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Preface to Volume 2

Introductory notes on Volume 2 appear in the general introduction in
Volume 1, so we confine ourselves to several remarks of a more technical na-
ture. Chapter 6 has partly an auxiliary character; yet, I hope, the reader
will find a lot of interesting and useful things also in this chapter. It con-
tains a brief exposition of the basic facts about Borel and Baire sets and
Souslin spaces, including several measurable selection theorems. Chapter 7
is devoted to measures on topological spaces. Among the diverse classes of
measures discussed here, Radon measures are the most important. Along
with the properties of measures, we study the properties of the correspond-
ing functionals on spaces of functions, in particular, the Riesz theorem and
its generalizations. In spite of the considerable length of this chapter (the
longest in the book), the subsequent chapters use a relatively small number
of its results and constructions. Chapter 8 gives a modern presentation of
the theory of weak convergence of measures. In particular, we consider met-
rics and topologies on spaces of measures and weak compactness. Chapter 9
is concerned with nonlinear transformations of measures and isomorphisms
of measure spaces, including the theory of Lebesgue–Rohlin spaces. Finally,
Chapter 10 is devoted to conditional measures and conditional expectations.
In addition to the classical results and various subtleties related to these ob-
jects, we give a brief introduction to the theory of martingales (at a level
meeting the basic needs of measure theory) and present a number of results
from ergodic theory that are directly linked to measure theory and illustrate
its ideas and methods. All these chapters are almost independent in the tech-
nical sense (so that they can be read selectively with minimal reference to the
previous material or can be used for preparing various special courses), but,
as one can easily observe, in the sense of ideas they are all strongly connected
and altogether form the foundations of modern measure theory. The study of
various transformations of measures is the leitmotiv of this volume.

The numeration of chapters continues the numeration of Volume 1. The
references to assertions, remarks, and exercises comprise the chapter number,
section number, and assertion number. For example, Definition 1.1.1 is found
in �1 of Chapter 1 (i.e., in Volume 1), and within each section all the assertions
are numbered consecutively independently of their type. The numeration of
formulas is organized similarly, but the formula numbers are given in brackets.



vi Preface

The bibliographical and historical comments on this volume concern only
the chapters in this volume, but on several occasions they interrelate with the
comments in Volume 1. It is reasonable to consider all the comments as one
essay presented in two parts. At the end of this volume the reader will find
the cumulative bibliography for both volumes, in which the works cited only
in Volume 1 are marked by the asterisk (without indication of pages where
they are cited), and in the works cited in both volumes, the page numbers
referring to Volume 1 and Volume 2 are preceded by I and II, respectively;
the absence of such indicators means that the work is cited only in the present
volume.

The book is completed by the cumulative author and subject indices to
both volumes, where the page numbers referring to Volume 1 and Volume 2
are preceded by I and II, respectively.

Finally, knowledge of all the material of Volume 1 is not assumed in this
volume. For most of this volume it is enough to be acquainted with the basic
course from Volume 1; however, it is necessary to be familiar with the standard
university course of functional analysis including elements of general topology.
In those cases where we have to resort to the results in the complementary
material of Volume 1, the exact references are provided. Some additional
necessary facts are presented in the appropriate places.

Comments and remarks can be sent to vibogach@mail.ru.

Moscow, August 2006 Vladimir Bogachev
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CHAPTER 6

Borel, Baire and Souslin sets

Now we have already not a single mathematical space, but
infinitely many of them, and it is unknown which one is the
most adequate model of the space of the physical reality. So
one has to construct samples of different spaces in an analytical
way.

A.N. Kolmogorov. Modern controversies on the nature of

mathematics.

6.1. Metric and topological spaces

In this section, we recall the basic concepts related to topological spaces
and prove several facts necessary for the sequel. In addition, we give some
examples of topological spaces interesting from the point of view of measure
theory. Our presentation is oriented towards a reader acquainted with metric
spaces, but without topological background. The information given here is
sufficient for understanding the main part of the text (it is most important to
be familiar with the concepts of compactness and continuity). However, the
reader is warned that for mastering a number of more special examples and
many complementary results in �6.10 and the concluding sections in other
chapters, it is necessary to have at least minimal topological background (in
spite of the fact that formally all the necessary concepts are introduced).
More details can be found in Kuratowski [1082], Engelking [532]. The term
“a topological space (X, τ)” denotes a set X with a family τ of its subsets
containing X and the empty set and closed with respect to finite intersections
and arbitrary unions. The sets in the family τ are called open. Actually a
shorter term “a topological space X” is used, which means, of course, that the
family of open sets τ (called a topology in X) is fixed. One has to indicate
a topology explicitly when on the same set X several different topologies
are introduced. Such a situation will be encountered below. A base of the
topology is a family of open sets such that every nonempty open set is a union
of some sets in this family.

A neighborhood of a point in a topological space is any open set containing
this point. A point x in a set A is called isolated if it has a neighborhood not
containing other points from A. A point a is called a limit point of the set A
if every neighborhood of a contains a point b �= a from A.
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A set in a topological space is called closed if its complement is open. The
closure of a set A in a topological space X is defined as the intersection of all
closed sets containing A (i.e., the smallest closed set containing A).

Every subset X0 of a topological space X is a topological space with the
induced topology that consists of all sets U ∩X0, where U is open in X.

An important subclass of topological spaces is the class of metric spaces.
We recall that a metric space (X, �) is a set X endowed with a function
� : X2 → [0,+∞) (called a metric) possessing the following properties:

(1) �(x, y) = 0 precisely when x = y;
(2) �(x, y) = �(y, x) for all x, y ∈ X;
(3) �(x, z) ≤ �(x, y) + �(y, z) for all x, y, z ∈ X.
Let a be a point in a metric space (X, �) and r > 0. The sets

{x ∈ X : �(x, a) < r} and {x ∈ X : �(x, a) ≤ r}

are called the open and closed balls, respectively, with the center a and ra-
dius r.

It is readily verified by using property (3) that the family of all open sets
in a metric space X (i.e., sets in which every point is contained with some
ball of a positive radius centered at that point) satisfies the above axioms
of a topological space. Below we encounter many important examples of
topological spaces whose topology is not generated by a metric.

A topological space (X, τ) is called metrizable if there is a metric on X
such that the collection of all open sets for this metric is precisely τ .

It is worth noting that essentially different metrics may generate the same
topology. For example, the usual metric on IR1 generates the same topology
as the bounded metric �(x, y) = |x− y|/(1 + |x− y|).

A locally convex space is a linear space X equipped with a family of
seminorms pα, α ∈ A, such that for every x �= 0 there is pα with pα(x) > 0.
Such a family generates a topology on X whose base consists of the sets

Ux0,α1,...,αn,ε :=
{
x ∈ X : pαi(x− x0) < ε, i = 1, . . . , n

}
, ε > 0.

Some special cases have already been considered in Chapter 4. Complete
metrizable locally convex spaces are called Fréchet spaces.

A mapping f from a topological space X to a topological space Y is called
continuous at a point x if, for every nonempty open set W containing f(x),
there exists a nonempty open set U containing x such that f(U) ⊂W . A map-
ping is called continuous if it is continuous at every point. It is left to the
reader to verify that the continuity of a mapping f : X → Y is equivalent to
the following: for every open set W ⊂ Y , the set f−1(W ) is open in X, or,
equivalently, for every closed set Z ⊂ Y , the set f−1(Z) is closed in X. Note,
however, that the image of an open set may not be open. A mapping is called
open if it takes every open set to an open one. The class of all continuous
mappings from X to Y is denoted by C(X,Y ); if Y = IR1, then this class
is denoted by C(X). The set of all bounded functions in C(X) is denoted
by Cb(X). It is easily verified that Cb(X) is a Banach space with the norm
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‖f‖ = supx∈X |f(x)|. A family F of functions on a topological space X is said
to be equicontinuous at a point x if for every ε > 0, there is a neighborhood
U of x such that |f(x) − f(y)| < ε for all y ∈ U and all f ∈ F . A family
F of functions on a locally convex space X is said to be uniformly equicon-
tinuous if for every ε > 0, there is a neighborhood of zero U in X such that
|f(x)−f(y)| < ε for all f ∈ F if x−y ∈ U . Both notions are similarly defined
for mappings with values in metric or locally convex spaces or mappings on
metric spaces.

In the study of topological spaces, the concept of a net is very useful. This
concept generalizes that of a sequence to the case of an uncountable index set.

A nonempty set T is called directed if it is equipped with a partial order
(see �1.12(vi)) satisfying the following condition: for each t, s ∈ T , there exists
u ∈ T with t ≤ u and s ≤ u.

A directed set may contain elements that are not comparable. For ex-
ample, IR2 can be equipped with the partial order (x, y) ≤ (u, v) defined by
x ≤ u, y ≤ v. Clearly, not all elements are comparable, but every two are
majorized by a certain third element.

A net in X is a family of elements {xt}t∈T in X indexed by a directed
set T . Similarly, we define a net of sets {Ut}t∈T in X. A net {xt}t∈T is called
a subnet of a net {ys}s∈S if there is a mapping π : T → S such that xt = yπ(t)

and, for each s0 ∈ S, there exists t0 ∈ T with π(t) ≥ s0 for all t ≥ t0. A net
of sets {At}t∈T in a space X is called decreasing if At ⊂ As whenever s ≤ t.
Such a net is called decreasing to the set

⋂
t∈T At. A net of real functions

{ft}t∈T on a space X is called decreasing if ft ≤ fs whenever s ≤ t. Similarly,
one defines increasing nets of sets and functions. In the case of an increasing
net of sets At one says that it increases to the set

⋃
t∈T At. The corresponding

notation: At ↓ A, At ↑ A, ft ↓ f , ft ↑ f . A net {xt}t∈T in a topological space
X converges to an element x if, for every nonempty open set U containing x,
there exists an index t0 such that xt ∈ U for all t ∈ T with t0 ≤ t. Notation:
lim
t
xt = x. It is worth noting that convergence of a countable net is not the

same as convergence of a sequence. For example, let T = Z be equipped with
the usual ordering and let xn = n−1 if n ≥ 0 and xn = n otherwise. Then the
countable net {xn} converges to zero, but is not even bounded. The following
simple fact is left as Exercise 6.10.20.

6.1.1. Lemma. Let X and Y be two topological spaces. A mapping
f : X → Y is continuous at a point x precisely when for every net xα conver-
gent to x, the net f(xα) converges to f(x).

The reasoning analogous to the proof of this lemma shows that every
point x in the closure of a set A in a topological space X is either an isolated
point of A or the limit of some net of points in A (such points are called limit
points or cluster points of A).

A mapping f : X → Y between topological spaces is called a homeo-
morphism if it maps X one-to-one on Y and both mappings f and f−1 are
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continuous. Topological spaces between which there is a homeomorphism are
called homeomorphic.

An important role in the theory of topological spaces is played by diverse
separation axioms. We need only the few simplest ones listed below.

6.1.2. Definition. Let X be a topological space. (i) X is called Hausdorff
if every two distinct points in X possess disjoint neighborhoods.

(ii) A Hausdorff space X is called regular if, for every point x ∈ X and
every closed set Z in X not containing x, there exist disjoint open sets U
and V such that x ∈ U , Z ⊂ V .

(iii) A Hausdorff space X is called completely regular if, for every point
x ∈ X and every closed set Z in X not containing x, there exists a continuous
function f : X → [0, 1] such that f(x) = 1 and f(z) = 0 for all z ∈ Z.

(iv) A Hausdorff space X is called normal if, for all disjoint closed sets
Z1 and Z2 in X, there exist disjoint open sets U and V such that Z1 ⊂ U and
Z2 ⊂ V .

(v) A Hausdorff space is called perfectly normal if every closed set Z ⊂ X
has the form Z = f−1(0) for some continuous function f on X.

Sets of the form indicated in (v) are called functionally closed.
It is clear that any metric space satisfies all conditions (i)–(v). For exam-

ple, for f in (v) one can take f(x) = dist(x,Z), where the distance dist(x,Z)
from the point x to the set Z is defined as the infimum of distances from x to
points in Z. Throughout we consider only Hausdorff spaces.

6.1.3. Lemma. For any nonempty disjoint closed sets Z1 and Z2 in
a metric space, there exists a continuous function f such that Z1 = f−1(0)
and Z2 = f−1(1).

Proof. Let fi(x) = dist(x,Zi) and f = f1/(f1 + f2). �

In addition to the regularity properties, topological spaces may differ in
the following properties related to covers. An open cover of a set is a collection
of open sets the union of which contains this set.

6.1.4. Definition. (i) A Hausdorff space X is called compact if every
open cover of X contains a finite subcover. If this is true for countable covers,
then X is called countably compact. A countable union of compact sets is called
a σ-compact space.

(ii) A Hausdorff space X is called Lindelöf if every open cover of X con-
tains an at most countable subcover.

(iii) A Hausdorff space X is called paracompact if in every open cover
{Uα} of X one can inscribe a locally finite open cover {Wβ}, i.e., every point
has a neighborhood that meets only finitely many sets Wβ. A space X is
called countably paracompact if the indicated property is fulfilled for all at
most countable open covers {Uα}.

(iv) A Hausdorff space X is called sequentially compact if every infinite
sequence in X has a convergent subsequence.
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Sets with compact closure (i.e., subsets of compact sets) are called rela-
tively compact. In metrizable spaces (unlike general spaces), the compactness
and countable compactness of a set K are equivalent and are also equivalent
to the sequential compactness of K.

Note that sometimes in the definition of Lindelöf spaces one includes that
the space must be regular. The properties to be Lindelöf or paracompact are
not inherited by subsets. If in a space X every subset possesses one of the
listed properties, then that property is called hereditary. For example, X is
hereditary Lindelöf provided that every collection of open sets in X contains
an at most countable subcollection with the same union. Among the listed
classes of topological spaces the most important for applications in measure
theory are compact and completely regular spaces. Also frequent are locally
compact spaces, i.e., spaces in which every point has a neighborhood with
compact closure.

6.1.5. Lemma. Let K be a nonempty compact set in a completely reg-
ular space X and let U be an open set containing K. Then, there exists a
continuous function f : X → [0, 1] such that f |K = 1 and f |X\U = 0.

The proof is delegated to Exercise 6.10.21.
Let X be a completely regular space. Then there exists (and is unique)

a compact space βX called the Stone–Čech compactification of the space X
such that X is homeomorphically embedded into βX as a dense subset and
every bounded continuous function on X extends to a continuous function on
βX (see Engelking [532, �3.6]). A completely regular space is called Čech
complete if it is a Gδ-set (i.e., a countable intersection of open sets) in βX.
Polish spaces (see below) and locally compact spaces are Čech complete.

Let Xt be a family of nonempty topological spaces parameterized by in-
dices t from some nonempty set T . The product X =

∏
t∈T Xt of the spaces

Xt has a natural topology (called the product topology) consisting of all pos-
sible unions of the products of the form Ut1×. . . Utn×

∏
t�=ti Xt, where Uti is

an open set in Xti .
If Xt = X for all t ∈ T , then the product of the spaces Xt is denoted

by XT . This space is naturally identified with the space of all mappings
x : T → X. Under this identification, the product topology becomes the
topology of pointwise convergence. If T = IN, then the corresponding prod-
uct is denoted by X∞. An important example is the space IR∞ of all real
sequences x = (xn). The countable product of metric spaces Xn with metrics
�n is metrizable by the metric

�(x, y) =
∞∑

n=1

2−n
�n(xn, yn)

�n(xn, yn) + 1
.

It is readily verified that if all Xn are complete separable metric spaces,
then so is their product with the above metric. For example, IR∞ is a complete
separable metric space.
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One of the simplest examples of infinite products (but very important for
measure theory) is the countable power IN∞ of the set of natural numbers,
i.e., the set of all infinite sequences ν = (νi) of natural numbers. Convergence
in IN∞ is just coordinate-wise convergence. As above, we equip IN∞ with the
metric

�(ν, µ) =
∞∑

j=1

2−j
|nj −mj |

|nj −mj |+ 1
, ν = (nj), µ = (mj). (6.1.1)

6.1.6. Theorem. (R. Baire) The space IN∞ with the product topology is
homeomorphic to the space R of all irrational numbers in (0, 1) (or in IR1)
with its usual topology.

Proof. For every ν = (ni) ∈ IN∞, let h(ν) :=
∑∞
k=1 2−n1−···−nk . It is

readily seen that h is a homeomorphism between IN∞ and the complement of
the countable set M of binary rational numbers in [0, 1]. It remains to observe
that there is homeomorphism h0 of [0, 1] such that h2(M) = Q ∩ [0, 1]; see
Engelking [532, 4.3H, p. 279]. �

6.1.7. Corollary. The space IN∞ contains a closed subspace that can be
continuously mapped one-to-one onto IR1.

Proof. The space IN∞ is homeomorphic to IN∞× IN, and the closed
subspace IN∞×{1} of IN∞× IN is homeomorphic to the space of irrational
numbers. We add to IN∞×{1} the set of all points of the form (n, 1, 1, . . .)×{2},
which is closed, countable, and disjoint with IN∞×{1}. This additional set can
be continuously mapped one-to-one onto the space of rational numbers. �

Another useful example for measure theory is the countable power of the
two-point set.

6.1.8. Example. The Cantor set C is homeomorphic to {0, 1}∞.

A justification is left as Exercise 6.10.25. Uncountable products are non-
metrizable, excepting the case where at most countably many factors are
singletons (see Exercise 6.10.23). The following important result is called
Tychonoff’s theorem; see [532, Theorem 3.2.4].

6.1.9. Theorem. If nonempty spaces Xt are compact, then their product
is compact as well.

Now we introduce a class of spaces that is very important for measure
theory.

6.1.10. Definition. A topological space homeomorphic to a complete
separable metric space is called Polish. The empty set is also included in the
class of Polish spaces.

6.1.11. Example. Every open or closed subset of a Polish space is
Polish.
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Proof. We have to show that every set Y that is either open or closed in
a complete separable metric space X can be equipped with a metric generating
the original topology and making Y a complete space (clearly, it remains
separable). In the case of a closed set the metric of X works, and if Y is open,
then we take the metric

�0(x, y) = �(x, y) +
|dist(x,X\Y )− dist(y,X\Y )|

|dist(x,X\Y )− dist(y,X\Y )|+ 1
.

The verification of the fact that we obtain the required metric is left as a
simple exercise. �

We recall that countable intersections of open sets are called Gδ-sets or
sets of the type Gδ. Countable unions of closed sets are called Fσ-sets. The
above example is a special case of a general result (see Engelking [532, The-
orem 4.3.23, Theorem 4.3.24]), according to which any Gδ-set in a complete
metric space is metrizable by a complete metric and, conversely, if a subspace
of a metric space is metrizable by a complete metric, then this subspace is
a Gδ-set. Polish spaces have the following characterizations (proofs can be
found in Engelking [532, Theorem 4.2.10, Theorem 4.3.24, Corollary 4.3.25]).

6.1.12. Theorem. (i) Polish spaces are precisely the spaces that are
homeomorphic to closed subspaces in IR∞.

(ii) Every separable metric space X is homeomorphic to a subset of [0, 1]∞,
and if X is complete, then this subset is a Gδ-set.

6.1.13. Theorem. Every nonempty complete separable metric space is
the image of IN∞ under a continuous mapping.

Proof. Let us equip IN∞ with the metric (6.1.1). We represent the
given space X in the form X =

⋃∞
j=1E(j), where the sets E(j) are closed

(not necessarily disjoint) of diameter less than 2−3. By induction, for every k,
we find a closed set E(n1, . . . , nk) of diameter less than 2−k−2 with

E(n1, . . . , nk) =
∞⋃

j=1

E(n1, . . . , nk, j).

For every ν = (ni) ∈ IN∞, the closed sets E(n1, . . . , nk) are decreasing and
have diameters less than 2−k−2. Hence they shrink to a single point denoted
by f(ν). Note that f(IN∞) = X. Indeed, every point x belongs to some
set E(n1), then to E(n1, n2) and so on, which yields an element ν such that
f(ν) = x. In addition, f is locally Lipschitzian. Indeed, let � be the metric
in X. If �(ν, µ) < 1/4, then there exists k with 2−k−2 ≤ �(ν, µ) < 2−k−1.
Then νi = µi if i ≤ k. Hence f(µ) and f(ν) belong to E(n1, . . . , nk), whence
we obtain �

(
f(µ), f(ν)

)
< 2−k−2 ≤ �(µ, ν). Thus, f is continuous. �

6.1.14. Corollary. Every nonempty Polish space is the image of IN∞

under a continuous mapping.
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Certainly, such a mapping may not be injective (e.g., in the case of a finite
space). But every Polish space without isolated points can be represented as
the image of IN∞ under an injective continuous mapping (see Rogers, Jayne
[1589, �2.4]). For injective mappings we have the following.

