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Preface

Although mathematical olympiad competitions are carried out by solving prob-
lems, the system of Mathematical Olympiads and the related training courses can-
not involve only the techniques of solving mathematical problems. Strictly speak-
ing, it is a system of mathematical advancing education. To guide students who are
interested in mathematics and have the potential to enter the world of Olympiad
mathematics, so that their mathematical ability can be promoted efficiently and
comprehensively, it is important to improve their mathematical thinking and tech-
nical ability in solving mathematical problems.

An excellent student should be able to think flexibly and rigorously. Here the
ability to do formal logic reasoning is an important basic component. However, it
is not the main one. Mathematical thinking also includes other key aspects, like
starting from intuition and entering the essence of the subject, through prediction,
induction, imagination, construction, design and their creative abilities. Moreover,
the ability to convert concrete to the abstract and vice versa is necessary.

Technical ability in solving mathematical problems does not only involve pro-
ducing accurate and skilled computations and proofs, the standard methods avail-
able, but also the more unconventional, creative techniques.

It is clear that the usual syllabus in mathematical educations cannot satisfy
the above requirements, hence the mathematical olympiad training books must be
self-contained basically.

The book is based on the lecture notes used by the editor in the last 15 years for
Olympiad training courses in several schools in Singapore, like Victoria Junior
College, Hwa Chong Institution, Nanyang Girls High School and Dunman High
School. Its scope and depth significantly exceeds that of the usual syllabus, and
introduces many concepts and methods of modern mathematics.

The core of each lecture are the concepts, theories and methods of solving
mathematical problems. Examples are then used to explain and enrich the lectures,
and indicate their applications. And from that, a number of questions are included
for the reader to try. Detailed solutions are provided in the book.

The examples given are not very complicated so that the readers can under-
stand them more easily. However, the practice questions include many from actual
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vi Preface

competitions which students can use to test themselves. These are taken from a
range of countries, e.g. China, Russia, the USA and Singapore. In particular, there
are many questions from China for those who wish to better understand mathe-
matical Olympiads there. The questions are divided into two parts. Those in Part
A are for students to practise, while those in Part B test students’ ability to apply
their knowledge in solving real competition questions.

Each volume can be used for training courses of several weeks with a few
hours per week. The test questions are not considered part of the lectures, since
students can complete them on their own.

K. K. Phua
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Abbreviations and Notations

Abbreviations

AHSME American High School Mathematics Examination
AIME American Invitational Mathematics Examination

APMO Asia Pacific Mathematics Olympiad
ASUMO Olympics Mathematical Competitions of All

the Soviet Union
BMO British Mathematical Olympiad

CHNMOL China Mathematical Competition for Secondary
Schools

CHNMOL(P) China Mathematical Competition for Primary
Schools

CHINA China Mathematical Competitions for Secondary
Schools except for CHNMOL

CMO Canada Mathematical Olympiad
HUNGARY Hungary Mathematical Competition

IMO International Mathematical Olympiad
IREMO Ireland Mathematical Olympiad

KIEV Kiev Mathematical Olympiad
MOSCOW Moscow Mathematical Olympiad
POLAND Poland Mathematical Olympiad
PUTNAM Putnam Mathematical Competition

RUSMO All-Russia Olympics Mathematical Competitions
SSSMO Singapore Secondary Schools Mathematical Olympiads

SMO Singapore Mathematical Olympiads
SSSMO(J) Singapore Secondary Schools Mathematical Olympiads

for Junior Section
SWE Sweden Mathematical Olympiads
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x Abbreviations and Notations

USAMO United States of American Mathematical Olympiad
USSR Union of Soviet Socialist Republics

Notations for Numbers, Sets and Logic Relations

N the set of positive integers (natural numbers)
N0 the set of non-negative integers
Z the set of integers
Z+ the set of positive integers
Q the set of rational numbers
Q+ the set of positive rational numbers
Q+

0 the set of non-negative rational numbers
R the set of real numbers

[m, n] the lowest common multiple of the integers m and n

(m,n) the greatest common devisor of the integers m and n

a | b a divides b

|x| absolute value of x

bxc the greatest integer not greater than x

dxe the least integer not less than x

{x} the decimal part of x, i.e. {x} = x− bxc
a ≡ b (mod c) a is congruent to b modulo c(

n
k

)
the binomial coefficient n choose k

n! n factorial, equal to the product 1 · 2 · 3 · n
[a, b] the closed interval, i.e. all x such that a ≤ x ≤ b

(a, b) the open interval, i.e. all x such that a < x < b

⇔ iff, if and only if
⇒ implies

A ⊂ B A is a subset of B

A−B the set formed by all the elements in A but not in B

A ∪B the union of the sets A and B

A ∩B the intersection of the sets A and B

a ∈ A the element a belongs to the set A



Contents

Preface v

Acknowledgments vii

Abbreviations and Notations ix

16 Quadratic Surd Expressions and Their Operations 1

17 Compound Quadratic Surd Form
√

a ± √
b 7

18 Congruence of Integers 13

19 Decimal Representation of Integers 19

20 Perfect Square Numbers 25

21 Pigeonhole Principle 31

22 bxc and {x} 37

23 Diophantine Equations (I) 45

24 Roots and Discriminant of Quadratic Equation ax2 + bx + c = 0 53

25 Relation between Roots and Coefficients of Quadratic Equations 61

26 Diophantine Equations (II) 69

27 Linear Inequality and System of Linear Inequalities 77

28 Quadratic Inequalities and Fractional Inequalities 83

xi



xii Contents

29 Inequalities with Absolute Values 89

30 Geometric Inequalities 95

Solutions to Testing Questions 103

Index 177



Lecture 16

Quadratic Surd Expressions and Their Operations

Definitions

For an even positive integer n, by the notation n
√

a, where a ≥ 0, we denote
the non-negative real number x which satisfies the equation xn = a. In particular,
when n = 2, 2

√
a is called square root of a, and denoted by

√
a usually.

For odd positive integer n and any real number a, by the notation n
√

a we
denote the real number x which satisfies the equation xn = a.

An algebraic expression containing
√

a, where a > 0 is not a perfect square

number, is called quadratic surd expression, like 1−√2,
1

2−√3
, etc.

Basic Operational Rules on
√

a

(I) (
√

a)2 = a, where a ≥ 0.

(II)
√

a2 = |a| =




a for a > 0,
0 for a = 0,
−a for a < 0.

(III)
√

ab =
√
|a| ·

√
|b| if ab ≥ 0.

(IV)
√

a

b
=

√
|a|√
|b| if ab ≥ 0, b 6= 0.

(V) (
√

a)n =
√

an if a ≥ 0.

(VI) a
√

c + b
√

c = (a + b)
√

c if c ≥ 0.

1



2 Lecture 16 Quadratic Surd Expressions and Their Operations

Rationalization of Denominators

(I)
1

a
√

b + c
√

d
=

a
√

b− c
√

d

a2b− c2d
, where a, b, c, d are rational numbers, b, d ≥

0 and a2b− c2d 6= 0.

(II)
1

a
√

b− c
√

d
=

a
√

b + c
√

d

a2b− c2d
, where a, b, c, d are rational numbers, b, d ≥

0 and a2b− c2d 6= 0.
In algebra, the expressions A + B

√
C and A − B

√
C, where A,B, C are

rational and
√

C is irrational, are called conjugate surd expressions.
The investigation of surd forms is necessary and very important in algebra,

since surd forms and irrational number have close relation. For example, all the
numbers of the form

√
n, n ∈ N are irrational if the positive integer n is not a

perfect square. In other words, the investigation of surd form expressions is the
investigation of irrational numbers and their operations essentially.

Examples

Example 1. Simplify the expression
a

a− 2b

√
a2 − 4ab + 4b2

a(2b− a)
.

Solution Since a− 2b 6= 0, so

a2 − 4ab + 4b2

a(2b− a)
=

(a− 2b)2

a(2b− a)
> 0 ⇒ a(2b− a) > 0.

Therefore
a

a− 2b
< 0 and

a

2b− a
> 0, so

a

a− 2b

√
a2 − 4ab + 4b2

a
= −

(
a

2b− a

) √
(2b− a)2

a(2b− a)

= −
√

a2

(2b− a)2
· (2b− a)

a
= −

√
a

2b− a
.

Example 2. Given that c > 1 and

x =
√

c + 2−√c + 1√
c−√c− 1

, y =
√

c + 2−√c + 1√
c + 1−√c

, z =
√

c−√c− 1√
c + 2−√c + 1

,

arrange x, y, z in ascending order.
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Solution From

x =
√

c + 2−√c + 1√
c−√c− 1

=
[(
√

c + 2)2 − (
√

c + 1)2](
√

c +
√

c− 1)
(
√

c + 2 +
√

c + 1)[(
√

c)2 − (
√

c− 1)2]

=
√

c +
√

c− 1√
c + 2 +

√
c + 1

,

y =
√

c + 2−√c + 1√
c + 1−√c

=
[(
√

c + 2)2 − (
√

c + 1)2](
√

c + 1 +
√

c)
(
√

c + 2 +
√

c + 1)[(
√

c + 1)2 − (
√

c)2]

=
√

c + 1 +
√

c√
c + 2 +

√
c + 1

,

it follows that x < y. Further,

z =
√

c−√c− 1√
c + 2−√c + 1

=
[(
√

c)2 − (
√

c− 1)2](
√

c + 2 +
√

c + 1)
(
√

c +
√

c− 1)[(
√

c + 2)2 − (
√

c + 1)2]

=
√

c + 2 +
√

c + 1√
c +

√
c− 1

.

Since
√

c +
√

c− 1 <
√

c + 1 +
√

c <
√

c + 2 +
√

c + 1, thus x < y < z.

Example 3. (SSSMO/2003) Let x be a real number, and let

A =
−1 + 3x

1 + x
−

√
|x| − 2 +

√
2− |x|

|2− x| .

Prove that A is an integer, and find the unit digit of A2003.

Solution Since |x| − 2 ≥ 0 and 2− |x| ≥ 0 simultaneously implies |x| = 2,
so x = ±2 only. Since the denominator |x − 2| 6= 0, i.e. x 6= 2, so x = −2.
Therefore A = 7. Then

72003 = (74)500 · 73 ≡ 243 ≡ 3 (mod 10),

therefore the units digit of A is 3.

Example 4. Given x =
√

7 +
√

3√
7−√3

, y =
√

7−√3√
7 +

√
3

, find the value of x4 + y4 +

(x + y)4.

Solution Here an important technique is to express to x4 + y4 + (x + y)4

by x + y and xy instead of using the complicated expression of x and y. From

x =
1

7− 3
(
√

7 +
√

3)2 =
1
4
(10 + 2

√
21) =

1
2
(5 +

√
21),

y =
1

7− 3
(
√

7−
√

3)2 =
1
4
(10− 2

√
21) =

1
2
(5−

√
21),



4 Lecture 16 Quadratic Surd Expressions and Their Operations

it follows that x + y = 5 and xy = 1. Therefore

x4 + y4 + (x + y)4

= (x2 + y2)2 − 2x2y2 + 54 = [(x + y)2 − 2(xy)]2 − 2(xy)2 + 625

= 232 − 2 + 625 = 527 + 625 = 1152.

Example 5. Simplify the expression
√

2 +
√

3−√5√
2 +

√
3 +

√
5

by rationalizing the denom-

inator.

Solution
√

2 +
√

3−√5√
2 +

√
3 +

√
5

= 1− 2
√

5√
2 +

√
3 +

√
5

= 1− 2
√

5(
√

2 +
√

3−√5)
(
√

2 +
√

3)2 − 5
= 1− 2(

√
10 +

√
15− 5)

2
√

2 · √3

= 1−
√

10 +
√

15− 5√
6

= 1−
√

60 +
√

90− 5
√

6
6

= 1−
√

15
3

−
√

10
2

+
5
√

6
6

.

Example 6. Simplify S =
√

x2 + 2x + 1−√x2 + 4x + 4 +
√

x2 − 6x + 9.

Solution From S =
√

x2 + 2x + 1 − √
x2 + 4x + 4 +

√
x2 − 6x + 9 =

|x + 1| − |x + 2|+ |x− 3|, there are four possible cases as follows:

(i) When x ≤ −2, then S = −(x + 1) + (x + 2)− (x− 3) = −x + 4.

(ii) When −2 < x ≤ −1, then S = −(x + 1)− (x + 2)− (x− 3) = −3x.

(iii) When −1 < x ≤ 3, then S = (x + 1)− (x + 2)− (x− 3) = −x + 2.

(iv) When 3 < x, then S = (x + 1)− (x + 2) + (x− 3) = x− 4.

Example 7. (SSSMO/2002/Q12) Evaluate

(
√

10+
√

11+
√

12)(
√

10+
√

11−
√

12)(
√

10−
√

11+
√

12)(
√

10−
√

11−
√

12).

Solution Let A = (
√

10+
√

11+
√

12)(
√

10+
√

11−√12)(
√

10−√11+√
12)(

√
10−√11−√12). Then

A = [(
√

10 +
√

11)2 − (
√

12)2][(
√

10−√11)2 − (
√

12)2]
= (9 + 2

√
10 · √11)(9− 2

√
10 · √11) = 81− 440 = −359.
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Example 8. Evaluate N =
√

15 +
√

35 +
√

21 + 5√
3 + 2

√
5 +

√
7

.

Solution N =
(
√

15 +
√

21) + (
√

35 + 5)
(
√

3 +
√

5) + (
√

5 +
√

7)
=

(
√

3 +
√

5)(
√

5 +
√

7)
(
√

3 +
√

5) + (
√

5 +
√

7)

=⇒ 1
N

=
(
√

3 +
√

5) + (
√

5 +
√

7)
(
√

3 +
√

5)(
√

5 +
√

7)
=

1√
5 +

√
7

+
1√

3 +
√

5

=
1
2
(
√

7−
√

5) +
1
2
(
√

5−
√

3) =
1
2
(
√

7−
√

3).

∴ N =
2√

7−√3
=

2(
√

7 +
√

3)
4

=
√

7 +
√

3
2

.

Example 9. (Training question for National Team of Canada) Simplify

P =
1

2
√

1 +
√

2
+

1
3
√

2 + 2
√

3
+ · · ·+ 1

100
√

99 + 99
√

100
.

Solution For each positive integer n,

1
(n + 1)

√
n + n

√
n + 1

=
1√

n(n + 1)(
√

n + 1 +
√

n)
=
√

n + 1−√n√
n(n + 1)

=
1√
n
− 1√

n + 1
,

hence

P =
(

1− 1√
2

)
+

(
1√
2
− 1√

3

)
+ · · ·+

(
1√
99
− 1√

100

)

= 1− 1√
100

= 1− 1
10

=
9
10

.

Testing Questions (A)

1. If x < 2, then |
√

(x− 2)2 +
√

(3− x)2| is equal to

(A) 5− 2x (B) 2x− 5 (C) 2 (D) 3.

2. Simplify
1 +

√
2 +

√
3

1−√2 +
√

3
by rationalizing the denominator.

3. Simplify the expression
x2 − 4x + 3 + (x + 1)

√
x2 − 9

x2 + 4x + 3 + (x− 1)
√

x2 − 9
, where x > 3.



6 Lecture 16 Quadratic Surd Expressions and Their Operations

4. Simplify
2 + 3

√
3 +

√
5

(2 +
√

3)(2
√

3 +
√

5)
.

5. Evaluate

(
√

5 +
√

6 +
√

7)(
√

5 +
√

6−√7)(
√

5−√6 +
√

7)(−√5 +
√

6 +
√

7).

6. (SSSMO(J)/1999) Suppose that a =
√

6− 2 and b = 2
√

2−√6. Then

(A) a > b, (B) a = b, (C) a < b, (D) b =
√

2a, (E) a =
√

2b.

7. Arrange the three values a =
√

27−√26, b =
√

28−√27, c =
√

29−√28
in ascending order.

8. The number of integers x which satisfies the inequality
3

1 +
√

3
< x <

3√
5−√3

is

(A) 2, (B) 3, (C) 4, (D) 5, (E) 6.

9. Calculate the value of
1

1− 4
√

5
+

1
1 + 4

√
5

+
2

1 +
√

5
.

10. Given a > b > c > d > 0, and U =
√

ab +
√

cd, V =
√

ac +
√

bd, W =√
ad +

√
bc. Use “<” to connect U, V, W .

Testing Questions (B)

1. (CHINA/1993) Find the units digit of the expression

x =

(
−2a

4 + a
−

√
|a| − 3 +

√
3− |a|

3− a

)1993

.

2. (CHNMOL/1993) Simplify 3
√

3

(
3

√
4
9
−

3
√

2
9

+
3

√
1
9

)−1

.

3. (CHINA/1998) Evaluate

√
1998× 1999× 2000× 2001 + 1

4
.

4. Given a = 3
√

4 + 3
√

2 + 1, find the value of
3
a

+
3
a2

+
1
a3

.

5. Given that the decimal part of M = (
√

13 +
√

11)6 is P , find the value of
M(1− P ).



Lecture 17

Compound Quadratic Surd Form
√

a ± √
b

Basic Methods for Simplifying Compound Surd Forms

(I) Directly simplify according to algebraic formulas: like
√

(a + b)2 = |a + b|,
√

(a + b)4 = (a + b)2, 3
√

(a + b)3 = a + b, etc.

(II) Use the techniques for completing squares to change the expression in-
side the outermost square root sign to a square, like the simplification of√

2 +
√

3.

(III) Use other methods like Coefficient-determining method, substitutions of
variables, etc.

Examples

Example 1. (SSSMO(J)/2003) Find the value of
√

17 + 4
√

13−
√

17− 4
√

13.

Solution

√
17 + 4

√
13−

√
17− 4

√
13

=
√

(
√

13 + 2)2 −
√

(
√

13− 2)2 =
√

13 + 2− (
√

13− 2) = 4.

Example 2. (SSSMO(J)/2002) Find the value of
√

2
5− 2

√
6
−

√
2

5 + 2
√

6
.

7



8 Lecture 17 Compound Quadratic Surd Form
√

a ±
√

b

Solution Since 5− 2
√

6 = (
√

3−√2)2, 5 + 2
√

6 = (
√

3 +
√

2)2,
√

2
5− 2

√
6
−

√
2

5 + 2
√

6
=

√
2

(
√

3−√2)2
−

√
2

(
√

3 +
√

2)2

=
√

2√
3−√2

−
√

2√
3 +

√
2

=
√

2(
√

3 +
√

2)−√2(
√

3−√2)
(
√

3)2 − (
√

2)2

= (
√

6 + 2)− (
√

6− 2) = 4.

Example 3. Simplify
√

4 +
√

15 +
√

4−√15− 2
√

3−√5.

Solution Since
√

4 +
√

15 =
1√
2
·
√

8 + 2
√

15 =
1√
2

√
(
√

5 +
√

3)2 =
√

5 +
√

3√
2

,

√
4−

√
15 =

1√
2
·
√

8− 2
√

15 =
1√
2

√
(
√

5−
√

3)2 =
√

5−√3√
2

,

√
3−√5 =

1√
2
·
√

6− 2
√

5 =
1√
2

√
(
√

5− 1)2 =
√

5− 1√
2

,

so √
4 +

√
15 +

√
4−

√
15− 2

√
3−

√
5

=
(
√

5 +
√

3) + (
√

5−√3)− 2(
√

5− 1)√
2

=
2√
2

=
√

2.

Example 4. Simplify M =
√

2 +
√
−2 + 2

√
5−

√
2−

√
−2 + 2

√
5.

Solution Let a =
√

2 +
√
−2 + 2

√
5, b =

√
2−

√
−2 + 2

√
5. Then

a2 + b2 = 4 and

ab =
√

4− (−2 + 2
√

5) =
√

6− 2
√

5 =
√

5− 1.

Therefore (a− b)2 = 4− 2(
√

5− 1) = 6− 2
√

5 = (
√

5− 1)2, so

M = a− b =
√

5− 1.

Example 5. Simplify
√

9 + 2(1 +
√

3)(1 +
√

7).
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Solution Considering that 9+2(1+
√

3)(1+
√

7) = 11+2
√

3+2
√

5+2
√

15,
where the coefficients of the terms of

√
3,
√

5,
√

15 are all 2, it is natural to use
the coefficient-determining method, assume that

√
9 + 2(1 +

√
3)(1 +

√
7) =

√
a +

√
b +

√
c.

Taking squares on both sides yields

11 + 2
√

3 + 2
√

5 + 2
√

15 = a + b + c + 2
√

ab + 2
√

ac + 2
√

bc.

By the comparison of coefficients, the following system of equations is obtained:

a + b + c = 11, (17.1)
ab = 3, (17.2)
ac = 5, (17.3)
bc = 15. (17.4)

(17.2)×(17.3)×(17.4) yields (abc)2 = 152, i.e. abc = 15, so a = 1 from (17.4),
b = 3 from (17.3), and c = 5 from (17.1). Thus,

√
9 + 2(1 +

√
3)(1 +

√
7) =

√
1 +

√
3 +

√
5.

Example 6. (SSSMO(J)/2007) Find the value of
x4 − 6x3 − 2x2 + 18x + 23

x2 − 8x + 15
when x =

√
19− 8

√
3.

Solution x =
√

19− 8
√

3 =
√

(4−√3)2 = 4 −√3 yields 4 − x =
√

3.
By taking squares, it follows that

x2 − 8x + 13 = 0.

Hence, by long division,

x4 − 6x3 − 2x2 + 18x + 23 = (x2 − 8x + 13)(x2 + 2x + 1) + 10 = 10,

so that the value of the given expression is 10/2 = 5.

Example 7. Given that the integer part and fractional part of
√

37− 20
√

3 are x

and y respectively. Find the value of x + y +
4
y

.

Solution
√

37− 20
√

3 = 5− 2
√

3 = 1 + 2(2−√3) implies that

x = 1, and y = 2(2−
√

3),
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√

a ±
√

b

hence

x + y +
4
y

= 5− 2
√

3 +
2

(2−√3)
= 5− 2

√
3 + 2(2 +

√
3) = 9.

Example 8. Given that y is the nearest integer of
√

2
3
√

3− 1
+ 3
√

3, find the value

of
√

9 + 4
√

y.

Solution Since 2 = ( 3
√

3)3 − 1 = ( 3
√

3− 1)( 3
√

9 + 3
√

3 + 1),
√

2
3
√

3− 1
+ 3
√

3 =
√

3
√

9 + 3
√

3 + 1 + 3
√

3 =
√

( 3
√

3 + 1)2 = 3
√

3 + 1.

It is clear that 2 < 3
√

3 + 1 < 3. Further, (1.5)3 > 3 =⇒ 2.5 − ( 3
√

3 + 1) =
1.5− 3

√
3 > 3

√
3− 3

√
3 = 0, so 2 < 3

√
3 + 1 < 2.5, hence y = 2. Thus

√
9 + 4

√
y =

√
9 + 4

√
2 =

√
(
√

8 + 1)2 = 2
√

2 + 1.

Example 9. Simplify
3

√
a +

a + 8
3

√
a− 1

3
+

3
√

a− a + 8
3

√
a− 1

3
.

Solution Let x =

√
a− 1

3
, then a = 3x2 + 1 and

a + 8
3

= x2 + 3, so that

the given expression can be expressed in terms of x:

3
√

a +
a + 8

3

√
a− 1

3
+

3
√

a− a + 8
3

√
a− 1

3

= 3
√

3x2 + 1 + (x2 + 3)x + 3
√

3x2 + 1− (x2 + 3)x

= 3
√

x3 + 3x2 + 3x + 1 + 3
√

1− 3x + 3x2 − x3 = 3
√

(x + 1)3 + 3
√

(1− x)3

= (x + 1) + (1− x) = 2.

Example 10. Find the value of

√
2
√

2
√

2
√

2 · · ·−
√

2 +
√

2 +
√

2 +
√

2 + · · ·.

Solution Let x =

√
2
√

2
√

2
√

2 · · ·, y =

√
2 +

√
2 +

√
2 +

√
2 + · · ·.

Then x satisfies the equation
x2 = 2x,
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and its solution is x = 2 (since x > 0). Similarly, y satisfies the equation

y2 = 2 + y.

Then (y − 2)(y + 1) = 0 and y > 0 yields the solution y = 2. Thus
√

2

√
2
√

2
√

2 · · · −

√

2 +

√
2 +

√
2 +

√
2 + · · · = x− y = 0.

Testing Questions (A)

1. Simplify
√

12− 4
√

5.

2. (CHINA/1996) Simplify
√

2 +
√

3 +
√

2−√3.

3. (CHNMOL/2000) Evaluate
√

14 + 6
√

5−
√

14− 6
√

5.

4. (CHINA/1998) Evaluate
√

8 +
√

63−
√

8−√63.

5. Simplify
√

4 +
√

7 +
√

4−√7.

6. (CHINA/1994) Simplify
√

7−√15−
√

16− 2
√

15

7. (CHINA/1998) Given x+ y =
√

3
√

5−√2, x− y =
√

3
√

2−√5, find the
value of xy.

8. Simplify
√

8 + 2(2 +
√

5)(2 +
√

7).

9. Evaluate
√

a + 3 + 4
√

a− 1 +
√

a + 3− 4
√

a− 1.

10. Let A =

√√
3 + 1−

√√
3− 1√√

3 + 1 +
√√

3− 1
. Is A the root of the equation x + 2 =

√
6−√30√
2−√10

?
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√

a ±
√

b

Testing Questions (B)

1. (CHINA/1996) Simplify
√

2
√

ab− a− b, where a 6= b.

2. Simplify
3

√
(
√

a− 1−√a)5√
a− 1 +

√
a

+
3

√
(
√

a− 1 +
√

a)5√
a−√a− 1

.

3. Simplify
√

1 + a2 +
√

1 + a2 + a4.

4. Simplify
√

x + 2 + 3
√

2x− 5−
√

x− 2 +
√

2x− 5.

5. Given
√

x =
√

a− 1√
a

, find the value of
x + 2 +

√
x2 + 4x

x + 2−√x2 + 4x
.

6. (CHINA/1999) Find the nearest integer of
1√

17− 12
√

2
.



Lecture 18

Congruence of Integers

Definition 1 When an integer n is divided by a non-zero integer m, there must
be an integral quotient q and a remainder r, where 0 ≤ |r| < m. This relation is
denoted by

n = mq + r,

and the process for getting this relation is called division with remainder.

Definition 2 Two integers a and b are said to be congruent modulo m, denoted
by a ≡ b (mod m), if a and b have the same remainder when they are divided
by a non-zero integer m. If the remainders are different, then a and b are said to
be not congruent modulo m, denoted by a 6≡ b (mod m).

By the definition of congruence, the following four equivalent relations are
obvious:

a ≡ b (mod m) ⇐⇒ a−b = km ⇐⇒ a−b ≡ 0 (mod m) ⇐⇒ m | (a−b).

Basic Properties of Congruence

(I) If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).
(II) If a ≡ b (mod m) and c ≡ d (mod m), then

(a + c) ≡ (b + d) (mod m), (a− c) ≡ (b− d) (mod m).

(III) If a ≡ b (mod m) and c ≡ d (mod m), then a · c ≡ b · d (mod m).
(IV) If a ≡ b (mod m) then an ≡ bn (mod m) for all natural numbers n.
(V) If ac ≡ bc (mod m) and (c , m) = 1, then a ≡ b (mod m).

13
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The Units Digit of Powers of Positive Integers an

Let P be the units digit of a positive integer a, and n be the positive integer power
of a. Then the units digit of an is determined by the units digits of Pn, denoted by
U(Pn), and the sequence {U(Pn), n = 1, 2, 3, . . .} follows the following rules:
(I) The sequence takes constant values for P = 0, 1, 5, 6, i.e. U(Pn) does not

change as n changes.
(II) The sequence is periodic with a period 2 for P = 4 or 9.
(III) The sequence is periodic with a period 4 for P = 2, 3, 7, 8.

The Last Two digits of some positive integers

(I) The last two digits of 5n (n ≥ 2) is 25.
(II) The ordered pair of last two digits of 6n (n ≥ 2) changes with the period

“36, 96, 76, 56” as n changes.
(III) The ordered pair of last two digits of 7n (n ≥ 2) changes with the period

“07, 49, 43, 01” as n changes.
(IV) The ordered pair of last two digits of 76n is always 76.

Examples

Example 1. (CHINA/2004) When a three digit number is divided by 2, 3, 4, 5 and
7, the remainders are all 1. Find the minimum and maximum values of such three
digit numbers.

Solution Let x be a three digit with the remainder 1 when divided by 2, 3, 4,
5 and 7. Then x− 1 is divisible by each of 2, 3, 4, 5, 7, so

x− 1 = k · [2, 3, 4, 5, 7] = 420k.

Thus, the minimum value of x is 420 + 1 = 421, the maximum value of x is
2× 420 + 1 = 841.

Example 2. It is known that 2726, 4472, 5054, 6412 have the same remainder
when they are divided by some two digit natural number m. Find the value of
m.

Solution For excluding the effect of the unknown remainder, the three differ-
ences by the four given numbers can be used to replace the original four numbers.
Then
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m | (4472− 2726) ⇒ m | 1746. 1746 = 2 · 32 · 97;

m | (5054− 4472) ⇒ m | 582. 582 = 2 · 3 · 97;

m | (6412− 5054) ⇒ m | 1358. 1358 = 2 · 7 · 97.

Since 97 is the unique two digit common divisor of the differences, so m = 97.

Example 3. (CHINA/2000) Find the remainder of 32000 when it is divided by 13.

Solution 33 = 27 ≡ 1 (mod 13) provides the method for reducing the power
of 3, it follows that

32000 ≡ (33)666 · 32 ≡ 32 ≡ 9 (mod 13).

Thus, the remainder is 9.
Note: For finding the remainder of a large power of a positive integer, it is

important to find the minimum power with remainder 1, or see if the remainders
are constant as the power changes.

Example 4. (SSSMO(J)/2001) Find the smallest positive integer k such that 269+
k is divisible by 127.

Solution 27 ≡ 1 (mod 127) implies 27m ≡ (27)m ≡ 1m ≡ 1 (mod 127),
hence

269 = [(27)9](26) ≡ 26 ≡ 64 (mod 127),

therefore the minimum value of k is equal to 127− 64 = 63.

Example 5. (SSSMO/2003) What is the remainder when 6273 + 8273 is divided
by 49?

Solution In general, for odd positive integer n,

an + bn = (a + b)(an−1 − an−2b + an−3b2 − · · ·+ bn−1),

so that

6273 + 8273 = (6 + 8)(6272 − 6271 · 8 + 6270 · 82 − · · ·+ 8272) = 14M,

where M = 6272 − 6271 · 8 + 6270 · 82 − · · ·+ 8272. Furthermore,

M ≡ (−1)272 − (−1)271 + (−1)270 − · · ·+ 1︸ ︷︷ ︸
273 terms

≡ 273 ≡ 0 (mod 7),

therefore 7 | M , hence 49 | 14M , i.e. the remainder is 0.

Example 6. Find the remainder of the number 200520072009
when divided by 7.
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Solution First of all 200520072009 ≡ 320072009
(mod 7). Since 33 ≡ −1 (mod

7) yields 36 ≡ (33)2 ≡ 1 (mod 7),

20072009 ≡ 32009 ≡ 3 (mod 6),

it follows that 20072009 = 6k + 3 for some positive integer k. Therefore

200520072009 ≡ 36k+3 ≡ 33 ≡ 6 (mod 7).

Thus, the remainder is 6.

Example 7. (SSSMO/1997) Find the smallest positive integer n such that 1000 ≤
n ≤ 1100 and 1111n + 1222n + 1333n + 1444n is divisible by 10.

Solution Let N = 1111n + 1222n + 1333n + 1444n. Then

N ≡ 1n + 2n + 3n + 4n (mod 10).

For estimating the minimum value of n, we test n = 1000. Then

N ≡ 1 + (24)250 + (34)250 + (42)500 ≡ 1 + 6 + 1 + 6 ≡ 4 (mod 10).

Hence for n = 1001,

N ≡ 1 + 6 · 2 + 1 · 3 + 6 · 4 ≡ 1 + 2 + 3 + 4 ≡ 0 (mod 10).

Thus nmin = 1001.

Example 8. Prove that for any odd natural number n, the number 12007 +22007 +
· · ·+ n2007 is not divisible by n + 2.

Solution By taking modulo n + 2, and partition the terms as groups of two
each,
12007 + 22007 + · · ·+ n2007

= 1 + b22007 + n2007c+ · · ·+
⌊(

n + 1
2

)2007

+
(

n + 3
2

)2007
⌋

≡ 1 + b22007 + (−2)2007c+ · · ·+
⌊(

n + 1
2

)2007

+
(
−n + 1

2

)2007
⌋

≡ 1 (mod n + 2).

Thus, the conclusion is proven.

Example 9. (SSSMO(J)/2001) Write down the last four digits of the number
7128.
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Solution Here the recursive method is effective. Start from 74 = 2401, then

74 = 2401 ≡ 2401 (mod 104),

78 = (74)2 = (2400 + 1)2 = (2400)2 + 4800 + 1 ≡ 4801 (mod 104),

716 ≡ (4800 + 1)2 ≡ 9601 (mod 104),

732 ≡ (9600 + 1)2 ≡ 9201 (mod 104),

764 ≡ (9200 + 1)2 ≡ 8401 (mod 104),

7128 ≡ (8400 + 1)2 ≡ 6801 (mod 104).

Therefore the last four digits of 7128 is 6801.

Testing Questions (A)

1. (CHINA/2001) Find the number of positive integer n, such that the remainder
is 7 when 2007 is divided by n.

2. (SSSMO/1999) What is the remainder of 1234567894 when it is divided by
8?

3. Prove that 7 | (22225555 + 55552222).

4. Find the remainder of 473727
when it is divided by 11.

5. (CHINA/1990) What is the remainder when 91990 is divided by 11?

6. (CHINA/2004) n = 3× 7× 11× 15× 19× · · · × 2003. Find the last three
digits of n.

7. (CHINA/2002) When a positive integer n is divided by 5, 7, 9, 11, the remain-
ders are 1, 2, 3, 4 respectively. Find the minimum value of n.

8. (IMO/1964) (a) Find all positive integers n for which 2n − 1 is divisible by
7.

(b) Prove that there is no positive integer n for which 2n + 1 is divisible by
7.

9. (SSSMO/00/Q11) What is the units digit of 31999 × 72000 × 172001?

(A) 1 (B) 3 (C) 5 (D) 7 (E) 9

10. Find the last two digits of 2999.
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Testing Questions (B)

1. Find the last two digits of 141414
.

2. Find the remainder of (25733 + 46)26 when it is divided by 50.

3. (SSSMO(J)/2003) What is the smallest positive integer n > 1 such that 3n

ends with 003?

4. (CHNMOL/1997) There is such a theorem: “If three prime numbers a, b, c >
3 satisfy the relation 2a + 5b = c, then a + b + c is divisible by the integer
n.” What is the maximum value of the possible values of n? Prove your
conclusion.

5. (MOSCOW/1982) Find all the positive integers n, such that n · 2n + 1 is
divisible by 3.
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Decimal Representation of Integers

Definition The decimal representation of integers is the number system that
takes 10 as the base. Under this representation system, an (n + 1)-digit whole
number (where n is a non-negative integer) N = anan−1 · · · a1a0 means

N = an × 10n + an−1 × 10n−1 + · · ·+ a1 × 10 + a0. (19.1)

The advantage of the representation (19.1) is that a whole number is expanded
as n + 1 independent parts, so that even though there may be unknown digits, the
operations of addition, subtraction and multiplication on integers can be carried
out easily.

Decimal Expansion of Whole Numbers with Same Digits or Periodically
Changing Digits

aaa · · · a︸ ︷︷ ︸
n

= a(10n−1 + 10n−2 + · · ·+ 10 + 1) =
a

9
(10n − 1),

abcabc · · · abc︸ ︷︷ ︸
n of abc

= abc(103(n−1) + 103(n−2) + · · ·+ 103 + 1) =
abc

999
(103n − 1).

Examples

Example 1. (MOSCOW/1983) Find the smallest whole number such that its first
digit is 4, and the value of the number obtained by moving this 4 to the last place

is
1
4

of the original value.

19
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Solution Suppose that the desired whole number N has n + 1 digits, then
N = 4 · 10n + x, where x is an n-digit number. From assumptions in question

4(10x + 4) = 4 · 10n + x, i.e. 39x = 4(10n − 4) = 4 · 99 · · · 9︸ ︷︷ ︸
n−1

6,

∴ 13x = 4 · 33 · · · 3︸ ︷︷ ︸
n−1

2, and 13 | 33 · · · 3︸ ︷︷ ︸
n−1

2.

By checking the cases n = 1, 2, · · · one by one, it is easy to see that the minimal
value of n is 5:

33332÷ 13 = 2564. ∴ x = 4× 2564 = 10256, and N = 410256.

Example 2. (KIEV/1957) Find all two digit numbers such that each is divisible
by the product of its two digits.

Solution Let xy = 10x + y be a desired two digit number. Then there is a
positive integer k such that

10x + y = kxy,

so y = (ky − 10)x, i.e. x | y. Thus, 0 < x ≤ y.
If x = y, then 11x = kx2, so kx = 11 = 11 · 1, i.e. k = 11, x = 1 = y.

Thus, 11 is a solution.
If x < y, then x ≤ 4 (otherwise, y ≥ 10).
When x = 4, then y = 8. However, there is no positive integer k such that

48 = 32k, so x 6= 4.
When x = 3, 10x = (kx− 1)y gives 30 = (3k − 1)y. Since y ≤ 9, 3 | y and

y | 30, so y = 6. It is obvious that 36 = 2 · 3 · 6, so 36 is the second solution.
When x = 2, then 20 = (2k − 1)y. Since y ≤ 9, 2 | y and y | 20, so y = 4.

24 = 3 · 2 · 4 verifies that 24 is the third solution.
When x = 1, then 10 = (k−1)y. So y = 2 or 5. 12 = 6 ·1 ·2 and 15 = 3 ·1 ·5

indicate that 12 and 15 are solutions also.
Thus, the solutions are 11, 12, 15, 24, 36.

Example 3. (CHNMO(P)/2002) A positive integer is called a “good number” if it
is equal to four times of the sum of its digits. Find the sum of all good numbers.

Solution If a one digit number a is good number, then a = 4a, i.e. a = 0,
so no one digit good number exists.

Let ab = 10a+b be a two digit good number, then 10a+b = 4(a+b) implies
2a = b, so there are four good numbers 12, 24, 36, 48, and their sum is 120.

Three digit good number abc satisfies the equation 100a + 10b + c = 4(a +
b + c), i.e. 96a + 6b− 3c = 0. Since 96a + 6b− 3c ≥ 96 + 0− 27 > 0 always,
so no solution for (a, b, c), i.e. no three digit good number exists.
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Since a number with n (n ≥ 4) digits must be not less than 10n−1, and the 4
times of the sum of its digits is not greater than 36n. For n ≥ 4,

10n−1 − 36n > 36(10n−3 − n) > 0,

so no n digit good number exists if n ≥ 4.
Thus, the sum of all good numbers is 120.

Example 4. (SSSMO(J)/2001) Let abcdef be a 6-digit integer such that defabc
is 6 times the value of abcdef . Find the value of a + b + c + d + e + f .

Solution From assumption in the question,

(1000)(def) + abc = 6[(1000)(abc) + def ],
(994)(def) = (5999)(abc),
(142)(def) = (857)(abc).

Therefore 857 | (142)(def). Since 857 and 142 have no common factor greater
than 1, so 857 | def . Since 2× 857 > 1000 which is not a three digit number, so
def = 857. Thus, abc = 142, and

a + b + c + d + e + f = 1 + 4 + 2 + 8 + 5 + 7 = 27.

