase a′ to e ≥ 0 such that f(e, e, c) = 4. Note that g(e, e, c) ≥
g(a′, a′, c). It suffices to prove that g(e, e, c) ≤ 2.

Since f(e, e, c) = 2e2 + c2 + e2c = 4, e2 = (4− c2)/(2 + c) = 2− c.
We obtain that

g(e, e, c) = 2ec + (1− c)e2 ≤ e2 + c2 + (1− c)e2

= (2− c)e2 + c2 = (2− c)2 + c2

= 2(2− 2c + c2) = 2[1 + (1− c)2] ≤ 2,

as desired.

Problem 4 Let P be a point in the plane of triangle ABC such
that there exists an obtuse triangle whose sides are congruent to PA,
PB, and PC. Assume that in this triangle the obtuse angle opposes
the side congruent to PA. Prove that angle BAC is acute.

Solution: By the Cauchy-Schwarz Inequality,
√

PB2 + PC2
√

AB2 + AC2 ≥ PB ·AC + PC ·AB.
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Applying the (Generalized Ptolemy’s Inequality to quadrilateral
ABPC yields

PB ·AC + PC ·AB ≥ PA ·BC.

Because PA is the longest side of an obtuse triangle with side lengths
PA, PB, PC, we have PA >

√
PB2 + PC2 and hence

PA ·BC ≥
√

PB2 + PC2 ·BC.

Combining these three inequalities yields
√

AB2 + AC2 > BC, im-
plying that angle BAC is acute.

Problem 5 Let S be a set of integers (not necessarily positive) such
that

(a) there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1;

(b) if x and y are elements of S (possibly equal), then x2 − y also
belongs to S.

Prove that S is the set of all integers.

First Solution: In the solution below we use the expression S
is stable under x 7→ f(x) to mean that if t belongs to S, then f(t)
also belongs to S. If c, d ∈ S, then by condition (b), S is stable
under x 7→ c2 − x and x 7→ d2 − x. Hence, it is stable under
x 7→ c2 − (d2 − x) = x + (c2 − d2). Similarly, S is stable under
x 7→ x+(d2−c2). Hence, S is stable under x 7→ x+n and x 7→ x−n,
whenever n is an integer linear combination of finitely many numbers
in T = { c2 − d2 | c, d ∈ S }.

By condition (a), S 6= ∅ and hence T 6= ∅ as well. For the sake of
contradiction, assume that some p divides every element in T. Then
c2−d2 ≡ 0 (mod p) for all c, d ∈ S. In other words, for each c, d ∈ S,
either d ≡ c (mod p) or d ≡ −c (mod p). Given c ∈ S, c2− c ∈ S, by
condition (b), so c2 − c ≡ c (mod p) or c2 − c ≡ −c (mod p). Hence,

c ≡ 0 (mod p) or c ≡ 2 (mod p) (∗)
for each c ∈ S. By condition (a), there exist some a and b in S such
that gcd(a, b) = 1, that is, at least one of a or b cannot be divisible by
p. Denote such an element of S by α; thus, α 6≡ 0 (mod p). Similarly,
by condition (a), gcd(a− 2, b− 2) = 1, so p cannot divide both a− 2
and b − 2. Thus, there is an element of S, call it β, such that β 6≡ 2
(mod p). By (∗), α ≡ 2 (mod p) and β ≡ 0 (mod p). By condition
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(b), β2 − α ∈ S. Taking c = β2 − α in (∗) yields either −2 ≡ 0
(mod p) or −2 ≡ 2 (mod p), so p = 2. Now (∗) says that all elements
of S are even, contradicting condition (a). Hence, our assumption is
false and no prime divides every element in T.

It follows that T 6= { 0}. Let x be an arbitrary nonzero element of T.

For each prime divisor of x, there exists an element in T which is not
divisible by that prime. The set A consisting of x and each of these
elements is finite. By construction, m = gcd{ y | y ∈ A } = 1, and
m can be written as an integer linear combination of finitely many
elements in A and hence in T. Therefore, S is stable under x 7→ x+1
and x 7→ x− 1. Because S is nonempty, it follows that S is the set of
all integers.

Second Solution: Define T, a, and b as in the first solution.
We present another proof that no prime divides every element in
T. Suppose, for sake of contradiction, that such a prime p does exist.
By condition (b), a2 − a, b2 − b ∈ S. Therefore, p divides a2 − b2,

x1 = (a2 − a)2 − a2, and x2 = (b2 − b)2 − b2. Because gcd(a, b) = 1,
both gcd(a2−b2, a3) and gcd(a2−b2, b3) equal 1, so p does not divide
a3 or b3. But p does divide x1 = a3(a−2) and x2 = b3(b−2), so it must
divide a− 2 and b− 2. Because gcd(a− 2, b− 2) = 1 by condition (a),
this implies p | 1, a contradiction. Therefore our original assumption
was false, and no such p exists.

Problem 6 Each point in the plane is assigned a real number such
that, for any triangle, the number at the center of its inscribed circle
is equal to the arithmetic mean of the three numbers at its vertices.
Prove that all points in the plane are assigned the same number.

Solution: Let each lowercase letter denote the number assigned
to the point labeled with the corresponding uppercase letter. Let
A,B be arbitrary distinct points, and consider a regular hexagon
ABCDEF in the plane. Let lines CD and FE intersect at G. Let `

be the line through G perpendicular to line ED. Then A,F,E and
B,C, D are symmetric to each other, respectively, with respect to
line `. Hence triangles CEG and DFG share the same incenter, i.e.,
c + e = d + f ; triangles ACE and BDF share the same incenter, i.e.,
a + c + e = b + d + f . Therefore, a = b, and we are done.
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1.16 Vietnam

Problem 1 The sequence of integers a0, a1, . . . is defined recursively
by the initial condition a0 = 1 and the recursive relation an =
an−1 + abn/3c for all integers n ≥ 1. (Here, bxc denotes the greatest
integer less than or equal to x.) Prove that for every prime number
p ≤ 13, there exists an infinite number of natural numbers k such
that ak is divisible by p.

Solution: We proceed by way of contradiction: Suppose that for
some prime p ≤ 13, there were only a finite number of values of n with
p | an. There is at least one positive n with p | an, as straightforward
computation confirms:

2 | a6 = 12, 3 | a2 = 3, 5 | a3 = 5,

7 | a4 = 7, 11 | a11 = 23, 13 | a20 = 117.

Thus, the set of an such that p | an is nonempty and contains an
element greater than 2. Because we assumed that this set is finite,
it must have a greatest element am. Then for all n > m, p does not
divide an.

By the recurrence for an, we have ai = ai−1 + am for 3m ≤ i ≤
3m + 2. Because p | am, we have ai ≡ ai−1 (mod p) for such i, i.e.,

a3m−1 ≡ a3m ≡ a3m+1 ≡ a3m+2 (mod p).

By the maximal definition of m, k = a3m is not congruent to 0 modulo
p.

Now, if 9m− 3 ≤ i ≤ 9m + 8, then 3m− 1 ≤ bi/3c ≤ 3m + 2, and
so by the definition of an,

ai − ai−1 = abi/3c ≡ k (mod p).

Thus,

a9m−4+j ≡ a9m+4 + jk (mod p) (∗)

for 0 ≤ j ≤ 13. However, because p does not divide k, there exists a j0
with 0 ≤ j ≤ p such that j0k ≡ −a9m+4 (mod p). Then j0 ≤ p ≤ 13,
and substituting j = j0 into (∗) gives

a9m−4+j0 ≡ a9m+4 + (−a9m+4) ≡ 0 (mod p).
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Thus, there exists an n > m with an ≡ 0 (mod p), a contradiction.
Therefore, our original assumption was false, and there must be
infinitely many n with p | an.

Problem 2 In the plane, two circles intersect at A and B, and a
common tangent intersects the circles at P and Q. Let the tangents
at P and Q to the circumcircle of triangle APQ intersect at S, and
let H be the reflection of B across line PQ. Prove that the points A,

S, and H are collinear.

First Solution: All angles are directed modulo 2π except where
otherwise indicated. We will perform calculations in terms of the
following four angles:

∠APQ = x, ∠PQA = y, ∠PAB = m, ∠BAQ = n.

Some of these calculations depend on whether (i) line PQ is closer to
A, or (ii) line PQ is closer to B. Many angles in the diagram can be
parameterized using just these four angles, and there are many triples
of concurrent lines in the diagram, suggesting that there is a relatively
straightforward solution involving applications of the trigonometric
form of Ceva’s Theorem.

First we prove that sin m
sin n = sin x

sin y . (Incidentally, with a bit of effort
this equation gives PA/PB = QA/QB.) In triangle AQB, cevians
AP , QP , BP concur at P . By the trigonometric form of Ceva’s
Theorem,

1 =
sin∠BQP

sin ∠PQA

sin ∠QAP

sin ∠PAB

sin ∠ABP

sin ∠PBQ
.

Suppose that (i) holds. Because line PQ is tangent to the circumcir-
cles of triangles ABP and ABQ, we have ∠ABP = x, ∠QBA = y,
∠QPB = π−m, and ∠BQP = π− n. Also, ∠QAP = π− x− y and
∠QBP = x + y. Hence, the above equation then becomes

1 =
− sinn

sin y

sin(π − x− y)
sin m

sinx

− sin(x + y)
,

or sin m
sin n = sin x

sin y . We get the same final result in case (ii), although
the angles are different: ∠ABP = π − x, ∠QBA = π − y, ∠BPQ =
m,∠PQB = n, ∠QAP = π − x− y, ∠QBP = x + y.

We now quickly calculate sin∠QAH
sin∠PQB . Using directed angles modulo

π temporarily, note that by the definition of H, ∠QPH = ∠BPQ, or
∠QPH = π −m. Similarly, ∠HQP = ∠PQB = π − n. Also, note
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that

∠PHQ = ∠QBP = ∠QBA+∠ABP = ∠PQA+∠APQ = π−∠QAP.

Hence, quadrilateral APHQ is cyclic. Using directed angles modulo
2π again, because quadrilateral APHQ is convex in that order, we
have ∠QAH = ∠QPH = ∠BPQ and ∠HAP = ∠HQP = ∠PQB.
Earlier we showed that (∠QPB, ∠BQP ) = (π − m,π − n) in case
(i) and that (∠BPQ, ∠PQB) = (m, n) in case (ii). Hence, in either
case, sin∠QAH

sin∠HAP = sin m
sin n .

Now, look at triangle PQA and cevians PS, QS, and AH. We
claim they concur. By the trigonometric form of Ceva’s theorem, this
is true if

1 =
sin ∠APS

sin∠SPQ

sin ∠PQS

sin∠SQA

sin ∠QAH

sin ∠HAP
.

Substituting in various angle measures and sin∠QAH
sin∠HAP = sin m

sin n , this
latter equation holds if

1 =
sin(−y)

sin(x + y)
sin(x + y)
sin(−x)

sinm

sin n

Indeed, the right hand side of this last equation simplifies to

sin y

sinx

sin m

sin n
,

which (as we previously showed) equals 1.
Therefore, lines PS, QS, and AH concur. The first two intersect

at S, implying that S lies on line AH, as desired.

Second Solution: All angles are directed modulo π. Using the
fact that line PQ is tangent to the circumcircles of triangles ABP

and ABQ, we have

∠QHP = ∠PBQ = ∠PBA + ∠ABQ

= ∠QPA + ∠PQA = π − ∠PAQ.

Hence, A, P, Q, H are concyclic.
Because SP and SQ are tangent to the circumcircle of triangle

APQ, we have SP = SQ and ∠SPQ = ∠PQS.
Now, we perform an inversion with center P and arbitrary radius.

Let A′, B′, Q′, S′, and H ′ be the images of A, B, Q, S, and
H, respectively, under the given inversion. We wish to show that
quadrilateral A′S′H ′P is cyclic.
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Because A,P, Q, H are concyclic, (i) A′, Q′,H ′ are collinear. Next,
because line PS is tangent to the circumcircle of triangle APQ, (ii)
line PS′ is parallel to line Q′A′. And because ∠SPQ = ∠PQS, we
have ∠S′PQ′ = ∠Q′S′P , or (iii) Q′P = Q′S.

We now prove that (iv) Q′A′ = Q′H ′. Because line PQ is tangent
to the circumcircle of triangle ABP , line PQ′ is parallel to line A′B′,
and ∠B′A′Q′ = ∠PQ′A′. Also, because line PQ′ is tangent to the
circumcircle of triangle Q′A′B’, we have ∠PQ′A′ = ∠Q′B′A′. Thus,
∠B′A′Q′ = ∠Q′B′A′, or A′Q′ = B′Q′. (Incidentally, A′Q′/B′Q′ =
QA
QB · PB

AB , so this implies that PA
PB = QA

QB — making the result A′Q′ =
B′Q′ analogous to the result sin x

sin y = sin m
sin n in the first solution.)

Because B and H are reflections of each other across line PQ, B′

and H ′ are reflections of each other across line PQ′. Therefore,
A′Q′ = B′Q′ = H ′Q′, as desired.

By (i) and (ii), PS′ ‖ H ′A′, and quadrilateral PH ′A′S′ is a
trapezoid. By (iii) and (iv), Q′ lies on the perpendicular bisectors
of the parallel sides PS′, H ′A′, so in fact these sides have the same
perpendicular bisector `. Then trapezoid PH ′A′S′ is symmetric
about `, and PH ′ = SA′, PA′ = S′H ′. Thus, quadrilateral PH ′A′S′

is an isosceles trapezoid and therefore cyclic.
Inverting again, it follows that H, A, S are collinear, as desired.

Problem 3 A club has 42 members. Among each group of 31
members, there is at least one pair of participants — one male, one
female — who know each other. (Person A knows person B if and only
if person B knows person A.) Prove that there exist 12 distinct males
a1, . . . , a12 and 12 distinct females b1, . . . , b12 such that ai knows bi

for all i.

Solution: Let A be the set of all males in the club and B be the set
of females in the club, with |A| + |B| = 42. By the given condition,
there is no group of 31 members of the same sex, so |A|, |B| ≤ 30.

We claim that for each nonempty S ⊆ A, at least |S| + 12 − |A|
females know at least one male in S. Otherwise, the set T of females
who do not know any male in S, has more than |B|−(|S|+12−|A|) =
30 − |S| females. But then S ∪ T has at least 31 members, among
whom no male knows a female, a contradiction.

Define G to be a bipartite graph whose vertices are the members
of the club, together with a set C of |A| − 12 additional females who
know every single male in A; a vertex a ∈ A is adjacent to b ∈ B ∪C
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if a and b know each other. For every nonempty S ⊆ A, at least
(|S| + 12 − |A|) + (|A| − 12) = |S| vertices in B ∪ C are adjacent
to at least one vertex in S. Thus, by the Marriage Lemma, we can
choose disjoint edges (a1, b1), (a2, b2), . . . , (a|A|, b|A|) in A× (B ∪C).
At most |A| − 12 of these edges connects a male in A to a female in
C, so at least twelve of them connect a male in A to a female in B.
Without loss of generality, ai knows bi for 1 ≤ i ≤ 12, as desired.

Problem 4 The positive real numbers a, b, and c satisfy the
condition 21ab + 2bc + 8ca ≤ 12. Find the least possible value of
the expression 1

a + 2
b + 3

c .

Solution: We claim that

(x + 2y + 3z)2(2x + 8y + 21z) ≥ 675xyz (∗)
for all positive x, y, z, with equality when 10x = 24y = 45z. In
particular, this holds for (x, y, z) = (bc, ca, ab), in which case

1
a

+
2
b

+
3
c

=
x + 2y + 3z√

xyz
≥

√
675√

2x + 8y + 21z
≥
√

675√
12

=
15
2

.

Equality can be achieved: when a = 1
3 , b = 4

5 , c = 3
2 , we have

21ab + 2bc + 8ca = 12 and 1
a + 2

b + 3
c = 15

2 .
To prove (∗), let (α, β, γ) and (A,B, C) be triples of positive

numbers with sum 1, to be determined more precisely later. By the
weighted arithmetic mean-geometric mean inequality, we have

x + 2y + 3z = α
x

α
+ β

2y

β
+ γ

3z

γ

≥
(x

α

)α
(

2y

β

)β (
3z

γ

)γ

=
1α2β3γ

ααββγγ
xαyβzγ ,

with equality when x
α = 2y

β = 3z
γ . Similarly,

2x + 8y + 21z ≥ 2A8B21C

AABBCC
xAyBzC ,

with equality when 2x
A = 8y

B = 21z
C .

Therefore,

(x + 2y + 3z)2(2x + 8y + 21z)

≥
((

2β3γ

ααββγγ

)2
2A8B21C

AABBCC

)
x2α+Ay2β+Bz2γ+C .

(†)
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We now find (α, β, γ) and (A,B, C) such that:

• the equality conditions x
α = 2y

β = 3z
γ and 2x

A = 8y
B = 21z

C are the
same;

• the exponents 2α + A, 2β + B, 2γ + C in (†) all equal 1.

In fact, it is easy to verify that (α, β, γ) = (2/5, 1/3, 4/15) and
(A, B,C) = (1/5, 1/3, 7/15) satisfy these conditions.

By our choice of (α, β, γ) and (A,B, C), equality in (†) holds when
10x = 24y = 45z. In particular, equality holds when (x, y, z) =
(36, 15, 8). For this (x, y, z), we have

(x + 2y + 3z)2(2x + 8y + 21z) = 2916000 = 675 · 4320 = 675xyz.

Thus, the coefficient of xyz in (†) equals 675, proving (∗). This
completes the proof.

Note: The values for (α, β, γ) and (A,B, C) do not appear from
nowhere. Although unnecessary for presenting the solution, a method
of determining these values is certainly necessary for finding the
solution in the first place. Using the two conditions on (α, β, γ) and
(A, B,C), it is easy to show that

β =
α

2− 2α
, γ =

2α

7− 10α
.

The equation α + β + γ = 1 thus becomes

α +
α

2− 2α
+

2α

7− 10α
= 1.

Clearing denominators and simplifying yields

20α3 − 68α2 + 59α− 14 = 0.

If we are optimistic, then we hope that this equation has a rational
solution α = p

q ∈ (0, 1). It is well-known that any such root satisfies
p | 14 and q | 20. Trial and error then yields that α = 2

5 is a solution,
and the values of β, γ, A, B, C follow easily. (There are two other
roots to the above cubic polynomial, namely α = 3±√2

2 , but our
proof requires only one value α that yields 0 < α, β, γ,A, B, C < 1;
in fact, the logic of our proof guarantees that only one such α exists.)

Problem 5 Let n > 1 be an integer, and let T be the set of points
(x, y, z) in three-dimensional space such that x, y, and z are integers
between 1 and n, inclusive. We color the points in T so that if x0 ≤ x1,
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y0 ≤ y1, and z0 ≤ z1, then (x0, y0, z0) and (x1, y1, z1) are either equal
or not both colored. At most how many points in T can be colored?

Solution: The answer is d 3n2

4 e, or equivalently 3k2 if n = 2k and
3k2 + 3k + 1 if n = 2k + 1.