6.1.15. Theorem. For any Polish space X, one can find a closed set
Z ⊂ IN∞ and a one-to-one continuous mapping f of the set Z onto X.

Proof. By Theorem 6.1.12, we may assume that X is a closed subspace
in IR∞. By Corollary 6.1.7, there exists a closed set E ⊂ IN∞ that can
be mapped continuously and one-to-one onto IR1. Then E∞ is closed in
the countable power of IN∞ and admits a continuous one-to-one mapping
onto IR∞. Since the countable power of IN∞ is homeomorphic to IN∞ and the
preimage of a closed set under a continuous mapping is closed, we obtain the
required representation. �

A mapping mentioned in the above theorem may not be a homeomorphism
(i.e., the inverse mapping may be discontinuous). For example, the set R of
irrational numbers (we recall that R is homeomorphic to IN∞) contains a
closed set that can be mapped continuously and one-to-one onto [0, 1], but
such a mapping cannot be a homeomorphism because R contains no intervals.

By a modification of the proof of Theorem 6.1.13 one establishes the
following lemma (see Kuratowski [1082, �36] and Exercise 6.10.33).

6.1.16. Lemma. Every nonempty complete metric space without isolated
points contains a subset homeomorphic to IN∞.

Nonempty closed sets without isolated points are called perfect.

6.1.17. Proposition. Any two bounded perfect nowhere dense sets on
the real line are homeomorphic. In particular, every set of this type is home-
omorphic to the Cantor set and has cardinality of the continuum.

Proof. Let E ⊂ [0, 1] be a set of this type and let 0, 1 ∈ E. We construct
a homeomorphism h of [0, 1] that maps the Cantor set C onto E. To this end,
we enumerate the countable family U of disjoint open intervals complementary
to E in [0, 1] as follows. Let U1,1 ∈ U be an interval of the maximal length.
Next we pick an interval U2,1 ∈ U of the maximal length on the left from
U1,1 and an interval U2,2 ∈ U of the maximal length on the right from U1,1.
We proceed by induction and, for every n, obtain 2n−1 open intervals Un,k
that have the same mutual disposition as the intervals Jn,k which appear in
the construction of the Cantor set. Clearly, this process exhausts all intervals
in U . Let h be an affine homeomorphism between Jn,k and Un,k for all n, k, so
h is an increasing function that maps [0, 1]\C homeomorphically onto [0, 1]\E.
It is readily seen that h extends uniquely to a homeomorphism of [0, 1] by the
formula h(t) = inf{h(u) : u �∈ C, u > t}. �

In measure theory, the following representation of metrizable compacts,
obtained by P.S. Alexandroff, is useful. A simple proof is found in many
books; see Engelking [532, 4.5.9, p. 291].
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6.1.18. Proposition. Any nonempty metric compact K is a continuous
image of some compact set K0 in [0, 1]. Moreover, one can take for K0 the
Cantor set C.

Let us give examples of more exotic topological spaces useful for con-
structing various counter-examples in measure theory.

6.1.19. Example. The Sorgenfrey line Z is defined as the real line
with the topology whose base consists of all intervals [x, r), where x is a real
number, r is a rational number and x < r. The Sorgenfrey interval [0, 1) is
equipped with the same topology. Similarly, the Sorgenfrey plane Z2 is the
plane with the topology generated by the rectangles [a, b)×[c, d). Usual open
sets on the real line (or in the plane) are open in the Sorgenfrey topology,
since every interval (a, b) is the union of the sets [a+ 1/n, b).

The Sorgenfrey line has the following properties, see Arkhangel’skĭı, Pono-
marev [68], Engelking [532], Steen, Seebach [1774]:

(1) the space Z is not metrizable, but it is Lindelöf, paracompact and
perfectly normal, and every point has a countable base of neighborhoods;

(2) every compact subset of Z is at most countable.
The set D of all points of the form (x,−x) in the Sorgenfrey plane is closed

and is discrete in the induced topology, i.e., every point is open in the induced
topology. This follows by the equality (x,−x) = D ∩ [x, x+ 1)×[−x,−x+ 1).

6.1.20. Example. Let X = C0

⋃
C1 ⊂ IR2, where

C0 = {(x, 0) : 0 < x ≤ 1} and C1 = {(x, 1) : 0 ≤ x < 1}.
Let us equip X with the topology generated by the base consisting of all sets
of one of the following two types:

{
(x, i) ∈ X : x0 − 1/k < x < x0, i = 0, 1

}
∪ {(x0, 0)},

where 0 < x0 ≤ 1, k ∈ IN, and
{

(x, i) ∈ X : x0 < x < x0 + 1/k, i = 0, 1
}
∪ {(x0, 1)},

where 0 ≤ x0 < 1, k ∈ IN. The space X is called “two arrows of P.S. Alexan-
droff” (or “two arrows”, “double arrow”) and has the following properties:

(i) X is a compact space;
(ii) X is perfectly normal and hereditary Lindelöf;
(iii) X is a non-metrizable separable space, in which every point has a

countable base of neighborhoods. Every metrizable subset of X is at most
countable;

(iv) the natural projection of X onto [0, 1] (with the usual topology) is
continuous.

See Arkhangel’skĭı, Ponomarev [68, p. 146] or Engelking [532, 3.10C] for
a proof and Exercise 6.10.87 for an alternative description of this topology.

6.1.21. Example. Let Ω be an ordinal number. The set of all ordinals
α with α ≤ Ω is denoted by [0,Ω]. It is equipped with the order topology, the
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base of which consists of all sets of the form {x < α}, {α < x < β}, {x > α},
where α, β ≤ Ω. The space [0,Ω) with the deleted point Ω is equipped with the
induced topology. The space [0,Ω] is compact. Indeed, given its open cover
{Ut}t∈T , we consider the set M of all x ≤ Ω such that the closed interval
[0, x] is not covered by finitely many elements of the given cover. Since [0,Ω]
is well-ordered, M contains the smallest element x0. There exists t0 with
x0 ∈ Ut0 . It is easy to see that there exists an element y ∈ [0, x0) ∩ Ut0 (if x0

is the minimal element in Ut0 , then x0 has an immediate predecessor, which
leads to a contradiction). Then y �∈ M and there exist t1, . . . , tn ∈ T such
that [0, y] ⊂

⋃n
i=1 Uti . Hence [0, x0] ⊂

⋃n
i=0 Uti , i.e., x0 �∈M .

6.2. Borel sets

One of the most frequently used σ-algebras on a topological space X is the
Borel σ-algebra generated by all open sets; it is denoted by the symbol B(X).
It is clear that B(X) is generated by all closed sets, too. The sets in B(X)
are called the Borel sets in the space X. The property of a set to be Borel
depends on the space in which it is considered. For example, one always has
X ∈ B(X).

Borel sets owe the name to the classical works of E. Borel [230], [234].

6.2.1. Definition. Let X and Y be topological spaces. A mapping
f : X → Y is called Borel (or Borel measurable) if f−1(B) ∈ B(X) for all
sets B ∈ B(Y ).

6.2.2. Lemma. Every continuous mapping between topological spaces is
Borel measurable.

Proof. Let X,Y be topological spaces and let f : X → Y be a con-
tinuous mapping. Denote by E the class of all sets B ∈ B(Y ) such that
f−1(B) ∈ B(X). Obviously, the class E is a σ-algebra and by the continuity
of f it contains all open sets (we recall that the preimage of any open set
under a continuous mapping is open). Therefore, E = B(Y ). �

6.2.3. Lemma. Let (X,A) be a measurable space, let E be a separable
metric space, and let f : X → E be measurable, i.e., f−1(B) ∈ A for all
B ∈ B(E). Then, there exists a sequence of measurable mappings fn with an
at most countable range uniformly convergent to f .

Proof. For every n we cover E by a finite or countable collection of balls
of diameter less than 1/n. From this collection we construct a cover of E by
disjoint Borel sets Bn,k, k ∈ IN, of diameter less than 1/n. Next we choose in
every Bn,k a point ck and let fn(x) = ck if x ∈ f−1(Bn,k). Then the distance
between fn(x) and f(x) does not exceed 1/n for all x. �

6.2.4. Lemma. Let X be a topological space and let Y be a subset of X
with the induced topology. Then B(Y ) = {B ∩ Y : B ∈ B(X)}.

In particular, for all Y ∈ B(X) we have B(Y ) = {B ∈ B(X) : B ⊂ Y }.
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Proof. Let E := {E ⊂ Y : E = B∩Y, B ∈ B(X)}. It is easy to see that
E is a σ-algebra. By the definition of the induced topology, all open sets in
the space Y belong to E because they are intersections of Y with open sets
in X. Hence B(Y ) ⊂ E . On the other hand, the class E0 of all sets B ∈ B(X)
such that B ∩ Y ∈ B(Y ), is a σ-algebra too and contains all open sets in X.
So B(X) ⊂ E0, which completes the proof. The last claim is obvious. �

Let us consider certain elementary properties of Borel mappings.

6.2.5. Lemma. Let (Ω,A) be a measurable space and let T be a metric
space (or, more generally, a perfectly normal space, i.e., a space in which every
closed set is the set of zeros of a continuous function). A mapping f : Ω → T
is measurable with respect to the σ-algebras A and B(T ) precisely when for
every continuous real function ψ on T , the function ψ ◦ f is measurable with
respect to A.

Proof. The necessity of the above condition is obvious, since ψ−1(U)
is open in T for any open U ⊂ IR1. For the proof of the converse we verify
that f−1(Z) ∈ A for every closed set Z ⊂ T . We observe that Z has the
form Z = ψ−1(0) for some continuous function ψ (if T is perfectly normal,
then this is true by definition, in the case of a metric space one can take
ψ(x) = dist(x,Z)). Now we obtain f−1(Z) = (ψ ◦ f)−1(0) ∈ A. �

6.2.6. Corollary. Suppose that in the situation of Lemma 6.2.5 the map-
ping f : Ω → T is the pointwise limit of a sequence of measurable mappings
fn : (Ω,A) →

(
T,B(T )

)
. Then f is measurable with respect to A and B(T ).

6.2.7. Corollary. The statement of the previous corollary remains valid
if Ω is a topological space with the Borel σ-algebra and the mappings fn are
continuous.

The last corollary may fail for arbitrary completely regular spaces T . Let
us consider the following example of R.M. Dudley.

6.2.8. Example. Let T be the space of all functions f from [0, 1]
to [0, 1] equipped with the topology of pointwise convergence. According
to Tychonoff’s theorem, T is compact. Let us take for Ω the interval [0, 1]
with the Borel σ-algebra. Let fn : Ω → T be defined by the formula

fn(ω)(s) = max(1− n | ω − s |, 0), ω ∈ Ω, s ∈ [0, 1].

The mappings fn converge pointwise to the mapping f : ω �→ I{ω}, i.e.,
f(ω)(s) = 1 if s = ω and f(ω)(s) = 0 if s �= ω. Each mapping fn is continu-
ous, hence measurable if T is equipped with the Borel σ-algebra, but f is not
measurable. Indeed, the set UC =

⋃
ω∈C{x ∈ T : x(ω) > 0} is open in T for

every subset C ⊂ Ω, and f−1(UC) = C. Let C be a non-Borel set. Then the
preimage of UC is not measurable.

6.2.9. Proposition. Let X be a metric space and let E be some class
of subsets of X containing all open sets and closed with respect to countable
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unions of pairwise disjoint sets and countable intersections. Then E contains
all Borel sets.

Proof. Follows by Theorem 1.12.2. �

6.2.10. Definition. (i) An isomorphism of two measurable spaces (X,A)
and (Y,B) is a one-to-one mapping j : X → Y such that j(A) = B and
j−1(B) = A.

(ii) A measurable space (S,B) is called standard if it is isomorphic to the
space

(
M,B(M)

)
for some Borel set M in a Polish space.

Sometimes standard measurable spaces are called standard Borel spaces.
We shall see below that there are only two non-isomorphic classes of standard
measurable spaces of infinite cardinality: countable and uncountable.

Let us prove the following interesting result of Kuratowski on extensions
of isomorphisms (see also Kuratowski [1082, �35, VII]).

6.2.11. Theorem. Let X and Y be Polish spaces, A ⊂ X, B ⊂ Y ,
and let f : A→ B be a Borel isomorphism, i.e., a one-to-one Borel mapping
such that f−1 is Borel measurable provided that A and B are equipped with
the induced Borel σ-algebras. Then, one can find two sets A∗ ∈ B(X) and
B∗ ∈ B(Y ) and a Borel isomorphism f∗ : A∗ → B∗ such that A ⊂ A∗,
B ⊂ B∗ and f∗|A = f .

Proof. Let g := f−1 : B → A. Clearly, one can find Borel mappings
f∗ : X → Y and g∗ : Y → X such that f∗|A = f and g∗|B = g. Let us set
A∗ :=

{
x ∈ X : g∗

(
f∗(x)

)
= x

}
, B∗ :=

{
y ∈ Y : f∗

(
g∗(y)

)
= y

}
. It is readily

seen that A∗ and B∗ are Borel sets and f∗ is a Borel isomorphism between
them. �

6.3. Baire sets

Another important σ-algebra on a topological space X is generated by all
sets of the form

{x ∈ X : f(x) > 0},
where f is a continuous function on X. This σ-algebra is called the Baire σ-
algebra and is denoted by Ba(X). It is clear that this is the smallest σ-algebra
with respect to which all continuous functions on X are measurable. The same
σ-algebra is generated by the class of all bounded continuous functions. The
sets in Ba(X) are called the Baire sets in the space X. Baire sets owe the
name to the classical works of R. Baire [93], [94] on the theory of functions.

The sets of the form {x ∈ X : f(x) > 0}, where f ∈ C(X), are called
functionally open and their complements are called functionally closed.

In a metric space, any closed set is the set of zeros of a continuous function.
Hence the Borel and Baire σ-algebras of a metric space coincide. Below we
discuss other cases of coincidence and give examples of non-coincidence. The
following lemma is obvious from the fact that every closed set on the real line
has the form f−1(0), f ∈ C(IR1).
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6.3.1. Lemma. A set U is functionally open precisely when it has the
form U = ϕ−1(W ), where ϕ ∈ C(X) and W ⊂ IR1 is open.

A set Z is functionally closed precisely when it has the form Z = ψ−1(0),
where ψ ∈ C(X).

6.3.2. Lemma. Let Z1 and Z2 be disjoint functionally closed sets in a
topological space X. Then, there exists a function f ∈ Cb(X) with values in
[0, 1] such that Z1 = f−1(0), Z2 = f−1(1).

Proof. The sets Zi have the form Zi = ψ−1
i (0), where ψi ∈ Cb(X) and

0 ≤ ψi ≤ 1. One can take f = ψ1/(ψ1 + ψ2). �

6.3.3. Lemma. Every Baire set is determined by some countable family
of functions, i.e., has the form
{
x :

(
f1(x), f2(x), . . . , fn(x), . . .

)
∈ B

}
, fi ∈ C(X), B ∈ B(IR∞). (6.3.1)

Moreover, every set of this form is Baire, and we can take fi ∈ Cb(X).

Proof. We prove first that every set of the form (6.3.1) is Baire. This
is true if B is closed, since it has the form B = ψ−1(0) for some continuous
function ψ on IR∞ and the function x �→ ψ

((
fn(x)

)∞
n=1

)
is continuous. It

is easily verified that for any fixed sequence {fn}, the class B0 of all sets
B ∈ B(IR∞) such that

{
x :

(
f1(x), f2(x), . . . , fn(x), . . .

)
∈ B

}
∈ Ba(X)

is a σ-algebra. Hence it contains B(IR∞) and thus coincides with B(IR∞). On
the other hand, the class E of all Baire sets E representable in the form (6.3.1)
with fi ∈ Cb(X), contains all sets of the form {f > 0}, f ∈ C(X). In addition,
this class is a σ-algebra. Indeed, the complement of any set E ∈ E has the
form (6.3.1) with the same fi and the set IR∞\B in place of B. If Ej ∈ E
are represented by means of the sets Bj ∈ B(IR∞) and functions fj,n, then
E =

⋂∞
j=1Ej can be written in the form (6.3.1) as well. To this end, we write

the space IR∞ as its countable power and take B =
∏∞
j=1Bj . �

The following result follows immediately from the definitions. Neverthe-
less, it is useful in applications because perfectly normal spaces constitute a
sufficiently large class. Some examples are given below.

6.3.4. Proposition. Let X be a perfectly normal space. Then we have
B(X) = Ba(X).

6.3.5. Corollary. The equality B(X) = Ba(X) is true in any of the
following cases:

(i) X is a metric space,
(ii) X is a regular space such that every family of its open subsets contains

a countable subfamily with the same union (i.e., X is hereditary Lindelöf).

Proof. Both conditions imply that X is perfectly normal (see Section 6.1
or Engelking [532, �3.8]). �



14 Chapter 6. Borel, Baire and Souslin sets

The following lemma shows that if in Lemma 6.2.5 one deals with Baire
sets in place of Borel sets, then no restrictions on the space are needed.

6.3.6. Lemma. Let (Ω,A) be a measurable space and let T be a topolog-
ical space. A mapping f : Ω → T is measurable with respect to the σ-algebras
A and Ba(T ) precisely when for every continuous real function ψ on T , the
function ψ ◦ f is measurable with respect to A.

Proof. The necessity of this condition is obvious, and its sufficiency
is verified in the same manner as in Lemma 6.2.5: the class E of all sets
B ∈ Ba(T ) with f−1(B) ∈ A is a σ-algebra and contains all sets ψ−1(0),
where ψ ∈ C(T ). �

6.3.7. Corollary. Let (Ω,A) be a measurable space, let T be a topological
space, and let a mapping f : Ω → T be the pointwise limit of a sequence of
measurable mappings fn : (Ω,A) →

(
T,Ba(T )

)
. Then f is measurable with

respect to A and Ba(T ).

6.4. Products of topological spaces

Let T be a nonempty index set and let Xt, t ∈ T , be a family of nonempty
spaces equipped with σ-algebras At. We recall that the product of the family
{Xt}t∈T is the set of all collections of the form x = {xt, t ∈ T}, where xt ∈ Xt

for every t ∈ T . This product is denoted by
∏
t∈T Xt. In Chapter 3, we have

already discussed the σ-algebra A =
⊗

t∈T At generated by all finite products
of sets from At. This section is concerned with the situation where all Xt

are topological spaces and At are the Borel or Baire σ-algebras. The space
X =

∏
t∈T Xt is equipped with the product topology, i.e., open sets are unions

of basic open sets of the form Ut1,...,tn = {x ∈ X : xti ∈ Uti , i = 1, . . . , n},
where Uti is an open set in Xti . The principal question concerns the relations
between

⊗
t∈T B(Xt) and B(X) and between

⊗
t∈T Ba(Xt) and Ba(X).

6.4.1. Lemma. Let Bn be Borel sets in spaces Xn, where n ∈ IN. Then
B =

∏∞
n=1Bn is a Borel set in X =

∏∞
n=1Xn with the product topology. In

addition, one has
⊗∞

n=1 B(Xn) ⊂ B(X).

Proof. Since B =
⋂∞
k=1

(
Bk×

∏
n �=kXn

)
, it suffices to verify that for any

B ∈ B(X1) one has B×
∏∞
n=2Xn ∈ B(X). This is true for open B. Since the

class E of all B ∈ B(X1) such that B×
∏∞
n=2Xn ∈ B(X) is a σ-algebra, this

class coincides with B(X1). The second claim follows from the first one. �
6.4.2. Lemma. (i) Let X,Y be Hausdorff spaces and let Y have a count-

able base (e.g., let Y be a separable metric space). Then we have the equality
B(X×Y ) = B(X)⊗B(Y ).

(ii) Let Xn, where n ∈ IN, be nonempty Hausdorff spaces such that∏∞
n=1Xn is hereditary Lindelöf (e.g., let all Xn have countable bases). Then

we have the equality B
(∏∞

n=1Xn

)
=
⊗∞

n=1 B(Xn).

(iii) If every Xn is compact, then Ba
(∏∞

n=1Xn

)
=
⊗∞

n=1 Ba(Xn).
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Proof. (i) According to the previous lemma, it suffices to show that
every open set U in X×Y belongs to B(X)⊗B(Y ). Let {Vn} be a countable
base of Y . Then U can be represented as the union of sets Uα×Vn, where the
sets Uα are open in X. For fixed n, let Wn be the union of all sets Uα with
Uα×Vn ⊂ U . Then U =

⋃∞
n=1(Wn×Vn) ∈ B(X)⊗B(Y ).

(ii) By the Lindelöf property, every open set in
∏∞
n=1Xn can be repre-

sented as a countable union of finite products of open sets in the spaces Xn,
since it is a certain union of elements of the standard base.

(iii) Follows by the Weierstrass theorem, according to which the set of
finite sums of products of functions from C(Xn) is dense in C

(∏∞
n=1Xn

)
. �

This lemma does not extend to arbitrary spaces (even metric ones).