Example 5. Prove that each number in the sequence 12, 1122, 111222, · · · is a
product of two consecutive whole numbers.

Solution By using the decimal representation of a number with repeated dig-
its, we have

11 · · · 11︸ ︷︷ ︸
n

22 · · · 22︸ ︷︷ ︸
n

=
1
9
(10n − 1) · 2

9
(10n − 1) =

1
9
(10n − 1)(10n + 2)

=
(

10n − 1
3

)
·
(

10n + 2
3

)
=

(
10n − 1

3

)
·
(

10n − 1
3

+ 1
)

= A · (A + 1),

where A = 1
3 (10n − 1) = 33 · · · 33︸ ︷︷ ︸

n

is a whole number. The conclusion is

proven.

Example 6. (AIME/1986) In a parlor game, the magician asks one of the partici-
pants to think of a three digit number abc where a, b, and c represent digits in base
10 in the order indicated. The magician then asks this person to form the numbers
acb, bca, bac, cab, and cba, to add these five numbers, and to reveal their sum, N .
If told the value of N , the magician can identify the original number, abc. Play
the role of the magician and determine the abc if N = 3194.
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Solution Let S = N + abc = abc + acb + bca + bac + cab + cba, then

S = (100a + 10b + c) + (100a + 10c + b) + (100b + 10a + c)
+(100b + 10c + a) + (100c + 10a + b) + (100c + 10b + a)

= 222(a + b + c).

3194 = N = 222(a + b + c) − abc implies 222(a + b + c) = 3194 + abc =
222× 14 + 86 + abc. Hence

(i) a + b + c > 14;
(ii) 86 + abc is divisible by 222, i.e. abc + 86 = 222n for some positive

integer n.

Since 222n ≤ 999 + 86 = 1085, so n ≤ 1085
222

< 5, hence n may be one of
1, 2, 3, 4.

When n = 1, then abc = 222− 86 = 136, the condition (i) is not satisfied.
When n = 2, then abc = 444 − 86 = 358, the conditions (i) and (ii) are

satisfied.
When n = 3, then abc = 666− 86 = 580, the condition (i) is not satisfied.
When n = 4, then abc = 888− 86 = 802, the condition (i) is not satisfied.
Thus, abc = 358.

Example 7. (MOSCOW/1940) Find all three-digit numbers such that each is
equal to the sum of the factorials of its own digits.

Solution Let abc = 100a + 10b + c be a desired three digit number.
7! = 5040 indicates that a, b, c ≤ 6, and further, if one of a, b, c is 6, then

abc > 6! = 720 ⇒ one of a, b, c is greater than 6,

so a, b, c ≤ 5. Since 555 6= 5! + 5! + 5!, so a, b, c cannot be all 5.
On the other hand, 4! + 4! + 4! = 72 which is not a three digit number, so at

least one of a, b, c is 5. abc < 5! + 5! + 5! = 360 implies that a ≤ 3.
When a = 1, then 145 = 1! + 4! + 5!, so 145 is a desired number.
When a = 2, then b, c must be 5. But 255 6= 2! + 5! + 5!, so no solution.
When a = 3, then b, c must be 5. But 355 6= 3! + 5! + 5!, so no solution.
Thus, 145 is the unique solution.

Example 8. (IMO/1962) Find the smallest natural number n which has the fol-
lowing properties:

(a) Its decimal representation has 6 as the last digit.
(b) If the last digit 6 is erased and placed in front of the remaining digits, the

resulting number is four times as large as the original number n.
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Solution It is clear that n is not a one-digit number. Let n = 10x+6, where
x is a natural number of m digits. Then

6 · 10m + x = 4(10x + 6) ⇒ 39x = 6 · 10m − 24 ⇒ 13x = 2 · 10m − 8,

so 13 | (2 · 10m − 8) for some m, i.e. the remainder of 2 · 10m is 8 when divided
by 13. By long division, it is found that the minimum value of m is 5. Thus,

x =
2 · 10m − 8

13
=

199992
13

= 15384, n = 153846.

Example 9. (KIEV/1963) Find all the three digit number n satisfying the condi-

tion that if 3 is added, the sum of digits of the resultant number is
1
3

of that of
n.

Solution Let n = abc. By assumption the carry of digits must have hap-
pened when doing the addition abc + 3, therefore c ≥ 7.

By S0 and S1 we denote the sum of digits of n and the resultant number
respectively. Three cases are possible:
(i) If a = b = 9, then S0 ≥ 9 + 9 + 7 = 25, but S1 = 1 + (c + 3− 10) ≤ 3, a

contradiction. Therefore the case is impossible.

(ii) If a < 9, b = 9, then S0 = a+9+ c, S1 = a+1+(c+3−10) = a+ c−6.
Therefore 3(a + c− 6) = a + 9 + c, i.e. 2(a + c) = 27, a contradiction. So
no solution.

(iii) If b < 9, then S0 = a+b+c, S1 = a+(b+1)+(c+3−10) = a+b+c−6,
it follows that 3(a + b + c − 6) = a + b + c, i.e. a + b + c = 9, therefore
abc = 108, 117, 207.

Thus, abc = 108 or 117 or 207.

Testing Questions (A)

1. Prove that when abc is a multiple of 37, then so is the number bca.

2. (CMO/1970) Find all positive integers with initial digit 6 such that the integer
formed by deleting this 6 is 1/25 of the original integer.

3. (SSSMO(J)/2000) Let x be a 3-digit number such that the sum of the digits
equals 21. If the digits of x are reversed, the number thus formed exceeds x
by 495. What is x?

4. Prove that each of the following numbers is a perfect square number:

729, 71289, 7112889, 711128889, · · · .
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5. (ASUMO/1987) Find the least natural number n, such that its value will be-
come 5n when its last digit is moved to the first place.

6. (CHINA/2000) Given that a four digit number n and the sum of all digits of
n have a sum 2001. Find n.

7. (CHINA/1988) When N = 11 · · · 11︸ ︷︷ ︸
1989 digits

× 11 · · · 11︸ ︷︷ ︸
1989 digits

, what is the sum of all

digits of N?

8. (CHINA/1979) Given that a four digit number satisfies the following con-
ditions: (i) when its units digit and hundreds digit are interchanged, and
so does the tens digit and thousands digit, then the value of the number
increases 5940. (ii) the remainder is 8 when it is divided by 9. Find the
minimum odd number satisfying these conditions.

9. (CHNMOL/1987) x is a five digit odd number. When all its digits 5 are
changed to 2 and all digits 2 are changed to 5, keeping all the other digits
unchanged, a new five digit number y is obtained. What is x if y = 2(x+1)?

10. (MOSCOW/1954) Find the maximum value of the ratio of three digit num-
ber to the sum of its digits.

Testing Questions (B)

1. (CHINA/1988) Find all the three digit numbers n = abc such that n = (a +
b + c)3.

2. (ASUMO/1986) Given that the natural numbers a, b, c are formed by the same
n digits x, n digits y, and 2n digits z respectively. For any n ≥ 2 find the
digits x, y, z such that a2 + b = c.

3. (CHINA/1991) When a two digit number is divided by the number formed
by exchanging the two digits, the quotient is equal to its remainder. Find
the two digit number.

4. (POLAND/1956) Find a four digit perfect square number, such that its first
two digits and the last two digits are the same respectively.

5. (ASUMO/1964) Find the maximum perfect square, such that after deleting
its last two digits (which is assumed to be not all zeros), the remaining part
is still a perfect square.
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Perfect Square Numbers

Definition A whole number n is called a perfect square number (or shortly,
perfect square), if there is an integer m such that n = m2.

Basic Properties of Perfect Square Numbers

(I) The units digit of a perfect square can be 0, 1, 4, 5, 6 and 9 only.
It suffices to check the property for 02, 12, 22, . . . , 92.

(II) If the prime factorization of a natural number n is pα1
1 pα2

2 · · · pαk

k , then

n is a perfect square ⇔ each αi is even ⇔ τ(n) is odd,

where τ(n) denotes the number of positive divisors of n.

(III) For any perfect square number n, the number of its tail zeros (i.e. the digit
0s on its right end) must be even, since in the prime factorization of n the
number of factor 2 and that of factor 5 are both even.

(IV) n2 ≡ 1 or 0 modulo 2, 3, 4.
It suffices to check the numbers of the forms (2m)2 and (2m + 1)2 by
taking modulo 2 and modulo 4 respectively; the numbers of the forms of
(3m)2 and (3m± 1)2 by taking modulo 3.

(V) n2 ≡ 0, 1 or 4 (mod 8).
It suffices to check the conclusion for (4m±1)2, (4m)2, (4m+2)2, where
m is any integer.

25
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(VI) An odd perfect square number must have an even tens digit (if one digit
perfect squares 12 and 32 are considered as 01 and 09 respectively).
It is easy to see the reasons: For n > 3, n2 = (10a + b)2 = 100a2 +
20ab + b2. The number 100a2 + 20ab has units digit 0 and an even tens
digit. If b is an odd digit, then the tens digit carried from b2 must be even,
so the tens digit of n2 must be even.

(VII) If the tens digit of n2 is odd, then the units digit of n2 must be 6.
Continue the analysis in (VI). If the tens digit carried from b2 is odd, then
b = 4 or 6 only, so b2 = 16 or 36, i.e. the units digit of n2 must be 6.

(VIII) There is no perfect square number between any two consecutive perfect
square numbers k2 and (k + 1)2, where k is any non-negative integer.
Otherwise, there is a third integer between the two consecutive integers k
and k + 1, however, it is impossible.

The basic problems involving perfect square numbers are (i) identifying if a
number is a perfect square; (ii) to find perfect square numbers under some con-
ditions on perfect squares; (iii) to determine the existence of integer solution of
equations by use of the properties of perfect square numbers.

Examples

Example 1. Prove that for any integer k, all the numbers of the forms 3k+2, 4k+
2, 4k + 3, 5k + 2, 5k + 3, 8n± 2, 8n± 3, 8n + 7 cannot be perfect squares.

Solution 3k + 2 ≡ 2 (mod 3), 4k + 2 ≡ 2 (mod 4), 4k + 3 ≡ 3 (mod 4)
implies they cannot be perfect squares.

5k + 2 has units digit 2 or 7 and 5k + 3 has units digit 3 or 8, so they cannot
be perfect squares also.

All the numbers 8n± 2, 8n± 3, 8n + 7 have no remainders 0, 1 or 4 modulo
8, so they cannot be perfect squares.

Example 2. Prove that any positive integer n ≥ 10 cannot be a perfect square
number if it is formed by the same digits.

Solution If the used digit is odd, then the conclusion is proven by the prop-
erty (VI).

If the used digit is 2 or 8, the conclusion is obtained at once from the property
(I).

If the used digit is 6, the conclusion is obtained by the property (VII).
Finally, if the used digit is 4, let n2 = 44 · · · 44︸ ︷︷ ︸

k

with k ≥ 2, then n = 2m, i.e.
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n2 = 4m2, so m2 = 11 · · · 11︸ ︷︷ ︸
k

, a contradiction from above discussion.

Thus, the conclusion is proven for all the possible cases.

Example 3. (AHSME/1979) The square of an integer is called a perfect square
number. If x is a perfect square number, then its next one is

(A) x + 1, (B) x2 + 1, (C) x2 + 2x + 1, (D) x2 + x, (E) x + 2
√

x + 1.

Solution Since x ≥ 0, so x = (
√

x)2, and its next perfect square is (
√

x +
1)2 = x + 2

√
x + 1, the answer is (E).

Example 4. Prove that the sum of 1 and the product of any four consecutive inte-
gers must be a perfect square, but the sum of any five consecutive perfect squares
must not be a perfect square.

Solution Let a, a + 1, a + 2, a + 3 are four consecutive integers. Then

a(a + 1)(a + 2)(a + 3) + 1 = [a(a + 3)][(a + 1)(a + 2)] + 1

= (a2 + 3a)(a2 + 3a + 2) + 1 = [(a2 + 3a + 1)− 1][(a2 + 3a + 1)− 1] + 1

= (a2 + 3a + 1)2,

so the first conclusion is proven.
Now let (n − 2)2, (n − 1)2, n2, (n + 1)2, (n + 2)2 be any five consecutive

perfect squares. Then

(n− 2)2 + (n− 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5n2 + 10 = 5(n2 + 2).

If 5(n2 + 2) is a perfect square, then 5 | (n2 + 2), so n2 has 3 or 7 as its units
digit, but this is impossible. Thus, the second conclusion is also proven.

Example 5. (CHNMOL/1984) In the following listed numbers, the one which
must not be a perfect square is

(A) 3n2 − 3n + 3, (B) 4n2 + 4n + 4, (C) 5n2 − 5n− 5,
(D) 7n2 − 7n + 7, (E) 11n2 + 11n− 11.

Solution 3n2 − 3n + 3 = 3(n2 − n + 1) which is 32 when n = 2;
5n2 − 5n− 5 = 5(n2 − n− 1) = 52 when n = 3;
7n2 − 7n + 7 = 7(n2 − n + 1) = 72 when n = 3;
11n2 + 11n− 11 = 11(n2 + n− 1) = 112 when n = 3.
Therefore (A), (C), (D) and (E) are all not the answer. On the other hand,

(2n + 1)2 = 4n2 + 4n + 1 < 4n2 + 4n + 4 < 4n2 + 8n + 4 = (2n + 2)2

implies that 4n2 + 4n + 4 is not a perfect square. Thus, the answer is (B).

Example 6. (CHINA/2002) Given that five digit number 2x9y1 is a perfect square
number. Find the value of 3x + 7y.
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Solution We use estimation method to determine x and y. Let A2 = 2x9y1.
Since 1412 = 19881 < A2 and 1752 = 30625 > A2, so 1412 < A2 < 1752.

the units digit of A2 is 1 implies that the units digit of A is 1 or 9 only. Therefore
it is sufficient to check 1512, 1612, 1712, 1592, 1692 only, so we find that

1612 = 25921

satisfies all the requirements, and other numbers cannot satisfy all the require-
ments. Thus,

x = 5, y = 2, so that 3x + 7y = 15 + 14 = 29.

Example 7. (CHNMOL/2004) Find the number of the pairs (x, y) of two positive
integers, such that N = 23x + 92y is a perfect square number less than or equal
to 2392.

Solution N = 23x + 92y = 23(x + 4y) and 23 is a prime number implies
that x + 4y = 23m2 for some positive integer m, so

N = 232m2 ≤ 2392 =⇒ m2 ≤ 2392
232

=
104
23

< 5.

Hence m2 = 1 or 4, i.e. m = 1 or 2.
When m2 = 1, then x + 4y = 23 or x = 23− 4y. Since x, y are two positive

integers, so y = 1, 2, 3, 4, 5 and x = 19, 15, 11, 7, 3 correspondingly.
When m2 = 4, then x + 4y = 92 or x = 92− 4y, so y can take each positive

integer value from 1 through 22, and x then can take the corresponding positive
integer values given by x = 92− 4y.

Thus, the number of qualified pairs (x, y) is 5 + 22, i.e. 27.

Example 8. (CHINA/2006) Prove that 2006 cannot be expressed as the sum of
ten odd perfect square numbers.

Solution We prove by contradiction. Suppose that 2006 can be expressed as
the sum of ten odd perfect square numbers, i.e.

2006 = x2
1 + x2

2 + · · ·+ x2
10,

where x1, x2, . . . , x10 are all odd numbers. When taking modulo 8 to both sides,
the left hand side is 6, but the right hand side is 2, a contradiction! Thus, the
assumption is wrong, and the conclusion is proven.

Example 9. (CHINA/1991) Find all the natural number n such that n2−19n+91
is a perfect square.
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Solution (i) When n > 10, then n− 9 > 0, so

n2− 19n+91 = n2− 20n+100+ (n− 9) = (n− 10)2 +(n− 9) > (n− 10)2,

and
n2 − 19n + 91 = n2 − 18n + 81 + (10− n) < (n− 9)2,

so (n− 10)2 < n2 − 19n + 91 < (n− 9)2, which implies that n2 − 19n + 91 is
not a perfect square.

(ii) When n < 9, then

n2 − 19n + 91 = (10− n)2 + (n− 9) < (10− n)2

and
n2 − 19n + 91 = (9− n)2 + 10− n > (9− n)2,

so (9−n)2 < n2− 19n+91 < (10−n)2, i.e. n2− 19n+91 cannot be a perfect
square.

(iii) When n = 9, then n2 − 19n + 91 = (10 − 9)2 = 1; when n = 10, then
n2 − 19n + 91 = (10− 9)2 = 1.

Thus, n2 − 19n + 91 is a perfect square if and only if n = 9 or 10.

Testing Questions (A)

1. Determine if there is a natural number k such that the sum of the two numbers
3k2 + 3k − 4 and 7k2 − 3k + 1 is a perfect square.

2. If (x− 1)(x + 3)(x− 4)(x− 8) + m is a perfect square, then m is

(A) 32, (B) 24, (C) 98, (D) 196.

3. (CHINA/2006) If n + 20 and n − 21 are both perfect squares, where n is a
natural number, find n.

4. If the sum of 2009 consecutive positive integers is a perfect square, find the
minimum value of the maximal number of the 2009 numbers.

5. (ASUMO/1972) Find the maximal integer x such that 427 + 410000 + 4x is a
perfect square.

6. (KIEV/1970) Prove that for any positive integer n, n4 + 2n3 + 2n2 + 2n + 1
is not a perfect square.
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7. (ASUMO/1973) If a nine digit number is formed by the nine non-zero digits,
and its units digit is 5, prove that it must not be a perfect square.

8. (KIEV/1975) Prove that there is no three digit number abc, such that abc +
bca + cab is a perfect square.

9. (Canada/1969) Prove that the equation a2 + b2 − 8c = 6 has no integer
solution.

10. (BMO/1991) Show that if x and y are positive integers such that x2 +y2−x
is divisible by 2xy, then x is a perfect square.

Testing Questions (B)

1. Find the number of ordered pairs (m,n) of two integers with 1 ≤ m,n ≤ 99,
such that (m + n)2 + 3m + n is a perfect square number.

2. Given that p is a prime number, and the sum of all positive divisors of p4 is a
perfect square. Find the number of such primes p.

3. (CHINA/1992) If x and y are positive integers, prove that the values of x2 +
y + 1 and y2 + 4x + 3 cannot both be perfect squares at the same time.

4. (IMO/1986) Let d be any positive integer not equal to 2, 5, or 13. Show that
one can find distinct a, b in the set {2, 5, 13, d} such that ab − 1 is not a
perfect square.

5. (BMO/1991) Prove that the number 3n + 2× 17n, where n is a non-negative
integer, is never a perfect square.
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Pigeonhole Principle

Basic Forms of Pigeonhole Principle

Principle I: When m+1 pigeons enter m pigeonholes (m is a positive inte-
ger), there must be at least one hole having more than 1 pigeon.

Principle II: When m + 1 pigeons enter n pigeonholes, there must be one
hole having at least

⌊m

n

⌋
+ 1 pigeons.

Principle III: When infinitely many elements are partitioned into finitely
many sets, there must be at least one set containing infinitely
many elements.

It is easy to understand the Pigeonhole Principle, and the above three forms
can be proven at once by contradiction. But it does not mean that the use of the
principle is easy. Pigeonhole principle has various applications. By use of the
principle to prove the existence of some case, essentially is to classify all the pos-
sible cases into a few or only several classes, then use proof by contradiction to
show the desired conclusion. So the central problem for applying the principle
is doing classification of the possible cases, i.e. to find out different but appro-
priate “pigeonholes” for different problems. However, up to the present, there is
still no unified method to find out the “pigeonholes”. The examples below will
demonstrate several methods for getting pigeonholes.

Examples

Example 1. (CHINA/2003) In a bag, there are some balls of the same size that
are colored by 7 colors, and for each color the number of balls is 77. At least how
many balls are needed to be picked out at random to ensure that one can obtain 7
groups of 7 balls each such that in each group the balls are homochromatic?

31
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Solution For this problem, it is natural to let each color be one pigeonhole,
and a ball drawn be a pigeon. At the first step, for getting a group of 7 balls
with the same color, at least 43 balls are needed to be picked out from the bag at
random, since if only 42 balls are picked out, there may be exactly 6 for each color.
By pigeonhole principle, there must be one color such that at least b42/7c+1 = 7
drawn balls have this color.

Next, after getting the first group, it is sufficient to pick out from the bag
another 7 balls for getting 43 balls once again. Then, by the same reason, the
second group of 7 homochromatic drawn balls can be obtained.

Repeating this process for 6 times, the 7 groups of 7 homochromatic balls are
obtained. Thus, the least number of drawn balls is 43 + 6× 7 = 85.

Example 2. (SSSMO(J)/2001) A bag contains 200 marbles. There are 60 red
ones, 60 blue ones, 60 green ones and the remaining 20 consist of yellow and
white ones. If marbles are chosen from the bag without looking, what is the
smallest number of marbles one must pick in order to ensure that, among the
chosen marbles, at least 20 are of the same colour?

Solution When 77 marbles are chosen, there may be 19 red, 19 blue, 19
green and 20 yellow and white.

If 78 marbles are chosen at random, the number of yellow and white ones
among them is at most 20. Therefore there are at least 58 marbles of red, blue or
green colors. According to the Pigeonhole Principle, the number of drawn marbles

of some color is not less than
⌊

57
3

⌋
+ 1 = 20, i.e. at least 20. Thus, the smallest

number of marbles to be picked is 78.
In this problem, a color is taken as a pigeonhole, and then a drawn marble is

taken as a pigeon.

Example 3. (CHINA/2001) If 51 numbers are arbitrarily taken out from the first
100 natural numbers {1, 2, . . . , 100}, prove that there must be two numbers
drawn such that one is a multiple of the other.

Solution Let A = {1, 2, 3, . . . , 100}. There are a total of 50 odd numbers in
the set A: 2k − 1, k = 1, 2, 3, . . . , 50. Any number in A can be written uniquely
in the form 2mq, where m is a non-negative integer, and q is an odd number.

When all the numbers in A are partitioned according to q into 50 classes, then
each number in A must belong to a unique class. Now for any 51 numbers in A,
by the Pigeonhole Principle, there must be two of them coming from a same class,
and these two numbers must satisfy the requirement: one is multiple of another
since they have the same q.

In this problem, a pigeonhole is the set of all numbers in A with same maxi-
mum odd factor q, since any two numbers in the pigeonhole have required prop-
erty.
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Example 4. (SSSMO/1999) Determine the maximum number of elements of a
subset L of {1, 2, 3, ..., 1999} such that the difference of any two distinct elements
of L is not equal to 4.

Solution Let A = {1, 2, 3, · · · , 1999}. At first, by modulo 4, we can
partition A into four subsets L0, L1, L2 and L3, where

Li = {n ∈ A : n ≡ i (mod 4)}, for i = 0, 1, 2, 3.

Then there are 500 numbers in each of L1, L2, L3 but 499 numbers in L0.
For the set L1, arrange all the numbers in an ascending order, and consider the

250 pairs formed by its numbers (1, 5), (9, 13), (17, 21), . . . , (1993, 1997).
By Pigeonhole Principle, if more than 250 numbers in L1 are selected out as

part of L, then there must be some two numbers coming from one of the above
pairs, so their difference is 4. Thus, any more than 250 numbers in L1 cannot be
put in L. However, all numbers on odd numbered places or all numbers on even
places can be chosen. Thus at most 250 numbers can be chosen from L1 as a
subset of L, and the same analysis works for each of L2, L2 and L0 (in L0 all the
250 numbers which are odd multiples of 4 can be chosen to put in L). Therefore
the maximum number of the elements in L is 1000.

For applying the pigeonhole principle, the listed pairs take the role of pigeon-
holes, and the chosen numbers are the pigeons.

The congruence relation is a method commonly used for classifying integers.
This method is also often used for applying pigeonhole principle, as shown in the
following examples.

Example 5. (SSSMO/1990) Given any 2n − 1 positive integers, prove that there
are n of them whose sum is divisible by n for (1) n = 3; (2) n = 9.

Solution (1) When n = 3 then 2n − 1 = 5. Partition the five numbers
according to the remainders modulo 3 into three classes: C0, C1, and C2.

(i) If one of the three classes contains no number, i.e. five numbers are in
two classes, by the pigeonhole principle, there must be one class containing at
least 3 numbers, then any three numbers coming from a same class must have a
sum divisible by 3;

(ii) If each class contains at least one number, then no class contains three or
more numbers. But from each class take a number, the three numbers must have
a sum divisible by 3.

(2) For n = 9, then 2n−1 = 17 numbers are given. The result of (1) implies
that, from each five of them three numbers can be selected out such that their sum
is divisible by 3, so 5 groups (n1, n2, n3), (n4, n5, n6), · · · , (n13, n14, n15) can
be obtained sequentially from the 17 numbers, such that their sums s1, s2, · · · , s5
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are all divisible by 3. Let si = 3mi, i = 1, 2, . . . , 5 (where mi are all positive
integers). Then, still from the result of (1), three numbers, say m1,m2,m3 can be
selected from the five mi such that m1 +m2 +m3 = 3k for some positive integer
k. Thus,

n1 + n2 + · · ·+ n9 = s1 + s2 + s3 = 3(m1 + m2 + m3) = 9k,

which is divisible by 9.

Example 6. Prove that for any given 50 positive integers, it is always possible to
select out four numbers a1, a2, a3 and a4 from them, such that (a2−a1)(a4−a3)
is a multiple of 2009.

Solution First of all, note that 2009 = 49× 41. Consider the 50 remainders
of the 50 given integers modulo 49, by the pigeonhole principle, theere must be
two numbers selected from the 50 integers, denoted by a1 and a2, such that a1

and a2 are congruent modulo 49, so a2 − a1 is divisible by 49.
Next, by same reason, it must be possible that two numbers a3 and a4 can be

selected from the remaining 48 numbers such that a4 − a3 is divisible by 41.
Thus, 49 · 41 | (a2 − a1)(a4 − a3), i.e. 2009 | (a2 − a1)(a4 − a3).

Example 7. Prove that in a set containing n positive integers there must be a
subset such that the sum of all numbers in it is divisible by n.

Solution Let the n positive integers be a1, a2, . . . , an. Consider n new pos-
itive integers:

b1 = a1, b2 = a1 + a2, · · · , bn = a1 + a2 + · · ·+ an.

Then all the n values are distinct. When some of b1, b2, . . . , bn is divisible by n,
the conclusion is proven. Otherwise, if all bi are not divisible by n, then their
remainders are all not zero, i.e. at most they can take n − 1 different values. By
the pigeonhole principle, there must be bi and bj with i < j such that bj − bi 6= 0
is divisible by n. Since bj − bi = ai+1 + ai+2 + · · ·+ aj is a sum of some given
numbers, the conclusion is proven.

Example 8. (CHINA/1993) If five points are taken at random from within a square
of side 1, prove that there must be two of them such that the distance between them

is not greater than
√

2
2

.

Solution By connecting the two midpoints of two opposite sides, the square

is partitioned into four smaller congruent squares of side
1
2

. By the pigeonhole
principle, there must be one such square containing at least 2 points.
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Since the small square is covered by the circle with same center and a radius
of
√

2/4, so the distance between any two points in the circle is not greater than
the diameter, i.e.

√
2/2. The conclusion is proven.

Example 9. (HUNGARY/1947) There are six points in the space such that any
three are not collinear. If any two of them are connected by a segment, and each
segment is colored by one of red color or blue color, prove that there must be at
least one triangles formed by three points and segments joining them, such that
the three sides are of the same color.

Solution Let the six points be A0, A1, A2,
A3, A4 and A5. Consider the segments joining
these points. We use a real segment to denote a
red segment and a dot segment to denote a blue
segment, as shown in the diagram.
Consider the five segments starting from A0:
A0A1, A0A2, A0A3, A0A4, A0A5. Each of
them is colored by red color or blue color. By Pi-
geonhole Principle, among them there must be at
least three with the same color. Without loss of
generality, it can be assumed that three are red,
and they are A0A1, A0A2, A0A3.
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A4

A5

Now consider three sides of the triangle A1A2A3. When one side is red, then
there is a red triangle, i.e. its three sides are all red. Otherwise, the three sides of
4A1A2A3 are all blue, then the conclusion is also true.

Testing Questions (A)

1. Prove that among any n + 1 integers, there must be at least two which are
congruent modulo n.

2. Let 1 ≤ a1 < a2 < a3 < · · · < an+1 ≤ 2n be n + 1 integers, where n ≥ 1.
Prove that there must be two of them, ai < aj , such that ai | aj .

3. Prove that in the 2009 numbers 1, 11, · · · , 111 · · · 111︸ ︷︷ ︸
2009

, there is one that is

divisible by 2009.

4. 19 points are taken randomly inside an equilateral triangle of area 1 m2.
Prove that among the triangles formed by these points, there must be one

with area not greater than
1
9

m2.
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5. (CHINA/2002) Prove that among any seven distinct integers, there must be
two such that their sum or difference is divisible by 10.

6. (CHINA/2003) In a chess board of dimension 4 × 28, every small square is
colored by one of red color, blue color or yellow color. Prove that under any
coloring there must be a rectangular region with four angles of same color.

7. (CHINA/1996) Given that each of the nine straight lines cuts a square to two
trapezia with a ratio of 2/3. Prove that at least three of the nine lines pass
through a same point.

8. (CHNMOL/2004) When inserting n+1 points on the segment OA at random,
prove that there must be two of them with a distance not greater than 1/n.

9. (MOSCOW/1946) In the first 100000001 terms of the Fibonacci’s sequence
0, 1, 1, 2, 3, 5, 8, . . ., is there a term ending with at least four zeros?

Testing Questions (B)

1. (PUTNAM/1978) Let A be a set formed by choosing 20 numbers arbitrarily
from the arithmetic sequence 1, 4, 7, . . . , 100. Prove that there must be two
numbers in A such that their sum is 104.

2. (CHINA/2005) On the blackboard some student has written 17 natural num-
bers, and their units digits are inside the set {0, 1, 2, 3, 4}. Prove that one
can always select out 5 numbers from them such that their sum is divisible
by 5.

3. (IMO/1972) Prove that from a set of ten distinct two-digit numbers (in the
decimal system), it is possible to select two disjoint subsets whose members
have the same sum.

4. (IMO/1964) Seventeen people correspond by mail with one another — each
one with all the rest. In their letters only three different topics are discussed.
Each pair of correspondents deals with only one of these topics. Prove that
there are at least three people who write to each other about the same topic.

5. (IMO/1978) An international society has its members from six different coun-
tries. The list of members contains 1978 names, numbered 1, 2, ..., 1978.
Prove that there is at least one member whose number is the sum of the
numbers of two members from his own country, or twice as large as the
number of one member from his own country.



Lecture 22

bxc and {x}

Definition 1 For any real number x, the largest integer less than or equal to x,
denoted by bxc, is called the integer part of x. when x is considered as a real
variable, the function f(x) = bxc, x ∈ R is called the Gaussian function.

Definition 2 For any real number x, the value x−bxc, denoted by {x}, is called
the decimal part of x.

Some Basic Properties of bxc and {x}

• 0 ≤ {x} < 1, and {x} = 0 if and only if x is an integer.

• x− 1 < bxc ≤ x < bxc+ 1.

• For any n ∈ Z, bn + xc = n + bxc.

• b−xc =
{ −bxc − 1 if x is not an integer
−bxc if x is an integer.

• bx + yc ≥ bxc+ byc for any x, y ∈ R. In general, for x1, . . . , xn ∈ R,

bx1 + x2 + · · ·+ xnc ≥ bx1c+ bx2c+ · · ·+ bxnc.

• bxyc ≥ bxc · byc, where x, y ≥ 0. In general, for x1, x2, · · · , xn ≥ 0,

bx1x2 · · ·xnc ≥ bx1c · bx2c · · · · bxnc.

•
⌊x

n

⌋
=

⌊bxc
n

⌋
for n ∈ N, x ∈ R.

37
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Theorem I. (Hermite Identity) For any x ∈ R and n ∈ N,

bxc+
⌊
x +

1
n

⌋
+

⌊
x +

2
n

⌋
+ · · ·+

⌊
x +

n− 1
n

⌋
= bnxc.

Proof. Define the auxiliary function

f(x) = bxc+
⌊
x +

1
n

⌋
+

⌊
x +

2
n

⌋
+ · · ·+

⌊
x +

n− 1
n

⌋
− bnxc.

Then it suffices to show f(x) = 0 identically. Since

f

(
x +

1
n

)
=

⌊
x +

1
n

⌋
+

⌊
x +

2
n

⌋
+ · · ·+ bx + 1c − bnx + 1c

= bxc+
⌊
x +

1
n

⌋
+

⌊
x +

2
n

⌋
+ · · ·+

⌊
x +

n− 1
n

⌋
− bnxc

= f(x).

So f(x) is a periodic function with a period
1
n

, hence it is enough to show f(x) =

0 for 0 ≤ x <
1
n

, and this is obvious from the definition of f . ¤

Theorem II. (Legendre’s Theorem) In the prime factorization of the product n ! =
1× 2× 3× · · · × n, the index of a prime factor p is given by

⌊
n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+ · · · .

Proof. In n! the index of its prime factor p is the sum of the indices of prime
factor p in the numbers 1, 2, . . . , n. Since in the n numbers 1 through n there are⌊

n

p

⌋
numbers containing at least one factor p,

⌊
n

p2

⌋
numbers containing at least

one factor p2, . . ., so above sum can count the total number of factor p in n!, the
conclusion is proven. ¤

Besides the problems about bxc and {x} themselves, the concepts of bxc and
{x} established the connection between x and them, so the basic problems involv-
ing bxc and {x} contain also those from x get bxc and {x}, or conversely, from
bxc and {x} get x, i.e. solving equations with bxc and {x} for x.

Another kind of related problems is to give some theoretical discussions in-
volving bxc and {x}, as indicated in Theorem I and Theorem II. But here we will
given some examples only belonging to the first two kinds of problems.
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Examples

Example 1. Solve the equation 2bxc = x + 2{x}.

Solution To reduce the number of variables, x = bxc+{x} yields the equa-
tion

2bxc = bxc+ 3{x},
∴ bxc = 3{x} < 3.

When bxc = 0, 1, 2 respectively, then {x} = 0,
1
3
,
2
3

correspondingly, so the

solutions are x = 0,
4
3
,
8
3

.

Example 2. (CMO/1999) Find all real solutions to the equation 4x2 − 40bxc +
51 = 0.

Solution To reduce the number of variables in the given equation, x ≥ bxc
gives an inequality in x:

0 = 4x2 − 40bxc+ 51 ≥ 4x2 − 40x + 51 = (2x− 3)(2x− 17),

so
3
2
≤ x ≤ 17

2
. It implies that bxc may be 1, 2, . . . , 8.

When bxc = 1, the equation becomes 4x2 + 11 = 0, no real solution for x.

When bxc = 2, the equation becomes 4x2 − 29 = 0, x =
√

29
2

, which has
the integer part 2, hence it is a solution.

When bxc = 3, the equation becomes 4x2 − 69 = 0, x =
√

69
2

which has no
integer part 3, a contradiction, hence no solution for x.

When bxc = 4, the equation becomes 4x2 − 109 = 0, x =
√

109
2

> 5, a
contradiction, hence no solution.

When bxc = 5, the equation becomes 4x2 − 149 = 0, x =
√

149
2

> 6, hence
no solution.

When bxc = 6, the equation becomes 4x2 − 189 = 0, x =
√

189
2

, which has
integer part 6, hence it is a solution.

When bxc = 7, the equation becomes 4x2 − 229 = 0, x =
√

229
2

, which has
integer part 7, hence it is a solution.

When bxc = 8, the equation becomes 4x2 − 269 = 0, x =
√

269
2

, which has
integer part 8, hence it is a solution.
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Thus, the solutions are
√

29
2

,

√
189
2

,

√
229
2

,

√
269
2

.

Example 3. (CHINA/1986) Find the maximum positive integer k, such that

1001 · 1002 · · · · · 1985 · 1986
11k

is an integer.

Solution Let N =
1001 · 1002 · · · · · 1985 · 1986

11k
, then

N =
1000! · 1001 · 1002 · · · · · 1985 · 1986

11k(1000!)
=

1986!
11k(1000!)

.

The highest power of 11 in 1986! is
⌊

1986
11

⌋
+

⌊
1986
112

⌋
+

⌊
1986
113

⌋
= 180 + 16 + 1 = 197.

The highest power of 11 in 1000! is
⌊

1000
11

⌋
+

⌊
1000
11

⌋
= 90 + 8 = 98, so the

maximum value of k is given by

k = 197− 98 = 99.

Example 4. (SSSMO/2002) Determine the number of real solutions of

⌊x

2

⌋
+

⌊
2x

3

⌋
= x.

Solution The given equation indicates that any solution x must be an integer.
Let x = 6q + r, where r = 0, 1, 2, 3, 4, 5 and q is an integer. Then the given
equation becomes

q +
⌊r

2

⌋
+

⌊
2r

3

⌋
= r.

(i) r = 0 gives q = 0, so x = 0 is a solution.
(ii) r = 1 gives q = 1, so x = 7 is a solution.
(iii) r = 2 gives q = 0, so x = 2 is a solution.
(iv) r = 3 gives q = 0, so x = 3 is a solution.
(v) r = 4 gives q = 0, so x = 4 is a solution.
(vi) r = 5 gives q = 0, so x = 5 is a solution.

Thus, there are a total of 6 real solutions.
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Example 5. (SSSMO(J)/2001) Let x, y, z be three positive real numbers such that

x + byc+ {z} = 13.2 (22.1)
bxc+ {y}+ z = 14.3 (22.2)
{x}+ y + bzc = 15.1 (22.3)

where bac denotes the greatest integer ≤ a and {b} denotes the fractional part of
b (for example, b5.4c = 5, {4.3} = 0.3). Find the value of x.

Solution (22.1) + (22.2) + (22.3) yields 2(x + y + z) = 42.6, i.e.

x + y + z = 21.3 (22.4)

(22.4)− (22.1) gives {y}+ bzc = 8.1, therefore bzc = 8 and {y} = 0.1.
Then (22.2) gives bxc + z = 14.2, so {z} = 0.2 and z = 8.2 which gives

bxc = 6.
(22.1) gives x + byc = 13, so x is an integer, i.e. x = bxc = 6.

Example 6. (CHINA/1988) Let S = b√1c+ b√2c+ · · ·+ b√1988c. Find bSc.
Solution For any positive integer k and x, the following relations are equiv-

alent
b√xc = k ⇔ k2 ≤ x < (k + 1)2 ⇔ x ∈ [k2, k2 + 2k],

so 2k + 1 values of x satisfy the relation. Since 442 = 1936 < 1988 < 2025 =
452 and 1988− 1936 + 1 = 53,

S = 1(3) + 2(5) + 3(7) + · · ·+ 43(87) + 44(53)

= 2(12 + 22 + · · ·+ 432) + (1 + 2 + · · ·+ 43) + 44(53)

=
43 · 44 · 87

3
+

43 · 44
2

+ 2332 = 54868 + 946 + 2332 = 58146.

Since 2402 = 57600 < 2412 = 58081 < S < 2422 = 58564, b√Sc = 241.

Example 7. (CHINA/1986) Evaluate the sum S =
502∑

k=1

⌊
305k

503

⌋
.