Given a = (a1, . . . , an) and b = (b1, . . . , bn), we write a ≺ b if a 6= b

and ai ≤ bi for 1 ≤ i ≤ n. We wish to find the size of the largest
possible subset S of T such that a 6≺ b for all a, b ∈ S.

We will first show that at most b 3n2

4 c points of T can be colored.
For 1 ≤ m ≤ n, we define the “mth shell” Tm to be the points (x, y, z)
with the following property: (x, y) coincides with, lies due south of,
or lies due east of (n + 1−m,m) in the xy-plane.

Lemma. If S ⊆ T such that a 6≺ b for all a, b ∈ S, then |S ∩ Tm| ≤
min{2m− 1, n} for all m.

Proof. Suppose that |S ∩ Tm| > 2m − 1. For (x, y, z) ∈ Tm,
there are only 2m − 1 possible values of (x, y): namely, (n +
1 − m, 1), (m, 2), . . . , (n + 1 − m,m) and (n + 2 − m, m), (n + 3 −
m, m), . . . , (n,m). Hence, two distinct points a, b ∈ S have the
same x- and y- coordinates, implying that either a ≺ b or b ≺ a,
a contradiction.

Instead suppose that |S ∩ Tm| > n. For (x, y, z) ∈ Tm, there are
only n possible values of z. Hence, two distinct points a = (x1, y1, z1)
and b = (x2, y2, z2) in S have the same z-coordinate z1 = z2. Because
a and b lie in the same shell, it is easy to show that either (i) x1 ≤ x2

and y1 ≤ y2; or (ii) x2 ≤ x1 and y2 ≤ y1. In either case, a ≺ b or
b ≺ a, a contradiction.

Hence, |S ∩ Tm| is less than or equal to both 2m − 1 and n, as
claimed.

Note that the Tm partition T : given (x, y, z) ∈ T , it either lies in
Tn+1−x (if x ≤ y) or Ty (if x ≥ y). Hence, |S| =

∑n
m=1 |S ∩ Tm|.
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Applying the lemma, we thus have

|S| =
bn/2c∑
m=1

|S ∩ Tm|+
n∑

m=bn/2c+1

|S ∩ Tm|

≤
bn/2c∑
m=1

(2m− 1) +
n∑

m=bn/2c+1

n

= bn/2c2 + n(n− bn/2c).

If n = 2k, then this upper bound equals k2 + 2k(k) = 3k2 = d 3n2

4 e;
if n = 2k + 1, then this upper bound equals k2 + (2k + 1)(k + 1) =
3k2 + 3k + 1 = d 3n2

4 e. Hence, |S| ≤ d 3n2

4 e, as claimed.

Now we construct a subset S of T with |S| = d 3n2

4 e such that a 6≺ b

for all a, b ∈ S. Namely, we let S = {(x, y, z) ∈ T | x + y + z =
b 3n+3

2 c}. If (x1, y1, z1) ≺ (x2, y2, z2) lie in S, then x1 ≤ x2, y1 ≤ y2,
z1 ≤ z2. But equality must hold in these three inequalities because
x1 + y1 + z1 = x2 + y2 + z2. Thus, (x1, y1, z1) = (x2, y2, z2), a
contradiction. Thus, S has the required property.

Next, we prove that |S| = d 3n2

4 e. For any positive integer t, we
claim that the number of triples of positive integers (x, y, z) for which
x+y + z = t is (t−1)(t−2)

2 . This is clearly true if t = 1 or 2; otherwise,
for each value of z = 1, 2, . . . , t−2, there are t−1−z pairs (x, y) such
that x+ y = t− z, for a total of (t−2)+(t−3)+ · · ·+1 = (t−1)(t−2)

2 .
Thus, there are

(b 3n+3
2 c − 1)(b 3n+3

2 c − 2)
2

(∗)

triples of positive integers (x, y, z) with x + y + z = b 3n+3
2 c.

Of such triples, those with x > n are in one-to-one correspondence
with triples (x′, y, z) of positive integers with x′+y+z = b 3n+3

2 c−n =
bn+3

2 c: simply set x′ = x − n. Hence, among the triples counted in
(∗), exactly

(bn+3
2 c − 1)(bn+3

2 c − 2)
2

have x > n. The same count holds given either y > n or z > n.
Furthermore, no triple counted in (∗) has two of x, y, z greater than
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n, because b 3n+3
2 c < 2n. Thus,

3
(bn+3

2 c − 1)(bn+3
2 c − 2)

2
triples counted in (∗) are not in T .

Therefore, the number of triples (x, y, z) ∈ T with x+y+z = b 3n+3
2 c

equals

(b 3n+3
2 c − 1)(b 3n+3

2 c − 2)
2

− 3
(bn+3

2 c − 1)(bn+3
2 c − 2)

2
.

For n = 2k this simplifies to 3k(3k−1)
2 − 3k(k−1)

2 = 3k2, and for
n = 2k + 1 it simplifies to (3k+2)(3k+1)

2 − 3(k+1)k
2 = 3k2 + 3k + 1.

Thus, |S| = d 3n2

4 e, as claimed.

Problem 6 Let a1, a2, . . . be a sequence of positive integers satis-
fying the condition 0 < an+1−an ≤ 2001 for all integers n ≥ 1. Prove
that there exist an infinite number of ordered pairs (p, q) of distinct
positive integers such that ap is a divisor of aq.

Solution: Consider all pairs (p, q) of distinct positive integers such
that ap is a divisor of aq. Assume, by way of contradiction, that there
exists a positive N such that q < N for all such pairs.

We prove by induction on k that for each k ≥ 1, there exist

• a finite set Sk ⊂ {aN , aN+1, . . . }, and

• a set Tk of 2001 consecutive positive integers greater than or equal
to aN ,

such that at least k elements of Tk are divisible by some element of
Sk.

For k = 1, the sets S1 = {aN} and T1 = {aN , aN+1, . . . , aN+2000}
suffice.

Given Sk and Tk (with k ≥ 1), define

Tk+1 = {t +
∏

s∈Sk

s | t ∈ Tk}.

Tk+1, like Tk, consists of 2001 consecutive positive integers greater
than or equal to an — in fact, greater than or equal to max Sk.
Also, at least k elements of Tk+1 are divisible by some element of Sk:
namely, t+

∏
s∈Sk

s for each of the elements t ∈ Tk which are divisible
by some element of Sk.
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By the given condition 0 < an+1 − an ≤ 2001, and because the
elements of Tk+1 are greater than or equal to aN , we have that
aq ∈ Tk+1 for some q ≥ N . Because the elements of Tk+1 are greater
than max Sk, we have aq 6∈ Sk. Thus, by the definition of N , no
element of Sk divides aq.

Hence, at least k+1 elements of Tk+1 are divisible by some element
of Sk∪{aq}: at least k elements of Tk+1 are divisible by some element
of Sk, and in addition aq is divisible by itself. Therefore, setting
Sk+1 = Sk ∪ {aq} completes the inductive step.

Setting k = 2002, we have the absurd result that T2002 is a set of
2001 elements, at least 2002 of which are divisible by some element of
S2002. Therefore, our original assumption was false, and for each N

there exists q > N and p 6= q such that ap | aq. It follows that there
are infinitely many ordered pairs (p, q) with p 6= q and ap | aq.
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Problem 1 For each positive integer n, let S(n) be the sum of digits
in the decimal representation of n. Any positive integer obtained by
removing several (at least one) digits from the right-hand end of the
decimal representation of n is called a stump of n. Let T (n) be the
sum of all stumps of n. Prove that n = S(n) + 9T (n).

Solution: Let di be the digit associated with 10i in the base-10
representation of n, so that n = dmdm−1 . . . d0 for some integer
m ≥ 0 (where dm 6= 0). The stumps of n are

∑m
j=k dj10j−k for

k = 1, 2, . . . , m, and their sum is

T (n) =
m∑

k=1

m∑

j=k

dj10j−k =
m∑

j=1

dj

j∑

k=1

10j−k

=
m∑

j=1

dj

j−1∑

k=0

10k =
m∑

j=1

dj
10j − 1
10− 1

.

Hence,

9T (n) =
m∑

j=1

dj(10j − 1) =
m∑

j=1

10jdj −
m∑

j=1

dj

=
m∑

j=0

10jdj −
m∑

j=0

dj = n− S(n),

as desired.

Problem 2 Find the largest positive integer N so that the number
of integers in the set {1, 2, . . . , N} which are divisible by 3 is equal to
the number of integers which are divisible by 5 or 7 (or both).

Solution: Answer: the largest such N is 65.
The number of positive integers less than or equal to n that are

divisible by m is b n
mc. Thus, the number of integers less than or

equal to n that are divisible by 7 but not 5 (i.e., divisible by 7 but
not 35) is bn

7 c−b n
35c; so, the number of integers less than or equal to

n that are divisible by 5 or 7 (or both) is bn
7 c+ bn

5 c − b n
35c.
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Write
f(n) =

⌊n

3

⌋
−

⌊n

5

⌋
−

⌊n

7

⌋
+

⌊ n

35

⌋
.

We seek the largest positive integer N such that f(N) = 0.
We claim that f(n) > 0 for 0 ≤ n < 70. Observe that

⌊n

5

⌋
+

⌊n

7

⌋
≤

⌊n

5
+

n

7

⌋
=

⌊
12n

35

⌋
=

⌊n

3
+

n

105

⌋
.

For 0 ≤ n < 35, the above inequality gives
⌊n

5

⌋
+

⌊n

7

⌋
≤

⌊
n

3
+

34
105

⌋
=

⌊n

3

⌋
.

Hence, f(n) ≥ 0 + b n
35c = 0. For 35 ≤ n < 70, the above inequality

gives bn
5 c+ bn

7 c ≤ bn
3 c+ 1. Hence, f(n) ≥ −1 + b n

35c = 0.
We also claim that f(n) > 0 for n ≥ 70. Observe that

f(n + 70) =
(

23 +
⌊

n + 1
3

⌋)
−

(
10 +

⌊n

7

⌋)

−
(
14 +

⌊n

5

⌋)
+

(
2 +

⌊ n

35

⌋)

= 1 +
⌊

n + 1
3

⌋
−

⌊n

5

⌋
−

⌊n

7

⌋
+

⌊ n

35

⌋

≥ f(n) + 1.

Because f(n) ≥ 0 for 0 ≤ n < 70, it follows that f(n) > 0 for n ≥ 70.
Finally, it is easy to calculate f(69) = 2, f(68) = 1, f(67) = 1,

f(66) = 1, and f(65) = 0. Therefore, the largest N such that
f(N) = 0 is N = 65.

Problem 3 Let two congruent regular n-sided (n ≥ 3) polygonal
regions S and T be located in the plane such that their intersection
is a 2n-sided polygonal region P . The sides of S are colored red and
the sides of T are colored blue. Prove that the sum of the lengths of
the blue sides of P is equal to the sum of the lengths of its red sides.

Solution: In this solution, all indices are taken modulo n.
Suppose we know that some (connected) polygonal regions S and

T intersect in a nonempty (connected) polygonal region P . Any side
of P must lie along a side of S or T .

Using the information that S and T each have n sides, we then
know that every side of P must lie along one of the 2n segments
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that are sides of S or T . Furthermore, because P is convex (it is the
intersection of two convex regions), no two sides of P lie along the
same of these 2n segments. We are given that P has 2n sides, so it
follows that every side of S or T contains a segment that is also a side
of P . We let the vertices of P, S and T be, in counterclockwise order,
P1, P2, . . . , P2n; S1, S2, . . . , S2n and T1, T2, . . . , T2n respectively.

Lemma. No vertex of S or T is a vertex of P .

Proof. We prove that no vertex of S is a vertex of P ; an analogous
proof shows that no vertex of T is a vertex of P . Suppose, for sake
of contradiction, that one vertex — say, P1 — of P is also a vertex of
S. If a vertex of P is also a vertex of S, then each neighboring vertex
of P either: (i) is also a vertex of S, or (ii) lies on the boundary of T .
Suppose that P1, . . . , Pk satisfy (i); because there are only n vertices
of S, we have k ≤ n. Then Pk satisfies (i), and Pk+1 satisfies (ii).
Relabelling, we can assume that P1 satisfies (i) while P2 satisfies (ii).

From P2, we travel clockwise along the boundary of T until reaching
a vertex of T — without loss of generality, T1.

No two adjacent sides of P can both lie on the boundary of S,
because the vertex between these sides would then also be a vertex
of S — contradicting the above Lemma. Likewise, no two adjacent
sides of P can both lie on the boundary of T .

Hence, the sides of P alternate between portions of sides of S and
portions of sides of T . We must alternate between the Si and the
Ti as we trace around P . Without loss of generality, the order is
S1, T1, S2, T2, . . . , Sn, Tn. Each side of P forms a triangle with one
of the Si or Ti, so let the side forming a triangle with Si be si, and
similarly for ti. We wish to show the sum of the si equals the sum of
the ti. Now, in of these triangles the angle at Si or Ti has measure
180 − 360/n degrees. Adjacent triangles have vertical angles which
are thus equal, so all these triangles are similar. Because the triangles
alternate in orientation, all those that have Si as one of their points
are oriented the same. Then the sides of such any such triangle are si,
asi and bsi. Similarly the sides of triangles containing Ti are ti, bti,

and ati. Then SiSi+1 = bsi+ti+asi+1 and TiTi+1 = ati+si+1+ati+1.
Then the perimeter of S is (taking indices of n + 1 as 1)

n∑

i=1

SiSi+1 =
n∑

i=1

(bsi + ti + asi+1) =
n∑

i=1

(bsi + asi + ti)
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While the perimeter of T is
n∑

i=i

TiTi+1 =
n∑

i=1

(ati + si+1 + bti+1) =
n∑

i=1

(ati + bti + si)

Since these two values are equal, we have

0 =
n∑

i=1

((a + b)ti + si − (a + b)si − ti) =
n∑

i=1

(a + b− 1)(ti − si)

We divide both sides by (a+b-1), which is not 0 by the triangle
inequality, to obtain

n∑

i=1

(ti − si) = 0, or
n∑

i=1

si =
n∑

i=1

ti

as desired.

Problem 4 A point in the Cartesian coordinate plane is called a
mixed point if one of its coordinates is rational and the other one is
irrational. Find all polynomials with real coefficients such that their
graphs do not contain any mixed point.

Solution: Answer: All (non-constant) linear polynomials with
rational coefficients. From here, we call a polynomial pure if it has
no mixed points.

Lemma. If the polynomial P (x) assumes rational values for infinitely
many rational values x, then every coefficient of P (x) is rational.

Proof. Let n be the degree of P (x) and x0, x1, . . . , xn, y0, y1, . . . , yn

be such rational numbers, that P (xi) = yi for all i and all xi are
different. For i = 0, 1, . . . , n consider the following polynomials:

Qi(x) =

∏
j 6=i (x− xj)∏
j 6=i (xi − xj)

We have Qi(xj) = 1 if j = i, and Qi(xj) = 0 otherwise. Let
P ′(x) =

∑n
i=0 yiQi(x). Then, P ′(xi) = yi for i = 0, 1, . . . , n and

deg P ′ = n. We have P (x) − P ′(x) = 0 for n + 1 different values
of x. Since P (x) − P ′(x) has degree at most n, it must be 0. So
P (x) = P ′(x). As constructed, all Qi(x) have rational coefficients.
Hence, all coefficients of P (x) are rational.
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For sake of contradiction, assume that there exists at least one pure
polynomial

P (x) = anxn + an−1x
n−1 + · · ·+ a0

with degree n ≥ 2. By the Lemma, the ak are rational. If the least
common denominator of the ak is the integer m, then P (mx) and
−P (mx) are pure polynomials with integer coefficients; and at least
one of P (mx) and −P (mx) has positive leading coefficient. Thus, we
may assume without loss of generality that an > 0 and that the ak

are integers.
Let p be a prime so that p 6 | an. Let r be an integer large enough

that there exists a positive x0 such that P (x0) = pr+1
p . (Because the

leading coefficient of P is positive, such an r exists.) Because P (x0)
is rational, so is x0, and we may write x0 = s

t for relatively prime
positive integers s, t. Then

pr + 1
p

= P (x0) =
ansn + an−1s

n−1t + · · ·+ a0t
n

tn
,

or
(pr + 1)tn = p(ansn + an−1s

n−1t + · · ·+ a0t
n).

Because p divides the right hand side, it must divide the left hand
side, implying that p | t. Furthermore, because n ≥ 2, the left hand
side is divisible by p2. Thus, the right hand side is divisible by p2,
implying that

p | (ansn + an−1s
n−1t + · · ·+ a0t

n).

Because p | t, p divides an−1s
n−1t + · · · + a0t

n. Thus the above
relation implies

p | ansn.

Because p | t and gcd(s, t) = 1, we have p 6 | s; and by the definition
of p, we have p 6 | an. Hence, p 6 | ansn, a contradiction. Thus, our
original assumption was false, and there is no pure polynomial of
degree greater than 1.

Therefore, every pure polynomial is of degree 0 or 1. Any constant
polynomial has mixed points, and it is easy to check that any non-
constant linear polynomial with rational coefficients has no mixed
points.
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Problem 5 Find the greatest integer n, such that there are n + 4
points A,B, C,D, X1, . . . , Xn in the plane with the following proper-
ties: the lengths AB and CD are distinct; and for each i = 1, 2, . . . , n,
triangles ABXi and CDXi are congruent (although not necessarily
in that order).

Solution: Answer: n = 4. One example is

A = (−1,
√

3), B = (1,
√

3), C = (−2, 0), D = (2, 0),

X1 = (−3,−
√

3), X2 = (−1,−
√

3), X3 = (1,−
√

3), X4 = (3,−
√

3).

When we consider the possible orderings of the corresponding
vertices of congruent triangles, there are six possible permutations
of C,D, X to match with ABX. Of these, two require AB = CD:
CDX and DCX. Thus, there are four we need to consider. We will
show that there is only one point Z such that ABZ is congruent to
CZD. The result will follow for the other three valid arrangements
of C,D, Z, as they result from swapping A with B and/or C with D

in the arrangement.
Suppose two points Z and Z ′ satisfy conditions 4ABZ ∼= 4CZD,

4ABZ ′ ∼= 4CZ ′D. We have CZ = AB, CD = AZ, BZ = ZD, and
likewise for Z ′. Since BZ = DZ, Z is on the perpendicular bisector
of BD, as is Z ′. Draw a circle with center A and radius CD. That
circle can intersect with the perpendicular bisector of BD in at most
two points. Thus, these points are Z and Z ′. The circle centered at
C with radius AB also intersects the perpendicular bisector of BD

at Z and Z ′. Thus, A and C are both on the perpendicular bisector
of ZZ ′, and lines AC and BD are parallel.

