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Preface

Although mathematical olympiad competitions are carried out by solving prob-
lems, the system of Mathematical Olympiads and the related training courses can-
not involve only the techniques of solving mathematical problems. Strictly speak-
ing, it is a system of mathematical advancing education. To guide students who are
interested in mathematics and have the potential to enter the world of Olympiad
mathematics, so that their mathematical ability can be promoted efficiently and
comprehensively, it is important to improve their mathematical thinking and tech-
nical ability in solving mathematical problems.

An excellent student should be able to think flexibly and rigorously. Here the
ability to do formal logic reasoning is an important basic component. However, it
is not the main one. Mathematical thinking also includes other key aspects, like
starting from intuition and entering the essence of the subject, through prediction,
induction, imagination, construction, design and their creative abilities. Moreover,
the ability to convert concrete to the abstract and vice versa is necessary.

Technical ability in solving mathematical problems does not only involve pro-
ducing accurate and skilled computations and proofs, the standard methods avail-
able, but also the more unconventional, creative techniques.

It is clear that the usual syllabus in mathematical educations cannot satisfy
the above requirements, hence the mathematical olympiad training books must be
self-contained basically.

The book is based on the lecture notes used by the editor in the last 15 years for
Olympiad training courses in several schools in Singapore, like Victoria Junior
College, Hwa Chong Institution, Nanyang Girls High School and Dunman High
School. Its scope and depth significantly exceeds that of the usual syllabus, and
introduces many concepts and methods of modern mathematics.

The core of each lecture are the concepts, theories and methods of solving
mathematical problems. Examples are then used to explain and enrich the lectures,
and indicate their applications. And from that, a number of questions are included
for the reader to try. Detailed solutions are provided in the book.

The examples given are not very complicated so that the readers can under-
stand them more easily. However, the practice questions include many from actual



vi Preface

competitions which students can use to test themselves. These are taken from a
range of countries, e.g. China, Russia, the USA and Singapore. In particular, there
are many questions from China for those who wish to better understand mathe-
matical Olympiads there. The questions are divided into two parts. Those in Part
A are for students to practise, while those in Part B test students’ ability to apply
their knowledge in solving real competition questions.

Each volume can be used for training courses of several weeks with a few
hours per week. The test questions are not considered part of the lectures, since
students can complete them on their own.

K. K. Phua
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Abbreviations and Notations

Abbreviations

AHSME
AIME
APMO
ASUMO

AUSTRALIA
BMO
CHNMO
CHNMOL

CHINA

CMO
HUNGARY

IMO

JAPAN

KIEV

MOSCOW
NORTH EUROPE
RUSMO

SSSMO

SMO

SSSMO(J)

UKIMO
USAMO

American High School Mathematics Examination
American Invitational Mathematics Examination
Asia Pacific Mathematics Olympiad

Olympics Mathematical Competitions of All
the Soviet Union

Australia Mathematical Competitions
British Mathematical Olympiad
China Mathematical Olympiad

China Mathematical Competition for Secondary
Schools

China Mathematical Competitions for Secondary
Schools except for CHNMOL

Canada Mathematical Olympiad

Hungary Mathematical Competition

International Mathematical Olympiad

Japan Mathematical Olympiad

Kiev Mathematical Olympiad

Moscow Mathematical Olympiad

North Europe Mathematical Olympiad

All-Russia Olympics Mathematical Competitions
Singapore Secondary Schools Mathematical Olympiads
Singapore Mathematical Olympiads

Singapore Secondary Schools Mathematical Olympiads
for Junior Section

United Kingdom Junior Mathematical Olympiad
United States of American Mathematical Olympiad
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Abbreviations and Notations

Notations for Numbers, Sets and Logic Relations

N
No
Z
7+
Q
Q+

+
0

R
[a, 0]
(a,b)

&

=

ACB
A-B
AUB
ANB

acA

the set of positive integers (natural numbers)

the set of non-negative integers

the set of integers

the set of positive integers

the set of rational numbers

the set of positive rational numbers

the set of non-negative rational numbers

the set of real numbers

the closed interval, i.e. all x suchthata < z < b
the open interval, i.e. all x such thata < x < b
iff, if and only if

implies

Ais a subset of B

the set formed by all the elements in A but not in B
the union of the sets A and B

the intersection of the sets A and B

the element a belongs to the set A
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1.

Lecture 1

Operations on Rational Numbers

Basic Rules on Addition, Subtraction, Multiplication, Division

Commutative Law: a+b=b+a ab=ba
Associative Law: at+b+c=a+(b+c) (ab)c=a(be)
Distributive Law: ac+bc= (a+b)c=cla+b)

Rule for Removing Brackets

For any rational numbers z, y,

) z+@)=z+y, z+(-y=v-y

(i) z—-(y=z-yz—(-y) =z+y.

(i) zx(=y)=—zy; (—2)xy=—ay; (—z)x(-y) =2y
(=1)" = —1 forodd n, (—1)™ = 1 for even n.

(iv)  If the denominators of the following expressions are all not zeros,
then

x r -z r —xr

) b

-y Yy oy vy -y oy
Ingenious Ways for Calculating
* Make a telescopic sum by using the following expressions:
1 1 1

k(k+1) k k+1

v vt
kE(k+m) m\k k+m)’
1 1

1
k(k+1)(k+2) 2 [k(kﬂ) Ck+0)(k+2)|
* By use of the following formulae:

(a+b)? = a® + 2ab + b?;

a? —b%> = (a—b)(a+b);

a® +b% = (a+0b)(a® — ab+ b?);

a’® — b = (a — b)(a® + ab + b?), etc.

1
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Examples

3 2
1 1
Example 1. Evaluate (—5)? x (—) —-2% = <—) — (—1)19%9,

1\?* 1\ 2
Solution (75)2 % (5> _ 93 (2) . (71)1999

1 1 1
o 8x4t+1—-—2-—31=-31-.
5 oxAt 5 5

Example 2. There are five operational expressions below:

@) (2x3x5x7)(;+;+;+;);
(i)  (—0.125)7 - 8%;
(i)  (=11)+ (=33) — (=55) — (—66) — (—=77) — (—88);

o (5)+(5)
13 13)°

N OURONOE
7 5 9 81

Then the expression with maximal value is

(A) (@), (B) (i), (©) (iv), (D) (v).
Solution

1 1 1 1
i 2x3xHxTN)|z+-4+-+ <2
(i) (2x3x5x )(2+3+5+7>
105 + 70 + 42 4 30 = 247;
—0.125)7 - 8% = —(0.125 x 8)7 x 8 = —8;
—11) + (—33) — (—55) — (—66) — (=77) — (—88)
—11 —-334+55+66+4 774 88 =11 x 22 = 242;

246

(ii)
(iii)

—~

|l

5\° (37\° . .,
. 9 of = 45;
) 13) +(13) <OEI=
6\" 4 4\ 16 246
™) l(7) (-3) % (-5)~ 81] (o5 -~ 000)
<1x10=10;

Thus, the answer is (A).
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Example 3. 123456789 x 999999999 =
Solution

123456789 x 999999999 = 123456789 x (1000000000 — 1)
= 123456789000000000 — 123456789 = 123456788876543211.

13579

(C13579)% + (—13578)(13580)
(A)1, (B)13579, (C)—1, (D) —13578.

Example 4. The value of

Solution By use of (a — b)(a + b) = a® — b?, we have

13579
(—13579)2 + (—13578)(13580)
_ 13579

~ (13579)2 — (135792 — 1)

= 13579.

The answer is (B).

83% +17°
Example 5. —— ' —
AP 83 % 66+ 172

Solution By use of the formula a® + b = (a + b)(a® — ab + b?),

832 +17% (834 17)(83% —83 x 17+ 17%)
83 x 66 + 172 83 x 66 + 172
100 x (83 x 66 4 172)
— = 100.
83 x 66 + 172

Example 6. Evaluate

(Ax7+2)(6x9+2)(8x11+2)----- (100 x 103 + 2)
(5x8+2)(Tx10+2)(9x 1242) - ---- (99 x 102 +2)°

Solution Fromn(n+3)+2 =n2+3n+2 = (n+1)(n+2) for any integer
n, we have

(AxT7+2)(6x942)(8x1142)----- (100 x 103 + 2)
(5x8+2)(Tx10+2)(9x 12+2) -+ - (99 x 102 + 2)
(5% 6)(Tx8)(9x10)----- (101 x 102)

8

X
(6 xT)(8%x9)(10 x 11) -+ (100 x 101)
=5 x 102 = 510.

200920082

Example 7. -
XampIe L 500920072 + 200920092 — 2
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200920082

Soluti
ouhon 500920072 + 200920092 — 2

200920082
(200920072 — 1) + (200920092 — 1)
200920082
(20092006)(20092008) + (20092008)(20092010)
200920082 20092008 1

(20092008) (20092006 + 20092010)  2(20092008%) 2’

11 01 1 1 1 1
Example8. 35— +_+_ 1 _1_ 1 1 1
xample8. 3 — 5 — ¢~ 10730 30 12 56

Solution
1 1 1 1 1 1

1
3—<2+6+12+20+30+42+56)

1+1+1++1
X2 2x3 3x4 7x8

1 1 1 1 1 1
E le9. Evaluate - + — + — + — + — + —.
xample vauae3+15+35+63+99+143

Solution Si 1 L1 1 for any positive integer k, so
uti ince —— =~ - - —— Vi ,
kk+2) 2\k k2 yp g

LI S U SN N
3 15 35 63 99 143

1 1 1 1 1 1

T 1x3 T 3x5 " 5x7 7Tx9 9ox1l 11x13

L[y (1,
2 \1 3 35 11 13
= 1 X |1— i = E
2 13 13
Example 10. If ab < 0, then the relation in sizes of (a — b)? and (a + b)? is

(A) (a—b)? < (a+b)? B)(a—b)?=(a+b)?%
(C) (a —b)? > (a+b)%; (D) not determined.
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Solution From (a — b)? = a? — 2ab + b*> = a? + 2ab + b*> — 4ab =
(@ +b)? — 4ab > (a + b)?, the answer is (C).

.. 1
Example 11. If —1 < a < 0, then the relation in sizes of a3, —a?, a*, —a*, =,
a
1.
——is
a

1 ) ) 1
(A)7<—a4<a‘3<fa3<a4<77;
a a

1 1
(B)a<7<—a4<a4<—7<—a3;
a a

1

8o .
1 1
D) - <a®<a*<—a*<—a®<——.
a a

1
(C)7<a3<—a4<a4<—a
a

4

1
Solution From —1 < a < Owehave 0 < a* < —a® < 1 < —Z=, 50
a

1 . .
—a* > @’ and —— > —a® and a* > —a?, the answer is (C).
a

Testing Questions (A)

1. Evaluate —1 — (—=1)! — (=1)2 = (=1)3 — .-+ — (=1)%9 — (=1)100,
2. Evaluate 2008 x 20092009 — 2009 x 20082008.

1
3. From 2009 subtract half of it at first, then subtract 3 of the remaining num-

1
of the
9

remaining number is subtracted. What is the final remaining number?

1 .. .
ber, next subtract — of the remaining number, and so on, until

1 1 1 1
+ + +

4. Find the sum ! + .
5x7 T7Tx9 9x11 11 x13 13x15

11 11 1
5. Find th SRR R SR VI
indthesum 75+ 70 788 T 1524 T 238

6. Evaluate
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1 1 1
7. Find th -
ndthesum 4 T o s T T T2 1ol

8. Letn be a positive integer, find the value of

1+-+% 102321 +1+2+ +n+n_1+ +1
3'3'3'3'°3 n'

+5+

1 2 1
2 2 2
9. Evaluate 12 — 22 + 32 — 42 + ... — 20082 + 20092.

10.  Find the sum 11 + 192 + 1993 4- 19994 4 199995 + 1999996 + 19999997 +
199999998 + 1999999999.

Testing Questions (B)

L Calculate32+1+52+1 1 992+1'
32-1 52-1 72-1 992 — 1
2.  After simplification, the value of
1 2 B 3 B 4
1-(1+2) (14+2)1+243) (1+2+3)(1+2+3+4)

100
(424 +99)(1+2+ -+ 100)

is a proper fraction in its lowest form. Find the difference of its denominator
and numerator.

1 1

1
. Evaluat I S
3. Bvaluate 7= =+ o g1 T T To0 x 101 x 102

4. Find the sum

1 2 3 50
12410 Tr s 1xartat T TR 5024508

5. Evaluate the expression

12 N 22 P 802
12-10+50 22 —-20+50 802 — 80+ 50"




Lecture 2

Monomials and Polynomials

Definitions

Monomial: A product of numerical numbers and letters is said to be a mono-
mial. In particular, a number or a letter alone is also a monomial, for example,
16, 32z, and 2a;L'2y, etc.

Coefficient: In each monomial, the part consisting of numerical numbers and
the letters denoting constants is said to be the coefficient of the monomial, like 32
in 32z, 2a in 2ax2y, etc.

Degree of a Monomial: In a monomial, the sum of all indices of the letters
denoting variables is called the degree of the monomial. For example, the degree
of 3abx? is 2, and the degree of Ta*zy? is 3.

Polynomial: The sum of several monomials is said to be a polynomial, its each
monomial is called a term, the term not containing letters is said to be the con-
stant term of the polynomial. The maximum value of the degree of terms in the
polynomial is called degree of the polynomial, for example, the degree is 2 for
322 + 42 + 1, and 5 for 222y3 + 2y. A polynomial is called homogeneous when
all its terms have the same degree, like 322 + zy + 412,

Arrangement of Terms: When arranging the terms in a polynomial, the terms
can be arranged such that their degrees are in either ascending or descending order,
and the sign before a term should remain attached to when moving it. For example,
the polynomial 23y — 1 —2xy? — 23y should be arranged as x3y3 — 3y —22y% —1
or —1 — 2xy? — 23y + 233,

Like Terms: Two terms are called like terms if they have the same construction
except for their coefficients, like in 4ax?y and 5b22y.

Combining Like Terms: When doing addition, subtraction to two like terms,
it means doing the corresponding operation on their coefficients. For example,
daz?y + 5bx’y = (4a + 5b)x2y and 4ax’y — 5bx’y = (4a — 5b)x>y.
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Operations on Polynomials

Addition: Adding two polynomials means:

6)) take all terms in the two polynomials as the terms of the sum;

(i) combine all the like terms if any;

(iii))  arrange all the combined terms according to the order of ascending or de-

scending degree.
Subtraction: Let P and () be two polynomials. Then P — () means

6)) change the signs of all terms in @) to get —() at first;

(i)  take all terms in the two polynomials P and —( as the terms of P — Q;
(iii)  combine all the like terms if any;

(iv)  arrange all the combined terms according to the rule mentioned above.
Rule for Removing or Adding Brackets:

The rule for removing or adding brackets is the distributive law. For example, to
remove the brackets in the expression —2z(z3y — 4z2y? + 4), then

—Qx(mgy — 4a?y? + 4) = —2zty + 8z%y* — 8,

and to add a pair of bracket for containing the terms of the expression —4z°y2 +
6x*y — 8x2y? and pick out their common factor with negative coefficient, then

—4xy? + 62ty — 8x?y? = —22%y(223y — 3% + 4y).

Multiplication:

@) For natural numbers m and n,
am . an — am+n; (am)n — amn; (ab)n — anbn;

(ii))  When two monomials are multiplied, the coefficient of the product is the
product of the coefficients, the letters are multiplied according to the rules
in (i);

(iii) Wl(lgn two polynomials are multiplied, by using the distributive law, get a
sum of products of a monomial and a polynomial first, and then use the

distributive law again, get a sum of products of two monomials;
(iv)  Three basic formulae in multiplication:

(i) (a — b)(a +b) = a? — b?;
() (a+b)%2 = a?+ 2ab+ b?;
(i) (a —b)%2 = a? — 2ab + b2

Examples

Example 1. Simplify 3a + {—4b — [4a — 7b — (—4a — b)] + 5a}.
Solution

3a+ {—4b — [4a — 7b — (—4a — b)] + 5a}
=3a + {—4b — [8a — 6b] + 5a} = 3a + {—3a + 2b} = 2b.



Lecture Notes on Mathematical Olympiad 9

or

3a+ {—4b — [4a — 7b — (—4a — b)] + 5a}
=8a —4b— [4a — 7b — (—4a — b)] = 4a + 3b + (—4a — b) = 2b.

Note: We can remove the brackets from the innermost to outermost layer, or
vice versa.

Example 2. Simplify the expression 4{(3z — 2) — [3(3z — 2) + 3]} — (4 — 6z).

Solution Taking 3z — 2 as whole as one number y in the process of the
simplification first, we have

4{(3z —2) — [3(3z — 2) + 3]} — (4 — 62) = 4{y — [3y + 3]} + 2y
=4{-2y—3}+2=—6y—12=—6(3z —2) — 12 = —182.

Example 3. Evaluate —92" 2 — 82"~ ! — (—92"2) — 8(2" 2 — 22" 1), where
r=9, n=3.

Solution —9z"2 — 8z~ ! — (=927~ %) — (2”2 — 22" 1) = 8z~ —
82" ~2. By substituting z = 9, n = 3, it follows that

the expression = 82"~ ! — 8272 = 8 x (81 — 9) = 576.

Example 4. Given 23 + 422y + azxy® + 3zy — ba¢y + Tay? +dry +y* = 23 +3?
for any real numbers x and y, find the value of a, b, ¢, d.

Solution 422y and —bz“y must be like terms and their sum is 0, so
b=4,c=2.

axy? + Try? = 0 and 2zy + dzy = 0 for every x and y yields a + 7 = 0 and
3+d=0,s0
a=—-7,d=-3.

Thus,a = —7,b=4,¢ = 2,d = —3.
Example 5. Given that m, x, y satisfy (i) %(x —5)2 +5m? = 0; (ii) —2a?p¥*?

and 3a2b? are like terms, find the value of the expression

3 7 1 3
gxzy + 5m? — {—16$2y + [—41‘3}2 — 1—6x2y — 3.475xy2} — 6.275xy2} .
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Solution The condition (i) implies (z—5)? = 0,5m? = 0,sox = 5,m = 0.
The condition (ii) implies y + 1 = 3, i.e. y = 2. Therefore

3, 9 7 1 3 9
- — < —— —= - — 4 —6.2
83: y+5m { 1637 2y + [ 4a:y 1633 y — 3.475zxy } 6.275zy

3 2 7 2 1 3
= oty —{-— S 4 —6.2
Ty { 6r Y3 zy? 16I y — 34752y — 6.275xy }
3 7 1 3
= 52+ 1pr%y + ey’ + {pa’y + 3.4T5ay” + 6.2750y”

(2 T3 ey (sl 6l gy
8716 16) YT \a %00 T o) Y
= 22y + 10z1? = (5%)(2) + 10(5)(2%) = 250.
Example 6. Given that P(x) = na" 44324 " - 223 + 42 -5, Q(z) = 32"+ -

x* + 23 + 2na? + x — 2 are two polynomials. Determine if there exists an integer
n such that the difference P — @ is a polynomial with degree 5 and six terms.

Solution P(z)—Q(z) = (n—3)a" ™ +3x4 " + 2% — 323 — 2n2? + 32— 3.
When n + 4 = 5, then n = 1, so that 3z*" — 32% = 0, the difference has

only 5 terms.
When 4 — n = 5, then n = —1, so that P(x) — Q(z) = 32° + 2* — 72° +
222 + 3z — 3 which satisfies the requirement. Thus, n = —1.

Example 7. Expand (z — 1)(z — 2)(z — 3)(x — 4).
Solution
(2~ )z —2)(e - 3)(@ —4) = [(@ - Dz —4)]- [(z — 2)(z - 3)]
= (2% —4x — x +4)(2® — 3z — 22 + 6)
[(#? — 5z + 5) — 1][(x? — 5z + 5) + 1]
= (2% = bz +5)* — 1 = 2" + 2527 + 25 — 102> + 102 — 50z — 1
2t — 1023 + 3522 — 502 + 24.

1,
—gy)

Solution Considering the formula (a — b)(a + b) = a® — b?, we have

1,
—§y)

o= (-39} o -3

1
Example 8. Expand (5zy — 322 + §y2)(5my + 322

1
(5ry — 3% + §y2)(5xy + 322
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2
= o - (302 - 507) =202 327 - 2300 0P) + (1)

1 1
= 250%y* — [9934 - 3z%y” + 4y4} = 92" + 2827y — 2y,

3

1

Example 9. Given 22 — z — 1 = 0, simplify %
T

to a polynomial form.
Solution z? —x —1=0yieldsz+ 1 =22, so

x3+x+1_x3—|—z2_1:+1_

8=
I
|
8
|
—

0 5 3

Testing Questions (A)

1. In the following expressions, which is (are) not monomial?
x 1 3
A) — B) —0.5(1 + — 0 —
(A) 5 B) ( ac) © 22
2. The degree of sum of two polynomials with degree 4 each must be
(A) 8, B) 4, (C) less than 4, (D) not greater than 4.
3. While doing an addition of two polynomials, Adam mistook “add the poly-

nomial 222 + = + 17 as “subtract 222 + = + 17, and hence his result was

522 — 2z + 4. Find the correct answer.
4. Given that the monomials 0.752%y¢ and —0.52™~14>"~! are like terms, and

their sum is 1.25ax™y™, find the value of abc.

1
5. Ifad a+—1+=+ % are multiplied together, the product is a polynomial,
x x
then degree of the product is
@4,  ®B5 ©6 O7 (BES

6. Find a natural number n, such that 2% + 210 + 27 is a perfect square number.

7. Given 3z2 4+ = = 1, find the value of 623 — 22 — 3z + 2010.

a b _
b+c¢ a+c a+d

1 1 3
(A) 2 B) -1, © ok or—1, (D) 5

8. Ifx= then the value of x is
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1 _
0. 1+ 1 — 4 find the value of 2X T 4%Y ~ 2
x oy T —y—2xy

Testing Questions (B)

1. (UKIMO/1995(B)) Nine squares are arranged to form a rectangle as shown.
The smallest square has side of length 1. How big is the next smallest
square? and how about the area of the rectangle?

D
I
E
C
F
H
B | G

2. Let P(z) = ax"+ba®+cx—5, where a, b, c are constants. Given P(—7) = 7,
find the value of P(7).
.. 111
3. Ifa,b, care non-zero real numbers, satisfying — + -+ - = ———— prove
a

i b ¢ a+b+c
that among a, b, ¢ there must be two opposite numbers.

4. Ifzy = a,xz = b,yz = c and abc # 0, find the value of 22 + y? 4 22 in
terms of a, b, c.

5. Given a* + a® + a2 + a + 1 = 0. Find the value of q2000 4 ¢2010 4 1

6. If (22 —2—1)" = ag,2*" + agp_12°" 1 + - +asz? + a1 + ao, find the
value of ag + as + ag + -+ - + aop.



Lecture 3

Linear Equations of Single Variable

Usual Steps for Solving Equations

@

(i)

(iii)

(iv)

)

Remove denominators: When each term of the given equation is multiplied
by the L.C.M. of denominators, all the denominators of the terms can be re-
moved. After removing the denominators, the numerator of each term is con-

sidered as whole as an algebraic expression, and should be put in brackets.
Remove brackets: We can remove brackets by using the distributive law and

the rules for removing brackets. Do not leave out any term inside the brackets,
and change the signs of each term inside the brackets if there is a “—" sign

before the brackets. ) ) )
Move terms: Move all the terms with unknown variable to one side of the

equation and other terms to another side of the equation according to the Prin-
ciple for moving terms: when moving a term from one side to the other side
of an equation, its sign must be changed. All unmoved terms keep their signs

unchanged.
Combine like terms:  After moving the terms, the like terms should be com-.

bined, so that the given equation is in the form
ar=">

where a, b are constants but sometimes are unknown. An unknown constant in
an equation is called a parameter

Normalize the coefficient of x: When a # 0, we have unique solution z =
b
—. If @ = 0 but b # 0, the equation has no solution. If ¢ = b = 0, any real
a

value is a solution for x. In particular, when a contains parameters, a cannot
be moved to the right as denominator unless it is not zero, and thus it is needed
to discuss the value of a on a case by case basis.

Remark: Itis not needed to perform the above steps according to the order listed
strictly, different orders are needed for different questions.

13
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Examples

1 (11 /x+2
E le 1. Solve th tion — < = | = 1 =1.
xample olve the equation - {9 [5 < 3 —|—8> + 6] +8}

Solution By removing the denominators one-by-one, it follows that

111 /x+2
— (= ——+8 16| =2
i[5 (555 ) +19] -2

1 /x+2

- 8) =2
S5 +)
x+2:2’

3

Srx+2=6, ie.x =4.

o111 /1
Example 2. Solve the equation E {4 {3 <2x — 3> — 2] — 1} —2=1

Solution Here it’s convenient to move a term and then remove a denomina-
tor for simplifying the equation. From the given equation we have

G
{3

1/1

1
2%~ 3 =198
o =402,
. 3|5 /1 1
Example 3. Solve the equation = [3 (4:1: + 1) + 5} -3 =7

. 5 3 . ..
Solution Considering that — and 5 are reciprocal each other, it is better to
remove the brackets first. We have

1 1
— 1 —_ - =
(490—1— >+3 > T,

LIMIP I S
1" 2 =
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1+ 3z 10 — 6z
T — 3 r 2r-—
Example 4. Solve the equation 1 — —3 =3 5

Solution Since the given equation contains complex fractions in both sides
it is better to simplify each side separately first. From

1+ 3z

1 T T 5 _1_51‘—(1+31‘)_15—2$+1_16—2$
3 h 15 o 15 15
10 — 62

x % 7 o 12— (10-6z) 10— 13z

2 2 ) 14 14

it follows that

16 —2x 10— 13z

15 4
14(16 — 2z) = 15(10 — 13z),

224 — 287 = 150 — 195z, ie. 167z = —74,

74
167

Example 5. If a, b, c are positive constants, solve the equation

rT—c—a
c a b

r—a—b xT—-b-—c
+

= 3.

Solution By moving 3 in the given equation to the left hand side, it follows
that

(o) () ()

r—a—b—c z—a—-b—c z—a-b-—c
+

=0,
c a + b
1 1 1
—a—b-— - +—-+-]=0
(x—a c)<c+a+b) )
1
'.'7+1+1>0,.'.x—a—b—c:0, ie. x=a+b+c
c a b

Sx +2ab 1
Example 6. Solve the equation ax + b — ortlad

5 T4
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Solution Removing the denominator of the given equation yields

20(ax + b) — 4(5z + 2ab) = 5,
20azx + 20b — 20x — 8ab = 5,
20(a — 1)z = 5 — 20b + 8ab.

5 — 20b + 8ab

(i) Whena # 1,z = 2000 —1)

(ii)) Whena =1andb = % the equation becomes 0 - z = 0, so any real number
is a solution for z.

(iii)) When ¢ = 1 and b # %, the equation becomes 0 - x = 5 — 12b, so no
solution for x.

Example 7. Given that the equation a(2z + 3) + 3bz = 12z + 5 has infinitely

many solutions for z. Find the values of a and b.

Solution Change the given equation to the form (2a 4+ 3b — 12)z = 5 — 3a,
we have
2a+3b—12=0 and 5—3a=0.

12 -2 2
Thereforea:§7 b= a4 2—6.
3 3 9
Example 8. Find the integral value of k such that the equation 11z —2 = kxz + 15
has positive integer solutions for x, and find such solutions.

Solution From the given equation we have

(11 — k)z = 17.

17
Since it has at least one positive solution for x, so k # 11, and x = % Since
the fraction is an integer, (11 — k) | 17, i.e. kK = —6 or 10, and correspondingly,

r=1orx =17.

Example 9. Given that the equation 2a(x 4+ 6) = 42 + 1 has no solution, where
a is a parameter, find the value of a.

Solution From the given equation 2a(x + 6) = 4z + 1 we have (2a —4)x =
1 — 12a. Since it has no solution, this implies

20 —4 =0 and 1—12a # 0,
therefore a = 2.

Example 10. Given that the equation az + 4 = 3z — b has more than 1 solution
for x. Find the value of (4a + 3b)2097.
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Solution We rewrite the given equation in the form (a — 3)x = —(4 + b).
Then the equation has more than 1 solution implies that

a—3=0, and 4+b=0,

ie.a=3,b=—4. Thus, (4a + 3b)2007 = 02007 — q,

Testing Questions (A)

1. The equation taking —3 and 4 as its roots is
(A) (z=3)(x+4)=0; B)(z—-3)(x—4)=0;
©) (@ +3)(x+4)=0; (D) (x+3)(x—4)=0.
2. Given that the equation
kx =12
has positive integer solution only, where k is an integer. Find the number of

possible values of k.

3. The number of positive integers x satisfying the equation

1 1 1 13

x+x+1+x+2zﬁ

is

A0 B)1 ©) 2 (D) infinitely many

4. Given that the solution of equation 3a — x = % + 3 is 4. Find the value of
(—a)? — 2a.

r—n r—m

5. Solve the equation - (where mn # 0).
n

n

6. Solve the equation [4ax — (a + b)](a + b) = 0, where a and b are constants.

1
7. Given that —2 is the solution of equation —maz = 5z + (—2)?, find the value

of the expression (m? — 11m + 17)2907,

8. Solve the equation m?x + 1 = m(z + 1), where m is a parameter.
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9. Given that k is a positive constant, and the equation k’x — k2 = 2kx — 5k
has a positive solution for z. Find the value of k.

10.  Given that the equation a(2z — 1) = 3z — 3 has no solution, find the value
of the parameter a.

Testing Questions (B)

1. Given that the equations in z:

3r+a 1+4x

=0
6

3[56—2(964—%)] = 2x and

have a common solution. Find the common solution.
2. If positive numbers a, b, ¢ satisfy abc = 1, solve the equation in z

2ax n 2bx n 2cx 1
ab+a+1 be+b+1 cat+c+1

. . 8 9 o .
3. Given that the equation gcc —m=_z + 123 has positive integer solution,

where m is also a positive integer, find the minimum possible value of m.

1
4. Construct a linear equation with a constant term — 7 such that its solution is
equal to that of the equation 3[4z — (22 — 6)] = 11z + 8.

1
5. Ifapq4 = T (n=1,2,...,2008) and a; = 1, find the value of

a1az + aza3 + asaq + - - - + 4200802009-



Lecture 4

System of Simultaneous Linear Equations

1. In general, the system of two equations of 2 variables can be expressed in

the form
a1z + b1y = c1,
asT + bay = co.

2. To eliminating one variable for solving the system, we use (i) operations
on equations as usual; (ii) substitution method. In many cases the method
(i) is effective.

a— b . .
3. When #* —1, the system has unique solution
ag bg
o Clbg - Cgbl o a1C9 — A2Cq
o albg —Clgbl7 o albg —agbl'
a—1 b c . .
4, When = b—l = 2 the system has two same equations, so it has
a2 2 C2

a—1 b c .
=1 =+ —1, the two equations are
az bo C2

infinitely many solutions, when

inconsistent, so it has no solution.

Examples

Example 1. Solve the system of equations

r—y Tty

5 4
2@ —y)—3xz+y)+1 =

S ol

Solution (I) By operations on equations to eliminate a variable.