Solution If each of two positive real numbers x, y is not an integer but x+y

is an integer, then bxc + byc = x + y − 1 since {x} + {y} = 1. Since
305k

503
+

305(503− k)
503

= 305 for 1 ≤ k ≤ 502,

S =
⌊

305
503

⌋
+

⌊
305 · 2
503

⌋
+ · · ·+

⌊
305 · 502

503

⌋

=
(⌊

305 · 1
503

⌋
+

⌊
305 · 502

503

⌋)
+ · · ·+

(⌊
305 · 251

503

⌋
+

⌊
305 · 252

503

⌋)

= 304 · 251 = 76304.
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Example 8. (PUTNAM/1986) What is the units digit of
⌊

1020000

10100 + 3

⌋
?

Solution Let n = 10100. Then

1020000

10100 + 3
=

n200

n + 3
=

(n2)100 − (32)100

n + 3
+

9100

n + 3

=
(n2 − 32)M

n + 3
+

9100

n + 3
= (n− 3)M +

9100

n + 3
.

Since 9100 < n, we have
⌊

n200

n + 3

⌋
= (n− 3)M =

n200 − 9100

n + 3
=

1020000 − 8150

10100 + 3
.

Since the units digit of 1020000 − 8150 is 9 and the units digit of 10100 + 3 is 3,
the units digit of the quotient must be 3.

Example 9. (MOSCOW/1951) Given some positive integers less than 1951, where
each two have a lowest common multiple greater than 1951. Prove that the sum
of the reciprocals of these numbers is less than 2.

Solution Let the given positive integers be a1, a2, . . . , an. Since any two
of them have an L.C.M. greater than 1951, so each of 1, 2, 3, . . . , 1951 cannot be
divisible by any two of a1, a2, . . . , an.

Therefore the number M of numbers in the set {1, 2, . . . , 1951} which is di-
visible by one of a− 1, a2, . . . , an is given by

M =
⌊

1951
a1

⌋
+

⌊
1951
a2

⌋
+ · · ·+

⌊
1951
an

⌋
,

then M ≤ 1951.

On the other hand, the inequalities
⌊

1951
ai

⌋
>

1951
ai

− 1 for i = 1, 2, . . . , n

hold, so
(

1951
a1

− 1
)

+
(

1951
a2

− 1
)

+ · · ·+
(

1951
a1

− 1
)

< 1951,

1951
a1

+
1951
a2

+ · · ·+ 1951
an

< 1951 + n < 2 · 1951,

∴ 1
a1

+
1
a2

+ · · ·+ 1
an

< 2.

Example 10. (CHINA/1992) Given that real number a > 1, the natural number
n ≥ 2, and the equation baxc = x has exactly n distinct real solution. Fine the
range of a.
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Solution From assumptions each solution x must be an integer and x ≥ 0.
Since

ax = bacx + {a}x,

so the given equation becomes

x = baxc = bacx + b{a}xc. (22.5)

Since bac ≥ 1, (22.5) holds if and only if

bac = 1 and {a}x < 1. (22.6)

Since x = 0 must be a solution, so the equation baxc = x has exactly n − 1
positive solution. Since {a}x < 1 implies {a}x′ < 1 if 0 < x′ < x, so the
positive integer solutions of {a}x < 1 must be x = 1, 2, . . . , n− 1, hence {a} <
1/(n− 1). On the other hand, since any integer≥ n is not a solution of (22.5), so
{a} ≥ 1/n,. Thus, 1/n ≤ {a} < 1/(n− 1). Since bac = 1, so

1 +
1
n
≤ a < 1 +

1
n− 1

.

Testing Questions (A)

1. (PUTNAM/1948) If n is a positive integer, prove that b√n +
√

n + 1c =
b√4n + 2c.

2. (KIEV/1972) Solve equation bx3c+ bx2c+ bxc = {x} − 1.

3. (CMO/1975) Solve equation bxc2 = {x} · x.

4. (ASUMO/1987) Find all solutions to the equation x2 − 8bxc+ 7 = 0.

5. (SWE/1982) Given that n is a natural number, how many roots of the equation

x2 − bx2c = (x− bxc)2

are in the interval 1 ≤ x ≤ n?

6. (CHNMOL/1987) Solve equation b3x + 1c = 2x − 1
2

, and find the sum of
all roots.

7. (ASUMO/1989) Find the minimum natural number n, such that the equation⌊
10n

x

⌋
= 1989 has integer solution x.
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8. (AIME/1985) How many of the first 1000 positive integers can be expressed
in the form

b2xc+ b4xc+ b6xc+ b8xc,
where x is a real number, and bzc denotes the greatest integer less than or
equal to z?

9. (ASUMO/1980) How many different non-negative integers are there in the
sequence

⌊
12

1980

⌋
,

⌊
22

1980

⌋
,

⌊
32

1980

⌋
, · · · ,

⌊
19802

1980

⌋
?

10 (SSSMOJ/2000/Q30) Find the total number of integers n between 1 and
10000 (both inclusive) such that n is divisible by b√nc. Here b√nc de-
notes the largest integer less than or equal to

√
n.

Testing Questions (B)

1. (MOSCOW/1981) For x > 1 be the inequality
⌊√

b√xc
⌋

=
⌊√√

x
⌋

must
true?

2. (CMO/1987) For every positive integer n, show that

b√n +
√

n + 1c = b√4n + 1c = b√4n + 2c = b√4n + 3c.

3. (USSR/1991) Solve the equation bxc{x}+ x = 2{x}+ 10.

4. (CHNMOL/1993) Find the last two digits of the number
⌊

1093

1031 + 3

⌋
(Write

down the tens digit first, then write down the units digit).

5. (ASUMO/1992) Solve the equation x +
92
x

= bxc+
92
bxc .
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Diophantine Equations (I)

Definitions

For a polynomial with integral coefficients of multi-variables f(x1, . . . , xn),
the problem for finding integer solutions (x1, . . . , xn) of the equation

f(x1, . . . , xn) = 0

is called the Diophantine problem, and the equation f(x1, . . . , xn) = 0 is called
the Diophantine equation.

As usual, in a Diophantine or a system of Diophantine equations, the number
of unknown variables is more than the number of equations, so the solutions may
not be unique /finite, or say, the number of solutions is more than one as usual.
Hence, based on the uncertainty of solutions, this kind of equations are also called
indefinite equations in countries. Besides, the Diophantine problem is also
called the problem for finding integer solutions of equations.

In this chapter the discussion is confined to linear equations and the systems
of linear equations. The simplest and typical equation is

ax + by = c, (23.1)

where a, b, c are constant integers.

Theorem I. The equation (23.1) has no integer solution if gcd(a , b) - c.

Proof. Otherwise, if (x, y) is an integer solution of (23.1), then left hand side is
divisible by gcd(a, b), whereas the right hand side is not, a contradiction. ¤

If (a , b) | c, then, after dividing by (a , b), the both sides of (23.1) becomes

a′x + b′y = c′, (23.2)

45
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where a′, b′, c′ are integers and (a′ , b′) = 1. Therefore, below it is always
assumed that the Eq.(23.1) satisfies the condition (a , b) = 1.

Theorem II. When (a , b) = 1, the equation (23.1) always has at least one integer
solution.

Proof. Consider the case c = 1 first. For the equation ax + by = 1, (a, b) = 1
implies a, b 6= 0. Without loss of generality we may assume that b > 0.

When each of the b numbers a, 2a, 3a, . . . , b · a is divided by b, then the re-
mainders are distinct. Otherwise, if ia ≡ ja (mod b) for some 1 ≤ i < j ≤ b,
then b | (j − i)a, so b | (j − i). However 1 ≤ j − i < b, a contradiction.

Thus, there must be x ∈ {1, 2, . . . , b} such that xa ≡ 1 (mod b), i.e. xa− 1 =
−yb for some integer y. Thus ax + by = 1.

When c 6= 1 and (x0, y0) is an integer solution for ax+by = 1, then (cx0, cy0)
is an integer solution of (23.1). The conclusion of Theorem II is proven. ¤

Theorem III. If x0 , y0 is a special integer solution of the Equation (23.1), then
the general solution of (23.1) is given by

{
x = x0 + bt
y = y0 − at,

∀t ∈ Z. (23.3)

Proof. Let (x, y) be any solution of (23.1) differ from the given solution (x0, y0).
Then

ax + by = c, (23.4)
ax0 + by0 = c. (23.5)

(23.4) − (23.5) gives a(x − x0) = −b(y − y0), so
x− x0

b
=

y − y0

−a
. Since

b | a(x− x0) and a | b(y− y0) implies that b | (x− x0) and a | (y− y0), so each
side of the last equality is an integer. Letting it be t, it is follows that

x− x0 = bt and y − y0 = −at,

so the equalities in (23.3) are proven. ¤

For solving a Diophantine equation based on the Theorem III, we can find the
general solution if a special solution is given or can be found easily, then determine
the range or values of t according to the given conditions in question.

For solving a system of Diophantine equations or an equation with more than
two variables, substitution method can be used for simplifying the equation.
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Examples

Example 1. (CHINA/2001) Find all positive integer solutions to the equation
12x + 5y = 125.

Solution 12x = 5(25 − y) indicates 5 | x. Let x = 5, then 5y = 65 gives
y = 13, so (5, 13) is a special solution. By the formula for general solution, it is
obtained that

x = 5 + 5t and y = 13− 12t, where t is an integer.

Since x ≥ 1, so t ≥ 0. But y ≥ 1 implies t ≤ 1, so t = 0 or 1.
When t = 0, the solution is x = 5, y = 13. When t = 1, then x = 10, y = 1.

Thus, the equation has exactly two solutions.

Example 2. Find the general solution of the Diophantine equation 17x+83y = 5.

Solution It is not obvious to find a special solution. Here substitution can be
used to simplify the equation. Since

x =
5− 83y

17
= −4y +

5− 15y

17
,

let k =
5− 15y

17
, then y =

5− 17k

15
= −k +

5− 2k

15
. Let m =

5− 2k

15
, then

k =
5− 15m

2
= 2 − 7m +

1−m

2
. Let t =

1−m

2
, then m = 1 − 2t. By

substituting back these relations, it follows that

k = 2− 7(1− 2t) + t = −5 + 15t,
y = −(−5 + 15t) + (1− 2t) = 6− 17t,
∴ x = −4(6− 17t) + (−5 + 15t) = −29 + 83t.

Example 3. Given that the positive integers x > 1 and y satisfies the equation
2007x− 21y = 1923. Find the minimum value of 2x + 3y.

Solution Simplify the given equation to 669x = 7y + 641. Changing its
form to

669(x− 1) = 7(y − 4),

since x − 1 > 0, so y > 4 and the minimum positive values of x and y are given
by x− 1 = 7, y − 4 = 669. Thus,

2xmin + 3ymin = 2 · 8 + 3 · 673 = 2043.

Example 4. Find all the integer solutions of the equation 25x + 13y + 7z = 6.
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Solution Let 25x + 13y = U , then U + 7z = 6. Consider U as a constant
at the moment to solve the equation

25x + 13y = U.

Since (−U, 2U) is a special solution for (x, y), the general solution is obtained:

x = −U + 13t1, y = 2U − 25t1, t1 ∈ Z.

Next, solve the equation U + 7z = 6 for (U, z). Since (−1, 1) is a special
solution, the general solution is given by

U = −1 + 7t2, and z = 1− t2, t2 ∈ Z.

By substituting the expression of U into those for x and y, the general solution is
obtained:

x = 1 + 13t1 − 7t2, y = −2− 25t1 + 14t2, z = 1− t2, t1, t2 ∈ Z.

Example 5. (SSSMO(J)/2002) The digits a, b and c of a three-digit number abc
satisfy 49a + 7b + c = 286. Find the three-digit number abc.

Solution By taking modulo 7 to both sides of the given equation, it follows
that

c ≡ 6 (mod 7).

Since c is a digit, so c = 6. Then the given equation becomes 7a + b = 40 or
7a = 40− b. Since 31 ≤ 40− b ≤ 40, and there is only one number 35 divisible
by 7 in this interval, so b = 5, a = 5, i.e. abc = 556.

Example 6. (CHINA/2007) Given that the equation
4
3
x − a =

2
5
x + 140 has

a positive integer solution, where a is a parameter. Find the minimum positive
integer value of a.

Solution The given equation produces a = 14
( x

15
− 10

)
. When a is a

positive integer, then 15 | x and x > 150, therefore xmin = 165 and amin = 14.

Example 7. (AHSME/1989) Given that n is a positive integer, and the equation
2x + 2y + z = n has a total of 28 positive integer solutions for (x, y, z). Then the
value of n is

(A) 14 or 15; (B) 15 or 16; (C) 16 or 17; (D) 17 or 18; (E) 18 or 19.

Solution Let u = x + y, then 2u + z = n. Consider u ≥ 2 as a constant
at the moment for solving x and y. For the equation x + y = u, (u − 1, 1) is a
special solution, so x = u − 1 + t1, y = 1 − t1, t1 ∈ Z is the general solution.
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Since x ≥ 1, y ≥ 1, so 2−u ≤ t1 ≤ 0, i.e. t1 has u− 1 permitted values for each
given value u ≥ 2.

Now consider the equation 2u + z = n.
When n is even, then z is even also, the equation becomes u +

z

2
=

n

2
. The

value of u can take from 2 to n
2 − 1. Thus, the number of positive solutions is

(2− 1) + (3− 1) + · · ·+ (
n

2
− 2) = 28.

Since 1 + 2 + · · ·+ 7 = 28, so
n

2
− 2 = 7, i.e. n = 18.

When n = 2k + 1, then u can take the value from 2 to n−1
2 , so the number of

positive solutions is

1 + 2 + · · ·+ (
n− 1

2
− 1) = 28.

From
n− 1

2
− 1 = 7 we have n = 16 + 1 = 17. Thus, the answer is (D).

Example 8. Find the integer solutions of the equation 13x − 7y = 0 satisfying
the condition 80 < x + y < 120.

Solution Since 13x = 7y has integer solution (0, 0), so the general solution
is

x = 7t, y = 13t, t ∈ Z.

Then x + y = 20t, so 80 < x + y < 120 ⇔ 4 < t < 6, i.e. t = 5. Thus,

x = 35, y = 65

is the unique desired solution.

Example 9. (ASUMO/1988) There are two piles of pebbles, pile (A) and pile (B).
When 100 pebbles are moved from (A) to (B), then the number of pebbles in (B)
is double of that in (A). However, if some are moved from (B) to (A), then the
number of pebbles in (A) is five times more than that in (B). What is the minimum
possible number of pebbles in (A), and find the number of pebbles in (B) in that
case.

Solution Let x and y be the numbers of pebbles in the piles (A) and (B)
respectively. When z pebbles are moved from (B) to (A), then the given conditions
in question gives

2(x− 100) = y + 100, (23.6)
x + z = 6(y − z). (23.7)
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(23.6) gives y = 2x− 300, so from (23.7) it follows that

11x− 7z = 1800

or
4x + 7(x− z) = 1800. (23.8)

Both sides taking modulo 4 yields 4 | (x− z), so x− z = 4t, t ∈ Z. Then (23.8)
implies 4x+28t = 1800 or x+7t = 450. Thus, the general solution for (x, y, z)
is

x = 450−7t, y = 2(450−7t)−300 = 600−14t, z = (450−7t)−4t = 450−11t.

From x, y, z ≥ 0, it is obtained that t ≤ 450
11

< 41, so t ≤ 40. When t takes its
maximum possible value then x is its minimum, so

xmin = 450− 280 = 170.

In that case, y = 600 − 560 = 40, z = 450 − 440 = 10, so there are 40 pebbles
in (B).

Example 10. Find all triples (x, y, z) of three non-negative integers satisfying the
system of equations

5x + 7y + 5z = 37 (23.9)
6x− y − 10z = 3. (23.10)

Solution By eliminating a variable from the system, the question will be-
come one with two variables. 2× (23.9) + (23.10) yields

16x + 13y = 77.

Since 16(x− 4) + 13(y − 1) = 0, then x = 4, y = 1 is a special solution. So the
general solution is

x = 4 + 13t, y = 1− 16t, t ∈ Z.

Since y ≥ 0, so t ≤ 0. But x ≤ 0 implies t ≥ 0, so t = 0 is the unique permitted
value of t. Thus, x = 4, y = 1, and z = 2 from (23.9).
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Testing Questions (A)

1. (AHSME/1992) If k is a positive integer such that the equation in x

kx− 12 = 3k

has an integer root, then the number of such k is

(A) 3; (B) 4; (C) 5; (D) 6; (E) 7.

2. (CHINA/1990) An integer solution of the equation 1990x − 1989y = 1991
is

(A) x = 12785, y = 12768; (B) x = 12785, y = 12770;

(C) x = 11936, y = 11941; (D) x = 13827, y = 12623.

3. (SSSMO(J)/2002) Two positive integers A and B satisfy
A

11
+

B

3
=

17
333

.

Find the value of A2 + B2.

4. (CHINA/1997) A four digit number has remainder 13 when divided by 16,
and has remainder 122 when divided by 125. Find the minimum value of
such four digit numbers.

5. A dragonfly has six feet and a spider has 8 feet. Given that a certain group of
dragonflies and spiders have in total 46 feet, find the number of dragonflies
and the number of spiders.

6. Given that x 1-cent coins, y 2-cent coins, and z 5-coins have a total value of
10 dollars. Find the possible values of x, y, z.

7. If a four digit number and the sum of its all digits have a sum 2006, find the
four digit number.

8. (CHINA/1997) m,n are integers satisfying 3m + 2 = 5n + 3 and 30 <
3m + 2 < 40, find the value of mn.

9. (Ancient Question) In an ancient chicken market, each rooster is sold for 5
coins, each hen for 3 coins and each chick for 1/3 coin. Someone has 100
coins to buy 100 chickens, how many roosters, hens and chicks can a man
purchase out of a total cost of 100 coins?

10. (SSSMO(J)/1997) Suppose x, y and z are positive integers such that x >
y > z > 663 and x, y and z satisfy the following:

x + y + z = 1998
2x + 3y + 4z = 5992.

Find the values of x, y and z.
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Testing Questions (B)

1. (RUSMO/1983) Given that a pile of 100 small weights have a total weight of
500 g, and the weight of a small weight is 1g, 10 g or 50 g. Find the number
of each kind of weights in the pile.

2. (ASUMO/1988) Prove that there are infinitely many positive integer solutions
(x, y, z) to the equation x−y+z = 1, such that x, y, z are distinct, and any
two of them have a product which is divisible by the remaining number.

3. a, b are two relatively prime positive integers. Prove that the equation

ax + by = ab− a− b

has no non-negative integer solution.

4. Prove that for relatively prime two positive integers a and b, the equation

ax + by = c

must have non-negative integer solution if c > ab− a− b.

5. (KIEV/1980) Multiply some natural number by 2 and then plus 1, and then
carry out this operation on the resultant number, and so on. After repeating
100 times of such operations, whether the resulting number is divisible by
(i) 1980? (ii) by 1981?



Lecture 24

Roots and Discriminant of Quadratic Equation
ax2 + bx + c = 0

Definition 1 The equality ax2 + bx + c = 0 is called a quadratic equation,
where a, b, c are real constant coefficients with a 6= 0, x is the unknown variable.

Definition 2 A real number α is called a root or solution of the quadratic equa-
tion ax2 + bx + c = 0 if it satisfies the equation, i.e. a(α)2 + bα + c = 0.

Definition 3 For the quadratic equation, the value ∆ = b2 − 4ac is called the
discriminant of the equation.

Basic Methods for Finding Roots of ax2 + bx + c = 0

(I) Based on ax2 + bc+ c = a

(
x +

b

2a

)2

+
4ac− b2

4a
, the roots α and β can

be given by

α =
−b−√∆

2a
, β =

−b +
√

∆
2a

.

(II) By factorizing ax2+bx+c to the form a(x−a1)(x−a2), the roots then are
a1 and a2. All the methods for factorizations can be used here, including
multiplication formulae, factor theorem and observation method, etc.

(III) For quadratic equations with absolute values, it is needed to convert them
to normal equations by substitution or by partitioning the range of x piece-
wise to remove the absolute signs.
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Relation between Discriminant and Existence of Real Roots

(I) Use ∆ to determine the existence of real roots without solving the equa-
tion:
(i) ∆ > 0 ⇔ the equation has two distinct real roots.
(ii) ∆ = 0 ⇔ the equation has two equal real roots.
(iii) ∆ < 0 ⇔ the equation has no real roots.

(II) Geometrical explanation of the relation is as follows: since the real roots
of the quadratic equation are the x-coordinates of the points of the image
Γ of the function y = ax2 + bx + c (which is a parabola) with the x-axis,
(i) ∆ > 0 ⇔ the curve Γ intersects the x-axis at two distinct points.
(ii) ∆ = 0 ⇔ the curve Γ is tangent to the x-axis at one point.
(iii) ∆ < 0 ⇔ the curve Γ and the x-axis have no point of intersection.

Examples

Example 1. (CHINA/2006) Solve the equation 2006x2 + 2007x + 1 = 0

Solution Let f(x) = 2006x2 + 2007x + 1 = 0. By observation, f(−1) =
2006 − 2007 + 1 = 0, so f(x) has the factor (x + 1), and it is easy to find the
second factor (by the synthetic division),

2006x2 + 2007x + 1 = (x + 1)(2006x + 1),

so the two real roots are −1 and − 1
2006

.

Example 2. Solve the equations in x:
(i) (a2 − 1)x + a(x2 − 1) = a2(x2 − x + 1).
(ii) x2 − 2(a2 + b2)x + (a2 − b2)2 = 0.

Solution The given equations have parameters, so the discussion on param-
eters is necessary.
(i) The given equation can be written in the form

a(a− 1)x2 − (2a2 − 1)x + a(a + 1) = 0. (24.1)

Note that the equation is not quadratic if a = 0 or 1. If a = 0, then x = 0
is the unique solution. If a = 1, then x = 2 is the unique solution.
If a(a− 1) 6= 0, then left hand side of (24.1) can be factorized as

[ax− (a + 1)][(a− 1)x− a] = 0,

i.e. its two real roots are x1 =
a + 1

a
, x2 =

a

a− 1
.
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(ii) By completing squares, the given equation can be written in the form [x−
(a2 + b2)]2 = 4a2b2, so

x = a2 + b2 ± 2ab = (a± b)2.

Note: This example indicates that it is not always convenient to use the for-
mula for roots to solve an quadratic equation, in particular, if the equation contains
parameters.

Example 3. Given that the equation (x − 19)(x − 97) = p has real roots r1 and
r2. Find the minimum real root of the equation (x− r1)(x− r2) = −p.

Solution The problem can be solved by manipulating the left hand side of
the equation.

(x− 19)(x− 97) = p has real roots r1 and r2

⇔ (x− 19)(x− 97)− p = 0 has real root r1 and r2

⇒ (x− 19)(x− 97)− p = (x− r1)(x− r2) for any x
⇒ (x− r1)(x− r2) + p = (x− 19)(x− 97) for any x
⇒ the roots of (x− r1)(x− r2) + p = 0 are 19 and 97
⇒ the roots of (x− r1)(x− r2) = −p are 19 and 97.

Thus, the minimum root of (x− r1)(x− r2) = −p is 19.

Example 4. (CHINA/2003) Let a be the minimum root of the equation x2−3|x|−
2 = 0, find the value of −1

a
.

Solution I It is clear that 0 is not a root. (−a)2−3|−a|−2 = a2−3|a|−2 =
0 implies that −a is also a root, and a < −a yields a < 0.

Thus, it suffices to find the maximum positive roots, so we solve the equation

x2 − 3x − 2 = 0. By the formula for roots, the root
3 +

√
17

2
> 0 is obtained.

Thus,

a = −3 +
√

17
2

,

hence

−1
a

=
2

3 +
√

17
=

2(
√

17− 3)
17− 9

=
√

17− 3
4

.

Solution II Let y = |x|, then the given equation becomes y2 − 3y − 2 = 0.
By using the formula for roots,

|x| = y1 =
3 +

√
17

2
(the negative root is not acceptable).
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Thus, a = −3 +
√

17
2

, and the rest is the same as Solution I.

Example 5. Solve the equation |x2 − 3x− 4| = |x− 2| − 1.

Solution x2 − 3x− 4 = 0 has two roots x = −1 and x = 4, and x− 2 = 0
gives x = 2. So the number axis should be partitioned into four parts by the
partition points −1, 2, and 4.
(i) When x ≤ −1, the equation becomes x2−3x−4 = 1−x, so x2−2x−5 =

0, the root is x = 1−√6.
(ii) When −1 < x ≤ 2, the equation becomes −(x2 − 3x − 4) = 1 − x, so

x2 − 4x + 5 = 0, no solution since ∆ < 0.
(iii) When 2 < x ≤ 4, the equation becomes −(x2 − 3x − 4) = x − 3, so

x2 − 2x− 7 = 0, x = 1 + 2
√

2.
(iv) When 4 < x, the equation becomes x2−3x−4 = x−3, so x2−4x−1 = 0,

x = 2 +
√

5.
Thus, the solutions are x1 = 1−√6, x2 = 1 + 2

√
2, x3 = 2 +

√
5.

Example 6. Given that a is a root of the equation x2 − x − 3 = 0. Evaluate
a3 + 1

a5 − a4 − a3 + a2
.

Solution a2 − a− 3 = 0 yields a2 − a = 3. On the other hand,

a3 + 1 = (a + 1)(a2 − a + 1),
a5 − a4 − a3 + a2 = a2(a3 − a2 − a + 1) = a2[(a2(a− 1)− (a− 1)]

= a2(a− 1)(a2 − 1) = a2(a + 1)(a− 1)2

= (a + 1)(a2 − a)2,

it follows that

a3 + 1
a5 − a4 − a3 + a2

=
a2 − a + 1
(a2 − a)2

=
4
32

=
4
9
.

For quadratic equations with parameters, the information on roots can con-
versely determine the range of the parameters, as shown in the following exam-
ples.

Example 7. Given that the equation x2 − (2a + b)x + (2a2 + b2 − b +
1
2
) = 0

has two real roots. Find the values of a and b.

Solution ∆ ≥ 0 implies that

(2a + b)2 − 4(2a2 + b2 − b + 1
2 ) ≥ 0,

4a2 + 3b2 − 4ab− 4b + 2 ≤ 0,
(2a− b)2 + 2(b− 1)2 ≤ 0, ∴ a = 2, b = 1.
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Example 8. (CHINA/2005) Given that the equations x2 − ax + 3 − b = 0 has
two distinct real roots, (6 − a)x + 6 − b = 0 has two equal real roots, and x2 +
(4− a)x + 5− b = 0 has no real roots. Then the ranges of a and b are

(A) 2 < a < 4, 2 < b < 5, (B) 1 < a < 4, 2 < b < 5,
(C) 2 < a < 4, 1 < b < 5, (D) 1 < a < 4, 1 < b < 5.

Solution The assumptions in question imply that their discriminants are

∆1 = a2 − 4(3− b) > 0,
∆2 = (6− a)2 − 4(6− b) = 0,
∆3 = (4− a)2 − 4(5− b) < 0,

respectively, namely,

a2 + 4b− 12 > 0, (24.2)
a2 − 12a + 12 + 4b = 0, (24.3)

a2 − 8a− 4 + 4b < 0. (24.4)

(24.3) yields
a2 + 4b = 12a− 12. (24.5)

Substituting (24.5) into (24.2) yields 12a− 12− 12 > 0, i.e. a > 2. Substituting
(24.5) into (24.4), then 12a− 12− 8a− 4 < 0, i.e. a < 4. Thus,

2 < a < 4. (24.6)

(24.3) gives 4b = 24− (6− a)2. Applying (24.6), it follows that

24− (6− 2)2 < 4b < 24− (6− 4)2,

so 8 < 4b < 20, i.e. 2 < b < 5. Thus, the answer is (A).

Quadratic equation can be applied to solve geometric problems, as shown in
the following examples

Example 9. a, b, c are positive constants such that the equation

c2x2 + (a2 − b2 − c2)x + b2 = 0

has no real roots. Prove that the three segments with lengths a, b, c can form a
triangle.

Solution The given equation has no real roots implies that

(a2 − b2 − c2)2 − 4b2c2 < 0,
(a2 − b2 − c2 − 2bc)(a2 − b2 − c2 + 2bc) < 0,
∴ [(a2 − (b + c)2][a2 − (b− c)2] < 0.
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Since a2 − (b + c)2 < a2 − (b− c)2, so a2 − (b + c)2 < 0, a2 > (b− c)2. Thus

a < b + c, a > b− c, a > c− b,

i.e. a < b + c, b < a + c, c < a + b. The conclusion is proven.

In problems about quadratic equations, the relation between roots of two qua-
dratic equations is discussed often, as shown in the following example.

Example 10. (CHNMOL/2004) Given that the equation in x

mx2 − 2(m + 2)x + m + 5 = 0 (24.7)

has no real root, how about the real roots of the following equation

(m− 6)x2 − 2(m + 2)x + m + 5 = 0? (24.8)

Solution The equation (24.7) has no real root implies m 6= 0 and its dis-
criminant is negative, so

[−2(m + 2)]2 − 4m(m + 5) = −4m + 16 < 0, i.e. m > 4.

For the equation (24.8),

(i) When m = 6, (24.8) becomes −16x + 6 = 0, its solution is x =
3
8

.

(ii) When m 6= 6, then (24.8) is a quadratic equation, and its discriminant is
given by

4(m + 2)2 − 4(m− 6)(m + 5) = 4(10m + 4) > 0 (∵ m > 4),

so (24.8) has two distinct real roots for this case.

Thus, (24.8) has one root x =
3
8

when m = 6, or two distinct real roots when
m 6= 6.

Testing Questions (A)

1. (CHINA/2004) If the larger root of (2003x)2 − 2002× 2004x− 1 = 0 is m,
and the smaller root of x2 + 2002x− 2003 = 0 is n, then m− n is

(A) 2004, (B) 2003, (C)
2003
2004

, (d)
2002
2003

.
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2. (CHINA/2003) Solve the quadratic equation x2 + |x+3|+ |x− 3|− 24 = 0.

3. (CHINA/2005) Solve the quadratic equation (m−2)x2−(m+3)x−2m−1 =
0.

4. Given that a is a root of the equation x2 − 3x + 1 = 0, evaluate

2a5 − 5a4 + 2a3 − 8a2

a2 + 1
.

5. (CMO/1988) For what values of b do the equations: 1988x2 + bx+8891 = 0
and 8891x2 + bx + 1988 = 0 have a common root?

6. (CHINA/2004) Given that the equation in x

(m2 − 1)x2 − 2(m + 2)x + 1 = 0

has at least a real root, find the range of m.

7. Find the value of k, such that the equations x2 − kx− 7 = 0 and x2 − 6x−
(k + 1) = 0 have a common root, and find the common root and different
roots.

8. (CHINA/1995) Given that a, b, c > 0, and the quadratic equation (c+a)x2 +
2bx+(c−a) = 0 has two equal real roots. Determine if the three segments
of lengths a, b, c can form a triangle. If so, what is the type of the triangle?
Give your reasons.

9. If the equation in x

x2 + 2(1 + a)x + (3a2 + 4ab + 4b2 + 2) = 0

has real roots, find the values of a and b.

10. (CHINA/1997) a, b, c are real numbers with a2 + b2 + c2 > 0. Then the
equation

x2 + (a + b + c)x + (a2 + b2 + c2) = 0

has

(A) 2 negative real roots, (B) 2 positive real roots,

(C) 2 real roots with opposite signs, (D) no real roots.
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Testing Questions (B)

1. (ASUMO/1990) Mr. Fat is going to pick three non-zero real numbers and Mr.
Taf is going to arrange the three numbers as the coefficients of a quadratic
equation

2x2 + 2x + 2 = 0.

Mr. Fat wins the game if and only if the resulting equation has two distinct
rational solutions. Who has a winning strategy?

2. (CHINA/2004) a, b, c are three distinct non-zero real numbers. Prove that the
following three equations ax2 + 2bx + c = 0, bx2 + 2cx + a = 0, and
cx2 + 2ax + b = 0 cannot all have two equal real roots.

3. (CHNMOL/2003) a, b are two different positive integers, and the two quadratic
equations

(a−1)x2−(a2+2)x+(a2+2a) = 0 and (b−1)x2−(b2+2)x+(b2+2b) = 0

have one common root. Find the value of
ab + ba

a−b + b−a
.

4. (CANADA) m is a real number. Solve the equation in x

|x2 − 1|+ |x2 − 4| = mx.

5. (CHINA/1988) If p, q1 and q2 are real numbers with p = q1 + q2 + 1, prove
that at least one of the following two equations

x2 + x + q1 = 0, x2 + px + q2 = 0

has two distinct real roots.



Lecture 25

Relation between Roots and Coefficients of
Quadratic Equations

Viete Theorem and Newton Identity are two important results in discussing the
relation between roots and coefficients of polynomial equations. As the funda-
mental knowledge about the quadratic equation, in this chapter we only mention
Viete theorem and its some applications.

Theorem I. (Viete Theorem) If x1 and x2 are the real roots of the equation ax2 +
bx + c = 0 (a 6= 0), then





x1 + x2 = − b

a
,

x1x2 =
c

a
.

Proof. By the factor theorem, the equation ax2 + bx + c = 0 (a 6= 0) has roots
x1 and x2 if and only if

ax2 + bx + c = a(x− x1)(x− x2), ∀x ∈ R.

Expanding the right hand side yields ax2−a(x1+x2)x+ax1x2, so the comparison
of coefficients of both sides gives the conclusion at once.

Or, the conclusion can be verified by applying the formula for roots. ¤

Note: The method used here can be used also for proving the generalized
Viete Theorem for polynomial equation of degree n (n ≥ 2).

Theorem II. (Inverse Theorem) For any two real numbers α and β, the equation

x2 − (α + β)x + αβ = 0

has α and β as its two real roots.
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The proof is obvious since the left hand side of the given equation can be
factorized to the form

(x− α)(x− β).

When the quadratic equation ax2 + bx + c = 0 is given, i.e. a, b, c are given,
by Viete Theorem, not only the roots x1 and x2 can be investigated, but many
expressions in x1 and x2 can be given by a, b, c, provided the expression is a
function of x1 + x2 and x1x2, for example, the following expressions are often
used:

x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 =
b2

a2
− 2c

a
;

(x1 − x2)2 = (x1 + x2)2 − 4x1x2 =
∆
a2

;

1
x1

+
1
x2

=
x1 + x2

x1x2
= −b/a

c/a
= −b

c
;

1
x2

1

+
1
x2

2

=
x2

1 + x2
2

x2
1x

2
2

=
(x1 + x2)2 − 2x1x2

(x1x2)2
=

b2 − 2ac

c2
;

x3
1 + x3

2 = (x1 + x2)(x2
1 − x1x2 + x2

2)

= (x1 + x2)[(x1 + x2)2 − 3x1x2] =
(
− b

a

)3

+ 3
bc

a2
.

Based on the above, it is possible to establish new equations with required roots
by the inverse Viete theorem.

Conversely, by applying the Viete Theorem, the given information on roots of
a quadratic equation with parameters can be used to determine the values or ranges
of the parameters. To construct quadratic equations by using the inverse Viete
theorem can be also used to determine the values of some algebraic expressions.
The examples below will explain these applications.

Examples

Example 1. (CHINA/1997) Given that the equation x2 +(2a− 1)x+a2 = 0 has
two real positive roots, where a is an integer. If x1 and x2 are the roots, find the
value of |√x1 −√x2|.

Solution The two real roots are positive implies 1 − 2a ≥ 0, i.e. a ≤ 1
2

.
since a is an integer, so a ≤ 0. Then

|√x1 −√x2| =
√

(
√

x1 −√x2)2 =
√

x1 + x2 − 2
√

x1x2

=
√

1− 2a + 2a = 1.
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Note: It is not needed to determine the value of a but it is sufficient to know
that a ≤ 0.

Example 2. (CHNMOL/1996) x1 and x2 are roots of the equation x2+x−3 = 0.
Find the value of x3

1 − 4x2
2 + 19.

Solution By Viete Theorem, x1 + x2 = −1, x1x2 = −3. Let A = x3
1 −

4x2
2 + 19, B = x3

2 − 4x2
1 + 19. Then

A + B = (x3
1 + x3

2)− 4(x2
1 + x2

2) + 38
= (x1 + x2)[(x1 + x2)2 − 3x1x2]− 4[(x1 + x2)2 − 2x1x2] + 38
= −[1 + 9]− 4[1 + 6] + 38 = 0,

A−B = (x3
1 − x3

2) + 4(x2
1 − x2

2)
= (x1 − x2)[(x1 + x2)2 − x1x2 + 4(x1 + x2)]
= (x1 − x2)[1 + 3− 4] = 0.

Thus, 2A = (A + B) + (A−B) = 0, i.e. A = 0.

Example 3. (CHINA/1996) Given that the quadratic equation x2 − px + q = 0
has two real roots α and β.
(i) Find the quadratic equation that takes α3, β3 as its two roots;
(ii) If the new equation is still x2 − px + q = 0, find all the possible pairs

(p, q).

Solution (i) The Viete Theorem yields α + β = p, αβ = q, so

(α)3 · (β)3 = (αβ)3 = q3,
α3 + β3 = (α + β)3 − 3αβ(α + β) = p3 − 3pq = p(p2 − 3q),

by the inverse Viete Theorem, the new equation is

x2 − p(p2 − 3q)x + q3 = 0.

(ii) If the new equation is the same as the original equation, then

p(p2 − 3q) = p, (25.1)
q3 = q. (25.2)

(25.2) implies q = 0, 1 or −1.
When q = 0, then (25.1) implies p3 = p, so p = 0, 1 or −1.
When q = 1, then (25.1) implies p3 = 4p, so p = 0, 2 or −2.
When q = −1, then (25.1) implies p3 = −2p, so p = 0.
Corresponding to the obtained seven pairs of (p, q) there are seven equations

x2 = 0, x2 − x = 0, x2 + x = 0, x2 + 1 = 0,
x2 − 2x + 1 = 0, x2 + 2x + 1 = 0, x2 − 1 = 0.
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Among them only x2 + 1 = 0 has no real roots, so the rest 6 pairs satisfy the
requirements. Thus, the solutions for (p, q) are

(0, 0), (1, 0), (−1, 0), (2, 1), (−2, 1), (0,−1).

Example 4. Given the equation (x − a)(x − a − b) = 1, where a, b are two
constants. Prove that the equation has two real roots, where one is greater than a,
and the other is less than a.

Solution The two roots should be compared with a, it is natural to use the
substitution y = x−a. Under the substitution, the problem becomes one to prove
one root is positive and the other is negative for y.

Then the equation becomes y2 − by − 1 = 0, and the conclusion is obvious:
By Viete theorem, the product of its two roots is −1, so they must have opposite
signs.

(In fact, ∆ = b2 + 4 > 0 implies that the equation in y must have two distinct
real roots, so the existence of real roots is not a problem.)

Example 5. (CHNMOL/2000) Given that m is a real number not less than −1,
such that the equation in x

x2 + 2(m− 2)x + m2 − 3m + 3 = 0

has two distinct real roots x1 and x2.
(i) If x2

1 + x2
2 = 6, find the value of m.

(ii) Find the maximum value of
mx2

1

1− x1
+

mx2
2

1− x2
.

Solution The equation has two distinct real roots implies that ∆ > 0, so

∆ = 4(m− 2)2 − 4(m2 − 3m + 3) = −4m + 4 > 0.