Reflect triangle CZD across line ZZ ′ to obtain triangle C ′ZD′.
Now, B = D′ because ZZ ′ is the perpendicular bisector of BD. Thus,
we have 4CZD ∼= 4C ′ZB. We also know that 4CZD ∼= 4ABZ.
Thus, 4C ′ZB ∼= 4ABZ. Draw altitudes from A and C ′ to line BZ;
they must have the same length because BZ is the common base of
two congruent triangles. Therefore, BZ ‖ AC ′. However, AC was
parallel to BD, and C ′ is on line AC and distinct from A (because
AB 6= CD). Hence, AC ′, and consequently BZ, are also parallel to
BD. So, Z must be the midpoint of BD. But the same holds for Z ′,
so Z ′ = Z, a contradiction. Therefore, there is only one choice for Z

per configuration, and we can have at most 4 points Xi.
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2.2 Austrian-Polish

Mathematics Competition

Problem 1 Let k be a fixed positive integer. Consider the sequence
defined recursively by a0 = 1 and

an+1 = an + b k
√

anc
for n = 0, 1, . . . . (Here, bxc denotes the greatest integer less than or
equal to x.) For each k, find the set Ak consisting of all integers in
the sequence k

√
a0, k

√
a1, . . . .

Solution: We claim that Ak is the set of all powers of 2, regardless
of k. 1 ∈ Ak because the first term of every sequence is one. Suppose
that n ∈ Ak. Then there must exist i such that ai = nk. For all
such j that nk ≤ aj < (n + 1)k, we have aj+1 = aj + n. Therefore,
for these j, aj+1 ≡ aj (mod n). Because congruence is transitive, it
follows that aj+1 ≡ 0 (mod n). Eventually, it must be the case that
aj+1 ≥ (n + 1)k but aj < (n + 1)k. Let aj+1 = (n + 1)k + m1. We
know that 0 ≤ m1 < n because aj < (n + 1)k. We have

0 ≡ aj+1 ≡ (n + 1)k + m1 ≡ 1k + m1 ≡ m1 + 1 (mod n)

Therefore, m1 = n−1. Similarly, we add n+1 until we obtain a term
of the form (n + 2)k + m2 with 0 ≤ m2 < n + 1. Hence,

n− 1 ≡ (n + 2)k + m2 ≡ 1k + m2 ≡ m2 + 1 (mod n + 1)

Then m2 = n− 2. In general,

mi ≡ (n + i + 1)k + mi+1 ≡ 1k + mi+1 (mod n + i).

Then mi = n − i for 0 < i ≤ n. Therefore, mn is the first mi that
equals zero, so (n + n)k = (2n)k is the next kth power in the set. By
induction, Ak is the set of all powers of two.

Problem 2 Consider the set A of all positive integers n with the
following properties: the decimal expansion contains no 0, and the
sum of the (decimal) digits of n divides n.

(a) Prove that there exist infinitely many elements in A with the fol-
lowing property: the digits that appear in the decimal expansion
of A appear the same number of times.
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(b) Show that for each positive integer k, there exists an element in
A with exactly k digits.

Solution:

(a) Let n1 = 3 and n2 = 111. Suppose that the decimal expansion
of ni+1 contains ni ones, and ni divides ni+1. We define ni+2

the following way: ni+2 = ni+1

∑ni+1/ni−1
j=0 10nij Then ni+2 is

the integer whose decimal expansion consists of ni+1 ones, and it
is divisible by ni+1. Therefore, the n′is are an infinite family of
positive integers that satisfy the desired condition.

(b) We will need the following lemmas.

Lemma. For every d > 0 there exists a d-digit number that
contains only ones and twos in its decimal expansion and is a
multiple of 2d.

Proof. We will prove the following statement: for every l > 0
there exists a positive integer divisible by 2d whose l rightmost
digits are only ones and twos. Proceed by induction on l. There
exists such a, that 2da ≡ 2 (mod 10), so for l = 1 the statement
is true. Suppose it holds for l and let b be a multiple of 2d

satisfying the condition. Let c be the (l + 1)st digit of b from
the right side. There exists x such that 2dx+c ≡ 1 or 2 (mod 10).
Hence, b+2d10lx has only ones and twos among its l+1 rightmost
digits, completing the step of induction. Now, putting l = d, we
obtain some multiple of 2d, say N, such that all its l+1 rightmost
digits are only ones and twos. Considering N mod10d proves the
original claim.

Lemma. For each k > 2 there exists d ≤ k such that the
following inequality holds: k + d ≤ 2d ≤ 9k − 8d.

Proof. For 3 ≤ k ≤ 5, d = 3 satisfies the inequalities. For
5 ≤ k ≤ 10, d = 4 satisfies the inequalities. We will show that
d = blog2 4kc satisfies for all k > 10. If k > 3, then log2 4k ≤ 2k, so
d < k. Additionally, k+d ≤ 2k ≤ 2d. If k > 10, then 16k2 ≤ 2k, so
4k ≤ 2k/2 ≤ 25k/8, d ≤ log2 4k ≤ 5

8n, and 9k− 8d ≥ 4k ≥ 2d.

Now, return to the original problem. For k = 1, n = 1 has the
desired property. For k = 2, n = 12 has the desired property.
Now, for each k > 2 we have some number d satisfying the
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condition of the second Lemma. Consider a k-digit integer n

such that the last d digits of n have the property described in the
first Lemma. We can choose each of the other digits of n to be
any number between zero and nine. We know that the sum of
the last d digits of n is between d and 2d, and we can choose the
sum of the other k−d digits to be any number between k−d and
9(k− d). Since k− d + 2d ≤ 2d ≤ 9(k− d) + d, we can choose the
other digits such that the sum of the digits of n is 2d. It completes
the proof because n is a multiple of 2d.

Problem 3 We are given a right prism with a regular octagon for
its base, whose edges all have length 1. The points M1,M2, . . . ,M10

are the centers of the faces of the prism. Let P be a point inside the
prism, and let Pi denote the second intersection of line MiP with the
surface of the prism. Suppose that the interior of each face contains
exactly one of P1, P2, . . . , P10. Prove that

∑10
i=1

MiP
MiPi

= 5.

Solution: Suppose that Mn is the center of a base and Pn is on
a lateral face. Project the prism onto a plane perpendicular to both
the base and the face containing Pn. The bases and two faces become
edges of the large rectangle. The other six faces become smaller
rectangles. In the projection, P must lie in the triangle formed by
the projection of Mn and the endpoints of the projection of the face
containing Pn. There are six remaining M ′

is outside the triangle and
only five remaining faces that intersect the triangle. Therefore, one
of the MiPi segments must lie entirely outside the triangle, which is
impossible, because P is inside the triangle. Then the assumption is
false, so Pn must be on one of the bases.

If Mi is on a lateral face, then Pi must also be on a lateral face.
Suppose that the face containing Pi is not opposite the face containing
Mi. Project the prism onto one of the bases. Then, MiPi divides this
base onto two parts. One of the parts have more remaining M ′

js than
the number of remaining faces intersecting the second one. Therefore
one of the MjPj do not intersect MiPi, which is impossible. Then
the assumption is false, so every Pi must be on the face opposite Mi.

Let Mi and Mj be on opposite faces. Mi, Mj , Pi, and Pj are
in the same plane because lines MiPi and MjPj intersect. Line
segments MiPj and MjPi do not intersect because they belong to
parallel planes. Therefore, these lines must be parallel. Angles
MiPjP and PiMjP are alternate interior angles, as are angles MjPiP
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and PjMiP. Triangles MiPjP and PiMjP are similar by AA. Then
MiP
MiPi

+ MjP
MjPj

= MiP
MiPi

+ PiP
MiPi

= 1. There are five such pairs of points,
so

∑10
i=1

MiP
MiPi

= 5.

Problem 4 Let n > 10 be a positive integer and let A be a set
containing 2n elements. The family {Ai | i = 1, 2, . . . , m} of subsets
of the set A is called suitable if:

• for each i = 1, 2, . . . , m, the set Ai contains n elements;

• for all 1 ≤ i < j < k ≤ m, the set Ai ∩Aj ∩Ak contains at most
one element.

For each n, determine the largest m for which there exists a suitable
family of m sets.

Solution: We claim that m = 4. Choose any two distinct n-element
subsets A1 and A2 that are not complements of each other. Let A3

be the complement of A1, and let A4 be the complement of A2. All
three-element intersections are empty because each intersection either
contains either A1 and A3 or A2 and A4.

Now, suppose {Ai} has five members. Let Ii denote the sum of the
orders of all intersections of n distinct members of {Ai}, and let Ui

denote the sum of the orders of all unions of n distinct members of
{Ai} By the inclusion-exclusion principle,

U4 = 4I1 − 3I2 + 2I3 − I4

U5 = I1 − I2 + I3 − I4 + I5

Each union of four sets is no larger than the union of all five sets.
Therefore, 5U5 ≥ U4, or

5I1 − 5I2 + 5I3 − 5I4 + 5I5 ≥ 4I1 − 3I2 + 2I3 − I4

I1 − 2I2 + 3I3 − 4I4 + 5I5 ≥ 0

We know that I1 is 5n because each of the five Ai’s has n elements.

5n− 2I2 + 3I3 − 4I4 + 5I5 ≥ 0

Additionally, U5 is at most 2n, so

2n ≥ 5n− I2 + I3 − I4 + I5
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If we multiply by two and add to the previous inequality, we obtain

9n− 2I2 + 3I3 − 4I4 + 5I5 ≥ 10n− 2I2 + 2I3 − 2I4 + 2I5

which implies
I3 − 2I4 + 3I5 ≥ n

But I3 ≤ 10 < n because all of the intersections of three subsets have
at most one element. The intersection of all five subsets is not larger
than the intersection of any four of them, so 2I4 ≥ 10I5 ≥ 3I5. This
is a contradiction, so we cannot find a suitable family of five subsets.
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2.3 Balkan Mathematical Olympiad

Problem 1 Let n be a positive integer. Show that if a and b are
integers greater than 1 such that 2n − 1 = ab, then ab − (a − b) − 1
can be written as k · 22m for some odd integer k and some positive
integer m.

Solution: Note that ab − (a − b) − 1 = (a + 1)(b − 1). We shall
show that the highest powers of two dividing (a + 1) and (b− 1) are
the same. Let 2s and 2t be the highest powers of 2 dividing (a + 1)
and (b− 1), respectively. Because a + 1, b + 1 ≤ ab + 1 = 2n, we have
s, t ≤ n.

Note that 2s divides 2n = ab + 1 and a + 1, so that

ab ≡ a ≡ −1 (mod 2s).

Hence, b ≡ 1 (mod 2s), or 2s | (b− 1), so that s ≤ t.

Similarly, ab ≡ −b ≡ −1 (mod 2t), so a ≡ −1 (mod 2t), and
2t | (a + 1). Thus, t ≤ s.

Therefore, s = t, the highest power of two dividing (a + 1)(b − 1)
is 2s, and ab− (a− b)− 1 = k · 22s for some odd k.

Problem 2 Prove that if a convex pentagon satisfies the following
conditions, then it is a regular pentagon:

(i) all the interior angles of the pentagon are congruent;

(ii) the lengths of the sides of the pentagon are rational numbers.

Solution: Let the pentagon have side lengths AB = a1, BC = a2,

CD = a3, DE = a4 and EA = a5. Let ζ = e
2πi
5 . Placing the pentagon

in the complex plane, with
−−→
AB aligned along the positive real axis,

we have
−−→
AB = a1,

−−→
BC = a2 · ζ,

−−→
CD = a3 · ζ2,

−−→
DE = a4 · ζ3 and−→

EA = a5 · ζ4. These five vectors have sum zero; that is,

a1 + a2 · ζ + a3 · ζ2 + a4 · ζ3 + a5 · ζ4 = 0.

In other words, ζ satisfies the equation

a1 + a2x + a3x
2 + a4x

3 + a5x
4 = 0.
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Let f(x) = x4 + x3 + x2 + x + 1. Note that f(x) = x5−1
x−1 for x 6= 1,

so that f(ζ) = 0
ζ−1 = 0. Note that

f(x + 1) =
(x + 1)5 − 1

x− 1
= x4 + 5x3 + 10x2 + 10x + 5.

This polynomial is irreducible over the rationals, by Eisenstein’s irre-
ducibility criterion: the leading coefficient is 1, the other coefficients
are divisible by the same prime (5), and the constant coefficient is not
divisible by the square of that prime (25). Hence, f(x) is irreducible
over the rationals.

Consider all polynomials with rational coefficients that have ζ as a
root; there is at least one such polynomial different from 0, namely
f(x). Then it is well-known that there is one such polynomial p0(x)
that is monic and divides all the rest. (To prove this, let p0(x) be
the nonzero monic polynomial of smallest degree. By the Euclidean
algorithm, any other polynomial p(x) with root ζ can be written in the
form p(x) = p0(x) · q(x) + r(x) with deg r < deg p. Plugging in x = ζ

yields 0 = 0 · q(ζ) + r(ζ), so that r(x) = 0 by the minimal definition
of p0. Thus, p(x) = p0(x)q(x), as desired.) Because p0(x) must
divide the monic, irreducible polynomial f(x), we have p0(x) = f(x).
Thus, f(x) divides a1 + a2x + a3x

2 + a4x
3 + a5x

4, implying that
a = b = c = d = e. Thus, pentagon ABCDE must be regular.

Note: In general, every number α that is the root of a nonzero
polynomial with rational coefficients has a unique minimal polynomial
— the lowest-degree monic polynomial with rational coefficients that
has α as a root. Moreover, this polynomial is unique and divides any
polynomial that has α as a root. For prime p, the pth roots of unity
have minimal polynomial 1 + x + · · ·+ xp−1 = xp−1

x−1 .

Problem 3 A 3× 3× 3 cube is divided into 27 congruent 1× 1× 1
cells. One of these cells is empty, and the others are filled with unit
cubes labelled 1, 2, . . . , 26 in some order. An admissible move consists
of moving a unit cube which shares a face with the empty cell into the
empty cell. Does there always exist — for any initial empty cell and
any labelling of the 26 cubes — a finite sequence of admissible moves
after which each unit cube labelled with k is in the cell originally
containing the unit cube labelled with 27−k, for each k = 1, 2, . . . , 26?
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Solution: No; in fact, we claim that regardless of the initial
configuration, such a sequence never exists. It is well-known that
all permutations of {1, 2, . . . , n} can be assigned a parity — even
or odd — so that any permutation obtained by an even (resp. odd)
number of transpositions is even (resp. odd). Treat the empty cell
as if it contained a cube labelled 27, so that any admissible move
is a transposition, namely of cube 27 with a neighboring cube. The
desired permutation of the cubes can be achieved with an odd number
of transpositions, namely the the 13 transpositions switching cubes 1
and 26, cubes 2 and 25, and so on. Thus, the desired permutation is
odd, and any finite sequence of admissible moves ending in the desired
configuration must have an odd number of admissible moves.

Now color the cells black and white “checkerboard” style, so that
no two white cells or two black cells are adjacent. In any admissible
move, the empty cell changes color. In the desired configuration,
the empty cell lies in its original position, so any finite sequence
of admissible moves ending in this configuration must contain an
even number of admissible moves. This contradicts the result in the
previous paragraph, so no such finite sequence exists.
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2.4 Baltic Mathematics Competition

Problem 1 Let 2001 given points on a circle be colored either red
or green. In one step all points are recolored simultaneously in the
following way: If before the recoloring, both neighbors of a point P

have the same color as P , then the color of P remains unchanged;
otherwise, the color of P is changed. Starting with an initial coloring
F1, we obtain the colorings F2, F3, . . . after several steps. Prove that
there is a number n0 ≤ 1000 such that Fn0 = Fn0+2. Is this assertion
also true if 1000 is replaced by 999?

Solution: The assertion is true for n0 ≤ 1000 but not for n0 ≤ 999.
We first prove that Fn0 = Fn0+2 for some n0 ≤ 1000. Observe that

if at any time neighbors A,B are colored differently from each other,
then from that time on they change color during each step.

Now we introduce some notation. Label the points P1, P2, . . . , P2001

in clockwise order, with indices taken modulo 2001. Call a point
unstable if it is adjacent to a point of a different color; otherwise, call
it stable. If all points are initially stable, then all points are the same
color and the result is trivial. From henceforth, we assume that not
all points are initially stable.

Denote by sn the number of stable points in the coloring Fn. We
claim that sn+1 ≤ sn − 2 or sn+1 = 0 for each n. From the definition
of a step, all unstable points change color and all stable points stay
the same. We initially observe that any point that becomes unstable,
remains unstable. As for stable points, consider any block of stable
points Pi, . . . , Pj surrounded by unstable points Pi−1, Pj+1. After the
step, Pi, . . . , Pj remain the same color but Pi−1 and Pj+1 change to
the opposite color. The result is that the (formerly stable) points Pi

and Pj become unstable, while Pi+1, . . . , Pj−1 remain stable. Hence,
in any stable block of length 2 or more, two points become unstable
during the next step; in any stable block of length 1, the stable point
becomes unstable during the next step. It follows that for any n, if
2 ≤ sn, then sn+1 ≤ sn − 2; otherwise, sn+1 = 0.

Because we are assuming that not all the points are initially the
same color, some three adjacent points are initially colored red, green,
red or initially colored green, red, green; they are unstable, so initially
s1 ≤ 1998. Because sn+1 ≤ sn − 2 or sn+1 for each n, we conclude
that s1000 = 0. Then all points are unstable by the stage F1000, and
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it easily follows that F1000 = F1002. This completes the first part of
the problem.

We now show that there does not necessarily exist n0 ≤ 999 with
Fn0 = Fn0+2. Suppose that the initial coloring F1 is as follows: one
point P1 is red, and all other points are green. Then we begin
with three consecutive unstable points (P2001, P1, and P2) and a
block of 1998 stable points. During each step, the number of stable
points decreases by 2 (the two endpoints of the stable block become
unstable), so that s999 = 2 while s1000 = s1001 = 0. Thus, sn 6= sn+2

for all n ≤ 999, from which it follows that Fn 6= Fn+2 for n ≤ 999.

Problem 2 In a triangle ABC, the bisector of angle BAC meets
BC at D. Suppose that BD · CD = AD2 and ∠ADB = π/4.
Determine the angles of triangle ABC.

Solution: The angle measures are ∠A = π/3,∠B = 7π/12, ∠C =
π/12.

Let O be the circumcenter of ABC and let E be the midpoint
of the arc BC not containing A, i.e., the second intersection of line
AD with the circumcircle of triangle ABC. By Power of a Point,
AD · ED = BD · CD, from which it follows that ED = AD.

Observe that

∠ACE = ∠ACB + ∠BCE = ∠ACB + ∠BAE

= ∠ACB + ∠EAC = ∠ADB = π/4,

so that ∠AOE = 2∠ACE = π/2 and OE ⊥ OA.
Orienting our diagram properly, we have A at the north pole of the

circumcircle of triangle ABC and E at the east pole. Because E is
the midpoint of arc BC, BC is vertical; and it passes through D, the
midpoint of AE. It follows that B and C lie π/3 counterclockwise
and clockwise from E, respectively. The angle measures ∠A = π/3,
∠B = 7π/12, ∠C = π/12 follow easily.

Problem 3 Let a0, a1, . . . be a sequence of positive real numbers
satisfying

i · a2
i ≥ (i + 1) · ai−1ai+1

for i = 1, 2, . . . . Furthermore, let x and y be positive reals, and let
bi = xai + yai−1 for i = 1, 2, . . . . Prove that

i · b2
i > (i + 1) · bi−1bi+1
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for all integers i ≥ 2.