19
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Simplifying the first equation, we have 4(x — y) — 5(x + y) = 10, i.e.
x + 9y = —10. 4.1
Simplifying the second equation, we have
r+5y=1. (4.2)
By (4.1) — (4.2),
dy=—11, - y=——.

4

95 39 59 11
F 42,z =1-5y=1+ — = —.Thus,z = —,y = ——.
rom (4.2), x Y + 1 1 us, 1 Y 1
(II) By substitution to eliminate a variable.
From the first equation we have

r =—10—9y. (4.3)
Substituting (4.3) into the second equation, we obtain
2(-10 -9y —y) —3(-10 -9y +y) + 1 =0,

11

y=-11, . y=
Yy y Y 1
T . . 99 59

By substituting it back into (4.3), we obtain z = —10 + T

. Thus,

xr= — =

Y 1

Example 2. Solve the system of equations

59 11

5.4z +4.6y = 104, (4.4)
4.6z + 5.4y 96. (4.5)

Solution Notice the feature of coefficients, by (4.4) + (4.5), we obtain 10z +
10y = 200, therefore

x4y =20. 4.6)
By (4.4) — (4.5), it follows that 0.8z — 0.8y = 8, therefore

x—y=10. 4.7)
1 1 . .
By 5((4.6) + (4.7)) and 5((4.6) — (4.7)) respectively, we obtain

r =15, y=2>5.
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Example 3. Solve the system of equations

x+2bzx+y) = 16,
dor+y = T.

Solution By using 7 to substitute 5z + 7 in the first equation, we obtain
x + 14 = 16, therefore x = 2.

Then from the second equation, y = 7 — 5z = —3.

Note: The example indicates that not only a variable but an expression can

be substituted also.

Example 4. Solve the system of equations

rT_Y¥Y_2
2 3 5
x + 3y + 6z = 15.
Solution Lett = r_¥_ E, then
2 3 5
xr =2ty = 3t,z = 5t. 4.8)
o . . . 15
Substituting (4.8) into the first equation, we have 2t + 9¢ + 30t = 15,1i.e. t = T
Thus
U S
e YT fTa
Example 5. Solve the system of equations
r+y = 5
y+z = 6
z+zx = T.
Solution Let the given equations be labeled as
r+y = 5 4.9
y+z = 6 4.10)
z+zx = T 4.11)

1
By 5((4.9) +(4.10) + (4.11). it follows that
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Then (4.12) — (4.9) yields z = 4;
(4.12) — (4.10) yields z = 3;
(4.12) — (4.11) yields y = 2.

Example 6. Solve the system of the equations

r+2y = 5,
y+2z = 8§,
z+2u = 11,
u+2x = 6.

Solution From the given equations we have the cyclic substitutions

r=5—12y, y=8—2z, z =11 — 2u, u=6—2x.

By substituting them sequentially, we have

z = 5—2=5-2(8—2z)=—11+4z=—11+4(11 — 2u) = 33 — 8u

= 33-8(6—2z) = —15+ 161,

therefore x = 16z — 15,i.e. x = l,and thenu =4, z=3, y=2.

Example 7. Solve the system of equations

Sr—y+3z = a,
5y —z4+3x = b,
S2—x+3y = c

Solution By 2 x (4.13) + (4.14) — (4.15), it follows that

2a+b—c
14z =2 b—c, fx=———.
x a+ c, x 1
By 2 x (4.14) + (4.15) — (4.13), it follows that
2b+c—a
14y = 2b — LYy ——.
Y +c—a, Y 14
Similarly, by 2 x (4.15) + (4.13) — (4.14), we have
2 b
14z =2c+a—-0b, /. z= H—ia.
14

Example 8. Given that x, y, z satisfy the system of equations

2000(x — y) +2001(y — z) +2002(z —x) = 0,
20007 (x — y) + 2001%(y — 2) +2002%(z —x) = 2001,

find the value of z — y.

(4.13)
(4.14)
(4.15)

(4.16)
4.17)
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Solution Letu =z —y,v =y — z,w = z — x. Then u, v, w satisfy the
following system of equations

u+v4+w = 0, (4.18)
2000w 4 20010 + 2002w = O, (4.19)
2000%u + 2001%v 4+ 2002%w = 2001. (4.20)

By 2001 x (4.18) — (4.19), we obtain
u—w=0, ie u=w.
From (4.18) again, we have v = —2w. By substituting it into (4.20), we have
(20002 — 2 - 20012 + 2002%)w = 2001,
[(2002 + 2001) — (2001 + 2000)]w = 2001,
2w = 2001, Sz —y=—v=2w=2001.

Example 9. Solve the system of equations for (x,y), and find the value of k.

v+ (1+ky = 0, 4.21)
1—k)x+ky = 1+k, (4.22)
I+kz+(12-ky = —(1+k). (4.23)

Solution To eliminate k£ from the equation, by (4.22) + (4.23), we obtain
2z 4+ 12y =0, ie. z = —6y. (4.24)

By substituting (4.24) into (4.21), we have (k — 5)y = 0. If k # 5, theny = 0
and so z = 0 also. From (4.22) we have k = —1.

6 36
If k =5, (4.22) yields (—4)(—6y) + 5y = 6,s0 y = 20 = "39°

Testing Questions (A)

1. (CHINA/1997) Given that x = 2,y = 1 is the solution of system

axr +by =171,
bx 4 cy = 5,

then the relation between a and c¢ is
(A)da+c=9; (B)2a+c=9; (C)da—c=9; (D)2a—c=09.
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2. If the system in z and y

3x —y =25,
20 +y—2=0,
dax 4+ bby — z = —22

and the system in « and y

ax —by+ z =8,
r+y+5=c,
2x 43y =—4

have a same solution, then (a, b, ¢) is
(A) (2,3,4); (B)(3,4,5); (©)(—2,-3,—-4); (D)(-3,—4,-5).

3. Determine the values of k such that the system of equations

kx —y = —%
Jy=1—6x
has unique solution, no solution, and infinitely many solutions respectively.

ac be
a+b "a+c "b+c

5. Solve the system of equations

4. Given = 4, find the value of ¢« + b + c.

T—y—z =
Yy—z—x
z—xr—y = -—15.

I
= Ot

6. Solve the system of equations

r—y+z =
Yy—z+u
Z—u+v =
U—v+x
vV—xT+Yy =

Uk W N

7. Given

Z4+242 =, (4.25)

1. 0.5, (4.26)

Find the value of z + J + i.
y oz
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8. (CHINA/2001) Given that the system of equations
mx+2y = 10
{ 3r—2y = 0,
has integer solution, i.e. z, y are both integers. Find the value of m?2.

9. Asshown in the given figure, a, b, ¢, d, e, f are all rational numbers, such that
the sums of three numbers on each row, each column and each diagonal are
equal. Find the value of a + b+ c+d + e+ f.

a b 6

& d e

f 7 2

10.  Solve the system

z+y+z+u=10, 4.27)
20 +y + 4z + 3u = 29, (4.28)
3x + 2y + 2z + 4u = 27, (4.29)
4o + 3y + 2z + 2u = 22. (4.30)

Testing Questions (B)

3x+my="17
2z +ny =4
m, n are integers between —10 and 10 inclusive, find the values of m and n.

1. Given that the system of equations { has no solution, where

2. Solve the system of equations

1 1 1
~ 4+ ==,
x y+z 2
Lo
y z+xz 3
11 1
2z x4y 4
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3. Solve the system
x(y + 2z —x) = 60 — 227,
y(z+x—y) =75 — 27,
2(x+y—2) =90 —22%

4. Find the values of a such that the system of equations in = and y

r+2y=a+6
20 —y=25—2a

has a positive integer solution (x, y).

5. Solve the system of equations

2r+y+z24+u+v=16,
r+2y+z4+u+v=17,
r+y+2z4+u+v=19,
r+y+z2z+2utv=21,
r+y+z+u+2v=23.

4.31)
(4.32)

(4.33)
(4.34)
(4.35)
(4.36)
(4.37)



Lecture 5

Multiplication Formulae

Basic Multiplication Formulae

(1) (a—0b)(a+0b)=a®— b

2) (a £ b)? = a® £ 2ab + b2

3) (a £b)(a® F ab+b?) = a® £ b2,
Proof.

(a+b)(a® —ab+b?) = a® — a®b + ab® + a®b — ab® + b* = a® + b,
Use (—b) to replace b in above formula, we obtain

(a —b)(a® + ab + b?) = a® — b>.

()] (a£b)3 = a® =+ 3a%b + 3ab® £ 3.
Proof.
(a+b)? = (a+b)(a+b)?=(a+0b)(a®+ 2ab+ b?)
= a®+2a?b+ ab?® + a®b + 2ab* + b3
= @+ 3a%b + 3ab? + b.

Use (—b) to replace b in above formula, we obtain

(a —b)3 = a® - 3a%b + 3ab® — b°.

5) (a+b+c)? =a®+b? + ¢ + 2ab + 2bc + 2ca.

27
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Proof.

(a+b4+c)? = [(a+bd)+c®=(a+b)?+2(a+b)c+c?
= a? + 2ab+ b% + 2ac + 2bc + ¢
= a?+b%+ 2+ 2ab + 2bc + 2ca.

O
Generalization of Formulae
(1) (a=0b)(a®+a®b+ab® + b?) = a* — bt
2 (a—0b)(a*+ a®b+ a®b? + ab® + b)) = a® — b°.
3 (a—b(a"t+a"2%b+---+ab" 2 4+b""1)=a™ - b"
forall n € N.
Proof.
(@a—0b)(a" 1+ a" 20+ +ab" 24 b7 1)
— (an + an—1b+ RS a2bn—2 + ab"‘l)
_(an—lb + an—2b2 4+t abn—l + bn)
=a™ —b".
O
@4 (a+b(a™t—a"2b+.--—ab" 24+ b 1) =a” +b"
forodd n € N.

Proof. For odd n, by using (—b) to replace b in (3), we obtain

(a+0)(a" " +a"?(=b) +a"3(=b)* + -+ a(=0)" "> + (=b)" 1)
=a" — (7b)n,

therefore
(a+b)(a" ' —a" 2+ a3 — - —ab" 2 ") =" b
O

(5)  (a1+az+--+an)?=a2+a3+---+a+2a1az+2a1a3+ -+ 2a1a,
+2a2a3 + - + 2a2a, + - + 20510y,

Proof.

(a1 +az + -+ +an)?

=(a1+az+taz+---+an)(ar+az+az+--+ap)

=a?+a3+---+a2+2a1as +2a1a3 + -+ -+ 2a1a,
+2asa3 + - - - 4+ 2a0a, + - - + 205,10y,
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Derived Basic Formulae

(1) a2+ = (a+b)?F 2ab.

2 (a+0b)?—(a—0b)? = 4ab.

3) a®+b®=(atb)®F3ablatb).

4 a+b3+c—3abe = (a+b+c)(a® + b2+ c? — ab— be — ca).

Proof.

a® + b3 + ¢ — 3abe
= (a® 4 3a?b + 3ab?® + b3) + ¢ — 3a?b — 3ab® — 3abc
=(a+b)>+c*—3abla+b+c)
=[(a+0b)+c][(a+b)?— (a+b)c+c* —3abla+b+c)
= (a+b+c)(a® +2ab+ b* — ac — be + ¢?) — 3ab(a + b+ c)
= (a+b+c)(a® +b*+ c + 2ab — be — ca — 3ab)

=(a+b+c)(a®+b*+c? —ab—bc— ca).

Examples
Example 1. Evaluate the expression (2 + 1)(22 +1)(24 4+ 1) --- (22 + 1) + 1.

Solution By using the formula (a —b)(a+b) = a? — b? repeatedly, we have

210

2+1)22+ )2 +1)--- (22 +1)+1
=@2-DE+D@2+1)24+1)-- (22" +1)+1
— (22 -1+ D)2+ 1) (227 + 1) +1

=@ -2 +1) - (22 + 1) + 1

= =22 ) 1) +1

_ ((221“)2 —D41= 92:2'% _ 92™ _ 92048

Example 2. Simplify the expression (a% — b%) + (a® — b3) + (a? — ab + b?).
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Solution By using the formulae A — B? = (A—B)(A+B) and A>+ B3 =
(A+ B)(A? — AB + B?),

ab — s

(a® = 49) = (o —b%) = (@® —ab +0%) = gy gy

(@@= +b) aP 4+

o (a® — b3)(a® — ab + b?) T a2 —ab+ b2
~ (a+b)(a* —ab+b?)

= b.
a? — ab + b2 @t
Example 3. Given z — y = 8, xy = —15, find the value of (i) (z + y)? and (ii)
4 .4
M e TR
Solution

6] (x+y)? =2+ 9%+ 20y = (22 + 9% — 22y) + 4oy = (v — y)? + day
=82 +4(-15) = 4.
(i) 2*+yt = (2t +22%7 +yt) — 2277 = (2 + yP)? - 2(ay)?
(2% — 22y + y?) + 2xy]* — 2(—15)2
[(z —y)? — 30]% — 2(—15)% = 342 — 2(225)
= 1156 — 450 = 706.

1 . 1 1
Example 4. Given z + — = 3, find the value of (i) 23 + —; (i) z* + —.
T x3 zt

Solution

O e o= (ot )( T >:3
.. 1 1\?2 1\2
i o't = (2)2+2+<562>]—2=<x2+332) —2

2
1 2
<x—|—) —21 —2=(32-2)2-2=47.
X

5 13
Example 5. Given z + y = 2 22 +y? = T find the value of ® + ¢/°.

Solution (2% + y?)(23 + y3) = (2° + y°) + (2y)?(x + y) implies that

B ety 4y —ay) - (a2 = 2 (B—xy)—5<a:y>2.

5 5\ __
(z +y)—4

2 8 \ 4 2
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It suffices to find the value of zy. Then

=gl =@l =3 (F-7) =3

2\ 4 4 2’
therefore
65 (13 3 5 9 455-—180 275
x5+y5:— —_—— = —_—_—,—_=— = —,
8 4 2 2 4 32 32

Example 6. Given that the real numbers x, y, z satisfy the system of equations

r+y+z = 6
224+ y?+ 22 = 26
B 4+yP+22 = 90.

Find the values of zyz and 2% + y* + 2.

Solution (z +y + 2)? = (2% + y? + 22) + 2(2y + yz + zx) implies that
1 1
xy+yz+ze = 5[(x—|—y+z)2—(a:2—|—y2—|—z2)] = 5[62 — 26] = 5.

Since 3 + y3 + 2% — 3wyz = (v + y + 2)[(2® + v + 2% — (2y + yz + 22)],
90 — 3xyz = 6[26 — 5] = 126,

1
SLTYz = 5(90 —126) = —12.
Further, by completing squares,
syt 2t = (2% 49?4 22)? = 2(2y? + y?? + 2%2?)
262 — 2[(xy + yz + 22)? — 2(ayz + y22a + a2yz)]
= 262 —2[5% — 2zyz(x +y + 2)]
= 262 —2(25+24-6) =676 — 338 = 338.

Example 7. (SSSMO0/2000) For any real numbers a,b and ¢, find the smallest
possible values that the following expression can take:

3a® +27b* + 5¢® — 18ab — 30c + 237.
Solution By completing squares,

3a? 4 27b% + 5¢% — 18ab — 30c + 237

= (3a? — 18ab + 27b%) + (5¢* — 30c + 45) + 192
= 3(a? — 6ab + 9b?) + 5(c? — 6¢+ 9) + 192
=3(a—3b)? +5(c—3)% + 192 > 192.
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The value 192 is obtainable when a = 3b, ¢ = 3. Thus, the smallest possible value
of the given expression is 192.

Note: The technique for completing squares is an important tool for investi-
gating extreme values of quadratic polynomials, here is an example.

Example 8. If a, b, ¢, d > 0 and a* + b* + ¢* + d* = 4abed, prove that
a=b=c=d.

Solution We rewrite the given equality in the form a* + b* + ¢* + d* —
4abced = 0, and use the technique for completing squares, then

0 = a*+b*+c*+d*—4dabed
= (a* —2a%b% + b*) + (c* — 2c2d% + d*) + (2a%b? + 2c2d? — 4abed)
= (a®> = b})?%+ (2 —d*)? +2(ab — cd)?,

therefore a®> — b> = 0,¢> — d*> = 0,ab — c¢d = 0. Since a,b,c,d > 0, so
a:b,c=d,anda2:cz,i.e.a:c.Thusa:bZCZd.

Example 9. Given a+b = c+d and a®+b* = ¢3+d>. Prove that a?°%° 452009 =
(2009 | 2009

Solution a + b = c+ dyields (a + b)> = (c + d)?, therefore
a® + 3a%b + 3ab® + b3 = ¢ + 3c2d + 3cd? + dB.
cad 0 =+
- 3a%b + 3ab? = 3c2d + 3cd?, i.e. 3ab(a + b) = 3cd(c+ d).

Ifa+b=c+d=0,thenb = —a,d = —c, therefore

a2009 4 b2009 =0= 02009 + d2009.

Ifa+b=c+d#0,then ab = cd, therefore
(a—b)?=(a+b)? —4ab= (c+d)? —ded = (c — d)*.

(1) When a — b = ¢ — d, considering a + b = ¢ + d, it follows that 2a = 2c,
i.e. a = ¢, and b = d also.

(ii) When a —b = —(c¢—d), considering a+b = c+d, it follows that 2a = 2d,
i.e. a = d, and b = c also.

The conclusion is true in each of the two cases.
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Testing Questions (A)

1. (SSSMO/1998) Suppose a, b are two numbers such that
a® 4+ b* + 8a — 14b + 65 = 0.
Find the value of a? + ab + b.
2. Givena — b =2,b— ¢ =4, find the value of a® + b% + ¢ — ab — bc — ca.

3. Forintegers a, b, cand d, rewrite the expression (a? + b%)(c? + d?) as a sum
of squares of two integers.

4. Given 14(a® +b? + ¢?) = (a + 2b + 3¢)?, find the ratio a : b : c.

2

5. Given = a (a # 0), find the value of

x x
2 +3x+1 x4+ 3224+ 1

1 1
6. Givenz + — = q, find the value of 2% + = in terms of a.
T T

7. Given that a,b,c,d # 0, and a* + b* + ¢* + d* = 4abcd. Prove that a® =
= =&,

8 Givena+ b+ c+d =0, prove that
a® +b* 4 ¢ + d® = 3(abc + bed + cda + dab).
9. Giventhat (a—2)>+(b—2)3+(c—2)® =0,a®>+b*+c2 =6,a+b+c =2,
prove that at least one of a, b, c is 2.
10  Given that a® + b3 + ¢® = (a + b+ ¢)?, prove that for any natural number n

a2n+1 + b2n+1 4 C2n+1 _ (a+ b+ C)2n+1.

Testing Questions (B)

1. (CHNMOL/2005) If M = 3z2 — 8zy + 9y? — 4z + 6y + 13 (where x, y are
real numbers), then M must be

(A) positive;  (B) negative; (C) 0; (D) an integer.

2. Givena+ b = ¢+ d and a® + b® = ¢ + d?. Prove that a2009 + p2009 —
(2009 4 2009
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3. Ifa+b+c=0,prove that 2(a* + b* + c*) = (a® + b + ?)2.
4. Ifa+b=1,a®+ b> =2, find the value of a” + b".

5. (CHNMOL/2004) Given that the real numbers a, b satisfy a® 4+ b> +3ab = 1,
find a + b.



Lecture 6

Some Methods of Factorization

Basic Methods of Factorization

1)) Extract the common factors from terms: like

xm+ym+zm=m(z+y+ 2).

(I1)  Apply multiplication formulae: like those mentioned in Lecture 5. How-
ever, contrary to Lecture 5, at present each formula is applied for con-
verting an expression in non-product form to a new expression in product
form.

(III)  Cross-Multiplication:

22 + (a+ b)x + ab v “ a
a:><b bz

= (x+a)(x +b) (a+b)x
acz? + (ad + be)z + bd ax b bex
cx >< d adx

(IV) By grouping, splitting, or inserting terms to obtain common factors.
(V) By substituting subexpressions to simplify given expression.

(VD) Coefficient-determining method. First given the structure of the product,
then determine the unknown parameters in the product by the comparison
of coefficients.

(VII) Factorization of symmetric or cyclic polynomials. (cf. Lecture 15.)

35
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Examples
Example 1. Factorize (d? — ¢® + a? — b?)? — 4(bc — da)?
Solution

(d? — 2 +a? — b%)? — 4(bc — da)? = (d?> — % + a® — b?)? — (2bc — 2da)?
= (d* — 2 + a® — b* — 2bc + 2da)(d? — % + a® — b? + 2bc — 2da)
=[(d+a)? = (b+¢)% [(d—a)* = (b—c)?]
=(d+a—-b—c)d+a+b+c)(d+b—a—c)({d+c—a—0D).

Example 2. Factorize 642% — 729y'2.

Solution
642° — 729y"? = (22)° — (3y*)° = [(22)® — (3y?)°][(22)° + (3y*)°]
= (22 = 3y?)[(22)* + (22)(3y°) + (3y%)’]
(22 +3y%)[(22)? — (22)(3y*) + (3y%)?]
= (22 — 3y%)(2z + 3y?)(42? + 62y + Iy*)(42? — 62y + 9y*).
Example 3. Factor each of the following expressions:
(i) 222+ — 6; (i) 222 — 10z + 8.
Solution
2 +2—6 z 3 3z
T ><—2 —2x

=($+3)(Z‘—2) x

222 — 10z + 8 2m><—2 —2x
x —4 —8x

= (22 — 2)(z — 4). —on

Example 4. Factorize 2a> + 6a? + 6a + 18.

Solution

243 + 6a® 4 6a + 18 = 2[(a® + 3a® 4+ 3a + 1) + 8] = 2[(a + 1)* + 2]
=2(a+3)[(a+1)*—2(a+1)+4] =2(a+3)(a®+ 3).

Example 5. Factorize (i) z* + 223 4+ 722 + 62 — T; (i) 2% + 922 + 23z + 15.
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Solution Lety = 22 + x. Then

i) 2 +223+ 722 +6r—-T=2%(2?+2)+2(@®+2)+6(2%+3)-7
=@ +z+6)(2?+2)-T=9y>+6y—T=(y+7)(y—1)
=@ +z+7) (22 +z-1).

() 24922 +23x+15=2%(x+1)+8z(z+ 1)+ 15(x + 1)
= (x+1)(2® + 8z + 15) = (v + 1)(z + 3)(z + 5).

Example 6. Factorize (i) (a+1)(a+2)(a+3)(a+4) —120; (i) 25 +x+1.

Solution

@  (a+)(a+2)(a+3)(a+4) —120
=[(a+1)(a+4)][(a+ 2)(a+3)] — 120
= (a? + 5a + 4)(a® + 5a + 6) — 120
= [(a® + 5a + 5) — 1][(a® + 5a + 5) + 1] — 120
= (a? +5a +5)%? — 121 = (a® + 5a + 5)% — 112
= (a® + 5a — 6)(a® + 5a + 16) = (a — 1)(a + 6)(a® + 5a + 16).

() 2°4+r+1=@°—22)+@>+2+1)
=22(@3—1)+ (2 +2+1)
=2?(z - 1) (2> +x+1)+ (22 +2+1)
=@ +r+ D222 -D+1=@?+z+1)(2-22+1).

Example 7. Factorize (2y — 32)3 + (32 — 42)3 + (4z — 2y)3.

Solution Let2y — 3z =a,32z —4x =b,4dx — 2y = c,thena+ b+ c = 0.
Hence
(2y —32)3 4+ (32 —4x)3 + (4o — 2y)® =a® + b3 +
= (a® + b3 + ¢ — 3abc) + 3abe
=(a+b+c)(a® +b*+ c? — be — ca — ab) + 3abe
= 3abc = 3(2y — 32)(3z — 4x)(4x — 2y).

Example 8. Factorize (3a + 3b — 18ab)(3a + 3b — 2) + (1 — 9ab)?.

Solution The given expression is symmetric in 3a and 3b, so we use u =
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3a + 3b,v = (3a)(3d) to simplify the expression. Then
(3a + 3b — 18ab)(3a + 3b — 2) + (1 — 9ab)? = (u — 2v)(u — 2) + (1 — v)?
=u? —2uv —2u+4v+v? —20+1=(u? - 2uv+v?)+2(v—u)+1
=@w—-u?+2v—u)+1=(wv—-u+1)>2
= (9ab—3a —3b+1)? =[(3a —1)(3b — 1)]2 = (3a — 1)%(3b — 1)%.
Note: Do not stop at (v — u + 1)2.
Example 9. Factorize 222 + Tzy — 4y? — 3z + 6y — 2.
Solution Considering 222 + Txy — 4y? = (22 — y)(x + 4y), let
20% 4 Toy —4y® — 32+ 6y —2 = (22 —y +a)(x + 4y + b).
By expending the product, it is obtained that
(22 —y + a)(z + 4y + b) = 222 + Toy — 4y* + (a + 2b)z + (4a — b)y + ab.

By the comparison of coefficients, the following system of equations is obtained

a+2b = -3 (6.1)
da—b = 6, (6.2)
ab = -2 (6.3)

Then 2 x (6.2) 4 (6.1) yields 9a = 9, i.e. a = 1. From (6.2), b = 6 — 4a = —2.
Since (a,b) = (1, —2) satisfies (6.3), and it is the unique solution, we obtain

202 + Tay —4y? — 3z + 6y — 2= (2 —y + 1)(z + 4y — 2).

Example 10. Given that z° — 5gz + 47 has a factor (z — ¢)? for some constant c.

Prove that ¢° = 7.

Solution If ¢ = 0, then 22 | 2% — gz + 4r = r = ¢ = 0, the conclusion is
true. When ¢ # 0, the condition means

2% — bgw + 4r = (22 — 2cx + ) (23 + ax® + bz + d)
= 2%+ (a — 2¢)a* + (? + b — 2ac)z® + (ac® — 2bc + d)x?
+(bc? — 2¢d)x + cd.
Then the comparison of coefficients yields the following equations:

4
a=2c, b=2ac—c?=3c, d:2bc—a02=4c3:—§:>r=c5.
c

Further,
5q=2cd—bc2 =8c4—3c4:5c4:>q=c4.

Thus, ¢° = ¢?° = r4.
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Testing Questions (A)

1. Factorize the following expressions

@) x9 + Taby3 + 723y + ¢,

(i) 4a? + 9%+ 922 — 6yz + 1222 — day;
(i) (2% = 1)(x +3)(xz +5) + 16;

(v) (222 — 4z +1)% — 1422 4 28z + 3;
v) 23 — 322 + (a + 2)x — 2a;

vi) 4204 422441

2. Factorize the following expressions

i) 2 —2(a®+ b2 + (a® — bH)%
G)  (ab+1)(a+1)(b+1)+ ab.
3. Prove that 816 — 9. 277 — 9! is divisible by 45.

4. Prove that 33---33 — 66 - - - 66 is a perfect square number.
——— N———

on digits  n digits
5. Factorize the following expressions
@ (2 +z2—-1)2+22+2-3=0;
(i) (2-y’+y-2-27°+8
(i)  (6z+5)?Bx+2)(x+1) —6;
Gv) (22 45z +6)(2% + 62 + 6) — 22%;
v
vi) a+*+cA+ (a+b)(b+c)(c+a) — 2abe.

2? —22)3 + (2% — 4z + 2)3 — 8(a® — 3z + 1)3;

39

6. Use the coefficient-determining method to factorize the following expres-

sions.

(i) Given the expression 22 + zy — 2y + 8z + ay — 9. Find possible
values of the constant a, such that the polynomial can be factorized

as product of two linear polynomials.
(i) 2t —a3+422+3z+5.

7. Given that y? 43y + 6 is a factor of the polynomial y* — 643 +my? +ny+36.

Find the values of constants m and n.
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Testing Questions (B)

Factorize 2(z2 + 6z + 1)% + 5(22 + 1) (22 + 62 + 1) + 2(22 + 1)2.

(CHINA/2001) If 22 + 2z + 5 is a factor of z* + az? + b, find the value of
a—+b.

Factor (ab + cd)(a? — b? + c® — d?) + (ac + bd)(a® + b? — ¢ — d?).
Factorize (ay + bx)® + (ax + by)® — (a® + b%) (2% + %).

Given that a, b, ¢ are three distinct positive integers. Prove that among the
numbers
a’b —ab®, bPe—be®, Pa— cd®,

there must be one that is divisible by 8.



Lecture 7

Absolute Value and Its Applications

For any real number a, we define its absolute value, denoted by |a/, as follows:

a, ifa>0
la] = ¢ 0, ifa=0
—a, ifa < 0.

Geometrically, any real number a is denoted by a point on the number axis,
and the absolute value of a is the distance of the point representing a from the
origin of the number axis.

<—|a|:—a4><— || =b ——

[; Number Axis

IS
.

More general, the expression |a — b| denotes the distance between the points
on the number axis representing the numbers a and b.

When taking absolute value to any algebraic expression, a non-negative value
can be obtained always from it by eliminating its negative sign if the value of the
expression is “—". This rule is similar to that of taking square to that expression.

Basic Properties of Absolute Value

L. la| = | = al;

2. —la] <a <lal;

3. |a| = |b] if and only if a = b or a = —b.
4. |a™| = |a|™ for any positive integer n;
5. |ab| = |al - [b];

41
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la|
- if b # 0;
6. 51= 1o 07
7. la 0| <la|] + 0]
Examples

|z — ||l
xT

Example 1. Is there a real number « such that is a positive number?

Solution It is clear that = # 0.
2= loll _Je=al _0 _,

X X X
- - 2 —2
Fors <0 [z =lell _ o= (o)l _ |2l _ <2 _

For x > 0,

x x x x
Thus, there is no real number x such that the given fraction is positive.

Example 2. If a, b, c are non-zero real numbers, find all possible values of the

b
expression — + — + —
la | o]~ e |
. . x :I:
Solution Since ﬁ = 1for any x > 0 and ﬂ = —1forany x <0,
€T x
a b c . .
— + — + — = =3 ifa, b, care all negative;
lal -~ [ol el
a b c . .
W + m + W = —1 if exactly two of a, b, c are negative;
a c
b
ﬁ + m + ﬁ =1 if exactly one of a, b, c is negative;
| ‘ + m + — E =3 if a, b, c are all positive.

Thus, the possible values of the given expression are —3, —1, 1 and 3.

Example 3. Determine the condition for the equality ‘ a4 ; ‘ = b ; a
Solution The given equality implies that @ # 0 and ‘a—b‘ S ; b,
therefore a-b < 0. Since
a—b

§0<:>1—Q§O<:>921,
a a a
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.. b
the conditionon ¢ and bis — > 1.
a

1
Example 4. a, b, c are real numbers satisfying (3a+6)2 + |Zb —10|+|c+3| = 0.

Find the value of ' + be.