6.4.3. Example. Let X be a Hausdorff space of cardinality greater than
that of the continuum. Then B(X×X) �= B(X)⊗B(X).

Proof. We show that the diagonal

∆ :=
{

(x, x) : x ∈ X
}
,

which is closed in X×X, does not belong to B(X)⊗B(X). To this end, let
E denote the class of all sets E ⊂ X×X such that E and its complement
are representable as unions of the continuum (or fewer) of rectangles A×B,
A,B ⊂ X. By definition, E contains all rectangles. In addition, E is a
σ-algebra. Indeed, the class E is closed with respect to complementation. It
admits countable unions. Indeed, if En ∈ E , then the complement to

⋃∞
n=1En

can be written in the form of a union of the continuum of rectangles. To see
this, we observe that if (X×X)\En =

⋃
αEn,α, where En,α are rectangles and

α belongs to some set of indices A of cardinality of the continuum, then the
complement to

⋃∞
n=1En is

⋂∞
n=1

⋃
αEn,α =

⋃
(αn)∈A∞ D(αn), where D(αn) =

⋂∞
n=1En,αn are rectangles, and the set A∞ is of cardinality of the continuum

or less. Therefore, E contains the σ-algebra generated by rectangles. It is
clear that ∆ does not belong to E . �

We recall that the graph of a mapping f : X → Y is the subset of X×Y
defined as Γf :=

{(
x, f(x)

)
: x ∈ X

}
.

6.4.4. Theorem. Let (X,A), (Y,B) and (Z, E) be measurable spaces
and let f : (X,A) → (Z, E) and g : (Y,B) → (Z, E) be measurable mappings.
Suppose that

∆Z := {(z, z) : z ∈ Z} ∈ E⊗E .
Then {

(x, y) ∈ X×Y : f(x) = g(y)
}
∈ A⊗B.

In particular, the graph of the mapping f belongs to A⊗E.

Proof. The mapping (f, g) : X×Y → Z×Z is measurable with respect
to the pair of σ-algebras A⊗B and E⊗E . By hypothesis, A⊗B contains the
preimage of ∆Z under this mapping, which yields the first claim. The second
claim follows by the first one if we set (Y,B) = (Z, E) and g(y) = y. �
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6.4.5. Corollary. Let X and Y be Hausdorff spaces such that

∆Y :=
{

(y, y) : y ∈ Y
}
∈ B(Y )⊗B(Y ).

Then, the graph of every Borel mapping f : X → Y belongs to B(X)⊗B(Y ).
In particular, this is the case if Y ×Y is hereditary Lindelöf.

Proof. The first claim follows by the above theorem. The second one
is seen from the fact that the complement to the diagonal of Y 2 is open and
can be written as a union of open rectangles U×V , so it remains to choose
among these rectangles a finite or countable collection with the same union,
which yields that ∆Y ∈ B(Y )⊗B(Y ). �

6.4.6. Lemma. Suppose that (X,B) is a measurable space and a function
f : X×IR1 → IR1 satisfies the following conditions: for every fixed t ∈ IR1,
the function x �→ f(x, t) is B-measurable, and for every fixed x ∈ X, the
function t �→ f(x, t) is right-continuous. Then, the function f is measurable
with respect to B⊗B(IR1). The same is true in the case of the left continuity.
Moreover, f may be a mapping with values in a separable metric space.

Proof. We may assume that 0 ≤ f ≤ 1. For every natural n, we parti-
tion the interval [0, 1] into 2n equal intervals by the points k2−n. Let

fn(x, t) = f
(
x,m+ (k + 1)2−n

)
if t ∈

[
m+ k2−n,m+ (k + 1)2−n

)
,

where m ∈ Z, k = 0, . . . , 2n−1. Note that lim
n→∞

fn(x, t) = f(x, t) for all (x, t).
Indeed, given ε > 0, by hypothesis, there exists δ > 0 such that for all
s ∈ [t, t + δ) one has |f(x, t) − f(x, s)| < ε. Let 2−n < δ. Then we can find
k such that k2−n ≤ t < (k + 1)2−n < t + δ. Hence |f(x, t) − fn(x, t)| < ε.
It remains to observe that the functions fn are measurable with respect to
B⊗B(IR1) by the measurability of f in x. In the case of the left continuity the
reasoning is similar. With an obvious modification the proof remains valid
for mappings to separable metric spaces (see Corollary 6.2.6). �

It is worth noting that a function of two variables that is Borel in every
variable separately may not be Borel in two variables (see Exercise 6.10.43).

Some additional information is given in �6.10(i).

6.5. Countably generated σ-algebras

We say that a family S of subsets of a space X separates the points in X
if for every two distinct points x and y, there is a set S ∈ S such that either
x ∈ S and y �∈ S or y ∈ S and x �∈ S. A family F of functions on X is said
to separate the points of X if for every two distinct points x and y, there is
f ∈ F such that f(x) �= f(y).

6.5.1. Definition. Let E be a σ-algebra of subsets of a space X.
(i) E is called countably generated or separable if it is generated by an at

most countable family of sets En, i.e., E = σ({En}).
(ii) E is called countably separated if there exists an at most countable

collection of sets En ∈ E separating the points.
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6.5.2. Example. The Borel σ-algebra of a separable metric space is
separable and countably separated. Indeed, a countable base of open sets
generates the Borel σ-algebra and separates the points.

It is clear that the σ-algebra σ({fn}) generated by a countable family of
real functions fn on a space X is countably generated because it is generated
by the sets {fn < rk} where {rk} are all rational numbers.

6.5.3. Lemma. Let Γ be a family of functions on a space X. The
generated σ-algebra σ(Γ) separates the points in X precisely when Γ separates
the points in X.

Proof. If Γ separates the points in X, then the sets from σ(Γ) of the
form f−1(a, b), f ∈ Γ, a, b ∈ IR1, separate them too. Suppose now that
σ(Γ) separates the points in X, but Γ does not, i.e., there exist two distinct
points x and y with f(x) = f(y) for all f ∈ Γ. Let us consider the class E
of all sets E ⊂ X such that either {x, y} ⊂ E or {x, y} ⊂ X\E. It is readily
verified that E is a σ-algebra. By our assumption E contains all sets {f < c},
f ∈ Γ, c ∈ IR1, hence E contains the generated σ-algebra. This leads to a
contradiction, since σ(Γ) separates the points x and y. �

6.5.4. Proposition. Let F be a family of continuous real functions
separating the points of a topological space X such that X×X is hereditary
Lindelöf. Then F contains a finite or countable subfamily separating the points
in X. In particular, this is true if X is a separable metric space.

Proof. For every f ∈ F , let U(f) = {(x, y) ∈ X×X : f(x) �= f(y)}.
Denote by C the complement of the diagonal in the space X×X. The sets
U(f) form an open cover of C. By our assumption on X×X, one can find
a finite or countable subfamily of sets U(fn) covering C. It is clear that the
family of functions fn separates the points in X. In fact, we only need that
C be Lindelöf. �

6.5.5. Theorem. Let (E, E) be a measurable space. Then E is countably
generated if and only if there exists an E-measurable function f : E → [0, 1]
such that E = {f−1(B) : B ∈ B([0, 1])}.

Proof. For any function f : E → [0, 1], the collection of sets f−1(B),
where B ∈ B([0, 1]), is a countably generated σ-algebra. For a countable
collection of generating sets one can take f−1([0, rn]), where {rn} are all
rational numbers in [0, 1]. Conversely, if E = σ({An}), then let

f =
∞∑

n=1

3−nIAn .

The measurability of f is obvious. Since the preimages of Borel sets form
a σ-algebra A, for the proof of the equality A = E it is sufficient to verify
that A contains all sets An. The latter is easily seen from the equalities
A1 = f−1([1/3, 2/3]), A2 = f−1([1/9, 2/9]∪ [1/3+1/9, 1/3+2/9]), and so on.
The theorem is proven. �
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6.5.6. Corollary. Let (X,A, µ) be a measure space with a finite mea-
sure µ, let (E, E) be a space with a countably generated σ-algebra E, and let
F : X → E be a µ-measurable mapping, i.e., F−1(E) := {F−1(B) : B ∈ E}
is contained in Aµ. Then, there exists a mapping F0 : X → E such that
F0(x) = F (x) for µ-a.e. x and F−1

0 (E) ⊂ A, i.e., F0 is (A, E)-measurable.

Proof. By the above theorem, E = f−1
(
B(IR1)

)
for some function f

on E. The function f ◦ F is measurable with respect to µ and hence has
an A-measurable modification g. There is a set Z ∈ A of zero µ-measure
outside of which g coincides with f ◦ F . Let F0(x) = F (x) if x �∈ Z and
F0(x) = e if x ∈ Z, where e is an arbitrary fixed element of E. It is clear
that F0 = F µ-a.e. Let E ∈ E . Then E = f−1(B), where B ∈ B(IR1). Since
F0|X\Z = F |X\Z and F0|Z = e, we obtain

F−1
0 (E) =

(
F−1

0 (E) ∩ Z
)
∪
(
F−1

0 (E) ∩ (X\Z)
)

=
(
F−1

0 (E ∩ {e}) ∩ Z
)
∪
(
g−1(B) ∩ (X\Z)

)
.

Finally,
(
F−1

0 (E ∩ {e}) ∩ Z
)

is either empty or coincides with Z. �

6.5.7. Theorem. Let (E, E) be a measurable space. The following con-
ditions are equivalent:

(i) E is a countably separated σ-algebra;
(ii) there exists an injective E-measurable function f : E → [0, 1];
(iii) ∆E := {(x, x) : x ∈ E} ∈ E⊗E ;
(iv) there exists a separable σ-algebra E0 ⊂ E such that all singletons

belong to E0.

Proof. If (i) is fulfilled and {En} ⊂ E is a countable family separating
the points in E, then the function f =

∑∞
n=1 3−nIEn is E-measurable and

injective, as is easily seen. In order to derive property (iii) from property (ii)
we observe that

∆E = {(x, y) ∈ E×E : f(x) = f(y)} = g−1(∆[0,1]),

where g(x, y) =
(
f(x), f(y)

)
, g : E2 → [0, 1]2. Since the mapping g is mea-

surable with respect to E⊗E and B([0, 1]2) and the diagonal is a Borel set,
one has ∆E ∈ E ⊗E . Now let (iii) be fulfilled. We observe that every set
A ∈ E⊗E is contained in the σ-algebra generated by sets An×Ak for some
finite or countable collection of sets An ∈ E (Exercise 1.12.54). We take such
a collection {An} for A = ∆E . It remains to observe that for every x ∈ E, we
have {x} = ∆E ∩ {x}×E ∈ σ({An}). Indeed, the class of all sets B ∈ E⊗E
with the property that B ∩ {x}×E ∈ σ({An}), is a σ-algebra. In addition,
this class contains all sets An×Ak, since the section of An×Ak at the point x
either is empty or coincides with Ak. Thus, all sets in σ({An×Ak}) enjoy the
above-mentioned property, hence ∆E has this property as well. Finally, (iv)
yields (i): according to Lemma 6.5.3, any countable family of sets generating
E0 must separate the points in E. �
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The next theorem characterizes the class of measurable spaces that pos-
sess both countability properties considered above.

6.5.8. Theorem. Let (E, E) be a measurable space. Then E is countably
generated and countably separated precisely when the space (E, E) is isomor-
phic to some subset M in [0, 1] with the induced Borel σ-algebra, i.e., there
exists an

(
E ,B(M)

)
-measurable one-to-one mapping f : E →M such that

E = {f−1(B) : B ∈ B(M)}.

Proof. By Example 6.5.2, the indicated condition is sufficient. Sup-
pose that E is countably generated and countably separated. Let us take a
countable collection of sets An separating the points in E and generating E .
Then the function f considered in the proof of Theorem 6.5.5 is injective. Let
M = f(E). It is clear that f is an isomorphism of the measurable spaces
(E, E) and

(
M,B(M)

)
. �

Of course, a separable σ-algebra E may not separate the points in the
space, but if it does separate, then by Lemma 6.5.3 it is countably separated.
On the other hand, a countably separated σ-algebra may not be countably
generated. Let us consider a non-trivial example of this sort.

6.5.9. Example. Let E be some σ-algebra of subsets of [0, 1] containing
all Souslin sets and belonging to the σ-algebra L of all Lebesgue measurable
sets (for example, one can take E = L). Then E is not countably generated,
although it contains all Borel sets; in particular, it is countably separated.

Proof. Assume the contrary. As shown above, there exists an E-measu-
rable function f : E → [0, 1] such that E = {f−1(B) : B ∈ B([0, 1])}. Since
E ⊂ L, the function f is Lebesgue measurable. By Lusin’s theorem, there is a
compact set K ⊂ [0, 1] of positive Lebesgue measure such that the restriction
of f to K is continuous. Then every set E ⊂ K belonging to E is Borel,
since E = f−1

(
B ∩ f(K)

)
for some Borel set B ⊂ [0, 1] and f(K) is compact.

This leads to a contradiction, since we show in �6.7 that every compact set of
positive Lebesgue measure contains non-Borel Souslin subsets (see Corollaries
6.7.11 and 6.7.13). �

6.6. Souslin sets and their separation

In this section, we begin the study of Souslin sets in topological spaces.
We discuss some basic properties of Souslin sets; then in the next section
we concentrate on the case where the whole space is Souslin (for example, is
complete separable metric), and finally return to general spaces.

6.6.1. Definition. A set in a Hausdorff space is called Souslin if it is
the image of a complete separable metric space under a continuous mapping.
A Souslin space is a Hausdorff space that is a Souslin set. The empty set is
Souslin as well.
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Souslin sets are also called analytic sets. The complement of a Souslin
set in a Souslin space is called co-Souslin or coanalytic.

Note also that the images of Polish spaces under continuous one-to-one
mappings to Hausdorff spaces are called Lusin spaces. It will be clear from
the discussion below that not every Souslin space is Lusin.

Theorem 6.1.13 yields the following characterization.

6.6.2. Lemma. A nonempty set in a Hausdorff space is Souslin precisely
when it can be represented as the image of the space IN∞ under a continuous
mapping.

6.6.3. Proposition. Every nonempty Souslin set is the image of the
space R of irrational numbers of the interval (0, 1) under some continuous
mapping and also is the image of (0, 1) under some Borel mapping.

Proof. The first claim follows at once from Theorem 6.1.6. The second
claim is an obvious corollary of the first one, since R can be represented as
the image of (0, 1) under the Borel mapping that is identical on R and takes
all rational numbers to

√
1/2. �

6.6.4. Lemma. Every Souslin space is hereditary Lindelöf.

Proof. Let X be a Souslin space. Then X is the image of a separable
metric space M under a continuous mapping F . For any open sets Uα ⊂ X,
the sets F−1(Uα) are open in M and cover the set F−1(

⋃
α Uα). Hence one

can choose a finite or countable subcover, which yields a countable subcover
in {Uα}. Thus, X is hereditary Lindelöf. �

6.6.5. Lemma. (i) The image of a Souslin set under a continuous map-
ping to a Hausdorff space is a Souslin set.

(ii) Every open or closed subset of a Souslin space is Souslin.
(iii) If An is a Souslin set in a space Xn for every n ∈ IN, then

∏∞
n=1An

is a Souslin set in the space
∏∞
n=1Xn.

Proof. Claim (i) is obvious.
(ii) Let X = f(E), where f : E → X is a continuous mapping and E is a

complete separable metric space. If A ⊂ X is a closed set, then E0 = f−1(A)
is a closed subspace in E and hence is a complete separable metric space. If
A is open, then E0 = f−1(A) is an open set. According to Exercise 6.1.11 the
space E0 is homeomorphic to a complete separable metric space E1, i.e., A is
a continuous image of E1.

(iii) If An = fn(En), where En is a complete separable metric space and
fn : En → Xn is a continuous mapping, then E =

∏∞
n=1En is a complete

separable metric space and f = (f1, f2, . . .) : E →
∏∞
n=1Xn is a continuous

mapping. �
Now we prove that the class of Souslin sets is closed under theA-operation;

in particular, it admits countable unions and countable intersections. How-
ever, as will be shown below, the complement of a Souslin set even in the
interval [0, 1] may not be Souslin.
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Let SX denote the class of all Souslin sets in a topological space X.

6.6.6. Theorem. The class SX in a Hausdorff space X is closed with
respect to the A-operation. In particular, if sets An are Souslin, then so are⋂∞
n=1An and

⋃∞
n=1An.

Proof. (1) First we show that countable unions and countable intersec-
tions of Souslin sets are Souslin. Suppose that An is a Souslin set in X.
Then there exist a separable metric space En and a continuous mapping
fn : En → X with An = fn(En). The union E of the spaces En becomes
a complete separable metric space if the distances between the points of dif-
ferent spaces En and Em are defined to be 1, and the distances between the
points in every En are unchanged. We define the mapping f : E → X as
follows: f |En = fn. Then f is continuous and f(E) =

⋃∞
n=1An. Accord-

ing to what we have proved earlier, the set A =
∏∞
n=1An is Souslin in the

space X∞. Let

D =
{

(xn) ∈ A : xn = x1, ∀n ≥ 1
}
.

Then D is closed, hence is a Souslin set in A. Set g
(
(xn)

)
= x1 if (xn) ∈ D.

Then g is continuous and g(D) =
⋂∞
n=1An.

(2) Let A =
(
A(n1, . . . , nk)

)
be a table of Souslin sets. Let N(n1, . . . , nk)

denote the set in IN∞ consisting of all ν = (νi) such that ν1 = n1, . . . , νk = nk.
Note that one has

C : =
⋃

(ni)∈IN∞

∞⋂

k=1

A(n1, . . . , nk)×N(n1, . . . , nk)

=
∞⋂

k=1

⋃

(n1,...,nk)∈INk

A(n1, . . . , nk)×N(n1, . . . , nk).

Indeed, a point (x, ν) belongs to the left-hand side precisely when

(x, ν) ∈
∞⋂

k=1

A(ν1, . . . , νk)×N(ν1, . . . , νk).

Hence it belongs to the right-hand side. Conversely, if it belongs to the right-
hand side, then we have x ∈ A(ν1, . . . , νk) for every k, whence we obtain

(x, ν) ∈
∞⋂

k=1

A(ν1, . . . , νk)×N(ν1, . . . , νk).

As shown in (1), the set C is Souslin in the space X×IN∞. Let us consider
the natural projection πX : X×IN∞ → X. It remains to verify that

πX(C) = S(A) =
⋃

(ni)∈IN∞

∞⋂

k=1

A(n1, . . . , nk).
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Indeed, it suffices to show that

πX

( ∞⋂

k=1

A(n1, . . . , nk)×N(n1, . . . , nk)
)

=
∞⋂

k=1

A(n1, . . . , nk).

The left-hand side of this equality obviously belongs to the right-hand side. If
x belongs to the right-hand side, then for every k, the point x is the projection
of some pair (x, νk) from A(n1, . . . , nk)×N(n1, . . . , nk). This means that
νki = ni if i ≤ k. Then the point x is the projection of the pair (x, ν), where
ν = (n1, n2, . . .). The proof is complete. �

6.6.7. Corollary. Every Borel subset of a Souslin space is a Souslin
space.

Proof. Denote by E the class of all Borel sets B in a Souslin spaceX such
that B and X\B are Souslin sets. We know that the class E contains all closed
sets. By construction it is closed with respect to complementation. Finally,
the above theorem yields that this class admits countable intersections. Hence
E is a σ-algebra containing all closed sets, i.e., one has E = B(X). �

6.6.8. Theorem. Every Souslin set in a Hausdorff space can be obtained
from closed sets by means of the A-operation.

Proof. Let a set A be the image of the space IN∞ under a continuous
mapping f . For every finite sequence n1, . . . , nk we denote by Fn1,...,nk the
closure of f(Cn1,...,nk), where

Cn1,...,nk =
{

(mi) ∈ IN∞ : (m1, . . . ,mk) = (n1, . . . , nk)
}
.

Let us show that A =
⋃

(ni)∈IN∞
⋂∞
k=1 Fn1,...,nk . It suffices to prove that

f
(
(ni)

)
=
⋂∞
k=1 Fn1,...,nk for all (ni) ∈ IN∞. Suppose that this is not true

for some element (ni) ∈ IN∞. Then there exists a point x ∈
⋂∞
k=1 Fn1,...,nk

that differs from f
(
(ni)

)
. Since X is Hausdorff, the points x and f

(
(ni)

)

have disjoint neighborhoods. Hence there exists an open set U such that
f
(
(ni)

)
∈ U ⊂ U and x �∈ U . By the continuity of f for all sufficiently

large k we have f(Cn1,...,nk) ⊂ U , whence x ∈ f(Cn1,...,nk) ⊂ U , which is a
contradiction. �

The following separation theorem is very important in the theory of
Souslin sets.