Solution: Fix k ≥ 2. We wish to show that

k · (xak + yak−1)2 > (k + 1) · (xak−1 + yak−2)(xak+1 + yak),

or equivalently that

(ka2
k − (k + 1)ak−1ak+1)x2

+((k − 1)akak−1 − (k + 1)ak−2ak1)xy

+(ka2
k−1 − (k + 1)ak−2ak)y2

is positive. Because x, y > 0, it suffices to prove that the coefficients
of x2, xy, y2 above are nonnegative and not all zero.

From the given inequality with i = k, the coefficient of x2 is
nonnegative.

Next, we take the given inequality with i = k − 1:

(k − 1) · a2
k−1 ≥ k · ak−2ak.

Multiplying this by the inequality k
k−1 > k+1

k shows that the coeffi-
cient of y2 is strictly positive.

Finally, we take the given inequality for i = k − 1 and i = k:

(k − 1) · a2
k−1 ≥ k · ak−2ak,

k · a2
k ≥ (k + 1) · ak−1ak+1.

Multiplying these two inequalities and cancelling like terms, we obtain
a third inequality

(k − 1) · ak−1ak ≥ (k + 1) · ak−2ak+1,

which implies that the coefficient of xy is nonnegative. This completes
the proof.

Problem 4 Let a be an odd integer. Prove that a2n

+ 22n

and
a2m

+ 22m

are relatively prime for all positive integers n and m with
n 6= m.

Solution: Without loss of generality, assume that m > n. For any
prime p dividing a2n

+ 22n

, we have

a2n ≡ −22n

(mod p).
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We square both sides of the equation m− n times to obtain

a2m ≡ 22m

(mod p).

Because a is odd, we have p 6= 2. Thus, 22m

+ 22m

= 22m+1 6≡
0 (mod p) so that

a2m ≡ 22m 6≡ −22m

(mod p).

Therefore, p 6 | (a2m

+ 22m

), proving the desired result.
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2.5 St. Petersburg City Mathematical

Olympiad (Russia)

Problem 1 In the parliament of the country Alternativia, for any
two deputies there exists a third who is acquainted with exactly one
of the two. Each deputy belongs to one of two parties. Each day
the president (not a member of the parliament) selects a group of
deputies and orders them to change parties, at which time each deputy
acquainted with at least one member of the group also changes parties.
Prove that the president can arrange that at some point, every deputy
belongs to a single party.

Solution: Let D be the set of deputies in the parliament of
Alternativia. For a set S ⊂ D of deputies, we define A(S) to be
the set of deputies d ∈ D such that either D ∈ S or D is acquainted
with at least one member of S. We state the following lemma:

Lemma. For any set F ⊂ D there exists a set S0 ⊂ D such that
A(S0) ∩ F is equal to F − {d0} for some deputy d0.

Proof. Consider the set of subsets S ⊂ D such that A(S) ∩ F 6= F.

Choose S0 to be such a subset with the maximal number of elements.
Then if S0 is a proper subset of some other set S1 ⊂ D, A(S1)∩F = F,

or equivalently F ⊂ A(S1) for A(S1) ∩ F 6= F would contradict the
maximality of S0.

We now claim that the set S0 thus defined is our desired subset of D.

For suppose that A(S0) did not equal D−{d0} for any d0 ∈ D. Then
there would have to exist distinct deputies d1, d2 such that d1, d2 ∈ F

but d1, d2 /∈ A(S0). By the condition given in the problem there must
exist a deputy d3 ∈ D such that exactly one of d1, d2 is acquainted
with d3, or since d3 is necessarily distinct from d1 and d2, exactly
one is a member of A({d3}). Without loss of generality assume that
d1 ∈ A({d3}), d2 /∈ A({d3}). Consider the set S1 = S0 ∪ {d3}. Now,
by definition d1 is not acquainted with any member of S0. However
d1 is acquainted with d3: we conclude that d3 /∈ S0 and so S0 6= S1

and S0 is a proper subset of S1.

We also know that d2 is not a member of A(S0), nor is it a
member of A({d3}). This means that it cannot be a member of
A(S0 ∪ {d3}) = A(S1) either but d2 ∈ F, implying that F is not a
subset of A(S1). Combined with the fact that S1 is a proper superset
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of S0, this contradicts the maximality of S0. We are forced to conclude
that our assumption was false and that A(S0) = D − {d0} for some
d0 ∈ D. This proves the lemma.

We now proceed to prove by induction on |F | that for any parlia-
ment D and for any subset F of deputies in the parliament, all the
deputies in F can be made to belong to a single party.

Base Case: |F | = 1. In this case the set F contains only one deputy.
Hence all deputies in F must of necessity be in the same party to begin
with, and there is nothing to be shown.

Inductive Step: Assume that for all subsets F of D with |F | = n,

for any initial configuration of deputies all deputies can be moved
to a single party. We must show that for all parliaments F with
|F | = n + 1, for any initial configuration of deputies all deputies can
be moved to a single party.

We apply the lemma. Let S0 be a subset of D that satisfies
A(S0)∩F = F −{d0} condition for some d0 ∈ D. Remove deputy d0

from the set F to produce a new set F ′ = F − {d0} with |F ′| = n.

By the induction hypothesis, there is some sequence of permitted
operations that will produce a configuration where all deputies in F ′

are in the same party (call it party 1). If d0 belongs to party 1, we
are done.

If not, make all the deputies in A(S0) ⊃ F ′ change parties. Now all
members of F ′ belong to party 2, as will d0 so we have reached the
desired configuration. This means that if the president can always
make all the deputies in F belong to one party whenever |F | = n, he
can still make the deputies belong to one party whenever |F | = n+1.

Thus by induction for any set F ⊂ D the president can arrange for
all the members of F to belong to the same party.

This holds even if F = D: that is, the president can arrange for all
the members of the parliament to belong to a single party.

Problem 2 Do there exist distinct numbers x, y, z ∈ [0, π/2] such
that the six numbers sin x, sin y, sin z, cos x, cos y, cos z can be divided
into three pairs with equal sum?

Solution: Assume for sake of contradiction that this can be done.
Let a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ a6 be sin x, sin y, sin z, cosx, cos y, cos z,

written in the nonincreasing order. As supposed, these numbers can
be partitioned onto three pairs with equal sums. Let ai be paired
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with a1. If ai > a6, then a6 with some aj form a pair with the sum
a6 + aj < ai + aj ≤ ai + a1. Hence, because these pairs must have
equal sums, there is a contradiction and aj > a6 cannot be true.
So, a6 = aj and without loss of generality we can conclude that a6 is
paired with a1. Let ak be paired with a2. If ak > a5, then we similarly
have a2 +ak > a2 +a5 ≥ al +a5, where al is paired with a5. It proves
that without loss of generality the pairs are {a1, a6}, {a2, a5}, {a3, a4}.

On the other hand, these six numbers can be partitioned onto
the following pairs: {sinx, cos x}, {sin y, cos y}, {sin z, cos z}. The sum
of squares of the numbers in each pair is 1. Let ax, ay, av, aw be
the numbers paired with a1, a2, a6, a5 respectively. Applying similar
approach, we conclude that ax > a6 implies

1 = a2
1 + a2

x > a2
1 + a2

6 ≥ a2
v + a2

w = 1.

This cannot be true. Hence, without loss of generality a1 is paired
with a6. Therefore, similarly ay > a5 implies

1 = a2
2 + a2

y > a2
2 + a2

5 ≥ a2
w + a2

5 = 1.

This is false too. As above, without loss of generality we conclude
that these pairs are {a1, a6}, {a2, a5}, {a3, a4} too.

That two statements gives us

sin x + cos x = sin y + cos y = sin z + cos z.

Squaring, subtracting 1 and multiplying by 2 give

2 sin x cos x = 2 sin y cos y = 2 sin z cos z.

It is equivalent to sin 2x = sin 2y = sin 2z. Numbers 2x and 2y are
different and lie in [0, π], so sin 2x = sin 2y implies 2x+2y = π. Similar
equation for x and z shows that z = y and gives a contradiction with
our first assumption. Hence such numbers do not exist.

Problem 3 A country has 2000 cities and a complete lack of roads.
Show that it is possible to join pairs of cities by (two-way) roads so
that for n = 1, . . . , 1000, there are exactly two cities where exactly n

roads meet.

Solution: This problem can be reformulated in terms of graph
theory. If we let G be the graph whose vertices are the cities of the
country and whose edges are the roads, our task becomes to prove the
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existence of a graph G with 1000 vertices such that for n = 1, . . . , 1000
exactly two vertices of G have degree n.

We will prove a stronger statement by induction: namely, that for
any nonnegative integer k there exists a graph G with 4k vertices such
that for n = 1, . . . , 2k exactly two vertices of G have degree n.

Base Case: k = 0. Let G be the graph whose vertex set is empty.
This vacuously satisfies the above condition.

Inductive Step. We assume that there exists a graph H with 4k

vertices such that for n = 1, . . . , 2k exactly two vertices of H have
degree n. We must construct a graph G with 4(k + 1) vertices such
that for n = 1, . . . , 2(k + 1) exactly two vertices of G have degree n.

For n = 1, . . . , 2k label the two vertices of H with degree n an and
bn. We define G to be a graph with a vertex set equal to the vertex
set of H along with four additional vertices a0, b0, a2k+1 and b2k+1.

The edges of G are the edges of H along with edges connecting a2k+1

to an and b2k+1 to bn for n = 0, . . . , 2k and an edge connecting a2k+1

with b2k+1.

We now prove that for n = 0, . . . , 2k + 1, an has degree n + 1 in
G. For n = 0 this is clear, because the only edge incident to a0 is the
edge connecting a0 to a2k+1. For n = 1, . . . , 2k an had degree n in H,
and the only edge in G incident to an not in H is the edge connecting
an to a2k+1, so that an has total degree n + 1 in G. Finally, a2n+1 is
connected to the vertices a0, . . . , a2n, b2n+1, giving it degree 2n + 2.

Similarly for n = 0, . . . , 2k + 1, bn has degree n + 1 in G.

So for n = 1, . . . , 2(k + 1) the vertices an−1, bn−1 and no others
have degree n in G, and so G is the desired graph. By induction, we
can construct such a graph G for any value of k, particularly k = 500,

which gives a graph with 2000 vertices satisfying the conditions of the
problem, as wanted.

Problem 4 The points A1, B1, C1 are the midpoints of sides
BC, CA, AB of acute triangle ABC. On lines B1C1 and A1B1 are
chosen points E and F such that line BE bisects angle AEB1 and
line BF bisects angle CFB1. Prove that ∠BAE = ∠BCF.

Solution:

Lemma. Given AB with midpoint M and any ray not on line AB

extending from M to O, a point at infinity, there is exactly one point
E on ray

−−→
MO such that line BE bisects ∠AEO
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Proof. Let E be an arbitrary point on ray
−−→
MO, and let P be a point

past point E on ray
−−→
BE. Then as E moves from point M to O,

∠AEP strictly increases from 0 to π, while ∠PEO strictly decreases
from ∠AMO to 0. Therefore at exactly one point E, line BE will
bisect ∠AEO.

Now, consider the transformation that reflects across the bisector
of ∠ABC and scales upward by a factor of BC

AB . This transfor-
mation will take point A to point C and point C1 to point A1.

Furthermore, because this transformation preserves all angles, and
because ∠AC1B1 = ∠CA1B1, ray

−−−→
C1B1 maps to ray

−−−→
A1B1. Letting

point E map to point E′ on ray
−−−→
A1B1, we see that line BE′ also

bisects ∠CE′B1. Therefore, by the lemma, points E′ and F are in
fact the same, and because the transformation preserves all angles,
∠BAE = ∠BCF.

Problem 5 For all positive integers m > n, prove that

lcm(m,n) + lcm(m + 1, n + 1) >
2mn√
m− n

.

Solution: Let m = n + k. Then

lcm(m,n) + lcm(m + 1, n + 1) =
mn

gcd(m,n)
+

(m + 1)(n + 1)
gcd(m + 1, n + 1)

>
mn

gcd(n + k, n)
+

mn

gcd(m + 1, n + 1)

=
mn

gcd(k, n)
+

mn

gcd(n + k + 1, n + 1

=
mn

gcd(k, n)
+

mn

gcd(k, n + 1)

Now, gcd(k, n) | k, and gcd(k, n+1) | k. We conclude that gcd(k, n)
has no common prime factor with gcd(k, n + 1) because if they did,
n+1 would have a common prime factor with n, which is impossible.
Since both divide k, gcd(k, n + 1) ≤ k

gcd(k,n) . We have

lcm(m,n) + lcm(m + 1, n + 1) >
mn

gcd(k, n)
+

mn

gcd(k, n + 1)

≥ mn

(
1

gcd(k, n)
+

gcd(k, n)
k

)
.
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Then by the AM-GM inequality,

lcm(m,n) + lcm(m + 1, n + 1) > mn

(
2√
k

)
=

2mn√
m− n

Problem 6 Acute triangle ABC has incenter I and orthocenter H.

The point M is the midpoint of minor arc AC of the circumcircle of
ABC. Given that MI = MH, find ∠ABC.

Solution: The answer is π
3 . To show this, first note that because

∠MBA = ∠MBC, MA = MC. Furthermore

∠MIA = ∠IAB + ∠IBA = ∠IAC + ∠IBC

= ∠IAC + ∠MAC = ∠MAI

Therefore MC = MA = MI = MH and ACIH is cyclic, that implies
∠AHC = ∠AIC. Now,

∠AIC = π − ∠ICA− ∠IAC = π − ∠BAC + ∠BCA

2

= π − π − ∠ABC

2
=

π + ∠ABC

2

Also, extending AH to meet BC at Ha and extending CH to meet
AB at Hc, we see that because ∠HHaB = ∠HHcB = π

2 , HHaBHc

is cyclic. Therefore ∠AHC = ∠HaHHc = π−∠ABC. It follows that
π − ∠ABC = π+∠ABC

2 , 3∠ABC = π, and ∠ABC = π
3

Problem 7 Find all functions f : Z→ Z such that

f(x + y + f(y)) = f(x) + 2y

for all integers x, y.

Solution: The only answers are f(x) ≡ x and f(x) = −2x. Using
x = −f(y), we obtain

f(y) = f(−f(y) + y + f(y)) = f(−f(y)) + 2y (1)

From the given with arbitrary x, y, z, we have

f((x+y+f(y))+z+f(z)) = f(x+y+f(y))+2z = f(x)+2y+2z (2)

and for z = −f(y), this gives

f(x + y + f(y)− f(y) + f(−f(y))) = f(x) + 2y − 2f(y)
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On the other hand

f(x + y + f(y)− f(y) + f(−f(y))) = f(x + y + f(−f(y)))

= f(x + y + f(y)− 2y)

= f((x− 2y) + y + f(y))

= f(x− 2y) + 2y.

Combining these two equations, we obtain f(x) + 2y − 2f(y) =
f(x− 2y) + 2y and

f(x)− 2f(y) = f(x− 2y) (3)

Hence we now have (substituting y = 1, x = n+2) f(n) = f(n+2)−
2f(1). Putting x = y = 0 into (3) gives f(0) = f(0)− 2f(0) = −f(0),
so

f(0) = 0 (4)

Using f(1) = 1 · f(1) and equations (3) and (4), we induct on n to
prove f(n) = nf(1) for all n in Z. Substituting that result into the
given relation gives us:

xf(1) + yf(1) + yf(1)2 = f(x + y + yf(1)) = xf(1) + 2y

y(f(1) + f(1)2 − 2) = 0

which, for y 6= 0 gives f(1) = 1,−2. Thus, the only possible solutions
are f(n) = n and f(n) = −2n.

Problem 8 From a 20× 20 grid are removed 20 rectangles of sizes
1 × 20, 1 × 19, . . . , 1 × 1, where the sides of the rectangle lie along
gridlines. Prove that at least 85 1×2 rectangles can be removed from
the remainder.

Solution: Let’s call removed rectangles strips. Without loss of
generality assume that 1×20 stripe is vertical. Construct the following
partition of the grid: left and right 1×20 edges of the grid are divided
onto ten 1×2 rectangles each and the rest is 18×20 rectangle, which
is partitioned onto 90 squares with sides equal to 2. Look at each
pair of 1× 2 rectangles from opposite edges, that are symmetric with
respect to the vertical axis of the grid. Call each such pair and each
2 × 2 square general square. If at least one cell of a general square
is removed when removing 1 × k strip, say that the strip and the
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general square intersect. Call a pair of such strip and general square
intersection

It is not hard to observe that if a general square intersects at most
one strip, then a 1 × 2 rectangle can be removed from its remaining
part. Hence, if no more than k 1× 2 rectangles can be removed from
the remaining part of a general square, then it is intersected by at
least k strips. Because there are 100 general squares, at least 200
minus the total number of intersections.

Now, look at the partition which is derived from constructed one
by rotating on 90◦. It is also true that if no more than k 1 × 2
rectangles can be removed from the remaining part of a general
square, then it intersects at least k strips, except for the pair of 1× 2
rectangles, forming general square, which intersects at 1 × 20 strip.
For convenience, say that the strip intersects this pair twice.

The next step is to find the total number of intersections for two
that partitions. For this purpose find the number of general squares
that 1 × k strip intersects. Without loss of generality the strip is
vertical. If k = 2m − 1, then the strip intersects m general squares
of the first partition and m general squares of the second one. If
k = 2m < 20, then the strip intersects m general squares of the first
partition and m+1 of the second one. So it intersects 2m+1 general
squares. It is true for k = 20 too, because it intersects one of the
general squares twice. Thus, the total number of intersections is

2 + 3 + 4 + 5 + . . . + 21 = 230.

So, by pigeonhole principle, for one of the partitions the total number
of intersections is no more than 115. Consider that partition. The
number of 1 × 2 rectangles, which we can remove is at least twice
number of general squares (that equals to 200) minus the total number
of intersections for that partition (that is at most 115). Hence, 85
rectangles can be removed.

Problem 9 In a 10 × 10 table are written natural numbers not
exceeding 10. Any two numbers that appear in adjacent or diagonally
adjacent spaces of the table are relatively prime. Prove that some
number appears in the table at least 17 times.

Solution: In any 2 × 2 square, only one of the numbers can be
divisible by 2 and only one can be divisible by 3, so if we tile the
table with these 2 × 2 squares, at most 50 of the numbers in the
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table are divisible by 2 or 3. The remaining 50 numbers must be
divided among the integers not divisible by 2 or 3, and thus only ones
available are 1, 5, and 7. By the pigeonhole principle, one of the these
numbers appears at least 17 times.

Problem 10 The bisectors of angles A and B of convex quadrilat-
eral ABCD meet at P, and the bisectors of angles C and D meet at Q.

Suppose that P 6= Q and that line PQ passes through the midpoint
of side AB. Prove that ∠ABC = ∠BAD or ∠ABC + ∠BAD = π.

Solution: If lines BC and AD are parallel, it immediately follows
that ∠ABC + ∠BAD = π. Assume instead that lines BC and AD

intersect at X, and let line l be the angle bisector of ∠AXB. Because
P lies on the angle bisectors of ∠ABC and ∠BAD, P is equidistant
from lines BC, AB, and AD, so P lies on line l. Similarly, Q is
equidistant from lines BC, CD, and AD, so Q also lies on line l.