Solution Each term on the left hand side of the given equality is non-negative,
we must have

3a+6=0 2—1020 c+3=0
at the same time, therefore a = —2,b = 40, ¢ = —3, so that
a'® 4 be = (—2)'9 + (40)(—3) = 1024 — 120 = 904.
Example 5. Given 1 < z < 3, simplify the following expressions:

|z — 3| |z — 1]

® zr—3 (1—a)

@) |z — 1|+ (3 — |

Solution For simplifying an expression with absolute values, it is needed to
convert it to a normal expression by removing the absolute signs. For this, we
need to partition the range of x into several intervals, so that on each interval the
sign of the expression is fixed (only positive or only negative). For example, for
removing the absolute signs of |« — 3|, it is needed to take t —3 = 0, i.e. z = 3 as
the origin, and the sign of x — 3 changes at this point: it is positive when z > 3,
and negative when = < 3, so it is needed to discuss |« — 3| forz > 3 and z < 3
separately. Thus, since the range of x is right to 1 and left to 3,

i) x—-3<O0andz—1>0implies|z—3]=—(z—-3),]lz—1=2z—-1,
therefore

=3 Jz-1  —(-3) z-1

r—3 (1-z) -3 1-2

——1—(-1)=0.

(i) Bythesamereason, [zt — 1|+ [3—z|=(x—1)+ (3 —2)=2.
Example 6. Given 1 < z < 3, simplify |z — 2| + 2|z]|.

Solution The zero points of |z —2| and |x| are z = 2 and = = 0 respectively,
it is needed to partition the range of = into two intervals: 1 <z <2and 2 < z <
3

@) Whenl<z<2, |x—2|+2z=2—-2z+2c=2+u;
(i) when2<x<3, |xt—2|+2z|=2—-2422=3z—2.

Example 7. Simplify ||z + 2| — 7| — |7 — |z — 5|| for -2 < 2 < 5.
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Solution We remove the absolute signs from inner layers to outer layers.
Sincex+2>0andx — 5 <0,

|z +2[ =7 = |T— [z = 5| = |(z +2) = 7| = [T = (5 - 2)|
=lz—=5—-2+z=0(G-2)—(2+2)=3—-2x.

Example 8. (AHSME/1990) Determine the number of real solutions of the equa-
tion |z — 2| + |z — 3| = 1.
A0 B)1 ©)2 D)3 (E) more than 3.

Solution We need to discuss Three cases: ¢ < 2;2 <z < 3,and 3 < x.
(i) Whenzx < 2,

lz—2|+]z—-3|=12-2)+B-2)=1&1=2;
(i) When2 < x <3,
lt—2|+]z—3|=1< (z—2)+ (3—2) =1« any x € (2, 3] is a solution.
Thus, the answer is (E).

Example 9. Let the positions of points on the number axis representing real num-
bers a, b, ¢ be as shown in the following diagram. Find the value of the expression

|b—al+ |a —c|+ |c— 10|

c b 0 a number axis

Solution From the diagram we find that ¢ < b < 0 < a < —c, therefore
b—al+]a—cl+|c—=bl=(a—b)—(a—c)+b—c=0.
Thus, the value of the expression is 0.

Example 10. Given m = |« + 2| + |« — 1| — |2z — 4|. Find the maximum value
of m.

Solution We discuss the maximum value of 7 on each of the following three
intervals.

(i) When x < —2, then
m=—(r+2)—(r—1)+ (22 —4) = 5.
(i) When —2 < x < 1, then

m=@+2)—(x—-1)+Q2r—-4)=2x-1<1.



Lecture Notes on Mathematical Olympiad 45

(iii)) When 1 < z < 2, then
m=(x+2)+(x—1)+2x—4) =4z -3 <5.
(iv) When 2 < x, then
m=(x+2)+(x—-1)+(4—2z)=5.
Thus, myax = 5.
Example 11. Let a < b < ¢, Find the minimum value of the expression
y=l|zr—al+]z—>b+|x—c|

Solution
(i) Whenz <a,

y=(a—2)+B-2)+(—2)>b-a)+(c—a).

(ii)) Whena <z <,

y=(x—a)+(b—a)+(c—z)=(b—a)+(c—z) > (b—a)+(c—b) =c—a.

(i) Whenb <z < ¢,

y=(x—a)+(x—-b)+(c—xz)=(x—a)+(c—b) > (b—a)+(c—b) =c—a.

(iv) Whenc < z,
y=@—a)+@z-b+@—-c)>b-—a)+(c—b)+(x—c)>c—a.

Thus, ymin = ¢ — a, and y reaches this minimum value at z = b.

Testing Questions (A)

T il
X

20 —1 5—3x

2. Given that —1>x— . Find the maximum and minimum

values of the expression |z — 1| — |z + 3|.

3. Ifreal number x satisfies the equation |1 — x| = 1 + |z|, then |z — 1| is equal
to

A1, ®)—(z-1), ©z-1, [DO)1-a
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10.

Lecture 7 Absolute Value And Its Applications

What is the minimum value of |z + 1| + | — 2| + |z — 3]|?
-2
If x < 0, find the value of M

Given a < b < ¢ < d, find the minimum value of | — a| + | — b| + |z —
el + |z —d|.

If two real numbers a and b satisfy |a + b| = a — b, find the value of ab.

Given that a, b, ¢ are integers. If |a — b|'® + |c — a|'*® = 1, find the value of
le —al+]a—bl+ |b—c|

Given a = 2009. Find the value of |2a® — 3a% — 2a+ 1| — |2a® — 3a% — 3a —
2000.

a, b are two constants with |a| > 0. If the equation || — a| — b] = 3 has
three distinct solutions for z, find the value of b.

Testing Questions (B)

Given that n real numbers x1, xo, ..., z, satisfy |z;| < 1 (¢ = 1,2,...,n),
and
|z1| 4+ |22 + -+ 20| =49+ |21 + 22 + - - + 24

Find the minimum value of n.

Given that a; < as < --- < agnare constants, find the minimum value of
v —ai|+ |z —az|+ -+ |z — ay).

When 2z + |4 —5x| 4|1 — 3z|+4 takes some constant value on some interval,
find the interval and the constant value.

Given that real numbers a, b, ¢ are all not zero, and a + b + ¢ = 0. Find the

value of 22007 — 2007z + 2007, where z = o] 19 — |C| .
b+c¢c a+c a+bd

The numbers 1,2,3,---,199,200 are partitioned into two groups of 100
each, and the numbers in one group are arranged in ascending order: a; <
az < ag < --- < aypo, and those in the other group are arranged in de-
scending order: by > by > by > --- > by > by. Find the value of the
expression

lar — b1| + |ag — ba| + - - - + |agg — bog| + |a100 — bioo]-



Lecture 8

Linear Equations with Absolute Values

To solve a linear equation with absolute values, we need to remove the absolute
value signs in the equation.

In the simplest case |P(z)| = Q(x), where P(x),Q(z) are two expressions
with Q(x) > 0, by the properties of absolute values, we can remove the absolute
value signs by using its equivalent form

P(z)=Q(z) or P(x)=-Qx) or (P(x))*=(Q(x))"

If there are more then one pair of absolute signs in a same layer, like |ax +
b| — |cx + d| = e, it is needed to partition the range of the variable x into several
intervals to discuss (cf. Lecture 7).

Examples

Example 1. Solve equation |3z + 2| = 4.

Solution To remove the absolute signs from |3z + 2| = 4 we have
3z +2|=4<=3x+2=—4 or 3z +2=4,
<—3r=—-6 or 3zr=2,

2

r=-2 or r=—.

3
Example 2. Solve equation |z — |3z + 1|| = 4.

Solution For removing multiple layers of absolute value signs, we remove
them layer by layer from outer layer to inner layer. From the given equation we
haver — |3z + 1| =4orz — |3z + 1| = —4.

From the first equation = — |3z 4+ 1| = 4 we have

x—|3z+1| =4 <= 0< z—4 = |32+1| <= —2+4 =3zx+1 orz—4 = 3z+1,

47
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3 5 . . .
therefore t = — orx = —5 which contradict the requirement x > 4, so the two

solutions are not acceptable.
The second equation x — |3x + 1| = —4 implies that

r—18r+1=-4<=0<zx+4=|3z+1|
<— —x—4=3zx+1or z+4=3x+1,

therefore x1 = — To = —.

4 2
Example 3. Solve equation |||z] — 2] — 1| = 3.
Solution There are three layers of absolute values. Similar to Example 2,

o] -2/ — 1| =3 <= ||z| -2 - 1=3 or ||z| -2/ —1=—3

< |jz| —2| =4 or ||z] — 2] — 1| = —2 (no solution)
< |z|-2=4 or |z| —2= —4 < |z| =6 or |z| = —2 (no solution)
< |z|=6<= 21 =6, 3 = —6.

Example 4. If |z — 2| + « — 2 = 0, then the range of x is
Az>2 Bz<2 (Oz>2 [D)yz<2

Solution The given equation produces |z — 2| = 2 — z, so z < 2 and
|t —2|=2—2<=cr—-2=2—-czorzx—2=x—-2<=zc=2o0r z<2
Since z = 2 is contained by the set x < 2, the answer is z < 2, i.e. (D).

Example 5. If ||[4m + 5| — b| = 6 is an equation in m, and it has three distinct
solutions, find the value of the rational number b.

Solution From the given equation we have (i) [4m + 5| — b = 6 or (ii)
[4m + 5| — b= —6.

If (i) has exactly one solution, then b + 6 = 0, i.e. b = —6 which implies
(ii) should be |4m + 5| = —12, so no solutions. Thus b # —6 and (i) has two
solutions but (ii) has exactly one solution, so b — 6 = 0, i.e. b = 6. In fact, when
b = 6 then (i) becomes |[4m + 5| = 12,

Am+5=12  or  4m+5=—12,
17

m=—- or m=——,

4 4

and, from (ii) the third root m = vk

Example 6. Solve equation |z — 1| + 2|z| — 3|z + 1| — |z + 2| = =.
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Solution Letting each of |z — 1, |z|, | + 1|, |z 4+ 2| be 0, we get x =
1,0,—1,—2. By using these four points as partition points, the number axis is
partitioned as five intervals: * < -2, -2 <z < -1, -1 <2z <0,0< 2z <
1, 1<z

@) When z < —2, then
l1-z)+2(—z)+3(x+1)+ (r+2)=2<«<=6=0, ..nosolution;

(i) when —2 < x < —1, then
lI-z)+2(-2)+3(x+1)—(z+2)==2,< 2 =1 . nosolution;

@iii)  when —1 < z <0, then
l—z+4+2(—2)-3@x+1)—(z+2)=z,<=8=-4, .o=——;

@iv) when 0 < < 1, then
lI-z)4+2x-3z+1)—(z+2) =z <=4da=—-4, -.x=-1,
therefore no solution;

W) when 1 < z, then
(r—1)+4+2x-3x+1)—(z+2) =< 2x=—-6 v=-3
therefore no solution.

Thus z = 3 is the unique solution.

Example 7. If |z + 1] + (y + 2)? = 0 and ax — 3ay = 1, find the value of a.
Solution Since |z + 1| > 0 and (y + 2)? > 0 for any real z,y,s0 2 +1 =0
andy +2 =0,ie. ¢ = —1,y = —2. By substituting them into ax — 3ay = 1, it

follows that —a + 6a = 1, therefore a = —.

Example 8. How many pairs (z,y) of two integers satisfy the equation |zy| +
|z —yl =17

Solution |zy| > 0 and |z — y| > 0 implies that
@ |zyl=1,lz—y|=0 or () |zy|=0,|z—yl=1.

(i) implies that z = y and 2% = y? = 1, so its solutions (x,y) are (1,1) or
(-1,-1).

(ii) implies that at least one of x,y is 0. When & = 0, then |y| = 1, i.e.
y = £1;if y = 0, then || = 1, i.e. z = +1. Hence the four solutions for (z,y)
are (07 1)a (Oa _1)7 ((17O)a (_L 0)

Thus there are 6 solutions for (z, y) in total.

Example 9. If |x + 1| — |= — 3| = a is an equation in z, and it has infinitely many
solutions, find the value of a.
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Solution By —1, 3 partition the number axis into three parts: + < —1, —1 <
r<3, 3<uz.

@1) When x < —1, then
—(x+1)—(3—z) = a <= —4 = a. Therefore any value of x not greater
than —1 is a solution if a = —4.

(i) When —1 < x < 3, then
(z+1)—B-2)=a<=> 2z =a+2 <=z = 3(a+2),ie the
solution is unique if any.

(iii)  When 3 < z, then
(x +1) — (x — 3) = a <= 4 = a. Therefore any value of x greater than
3 is a solution if @ = 4.

Thus, the possible values of a are —4 and 4.

Example 10. (AHSME/1988) If |z| + = + y = 10 and = + |y| — y = 12, find
z+y.

Solution There are four possible cases: (i) x,y > 0; (i) z,y < 0; (iii)
x>0,y<0and (iv)z <0,y > 0.

O Ifx >0,y >0then 2z +y = 10,2 = 12 <= y < 0, a contradiction, so
no solution;

(1) If z < 0and y < 0, then y = 10, a contradiction, so no solution;

(i) If z > 0,y < 0, then 2z +y = 10,2 — 2y = 12. By eliminating y, we
32 14

havex = —,soy = ——.
509775
18
Thus, x +y = 5

Testing Questions (A)

1. Solve equation |5z — 4| — 22 = 3.

2. (CHINA/2000) a is an integer satisfying the equation |2a + 7| +|2a — 1| = 8.
Then the number of solutions for a is

(A)b5 B)4 <3 D) 2.
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@

(AHSME/1984) The number of distinct solutions of the equation |x — |2z +
1] =3is
Ao, B1, ©2 O3, BEL

4. (CHNMOL/1987) Given that the equation |z| = ax + 1 has exactly one
negative solution and has no positive solution. then the range of a is

(A)a>1, B)a=1, (C)a>1, (D)none of preceding.

5. (CHNMOL/1986) If the equation ||z — 2| — 1| = a has exactly three integer
solution for x, then the value of a is
(A) 0, B)1, (OPA (D) 3.
a

2008
find the range of a.

6. If the equation |z| — 2 — 2008 = 0 has only negative solutions for z,

7. In the equations in x

() |32 — 4] +2m =0, (i) [4z — 5| +3n =0, (i) |5z — 6/ + 4k = 0,

m, n, k are constants such that (i) has no solution, (ii) has exactly one solu-
tion, and (iii) has two solutions. Then

A)ym>n>k, B)n>k>m, (Ok>m>n, (D)m>k>n.
8. Solve the system of simultaneous equations

|zt —yl=2+y -2,
|z +y|=2a+2.

9. (AHSME/1958) We may say concerning the solution of |z|? + |z| — 6 = 0
that:
(A) there is only one root; (B) the sum of the roots is 1;
(C) the sum of the roots is 0; (D) the product of the roots is +4;
(E) the product of the roots is —6.

10. (CHINA/2001) Solve the system z 4+ 3y + |3z — y| = 19,22 + y = 6.

Testing Questions (B)

1. Solve the system

|z + [y = 2.
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(CHINA/1990) for the equation with 4 layers of absolute value signs ||||z —
1] -1-1-1] =0,
(A) the solutions are 0, 2, 4; (B) 0,2, 4 are not solutions;
(C) the solutions are within the three values 0, 2, 4;
(D) 0,2, 4 are not all of the solutions.

(CHNMOL/1995) Given that a, b are real numbers satisfying the inequality
lla| — (a + b)| < |a — |a + b]|, then
A)a>00>0 B)a<0,b>0 (Ca>0b<0 (D)a<0,b<0.

1
[z —2| |z —52d]

(i) solve the equation, (ii) prove that the solutions must be composite num-
bers if a is the square of an odd prime number.

Given that is an equation in z,

(IMO/1966) Solve the system of equations

lay — as| 2 +la; —azlxs +lag —aq)zs =1
|a2—a1|x1 +|a2—a3|aj3 +|a2—a4\x4 =1
laz —a1|x1  + |az — az| x2 +lag —aslzy =1

|a4—a1|x1 +|a4—a2|x2 —|—\a4—a3|x3 =

where a1, as, as, ay are four different real numbers.



Lecture 9

Sides and Angles of a Triangle

Basic Knowledge

1.

For any triangle, the sum of lengths of any two sides must be longer than
the length of the third side. In other words, the difference of lengths of any
two sides must be less than the length of the third side.

2. The sum of three interior angles of a triangle is 180°.

3. The sum of all interior angles of an n-sided polygon is (n — 2) x 180°.

4, The sum of all exterior angles of an n-sided polygon is 360°.

5. An exterior angle of a triangle is equal to the sum of the two opposite
interior angles.

6. For a triangle, the opposite side of a bigger interior angle is longer than
that of a smaller angle, and vice versa.

7. For triangles ABC and Ay B,C1, if AB = A1B;,CB = (C;Bj, then
AC > A,Cq if and only if ZABC > ZA1B1Ch.

Examples

Example 1.

(1)  When each side of a triangle has a length which is a prime factor of 2001,
how many different such triangles are there?

2) How many isosceles triangles are there, such that each of its sides has an

integral length, and its perimeter is 144?

Solution (1) Since 2001 = 3 x 23 x 29, The triangles with sides of the

following lengths exist:

{3,3,3}: {23,23,23}); {29,29,29};
{3,23,23}; {3,29,29}; {23,29,29}; {23,23,29}.

There are 7 possible triangles in total.

53
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(2) Suppose that each leg of the isosceles triangle has length n, then its base
has a length 144 — 2n = 2(72 — n), i.e. the length of the base must be even.

6)) Ifn > 144 — 2n,i.e. 3n > 144, then n > 48. Since 2n < 144 — 2 = 142,
ie. n < 71, we have 48 < n < 71, there are 24 possible values for n.

(i) If n < 144 — 2n, then n < 48. From triangle inequality, 2n > 144 — 2n,

i.e. n > 36, then 36 < n < 48, so n has 47 — 36 = 11 possible values.
Thus, there are together 24 4 11 = 35 possible isosceles triangles.

Example 2. Given a convex polygon of which the sum of all interior angles ex-
cluding one is 2200°. Find the excluded interior angle.

Solution Since the sum of interior angle of a n-sided convex polygon is
(n —2)-180°, from

2200° = 12 x 180° 4+ 40° = 13 x 180° — 140°,

it follows that that n = 13 4+ 2 = 15, and the excluded angle is 140°.

Example 3. As shown in the diagram below, in AABC, /B > Z/C, AD is the
1
bisector of the ZBAC, AE | BC at E. Prove that ZDAFE = Q(ZB —Z£0).

Solution Since

_ 1 _ 1 o
/BAD = L1/BAC =1(180° - 4B - £C) A
= 90°-i/B-3/C,
/DAE = /BAD - /BAE
= /BAD — (90° — ZB)
= 90°— 5(£B+£0) - 90° + 4B g D c

— l(/B-/0).

Example 4. (AHSME/1956) In the figure below AB = AC, Z/BAD = 30°, and
AE = AD. Then ZCDE equals:
(A)7.5°, (B)10°, (C)12.5°, (D)15°, (E)20°.

Solution Let ZCDE = x, then

©x = /ADC - /ADE = /ADC — /AED A
= JADC — (z+ £C),
1 50 E
L@ = S(ZADC - £C)

1
5(£B+30° — £0) = 15°.
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Example 5. As shown in the figure, AB = BC'=CD = DE = FF = FG =
GH, Za = 70°. Find the size of /(3 in degrees.

A B D F H

Solution /A=j3= /ACB= 8= /CBD =23= /CDB =23

= /ECD =38= /ZCED =308= /EDF =43 = /EFD = 40
= /GEF =50= /FEGF =53 = /GFH =63 = /ZGHF =65
= La=170.

Therefore 3 = 10°.

Example 6. As shown in the diagram, BE and C'F bisect ZABD and ZACD
respectively. BE and CF intersect at G. Given that /BDC = 150° and
/BGC = 100°, find ZA in degrees.

Solution Connect BC'. Then

- /BDC + /DBC + /DCB = 180°,

. ZDBC + /DCB = 180° — 150° = 30°.

.- /BGC + /GBD + /GCD + /DBC + /DCB
= 180°,

. ZGBD + /GCD = /BDC — /BGC = 50°.

Hence

LABD + LZACD =2 -50° = 100°,

ZA =180° — 100° — 30° = 50°. B C

Example 7. (CHINA/1986) As shown in the figure, in AABC, the angle bisec-
tors of the exterior angles of ZA and /B intersect opposite sides at D and F
respectively, and AD = AB = BE. Then the size of angle A, in degrees, is

(A) 10°, (B) 11°, (C) 12°, (D) none of preceding.
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Solution Let /A = /F = o, /D =

/ABD

=3,/CBE =~,/ACB = /. Then 8 = 2~ E
and=a+6, d=7+a, .. 0=2a+"7. C

From 2v = 3 = 2a + ~, we obtain v = 2q, so A%
B =4a. B

1
5(180O —a)+26=180°,
S48 —a = 180°,
16 — a = 180°, D
a=12° - ZA=12°

Example 8. There are four points A, B, C, D on the plane, such that any three
points are not collinear. Prove that in the triangles ABC, ABD, ACD and BC' D
there is at least one triangle which has an interior angle not greater than 45°.

Solution It suffices to discuss the two cases indicated by the following figures:

C C

(a) (b)

For case (a), since ZDAB + ZABC + ZBCD + ZCDA = 360°, at least
one of them is not less than 90°. Assuming ZC'DA > 90°, then in ACDA,
/DCA+ ZCAD < 90°, so one of them is not greater than 45°.

For case (b), since ZADB + ZADC + ZBDC = 360°, one of the three
angles is greater than 90°, say ZADB > 90°, then ZDAB + ZDBA < 90°, so
one of ZDAB and ZDBA is less than 45°.

Example 9. Given that in a right triangle the length of a leg of the right angle
is 11 and the lengths of the other two sides are both positive integers. Find the
perimeter of the triangle.
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Solution From the given conditions we
have

n? =m? + 113 11 n

n? —m? =112,

(n—m)(n+m)=121=1-121 = 11 - 11, mn
therefore
n—m=1n+m=121 or n—m=11,n+m =11,

.n=061,m=060. (n=11,m = 0 is not available.)

Thus, the perimeter is 11 + 61 + 60 = 132.

Testing Questions (A)

1. The sum of all interior angles of a convex n-sided polygon is less than 2007°.
Find the maximum value of n.

2. (AHSME/1961)In AABC, AB = BC'. The points P and @ are on the sides
BC and AB respectively, such that AC = AP = PQ = QB. then the size
of /B (in degrees) is

(A)253, (B)261, (C)30, (D)40, (E) notdetermined.

3. (CHINA/1997) In a right-angled AABC, ZACB = 90°, E, F are on AB
such that AE = AC, BF = BC, find ZEC'F in degrees.

4. If the perimeter of a triangle is 17, and the lengths of its three sides are all
positive integers, find the number of such triangles.

5. Given that the lengths of three sides, a, b, c of a triangle are positive integers,
where a < b < c. Find the number of the triangles with b = 2.

6. In a right-angled triangle, if the length of a leg is 21, and the lengths of the
other two sides are also positive integers, find the minimum value of its
possible perimeter.

7. (AHSME/1978) In AADE, Z/ADE = 140°. The points B and C are on the
sides AD and AFE respectively. If AB = BC = CD = DE, then ZEAD,
in degrees, is

(A)5°, (B)6°, (©)7.5°, (D)8, (E)10°.
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8. (AHSME/1977) In AABC, AB = AC, /A = 80°. If the points D, E, F
are on the sides BC, C'A and A B respectively, such that CE = CD, BF =
BD, then ZEDF, in degrees, is

(A) 30°, (B)40°, (C)50°, (D)65°, (E)none of preceding.
9. If the lengths of three sides of a triangle are consecutive positive integers, and

its perimeter is less than or equal to 100, how many such acute triangles are
there?

10. (AHSME/1996) Triangles ABC and ABD are isosceles with AB = AC' =
BD, and AC intersects BD at E. If AC is perpendicular to BD, then
ZC+ ZDis

(A)115°, (B)120°, (C)130°, (D)135°, (E)notuniquely determined.

Testing Questions (B)

1. (CHINA/1991) In AABC,ZA = 70°, D is on the side AC, and the angle
bisector of ZA intersects BD at H such that AH : HE = 3 : 1 and
BH : HD = 5: 3. Then ZC in degrees is

(A)45°, (B)55°, (C)75°, (D)S80°.

2. (CHINA/1998) In triangle ABC, ZA = 96°. Extend BC to an arbitrary
point D. The angle bisectors of angle ABC and ZACD intersect at Ay,
and the angle bisectors of Z Ay BC and ZA;CD intersect at Ay, and so on.
The angle bisectors of Z/A4BC and ZA4CD intersect at As. Find the size
of ZAs in degrees.

3. In AABC, AB = AC,D,E,F are on AB,BC,CA, such that DE =

1
EF = FD. Prove that /DEB = §(LADF + ZCFE).

>

In right-angled AABC, ZC = 90°, E is on BC such that AC' = BE. D is
on AB such that DE | BC. Given that DE + BC =1, BD = %, find
/B in degrees.

5. (MOSCOW/1952) In AABC, AC = BC, ZC = 20°, M is on the side AC'

and N is on the side BC, such that ZBAN = 50°, ZABM = 60°. Find
ZN M B in degrees.



Lecture 10

Pythagoras’ Theorem and Its Applications

Theorem 1. (Pythagoras’ Theorem) For a right-angled triangle with two legs a, b
and hypotenuse c, the sum of squares of legs is equal to the square of its hy-

potenuse, i.e. a* + b*> = 2.

Theorem IL. (Inverse Theorem) If the lengths a, b, c of three sides of a triangle
have the relation a® + b> = 2, then the triangle must be a right-angled triangle
with two legs a, b and hypotenuse c.

When investigating a right-angled triangle (or shortly, right triangle), the fol-
lowing conclusions are often used:

Theorem IIl. A triangle is a right triangle, if and only if the median on one side
is half of the side.

Theorem IV. If a right triangle has an interior angle of size 30°, then its opposite
leg is half of the hypotenuse.

Examples

Example 1. Given that the perimeter of a right angled triangle is (2 + v/6) cm,
the median on the hypotenuse is 1 cm, find the area of the triangle.

Solution The Theorem III implies that AD = BD = CD =1,s0 AB = 2.
Let AC = b, BC' = a, then

59
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a?+bv*=22=4 and a+b=+6. B
Therefore 6 = (a + b)? = a? + b2 + 2ab, so b
6—4
b=——=1
a 5 ,
A C

1
the area of the triangle ABC'is 5

Example 2. As shown in the figure, Z/C' = 90°, /1 = /2, CD = 1.5 cm,
BD = 25cm. Find AC.

Solution From D introduce DE L AB, intersecting AB at E.
When we fold up the plane that ACAD lies

along the line AD, then C coincides with E, so c

AC =AE, DE=CD =1.5 (cm). D
By applying Pythagoras’ Theorem to ABED,

BE = /BD? — DE? = \/6.25 — 235 = 2 (em). B

Letting AC = AE = x cm and applying Pythagoras’ Theorem to AABC leads
the equation

B

(z +2)% = 22 + 42,
dr =12, . x=3.

Thus AC = 3 cm.

Example 3. As shown in the figure, ABC D is a square, P is an inner point such
that PA: PB: PC =1:2:3. Find ZAPB in degrees.

Solution Without loss of generality, we assume that PA =1, PB = 2, PC' =
3. Rotate the AAP B around B by 90° in clock-
wise direction, such that P — @, A — C, then

ABPQ is an isosceles right triangle, therefore D C
PQ?=2PB? =8,0Q% = PA%> =1, /\>Q
therefore, by Pythagoras’ Theorem, S - -7 //
PC? =9 =CQ*+ PQ* ZCQP =90°. Z /
A B

Hence ZAPB = ZCQB = 90° + 45° = 135°.
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Example 4. (SSSMO(J)/2003) The diagram shows a hexagon ABC DEF made
up of five right-angled isosceles triangles ABO, BCO,CDO, DEQO, EFO, and
a triangle AOF, where O is the point of intersection of the lines BF' and AE.
Given that OA = 8 cm, find the area of AAOF in cm?.

Solution From

_ 1 _ 1 \2 _ 1
oc = ﬁOB - (ﬁ) 0A =104, C

Since RIAEFO ~ RtAABO,

,_anJ
T
ov]

EF =0F = 1OB = LOA.

4 42
Let FG | AE at G, then FG = %OF
= %OA = 1 cm. Thus, the area of AAOF, Sa a0F, is given by

1
SAAOF = §AO -FG =4 (cm2).

Example 5. (Formula for median) In AABC, AM is the median on the side BC.
Prove that AB? + AC? = 2(AM? + BM?).

Solution Suppose that AD 1 BC at D. By Pythagoras’ Theorem,

AB? = BD?+ AD? = (BM + MD)? + AD?
= BM?+2BM -MD + MD?+ AM? — M D?
= BM?+ AM? +2BM - MD.

Similarly, we have

AC? = CM? + AM? —2MC - MD. B M D C
Thus, by adding the two equalities up, since BM = C' M,
AB? + AC? = 2(AM? + BM?).

Note: When AM is extended to F such that ABEC is a parallelogram, then
the formula of median is the same as the parallelogram rule:

AB? + BE?>+ EC? + CA? = AE? + BC?.

Example 6. In the figure, ZC' = 90°, LA = 30°, D is the mid-point of AB and
DE 1 AB, AE =4 cm. Find BC.
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Solution Connect BE. Since ED is the perpendicular bisector of AB,
BE = AFE,s0o ZEBD = /EBA = /A =30°,ZCBE = 60° — 30° = 30°,
~.CE=i{BE=DE=1AE=2cm.

Now let BC' = = cm, then from Pythagoras’ B
Theorem,

(22)2 =22 +6% = 22 =12

ﬁl‘:\/12:2\/§cm

Thus, BC' = 2+/3 cm.

Example 7. For AABC, O is an inner point, and D, F, F are on BC,CA, AB
respectively, such that OD 1 BC, OFE 1 CA, and OF 1 AB. Prove that
AF? + BD? + CE? = BF? + DC? + AE?.

A

Solution By applying the Pythagoras’ Theorem to the triangles OAF, OBF',
OBD,0OCD,OCE and OAFE, it follows that A

AF? + BD? + CFE?

= AO? — OF? + BO?> - 0OD? + CO? — OF?
= (BO% — OF?) 4+ (CO? — OD?) + (AO% — OE?)
= BF? 4+ DC? + AE2.

The conclusion is proven. B D C

Example 8. In the diagram given below, P is an interior point of AABC, PP, L
AB, PP, 1| BC, PP; 1 AC, and BP, = BP,, CP, = CP;, prove that
AP, = AP;.

Solution For the quadrilateral AP, BP, since its two diagonals are perpen-
dicular to each other,

AP+ BP? = AF?+ PF?+ BF?+ PF?
= AP? 4+ BP}.

By considering AP;C' P and PC P, B respec-
tively, it follows similarly that

AP? + CP} = AP? + PC?,
BPj + PC? = PB? + CP3.

Then adding up the three equalities yields

AP} = AP, - AP, = AP;.
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Example 9. In square ABC'D, M is the midpoint of AD and N is the midpoint
of M D. Prove that ZNBC = 2/ABM.

Solution Let AB = BC = CD = DA = a. Let E be the midpoint of CD.
Let the lines AD and BE intersect at .