6.6.9. Theorem. Let Ai, i ∈ IN, be pairwise disjoint Souslin sets in a
Hausdorff space X. Then, there exist pairwise disjoint Borel sets Bi such that
Ai ⊂ Bi for all i ∈ IN.

Proof. (1) First we make several general remarks. We shall say that
disjoint sets Mi are Borel separated if there exist disjoint Borel sets Bi with
Mi ⊂ Bi. If for every i ∈ IN, disjoint sets M and Mi are Borel separated, then
so are the sets M and

⋃∞
i=1Mi. Indeed, if Bi, Ci ∈ B(X), M ⊂ Bi, Mi ⊂ Ci,

Ci ∩ Bi = ∅, then B :=
⋂∞
i=1Bi and C =

⋃∞
i=1 Ci are disjoint Borel sets
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and M ⊂ B,
⋃∞
i=1Mi ⊂ C. Similarly, one verifies that if for every i, j ∈ IN,

we have disjoint Borel separated sets Mi and Pj , then the sets
⋃∞
i=1Mi and⋃∞

j=1 Pj are Borel separated. In addition,
⋂∞
i=1Mi and

⋃∞
i=1 Pi are Borel

separated.
(2) Now we consider the case where we have only two disjoint Souslin

sets. It is clear from step (1) of the proof of Theorem 6.6.6 that this re-
duces to the following situation: we have closed sets C and D in a com-
plete separable metric space E and a continuous mapping f : E → X with
f(C) ∩ f(D) = ∅. Suppose that f(C) and f(D) cannot be separated by
disjoint Borel sets. We represent E in the form E =

⋃∞
i=1E(i), where

E(i) are closed sets of diameter less than 1. According to the above ob-
servations, for some n1,m1 ∈ IN the sets f

(
C ∩ E(n1)

)
and f

(
D ∩ E(m1)

)

are not Borel separated. By induction, for every k we construct closed sets
E(n1, . . . , nk) and E(m1, . . . ,mk) of diameter less than 1/k in E such that
the sets f

(
C ∩ E(n1, . . . , nk)

)
and f

(
D ∩ E(m1, . . . ,mk)

)
are not Borel sep-

arated and E(p1, . . . , pk) =
⋃∞
j=1E(p1, . . . , pk, j), where for all pi and j the

sets E(p1, . . . , pk, j) are closed and have diameter less than (k + 1)−1. By
the completeness of E, there exist points a, b ∈ E such that given ε > 0,
for all sufficiently large k the sets C ∩ E(n1, . . . , nk) and D ∩ E(m1, . . . ,mk)
belong to the ε-neighborhoods of the points a and b, respectively. Note that
a ∈ C, b ∈ D, since C and D are closed. Then, by the continuity of f , for all
sufficiently large k the sets f

(
C ∩E(n1, . . . , nk)

)
and f

(
D ∩E(m1, . . . ,mk)

)

belong to disjoint open neighborhoods of the points f(a) and f(b) (which are
distinct, since f(C)∩f(D) = ∅), i.e., are Borel separated. This contradiction
proves the theorem in the considered partial case.

(3) Let us consider the general case of a countable family of disjoint
Souslin sets Ai. As we proved, there exist disjoint Borel sets B1 and C1 with
A1 ⊂ B1,

⋃∞
i=2Ai ⊂ C1. Further, there exist disjoint Borel sets B̂2 and Ĉ2

with A2 ⊂ B̂2 and
⋃∞
i=3Ai ⊂ Ĉ2. We set B2 = B̂2 ∩ C1 and C2 = Ĉ2 ∩ C1.

Continuing this process by induction, we obtain the required sets Bi. �

6.6.10. Corollary. Suppose that the complement of a Souslin set A in
a Hausdorff space X is Souslin. Then A is a Borel set.

Proof. There exist B,C ∈ B(X) such that B ∩ C = ∅, A ⊂ B and
X\A ⊂ C. Then A = B and X\A = C. �

The proof of the following result of P.S. Novikoff can be found in Del-
lacherie [425, p. 251], Rogers, Jayne [1589, p. 58].

6.6.11. Theorem. Let An, n ∈ IN, be Souslin sets in a Hausdorff space
such that

⋂∞
n=1An is a Borel set. Then there exist Borel sets Bn such that

An ⊂ Bn and
⋂∞
n=1An =

⋂∞
n=1Bn.

Let us also mention Lusin’s theorem on separation by coanalytic set (see
Dellacherie [425, p. 247], Hoffmann-Jørgensen [841, p. 80], or Lusin [1209,
Ch. III] for a proof).
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6.6.12. Theorem. Let A and B be Souslin sets in a Polish space X.
Then there exist coanalytic sets C and D such that

A\B ⊂ C, B\A ⊂ D, C ∩D = ∅, C ∪D = X\(A ∩B).

6.7. Sets in Souslin spaces

In this section, we discuss Souslin sets in Souslin spaces. In particular,
everything said below applies to complete separable metric spaces and their
Borel subsets. In addition to several general results, we shall obtain an exam-
ple of a non-Borel Souslin set. As above, Γf denotes the graph of a mapping f .

6.7.1. Lemma. Let X and Y be Souslin spaces. Then the graph Γf of
any Borel mapping f : X → Y is a Borel, hence Souslin, subset in the Souslin
space X×Y . Conversely, if f : X → Y has a Souslin graph, then f is Borel
measurable.

Proof. The first assertion follows from Corollary 6.4.5 and Lemma 6.6.4.
In order to prove the converse, we observe that for any B ∈ B(Y ), the sets
f−1(B) and f−1(Y \B) are Souslin as the projections of Γf ∩ (X×B) and
Γf ∩

(
X×(Y \B)

)
, respectively. By Corollary 6.6.10, we obtain the inclusion

f−1(B) ∈ B(X). �

6.7.2. Theorem. Let X be a Souslin space (e.g., a complete separable
metric space) and let A be its subset. The following are equivalent:

(i) A is a Souslin set;
(ii) A can be obtained by the A-operation on closed sets in X;
(iii) A is the projection of a closed set in the space X×IN∞;
(iv) A is the projection of a Borel set in X×IR1.

Proof. The equivalence of (i) and (ii) follows by Theorem 6.6.8 and
Theorem 6.6.6 taking into account that all closed sets in a Souslin space are
Souslin. Since the spaces X×IN∞ and X×IR1 are Souslin, all Borel sets in
them are Souslin by Corollary 6.6.7. Hence (iii) and (iv) imply (i). In order
to deduce (iii) from (i), we observe that the set A is the image of IN∞ under
some continuous mapping f : IN∞ → X, hence coincides with the projection
of Γf on X. Note that Γf is closed in the Souslin space IN∞×X. Finally,
we verify that (i) yields (iv). To this end, we represent A as the image of IR1

under a Borel mapping f . This can be done by using Proposition 6.6.3. It
remains to observe that the graph of f is a Borel subset of IR1×X, and A is
its projection on X. �

6.7.3. Theorem. Let X and Y be Souslin spaces and let f : X → Y be
a Borel mapping. Then, for all Souslin sets A ⊂ X and C ⊂ Y , the sets f(A)
and f−1(C) are Souslin. In particular, this is true if f is continuous.

If f is injective, then the mapping f−1 : f(X) → X is Borel.

Proof. By Lemma 6.7.1, the graph of the mapping f |A is a Souslin set in
the Souslin space A×Y . Hence its projection on Y , equal to f(A), is a Souslin
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set. Similarly, f−1(C) is the projection on X of the set D = Γf ∩ (X×C). It
remains to observe that D is a Souslin set, since so are Γf and X×C. If f is
injective, then f(B) ∈ B

(
f(X)

)
for any B ∈ B(X) by Corollary 6.6.10, since

f(B) and f(X)\f(B) = f(X\B) are Souslin sets in f(X). �
Even for continuous injective f the set f(B) with B ∈ B(X) need not

belong to B(Y ): take a non-Borel Souslin set X ⊂ [0, 1] (see below) and its
identical embedding into Y = [0, 1]. However, see Theorem 6.8.6.

6.7.4. Theorem. Let X be a Souslin space. Then, there exist a Souslin
subset S in the interval [0, 1] and a one-to-one Borel mapping h from the space
X onto S such that h is an isomorphism of the measurable spaces

(
X,B(X)

)

and
(
S,B(S)

)
.

Proof. As we know, the space X×X is Souslin. By Lemma 6.6.4 it
is hereditary Lindelöf. According to Corollary 6.4.5, the diagonal in X×X
belongs to B(X)⊗B(X), whence by Theorem 6.5.7 we obtain the existence of
an injective Borel function h : X → [0, 1]. Set S = f(X). By Theorem 6.7.3
the set S is Souslin and h : X → S is a Borel isomorphism. �

6.7.5. Corollary. The Borel σ-algebra of a Souslin space is countably
generated and countably separated.

6.7.6. Corollary. Let µ be a finite measure on a measurable space
(X,A), let Y be a Souslin space, and let F : X → Y be a µ-measurable
mapping, i.e., F−1(B) ∈ Aµ for all B ∈ B(Y ). Then, there exists a mapping
G : X → Y such that F = G µ-a.e. and G−1(B) ∈ A for all B ∈ B(Y ).

Proof. One can apply Corollary 6.5.6. �
6.7.7. Theorem. Let X be a completely regular Souslin space. Then
(i) X is perfectly normal; in particular, the Borel and Baire σ-algebras in

X coincide;
(ii) there exists a countable family of continuous functions on X separating

the points in X.

Proof. Let U be open in X. By the complete regularity, for every point
x ∈ U , there exists a continuous function fx : X → [0, 1] such that fx(x) = 1
and fx = 0 outside U . The open sets Ux =

{
z : fx(z) > 0

}
cover U . By

Lemma 6.6.4, there is an at most countable subcover {Uxn} of the set U . It
remains to observe that U = {f > 0}, where the function f =

∑∞
n=1 2−nfxn

is continuous. Indeed, f = 0 outside U . For every y ∈ U , there exists n with
y ∈ Uxn , i.e., fxn(y) > 0. Thus, X is a perfectly normal space.

The space X×X is Souslin as well. By Lemma 6.6.4 it is hereditary
Lindelöf. Hence (ii) follows by Proposition 6.5.4. �

We note that even a countable Souslin space may not be completely reg-
ular (Exercise 6.10.78).

6.7.8. Corollary. Every compact subset in a Souslin space is metrizable.
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Proof. Since all closed subsets of Souslin spaces are Souslin, it suffices
to establish the metrizability of every compact Souslin space K. In turn, it
suffices to show the existence of a countable family of continuous functions
separating the points in K (Exercise 6.10.24). Since every compact space is
completely regular, assertion (ii) applies. �

Let us show that there exist non-Borel Souslin sets. First we prove an
interesting auxiliary result.

6.7.9. Proposition. Suppose that we are given a complete separable
metric space X. Then:

(i) there exists a closed set Z ⊂ X×IN∞ such that every closed set in X
coincides with one of the sections Zν := {x ∈ X : (x, ν) ∈ Z}, ν ∈ IN∞;

(ii) there exists a Souslin set A ⊂ X×IN∞ such that every Souslin set in
X coincides with one of the sections Aν := {x ∈ X : (x, ν) ∈ A}, ν ∈ IN∞.

Proof. (i) Let {Un} be a countable base of the topology in X. Set

Z =
{

(x, ν) ∈ X×IN∞ : ν = (ni), x �∈
∞⋃

i=1

Uni

}
.

Every closed set in X is the complement of some union of the sets Un, hence
coincides with one of the sections Zν , ν ∈ IN∞. Note that Z is closed, since its
complement is open. Indeed, let x and ν = (νi) be such that x belongs to Uνi
for some i. Then for all (x′, η) sufficiently close to (x, ν), we have ηi = νi and
x′ ∈ Uηi = Uνi .

(ii) Let us apply (i) to the space X×IN∞ and take a corresponding closed
set Z ⊂ X×IN∞×IN∞. Let

A =
{

(x, ν) ∈ X×IN∞ : (x, η, ν) ∈ Z for some η ∈ IN∞}.

The set A is Souslin, since it can be represented as the projection of a closed
set in X×IN∞×IN∞. Every Souslin set E in the space X is the projection of
some closed set in X×IN∞, i.e., the projection of some section Zν . Therefore,
we have E = Aν . �

6.7.10. Theorem. The space IN∞ contains a Souslin set that is not
Borel.

Proof. Let us apply assertion (ii) of the above proposition to X = IN∞

and take a corresponding Souslin set A ⊂ IN∞×IN∞. The set

S =
{
ν ∈ IN∞ : (ν, ν) ∈ A

}

is Souslin in IN∞ as the projection of the intersection of A with the diagonal.
Its complement

IN∞\S =
{
ν ∈ IN∞ : ν �∈ Aν

}

is not Souslin, since otherwise due to our choice of A, we would have for some
ν the equality

IN∞\S = Aν ,
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which yields simultaneously ν �∈ Aν and ν ∈ Aν by the construction of S.
Therefore, S is not Borel. �

6.7.11. Corollary. A non-Borel Souslin set exists in every space that
contains a subset homeomorphic to the space IN∞, in particular, in every
nonempty complete metric space without isolated points.

Proof. If a set X0 in a space X is homeomorphic to IN∞ and A is a
non-Borel Souslin set in X0, then A is Souslin and non-Borel in the space X.
The second claim of the corollary follows by Lemma 6.1.16. �

6.7.12. Theorem. If f is a continuous mapping of a complete separable
metric space X onto an uncountable Hausdorff space Y , then X contains a
set E that is homeomorphic to the Cantor set C such that f maps E homeo-
morphically onto f(E).

Proof. In every set f−1(y), y ∈ Y , we choose a point and obtain an
uncountable set X0 ⊂ X, on which f is injective. We shall consider X0 as a
metric space and take the set X1 of all points x ∈ X0 every neighborhood of
which contains uncountably many points in X0. It is easily verified that the
metric space X1 is uncountable and has no isolated points. One can find a
Souslin scheme A in X indexed by finite sequences (n1, . . . , nk) of 0 and 1 such
that every set A(n1, . . . , nk) is open, meets X1, has diameter at most 1/k, the
closure of A(n1, . . . , nk, nk+1) is contained in A(n1, . . . , nk), and the closure of
f
(
A(n1, . . . , nk)

)
does not meet f

(
A(m1, . . . ,mk)

)
if (m1, . . . ,mk) does not

coincide with (n1, . . . , nk). The required scheme is constructed inductively.
First we take balls A(0) and A(1) of radius less than 1 with the centers a1 ∈ X1

and a2 ∈ X1 such that the closures of their images under f do not meet.
Then in A(0) we find balls A(0, 0) and A(0, 1) of radius less than 1/2 such
that their closures lie in A(0) and the closures of their images do not meet.
We do the same with A(1). The process continues inductively. This scheme
defines a homeomorphism g : {0, 1}∞ → X, g

(
(ni)

)
=
⋂∞
i=1A(n1, . . . , ni).

One can also define a homeomorphism h : C → X by the formula h(c) =
A(c1) ∩ A(c1, c2) ∩ · · · , where c = 2c1/3 + 2c2/9 + · · · , ci ∈ {0, 1}. It is
verified that f is injective on the set E = g({0, 1}∞) = h(C), which by the
compactness of this set means that f |E is a homeomorphism. An analogous
reasoning is presented in more detail in Kuratowski [1082, �36.V, p. 455],
Hoffmann-Jørgensen [841, �1.5.H]. �

6.7.13. Corollary. Every uncountable Souslin space contains a set that
is homeomorphic to the Cantor set and has cardinality of the continuum.

It follows by the above that the classes of Souslin and Borel subsets in
a Souslin space X have cardinality at most of the continuum, and if X is
uncountable, then their cardinality is precisely c.

6.7.14. Remark. We know that all Borel sets on the real line are ob-
tained by means of the Souslin operation on closed sets, which, however, pro-
duces non-Borel sets as well. Hausdorff raised the question on the existence
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of an operation that produces exactly the Borel sets. The precise formula-
tion is this. Let M be some family of sets. Denote by B(M) the smallest
class of sets that contains M and is closed with respect to countable unions
and countable intersections. For example, if M is the class of all open sets
on the real line, then B(M) = B(IR1). Hausdorff asked: does there exist
a set N ⊂ IN∞ such that for every family of sets M, one has the equality
B(M) =

⋃
(ni)∈N

⋂∞
i=1Mni , where Mni ∈ M? Sierpiński [1714] proved that

there are no such sets N .

6.8. Mappings of Souslin spaces

Let X and Y be Souslin spaces and let f : X → Y be a Borel mapping.
In this section, we discuss descriptive properties of the sets of points y ∈ Y
such that the equation f(x) = y has a unique solution, n solutions or infinitely
many solutions. We consider a somewhat more general problem concerning
the analogous properties of the sections Ay := {x ∈ X : (x, y) ∈ A} of sets
A ∈ X×Y . The former problem is a partial case of this more general one if
we take for A the graph of f .

Let CardM denote the cardinality of a set M and let ℵ0 denote the
cardinality of IN.

We recall that by Theorem 6.7.3 the images of Souslin sets under Borel
mappings between Souslin spaces are Souslin. However, it is important here
that the range space is Souslin.

6.8.1. Example. The identity mapping from X = IR1 with the usual
topology onto the Sorgenfrey line Z (see Example 6.1.19) is Borel, since any
open set in Z is an at most countable union of semiclosed intervals. But Z
is not Souslin by Corollary 6.7.13, since it contains no uncountable compact
sets.

6.8.2. Theorem. Let A be a Souslin set in X×Y . Then, for any n ∈ IN,
the sets {y ∈ Y : CardAy ≥ ℵ0} and {y ∈ Y : CardAy ≥ n} are Souslin. The
set {y ∈ Y : CardAy = 1} is the difference of two Souslin sets.

Proof. We take a countable algebra E ⊂ B(X) separating the points
in X. Then the condition CardAy ≥ n, which means that there exist n
distinct points x1, . . . , xn in Ay, is equivalent to the existence of pairwise
disjoint sets E1, . . . , En in E with Ej ∩ Ay �= ∅ for all j ≤ n. Letting πY be
the projection operator from X×Y on Y , the latter can be written as follows:

y ∈
n⋂

j=1

πY
(
(Ej×Y ) ∩A

)
.

Let En be the family of all collections {E1, . . . , En} consisting of n pairwise
disjoint sets Ej ∈ E . The cardinality of En is at most countable and

{y ∈ Y : CardAy ≥ n} =
⋃

σ∈En

⋂

E∈σ
πY
(
(E×Y ) ∩A

)
.
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Since the set πY
(
(E×Y ) ∩ A

)
is Souslin, the set {y ∈ Y : CardAy ≥ n} is

Souslin as well. This yields that

{y ∈ Y : CardAy ≥ ℵ0} =
∞⋂

n=1

{y ∈ Y : CardAy ≥ n}

is a Souslin set. The last claim follows trivially by the first one. �

We observe that although X and Y are Souslin spaces throughout this
section, in the above theorem we need not assume this because the case of gen-
eral spaces reduces to the considered one due to the fact that the projections
of A to X and Y are Souslin sets. See also Theorem 6.10.18 below.

6.8.3. Corollary. Let X and Y be Souslin spaces and let f : X → Y be
a Borel mapping. Then the sets

{
y ∈ Y : Card f−1(y) ≥ n

}
and

{
y ∈ Y : Card f−1(y) ≥ ℵ0

}

are Souslin. The set {y ∈ Y : Card f−1(y) = 1} is the difference of two
Souslin sets.

We note that the difference of two Souslin sets can be a set of a more
complex nature: it may be neither Souslin nor co-Souslin. But if the set A is
closed, then the set {y ∈ Y : CardAy = 1} turns out to be the complement
of a Souslin set. In particular, if f in the above corollary is continuous, then
{y ∈ Y : Card f−1(y) = 1} is the complement of a Souslin set (the proof can
be found in Hoffmann-Jørgensen [841], where there are some more general
results).

We now discuss the properties of injective Borel mappings. In particular,
we shall characterize the Borel sets in complete separable metric spaces as
the injective continuous images of closed subsets in the space IN∞ (or, which
amounts to the same thing, in the space of irrational numbers).

6.8.4. Lemma. Let X be a complete separable metric space. Then, every
Borel set in X is the injective image of some closed set in X×IN∞ under the
natural projection X×IN∞ → X.