Therefore lines PQ and l are the same, and the midpoint of AB, call it
M, lies on line l. Since XM is the bisector of ∠AXB, AX

BX = AM
BM = 1,

AX = BX, and so ∠XAB = ∠XBA. If C lies between X and A,

then D lies between X and B, and

∠ABC = ∠ABX = ∠BAX = ∠BAD.

Otherwise, A lies between X and C, B lies between X and D, and

∠ABC = π − ∠ABX = π − ∠BAX = ∠BAD.

In all of these cases, either ∠ABC = ∠BAD or ∠ABC +∠BAD = π.

Problem 11 Do there exist quadratic polynomials f and g with
leading coefficients 1, such that for any integer n, f(n)g(n) is an
integer but none of f(n), g(n), and f(n) + g(n) are integers?

Solution: There do exist such polynomials. One example is:

f(x) = x2 + (
√

3−
√

2)x−
√

6x, g(x) = x2 + (
√

2−
√

3)x−
√

6x.

Then f(n) + g(n) = 2x2 − 2
√

6, and clearly f(n) and g(n) are never
integers. But f(n)g(n) = x4 − 5x2 + 6, always an integer.

We will provide a method for motivating such solutions. Since the
polynomials are monic, f(x) = (x−a)(x−b) and g(x) = (x−c)(x−d),
and f(x)g(x) = (x− a)(x− b)(x− c)(x− d). We thus want to choose
a, b, c, d as irrational numbers such that (x−a)(x−c) and (x−b)(x−d)
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are polynomials with integer coefficients. So we choose b and d as a
conjugate pair (r + s

√
t, r − s

√
t) for t an non-square integer, and a

and c as a conjugate pair, and with the two conjugate pair choices
distinct. Then f(n) and g(n) are never integers, and f(n)g(n) is an
integer for all n. In order for f(n) + g(n) to not be an integer, the
square root parts in a and b must have opposite signs.

Problem 12 Ten points, labelled 1 to 10, are chosen in the plane.
Permutations of {1, . . . , 10} are obtained as follows: for each rectan-
gular coordinate system in which the ten points have distinct first
coordinates, the labels of the points are listed in increasing order of
the first coordinates of the points. Over all sequences of 10 labelled
points, what is the maximum number of permutations of {1, . . . , 10}
obtained in this fashion?

Solution: The maximum number of permutations of {1, . . . , 10}
is 90. Since the order of the points is the same in two coordinate
systems that are translations of each other, the order of the points is
completely determined by the angle of the y-axis. Therefore choosing
an an arbitrary y-axis and rotating it through 360 degrees will produce
all possible orders of the points. During this rotation, between every
change in the order of points, at least two points must have the same
x-coordinate, and the line between these points will be parallel to
the y-axis. This will happen twice for each of the

(
10
2

)
= 45 pairs of

points, so the order will change at most 90 times during the rotation.
Since the rotation starts and ends on the same permutation, there
can be at most 90 different orders of the points.

To show that 90 permutations can always be attained, consider
n distinct points, no three of which are collinear. It will suffice to
prove that the 90 permutations obtained from these points as in the
previous paragraph are all distinct. Consider any two possible y-axes
Y1 and Y2 which yield the permutations P1 and P2, such that the
order of the n points changes at least once in the rotation between
Y1 and Y2, and also in the rotation from Y2 to Y1. Assume without
loss of generality that the angle rotated through to get from Y1 to
Y2 is less than or equal to 180 degrees. Since there is a change in
the order of the points between Y1 and Y2, there must be some y-axis
Y3 in between Y1 and Y2 which is parallel to the line between some
two points X and Y. Because the only other y-axis parallel to the
line between X and Y is 180 degrees opposite Y3, and because the
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angle rotated through to get from Y1 to Y2 is less than or equal to 180
degrees, points X and Y can switch orders only one in the rotation
between Y1 and Y2. Therefore P1 and P2 are different permutations,
and there are a total of 90 different permutations.

Problem 13 A natural number is written on a chalkboard. Two
players take turns, each turn consisting of replacing the number n

with either n− 1 or b(n + 1)/2c. The first player to write the number
1 wins. If the starting number is 1000000, which player wins with
correct play?

Solution: The first player wins. We define a winning position as a
numbers x such that with optimal play on both sides, the player whose
turn it is can force a win. Similarly, a losing position is where the
opposing player can force a win. We will first show that every number
is either losing or winning. We note that 2 is a winning position
because the player can write 1. Suppose that 1, . . . , n − 1 are either
winning or losing positions. Both b(n + 1)/2c and n− 1 are less than
n. If either n or b(n + 1)/2c is a losing position, then n is a winning
position because the player can write that losing position. If both are
winning positions, n is a losing position because the player can only
write winning positions for the other player. Hence all positions are
either winning or losing by induction on n.

We will show by induction on n that all even numbers are winning
positions. The base case is 2, which we have already determined is
winning. Suppose the current number is 2n, and 2, 4, . . . , 2n − 2 are
all winning positions. The first player can write either 2n − 1 or n.

If n is a losing position, then the first player writes n and thus the
first player wins. If n is a winning position, then the first player goes
to 2n − 1. The second player now may write 2n − 2 or n. Since n is
a winning position, the second player loses if he writes n. But if the
second player writes 2n−2, that is a smaller even number, and player
1 wins. Thus player 1 wins for even n by induction. Since 1000000 is
even, player 1 wins.

Problem 14 The altitudes of triangle ABC meet at H. Point K is
chosen such that the circumcircles of BHK and CHK are tangent to
line BC. Point D is the foot of the altitude from B. Prove that A is
equidistant from lines KB and KD.
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Solution: All angles are directed modulo π. Let E be the foot
of the altitude from C. Since ∠AEH = ∠ADH = π

2 , ADHE is
cyclic. Since BC is tangent to the circumcircle of triangle HKB,

∠HKB = ∠HBC, and since BC is tangent to the circumcircle of
triangle HKC, ∠HKC = ∠HCB. Therefore

∠CKB = ∠CKH + ∠HKB = ∠BCH + ∠HBC

= ∠BHC = ∠DHE = ∠DAE = ∠CAB

so ABCK is cyclic, and ∠AKB = ∠ACB. In fact

∠ACB + ∠HKA = ∠AKB + ∠HKA = ∠HKB

= ∠HBC = ∠DBC = ∠DCB + ∠BDC

= ∠ACB +
π

2
so ∠HKA = π

2 and AKDHE is cyclic. Letting F be the foot of the
altitude from A, we see that

∠DKA = ∠DHA = ∠DAH + ∠HDA

= ∠CAF + ∠AFC = ∠ACF

= ∠ACB = ∠AKB

Therefore line KA bisects lines KB and KD, so A is equidistant from
lines KB and KD.

Problem 15 Let m,n, k be positive integers with n > 1. Show that
σ(n)k 6= nm, where σ(n) is the sum of the positive integers dividing
n.

Solution: Let n = pe1
1 pe2

2 ...pek

k . Because σ(n) > n, if σ(n)k = nm,

then σ(n) = pf1
1 pf2

2 ...pfk

k where fi > ei. This implies fi >= ei + 1, for
all i and

σ(n) ≥ p1+e1
1 p1+e2

2 ...p1+ek

k >
p1+e1
1 − 1
p1 − 1

p1+e2
2 − 1
p2 − 1

...
p1+ek

k − 1
pk − 1

= (1 + p1 + ...pe1
1 )(1 + p2 + ...pe2

2 )...(1 + pk + ...pek

k ) = σ(n).

This is a contradiction.

Problem 16 At a chess club, players may play against each other
or against the computer. Yesterday there were n players at the club.
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Each player played at most n games, and every pair of players that
did not play each other played at most n games in total. Prove that
at most n(n + 1)/2 games were played.

Solution: Let us call a pair of player untried if they did not play
each other. We proceed by induction on n. For n = 1, the one player
present indeed played at most one game. Now assume that this is true
for k− 1 players (k ≥ 2). For any gathering of k players, consider the
following cases:

Case 1: All players played at most k
2 games. In this case, at most

k2

2 < k(k+1)
2 total games have been played.

Case 2: There is a player X who has played more than k
2 games. In

this case, let us consider the subset S of players and games excluding
player X and all of the games he has played. Of the k − 1 players in
S, those who played a game with player X played at most k−1 games
in S, and those who did not play player X played less than k− k

2 < k

games. Therefore, in S, no player played more than k − 1 games.
Since every untried pair played at most k games total, every untried
pair of players in S, at least one of whom played player X, played at
most k− 1 games in S. Furthermore, for every untried pair of players
Y and Z, neither of whom played player X, each of Y and Z played
less than k

2 games, for a total of less than k games. Therefore, in S, no
untried pair of players played more than k− 1 games in total, and by
the induction hypothesis, at most k(k−1)

2 games have been played in
S. Since player X played at most k games, this yields at most k(k+1)

2

total games played.

Problem 17 Show that there exist infinitely many positive integers
n such that the largest prime divisor of n4 + 1 is greater than 2n.

Solution: First we prove the following result.

Lemma. There are infinitely many numbers being prime divisors of
m4 + 1 for some m.

Proof. Suppose that there are only finite number of such primes.
Let p1, p2, . . . , pk be all of them. Let p be any prime divisor of
(p1p2 · · · pk)4 + 1. This number cannot equal to any pi. It makes a
contradiction with our assumption, and proves the lemma.
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Let P be the set of all numbers being prime divisors of m4 + 1
for some m. Pick any p from P and m from Z, such that p divides
m4 +1. Let r be the residue of m modulo p. We have r < p, p | r4 +1
and p | (p− r)4 + 1. Let n be the minimum of r and p− r. It follows
that n < p/2 and p > 2n. If n can be obtained using the construction
above, then it satisfies the desired condition. If it is constructed using
prime p, then p | n4 +1. Thus, any such number n can be constructed
with only finite number of primes p. Since P is infinite, and for each
integer m such number n can be constructed, there are infinite number
of integers n, satisfying the desired condition.

Problem 18 In the interior of acute triangle ABC is chosen a point
M such that ∠AMC+∠ABC = π. Line AM meets side BC at D, and
line CM meets side AB at E. Show that the circumcircle of triangle
BDE passes through some fixed point different from B, independent
of the choice of M.

Solution: All angles are directed modulo π. First of all, note that
for any such M, ∠EBD = π − ∠AMC = ∠EMD, so EMDB is
cyclic. Now, the locus of all possible points M form an arc inside
the triangle between points A and C. As M moves from A to C, MD

AD

strictly decreases from 1 to 0, while ME
CE strictly increases from 0 to

1. Therefore for some M ′, with line AM ′ meeting BC at D′ and line
CM ′ meeting AB at E′, M ′D′

AD′ = M ′E′
CE′ . Now consider any possible

M. Since EMDB is cyclic, we have

∠CEE′ = ∠MEB = ∠MDB = ∠ADD′.

Similarly, since E′M ′D′B is cyclic, we have

∠CE′E = ∠M ′E′B = ∠M ′D′B = ∠AD′D,

and so triangles CEE′ and ADD′ are similar. Furthermore, since
∠M ′E′E = ∠M ′D′D and M ′D′

M ′E′ = AD′
CE′ = D′D

E′E , triangles M ′D′D and
M ′E′E are similar. Therefore, we have

∠BDM ′ = ∠D′DM ′ = ∠E′EM ′ = ∠BEM ′.

It implies that BEM ′D is cyclic for any given M.

Problem 19 Given are real numbers x1, . . . , x10 in the interval
[0, π/2] such that sin2 x1 + sin2 x2 + · · ·+ sin2 x10 = 1. Prove that

3(sinx1 + · · ·+ sin x10) ≤ cos x1 + · · ·+ cos x10.
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Solution: Since sin2 x1 + sin2 x2 + · · ·+ sin2 x10 = 1,

cos xi =
√

1− sin2 xi =
√∑

j 6=i

sin2 xj .

By the Power Mean Inequality,

cosxi =
√∑

j 6=i

sin2 xj ≥
∑

j 6=i sin xj

3
.

which summed over all the cos xi gives
10∑

i=1

cos xi ≥
10∑

i=1

∑

j 6=i

sin xj

3
=

10∑

i=1

9
sin xi

3
= 3

10∑

i=1

sinxi,

as desired.

Problem 20 The convex 2000-gon M satisfies the following prop-
erty: the maximum distance between two vertices is equal to 1. It
is known that among all convex 2000-gons with this same property,
M has maximal area. Prove that some two diagonals of M are
perpendicular.

Solution: Assume for sake of contradiction that no two diagonals
of M are perpendicular. Let us label the vertices X1, . . . , X2000

consecutively in a clockwise direction, and consider an arbitrary point,
say X1. Letting Y be the intersection of lines X2X3 and X1999X2000,

we see that moving X1 to any other point within triangle X2000Y X2

will not change the convexity of M.

Now assume that X1 is exactly one unit away from at most one
vertex, and let the furthest vertex from X1 be Xi. By assumption,
lines X1Xi and X2000X2 are not perpendicular. Therefore one can
rotate X1Xi about Xi by a small enough angle so that: (a) The angle
between lines X1Xi and X2000X2 becomes closer to π

2 , (b) Every
vertex besides Xi is still less than one unit away from X1, and (c)
X1 still lies inside triangle X2000X2. By (b) and (c), M will still be
convex with no vertices more than one unit apart, but by (a), the area
of M will still have increased. Therefore every vertex of M must be
exactly one unit from at least two other vertices.

Lemma. Given a convex quadrilateral ABCD with AB = CD = 1,

if AC ≤ 1, then BD > 1.
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Proof. Since AC ≤ AB, ∠ABC ≤ ∠ACB. Therefore, we have
∠DBC < ∠ABC ≤ ∠ACB < ∠DCB and BD > CD = 1.

Now let X1 be exactly 1 unit from Xi and Xj (i < j), and assume
that j > i+1. Let Xk be one of the vertices different from X1 that is
exactly one unit away from Xi+1. If 1 < k < i+1, then X1XjXi+1Xk

is a convex quadrilateral with X1Xj = Xi+1Xk = 1 and X1Xi+1 ≤ 1,

so by the lemma, XjXk > 1 Similarly, if i + 1 < k ≤ 2000, then
X1XiXi+1Xk is a convex quadrilateral with X1Xi = Xi+1Xk = 1 and
X1Xi+1 ≤ 1, so by the lemma, XiXk > 1. Therefore the assumption
that j > i+1 is false, and every vertex must be exactly one unit from
exactly two consecutive vertices.

Now let Xi be exactly 1 unit from Xj and Xj+1. Xj+1 must be
exactly one unit away from Xi and an adjacent vertex, either Xi−1 or
Xi+1. If Xi−1Xj+1 = 1, then XiXjXj+1Xi+1 is a convex quadrilateral
with XiXj = Xj+1Xi−1 = 1 and XiXj+1 ≤ 1, so by the lemma,
XjXi−1 > 1. So, Xj+1Xi+1 = 1. Assuming X1Xk = X1Xk+1 = 1,

applying this to i = 1, j = k yields X2Xk+1 = 1. Applying this to
i = k+1, j = 1 yields X2Xk+2 = 1 Repeating this process k−1 more
times will yield Xk+1X2k = Xk+1X2k+1 = 1. But this implies that
2k ≡ 1 (mod 2000), which has no solutions for integral k. Therefore
our initial assumption that no two diagonals of M are perpendicular
has proven to be false.

Problem 21 Let a, b be integers greater than 1. The sequence
x1, x2, . . . is defined by the initial conditions x0 = 0, x1 = 1 and the
recursion

x2n = ax2n−1 − x2n−2, x2n+1 = bx2n − x2n−1

for n ≥ 1. Prove that for any natural numbers m and n, the product
xn+mxn+m−1 · · ·xn+1 is divisible by xmxm−1.

Solution: We will show that xm | xkm, and then show that
gcd(xm, xm−1) = 1.

First, consider our sequence modulo xm for some m. Each xk+1 is
uniquely determined by xk, xk−1 and the parity of k. Express each
xi as a function fi(a, b). We have xi ≡ fi(a, b)x1 (mod xm). Suppose
xr ≡ 0 (mod xm) for some r. Since each term is a linear combination
of two preceding ones,

xi+r ≡ fi(a, b)xr+1 (mod xm) if m is even, (*)
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xi+r ≡ fi(b, a)xr+1 (mod xm) if m is odd. (†)
Now we need to prove the following statement.

Lemma. The function fi(a, b) is symmetric for any odd i.

Proof. We will prove also that fi(a, b) is symmetric function multi-
plies by a. Now, we are to prove that f2k−1(a, b) is symmetric and
f2k−2(a, b) = ag2k−2(a, b), where g2k−2 is symmetric too, for any
positive integer k. Proceed by induction on k. For k = 1 we have
f1(a, b) = 1 and g0(a, b) = 0. Suppose that f2k−1(a, b) is symmetric
and f2k−2(a, b) = ag2k−2(a, b) where g2k−2(a, b) is symmetric too.
Then we can write

f2k(a, b) = x2k = ax2k−1 − x2k−2 = a(x2k−1 − g(a, b))

= a(f2k−1(a, b)− g2k−2(a, b))

and

f2k+1(a, b) = x2k+1 = abx2k−1 − bx2k−2 − x2k−1

= abx2k−1 − abq − x2k−1

= (ab− 1)f2k−1(a, b)− abg2k−2(a, b).

It shows that f2k+1 and g2k are symmetric too and completes the step
of induction.

Now we are to prove that xm | xkm. Proceed by induction on k. For
k = 1 this statement is true. Let xm | xkm. Then from (∗) and (†)
putting r = km and i = m, we obtain the following. If km is even,
then

xm(k+1) ≡ fm(a, b)xkm+1 ≡ xmxkm + 1 ≡ 0 (mod xm).

For km odd m is odd too and fm(a, b) = fm(b, a). Hence, we have

xm(k+1) ≡ fm(b, a)xkm+1 ≡ fm(a, b)xkm+1 ≡ xmxkm+1 ≡ 0 (mod xm).

So, for each nonnegative integers k, m xm | xkm.

Since the product xn+1xn+2 · · ·xn+m has m terms, one of their
indices is divisible by m and another’s index is divisible by m − 1.

Thus both xm and xm−1 divide the product. If we can show that xm

is relatively prime to xm−1, we would be done. We will prove this by
induction. For the base case, x0 is relatively prime to x1. Now, x2n =
ax2n−1 − x2n−2. Any prime factor common to x2n and x2n−1 must
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also divide x2n−2, but because x2n−2 is relatively prime to x2n−1,

there is no such prime factor. A similar argument holds for x2n+1

because x2n+1 = bx2n−x2n−1. Thus xmxm−1 | (xn+1xn+2 · · ·xn+m).
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3.1 Belarus

Problem 1 We are given a partition of {1, 2, . . . , 20} into nonempty
sets. Of the sets in the partition, k have the following property: for
each of the k sets, the product of the elements in that set is a perfect
square. Determine the maximum possible value of k.

Problem 2 The rational numbers α1, . . . , αn satisfy
n∑

i=1

{kαi} <
n

2

for any positive integer k. (Here, {x} denotes the fractional part of
x, the unique number in [0, 1) such that x− {x} is an integer.)