By symmetry, we have DF = CB = a. Since A MND F
right triangles ABM and C BE are symmetric in el
the line BD, ZABM = /CBE.

It suffices to show Z/NBE = ZEBC, and for /,/" E

this we only need to show /A NBF = /ZBFN y. -~

since ZDFE = ZEBC. B C

By assumption we have

3 3 5
AN =7a, " NB=4/(;a)’ +a* = Ja.
On the other hand,
1 5
NF = Za—!—a = Za,

so NF = BN, hence /ZNBF = ZBFN.

Testing Questions (A)

1. (CHINA/1995) In AABC, ZA = 90°, AB = AC, D is a point on BC.
Prove that BD? + CD? = 2AD?.

2. Given that RtAABC has a perimeter of 30 cm and an area of 30 cm?. Find
the lengths of its three sides.

3. Inthe RtAABC, ZC = 90°, AD is the angle bisector of ZA which inter-
sects BC at D. Given AB = 15¢m, AC =9cm, BD : DC =5 : 3. Find
the distance of D from AB.

4. In the right triangle ABC, ZC = 90°, BC = 12 cm, AC = 6 cm, the per-
pendicular bisector of AB intersects AB and BC' at D and F respectively.
Find CE.

1
5. In the rectangle ABCD, CE | DB at FE, BE = ZBD and CE = 5 cm.
Find the length of AC'.
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In AABC, ZC = 90°, D is the mid-point of AC. Prove that

AB? + 3BC? = 4BD>.

In the right triangle ABC, ZC = 90°, E, D are points on AC' and BC
respectively. Prove that

AD? + BE? = AB?> + DE2.

(CHNMOL/1990) AABC is an isosceles triangle with AB = AC = 2.
There are 100 points P, Py, . .., Pigo on the side BC. Write m; = AP? +
BP;- P,C (i=1,2,...,100), find the value of m; + msy + - - - + myqo.

In AABC, ZC = 90°, D is the midpoint of AB, E, F' are two points on
AC and BC respectively, and DE | DF. Prove that EF? = AE? 4 BF?2.

(CHINA/1996) Given that P is an inner point of the equilateral triangle
ABC, such that PA =2, PB = 2\/§7 PC = 4. Find the length of the side
of AABC.

Testing Questions (B)

(SSSMO(J)/2003/Q8) AB is a chord in a circle with center O and radius
52 cm. The point M divides the chord AB such that AM = 63 cm and
M B = 33 cm. Find the length OM in cm.

(CHINA/1996) ABC'D is a rectangle, P is an inner point of the rectangle
such that PA =3, PB =4, PC =5, find PD.

Determine whether such a right-angled triangle exists: each side is an integer
and one leg is a multiple of the other leg of the right angle.

(AHSME/1996) In rectangle ABCD, /(' is trisected by C'F and C'E, where
Eison AB, Fison AD, BE = 6 and AF = 2. Which of the following is
closest to the area of the rectangle ABC D?

(A) 110, (B) 120, (C)130, (D)140, (E) 150.

(Hungary/1912) Let ABC D be a convex quadrilateral. Prove that AC | BD
if and only if AB? + CD? = AD? + BC2.



Lecture 11

Congruence of Triangles

Two triangles are called congruent if and only if their shapes and sizes are both
the same.

In geometry, congruence of triangles is a very important and basic tool in
proving the equality relations or inequality relations of two geometric elements
(e.g. two segments, two angles, two sums of sides, two differences of angles,
etc.). Two triangles are congruent means they are the same in all aspects, so any
corresponding geometric elements are equal also.

To prove two geometric elements being equal, it is convenient to construct two
congruent triangles such that the two elements are the corresponding elements of
the congruent triangles.

To prove two geometric elements are equal or not equal, even though their
positions are wide apart, by using the congruence of two triangles, we can move
the position of a triangle which carries one element, such that these two elements
are positioned together so their comparison becomes much easier.

Basic Criteria for Congruence of Two Triangles

(6))] S.A.S.: Two sides and their included angle of one triangle are equal to
those in the other triangle correspondingly.

(ii) A.A.S.: Two angles and one side of a triangle are equal to those in the
other triangle correspondingly.

(iii))  S.S.S.: Three sides of a triangle are equal to those of the other triangle
correspondingly.

For right triangles, these criteria can be simplified as follows:

(iv)  S.A.: One side and one acute angle of a triangle are equal to those of the
other triangle correspondingly.

%) S.S.: Two sides of a triangle are equal to those of the other triangle corre-
spondingly.
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Examples

Example 1. As shown in the diagram, given that in AABC, AB = AC, D is on
AB and F is on the extension of AC' such that BD = CE. The segment DFE
intersects BC' at G. Prove that DG = GFE.

Solution From D introduce DF || AE,
intersecting BC' at F', as shown in the right
diagram. Then

/FDG = /CEG,/DGF = Z/EGC.

Since /BFD = /BCA = ZDBF, we
have
DF = DB =CE.

Therefore

ADFG =~ AECG(A.AS.),

hence DG = GE.

Example 2. Given BE and C'F are the altitudes of the AABC. P, () are on BE
and the extension of C'F' respectively such that BP = AC,C(Q = AB. Prove
that AP 1 AQ.

Solution From AB | CQ and BE | AC
/ZABE = ZQCA.
Since AB = CQ and BP = CA,
AABP = AQCA (S.AS.),
S LBAP = ZCQA,
S LQAP = LQAF + Z/BAP

= /QAF + Z/CQA
= 180° — 90° = 90°.

Example 3. (CHINA/1992) In the equilateral A ABC, the points D and E are on
AC and AB respectively, such that BD and C'E intersect at P, and the area of
the quadrilateral ADPE is equal to area of ABPC. Find ZBPE.

Solution From F and D introduce EF 1 AC at F'and DG L BC atG.
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The condition [ADPE] = [BPC] implies that
[ACE] = [CBD].

Since AC = BC, so EF' = DG. Since LA =
ZC,so RtIANAEF = RtACDG (A.S)).
therefore AE = CD, hence

NAEC =~ ACDB(S.AS.).

B G C
Thus, /ZDBC = ZECD, so that
/BPE = /PBC+ /PCB = /PCD + /PCB = 60°.

Example 4. (CHINA/1991) Given that ABC' is an equilateral triangle of side 1,
ABDC is isosceles with DB = DC and Z/BDC = 120°. If points M and N
are on AB and AC respectively such that /M DN = 60°, find the perimeter of
ANAMN.

Solution ‘- /DBC = /ZDCB =30°,..DC 1. AC,DB 1 AB.

A
Extending AB to P such that BP = NC, then
ADCN = ADBP (S.S.), therefore DP =
DN. /PDM = 60° = /M DN implies that

APDM = AMDN, (S.A.S.),
. PM = MN,

e B e MNP

Thus, the perimeter of AAM N is 2. fommmmmTTTT D

Note: Here the congruence APDM = AMDN is obtained by rotating
ADCN to the position of AD BP essentially.

Example 5. As shown in the figure, in AABC, D is the mid-point of BC,
/EDF = 90°, DE intersects AB at E and DF intersects AC at F. Prove
that

BE + CF > EF.

Solution In this problem, for the comparison of BE + C'F and EF it is
needed to move the segments BE, EF, C'F together in a same triangle, and con-
structing congruent triangles can complete this task as follows.

Rotate ADC'F around D by 180° in clockwise direction, then
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C—B, F-—Q(G.

Connect BG, EG,GD. Since BG = CF and
GD = DF, we have

AEDG = AEDF, (S.S.),

hence

EF =FEG < BE+ BG =BE + CF.

Example 6. (CHINA/1999) Given that A ABC' is a right-angled isosceles triangle
with ZACB = 90°. D is the mid-point of BC, C'E is perpendicular to AD,
intersecting AB and AD at F and F respectively. Prove that /CDF = /BDE.

Solution It is inconvenient to compare
ZCDF and Z/BDE directly. To change the C
position of ZC DF, suppose that the perpen-
dicular line from B to BC intersects the line

CFE at (. Since AC = CB, D
LCAD = Z/BCG =90° — LACF, ‘
ANACD = ANCBG (S.A.), A E\ B
. ZCDF = /BGC = Z/BGE. N
*+BD=CD =BG and /ZDBE = /GBE = 45°, G

.. ABGE = ABDEFE (S.AS.),hence ". Z/CDF = /BGE = Z/BDE.

Example 7. (CHINA/1992) In the square ABC D, E is the midpoint of AD, BD
and CF intersect at F'. Prove that AF' | BE.

Solution Let G be the point of intersection A i) D
of AF and BE. It suffices to show

/EAG = ZABG. F
By symmetry we have

AABE = ADCE, NADF = ACDF,

therefore /FAG = /DCF = ZABG. B C



Lecture Notes on Mathematical Olympiad 69

Example 8. (CHINA/1992, 1993) In the graph, triangles ABD and BEC' are
both equilateral with a, b, ¢ being collinear, M and N are midpoints of AE and
C D respectively, AFE intersects BD at G and C'D intersects BE at H. Prove that
(i) AM BN is equilateral, (i) GH || AC.

Solution (i) From AB = BD, BE = BC, /ABE = /DBC = 120°

AABE =~ ADBC (S.AS.),
- /MAB = /NDB,MA= ND,

which implies AMAB =2 ANDB (S.A.S.).

.MB=NB and ZABM = ZDBN
LMBN =/MBD + ZABM = ZABD
=60°, = AMBN is equilateral.

A SBT C
(ii) From G, H introduce GS 1 AC at S and HT | AC at T respectively. Since

/GBA=/ECA=/HBC = /DAC =60° = GB | CE, HB || AD,

AB BC

Since /GBS = ZHBT = 60°, so RtAGBS = RtAHBT (S.A.). Thus, GS =
HT,ie. GH || AC.

Testing Questions (A)

1. In AABC, ZACB =60°, ZBAC =75°, AD 1 BC at D, BE 1 AC at
E, AD intersects BE at H. Find ZC HD in degrees.

2. AABC is equilateral, D is an inner point of AABC and P is a point outside
ANABC suchthat AD = BD, AB = BP, and BD bisects ZC'BP. Find
/BPD.

3. Given that the side of the square ABCD is 1, points P and () are on AB and
AD respectively, such that the perimeter of AAPQ is 2. Find ZPCQ in
degrees by use of congruence of triangles.

4. ABCD is a square, E and F' are the midpoints of the sides AB and BC
respectively. If M is the point of intersection of CE and DF, prove that
AM = AD.
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ABCD is a trapezium with AD || BC, ZABC = ZBAD = 90°, and
DE = EC = BC. Prove that ZDAE = %AAEC.

(MOSCOW/1952) In an isosceles triangle ABC, AB = BC, /B = 20°.
M, N are on AB and BC respectively such that /M CA = 60°, /NAC =
50°. Find ZN M C'in degrees.

Given that AABC' is an isosceles right triangle with AC' = BC' and ZACB =
90°. D is a point on AC and FE is on the extension of BD such that

1
AE 1 BE.If AE = §BD’ prove that BD bisects ZABC.

(CHINA/1999) In the square ABCD, AB = 8,  is the midpoint of the side
CD. Let ZDAQ = «. On CD take a point P such that ZBAP = 2a. If
AP =10, find CP.

(CHINA/1992) In the pentagon ABCDE, /ABC = ZAED = 90°, AB =
CD = AFE = BC + DE = 1. Find the area of ABCDE.

(NORTH EUROPE/2003) D is an inner point of an equilateral AABC sat-
isfying ZADC = 150°. Prove that the triangle formed by taking the seg-
ments AD, BD,CD as its three sides is a right triangle.

Testing Questions (B)

(CHINA/1996) Given that the segment BD is on a line £. On one side of ¢
take a point C and construct two squares ABC K and CDEF respectively
outside the AC'BD. Let M be the midpoint of the segment AF, prove that
the position of M is independent of the choice of the position of C.

(CHINA/1998) In RtAABC, ZC =90°,CD 1 AB at D, AF bisects £A,
intersects CD and C'B at E and F respectively. If EG is parallel to AB,
intersecting C'B at G, prove that CF = GB.

(CHINA/1994) In AABC, AC = 2AB and ZA = 2/C. Prove that AB L
BC.

(CHINA/2000) In a given quadrilateral ABCD, AB = AD,/BAD =
60°, ZBCD = 120°. Prove that BC + DC = AC.

In AABC, ZABC = ZACB = 80°. The point P is on AB such that
/BPC = 30°. Prove that AP = BC.
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Applications of Midpoint Theorems

In a triangle, the segment joining midpoints of two sides is called a midline of
the triangle. A triangle has three midlines.

In a trapezium, the segment joining the midpoints of two legs is called the
midline of the trapezium.

Theorem 1. For any triangle ABC, if D and E are on AB and AC respectively,
1

then DE || BC and DE = §BC if and only if D, E are midpoints of AB and

AC respectively.

Theorem II. For a trapezium ABCD with AB || CD, if E, F are the midpoints

of AD and BC respectively, then EF' || AB || CD, and EF = %(AB +CD,).

In geometry, these two theorems are often used, since the endpoints of a mid-
line are midpoints of sides, so many problems mentioning determining midpoints
can be solved by using midlines.

Since a midline is half of the third side for triangles, or half of the sum of
two bases for trapezia, the midlines can be taken as a tool to change the segments
to be compared or identified to half of double of these segments, so that their
comparison becomes much easier.

Examples

Example 1. In the figure, D, E are points on AB and AC such that AD =

DB, AE = 2EC, and BFE intersects C'D at point F'. Prove that 4EF = BE.
Solution It is difficult to compare the lengths of FF' and BF since they are

on a same line. Here we can use a midline as a ruler to measure them.
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Let M be the midpoint of AFE. Connect
DM. By applying the midpoint theorem A
to AABE and AC DM respectively, it fol-
lows that

DM = %BE,
EF = %DM
1 .
. EF = {BE, ie. BE = EF. B c

Example 2. Given that ABCD is a convex quadrilateral, /ABC = Z/CDA =
90°, and ZBCD > ZBAD, as shown in the diagram below. Prove that AC' >

BD.

Solution Extend AB, AD to E, F respectively, such that AB = BE and
AD = DF. Then, by the midpoint theorem,

BD || EF and EF =2BD.

Since BC, DC are the perpendicular bisector N
of AE, AF respectively,
EC =AC =FC. B D
From the triangle inequality, /'I ,/’/C'\\\\
EC + FC > EF, ie. L RN
E F

2AC > 2BD, . AC > BD.

Example 3. As shown in the figure, in AABC, /B = 2/C, AD is perpendicu-
lar to BC at D and E is the midpoint of BC. Prove that AB = 2DE.

Solution Let F' be the midpoint of AC,
connect £ F, DF. By the midpoint theorem,
AB = 2FEF, it suffices to show DE = EF.
Since DF' is the median on the hypotenuse
AC of tehright triangle ADC, DF = FC =
AF,s0 ZCDF = /C. Since EF || AB,

LCEF = /B =2/C,
. ZDFE = LCEF — LCDF = LC !
= /CDF, hence DE = EF. B D E C
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Example 4. In the figure, AB = CD, E,F are the midpoints of AD and BC
respectively. Let BA intersect F'E/ at M. Prove that AM = AE.

Solution The given condition AB = C'D and the goal AM = AFE have no
direct relation. Here the midpoint theorem is the bridge to connect them.

Connect BD. Let P be the midpoint of
BD, connect PE, PF. Then, by the mid-
point theorem,

PE = %AB: %CD:PF

and PE || BM, AC || PF. Therefore

LAME = /PEF = /PFE = LZAEM,

SLAM = AE.

Example 5. For a quadrilateral ABC'D, E, F are the midpoints of AB and BC
respectively, DE and DF intersect the diagonal AC at M and N respectively,
such that AM = M N = NC. Prove that ABCD is a parallelogram.

Solution We first show that M BN D is a parallelogram, then show ABC' D
is a parallelogram. At the first step, the midpoint theorem plays an essential role.

Connect BM,BD,BN. . AE = BE,

BF = FC,and AM = MN = NC, A D
EM || BN and FN || BM,

.M BND is a parallelogram. Then

BM =ND and
/AMB = /FNM = CND,
AAMB = ACND (SAS.),

- AB=CD, /BAC = /DCN,

so AB || CD also. Thus, ABCD is a parallelogram.
Example 6. (CHNMOL/1997) In the trapezium ABCD, AD || BC, 4B =
30°,
/C = 60°, E,M,F, N are the midpoints of AB, BC,CD, DA respectively.
Given that BC' =7, MN = 3. Find EF.

Solution By applying the midpoint theorem to the trapezium, then EF =

1
3 (AD + BC), so it is important to find AD.
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Through N we introduce NG || AB, NH || CD, intersecting BC at G, H
respectively. Since AD || BC, the quadrilaterals ABGN and NHCD are both
parallelograms.

..BG=AN=CH = ND and
AB || NG,CD | NH. A N D
-+ /NGH = /ABH = 30°, and A
/NHG = /DCG = 60°, B NN
Z/GNH = 180° — 30° — 60° = 90°. N
“BM =CM = GM = HM, \
LEF=31+7)=4.

Example 7. (CHINA/1997) In the trapezium ABCD, AB || CD,ZDAB =
ZADC = 90°, and the AABC is equilateral. Given that the midline of the
trapezium E'F = 0.75a, find the length of the lower base AB in terms of a.

Solution From the given conditions, b C

ZDAC =30°, ..CD = %AC = %AB.

By the midpoint theorem, E F

A B

Example 8. (MOSCOW/1995) In a given convex quadrilateral ABC' D, O is an
inner point of ABCD such that Z/AOB = ZCOD = 120°, AO = 0B, CO =
OD. Given that K, L, M are the midpoints of the segments AB, BC, C D respec-
tively, prove that A K LM is equilateral.

Solution It suffices to show that KL =
ML and ZK LM = 60°. The conclusion can
be obtained by the midpoint theorem.

Let N, P be the midpoints of OB,0OC
respectively. Connect NK, NL, PL, PM.
Then

KN =10A=10B=PL,
NL = 50C = ;0D = PM.

-2
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.NK | OA, NL||OC, PL || OB, PM || OD and
LKNL = /ZA0C =120° + £BOC = ZBOD = ZLPM,
L AKNL > ALPM (S.A.S.),hence KL = LM.

On the other hand, we have /K LM = Z/KLN + /Z/NLP + Z/PLM = /PML
+ ZLPC + ZPLM = 180° — ZCPM = 180° — 120° = 60°,
therefore AK LM is equilateral.

Example 9. (CHNMO/TST/1995) Given that the points P and () are on the sides
AB and AC of an acute triangle A BC respectively. D is an inner point of AABC
such that PD 1 AB at Pand QD | AC at Q. If M is the midpoint of the side
BC, prove that PM = QM if and only if /ZBDP = ZC'DQ.

Solution Sufficiency: Suppose ZBDP =
ZCDQ. Let E, F be the midpoints of BD,CD
respectively. Connect EP, ME, MF, FQ.
Then

EP=1BD=MF, ME = }CD = FQ,
/4BDP =/CDQ = /ZPBD = ZQCD,
o LPED =2/PBD =2/DCQ = £LDFQ,
since DEMF' is a parallelogram, therefore
LDEM = Z/DFM,so /ZPEM = ZMFQ,

B
thus APEM = AMFQ (S.A.S.), hence PM = QM.

Necessity: If PM = QM,then APEM = AMFQ (S.S.S.), so

/PEM = /MFQ, /DEM = ZMFD (by the same reason as above),
therefore /PED = /DFQ, ie. 2/PBE = 2/DCQ or /ZPBE = ZDCQ.
Thus, /ZBDP =90° — ZPBD = 90° — ZDCQ = ZCDQ.

Testing Questions (A)

1. Given that ABCD is a quadrilateral, £ and F' are midpoints of the sides
AD and BC of ABCD. Suppose that AB } CD. Prove that EF <

1
3(AB +CD).

2. Inatrapezium ABCD, AB || CD and AB = 2C'D. M, N are the midpoints
of the diagonals AC and BD respectively. Let the perimeter of ABC'D be
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l1, the perimeter of the quadrilateral CDM N be l5 and [y = nls, find the
value of n.

In a square ABC'D, let O be the intersection point of the diagonals AC' and
BD. Let the angle bisector of ZC'AB intersect BD at E and BC at F.
Prove that 20F = CF.

In AABC, let E be the midpoint of BC' and let D be the foot of the altitude
from A to BC'. Suppose AB = 2DE. Prove that /B = 2/C.

ABCD is a trapezium such that AB || DC,AD = BC. Given that AC
intersect BD at O, P, Q, R are the midpoints of AO, DO and BC respec-
tively, and ZAOB = 60°. Prove that APQR is equilateral.

In the AABC, BE is the angle bisector of the ZABC, AD is the median on
the side BC, and AD intersects BE at O perpendicularly. Given BE =
AD = 4, find the lengths of three sides of AABC.

ABC'is a given triangle. If the sides AB and AC are taken as hypotenuses of
two right triangles ABD and ACE outside the A ABC, respectively, such
that ZABD = ZACE. Prove that DM = EM, where M is the midpoint
of BC.

Testing Questions (B)

(CHINA/1999) In a quadrilateral ABCD, AD > BC, FE and F are the
midpoints of AB and C'D respectively. Suppose that the lines AD and
BC intersect F'E produced at H and G respectively. Prove that ZAHE <
ZBGE.

In AABC, let BC be produced to a point M. Let D, E, N be the midpoints
of AB, AC and BM respectively. Let H be the midpoint of EN. Join DH
and extend D H to meet BM at F'. Prove that CF = F M.

In the right triangle ABC, ZABC = 90°, AB = BC. Let D and E be
points on AB and BC respectively such that AD = C'E. Let M and N be
points on AC' such that DM and BN are perpendicular to AE. Prove that
MN = NC.

(CHINA/1997) ABCD is a quadrilateral with AD || BC. If the angle bi-
sector of ZDAB intersects C'D at E, and BE bisects ZABC, prove that
AB = AD + BC.
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Similarity of Triangles

Two triangles are called similar if we can get two congruent triangles after en-
larging or compressing the sides of one of them according to an equal ratio. That
is, two triangles are similar means they have a same shape but may have different

sizes.

Criteria for Similarity of Two Triangles

D
(II)
(II0)
(Iv)

V)

Each pair of corresponding angles are equal (A.A.A.);

All corresponding sides are proportional (S.S.S.);

Two pairs of corresponding sides are proportional, and the included corre-
sponding angles are equal (S.A.S.);

For two right triangles, a pair of two corresponding acute angles are equal
A.A));

fAmorl)g the three pairs of corresponding sides two pairs are proportional
(S.S.).

Basic Properties of Two Similar Triangles

@

axn

(I1I)

For two similar triangles, their corresponding sides, corresponding heights,
corresponding medians, corresponding angle bisectors, corresponding
perimeter are all proportional with the same ratio.

Consider the similarity as a transformation from one triangle to other, then
this transformation keeps many features of a graph unchanged: each inte-
rior angle is unchanged; any two parallel lines are still parallel, the angle
formed by two intersected lines keeps unchanged, and collinear points re-

mained collinear.
For two similar triangles, the ratio of their areas is equal to square of the

ratio of their corresponding sides.
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Important Proportional Properties of Segments

When by a, b, ¢, . .. we denote the lengths of segments, the following proportional
properties hold, which are the same as in algebra:

(M %:s = ad = be;
a_ ¢ a+b c+d
@ 373 ;)rb ;d;
SR B
@ %:g :ZtZ:th ifa—b+#0orc—d#0;
=— ifb+d+---+n#0.
Examples

Example 1. Prove the following:

Q) When two straight lines are cut by three parallel lines, the two segments
between two adjacent parallel lines are proportional.

2) When a straight line which is parallel to one side of a triangle cuts the other
sides of the triangle at two points, the three sides of the derived triangle
must be proportional to the three sides of the original triangle, correspond-

ingly.

Solution (1) If the two lines ¢ and ¢ are parallel, the conclusion is obvious.
If ¢1 }f ¢, suppose that O is their point of inter-
section. If three parallel lines /3, ¢4, {5 intersect
¢y and /5 at Ay, B1,C1 and As, By, Cs corre-
spondingly, as shown in the right diagram, let

A1 B || £s, intersecting ¢4 at B,
B;C' || 4o, intersecting ¢5 at C,

then A1 A3 B3 B and By B2C5C' are parallelo-
grams,

AlB = AQBQ, BlC = BQCQ. AAlBBl ~ ABlCCl (AAA),

c = . Th = .
3101 B1C’ s Blcl 3202
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Given AABC. If the line ¢ || BC, intersecting AB, AC at By, C respec-

tively. Then
LABCy = LABC, LAC\B, = LACB,

therefore the sides of the two triangles are proportional correspondingly.

Example 2. (Angle Bisector Theorem) For any triangle, the angle bisector of
any interior angle must cut the opposite side into two segments, such that their

ratio is equal to the ratio of the two sides of the angle, correspondingly.
Solution In AABC, Let AD be the angle bisector of Z/BAC, where AD
E

and BC intersect at D.
From C introduce CE || AD, intersect-
ing the extension of BA at E. Then
/ECA=/DAC = /BAD
= /AEC, . AC = AE. Ao
" AD || EC,
_AB _BD /
"AE ~ CD’
. AB BD !
AC CD B D C
Note: When AD is the angle bisector of the exterior angle of angle BAC,
similarly, it is also true that
AB BD
AC  CD’

Example 3. (Projection Theorem of Right Triangles) In the right triangle ABC,
BC? = BD - BA.

LACB = 90°. Then
CD? = AD - DB, AC? = AD - AB,
Solution From ZACD = 90° —
C

LA = ZCBD, therefore RtANACD ~
RtACBD (A.A.A.), we have
¢p _BD
AD CD’
iie. CD? = AD - BD. A
'+ LCAD = ZBAC, . RtACAD ~ RtABAC
ie. AC>=AD - AB.

Ac _ 4B
TAD  AC’

D
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The proof of BC? = BD - BA is similar.

Example 4. (Theorem on Centroid) For any triangle ABC, its three medians
must intersect at one common point GG, and each median is partitioned by G as
two segments with ratio 2 : 1.

Solution Let G be the point of intersec-
tion of the medians AD and BE. From D in-
troduce DH || BE, such that DH intersects
AC at H. By the midpoint theorem,

AE = EC = 2CH = 2HE.
-+ NAGE ~ AADH,

_AG AE
""GD FEH
G
Similarly, — = 2.
imilarly, ~— ,
Suppose that C'F intersects AD at G’, then similar to above proof, —— = 2,

G'D
hence G = G'. Thus AD, BE, C'F are concurrent at G.

Example 5. (CHINA/1999) In AABC, AD is the median on BC, E is on AD
such that BE = AC'. The line BE intersects AC at F. Prove that AF' = E'F.

Solution From C introduce CG || AD, intersecting the extension of BF at
G.

LEAF = /FCQG,
LAEF = /FGC,

LAFE = LGFC,
S.AEAF ~ AGCF (A.AA)).
(AP _FC _AF4FC _AC
""EF FG EF+FG EG
By the midpoint theorem, BE = EG,

.EG=AC,AF = EF.

Example 6. (MOSCOW/1972) In AABC, AD, BE are medians on BC, AC
respectively. If ZCAD = ZCBE = 30°, prove that AABC! is equilateral.

Solution - AADC ~ ABEC (A.A.A.), therefore
Ac_be_2pC _pe
BC EC 2EC AC’
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. AC? = BC?, AC = BC. A
In ABEC, /BEC = 30°, EC = { BC,

.. ZBEC =90°,£4C = 60°.

.. AABC! is equilateral. B D C

Example 7. In AABC, ZA: /B : ZC =1:2: 4. Prove that

11
AB  AC  BC’

AB+AC  AC

Soluti It suffices to sh —
olution suffices to show 5O

. To prove it we construct

corresponding similar triangles as follows.

Extending AB to D such that BD = AC. Extending BC' to E such that
AC = AEFE. Connect DE, AE.

Let /A=, /B =2a, ZC = 4a..
Then 7w = 180°.

‘/LAEC = LZACE = 3a, ARN
/CAE =a = ZCAB, s O e
/BAFE = 2o = /EBA. s T

‘" /DBFE = /BAFE + ZAEB = 5a, /2 e
- ZEDA = 1(180° - 50) = a, A TTTTTTTD
.ADAE ~ ANABC (AAA).

sA—D*A—E'eiAB—FAC*&asdeS'red
U T BCYS T AB T BC tree

Th
Example 8. (CHINA/1999) P is an inner point of AABC, BC = a,CA =
b, AB = c. Through P introduce IF || BC, DG || AB and EH || C' A respec-
tively, where I, H are on AB, D, E are on BC, F, G are on C' A, as shown in the

!/ b/ /
digram below. Given DE = o', FG = b/, HI = ¢, find the value of * 4 T+ <
a c

Solution From IF || BC,HE || AC we have AHIP ~ AABC, then

¢ IP BD

C a a
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Since AGPS ~ ANABC,

, A

¥ _PF_EC 0

b a a

Therefore a

« ¥ ¢ DE BD EC I Iavav)
-+t —-—=—4+—4+—
a b c a a a
_DE—i-BD—i—ECi1 /\\
- BC - B D g ¢

Example 9. In the given diagram, APQR and AP’'Q’'R’ are two congruent
equilateral triangles. Denote the lengths of the sides of hexagon ABC DEF by
AB = ai, BC = bl, CD = as, DFE = bg, EF = as, FA = b3. Prove that
a? + a2 + a2 = b2 + b2 + b2.

Solution For any two adjacent triangles outside the overlapping hexagon,
say AQ'AB and APAF, we have

/P=/Q =60°, /PAF = /Q'AB,

therefore AQ’AB ~ APAF. Similarly, any
two adjacent triangles are similar. Let
Ql
S1 =[Q'AB], Se =[QBC], S;=[R'CD]
Sy4 = [RDE], S5 =[P'FE], Sg=[PAF].

Then Sy + S5+ S5 = So + 54 + Sg. Use A Q C\/D R

B

to denote the common sum above, then
b2 S b3 S b2 S .
L=2 271 3 7% Adding R
ai S e ST 4f S
them up, we obtain

btV 4h H%H’g’ A A wmen +03)5:.
aj S1
Similarly, we have also
a3 A= (b3 +b3+03)Sy and a3 A= (b7 +b3+b3)Ss.
By adding these three equalities, we obtain

(a? + a3 +a2)A = (b? + b3 +b2)(S) + So + S3) = (b2 + b2 + b2) A,

c.a?+ad + a3 =b3 +b3+0b3, asdesired.
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Testing Questions (A)

(CHNMOL/1991) ABCD is a trapezium with AB || CD and AB < DC.
AC and BD intersect at E, EF || AB, intersecting BC' at F'. Given that
AB =20,CD =80, BC =100, then EF is

(A) 10, (B) 12, (C) 16, (D) 18.

(AHSME/1986) In AABC, AB = 8, BC = 7,CA = 6. Extend BC to P
such that APAB ~ APC A, then the length of PC'is
(A7, (B) 8, ©)9, (D) 10, (E) 11.