Proof. We show that the class E of all Borel sets with the indicated
property contains all open sets and is closed with respect to formation of
countable unions of disjoint sets and countable intersections. Then a reference
to Proposition 6.2.9 completes the proof. Let G be open in X. Then the set

E =
{

(x, t) ∈ X×(0,+∞) : dist(x,X\G) = t−1
}

is closed in X×(0,+∞), G coincides with its projection on X, and the pro-
jection operator is injective on E. However, this is not yet what we wanted
because a set from X× IN∞ is required. By Corollary 6.1.7, there exist a
closed set D ⊂ IN∞ and a continuous one-to-one mapping f of the set D
onto (0,+∞). Then the set

Z =
{

(x, n) ∈ X×IN∞ :
(
x, f(n)

)
∈ E

}
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has the required properties. Thus, all open sets in X belong to the class E .
Suppose now that sets Aj ∈ E are pairwise disjoint. Let us take closed

sets Zj in X×IN∞×{j} that are projected injectively onto Aj . It is easily seen
that the set Z =

⋃∞
j=1 Zj is closed in X×IN∞×IN and is projected one-to-one

onto
⋃∞
j=1Aj . Since the space IN∞×IN is homeomorphic to IN∞ by means of

the homeomorphism

h : (η, k) �→ (k, η1, η2, . . .), η = (ηi),

the set C =
{

(x, η) :
(
x, h−1(η)

)
∈ Z

}
is closed in X×IN∞ and is projected

one-to-one onto
⋃∞
j=1Aj .

Finally, for arbitrary Aj ∈ E , we choose closed sets Cj ⊂ X×IN∞ that
are projected one-to-one onto Aj . Let us consider the set

Z =
{

(x, η1, η2, . . .) : x ∈ X, ηj ∈ IN∞, (x, ηj) ∈ Cj , j ∈ IN
}
⊂ X×

(
IN∞)∞.

It is clear that the set Z is closed in X×
(
IN∞)∞ and is projected one-to-one

onto
⋂∞
j=1Aj . Similarly to the previous step, it remains to observe that the

space
(
IN∞)∞ is homeomorphic to IN∞. �

6.8.5. Corollary. Every Borel set in a Polish space is the image of some
closed set in IN∞ under a continuous one-to-one mapping.

Proof. Follows by the lemma and Theorem 6.1.15. �

6.8.6. Theorem. Let B be a Borel set in a complete separable metric
space X, let Y be a Souslin space, and let f : B → Y be an injective Borel
mapping. Then f(B) is a Borel set in Y .

Proof. By Theorem 6.7.4 it suffices to prove our claim for mappings
to [0, 1]. The graph of f is a Borel set in X×[0, 1], and its projecting to [0, 1]
is injective due to the injectivity of f . Hence the assertion reduces to the
case of continuous f . Now we assume that Y = [0, 1] and f is continuous. In
addition, by Lemma 6.8.4 we can assume that B is a closed subset in X×IN∞,
i.e., is a complete separable metric space. As in the proof of Theorem 6.1.13, to
every finite sequence of natural numbers n1, . . . , nk, we associate a nonempty
closed set E(n1, . . . , nk) ⊂ B of diameter less than 2−k−2 in such a way that

B =
∞⋃

j=1

E(j), E(n1, . . . , nk) =
∞⋃

j=1

E(n1, . . . , nk, j).

Let A(n) = E(n)\
⋃n−1
j=1 E(j), and for k > 1 let

A(n1, . . . , nk) = A(n1, . . . , nk−1) ∩ E(n1, . . . , nk)\
⋃

j<nk

E(n1, . . . , nk−1, j).

If k ∈ IN is fixed, the Borel sets A(n1, . . . , nk) are disjoint and their union over
all n1, . . . , nk is B. By the injectivity of f the Souslin sets f

(
A(n1, . . . , nk)

)
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are pairwise disjoint. According to Theorem 6.6.9, there exist disjoint Borel
sets B(n1, . . . , nk) in Y such that

f
(
A(n1, . . . , nk)

)
⊂ B(n1, . . . , nk).

We can have the inclusion B(n1, . . . , nk) ⊂ f
(
A(n1, . . . , nk)

)
by passing to

the Borel sets B(n1, . . . , nk) ∩ f
(
A(n1, . . . , nk)

)
. Let us show that

f(B) =
∞⋂

k=1

⋃

(n1,...,nk)∈INk

B(n1, . . . , nk), (6.8.1)

whence our assertion follows in an obvious way. To this end, we first observe
that

∞⋂

k=1

⋃

(n1,...,nk)∈INk

B(n1, . . . , nk) =
⋃

(ni)∈IN∞

∞⋂

k=1

B(n1, . . . , nk). (6.8.2)

Indeed, the right-hand side of (6.8.2) belongs to the left-hand side in an obvi-
ous way. Conversely, if a point y belongs to the left-hand side of (6.8.2), then
for every k, this point is contained in exactly one of the sets B(n1, . . . , nk)
due to their disjointness. The corresponding indices are denoted by n1(k),. . . ,
nk(k). One has ni(k + 1) = ni(k) whenever i ≤ k, since y �∈ B(m1, . . . ,mk)
if (m1, . . . ,mk) �= (n1, . . . , nk). Thus, y ∈

⋂∞
k=1B

(
n1(1), n2(2), . . . , nk(k)

)
,

and (6.8.2) is established. The set defined by equality (6.8.2) will be denoted
by D. Then one has

f(B) ⊂
⋃

(ni)∈IN∞

∞⋂

k=1

f
(
A(n1, . . . , nk)

)
⊂ D.

On the other hand,

D ⊂
⋃

(ni)∈IN∞

∞⋂

k=1

f
(
E(n1, . . . , nk)

)
⊂ f(B).

Indeed, if y ∈
∞⋂

k=1

f
(
E(n1, . . . , nk)

)
, the set E(n1, . . . , nk) contains points

xn1,...,nk such that f(xn1,...,nk) → y. The sequence {xn1,...,nk} is fundamental.
Since B is complete, this sequence converges to some x ∈ B, whence one has
y = f(x) by the continuity of f . Therefore, we obtain (6.8.1). �

It is worth noting that the image of a Souslin space under an injective
continuous mapping may not be Borel: it suffices to take a non-Borel Souslin
set in [0, 1] and consider its embedding in [0, 1]. However, the above theorem
obviously remains valid for all Souslin spaces that are injective images of
Polish spaces (the so-called Lusin spaces).

6.8.7. Corollary. A set in a Polish space is Borel precisely when it is
the image of a closed subset of IN∞ under a continuous injective mapping.
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6.8.8. Corollary. Any two uncountable Borel sets in Polish spaces are
Borel isomorphic.

Proof. By the previous corollary and the above-established fact that all
continuous injective mappings of Polish spaces take Borel sets to Borel ones,
we obtain that it suffices to prove the existence of a Borel isomorphism be-
tween IR1 and any uncountable closed subset in IN∞, or, equivalently, in the
space R of irrational numbers in (0, 1). We observe that if two uncountable
Borel spaces A and B are Borel isomorphic, then for any at most countable
subset C ⊂ A, the spaces A\C and B are Borel isomorphic as well. If C is
infinite, then it suffices to take in B a part C ′ corresponding to the set C with
the added countable subset D ⊂ A\C, to establish a one-to-one correspon-
dence between D and C ′, and keep the initial isomorphism between A\(C∪D)
and B\C ′. The case of finite C can be reduced to the considered one. Thus,
we may neglect countable subsets. If now M is a closed subset in the space R
of irrational numbers in the interval (0, 1), then it coincides up to a countable
set with some closed subset A in the closed interval. If the interior of A is
not empty, it is Borel isomorphic to (0,+∞). So we may assume that A has
no interior points. The set of all points x ∈ A that possess a neighborhood
meeting A in an at most countable set, is at most countable. Hence we can
assume by the above observation that A is perfect. By Proposition 6.1.17 it
remains to consider the case when A is the Cantor set (the interior of A, if it is
nonempty, is obviously Borel isomorphic to (0, 1)). In that case, the existence
of a Borel isomorphism is verified directly (for example, by using the ternary
expansion for the Cantor set and the binary expansion for the interval). �

It is clear from the above that there are only two classes of pairwise iso-
morphic infinite standard measurable spaces in the sense of Definition 6.2.10:
countable and of cardinality of the continuum.

6.8.9. Theorem. Let {fn} be a sequence of Borel functions on a Souslin
space X separating the points in X. Then {fn} generates the Borel σ-algebra
of X.

Proof. It follows by our hypothesis that the countable family of Borel
sets Bn of the form f−1

k

(
(ri, rj)

)
, where {rj} are all rational numbers, sepa-

rates the points in X. It was shown in the proof of Theorems 6.7.4, 6.5.5 and
6.5.7 that the function h =

∑∞
n=1 3−nIBn maps X one-to-one onto the Souslin

set S := f(X) in [0, 1] and for every B ∈ B(X), we have B = h−1
(
h(B)

)
,

where h(B) ∈ B(S). This means that there exists a set C ∈ B(IR1) such that
h(B) = C ∩S and B = h−1(C). Thus, the function h generates B(X). Hence
B(X) = σ({fn}). �

6.8.10. Example. Let K be a compact metric space and let a sequence
{xn} be dense in K. Then the Borel σ-algebra of the separable Banach space
C(K) is generated by the functions ϕ �→ ϕ(xn) on C(K), since they separate
the points of C(K).
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The following deep and important result is due to P.S. Novikoff [1383].

6.8.11. Theorem. There exist two disjoint coanalytic sets in {0, 1}∞
that cannot be separated by Borel sets. The same is true for any uncountable
Polish space.

Proof. Let us show that there exist Souslin sets A0 and A1 in {0, 1}∞
such that the sets A0\A1 and A1\A0 cannot be separated by Borel sets. We
know that there is a Souslin set S ⊂ {0, 1}×{0, 1}∞×{0, 1}∞ that is universal
for the Souslin sets in {0, 1}×{0, 1}∞. We have S = {0}×S0 ∪ {1}×S1,
where S0 and S1 are Souslin sets in {0, 1}∞×{0, 1}∞. We show that S0\S1

and S1\S0 cannot be separated by Borel sets. Suppose that B0 and B1 are
disjoint Borel sets with S0\S1 ⊂ B0, S1\S0 ⊂ B1. Clearly, we may assume
that B0 is the complement of B1. In Exercise 6.10.31, the Borel classes Bα
corresponding to at most countable ordinals α are introduced such that their
union is the class of all Borel sets of a given space. So one has B0 ∈ Bτ for
some ordinal τ with 0 ≤ τ < ω1. According to that exercise, there is a Borel
set C0 in {0, 1}∞ that does not belong to Bτ . Let C1 be its complement.
The set C := {0}×C0 ∪ {1}×C1 is Souslin in {0, 1}×{0, 1}∞. As S is
universal, there is a point x ∈ {0, 1}∞ with C = Sx, hence C0 = (S0)x,
C1 = (S1)x. Since C0 ∩ C1 = ∅, we obtain C0 ⊂ (S0)x\(S1)x ⊂ (B0)x,
C1 ⊂ (S1)x\(S0)x ⊂ (B1)x. This yields that (B0)x = C0 and (B1)x = C1,
since C0 ∪C1 = {0, 1}∞ and (B0)x ∩ (B1)x = ∅. The set (B0)x is of class Bτ
in {0, 1}∞, which contradicts our choice of C0. Thus, we obtain two Souslin
sets S0 and S1 in {0, 1}∞×{0, 1}∞ such that S0\S1 and S1\S0 cannot be
separated by Borel sets. By Theorem 6.6.12 there are coanalytic sets C0 and
C1 such that C0 ∩ C1 = ∅,

C0 ∪ C1 = {0, 1}∞\(A0 ∩A1), A0\A1 ⊂ C0, A1\A0 ⊂ C1.

As A0\A1 and A1\A0 cannot be separated by Borel sets, the same is true for
the sets C0 and C1. Taking into account Theorem 6.7.3 and Theorem 6.8.6,
we see that the last assertion of the theorem follows by the fact that any
uncountable Polish space is Borel isomorphic to {0, 1}∞. �

6.9. Measurable choice theorems

Let F : X → Y be some mapping. For every point y ∈ F (X), we can
pick an element x = G(y) ∈ F−1(y). Thus, we obtain a mapping G such
that F ◦ G is the identity mapping on the range of F . The mapping G is
called a selection or section of the mapping F or, alternatively, an inverse or
implicit function x = G(y) defined from the equation y = F (x). However,
in applications it is important to have a mapping G with certain additional
properties. For instance, if F is continuous or Borel, it would be nice to
preserve these properties for G. It is easy to give examples showing that
even for one-to-one continuous mappings F the inverse may be discontinuous.
We shall see below that for a Borel mapping F , one cannot always find a
Borel mapping G. But it is remarkable that one can always take for G a
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mapping with nice measurability properties (a measurable selection). This is
the content of the following Jankoff theorem, which belongs to the so-called
measurable selection (or choice) theorems.

6.9.1. Theorem. Let X and Y be Souslin spaces and let F : X → Y
be a Borel mapping such that F (X) = Y . Then, one can find a mapping
G : Y → X such that F

(
G(y)

)
= y for all y ∈ Y and G is measurable with

respect to the σ-algebra generated by all Souslin subsets in Y . In addition, the
set G(Y ) belongs to the σ-algebra σ(SX) generated by Souslin sets in X.

Proof. Suppose first that F is continuous. Since X is the image of
the space IN∞ under a continuous mapping p, it suffices to prove our claim
for IN∞ and take for the required mapping the composition of p with the
mapping obtained for IN∞. Thus, we may assume that X = IN∞. The set
IN∞ is equipped with the lexicographic order: (ni) < (ki) if either n1 < k1,
or n1 = k1, . . . , nm = km and nm+1 < km+1 for some m ≥ 1. Let x ≤ z if
x < z or x = z. For every y ∈ Y , we take for G(y) the smallest in the sense
of the lexicographic order element of the set F−1(y) (which is nonempty by
hypothesis and is closed by the continuity of F ). Note that such an element
exists. Indeed, let F−1(y) be denoted by Z. We take any element x1 =
(x1
i ) ∈ Z such that x1

1 ≤ z1 for all z = (zi) ∈ Z. Next we find an element
x2 = (x2

i ) ∈ Z such that x2
2 = x1

2 and x2
2 ≤ z2 for all z = (zi) ∈ Z such that

z1 = x1
1. Then we find an element x3 ∈ Z with x3

1 = x2
1, x3

2 = x2
2 and x3

3 ≤ z3
for all z = (zi) ∈ Z with zi = x2

i for i = 1, 2. By induction, we find elements
xk ∈ Z with the following properties: xk+1

i = xki if i ≤ k and xk+1
k+1 ≤ zk+1

for all z = (zi) ∈ Z such that zi = xki for all i ≤ k. Let us consider the
element x = (xii). The sequence of elements xk converges to x in IN∞. Since
Z is closed, we have x ∈ Z. In addition, x ≤ z for all z ∈ Z. Indeed, otherwise
for some k we would have x1 = z1, . . . , xk = zk, zk+1 < xk+1 = xk+1

k+1. Then
zi = xii if i ≤ k, which leads to a contradiction with our choice of xk+1.

By construction F
(
G(y)

)
= y. We verify that for any Borel set B ⊂ IN∞,

the setG−1(B) is contained in the σ-algebraA generated by all Souslin subsets
in Y . Since the family of all Borel sets B with this property is a σ-algebra, it
suffices to consider closed sets of the form

B =
{

(ni) ∈ IN∞ : (ni) ≤ (bi)
}
,

where bi ∈ IN are fixed. It is easy to see that these sets generate B(IN∞). It is
clear that G−1(B) = F (B). Indeed, if G(y) ∈ B, then y ∈ F (B). If y = F (η)
with η ∈ B, then G(y) ≤ η, hence G(y) ∈ B, i.e., one has y ∈ G−1(B). Since
F (B) is Souslin, the set G−1(B) belongs to the σ-algebra A.

Let us consider the general case. Then the graph of the mapping F , i.e.,
the set Γ :=

{(
x, F (x)

)
, x ∈ X

}
is a Souslin subset of the space X×Y (see

Lemma 6.7.1). The projection πY : Γ → Y is continuous. By the above, there
exists a measurable mapping Ψ: (Y,A) →

(
Γ,B(Γ)

)
with πY ◦Ψ(y) = y for
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all y ∈ Y . Let πX : Γ → X be the natural projection. Set G = πX ◦Ψ. Then

F
(
G(y)

)
= F

(
πX
(
Ψ(y)

))
= πY

(
Ψ(y)

)
= y, ∀ y ∈ Y,

since Ψ(y) =
(
x, F (x)

)
, where x = πX

(
Ψ(y)

)
and F (x) = πY

(
Ψ(y)

)
. By the

continuity of πX and measurability of Ψ with respect to A we obtain that G
is A-measurable.

Let us show that G(Y ) ∈ σ(SX). Let T (x) = G
(
F (x)

)
. We have G(Y ) =

{x ∈ X : T (x) = x}. The set on the right is the intersection of the sets
{fn = fn ◦ T}, where {fn} is a countable family of Borel functions on X
separating points. It remains to observe that the function fn◦T is measurable
with respect to the σ-algebra σ(SX). This follows by the

(
σ(SY ),B(X)

)
-

measurability of G and the
(
σ(SX), σ(SY )

)
-measurability of F (the latter is

a consequence of the Borel measurability of F , see Theorem 6.7.3). �
Let us observe that the mapping G constructed in the proof in the case

where X = IN∞ and F is continuous has the following property: the set G(Y )
is coanalytic, i.e., its complement is Souslin. Indeed, since G(y) is the minimal
element in F−1(y), the set IN∞\G(Y ) is the projection of the set

B =
{

(x, z) ∈ IN∞×IN∞ : F (x) = F (z), z < x
}
,

where the relation z < x is understood in the sense of the lexicographic order.
It is readily seen that B is a Borel set. We observe that G(Y ) is Souslin only
if it is Borel. This is impossible for a non-Borel Souslin set Y ⊂ [0, 1], since
F is injective on G(Y ) and Y = F

(
G(Y )

)
. Hence our method may produce

non-Souslin sets G(Y ). Below we give an example where there is no selection
G at all such that G(Y ) is Souslin.

The given proof applies to a more general problem of selecting a single-
valued branch of a multivalued mapping, which we now discuss.

Let X be some space and let (Ω,B) be a measurable space. Suppose
Ψ: Ω → 2X is a mapping with values in the set of all nonempty subsets of X,
i.e., Ψ(ω) ⊂ X and Ψ(ω) �= ∅ for all ω ∈ Ω. The graph of the multivalued
mapping Ψ is the set ΓΨ :=

{
(ω, u) ∈ Ω×X : ω ∈ Ω, u ∈ Ψ(ω)

}
.

Let πΩ : Ω×X → Ω and πX : Ω×X → X denote the natural projec-
tions. The graphs of multivalued mappings are precisely the sets Γ ⊂ Ω×X
with πΩ(Γ) = Ω.

A selection of Ψ is a mapping ζ : Ω → X such that ζ(ω) belongs to Ψ(ω)
for all ω ∈ Ω.

A typical example of a multivalued mapping is the inverse to a mapping
F : X → Ω, i.e., Ψ(ω) = F−1(ω). Certainly, in order that Ψ be everywhere
defined, the equality F (X) = Ω is required. The method of proof of the pre-
vious theorem yields the following assertion (we do not explain the necessary
changes in the reasoning because in Theorem 6.9.5 below we prove a more
general fact).

6.9.2. Theorem. Let Ω and X be Souslin spaces and let the graph
of a mapping Ψ from Ω to the set of nonempty subsets of X be a Souslin
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(for example, Borel) set. Then, there exists a mapping f : Ω → X that is
measurable with respect to the σ-algebra σ(SΩ) generated by all Souslin sets
in Ω and satisfies the relation f(ω) ∈ Ψ(ω) for all ω ∈ Ω.

Let us give a sufficient condition in order to have a Borel selection.

6.9.3. Theorem. Let X be a complete separable metric space and let
Ψ be a mapping on (Ω,B) with values in the set of nonempty closed subsets
of X. Suppose that for every open set U ⊂ X, we have

Ψ̂(U) :=
{
ω : Ψ(ω) ∩ U �= ∅

}
∈ B.

Then Ψ has a selection ζ that is measurable with respect to the pair of σ-al-
gebras B and B(X).

Proof. Let {xn} be any countable everywhere dense set in X. We define
a mapping ζ0 : Ω → X as follows: ζ0(ω) = xn if n is the smallest number with
Ψ(ω)∩B(xn, 1) �= ∅, where B(x, r) is the open ball of radius r with the center
at x. It is clear that ζ0 assumes countably many values and is B-measurable,
since

ζ−1(xn) = Ψ̂
(
B(xn, 1)

)
\
n−1⋃

m=1

Ψ̂
(
B(xm, 1)

)
.

Now we construct inductively B-measurable mappings ζk with countably many
values {xn} such that for all ω one has

dist
(
ζk(ω), ζk+1(ω)

)
< 2−k+1, dist

(
ζk(ω),Ψ(ω)

)
< 2−k,

where dist denotes the distance in X. Suppose that ζk is already constructed.
Let Ωi = ζ−1

k (xi). If ω ∈ Ωi, then we have Ψ(ω) ∩ B(xi, 2−k) �= ∅. Now we
define ζk+1 on Ωi as follows: ζk+1(ω) = xn if n is the smallest number with

Ψ(ω) ∩B(xi, 2−k) ∩B(xn, 2−k−1) �= ∅.