(a) Prove that at least one of α1, . . . , αn is an integer.

(b) Do there exist α1, . . . , αn that satisfy
∑n

i=1{kαi} ≥ n
2 , such that

no αi is an integer?

Problem 3 There are 20 cities in Wonderland. The company
Wonderland Airways establishes 18 air routes between them. Each of
the routes is a closed loop that passes through exactly five different
cities. Each city belongs to at least three different routes. Also, for
any two cities, there is at most one route in which the two cities
are neighboring stops. Prove that using the airplanes of Wonderland
Airways, one can fly from any city of Wonderland to any other city.

Problem 4 Determine whether there exists a three-dimensional
solid with the following property: for any natural n ≥ 3, there is a
plane such that the orthogonal projection of the solid onto the plane
is a convex n-gon.

Problem 5 Prove that there exist infinitely many positive integers
that cannot be written in the form

x3
1 + x5

2 + x7
3 + x9

4 + x1
51

for some positive integers x1, x2, x3, x4, x5.

Problem 6 The altitude CH of the right triangle ABC (∠C =
π/2) intersects the angle bisectors AM and BN at points P and Q,
respectively. Prove that the line passing through the midpoints of
segments QN and PM is parallel to line AB.
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Problem 7 On a table lies a point X and several face clocks, not
necessarily identical. Each face clock consists of a fixed center, and
two hands (a minute hand and an hour hand) of equal length. (The
hands rotate around the center at a fixed rate; each hour, a minute
hand completes a full revolution while an hour hand completes 1/12
of a revolution.) It is known that at some moment, the following two
quantities are distinct:

• the sum of the distances between X and the end of each minute
hand; and

• the sum of the distances between X and the end of each hour
hand.

Prove that at some moment, the former sum is greater than the latter
sum.

Problem 8 A set S of three-digit numbers formed from the digits
1, 2, 3, 4, 5, 6 (possibly repeating one of these six digits) is called nice
if it satisfies the following condition: for any two distinct digits from
1, 2, 3, 4, 5, 6, there exists a number in S which contains both of the
chosen digits. For each nice set S, we calculate the sum of all the
elements in S; determine, over all nice sets, the minimum value of
this sum.
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3.2 Bulgaria

Problem 1 Let a1, a2, . . . be a sequence of real numbers such that

an+1 =
√

a2
n + an − 1

for n ≥ 1. Prove that a1 6∈ (−2, 1).

Problem 2 Consider the feet of the orthogonal projections of
A, B,C of triangle ABC onto the external angle bisectors of angles
BCA, BCA, and ABC, respectively. Let d be the length of the
diameter of the circle passing through these three points. Also, let
r and s be the inradius and semiperimeter, respectively, of triangle
ABC. Prove that r2 + s2 = d2.

Problem 3 Given are n2 points in the plane, no three of them
collinear, where n = 4k + 1 for some positive integer k. Find the
minimum number of segments that must be drawn connecting pairs
of points, in order to ensure that among any n of the n2 points, some
4 of the n chosen points are connected to each other pairwise.

Problem 4 Let I be the incenter of non-equilateral triangle ABC,
and let T1, T2, T3 be the tangency points of the incircle with sides BC,
CA, AB, respectively. Prove that the orthocenter of triangle T1T2T3

lies on line OI, where O is the circumcenter of triangle ABC.

Problem 5 Let b, c be positive integers, and define the sequence
a1, a2, . . . by a1 = b, a2 = c, and

an+2 = |3an+1 − 2an|
for n ≥ 1. Find all such (b, c) for which the sequence a1, a2, . . . has
only a finite number of composite terms.

Problem 6 In a triangle ABC, let a = BC and b = CA, and let `a

and `b be the lengths of the internal angle bisectors from A and B,
respectively. Find the smallest number k such that

`a + `b

a + b
≤ k

for all such triangles ABC.
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3.3 Canada

Problem 1 Let a, b, c be positive real numbers. Prove that

a3

bc
+

b3

ca
+

c3

ab
≥ a + b + c,

and determine when equality holds.

Problem 2 Let Γ be a circle with radius r. Let A and B be distinct
points on Γ such that AB <

√
3r. Let the circle with center B and

radius AB meet Γ again at C. Let P be the point inside Γ such that
triangle ABP is equilateral. Finally, let line CP meet Γ again at Q.
Prove that PQ = r.

Problem 3 Determine all functions f : Z+ → Z+ such that

xf(y) + yf(x) = (x + y)f(x2 + y2)

for all positive integers x, y.
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3.4 Czech and Slovak Republics

Problem 1 Find all integers x, y such that

〈4x〉5 + 7y = 14,

〈2y〉5 − 〈3x〉7 = 74,

where 〈n〉k denotes the multiple of k closest to the number n.

Problem 2 Let ABCD be a square. Let KLM be an equilateral
triangle such that K, L,M lie on sides AB, BC, CD, respectively.
Find the locus of the midpoint of segment KL for all such triangles
KLM .

Problem 3 Show that a given positive integer m is a perfect square
if and only if for each positive integer n, at least one of the differences

(m + 1)2 −m, (m + 2)2 −m, . . . , (m + n)2 −m

is divisible by n.

Problem 4 Find all pairs of real numbers a, b such that the equation

ax2 − 24x + b

x2 − 1
= x

has exactly two real solutions, and such that the sum of these two
real solutions is 12.

Problem 5 In the plane is given a triangle KLM . Point A lies
on line KL, on the opposite side of K as L. Construct a rectangle
ABCD whose vertices B, C, and D lie on lines KM , KL, and LM ,
respectively.

Problem 6 Find all functions f : R+ → R+ satisfying

f(xf(y)) = f(xy) + x

for all positive reals x, y.
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3.5 Germany

Problem 1 Determine all ordered pairs (a, b) of real numbers that
satisfy

2a2 − 2ab + b2 = a

4a2 − 5ab + 2b2 = b.

Problem 2

(a) Prove that there exist eight points on the surface of a sphere
with radius R, such that all the pairwise distances between these
points are greater than 1.15R.

(b) Do there exist nine points with this property?

Problem 3 Let p be a prime. Prove that
p−1∑

k=1

⌊
k3

p

⌋
=

(p− 2)(p− 1)(p + 1)
4

.

Problem 4 Let a1 be a positive real number, and define a2, a3, . . .

recursively by setting an+1 = 1 + a1a2 · · · an for n ≥ 1. In addition,
define bn = 1

a1
+ 1

a2
+ · · ·+ 1

an
for all n ≥ 1. Prove that bn < x holds

for all n if and only if x ≥ 2
a1

.

Problem 5 Prove that a triangle is a right triangle if and only if
its angles α, β, γ satisfy

sin2 α + sin2 β + sin2 γ

cos2 α + cos2 β + cos2 γ
= 2.

Problem 6 Ralf Reisegern explains to his friend Markus, a mathe-
matician, that he has visited eight EURO-counties this year. In order
to motivate his five children to use the new Cent- and Euro-coins,
he brought home five coins (not necessarily with distinct values) from
each country. Because his children can use the new coins in Germany,
Ralf made sure that among the 40 coins, each of the eight values (1,
2, 5, 10, 20, and 50 Cents; 1 and 2 Euros) appeared on exactly five
coins. Now Ralf wonders whether he will be able to present each child
eight coins, one from each country, such that the total value of the
coins that each child receives is 3,88 Euro. (1 Euro equals 100 Cents,
and 3,88 Euro equals 3 Euro and 88 Cents.) “That must be possible!”
says Markus, without looking more carefully at the coins. Prove or
disprove Markus’ statement.
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3.6 Iran

Problem 1 Find all functions f from the nonzero reals to the reals
such that

xf

(
x +

1
y

)
+ yf(y) +

y

x
= yf

(
y +

1
x

)
+ xf(x) +

x

y

for all nonzero reals x, y.

Problem 2 Let segment AB be a diameter of a circle ω. Let `a, `b

be the lines tangent to ω at A and B, respectively. Let C be a point
on ω such that line BC meets `a at a point K. The angle bisector
of angle CAK meets line CK at H. Let M be the midpoint of arc
CAB, and let S be the second intersection of line HM and ω. Let T

be the intersection of `b and the line tangent to ω at M . Show that
S, T, K are collinear.

Problem 3 Let k ≥ 0 and n ≥ 1 be integers, and let a1, a2, . . . , an

be distinct integers such that there are at least 2k different inte-
gers modulo n + k among them. Prove that there is a subset of
{a1, a2, . . . , an} whose sum of elements is divisible by n + k.

Problem 4 The sequence x1, x2, . . . is defined by x1 = 1 and

xn+1 =

⌊
xn!

∞∑

k=1

1
k!

⌋
.

Prove that gcd(xm, xn) = xgcd(m,n) for all positive integers m,n.

Problem 5 Distinct points B, M,N,C lie on a line in that order
such that BM = CN . A is a point not on the same line, and P, Q

are points on segments AN, AM , respectively, such that ∠PMC =
∠MAB and ∠QNB = ∠NAC. Prove that ∠QBC = ∠PCB.

Problem 6 A strip of width w is the closed region between two
parallel lines a distance w apart. Suppose that the unit disk {(x, y) ∈
R2, x2+y2 ≤ 1} is covered by strips. Show that the sum of the widths
of these strips is at least 2.

Problem 7 Given a permutation (a1, a2, . . . , an) of 1, 2, . . . , n, we
call the permutation quadratic if there is at least one perfect square
among the numbers a1, a1+a2, . . . , a1+a2+· · ·+an. Find all positive
integers n such that every permutation of 1, 2, . . . , n is quadratic.
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Problem 8 A 10×10×10 cube is divided into 1000 1×1×1 blocks.
500 of the blocks are black and the others are white. Show that there
exists at least 100 unit squares which are a shared face of a black
block and a white block.

Problem 9 Let ABC be a triangle. The incircle of triangle ABC

touches side BC at A′. Let segment AA′ meet the incircle again at
P . Segments BP, CP meet the incircle at M, N , respectively. Show
that lines AA′, BN , CM are concurrent.

Problem 10 Let x1, x2, . . . , xn be positive real numbers such that∑n
i=1 x2

i = n. Write S =
∑n

i=1 xi. Show that for any real λ with
0 ≤ λ ≤ 1, at least ⌈

S2(1− λ)2

n

⌉

of the xi are greater than λS
n .

Problem 11 Around a circular table sit n people labelled 1, 2, . . . , n.
Some pairs of them are friends, where if A is a friend of B, then B is a
friend of A. Each minute, one pair of neighbor friends exchanges seats.
What is the necessary and sufficient condition about the friendship
relations among the people, such that it is possible to form any
permutation of the initial seating arrangement?

Problem 12 Circle ω1 is internally tangent to the circumcircle of
triangle ABC at point M . Assume that ω1 is tangent to sides AB

and AC as well. Let H be the point where the incircle of triangle
ABC touches side BC, and let A′ be a point on the circumcircle for
which we have AA′ ‖ BC. Show that points M,H, A′ are collinear.
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3.7 Japan

Problem 1 On a circle ω0 are given three distinct points A,M, B

with AM = MB. Let P be a variable point on the arc AB not
containing M . Denote by ω1 the circle inscribed in ω0 that is tangent
to ω0 at P and also tangent to chord AB. Let Q be the point where ω0

intersects chord AB. Prove that MP ·MQ is constant, independent
of the choice of P .

Problem 2 There are n ≥ 3 coins are placed along a circle, with
one showing heads and the others showing tails. An operation consists
of simultaneously turning over each coin that satisfies the following
condition: among the coin and its two neighbors, there is an odd
number of heads among the three.

(a) Prove that if n is odd, then the coins will never become all tails.

(b) For what values of n will the coins eventually show all tails? For
those n, how many operations are required to make all the coins
show tails?

Problem 3 Let n ≥ 3 be an integer. Let a1, a2, . . . , an, b1, b2, . . . , bn

be positive real numbers with

a1 + a2 + · · ·+ an = 1 and b2
1 + b2

2 + · · ·+ b2
n = 1.

Prove that

a1(b1 + a2) + a2(b2 + a3) + · · ·+ an(bn + a1) < 1.

Problem 4 A set S of 2002 distinct points in the xy-plane is chosen.
We call a rectangle proper if its sides are parallel to the coordinate
axes and if the endpoints of at least one diagonal lie in S. Find the
largest N such that, no matter how the points of S are chosen, at least
one proper rectangle contains N +2 points on or within its boundary.
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3.8 Korea

Problem 1 Let p be a prime of the form 12k + 1 for some positive
integer k, and write Zp{0, 1, 2, . . . , p− 1}. Let Ep consist of all (a, b)
such that a, b ∈ Zp and p 6 | (4a3 + 27b2). For (a, b), (a′, b′) ∈ Ep, we
say that (a, b) and (a′, b′) are equivalent if there is a nonzero element
c ∈ Zp such that

p | (a′ − ac4) and p | (b′ − bc6).

Find the maximal number of elements in Ep such that no two of the
chosen elements are equivalent.

Problem 2 Find all functions f : R→ R satisfying

f(x− f(y)) = f(x) + xf(y) + f(f(y))

for all x, y ∈ R.

Problem 3 Find the minimum value of n such that in any math-
ematics contest satisfying the following conditions, there exists a
contestant who solved all the problems:

(i) The contest contains n ≥ 4 problems, each of which is solved by
exactly four contestants.

(ii) For each pair of problems, there is exactly one contest who solved
both problems.

(iii) There are at least 4n contestants.

Problem 4 Let n ≥ 3 be an integer. Let a1, a2, . . . , an, b1, b2, . . . , bn

be positive real numbers, where the bi are pairwise distinct.

(a) Find the number of distinct real zeroes of the polynomial

f(x) = (x− b1)(x− b2) · · · (x− bn)
n∑

j=1

aj

x− bj
.

(b) Writing S = a1 + a2 + · · ·+ an and T = b1b2 · · · bn, prove that

1
n− 1

n∑

j=1

(
1− aj

S

)
bj >


T

S

n∑

j=1

aj

bj




1/(n−1)

.

Problem 5 Let ABC be an acute triangle and let ω be its circum-
circle. Let the perpendicular from A to line BC meet ω at D. Let P
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be a point on ω, and let Q be the foot of the perpendicular from P to
line AB. Suppose that Q lies outside ω and that 2∠QPB = ∠PBC.
Prove that D,P, Q are collinear.

Problem 6 Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of primes
in increasing order.

(a) Let n ≥ 10 be a fixed integer. Let r be the smallest integer
satisfying

2 ≤ r ≤ n− 2 and n− r + 1 < pr.

For s = 1, 2, . . . , pr, define Ns = sp1p2 · · · pr−1 − 1. Prove that
there exists j, with 1 ≤ j ≤ pr, such that none of p1, p2, . . . , pn

divides Nj .

(b) Using the result from (a), find all positive integers m for which

p2
m+1 < p1p2 · · · pm.
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3.9 Poland

Problem 1 Determine all triples of positive integers a, b, c such that
a2 + 1, b2 + 1 are prime and (a2 + 1)(b2 + 1) = c2 + 1.

Problem 2 On sides AC, BC of acute triangle ABC are con-
structed rectangles ACPQ and BKLC. The rectangles lie outside
triangle ABC and have equal areas. Prove that a single line passes
through C, the midpoint of segment PL, and the circumcenter of
triangle ABC.

Problem 3 On a board are written three nonnegative integers.
Each minute, one erases two of the numbers k, m, replacing them
with their sum k+m and their positive difference |k−m|. Determine
whether it is always possible to eventually obtain a triple of numbers
such that at least two of them are zeroes.

Problem 4 Let n ≥ 3 be an integer. Let x1, x2, . . . , xn be positive
integers, where indices are taken modulo n. Prove that one of the
following inequalities holds:

n∑

i=1

xi

xi+1 + xi+2
≥ n

2
or

n∑

i=1

xi

xi−1 + xi−2
≥ n

2
.

Problem 5 In three-dimensional space are given a triangle ABC

and a sphere ω, such that ω does not intersect plane (ABC). Lines
AK, BL, CM are tangent to ω at K,L, M , respectively. There exists
a point P on ω such that

AK

AP
=

BL

BP
=

CM

CP
.

The circumcircle of triangle of ABC is the great circle of some sphere
ω′. Prove that ω and ω′ are tangent.

Problem 6 Let k be a fixed positive integer. We define the sequence
a1, a2, . . . by a1 = k + 1 and the recursion an+1 = a2

n − kan + k for
n ≥ 1. Prove that am and an are relatively prime for distinct positive
integers m and n.
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3.10 Romania

Problem 1 Find all pairs of sets A,B, which satisfy the conditions:

(i) A ∪B = Z;

(ii) if x ∈ A, then x− 1 ∈ B;

(iii) if x ∈ B and y ∈ B, then x + y ∈ A.

Problem 2 Let a0, a1, a2, . . . be the sequence defined as follows:
a0 = a1 = 1 and an+1 = 14an − an−1 for any n ≥ 1. Show that the
number 2an − 1 is a perfect square for all positive integers n.

Problem 3 Let ABC be an acute triangle. Segment MN is the
midline of the triangle that is parallel to side BC, and P is the
orthogonal projection of point N onto side BC. Let A1 be the
midpoint of segment MP . Points B1 and C1 are constructed in a
similar way. Show that if lines AA1, BB1, and CC1 are concurrent,
then triangle ABC has two congruent sides.

Problem 4 For any positive integer n, let f(n) be the number of
possible choices of signs + or − in the algebraic expression ±1± 2±
· · · ± n, such that the obtained sum is zero. Show that f(n) satisfies
the following conditions:

(i) f(n) = 0, if n ≡ 1 (mod 4) or n ≡ 2 (mod 4);

(ii) 2
n
2−1 ≤ f(n) < 2n − 2b

n
2 c+1, if n ≡ 0 (mod 4) or n ≡ 3 (mod 4).

Problem 5 Let ABCD be a unit square. For any interior points
M, N such that line MN does not contain a vertex of the square,
we denote by s(M, N) the minimum area of all the triangles whose
vertices lie in the set of points {A,B, C,D, M, N}. Find the least
number k such that s(M, N) ≤ k for all such points M, N .

Problem 6 Let p(x) = amxm + am−1x
m−1 + · · · + a0 and q(x) =

bnxn + bn−1x
n−1 + · · · + b0, where each coefficient ai and bi equals

either 1 or 2002. Assuming that p(x) divides q(x), show that m + 1
is a divisor of n + 1.

Problem 7 Let a, b be positive real numbers. For any positive
integer n, denote by xn the sum of the digits of ban + bc (written in
its decimal representation). Show that x1, x2, · · · contains a constant
(infinite) subsequence.
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Problem 8 At an international conference there are four official
languages. Any two participants can talk to each other in one of
these languages. Show that some language is spoken by at least 60%
of the participants.

Problem 9 Let ABCDE by a convex pentagon inscribed in a circle
of center O, such that ∠B = 120◦, ∠C = 120◦, ∠D = 130◦, and
∠E = 100◦. Show that diagonals BD and CE meet at a point on
diameter AO.