(CHINA/1990) In the isosceles right triangle ABC, /B = 90°, AD is the

median on BC. Write AB = BC = a. If BE 1 AD, intersecting AC' at
F,and EF | BC at F, then EF is

1 1 2 2
(A) §a3 (B) ia’ (C) ga, (D) ga.

(CHINA/1997) ABC is an isosceles right triangle with ZC' = 90°, M, N are
on AB such that ZMCN = 45°. Write AM = m,MN = x, BN = n.
Then the triangle formed by taking =, m, n as the lengths of it three sides is

(A) an acute triangle; (B) a right triangle; (C) an obtuse triangle; (D)
not determined.

In AABC, D is the midpoint of BC, FE is on AC such that AC' = 3EC.
BFE and AD intersect at GG. Find AG : GD.

(CHINA/2000) Given that AD is the median on BC of AABC, F is a point
1
on AD such that AE = gAD. The line CE intersects AB at F. If AF =
1.2 cm, find the length of AB.

ABCD is a rectangle with AD = 2, AB = 4. P is on AB such that
AP:PB=2:1,CE 1L DPat E. Find CE.

Given that three congruent squares ABEG,GEFH, HFCD are of side a.
Prove that ZAFE + ZACE = 45°.

(CHINA/1993) A ABC is equilateral, D is on BC such that CD = 2BD. If
CH 1 AD at H, prove that /DBH = /DAB.

In AABC, /A = 2/B. Prove that AC? + AB - AC = BC?.
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Testing Questions (B)

(AIME/1984) A point P is chosen in the interior of A ABC' such that when
lines are drawn through P parallel to the sides of AABC, the resulting
smaller triangles t1, to, and t3 in the figure, have areas 4, 9, and 49, respec-
tively. Find the area of AABC.

(APMO/1993) Let ABC'D be a quadrilateral such that all sides have equal
length and angle ABC' is 60°. Let [ be a line passing through D and not
intersecting the quadrilateral (except at D). Let E and F' be the points of
intersection of | with AB and BC' respectively. Let M be the point of
intersection of CE and AF. Prove that CA? = CM - CE.

(CHINA/1997) In the AABC, D, E are on BC, AC respectively, such that
BD 2 AE 3 _, AF BF
D70 = g, ﬁ = Z Find the value of ﬁ . ﬁ

(CHINA/1979) In a RtAABC, ZC = 90°, BE is the angle bisector of /B,
CD 1 AB at D and CD intersects BE at O. Through O introduce F'G |
AB such that F'G intersects AC, BC at F’, GG respectively. Prove that AF' =
CE.

(CHINA/1998) In the quadrilateral ABC' D, AC and BD intersect at O, the
line [ is parallel to BD, intersecting the extensions of AB, DC, BC, AD
and AC at the points M, N, R, S and P respectively. Prove that PM -
PN = PR- PS.



Lecture 14

Areas of Triangles and Applications of Area

Basic formulae for area of a triangle

Note: The area of a triangle UV'W is denoted by [UV W] hereafter.

1 1 1
Theorem I. For AABC, [ABC] = 3¢ hy = ib “hy = 3¢ he, where BC =
a,CA =b,AB = cand hg, hy, h. are altitudes on BC,C A, AB respectively.

Theorem I1. (Heron’s Formula) For AABC,[ABC] = /s(s — a)(s — b)(s — ¢),
1
where s = i(a +b+c).

Proof. For ANABC,let BC =a,CA=0b,AB = ¢, and AD = h, where
AD 1 BC at D.Let CD = z, then

2 —(a—z)2=h?=0*-22
2 —a? + 2ax = b2,

a? +b% — 2

.= %

Therefore

2 2 2\2
B2 = - (CH'bC) _ 1 [(2ab)? — (a2 + > — ¢*)?]

2a  4a?
~ (2ab+a® + b — ) (2ab — a® — b + ¢?)
4a?
R
4a?

85
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(a+b+c)latb—c)(ct+a—Db)(c—a+Db)

4a2
16 _4p(p—a)(p—b)(p—c)
= @p(p—C)(p—b)(p—a)— 2 :
h 2
wtasp = () = po- -0 -0
Thus, the conclusion is proven. O

Note: If ZC is obtuse, then ¢? > a2 + b2, so z < 0, but the proof remains
unchanged.

Comparison of areas of triangles

@

ax)

(110
(Iv)

V)

For each triangle, let S = h - b, where b is one side and h is the height on
the side. then the ratio of areas of any two triangles is equal to the ratio of
corresponding two S's.

For two triangles with equal bases, the ratio of their areas is equal to the
ratio of their heights on the bases. Hence the area of a triangle does not

change when a vertex of it moves on a line parallel to its opposite side.
For two triangles with equal height, the ratio of their areas is equal to the

ratio of their bases. ) ) ) )
If two triangles have a pair of equal angles, then the ratio of their areas is

equal to the ratio of the products of the two sides of the equal angles.
If two triangles have a pair of supplementary angles, then the ratio of their

areas is equal to the ratio of the products of the two sides of the supple-
mentary angles.

There are two kinds of questions to be discussed in this chapter. One is those
for finding areas or discussing questions involving areas. The other is those able
to be solved by considering areas. Below some examples of these two kinds of
questions are given.

Examples

Example 1. (SMO/1988) Suppose area of AABC = 10 cm?, AD = 2 cm,
DB = 3 c¢cm and area of AABE is equal to area of quadrilateral DBEF. Then
area of AABFE equals

(A) 4 cm? (B) 5 cm? (C) 6 cm? (D) 7 cm? (E) 8 cm?.

Solution Connect DE. Since [ABE]| = [DBEF, we have
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[ADE] = [ABE] — [DBE)
= [DBEF] — [DBE)] = [FDE],
.. AC || DE,
CE:EB=AD:DB=2:3.
_[ABE] BE 3
" [ABC]  BC 5’

. [ABE] =

o] W

- [ABC] = 6.

Thus, the answer is (B).

Example 2. In the given diagram, ABC D is a convex quadrilateral. Find a point
M on the segment BC' such that AM partitions ABC D to two parts with equal
areas.

Solution We need to change the shape of the graph from quadrilateral to a
triangle, keeping its area unchanged. From D introduce ED || AC such that DE
intersects the extension of line BC' at E. Then

[DAC] = [EAC]|, ..[ABCD] = [EAB].
Now taking M be the midpoint of BE, then

[ABM] = [AEM]= L[ABCD)]

— [AMCD]. B N ok

Example 3. In AABC, D, E are on BC' and C A respectively, and BD : DC' =
3:2,AF : EC = 3 : 4. AD and BE intersect at M. Given that the area of
ANABC is 1, find area of ABM D.

DN
Solution From F introduce EN || AD, intersecting BC at N. Since NC =
AE 3 BD 3

EC 4 DC 2
3
77
~.[BEC] = %[ABC] = 1.

[ABE] = %[ABC] -

'+ BD:DN:NC=21:6:8,
BN :NC=27:8 and
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27 27 4
BD:BN =21:27=7:9, [BEN]= —~[BEC] = — . =
.| ] 3| ] TR

7\ 2 72.97-4 4

BMD)=(~) [BEN| = 2= _ =

[ ] <9>[ } 92.35.7 15

Example 4. (USAMO/1972) A convex pentagon ABCDE has the following
property: the five triangles ABC, BCD,CDE, DEA, EAB have same area 1.

Prove that all such pentagons have an equal area, and there are infinitely many
distinct such pentagons.

Solution As shown in the right diagram, the equality [EAB] = [CAB]
yields EC || AB. Similarly, we have

AD || BC, BE||CD, AC | DE, BD || AE.

Let [BPC| = x. Then [DPC] =1 —x

and
[BPC] BP _ [EBP] 4
[DPC]  PD [EPD]’
, 1 B E
so it follows that = -,
-1
Lt —1=0, 2= \/52 ’
C D
- [ABCDE] =342 =" +2‘/5.

Example 5. In a quadrilateral ABC'D, the points E, F' are on AB and H,G
are on DC such that AE = EF = FBand DH = HG = GC. Prove that
[EFGH] = g[ABCD}.
Solution Connect HF, AH, AC, FC.

- [HEF] = [HEA] and [FGH] = [FGC],

- [EFGH] = %[HAFC].

It suffices to show that [ADH] + [CFB] =
$[ABCD].
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From DH = £CD and FB =  AB, we have

[ADH] + [CFB] = %([DAC] +[BAC)) = %[ABCD],
2

L. 24Bep) = %[ABOD}.

2 3
Example 6. (AIME/1985) As shown in the figure, triangle ABC' is divided into
six smaller triangles by lines drawn from the vertices through a common interior

point. The areas of four of these triangles are as indicated. Find the area of triangle
ABC.

- [EFGH] = %[HAFC] _

[CAP] CP [CBP)

Solution (FAP| =7p = FBP yields
84+y 435
40y =g 0 4D ¢
[CAP] AP  [BAP] .
== 1d
and 1 =5p = Dp ~ [BDP] VO
84
Bty 10 _, o E D
oS- (4 ﬂ
2) . x  x+35 40 J 30
By -, it follows that — = :
y(l)loows a40 60 A F B

.32 =22+ 70,i.e. x = 70. Then by (2), y = 140 — 84 = 56.
Thus, [ABC| = 84 + 56 + 40 4+ 30 + 35 + 70 = 315.

Example 7. If from any fixed inner point P of AABC introduce PD 1 BC at

PD E F
D,PE | CAatFEand PF 1 AB at F. Prove that —+P—+P— = 1, where

hae  hy  he
ha, hy, he are the heights of AABC' introduced from A, B, C' to their opposite

sides, respectively.

Solution From

PD _ [PBC]
he ~ [ABCY’
PE  [PCA]
hy,  [ABC]
PF _ [PAB]
h. — [ABC)’

it follows that
PD PE PF [PBC] + [PCA] + [PAB]

e " h T h [ABC]

=1.
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Example 8. (AUSTRALIA/1991) In AABC, M is the midpoint of BC, P, R are
on AB, AC respectively, @ is the point of intersection of AM and PR. If Q is
the midpoint of PR, prove that PR || BC.

Solution From that ), M are the midpoints of PR and BC respectively,

[APQ)] = [ARQ), [ABM] = [ACM],

A
| [APQ] _ [ARQ)
" [ABM] ~ [ACM]’
CAP-AQ  AQ- AR P Q R
“AB-AM _ AM-AC’ \
. AP AR
le. = = 1o . PQ || BC. B M c

Example 9. (CHINA/1992) In the given diagram below, ABC'D is a parallel-
ogram, F, F' are two points on the sides AD and DC respectively, such that
AF = CE. AF and CF intersect at P. Prove that PB bisects ZAPC.

Solution Connect BE, BF, make BU | AF atU and BV 1 CFE atV.
Then

D F C

[BAF]) = [BCE] = %[ABCD}.
Further, since AF' = C'E, we have

BU =BV, .ABPU = ABPYV,
.. /LBPA=/BPU = /BPV = /BPC.

A B

Testing Questions (A)

1. (CHINA/1993) When extending the sides AB, BC,CAof AABC'to B',C’, A’
respectively, such that AB’ = 2AB,CC’" = 2BC, AA’ = 3C A. If area of
AABC is 1, find the area of AA’B'C’.

2. (CHINA/1998) ABCD is arectangle. AD = 12, AB = 5. P is a point on
AD,PE 1| BD atE, PF 1 AC at F. Find PE + PF.

3. (CHINA/1996) Given that the point P is outside the equilateral triangle ABC
but inside the region of ZABC. If the distances from P to BC,CA, AB
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are hy, ho and hj3 respectively, and hy — ho + hy = 6, find the area of

NABC.
4. (CHINA/1996) Let the heights on three sides of AABC be hy, hy, h. respec-
2 1 1
tively, and 2b = a + c. Prove that T = e + e

5. (CHINA/2000) In AABC, D, E, F are on the sides BC,C' A, AB respec-
tively, such that they are concurrent at a point G, BD = 2C'D, the areas
S1 = [GEC] = 3, S; = [GC'D] = 4. Find the area of AABC.

6. (CHINA/1958) Let AD, BE, CF be the three angle bisectors of the triangle
ABC, prove that the ratio of area of ADEF to area of AABC is equal to
2abe ,where a = BC,b = CAand c = AB.
(a+b)(b+c)(c+a)
7. Inatrapezium ABCD, AD || BC, the extensions of BA and C'D intersect
at E. Make EF || BD where EF intersects the extension of CB at F'. On
the extension of BC take G such that CG = BF'. Prove EG || AC.

8. (AIME/1988) Let P be an interior point of triangle ABC and extend lines
from the vertices through P to the opposite sides. Let a, b, ¢, and d denote
the lengths of the segments indicated in the figure below. Find the product
abcifa+b+c=43andd = 3.

C

A E B

9. (CHNMOL/1998) In the isosceles right triangle ABC, AB = 1, /A =
90°, F is the midpoint of the leg AC. The point F' is on the base BC
such that EF' 1 BF. Find the area of ACEF.

Testing Questions (B)

1. (IMO/Shortlist/1989) In the convex quadrilateral ABC D, the midpoints of
BC and AD are E and F respectively. Prove that [FDA] + [FBC| =
[ABCD].

2. (JAPAN/1991) Given that G is the centroid of AABC, GA = 2V/3,GB =
21/2, GC = 2. Find the area of AABC.
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(Ceva’s Theorem) P is an inner point of A ABC'. Extend the lines AP, BP,C'P
to intersect the opposite side at D, I/, F' respectively, then

BD CE AF
DC EA FB
(AIME/1992) In triangle ABC, A’, B’, and C’ are on the sides BC,C A,
and AB, respectively. Given that AA’, BB’, and CC’ are concurrent at the
AO+BO+CO_92ﬁndAO'BO'CO
OA’ OB’ oC' 7 OA’ OB OC"
(AIME/1989) Point P is inside AABC. Line segments APD, BPFE, and
CPF are drawn with D on BC, E on C'A, and F on AB (see the figure
below). Given that AP = 6, BP = 9, PD = 6, PE = 3, and CF = 20,
find the area of AABC.

point O, and that

c
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Lecture 15

Divisions of Polynomials

Long Division: When a whole number 7 is divided by a non-zero whole
number m, a quotient ¢ and a remainder r can be obtained. The result can
be written in the form n = mq + r, where 0 < r < m, and the process for
getting the expression is called division with remainder.

In the division of polynomials, when a polynomial f(x) is divided by a
non-zero polynomial g(x) under the usual division (long division), there
is a quotient ¢(z) and a remainder r(x), where the degree of f is sum of
the degrees of g and ¢, and the degree of r is less than that of g. The result
can be written in the form

Synthetic Division. When the divisor g(x) = = — a, where a is a con-
stant, then g(x) is a polynomial with degree n — 1 if the degree of f(x) is
n, and the remainder r is a constant. Write

f(z) = apa™ + Q12" 1+ +ajz + ao,
q(x) = by 12" L+ by _ox™ "t - 4 by + by

Since

f(z) (x —a)(bp_12" "t + by o™ 4+ byx +bg) + 1
= bn—lmn + (bn—Q - abn—l)xn_l + (bn—S - abn—Z)xn_Q

+ -+ (b — aby)x — aby + 7,

by the comparison of the coefficients of f(x), we have

bn—l = Qn, bn—l = ap-1+ abn—la e 7b0 =a;+ abl; r=ag+ abO-

93
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Thus, the following operation table is obtained:

a Qn an—1 Ap—2 cee ay ap
) abn_l abn_g s ab1 abg

Remainder Theorem and Factor Theorem

Theorem 1. The Remainder Theorem: For any constant a, a polynomial
f(x) of degree n > 1 can be written in the form f(z) = (x — a)q(z) +,
q(x) is a polynomial of degree n — 1, and r = f(a).

For any given constants a and b, a polynomial f(x) of degree n > 2 can
be written in the form f(x) = (x — a)(z — b)q(x) + r(x), where q(z) is a
polynomial of degree n — 2, and the remainder r(x) is zero polynomial or
has degree 1 or zero.

Theorem II. The Factor Theorem: A polynomial f(x) has the factor
(x —a) ifand only if f(a) =

Theorem III. For a polynomial with integral coefficients f(z) = ana™ +
Ap_12" Y 4 - 4 a1x + ag, if it has the factor x — =, where p, q are two

relatively prime integers, then q is a factor of ag, and p is a factor of a,,.

Proof. By the factor theorem, f <q) = 0, therefore
D

a\" a\" q
() o3 )
p p p

0= anq™ + an_1pg" ' + -+ a1p" g + aop™,
—aop™ = (ang" ' + ap_1pg" "2+ -+ a1p" g,

s0 q | app™, which implies that g | ag since (p, ¢) = 1. Similarly, we have

71,—1)

—anq" = (an-1¢""" + an—1pg" 2+ -+ a1p" g+ ayp")p,

so p | a,q™, which implies p | a,, since (p,q) = 1. a

The Factorization of Symmetric or Cyclic Polynomials. A polynomial
of multi-variables is called symmetric if the polynomial does not change
by any permutation of its variables. For example, z + y + 2,22 + 3% +
22, TYz, etc..
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A symmetric expression containing two variables x and y can be always
factorized as a product of factors expressed in terms of the basic symmetric
expressions (z+y), zy; a symmetric expression containing three variables
x,y, z can be always factorized as a product of factors expressed in terms
of the basic symmetric expressions (z + y + 2), 2y + yz + zx, xyz.

A polynomial of multi-variables is called cyclic if after changing all its
variables cyclically the resulting polynomial does not change. For exam-
ple, ry+yz+zx, 22y +y*2+22x, (x+y) (y+2)(2+2), etc.. A symmetric
polynomial must be cyclic, but the inverse is not true.

If a cyclic polynomial has a factor, then the expressions obtained by cycli-
cally changing its variables of the factor are all factors of the polynomial,
since the factorization of the polynomial is also cyclic. Based on this fea-
ture, we can consider one of the variables as the principal one, and the
others as constants at the moment, so that we get a polynomial of single
variable. Then it is easy to find a factor by using the factor theorem, and
using above cyclic feature of the factors, we can obtain the other factors
at once. Finally, if there are a few constant coefficients to be determined,
then the coefficient-determining method (cf. Lecture 6) is useful for this.

Examples

Example 1.

(i) When f(x) = 322 + 52 — 7 is divided by = + 2, find the quotient and
remainder by long division.

(ii)) When f(z) = 32* — 52 + 2% + 2 is divided by 2% + 3, find the quotient
and remainder by long division.

Solution By the following long division:

322 —5r—38
3z —1
x2+3/ 3zt — 53 + a2+ 2
x+2/ 322 +5x—7 324 4 022

3z2 + 6z

—5x3 —8x2 42

—x =T _543 — 15z

T2 —842 + 152 + 2

=5 —8a2 — 24

15z + 26

Therefore
() q(x)=3z—1, r=-5. (i) q(x)=322-52-8, r(z)= 152+26.
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Note: Please compare the long divisions for whole numbers and that for
polynomials, what are the same features and what are the distinctions?

Example 2. Use synthetic division to find the quotient and remainder of the poly-
nomial 22* — 32® — 22 + 5z + 6 when it is divided by = + 1.

Solution By using synthetic division, the following result is obtained:

-1 2 -3 -1 ) 6
-2 ) -4 -1
2 -5 4 1 5

Thus, ¢(z) = 22% — 522 + 4z + 1, r=>.
When a polynomial f(z) is divided by g(z) = ax+b, where a # 1 and a # 0,
the synthetic division still works, since

£(@) = (0 +D)ala) + 7 = -+ 2) - (aal@)),

so we let the divisor be = + — to use the synthetic division first, after getting ag(x)

a
and r, the ¢(x) and r are obtained at once.

Example 3. Find the quotient and remainder of the polynomial 6z* — 723 — 22 +8
when it is divided by 2z + 1.

Solution By using synthetic division to carry out the division (62* — 723 —
2 +8) = (x4 3):

1
— -7 -1
| 6 0o 8
-3 5 -2 1
6 —-10 4 2|9

therefore 2¢(z) = 623 —102%+4x—2,r = 9,s0 ¢(x) = 33 -5z +2x—1,r = 9.
Note that the remainder r is not effected by the change of divisor.

Example 4. If a polynomial f(x) has remainders 3 and 5 when divided by z — 1
and x — 2 respectively, find the remainder when f(z) is divided by (z —1)(z — 2).
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Solution From the Remainder Theorem,
f(@)=(z = Dqi(z) +3 and q1(z) = (v — 2)q2(x) + 1,

where ¢ () is the quotient of f when divided by = — 1, ¢o, r are the quotient and
remainder of g; respectively when divided by z — 2. Then

fl@)=(-D[(z—-2)g@)+r]+3=(z—1)(z —2)g2(x) + r(z — 1) + 3.

By the Remainder Theorem, we have 5 = f(2) = r(2—1)+3=r+3,s0r = 2.
Thus, the remainder of f when divided by (z — 1)(x — 2) is 2z + 1.

Example 5. If a polynomial f(x) is divisible by both = — a and x — b, where a, b
are two different constants, prove that f(x) must be divisible by (z — a)(z — b).

Solution Similar to the preceding question, let
f(@) = (@ - a)gr(z) and qi(2) = (@ — b)ga(e) + 7,
then
f(z) = (z—a)[(x —b)g2(z) + 7] = (x — a)(x — b)g2(x) + r(z — a).
By the Factor Theorem,
0=fb)=r(b—a), -.Tr=0.
Thus, f(z) = (x — a)(z — b)g2(x), the conclusion is proven.
Example 6. Factorize f(z) = 2* + 2% — 722 — 2 + 6.

Solution From Theorem IV, if f(z) = 0 has rational roots, then they must be
integral roots, and are in the set S = {£1,+2, +3, £6}. Since f(1) = f(-1) =
0, by the factor theorem, f has factors (z — 1) and (x + 1). To check the other
numbers in S, by synthetic division,

2 1 1 -7 -1 6
2 6 -2 -6
1 3 -1 -3 0

therefore the quotient q; () of f(x) when divided by (z —2) is 3 + 32% — 2 — 3,
remainder is 0, so « — 2 is the third factor of f(z). Next, we check the factor z + 3.
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By synthetic division,

-3 1 3 -1 -3
-3 0 3
1 0 -1 0

Thus, the quotient go () of 2° + 322 — 2 — 3 when divided by x + 3 is 2 — 1,
and remainder is 0. So z + 3 is the fourth factor. Thus,

fl@)=(z-1)(z+1)(z-2)(xz+3).
Example 7. Factorize the symmetric expression (z + y + 2)° — 2° — y® — 25.

Solution By taking x as the principal variable, we define f(x) = (z +y +
2)% — 2% — y® — 2°. Since

fl=y) =2 = (=y)® —y° =2 =0,

(x 4 y) is a factor of the original expressions, and so are the expressions (y + z)
and (z 4 x). Assume that

(z4y+2)°—2"—y°—2° = (a+y) (y+2) (z+2)[A(2?+y*+2°)+ B(zy+yz+21)),

then the comparison of the coefficients of 2%y on both sides leads to A = 5. Let
x =y = z = 1, it follows that 243 — 3 = 8[15 + 3B], so B = 5. Thus,

(z+y+2)°—2°—y° —2° = 5(x+y)(y+2)(z+2)(@* +y* + 22 +ay+yz+22).
Example 8. (MOSCOW/1940) Factorize (b — ¢)® + (¢ — a) + (a — b)3.

Solution Taking a as the principal variable and let f(a) = (b — ¢)3 + (c —
a)® + (a — b)3. Then

f0)=(b—0)®+(c—b)> =0,

so (a — b) is a factor of the original expression. Hence (b — ¢) and (¢ — a) are also
the factors. Thus

(b—¢)* + (c— ) + (a— b)* = A(b — c)(c — a)(a — b),

where A is a constant to be determined. Let a = 2,b = 1,¢ = 0 on both sides,
then —6 = —2A4, so A = 3. Thus,

(b—c)*+(c—a)®+(a—b)>=3(0b—c)(c—a)la—c).
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Note: Considering (b — ¢) + (¢ — a) + (a — b) = 0, the above result can be

obtained by using the formula u3 + v3 + w? — 3uvw = (u + v + w)(u? + v? +

w? — uv — vw — wu) at once.

Example 9. Factorize a®(b — ¢) + b*>(c — a) + c3(a — b).

Solution Taking a as the principal variable and f(a) = a®(b — ¢) + b3(c —
a) + c(a — b), we have

f() =b*(b—c)+b*(c—b) =0,
so (a — b), (b — ¢), (¢ — a) are all factors of the original expression. Then
a*(b—c)+b*(c—a)+c*la—b)=Ala+b+c)(a—Db)(b—c)(c—a).
Leta=2,b=1,c=0,then8 —2 = —6A4,ie. A= —1. Thus

a*(b—c)+b(c—a)+c(a—b)=(a+b+c)(b—c)(a——c)(a—Db).

Testing Questions (A)

1. Find, by long division and synthetic division respectively, the quotient and
remainder of 3z — 52 + 6 when it is divided by x — 2.

2. Use synthetic division to carry out the division (—6x* — 722 + 8z + 9) +
(2z —1).

3. Given that f(z) = 2* + 323 + 822 — kx + 11 is divisible by = + 3, find the
value of k.

4. Given that f(z) = 2* — az? — bx + 2 is divisible by (x + 1)(x + 2), find the
values of @ and b.

5. Given that a polynomial f(x) has remainders 1,2,3 when divided by (z —
1), (z — 2), (x — 3), respectively. Find the remainder of f(x) when it is
divided by (z — 1)(x — 2)(z — 3).

6. If 2% — 5gx + 4r is divisible by (z — 2)2, find the values of g and r.

7. Given that f(z) is a polynomial of degree 3, and its remainders are 2z — 5
and —3x + 4 when divided by 22 — 1 and 22 — 4 respectively. Find the

f(x).
8. Factorize z° + 722 + 14z + 8.
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Factorize z* + y* + (z 4+ y)*.

Factorize zy (2% — y?) + yz(y? — 22) + zz(2? — 2?).

Testing Questions (B)

Given that f(z) = 22 4+ ax + b is a polynomial with integral coefficients. If
f is a common factor of polynomials g(z) = % — 323 + 222 — 32 + 1 and
h(z) = 3z* — 923 + 222 + 3z — 1, find f(z).

For any non-negative integers m, n, p, prove that the polynomial z3™ 237 +1 +
23P*2 has the factor 2% + x + 1.

Given that f(z) is a polynomial with real coefficients. If there are distinct
real numbers a, b, ¢, such that the remainders of f(x) are a,b,c when f is
divided by (z — a), (x — b), (x — ¢) respectively, prove that f(z) has the
factor (z — a)(x — b)(z — ¢).

Factorize (y? — 22)(1 + 2y)(1 + z22) + (2% — 22)(1 + y2)(1 + yz) + (2% —
) (1 + z2)(1 + zy).

When f(z) = 23 + 222 + 3z + 2 is divided by g(x) which is a polynomial
with integer coefficients, the quotient and remainder are both h(x). Given
that h is not a constant, find g and h.
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Solutions To Testing Questions

Solutions to Testing Questions 1

Testing Questions (1-A)

0.
1.
1 1 1
2009 (1—=)(1==)--(1——
( 2)( 3) ( 2009)
1 23 2008
=2009.-=...2.2.....—~ =1
2 3 4 2009
1 N 1 N 1 N 1 N 1
5x7 T7Tx9 9x11  11x13 ' 13x 15
ULy (oY, (L1
T 2(\5 7 7 9 13 15
_lr o1ty _ 1
T 2\5 15) 15
I S IS S S BN B |
10 40 88 154 238 2x5 5x8 14 x 17
UL oIy 1oy, (1
“3/1\2 5 5 8 14 17
_1/r 1y _ 5
T 3\2 17) 17
1 1 1 1 1 1
LetA:§+Z+~--+m,B:§+§+...+m,thentheexpression

103
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104
becomes
1 1 2007
Al1+B)-(1+4AB=A-B=— — - =_-"_,
(1+B)=(1+4) 2009 2 4018
25 .
7. % The nth term of the sum is
1
1+24--+(n+1)
_ 1 B 2 _o 1 1
_<n+1>2<n+2>_(n+1)(n+2)_ n+1l n+2)
Therefore
= + L +- !
1+2 14243 14+24---+51
1 1 1 1 1 1 25
=2||l=-—-< — == =2|z-=| ==
{(2 3>+ +(51 52)} {2 52} 26
1
8. n(nT—k) For any positive integer & we have
L L St +1—2'(k_21)k+k—k
kE ok k k ko k 7
1
thegivensumbecomes1+2+~~~+n:n(n;)
9. 2019045. By using the formula a? — b? = (a — b)(a + b),

12 -92 432 — 42 + ... +2007% — 20082 + 20092

=14 (32 —2%) + (52 —4%) 4+ --- + (2009% — 2008?)
2009 x 2010

=1+24+34+44+5+---42008 42009 = 5
= 2019045.

10.  2222222184.
11+ 192 + 1993 + 19994 + - - - + 199999998 + 1999999999

= 20 + 200 + 2000 + - - - + 2000000000 — (8 + 7+ - - + 1)
= 2222222220 — 8% = 2222222184.
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Testing Questions (1-B)

1. By partitioning the integer and fractional part of each term,

3241 5241 7241 992 + 1
+ +- 4+ i
321 52-1 T12-1 992 — 1

S CIL I P AR RPN (T
o 32_1 52 —1 092 — 1

PSS U S

n 3—1 3+1 99—1 99+1
1 1 49

=494 - — — =49

27100 7100°

2. Let the sum be .S. For any positive integer n > 2,

n n
[1+2+...+(n_1)][1+2+...+n] (n=Dn n(nt1)

4 1 1
(n—1Dn(n+1) =2 ((n—l)n a n(n+1)) ’
therefore

2 3
5= 1 (1-(1+2)+(1+2)(1+2+3)+"'

100
_|_
(1+2+-~+99)(1+2+~~+100))

IR A S U WA S S W
o 1-2 2.3 2.3 3.4

n 1 1
99-100 100-101

1 1 1
= 1-2(- - —— = —
(2 10100) 5050

Thus, the difference of the denominator and the numerator is 5049.

3. For any positive integer n,

1 ir 1
nin+1)(n+2) 2 [n(n—i—l) (n+1)(n+2)]"
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Therefore

1 1 1
1%x2x3 " 2x3x4 T 100x 101 x 102

1/ 1 LN, 1 1
“2[\12 23 100101 101 -102

11 1 2575
T 2102 101 x102|  10302°

4. For any positive integer n,

1+n?4+nt =02 +12—n? =02 —n+1)n*>+n+1),

so that
n B n
1+n2+nt  (2—n+Dn2+n+1)
Y N S
2 nn—-1D+1 nm+1)+1]"
Therefore
! + 2 + 5 + +570
TH1241% 0 1422424 1432434 14502 + 504

BT A TA TS S S GRS B
2 1 3 3 7 50-49+1 50-51+1

17 1 _ 12550 1275
2 50-514+1] 2 2551 2551°

5. For each positive integer n,

n? N (10 —n)?
n? —10n+50 = (10 —n)2 —10(10 — n) + 50
B 2n? 210 -n)?
S n24+(10—n)2  (10—n)24+n2 7
therefore
12 22 92
210450  22-20450 T 9200150

12 92 22 82
- (12—10+5O+92—90+50>+(22—20+50+82—80+50

)
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32 72 42 62
+(32—3O+50+72—70+50>+<42—40+50+62—60+50>

52
- =2x4+1=09.
+52—5O—|—50 +

Solutions to Testing Questions 2

Testing Questions (2-A)

(B) and (C) are not monomial.
(D). Forexample z* + 1 + (—z* + 2) = 3 and 2* + (—2?) = 2* — 22.
Let the other polynomial be P(z). From

Px)+22° +x+1=Px)— 222+ 2+ 1) +2(222 + 2+ 1)
=522 — 2 + 4+ 42% + 22 + 2 = 922 +6.