As above, the mapping ζk+1 is B-measurable. In addition, we have the esti-
mates dist

(
ζk+1(ω),Ψ(ω)

)
< 2−k−1 and

dist
(
ζk+1(ω), ζk(ω)

)
< 2−k + 2−k−1 < 2−k+1.

In particular, {ζk(ω)} is a fundamental sequence; its limit we denote by ζ(ω).
It is clear that ζ(ω) ∈ Ψ(ω). Taking into account the B-measurability of ζ,
we see that ζ is as required. �

It is clear that in this theorem the completeness of X can be replaced
with the completeness of Ψ(ω). In fact, this reduces to the considered case if
we take the completion of X.

6.9.4. Corollary. In the situation of the above theorem, one can find
a sequence of B-measurable selections ζn such that for every ω the sequence
{ζn(ω)} is dense in Ψ(ω).
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Proof. Let {xn} be an everywhere dense sequence in X. For every pair
(n, i) ∈ IN2, we set

Ψni(ω) = Ψ(ω) ∩B(xn, 2−i) if ω ∈ Ψ̂
(
B(xn, 2−i)

)

and Ψni(ω) = Ψ(ω) otherwise. The multivalued mapping Ψni associating
to a point ω the closure of the set Ψni(ω), takes the values in the family of
complete subsets of X. For any open set U ⊂ X, we have

{
ω : Ψni(ω) ∩ U �= ∅

}
=
{
ω : Ψni(ω) ∩ U �= ∅

}

= Ψ̂
(
B(xn, 2−i) ∩ U

)⋃[(
Ω\Ψ̂

(
B(xn, 2−i)

))
∩ Ψ̂(U)

]
∈ B.

By the above theorem, Ψni has a B-measurable selection ζni. We verify that
the closure of {ζni(ω)} is Ψ(ω). Let x ∈ Ψ(ω) and ε > 0. We pick i and n

such that 21−i < ε and dist(xn, x) < 2−i. Then ω ∈ Ψ̂
(
B(xn, 2−i)

)
and ζni(ω)

belongs to the closure of B(xn, 2−i). Hence dist
(
x, ζni(ω)

)
≤ 21−i < ε. �

6.9.5. Theorem. Suppose that Ω and X are Souslin spaces and σ(SΩ) is
the σ-algebra generated by all Souslin sets in Ω. Let the graph of a multivalued
mapping Ψ from Ω to the set of nonempty subsets of X be a Souslin set
in Ω×X. Then, there exists a sequence of selections ζn that are measurable as
mappings from

(
Ω, σ(SΩ)

)
to
(
X,B(X)

)
, such that for every ω, the sequence

{ζn(ω)} is dense in the set Ψ(ω).

Proof. Denote by Γ the graph of Ψ. There exists a continuous mapping
h from a complete separable metric space Z onto Γ. Denote by π the projec-
tion Γ → Ω, (ω, x) �→ ω. By the continuity of π ◦ h, the multivalued mapping
Φ = (π ◦ h)−1 on Ω takes values in the set of nonempty closed subsets of Z.
We observe that Φ has the closed graph ΓΦ in Ω×Z by the continuity of π ◦h.
Therefore, for any open set U ⊂ Z, the set Φ̂(U) is Souslin in Ω since it coin-
cides with the projection of ΓΦ ∩ (Ω×U) on Ω. Let us apply Corollary 6.9.4
to B = σ(SΩ) and Φ and Z in place of Ψ and X. We obtain B-measurable
sections ηn of the mapping Φ such that the sequences {ηn(ω)} are dense in
the sets Φ(ω). For any ω, the point h

(
ηn(ω)

)
has the form

(
ω, ζn(ω)

)
. The

mappings ζn are as required. Indeed, the inclusion ηn(ω) ∈ (π◦h)−1(ω) yields
the equality ω = π◦h◦ηn(ω), whence we obtain h

(
ηn(ω)

)
∈ {ω}×Ψ(ω), hence

ζn(ω) ∈ Ψ(ω). The measurability of ζn with respect to σ(SΩ) is seen from the
formula ζn = πX ◦ h ◦ ηn, where πX is the projection to X. �

6.9.6. Theorem. Let X and Y be Polish spaces and let Γ ∈ B(X×Y ).
Suppose, additionally, that the set Γx := {y ∈ Y : (x, y) ∈ Γ} is nonempty and
σ-compact for all x ∈ X. Then Γ contains the graph of some Borel mapping
f : X → Y .

For a proof, see Kechris [968, �35] (see also Arsenin, Lyapunov [72, �15]).
Interesting generalizations are obtained in Levin [1165]. Other sufficient con-
ditions are given in Burgess [282].



38 Chapter 6. Borel, Baire and Souslin sets

An important partial case when there exists a Borel inverse mapping is
that of a continuous mapping of a metrizable compact space. This follows by
Theorem 6.9.6 or by Theorem 6.9.3, but we give a direct justification.

6.9.7. Theorem. Let X be a compact metric space, let Y be a Hausdorff
topological space, and let f : X → Y be a continuous mapping. Then, there
exists a Borel set B ⊂ X such that f(B) = f(X) and f injective on B. In
addition, the mapping f−1 : f(X) → B is Borel.

Proof. The set f(X) is compact metrizable. Hence we may further
assume that Y coincides with the metrizable compact f(X). Suppose first
that X ⊂ [0, 1]. Set g(y) = inf{x : f(x) = y}, y ∈ f(X). The function g is
Borel, since for every c ∈ IR1, the set {y : g(y) ≤ c} is closed. Indeed, let
g(yn) ≤ c and let y be the limit of {yn}. One can find xn ∈ X such that
f(xn) = yn and xn ≤ c + 1/n. Passing to a subsequence we may assume
that {xn} converges to some x ∈ X. Then f(x) = y and x ≤ c, whence
g(y) ≤ c. It is clear that f

(
g(y)

)
= y, hence the function g is injective, the

set B := g(Y ) is Borel and f(B) = Y . Alternatively, one could observe that
B = X\

⋃∞
n=1Bn, where

Bn := {x ∈ X : ∃ t ∈ X, f(t) = f(x), x− t ≥ 1/n},

and the sets Bn are closed by the continuity of f and the compactness of X.
The mapping f on B is injective. In the general case, by Proposition 6.1.18,
there exists a compact set K ⊂ [0, 1] such that X = ϕ(K) for some continuous
mapping ϕ. Let us apply the already proven assertion to the mapping f ◦ ϕ
and find a Borel set B0 ⊂ [0, 1] such that the mapping f ◦ ϕ is injective and
f
(
ϕ(B0)

)
= f

(
ϕ(K)

)
= f(X). Then ϕ is injective on B0 and hence the set

B := ϕ(B0) is Borel in X. It is clear that f is injective on B. �

The metrizability of X is essential even if Y = [0, 1]: it suffices to consider
the projection of the space “two arrows” (see Exercise 6.10.36). Certainly,
in this theorem neither the compactness of X nor the continuity of f can
be omitted. For example, if f is a continuous function on [0, 1] such that
for some Borel set X, the set f(X) is not Borel, then f(X) cannot be the
injective continuous image of a Borel set B. A similar example is constructed
with a Borel function f on [0, 1] with non-Borel f([0, 1]). P.S. Novikoff [1383]
discovered that there might be no Borel selection even in the case where f
is a Borel function such that f([0, 1]) = [0, 1]. A classical example (with the
plane in place of the interval) can be found, e.g., in the book Lusin [1209,
Ch. III, p. 220], and the next theorem contains its modification suggested by
J. Saint Raymond.

6.9.8. Theorem. There exists a continuous mapping F of IN∞×{0, 1}
on IN∞ such that no Souslin set is injectively mapped by F onto IN∞. In
particular, there is no selection G with Souslin G(IN∞), hence there is no
Borel selection.
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Proof. By Theorem 6.8.11 there exist two disjoint sets C0 and C1 in
IN∞ with Souslin complements A0 and A1 such that there is no Borel set
separating C0 and C1. One can find continuous surjections F0 : IN∞ → A0,
F1 : IN∞ → A1. Let F : IN∞×{0, 1} → IN∞ be defined by F (ν, 0) = F0(ν),
F (ν, 1) = F1(ν). We obtain a continuous surjection, since A0 ∪ A1 = IN∞.
Suppose there is a Souslin set S ⊂ IN∞×{0, 1} on which F is injective and
F (S) = IN∞. Let Si := {ν ∈ IN∞ : (ν, i) ∈ S}, i = 0, 1. We observe that the
sets B0 := F0(S0) = G−1(IN∞×{0}) and B1 := F0(S1) = G−1(IN∞×{1}) are
Souslin and disjoint and their union is IN∞. Hence both sets are Borel. One
has Bi ⊂ Ai. Hence C0 ⊂ B1, C1 ⊂ B0, which contradicts the fact that C0

and C1 cannot be separated by Borel sets. Since the image of IN∞ under an
injective Borel mapping is a Borel set, there is no Borel selection. �

6.9.9. Corollary. There exists a Borel function f : [0, 1] → [0, 1] with
f([0, 1]) = [0, 1] such that there is no Borel function g : [0, 1] → [0, 1] with
f
(
g(y)

)
= y for all y ∈ [0, 1]. In particular, there is no Borel set in [0, 1] that

would be injectively mapped by f onto [0, 1].

6.9.10. Corollary. There exists a continuous mapping g : IN∞ → [0, 1]
with g(IN∞) = [0, 1] that has no Borel selections.

Proof. Indeed, let Γ be the graph of the function f from Novikoff’s
example and let π be the projection operator of Γ to the axis of ordinates.
Then Γ is a Borel set in [0, 1]2 and there exists a continuous mapping h from
the space IN∞ onto Γ. The mapping g := π ◦ h is the required one. Indeed, if
there exists a Borel set B ⊂ IN∞ that is injectively mapped by g onto [0, 1],
then B0 := h(B) is Borel in Γ. The projection of B0 on the axis of abscissas,
denoted by B1, is a Borel set as well (by the injectivity of the projection
operator on Γ) and f(B1) = [0, 1]. The function f is injective on B1 by the
injectivity of π on B0, which follows by the injectivity of g on B. �

The proof of the next measurable choice result can be found in Castaing,
Valadier [319].

6.9.11. Theorem. Let X be a complete separable metric space. Suppose
that the graph of a mapping Ψ with values in the set of nonempty closed subsets
of X belongs to B⊗B(X). Denote by B̂ the intersection of the Lebesgue com-
pletions of B over all probability measures on B. Then, there exists a sequence
of selections ζn that are measurable as mappings from (Ω, B̂) to

(
X,B(X)

)
,

and for every ω, the sequence {ζn(ω)} is dense in the set Ψ(ω).

We now prove a useful result from Leese [1143].

6.9.12. Theorem. Let (Ω,B) be a measurable space and let X be a
Souslin space. Suppose that A ∈ S

(
B⊗B(X)

)
. Then πΩ(A) ∈ S(B) and

there is a
(
σ
(
S(B)

)
,B(X)

)
-measurable mapping ξ : πΩ(A) → X whose graph

is contained in A.
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Proof. We have πΩ(A) ∈ S(B) by Corollary 6.10.10 proven below, hence
we may assume that πΩ(A) = Ω. Let J := IN∞. The set A admits a Souslin
representation A =

⋃
η∈J

⋂∞
n=1Aη1,...,ηn×Bη1,...,ηn , where Aη1,...,ηn ∈ B and

Bη1,...,ηn are closed in X (this follows by Exercise 6.10.69). Suppose first that
X = J . Let Aη =

⋂∞
n=1Aη1,...,ηn , Bη =

⋂∞
n=1Bη1,...,ηn . It is readily seen

that A is the projection on Ω×X of the set

E :=
⋃

η∈J

∞⋂

n=1

Aη1,...,ηn×Bη1,...,ηn×Nη1,...,ηn =
⋃

η∈J
Aη×Bη×{η},

where Nη1,...,ηn := {ν ∈ J : ν1 = η1, . . . , νn = ηn}, and E ∈ S
(
B×B(X×J )

)
.

The sections Eω, where ω ∈ Ω, are closed. Indeed, if (x, ν) �∈ Eω, then
(ω, x) �∈ Aν×Bν . Hence, for some n, either ω �∈ Aν1,...,νn or x �∈ Bν1,...,νn . In
the first case X×Nν1,...,νn is a neighborhood of (x, ν) disjoint with Eω. In the
second case x has a neighborhood U disjoint with Bν1,...,νn , so U×Nν1,...,νn is a
neighborhood of (x, ν) disjoint with Eω. Let Ψ(ω) := Eω. For any open set U
in X×J , we have Ψ̂(U) = πΩ

(
E∩(Ω×U)

)
. Hence Ψ̂(U) ∈ S(B). By Theorem

6.9.3 there is a
(
σ
(
S(B)

)
,B(X×J )

)
-measurable mapping ζ : Ω → X×J whose

graph belongs to E. It remains to set ξ := πJ ◦ ζ.
In the general case, there is a continuous surjection f from J onto X.

Now we set E :=
⋃
η∈J

(
Aη×f−1(Bη)×{η}

)
. It is clear that E belongs to

S
(
B×B(J ×J )

)
. Note that πΩ(E) = Ω as πΩ(A) = Ω. By the first step

we find a
(
σ
(
S(B)

)
,B(J ×J )

)
-measurable mapping ζ = (ζ1, ζ2) : Ω → J×J

whose graph is contained in E. Finally, the mapping ξ := f ◦ ζ1 has the
required properties. �

The next theorem from Aumann [80] and Sainte-Beuve [1636] gives mea-
surable selections on measure spaces (it has a modification applicable to cer-
tain complete σ-algebras rather than measures; see the cited papers). Al-
though this theorem follows directly from Theorem 6.9.12 and the relations
S(A) ⊂ Aµ = A, we give an independent proof.

6.9.13. Theorem. Let (Ω,A, µ) be a complete probability space, let X
be a Souslin space, and let Ψ be a multivalued mapping from Ω to the set of
nonempty subsets of X such that its graph ΓΨ belongs to A⊗B(X). Then, there
exists an

(
A,B(X)

)
-measurable mapping f : Ω → X such that f(ω) ∈ Ψ(ω)

for all ω ∈ Ω.

Proof. Let us recall that there exist two sequences {An} ⊂ A and
{Bn} ⊂ B(X) such that ΓΨ belongs to σ({An×Bn}), in particular, it be-
longs to A0⊗B(X), where A0 is the σ-algebra generated by {An}. We
know that there exists an A0-measurable function h : Ω → [0, 1] such that
A0 =

{
h−1(B) : B ∈ B([0, 1])

}
. Thus, h gives a one-to-one mapping from

A0 onto B(E), where E := h(Ω). Hence the mapping g : (ω, x) �→
(
h(ω), x

)
,

Ω×X → E×X, takes A0⊗B(X) to B(E)⊗B(X). In particular, we have
g(ΓΨ) ∈ B(E)⊗B(X). The set g(ΓΨ) is the graph of the multivalued map-
ping Φ: y �→

⋃
ω∈h−1(y) Ψ(ω). Now it suffices to prove our claim for Φ and
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the probability space
(
E,B(E)ν , ν

)
, where ν := µ ◦ h−1. Indeed, if we have

a ν-measurable mapping f1 : E → X with f1(y) ∈ Φ(y), then there exists
a set B ∈ B(E) with ν(B) = 1 on which f1 is Borel. Then h−1(B) ∈ A0,
µ
(
h−1(B)

)
= 1, and we can set f(ω) := f1

(
h(ω)

)
for all ω ∈ h−1(B), and

for all other points ω we can pick f(ω) ∈ Ψ(ω) in an arbitrary way. Let us
observe that Ψ(ω) = Ψ(ω′) if h(ω) = h(ω′) since IΓΨ(ω, x) = ϕ

(
h(ω), x

)
,

where ϕ is a Borel function on [0, 1]×X. Hence f(ω) ∈ Ψ(ω) for all ω ∈ Ω.
Finally, the claim for E follows by the already known results for Souslin

spaces, since the graph of Φ is the intersection of E×X with some Borel set
D in [0, 1]×X. The projection S of the set D on [0, 1] is a Souslin set and
contains E. Hence it remains to extend ν to a Borel measure on S and take
the multivalued mapping on S with the Souslin graph (S×X) ∩D. �

Evstigneev [545] and Graf [718] obtained an analogous result in the case
where X is compact and the graph of Ψ belongs to S

(
A⊗Ba(X)

)
. Another

related result is given in Exercise 6.10.77.

We now discuss yet another aspect of measurable selections. Let (E, E)
be a measurable space and let R be an equivalence relation on E, i.e., R is a
subset of E2 that contains the diagonal, (y, x) ∈ R whenever (x, y) ∈ R, and
if (x, y), (y, z) ∈ R, then (x, z) ∈ R. A set S is called a section or selection of
R if S meets every equivalence class in exactly one point. If the equivalence
classes have a reasonable descriptive structure, one might ask whether there is
a nice selection. However, the classical Vitali example, where the equivalence
on [0, 1] is defined by setting x ∼ y if x − y ∈ Q, shows that there might be
no measurable section even if each equivalence class is countable. It turns out
that the measurable structure of the factor-space E/R must be taken into
account.

The following very general result is due to Hoffmann-Jørgensen [841].
Let R(x) denote the equivalence class of x. For every A ⊂ E, let

R(A) := {y ∈ E : ∃x ∈ A with (x, y) ∈ R}.

6.9.14. Theorem. Let E∗ be a class of subsets of E that contains E and
is closed under countable unions and countable intersections. Suppose there
is a Souslin scheme {An1,...,nk} with values in E such that:

(i) E =
⋃∞
n=1An, An1,...,nk =

⋃∞
n=1An1,...,nk,n,

(ii) for every x ∈ E and every (ni) ∈ IN∞, the intersection of the sets
R(x) ∩An1,...,nk is a single point, provided that these sets are not empty,

(iii) R(An1,...,nk) ∈ E∗.
Then R has a section S such that E\S ∈ E∗.

Proof. Let us define a Souslin scheme {Hn1,...,nk} by induction as fol-
lows: Hn = An\

⋃n−1
k=1 R(Ak) and

Hn1,...,nk,nk+1 = (An1,...,nk,nk+1 ∩Hn1,...,nk)\
nk+1−1⋃

j=1

R(An1,...,nk,j).
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Now we set

Sk =
⋃

(n1,...,nk)∈INk

Hn1,...,nk , S =
∞⋂

k=1

Sk

and show that S has the required properties. To see that E\S ∈ E∗, it
suffices to show that E\Hn1,...,nk ∈ E∗. This is easily verified by induction
due to the inclusion E\(A\B) = (X\A) ∪ (A ∩ B) ∈ E∗ for all A ∈ E and
B ∈ E∗, which holds, since E ⊂ E∗, E is stable under complementation and
E∗ is stable under finite intersections and unions. Let us show that S is a
section. Let x ∈ E. There exists m1 := min{n : R(x) ∩ An �= ∅}. Then
R(x) ∩ Ak = ∅ if k < m1. Hence R(x) ∩ R(Ak) = ∅ for all k < m1 and
R(x) ∩ Am1 = R(x) ∩Hm1 �= ∅. Therefore, R(x) ⊂ R(Am1) and R(x) ∩Hn

for all n �= m1. By using that Am1 =
⋃∞
n=1Am1,n, we find a number m2 such

that R(x) ∩ Am1,m2 = R(x) ∩ Hm1,m2 �= ∅ and R(x) ∩ Hm1,n = ∅ for all
n �= m2. By induction we obtain a sequence {mk} such that

R(x) ∩Am1,...,mk = R(x) ∩Hm1,...,mk �= ∅ and R(x) ∩Hm1,...,mk,n = ∅

whenever n �= mk+1. As Hn1,...,nk+1 ⊂ Hn1,...,nk , one has R(x)∩Hn1,...,nk = ∅

if (n1, . . . , nk) �= (m1, . . . ,mk). On account of these relations we have the
equality S ∩ R(x) =

⋂∞
k=1Am1,...,mk ∩ R(X), which by property (ii) of the

scheme {An1,...,nk} yields that S ∩R(x) consists of a single point. �
6.9.15. Example. Let E be a complete separable metric space and let

E∗ = SE be the class of all Souslin sets in E. One can find a Souslin scheme
{An1,...,nk} that consists of closed sets An1,...,nk of diameter at most 1/k such
that condition (i) in the theorem is fulfilled. Then condition (ii) is fulfilled too
for any equivalence relation with closed equivalence classes. Hence in order
to obtain a coanalytic section one has only to ensure condition (iii).

6.9.16. Corollary. Let E be a regular Souslin space and let E∗ be a class
of subsets of E that contains all Souslin sets and is closed under countable
unions and countable intersections. Suppose R is an equivalence relation on
E such that each equivalence class is closed and R(A) ∈ E∗ for each closed
set A. Then R has a coanalytic section S.