Thus, −1 ≤ m < 1.
(i) By Viete Theorem, x1 + x2 = −2(m− 2), x1x2 = m2 − 3m + 3, so

6 = x2
1 + x2

2 = (x1 + x2)2 − 2x1x2

= 4(m− 2)2 − 2(m2 − 3m + 3) = 2m2 − 10m + 10,

i.e. m2 − 5m + 2 = 0, so m =
5±√17

2
. Since −1 ≤ m < 1,

m =
5−√17

2
.
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(ii)
mx2

1

1− x1
+

mx2
2

1− x2
=

m[x2
1(1− x2) + x2

2(1− x1)]
(1− x1)(1− x2)

=
m[x2

1 + x2
2 − x1x2(x1 + x2)]

x1x2 − (x1 + x2) + 1

=
m[(2m2 − 10m + 10) + 2(m2 − 3m + 3)(m− 2)]

m2 − 3m + 3 + 2(m− 2) + 1

=
m(2m3 − 8m2 + 8m− 2)

m2 −m
= 2(m2 − 3m + 1)

= 2
(

m− 3
2

)2

− 5
2
≤ 2

(
−1− 3

2

)2

− 5
2

= 10 since −1 ≤ m < 1.

Thus, the maximum value of
mx2

1

1− x1
+

mx2
2

1− x2
is 10.

Example 6. (CHNMOL/1991) Given that the quadratic equation ax2+bx+c = 0
has no real roots, but Adam got two roots 2 and 4 since he wrote down a wrong
value of a. Ben also got two roots −1 and 4 because he wrote down the sign of a

term wrongly. Find the value of
2b + 3c

a
.

Solution Suppose that Adam wrote down the coefficient a as a′ wrongly.
Then

− b

a′
= 6,

c

a′
= 8,

therefore −b

c
=

3
4

. Based on Ben’s result, we have

∣∣∣∣
b

a

∣∣∣∣ = 3,
∣∣∣ c

a

∣∣∣ = 4.

Since ∆ = b2 − 4ac < 0, we have ac > 0, therefore
c

a
= 4, and hence

b

a
= −3.

Thus,
2b + 3c

a
= 2(−3) + 3(4) = 6.

Example 7. (CHINA/2003) Given that the equation 8x2 +(m+1)x+m−7 = 0
has two negative roots, find the range of the parameter m.

Solution Let the roots be x1, x2. Then x1 + x2 = −m + 1
8

< 0, x1x2 =
m− 7

8
> 0 and ∆ = (m + 1)2 − 32(m− 7) ≥ 0.
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The first inequality implies that −1 < m, the second inequality implies that
7 < m, and

(m + 1)2 − 32(m− 7) = m2 − 30m + 224 = (m− 14)(m− 16) ≥ 0,

which implies that m ≤ 14 or m ≥ 16. Thus, the range of m is 7 < m ≤ 14 or
m ≥ 16.

Example 8. (CHINA/2005) If a, b are real numbers and a2 + 3a + 1 = 0, b2 +

3b + 1 = 0, find the values of
a

b
+

b

a
.

Solution From Viete theorem it follows that a and b are both the real roots
of the equation x2 + 3x + 1 = 0. If a = b then

a

b
+

b

a
= 2.

If a 6= b, then Viete Theorem yields that a + b = −3, ab = 1, so

a

b
+

b

a
=

(a + b)2 − 2ab

ab
= 9− 2 = 7.

Example 9. (CHINA/2005) If p, q are two real numbers satisfying the relations

2p2− 3p− 1 = 0 and q2 +3q− 2 = 0 and pq 6= 1. Find the value of
pq + p + 1

q
.

Solution Change the second equality to the form 2
(

1
q

)2

−3
(

1
q

)
−1 = 0,

then it is found that p and 1/q are both the roots of the equation 2x2−3x−1 = 0.
pq 6= 1 implies that p 6= 1/q, so, by Viete theorem,

p +
1
q

=
3
2

and
p

q
= −1

2
,

so
pq + p + 1

q
= p +

1
q

+
p

q
=

3
2
− 1

2
= 1.

Example 10. Given that a, b, c are the lengths of three sides of 4ABC, a > b >
c, 2b = a+ c, and b is a positive integer. If a2 + b2 + c2 = 84, find the value of b.

Solution The conditions a + c = 2b and a2 + b2 + c2 = 84 yield

ac =
1
2
[(a + c)2 − (a2 + c2)] =

1
2
(5b2 − 84).
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By the inverse Viete theorem, the equation x2 − 2bx +
5b2 − 84

2
= 0 has two

distinct roots a and c, so its discriminant is positive, i.e. ∆ = 4b2−2(5b2−84) =
168− 6b2 > 0, which implies

b2 <
168
6

= 28.

Since ac > 0 implies 84 < 5b2, so 16 < 84/5 < b2. Thus, 16 < b2 < 28 yields
b = 5.

Testing Questions (A)

1. (CHINA/1999) Given that 2x2 − 5x − a = 0 is a quadratic equation in x, a
is a parameter. If the ratio of its two roots x1 : x2 = 2 : 3, find the value of
x2 − x1.

2. (CHINA/1993) Given that the two roots of the equation x2 + px + q = 0 are
1 greater than the two roots of the equation x2 +2qx+ 1

2p = 0 respectively,
and the difference of the two roots of x2 + px + q = 0 is equal to that of
x2 + 2qx + 1

2p = 0. Find the solutions to each of the two equations.

3. (CHINA/1993) α, β are the real roots of the equation x2 − px + q = 0. Find
the number of the pairs (p, q) such that the quadratic equation with roots
α2, β2 is still x2 − px + q = 0.

4. (RUSMO/1989) Given p+ q = 198, find the integer solutions of the equation
x2 + px + q = 0.

5. (CHINA/1995) Given that the sum of squares of roots to the equation 2x2 +

ax− 2a + 1 = 0 is 7
1
4

, find the value of a.

6. Given that α and β are the real roots of x2 − 2x − 1 = 0, find the value of
5α4 + 12β3.

7. (CHINA/1997) Given that α and β are the real roots of x2 + 19x − 97 = 0,

and
1 + α

1− α
+

1 + β

1− β
= −m

n
, where m and n are two relatively prime natural

numbers. Find the value of m + n.

8. (CHINA/1997) Given that a, b are integers with a > b, and the two roots α, β
of the equation 3x2 + 3(a + b)x + 4ab = 0 satisfy the relation

α(α + 1) + β(β + 1) = (α + 1)(β + 1),

find all the pairs (a, b) of two integers.
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9. (CHNMOL/1999) Given that the real numbers s, t satisfy 19s2+99s+1 = 0,

t2 + 99t + 19 = 0, and st 6= 1. Find the value of
st + 4s + 1

t
.

10. (USSR) Prove that if α and β are the roots of the equation x2 + px + 1 = 0,
and if γ and δ are the roots of the equation x2 + qx + 1 = 0, then

(α− γ)(β − γ)(α + δ)(β + δ) = q2 − p2.

Testing Questions (B)

1. (CHINA/1998) Given that α, β are roots of the equation x2 − 7x + 8 = 0,

where α > β. Find the value of
2
α

+ 3β2 without solving the equation.

2. Given that a = 8− b and c2 = ab− 16, prove that a = b.

3. (USSR) Let α and β be the roots of the equation x2 + px + q = 0, and γ and
δ be the roots of the equation x2 + Px + Q = 0. Express the product

(α− γ)(β − γ)(α− δ)(β − δ)

in terms of the coefficients of the given equations.

4. (ASUMO/1986) If the roots of the quadratic equation x2 + ax + b + 1 = 0
are natural numbers, prove that a2 + b2 is a composite number.

5. (CHINA/1999) Solve the equation
13x− x2

x + 1

(
x +

13− x

x + 1

)
= 42.



Lecture 26

Diophantine Equations (II)

The Diophantine equations to be discussed in this chapter are all non-linear al-
though, but we focus on the integer solutions of quadratic equations.

Basic Methods for Solving Quadratic Equations on Z

(I) Factorization Method. Let the right hand side of the equation be a con-
stant, zero or a power of a prime number (in the case of indicial equation),
and factorize the left hand side to the form of product of linear factors, then
discuss the possible values of the linear factors based on the factorization
of the right hand side.

(II) Discriminant Method. When a quadratic equation with integer coeffi-
cients has integer solution(s), its discriminant must be a perfect square.
This feature will play an important role.
When the quadratic equation contains two variables x, y, by the formula
for roots, x can be expressed in terms of y, and its discriminant is an
expression in y. Since the discriminant is a perfect square and that y is an
integer, y can be found easily in many cases.

Besides the use of discriminant, the use of Viete Theorem and transfor-
mation or substitution are also useful tools for simplifying and solving
quadratic equations.

(III) Congruence, divisibility, and parity analysis, etc. are often used in dis-
cussing the existence of integer solutions of quadratic equations.

69
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Examples

Example 1. (SSSMO(J)/2008) Let n be a positive integer such that n2+19n+48
is a perfect square. Find the value of n.

Solution This question can be solved by factorization method.
Let n2 + 19n + 48 = m2 for some m ∈ N, then 4n2 + 76n + 192 = 4m2, so

(2n + 19)2 − (2m)2 = 169.
(2n− 2m + 19)(2n + 2m + 19) = 132 = 1 · 169 = 13 · 13.

The difference of 2n− 2m + 19 = 1 and 2n + 2m + 19 = 169 yields 4m = 168,
i.e. m = 42. Therefore n = m − 9 = 33. By checking, 33 satisfies the given
equation.

The difference of 2n− 2m + 19 = 13 and 2n + 2m + 19 = 13 yields m = 0,
its impossible for n > 0. So n = 33 is the unique required solution.

Example 2. (CHINA/2003)) Find the integer solutions of the equation 6xy+4x−
9y − 7 = 0.

Solution By factorization, 6xy + 4x − 9y − 6 = (2x − 3)(3y + 2), so the
given equation becomes

(2x− 3)(3y + 2) = 1.

If 2x− 3 = 1, 3y + 2 = 1, then y has no integer solution.
If 2x − 3 = −1, 3y + 2 = −1, then x = 1, y = −1. By checking, (1,−1)

satisfies the original equation, so it is the unique solution for (x, y).

Example 3. (SSSMO(J)/2004) Find the number of ordered pairs of positive inte-
gers (x, y) that satisfy the equation

1
x

+
1
y

=
1

2004
.

Solution By removing the denominators, it follows that xy = 2004(x + y).
Then xy − 2004x− 2004y + 20042 = 20042, so

(x− 2004)(y − 2004) = 20042.

For any positive factor p of 20042, 20042 = p · (20042/p) yields a solution x =
2004 + p, y = 2004 + (20042/p). Since

20042 = (22 × 3× 167)2 = 24 × 32 × 1672,

the number of positive divisors of 20042 is (4 + 1)(2 + 1)(2 + 1) = 45, so there
are 45 such solutions.
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If p is a negative factor of 20042, then so is 20042/p, and one of them must
have absolute value not less than 2004, so one of p + 2004 and (20042/p) + 2004
is not positive, i.e., such solutions are not required. Thus, there are a total of 45
required solutions.

Example 4. (SSSMO(J)/2009) Find the value of the smallest positive integer m
such that the equation

x2 + 2(m + 5)x + (100m + 9) = 0

has only integer solutions.

Solution Since the equation has integer solutions,

∆ = 4[(m + 5)2 − (100m + 9)] = 4(m2 − 90m + 16) ≥ 0

and m2 − 90m + 16 = n2 for some non-negative integer n. Then (m − 45)2 +
16− 2025 = n2, so

(m− n− 45)(m + n− 45) = 2009
= 1 · 2009 = 41 · 49 = (−49)(−41) = (−2009)(−1).

When m− n− 45 = 1, m + n− 45 = 2009, then m = 1050, n = 1004.
When m− n− 45 = 41, m + n− 45 = 49, then m = 90, n = 4.
When m− n− 45 = −2009, m + n− 45 = −1, then m = −960, n = 1004.
When m− n− 45 = −49,m + n− 45 = −41, then m = 0, n = 4.
Since x = −(m+5)±n, all above values of (m,n) give integral roots. Thus,

m = 1050, 90,−960, 0, and the smallest positive value of m is 90.

Viete Theorem is also used for solving Diophantine equations. Below is an
example.

Example 5. (CHNMOL/2005) p, q are two integers, and the two roots of the equa-
tion in x

x2 − p2 + 11
9

x +
15
4

(p + q) + 16 = 0

are p and q also. Find the values of p and q.

Solution Viete Theorem yields

p + q =
p2 + 11

9
, (26.1)

pq =
15
4

(p + q) + 16. (26.2)
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Then p + q > 0 from (26.1) and pq > 0 from (26.2), so p, q are both positive
integers. From (26.2) it follows that

16pq − 60(p + q) = 162

∴ (4p− 15)(4q − 15) = 256 + 225 = 481.

Since 481 = 1 × 481 = 13 × 37 = (−1) × (−481) = (−13) × (−37), and
4p− 15 or 4q− 15 cannot be −37 or −481, so the pair (4p− 15, 4q− 15) has the
following four possible cases:

(1, 481), (481, 1), (13, 37), (37, 37).

Corresponding to them, the pairs of (p, q) are

(4, 124), (124, 4), (7, 13), (13, 7).

By checking, only the pair (13, 7) satisfies the original system: the equation be-
comes

x2 − 20x + 91 = 0,

and its roots are {13, 7}. Thus, the solution for (p, q) is (13, 7).

Many techniques often used in number theory, like congruence, divisibility,
parity analysis, etc., can be used for solving Diophantine equations. Below a few
such examples are given.

Example 6. (KIEV/1962) Prove that the equation x2 + y2 = 3z2 has no integer
solution (x, y, z) 6= (0, 0, 0).

Solution First of all it can be shown that, if an integer solution (x, y, z) is
not (0, 0, 0), then there must be such an integer solution with (x, y) = 1.

Suppose that (x, y, z) 6= (0, 0, 0) is an integer solution with (x, y) = d > 1,
letting

x = dx1, y = dy1, with (x1, y1) = 1,

then the original equation becomes d2(x2
1 + y2

1) = 3z2, so d2 | 3z2. Since the
indices of 3 in d2 and z2 are both even, so (d2, 3) = 1 and d2 | z2, i.e. d | z. Let
z = dz1, then x2

1 + y2
1 = 3z2

1 . Thus, (x1, y1, z1) 6= (0, 0, 0) is an integer solution
of the given equation also, and x, y, z1 are relatively prime pairwise.

Hence, it suffices to show that the given equation has no non-zero integer
solutions (x, y, z) with (x, y) = 1.

Suppose that (x, y, z) is such a solution, then x, y cannot be divisible by 3,
and x2 + y2 ≡ 2 (mod 3) if x, y are both not divisible by 3, a contradiction.

Thus, the conclusion is proven.

Example 7. (USAMO/1975) Determine all integral solutions of

a2 + b2 + c2 = a2b2.
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Solution Let (a, b, c) be an integer solution. We show that a, b and c must all
be even by taking modulo 4 to both sides of the equation. There are three possible
cases to be considered:
Case 1: When a, b, c are all odd, then a2 +b2 +c2 ≡ 3 (mod 4), whereas a2b2 ≡

1 (mod 4), so it is impossible.
Case 2: When two of a, b, c are odd and the other is even, then a2 + b2 + c2 ≡ 2

(mod 4), whereas a2b2 ≡ 0 or 1 (mod 4), so it is impossible also.
Case 3: When two of a, b, c are even and the other is odd, then a2 + b2 + c2 ≡ 1

(mod 4), whereas a2b2 ≡ 0 (mod 4), so it is impossible also.
Thus, a, b, c are all even. Let a = 2a1, b = 2b1, c = 2c1, this leads to the

relation
a2
1 + b2

1 + c2
1 = 4a2

1b
2
1.

Since 4a2
1b

2
1 ≡ 0 (mod 4) and each of a2

1, b
2
1, c

2
1 has remainder 0 or 1 modulo 4,

a1, b1, c1 must all be even also. Then a1 = 2a2, b1 = 2b2, c1 = 2c2. This leads to
the relation

a2
2 + b2

2 + c2
2 = 16a2

2b
2
2.

Again we can conclude that a2, b2, c2 are all even, so it leads to the relation

a2
3 + b2

3 + c2
3 = 64a2

3b
2
3.

The process can be continued to any times, since we have the relation

a2
n + b2

n + c2
n = 4na2

nb2
n

for any natural number n. Hence an =
a

2n
, bn =

b

2n
, cn =

c

2n
are integers for

any natural number n, i.e. a = b = c = 0.
Thus, the equation has only zero solution.
Note: This example is one of Fermat’s method of infinite decent.

It is sometimes useful to use substitution to simplify the equation first, below
is such an example.

Example 8. (CHNMOL/2003) Given that the integers a, b satisfy the equation




1
a

1
a
− 1

b

−
1
b

1
a

+
1
b




(
1
a
− 1

b

)
· 1

1
a2

+
1
b2

=
2
3
,

find the value of a + b.
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Solution Let x =
1
a
, y =

1
b

, then the left hand side of the given equation
becomes [

x

x− y
− y

x + y

]
(x− y) · 1

x2 + y2

=
x2 + y2

(x− y)(x + y)
· (x− y) · 1

x2 + y2
=

1
x + y

.

Then the given equation is simplified to
1

x + y
=

2
3

, i.e.

1
1
a + 1

b

=
2
3
, or

ab

a + b
=

2
3
.

From it we have 3ab− 2a− 2b = 0 which yields 9ab− 6a− 6b + 4 = 4, i.e.

(3a− 2)(3b− 2) = 4.

Therefore a 6= b. By symmetry, we may assume a > b, so
(i) when 3a− 2 = 4, 3b− 2 = 1 then a = 2, b = 1, a + b = 3;
(ii) when 3a− 2 = −1, 3b− 2 = −4 then a has no integer solution.
Thus, a + b = 3.

Example 9. (CHNMOL/1995) The number of positive integer solutions (x, y, z)
for the system of simultaneous equations

{
xy + yz = 63,
xz + yz = 23

is
(A) 1; (B) 2; (C) 3; (D) 4.

Solution 23 is a prime, so that the second equation has less uncertainty, we
deal with it first. x + y ≥ 2 and 23 is prime leads z = 1, x + y = 23. By
substituting y = 23− x into the first equation, it follows that

(23− x)(x + 1) = 63,
x2 − 22x + 40 = 0,
(x− 2)(x− 20) = 0,

so x1 = 2, x2 = 20. Then y1 = 21, y2 = 3. Thus the solutions are (2, 21, 1) and
(20, 3, 1), the answer is (B).
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Testing Questions (A)

1. (CHINA/2003) Given that
1260

a2 + a− 6
is a positive integer, where a is a pos-

itive integer. Find the value of a.

2. (CHINA/2001) How many number of pairs (x, y) of two integers satisfy the
equation

x2 − y2 = 12?

3. (SSSMO(J)/2004) Let x, y, z and w represent four distinct positive integers
such that

x2 − y2 = z2 − w2 = 81.

Find the value of xz + yw + xw + yz.

4. (CHINA/2003) Find the number of non-zero integer solutions (x, y) to the

equation
15
x2y

+
3
xy

− 2
x

= 2.

5. (CHINA/2001) Find the number of positive integer solutions to the equation

x

3
+

14
y

= 3.

6. (CHINA/2001) Find the number of positive integer solutions of the equation
2
x
− 3

y
=

1
4

.

7. (SSSMO/2005) How many ordered pairs of integers (x, y) satisfy the equa-
tion

x2 + y2 = 2(x + y) + xy?

8. (SSSMO/2003) Let p be a positive prime number such that the equation

x2 − px− 580p = 0

has two integer solutions. Find the value of p.

9. (USSR/1962) Prove that the only solution in integers of the equation

x2 + y2 + z2 = 2xyz

is x = y = z = 0.
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10. (CHINA/1993) The number of positive integer solutions (x, y, z) for the
system of simultaneous equations

{
xy + xz = 255,
xy + yz = 31

is

(A) 3; (B) 2; (C) 1; (D) 0.

Testing Questions (B)

1. (IMO/Shortlist/1989) Given the equation

4x3 + 4x2y − 15xy2 − 18y3 − 12x2 + 6xy + 36y2 + 5x− 10y = 0,

find all positive integer solutions.

2. (USSR) Solve, in integers,
1
x

+
1
y

=
1
z

(find the formula for general solution).

3. (SSSMO/2006) Let p be an integer such that both roots of the equation

5x2 − 5px + (66p− 1) = 0

are positive integers. Find the value of p.

4. (RUSMO/1991) Find all the natural numbers p, q such that the equation x2−
pqx + p + q = 0 has two integer roots.

5. (IMO/1994) Determine all ordered pairs (m,n) of positive integers such that

n3 + 1
mn− 1

is an integer.



Lecture 27

Linear Inequality and System of Linear Inequalities

Definition 1 An expression is called an Inequality if it is formed by two alge-
braic expressions connected by the symbols “>”, “≥”, “<”, or “≤”, aimed to
represent the unequal relation between the two expressions.

If use the letters a and b to stand for the two expressions in an inequality, then
a > b is called “a is greater than b”, a ≥ b is called “a is greater than or equal
to b”, a < b is called “a is less than b”, and a ≤ b is called “a is less than or
equal to b”.

Definition 2 When an inequality (or a system of inequalities) has k unknown
variables (x1, x2, . . . , xk) ∈ Rk, the action to find the values of (x1, x2, . . . , xk)
such that the inequality (or the system of the inequalities) be true is called solving
the inequality (or the system of the inequalities). Any point (x1, x2, . . . , xk) ∈ Rk

that satisfies the inequality (or the system of inequalities) is called a solution of
the inequality (or the system of the inequalities), and the set of all solutions is
called the solutions set of the inequality (or the system of inequalities).

Basic Properties of Inequalities

(I) If a > b and b > c, then a > c.
(II) If a > b, then a + c > b + c and a− c > b− c for any real number c.

(III) If a > b, then a · c > b · c and
a

c
>

b

c
if c > 0.

(IV) If a > b, then a · c < b · c and
a

c
<

b

c
if c < 0, i.e. the direction of the

inequality needs to be changed.

Note that the property (IV) is exclusive for inequalities, but the properties (I)
to (III) are similar to the case of equalities.
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Steps for Solving a Linear Inequality

When an inequality has a unknown variable a to be solved, the steps are usually
the same as in solving a linear equation, consisting of

(i) removing denominators; (ii) removing brackets;

(iii) moving terms for combining like terms; (iv) combining like terms;

(v) normalizing the coefficient of x.

The order of (i) to (iv) can be changed flexibly, such that the inequality can be
simplified to one of the forms

ax > b, ax ≥ b, ax < b, ax ≤ b,

where a, b are constants. At the step (v), a should be converted to 1 if a is given
constant, however, if a a parameter or contains parameters, then the discussion on
the possible cases of the parameters is needed.

Examples

Example 1. Given 2(x− 2)− 3(4x− 1) = 9(1−x) and y < x + 9, compare the

sizes of
y

π
and

10
31

y.

Solution By solving the equation in x, it follows that 12x − 2x − 9x =

−4 + 3 − 9 = −10, so x = −10. Thus, y < −10 + 9 = −1. Since
1
π

<
10
31

, so
1
π

y >
10
31

y.

Example 2. (CHINA/1999) If ac < 0, in the inequalities
a

c
< 0; ac2 < 0;

a2c < 0; c3a < 0; ca3 < 0 how many must be true?
(A) 1, (B) 2, (C) 3, (D) 4.

Solution ac < 0 implies that a and c have opposite signs and a 6= 0, c 6= 0,
so

a

c
< 0 and a2 > 0 and c2 > 0. Since the signs of a and c are not determined,

so the signs of a2c and ac2 are not determined. However, a3c = a2(ac) < 0 and
ca3 = (ac)a2 < 0, so there are three inequalities that must be true. The answer is
(C).

Example 3. (CHINA/2006) There are four statements as follows:

(i) When 0 < x < 1, then
1

1 + x
< 1− x + x2;
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(ii) When 0 < x < 1, then
1

1 + x
> 1− x + x2;

(iii) When −1 < x < 0, then
1

1 + x
< 1− x + x2;

(iv) When −1 < x < 0, then
1

1 + x
> 1− x + x2.

Then the correct statements are

(A) (i) and (iii), (B) (ii) and (iv), (C) (i) and (iv), (D) (ii) and (iii).

Solution Under the conditions on x, 1 + x > 0, so we can move 1 + x to
right hand side without changing the direction of the inequality sign. Since

(1 + x)(1− x + x2) = 1 + x3,

so (i) and (iv) are true but (ii) and (iv) are wrong. Thus, the answer is (C).

Example 4. (CHINA/2006) Given real numbers a and b. If a =
x + 3

4
, b =

2x + 1
3

, b <
7
3

< 2a, find the range of the value of x.

Solution The inequalities b <
7
3

< 2a implies
2x + 1

3
<

7
3

<
x + 3

2
, so

2x + 1 < 7 and 14 < 3x + 9, hence
5
3

< x < 3. Thus, the range of x is
5
3

< x < 3.

Example 5. (CHINA/2004) If the solution set of the inequality (a+1)x > a2−1
is x < a− 1, find the solution set of the inequality (1− a)x < a2 − 2a + 1.

Solution The given conditions in question implies that a + 1 < 0. In fact,

a + 1 < 0 leads to the solution set of the first inequality is x <
a2 − 1
a + 1

, i.e.

x < a− 1.
Then a + 1 < 0 implies a < −1, so 1 − a > 0. Thus, the solution set of the

second inequality is

x <
a2 − 2a + 1

1− a
= 1− a, i.e. x < 1− a.

Example 6. (CHINA/1998) Solve the inequality a(x− b2) > b(x + a2) for x.

Solution a(x− b2) > b(x + a2) yields (a− b)x > ab(a + b).
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(i) If a > b, then x >
ab(a + b)

a− b
;

(ii) If a < b, then x <
ab(a + b)

a− b
;

(iii) If a = b ≥ 0, then left hand side is zero but right hand side is non-negative,
no solution;

(iv) If a = b < 0, then left hand side is zero and right hand side is negative, so
any real number is a solution.

Example 7. Given that the solution set of the inequality (2a− b)x + 3a− 4b < 0

is x >
4
9

. Find the solution of the inequality (a− 4b)x + 2a− 3b > 0.

Solution The solution set of (2a− b)x + 3a− 4b < 0 is x >
4
9

implies that

2a− b < 0 and
4b− 3a

2a− b
=

4
9
,

2a < b, and 36b− 27a = 8a− 4b,

∴ b =
7
8
a > 2a → a < 0.

Then (a− 4b)x + 2a− 3b > 0 becomes
(

a− 7
2
a

)
x + 2a− 21

8
a > 0, so

−5
2
ax >

5
8
a, ∴ x > −1

4
.

Thus, the solution set of the second inequality is x > −1
4

.

Example 8. (CHINA/2001) Given that the solution set for x of the inequality
2m + x

3
≤ 4mx− 1

2
is x ≥ 3

4
, find the value of the parameter m.

Solution From
2m + x

3
≤ 4mx− 1

2
it follows that

4m + 2x ≤ 12mx− 3,
2(6m− 1)x ≥ 4m + 3.

The solution set is x ≥ 3
4

implies that 6m− 1 > 0 and
4m + 3

2(6m− 1)
=

3
4

,

∴ 2(4m + 3) = 3(6m− 1), i.e. (18− 8)m = 6 + 3, ∴ m =
9
10

.

Example 9. (CHINA/2005) Given that x = 3 is a solution of the inequality mx+
2 < 1− 4m, if m is an integer, find the maximum value of m.
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Solution By substituting x = 3 into the given inequality, it follows that

7m < −1, so m < −1
7

, thus, the maximum value of m is −1.

Finding the solution set of a system of linear inequalities, means to find the set
which satisfies each of the inequality in the system. So to each inequality in the
system we can find its solution set first, then the common part of these sets is the
solution set of the system.

Example 10. Solve the system of inequalities

{
3x− 5 ≥ 2x− 3,

2(3x + 2) ≥ 3x− 1.

Solution The solution set of the first inequality is x ≥ 2.

The solution set of the second inequality is x ≥ −5
3

.

Therefore the solution set of the system is the common part of these two inter-
vals, i.e. the set x ≥ 2.

Testing Questions (A)

1. If a, b, c > 0 and
c

a + b
<

a

b + c
<

b

a + c
, arrange a, b, c in ascending order.

2. (CHINA/2005) Given a < b < c < 0, arrange the sizes of
a

b + c
,

b

c + a
,

c

a + b
in descending order.

3. Solve the inequality in x: ax + 4 < x + b, where a, b are two constants.

4. (CHINA/2002) Given m =
4− x

3
, n =

x + 3
4

, p =
2− 3x

5
, and m > n >

p. Find the range of x.

5. Solve the system of inequalities





x− 1 > −3
1
2
x− 1 <

1
3
x

3 < 2(x− 1) < 10
1
3
(3− 2x) > −2.
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6. (CHINA/1996) Given that x, y, a, b are all positive numbers and a < b,
x

y
=

a

b
. If x + y = c, then the larger one of x and y is

(A)
ab

a + b
, (B)

ab

b + c
, (C)

ac

a + b
, (D)

bc

a + b
.

7. Given that the solution set of the inequality (2a−b)x > a−2b for x is x <
5
2

,
find the solution set of the inequality ax + b < 0.

8. Given a + b + c = 0, a > b > c. Find the range of
c

a
.

9. (CHINA/1997) Given that the solution set of x for the inequality (2a− b)x+

a− 5b > 0 is x <
10
7

, find the solution set of x for the inequality ax > b.

10. (CHINA/1998) Given that a, b are two integers such that the integer solu-
tions of the system of inequalities

9x− a ≥ 0, and 8x− b < 0

are 1, 2, 3. Find the number of the ordered pairs (a, b).

Testing Questions (B)

1. (CHINA/2002) Given 0 ≤ a − b ≤ 1, 1 ≤ a + b ≤ 4. Find the value of
8a + 2002b when the value of a− 2b is maximum.

2. Find all the positive integer-valued solutions (x, y, z) of the system of in-
equalities 




3x + 2y − z = 4,
2x− y + 2z = 6,

x + y + z < 7.

3. (CHINA/2004) If x > z, y > z, then which is always true in the following
inequalities?

(A) x + y > 4z, (B) x + y > 3z, (C) x + y > 2z, (D) x + y > z.

4. (CHINA/2003) Given that the integer solutions of the inequality 0 ≤ ax+5 ≤
4 for x are 1, 2, 3, 4. Find the range of the constant a.

5. a, b are positive integers. Find the fraction
a

b
satisfying

8
9

<
a

b
<

9
10

, and
such that b is minimum.



Lecture 28

Quadratic Inequalities and Fractional Inequalities

In this chapter the quadratic inequalities and fractional inequalities of single vari-
able are discussed.

Any quadratic inequality can be arranged in one of the following forms

(i) f(x) > 0; (ii) f(x) ≥ 0; (iii) f(x) < 0; (iv) f(x) ≤ 0,

where f(x) = ax2 + bx+ c with a 6= 0. Below for the convenience of discussion,
we assume a > 0, i.e. the curve of the quadratic function y = ax2 + bx + c is a
parabola opening upwards.

Basic Methods for Solving Quadratic Inequalities

(I) When the equation f(x) = 0 has two real roots x1 ≤ x2, the solution set
of the inequalities (i) to (iv) are

(i) x < x1 or x > x2; (ii) x ≤ x1 or x ≥ x2;
(iii) x1 < x < x2; (iv) x1 ≤ x ≤ x2;

respectively.
Geometrically, x1, x2 are the x-coordinates of the points of intersection of
the curve y = f(x) with the x-axis, and the solution set is the range of
the x-coordinates of the points on the curve with positive y-coordinates
(for (i)), or with non-negative y-coordinates (for (ii)), with negative y-
coordinates (for (iii)), or with non-positive y-coordinates (for (iv)).
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(II) When the equation f(x) = 0 has no real solution, then f(x) > 0 for any
real x, so the solution set of inequalities (i) and (ii) are both the whole real
axis, and no solution for (iii) and (iv).
Geometrically, the equation f(x) = 0 has no real solution means the whole
curve of y = f(x) is above the x-axis, so it does not intersect with the x-
axis, hence any point on the curve has a positive y-coordinate.

(III) For fractional inequalities of the forms

(i) g(x) > 0; (ii) g(x) ≥ 0; (iii) g(x) < 0; (iv) g(x) ≤ 0,

where g(x) =
x− a

x− c
with a 6= c, the problems will become those dis-

cussed in (I) when multiplying both sides of the inequality by (x− c)2.
(IV) If there are more than one linear factors in the denominator or numerator of

the fractional expression g(x), then it is needed to discuss the sign of g(x)
by partitioning the range of x into several intervals, where the partition
points are given by letting each linear factor be zero.
Notice that, if the factor (x − a)2n+1 with n ≥ 1 occurs in the numerator
of denominator of g(x), it can be replaced by (x− c) without changing the
solution set, and if (x − a)2n with n ≥ 1 occurs in the the numerator of
g(x), it can be removed at first, and then determine if a is in the resultant
solution set. If (x− a)2n occurs in the denominator of g(x), then remove
it first, and remove the point a from the resultant solution set if any.
Thus, the construction of g(x) to be considered can be simplified much.

(V) In mathematical olympiad competitions, inequalities containing parame-
ters often occur. One kind of the common problems is to determine the
values or ranges of the parameters based on information contained in the
given inequality and other given conditions.

Examples

Example 1. Solve the inequality (x− 2)4(x− 5)5(x + 3)3 < 0.

Solution Since (x − 2)4(x − 5)5(x + 3)3 < 0 ⇔ (x − 5)(x + 3) < 0, so
the solution set is

{−3 < x < 5} − {2}, or equivalently, {−2 < x < 2} ∪ {2 < x < 5}.
Example 2. Solve the inequality (x2 − x− 1)2 ≥ (x2 + x− 3)2.

Solution By factorization the given inequality can be simplified.

(x2 − x− 1)2 ≥ (x2 + x− 3)2 ⇔ (x2 − x− 1)2 − (x2 + x− 3)2 ≥ 0
⇔ −(2x− 2)(2x2 + 2) ≥ 0 ⇔ (x− 1)(x2 + 1) ≤ 0 ⇔ (x− 1) ≤ 0.
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Thus, the solution set is {x ≤ 1}.

Example 3. Solve the inequality
x2 − x− 2
x2 − 3x + 1

≥ 0.

Solution The inequality is equivalent to the systems

x2 − x− 2 ≥ 0, x2 − 3x + 1 > 0 or x2 − x− 2 ≤ 0, x2 − 3x + 1 < 0.

x2 − x− 2 ≥ 0, x2 − 3x + 1 > 0

⇔ (x− 2)(x + 1) ≥ 0, (x− 3−√5
2

)(x− 3 +
√

5
2

) > 0

⇔ {{x ≤ −1} ∪ {x ≥ 2}} ∩
{
{x <

3−√5
2

} ∪ {x >
3 +

√
5

2
}
}

⇔ {x ≤ −1} ∪ {x >
3 +

√
5

2
}.

x2 − x− 2 ≤ 0, x2 − 3x + 1 < 0

⇔ (x− 2)(x + 1) ≤ 0, (x− 3−√5
2

)(x− 3 +
√

5
2

) < 0

⇔ {{−1 ≤ x ≤ 2}} ∩
{
{3−√5

2
< x <

3 +
√

5
2

}
}

⇔ {3−√5
2

< x ≤ 2}.

Thus, the solution set is {x ≤ −1} ∪ {3−√5
2

< x ≤ 2} ∪ {x >
3 +

√
5

2
}.

Example 4. Solve the inequality
x− 2
x + 3

> −1.

Solution
x− 2
x + 3

> −1 ⇔ 2x + 1
x + 3

> 0 ⇔ (2x + 1)(x + 3) > 0, so the

solution set is

{x < −3} ∪ {x > −1
2
}.

Example 5. Solve the inequality
(x + 1)(x− 2)

(x− 4)
> 0, where x 6= 4.

Solution List the following table

Range of x x < −1 −1 < x < 2 2 < x < 4 4 < x

Sign of
(x + 1)(x− 2)

x− 4
− + − +
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Therefore the solution set is S = (−1, 2) ∪ (4, +∞).

Example 6. Find the solution set of the inequality
x + 1
x− 1

>
6
x

. (x 6= 1 and

x 6= 0.)

Solution Change
x + 1
x− 1

>
6
x

to the form
x + 1
x− 1

− 6
x

> 0, then

x + 1
x− 1

− 6
x

> 0 ⇔ x(x + 1)− 6(x− 1)
x(x− 1)

> 0 ⇔ x2 − 5x + 6
x(x− 1)

> 0,

⇔ (x− 2)(x− 3)
x(x− 1)

> 0.

Based on the following table

Range of x (−∞, 0) (0, 1) (1, 2) (2, 3) (3,+∞)

Sign of
(x− 2)(x− 3)

x(x− 1)
+ − + − +

the solution set is

(−∞, 0) ∪ (1, 2) ∪ (3, +∞).

Example 7. Solve the quadratic inequality ax2 − (a + 1)x + 1 < 0, where a is a
parameter.

Solution Since a 6= 0, ax2 − (a + 1)x + 1 < 0 ⇔ a(x− 1
a
)(x− 1) < 0.

(i) If a > 1, the solution set is
1
a

< x < 1.
(ii) If a = 1, no solution.

(iii) If 0 < a < 1, the solution set is 1 < x <
1
a

.

(iv) If a < 0, the inequality becomes (x− 1
a
)(x− 1) > 0, the solution set is

{x <
1
a
} ∪ {x > 1}.

Example 8. Given that the inequality kx2−kx−1 < 0 holds for any real x, then
(A) −4 < k ≤ 0, (B) −4 ≤ k ≤ 0, (C) −4 < k < 0, (D) −4 ≤ k < 0.

Solution It is obvious that the inequality holds when k = 0.
When k < 0, the curve of y = kx2−kx− 1 is open downwards, and is below

the x axis, so the equation kx2−kx−1 = 0 has no real roots, i.e. its discriminant
is negative.

∆ = k2 + 4k < 0 ⇔ k > −4.
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Thus, −4 < k ≤ 0, the answer is (A).

Example 9. Given that the solution set of the quadratic inequality ax2+bx+c > 0
is 1 < x < 2. Find the solution set of the inequality cx2 + bx + a < 0.

Solution The first inequality has the solution set 1 < x < 2 implies that
a < 0, and

x2 +
b

a
x +

c

a
< 0 ⇔ (x− 1)(x− 2) < 0 ⇔ x2 − 3x + 2 < 0.

Therefore
b

a
= −3,

c

a
= 2 or b = −3a, c = 2a and a < 0. Then the second

inequality becomes

a(2x2 − 3x + 1) < 0, i.e. 2x2 − 3x + 1 > 0.

Thus, (2x− 1)(x− 1) > 0, and its solution set is {x <
1
2
} ∪ {x > 1}.

Testing Questions (A)

1. Solve the inequality (2 + x)(x− 5)(x + 1) > 0.

2. Solve the inequality x2(x2 − 4) < 0.

3. Solve the inequality x3 ≤ 6x− x2.

4. Solve the inequality x− 1 > (x− 1)(x + 2).

5. Solve the inequality (x3 − 1)(x3 + 1) > 0.

6. Solve the inequality
2x− 4
x + 3

>
x + 2
2x + 6

.

7. Find the solution set of the inequality
x

x + 2
≥ 1

x
.

8. Find the solution set of the inequality
x− 1
x2

≤ 0.

9. Find the solution set of the inequality
x(2x− 1)2

(x + 1)3(x− 2)
> 0.

10. Find the solution set of the inequality
2x2

x + 1
≥ x.



88 Lecture 28 Quadratic Inequalities and Fractional Inequalities

Testing Questions (B)

1. (CHINA/2002) Find the positive solutions of the inequality

x2 + 3
x2 + 1

+
x2 − 5
x2 − 3

≥ x2 + 5
x2 + 3

+
x2 − 3
x2 − 1

.