Thus, the sum is 922 + 6.

From the given conditions we have b = m — 1 = n,c = 2n — 1 = m and
0.75 — 0.5 = 1.25a, therefore 2n — 1 = 1+ n,i.e. n = 2,m = 3 and
a = 0.2,sothat b = 2, ¢ = 3. Thus, abc = 1.2.

(C). The term with a greatest degree in the product is z° - © = 6.

Since

28 + 210 ) | — [(24)2 4 2(24)(25) + (25)2] L on 210
= (2*425)2 427 - 210

n = 10 is a solution.

From 322 + x = 1 we have 322 +x — 1 = 0. then
62% — 22 — 3242010 = 22(32% 4+ — 1) — (32% + 2 — 1) 4+ 2009 = 2009.
Thus, the value of the given expression is 2009.

(C). When a + b+ c # 0, from the given equalities we have

a=({b+c)x, b=(a+c)x, c=(a+Db)x.
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1
By adding them up, we obtain 2(a + b+ c)Jx =a+b+ ¢, sox = 3
Since b+ ¢ # 0,a+c # 0,a + b # 0, if one of a, b, ¢ is 0, then, from
the given equalities, the other two are zeros also, a contradiction. Therefore
abe # 0.

Whena+b+c=0,thenb+c=—a,a+c=—b,a+b= —c,so

a b c

:b+c_ atc a+b:
Thus, the answer is (C).

T

—1.

1 1
9. From the given equality we know that xy # 0. From — — — = 4 we have
Ty

y — x = 4xy, therefore

20 +4day —2y  dwy—2(y—x)  day—8xy 2

T —y—2xy —2xy — (y—x) —2xy—4axy 3’

Testing Questions (2-B)

1. (UKIMO/1995(B)) Nine squares are arranged to form a rectangle as shown.
The smallest square has side of length 1. How big is the next smallest
square? and how about the area of the rectangle?

D
I
E
C
F
H
B | G

Let A be the smallest square which has sides of length a = 1, B has sides
of length b, etc.

From the diagram we see that a < b,a < ¢ < d < i,a < f < g < h; also
e< f<g<b<h,ande < ¢ < d < i. Hence E is the next smallest
square.

Nowb=a+g,c=a+b=2a+g,f=g—a,andc+a= f+e. So
e=cta—f=ct+a—(9g—a)=2a+g)+a—g+a=4a=4.
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Since d + i = 2d + e == 2¢ + 3e = 2¢ + 12a and
b+g+h=a+3g+ f=3a+4f=4a+4(c+a—e)=4c— 8a,

we have 2¢ + 12a = 4¢ — 8a, so ¢ = 10a. Hence f = 7a,g = 8a,d =
14a,t = 18a, h = 15a, and

Area of the rectangle = 33a x 32a = 1056a* = 1056.
2. From P(=7) = a(=7)" + b(=7)% + ¢(=7) — 5 = 7, we have
—[a(7)" 4+ b(7)* + ¢(7)] = 12,

therefore P(7) = a(7)" +b(7)% +¢(7) — 5= —12 -5 = —17.

1 1 1 1
3. From -+ -+ -=
a

b c a+b+c

bc+ca+ab 1
abc Ca+btc’

(a+ b+ ¢)(bc+ ca+ ab) = abe,
(a+b)(be + ca + ab) + (bc? + ac?®) + abe — abe = 0,
(a+b)(be + ca+ ab) + (a +b)c? =0,

(@ +b)[(be + ) + (ca + ab)] = 0,
(a+B)[(b + e+ (e + ba] = 0,
(a+b)(b+c)(c+a)=0.

Thus,a +b=0o0orb+c=0o0orc+a=0.

4. From the given equalities we have z2y?z2 = abe, when it is divided by
y?2% = 2, we obtain

b b
2o e _a

2 ¢
. 5 ca 5 be
Similarly, we have y* = 3 2z = —. Thus,
a

NCJNIN S ab L@ be _ (ab)? + (ca)® + (bC)Q.

bJra abc

5. Froma* +a®+a®+a+1=0wefindthata # 1,i.e. a — 1 # 0. From

al@*+a*+a®+a+1)—(a*+a®+a®+a+1)
=d®+a*+at+a?+a—-a*—at—a?—a—-1=da°—-1,

we find that a® = 1. Therefore

q2000 4 ;2010 4§ _ (a5)400 + a(a5)402 +1=14+1+1=3.
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Let x = 1 in the given equality, we obtain
(—=1)" = azn + azn—1 + - + a1 + ao.
Let z = —1 in the given equality, we obtain
1 =agn —agn-1+azn—2—azm—3+---—a1+aop.
By adding them up, we have
1+ (=1)" =2(ap + azs + as + -+ - + azy),

ie.

apg+as+ag+---+agy, = —(— =
0 2 ‘ an 0 for odd n.

L+ (=1)" { 1 for even n,
2

Solutions to Testing Questions 3

Testing Questions (3-A)

D).

From z = % which is a positive integer, k is also positive integer and k is a
divisor of 12. So
k=1, 2, 3, 4, 6, 12.

The number of possible values of £ is 6.

3 13
From — < — < é, it follows that
T+ 2 12 x

132 < 36 < 13(x + 2),
r <3, ie.x=1or2.

By checking, x = 1 does not satisfy the original equation, and z = 2
satisfies the given equation. Thus, the answer is (B).

Substituting 4 into the given equation as z, it follows that
3a—4=24+3=5=a=3.

Thus (—a)? —2a =9 — 6 = 3.
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5. From the given equation we have

)

n(@—n)—m@-—m) m

(n —m)z —n® 4+ m? =m?,

(n —m)x =n?

2

When n # m, we have z = ; when n = m, no solution.

n—m
6. When a + b = 0, any real number is a solution of the equation.
When a + b # 0, from 4ax — (a + b) = 0 we have 4ax = a + b, so the
b
0040,

equation has no solution if ¢ = 0, and x =

1
7. From gm(—2) = 5(—2) + (—2)?, we obtain m = 9. Therefore

(m2 —11lm+ 17)2007 — (81 —99 + 17)2007 — (_1)2007 - 1.

8. From the given equation we have m?z + 1 = max + m, therefore
m(m—1)z=m— 1.

-1 1
(i) Whenm # 1 and m # 0, then z = _mee = —;
mim—1) m

(i) When m = 1, the equation becomes 0 - x = 0, so any real number is
a solution for z;

(iii)) When m = 0, then the equation becomes 0 - z = —1, no solution for
x.

9. After arranging the terms of the given equation, we obtain (k? — 2k)x =
k% — 5k, so

(k—2x=k—-5 or (k—2)%x=(k-5)(k—2).
. (k—=5)(k—2) > 0ie. (k—5)and (k — 2) have same sign.

Thus, &k >5o0r0 < k < 2.
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10. From the given equation we have (2a — 3)x = a — 3. The equation has no
solution for x means

20—3=0 and a—3#0,

SO 5
a=—.
2

Testing Questions (3-B)

1. From the first equation we have
3z —6(x + %) = 2z,
3xr — 6x — 2a = 2z,

From the second equation we have
2Bz +a)— (1+4z)=0

20 =1—2a, .oz = 1—22(1.

.. 2a 1—2a .
Hence we have equation in a: 5 =3 By solving it, we have

)
—4a:5(1—2a):5—10a=>6a=5:>a=6.

Thus,
1

_ 2 25_ 1
TTTS T 56 3
2. From abc = 1, the given equation can be changed in the form

2abcx n 2bx L 2bcx B
ab-bc+a-bc+be  be+b+1 ca-b+c-b+b
2x 2bx 2bcx
=+ + =
b+1+bc bc+b+1 1+bc+b
2(14+b+be)x 1

betbrl Tt T

1

)

)
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3. Let the positive integer solution be z. From the given equation we have

8 9 5
=(2->)z-123=—2—123.

5
Since m is a positive integer, ﬁx — 123> 1, s0x = 12k and

124
5
. Thus, = 300, Mmin = 5k — 123 = 2.

| 2

k=-—>""=248,

[S1 .

1
i.e. the minimum value of & is 2
4. From 3[4z — (22 — 6)] = 11z + 8 we have

32z 4+6)=1lx+8 =62+ 18=1lz+8 =5 =10 =z = 2.

1

Therefore there are infinitely many required equations, say £ 3= 0

satisfies the requirement.
5. Forn=1,2,...,2008,

1 an,

= ——— = Gn+t10n + Ap41 = ap
a, +1

therefore

102 + @203 + a3a4 + - -+ + 200832009
= (a1 —a2) + (a2 — a3) + - - - + (a2008 — a2009)
= a1 — G2009-

Qp

On the other hand, From the formula a,,, = T we find that

n

1 1 1
a2:§, 0/325, a4:Z.
1 L 1
Assuming a,_; = ——, we obtain a, = 1";1 = =, therefore
n—1 — + 1 n
1
2009 = m, and

aijas + asas + asayg + +a a 71,i_@
102 203 304 200802009 = 2009 _ 2009°
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Solutions to Test questions 4

Testing Questions (4-A)

1. By substituting the solution (2, 1) into equations, we obtain

20 +b=171,
2b+c=5.
After eliminating b, we obtain 4a — ¢ = 9. The answer is C'.

2. From the first equation of the first system we get y = 3x—5. By substituting it
into the last equation of the second system, it follows that 2x+3(3x —5)) =
—4,s0x = 1,y = —2. Then, the second equation of the first system yields
z = 0. Thus, from the second equation of the second system, ¢ = 4. By
solving the system

4a —10b = —-22, a+2b=8,
the solution for a and b is obtained: a = 2,b = 3. Thus, the answer is (A).
3. The given system can be expressed in the form
1
kr —y=——
Y 3
6z +3y =1.

ko, -1
(1) When 5 # —,i.e. k # —2, the system has unique solution

3
0 1
x = =—-.
¥=73
1
(2) When 6= 3 the system has infinitely many solutions.

(3) Thus, its impossible that the system has no solution.

4. Since abc # 0, by writing down the given equations in the form

a—&—bil at+c 1 b+c 1

ab 2’ ac 5’ be 4’



5.

6.
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we obtain the new system satisfied by a, b, c:

1.1 1
a b 2
1 1 1
a ¢ 5
1+1_1
b ¢ 4’

By 1((15.1) + (15.2) + (15.3)), it follows that
1 1 1 19

Ty teT 1
1 1 .
By (15.4) — (15.1), then — = ——, i.e. ¢ = —40.
c 40
1 11 40
1 9 . 40
By (15.4) — (15.3), then PR i.e.a = 9

115

(15.1)
(15.2)

(15.3)

(15.4)

Let the given equations be equations (15.5), (15.6), (15.7), respectively.

r—y—z = b

y—z—x =

z—x—y = -—15.
By (15.5) + (15.6) + (15.7),

THy+z=09.

(15.5)
(15.6)
(15.7)

(15.8)

By (15.6) + (15.7), it follows that 2z = 14, i.e. = 7. Similarly, by (15.6)

+ (15.8) and (15.7) + (15.8) respectively we obtain

y=2>5, z = —3.
Thus, the solutionisx =7, y =5, z = —3.
Let

r—y+z =
y—z+u

Z—u+v =

uUu—v-+x

Ttk W N

v—r+y =

(15.9)
(15.10)
(15.11)
(15.12)
(15.13)
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By (15.9) + (15.10) + (15.11) + (15.12) 4 (15.13), it follows that
r+y+z+ut+v=15. (15.14)

By (15.9) + (15.10), (15.10) + (15.11), (15.11) + (15.12), (15.12) 4 (15.13),
(15.13) + (15.9) respectively, we obtain

T+u 3 (15.15)
y+v = 5 (15.16)
z4+x = 7 (15.17)
u+y = 9 (15.18)
v+ 2z 6. (15.19)

By (15.15) + (15.16) + (15.17) — (15.14), (15.16) + (15.17) + (15.18)
— (15.14), (15.17) + (15.18) + (15.19) — (15.14), (15.18) + (15.19) +
(15.15) — (15.14), (15.19) + (15.15) + (15.16) — (15.14) respectively, it
follows that

r=0, y=6, z2=7, u=3, v=-—1.

7. By (4.25) — (4.26) to eliminate z, it follows that

8 8
S N R
Yy oz z

4 4
3 X (4.25) + (4.26) eliminates y and yields — + — = 0, i.e. Z_ —1.
Tz T

8 8
5 %X (4.25) + 3 x (4.26) eliminates z and yields — — — = 0, i.e. z
r oy Yy

Thus, 2+ ¥+ 2 1-1-1=-1.
Yy oz

8. By adding the two equations, we obtain (m + 3)z = 10, so

10 3 15
m+ 3’ 2 m+3

Since m + 3 | 10 and m + 3 | 15, so m + 3 | 5. Thus, m = 2 and m? = 4.

9. LetS=a+b+c+d+e+ f. Then
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Frd+6=f+T+2—d=3 A
a+3+2=f4+T+2=a=f+4
e+8=f4+9=e=f—-1 . d .
a+f=3+f-1= f=0.

a=4e=—-1,c=9—a=25,

b=9—4—6=—1. Thus Frrmgz2

a+b+c+d+e+f=3x9-6-T7T—-2=12.

10. By (4.29) — (4.28) — (4.27), we obtain —4z = —12, so z = 3. Substituting
it into the equations (4.27), (4.29), and (4.30), it follows that

r+y+u="T, (15.20)
3z 4 2y + 4du = 24, (15.21)
4o + 3y + 2u = 19. (15.22)

By (15.22) — (15.20) — (15.21), we obtain —3u = —12, so u = 4. Substi-
tuting it into (15.20) and (15.21), it follows that

rT+y=3, 3z + 2y = 8.

By solving it, we obtain x = 2,y = 1. Thus, z =2,y = 1,2 = 3,y = 4.

Testing Questions (4-B)

3 7
1. From that the system has no solution we find that — = m # T Therefore
n
3 2
m = 7”, and n is even satisfying —9 - 3 <n<9. 3’ 1.€e.

—6<n<6.

Son =—6,—4,—-2,0,2,4,6, and correspondingly, m = —9, —6, —3,
0, 3,6,9. That is, (m,n) can be one of

(—9,-6), (—6,—4), (-3,-2), (0,0), (3,2), (6,4), (9,6).

2. Combine the left hand side of each equation, then let x + y 4+ z = ¢, we have
xy + xz = 2t, (15.23)

yz + xy = 3t, (15.24)
zx +yz = 4t. (15.25)
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Besides, %((15.23) + (15.24) + (15.25)) yields
9
Ty 4+ yz + zx = §t. (15.26)

From (15.26) — (15.23), (15.26) — (15.24), (15.26) — (15.25), respectively,
it follows that

L5, 8,
vy =3t yz=5t 2w=t
Since z,y,z # 0,t # 0. It’seasytosee that x : y : z =3 : 5 : 15, therefore
8, 5,1,
TTa3h YT a3h T T n
15 .2 1t:>t 232
€T = — = — = —_—
YT T 30
23 23 23
Thus, z = 10’ Y= 5 z = ER By checking, the triple satisfies the

original equation, so it is the solution.

3. The system can be rewritten in the form

x(z+y+ z) = 60, (15.27)
y(x +y+2) =75, (15.28)
z(x+y+ z) =90. (15.29)

By adding them, we obtain (z + y + 2)? = 225, i.e.
Z4y+z==+15. (15.30)

By substituting back (15.30) into (15.27), (15.28), (15.29) respectively, we
obtainx =4,y =5,z =6o0orx = —4,y = -5,z = —6.
— 1 —
56 — 3a 14 3a

. 4a -3
2 x (4.31) — (4.32), it follows that 5y = 4a — 13,s0y = 5 - 2.
56 — 3a > 5 and 4a — 13 > 5 implies that 4 < a < 19. From 5 | (1 — 3a),
the units’” digit of @ may be 2 or 7. From 5 | (4a — 3), the units’ digit of
a is 2. Thus, a = 12. By checking, when a = 12, the system has solution
r=4y="T.

5. By adding up (4.33), - - -, (4.37) and then divided by 6, it follows that

4. By (4.31) + 2 x (4.32), it follows that z = and by

r+y+z+u+v=16. (15.31)
Use each of the given 5 equations minus (15.31), we obtain

xr=0, y=1, z=3, u=5, v=".
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Solutions to Testing Questions S

Testing Question (5-A)

1. Froma2 + b2 +8a— 14b+65 =0,

(a® + 8a + 16) + (b* — 14b + 49) = 0,
(a+4)?*+(B-T7)?2=0.

Since (a + 4)? > 0 and (b — 7)? > 0 for any real numbers a and b, we
obtaina+4=0andb—7=0,i.e. a = —4, b = 7. Therefore

a®+ab+b* = (—4)* — (4)(7) + 7% = 37.

2. Froma—b=2,b—c=4wehave c—a = —6. Thus

a2+ +c—ab—bec—ca

:%[(a*b)2+(b—c)2+(6—a)2]:2+8+18:28.

(CL2 —|—b2)((}2 —|—d2) — CL262 +a2d2 —|—b202 + b2d2
= [(ac)? + 2abcd + (bd)?] + [(ad)? — 2abed + (be)?)
= (ac+ bd)? + (ad — be)?.

4. From the given equality,

14a? + 14b% 4 14c¢? = a? + 4b* + 9¢ + 4ab + 6ac + 12be,
13a? + 10b% + 5¢% — 4ab — 6ac — 12bc = 0,
(4a? — dab + b?) + (962 — 12bc + 4¢?) + (9a? — 6ac + ¢?) = 0,
(2a —b)? + (3b—2¢)* + (3a — ¢)? = 0.

Since any square is non-negative, we have 2a—b = 0, 30—2¢ =0, 3a—c =

0, 1i.e.
b= 2a, c = 3a.
Thus,a:b:c=1:2:3.
5. Itis obvious that x # 0. Then
x 1 1 1
Qo ——— =a<—=zr+—=- -3

23z +1 1
x2 4+ 3z + <x+>+3 x a
x
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Therefore
2 _ 1 _ 1
x4t +3224+1 1 a 1\ 2
($2+2)+3 (x—l—) +1
€z x
_ 1 _ a? - a?
/1 -3a\?2 - (1-3a)2+a?  10a2 —6a+1°
( ) ‘1
a

1
6. First of all, we have 22 + — = a® — 2. Then
T

1 1\?* 1 1
6 2\3 2 4
$+6—($)+<2> —(SL’ +2)<$ +4—1>

= (a® = 2)[(a® — 2)? — 3] = (a® — 2)® — 3(a® — 2).

0 = a*+b*+c*+d* — dabed
= (a* —2a + + (c* — 2c¢ + + 2(a — 2Zabcd + ¢
4 2 2b2 b4 4 2 2d2 d4 2 2b2 2 b d 2d2
= (a® = %)%+ (® —d*)? + 2(ab — cd)?,

therefore a? = b%, ¢ = d? ab = cd, and they imply a? = ¢2. Thus, the
conclusion is proven.

8 Froma+ b+ c+d=0wehavea+ b= —(c+ d). By taking power 3,
a® + 3a%b + 3ab® + b3 = —(c3 + 3c2d + 3ed? + 3)
= —c® — 3c%d — 3cd? — &3,
ad + 0%+ + d® = —3a%b — 3ab? — 3c¢*d — 3cd?
= 3ab[—(a + b)] + 3cd[—(c + d)],

sad+ 0+ +d3 = 3ab(c+d) +3cd(a+b) = 3(abe+bed+ cda+ dab).

9. Letz—2=u,y—2=v,2—2 = w. Thenu?®+v>+v3 = 0and u+v+w = 0.
From the identity

ud + 03+ w? — 3uvw = (u+ v+ w)(u? +0? +w?),
we have —3uvw = 0, i.e.
(z=2)(y = 2)(2 - 2) =0,

sor—2=0ory—2=0orz— 2 =0, the conclusion is proven.
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10.  From
(a+b+e)P—a® - - =[a+b+c)®—a3] — (b3+c3)
:(b—|—c)[(a—|—b—|—c) +(a+b+c)a+a?l — (b+c)(b? — be+ c?)
= (b+ ¢)[3a% + b + % + 3ab + 3ca + 2bc — b? — % + be)
=3(b+c)(a® + ab+ bc + ca) = 3(b+ ¢)[(a® + ab) + (be + ca)]
=30b+c)ala+b)+cla+b)]=30b+c)(c+a)a+b).

The given equation means that (a + b + ¢)® — a3 — b® — ¢ = 0, therefore
3(b+c)(c+a)a+b) =0,

which implies b +c = 0orc+ a = 0 or a + b = 0. In anyone of the three
possible cases, we have the equality

a2n+1 + b2n+1 + ch-‘,—l — (a + b+ C)Qn-i—l.

Testing Questions (5-B)

1. From

M = 32?2 —8xy+9y? —4x +6y+13
= 2(2? —day +4y?) + (2% — 4z +4) + (y* + 6y +9)
= 2x-2y)%+(x—-2>2+(y+3)2>0.
M is not negative. Further, the system x — 2y = 0,2 = 2,y + 3 = 0 has
no solution for (z,y), so M must be positive, i.e. the answer is (A).

2. From the given conditions we have a — ¢ = d — b and a® — ¢? = d? — V2,
therefore
(a—c)(a+c)=(d—b)(d+D).
If a—c¢ = 0 = d = b, the conclusion is true obviously. If a—c = d—b # 0,
then a + ¢ = d + b. Considering a — ¢ = d — b, we obtain

a=d and c¢=0b,
so the conclusion holds also.

3. Froma+b+c=0,
2(a +b4+c) (a? + 0% +c?)? = a* +b* + c* — 2a2b? — 2b%c? — 2c2a?
= (a? b2 c?)? —4b?c? = (a® — b% — ¢?)? — (2bc)?
= (a? 2—&-2bc)(a2—bz—02—21)0)
= [(a® —( —C)Q][(a2 — (b+0)?]
=(a—b+c)la+b—c)la—b—c)la+b+c)=0.
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4. From (a® +b)(a* +b*) = (a” +b7) + (ab)3(a + b) we have
a” +b7 = (a®+b3)(a* +b*) — (ab)3(a +b)
= (a+0b)[(a+b)?—3ab]-[(a® +b%)? — 2(ab)?].

Therefore it suffices to find the value of ab. Since

_1 2 2 g2yl g L
ab72[(a+b) (a +b)]f2[1 2] = 5
we have
1 1\2 N 57 1 711
Trp =1-3(—=)|-[22=-2(-= 2) =242 2
@+ 3\ 73 5) | T\32 227373

5. Leta+b=x. Then a® + b® + 3ab = 1 implies

(a+0b)[(a+b)? — 3ab] + 3ab—1 =0,
23 — 3abx +3ab—1=0.

Since
23 —3abr +3ab—1=2%*(x — 1) + (z — 1)(x + 1) — 3ab(x — 1)
= (z—1)(z* + 2+ 1 — 3ab),

we obtain (z — 1)(z% + x + 1 — 3ab) = 0.

Whenz — 1 =0, we have a + b = 1. When 22 + = + 1 — 3ab = 0, then
(a+b)2+a+b+1—-3ab=0,ie a®>+b*—ab+a+b+1=0.By
completing squares, we have

%[(a—b)2+(a+ 1)? 4+ (b+ 1)?] =0,

hencea = b= —1,s0a+ b= —2. By checking,a+b=1ora=06= -1
satisfy the original equation. Thus,a +b=1ora+b = —2.

Solutions to Testing Questions (6)

Testing Questions (6-A)

1. Factorizations:
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@ 2+ TaSy® + 72y’ +y = [@®)° + ()] + T2y (% + ¢)

= (2% +y3)(2% — 2393 ) + Ta3y3 (2 + y3)

= (2° +y?)(a* + 62%y° +y *).
(i) 42?4+ y? + 922 — 6yz + 1220 — 4oy

= (22)* + (=y)* + (32)” + 2(=y)(32) +2(32)(22) + 2(22)(-)
(2z —y + 32)2
(iii) Lety = + 2, then

(2> =) (x+3)(x+5)+ 16 = (z — 1)(x + 1)(z + 3)(z + 5) + 16
=y =3)y -y +1(y+3)+16

= -1 (y*—9)+16 =y* —10y* + 25

=@ -5 =[@+2)? -5 =" +4u - 1)%
(v) (222 — 4z +1)2 — 142 + 28z + 3

= (222 -4z +1)2 = 7(222 —4x + 1) + 10

= (222 — 4z +1-2)(22% — 4z +1-5)

= (222 — 4z — 1)(22% — 4o — 4) = 2(222 — 42 — 1)(2% — 22 — 2).
(v) 2% —32?+ (a+2)z — 2a = (2% — 22?) — [2% — 2(a + 1)z + 44|

=2%(r —2) — (v — 2a)(x —2) = (x—2)(x —xz + 2a).

21 (2% -1)(a®+1)

r—1 z—1

(vi) 2+ 2042 +1=

(22 =) (2 + 2% + 1) (2% + 1)

z—1
=(z+ D[22 +1)2 —22)(z5 + 1)
=(x+1)(2® -2+ 1)(2® + 2+ 1)(2% +1).

2. Factorizations:

(i) z'—2(a® +b*)a? + (a® — ?)?
= [22 — (a® + b?)]? — (a® + b?)? + (a® — b?)?
= [2? — (a +b?)]? — 4a?p?
= (22 —a® - b - 2ab)(x —a® — b + 2ab)
= [2? = (a + b)*][2* — (a — b)’]

=(@—a-b)(z+a+db)(z—a+b)(z+a-0).
) (ab+1)(a+1)(b+1)+ab=(ab+1)(ab+a+b+1)+ab
= (ab+1)(ab+b+1)+ (ab+1)a+ ab
=(ab+1)(ab+b+1)+a(ab+b+1)
=(ab+b+1)(ab+a+1).
3. From

816-9.27" —9tt =912 3.9t 9! —9ll(9_3-1) =5.9" =45.9'0,

the expression has a factor 45.
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Solutions to Testing Questions

33---33—66---66
—_——  —\—

2n digits  n digits
=33---33-10"+33---33—-66---66 =33---33-10" —33---33
—— —_——— ——— —— ——

n digits ndigits  n digits n digits n digits
=33---33(10" —1) =33---33-99---99
—— —_——— ———
n digits ndigits n digits
=(33---33)2-9=(66---66)2.
—— —_——
n digits n digits
Factorizations:

(i) Lety=ax?+x—1,then
(@ +rx—-1)24+22+2-3=9y*+y—2=(y—2)(y+1)
=@ +z-3)(2®+z) =2(z+1)(2? + z - 3).
i) Letu=zx—y,v=y—z—2, w=2,thenu+v+w =0,
(z—yP+@y—r—-2°+8=ud+0>+w?
= 3uvw + (u + v + w)(u? + v + w? — wv — Vw — wu)
=3uvw =3(z—y)(ly—x—2)(2) = —6(z —y)(x —y + 2).
(iii)) Lety = 6x + 5, then

(62 +5)2(3x + 2) (2 + 1) — 6 %y( C(y+1) -6
=%y2(y2—1)—6 112(@/ —y*—72)
= 112(y -9y +8) = 12[(61:+5)2—32][(6x+5)2+8]

1
-3 — (62 4 8)(6z + 2)(362% + 60z + 33)

= (3z +4)(3z + 1)(122? 4 20z + 11).
(iv) Lety = 2 + 5z + 6, then
(22 + 5z + 6)(2% + 62 + 6) — 22% = y(y + z) — 222
=y’ +ay —22% = (y + 22)(y — )
= (22 + 72+ 6)(2® + 42 +6) = (v + 1)(x + 6) (22 + 42 + 6).
(v) Letu=2a2-2r, v=2%—42+2, w=—-2(z> -3z +1),
thenu + v +w = 0, so u® + v3 + w3 = Suvw
= —6(2? — 4x)(2? — 4z + 2)(2% — 3z + 1).
(vi) Lett =a -+ b+ c. Then
ad+ 02+ + (a+b)(b+c)(c+a) — 2abe
= (a® 4+ b3 + & — 3abc) + (t — ¢)(t — a)(t — b) + abc
=t(a®? +b%+c® —ab—bc — ca) + 12 — (a + b+ c)t?
+(ca+be+ ab)t = (a? + % + )t = (a + b+ c)(a® + b* + ¢2).
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6. (i) Froma? —azy— 2y = (z — 2y)(z +y), we let 22 — 2y — 2y% + 8z +
ay—9 = (x —2y+0b)(z+y+c), the constants are to be determined below.
Then

22 —xy—202 +8x4ay—9=a>—axy—2y°> + (b+c)x+ (b—2c)y +be.

By the comparison of coefficients, the system of equations in b, c is ob-
tained:
b+c=8, b—2c=a, bc=-9.

Then the first and third equations yield the solutions for (b, c):
(b,c) =(9,—1) or (b,c)=(-1,9).

Ifb=9,c=—1,thena=b—2c=11;
Ifb=—-1,c=9,thena=—1— 18 = —19. Thus, a = 11 or —19.

(i) Leta* — a3 +42% + 32+ 5 = (2% + ax + b)(2? + cx + d). By
expansion,

(22 +az+b)(z?+cx+d) = 24 (a+c) x>+ (act+b+d)z* +(ad+be)z+bd.
The comparison of coefficients produce the following equations
a+c=—-1, ac+b+d=4, ad+bc=3, bd=>5.

If try b = 1,d = 5, then the third equation yields 5a 4+ ¢ = 3. Considering
the first equation, we obtain a = 1,¢ = —2. By checking, the second
equation is satisfied by the solution. So

at — a2 4?3204+ 5= (2 + 2 +1)(2® — 22+ 5).

7. Given that 3% + 3y + 6 is a factor of the polynomial y* — 6y> +my? +ny +36.
Find the values of constants m and n.

Suppose that y* — 6y + my? + ny + 36 = (y*> + 3y + 6)(y* + ay + b),
where a, b are constants to be determined below. From

(v +3y+6)(y> +ay+b) = y* +(a+3)y>+ (3a+b+6)y>+(6a-+3b)y+6b,
we have system of simultaneous equations
a+3=-6, 3a+b+6=m, 6a+3b=mn, 6b=36.

Therefore a = —9 and b = 6. Then m = —15,n = —36.
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Testing Questions (6-B)

1. Letz?+6z+1=wu,22+1=0,then

2(z% 4+ 6z + 1)% + 5(z% + 1) (2 + 62 + 1) + 2(z? + 1)?