Proof. There is a continuous surjection f : IN∞ → X. One can find
a Souslin scheme {Zn1,...,nk} in IN∞ that consists of closed sets Zn1,...,nk of
diameter at most 1/k such that condition (i) in the theorem is fulfilled. Let
An1,...,nk := f(Zn1,...,nk). The Souslin scheme {An1,...,nk} satisfies condition
(i) in the theorem. By our assumption, R(An1,...,nk) ∈ E∗. Let us verify
condition (ii). Let x ∈ X and (ni) ∈ IN∞ be such that the sets R(x) ∩
An1,...,nk are not empty. Hence Zn1,...,nk �= ∅ and there is a unique element
ν in

⋂∞
k=1 Zn1,...,nk . We show that f(ν) ∈ R(x). Suppose not. Since X is

regular, one can find disjoint open sets V and W such that f(ν) ∈ V and
R(x) ⊂W . By the continuity of f one has an open ball U containing ν with
f(U) ⊂ V . There is a sufficiently large number k such that f(Zn1,...,nk) ⊂ V ,
hence An1,...,nk is contained in the complement of W and does not meet R(x),
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a contradiction. It is seen from the same reasoning that f(ν) is a unique
element of

⋂∞
k=1An1,...,nk . Indeed, if y is another element of this set, we find

open sets V and W such that f(ν) ∈ V , y ∈ W , V ∩W = ∅, which leads to
a contradiction by the above reasoning. �

It is worth noting that if we omit the regularity assumption on X, but
require that the sets R(A) be Souslin for all Souslin sets A ⊂ X, the above
proof shows that there is a selection S that belongs to the σ-algebra σ(SX).
Indeed, it suffices to take E∗ = σ(SX) and An1,...,nk = f(Zn1,...,nk) ∈ SX .

6.9.17. Corollary. Let X be a regular Souslin space, let Y be a Haus-
dorff space, and let F : X → Y be a continuous surjection. Then there exists
a coanalytic set S ⊂ X that is mapped by F one-to-one onto Y . If X is not
regular, then S can be found in σ(SX).

Proof. Let (x, y) ∈ R if F (x) = F (y). Then the equivalence classes are
closed. In addition, R(A) = F−1

(
F (A)

)
is a Souslin set for every Souslin set

A ⊂ X. Hence the previous corollary applies. If X is not regular, then we
use the observation made above. �

Under stronger assumptions one can find a Borel section.

6.9.18. Corollary. Let R be an equivalence relation on a topological
space X with closed equivalence classes. Then R admits a Borel section under
any of the following conditions:

(i) the space X is Polish and R(U) ∈ B(X) for every open set U (or
R(Z) ∈ B(X) for every closed set Z);

(ii) the space X is Lusin and R(B) ∈ B(X) for every Borel set B.

Proof. (i) We may assume that X is a complete separable metric space
and apply the theorem to E = E∗ = B(X) and the same Souslin scheme as in
Example 6.9.15. (ii) By hypothesis, there is a one-to-one continuous mapping
f of a complete separable metric space E onto X. Let us set E = E∗ = B(X)
and apply the theorem to the Souslin scheme {f(An1,...,nk)} with An1,...,nk

from Example 6.9.15. �
Additional information can be found in Burgess [280], [281].

6.10. Supplements and exercises

(i) Borel and Baire sets(43). (ii) Souslin sets as projections(46). (iii) K-analytic

and F-analytic sets (49). (iv) Blackwell spaces (50). (v) Mappings of Souslin

spaces (51). (vi) Measurability in normed spaces (52). (vii) The Skorohod

space (53). Exercises (54).

6.10(i). Borel and Baire sets

We note that apart from the σ-algebra σ(F) generated by a class of sets F
in a space X, one can consider the smallest class of sets that contains F and is
closed with respect to countable unions and countable intersections (but may
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not be closed with respect to complementation). This class is denoted by
B(F). The class B(F) can be smaller than σ(F): for example, the class of all
Souslin subsets of the interval is closed with respect to countable unions and
countable intersections, but is not closed with respect to complementation;
the same is true for the class of at most countable subsets of the interval.
Certain sufficient conditions for the equality B(F) = σ(F) can be found in
Exercise 6.10.32 and Jayne [887].

We know that the Borel σ-algebra of any subspace consists of the inter-
sections of that subspace with Borel sets of the whole space. The situation
with the Baire structure is different.

6.10.1. Example. There exist a completely regular space X, its closed
Baire subset X0, and a Baire subset B of X0 (with the induced topology) such
that B cannot be the intersection of a Baire set in X with X0. Moreover, one
can take for X0 a functionally closed set in X.

Proof. Let X be the Sorgenfrey plane (see Example 6.1.19) and let X0

be the straight line in the plane given by the equation x+ y = 0. Obviously,
X0 is a functionally closed subset of X, since the function (x, y) �→ x + y is
continuous on X. For any real number x, the open set [x, x+1)×[−x,−x+1)
meets X0 precisely at the point (x,−x) ∈ X0. Thus, every point in X0 is
open in the induced topology, hence so is every subset of X0. Therefore, all
subsets of X0 are Baire from the point of view of this subspace. It remains
to observe that X is separable, hence has only the continuum of Baire sets
(any continuous function is uniquely determined by its values on a countable
everywhere dense set), whence we obtain the existence of a subset B in X0

that is not Baire in X. In Exercise 6.10.81 it is proposed to verify that the
intersections of X0 with Baire subsets of X are Borel sets with respect to the
usual topology of the plane. �

The following result is partially inverse to Proposition 6.3.4 (see Halmos
[779], Ross, Stromberg [1612] for a proof).

6.10.2. Theorem. If X is compact, then B(X) = Ba(X) precisely when
X is perfectly normal.

Recall that βX is the Stone–Čech compactification of a completely regular
space X.

6.10.3. Theorem. (i) Let X be completely regular and X ∈ Ba(βX).
Then, every closed Baire set in X is functionally closed. (ii) Any compact
Baire set in a completely regular space is functionally closed. (iii) Let X be
compact and let B ∈ Ba(X). If A ⊂ B and A ∈ Ba(B), then A ∈ Ba(X).

For proofs and references, see Comfort, Negrepontis [365]. In applica-
tions, one also encounters spaces with distinct families of Borel and Baire
sets.
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6.10.4. Example. Suppose that X is any of the following spaces:
(i) an uncountable product of compact intervals (which is a compact

space),
(ii) the space of all functions on an interval with the topology of pointwise

convergence (i.e., the product IRc of the continuum of real lines),
(iii) the subspace in IRc consisting of all bounded functions. Then Ba(X)

is strictly smaller than B(X).

For the proof it suffices to use the following important result (going back
to M.F. Bokshtein, see Engelking [532, 2.7.12(c)]) that describes the structure
of Baire sets in product spaces.

6.10.5. Theorem. Suppose that (Xt)t∈T is a family of separable spaces
and Y is a separable metric space. Then, for every continuous mapping
F :

∏
t∈T Xt → Y, there exist a finite or countable set S ⊂ T and a con-

tinuous mapping F0 :
∏
s∈S Xs → Y such that F = F0 ◦πS, where πS denotes

the natural projection from
∏
t∈T Xt to

∏
s∈S Xs. In particular, Ba(

∏
t∈T Xt)

is generated by the coordinate mappings to the spaces
(
Xt,Ba(Xt)

)
.

The Baire σ-algebra can be generated by a family of functions that is much
smaller than the whole class C(X). We have already seen this in Proposi-
tion 6.5.4. The following result (which also follows from Bokshtein’s theorem)
was obtained in Edgar [513], [514]. Its proof can be found in Exercise 6.10.67.
The definition of the weak topology is given in �4.7(ii).

6.10.6. Theorem. Let X be a locally convex space equipped with the
weak topology σ(X,X∗). Then the corresponding Baire σ-algebra coincides
with the σ-algebra σ(X∗) generated by X∗. In particular, the Baire σ-algebra
of any product of real lines IRΛ coincides with the σ-algebra generated by the
coordinate functions.

The following result from Kellerer [974] gives some information on the
behavior of the Borel and Baire structures under multiplication of topological
spaces.

6.10.7. Proposition. Let (Xα), α ∈ A, be a family of nonempty spaces,
X =

∏
αXα. The equality Ba(X) =

⊗

α
Ba(Xα) holds in any of the following

cases:
(a) every finite subproduct of the spaces Xα is Lindelöf (for example, every

Xα is either compact or separable metric);
(b) A = {1, 2} and at least one of the spaces X1 and X2 is separable

metric;
(c) A = {1, 2}, the space X1 is locally compact and σ-compact and X2 is

separable.
On the other hand, there exist a discrete space X1 and a separable compact

space X2 such that Ba(X1×X2) �= Ba(X1)
⊗
Ba(X2).

It is unknown whether the equality Ba(X×Y ) = Ba(X)⊗Ba(Y ) is true
for all separable spaces.
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Now we prove a useful result due to V.V. Sazonov.

6.10.8. Proposition. Let X be a σ-compact topological space and let
Γ be a family of continuous functions separating the points in X. Then the
equality Ba(X) = σ(Γ) holds.

Proof. We verify that Ba(X) ⊂ σ(Γ). One can assume that Γ is an al-
gebra of functions, passing to the algebra generated by the family Γ. Let
f ∈ C(X). It is easy to see that by the σ-compactness of X and the
Weierstrass theorem, there exists a sequence of functions fn ∈ Γ such that
f(x) = lim

n→∞
fn(x) for every x ∈ X. Thus, the function f is measurable with

respect to σ(Γ). �

In diverse problems, some other σ-algebras of subsets in a topological
space X may be useful. Let us mention some of them: the σ-algebra σK(X)
generated by all compact subsets of X, the σ-algebra σGδ(X) generated by all
closed Gδ-sets in X, the σ-algebra σB(X) generated by all balls in a metric
space X. A simple example of a metric space X with distinct σ-algebras B(X)
and σB(X) is any uncountable discrete space in which the balls are singletons
and the whole space (e.g., let all nonzero mutual distances equal 1). Then
σB(X) coincides with the σ-algebra of all sets that are either at most countable
or have at most countable complements.

There exists a Banach space X with B(X) �= σB(X) (see Fremlin [624]).
On the other hand, there exists a nonseparable metric space for which one
has B(X) = σB(X) (see Exercise 6.10.44).

Some additional information is given in Hoffmann-Jørgensen [841], [845],
[847], Jayne [887], Kharazishvili [988], Mauldin [1274], [1277].

6.10(ii). Souslin sets as projections

The following theorem shows how to define Souslin sets without the
Souslin operation. We recall that the symbols Eσ, Eδ, Eσδ denote, respec-
tively, the classes of countable unions, countable intersections, and countable
intersections of countable unions of elements in the class E . Let N denote the
class of all cylinders in IN∞, i.e., the class of all sets of the form

C(p1, . . . , pk) = {(ni) ∈ IN∞ : n1 = p1, . . . , nk = pk}.
Given two classes of sets E and F in spaces X and Y , let

E×F := {E×F ⊂ X×Y : E ∈ E , F ∈ F}.
Let S(E) denote the class of all sets obtained by the Souslin operation on sets
in E .

6.10.9. Theorem. Suppose that a class E of subsets of a nonempty set
X contains the empty set. Then, the following conditions for a set A ⊂ X
are equivalent:

(i) A ∈ S(E);
(ii) A is the projection on X of an (E×N )σδ-set in the space X×IN∞;
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(iii) there exists a space Y with a compact class of subsets K such that A
is the projection on X of an (E×K)σδ-set in X×Y ;

(iv) there exists a space Y with a compact class of subsets K such that A
is the projection on X of a set in X×Y belonging to S(E×K).

(v) there exists a Souslin space Y such that A is the projection on X of
a set in X×Y belonging to the class S(E×SY ), where SY is the class of all
Souslin sets in Y .

Proof. Let (i) be fulfilled. There exist A(n1, . . . , nk) ∈ E such that

A =
⋃

(ni)∈IN∞

∞⋂

k=1

A(n1, . . . , nk).

Let us consider the set

C =
∞⋂

k=1

⋃

(n1,...,nk)∈INk

A(n1, . . . , nk)×C(n1, . . . , nk).

It is clear that C ∈ (E×N )σδ. We show that A is the projection of C on X.
Indeed, x belongs to the projection of C precisely when there exists η = (ηj)
in IN∞ with (x, η) ∈ C, i.e., when for every k, there exists σk = (nkj ) ∈ IN∞

such that x ∈ A(nk1 , . . . , n
k
k) and ηj = nkj for all j = 1, . . . , k. The latter is

equivalent to that x ∈ A(η1, . . . , ηk) for all k, which proves our claim about
the projection of C. Hence (i) yields (ii).

We recall that N is a compact class (see Lemma 3.5.3). Hence (ii) im-
plies (iii), whence condition (iv) follows at once because (E×K)σδ ⊂ S(E×K).

Let (iv) be fulfilled. Suppose first that A is the projection of some set B
in (E×K)σδ, i.e., we derive (i) from (iii). We have

B =
∞⋂

k=1

∞⋃

n=1

Akn×Bkn, Akn ∈ E , Bkn ∈ K.

Set A(n1, . . . , nk) =
⋂k
j=1Ajnj , B(n1, . . . , nk) =

⋂k
j=1Bjnj . Then a standard

argument shows that

B =
⋃

(ni)∈IN∞

∞⋂

k=1

A(n1, . . . , nk)×B(n1, . . . , nk).

Let us introduce the table of sets A′(n1, . . . , nk) that coincide with the sets
A(n1, . . . , nk) if B(n1, . . . , nk) �= ∅ and are empty otherwise. This is possible
since the empty set belongs to E and the class S(E) admits finite intersections,
so that A′(n1, . . . , nk) belongs to S(E). For completing the proof in the case
under consideration it remains to verify that

A = πX(B) ∈ S
({
A′(n1, . . . , nk)

})
. (6.10.1)
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The first equality is the definition of A. For the proof of the second one we
have to show that for every fixed sequence (ni) we have the equalities

πX

( ∞⋂

k=1

A(n1, . . . , nk)×B(n1, . . . , nk)
)

(6.10.2)

=
∞⋂

k=1

πX
(
A(n1, . . . , nk)×B(n1, . . . , nk)

)
=

∞⋂

k=1

A′(n1, . . . , nk).

The second equality in (6.10.2) is obvious. The left-hand side of (6.10.2) be-
longs to the right-hand side. Suppose that a point x belongs to the projection
of every set A(n1, . . . , nk)×B(n1, . . . , nk). Then the sets

(
{x}×Y

)
∩
( m⋂

k=1

A(n1, . . . , nk)×B(n1, . . . , nk)
)

are nonempty. Since the classes K and N are compact, it follows by Propo-
sition 1.12.4 that

(
{x}×Y

)
∩
(⋂∞

k=1A(n1, . . . , nk)×B(n1, . . . , nk)
)
�= ∅. It

is clear that the projection of any element in this set is x. Thus, we have
proved (6.10.2), hence (6.10.1).

Now let A be the projection of B ∈ S(E ×K). According to what has
already been proved, B is the projection on X×Y of some (E×K×N )σδ-set
C ⊂ X×Y×IN∞. The class H := K×N is compact by Lemma 3.5.3. Therefore,
A is the projection of an (E×H)σδ-set in the space X×(Y ×IN∞) and by the
above we have A ∈ S(E). Thus, (iv) implies (i), hence (i)–(iv) are equivalent.

It is clear that (v) follows from (ii). Finally, let (v) be fulfilled. According
to Theorem 6.7.4, the space Y is Borel isomorphic to a Souslin subset of the
interval [0, 1]. This isomorphism also identifies the classes of Souslin sets. For
this reason, we may assume from the very beginning that Y is a Souslin set
in [0, 1]. Then

E×SY ⊂ E×S[0,1] ⊂ E×S(K) ⊂ S(E×K),

where K is the class of all compact sets in [0, 1]. Hence (iv) is fulfilled. �

6.10.10. Corollary. Let E be a σ-algebra of subsets of a space X and let
Y be a Souslin space. Then the projection on X of any set M ∈ S

(
E⊗B(Y )

)

belongs to S(E). If the graph of f : X → Y belongs to S
(
E⊗B(Y )

)
, then f

is measurable with respect to
(
σ
(
S(E)

)
,B(Y )

)
, in particular, f is measurable

with respect to every measure on E.

Proof. We have S
(
E ⊗B(Y )

)
= S

(
E ×B(Y )

)
by Exercise 6.10.69. If

B ∈ B(Y ), then f−1(B) = πX
(
Γf ∩ (X×B)

)
∈ S(E). �

Let us consider an application to hitting times of random processes.

6.10.11. Example. Suppose that (Ω,F , P ) is a probability space. Let
us set T = [0,+∞) and let B = B(T ). Given any set A ∈ T×Ω, let

hA(ω) = inf
{
t ≥ 0: (t, ω) ∈ A

}
,
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where h(ω) = +∞ if (t, ω) ∈ A for no t. If A ∈ S(B⊗F), then hA is σ
(
S(F)

)
-

measurable, hence is P -measurable. Indeed, for every c > 0, the set {hA < c}
is the projection of the set

(
[0, c)×Ω

)
∩A ∈ S(B⊗F).

In particular, if a mapping ξ from T×Ω to a measurable space (E, E) is
(B⊗F , E)-measurable, then, for every set A ∈ E, the mapping h defined by
h(ω) = inf{t ≥ 0: ξ(t, ω) ∈ A} is P -measurable.

6.10(iii). K-analytic and F-analytic sets

We recall that a multivalued mapping Ψ from a topological space X to the
set of nonempty subsets of a topological space Y is called upper semicontinu-
ous if for every x ∈ X and every open set V in Y containing the set Ψ(x), there
exists a neighborhood U of the point x such that Ψ(U) :=

⋃
u∈U Ψ(u) ⊂ V .

6.10.12. Definition. Let X be a Hausdorff space. (i) A set A ⊂ X is
called K-analytic if there exists an upper semicontinuous mapping Ψ on IN∞

with values in the set of nonempty compact sets in X such that the equality
A =

⋃
σ∈IN∞ Ψ(σ) holds.

(ii) A set A ⊂ X is called F-analytic or F-Souslin if it is obtained by
means of the Souslin operation on closed sets in X.

Jayne [886] proved (the proof can also be read in Rogers, Jayne [1589,
�2.8]) that for a Hausdorff space X, the following conditions are equivalent:

(a) X is K-analytic,
(b) X is a continuous image of a Fσδ-set in some compact space,
(c) X is a continuous image of a Kσδ-set (a countable intersection of

countable unions of compact sets) in some Hausdorff space,
(d) X is a continuous image of a Lindelöf Gδ-set in some compact space.
The most important properties of K-analytic spaces are listed in the fol-

lowing theorem. For a proof, see Rogers, Jayne [1589].

6.10.13. Theorem. (i) Every K-analytic set is F-analytic and Lindelöf.
(ii) The class of all K-analytic sets in a given space is closed with respect

to the Souslin operation.
(iii) The image of any K-analytic set under any upper semicontinuous

multivalued mapping with values in the nonempty compact sets in a Hausdorff
space is K-analytic.

(iv) A set A in a Hausdorff space X is K-analytic precisely when it is the
projection of a closed K-analytic set in X×IN∞.

(v) In any Souslin space X, the classes of K-analytic sets, F-analytic
sets, and Souslin sets coincide.

It follows from (iii) that every Souslin set is K-analytic. The class of
K-analytic sets is larger: for instance, any compact K is K-analytic (as the
image of IN∞ under the constant multivalued mapping Ψ(σ) ≡ K), but a
nonmetrizable compact space is not Souslin. Although K-analytic sets form
a broader class than Souslin sets, they possess many nice properties of the
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latter. In particular, any finite Borel measure on such a space is tight (Exer-
cise 7.14.125).

Let us observe that all equivalent descriptions of Souslin sets encountered
in this book fall into the following two categories: (1) representations by
means of the A-operation on certain classes of sets (intervals, closed sets,
open sets, etc.) and (2) representations by means of images of nice spaces
under certain classes of mappings, where one can vary source spaces (Polish
spaces, the space of irrational numbers, subsets in certain product spaces, etc.)
as well as the classes of mappings (continuous, Borel measurable, projections,
etc.), in particular, such mappings can be single-valued or multivalued as in
this subsection. Obviously, one can hardly list all possible alternate equivalent
options. However, there is yet another approach not discussed in this book and
going back to Lusin: (3) scrible representations. This approach is discussed
in Kuratowski, Mostowski [1083], Lusin [1209].

6.10(iv). Blackwell spaces

6.10.14. Definition. A measurable space (X,A) is called a Blackwell
space if the σ-algebra A is countably generated and contains all singletons
and, in addition, has no proper sub-σ-algebras with these two properties.