2. (CHINA/2001) Solve the fractional inequality

x + 2
4x + 3

− x

4x + 1
>

x

4x− 1
− x− 2

4x− 3
.

3. Given that a, b are positive constant with a < b. If the inequality

a3 + b3 − x3 ≤ (a + b− x)3 + m

holds for any real x, find the minimum value of the parameter m.

4. Given that the quadratic function f(x) = x2− 2ax+6 ≥ a for−2 ≤ x ≤ 2,
find the range of the constant a.

5. Given that the inequality

1
8
(2a− a2) ≤ x2 − 3x + 2 ≤ 3− a2

holds for any real x in the interval [0, 2]. Find the range of the parameter a.
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Inequalities with Absolute Values

The most important technique for solving inequalities with absolute values is the
same as in solving equations with absolute values, i.e., it is necessary to remove
the absolute value signs, such that they become normal inequalities to solve.

Basic Methods for Removing Absolute Value Signs

(I) |a| ≤ b is equivalent to −b ≤ a ≤ b.
Notice that, here it is not needed to let b be non-negative, since if b < 0,
then −b ≤ a ≤ b has no solution for a.

(II) |a| ≥ |b| is equivalent to a2 ≥ b2.
(III) |a| ≥ b is equivalent to a ≤ −b or a ≥ b.
(IV) For simplifying the given inequality and removing absolute value signs,

some substitutions of variables or expressions, like y = |x|, is useful.
(V) When two or more pairs of absolute value signs occur in a same layer of

the given inequality, the general method for removing the absolute value
signs is partitioning the range of variable into several intervals, so that the
values of each expression between a pair of absolute signs has a fixed sign.
For this it is necessary to let each such expression be zero, and take its
roots as the partition points. For example, for solving the inequality

|x− 2|+ |x− 4| < 3,

then the number axis is partitioned into three intervals (−∞, 2], (2, 4] and
(4,∞), where 2 and 4 are obtained by letting x− 2 = 0 and x− 4 = 0.

Examples

Example 1. Solve the inequality |x2 − 2x + 5| < 4.
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Solution

|x2 − 2x + 5| < 4 ⇔ −4 < x2 − 6x + 5 < 4
⇔ 0 < x2 − 6x + 9 and x2 − 6x + 1 < 0.

0 < x2 − 6x + 9 ⇔ 0 < (x− 3)2 ⇔ x 6= 3, and

x2 − 6x + 1 < 0 ⇔ 3− 2
√

2 < x < 3 + 2
√

2,

so the solution set is {3− 2
√

2 < x < 3 + 2
√

2} − {3}.

Example 2. Solve the inequality |3x2 − 2| < 1− 4x

Solution

|3x2 − 2| < 1− 4x ⇔ 4x− 1 < 3x2 − 2 < 1− 4x
⇔ 0 < 3x2 − 4x− 1 and 3x2 + 4x− 3 < 0

⇔ x <
2−√7

3
or x >

2 +
√

7
3

and
−2−√13

3
< x <

−2 +
√

13
3

.

Since
−2−√13

3
<

2−√7
3

<
−2 +

√
13

3
<

2 +
√

7
3

, the solution set is

−2−√13
3

< x <
2−√7

3
.

Example 3. Solve the inequality
∣∣∣∣
x + 1
x− 1

∣∣∣∣ ≤ 1.

Solution The given inequality implies that x 6= 1 and |x− 1| > 0, so
∣∣∣∣
x + 1
x− 1

∣∣∣∣ ≤ 1 ⇔ |x + 1| ≤ |x− 1| ⇔ (x + 1)2 ≤ (x− 1)2

⇔ x2 + 2x + 1 ≤ x2 − 2x + 1 ⇔ 4x ≤ 0 ⇔ x ≤ 0.

Thus, the solution set is {x ≤ 0}.

Example 4. Solve the inequality |x2 − x| > 2.

Solution Since |x2 − x| > 2 ⇔ x2 − x < −2 or x2 − x > 2, and

x2 − x < −2 ⇔ x2 − x + 2 < 0, x2 − x > 2 ⇔ x2 − x− 2 > 0.

The inequality x2 − x + 2 < 0 has no real solution since the discriminant ∆ of
the corresponding equation x2 − x + 2 = 0 is negative:

∆ = (−1)2 − 8 = −7 < 0,
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so the curve y = x2 − x + 2 is above the x axis entirely. However

x2 − x− 2 > 0 ⇔ (x− 2)(x + 1) > 0 ⇔ x < −1 or x > 2.

Thus the solution set is (−∞,−1) ∪ (2,+∞).

Example 5. Solve the inequality x2 − 2x− 5|x− 1|+ 7 ≤ 0.

Solution Since

x2−2x−5|x−1|+7 = (x2−2x+1)−5|x−1|+6 = (x−1)2−5|x−1|+6,

let y = |x− 1|, the given inequality then becomes

y2 − 5y + 6 ≤ 0,
(y − 2)(y − 3) ≤ 0,

∴ 2 ≤ y ≤ 3.

Returning to x, it becomes 2 ≤ |x− 1| ≤ 3.
By solving 2 ≤ |x − 1|, then x − 1 ≤ −2 or x − 1 ≥ 2, so its solution set is

{x ≤ −1} ∪ {x ≥ 3}.
By solving |x−1| ≤ 3, then−3 ≤ x−1 ≤ 3, so its solution set is−2 ≤ x ≤ 4.
By taking the common part of these two solution sets, the solution set of the

original inequality is

{−2 ≤ x ≤ −1} ∪ {3 ≤ x ≤ 4}.

Example 6. Solve the inequality
3x2 − 8|x| − 3
x2 + 2x + 3

≥ 0.

Solution Since x2+2x+3 = (x+1)2+2 ≥ 2 > 0 for any real x, the solution
set of the given inequality is equivalent to that of the inequality 3x2−8|x|−3 > 0.
For solving it, let y = |x|, then it follows that

3y2 − 8y − 3 > 0,
(3y + 1)(y − 3) > 0,

∴ y > 3 or 3y + 1 < 0 (not acceptable since y ≥ 0).

Returning to x, the solution set is {|x| > 3} or equivalently, {x < −3}∪{x > 3}.

Example 7. Solve the inequality 2|x| − |x− 2| ≥ 0.



92 Lecture 29 Inequalities with Absolute Values

Solution Since 2|x| − |x − 2| ≥ 0 ⇔ 2|x| ≥ |x − 2|, by taking squares to
both sides, it follows that

4x2 ≥ (x− 2)2,
4x2 ≥ x2 − 4x + 4,
3x2 + 4x− 4 ≥ 0,

(3x− 2)(x + 2) ≥ 0.

Since the roots of the quadratic equation (3x− 2)(x + 2) = 0 are
2
3

and −2, the

solution set of the quadratic inequality is {x ≤ −2} ∪ {x ≥ 2
3
}.

Note: This problem can be solved by partitioning the number axis into three
parts: x ≤ 0, 0 < x ≤ 2, and 2 < x.

Example 8. Solve the inequality |2x− 1| − |x + 1| > 2.

Solution It is needed to partition the real axis into three intervals by using

the partition points −1 and
1
2

.

For x ≤ −1, the inequality becomes (1 − 2x) + (x + 1) > 2 i.e. x < 0, so
(−∞,−1] is in the solution set.

For−1 < x ≤ 1
2

, the inequality becomes (1−2x)− (x+1) > 2, the solution

set is −1 < x < −2
3

.

For x >
1
2

, the inequality becomes (2x − 1) − (x + 1) > 2, so the solution
set is x > 4.

Thus, the solution set is (−∞,−2
3
) ∪ (−4, +∞).

Example 9. (CHNMOL/1995) Given that the real numbers a, b satisfy the in-
equality

||a| − (a + b)| < |a− |a + b||,
then

(A) a > 0, b > 0; (B) a < 0, b > 0; (C) a > 0, b < 0; (D) a < 0, b < 0.

Solution There are two layers of absolute value signs in the given expres-
sion. By taking squares to both sides, the absolute value signs in the outer layer
can be removed.

||a| − (a + b)| < |a− |a + b|| ⇔ (|a| − (a + b))2 < (a− |a + b|)2,
a2 + (a + b)2 − 2|a|(a + b) < a2 + (a + b)2 − 2a|a + b|,

a|a + b| < |a|(a + b),
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therefore a, a + b are both not zero, so
a

|a| <
a + b

|a + b| . Since both sides have

absolute value 1, so a < 0 and a + b > 0, thus, a < 0, b > 0, the answer is (B).
When an inequality with absolute values contains parameters, then, similar to

the case of without absolute values, the inequality can give some information on
the range of the parameters, as shown in the following example.

Example 10. (AHSME/1964) When x is a real number and |x−4|+ |x−3| < a,
where a > 0, then

(A) 0 < a < 0.01, (B) 0.01 < a < 1, (C) 0 < a < 1,

(D) 0 < a ≤ 1, (E) 1 < a.

Solution Use 3 and 4 as the partition points to partition the real axis as three
intervals,

(i) for x ≤ 3, then |x− 4|+ |x− 3| = 4− x + 3− x = 7− 2x ≥ 1,
(ii) for 3 < x ≤ 4, then |x− 4|+ |x− 3| = 4− x + x− 3 = 1,
(iii) for 4 < x, then |x− 4|+ |x− 3| = x− 4 + x− 3 = 2x− 7 > 1,
so the left hand side must be at least 1. Thus, a > 1, the answer is (E).

Testing Questions (A)

1. Find the solution set of the inequality |x2 + x + 1| ≤ 1.

2. Find the solution set of the inequality |3− 2x| ≤ |x + 4|.

3. Find the solution set of the inequality
∣∣∣∣
x + 1
x− 1

∣∣∣∣ ≥ 1.

4. Find the solution set of the inequality |x + 3| > 2x + 3.

5. Solve the inequality |x2 − 4x− 5| > x2 − 4x− 4.

6. Solve the inequality |x + 1| > 2
x

.

7. Solve the inequality |x + 1|+ |x− 2| ≤ 3x.

8. Solve the inequalities (i)
6

|x|+ 1
< |x|; (ii)

1− |x|
3|x| − 6

> 0.

9. Solve the inequality
|x|
x

< |x2 − 1| (x 6= 0).
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10. (CHINA/2005) Given that the rational numbers a, b satisfy the inequality

||a|+ (a− b)| > |a + |a− b||.

Determine which of the following listed expressions holds.

(A) a > 0, b > 0; (B) a > 0, b < 0; (C) a < 0, b > 0; (D) a < 0, b <
0.

Testing Questions (B)

1. (CHINA/2003) Given that the real numbers a, b, c satisfy a+b+c = 2, abc =
4.

(i) Find the minimum value of the maximal value of a, b, c.

(ii) Find the minimum value of |a|+ |b|+ |c|.

2. (CHINA/2001) When |a| < |c|, b =
a + c

2
, |b| < 2|a|, S1 =

∣∣∣∣
a− b

c

∣∣∣∣ , S2 =
∣∣∣∣
b− c

a

∣∣∣∣ , S3 =
∣∣∣∣
a− c

b

∣∣∣∣, then the relation of the sizes of S1, S2, S3 is

(A) S1 < S2 < S3, (B) S1 > S2 > S3,

(C) S1 < S3 < S2, (D) S1 > S3 > S2.

3. (CHINA/2004) Solve inequality
|2y + |y|+ 10|
|6y + 2|y|+ 5| > 1.

4. Given (i) a > 0; (ii) |ax2 + bx + c| ≤ 1 if −1 ≤ x ≤ 1; (iii) ax + b has its
maximum value 2 when −1 ≤ x ≤ 1. Find the values of constants a, b, c.

5. Given that the real numbers a ≤ b ≤ c satisfy ab + bc + ca = 0, abc = 1.
Find the maximum real number k, such that

|a + b| ≥ k|c|

holds for any such a, b, c.



Lecture 30

Geometric Inequalities

In this chapter we discuss the inequalities that deal with lengths of segments, sizes
of angles and sizes of areas of geometric graphs. The following theorems are the
basic tools for dealing with geometric inequalities:

Theorem I. Among the paths joining two given points, the segment joining them
is the shortest.

Theorem II. For a straight line ` and a point P outside `, if Q is the foot of
the perpendicular from P to `, and A,B are other two points on `, such that
AQ < BQ, then PQ < PA < PB.

Theorem III (Triangle Inequality). For any triangle ABC, let BC = a,CA =
b, AB = c, then a < b + c, b < c + a, c < a + b, or equivalently, a > |b− c|, b >
|c− a|, c > |a− b|.

Theorem IV. For a triangle, a longer side is opposite to a bigger angle, a shorter
side is opposite to a smaller angle, and vice versa.

Theorem V. For any triangle, the median to a side is less than half of the sum of
other two sides.

Examples

Example 1. Given that the point R is an inner point of 4ABC, prove that AB +
AC > BR + RC.
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Solution Extending BR to intersect AC
at S. Then

AB + AC = AB + AS + SC
> BS + SC = BR + (RS + SC)
> BR + RC. .........
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Example 2. (RUSMO/1993) Let AB and CD be two segments of length 1. If
they intersect at O such that ∠AOC = 60◦, prove that AC + BD ≥ 1.

Solution Connect AC,BD, and introduce
CB1 ‖ AB, where CB1 = AB. Then ABB1C
is a parallelogram, so BB1 = AC. Connect B1D.
Then 4CDB1 is equilateral. Applying the trian-
gle inequality to 4DBB1 gives

AC + BD = BB1 + BD > DB1 = CD = 1,

as desired.
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.............................................................................................................................................................................................................................................

..............
..............

..............
..............

....................................................................................................................................................................................................................................................................................................................................................................................................
..............

..............
..............

......

A

B

C

D

O

B1

Note that when A and C coincide, then AC + BD = BD = 1.

Example 3. (CHINA/1994) In the convex quadrilateral ABCD, ∠BAD =
∠BCD = 90◦, and the ray AK bisects the ∠BAD. If AK ‖ BC, AK ⊥ CD,
and AK intersects BD at E, prove that AE < 1

2CD.

Solution Suppose that AK inter-
sects CD at F and BG ⊥ AK at G. Then
4ABG and 4ADF are both isosceles
right triangles, so

BG = AG,FD = AF.

Since BCFG is a rectangle,
FD = AF > AG = BG = CF , so

FD >
1
2
(CF + FD) =

1
2
CD,

∴ EF =
FD

CD
·BC >

1
2
BC.
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Since BC + CF = FD, we have

CD = CF + FD = 2FD −BC > 2(FD − EF ) = 2(AF − EF ) = 2AE,

i.e. AE <
1
2
CD.

Example 4. (CHINA/1990) For 4ABC, let a = BC, b = CA, c = AB. If

b <
1
2
(a + c), prove that ∠B <

1
2
(∠A + ∠C).

Solution Considering ∠A + ∠B + ∠C = 180◦,

∠B <
1
2
(∠A + ∠C) ⇐⇒ ∠B < 60◦.

Now construct an isosceles triangle BDE by extending
BA to D and extending BC to E, such that BD = c +
a,BE = a + c. Next, we make parallelogram ACFD
such that AC ‖ DF, AD ‖ CF , then

4BAC ∼= 4CFE, ∴ FE = AC = FD = b.

From DE < DF + FE = 2b < a + c, it follows that
DE < BE = BD,

................................................................................................................................................................................................................
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therefore ∠B < ∠E, i.e. 2B < 180◦ − B, or ∠B < 60◦. The conclusion is
proven.

Example 5. (KIEV/1967) Given that the longest side AC of 4ABC satisfies
AC > BC. If the point M is on the extension of of AC such that CM = BC.
Prove that ∠ABM > 90◦.

Solution ∠AC > BC implies ∠ABC > ∠A. Connect BM . Then

∠ABM = ∠ABC + ∠CBM

=
1
2
∠ABC +

1
2
∠ABC +

1
2
∠ACB

=
1
2
∠ABC − 1

2
∠A + 90◦ > 90◦.

Thus, ∠ABM is obtuse.
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Example 6. (MOSCOW/1951) Given that two convex quadrilaterals ABCD
and A′B′C ′D′ have equal corresponding sides, i.e. AB = A′B′, BC = B′C ′,
etc. Prove that if ∠A > ∠A′, then ∠B < ∠B′, ∠C > ∠C ′, ∠D < ∠D′.
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Solution In4ABD and4A′B′D′, AB = A′B′, AD = A′D′, ∠A > ∠A′

yields BD > B′D′. In 4BCD and 4B′C ′D′, BC = B′C ′, CD = C ′D′ and
BD > B′D′ implies ∠C > ∠C ′.

Therefore ∠B + ∠D < ∠B′ + ∠D′. Suppose ∠B ≥ ∠B′, then ∠D < ∠D′,
so by similar reasoning, ∠B′ > ∠B, a contradiction. Thus, ∠B < ∠B′ and
∠D < ∠D′, as desired.

Example 7. (USAMO/1996) Let ABC be a triangle. Prove that there is a line `
(in the plane of triangle ABC) such that the intersection of the interior of triangle
ABC and the interior of its reflection A′B′C ′ in ` has area more than 2/3 the area
of triangle ABC.

Solution Let BC = a,CA = b, AB =
c. Without loss of generality we may assume
that a ≤ b ≤ c.
Let AD be the angle bisector of the ∠BAC,
B′, C ′ be the symmetric points of B, C in the
line AD, respectively, then C ′ is on the seg-
ment AB and B′ is on the extension of AC,
as shown in the figure.
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From

[BDC ′] =
BC ′

AB
· BD

BC
· [ABC] =

c− b

c
· c

b + c
[ABC] =

c− b

b + c
[ABC].

2b > a + b > c implies that
b

c + b
>

b

2b + b
=

1
3

, so

[AC ′DC] =
(

1− c− b

c + b

)
[ABC] =

2b

c + b
[ABC] >

2
3
[ABC].

Thus, the line AD satisfies the requirement.
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Example 8. (CHINA/1978) Through the center of gravity G of the4ABC intro-
duce a line to divide 4ABC into two parts. Prove that the difference of areas of

the two parts is not greater than
1
9

of area of the 4ABC.

Solution Suppose that an arbitrary line passing through G intersects AB and
AC at D and E respectively.
When the line DE is parallel to BC, then

[ADE] =
(

DE

BC

)2

[ABC] =
4
9
[ABC], so

|[ADE]− [DBCE]| =
(

5
9
− 4

9

)
[ABC]

=
1
9
[ABC], the conclusion is true.
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When DE is not parallel to BC, say D is between P and B and E is between Q
and N , where PQ ‖ BC and N is the midpoint of AC, as shown in the figure,
we show that

|[DBCE]− [ADE]| < |[PBCQ]− [APQ]| = 1
9
[ABC]

below. Since ∠DPG > ∠PQA, we can introduce PS ‖ AC, intersecting DE
and BN at R and S respectively. Then 4PRG ∼= 4QEG and 4RSG ∼=
4ENG, so that

[PRG] = [QEG] and [RSG] = [ENG].

Therefore [DBCE] = [PBCQ]− [PDG] + [QEG] < [PBCQ] and [ADE] =
[APQ] + [PDG]− [QEG] > [APQ], so that

[DBCE]− [ADE] < [PBCQ]− [APQ] =
1
9
[ABC].

It suffices to show that [DBCE] > [ADE]. For this notice that

[DBCE] = [BCN ]− [ENG] + [DBG] > [BCN ]− [ENG] + [RSG]

= [BCN ] =
1
2
[ABC],

∴ [ADE] < 1
2 [ABC] < [DBCE].

Thus, the conclusion is proven.
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Example 9. (CMO/1969) Let4ABC be the right-angled isosceles triangle whose
equal sides have length 1. P is a point on the hypotenuse, and the feet of the per-
pendiculars from P to the other sides are Q and R. Consider the areas of the
triangles APQ and PBR, and the area of the rectangle QCRP . Prove that re-

gardless of how P is chosen, the largest one of these three areas is at least
2
9

.

Solution Let BR = x, then BR = PR = QC = x and RC = PQ =
AQ = 1− x.

(i) When x ≥ 2
3

, then

[PBR] =
x2

2
≥ 2

9
.

(ii) When x ≤ 1
3

, then 1− x ≥ 2
3

, so that

[APQ] =
(1− x)2

2
≥ 2

9
.
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(iii) When
1
3

< x <
2
3

, then −1
6

< x− 1
2

<
1
6

, so that

[QCRP ] = x(1− x) = −x2 + x = −
(

x− 1
2

)2

+
1
4

> − 1
36

+
1
4

=
2
9
.

Thus, the conclusion is proven.

Testing Questions (A)

1. Given that R is an inner point of 4ABC. Prove that

1
2
(AB + BC + CA) < RA + RB + RC < AB + BC + CA.

2. (BMO/1967) In 4ABC, if ∠C > ∠B, and BE,CF are the heights on CA
and AB respectively. Prove that AB + CF > AC + BE.

3. In 4ABC, AB > BC,AD ⊥ BC at D. P is an arbitrary point on AD
different from A and D, prove that PB − PC > AB −AC.
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4. For an acute triangle ABC, let a = BC, b = CA, c = AB, and the lengths
of height on BC, CA,AB are ha, hb, hc respectively, prove that

1
2
(a + b + c) < ha + hb + hc < a + b + c.

5. (MOSCOW/1974) Prove that if three segments with lengths a, b, c can form

a triangle, then the three segments of lengths
1

a + b
,

1
b + c

,
1

c + a
can form

a triangle also.

6. Given that BB1 and CC1 are two medians of 4ABC. Prove that BB2
1 +

CC2
1 >

9
8
BC2.

7. (MOSCOW/1972) A straight line intersects the sides AB and BC of4ABC
at the point M and K respectively, such that the area of 4MBK and the

area of the quadrilateral AMKC are equal. Prove that
MB + BK

AM + CA + KC
≥

1
3

.

8. (CHINA/1994) There are n straight lines in a plane, such that every two in-
tersect with each other. Prove that among the angles formed there is at least

one angle which is not greater than
180◦

n
.

9. (RUSMO/1983) In 4ABC, D is the midpoint of AB, E and F are on AC
and BC respectively. Prove that the area of4DEF is not greater than sum
of areas of 4ADE and 4BDF .

10. (CHNMOL/1979) Given that 4ABC is an acute triangle, a = BC, b =
CA, c = AB and a > b > c. Among its 3 inscribed squares, which one has
the maximum area?

Testing Questions (B)

1. (KIEV/1969) Is there a triangle with the three altitudes of lengths 1,
√

5, 1 +√
5?

2. (RUSMO/1981) The points C1, A1, B1 belong to sides AB, BC, CA, respec-
tively, of the 4ABC.

AC1

C1B
=

BA1

A1C
=

CB1

B1A
=

1
3
.
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Prove that the perimeter P of the4ABC and the perimeter p of the4A1B1C1

satisfy inequality
P

2
< p <

3
4
P .

3. (KIEV/1966) Let a, b, c be the lengths of three sides of 4ABC, and I =
a + b + c, S = ab + bc + ca. Prove that 3S ≤ I2 ≤ 4S.

4. (RUSMO/1989) If a, b, c denote the lengths of sides of a triangle, satisfying
a + b + c = 1, prove that

a2 + b2 + c2 + 4abc <
1
2
.

5. (PUTNAM/1973) (i) Given that 4ABC is an arbitrary triangle, the points
X,Y, Z are on the sides BC,CA, AB respectively. If BX ≤ XC, CY ≤
Y A,AZ ≤ ZB, prove that [XY Z] ≥ 1

4 [ABC].

(ii) Given that 4ABC is an arbitrary triangle, the points X, Y, Zare on the
sides BC,CA, AB respectively (but there is no any assumptions to the ra-

tio of distances, like
BX

XC
). Please use the method used in (i) or otherwise

to show that among 4AZY,4BXZ,4CY Z there must be one with area
not greater than that of 4XY Z.

6. (IREMO/2003) Let T be a triangle of perimeter 2, and a, b, c be the lengths
of its three sides. Prove that

(i) abc +
28
27
≥ ab + bc + ca;

(ii) ab + bc + ca ≥ abc + 1.
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Solutions to Testing Questions 16

Testing Questions (16-A)

1. ∵ x < 2, |
√

(x− 2)2 +
√

(3− x)2| = |(2− x) + (3− x)| = 5− 2x, so the
answer is (A).

2.
1 +

√
2 +

√
3

1−√2 +
√

3
=

(
√

3 + 1 +
√

2)2

[(
√

3 + 1)−√2][(
√

3 + 1) +
√

2]

=
(
√

3 + 1 +
√

2)2

(
√

3 + 1)2 − (
√

2)2
=

6 + 2
√

3 + 2
√

6 + 2
√

2
4 + 2

√
3− 2

=
3 +

√
3 +

√
2 +

√
6√

3 + 1
=

(
√

3 + 1)(
√

3 +
√

2)√
3 + 1

=
√

3 +
√

2.

3.
x2 − 4x + 3 + (x + 1)

√
x2 − 9

x2 + 4x + 3 + (x− 1)
√

x2 − 9
=

(x− 3)(x− 1) + (x + 1)
√

(x− 3)(x + 3)

(x + 3)(x + 1) + (x− 1)
√

(x + 3)(x− 3)

=
√

x− 3[(x− 1)
√

x− 3 + (x + 1)
√

x + 3]√
x + 3[(x + 1)

√
x + 3 + (x− 1)

√
x− 3]

=
√

x− 3√
x + 3

=
√

x2 − 9
x + 3

.

4.
2 + 3

√
3 +

√
5

(2 +
√

3)(2
√

3 +
√

5)
=

(2 +
√

3) + (2
√

3 +
√

5)
(2 +

√
3)(2

√
3 +

√
5)

=
1

2
√

3 +
√

5
+

1
2 +

√
3

=
2
√

3−√5
12− 5

+
2−√3
4− 3

=
2
7

√
3− 1

7

√
5 + 2−

√
3 = 2− 5

7

√
3− 1

7

√
5.

5. (
√

5 +
√

6 +
√

7)(
√

5 +
√

6−√7)(
√

5−√6 +
√

7)(−√5 +
√

6 +
√

7)

= [(
√

5+
√

6)+
√

7][(
√

5+
√

6)−√7][
√

7−(
√

6−√5)][
√

7+(
√

6−√5)]

105
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= [(
√

5 +
√

6)2 − 7][7− (
√

6−√5)2] = [4 + 2
√

30][−4 + 2
√

30]

= 120− 16 = 104.

6. ∵ a =
(
√

6)2 − 22

√
6 + 2

=
2√

6 + 2
, b =

(2
√

2)2 − (
√

6)2

2
√

2 +
√

6
=

2√
8 +

√
6

,

from
√

8 +
√

6 >
√

6 + 2, we have ∴ a > b.

7. a =
1√

27 +
√

26
, b =

1√
28 +

√
27

, c =
1√

29 +
√

28
, ∴ c < b < a.

8. We have
3

1 +
√

3
< x <

3√
5−√3

⇔ 3(
√

3− 1)
2

< x <
3(
√

5 +
√

3)
2

.

Since

2
3

<
√

3− 1 ⇔ 4
9

< 4− 2
√

3 ⇐⇒ 9
√

3 < 16 ⇔
√

243 <
√

256,

√
3− 1 < 1 ⇔ √

3 < 2 =
√

4,
10
3

<
√

5 +
√

3 ⇔ 100
9

< 8 + 2
√

15 ⇔ 14 < 9
√

15 ⇔
√

196 <
√

1215,

√
5 +

√
3 < 4 ⇔ 8 + 2

√
15 < 16 ⇔

√
15 < 4 ⇔

√
15 <

√
16,

∴ 1 <
3(
√

3− 1)
2

<
3
2
, 5 <

3(
√

5 +
√

3)
2

< 6,

∴ x may be 2, 3, 4, 5, the answer is (C).

9. Let A =
1

1− 4
√

5
+

1
1 + 4

√
5

+
2

1 +
√

5
, then

A =
(

1
1− 4

√
5

+
1

1 + 4
√

5

)
+

2
1 +

√
5

=
2

1−√5
+

2
1 +

√
5

=
2× 2
1− 5

=

−1.

10. Since U, V,W > 0, it is sufficient to compare U2, V 2,W 2. From

U2 − V 2 = (
√

ab +
√

cd)2 − (
√

ac +
√

bd)2 = ab + cd− ac− bd
= (a− d)(b− c) > 0.

V 2 −W 2 = (
√

ac +
√

bd)2 − (
√

ad +
√

bc)2 = ac + bd− ad− bc
= (a− b)(c− d) > 0.

Therefore U2 > V 2 > W 2, i.e. W < V < U .
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Testing Questions (16-B)

1. Considering negative number cannot be under square root sign, we find |a| =
3, i.e. a = ±3. Further, 3 − a appears in denominator implies a 6= 3, so
a = −3. Thus

x =
(

(−2)(−3)
4− 3

)1993

= 61993.

Thus, the units digit of x is 6 since any positive integer power of 6 always
has units digit 6.

2. Let 3
√

3 = x, 3
√

2 = b, then the given expression becomes

x

(
y2

x2
− y

x2
+

1
x2

)−1

= x

(
y2 − y + 1

x2

)−1

= x · x2

y2 − y + 1

=
x3

y2 − y + 1
=

x3(y + 1)
y3 + 1

=
3(y + 1)
2 + 1

= y + 1 = 3
√

2 + 1.

3. More general, we calculate A =

√
n(n + 1)(n + 2)(n + 3) + 1

4
.

A = 1
2

√
(n2 + 3n)(n2 + 3n + 2) + 1 = 1

2

√
(n2 + 3n + 1)2 − 1 + 1

=
n2 + 3n + 1

2
.

Now n = 1998, so A =
3997999

2
= 1998999.5.

4. Given a = 3
√

4 + 3
√

2 + 1, find the value of
3
a

+
3
a2

+
1
a3

.

From ( 3
√

2− 1)a = ( 3
√

2)3 − 1 = 1, a =
1

3
√

2− 1
, so that

a2 =
1

( 3
√

2− 1)2
=

1
3
√

4− 2 3
√

2 + 1
, a3 =

1
2− 3 3

√
4 + 3 3

√
2− 1

.

Thus,
3
a

+
3
a2

+
1
a3

= 3( 3
√

2− 1) + 3( 3
√

4− 2 3
√

2 + 1)

+1− 3 3
√

4 + 3 3
√

2 = 1.

5. We find [M ] first. Let A =
√

13 +
√

11, B =
√

13 − √11. Then M = A6

and A + B = 2
√

13, AB = 2, so

A2 + B2 = (A + B)2 − 2AB = 52− 4 = 48.
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Since M = A6, for finding [M ], we now consider A6 + B6:

A6 + B6 = (A2)3 + (B2)3 = (A2 + B2)(A4 −A2B2 + B4)
= (A2 + B2)[(A2 + B2)2 − 3(AB)2]

which is an integer. 0 < B =
√

13−√11 < 4− 3 = 1 yields 0 < B6 < 1,
so [M ] = A6 + B6 − 1 and

P = M − [M ] = A6 − (A6 + B6 − 1) = 1−B6, or 1− P = B6.

Thus,
M(1− P ) = A6B6 = (AB)6 = 26 = 64.

Solutions to Testing Questions 17

Testing Questions (17-A)

1.
√

12− 4
√

5 =
√

(
√

10−√2)2 =
√

10−√2.

2.
√

2 +
√

3 +
√

2−√3 =
1√
2
[(
√

3 + 1) + (
√

3− 1)] =
√

6.

3.
√

14 + 6
√

5−
√

14− 6
√

5 = 3 +
√

5− (3−√5) = 2
√

5.

4. Let a =
√

8 +
√

63, b =
√

8−√63, then a2 + b2 = 16, ab = 1, so

(a− b)2 = 16− 2 = 14 =⇒ a− b =
√

14.

5. Let a =
√

4 +
√

7, b =
√

4−√7, then a2 + b2 = 8, ab = 3, so

(a + b)2 = 8 + 6 = 14 =⇒ a + b =
√

14.

6.

√
7−√15−

√
16− 2

√
15 =

√
7−√15−√15 + 1 =

√
5−√3.

7. Since xy =
1
4
[(x + y)2 − (x− y)2], so

xy =
1
4
[(3
√

5−
√

2)− (3
√

2−
√

5)] =
√

5−
√

2.
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8. Let
√

16 + 2(2 +
√

5)(2 +
√

7) = a + b
√

5 + c
√

7, where a, b, c > 0. By
taking squares to both sides, then

16 + 4
√

5 + 4
√

7+ 2
√

35 = a2 + 5b2 + 7c2 + 2ab
√

5+ 2ac
√

7+ 2bc
√

35,

∴ a2 + 5b2 + 7c2 = 16, ab = 2, ac = 2, bc = 1,
∴ a2 = 4, i.e.a = 2, b = c = 1.

Thus,
√

8 + 2(2 +
√

5)(2 +
√

7) = 2 +
√

5 +
√

7.

9. Let A =
√

a + 3 + 4
√

a− 1 +
√

a + 3− 4
√

a− 1 =
√

(
√

a− 1 + 2)2

+
√

(
√

a− 1− 2)2, then A = 2 +
√

a− 1 + |√a− 1− 2|.
It’s clear that a ≥ 1. When

√
a− 1 < 2, i.e. 1 ≤ a < 5, then A =

2 +
√

a− 1 + 2−√a− 1 = 4. When 5 ≤ a, then

A =
√

a− 1 + 2 +
√

a− 1− 2 = 2
√

a− 1.

Thus,
√

a + 3 + 4
√

a− 1+
√

a + 3− 4
√

a− 1 =
{

4, if 1 ≤ a < 5,
2
√

a− 1, if a ≥ 5.

10. It is clear that x =
√

6−√30√
2−√10

− 2 =
√

3− 2. On the other hand,

A =
(
√√

3 + 1−
√√

3− 1)2

(
√

3 + 1)− (
√

3− 1)
=

2
√

3− 4
2

=
√

3− 2.

Thus, A is the root of the given equation for x.

Testing Questions (17-B)

1. It is clear that ab ≥ 0, i.e. a and b have same signs. Let A =
√

2
√

ab− a− b,
then

A =
√−b if a = 0 and b < 0; or A =

√−a if b = 0 and a < 0.

A is not defined if a > 0, b > 0 since 2
√

ab− a− b = −(
√

a−
√

b)2 < 0.

A =
√

(
√−a +

√−b)2 =
√−a +

√−b if a < 0, b < 0.

Thus, A =
√−a +

√−b if A is defined.
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2. 3

√
(
√

a− 1−√a)5√
a− 1 +

√
a

+ 3

√
(
√

a− 1 +
√

a)5√
a− 1−√a

= − 3

√
(
√

a− 1−√a)6 + 3

√
(
√

a− 1 +
√

a)6

= −(
√

a− 1−√a)2 + (
√

a− 1 +
√

a)2 = 4
√

a(a− 1).

3. Since

1 + a2 +
√

1 + a2 + a4 =
1
2
[2 + 2a2 + 2

√
(a2 + 1)2 − a2]

=
1
2
[(a2 + a + 1) + 2

√
(a2 + a + 1)(a2 − a + 1) + (a2 − a + 1)]

=
1
2
(
√

a2 + a + 1 +
√

a2 − a + 1)2,

therefore
√

1 + a2 +
√

1 + a2 + a4 =
√

a2 + a + 1 +
√

a2 − a + 1√
2

=
√

2(
√

a2 + a + 1 +
√

a2 − a + 1)
2

.

4. Let
√

2x− 5 = y, then y ≥ 0 and x =
(y2 + 5)

2
, so that

√
x + 2 + 3

√
2x− 5−

√
x− 2 +

√
2x− 5

=

√
1
2
(y2 + 5) + 2 + 3y −

√
1
2
(y2 + 5)− 2 + y

=
1√
2

√
y2 + 6y + 9− 1√

2

√
y2 + 2y + 1

=
1√
2
(y + 3)− 1√

2
(y + 1) =

2√
2

=
√

2.

5.
√

x =
√

a− 1√
a

yields x = a +
1
a
− 2, so a +

1
a

= x + 2. Since
a− 1√

a
=

√
x ≥ 0, so a ≥ 1, hence a− 1

a
≥ 0. Thus,

√
x2 + 4x =

√
(x + 2)2 − 4 =

√
(a +

1
a
)2 − 4 =

√
(a− 1

a
)2 = a− 1

a
,

it yields that

x + 2 +
√

x2 + 4x

x + 2−√x2 + 4x
=

(a + 1
a ) + (a− 1

a )
(a + 1

a )− (a− 1
a )

= a2.
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6.
1√

17− 12
√

2
=

1√
(3−√8)2

=
1

3−√8
= 3 +

√
8, so

3 +
√

4 < 3 +
√

8 < 3 +
√

9 = 6, i.e. 5 < 3 +
√

8 < 6.

Since 5.5 = 3 + 2.5 = 3 +
√

6.25 < 3 +
√

8, the nearest integer is 6.

Solutions to Testing Questions 18

Testing Questions (18-A)

1. The division with remainder 2007 = nq + 7 implies nq = 2000, where q
is the quotient. Since nq = 2000 = 24 · 53 has (4 + 1) · (3 + 1) = 20
positive divisors and among them only 1, 2, 4, 5 are less than 7, so there are
20− 4 = 16 divisors can be taken as n. 16 positive integers can be taken as
n.

2. 1234567894 ≡ 7894 ≡ 54 ≡ 252 ≡ 1 (mod 8), the remainder is 1.

3. Since 2222 ≡ 3 (mod 7) and 36 ≡ 1 (mod 7), it follows that

22225555 ≡ 36×925 · 35 ≡ 243 ≡ 5 (mod 7).

Since 5555 ≡ 4 (mod 7) and 43 ≡ 1 (mod 7), it follows that

55552222 ≡ 42222 ≡ 43×740 · 42 ≡ 16 ≡ 2 (mod 7).

Thus, 22225555 + 55552222 ≡ 5 + 2 ≡ 0 (mod 7), i.e.
7 | (22225555 + 55552222).

4. Since 473727 ≡ 33727
(mod 11) and 35 = 243 ≡ 1 (mod 11) and

3727 ≡ 227 ≡ (24)6 · 2 ≡ 2 (mod 5),

it follows that 3727 = 5k + 2 for some positive integer k and

473727 ≡ 33727 ≡ 35k+2 ≡ (35)k · 9 ≡ 9 (mod 11).

Thus, the remainder is 9.

5. Since 9 ≡ −2 (mod 11) and 210 = 1024 = 1023 + 1 ≡ 1 (mod 11),

91990 ≡ (−2)1990 ≡ 21990 ≡ (210)199 ≡ 1 (mod 11),

the remainder is 1.
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6. It is clear that n is odd since it is the product of odd numbers. Let x be the
last three digits in that order, then n ≡ x (mod 1000). Since 15, 35, 55 are
three numbers in the product, so n is divisible by 125, hence x is divisible
by 125. Thus, the possible values of x are 125, 375, 625, 875 only.

On the other hand, 1000 | (n − x) ⇔ 8 | (n − x), so n ≡ x (mod 8). For
getting the remainder of n modulo 8, we find that

n = (3)(4 · 1 + 3)(4 · 2 + 3)(4 · 3 + 3) · · · · · (4 · 499 + 3)(4 · 500 + 3)
≡ (3 · 7) · (3 · 7) · · · · · (3 · 7)︸ ︷︷ ︸

250 pairs of brackets

·3 ≡ 5 · 5 · · · · · 5︸ ︷︷ ︸
250 of 5

·3 (mod 8)

≡ 1 · 1 · · · · · 1︸ ︷︷ ︸
125

·3 ≡ 3 (mod 8).

Among 125, 375, 625, 875, only 875 has remainder 3 modulo 8, so x =
875, i.e. the last three digits of n is 875.