= 2u? + 5uv + 20? = (2u +v)(u + 2v)

=[2(z2+ 62+ 1)+ (22 + 1)][(2® + 62 + 1) + 2(22 + 1)]

= (322 + 122+ 3)(32% + 62 + 3) = 9(a® + 4z + 1)(z + 1),

2. Letz* +az?+b= (2% + 2z +5) (22 + cz + d). From

(22 + 22 + 5)(2% + cx + d)
=214+ (24 c)2® + (2c+ d +5)2? + (5c + 2d)x + 5d,

we have the system of simultaneous equations

24¢=0, 2c+d+5=a, bc+2d=0, 5d=hb,
hence c = —2,d = 5,a = 6,b = 25. Thus, a + b = 31.

3. (ab+cd)(a? —b? + 2 — d?) + (ac + bd)(a® + b? — 2 — d?)

= (ab+ cd)[(a® — d?) — (b® — )] + (ac + bd)[(a® — d?) + (b* — ¢?)]
= (ab+ cd + ac + bd)(a® — d?) — (ab + cd — ac — bd) (b — c?)
=(a+d)b+c)a—d)(a+d)—(a—d)(b—c)(b—c)(b+c)
= (a—d)(b+)[(a+d)? - (b—c)?]
=(a—d)(b+c)la+b—c+d)(a—b+c+d).

4. We have
(ay + bx)?® = a3y® + 3a?bry? + 3ab’x?y + b33,
(ax + by)® = a2 + 3a2bx’y + 3abxy? + b33,
(@ + %) (2® +y?) = a®x3 + a3y3 + b33 + b3y,
therefore

(ay + bz)® + (ax + by)3 — (a® + b3) (23 + y3)

= 3a?bxy? + 3ab’x?y + 3abx?y + 3abxy?

= 3abzy(ay + bx + azx + by) = 3abzy[(a(y + x) + b(x + y)]
= 3abzy(a + b)(x + y).

5.  We have

a’b — ab® = ab(a* — b*) = ab(a — b)(a + b)(a® + b?),
boc — be® = be(b* — ¢t) = be(b — ¢) (b + ¢) (b + ),

c®a — ca® = ca(c* — a*) = ca(c — a)(c + a)(c® + a?).
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If a, b have same parity, then a—b, a+b and a®+b? are all even, so a®b—ab®
is divisible by 8.

If a and b have different parity, then the parity of ¢ must be the same as a or
b, say a and ¢ have same parity, then c>a — ca® is divisible by 8.

Solutions to Test Questions 7

Testing Questions (7-A)

2
1. Forx > 0, |x+|x||:\x+x|:j:2;
xr xr X
For z < 0, \x+\x||:|x—x|:920.
T X T
2 — 1 5-3
2. 0 152272 922 1)~ 6> 6z —3(5 - 3a)

<:>7211x<:>m§1—71.

Forz < =3, |z — 1| — |z + 3] = (1 — ) + (3 + z) = 4, so its maximum
value and minimum value are both 4.

x—1—]z+3=1-2)—3+2z)=—-2—-2x,

For -3 < x < l
11

so its maximum value is —2 — 2(—3) = 4, and its minimum value is —2 —

7 3

Thus, the maximum value is 4, and the minimum value is — TR

3. Forz <0, |[1—2z|=1+|z|] < |z — 1] =1 — x, the answer is (D);

For0<z<1l,|[l1—-z|=1+4z| < 1—2=1+x,ie. xz =0. The
answer is (A), (B), (D);

Forl <z, |1—2| =1+ |z| < 2 — 1 =1+ z, so no solution.
Thus, the answer is (D).

4. Forz < -1, |z+1|+|z=2|+]z—-3|=—-(z+1)—(z—2)—(x—3) =
4—3x>T7,

For—1<a <2/ |z+1|+|z—2|+]z—=3|=(z+1)—(z—2)—(x—3) =
6 — x > 4, the minimum value is 4;
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10.

Solutions to Testing Questions

For2 <z <3,|z+1|+|z—2|+|z—-3]|=(z+ 1)+ (z—-2)— (z—3) =
T + 2 > 4, the minimum value is 4;

For3 < a, |[x+1|+|z—2|+|z—3| = (2+1)+(z—2)+(x—3) = 3z—4 > 4,
the minimum value is 5.

Thus, the global minimum value is 4.

[lz| —2z] |—x—22| -3z
= = = —XI.

3 3 3
Let S=|z—a|l+ |z —b+|x—c|+ |z —d. |z —c|+ |z — b is minimum
if and only if b < 2 < ¢, and similarly, |z — a| + |2 — d| is minimum if and
only if a < x < d. Thus S is minimum if and only if b < z < ¢, and in the
case

S=lc—bl+|d—al

Note: The same result can be obtained also if partition the number axis as
fiveintervals : z < a,a <x <bb<zx <c¢cc<z<d,andd < z, and
then discuss the local minimum values on each interval.

Whena+b>0,wehavea +b=a—b,sob=0. Whena + b < 0, then
—(a+b) =a—"b,s0a=0. Thus, ab = 0 in any case.

Given that a, b, ¢ are integers. If |a — b|'® + |c — a|*® = 1, find the value of
lc—al+1]a—b+]b—c|
Only two cases are possible: |[a—b| = 1,|c—a|] =0or|a—b| =0, |c—a| =
1, so it is always true that

lce—al+]a=bl+|b—c=1+1=2.

Given a = 2009. Find the value of |2a® — 3a? — 2a + 1| — |2a® — 3a? — 3a —
2009).
263 —3a> —2a+1=a(2a®> —3a—-2)+1=a2a+1)(a—2)+1>0
and 2a® — 3a% — 3a — 2009 = a(a® — 3a —4) = a(a + 1)(a — 4) > 0, so
12a® — 3a% — 2a + 1| — |2a® — 3a® — 3a — 2009
= (2a® — 3a® — 2a + 1) — (2a® — 3a® — 3a — 2009)
= —2a + 3a + 2010 = a + 2010 = 4019.

||t —a| —bl=3«=|z—a|-b=3or|x—a| —b=—-3.

If |x — a] = 3 + b has exactly one solution and |z — a| = —3 + b has two
solutions, then b = —3 and |« — a| = —6 has two solutions, a contradiction.
Therefore |z — a| = 3 + b has two solutions and | — a| = —3 + b has

exactly one solution. Thus, b = 3 and the three distinct solutions are

r1=a, ro=a+6, x3=a—6.
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Testing Questions (7-B)

1. We estimate the lower bound of n first. From |1 + 2 + -+ + x,,| > 0 and
|z;| < 1fori=1,2,...,n, we have

n> x|+ x|+ 4 |zp| =494 |21 + 22 + -+ + x| > 49.

For n = 50, we take x1, s, -- ,T50 by
S 0.98 =1,3,5,...,49,
] —0.98 i=2,4,6,...,50,
then z1, x9, ..., x50 satisfy the requirement of the problem. Thus ny;, =
50.

2. LetS=|z—ai|+ |z —as]+ -+ |z — ayl. Since |z — a| + |x — b| takes
it minimum value |b — a| if and only if a < z < b.

If n is even, i.e. n = 2k for some natural number &k, we have

|z —a1] + | — an| > an — aq,
|z — as| + |z — ap—1| > an—1 — as,

+lr—azi1|>any —an.

|z —az
2

By adding them up, we obtain a lower bound
Szan+an71+"'+a%+1 —Qz —Qazn_j — - — a2 —ag.

For any z satisfying az <z < a= 11, above inequalities all become equal-
ities, so the lower bound is the minimum value of S.

If nis odd, i.e. n = 2k + 1 for some natural number k, similar reasoning
shows that when © = ant1 = ag41, S takes its minimum value
2

an+an,1+--~+an+1+1fan71 — QAn-3 — - — Qg — Q1.
2 2 2

3. Since in the simplified expression there is no z, it should be true that |4 —
5z =4 —bzand |l —3z| =3z —1,ie.

1-3x<0 and 4—5x >0,
1 4 ..
hence 3 <z< 5 In fact, on this interval

20+ 4 —5x|+|1-3x|+4=20+4—-5x+3x—1+4=T.
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4. Fromb+c= —a,a+c= —b,a+ b= —cwe have

S I O O
b+c a+c a+b —a b ¢ ’

therefore

22097 — 2007z + 2007 = —1 4 2007 + 2007 = 4013.

5. We suspect by considering 1 to 4, or 1 to 6 etc, that each pair (a;, b;) contains
one number not less than 100 and one number not greater than 100. In
fact, if a; > 100, b; > 100 for some natural number i, then the following
101(= 100 — (¢ — 1) + ¢ = 101 numbers

Qjy Qg5 - - , 0100, b1, b2, ..., b;

are all greater than 100, a contradiction. Similarly, there is no pair (a;, b;)
with both a; and b; less than 100. Thus,

lar — b1| + |ag — ba| + - - - + |agg — bog| + |a100 — bioo]
— 10141024+ +200 — (1 +2+3 +--- + 100)
= 100 x 100 = 10000.

Solutions to Testing Questions 8

Testing Question (8-A)

3
1. |5z — 4] — 22 = 3yields |5z — 4| = 2z + 3, then & > —3 and

bz —4| =22 +3<=br—4=2x+3 or box —4=—-22—3

7 1
S r=- 0o T=_.
3 7

2. Whena < —g,then
7
|2a+7|+|2a—1|:8<:>7(2a+7)7(2a—1):8<:>a:,§’n0

solution.

7 1
When —— < a < —, then
2 2
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20 + 7|+ |2a—1| =8 <«= (2a+7)—(2a— 1) =8 <= 8 =8, s0
a=-3,-2,—1,0.

1
When 5 < a, then

1
|2a—|—7\+|2a—1|:8<:)(2a+7)+(2a—1):8<:>a:§’n0

solution.

Thus, a = —3,—2, —1, 0, the answer is (B).

3. le—|2z+1||=3«=x—|2z+1]=3 or z— |20+ 1| =-3
—0<z—-3=[2z+1] or 0<z+3=|2z+1]

Fromz —3 = |2¢x + 1| wehave2x + 1 =2 —3or2x+1 =3 —z,ie.

x = —4 or x = —, however, they are less than 3, so not applicable.

Fromz +3 =2z + 1|wehave2x +1 =2 +3o0r2z+1=—x — 3, ie.
=2o0rx =——.

x x 3

Thus, the answer is (C).

1

< 0.
a+1

4. Let x be a negative solution. Then —x = az + 1ie. z = —
Thereforea +1 > 0,1.e. a > —1.
On the other hand, if z; > 0 is a positive solution of the equation, then

Ty =ax1 +1 <= 21 = 1%& > 0 <= a < 1. Since the equation has no
positive solution, we must have a > 1.

Thus, a > 1, the answer is (C).

5. Ttisclearthata > 0, and then ||z — 2| - 1| =a <= |z —2|-1=aor
|z — 2| — 1= —a.
If |x — 2| — 1 = a has two integer solutions and |z — 2| — 1 = —a has only
one integer solution, then 1 —a =0, i.e. a = 1.
If |x — 2| — 1 = a has only one integer solution and | — 2| — 1 = —a has
two integer solutions, then 1 + a = 0, i.e. a = —1, a contradiction.
Thus, a = 1, the answer is (B).

6. For x < 0, the equation becomes —ax — 2008z — 20082 = 0, i.e. (a +

2008)x = —20082. Since the equation has negative solution, so a+2008 >
0,i.e. a > —2008.
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The given equation cannot have solution z = 0. If the equation has a posi-
tive solution xg > 0, then

azg — 2008z — 20082 = 0, so (a — 2008)x¢ = 20082, then a — 2008 > 0,
i.e. a > 2008. Thus, the range of a is —2008 < a < 2008.

7. (i) has no solution means m > 0; (ii) has exactly one solution means n = 0;

and (iii) has two solutions means k < 0. Thus m > n > k, the answer is
(A).

8. Let

lt —yl=2+y -2, (15.32)

|z +y| = x + 2. (15.33)

From the equation (15.32) we find that x +y —2 > 0,soz +y > 2 > 0.
Then (15.33) becomes z+y = x+2,1i.e. y = 2. By substituting back y = 2
into the first equation, we have |x — 2| = z,ie.2 —2=zorx =2 = —x.

The first one has no solution, and x — 2 = —x has solution x = 1. Thus,
the solution (z, y) for the original system is (1, 2).

9. By factorization, from the given equation we have (|z| + 3)(|z| — 2) = 0.
Since |x| + 3 > 3, we have |x| = 2. Therefore the roots are 2 and —2, their
sum is 0, so the answer is (C).

10. From 2z +y = 6 we have y = 6 — 2x. By substituting it into the first
equation, we have

T+ 3(6 —2x) + (37 — (6 — 27)| =19 <= |5z — 6] = 1 + 5z
<= bx—6=—5xr—1orbd5xr — 6 =1+ 5z (no solution)
:}x—i—f =6—2r=>5

"0 2V -

1
Thus, the solution is x = i,y =5.
Testing Questions (8-B)
1. |z —2y| =1<«= z =1+ 2yorz = 2y — 1. By substituting it into the

second equation, we have

11+ 2y| + [yl =2
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and
2y — 1] + |y| = 2.

1
From |142y|+|y| = 2we obtainy = —lory = 3 Then correspondingly,

5
x:l—f—?y:—lora}:g.

1
From |2y —1|+|y| = 2we obtainy = lory = -3 Then correspondingly,

5
xr =2y —1=1orx = ——. Thus, the solutions are
) R
S I O S
y = —1. _ 1 y=1. __1
Y 3 Y 3

2. Since |||lx — 1| -1 -1 -1 =0 < ||lx —1 -1 -1 = 1 and
Nlz—1—1]—1|=1<= [z —1|—1|=2o0r |z —1|—1] =0
—|z—-1l-1=+x2o0r [z —1]-1=0<«<=|z—1]=30r —lorl
— r=0,424.

Thus, the answer is (A).

3. We remove the outer absolute value signs by taking squares to both sides of
the equation, then

(la] = (a +b))* < (a — |a+b])?,
a? —2|al(a +b) + (a +b)? < a® — 2ala + b| + (a + b)?,
la|(a +b) > ala+b] < a #0,

a

soa-+b> -la + b|. Hence a < 0,a + b > 0. Thus, b > —a > 0, the

~_lal
answer is (B).

1
4. (i) Whena = %" the equation becomes an identity for all  # 2. When
1
a # % the equation is equivalent to
x—2=2x—52a or z-—2=—(xr—52a).
The first equation has no solution. The second equation has the solution

52a + 2
€= a; — 2%6a + 1.
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(i) When a = p?, where p is an odd prime number, then, from the result
of (i),

x=26a+1=26p> +1.
If p= 3, then x = 26 - 9 + 1 = 235 which is composite.

Ifp = 3k+1, thnz = 2633k £ 1) + 1 = 234k + 156k + 1 =
3(78k% + 52k + 9) which is composite also.

5. Ifa; > as > as > a4, then we can remove all the absolute value signs, such
that the system becomes as follows:

(a1 —ag)xe + (a1 —a3)xs + (a1 —ag)zy =1 (15.34)
(a1 —ag)x1 + (a2 — az)xs + (a2 —aq)zy = 1 (15.35)
(a1 — az)x1 + (a2 — asz)we + (a3 — ag)rs =1 (15.36)
(a1 — ag)x1 + (ag — ag)zs + (a3 — ag)xz = 1. (15.37)

(15.35) — (15.34) yields

(a1 —az)xy — (a1 — a2)r2 — (a1 — az)xs — (a1 — az)xy =0,

SO

T, —To —x3 — x4 = 0. (15.38)
Similarly, (15.36) — (15.35) and (15.37) — (15.36), after simplification,
yield

T1+ 22 —23—24=0 (15.39)
and

1+ x9 + a3 — 24 =0, (15.40)

respectively. Then (15.39) — (15.38) yields z2 = 0, and (15.40) — (15.39)
yields x3 = 0. Thus, from (15.40), z; = x4.
1

ap — a4

Finally, from (15.37), we obtain ©; = x4 = ,xo = x3 = 0.

If as > a1, we can exchange the subscripts 1 and 2 of a; and a9, and
exchange the subscripts 1 and 2 of x; and x5. The system does not change.
Continuing this process if necessary, until we have a; > as > a3 > ay.

Thus, among a1, ag, as, as, if a; is maximum and a; is minimum, then

Ti=x; = , and the other two are zeros.
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Solutions to Testing Questions 9

Testing Questions (9-A)

1. From (n —2) x 180° < 2007° we have n — 2 < 12,i.e. n < 14.

When n = 13, the sum of interior angles of convex 13-sided polygon is
11 x 180° = 1980°, so the maximum value of n is 13.

2. Let/ZB = x,then ZAQP =2z = ZQAP, so ZQPA =180 — 4x.

Further,

" LAPC = LZACP = 3z,
C.2x 3z +x = 180°,

180 5
=2 952,
Ty 7

Thus, the answer is (A).

3. From AE = AC and BC = BF, we have
1 1
ZAEC - 5(1800 — ZA) == 900 — 5414,

B
Q
P
A C
A
1 o 1
/BFC = -(180° — 4B) =90° — - /B.
2 2 F
Therefore
/ECF = 180° - ZAEC — ZBFC E

1
= (ZA+2B) =145, C B

4. Let the lengths of the three sides be a, b, ¢ respectively, where @ > b > c.

17
c < — < 6leads a — b < ¢ < 5. We classify the triangles according to the
integral value of ¢ for counting.
@) Whenc = 1,thena+b =16, a—b = 0, thereforea =b =8, ¢ =
1 is a solution;

(ii) When ¢ = 2,thena + b = 15, a — b = 1, therefore a = 8, b =
7, ¢ = 1is asolution;
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(iii) Whenc=3,thena+b=14, a—b=0,0ora+b=14, a—b=2,
thereforea = b =7, c=3anda = 8,b = 6, ¢ = 3 are 2 solutions;

@iv) Whenc =4,thena+b=13, a—b=1,ora+b=13, a—b=3,
therefore « = 7,b = 6,c = 4and a = 8,0 = 5,c = 4 are 2
solutions;

) Whenc =5,thena+b=12, a—b=0,0ora+b=12, a—b =2,
thereforea =b =6, c=5and a = 7,b = ¢ = 5 are 2 solutions;

Thus, there are 8 such triangles in total.

5. When b = 2then a = 1. From a¢ > ¢ — b we have ¢ = b. Since b < ¢, we
have no required solution. Thus, the answer is 0.

6. Let the lengths of two legs of the right angle be a and b where a = 21, and let
c be the length of the hypotenuse. Then ¢ —b? = 21%,i.e. (c—b)(c+b) =
32 .72, To let the sum 21 + b + ¢ be minimum, b + ¢ should be minimum,
therefore ¢ — b should be maximum. Thus, c — b =9, ¢+ b = 49, i.e. the
perimeter is 21 4+ 49 = 70.

A C E

Let x = /BAC = /BCA,y = ZCBD = ZCDB,z = £/DCFE =
ZCED, then

y=2x, z=x+y=3x.
x4 140° + z = 180° = 140° + 42 = 180°,
sox=10°, ie. ZEAD = 10°.

8. From LA = 80° and AB = AC, we have /B = ZC = 50°. Then

ZCDE = =(180° — 50°) = 65°, A

1
2 E
1
£FDB = (180° — 50°) = 65°, F

/LEDF =180° — 2 ° = 50°.
. 80 x 65 50 c D B

The answer is (C).
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9. n+(n+1+(n+2)<100yields 1 <n < 32. The triangle inequality
means 1 + 2 < 2n + 1 which implies n > 2.
The triangle is acute yields n? + (n + 1)? >
(n+2)%
2n2 +2n+1 > n? + 4n + 4, n n+1
n?—2n—3 >0,
(n=3)(n+1)>0, -.n>3.
Thus, there are in total 29 such triangles. n—+2
10. In AABC and AABD, since AB = AC = BD, we have
1 o
LC = 5(180 — /BAQC), A
/D = $(180° — ZDBA),
1
S LC+ 4D =180° — Q(ZBAC + ZDBA).
" /LBAC + ZDBA = 90°, B £ D
S LC + /D = 180° — 45° = 135°,
the answer is (D). ¢
Testing Questions (9-B)
1. Connect CH. As shown in the digram, let the areas of triangles be Sy, S1, - - - , S4.

Without loss of genrality we may assume that Sop = 1. Since AH/HE =3

BH 5
yields S; = 3, then D=3 implies that Sy =

3 9
28, = 2.
57 S Ss 3 1 A
Since 2+ 93 _ ,80 84 = - (S2+ S3)

Sy 3 5

S3 _ S3 _3 S3

Si+So L(S+85)+S, b5 ] )

&, 3 C E B
$(2+855)+1 5
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6 1/9 6
Hence,S;;:g, S4—3(5+5> =1,5050+S51 =4, So+S53+S54 =

4,i.e. CE = BE, the triangle ABC is isosceles. Thus,
1 1
/C = 5(180O —LA) = 5(180° —70°) = 55°.

The answer is (B).

2. Since A1 B and A;C bisect ZABC and ZAC D respectively, /A = LZACD—
ZABC =2(LACD — LA BC) = 2/ Ay, therefore LA, = %LA.

Ay
A As

B C D
Similarly, we have A1 = %Ak for k =1,2,3,4. Hence

1 1 1 1 1 96° o

A5—§A4—1A3—§A2—¥A1—§A—§—3 .
3. As shown in the digram, we have /B = ZC.

Further, we have A

/DEB — ZCFE

=/ZFEB - ZCFE —60° = ZC — 60°,

LADF — /DEB

=/LADE — ZDEB — 60° = ZB — 60°, D F
. .DEB - /CFE =/ADF — /DEB,

ie. /DEB = 41(4ADF + ZCFE).
2 B E C

AC DE b

a
4 Leta=DE,b=BE=AC.- -+~ = ~= -
= b CUBCTBET T-a b

P=(1-aa=a—d%ied®+b=a A

1
@8 = ()7, 0
11 .
a=-=—=BD, thus 4B = 30°.

4 2 C E B
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5. From Z/BNA = 180° — 50° — 80° = 50° = ZBAN,

we have AB = NB. On AC take D such that ZABD = C
20°, then ZADB = /DAB = &0°, therefore DB =

AB = NB. Since ZDBN = 60°, the triangle NDB is
equilateral, therefore

ND =DB=NB, ZMDN = 180° — 80° — 60° = 40°.

“rangleDBM = 60° — 20° = 40° and M
/DM B = 180° — 60° — 80° = 40°,
N
it follows that DM = DB = DN, therefore ‘
LDMN = /ZDNM = 70°, so D
INMB=/DMN — ZDMB = 70° — 40° = 30°.
A B

Solutions to Testing Questions 10

Testing Question (10-A)

1. From A introduce AE 1 BC at E. Since /B = Z/C = 45°, /BAE =
/CAE = 45°, . AE = BE = CE. By Pythagoras’ Theorem, BD? +
CD? = (BE + ED)? + (CE — ED)?

= BE? +2BE - DE + DE?
+CE? —2CE - DE + DE?

= BE? 4+ CE? + 2DE?

= 2(AE? + DE?) = 2AD?.

S L

B

!
Q

2. Suppose that ZC' = 90°. Leta = BC, b= AC, ¢ = AB. Then

a+b++vVaz+b2 = 30, (15.41)
ab

— = 30. 15.42
5 ( )
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From (15.42), ab = 60, therefore, from (15.41),

(@a+0)2 —120 =30 — (a +b),
(a+b)2 — 120 = 900 + (a + b)® — 60(a + b),
oo (a+b) =17,

By substituting b = 17 — a into ab = 60, it follows that a* — 17a +
60 = 0,s0a = 5,b = 12 or a = 12,b = 5. By Pythagoras’ Theorem,
c=+52+122 = /169 = 13, i.e. the lengths of three side are 5,12,13
respectively.

3. From D introduce DE | AB at E. By symmetry we have DE = DC and
AE = AC = 9cm, and hence EB = 6 cm. Let CD = 3z, then BD = 5z,

therefore
(52)% — (3z)% = 62,
(4z)? = 62,
,_6_3 E—"1
T1 2 /2
Thus, DE = CD = ~ cm. B D

4. Connect AE. Let CE = z cm. From AE = EB =12 — x cm,
since AE? = AC? + CE?,

(12 — 2)? = 62 + 22,

144 + 22 — 24z = 36 + 22, D
24x = 108,
. x =4.5.

B
Thus, CE = 4.5 cm.

1
5. Suppose that BD and AC intersect at O. From BE = EBD we have OF =

%BD — iBD = iBD. Let OF = z, then OC = OD = 2z.

From OC? — OE? = CE?,

D C
(22)? — 22 = 52,
1‘2 = %7 O
s AC =4x = 20 :20\/§cm L

V3 3 ' A B
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1
6. From BD? = BC? + DC? = BC? + ZACQ, we have

4BD? = 4BC?*+ AC? B

= 4BC?+ AB? — BC?

= AB?+3BC>.

C D A
7. By using the Pythagoras’ Theorem,
AD?* 4+ BE? ¢
— AC? + CD? + CE? + BC? E
— (AC? + BC?) + (CD? + CE?) D
= AB? + DE?.
A B

8. From A introduce AD | BC at D. Then BD = DC. Let BD = DC =z
and DP; = x;.
By Pythagoras’ Theorem, for 1 < ¢ < 100,

A
= AP+ (z — ;) (z + ;)
= AP? —z? +2?
= AD?+4+z%2=AB%?=4.
Thus,
mi1 + mo + -+ + mygg = 400. B P D C

9. From A introduce AG || CB, intersecting the extension of F'D at G,

connect EG. A
By symmetry, we have DG = DF, AG =
BF, so ED is the perpendicular bisector of
FG. Thus, E
EF? = EG?
= AE? + AG?
= AE? + BF2.
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10. Rotate ABPA around B in anti-clockwise direction by 60°, then A — C.

Let the image of P be M under the rota-
tion. Then BM = BP,Z/MBP = 60°,
so AMBP is equilateral, i.e. MP =
2v/3. From MC = PA = 2 and

MP? + MC? =12 +4 =4% = PC?,

so ZPMC =90°,/BPA = /BMC =
150°.  Further, PC = 2MC implies
ZMPC = 30°,s0 ZBPC = 90°, and

BC? = PB? + PC? =12+ 16 = 28, thus, BC = /28 = 2V/7.

Testing Questions (10-B)
1. Suppose that OD L AB at D, then

1
AD = BD = 5(63 +33) =48 (cm),

therefore M D = 48 — 33 = 15 (cm), hence

OD? = OB? — BD? I
=522 — 482 = 400 (cm?),

-.OM =+/OD? + MD? 5
= /625 = 25 (cm).

2. By passing through P introduce the lines QR || BC, where @) and R are on
AB and DC respectively. Then

AP? 4 PC? A D
= PQ? + AQ® + PR? + CR>
= PQ? + RD? + PR? + BQ? Qb - p_— R
= (PQ? + BQ?) + (PR? + RD?)
= PB? + PD?.

Thus, PD? = PA? + PC? — PB? B C

=9+425—16 =18,i.e. PD = /18.
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3. Suppose that such a triangle exists. Let a and b be the lengths of the two legs
of the right angle, where b = ka for some positive integer k. If ¢ is the
length of the hypotenuse. By Pythagoras’ Theorem,

A =d>+bv=(1+k)d?

2
Since (C) = 1+k?is an integer, so a | c. Let = m, thenm? = 1+ k2.

However, k? < 1+ k? < (k + 1)? indicates that 1 + k2 is not a perfect
square, a contradiction.

Thus, there is no a triangle satisfying the required conditions.
4. The given conditions implies that ZBCE = 30°, so CE = 2BE = 12. By

Pythagoras’ Theorem, CB = +/CE?2 — BE? = /362 = 6+/3. Simi-
larly, CD = /3 - DF = \/3(6y/3 — 2) = 18 — 2/3.

Therefore the area of ABCD is D C
[ABCD] = 6/3(18 — 2V/3) = 108/3 —
36 < 216 — 36 = 180. From

150 < 108v/3 — 36 <= 1862 < 3(108)2
> 34596 < 34992, P

. [ABCD] > 150. The answer is (E). A E B

5. Necessity If AC L BD, O is the point of intersection of AC and BD, then

AB?% + DC? D

= (AO? + BO?) + (CO? + DO?)

= (A0* + DO?) + (BO? + CO?) A C
= AD? + BC?.

Sufficiency If AB?+CD? = AD?*+ BC?,
then AB? — AD? = BC? — DC?.

If A’, C’ be the perpendicular projections of B
A, C on BD respectively, then

AB? — AD?> = A'B> - A'D? =BD - (A’'B - A'D),
BC? — DC? = BC™ — C'D? = BD - (BC' — C'D),
.BA"— A'D = BC' — C'D,i.e. A’ coincides with C".

Thus, AC L BD.
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Solutions to Testing Questions 11

Testing Questions (11-A)

1. -~ ZABC = 180° — 75° — 60° = 45°, we have ZBAC = 45°,

therefore AD = BD. Since

A
/HBD =90° — LZACB = LCAD, E
we have AHBD = ANCAD (A.S.), hence
HD=CD, . /CHD =45°.
B D C

2. Connect CD and connect PD.

+AD=BD, CD=CD, CA=CB,
.ACDA=NACDB, (S.S.S.),

.. 4ZDCB = /DCA = 30°.

.+ BP = BC, and

/DBC = ZDBP,

.ADBP >~ ADBC (S.S.S.),

.. 4BPD = /BCD = 30°. B

3. Leta = AP, b = AQ. Extend AD to P’ such that DP’ = PB, then
RIAPBC = RtAP'DC (S.8.), so CP' = PC and

QP = (1-b)+(1—a) A Q b P
= 2—(a+b)=PQ, Ty

- ACQP = ACQP' (S.S.S.), /
- /PCQ=/P'CQ. P /
-+ /PCB = /P'CD,

. /PCP' = /DCB = 90°, /

1
S LPCQ = 3 -90° = 45°. B C

4. BE = CF and BC = CD leads to RtADFC = RtACEB (S.S.), there-
fore Z/CDF = /BCFE which implies CE 1 DF.
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Extend C'E to intersect the extension of

DAat N. N A D
‘+AFE =BFE and /NEA = /BEC, IR
S~ RtAAEN 2 RtABEC (S.A)), T
therefore AN = BC = AD,ie. AM E
is the median on the hypotenuse N D of

the RtANMD, hence AM = AD = B F C
AN.

5. Suppose that the lines AF and BC intersect at F'. Then DE = C'E and

/ADE = /FCE, /AED = /CEF,

A
. ANAED = AFEC (A.AS.),

hence AE = EF.
Thus, BE is the median on the hy-
potenuse AF of the RtAABF, we have

BE = EF = AF, 2
" LDAE = /FEFB = /EBF = /BEC. B C F

Thus, ZAEB = /ZEBF + /EFB = 2/DAFE implies ZAEC = LZAEC
+/BEC =3/DAE,ie. LDAE = élAEC'.