Problem 10 Let n ≥ 4 be an integer and let a1, a2, . . . , an be
positive real numbers such that a2

1 + a2
2 + · · ·+ a2

n = 1. Show that

a1

a2
2 + 1

+
a2

a2
3 + 1

+· · ·+ an

a2
1 + 1

≥ 4
5

(a1
√

a1 + a2
√

a2 + · · ·+ an
√

an)2 .

Problem 11 Let n be a positive integer. Let S be the set of all
positive integers a such that 1 < a < n and n | (aa−1− 1). Show that
if S = {n− 1}, then n is twice a prime number.

Problem 12 Show that there does not exist a function f : Z →
{1, 2, 3} satisfying f(x) 6= f(y) for all x, y ∈ Z such that |x − y| ∈
{2, 3, 5}.

Problem 13 Let a1, a2, . . . be a sequence of positive integers de-
fined as follows:

• a1 > 0, a2 > 0;

• an+1 is the smallest prime divisor of an−1 + an, for all n ≥ 2.

The digits of the decimal representations of a1, a2, . . . are written in
that order after a decimal point to form a real (decimal) number x.
Prove that x is rational.

Problem 14 Let r be a positive number and let A1A2A3A4 be
a unit square. Given any four discs D1,D2,D3,D4 centered at
A1, A2, A3, A4 with radii whose sum is r, we are given that there exists
an equilateral triangle whose vertices lie in three of the four discs.
(That is, there is an equilateral triangle BCD and three distinct discs
Di,Dj ,Dk such that B ∈ Di, C ∈ Dj , D ∈ Dk.) Find the smallest
positive number r with this property.

Problem 15 Elections occur and every member of parliament is
assigned a positive number, his or her absolute rating. On the first
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day of parliament, the members are partitioned into groups. In each
group, every member of that group receives a relative rating : the ratio
of his or her absolute rating to the sum of the absolute ratings of all
members of that group. From time to time, a member of parliament
decides to move to a different group, and immediately after the switch
each member’s relative rating changes accordingly. No two members
can move at the same time, and members only make moves that will
increase their relative ratings. Show that only a finite number of
moves can be made.

Problem 16 Let m, n be positive integers of distinct parities
such that m < n < 5m. Show that there exists a partition of
{1, 2, . . . , 4mn} into two-element subsets, such that the sum of the
numbers in each pair is a perfect square.

Problem 17 Let ABC be a triangle such that AC 6= BC and
AB < AC. Let Γ be its circumcircle. Let D be the intersection of
line BC with the tangent line to Γ at A. Let Γ1 be the circle tangent
to Γ, segment AD, and segment BD. We denote by M the point
where Γ1 touches segment BD. Show that AC = MC if and only if
line AM is the angle bisector of angle DAB.

Problem 18 There are n ≥ 2 players who are playing a card game
with np cards. The cards are colored in n colors, and there are p

cards of each color, labelled 1, 2, . . . , p. They play a game according
to the following rules:

• Each player receives p cards.

• During each round, one player throws a card (say, with the color
c) on the table. Every other player also throws a card on the
table; if it is possible to throw down a card of color c, then the
player must do so. The winner is the player who puts down the
card of color c labelled with the highest number.

• A person is randomly chosen to start the first round. Thereafter,
the winner of each round starts the next round.

• All the cards thrown on the table during one round are removed
from the game at the end of the round, and the game ends after
p rounds.

At the end of the game, it turns out that all cards labeled 1 won some
round. Prove that p ≥ 2n.



2002 National Contests: Problems 17

3.11 Russia

Problem 1 Each cells in a 9× 9 grid is painted either blue or red.
Two cells are called diagonal neighbors if their intersection is exactly
a point. Show that some cell has exactly two red neighbors, or exactly
two blue neighbors, or both.

Problem 2 A monic quadratic polynomial f with integer coeffi-
cients attains prime values at three consecutive integer points. Show
that it attains a prime value at some other integer point as well.

Problem 3 Let O be the circumcenter of an acute triangle ABC

with AB = AC. Point M lies on segment BO, and point M ′ is
the reflection of M across the midpoint of side AB. Point K is the
intersection of lines M ′O and AB. Point L lies on side BC such that
∠CLO = ∠BLM . Show that O, K,B, L are concyclic.

Problem 4 There are b 4
3nc rectangles on the plane whose sides

are parallel to the coordinate axes. It is known that any rectangle
intersects at least n other rectangles. Show that one of the rectangles
intersects all the other rectangles.

Problem 5 Around a circle are written the numbers a1, a2, . . . , a60,
a permutation of the numbers 1, 2, . . . , 60. (All indices are taken
modulo 60.) Is it possible that 2 | (an + an+2), 3 | (an + an+3), and
7 | (an + an+7) for all n?

Problem 6 Let ABCD be a trapezoid with AB ‖ CD and BC 6‖
DA. Let A′ be the point on the boundary of the trapezoid such that
line AA′ splits the trapezoid into two halves with the same area. The
points B′, C ′, D′ are defined similarly. Let P be the intersection of
the diagonals of quadrilateral ABCD, and let P ′ be the intersection
of the diagonals of quadrilateral A′B′C ′D′. Prove that P and P ′

are reflections of each other across the midpoint of the midline of
trapezoid ABCD. (The midline of the trapezoid is the line connecting
the midpoints of sides BC and DA.)

Problem 7 18 stones are arranged on a line. It is known that there
are 3 consecutive stones that weigh 99 grams each, whereas all the
other stones weigh 100 grams each. You are allowed to perform the
following operation twice: choose a subset of the 18 stones, then weigh
that collection of stones. Describe a method for determining which
three stones weigh 99 grams each.
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Problem 8 What is the largest possible length of an arithmetic
progression of positive integers a1, a2, . . . , an with difference 2, such
that a2

k + 1 is prime for k = 1, 2, . . . , n?

Problem 9 A convex polygon on the plane contains at least m2 +1
lattice points strictly in its interior. Show that one some m+1 lattice
points strictly inside the polygon lie on the same line.

Problem 10 The perpendicular bisector of side AC of a triangle
ABC meets side BC at a point M . The ray bisecting angle AMB

intersects the circumcircle of triangle ABC at K. Show that the
line passing through the incenters of triangles AKM and BKM is
perpendicular to the angle bisector of angle AKB.

Problem 11

(a) The sequence a0, a1, a2, . . . satisfies a0 = 0 and 0 ≤ ak+1−ak ≤ 1
for k ≥ 1. Prove that

n∑

k=0

a3
k ≤

(
n∑

k=0

ak

)2

.

(b) If the sequence a0, a1, a2, . . . instead satisfies a0 = 0 and ak+1 ≥
ak + 1 for k ≥ 1, prove the reverse of the inequality in (a).

Let n ≥ 3 be an integer. On the x-axis have been chosen pair-
wise distinct points X1, X2, . . . , Xn. Let f1, f2, . . . , fm be the monic
quadratic polynomials that have two distinct Xi as roots. Prove that
y = f1(x) + · · ·+ fm(x) crosses the x-axis at exactly two points.

Problem 12 What is the largest number of colors in which one can
paint all the squares of a 10 × 10 checkerboard so that each of its
columns, and each of its rows, is painted in at most 5 different colors?

Problem 13 Real numbers x and y have the property that xp + yq

is rational for any distinct odd primes p, q. Prove that x and y are
rational.

Problem 14 The altitude from S of pyramid SABCD passes
through the intersection of the diagonals of base ABCD. Let AA1,
BB1, CC1, DD1 be the perpendiculars to lines SC, SD, SA, and
SB, respectively (where A1 lies on line SC, etc.). It is known that
S, A1, B1, C1, D1 are distinct and lie on the same sphere. Show that
lines AA1, BB1, CC1, DD1 are concurrent.



2002 National Contests: Problems 19

Problem 15 The plane is divided into 1 × 1 cells. Each cell is
colored in one of n2 colors so that any n×n grid of cells contains one
cell of each color. Show that there exists an (infinite) column colored
in exactly n colors.

Problem 16 Let p(x) be a polynomial of odd degree. Show that the
equation p(p(x)) = 0 has at least as many real roots as the equation
p(x) = 0.

Problem 17 There are n > 1 points on the plane. Two players
choose in turn a pair of points and draw a vector from one to the
other. It is forbidden to choose points already connected by a vector.
If at a certain moment the sum of all drawn vectors is zero, then the
second player wins. If at a certain moment it is impossible to draw a
new vector and the sum of the existing vectors is not zero, then the
first player wins. As a function of the choice of n points, which player
has a winning strategy?

Problem 18 Let ABCD be a convex quadrilateral, and let `A, `B ,
`C , `D be the bisectors of its external angles. Lines `A and `B meet at
a point K, `B and `C meet at a point L, `C and `D meet at a point M ,
and `D and `A meet at a point N . Show that if the circumcircles of
triangles ABK and CDM are externally tangent to each other, then
the same is true for the circumcircles of triangles BCL and DAN .

Problem 19 Let n be a fixed integer between 2 and 2002, inclusive.
On the segment [0, 2002] are marked n + 1 points with integer coor-
dinates, including the two endpoints of the segment. These points
divide [0, 2002] into n segments, and we are given that the lengths of
these segments are pairwise relatively prime. One is allowed to choose
any segment whose endpoints are already marked, divide it into n

equal parts, and mark the endpoints of all these parts — provided
that these new marked points all have integer coordinates. (One is
allowed to mark the same point twice.)

(a) By repeating this operation, is it always possible — for fixed n,
but regardless of the choice of initial markings — to mark all the
points on the segment with integer coordinates?

(b) Suppose that n = 3, and that when we divide any segment into
3 parts we must erase one of its endpoints. By repeating the
modified operation, is it always possible — regardless of the choice
of initial markings — to mark any given single point of [0, N ]?
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Problem 20 Distinct points O, B, C lie on a line in that order, and
point A lies off the line. Let O1 be the incenter of triangle OAB, and
let O2 be the excenter of triangle OAC opposite A. If O1A = O2A,
show that triangle ABC is isosceles.

Problem 21 Six red, six blue, and six green points are marked on
the plane. No three of these points are collinear. Show that the sum
of the areas of those triangles whose vertices are marked points of the
same color, does not exceed one quarter of the sum of the areas of all
the triangles whose vertices are marked points.

Problem 22 A mathematical hydra consists of heads and necks,
where any neck joins exactly two heads, and where each pair of heads
is joined by exactly 0 or 1 necks. With a stroke of a sword, Hercules
can destroy all the necks coming out of some head A of the hydra.
Immediately after that, new necks appear joining A with all the heads
that were not joined with A immediately before the stroke. To defeat
a hydra, Hercules needs to chop it into two parts not joined by necks
(that is, given any two heads, one from each part, they are not joined
by a neck). Find the minimal N for which he can defeat any hydra
with 100 necks by making at most N strokes.

Problem 23 There are 8 rooks on a chessboard, no two of which
lie in the same column or row. We define the distance between two
rooks to be the distance between the centers of the squares that they
lie on. Prove that among all the distances between rooks, there are
at least two distances that are equal.

Problem 24 There are k > 1 blue boxes, one red box, and a stack
of 2n cards numbered from 1 to 2n. Originally, the cards in the stack
are in some arbitrary order, and the stack is in the red box. One is
allowed to take the top card from any box; say that the card’s label
is m. Then the card is put either (i) in an empty box, or (ii) in a box
whose top card is labelled m + 1. What is the maximal n for which
it is possible to move all of the cards into one blue box?

Problem 25 Let O be the circumcenter of triangle ABC. On sides
AB and BC there have been chosen points M and N , respectively,
such that 2∠MON = ∠AOC. Show that the perimeter of triangle
MBN is at least AC.
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Problem 26 Let n ≥ 1 be an integer. 22n−1 + 1 odd numbers are
chosen from the interval (22n, 23n). Show that among these numbers,
one can find two numbers a, b for which a 6 | b2 and b 6 | a2.

Problem 27 Let p, q, r be polynomials with real coefficients, such
that at least one of the polynomials has degree 2 and at least one of
the polynomials has degree 3. Assume that

p2 + q2 = r2.

Show that at least one of the polynomials both has degree 3 and has
3 (not necessarily distinct) real roots.

Problem 28 Quadrilateral ABCD is inscribed in circle ω at A

intersects the extension of side BC past B at a point K. The tangent
line to ω at B meets the extension of side AD past A at a point M .
If AM = AD and BK = BC, show that quadrilateral ABCD is a
trapezoid.

Problem 29 Show that for any positive integer n > 10000, there
exists a positive integer m that is a sum of two squares and such that
0 < m− n < 3 4

√
n.

Problem 30 Once upon a time, there were 2002 cities in a kingdom.
The only way to travel between cities was to travel between two cities
that are connected by a (two-way) road. In fact, the road system was
such that even if it had been forbidden to pass through any one of
the cities, it would still have been possible to get from any remaining
city to any other remaining city. On year, the king decided to modify
the road system from this initial set-up. Each year, the king chose a
loop of roads that did not intersect itself, and then ordered:

(i) to build a new city,

(ii) to construct roads from this new city to any city on the chosen
loop, and

(iii) to destroy all the roads of the loop, as they were no longer useful.

As a result, at a certain moment there no longer remained any loops
of roads. Show that at this moment, there must have been at least
2002 cities accessible by exactly one road.

Problem 31 Let a, b, c be positive numbers with sum 3. Prove that
√

a +
√

b +
√

c ≥ ab + bc + ca.
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Problem 32 The excircle of triangle ABC opposite A touches side
BC at A′. Line `A passes through A′ and is parallel to the angle
bisector of angle CAB. The lines `B and `C are defined similarly.
Prove that `A, `B , `C are concurrent.

Problem 33 A finite number of red and blue lines are drawn on
the plane. No two of the lines are parallel to each other, and through
any point where two lines of the same color meet, there also passes a
line of the other color. Show that all the lines have a common point.

Problem 34 Some points are marked on the plane in such a way
that for any three marked points, there exists a Cartesian coordinate
system in which these three points are lattice points. (A Carte-
sian coordinate system is a coordinate system with perpendicular
coordinate axes with the same scale.) Show that there exists a
Cartesian coordinate system in which all the marked points have
integer coordinates.

Problem 35 Show that

2| sinn x = cosn x| ≤ 3| sinm x− cosm x|
for all x ∈ (0, π/2) and for all positive integers n > m.

Problem 36 In a certain city, there are several squares. All streets
are one-way and start or terminate only in squares; any two squares
are connected by at most one road. It is known that there are exactly
two streets that go out of any given square. Show that one can divide
the city into 1014 districts so that (i) no street connects two cities in
the same district, and (ii) for any two districts, all the streets that
connect them have the same direction (either all the streets go from
the first district to the second, or vice versa).

Problem 37 Find the smallest positive integer which can be written
both as (i) a sum of 2002 positive integers (not necessarily distinct),
each of which has the same sum of digits; and (ii) as a sum of 2003
positive integers (not necessarily distinct), each of which has the same
sum of digits.

Problem 38 Let ABCD be a quadrilateral inscribed in a circle,
and let O be the intersection point of diagonals AC and BD. The
circumcircles of triangles ABO and COD meet again at K. Point L

has the property that triangles BLC and AKD are similar (with the
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similarity respecting this order of vertices). Show that if quadrilateral
BLCK is convex, then it is circumscribed about some circle.

Problem 39 Show that there are infinitely many positive integers
n for which the numerator of the irreducible fraction equal to 1+ 1

2 +
· · ·+ 1

n is not a positive integer power of a prime number.
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3.12 Taiwan

Problem 1 For each n, determine all n-tuples of nonnegative
integers x1, x2, . . . , xn such that

n∑

i=1

x2
i = 1 +

4
4n + 1

(
n∑

i=1

x

)2

.

Problem 2 We call a lattice point X in the plane visible from the
origin O if the segment OX does not contain any other lattice points
besides O and X. Show that for any positive integer n, there exists
an square of n2 lattice points (with sides parallel to the coordinate
axes) such that none of the lattice points inside the square is visible
from the origin.

Problem 3 Let x, y, z, a, b, c, d, e, f be real numbers satisfying

max{a, 0}+ max{b, 0} < x + ay + bz < 1 + min{a, 0}+ min{b, 0},
max{c, 0}+ max{d, 0} < cx + y + dz < 1 + min{c, 0}+ min{d, 0},
max{e, 0}+ max{f, 0} < ex + fy + z < 1 + min{e, 0}+ min{f, 0}.

Show that 0 < x, y, z < 1.

Problem 4 Suppose that 0 < x1, x2, x3, x4 ≤ 1
2 . Prove that

x1x2x3x4

(1− x1)(1− x2)(1− x3)(1− x4)

is less than or equal to

x4
1 + x4

2 + x4
3 + x4

4

(1− x1)4 + (1− x2)4 + (1− x3)4 + (1− x4)4
.

Problem 5 The 2002 real numbers a1, a2, . . . , a2002 satisfy
a1

2
+

a2

3
+ · · ·+ a2002

2003
=

4
3
,

a1

3
+

a2

4
+ · · ·+ a2002

2004
=

4
5
,

...
a1

2003
+

a2

2004
+ · · ·+ a2002

4004
=

4
4005

.

Evaluate
a1

3
+

a2

5
+

a3

7
+ · · ·+ a2002

4005
.
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Problem 6 Given three fixed points A,B,C in a plane, let D be a
variable point different from A,B, C such that A,B, C,D are concylic.
Let `A be the Simson line of A with respect to triangle BCD, and
define `B , `C , `D analogously. (It is well known that if W is a point on
the circumcircle of triangle XY Z, then the feet of the perpendiculars
from W to lines XY , Y Z, ZX lie on a single line. This line is called
the Simson line of W with respect to triangle BCD.) As D varies,
find the locus of all possible intersections of some two of `A, `B , `C , `D.
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3.13 United States of America

Problem 1 Let S be a set with 2002 elements, and let N be an
integer with 0 ≤ N ≤ 22002. Prove that it is possible to color every
subset of S either blue or red so that the following conditions hold:

(a) the union of any two red subsets is red;

(b) the union of any two blue subsets is blue;

(c) there are exactly N red subsets.

Problem 2 Let ABC be a triangle such that
(

cot
A

2

)2

+
(

2 cot
B

2

)2

+
(

3 cot
C

2

)2

=
(

6s

7r

)2

,

where s and r denote its semiperimeter and its inradius, respectively.
Prove that triangle ABC is similar to a triangle T whose side lengths
are all positive integers with no common divisor and determine these
integers.

Problem 3 Prove that any monic polynomial (a polynomial with
leading coefficient 1) of degree n with real coefficients is the average
of two monic polynomials of degree n with n real roots.

Problem 4 Let R be the set of real numbers. Determine all
functions f : R→ R such that

f(x2 − y2) = xf(x)− yf(y)

for all pairs of real numbers x and y.

Problem 5 Let a, b be integers greater than 2. Prove that there
exists a positive integer k and a finite sequence n1, n2, . . . , nk of
positive integers such that n1 = a, nk = b, and nini+1 is divisible
by ni + ni+1 for each i (1 ≤ i < k).