7. Let n be the solution. n ≡ 1 (mod 5) implies n = 5k + 1 for some non-
negative integer k;

Then n ≡ 2 (mod 7) implies 5k ≡ 1 (mod 7), so minimum k is 3, i.e.
n = 16 is the minimum n satisfying the first two equations.

Then n = 16+35m is the general form of n. The requirement n ≡ 3 (mod
9) yields 16 + 35m ≡ 3 (mod 9), and its minimum solution is m = 4, so
n = 156 + 315p for some p.

Finally, from the fourth requirement n ≡ 4 (mood 11), we obtain 2+315p ≡
4 (mod 11), so 7p ≡ 2 (mod 11), i.e. p = 5. Thus,

n = 156 + 315× 5 = 1731.

8. (a) When n = 3k where k is a positive integer, then

2n − 1 ≡ (23)k − 1 ≡ 1k − 1 ≡ 0 (mod 7),

so each multiple of 3 is a solution.

When n = 3k + r, where r = 1 or 2, then

2n − 1 = (23)k · 2r − 1 ≡ 2r − 1 ≡
{

1 if r = 1
3 if r = 2.

so n = 3k for some positive integer k is the necessary and sufficient condi-
tion for 7 | (2n − 1).

(b) From (a) it is obtained that 2n ≡ 0, 1 or 3 (mod 7), so 2n + 1 6≡ 0
(mod 7) for any positive integer n.
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9. Since 34 ≡ 1 (mod 10) and 74 = 2401 ≡ 1 (mod 10),

31999 = (34)499 · 33 ≡ 7 (mod 10),
72000 = (74)500 ≡ 1 (mod 10),
172001 ≡ 72001 ≡ 72000 · 7 ≡ 7 (mod 10),

so 31999 × 72000 × 172001 ≡ 7 · 1 · 7 ≡ 9 (mod 10), i.e. the solution is (E).

10. From 210 = 1024 ≡ 24 (mod 100) and 242k ≡ 576k ≡ 76 (mod 100),

2999 ≡ (210)99 · 29 ≡ (24)99 · 29 ≡ 76 · 24 · 12 (mod 100)

≡ 38 · 242 ≡ 38 · 76 ≡ 2888 ≡ 88 (mod 100).

Therefore the last two digits of 2999 are 88.

Testing Questions (18-B)

1. Solution 1 First of all we find the remainder of 141414
modulo 25.

142 = 196 ≡ −4 (mod 25) ⇒ (14)5 ≡ (−4)2 · 14 ≡ 224 ≡ −1 (mod 25),

so (14)10 ≡ 1 (mod 25). On the other hand,

142 = 196 ≡ 6 (mod 10) ⇒ 1414 ≡ 67 ≡ 6 (mod 10),

so 1414 = 10t + 6 for some positive integer t, hence

141414
= 1410t+6 = (1410)t · 145 · 14 ≡ (1)(−1)(14) ≡ 11 (mod 25).

Since 141414
= (2 · 7)2(5t+3) = 45t+3 · 710t+6 which is divisible by 4, so

141414 ≡ 0 (mod 4). Write 141414
= 25K + 11 where K is a positive

integer, then

25K + 11 ≡ 0 (mod 4),
K − 1 ≡ 0 (mod 4),

K ≡ 1 (mod 4), i.e. K = 4l + 1 for some l ∈ N,

∴ 141414
= 25(4l + 1) + 11 = 100l + 36.

Thus the last two digits of 141414
are 36.

Solution 2 Notice that 1414 ≡ (42)7 ≡ 6 (mod 10) and

1410 ≡ (196)5 ≡ (−4)5 ≡ −1024 ≡ 76 (mod 100),

so

141414 ≡ 1410t+6 ≡ 76 · (−4)3 ≡ 76 · 36 ≡ 36 (mod 100).
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2. Let A = (25733 + 46)26. From

25733 ≡ 733 ≡ (49)16 · 7 ≡ 7 (mod 50) and 46 ≡ −4 (mod 50),

it follows that

A = (25733 + 46)26 ≡ (7− 4)26 ≡ 326 (mod 50).

35 = 243 ≡ −7 (mod 50) yields 310 ≡ (−7)2 ≡ −1 (mod 50), so

A ≡ 326 ≡ (310)2 · 35 · 3 ≡ (1)(−7)(3) ≡ −21 ≡ 29 (mod 50),

i.e. the remainder of (25733 + 46)26 modulo 50 is 29.

3. 3n ends with 003 is equivalent to that 3n−1 ends with 001, i.e. the units
digit of 3n−1 is 1, hence n − 1 = 4k for some natural number k. Since
125 | 34k − 1 and

34k − 1 = 81k − 1 = 80(81k−1 + 81k−2 + · · ·+ 81 + 1),

so 25 | (81k−1 + 81k−2 + · · · + 81 + 1). It yields 5 | (81k−1 + 81k−2 +
· · ·+ 81 + 1). From

(81k−1 + 81k−2 + · · ·+ 81 + 1) ≡ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k

≡ k (mod 5),

it follows that k = 5m for some positive integer m. Below we find the
minimum value of m recursively. From

81 ≡ 81 (mod 1000),
812 ≡ 6561 ≡ 561 (mod 1000),

814 ≡ 5612 ≡ (500 + 61)2 ≡ 612 ≡ 721 (mod 1000),
815 ≡ 721 · 81 ≡ 58401 ≡ 401 (mod 1000),

therefore for m = 1, 2, 3, 4, 5,

(815)− 1 ≡ 401− 1 ≡ 400 (mod 1000),
(815)2 − 1 ≡ (400 + 1)2 − 1 ≡ 800 (mod 1000),
(815)4 − 1 ≡ (800 + 1)2 − 1 ≡ 600 (mod 1000),

(815)5 − 1 ≡ 601 · 401− 1 ≡ 241001− 1 ≡ 0 (mod 1000).

Thus, mmin = 5, hence kmin = 25 and nmin = 4kmin + 1 = 101 is the
minimum required value.

4. Since a + b + c = a + b + 2a + 5b = 3(a + 2b), so 3 | (a + b + c).

Now let a ≡ r1 (mod 3) and b ≡ r2 (mod 3), then 0 < r1, r2 ≤ 2.
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(i) Suppose that r1 6= r2. When r1 = 1, r2 = 2, then

c = 2a+5b = 2(3q1+1)+5(3q2+2) = 3(2q1+5q2+4) ⇒ c is not prime.

When r1 = 2, r2 = 1, then c = 2(3q1+2)+5(3q2+1) = 3(2q1+5q2+3),
i.e. c is not prime also. Thus, r1 = r2 = r.

(ii) When r1 = r2 = r (r may be 1 or 2), then

a + b + c = 3(a + 2b) = 3(3q1 + r + 6q2 + 2r) = 9(q1 + 2q2 + r)

which is divisible by 9, so 9 | (a + b + c).

Below by two examples we indicate that 9 is the maximum possible value
of n. Let a1 = 11, b1 = 5, c1 = 47, then a1 + b1 + c1 = 63, and n is a
factor of 63.

Let a2 = 13, b2 = 7, c = 61, then a2 + b2 + c2 = 81, n is a factor of 81
also. From (63, 81) = 9 ≥ n, the conclusion is proven.

5. Note that n · 2n + 1 ≡ 0 ≡ 3 (mod 3) ⇔ n · 2n ≡ 2 (mod 3).

(i) For n = 6k + 1, where k is any non-negative integer,

n · 2n = (6k + 1) · 26k+1 ≡ 2 · 43k ≡ 2 (mod 3).

(ii) For n = 6k + 2, where k is any non-negative integer,

n · 2n = (6k + 2) · 26k+2 ≡ 8 · 43k ≡ 2 (mod 3).

(iii) For n = 6k + 3, where k is any non-negative integer,

n · 2n = (6k + 3) · 26k+1 ≡ 0 (mod 3).

(iv) For n = 6k + 4, where k is any non-negative integer,

n · 2n = (6k + 4) · 26k+4 ≡ ·43k+2 ≡ 1 (mod 3).

(v) For n = 6k + 5, where k is any non-negative integer,

n · 2n = (6k + 5) · 26k+5 ≡ 4 · 43k+2 ≡ 1 (mod 3).

(vi) For n = 6k + 6, where k is any non-negative integer,

n · 2n = (6k + 6) · 26k+6 ≡ 0 (mod 3).

Thus, the solution set is all n with the forms 6k+1 or 6k+2, k = 0, 1, 2, . . ..
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Solutions to Testing Questions 19

Testing Questions (19-A)

1. From the assumption there exists a positive integer k such that

100a + 10b + c = 37k,

therefore

bca = 100b + 10c + a = 1000a + 100b + 10c− 999a
= 10(100a + 10b + c)− 37 · 27a = 37(10k − 27a),

which is divisible by 37.

2. Let n digit number A be the number obtained by deleting the first digit 6,
then

25A = 6× 10n + A,
4A = 10n,

∴ A = 25× 10n−2,

i.e. the original number is 625× 10n−2 (where n ≥ 2).

3. Use a, b, c to denote the hundreds, tens and units digits of x respectively, then
a + b + c = 21 and

100a + 10b + c + 495 = 100c + 10b + a,

therefore
99(c− a) = 495,

c− a = 5,

∴ c = a + 5,

hence the possible values of a are 1, 2, 3, 4. Then the condition a + b + c =
21 implies 2a + b = 16, so b = 2(8− a) ≤ 9, a = 4. Thus, c = 9, b = 8,
i.e. x = 489.

4. Prove that each of the following numbers is a perfect square number:

729, 71289, 7112889, 711128889, · · · .

Let An = 711 · · · 11︸ ︷︷ ︸
n−1

2 88 · · · 88︸ ︷︷ ︸
n−1

9, then
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An = 7 · 102n + 11 · · · 11︸ ︷︷ ︸
n−1

·10n+1 + 2 · 10n + 8 · 11 · · · 11︸ ︷︷ ︸
n−1

·10 + 9

=
1
9
[63 · 102n +(10n−1− 1) · 10n+1 +18 · 10n +8 · (10n−1− 1) · 10+81]

=
1
9
[64 · 102n − 10n+1 + 18 · 10n + 8 · 10n + 1]

=
1
9
[(8 · 10n)2 + 2 · 8 · 10n + 1] =

1
9
(8 · 10n + 1)2

=
(

8(10n − 1)
3

+ 3
)2

= (2 66 · · · 66︸ ︷︷ ︸
n−1

7)2.

Thus the conclusion is proven.

5. Let n = 10x + y, where y is the last digit, and x is a m digit number. Then

5(10x + y) = 10my + x,
49x = (10m − 5)y.

Since 1 ≤ y ≤ 9 < 49, so 7 | (10m − 5). The minimum value of m such
that 7 | (10m − 5) is 5, so

49x = 99995y ⇒ 7x = 14258y. ∵ x - 14258, ∴ y = 7, x = 14258.

Thus, the number is 142587.

6. Let n = 1000a+100b+10c+d, where a, b, c, d be the digits of n. From the
assumption,

1000a + 100b + 10c + d + a + b + c + d = 2001,
1001a + 101b + 11c + 2d = 2001,

so a = 1 and 101b + 11c + 2d = 1000, which implies b + c + 2d =
10(100− 10b− c), therefore 10 | (b + c + 2d).

(i) If b+c+2d = 10, then 100−10b−c = 1, i.e. b = c = 9 and d = −4,
it is impossible.

(ii) If b + c + 2d = 20, then 100 − 10b − c = 2, i.e. b = 9, c = 8 and
2d = 3, it is impossible.

(iii) If b + c + 2d = 30, then 100 − 10b − c = 3, i.e. b = 9, c = 7 and
d = 7. By checking, it is certainly a solution.

Thus, n = 1977.
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7. Since 11 · · · 11︸ ︷︷ ︸
1989 digits

=
1
9
(101989 − 1), so

N = 11 · · · 11︸ ︷︷ ︸
1989 digits

×1
9
(101989 − 1) =

1
9
[11 · · · 11︸ ︷︷ ︸
1989 digits

×101989 − 11 · · · 11︸ ︷︷ ︸
1989 digits

]

=
1
9
(11 · · · 11︸ ︷︷ ︸
1989 digits

)× 101989 − 1
9
(11 · · · 11︸ ︷︷ ︸
1989 digits

)

= 12345679 · · · 12345679︸ ︷︷ ︸
221 blocks of 12345679

×101989 − 12345679 · · · 12345679︸ ︷︷ ︸
221 blocks of 12345679

=

12345679 · · · 12345679︸ ︷︷ ︸
220 blocks of 12345679

12345678 9 · · · 9︸ ︷︷ ︸
221 digits

87654320 · · · 87654320︸ ︷︷ ︸
220 blocks of 87654320

87 · · · 21

Thus, the sum S of all digits of N is given by

S = 221× 37− 1 + 221× 9 + 221× 35 + 1 = 221× 81 = 17901.

8. Let the original four digit number be n. Then the new number n′ is n+5940,
so the units digit of n is equal to the hundreds digit. Let n = abcb =
1000a + 100b + 10c + b, then assumptions give

(1000c + 100b + 10a + b)− (1000a + 100b + 10c + b) = 5940,
990(c− a) = 5940,

∴ c− a = 6.

When n is minimum, then a = 1, c = 7, so a + c = 8. Since a + b + c + b
has a remainder 8 when it is divided by 9, so 2b is divisible by 9, i.e. b = 9
or 0. Since n is odd, so b = 9. Thus, the four digit number is 1979.

9. y = 2(x + 1) implies that in the process of getting y from x, the first digit
and the last digit of x have changed, so the first digit of x is 2 and the last
digit of x is 5, but the first digit of y is 5 and last digit of y is 2. Write
x = 2abc5, y = 5a′b′c′2, then

5(104) + 103a′ + 102b′ + 10c′ + 2 = 2(2 · 104 + 103a + 102b + 10c + 6),
9990 = 1000(2a− a′) + 100(2b− b′) + 10(2c− c′).

If a 6= a′, then 2a > a′ implies a = 5, a′ = 2, so 2a−a′ = 8, then the right
hand side must be less than the left hand side. Hence a = a′ = 9. Thus, it
follows that

990 = 100(2b− b′) + 10(2c− c′).

Similarly, b = b′ = 9 and 90 = 10(2c− c′), so c = c′ = 9 also.

Thus, x = 29995.
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10. For the numbers 100, 200, . . . , 900, the ratios are all 100. Below we show
that 100 is the maximum value.

For any three digit number abc which is different from 100, . . . , 900, at least
one of b, c is not 0. So

a + b + c ≥ a + 1.

Then abc = 100a + 10b + c < 100a + 100 = 100(a + 1) implies that

abc

a + b + c
<

100(a + 1)
a + 1

= 100.

The conclusion is proven.

Testing Questions (19-B)

1. 43 < 100 ≤ abc ≤ 999 < 103 implies 5 ≤ a + b + c ≤ 9.

When a + b + c = 5, 53 = 125 6= (1 + 2 + 5)3, no solution.

When a + b + c = 6, 63 = 216 6= (2 + 1 + 6)3, no solution.

When a + b + c = 7, 73 = 343 6= (3 + 4 + 3)3, no solution.

When a + b + c = 8, 83 = 512 = n = (5 + 1 + 2)3, so n = 512 is a
solution.

When a + b + c = 9, 93 = 729 6= (7 + 2 + 9)3, no solution.

Thus, n = 512 is the unique solution.

2. The relation a2 + b = c implies (xx · · ·x︸ ︷︷ ︸
n

)2 + yy · · · y︸ ︷︷ ︸
n

= zz · · · z︸ ︷︷ ︸
2n

, so

x2(11 · · · 1︸ ︷︷ ︸
n

)2 + y 11 · · · 1︸ ︷︷ ︸
n

= z 11 · · · 1︸ ︷︷ ︸
2n

= z(11 · · · 1︸ ︷︷ ︸
n

) · (1 00 · · · 0︸ ︷︷ ︸
n−1

1).

Hence
x2(11 · · · 1︸ ︷︷ ︸

n

) + y = z(1 00 · · · 0︸ ︷︷ ︸
n−1

1). (30.1)

Write x2 = 10u + v, where u, v are the tens digit and units digit of x2 (u
may be zero), then (30.1) becomes

u · 11 · · · 1︸ ︷︷ ︸
n

0 + v · 11 · · · 1︸ ︷︷ ︸
n

+y = z · 1 00 · · · 0︸ ︷︷ ︸
n−1

1. (30.2)
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Now compare the tens digits on two sides of (30.2). On the right hand side,
the tens digit is 0, but on the left hand side, it is u + v + 1 − 10 when
v + y ≥ 10, or u + v − 10 when v + y < 10. Thus, it follows that

u + v = 9 or u + v = 10.

On the other hand, since 10u + v = x2 = x2 is a perfect square, so x2 =
09, 36, 81, 64, i.e. x = 3, 6, 9, 8 only.

When x = 3, then z = 1, y = 2 (n ≥ 2).

When x = 6, then z = 4, y = 8 (n ≥ 2).

When x = 8, then z = 7, y = 3 (n ≥ 2).

When x = 9, then no solution.

3. Let n = 10a + b, then n′ = 10b + a. the given condition implies

10a + b = (10b + a)q + q, q < 10b + a,

i.e.
(10− q)a− (10q − 1)b = q. (30.3)

(i) When q ≥ 5, then (30.3) implies 45 ≥ 5a ≥ (10q−1)b+q ≥ 49b+q,
so b = 0. By (30.3), q = (10− q)a, so a =

q

10− q
, therefore q = 5, a = 1

or q = 8, a = 4, however, they do not satisfy the original equation. Thus,
no solution for q ≥ 5.

(ii) When q = 1, (30.3) becomes 9(a− b) = 1, no solution.

(iii) When q = 2, (30.3) becomes 8a−19b = 2, i.e. 8(a−5) = 19(b−2),
so 19 | a− 5 implies a = 5, so b = 2.

(iv) When q = 3, (30.3) becomes 7a − 29b = 3, so b ≡ 4 (mod 7), i.e.
b = 4. However, 7a = 119 implies a > 10, a contradiction. So no solution
if q = 3.

(v) When q = 4, then (30.3) yields 6a − 39b = 4, so 0 ≡ 1 (mod 3), a
contradiction.

Thus, a = 5, b = 2 is the unique solution, n = 52.

4. Let x = 1000a + 100a + 10b + b = 1100a + 11b be the desired four digit
number. Then 11 | x. Since x is a perfect square, so 112 | x, i.e. 11 |
(100a + b), which implies that 11 | (a + b). Since 1 ≤ a + b ≤ 18, so
a + b = 11. Thus,

x = 11(100a + b) = 11(99a + 11) = 112(9a + 1)

is a perfect square, so 9a+1 so is also, which implies a = 7 and x = 882 =
7744.
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5. Let x2 > 0 be the desired number, and y its last two digits with 0 < y < 100.
The given condition implies that there is a positive integer z such that x2 =
100z2 + y, so (x− 10z)(x + 10z) = y.

Let x − 10z = u, x + 10z = v. Then x =
u + v

2
, z =

v − u

20
. Since the

value of z increases 1 will let x2 increase at least 200without considering
the change of y, it is needed to let z be as large as possible for getting the
maximal x2. Therefore v − u should be as large as possible.

uv = y < 100 implies that 1 ≤ u ≤ v < 100, i.e.

z =
v − u

20
<

100
20

= 5,

so zmax = 4, i.e. v − u = 80 or v = u + 80. Since u(u + 80) = y < 100
implies u < 2, so u = 1, v = 81. Hence

x =
81 + 1

2
= 41, x2 = 412 = 1681.

Solutions to Testing Questions 20

Testing Questions (20-A)

1. (3k2 + 3k − 4) + (7k2 − 3k + 1) = 10k2 − 3 implies that its last digit is 7,
so it must be not a perfect square for any natural number k, i.e. the required
k does not exist.

2. Let (x− 1)(x + 3)(x− 4)(x− 8) + m = n2. Then

n2 = [(x− 1)(x− 4)] · [(x + 3)(x− 8)] + m
= (x− 5x + 4)(x2 − 5x− 24) + m
= [(x− 5x− 10) + 14][(x− 5x− 10)− 14] + m
= (x2 − 5x− 10)2 − 142 + m
= (x2 − 5x− 10)2 − 196 + m.

Thus, m = 196, the answer is (D).

3. Let n + 20 = a2, n− 21 = b2, where a, b are two natural numbers. Then

41 = a2 − b2 = (a− b)(a + b)

which implies a−b = 1, a+b = 41, so a = 21, b = 20 and n = 212−20 =
421.



122 Solutions to Testing Questions

4. Let the 2009 consecutive positive integers be

x− 1004, x− 1003, · · ·x− 1, x, x + 1, · · · , x + 1004.

Then their sum is 2009x. Since it is a perfect square and 2009 = 41 · 49 =
41 · 72, the minimum value of x is 41, i.e. the minimum value of x + 1004
is 1045.

5. Since 427+410000+4x = 254+220000+22x = 254(1+2 ·21945+22x−54), it
is obvious that the right hand side is a perfect square if 22x−54 = (21945)2,
i.e., x− 27 = 1945, x = 1972.

When x > 1972, then

(2x−27)2 = 22x−54 < 1 + 2 · 21945 + 22x−54 < (2x−27 + 1)2,

so 1+2 ·21945 +22x−54 is not a perfect square. Thus, the maximal required
value of x is 1972.

6. Note that the following inequality holds:

(n2+n)2 < n4+2n3+2n2+2n+1 < n4+2n3+3n2+2n+1 = (n2+n+1)2,

the conclusion is proven at once.

7. We prove by contradiction. Suppose that the D = n2 satisfies all the require-
ments. The units digit of D is 5 implies that n is too. Assume n = 10a+5,
then D = (10a + 5)2 = 100a(a + 1) + 25, so the last two digits of D are
25.

Since the last digit of a(a + 1) is 0, 2 or 6, and 0, 2 are impossible, so the
third digit of D is 6, i.e. D = 100b + 625 for some digit b. Thus, 53 | D,
hence 54 | D since its a perfect square. However,it implies that 54 | 100k,
so 5 | k, i.e. k = 0 or 5, a contradiction.

8. Let n = abc + bca + cab, then

n = (100a + 10b + c) + (100b + 10c + a) + (100c + 10a + b)
= 111(a + b + c) = 3 · 37(a + b + c).

If n = m2, then 37 | m2 implies 372 | 3 · 37(a + b + c), so

37 | (a + b + c).

However, 0 < a + b + c ≤ 9 + 9 + 9 = 27, a contradiction.

9. Since each perfect square has remainder 0, 1 or 4 modulo 8, by taking modulo
8 to both sides of the equation, the left hand side is 0, 1, 2, 4 or 5, whereas
the right hand side is 6, so the equality is impossible.
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10. From assumption, there exists integer k such that x2 + y2 − x = 2kxy.
Consider the quadratic equation in y

y2 − 2kxy + (x2 − x) = 0,

since it has an integer solution, so, by Viete Theorem, the other root is also
an integer, and the discriminant ∆ of the equation is a perfect square. Hence

∆ = 4[k2x2 − (x2 − x)] = 4x[(k2 − 1)x + 1]

is a perfect square. Since x and (k2 − 1)x + 1 are relatively prime, x and
(k2 − 1)x + 1 both are perfect square numbers, so x is a perfect square.

Testing Questions (20-B)

1. Write A = (m + n)2 + 3m + n. Then (m + n)2 < A < (m + n)2 + 4(m +
n) + 4 = (m + n + 2)2. Therefore

(m + n)2 + 3m + n = (m + n + 1)2 = m2 + n2 + 1 + 2mn + 2m + 2n,
∴ m = n + 1,

Thus, the solutions for (m, n) are (2, 1), (3, 2), · · · , (99, 98), i.e. there are
98 required pairs for (m, n).

2. The positive divisors of p4 are 1, p, p2, p3, p4, therefore 1+p+p2+p3+p4 =
n2 for some positive integer n, so

(p2 + p)(p2 + 1) = n2 − 1 = (n− 1)(n + 1).

For p = 2, we have 1+p+p2 +p3 +p4 = 31 which is not a perfect square,
so p ≥ 3.

Suppose that n − 1 < p2 + 1, then n + 1 < p2 + 3 ≤ p2 + p, so that
n2 − 1 < (p2 + 1)(p2 + p). Thus, n − 1 ≥ p2 + 1, i.e. n ≥ p2 + 2. Let
n = p2 + d, then d ≥ 2 and n + 1 = p2 + d + 1, hence

p + p2 + p3 + p4 = (p2 + d)2 − 1 = p4 + 2d · p2 + d2 − 1,
p3 − (2d− 1)p2 + p = (d− 1)(d + 1),
p[p2 − (2d− 1)p + 1] = (d− 1)(d + 1).

If p | (d− 1), i.e. d = 1 + kp for some positive integer k, then

0 < p2 − (1 + 2kp)p + 1 = (1− 2k)p2 − (p− 1) < 0,
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a contradiction. Therefore p | d + 1, i.e. d = kp − 1 for some positive
integer k, and,

1 ≤ p2 − (2kp− 3)p + 1 =⇒ p− (2kp− 3) ≥ 0 =⇒ (2k − 1)p ≤ 3
=⇒ k = 1, p = 3.

Thus, p = 3 is the unique solution.

3. (i) When x ≥ y, then

x2 < x2 + y + 1 ≤ x2 + x + 1 < (x + 1)2,

so x2 + y + 1 is not a perfect square.

(ii) When x < y, then y2 < y2 + 4x + 3 < y2 + 4y + 4 = (y + 2)2, so
y2 + 4x + 3 is not a perfect square if y2 + 4x + 3 6= (y + 1)2. When

y2 + 4x + 3 = (y + 1)2 = y2 + 2y + 1,

then y = 2x + 1, so that x2 + y + 1 = x2 + 2x + 2. However,

(x + 1)2 = x2 + 2x + 1 < x2 + 2x + 2 < x2 + 4x + 4 = (x + 2)2

indicates that x2 + y + 1 = x2 + 2x + 2 is not a perfect square. Thus, the
conclusion is proven.

4. (IMO/1986) Let d be any positive integer not equal to 2, 5, or 13. Show that
one can find distinct a, b in the set {2, 5, 13, d} such that ab − 1 is not a
perfect square.

Since 2 ·5−1, 2 ·13−1 and 5 ·13−1 are all perfect squares, it is necessary
to show that at least one of 2d−1, 5d−1 and 13d−1 is not a perfect square.

(i) When d is even, i.e. d = 2m for some positive integer m, then 2d−1 =
4m− 1 is not a perfect square (since its remainder modulo 4 is 3).

(ii) When d = 4m + 3 for some non-negative integer m, then

5d− 1 = 20m + 14 = 4(5m + 3) + 2 ≡ 2 (mod 4),

so 5d− 1 is not a perfect square.

(iii) When d = 4m + 1 for some non-negative integer m, then

5d− 1 = 20m + 4 = 4(5m + 1), 13d− 1 = 52m + 12 = 4(13m + 3).

In case that m ≡ 1 or 2 (mod 4), then 5m+1 ≡ 2 or 3 (mod 4) implies that
5m + 1 is not a perfect square, so 5d− 1 is not a perfect square.

In case that m ≡ 0 or 3 (mod 4), then 13m + 3 ≡ 3 or 2 (mod 4) implies
that 13m + 3 is not a perfect square, so 13d− 1 is not a perfect square.

Thus, in any case at least one of three numbers 2d − 1, 5d − 1, 13d − 1 is
not a perfect square.
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5. It is needed to consider several possible cases as follows.

Let A = 3n + 2× 17n.

(i) When n = 4m where m is a non-negative integer, then

3n+2·17n = (34)m+2(174)m = 81m+2·83521m ≡ 3 (mod 10),

so A is not a perfect square.
(ii) When n = 4m + 1 where m is a non-negative integer, then

3n + 2 · 17n = 3 · 81m + 34 · 83521m ≡ 7 (mod 10),

so A is not a perfect square.
(iii) When n = 4m + 2 where m is a non-negative integer, then

3n + 2 · 17n = 9 · 81m + 578 · 83521m ≡ 7 (mod 10),

so A is not a perfect square.
(iv) When n = 4m + 3 where m is a non-negative integer, then

3n + 2 · 17n = 27 · 81m + 9826 · 83521m ≡ 3 (mod 10),

so A is not a perfect square.
Thus, A is never a perfect square.

Solutions to Testing Questions 21

Testing Questions (21-A)

1. When we partition the n + 1 integers according to the remainders modulo n,
there are at most n classes. By the pigeonhole principle, there must be one
class containing at least 2 numbers. Then any two of them have a difference
which is divisible by n.

2. Write each of the n + 1 given numbers in the form 2m · q, where q is an odd
number and m is a non-negative integer. Then 1 ≤ q ≤ 2n − 1, i.e. there
are at most n different values for q.

By partitioning the given n + 1 numbers into at most n classes according
to the value of q, then, by the pigeonhole principle, there must be one class
containing at least 2 numbers. Then larger one of them must be divisible by
the smaller one since they have the same q.
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3. Suppose that each of the given numbers is not divisible by 2009. Then 0 is not
a value of the remainders of the given numbers when divided by 2009, i.e.
the 2009 remainders can take at most 2008 distinct values. Therefore, by
the pigeonhole principle, there must be at least two of them, say 111 · · · 111︸ ︷︷ ︸

p digits
and 111 · · · 111︸ ︷︷ ︸

q digits

, where 1 ≤ p < q ≤ 2009, such that they have a same

remainder, and hence their difference

111 · · · 111︸ ︷︷ ︸
q−p digits

×1 000 · · · 000︸ ︷︷ ︸
p digits

is divisible by 2009. Then (10p, 2009) = 1 implies 2009 | 111 · · · 111︸ ︷︷ ︸
q−p digits

, a

contradiction. Thus, the conclusion is proven.

4. Partition each side of the equilateral triangle into three equal parts, and by
passing through these partition points introduce lines parallel to the sides of
the triangle, then the triangle will be partitioned into 9 equal small equilat-
eral triangles of area 1/9 cm2.

By the pigeonhole principle, there must be three points inside or on the

boundary of a small triangle, then its area is not greater than
1
9

m2.

5. First of all, use the remainder modulo 10, or the units digit to replace the
original one. Next, we consider the following six “pigeonholes”:

{0}, {5}, {1, 9}, {2, 8}, {3, 7}, {4, 6}.

(i) if two remainders are both 0 or 5, their difference of the two numbers
is divisible by 10.

(ii) if two remainders are one of (1, 9), (2, 8), (3, 7), (4, 6), then the sum
of the two numbers is divisible by 10.

Since seven remainders put in above six pairs, there must be two to be in
the same pair, so their sum or difference is divisible by 10.

6. The 28 cells in the first row are colored by three colors, , by the pigeonhole
principle, there must be at least b27/3c+1 = 10 of them being of the same
color, say it is red. By exchanging the columns if necessary, we can assume
that the 10 columns with red cells are the first 10 columns.

If there are two red cells appeared in the first 10 columns of another row,
then the conclusion is proven.
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Otherwise, there is at most one red cell appeared in the first 10 columns of
each of the second, third or fourth row, by exchanging the first 10 columns if
necessary, we may assume that the red cells are all in the first three columns
of the 2nd, 3rd and 4th row, so in the rectangular region A of dimension
3 × 7, which are formed by the last three rows and the 4th column to the
10th column, each cell is colored by blue or yellow color only. Then in the
first row of A, by the pigeonhole principle, there must be four cells with the
same color, say it is blue, and for convenience, we can assume that they are
in the first four columns of A.

If in another row of A there are two blue cells appeared in the first four
columns of A, the conclusion is proven also, otherwise, in each other row
of A there is at most one blue cell in the first four columns, then in each
other row of A there are at least 3 yellow cells in the first four columns.

Then, assuming that in the second row of A the three yellow cells appeared
in the first 3 columns, since in the first three cells of third row of A at least
two are yellow, a required rectangular region with four yellow corners is
obtained.

Thus, in any possible case the conclusion is proven.

7. As shown in the right digram, let PQ be such a stright line and MN be the
common middle line of the two trapizia. Since the two trapezia have equal
height, the ratio of their areas is equal to that of their middle lines, that is,
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MH/NH = 2/3. Thus, MH : MN = 2/5. By symmetry, there are
another three points K, I, J on the two middle lines of ABCD.

Each of the nine lines must pass through one of the four points, so, by the
pigeonhole principle, there must be at least three of them passing through
the same point.
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8. Partition the segment OA into n short segments of equal lengths 1/n. By
the pigeonhole principle, there must be two of the n + 1 points which are
contained by a same

short segment, so the distance between the two points is not greater than
1/n.

9. From the given condition, if the desired term exists, it must be at least a five
digit number. Let xn be the last four digits of the nth term (if is is really
less than 1000, then make it be a four digit number by adding pre-zeros, for
example 204 = 0204). Consider the following 100000001 = 108 + 1 pairs

(x1, x2), (x2, x3), . . . , (x100000001, x100000002).

Since the number of possible different two dimensional values of the pairs
at most is 104×104 = 108 < 108+1, by the pigeonhole principle, in above
108 + 1 pairs there must be two with same components, i.e. there exist i, j
with 1 < i < j ≤ 108 + 1 such that

xi = xj , xi+1 = xj+1.

Then xi−1 = xi+1 − xi = xj+1 − xj = xj−1, so (xi−1, xi) = (xj−1, xj).
Continuing the process, it follows that

(x1, x2) = (xj−i+1, xj−i).

Then x1 = xj−i+1 implies that the xj−i+1 = 0000, i.e. the j− i+1th term
ends with at least four zeros.

In fact, it can be proven that the 7501th term has the desired property.

Testing Questions (21-B)

1. The given arithmetic sequence contains 34 numbers totally. We consider the
16 pairs

{4, 100}, {7, 97}, {10, 94}, . . . , {49, 55}
which are formed by deleting 1 and 52 from the sequence. Then by the
pigeonhole principle, at least 18 numbers of A is inside the 16 pairs, so at
least there must be two pairs such that their components are all in A, i.e.,
there must be four numbers a, b, c, d ∈ A such that

a + b = c + d = 104.

Note: A stronger conclusion is proven actually here.
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2. According to the units digit partition the 17 numbers into 5 classes: C0, C1,
C2, C3, C4.

If each class contains at least one number, then the five numbers obtained
by taking anyone from each class satisfy the requirement.

If at least one class is empty set, then, by the pigeonhole principle, there
must be one class containing at least b16/4c + 1 = 5 numbers. Any five
numbers taking from this class have the same units digit, so their sum must
be divisible by 5. The conclusion is proven also.

3. The set of 10 distinct two digit numbers has 210 = 1024 subsets totally (in-
cluding the empty set and the set its self. For a proper subset, if use S to
denote the sum of all its elements, then 10 ≤ S ≤ 91+92+ · · ·+99 = 855.
So the value of S has 855− 9 = 846 choices.

Since the 1022 proper subsets can take 846 possible different value of S, by
the pigeonhole principle, there must be two subsets with equal value of S.

Let A and B be two subsets with equal sum of elements, i.e. SA = SB .
Then A − {A ∩ B} and B − {A ∩ B} also have equal sum of elements.
Since A 6= B, so the two difference sets both are not empty.

4. Use 17 points A1, A2, . . . , A17 in the space to denote the 17 people, such
that any three points are not collinear. every two points are connected by a
segment, and a segments are colored red, blue or white according to the two
people discussed the first, second or third topic respectively. The question
becomes to show that there must be a triangle with three sides of the same
color.

Among the 16 segments emitted from A1, by the pigeonhole principle,
there must be at least 6 with the same color. without loss of general-
ity, one may assume that they are red, and their another end points are
A2, A3, A4, A5, A6 and A7 respectively. If some of the segments joining
the six points is red, then we have got a triangle with three red sides, the
conclusion is proven.

If all the segments joining these six points are of blue color or white color,
then, from the result of Example 9, there must be a homochromatic triangle
formed by these segments, the conclusion is also proven.

5. We prove the conclusion by contradiction. Suppose that the conclusion is
not true, then the following property P holds: the difference of any two
members from a same country is not the number of a member from the
same country.

By the pigeonhole principle, there must be a country A such that the number
of members coming from this country A is not less than [1977/6]+1 = 330.
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Let m1 be the maximum number of the members from the country A. By
using m1 minus each of the numbers of rest members from the country A,
not less than 329 differences can be obtain, and they mut be the numbers of
members not from the country A.

Since [328/5] + 1 = 66, by the pigeonhole principle again, there must be
a country B such that the number of members coming from this country B
is not less than 66. If m2 is the maximum number of the members from
the country B, similarly at least 65 differences are obtained, and they must
be neither the numbers of the members from the country B nor that from
the country A (since (m1 − a1) − (m1 − a2) = a2 − a1 for any numbers
a1, a2 from the country A). So these 65 differences must be numbers of the
members from the rest four countries.

From [64/4] + 1 = 17, there must be a country C such that the number
of members coming from this country C is not less than 17. So there must
be at least 16 numbers of the members from the rest three countries. By
using the pigeonhole principle once again, there must be a country D with
not less than 6 members. They yield at least 5 numbers of the members
from the rest two countries. So there must be a country E with not less than
3 members. Their three numbers yield two numbers of the members from
the sixth country F . However, the difference of the two numbers yields a
number which is not a number of all the six countries, a contradiction! The
conclusion thus is proven.

Solutions to Testing Questions 22

Testing Questions (22-A)

1. Since

(
√

n +
√

n + 1)2 = 2n + 1 + 2
√

n(n + 1) > 2n + 1 + 2
√

n2 = 4n + 1

and

(
√

n+
√

n + 1)2 = 2n+1+2
√

n(n + 1) < 2n+1+2
√

(n + 1)2 = 4n+3,

letting k = [
√

4n + 2], then k ≤ √
4n + 2 < k + 1, i.e. k2 ≤ 4n + 2 <

(k + 1)2. Since 4n + 2 and 4n + 3 both are not perfect square numbers (a
perfect square number cannot have a remainder 2 or 3 when divided by 4),
therefore

k2 < 4n + 2 < 4n + 3 < (k + 1)2,
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then k2 ≤ 4n + 1 < (
√

n +
√

n + 1)2 < 4n + 3 ≤ (k + 1)2, i.e. k <√
n +

√
n + 1 < (k + 1). Thus, [

√
n +

√
n + 1] = k = [

√
4n + 2].

2. Since the left hand side of the equation is an integer, therefore {x} − 1 is an
integer. Then 0 ≤ {x} < 1 implies {x} = 0, i.e. x = [x]. Thus,

x3 + x2 + x = −1,
(x3 + x2) + (x + 1) = 0,

(x + 1)(x2 + 1) = 0,

therefore x = −1.

3. (CMO/1975) Solve equation [x]2 = {x} · x.

Let [x] = n, t = {x}, then n2 = t(n + t) ≥ 0. 0 ≤ t < 1 implies n ≥ 0.
Since n2 = t(n + t) < n + 1, so n = 0 or 1. If n = 0 then t = 0, i.e.
x = 0. If n = 1, then

1 = t(1 + t),
t2 + t− 1 = 0,

t =
−1 +

√
5

2
, ∴ x = n + t =

1 +
√

5
2

.

Thus, x = 0 or x =
1 +

√
5

2
.

4. Let x be a solution with bxc = n. Then the given equation becomes

x2 + 7 = 8n.

So n > 0. The relation n ≤ x < n + 1 yields

n2 + 7 ≤ x2 + 7 = 8n < (n + 1)2 + 7 = n2 + 2n + 8,
∴ n2 − 8n + 7 ≤ 0 and n2 − 6n + 8 > 0.

the solutions for n are 1 ≤ n < 2 or 4 ≤ n < 7, i.e. n = 1, 5, 6, 7.