6. Introduce M P || AC and connect AP. Suppose that C M, AP intersect at
O, then both triangles OM P and OAC are equilateral. We have

ZANC = 180° — 80° — 50° = 50°,

B
.0C = AC = CN.
-+ /ZNCO = 80° — 60° = 20°,
ZNOC = 1(180° — 20°) = 80°,
- /ZPON = 120° — 80° = 40°.
-+ ZOPN = 180° — 60° — 80° = 40°, M p
we obtain ON = PN, hence AONM = APNM V N
(S.S.S.), i.e. \
/NMC = /NMO = 14PMO = 30°. A
2 A C

Note: This question is the same as the Testing Question 5 of (9-B). Here
we prefer the readers solve it again by using the congruence of triangles.

7. Suppose that the lines AE, BC intersect at F'. From AC = BC and that
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/FAC =90° — /ZAFC = /DBC,

we have RtAFAC = RtADBC (S.A)),
therefore

AF = BD = 2AE, ie. AE = EF. /
Thus, RtAAEB =~ RtAFEB (S.S.), hence F -----

/ABE = /FBE.

8. Let F be the midpoint of BC. Connect EA, EP, and introduce FF | AP
at F.

By symmetry,

ANABE = NADQ, \
. /BAE = /DAQ = o,50/PAE = «. \
.AABE = NAFFE (AS.). \

For RtAEF P and RtA ECP, we have Q
EF = BE = EC and EP = EP, P
. AEFP = AECP (S.8.),
PC=FP=10-8=2. B E C

9. Connect AC, AD and extend CB to P such that BP = DFE. Connect AP.
In right triangles APB and ADE,

AB = AE, and BP = DE

— AAPB =~ AADE, (S.S.)
—s AP = AD, CP=BC+DE=CD C
— AACD = AACP (SS.S.).

Therefore the height of AACD is equal to
AB,ie. 1,

[ABCDE] = 2[ACD] :2-;1-1: 1.

10.  When rotating the triangle ADC' around A by 60° in anti-clockwise direc-
tion, the triangle AD’B is obtained, as shown in the digram below.
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From ANAD'B =2 ANADC we have
D'B=DC, AD' = AD, /DAD' =60°,

so AAD'D is equilateral. hence D'D =
AD.

Thus, ZDD'B = 150° — 60° = 90°, i..
ABD'D is the right triangle, and is formed
by the segments AD, BD,CD. A ¢

DI

Testing Questions (11-B)

1. From the points A, C, E respectively introduce perpendiculars AA;, CC1, EE,
to £, where A1, Cy, E; are on /.

It is easy to see that

AAA, B~ ABC,C,
ACCD = ADELE.
AlB = CCl = DE1

Since the projection on ¢ of M
is the midpoint of A; F1, so is
also the midpoint of BD.

On the other hand, the distance from M to £, is the middle line of the trapez-
ium AA;E1 E, soitis

1 1 BD

Thus, the point M is fixed even if C' is changing.

2. From F introduce FH 1 AB at H. Then ZACF = ZAHF = 90°, hence
NACF =2 NAHF (S.A)).

+.CF =FH. ¢

-+ ZACD =90° — /A= /B, F

- LFEC = LZACD + 124 |
=/B+1i/4=/CFE, L : G
.CE=CF=FH.--CE || FH, :

- AECG = AHFB (S.A.). A D H B
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Thus, CG = FFB,sothat CF = CG — FG = FB — FG = GB.

3. Let AD be the angle bisector of ZBAC, where AD intersects BC' at D.

From D introduce DE 1 AC, inter-
secting AC' at E. Then

ZDAC = /A = £C,
-.ADEA= ADEC,

= AE = EC = AB

= ADAE = ADAB (S.AS.)
= ZABD = ZAED = 90°. B D C

Thus, AB | BC at B.

4. Connect BD and extend BC to E such that CE = C'D. Connect DE. From
given conditions triangles ABD and C'DE are both equilateral.

Since ZADB = Z/CDE = 60°, we
have A

Z/ADC = 60° + /BDC = /BDE.

*BD = AD,CD = ED,

. AADC =~ ABDE (S.A.S.),

. AC = BE =BC+CE B
= BC + CD.

S

Q
/
/
i
/
I
-
;-
=

5. Inside the region of ZABC introduce the segment B(Q), such that Z/CBQ =
/ZBAC = 20° and AB = BQ. Connect AQ, CQ.

Since ZABQ = 80° — 20° = 60°, AABQ
is equilateral, so AQ = AB = AC.

+ ZCAQ = 60° — 20° = 40°,

ZAQC = 1(180° — 40°) = 70°,

. ZBQC = 70° — 60° = 10°.

+ ZACP = 30° — 20° = 10° = Z/BQC,
NACP = ABQC (AS.A)),

. AP = BC.
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Solutions to Testing Questions 12

Testing Questions (12-A)

Let P be the midpoint of the diagonal BD. Connect PE, PF'. Then, by the

1.
midpoint theorem,

1 1
PE =_-AB,PF =-CD.
2 2
Applying triangle inequality to APEF,
we have

EF < %(AB +CD).

Let I be the midpoint of AB and F the point of intersection of the lines

BC and AD, as shown in the diagram
on the right. From the midpoint theorem, E
DC | AB and DC = LAB implies
D, C are mid points of EA and E'B respec- RN
tively, so by this theorem again, D, M, F' / N
are collinear and F, N, C are collinear, and /

2.

DM = $EC = {BC = MF,

FN=1AD=1DE=NC.
i =AB+BC+CD+ AD = 2(CD + DM + MN + NC) = 2,

ie.n=2.
3. From C introduce CG || BD such that CG
intersects the line AF produced at G. Then A D
CG = 20E.
- /COFG = /AFB=90°—225° %
= 67.5° E
LCGF = 180° —45° —67.5°
= 67.5°, B F. . C

CF = (CG = 20F. \
G
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4. Let F be the midpoint of AC. Connect DF, EF'. From midpoint theorem,
EF = %AB = ED, 4
. LDFE = /ZEDF.
W AF = FC and ZADC = 90°, >
..DF = AF = FC, - /
.. /C = /LEDF = %ACEF = 5<B. )
/LB =2/C. B D E C
5. It suffices to show PQQ = PR = QR. Connect BP,C(Q. Since AABO and

ACDO are both equilateral,

BP 1 AO, CQ L DO.

Therefore PR and (QR are both medians on
hypotenuse of right triangles,

PR=BR=CR=QR.

By using the midpoint theorem,

1 1
PQ = 3AD = SBC = PR = QR.
Thus, APQR is equilateral. A

6. From D introduce DF || BE, intersecting AC' at F. Then

B

EF =FC, DF = %BE = 2.
Since ZABO = ZDBO and BO = BO,

RIAABO 2 RtADBO (S.A.),

. _ _ _ 1 _
L AO=0D =2, OE=3;DF =1, A
E

hence BO = 3.
By the Midpoint Theorem and the Pythago-

ras’ Theorem
FC = EF = AE = VAO? + OE? = /5,
AC = 3AF =35, AB =+/BO? + AO? = /13,

BC =2BD = 2AB = 2/13.
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7. Extend BD,CE to P,(Q respectively such that BD = PD and CE = QFE.
Connect CP, AP, BQ, AQ. Then

PC =2DM,  BQ =2EM, P
[AY
it suffices to show PC = BQ. Since A ?
AD, AE are the perpendicular bisectors of i ‘\\i\ ya
BP, CQ respectively, AN /,/’// :
AP =AB and AC = AQ. o N
Further, 7 A/\\ E
/PAC = 360°—2/DAB — /BAC X
= 360° —2/FAC — /BAC Y \
— ZBAQ, y
B M C

APAC = ABAQ (S.AS.), .. PC = BQ.

Testing Questions (12-B)

1. The two angles ZAHE and Z/ BGE are on different sides of the line E'F, it
is needed to collect them together for their comparison. Here the midpoint

theorem plays important role.

Connect AC, let P be the midpoint of AC.
Connect PE, PF. By the midpoint theo-

rem,
- PE | BG, PF || AH,
/PFE = /AHE, /PEF = /BGE.

Thus, the ZAHFE and Z/BGEFE are replaced
by the ZPFFE and ZPEF respectively.

" PE=1BC < 1AD = PF,
. /PFE < /PEF.
-.ZAHE < /BGE.
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2. Let G be the midpoint of BC', then
1 1
GN = BN — BG = §(BM— BC) = §C’M7

therefore it suffices to show that GN = C'F. Connect EG, C'D and let K
be the point of intersection of C'D and

EG. Connect KH.
EK=KG and FH=HN,
1
-.KH | BM,KH = 5GN,
.DH = HF. Then
KH:iCF,,‘.GN:CF. B N C F M

3. Connect C'D. By symmetry,

AABE = ACBD (S.8.), A
. /BAE = /BCD.
+BN L AC, . /BAE = /CBN,
- /CBN = /BCD, /NBD = /CDB. DK

Let P be the point of intersection of BN and N\
CD, then P is the midpoint of C'D. Since
DM || PN, by the midpoint theorem,

MN = NC. B
4. Let F be the midpoint of AB. Connect E'F.

"+ AD || BC, /B + ZA = 180°, B
- ZAEB = 180° — 90° = 90°, F
- EF = LAB = BF = AF, A
- /AEF = /EAF = /EAD,
ie. EF || AD,
.. E is the midpoint of C'D.

-+ EF is the middle line of the trapezium, C' E D

therefore . )

thus, AB = AD + BC.
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Solutions to Testing Questions 13

Testing Questions (13-A)

1. (C). Since ABEF ~ ABDC and ACEF ~ ANCAB,

EF BF EF CF D
DC ~ BC' AB ~ BC’
1
Pl 1)o
80 " 20 I
EF
— =1, " EF=16.
16 B F c

2. Let PC = z. From APAB ~ APCA, we have

pa_pC_cA P
PB PA AB

pe=2pp2tD &
16 16
162 = 9z + 63

c.x =9, the answer is (C). A B

3. (A). From /BAD = /EBF we have RtAABD ~ RtAEBF. Then
AB BF
~“ BD EF A
wAEFC ~ ANABC,

BF
FC
EF FC

1
""AB  BC ¥

- EF = FC, 2,

1 1
. EF = -AB = —a.

3 3 B D F c
The answer is (A).

4. B). " LMCN=/LA=/B=45°,AMCN ~ ACAN ~ AMBC,
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BC r+m C

Tx+n  AC

- BC = AC,

. BC? = (z +n)(z +m).

+2BC? = AB?,

c2@+m)(z+n)=(m4z+n)’ 4T TN TR

2

By simplification, we have 22 = m? + n?, therefore the triangle is a right

triangle, the answer is (B).

5. (D). Through D introduce DF || BE, intersecting AC at F.

AE =2EC,
by the midpoint theorem,
EF =FC.
' AC =3EC = AE =2EC,
o AE =4EF.
AADF ~ NAGE,

LAG _AE
""GD EF
.. the answer is (D).

6. From D introduce DG || BA, intersecting CF at G. By the midpoint theo-
1
rem, CG = GF and DG = §BF.

- AAEF ~ ADEG (A.AA.),

LAF _AE 1
DG  ED 2

- AF = 1DG = 1BF,
o AF = 1.2 cm,

. AB =4AF + AF = 5AF =6 cm. B

7. Extend DP to meet the extension of CB at F. - APAD ~ APBF

PB 1
(A.AA), BF = AP -AD = 3 2 = 1, therefore CF' = CB + BF = 3,

DF =/DC? + CF?2 =+/42 + 32 = 5.
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”DE_ DOQ B E D C
: ~ DF 5’
-.CE? =CD? - DE?
2 144
—16- 55 = o5 ¢
12 A P\\\\ EB
L COE =",
5 .
F

8. " AD| BC = ZAFE = ZHAF, it suffices to show ZACE = /F AE,
and for this we show that AACE ~ AF AFE below.

-+ AE = v/2a = /2 - EF and A G i D
CE =2a =2 EA,
Besides, /AEC = /FEA, N
. DACE ~ AFAE. (SAS). g % c

9. From A introduce AM 1 BC at M. Then RtNADM ~ RtACDH, so

AD DM A
CD DH'
.~ AABC is equilateral,

.BD+ DM =BM =CM = gBD,
- DM = 1BD so that
AD AD ~ CD  BD
BD  2MD  2HD HD’
. AADB ~ ABDH (S.A.S.). -
Thus, /DHB = /DAB. B D M C

10.  Suppose that the angle bisector of ZA meets BC at D. Since ZDAC =
14A=/B,ANCAD ~ ACBA (AAA.).

_AC _CD .
E—E or AC* = BC -CD.
AB  BD

Since AD bisects ZA yield — 1C =D
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S AC? + AB - AC

AB

=AC? (1+ =

c*(1+52)
BD
_BC-CD<1+CD>
= BC(CD + BD) = BC?.

Thus, AC? + AB - AC = BC?.

Testing Questions (13-B)

1. Since the three triangles 1, t2, t3 are similar, so the ratios of their correspond-
ing sides are given by

PF :DE : Pl A
=V4:/9:/49 H
=2:3:7.
SCE:DE:BD=2:3:17, . o
- CE:CB=2:(2 ’
= C 202.12 (24347 7 PLA 7
- [GPF]:[ABC] = 2% : 122

=4:144. f2
" [GPF) =4, [ABC] =144. B D E C

2. ABCD is a rhombus implies that /EAD = ZDCF = ZABC = 60°.
“AB || CD, LZAED = LCDF, therefore NADE ~ ACFD.

AE_CD
""AD CF’

AE  AC
It foll hat — = —.
tOOWStatAC CF
" LEAC = LZACF = 120°,

- AEAC ~ AACF (S.AS.),

S LFAC = ZCEA.

Since ZACE is shared by triangles FAC and AMC, ACEA ~ AMAC,
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CA CM 9
therefore CE- A" ,namely CA* = CE -CM.

3. From D introduce DG || BE, intersecting AC' at G, then

EG BD 2
GC  CD 3
_AF AE AE EC
"FD EG EC EG
3 5 15
T4 2 %7
From F introduce EH || AD,
intersecting BC' at H, then

, therefore — =

DH 3 BF _BD CD 2 7
HC & FE CD DH 3

3
AF BF 15 14 35
FD FE 8 9 12

4. We define the angles 1 to 6 as shown in the diagram below. Then

/1=/2=/3, GO=GBandZ4+ A

/1 =90° = L2+ £6,s0 £6 = L4 =15
which implies CE = CO. Since ACOG ~
AFOC and FG || AB, we have

B D
AF _BG GO _CO_CE \ .
CF G CG CF CF’ 0 )

2

hence CE = AF. C G B

5. Since BD | MN, ADOC ~ ANPC, ABOC ~ ARPC, NABO
~ NAMP, NADO ~ NASP. therefore we have

PN _CP_PR PM_ AP _ PS
OD CO OB OB A0 DO’
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Therefore we have

PN OD PM OB A

PR OB’ PS OD

PN PM OD OB B b
PR PS OB OD’ "
PN-PM ¢
PR-PS

ie. PM - PN = PR - PS. M N P R S

Solutions To Testing Questions 14

Testing Questions (14-A)

BB’ - BC’
/ — / ! / A —
1. Connect B'C. From AB = BB', BC' = 3BC, [BB'C'] = 1B BC
-[ABC] = 3. Similarly,
[AA'B']  AA'-AB' 6 o
[ABC]  AC-AB 7
S [AA'B'l =6.
[CC'A)  CA-CC' 8
[ABC]  AC-BC
- [CC"A’l = 8. Thus, B
A'BC=3+6+8+1=18 A B!

2. Connect PO. Since PE, PF are the heights of ADPO and AAPQO, we can
use the area method for getting the sum of the two heights. Since DO =
AO,
B C
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(PE + PF)- AO = PE - DO + PF - AO = 2([DPO] + [APO))

1 12-5
= 3lABCD] = == = 30.

1
A0 = SV +122 =65,

60
S PE+PF=30+6.5= IES

3. Connect PA, PB, PC. Let the length of the side of AABC be a, then

[ABC] = [PAB] + [PBC] — [PAC]
= %(hla + hsa — hga) = 3a.

" [ABC] = ?&,;. a=4V3,
. [ABC] = 12V/3.

1 1 1
4. Let Abe areaof the AABC. Then A = §haa = §hbb = ihcc, therefore

24 24 24

Since 2b = a + wehave% = %_5_% ie 2 _1 + 1
ST e he ey ha e
5. Asshown in the digram below, we denote areas of the corresponding triangles
by S1, .52, 53,54, S5, S6 respectively. Then BD = 2DC = S3 = 255 =

8.
..iG_SQ+53 _4_S4+S5
"GE S8
oS4+ S5 = 4856.

S4+S5=2(SG+51):2S(3+6,
456:2SG+6:S6:3-
oS+ S5 =12,

”54 BF_SQ+S3

"S5 FA S +5S

:EZQ’
6
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we have Sy = 255, s0 S4 = 8, S5 = 4. Thus,

[ABC] =3+ 4+8+8+4+3=30.

AE
6. Let BC =a,CA = b, AB = c. By the theorem on angle bisector, Vool E,
a

be ab

therefore AE = JEC = . Similarly,
a—+c a—+c
be ac
AF = —— BF = ——
a+b’ a+0b’ A
ac ab
BD = —— = .
b+c’ b+c F E

[AFE] AF-AE
"[ABC] ~ AB-AC

— L imi B D C
“@thato Similarly,
[BDF]| ac [CED] ab
[ABC] ~ b+a)b+c) [ABC]  (ct+a)ct+b) "
[DEF)] be B ca ab

[ABC] L (a+b)(a+¢c) (b+a)b+c) (c+a)(ct+D)
_(a+Db)(b+c)(c+a) —be(b+c) — calc+ a) — ab(a + D)
N (a+b)(b+c)(c+a)
2abc
(a+b)(b+c)(c+a)

7. Connect AG, FD. Since AD || BC, we have [ABD] = [ACD],

. [EBD] = [EAD] + [ABD]
= [EAD] + [ACD)] = [EAC).

On the other hand, Since EF || BD,
[EBD] = [FBD] = [ACG],

. [EAC] = [ACG), . EG | AC.
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8. Lett,,tp, t. be the perpendicular distance of P from BC,C A, AB, and
ha, hy, he the heights on
BC,CA, AB, respectively.
ta b tc
e + Iy + I and
to [CPF] d
he [CAF] d+a’
o d te_ _d
hy d+b h. d+c’
4 + d + d =1
“d+a d+b dic
dl(b+d)(c+d)+ (a+d)(c+d)+ (a+d)(b+d)] = (a+d)(b+d)(c+d),
d[(ab + bc + ca) + 6(a + b+ c) + 27]
= abc+ 3(ab+ bc+ ca) +9(a + b+ ¢) + 27,
sabe=9(a+b+c)+54 =9 x 43 + 54 = 441.
9.

From C introduce C'D 1 AC, intersecting the extension of E'F at D.

-+ /ABE = /CED,

 RtAABE ~ RtACED, A
[CED] (CE\® 1 E
"[ABE] (AB) T4
and @ = A—B =2 F 7
CD~ AE _~ B v O
Since /ECF = 45° = /DCF, D

C'F is the angle bisector of ZDCE,

therefore the distance from F' to C'E is equal to that of F' to C'D, hence
[CEF) _CE

[CDF] = 07D = 2. Thus,

(CEF] = ;[CED] _ 2 LB =

1
4

Wl N
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Testing Questions (14-B)

1. Let CF, BF intersect DE, AE at P, () respectively. It suffices to show that
Sy = S¢ + So. Let hq, ho, hg be the heights of the triangles ABFE, FBC,

1
(h1 + hg3). Therefore

and D EC respectively, then hy = 2

1
S4+S5+Sli§h2~BC F D

1 A
= 0 +hs) - BC V

1 1
= M (2BE) + h3(2EC)

— (S6 + S5) + (S5 + Sh) S5 51
=S¢+ S2 + S5 + 51,

thus, we have Sy = Sg + So.

2. Extend AG to P such that AG = GP. Let AP and BC intersect at D, then
D is the midpoint of BC, and GD = DP = %AG. Therefore BGCP is a
parallelogram, BP = GC = 2.

" GB% + BP? = (2¢/2)? + 22
—12=GP?, /GBP = 90°,

.. BGC'P is arectangle,
. [BGC] = [BGCP]
=3-2:2V/2=2V2,
~.[ABC] = 3|BGC] = 6v/2. A C
3. Since 2P _ [ABD] _ [PBD] _ [ABD] — [PBD] _ [APB| and
’ DC [ACD] [PCD] [ACD] — [PCD] [CPA]
similarly,

CE [BPC] AF [CPA

EA ~ [APB]’ FB [BPC]’ "
BD CE AF F

""DC EA FB E
_ [APB] [BPC] [BPC] b

[CPA] [APB] [APB]
=1. B D C
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Note: When P, the point of intersection of three lines, is outside the tri-
angle ABC, the conclusion is still true, and it can be proven similarly.

4. Letx = [BOC),y = [COA], z = [AOB]. Since AAOC and AA’OC have

5.

equal altitudes and AAOB and AA’OB so are also,

AO  [AOC]  [AOB] B

OA"  [A'0C] [A’OB]
[AOC]+ AOB]  y+=z

T [AOC| +[A0B] T =z A
similarly, c’
BO z+4+x CO x+y )
oB  y oC' z A B’ C
Thus,

AO BO CO _ (z+y)(y+2)(x+=x)

OA’ OB’ 0OC' TYz

. y22 + —|—y22 + 2z 42?4+ xy2 + ya:2 + 2xyz

N TYZ

:2+y—|—z+x+z +x—|—y

z Y z

_ 40, BO  CO
oA T oB T oC

From D introduce DL || AC, intersecting PB at L. . AP = PD and
ANAPE ~ ADPL, NAAPE =2 ADPL.

+2=92+2=94

.PL=PE=3, BL=LE=6. ¢

.. D is the midpoint of BC.

From D introduce DK || AB, where D
Kison PC,then APDK = APAF,

. PF=1CF=5 CP=15 E
By the formula for median,
BC? +4PD?* = 2(PC? + PB?), A F B

BC? = 2(15% + 9?) — 122 = 468, i.e. BD? = 117 = 9?2 4+ 62 =
PB? + PD?, therefore PD | PB at P. Hence [BPD] = % -6 -9 = 27.
Based on the area of ABPD we can get [ABC as follows:

[CPD] = [BPD] = 27, [BPA] = [BPD] = 27, [APC] = [CPD] =
27, . [ABC]=4-27=108.
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Solutions To Testing Questions 15

Testing Questions (15-A)

1. The two divisions are as follows:

322 +6x+7
_ 3
x 2/ 3r° —5r +6 9 3 0 _5 6
323 — 622
622 — 5z + 6 6 12 14
622 — 12z
Tr 46 3 6 7 20
Tx — 14

20

The quotient is 323 + 62 + 7, and the remainder is 20.
2. Use synthetic division to calculate

(=62t — 72% + 8z +9) + (22 — 1).

1
We carry out (—62* — 72% + 82 + 9) + (v — 5) first. Then

3 —6 0 -7 8 9
3 -3 ¥ ¥
N Ak
Therefore
q(z) = —6a” —33:22— Zot = —32% — g:f - %x—l—l—:m: 8—87

3. By the factor theorem, 0 = f(—3) = 81 — 81 + 72 + 3k + 11, therefore

h=——.
3
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4. Since f(—1) = f(—2) =0, we have a — b = 3 and 2a — b = 9. By solving
them we have a = 6,b = 3.

5. From the remainder theorem, we have f(z) = (x — 1)q1(z) + 1.
Let ¢1(x) = (z — 2)g2(x) + 71, then

fl@)=(x—1)(z—2)g2(x) + r1(x — 1) + 1.
Since f(2) = 2, we have 1 + 1 = 2,i.e. 7, = 1, hence
f(@) = (& = 1)(z - 2)g2(x) + 2.
Let g2(z) = (z — 3)g3(x) + ro, then
f(z) = (x—1)(z —2)(z — 3)g3(x) + r2(z — 1)(z — 2) + .
Since f(3) = 3, we have 2r + 3 = 3, i.e. ro = 0. Thus,
f(@) = (= 1)(z—2)(z - 3)gs(z) + =,
the remainder of f () is  when divided by (z — 1)(z — 2)(z — 3).

6. Letx® —5qx + 4r = (z — 2)%(23 + az? + bx + ¢), then

x® — 5qr + 4r
=25+ (a—4)x* + (4 + b —4a)x® + (4a + c — 4b)x® + (4b — 4c)x + 4c,

therefore
a—4=0, 44b—4a=0, da+c—4b=0, 4b—4c = —bq, 4c=4r.

From them we have orderly a = 4,0 = 12,c=32,¢q = 16 and r = ¢ = 32.
Thus, ¢ = 16, r = 32.

7. Let f(x) = az® + bx? + cx + d. From assumptions,
f(z) = (2* = g (z) + 2z — 5 and
f@) = (2 = 4)ga(x) — 3z + 4.
Let z = =+1, it follows that

a+b+c+d = -3, (15.43)
—a+tb—c+d = -T. (15.44)

Let z = £2, it follows that

8a+4b+2c+d = -2, (15.45)
—8a+4b—2c+d = 10. (15.46)
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By (15.43) + (15.44) and (15.45) + (15.46), respectively, we obtain

b+d = -5, (15.47)
b+d = 4. (15.48)

Therefore, (15.48) — (15.47) yields b = 3 and d = —8. By substituting
back the values of b and d into (15.43) and (15.45), respectively, we obtain

ate = 2 (15.49)
da+c = -3. (15.50)

11
(15.50) — (15.49) yields a = 7%’ and from (15.49), ¢ = 3 Thus,

5 5, 11
f(z) = 3% + 3z + T 8.
8. Let f(x) = 23+ 72%+142+8. Since all the coefficients are positive integers,
f(x) = 0 has negative roots. 8 has negative divisors —1, —2, —4, —8, and
—1 is not a root, so we check if (x + 2) is a facor by factor theorem. From
f(=2) = -8+ 28 — 28 + 8 = 0, x + 2 is a factor. By synthetic division,
we obtain
f(x) = (z +2)(z* + 5z +4).

It is easy to see that 2% + 5z + 4 = (z + 1)(z + 4), so

23472 14 +8 = (x4 1) (z + 2)(x + 4).

9. The given expression is symmetric in z and y, so it can be expressed in the
basic symmetric expressions © = x + y and v = xy. Therefore

at +yt+ (z+y)!

= (@ +y?)? - 2222 + (2 +y)t = (u? — 20)% — 202 +u?t
= 2u* — 4u?v + 20% = 2(u* — 2u?v + v?) = 2(u? — v)?
=2((x +y)* —ay)® = 2(2? + y* + ay)*.

10. The given expression is a cyclic polynomial. Define f(z) = zy(z? — y?) +
yz(y? — 2%) + 22 (2% — 2%), where y, 2 are considered as constants, then

f) =yz(y® = 2°) + 2y(z* —y*) = 0,

sox —y),(y — z), (z — x) are three factors. Since the given polynomial
is homogeneous and has degree 4, the fourth factor is linear homogeneous
cyclic expression, so must be A(x + y + z). Hence

2

wy(2® —y*)+ya(y’ —2°) +20(2” —a?) = A(z+y+2) (2 —y) (y—2) (z—2).
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Letz =2,y =12=0,then6 = —6A4, i.e. A= —1. Thus,

2

wy(a® =) +yz(y® = 2%) +za(2* —2%) = (z+y+2)(@—y)(y—2)(@—2).

Testing Questions (15-B)

1. From f is a common factor of g and h, f is a common factor of 3g(x) —
h(z) = 42% — 122 + 4 = 4(2® — 3x + 1), so, by the factor theorem,

4(z* =3z +1) = A(2® +azx +b),

where A is a constant. By the comparison of the coefficient of 22, A = 4.
Thus a = —3,b=1,and f(x) = 22 — 3z + 1.

2. For f(y) =y™ — 1,since f(1) =0, so f(y) has factory — 1,i.e. y™ — 1 =
(y — 1)q(y). Let y = 23, we have

2 1= (@)™ 1= (2% - 1)q(z®) = (. — 1) (2 + = + 1)g(2?),

i.e. 2 + 2 + 11is a factor of 3™ — 1. Therefore 23" ! — z = x (23" — 1)
and 23P+2 — 32 = 22 (23 — 1) both have the factor 22 + x + 1 also. Thus,
x3m+x3n+l+x3p+2 _ ($3m_1)+(x3n+1_x)_’_(x3p+2_x2)+(x2+x+1)
has the factor z2 + z + 1.

3. From the given conditions we have f(a) = a, f(b) = b, f(c) = c. Let r(x)
be the remainder of f(z) when divided by (z — a)(x — b)(x —¢). If r(z) is
zero polynomial, the conclusion is proven.

Suppose that r(x) is not the zero polynomial, then its degree is not greater
than 2, and

fx) = (z = a)(z = b)(z = c)q(z) + (),

so r(a) = f(a) = a,r(b) = f(b) = b,r(c) = f(¢) = c. Thus, the
polynomial g(z) = r(x) — x has at least three distinct real roots a, b, c,
although its degree is not greater than 2. Thus, g(x) is equal to 0 identically,
ie. r(z) = x.

4. Let the given expression be P(x,y,z). Then P is cyclic. Consider it as a
polynomial f(x) of  only and let z = y, then

f) = —22) A +y*)(1+y2) + (2 —y*) L +y2)(1+y°) =0,
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5.

Solutions to Testing Questions

so (z—y), and hence (x —y)(y — z)(z — ) are factors of P. The remaining
factor is a cyclic polynomial of degree three (but it is non-homogeneous).
So

P(z,y,2) = (z—y(y—2)(z—2)[A@° +3° +2°)
+B(2%y + y?z + 2%x) + C(xy? + yz? + z2?)
+Dzxyz + E(2? + y? + 22) + F(ay + yz + 27)
+G(x +y+2) + HJ,

where A, B,C, D, E, F,G, H are the coefficients to be determined. Since
the highest index of each of x,y, z on the left hand side is 3, so in the
brackets the power of x,y, z cannot be greater than 1, hence A = B =
C=F=0.

The comparison of coefficients of z?y indicates that H = 0;
The comparison of coefficients of xy3 indicates that G = 1;
The comparison of coefficients of 23y? indicates that F' = 0.
Therefore the right hand side is only (z—v)(y—2) (2 —x)(z+y+2+ Dzxyz).
Letting x = 3,y = 2,z = 1, then
—24=-2(64+6D) = D =1.
Thus, the factorization of the given expression is

(z—y)(y—2)(z —z)(x +y+ 2z +zy2).

The given conditions gives that
f(z) = 2® 4+ 22° + 32 + 2 = g(x) - h(z) + h(z) = h(z)[g(z) + 1].

It is easy to find that f(—1) = 0, so f(z) has the factor 2 + 1. By synthetic
division, we obtain

23+ 222 + 3z +2
=@+)@®>+2+2)=(z+D[(@*>+x+1)+1]
=@ +z+D)(+1)+ (z+1).

Since h is not a constant, and its degree is less than that of g, so it must be a
linear polynomial, and g is a quadratic polynomial with integer coefficients.
Thus,

gx)=2*+2+1, hir)=z+1

satisfy all the requirements. Since the coefficient of 22 is 1, and all the
coefficients of g are integers, the solution is unique.
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