Problem 6 I have an n× n sheet of stamps, from which I’ve been
asked to tear out blocks of three adjacent stamps in a single row or
column. (I can only tear along the perforations separating adjacent
stamps, and each block must come out of a sheet in one piece.) Let
b(n) be the smallest number of blocks I can tear out and make it
impossible to tear out any more blocks. Prove that there are constants
c and d such that

1
7
n2 − cn ≤ b(n) ≤ 1

5
n2 + dn
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for all n > 0.

Problem 7 Let ABC be a triangle. Prove that

sin
3A

2
+ sin

3B

2
+ sin

3C

2
≤ cos

A−B

2
+ cos

B − C

2
+ cos

C −A

2
.

Problem 8 Let n be an integer greater than 2, and P1, P2, · · · , Pn

distinct points in the plane. Let S denote the union of the segments
P1P2, P2P3, . . . , Pn−1Pn. Determine whether it is always possible to
find points A and B in S such that P1Pn ‖ AB (segment AB can lie
on line P1Pn) and P1Pn = kAB, where (1) k = 2.5; (2) k = 3.

Problem 9 Let n be a positive integer and let S be a set of
2n + 1 elements. Let f be a function from the set of two-element
subsets of S to {0, . . . , 2n−1 − 1}. Assume that for any elements
x, y, z of S, one of f({x, y}), f({y, z}), f({z, x}) is equal to the sum
of the other two. Show that there exist a, b, c in S such that
f({a, b}), f({b, c}), f({c, a}) are all equal to 0.

Problem 10 Consider the family of non-isosceles triangles ABC

satisfying the property AC2 + BC2 = 2AB2. Points M and D lie on
side AB such that AM = BM and ∠ACD = ∠BCD. Point E is in
the plane such that D is the incenter of triangle CEM . Prove that
exactly one of the ratios

CE

EM
,

EM

MC
,

MC

CE

is constant (i.e., is the same for all triangles in the family).

Problem 11 Find in explicit form all ordered pairs of positive
integers (m,n) such that mn− 1 divides m2 + n2.
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3.14 Vietnam

Problem 1 Let ABC be a triangle such that angle BCA is acute.
Let the perpendicular bisector of side BC intersect the rays that
trisect angle BAC at K and L, so that ∠BAK = ∠KAL = ∠LAC =
1
3∠BAC. Also let M be the midpoint of side BC, and let N be the
foot of the perpendicular from A to line BC. Find all such triangles
ABC for which AB = KL = 2MN .

Problem 2 A positive integer is written on a board. Two players
alternate performing the following operation until 0 appears on the
board: the current player erases the existing number N from the
board and replaces it with either N − 1 or bN/3c. Whoever writes
the number 0 on the board first wins. Determine who has the winning
strategy when the initial number equals (a) 120, (b) (32002−1)/2, and
(c) (32002 + 1)/2.

Problem 3 The positive integer m has a prime divisor greater than√
2m+1. Find the smallest positive integer M such that there exists

a finite set T of distinct positive integers satisfying: (i) m and M

are the least and greatest elements, respectively, in T , and (ii) the
product of all the numbers in T is a perfect square.

Problem 4 On an n × 2n rectangular grid of squares (n ≥ 2)
are marked n2 of the 2n2 squares. Prove that for each k =
2, 3, . . . , bn/2c+ 1, there exists k rows of the board and

d k!(n− 2k + 2)
(n− k + 1)(n− k + 2) · · · (n− 1)

e

columns, such that the intersection of each chosen row and each
chosen column is a marked square.

Problem 5 Find all polynomials p(x) with integer coefficients such
that

q(x) = (x2 + 6x + 10)(p(x))2 − 1

is the square of a polynomial with integer coefficients.

Problem 6 Prove that there exists an integer m ≥ 2002 and m

distinct positive integers a1, a2, . . . , am such that
m∏

i=1

a2
i − 4

m∑

i=1

a2
i
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is a perfect square.
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4.1 Asian Pacific Mathematics Olympia

d

Problem 1 Let a1, a2, . . . , an be a sequence of non-negative inte-
gers, where n is a positive integer. Let

An =
a1 + a2 + · · ·+ an

n
.

Prove that
a1!a2! · · · an! ≥ (bAnc!)n

,

and determine when equality holds. (Here, bAnc denotes the greatest
integer less than or equal to An, a! = 1 × 2 × · · · × a for a ≥ 1, and
0! = 1.)

Problem 2 Find all positive integers a and b such that

a2 + b

b2 − a
and

b2 + a

a2 − b

are both integers.

Problem 3 Let ABC be an equilateral triangle. Let P be a point on
side AC and let Q be a point on side AB so that both triangles ABP

and ACQ are acute. Let R be the orthocenter of triangle ABP and
let S be the orthocenter of triangle ACQ. Let T be the intersection of
segments BP and CQ. Find all possible values of ∠CBP and ∠BCQ

such that triangle TRS is equilateral.

Problem 4 Let x, y, z be positive numbers such that
1
x

+
1
y

+
1
z

= 1.

Show that
√

x + yz +
√

y + zx +
√

z + xy ≥ √
xyz +

√
x +

√
y +

√
z.

Problem 5 Find all functions f : R → R with the following
properties:

(i) there are only finitely many s in R such that f(s) = 0, and

(ii) f(x4 + y) = x3f(x) + f(f(y)) for all x, y ∈ R.
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4.2 Austrian-Polish Mathematics Olym

piad

Problem 1 Let A = {2, 7, 11, 13}. A polynomial f with integer
coefficients has the property that for each integer n, there exists p ∈ A

such that p | f(n). Prove that there exists p ∈ A such that p | f(n)
for all integers n.

Problem 2 The diagonals of a convex quadrilateral ABCD inter-
sect at the point E. Let triangle ABE have circumcenter U and
orthocenter H. Similarly, let triangle CDE have circumcenter V and
orthocenter K. Prove that E lies on line UK if and only if it lies on
line V H.

Problem 3 Find all functions f : Z+ → R such that f(x + 22) =
f(x) and f(x2y) = (f(x))2f(y) for all positive integers x and y.

Problem 4 Determine the number of real solutions of the system

x1 = cos xn, x2 = cos x1, . . . , xn = cos xn−1.

Problem 5 For every real number x, let F (x) be the family of real
sequences a1, a2, . . . satisfying the recursion

an+1 = x− 1
an

for n ≥ 1. The family F (x) has minimal period p if (i) each sequence
in F (x) is periodic with period p, and (ii) for each 0 < q < p, some
sequence in F (x) is not periodic with period q. Prove or disprove
the following claim: for each positive integer P , there exists a real
number x such that the family F (x) has minimal period p > P .
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4.3 Balkan Mathematical Olympiad

Problem 1 Let A1, A2, . . . , An (n ≥ 4) be points in the plane such
that no three of them are collinear. Some pairs of distinct points
among A1, A2, . . . , An are connected by line segments, such that every
point is directly connected to at least three others. Prove that from
among these points can be chosen an even number of distinct points
X1, X2, . . . , X2k (k ≥ 1) such that Xi is directly connected to Xi+1

for i = 1, 2, . . . , 2k. (Here, we write X2k+1 = X1.)

Problem 2 The sequence a1, a2, . . . is defined by the initial con-
ditions a1 = 20, a2 = 30 and the recursion an+2 = 3an+1 − an for
n ≥ 1. Find all positive integers n for which 1 + 5anan+1 is a perfect
square.

Problem 3 Two circles with different radii intersect at two points
A and B. The common tangents of these circles are segments MN

and ST , where M, S lie on one circle while N, T lie on the other.
Prove that the orthocenters of triangles AMN , AST , BMN , and
BST are the vertices of a rectangle.

Problem 4 Find all functions f : Z+ → Z+ such that

2n + 2001 ≤ f(f(n)) + f(n) ≤ 2n + 2003

for all positive integers n.



34 Baltic Team Contest

4.4 Baltic Team Contest

Problem 1 A spider is sitting on a cube. A fly lands on the cube,
hoping to maximize the length of the shortest path to the spider
along the surface of the cube. Can the fly guarantee doing so by
choosing the point directly opposite the spider (i.e., the point that is
the reflection of the spider’s position across the cube’s center)?

Problem 2 Find all nonnegative integers m such that (22m+1)2 +1
is divisible by at most two different primes.

Problem 3 Show that the sequence
(

2002
2002

)
,

(
2003
2002

)
,

(
2004
2002

)
, . . . ,

considered modulo 2002, is periodic.

Problem 4 Find all integers n > 1 such that any prime divisor of
n6 − 1 is a divisor of (n3 − 1)(n2 − 1).

Problem 5 Let n be a positive integer. Prove that the equation

x + y +
1
x

+
1
y

= 3n

does not have solutions in positive rational numbers.

Problem 6 Does there exist an infinite, non-constant arithmetic
progressions, each term of which is of the form ab where a and b are
positive integers with b ≥ 2?
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4.5 Czech-Polish-Slovak Mathematical C

ompetition

Problem 1 Let a and b be distinct real numbers, and let k and m

be positive integers with k + m = n ≥ 3, k ≤ 2m, and m ≤ 2k. We
consider n-tuples (x1, x2, . . . , xn) with the following properties:

(i) k of the xi are equal to a, and in particular x1 = a;

(ii) m of the xi are equal to b, and in particular xn = b;

(iii) no three consecutive terms of x1, x2, . . . , xn are equal.

Determine all possible values of the sum

xnx1x2 + x1x2x3 + · · ·+ xn−1xnx1.

Problem 2 Given is a triangle ABC with side lengths BC =
a ≤ CA = b ≤ AB = c and area S. Let P be a variable point
inside triangle ABC, and let D, E, F be the intersections of rays
AP, BP, CP with the opposite sides of the triangle. Determine (as a
function of a, b, c, and S) the greatest number u and the least number
v such that u ≤ PD + PE + PF ≤ v for all such P .

Problem 3 Let n be a given positive integer, and let S =
{1, 2, . . . , n}. How many functions f : S → S are there such that
x + f(f(f(f(x)))) = n + 1 for all x ∈ S?

Problem 4 Let n, p be integers such that n > 1 and p is a prime.
If n | (p− 1) and p | (n3 − 1), show that 4p− 3 is a perfect square.

Problem 5 In acute triangle ABC with circumcenter O, points P

and Q lie on sides AC and BC, respectively. Suppose that

AP

PQ
=

BC

AB
and

BQ

PQ
=

AC

AB
.

Show that O, P , Q, and C are concyclic.

Problem 6 Let n ≥ 2 be a fixed even integer. We consider
polynomials of the form

xn + an−1x
n−1 + · · ·+ a1x + 1

with real coefficients, having at least one real root. Determine the
least possible value of the sum a2

1 + · · ·+ a2
n−1.
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4.6 Mediterranean Mathematical Comp

etition

Problem 1 Find all positive integers x, y such that y | (x2 +1) and
x2 | (y3 + 1).

Problem 2 Let x, y, a be real numbers such that

x + y = x3 + y3 = x5 + y5 = a.

Determine all positive values of a.

Problem 3 Let ABC be an acute triangle. Let M and N be points
on the interiors of sides AC and BC, respectively, and let K be the
midpoint of segment MN . The circumcircles of triangles CAN and
BCM meet at C and at a second point D. Prove that line CD

passes through the circumcircle of triangle ABC if and only if the
perpendicular bisector of segment AB passes through K.
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4.7 St. Petersburg City Mathematical

Olympiad (Russia)

Problem 1 Positive numbers a, b, c, d, x, y, and z satisfy a + x =
b + y = c + z = 1. Prove that

(abc + xyz)
( 1

ay
+

1
bz

+
1
cx

)
≥ 3.

Problem 2 Let ABCD be a convex quadrilateral such that ∠ABC =
90◦, AC = CD, and ∠BCA = ∠ACD. Let E be the midpoint of
segment AD, and L be the intersection point of segments BF and
AC. Prove that BC = CL.

Problem 3 One can perform the following operations on a positive
integer:

(i) raise it to any positive integer power;

(ii) cut out the last two digits of the integer, multiply the obtained
two-digit number by 3, and add it to the number formed by the
remaining digits of the initial integer. (For example, from 3456789
one can get 34567 + 3 · 89.)

Is it possible to obtain 82 from 81 by using operations (i) and (ii)?

Problem 4 Points M and N are marked on diagonals AC and
BD of cyclic quadrilateral ABCD. Given that BM

DN = AM
CM and

∠BAD = ∠BMC, prove that ∠ANB = ∠ADC.

Problem 5 A country consists of no fewer than 100,000 cities,
where 2001 paths are outgoing from each city. Each path connects
two cities, and every pair of cities is connected by no more than one
path. The government decides to close some of the paths (at least
one but not all) so that the number of paths outgoing from each city
is the same. Is this always possible?

Problem 6 Let ABC be a triangle and let I be the center of its
incircle ω. The circle Γ passes through I and is tangent to AB and AC

at points X and Y , respectively. Prove that segment XY is tangent
to ω.

Problem 7 Several 1×3 rectangles and 100 L-shaped figures formed
by three unit squares (“corners”) are situated on a grid plane. It is
known that these figures can be shifted parallel to themselves so that
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the resulting figure is a rectangle. A student Olya can translate 96
corners to form 48 2 × 3 rectangles. Prove that the remaining four
corners can be translated to form two additional 2× 3 rectangles.

Problem 8 The sequence {an} is given by the following relation:

an+1 =

{
(an − 1)/2 if an ≥ 1,

2an/(1− an) if an < 1.

Given that a0 is a positive integer, an 6= 2 for each n = 1, 2, . . . , 2001,
and a2002 = 2, find a0.

Problem 9 There are two 2-pan balances in a zoo for weighing
animals. An elephant is on a pan of the first balance and a camel
is on a pan of the second balance. The weights of both animals are
whole numbers, and their total does not exceed 2000. A set of weights,
totaling 2000, have been delivered to the zoo, where each weight is
a whole number. It turns out that no matter what the elephant’s
and the camel’s weights are, one can distribute some of the weights
over the balances’ four pans so that both balances are in equilibrium.
Find the minimum number of weights that could have been delivered
to the zoo.

Problem 10 The integer N = a0a0 . . . a0b0c0c0 . . . c0, where the
digits a and c are written 1001 times each, is divisible by 37. Prove
that b = a + c.

Problem 11 Let ABCD be a trapezoid such that the length of
lateral side AB equals the sum of the lengths of bases AD and BC.
Prove that the bisectors of angles A and B meet at a point on side
CD.

Problem 12 Can the sum of the pairwise distances between the
vertices of a 25-vertex tree be equal to 1225?

Problem 13 The integers from 5 to 10 are written on a blackboard.
Each minute, Kolya erases three or four of the smallest integers and
writes down seven or eight consecutive integers following the largest
integer on the board. Prove that the sum of all the integers on the
blackboard is never a power of 3.

Problem 14 Find the maximal value of α > 0 for which any set of
eleven real numbers,

0 = a1 ≤ a2 ≤ · · · ≤ a11 = 1,
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can be split into two disjoint subsets with the following property: the
arithmetic mean of the numbers in the first subset differs from the
arithmetic mean of the numbers in the second subset by at most α.

Problem 15 Let O be the circumcenter of acute scalene triangle
ABC, C1 be the point symmetric to C with respect to O, D be the
midpoint of side AB, and K be the circumcenter of triangle ODC1.
Prove that point O divides into two equal halves the segment of line
OK that lies inside angle ACB.

Problem 16 Polygon P has the following two properties: (i) no
three vertices of P are collinear; and (ii) there are at least two ways
that P can be dissected into triangles by drawing non-intersecting
diagonals of P. Prove that some four vertices of P form a convex
quadrilateral lying entirely inside P.

Problem 17 Let p be a prime number. Given that the equation

pk + pl + pm = n2

has an integer solution, prove that p + 1 is divisible by 8.

Problem 18 An alchemist has 50 different substances. He can
convert any 49 substances taken in equal quantities into the remaining
substance without changing the total mass. Prove that, after a finite
number of manipulations, the alchemist can obtain the same amount
of each of the 50 substances.

Problem 19 Let ABCD be a cyclic quadrilateral. Points X and Y

are marked on sides AB and BC such that quadrilateral XBY D is a
parallelogram. Points M and N are the midpoints of diagonals AC

and BD, and lines AC and XY meet at point L. Prove that points
M, N, L, and D are concyclic.

Problem 20 Two players play the following game. There are 64
vertices on the plane at the beginning. On each turn, the first player
picks any two vertices that do not yet have an edge between them
and connects them with an edge, and the second player introduces a
direction on this edge. The second player wins if the graph obtained
after 1959 turns is connected; otherwise the first player wins. Which
player has a winning strategy?
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Problem 21 The shape of a lakeside is a convex centrally-symmetric
100-gon A1A2 . . . A100 with center of symmetry O. There is a
polygonal island B1B2 . . . B100 in the lake whose vertices Bi are the
midpoints of the segments OAi, i = 1, 2, . . . , 100. There is a jail on
the island surrounded with a high fence along its perimeter. Two
security guards are situated at the opposite points on the lakeside.
Prove that every point on the lakeside can be observed by at least
one of the guards.

Problem 22 Each of the FBI’s safes has a secret code that is a
positive integer between 1 and 1700, inclusive. Two spies learn the
codes of two different safes and decide to exchange their information.
Coordinating beforehand, they meet at the shore of a river near a pile
of 26 rocks. The first spy throws several rocks into the water, then
the second, then the first, and so on until all the rocks are used. The
spies leave after that, without having said a word to each other. How
could the information have been transmitted?

Problem 23 A flea jumps along integer points on the real line,
starting from the origin. The length of each its jumps is 1. During
each jump, the flea sings one of (p − 1)/2 songs, where p is an odd
prime. Consider all of the flea’s musical paths from the origin back
to the origin consisting of no more than p− 1 jumps. Prove that the
number of such paths is divisible by p.

Problem 24 Let ABCD be a circumscribed quadrilateral with O

the center of its inscribed circle. A line ` passes through O and
meets sides AB and CD at point X and Y , respectively. Given that
∠AXY = ∠DY X, prove that AX/BX = CY/DY .

Problem 25 Let an = Fn
n , where Fn is the nth Fibonacci number

(F1 = F2 = 1, Fn+1 = Fn + Fn−1). Is the sequence bn =√
a1 +

√
a2 + · · ·+√

an bounded above?

Problem 26 Let a and b be positive integers such that 2a + 1 and
2b + 1 are relatively prime. Find all possible values of gcd(22a+1 +
22a+1 + 1, 22b+1 + 22b+1 + 1).

Problem 27 Let O be the center of the incircle ω of triangle ABC.
Let the tangency points of ω with BC, CA, and AB be A1, B1, and
C1, respectively. The perpendicular to line AA1 at A1 meets line
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B1C1 at X. Prove that line BC passes through the midpoint of
segment AX.

Problem 28 A positive integer is written on a blackboard. Dima
and Sasha play the following game. Dima calls some positive integer
x, and Sasha adds ±x to the number on the blackboard. They repeat
this procedure many times. Dima’s goal is to get a nonnegative power
of a particular positive integer k on the board. Find all possible values
of k for which Dima will be able to do this regardless of the initial
number written on the board.

Problem 29 Find all continuous functions f : (0,∞) → (0,∞) such
that for all positive real numbers x and y,

f(x)f(y) = f(xy) + f

(
x

y

)
.


	APMC