Correspondingly, x2 + 7 = 8, 40, 48, 56, so x = 1,
√

33,
√

41, 7 since x >
0.

5. It is obvious that x = n is a required root. Let 1 ≤ x < n be another root
of the given equation. Write m = [x], t = {x}, then x = m + t and the
equation becomes

(m + t)2 − [(m + t)2] = t2,
2mt− [2mt + t2] = 0,
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therefore 2mt is an non-negative integer, i.e. t = 0, 1
2m , 2

2m , · · · , 2m−1
2m

for m = 1, 2, · · · , n− 1. Thus, the number of required roots is

2[1 + 2 + 3 + · · ·+ (n− 1)] + 1 = (n− 1)n + 1 = n2 − n + 1.

6. Let n = 2x− 1
2

, then n ∈ Z and x = 1
2n + 1

4 , therefore

⌊
3
2
n +

7
4

⌋
= n ⇒ n ≤ 3

2
n +

7
4

< n + 1 ⇒ −7
2
≤ n < −3

2
,

therefore n = −3 or n = −2. When n = −3, then x = −3
2

+
1
4

= −5
4

;

when n = −2, then x = −1 +
1
4

= −3
4

. Thus, the sum of roots is −2.

7.
10n

x
− 1 <

⌊
10n

x

⌋
≤ 10n

x
implies

10n

x
− 1 < 1989 ≤ 10n

x
, i.e.

10n

1990
<

x ≤ 10n

1989
, so

10n · 0.00050251256 . . . < x ≤ 10n · 0.00050276520 . . . .

So only for n ≥ 7 the difference of the two decimals is greater than 1, and
it follows when n = 7 that

5025 < x ≤ 5027,

and x = 5026 or 5027.

8. Let the sum be N and x = n + t where n ∈ Z+
0 and 0 ≤ t < 1. Then

N = 20n + b2tc+ b4tc+ b6tc+ b8tc ≤ 1000,
∴ 0 ≤ n ≤ 50.

For any fixed 0 ≤ n ≤ 49, the the left hand side has different values at
t = r

8 where r = 0, 1, 2, 3, · · · , 7 and t = s
6 where s = 1, 2, 4, 5. Therefore

there are totally 12 different values of N for each n = 1, · · · , 49, but there
are a total of 11 different values of N when n = 0 (since t cannot take value
0), and n = 50, t = 0 means N = 1000 is also a required value, therefore
N takes a total of

50× 12 = 600 different values not greater than 1000.
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9. (k+1)2−k2 = 2k+1 indicates that
[
(k + 1)2

1980

]
>

[
k2

1980

]
when 2k+1 >

1980, i.e. k ≥ 990. Therefore
[

k2

1980

]
, k = 990, 991, · · · , 1980 are 991

different values.

For the sequence
[

12

1980

]
,

[
22

1980

]
,

[
32

1980

]
, · · · ,

[
9902

1980

]
,

since any two consecutive terms have difference 0 or 1 only, and
[

9902

1980

]
=

495, the sequence must take 495 + 1 = 496 different values. Thus, alto-
gether the whole sequence takes 496 + (991− 1) = 1486 different values.

10 Let n be a required positive integer satisfying all requirements in question.
Write k = [

√
n], then 1 ≤ k ≤ 102, and

k2 ≤ n < (k + 1)2, or equivalently, k2 ≤ n ≤ k2 + 2k,

i.e. n = k2 + r where r is a non-negative integer with 0 ≤ r ≤ 2k. The
requirement k | k2 + r implies r can take 0, k and 2k for 1 ≤ k ≤ 99 and
r = 0 for k = 100 only. Thus, totally there are

3× 99 + 1 = 298

desired n.

Testing Questions (22-B)

1. By definition of integer part, it must be true that
⌊√√

x

⌋
≤

√√
x <

⌊√√
x

⌋
+ 1.

Let
⌊√√

x
⌋

= n, then n4 ≤ x < (n + 1)4, so n2 ≤ √
x < (n + 1)2 which

implies that
n2 ≤ b√xc < (n + 1)2,

so n ≤
√
b√xc < n + 1, and it implies that

⌊√
b√xc

⌋
= n =

⌊√√
x

⌋
,

i.e., the given equality must be true.



134 Solutions to Testing Questions

2. In the Q1 of (22-A), we have proven that
√

n +
√

n + 1 >
√

4n + 1 and that

b√n +
√

n + 1c = b√4n + 2c = b√4n + 3c.
It suffices to show that b√4n + 1c = b√4n + 3c. Let b√4n + 1c = k,
then k ≤ √

4n + 1 < k + 1, so k2 ≤ 4n + 1 < (k + 1)2 which implies
4n + 2 ≤ (k + 1)2. Since 4n + 2 cannot be a perfect square, so 4n + 2 <
(k + 1)2, thus, 4n + 3 ≤ (k + 1)2. Since 4n + 3 cannot be a perfect square
also, so 4n + 3 < (k + 1)2, hence

k2 < (4n + 3) < (k + 1)2, i.e. k < b√4n + 3c < k + 1,

therefore b√4n + 3c = k = b√4n + 1c, as desired.

3. By using x = bxc+{x}, the given equation becomes bxc{x}+bxc−{x} =
10, so (bxc − 1)({x}+ 1) = 9.

Since bxc−1 is an integer, so {x}+1 is a rational number. Let {x} = m/n
with 0 ≤ m < n, then

(bxc − 1)(m + n) = 9n.

When m = 0, then {x} = 0, so x = bxc = 10.

When m > 0, letting (m,n) = 1, then (m + n, n) = 1, so (m + n) | 9.

(i) When m + n = 3, then m = 1, n = 2, so {x} =
1
2
, bxc = 7, x = 7

1
2

.

(ii) When m + n = 9, then there are three possible cases:

m = 1, n = 8 → {x} =
1
8
, bxc = 9, x = 9

1
8

;

m = 2, n = 7 → {x} =
2
7
, bxc = 8, x = 8

2
7

;

m = 4, n = 5 → {x} =
4
5
, bxc = 6, x = 6

4
5

.

Thus, there are five solutions for x: 10, 7
1
2
, 9

1
8
, 8

2
7
, 6

4
5

.

4. Let 1031 = t, then
⌊

1093

1031 + 3

⌋
=

⌊
t3

t + 3

⌋
=

⌊
t3 + 33

t + 3
− 33

t + 3

⌋

= t2 − 3t + 32 +
⌊
− 33

t + 3

⌋
= t2 − 3t + 32 − 1

= t(t− 3) + 8 = 1031(1031 − 3) + 8,

thus, the last two digits of
⌊

1093

1031 + 3

⌋
is 08.
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5. The given equation implies that x 6= 0 and bxc 6= 0 and

(x− bxc) +
(

92
x
− 92
bxc

)
= 0,

(x− bxc)
(

1− 1
xbxc

)
= 0.

When x = bxc, then x can be any non-zero integer.

When
92

xbxc = 1, write {x} = α > 0 and bxc = n, then

n(n + α) = 92.

If n > 0, n2 ≤ 92 < n(n + 1) has no integer solution for n, if n < 0, then
n(n + 1) < 92 ≤ n2 has integer solution n = −10. Then α = 0.8 and
x = −10 + 0.8 = −9.2.

Thus, the solutions are −9.2 or any non-zero integer.

Solutions to Testing Questions 23

Testing Questions (23-A)

1. x =
3k + 12

k
= 3 +

12
k

implies k | 12, so k may be 1, 2, 3, 4, 6, 12, the
answer is (D).

2. The given equation implies y ≡ 1 (mod 10), only (C) is possible. By check-
ing, (C) is a solution. Thus, the answer is (C).

3. The given equality yields
3A + 11B

33
=

17
33

, so

3A + 11B = 17.

It is easy to find the special solution (2, 1) for (A,B). Since the general
solution is

A = 2 + 11t, B = 1− 3t, t ∈ Z,

A ≥ 1 and B ≥ 1 implies that t = 0 is the unique permitted value of t, so
(2, 1) is the unique desired solution for (A,B). Thus, A2 + B2 = 5.



136 Solutions to Testing Questions

4. The given conditions gives the relation 16m + 13 = 125n + 122 for some
positive integers m and n such that both sides are four digit numbers. Then

m =
125n + 109

16
= 7n + 6 +

13(n + 1)
16

is a positive integer. The minimum value of n satisfying the requirement is
n = 15, so m = 124 and the four digit number is 16× 124 + 13 = 1997.

5. Let x and y be the numbers of dragonflies and spiders respectively. Then

6x + 8y = 46 or 3x + 4y = 23.

It is clear that x 6= 0 and y 6= 0 since 46 is neither divisible by 6 nor by 8.
4y < 23 implies y ≤ 5, so corresponding to y = 1, 2, 3, 4, 5, the equation
gives

x =
23− 4y

3
can be positive integer at y = 2 or y = 5 only. x = 5 if y = 2 and x = 1 at
y = 5. So the answer is that 5 dragonflies and 2 spiders, or one dragonfly
and 5 spiders.

6. The question is the same as finding the number of non-negative integer solu-
tions for (x, y, z) of the equation

x + 2y + 5z = 100.

It is clear that 0 ≤ z ≤ 20. For any possible value of z, x+2y = 100− 5z.
Let u = 100− 5z ≥ 0. Then for solving the equation x + 2y = u, (−u, u)
is a special solution. So the general solution for (x, y) is

x = −u + 2t, y = u− t, t ∈ Z.

If u = 2k, then k = u
2 ≤ t ≤ u = 2k, i.e. there are k+1 =

u

2
+1 solutions

for (x, y).

If u = 2k+1, then k+1u+1
2 ≤ t ≤ u = 2k+1, i.e. there are k+1 =

u + 1
2

solutions for (x, y).

Thus, we have the following table:

u = 100 95 90 85 80 75 70 65 60 · · · 15, 10 5 0

k + 1 = 51 48 46 43 41 38 36 33 31 · · · 8 6 3 1

The total number of solutions is given by

4(10 + 20 + 30 + 40) + 5(8 + 6 + 3 + 1) + 51 = 541.

Thus, there are 541 ways to get the 10 dollars.
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7. Let the four digit number be abcd = 1000a + 100b + 10c + d. Then

1000a + 100b + 10c + d + a + b + c + d = 2006,
1001a + 101b + 11c + 2d = 2006,

which implies that a = 1, so 101b + 11c + 2d = 1005. Since

101× 8 + 11× 9 + 2× 9 = 925 < 1005,

therefore b = 9, so 11c + 2d = 96. 11 × 7 + 2 × 9 = 95 < 96 and c < 9
then gives c = 8, so 2d = 8, i.e. d = 4. Thus, the four digit number is
1984.

8. From 30 < 5n + 3 < 40 it follows that
27
5

< n <
37
5

, i.e. 5 < n < 8, so
n = 6 or 7.

When n = 6, then 3m = 5n+1 = 31 implies m is not an integer, so n = 7.

When n = 7, then 3m = 5n + 1 = 36, i.e. m = 12. Thus, mn = 84.

9. Let the numbers of roosters, hens and chicks that the buyer bought be x, y, z
respectively, then

5x + 3y + 1
3z = 100,

x + y + z = 100.

or

15x + 9y + z = 300, (30.4)
x + y + z = 100. (30.5)

(30.4)− (30.5) yields 14x + 8y = 200 or, equivalently,

7x + 4y = 100. (30.6)

It has a special solution x0 = −100, y0 = 200,so the general solution
for (x, y) is x = −100 + 4t, y = 200 − 7t, where t is any integer. The
equation (30.6) indicates that 4 | x, so x may be 0, 4, 8, 12, 16, 20 only.
Correspondingly, t = 25, 26, 27, 28, 29, 30 only. Since y ≥ 0 implies t ≤
200/7 < 29, so t = 25, 26, 27, 28 only, i.e. y = 25, 18, 11, 4. Thus, x + y
is 25, 22, 19, 16 respectively, so z = 75, 78, 81, 84 correspondingly. Thus,
the solutions for (x, y, z) are

(0, 25, 75), (4, 18, 78), (8, 11, 81), (12, 4, 84).
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10. x > y > z ≥ 664 implies that z ≥ 664, y ≥ 665, x ≥ 666. Since
2x + 3y + 4z = 5992, y is even, i.e. y ≥ 666. Since 669 + 668 + 664 =
2001 > 1998, so y < 668, i.e. y = 666, hence

2x + 4z = 5992− 3× 666 = 3994,

i.e. x + 2z = 1997. Therefore x is odd, hence, from the first equation, z is
also odd. 664 < z < 666 implies z = 665, then x = 667. Thus, the answer
is x = 667, y = 666, z = 665.

Testing Questions (23-B)

1. Let the numbers of weights of 1 g, 10 g, 50 g be x, y, z respectively. Then the
conditions give {

x + y + z = 100,
x + 10y + 50z = 500.

By eliminating x, it follows that 9y + 49z = 400, so

9(y + 5z) = 4(100− z).

It implies that 4 | y + 5z and 9 | 100− z, i.e.

y + 5z

4
=

100− z

9
= t ∈ Z,

∴ z = 100− 9t, y = 4t− 5z = 49t− 500.

The inequalities y ≥ 1, z ≥ 1 implies that 10 <
501
49

≤ t ≤ 11, so t = 11
and

z = 1, y = 39, x = 60.

Thus, in the 100 weights there are 60 of 1 g, 39 of 2 g, and 1 of 50 g,
respectively.

2. Let (x, y, z) be a solution with distinct components. for letting the solution
satisfy the requirement that any two components have a product which is
divisible by the remaining component, let

x = mn, y = nk, z = mk,

where m,n, k are distinct positive integers. Then given equation yields

n(m− k) = 1−mk or equivalently, n(k −m) = mk − 1.
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Now let k−m = 1, then n = mk−1 = m(m+1)−1 = m2 +m−1, k =
m + 1, so

x = m(m2 + m− 1), y = (m2 + m− 1)(m + 1), z = m(m + 1),

where m is any natural number. The conclusion is proven.

3. We prove the conclusion by contradiction. Suppose that (x0, y0) is a non-
negative integer solution of the given equation. From

a(x0 + 1) + b(y0 + 1) = ab,

it follows that b | a(x0 + 1) and a | b(y0 + 1). Since (a, b) = 1, so
b | (x0 + 1) and a | (y0 + 1). x0 + 1 > 0 and y) + 1 > 0 implies that
a ≤ y0 + 1 and b ≤ x0 + 1, hence

ab = a(x0 + 1) + b(y0 + 1) ≥ ab + ba = 2ab,

a contradiction. The conclusion is proven.

4. From Theorem III, the general solution of the given equation is

x = x0 + bt, y = y0 − at, t ∈ Z,

where (x0, y0) is a special solution. We claim that there must be a solution
(x1, y1) with 0 ≤ x1 ≤ b− 1.

The conclusion is true if x0 ∈ [0, b − 1]. Otherwise, x0 ≤ −1 or x0 ≥ b.
Since x plus b or minus b as t plus 1 or minus 1, so corresponding to some
value of t, the value of x must enter the interval [0, b− 1]. When 0 ≤ x1 ≤
b− 1, then

by1 = c− ax1 > ab− a− b− ax1 ≥ ab− a− b− a(b− 1) = −b,

so that y1 > −1, i.e. y1 ≥ 0. Thus, (x1, y1) is a non-negative integer
solution. The conclusion is proven.

5. (i) Since every time the number obtained after operation is always odd, so
it cannot be divisible by 1980.

(ii) Below we show that the number obtained after 100 times of operations
may be divisible by 1981.

Let the original natural number be x − 1. Then after the first operation the
number becomes 2(x− 1) + 1 = 2x− 1.

The number obtained after the second operation then is 2(2x − 1) + 1 =
22x− 1.
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In general, if the number obtained after the kth operation is 2kx − 1, then
the number obtained after k + 1th operation is

2(2kx− 1) + 1 = 2k+1x− 1.

So the number obtained after 100 times of operations is 2100x − 1. Since
(2100, 1981) = 1, so the Diophantine equation

2100x− 1981y = 1

must have integer solution (x0, y0), and its general solution is

x = x0 + 1981t, y = y0 + 2100t, t ∈ Z.

Regardless of the size of |x0| and |y0|, it is always possible to let t0 be large
enough, such that

x0 + 1981t0 > 0 and y = y0 + 2100t0 > 0.

Thus, it is true that 2100x − 1 = 1981y for this solution (x, y), i.e. 1981 |
(2100 − 1).

Solutions to Testing Questions 24

Testing Questions (24-A)

1. In the first equation, since (2003)2 − 2002 × 2004 − 1 = 0, so x − 1 is a
factor of the left hand side. By cross multiplication, it is obtained that

(x− 1)(20032x + 1) = 0,

so the other root is − 1
20032

, and the larger root m is 1.

For the second equation, Since 1 + 2002 − 2003 = 0, x − 1 is a factor of
the left hand side, so it follows that

(x− 1)(x + 2003) = 0,

the smaller root n is −2003. Thus m− n = 1 + 2003 = 2004.

2. The partition points of the range of x is −3 and 3.

(i) When x ≤ −3, then x2−2x−24 = 0, so x1 = −4 (x2 = 6 is N.A.).
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(ii) When −3 < x ≤ 3, then x2 − 18 = 0, so x = ±3
√

2 (Both are
N.A.).

(iii) When 3 < x, then x2 + 2x− 24 = 0, so x = 4 (x = −6 is N.A.).

Thus, the roots are −4, 4.

3. When m = 2, the equation becomes −5x− 11 = 0, the solution is x = −1.

When m 6= 2, ∆ = [−(m + 3)]2 + 4(2m + 1)(m− 2) = 9m2− 6m + 1 =
(3m− 1)2 ≥ 0, so

x1 =
(m + 3)− (3m− 1)

2(m− 2)
= −1, x2 =

(m + 3) + (3m− 1)
2(m− 2)

=
2m + 1
m− 2

.

4. a2 − 3a + 1 = 0 yields a2 + 1 = 3a and a 6= 0. Therefore by division,

2a5 − 5a4 + 2a3 − 8a2

a2 + 1
=

a2 − 3a + 1)(2a3 + a2 + 3a)− 3a

a2 + 1

= −3a

3a
= −1.

5. Let x0 be the common root of the two given equations, then

1988x2
0 + bx0 + 8891 = 8891x2

0 + bx0 + 1988,
(8891− 1988)x2

0 = (8891− 1988),
∴ x0 = ±1.

Substituting back such x0 into the first equation,

±b = −(8891 + 1988) = −10879, ∴ b = ∓10879.

6. (i) When m = 1, then −6x + 1 = 0, so there is a real root x =
1
6

.

(ii) When m = −1, then −2x + 1 = 0, so there is a real root x =
1
2

.

(iii) When m2−1 6= 1, then ∆ = 4(m+2)2−4(m2−1) = 16m+20 ≥ 0

implies that m ≥ −5
4

and m 6= 1.

Thus, the range of m is m ≥ −5
4

.

7. Let x0 be the common root, then x2
0−kx0−7 = 0 and x2

0−6x0−(k+1) = 0.
Then their difference gives

(6− k)x0 − (6− k) = 0, or (6− k)(x0 − 1) = 0.
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Notice that k 6= 6. Otherwise, the two equations are identical so that they
have two common roots. Therefore x0 = 1, and it implies that k = −6. By
substituting back the value of k into the given equations, it follows that

x2 + 6x− 7 = 0 and x2 − 6x + 5 = 0,
∴ (x− 1)(x + 7) = 0 and (x− 1)(x− 5) = 0.

Thus, the different roots are −7 and 5 respectively.

8. Since the given equation has two equal real roots implies that its discriminant
is 0, so

∆ = (2b)2 − 4(c + a)(c− a) = 4(b2 + a2 − c2) = 0,
∴ a2 + b2 = c2.

From c2 = a2 + b2 < a2 + b2 + 2ab = (a + b)2, it follows that c <
a+ b, so the three segments with lengths a, b, c can form a triangle. Further,
from Pythagoras’ Theorem, the triangle is a right-angled triangle with the
hypotenuse side of length c.

9. Since the discriminant of the equation is non-negative,

4(1 + a)2 − 4(3a2 + 4ab + 4b2 + 2) ≥ 0,
(1 + a)2 − (3a2 + 4ab + 4b2 + 2) ≥ 0,

2a2 − 2a + 1 + 4ab + 4b2 ≤ 0,
(a− 1)2 + (a + 2b)2 ≤ 0,

∴ a = 1, and a + 2b = 0,

a = 1, b = −1
2
.

10. The discriminant of the equation is given by

∆ = (a + b + c)2 − 4(a2 + b2 + c2)
= −3a2 − 3b2 − 3c2 + 2ab + 2bc + 2ca
= −(a2 − 2ab + b2)− (b2 − 2bc + c2)

−(c2 − 2ca + a2)− (a2 + b2 + c2)
= −[(a− b)2 + (b− c)2 + (c− a)2 + (a2 + b2 + c2)] < 0.

so the equation has no real roots, the answer is (D).
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Testing Questions (24-B)

1. Mr. Fat has the winning strategy. A set of three distinct rational nonzero
numbers a, b, and c, such that a+ b+ c = 0, will do the trick. Let A,B, and
C be any arrangement of a, b, and c, and let f(x) = Ax2 + Bx + C. Then

f(1) = A + B + C = a + b + c = 0,

which implies that 1 is a solution.

Since the product of the two solutions is
C

A
, the other solution is

C

A
, and it

is different from 1.

2. By ∆i, i = 1, 2, 3we denote the discriminant of the ith equation. It suffices
to show ∆1 + ∆2 + ∆3 > 0. Then

∆1 + ∆2 + ∆3 = (4b2 − 4ac) + (4c2 − 4ab) + (4a2 − 4bc)
= 2(2a2 + 2b2 + 2c2 − 2ab− 2bc− 2ca)
= 2[(a− b)2 + (b− c)2 + (c− a)2] > 0.

Thus, the conclusion is proven.

3. From the assumptions a > 1 and b > 1 and a 6= b. Let x0 be the common
root, then

(a−1)x2
0−(a2+2)x0+(a2+2a) = 0, (b−1)x2

0−(b2+2)x0+(b2+2b) = 0.

Notice that x0 6= 1. Otherwise, if x0 = 1, then above two equalities be-
comes a = 1 = b.

After eliminating the term of x2
0 and doing simplification, it follows that

(a− b)(ab− a− b− 2)(x0 − 1) = 0.

Since a− b 6= 0 and x0 6= 1, so ab− a− b− 2 = 0, i.e. ab = a + b + 2.

(i) When a > b > 1, then b = 1+
b

a
+

2
a

< 3, so b = 2, a =
4

b− 1
= 4.

(ii) When b > a > 1, then, by symmetry, a = 2, b = 4.

Thus, in each of above two cases,

ab + ba

a−b + b−a
= (ab + ba) · abba

ab + ba
= abba = 256.
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4. Since the left hand side cannot be zero, so m 6= 0 and m > 0.

(i) When m > 0, then x > 0.

For 0 < x ≤ 1, then 1− x2 + 4− x2 = mx, i.e. 2x2 + mx− 5 = 0, so

x =
−m +

√
m2 + 40
4

≤ 1.

It implies that m2 + 40 ≤ m2 + 8m + 16, i.e. 3 ≤ m.

For 1 < x ≤ 2, then x2 − 1 + 4− x2 = mx, so 1 < x =
3
m
≤ 2, i.e.

3
2
≤ m < 3,

for 2 < x, then 2x2−mx− 5 = 0, so x =
m +

√
m2 + 40
4

> 2, it implies
that

m2 + 40 > m2 − 16m + 64, i.e. m >
3
2
.

(ii) When m < 0, then x < 0, so the case can be converted to the case (i)
if use −m,−x to replace m,x respectively. Thus, the solutions are

x =





3
m

or
m +

√
m2 + 40
4

if
3
2
≤ m < 3,

−m +
√

m2 + 40
4

if m ≥ 3,

3
m

or
m−√m2 + 40

4
if −3 < m ≤ −3

2
,

−m +
√

m2 + 40
4

if m ≤ −3,

and has no solution for other values of m.

5. Suppose that the first equation has no two distinct real roots, then

∆1 = 1− 4q1 ≤ 0, i.e. q1 ≥ 1
4
.

In this case, then the discriminant of the second equation is

∆2 = p2 − 4q2 = (q1 + q2 + 1)2 − 4q2

= q2
2 + 2q2(q1 + 1) + (q1 + 1)2 − 4q2

= q2
2 + 2q2(q1 − 1) + (1 + q1)2.
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To show ∆2 is always positive, consider the last expression as a quadratic
function of q2, then its discriminant is

∆3 = 4(a1 − 1)2 − 4(1 + q1)2 = −16q1 ≤ −4,

so ∆2 > 0 for any value of q2, i.e. the second equation has two distinct real
roots, the conclusion is proven.

Solutions to Testing Questions 25

Testing Questions (25-A)

1. Let x1 = 2t, x2 = 3t, where t is some real number. By Viete theorem,

5t = x1 + x2 =
5
2
⇒ t =

1
2
,

∴ x2 − x1 = t =
1
2
.

2. Let

x2 + px + q = 0, (30.7)

x2 + 2qx +
1
2
p = 0, (30.8)

and let α, β be the roots of (30.7), then the roots of (30.8) are α− 1, β − 1.
By Viete Theorem,

α + β = −p, (30.9)
αβ = q, (30.10)

α + β − 2 = −2q, (30.11)

(α− 1)(β − 1) =
1
2
p. (30.12)

By (30.9)− (30.11),
−p + 2q = 2. (30.13)

By (30.10)− (30.11)− (30.12),

−p + 6q = 2. (30.14)

Then (30.14)− (30.13) yields q = 0, p = −2, hence the equation (30.7) is
x2 − 2x = 0, its roots are α = 0, β = 2. Similarly, the equation (30.8) is
x2 − 1 = 0, its roots are x1 = −1 = α− 1, x2 = 1 = β − 1.
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3. Viete theorem produces

α + β = p, αβ = q, α2 + β2 = p, α2β2 = q.

From q2 = q, it follows that q = 0 or 1. Since p = (α + β)2 − 2αβ =
p2 − 2q,

When q = 0, then p = 0 or 1. So (p, q) = (0, 0) or (1, 0).

When q = 1, then p = −1 or 2. But x2 + x + 1 = 0 has no real root when
p = −1, so p = 2 and (p, q) = (2, 1).

Thus, there are three desired pairs for (p, q).

4. Let (x1, x2) be an integer solution of the given solution. Then x1 + x2 =
−p, x1x2 = q, so

198 = p + q = −(x1 + x2) + x1x2 = (x1 − 1)(x2 − 1)− 1,
∴ (x1 − 1)(x2 − 1) = 199 = 1 · 199 = (−1)× (−199).

Letting x1 ≤ x2, then x1−1 = 1, x2−1 = 199 or x1−1 = −199, x2−1 =
−1, so the solutions are

(x1, x2) = (2, 200) or (−198, 0).

5. Let α, β be roots of the equation, then α + β = −a

2
, αβ =

−2a + 1
2

, and

α2 + β2 = 7
1
4

, so

(α + β)2 = 7
1
4

+ 2(
−2a + 1

2
) =

33
4
− 2a,

a2

4
=

33
4
− 2a,

a2 + 8a− 33 = 0 ⇒ (a− 3)(a + 11) = 0 ⇒ a = 3 or − 11.

Since ∆ = a2 + 16a− 8 ≥ 0, so

a ≤ −16−√288
2

< −11, or a ≥ −16 +
√

288
2

> 0,

thus a = 3.

6. α2 = 2α + 1 yields α4 = 4α2 + 4α + 1 = 12α + 5, and similarly β2 =
2β + 1, β3 = 2β2 + β = 5β + 2. Viete Theorem gives α + β = 2 and
αβ = 1, thus,

5α4 + 12β3 = 5(12α + 5) + 12(5β + 2) = 60(α + β) + 49

= 60(α + β) + 49 = 120 + 49 = 169.
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7. Viete Theorem gives α + β = −19, αβ = −97. Then

−m

n
=

1 + α

1− α
+

1 + β

1− β
=

(1 + α)(1− β) + (1− α)(1 + β)
(1− α)(1− β)

=
2(1− αβ)

1− (α + β) + αβ
= −2 · 98

77
= −28

11
,

so m = 28, n = 11 and m + n = 39.

8. First of all, α + β = −(a + b) and αβ =
4
3
ab. The condition α(α + 1) +

β(β + 1) = (α + 1)(β + 1) implies

α2 + β2 − αβ = 1, i.e. (α + β)2 − 3αβ = 1,
∴ (a + b)2 − 4ab = 1, i.e. (a− b)2 = 1, so

a− b = 1.

∆ ≥ 0 implies 3(a + b)2 ≥ 16ab = 4[(a + b)2 − 1], so (a + b)2 ≤ 4, i.e.

−2 ≤ a + b ≤ 2.

Since a− b = 1, so −1 ≤ 2a ≤ 3, i.e. a = 0 or 1. Hence,

(a, b) = (0,−1) or (1, 0).

By checking, the two solutions satisfy the requirements. Thus, there are two
desired pairs for (a, b).

9. Changing the second equality in the form of 19
(

1
t

)2

+ 99
(

1
t

)
+ 1 = 0, it

follows that s and 1/t both are roots of the equation 19x2 + 99x + 1 = 0.
Therefore, by Viete Theorem,

s +
1
t

= −99
19

, and
s

t
=

1
19

.

∴ st + 4s + 1
t

= s +
1
t

+ 4
s

t
= −99

19
+

4
19

= −5.

10. Viete Theorem gives α + β = −p, αβ = 1, γ + δ = −q, γδ = 1. So

(α− γ)(β − γ)(α + δ)(β + δ) = [(α− γ)(β + δ)][(β − γ)(α + δ)]
= (αβ + αδ − βγ − γδ)(αβ + βδ − αγ − γδ)
= (αδ − βγ)(βδ − αγ) = αβδ2 − α2γδ − β2γδ + αβγ2

= δ2 − α2 − β2 + γ2 = [(δ + γ)2 − 2δγ]− [(α + β)2 − 2αβ]
= (q2 − 2)− (p2 − 2) = q2 − p2.
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Testing Questions (25-B)

1. Let A =
2
α

+ 3β2, B =
2
β

+ 3α2. Since α + β = 7, αβ = 8, and α − β =
√

∆ =
√

49− 32 =
√

17, it follows that

A + B =
2(α + β)

αβ
+ 3(α2 + β2) =

14
8

+ 3(72 − 16) =
403
4

,

A−B = −2(α− β)
αβ

− 3(α2 − β2) = −(α− β)
[

2
αβ

+ 3(α + β)
]

= −
√

∆
[
1
4

+ 21
]

= −85
√

17
4

,

therefore

2
α

+ 3β2 = A =
1
2

[
403
4
− 85

√
17

4

]
=

403− 85
√

17
8

.

2. a = 8− b and c2 = ab− 16yields a + b = 8, ab = c2 + 16. Then, by inverse
Viette Theorem, a, b are the real roots of the equation

x2 − 8x + (c2 + 16) = 0.

Since its discriminant ∆ is non-negative, i.e. (−8)2− 4(c2 + 16) ≥ 0, then

82 ≥ 4(c2 + 16),
4c2 ≤ 0, ∴ c = 0,

therefore a, b are the roots of the equation x2 − 8x + 16 = (x − 4)2 = 0,
i.e. a = b = 4.

3. The assumptions in question implies that

(x−α)(x−β) = x2 +px+q and (x−γ)(x−δ) = x2 +Px+Q.

Consequently,

(α− γ)(β − γ)(α− δ)(β − δ) = [(γ − α)(γ − β)][(δ − α)(δ − β)]
= (γ2 + pγ + q)(δ2 + pδ + q).

However,
γ + δ = −P, γδ = Q,
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hence

(α− γ)(β − γ)(α− δ)(β − δ) = (γ2 + pγ + q)(δ2 + pδ + q)
= γ2δ2 + pγ2δ + qγ2 + pγδ2 + p2γδ + pqγ + qδ2 + pqδ + q2

= (γδ)2 + pγδ(γ + δ) + q[(γ + δ)2 − 2γδ] + p2γδ + pq(γ + δ) + q2

= Q2 − pPQ + q(P 2 − 2Q) + p2Q− pqP + q2

= Q2 + q2 − pP (Q + q) + qP 2 + p2Q− 2qQ.

4. Let α and β be the roots of the given equation. Then

α + β = −a, and αβ = b + 1.

Consequently,

a2 + b2 = (α + β)2 + (αβ − 1)2 = α2 + β2 + α2β2 + 1
= (α2 + 1)(β2 + 1),

which is a composite number. The conclusion is proven.

5. This problem involves an equation of high degree. By using substitutions, it

can be reduced to a quadratic equation. Let y =
13− x

x + 1
, then the given

equation becomes
xy(x + y) = 42.

The technique of solving the problem is to solve xy and x + y first by
applying the inverse Viete Theorem. For this the value of (xy) + (x + y) is
needed. Since

xy + (x + y) =
13x− x2

x + 1
+

x2 + x + 13− x

x + 1
=

13x + 13
x + 1

= 13,

by using inverse Viete Theorem, xy and x + y are the roots of the equation

z2 − 13z + 42 = 0.

Since z = 6 or 7, by solving the systems xy = 6, x + y = 7 and xy =
7, x + y = 6 respectively, the solutions for x are

x1 = 1, x2 = 6, x3 = 3 +
√

2, x4 = 3−
√

2.

By checking, they are all the solution of the original equation.
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Solutions to Testing Questions 26

Testing Questions (26-A)

1. a2 + a− 6 = (a− 2)(a+3) implies that (a− 2) and (a+3) are both factors
of 1260, and their difference is 5. Since 1260 = 22 × 32 × 5 × 7, where
the pairs of two factors with the difference 5 are (1, 6), (2, 7), (4, 9), (7, 12)
and (9, 14). Thus,

a− 2 = 1, 2, 4, 7, 9, i.e. a = 3, 4, 6, 9, 11.

2. The original equation yields (x−y)(x+y) = 12. Since x−y and x+y have
the same parity, and 12 = 2× 6 = (−2)× (−6), so there are four systems
of simultaneous equations:
{

x− y = 2,
x + y = 6,

{
x− y = 6,
x + y = 2,

{
x− y = −2,
x + y = −6,

{
x− y = −6,
x + y = −2,

from which four solutions are obtained, i.e. (4, 2); (4,−2); (−4,−2); and
(−4, 2). Thus, there are four required pairs.

3. The given equations give (x − y)(x + y) = 34 and (z − w)(z + w) = 34.
Since x − y < x + y and z − w < z + w, if two of the four numbers
x − y, x + y, z − w, z + w have equal values, then the other two must be
equal also, and it must be teh case that x− y = z − w and x + y = z + w,
but then it implies that y−w = x− z = w− y, i.e. y = w, a contradiction.
Thus, x− y, x + y, z − w, z + w must be four distinct values, and further,
they are the four distinct factors of 34 with x+y, z +w being the larger two
factors and x−y, z−w being the smaller two. Since 34 = 34×1 = 33×3,
so

xz + yw + xw + yz = (x + y)(z + w) = 34 · 33 = 37 = 2187.

4. By eliminating the denominators, the given equation becomes

15 + 3x− 2xy = 2x2y,
2x2y − 3x + 2xy − 15 = 0,

(2xy − 3)(x + 1) = 12 = 1 · 12 = −1×−12 = 3 · 4 = (−3)× (−4)

since 2xy − 3 is odd, hence there are four possible systems:
{

2xy − 3 = 1,
x + 1 = 12,

{
2xy − 3 = −1,

x + 1 = −12,{
2xy − 3 = 3,

x + 1 = 4,

{
2xy − 3 = −3,

x + 1 = −4.
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The first, second, and the fourth systems have no integer solutions, the third
system has the solution x = 3, y = 1. Thus, there is exactly one integer
solution x = 3, y = 1.

5. Simplify the equation to the form xy + 42 = 9y, then

y =
42

9− x
.

y is a positive integer implies that 9− x is a positive divisor of 42, so

9− x = 1, 2, 3, 6, 7, i.e. x = 8, 7, 6, 3, 2.

Correspondingly, y = 42, 21, 14, 7, 6. By checking, the five solutions sat-
isfy the original equation, so the answer is 5.

6. The given equation yields 8y − 12x = xy, so xy + 12x − 8y − 96 = −96,
i.e.

(x− 8)(y + 12) = −96.

Since y + 12 ≥ 13 and −7 ≤ x− 8 < 0, there are five possible cases to be
considered:
{

x− 8 = −1,
y + 12 = 96,

{
x− 8 = −2,

y + 12 = 48,

{
x− 8 = −3,

y + 12 = 32.{
x− 8 = −4,

y + 12 = 24,

{
x− 8 = −6,

y + 12 = 16,

From them five positive integer solutions are obtained easily:

(7, 84), (6, 36), (5, 20), (4, 12), (2, 4).

Thus, the answer is 5.

7. By rewriting the equation in the form x2 − (2 + y)x + y2 − 2y = 0, and
considering it as a quadratic equation in x (y is considered as a constant in
its range), then the equation has integer solutions in x, so its discriminant is
a perfect square.

∆ = (2 + y)2 − 4(y2 − 2y) = 4 + 12y − 3y2 = 16− 3(y − 2)2 = n2

for some integer n, it follows that (y − 2)2 ≤ 16
3

, so

−3 < −4
3

√
3 ≤ y − 2 <

4
3

√
3 < 3.

Thus, y may be 0, 1, 2, 3, 4.
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When y = 0, then x2 − 2x = 0, so x = 0 or 2.

When y = 1 or 3, then ∆ = 13 which is not a perfect square.

When y = 2, then x2 − 4x = 0, so x = 0 or 4.

When y = 4, then x2 − 6x + 8 = 0, so x = 2 or 4.

Thus, there are a total of 6 desired pairs.

8. Suppose that the two integral roots of the given equation are m and n. Then,
by Viete Theorem,

m + n = p, (30.15)
mn = −580p, (30.16)

therefore one of m and n is divisible by p. Without loss of generality, we
assume that p | m. Then m = kp for some integer k. (30.15) yields
n = (1 − k)p. then (30.16) yields (k − 1)kp2 = 580p, i.e. (k − 1)kp =
580 = 4× 5× 29. Thus, p = 29.

9. Since the sum of the squares is to be an even number, it may be reasoned that
either all three of the numbers x2, y2, z2 (hence also x, y, and z) are even, or
one of them is even and two are odd. But in the last event, the sum would be
divisible only by 2 and the product 2xyz would be divisible by 4. Hence we
must conclude that x, y, and z must all be even: x = 2x1, y = 2y1, z = 2z1.
If we substitute these into the given equation and divide through by 4, we
obtain

x2
1 + y2

1 + z2
1 = 4x1y1z1.

As above, this equation implies that x1, y1, and z1 are all even numbers, and
so we can write x1 = 2x2, y1 = 2y2, z1 = 2z2, which yields the equation

x2
2 + y2

2 + z2
2 = 23x2y2z2,

which, in turn, implies that x2, y2, and z2 are all even numbers also.

Continuation of this process leads to the conclusion that the following set
of numbers are all even:

x, y, z;

x1 =
x

2
, y1 =

y

2
, z1 =

z

2
;

x2 =
x

4
, y2 =

y

4
, z2 =

z

4
;
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x3 =
x

8
, y3 =

y

8
, z3 =

z

8
;

...
xk =

x

2k
, yk =

y

2k
, zk =

z

2k
;

...

(the numbers xk, yk, zk satisfy the equation x2
k + y2

k + z2
k =

2k+1xkykzk). But this is possible only if x = y = z = 0.

10. The second equation leads to y = 1, x + z = 31 at once. By substituting
them into the first equation, it follows that

x(1 + 31− x) = 255,
x2 − 32x + 255 = 0,
(x− 15)(x− 17) = 0,
∴ x1 = 15, x2 = 17.

Thus the solutions are x = 15, y = 1, z = 16 and x = 17, y = 1, z = 14.
The answer is (B).

Testing Questions (26-B)

1. By factorization, the given equation can be factorized as follows:

4x3 + 4x2y − 15xy2 − 18y3 − 12x2 + 6xy + 36y2 + 5x− 10y
= (4x3 − 8x2y) + (12x2y − 24xy2) + (9xy2 − 18y3)− (12x2 − 24xy)

−(18xy − 36y2) + (5x− 10y)
= (x− 2y)(4x2 + 12xy + 9y2 − 12x− 18y + 5)
= (x− 2y)[(2x + 3y)2 − 6(2x + 3y) + 5]
= (x− 2y)(2x + 3y − 1)(2x + 3y − 5),

so
(x− 2y)(2x + 3y − 1)(2x + 3y − 5) = 0.

x− 2y = 0 yields the positive integer solutions (k, 2k), k ∈ N.

2x + 3y − 1 = 0 has no positive integer solution.

2x + 3y − 5 = 0 has only one positive integer solution (1, 1).

Thus, the solution set is {(1, 1)} ∪ {(k, 2k) : ∀k ∈ N}.
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2. It is easy to convert the given equation to the form

(x− z)(y − z) = z2. (30.17)

Let t represent the greatest common divisor of the integers x, y, and z; that
is, x = x1t, y = y1t, z = z1t, where x1, y1, and z1 are a relatively prime
set. Further, let m = (x1, z1) and n = (y1, z1). That is, we write x1 =
mx2, z1 = mz2; y1 = ny2, z1 = nz2, where x2 and z2, y2 and z2 are
relatively prime. The integers m and n are relatively prime, since x1, y1,
and z1 have no common divisor. Since z1 is divisible both by m and by n,
we may write z1 = mnp.

If we now substitute x = mx2t, y = ny2t, z = mnpt into the basic equa-
tion (30.17), and divide the equality by mnt2, it follows that

(x2 − np)(y2 −mp) = mnp2. (30.18)

Notice that x2 is relatively prime to p, since m is the greatest common
divisor of the numbers x1 = mx2 and z1 = mnp; similarly, y2, and p are
relatively prime. Upon expanding the left hand side of (30.18), we see that
x2y2 = x2mp + y2np is divisible by p. It follows that p = 1, and the
equation takes on the form

(x2 − n)(y2 −m) = mn.

Now x2 is relatively prime to n, for the three integers x1 = mx2, y1 = ny2,
and z1 = mn are relatively prime. Consequently, x2−n is relatively prime
to n, whence y2 −m is divisible by n. Similarly, x2 − n is divisible by m.
Thus, x2 − n = ±m, y2 −m = ±n;x2 = ±y2 = ±m + n. Therefore,

x = m(m + n)t, y = ±n(m + n)t, z = mnt,

where m,n, t are arbitrary integers, that is the formula for general solution.

3. The discriminant of the quadratic equation must be a perfect square number
implies that

(5p)2 − 20(66p− 1) = n2

for some integer n ≥ 0, so 25p2−1320p+20 = n2, or (5p−132)2−n2 =
17404 = 22 · 19 · 229. Note that 5 | n, and the equation gives p − 1 ≡ 0
(mod 5), so p = 5k + 1 for some positive integer k, then

(25k − 127− n)(25k − 127 + n) = 38 · 458 = (−38)(−458).

The system 25k − 127− n = 38, 25− 127 + n = 458 yields the solution

n =
1
2
(458− 38) = 210, k =

1
25

(38 + 127 + 210) = 15, ∴ p = 76.
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However, the system 25k − 127 − n = −458, 25 − 127 + n = −38 has
no integer solution since the left hand sides are 3 modulo 5, but right hand
sides are 2 modulo 5.

By checking, p = 76 yields equation 5x2 − 380x + 5015 = 0 or 5(x −
17)(x− 59) = 0, its two roots are 17 and 59. Thus, p = 76 is the answer.

Note: The problem can be solved by use of Viete Theorem.

4. Let x1, x2 be the integer roots of the given equation. Viete Theorem yields

x1 + x2 = pq and x1x2 = p + q,

so x1, x2 are both positive integers. Then their difference yields

x1x2 − x1 − x2 = p + q − pq,

i.e.
(x1 − 1)(x2 − 1) + (p− 1)(q − 1) = 2. (30.19)

When the first term on the left hand side of (30.19) is 0 but the second term
is 2, then

p− 1 = 1, q − 1 = 2 or p− 1 = 2, q − 1 = 1,

so (p, q) = (2, 3) or (3, 2), and the equation is x2 − 6x + 5 = 0, which has
two integer solutions 5 and 1.

When the first term and the second term on the left hand side of (30.19) are
both 1, then

p− 1 = 1, q − 1 = 1, i.e. (p, q) = (2, 2),

so the equation is x2 − 4x + 4 = 0, which has two equal integer solutions
x1 = x2 = 2.

When the first term on the left hand side of (30.19) is 2 and the second term
is 1, then

p− 1 = 0 or q − 1 = 0

and (x1, x2) = (2, 3) or (3, 2), so the equation is x2 − 5x + 6 = 0, which
implies that (p, q) = (1, 6) or (5, 1). Thus,

(p, q) = (2, 3), (3, 2), (2, 2), (1, 5), (5, 1).

5. (i) When n = m, then
n3 + 1
n2 − 1

is an integer. From

n3 + 1
mn− 1

=
n3 + 1
n2 − 1

=
n2 − n + 1

n− 1
= n +

1
n− 1

,

therefore n = 2, i.e. n = m = 2 is a solution.
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(ii) When n 6= m, since m3 and mn− 1 are relatively prime and that

m3(n3 + 1)
mn− 1

=
(mn)3 − 1
mn− 1

+
m3 + 1
mn− 1

= (mn)2 + mn + 1 +
m3 + 1
mn− 1

,

so
n3 + 1
mn− 1

and
m3 + 1
mn− 1

are either both integers or both non-

integers. Therefore, it suffices to discuss the case m > n below.

For n = 1,
n3 + 1
mn− 1

=
2

m− 1
is an integer, therefore m = 2 or 3;

For n 6= 2, letting
n3 + 1
mn− 1

= k, then

n3 + 1 = k(mn− 1),
1 ≡ k · (−1) (mod n),

k ≡ −1 (mod n),

i.e., there exists a positive integer p such that
n3 + 1
mn− 1

= pn − 1.

Thus,

pn− 1 <
n3 + 1
n2 − 1

=
n2 − n + 1

n− 1
= n +

1
n− 1

,

(p− 1)n < 1 +
1

n− 1
,

∴ p = 1,
n3 + 1
mn− 1

= n− 1,

m =
n2 + 1
n− 1

= n + 1 +
2

n− 1
,

i.e., n = 2 or 3, and hence, m = 5 for both cases.
Thus, the solutions (m,n) are the pairs:

(2 , 2), (2 , 1), (3 , 1), (5 , 2), (5 , 3),
(1 , 2), (1 , 3), (2 , 5), (3 , 5).
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Solutions to Testing Questions 27

Testing Questions (27-A)

1.
c

a + b
<

a

b + c
<

b

a + c
⇒ c

a + b
+ 1 <

a

b + c
+ 1 <

b

a + c
+ 1,

i.e.
1

a + b
<

1
b + c

<
1

a + c
, so

a + b > b + c > a + c, ∴ c < a < b.

2. a < b < c < 0 gives −a > −b > −c > 0, so that

0 < −(b + c) < −(c + a) < −(a + b),

∴ −a

−(b + c)
>

−b

−(c + a)
>

−c

−(a + b)
,

which implies that
a

b + c
>

b

c + a
>

c

a + b
.

3. The given inequality yields

(a− 1)x < b− 4.

(i) When a > 1, then x <
b− 4
a− 1

.

(ii) When a < 1, then x >
b− 4
a− 1

.

(iii) When a = 1 and b > 4, then 0 · x < b− 4, solution set = R1.

(iv) When a = 1 and b ≤ 4, then no solution.

4. m > n leads to
4− x

3
>

x + 3
4

, i.e. 16− 4x > 3x + 9, so x < 1.

n > p leads to
x + 3

4
>

2− 3x

5
, i.e. 5x + 15 > 8− 12x, so x > − 7

17
.

Thus, the range of x is − 7
17

< x < 1.
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5.




x− 1 > −3

1
2
x− 1 <

1
3
x

3 < 2(x− 1) < 10

1
3
(3− 2x) > −2

⇒





x > −2

1
6
x < 1

3
2

< (x− 1) < 5

3− 2x > −6

⇒





x > −2

x < 6
5
2

< x < 6

9
2

> x

Thus, the solution set is {5
2

< x <
9
2
}.

6. The system
x

y
=

a

b
, x + y = c yields x =

ac

a + b
, y =

bc

a + b
. Since c > 0,

so x < y, the answer is (D).

7. The given conditions implies that 2a− b < 0 and
a− 2b

2a− b
=

5
2

, so

2(a− 2b) = 5(2a− b), i.e. b = 8a.
∴ 2a− b = −6a < 0, i.e. a > 0.

Now ax + b < 0 yields x < − b

a
= −8, so the solution set of the inequality

ax + b < 0 is
x < −8.

8. The given conditions implies that a > 0, so 1 +
b

a
+

c

a
= 0 and 1 >

b

a
>

c

a
.

b

a
= −1− c

a
implies 1 > −1− c

a
>

c

a
, so

−2 <
c

a
< −1

2
.

9. From (2a− b)x + a− 5b > 0,

(2a− b)x > 5b− a,

x <
5b− a

2a− b
, where 2a− b < 0.

Thus, 2a < b and
5b− a

2a− b
=

10
7

, so

7(5b− a) = 10(2a− b),
35b− 7a = 20a− 10b,

a =
45b

27
=

5
3
b.



Lecture Notes on Mathematical Olympiad 159

2a− b < 0, implies
10
3

b− b < 0, so a, b < 0, hence the solution set ax > b

is x <
b

a
=

3
5

, i.e. x <
3
5

.

10. The solution set of the system is the set of the integers x satisfying
a

9
≤ x <

b

8
. Since each of 1, 2, 3 satisfies the two inequalities,

0 <
a

9
≤ 1 ⇒ 0 < a ≤ 9,

3 <
b

8
≤ 4 ⇒ 24 < b ≤ 32,

so a has 9 choices and b has 8 choices, i.e. there are 9 × 8 = 72 required
ordered pairs (a, b).

Testing Questions (27-B)

1. It is needed to represent a− 2b in terms of a− b and a + b. Since

a =
1
2
[(a− b) + (a + b)], −2b = (a− b)− (a + b),

so a− 2b = − 1
2 (a + b) + 3

2 (a− b). a− 2b will take its maximum value if
a + b = 1, a− b = 1, i.e. a = 1, b = 0. Thus,

8a + 2002b = 8a = 8.

2. Label the equations as

3x + 2y − z = 4, (30.20)
2x− y + 2z = 6, (30.21)

x + y + z < 7. (30.22)

By (30.20) +2× (30.21),

7x + 3z = 16,
∴ x = 1, z = 3.

From (30.21), y = 2x + 2z − 6 = 2. Since x = 1, y = 2, z = 3 satisfy the
inequality (30.22), the solution is x = 1, y = 2, z = 3.
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3. By adding up the given two inequalities, (C) is obtained.

When x = y = 2, z = 1, then (A) is not true. When x = y = 1, z = 0.7,
then (B) is not true. When x = y = −1, z = −1.5, then (D) is not rue.
Thus, only (C) is always true.

4. The inequalities 0 ≤ ax + 5 ≤ 4 yields −5 ≤ ax ≤ −1. Since the integer
solutions for x are positive, so a < 0. Therefore

−1
a
≤ x ≤ −5

a
.

Since 0 < −1
a
≤ 1 and 4 ≤ −5

a
< 5, so

a ≤ −1 and a ≥ −5
4
.

Thus, the range of a is −5
4
≤ a ≤ −1.

5. The given conditions
8
9

<
a

b
<

9
10

implies

8b < 9a and 10a < 9b,
8b + 1 ≤ 9a, and 10a + 1 ≤ 9b,

∴ 8b + 1 ≤ 9 · 9b− 1
10

,

80b + 10 ≤ 81b− 9,
b ≥ 19.

When let b = 19, a =
9 · 19− 1

10
= 17, then

a

b
=

17
19

.

∵ 8
9

<
17
19

<
9
10

,

and b is the minimum possible value,
17
19

is the fraction to be found.

Solutions to Testing Questions 28

Testing Questions (28-A)

1. Let S be the sign of (2 + x)(x− 5)(x + 1), then we have
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Range of x x < −2 −2 < x < −1 −1 < x < 5 5 < x
S − + − +

Therefore the solution set is {−2 < x < −1} ∪ {5 < x}.

2. The given inequality implies that x 6= 0, so x2(x2 − 4) < 0 ⇔ x2 − 4 < 0,
hence the solution set is {−2 < x < 0} ∪ {0 < x < 2}.

3. x3 + x2 − 6x ≤ 0 ⇔ x(x2 + x− 6) ≤ 0 ⇔ x(x + 3)(x− 2) ≤ 0. Let

S be the sign of x(x + 3)(x− 2), then

Range of x x < −3 −3 < x < 0 0 < x < 2 2 < x
S − + − +

Thus, by adding the points−3, 0 and 2, the solution set is {x ≤ −3}∪{0 ≤
x ≤ 2}.

4. x − 1 > (x − 1)(x + 2) ⇔ (x − 1)(x + 1) < 0, i.e. x2 − 1 < 0, therefore
the solution set is |x| < 1, i.e. {−1 < x < 1}.

5. (x3−1)(x3 +1) > 0 ⇔ x6−1 > 0 ⇔ x6 > 1, so the solution set is |x| > 1
or equivalently, {x < −1} ∪ {x > 1}.

6.
2x− 4
x + 3

>
x + 2
2x + 6

⇔ 2(2x− 4)− (x + 2)
2(x + 3)

> 0 ⇔ 3x− 10
2(x + 3)

> 0,

When 3x− 10 > 0 and 2(x + 3) > 0, then x >
10
3

.

When 3x− 10 < 0 and x + 3 < 0, then x < −3, therefore the solution set

is {x < −3} ∪ {x >
10
3
}.

7.
x

x + 2
≥ 1

x
implies that x 6= 0,−2 and

x

x + 2
≥ 1

x
⇔ x2 − (x + 2)

x(x + 2)
≥ 0 ⇔ (x− 2)(x + 1)

x(x + 2)
≥ 0.

Let S be the sign of
(x− 2)(x + 1)

x(x + 2)
, then

Range of x (−∞,−2) (−2,−1) (−1, 0) (0, 2) (2, +∞)
S + − + − +

so the solution set is (−∞,−2) ∪ [−1, 0) ∪ [2, +∞).
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8. The given inequality
x− 1
x2

≤ 0 implies that x 6= 0, and the inequality is
equivalent to x− 1 ≤ 0, therefore the solution set is

(−∞, 0) ∪ (0, 1].

9. The inequality
x(2x− 1)2

(x + 1)3(x− 2)
> 0 implies that x 6= −1, 0, 1

2 , 2, and the

inequality is equivalent to

x

(x + 1)(x− 2)
> 0.

Let S be the sign of the value of
x

(x + 1)(x− 2)
, then

Range of x x < −1 −1 < x < 0 0 < x < 2 2 < x
S − + − +

therefore the solution set is

(−1, 0) ∪ (2, +∞).

10. From the given inequality we have x 6= −1 and 0 is in the solution set. Then
let x 6= 0 first, so that

2x2

x + 1
≥ x ⇔ 2x2 − x(x + 1)

x(x + 1)
≥ 0 ⇔ x(x− 1)

x(x + 1)
≥ 0 ⇔ x− 1

x + 1
≥ 0.

If x − 1 ≥ 0 and x + 1 > 0 then x ≥ 1; if x − 1 ≤ 0 and x + 1 < 0 then
x < −1. Thus the solution set is {x < −1} ∪ {0} ∪ {x ≥ 1}.

Testing Questions (28-B)

1. Let y = x2, then y 6= 1 or 3, annd the given inequality becomes

y + 3
y + 1

+
y − 5
y − 3

≥ y + 5
y + 3

+
y − 3
y − 1(

1 +
2

y + 1

)
+

(
1− 2

y − 3

)
≥

(
1 +

2
y + 3

)
+

(
1− 2

y − 1

)
,

1
y + 1

− 1
y + 3

≥ 1
y − 3

− 1
y − 1

,
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therefore

1
(y + 1)(y + 3)

≥ 1
(y − 3)(y − 1)

. (∗)

When 0 < y < 1 or y > 3, then (y+1)(y+3) > 0 and (y−3)(y−1) > 0,
so (∗) becomes (y+1)(y+3) ≤ (y−3)(y−1), i.e. 8y ≤ 0, so no solution.

When 1 < y < 3, then (y − 3)(y − 1) < 0 but (y + 1)(y + 3) > 0, so (∗)
holds. Returning to x, the solution set in {x > 0} is {1 < x <

√
3}.

2. Both sides of the given inequality are multiplied by 4, it follows that
(

1 +
5

4x + 3

)
−

(
1− 1

4x + 1

)
>

(
1 +

1
4x− 1

)
−

(
1− 5

4x− 3

)
,

5
4x + 3

− 5
4x− 3

>
1

4x− 1
− 1

4x + 1
,

15
16x2 − 9

<
−1

16x2 − 1
.

When 16x2 − 9 > 0 then 16x2 − 1 > 0, so right hand side of the last
inequality is negative, no solution.

When 16x2 − 9 < 0 and 16x2 − 1 < 0, then the last inequality holds, the

solution set is |x| < 1
4

.

When 16x2 − 9 < 0 and 16x2 − 1 > 0, then 15(16x2 − 1) > 16x2 − 9,

so x2 >
3

112
, the solution set is

1
4

< |x| <
3
4

. Thus, the solution set is

{|x| < 3
4
}, or equivalently, {−3

4
< x <

3
4
}.

3. Let f(x) = a3 + b3 − x3 − (a + b− x)3 −m, then f(x) ≤ 0 for any real x,
and

f(x) = −3ab(a + b) + 3(a + b)2x− 3(a + b)x2 −m

= −3(a + b)[x2 − (a + b)x +
1
4
(a + b)2] +

3
4
(a + b)[(a + b)2 − 4ab]−m

= −3(a + b)
(

x− a + b

2

)2

+
3
4
(a + b)(a− b)2 −m.

Since the maximum value of −3(a + b)
(
x− a+b

2

)2
is 0, so

3
4
(a + b)(a− b)2 −m ≤ 0,

∴ m ≥ 3
4
(a + b)(a− b)2.
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Thus, the minimum value of m is
3
4
(a + b)(a− b)2.

4. For a < −2, The condition f(−2) ≥ a yields 4a + 10 ≥ a, i.e. −10
3
≤ a <

−2. Since the symmetric axis of the curve y = f(x) is x = a, so if a < −2,
then f(x) ≥ f(−2) for x ≥ −2. Thus, the requirement is satisfied.

For −2 ≤ a ≤ 2, f(x) = (x− a)2 + 6− a2 ≥ 6− a2 ≥ 2 ≥ a for any real
x.

For a > 2, f(2) ≥ a yields 4− 4a + 6 ≥ a, i.e. a ≤ 2, a contradiction, so

the range of a is −10
3
≤ a ≤ 2.

5. Let y = x2 − 3x + 2 = (x − 3
2
)2 − 1

4
. Then ymin =

1
4

and ymax = 2 as

x =
3
2

and x = 0 respectively. Therefore

1
8
(2a− a2) ≤ −1

4
, 2 ≤ 3− a2,

a2 − 2a− 2 ≥ 0, a2 ≤ 1,

|a− 1| ≥ √
3, |a| ≤ 1,

thus, the range of a is
{{a ≤ 1−√3} ∪ {a ≥ 1 +

√
3}} ∩ {−1 ≤ a ≤

1} = {−1 ≤ a ≤ 1−√3}.

Solutions to Testing Questions 29

Testing Questions (29-A)

1. |x2 +x+1| ≤ 1 ⇔ −1 ≤ x2 +x+1 ≤ 1 ⇔ x2 +x+2 ≥ 0 and x2 +x ≤ 0.

Since x2 + x + 2 = (x +
1
2
)2 +

7
4

> 0 for each real x, the solution set is
R1.

x2 + x ≤ 0 ⇒ x(x + 1) ≤ 0, its solution set is −1 ≤ x ≤ 0.

Thus, the solution set to the original inequality is R1 ∩ {−1 ≤ x ≤ 0} =
{−1 ≤ x ≤ 0}.
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2. The given inequality is equivalent to (3− 2x)2 ≤ (x + 4)2, therefore

9− 12x + 4x2 ≤ x2 + 8x + 16,
3x2 − 20x− 7 ≤ 0,
(3x + 1)(x− 7) ≤ 0,

∴ −1
3
≤ x ≤ 7.

Thus the solution set is {−1
3
≤ x ≤ 7}.

3. It is clear that x− 1 6= 0, i.e. x 6= 1, so |x− 1| > 0 and
∣∣∣∣
x + 1
x− 1

∣∣∣∣ ≥ 1 ⇔ |x + 1| ≥ |x− 1| ⇔ (x + 1)2 ≥ (x− 1)2,

i.e.,
x2 + 2x + 1 ≥ x2 − 2x + 1,

4x ≥ 0, ∴ x ≥ 0.
∵ x 6= 1,

the solution set is (0, 1) ∪ (1, +∞).

4. |x+3| > 2x+3 ⇔ x+3 < −(2x+3) or x+3 > 2x+3 ⇔ x < −2 or x < 0.
Thus, the solution set is (−∞,−2) ∪ (−∞, 0) = (−∞, 0).

5. |x2 − 4x − 5| > x2 − 4x − 4 ⇔ x2 − 4x − 5 < −(x2 − 4x − 4) or x2 −
4x − 5 > x2 − 4x − 4. The second inequality has no real solution, and
x2 − 4x− 5 < −(x2 − 4x− 4) yields

2x2 − 8x− 9 < 0,

∴ 2− 1
2

√
34 < x < 2 + 1

2

√
34,

i.e. the solution set is {2− 1
2

√
34 ≤ x ≤ 2 + 1

2

√
34}.

6. Since x 6= 0 and any x < 0 satisfies the given inequality, the set (−∞, 0) is a
part of the solution set.

For x > 0, then |x + 1| >
2
x
⇔ x2 + x > 2 ↔ (x + 2)(x − 1) > 0,

therefore 1 < x. Thus, the solution set is {x < 0} ∪ {1 < x}.

7. For x ≤ −1, the given inequality becomes−(x+1)+(2−x) ≤ 3x, therefore
x ≥ 1

5 , but it is not acceptable, so no solution.

For −1 ≤ x ≤ 2, the given inequality becomes (x + 1) + (2 − x) ≤ 3x,
therefore the set 1 ≤ x ≤ 2 is in the solution set.
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For 2 < x, the given inequality becomes (x + 1) + (x− 2) ≤ 3x, therefore
2 < x is in the solution set.

Thus, the solution set is {1 ≤ x}.

8. (i) Let y = |x|, then y2 + y − 6 > 0, so (y + 3)(y − 2) > 0, the solution
set for y is 2 < y (since y ≥ 0). Returning to x, the solution set for x is
{|x| > 2}, or equivalently, {x < −2} ∪ {x > 2}.

(ii) Let y = |x|, then y ≥ 0 and y 6= 2. Then the given inequality is
equivalent to

y − 1
y − 2

< 0,

(y − 1)(y − 2) < 0,

1 < y < 2, i.e. 1 < |x| < 2.

Thus the solution set is {−2 < x < −1} ∪ {1 < x < 2}.

9. For x > 0, the given inequality becomes |x2 − 1| > 1, i.e. x2 − 1 > 1 or
x2 − 1 < −1 (no solution), so the solution set is x >

√
2.

For x < 0, the given inequality becomes |x2 − 1| > −1, so the solution set
is any negative number.

Thus the solution set of the question is {x < 0} ∪ {x >
√

2}.

10. By taking squares to both sides, the absolute value signs in the outer layer
can be removed.
||a|+ (a− b)| > |a + |a− b|| ⇔ (|a|+ (a− b))2 > (a + |a− b|)2,

a2 + (a− b)2 + 2|a|(a− b) > a2 + (a− b)2 + 2a|a− b|,
|a|(a− b) > a|a− b|,

therefore a, a− b are both not zero, so
a

|a| <
a− b

|a− b| . Since both sides have

absolute value 1, so a < 0 and a− b > 0, thus, a < 0, b < 0, the answer is
(D).

Testing Questions (29-B)

1. (i) By symmetry we may suppose that a ≥ b ≥ c. Then a > 0 and b + c =

2− a, bc =
4
a

. So b, c are the real roots of the quadratic equation

x2 − (2− a)x +
4
a

= 0.
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Its discriminant ∆ ≥ 0 implies (2− a)2 − 16
a
≥ 0, so

a3 − 4a2 + 4a− 16 ≥ 0,
(a− 4)(a2 + 4) ≥ 0,

∴ a− 4 ≥ 0, i.e. a ≥ 4.

In fact, when a = 4, b = c = −1, the conditions are satisfied. Thus, the
minimum value of the maximal value of a, b, c is 4.

(ii) The given conditions implies that a, b, c may be all positive or one pos-
itive and two negative. Let a > 0, b < 0, c < 0. then

|a|+ |b|+ |c| = a− b− c = 2a− 2 ≥ 8− 2 = 6,

so the minimum value of |a|+ |b|+ |c| is 6.

2. The condition b =
a + c

2
implies 2b = a + c or a − b = b − c, so |a − b| =

|b− c|, Since |a| < |c|, so

S1 =
∣∣∣∣
a− b

c

∣∣∣∣ =
∣∣∣∣
b− c

c

∣∣∣∣ <

∣∣∣∣
b− c

a

∣∣∣∣ = S2.

2b = a+ c implies 2(b− c) = a− c, so 2|b− c| = |a− c|. Since 2|a| > |b|,
so

S2 =
∣∣∣∣
b− c

a

∣∣∣∣ =
∣∣∣∣
2(b− c)

2a

∣∣∣∣ <

∣∣∣∣
a− c

b

∣∣∣∣ = S3.

Thus, S1 < S2 < S3, the answer is (A).

3. For y ≥ 0, the given inequality becomes
3y + 10
8y + 5

> 1, and which is equiva-

lent to
3y + 10 > 8y + 5 ⇔ y < 1.

Thus, the solution set is 0 ≤ y < 1 for y ≥ 0.

For y < 0, then given inequality becomes
|y + 10|
|4y + 5| > 1, so y 6= −5

4
or

−10.

For y < −10,
|y + 10|
|4y + 5| > 1 ⇔ −(y + 10) > −(4y + 5) ⇔ y >

5
3

, no

solution.

For −10 < y < − 5
4 ,
|y + 10|
|4y + 5| > 1 ⇔ 10 + y > −(4y + 5) ⇔ y > −3, so

the solution set is −3 < y < −5
4

.
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For −5
4

< y < 0,
|y + 10|
|4y + 5| > 1 ⇔ y + 10 > 4y + 5 ⇔ y <

5
3

, so the

solution set is −5
4

< y < 0.

By adding the parts of solution set, the solution set for the original inequality
is

{−3 < y < −5
4
} ∪ {−5

4
< y < 1}.

4. The condition (i) implies that the curve y = ax2 + bx + x is open upwards.
The conditions (i) and (iii) imply that

a + b = 2. (30.23)

The condition (ii) implies that

|a + b + c| ≤ 1, (30.24)
|c| ≤ 1. (30.25)

(30.23) and (30.24) implies that |2 + c| ≤ 1, i.e.

−3 ≤ c ≤ −1, (30.26)

(30.25) and (30.26) implies that c = −1. Thus, the curve y = ax2 + bx + c

reaches its minimum value −1 at x = 0, so − b

2a
= 0, i.e. b = 0, which

implies that a = 2. Thus, a = 2, b = 0, c = −1.

5. Let a = b = − 3
√

2, c =
1
2
· 3
√

2, then a, b, c satisfy all the conditions in
question, so k ≤ 4.

Below we show that the inequality |a + b| ≥ 4|c| holds for any (a, b, c)
which satisfies all conditions in question.

The given conditions implies a, b, c are all non-zero and c > 0, and

ab =
1
c

> 0, 0 = ab + bc + ca =
1
c

+ (a + b)c ⇔ a + b = − 1
c2

< 0,

so a ≤ b < 0. By inverse Viete Theorem, a, b are the roots of the quadratic
equation

x2 +
1
c2

x +
1
c

= 0,

so ∆ =
1
c4
− 4

c
≥ 0, i.e. c3 ≤ 1

4
. Thus,

|a + b| = −(a + b) =
1
c2
≥ 4c = 4|c|.
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Solutions to Test Questions 30
Testing Questions (30-A)

1. Based on Example 1, it is obtained that AB + AC > RB + RC,

BA + BC > RC + RA, and
BC + CA > RA + RB.

Adding them up, then

2(AB+BC+CA) > 2(RA+RB+RC),

so

.......................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.....................................................................................................................................................................................................................................................................................

........................................
........................................

.........................................
.........................................

...................................................................................................................................................................................................................................................................................................................................................................

A

B C

R

RA + RB + RC < AB + BC + CA.

From triangle inequality, RA + RB > AB, RB + RC > BC, RC +
RA > CA. Adding them up, the inequality

1
2
(AB + BC + CA) < RA + RB + RC

is obtained at once.

2. Since ∠C > ∠B, we have AB > AC. On AB take C ′ such that AC ′ = AC,

and make C ′D ⊥ BE at D and
C ′F ′ ‖ BE, intersecting AC at F ′, as
shown in the diagram, then DC ′F ′E
is a rectangle and

CF = C ′F ′ = DE.

Therefore AB+CF = AC ′+BC ′+
C ′F ′ = AC + BC ′ + DE, so that
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...........
...............................................................................................................................................................................................
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.........
..............................................................................................................................................................................................................................................

......
......
............

............
............

............
............

............
............

............
............

A

B C
D

E

F
F ′

C ′

(AB + CF )− (AC + BE) = BC ′ −BD > 0

since in the Rt4BC ′D, BC ′ is the hypotenuse. Thus, AB + CF > AC +
BE.

3. By Pythagoras’ Theorem, PB2 − PC2 = (PD2 + BD2)− (PD2 + DC2)
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= BD2 −DC2 and

AB2 −AC2

= (AD2 + BD2)− (AD2 + DC2)
= BD2 −DC2,

so
PB2 − PC2 = AB2 −AC2. Thus, ............................................................................................................................................................................
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...........
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...........
...........................................................................................................................................................................................................................................................................
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........
........
........
........
........
........
........
........
........
.

.......................
......................

......................
.......................

......................
......................

.......................
..............................................................................................................

A

B CD

P

(PB − PC)(PB + PC) = (AB −AC)(AB + AC).

Considering PB + PC < AB + AC, we obtain PB − PC > AB −AC.

4. Let ha = AD,hb = BE, hc = CF , Then

ha < b, ha < c, hb < a, hb < c, hc < b, hc < a.

Adding them up, we obtain 2(ha +
hb + hc) < 2(a + b + c), i.e.

ha + hb + hc < a + b + c. ........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
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.........
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.........
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A

B CD

E
F

On the other hand, From AD + BD > AB, AD + DC > AC we have

2ha + a > b + c. (30.27)

Similarly,

2hb + b > c + a, (30.28)
2hc + c > a + b. (30.29)

Adding (30.27), (30.28), (30.29) up, it follows that 2(ha + hb + hc) >
a + b + c, so

1
2
(a + b + c) < ha + hb + hc.

5. The assumptions implies that a + b > c, b + c > a, c + a > b. Since

1
c + a

>
1

a + b + a + b
=

1
2(a + b)

and

1
b + c

>
1

a + b + a + b
=

1
2(a + b)

,
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it follows that

1
a + b

+
1

c + a
>

1
b + c

and
1

a + b
+

1
b + c

>
1

a + c
.

The three inequalities prove the conclusion.

6. Since

2(u2 + v2) ≥ (u + v)2

for any real numbers u and v, and

BB1 =
3
2
BG, CC1 =

3
2
CC1,

it follows that
BB2

1 + CC2
1 =

9
4
(BG2 + CG2)

≥ 9
8
(BG + CG)2 >

9
8
BC2.


.........
.........
.........
.........
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.........
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.........
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.........
.........
.........
.........
.........


...................
...................

..................
...................

..................
...................

...................
..................

...................
..................

A

B C

B1C1

G

7. Let MB = a,BK = b,KC = c, AC = d,AM = e. Then

[MBK] > [MCK] =⇒ b > c,
[MBK] > [MAK] =⇒ a > e.

Suppose that
a + b

c + d + e
<

1
3

,

then 3a+3b < c+d+ e < b+d+a,
so 2a + 2b < d.
Since 2a + 2b > (a + e) + (b + c) =
AB + BC, so AB + BC < d = AC,

.........................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..................................................................................................................................................................................................................................................... ..........

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...

A

B C

M

K

a

e

b c

d

a contradiction. Thus, the conclusion is proven.

8. The n lines can form 4
(
n
2

)
= 2n(n− 1) angles. If by translation we move all

the lines such that they are all pass a fixed point O in the plane, they form
2n angles, and each is one of the 2n(n− 1) angles.

If each of the 2n angles is greater than
180◦

n
, then their sum is greater than

2n · 180◦

n
= 360◦, a contradiction. Thus, the conclusion is proven.

9. Extending ED to E1 such that DE1 = DE. Connect E1B, E1F . Then
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4BDE1
∼= 4ADE (S.A.S.).

For the quadrilateral E1BFD, we have

[FDE1] = [DEF ],
.........
.........
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.........
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.........
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........

............................................................................................................................................................................................................................................................

...............................................................................................................................................................................................................................................................................................................................
.....
......
......
......
......
......
.....

A

B C

D

F

E
E1

so that

[ADE] + [BDF ] = [E1BFD] > [FDE1] = [DEF ].

10. Let ha, hb, hc be the heights on BC, CA, AB respectively. If PQRS is an
inscribed square of 4ABC, such that RS is on BC, Let PQ = PS =
RS = QR = l, from 4AQP ∼ 4ABC, we have

ha − l

ha
=

l

a

we have
l =

aha

a + ha
.
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.............................................................................................................................................................................

A

B CDR S

Q P

Similarly, if the squares with one side on AC and on AB have length of
side m and n respectively, then

m =
bhb

b + hb
and n =

chc

c + hc
.

Since
b

a
=

ha

hb
, so

a− hb

b− ha
=

a

b
> 1, i.e. a − hb > b − ha, therefore

a + ha > b + hb. Thus,

aha

a + ha
<

bhb

b + hb
, ∴ l < m.

Similarly, m < n. Thus, the square with one side on the shortest side AB
has maximum area.
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Test Questions (30-B)

1. (KIEV/1969) Suppose that there is such a triangle. Let its area be S. Then
we can assume that

a =
2S

1
, b =

2S√
5
, c =

2S

1 +
√

5
.

Since a > b > c, we check if the triangle inequality holds for the triangle,
and it suffices to check b + c > a.

b + c = 2S

(
1√
5

+
1

1 +
√

5

)
< 2S

(
1
2

+
1

1 + 2

)
= 2S · 5

6
< a,

a contradiction. Thus, such a triangle does not exist.

2. First of all we have

A1C − CB1 < A1B1, B1A−AC1 < B1C1,
C1B −BA1 < C1A1,

i.e.
3
4
a− 1

4
b < c1,

3
4
b− 1

4
c < a1,

3
4
c− 1

4
a < b1,
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........................................................................................................................................................................
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B

A CB2 B1

C1

C2 A1

A2

where a, b, c are the lengths of BC,CA, AB respectively, and a1, b1, c1

are the lengths of B1C1, C1A1, A1B1 respectively. By adding them up we
obtain

1
2
(a + b + c) < a1 + b1 + c1, i.e.

1
2
P < p.

On the sides of 4ABC we take segments A1A2, B1B2, C1C2 such that
A1A2 = 1

2a,B1B2 = 1
2b, C1C2 = 1

2c. It is easy to see that B2C1 =
1
4a,A1C2 = 1

4b, A2B1 = 1
4c, so that

1
2
b +

1
4
a > a1,

1
2
c +

1
4
b > b1,

1
2
a +

1
4
c > c1.

Adding them up, we obtain

a1 + b1 + c1 <
3
4
(a + b + c),

i.e. p <
3
4
P .
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3.
I2 − 3S = (a + b + c)2 − 3(ab + bc + ca)

= a2 + b2 + c2 − ab− bc− ca
= 1

2 [(a− b)2 + (b− c)2 + (c− a)2] ≥ 0,

therefore 3S ≤ I2. On the other hand,

I2 − 4S = (a + b + c)2 − 4(ab + bc + ca)
= a2 + b2 + c2 − 2ab− 2bc− 2ca
= (a− b)2 + c2 − 2c(a + b)
< c2 + c2 − 2c(a + b) = 2c[c− (a + b)] < 0,

therefore I2 < 4S.

4. From 1 = (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca), we have 4(ab +
bc + ca) = 2 − 2(a2 + b2 + c2). From Heron’s formula, the area S of the
triangle is given by

S =

√
1
2

(
1
2
− a

) (
1
2
− b

)(
1
2
− c

)
,

so that

16S2 = (1− 2a)(1− 2b)(1− 2c)
= 1− 2(a + b + c) + 4(ab + bc + ca)− 8abc
= −1 + 4(ab + bc + ca)− 8abc
= 1− 2(a2 + b2 + c2)− 8abc,

therefore 1− 2(a2 + b2 + c2)− 8abc ≥ 0, i.e. a2 + b2 + c2 + 4abc <
1
2

.

5. (i) When X, Y, Z are midpoints of corresponding sides, then

[XY Z] =
1
4
[ABC].

If X is not the midpoint of BC. Since
BX < 1

2BC, when Y, Z are fixed and
moving X to the midpoint of BC, the
the height of 4XY Z on the side Y Z
is reduced, so [XY Z] is reduced. In
similar way, we can also move Y, Z to
the midpoint if needed. Therefore we
have
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..................
...................

...................
..................

.........................................................................................................................................................
.....................

.....................
.....................

.....................
.....................

.....................
............

A

B CX

Y

Z

[XY Z] >
1
4
[ABC].
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Thus, (i) is proven.
(ii) If the positions of X, Y, Z are the same as in (i), then [AY Z] +

[BZX] + [CXY ] ≤ 1
4
[ABC] implies one of [AY Z], [BZX], [CXY ] is

not greater than
1
4
[ABC], so is not greater than [XY Z] by the result of (i).

If X, Y, Z are not positioned as in (i), then there must be two of them, say Z
and Y that are both above the midpoints of AB and AC, then the distance
from X to the line ZY must not be less than the distance from C or from B
to the line ZY , so is greater than the distance from A to the line ZY . Thus,

[XZY ] > [AZY ]

since they have same base ZY .

6. From a + b + c = 2 we have 0 < a, b, c < 1, so that

0 < (1− a)(1− b)(1− c) ≤
(

1− a + 1− b + 1− c

3

)3

=
1
27

,

∴ 0 < 1− (a + b + c) + (ab + bc + ca)− abc ≤ 1
27

,

i.e. 0 < (ab + bc + ca)− 1− abc ≤ 1
27

, the conclusion is proven at once.
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