This interesting class of spaces was introduced in Blackwell [180] (without
the requirement of separation of points, which is now usually included). Such
spaces admit the following description (the proof is left as Exercise 6.10.64).

6.10.15. Theorem. Let (X,A) be a measurable space such that A is
countably generated and contains all one-point sets. Then the following con-
ditions are equivalent:

(i) (X,A) is a Blackwell space;
(ii) every one-to-one A-measurable mapping from X onto a measurable

space (Y,B), where the σ-algebra B is countably generated and contains all
one-point sets, is an isomorphism;

(iii) every injective A-measurable mapping f from X to a Polish space Y
is an isomorphism between (X,A) and

(
f(X),B

(
f(X)

))
.

Some authors (see, e.g., Meyer [1311]) use another terminology, according
to which the Blackwell spaces are isomorphic to Souslin subspaces of the real
line (a different characterization of this class is given in Exercise 6.10.64).
It is clear from Theorem 6.8.9 that such spaces are Blackwell in the sense
of the above definition. However, the converse is false (see Orkin [1403],
Rao, Rao [1532]). Thus, Blackwell spaces up to isomorphisms form some
class of subspaces of the real line with the induced Borel σ-algebras and
this class strictly contains the class of Souslin subspaces. It should be noted
that a non-Souslin set complementary to a Souslin one may not be Blackwell
(Exercise 6.10.65). It is consistent with the standard axioms that the non-
Borel coanalytic sets are not Blackwell spaces (see Orkin [1403], Rao, Rao
[1532]). About Blackwell spaces, see also Shortt, Rao [1704].
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Let us say that a measurable space (X,A) has the Doob property if for
every pair of measurable spaces (E, E) and (F,F) and every mapping f from
E to F such that E = {f−1(B) : B ∈ F}, every (E ,A)-measurable mapping
from E to X has the form h ◦ f , where h : F → X is measurable with respect
to the pair (F ,A). The space IR1 with its Borel σ-algebra has the Doob
property by Theorem 2.12.3 because E = σ(IB ◦ f : B ∈ F). Spaces with
the Doob property are investigated in Pintacuda [1459], Pratelli [1484]. An
example of a nonseparable space with this property is constructed in [1484].
However, if A is countably generated and the measurable space (X,A) has
the Doob property, then it is standard Borel and is Borel isomorphic either
to IR1 or to a set in IN.

6.10(v). Mappings of Souslin spaces

6.10.16. Lemma. Let X be a Polish space, let Y be a metric space, and
let f : X → Y be a Borel mapping. Then the set f(X) is separable.

Proof. Suppose that the set f(X) is nonseparable. Then, there exists an
uncountable set S ⊂ f(X) all points of which have mutual distances greater
than some ε > 0. If we show that S has cardinality of the continuum, then we
obtain a contradiction with the fact noted in �6.7 that B(X) has cardinality
at most of the continuum. Indeed, the cardinality of the set of all subsets of
S is greater than that of the continuum. Then the same is true for the set of
all sets f−1(E), E ⊂ S. All such sets belong to B(X), since every subset of
S is closed. Now we show that S has cardinality of the continuum (it is clear
that the cardinality of S is not greater than that of the continuum). To this
end, we consider disjoint Borel sets f−1(s), s ∈ S, pick in each of them an
arbitrary element zs and define the mapping g : X → X as follows: g(x) = zs
if x ∈ f−1(s), g(x) = z if x �∈ f−1(S), where z �∈ f−1(S) is an arbitrary fixed
element. Then g is a Borel mapping. Indeed, g is constant on the Borel set
X\f−1(S), and for any Borel set B ⊂ f−1(S), we have g−1(B) = f−1(A),
where A = {s ∈ S : zs ∈ B}. Since A is closed (as is every set in S), one has
f−1(A) ∈ B(X). According to Corollary 6.7.13, the uncountable set g(X) has
cardinality of the continuum. Then S also does. �

6.10.17. Corollary. Let f be a Borel mapping from a Souslin space X
to a metric space Y . Then the set f(X) is separable.

Now we prove the following important result due to Lusin.

6.10.18. Theorem. Suppose that X and Y are Souslin spaces and A
is a Souslin set in X×Y . Then the set {y ∈ Y : CardAy > ℵ0}, where
Ay := {x : (x, y) ∈ A}, is Souslin. In particular, if f : X → Y is a Borel
mapping, then the set {y ∈ Y : Card f−1(y) > ℵ0} is Souslin.

Proof. There exist a complete separable metric space M and a contin-
uous mapping ϕ = (ϕ1, ϕ2) from M onto A. For every y ∈ Y , the set

M(y) :=
{
z ∈M : ϕ2(z) = y

}
⊂ ϕ−1

1 (Ay)
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is closed in M , hence is a complete separable metric space. Denote by D the
subset in M∞ consisting of all sequences without isolated points. According to
Exercise 6.10.74, the set D is Gδ in M and hence is a Polish space. Note that
the set Ay is uncountable precisely when there exists a sequence {xk} ∈ D
with the following property: ϕ2(xk) = y for all k and ϕ1(xk) �= ϕ1(xn)
for all distinct k and n. Indeed, if such a sequence exists, then its closure
is uncountable and belongs to Ay by the continuity of ϕ2. Conversely, if
Ay is uncountable, then by means of the axiom of choice we pick in M an
uncountable set P that is mapped by ϕ one-to-one onto Ay. Let us delete
from P all points each of which has a neighborhood meeting P at an at most
countable set. We obtain an uncountable set P0 ⊂ P that contains a countable
everywhere dense sequence {xk}. It is clear that {xk} has no isolated points.
Let us set

S =
∞⋂

k=1

∞⋃

m=k+1

{(
{xi}, y

)
∈ D×Y : ϕ2(xk) = y, ϕ1(xk) �= ϕ1(xm)

}
.

It is readily seen that the set S is Borel in D×Y (all the intersected sets are
Borel), hence is Souslin. Denote by πY the projection operator from D×Y
to Y . Then by the above-mentioned characterization of uncountable Ay we
obtain the equality {y ∈ Y : CardAy > ℵ0} = πY (S), which completes the
proof. �

This theorem should be compared with Theorem 6.8.2 proved above.

6.10(vi). Measurability in normed spaces

There are many works devoted to the study of measurability in Banach
spaces with the norm topology or with the weak topology. We recall that the
weak topology of an infinite-dimensional Banach space X is not metrizable.
Even a ball in a separable space may not be metrizable in the weak topology.
For example, this is the case for balls in the space l1 (Exercise 6.10.35). If
X is separable and reflexive, then the closed balls in the weak topology are
metrizable compact (the converse is true as well). If X is separable, then B(X)
is generated by the half-spaces of the form

{
x ∈ X : l(x) < c

}
, l ∈ X∗, c ∈ IR1.

In the general case, this is not true. If X is nonseparable, then the operation
of addition X×X → X may fail to be measurable with respect to B(X)⊗B(X)
and B(X). Talagrand [1828] proved that X is a measurable vector space, i.e.,
the operation (t, x, y) �→ tx+ y, IR1×X×X → X is measurable with respect
to B(IR1)⊗B(X)⊗B(X) and B(X) precisely when B(X)⊗B(X) = B(X×X).
In the same work, there is an example of a nonseparable Banach space X
such that this equality is fulfilled. In addition, it is shown that the continuum
hypothesis implies the measurability of the space l∞ in the above sense. It
is proved in Talagrand [1827] that in the space l∞, the Borel σ-algebras
corresponding to the weak topology and norm topology do not coincide. On
measurability in Banach spaces, see Edgar [513], [514], Talagrand [1834].
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6.10(vii). The Skorohod space

We consider an interesting class of spaces introduced by Skorohod [1739]
and frequently used in the theory of random processes. Let E be a metric
space with a metric �. The Skorohod space D1(E) is the space of mappings
x : [0, 1] → E that are right continuous and have left limits for all t > 0,
equipped with the metric

d(x, y) = inf
{
ε > 0 | ∃h ∈ Λ[0, 1] : |t− h(t)| ≤ ε, �

(
x(t), y(h(t))

)
≤ ε

}
,

where Λ[0, 1] is the set of homeomorphisms h of the interval [0, 1] such that
h(0) = 0, h(1) = 1. Similarly, one defines the Skorohod space of mappings
with values in completely regular spaces (see Jakubowski [878]). If the space
E is Polish, then so is D1(E) (the proof for E = IR1 can be found in Billings-
ley [169]; in the general case the reasoning is similar). In the case of com-
plete E, the space D1(E) is not always complete with respect to the metric d,
but is complete with respect to the following metric that defines the same
topology:

d0(x, y) = inf
{
ε > 0 | ∃h ∈ Λ[0, 1] :

sup
t>s

∣
∣
∣log

h(t)− h(s)
t− s

∣
∣
∣ ≤ ε, �

(
x(t), y(h(t))

)
≤ ε

}
.

Similarly, one defines the Skorohod space D(E) of mappings on the half-
line. In the case E = IR1, a detailed discussion of the Skorohod space can
be found in Billingsley [169]. It is readily verified that for any separable
metric space E, the Borel σ-algebra of D1(E) is generated by the mappings
x �→ x(t), t ∈ [0, 1]. The analogous question for more general spaces is
considered in Jakubowski [878] and Bogachev [207]. To these works and also
to Lebedev [1117], Mitoma [1322], we refer for additional information on
Skorohod spaces. The descriptive properties of Skorohod spaces turn out to
be a subtle matter. We mention a result of Kolesnikov [1017].

6.10.19. Theorem. Let E be a coanalytic set in a Polish space M . Then
D1(E) is a coanalytic set in D1(M).

As observed by Kolesnikov [1017], the space D1(Q) is not Souslin. In ad-
dition, he proved in the same work that under the assumption of the existence
of nonmeasurable projections of coanalytic sets (which is consistent with the
usual axioms), there exists a Souslin subset E of the interval such that the
space D1(E) is not universally measurable in D1([0, 1]). The Skorohod space
can be equipped with some other natural topologies different from those men-
tioned above. The role of Skorohod spaces in the theory of random processes
is explained by the fact that many important random processes possess sam-
ple paths belonging to such spaces, so the distributions of these processes are
naturally defined on Skorohod spaces.
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Exercises

6.10.20.◦ Prove Lemma 6.1.1.
Hint: Let f be continuous at x, x = lim

α
xα, and let W be a neighborhood

of f(x). We find a neighborhood U of x such that f(U) ⊂ W and take α0 such
that xα ∈ U for all α with α0 ≤ α. Then f(xα) ∈ W . Conversely, if we have the
indicated condition for nets and W is a neighborhood of the point f(x), then we take
for T the set of all neighborhoods of the point x equipped with the following order:
U ≤ V if V ⊂ U . Since the intersection of two neighborhoods is a neighborhood,
we obtain a directed set. If we suppose that every neighborhood U of the point x
contains a point xU with f(xU ) �∈ W , then we obtain the net {xU}U∈T convergent
to x, which contradicts our condition, since the net f(xU ) does not converge to f(x).

6.10.21.◦ Prove Lemma 6.1.5.
Hint: For every x ∈ K, there is a continuous function fx : X → [0, 1] with

fx(x) = 1 vanishing outside U . The open sets {y : fx(y) > 1/2} cover K, and one
can find a finite subcover corresponding to some points x1, . . . , xn. The function
g = (fx1 + · · · + fxn)/n : X → [0, 1] vanishes outside U and is greater than (2n)−1

on K. Now let f = ψ ◦ g, where the function ψ : [0, 1] → [0, 1] is continuous, equals
1 on [1/(2n), 1] and ψ(0) = 0.

6.10.22.◦ Let K be a compact set in a completely regular space X. (i) Prove
that every continuous function f on K extends to a continuous function on X with
the same maximum of the absolute value. (ii) Let f be a continuous mapping from
K to a Fréchet space Y . Show that f extends to a continuous mapping on all of the
space X with values in the closed convex envelope of f(K).

Hint: (i) the set F of all continuous functions onK possessing bounded continu-
ous extensions to X is a subalgebra in C(K) and contains constants. This subalgebra
separates the points of K by the complete regularity of X. By the Stone–Weierstrass
theorem, there exists a sequence of functions fn ∈ F uniformly convergent to f onK.
We may assume that |fn(x) − fn+1(x)| < 2−n for all x ∈ K. By induction we find
continuous functions gn on X such that |gn(x) − gn+1(x)| < 2−n for all x ∈ X
and gn|K = fn|K . Since X is completely regular, there exists a continuous function
ζ1 : X → [0, 1] equal to 1 on K and 0 outside the open set V1 := {|f1 − f2| < 1/2}.
Letting g1 := ζ1f1, g2 := ζ1f2, f ′

n := ζ1fn, n ≥ 3, we continue this process applied
to the functions f ′

n. The sequence {gn} converges uniformly on X and its limit on
K is f . Thus, we obtain an extension of f to a bounded continuous function g
on X. Now we obtain the equality maxX |g(x)| = maxK |f(x)| by passing to the
function θ ◦ g, where θ(t) = t if t ∈ [−M,M ], θ(t) = M if t > M , θ(t) = −M if
t < −M . (ii) Since f(K) is compact, its closed convex envelope V is compact as
well. There is a sequence of functionals ln ∈ Y ∗ separating the points in V . The
mapping h = (ln) : Y → IR∞ takes V to the convex compact set Q and is a home-
omorphism on V . Hence it suffices to prove our assertion for h ◦ f . Let us extend
all functions ln ◦ f to bounded continuous functions ψn on X and apply Dugundji’s
theorem, according to which there is a continuous mapping g : IR∞ → Q that is
identical on Q (see Engelking [532, 4.5.19]).

6.10.23.◦ LetXt, t ∈ T , be an uncountable collection of metric spaces containing
more than one point. Show that the topological product of Xt is not metrizable.

Hint: in a metrizable space, every point has a countable base of neighborhoods.
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6.10.24.◦ Prove that a compact space X is metrizable precisely when there is
a countable family of continuous functions fn separating the points in X.

Hint: the necessity of this condition is obvious; for the proof of sufficiency we
embed X into IR∞ by a continuous mapping x �→

(
fn(x)

)
, which gives a compact

set in IR∞; then we verify that on this set the original topology coincides with the
topology induced from IR∞.

6.10.25. Show that the Cantor set C is homeomorphic to {0, 1}∞.
Hint: consider the mapping h(x) =

∑∞
n=1 2xn3−n, x = (xn), xn ∈ {0, 1}; see

Engelking [532, 3.1.28].

6.10.26. Let K be a nonempty compact set without isolated points. Prove
that K can be continuously mapped onto [0, 1].

Hint: suppose not. Then no compact subset of K can be mapped continuously
onto [0, 1], since otherwise such a mapping could be extended to all of K. There
exists a nonconstant continuous function ϕ1 on K with values in [0, 1]. By our
assumption, there exists c1 < c2 such that K1,1 := {ϕ1 ≤ c1} and K1,2 := {ϕ1 ≥ c2}
are nonempty and [c1, c2] does not meet ϕ1(K). This enables us to find a continuous
function f1 with f |K1,1 = 0, f |K1,2 = 1/2. Applying this reasoning to K1,1 and K1,2

we obtain K1,1 = K2,1 ∪ K2,2, K2 = K2,3 ∪ K2,4 with disjoint compact sets Ki,j .
Take a continuous function f2 assuming the values 0, 1/4, 1/2, 3/4 on K2,1, K2,2,
K2,3, K2,4. By induction, we continue this process and find disjoint compact sets
Kn,m, m = 1, . . . , 2n, such that Kn−1,1 = Kn,1∪Kn,2, Kn−1,2 = Kn,3∪Kn,4 and so
on. Then we find a continuous function fn that assumes the values 0, 2−n, . . . , 1−2−n

on the 2n disjoint compact sets of the nth step. The obtained continuous functions
converge uniformly to a function f whose range is [0, 1].

6.10.27. The space D(IR1) is the set of all infinitely differentiable functions
with compact support equipped with the locally convex topology τ generated by all
norms of the form p{ak}(ϕ) =

∑∞
k=−∞ ak max

{
|ϕ(m)(x)| : x ∈ [k, k + 1],m ≤ ak

}
,

where one takes for {ak} all two-sided sequences of natural numbers. A sequence ϕj
converges to ϕ in this topology if and only if the functions ϕj vanish outside some
common interval and all the derivatives of ϕj converge uniformly to the correspond-
ing derivatives of ϕ. This topology τ is the topology of the locally convex inductive
limit of the sequence of spaces Dn consisting of smooth functions with support in
[−n, n] and equipped with the sequence of norms max |ϕ(m)(t)|. The space of all
linear functions on D(IR1) continuous in the topology τ is denoted by D′(IR1) and
is called the space of distributions (generalized functions). Similarly, one defines
D(IRd) and D′(IRd).

(i) Prove that the topology τ is strictly weaker than the topology τ1 on D(IR1)
in which the open sets are all those sets that give open intersections with all Dn
(where Dn is given the above-mentioned topology generated by countably many

norms). To this end, show that the quadratic form F (ϕ) =
∑∞
n=1 ϕ(n)ϕ(n)(0) is

discontinuous in the topology τ , but is continuous in τ1.
(ii) Prove that the topology τ is strictly stronger than the topology τ2 on D(IR1)

generated by the norms pψ(ϕ) = sup |ψ(x)ϕ(m)(x)|, where one takes all nonnega-
tive integers m and positive locally bounded functions ψ. To this end, verify that
the linear function F (ϕ) =

∑∞
n=1 ϕ

(n)(n) is continuous in the topology τ , but is
discontinuous in the topology τ2.
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(iii) Prove that the space D(IR1) with the topology τ of the inductive limit of
the spaces Dn is not a kR-space (X is called a kR-space if for the continuity of a
function on X, its continuity on all compact sets is sufficient).

It should be noted that in some textbooks of functional analysis the topologies τ1
or τ2 are mistakenly introduced as equal to τ . Fortunately, convergence of countable
sequences in all the three topologies is the same.

6.10.28. Let X be a separable metric space and let F be some collection of
Borel sets in X. Suppose that rn > 0 are numbers decreasing to zero and that for
every x ∈ X and every n ∈ IN, there exists a set E in the σ-algebra generated by
F such that B(x, rn+1) ⊂ E ⊂ B(x, rn), where B(x, r) is the open ball of radius r
centered at x. Show that σ(F) = B(X).

Hint: see Hoffmann-Jørgensen [848, 1.9].

6.10.29.◦ Show that the σ-algebra E generated by all one-point subsets of IR is
not countably generated. Deduce that not every sub-σ-algebra of B(IR) is countably
generated.

Hint: use that every set in E is either at most countable or its complement is
at most countable.

6.10.30. Let E be the algebra of all finite unions of intervals (open, closed
or semiclosed) in [0, 1]. By induction, we define classes of sets Bn, n ∈ IN, as
follows: Bn is the collection of all countable intersections and countable unions of
sets in Bn−1, B0 = E . Prove that

⋃∞
n=0Bn is not a σ-algebra, in particular, does

not coincide with the Borel σ-algebra.
Hint: see assertion (vi) in the next exercise or Kuratowski [1082, �30, XIV],

Rogers, Jayne [1589, �4.3].

6.10.31. Let E be a class of subsets of a space X with ∅ ∈ E . (i) Let Ω be the
set of all finite or countable ordinal numbers. The classes Eα, α ∈ Ω, are defined by
means of transfinite induction as follows: E0 = E and Eα consists of all sets of the
form

⋃∞
n=1An, where An ∈ Eβn with βn < α, and X\A, where A ∈ Eβ with β < α.

Show that σ(E) =
⋃
α∈Ω Eα.

(ii) Let E be an algebra of sets. For all α ∈ Ω we define the classes Bα as follows:
Bα consists of all countable unions and countable intersections of sets in Bβ with
β < α, B0 = E . Show that σ(E) =

⋃
α∈Ω Bα. Show that this may be false if E is not

an algebra.
(iii) Prove that if the class E is infinite and its cardinality is not greater than

that of the continuum, then the cardinality of σ(E) equals the cardinality of the
continuum.

There is another hierarchy of Borel classes B̂α, 0 ≤ α < ω1, defined as follows.
Given a topological space X, let B0 be the class of all open sets in X. If the ordinal

α is even (limit ordinals count as even), let B̂α+1 be the family of complements of

sets in B̂α. If α is odd, let B̂α+1 be the family of countable unions of sets in B̂α. If

α is a limit ordinal, let B̂α be the family of countable unions of sets chosen from the

families B̂β with β < α.

It is clear that B̂α ⊂ Bα and that the union of all B̂α is B(X). The classes B̂α
are easier to deal with in some transfinite induction constructions because at every
step only one type of operation (complementation or sum) is involved.

(iv) Suppose that the open sets in X are Fσ-sets. Show that B̂α ⊂ B̂α+2 and

B̂α ⊂ B̂γ+1, provided that γ is a limit ordinal and α < γ.
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(v) Let X have a countable topology base. Prove that for every class B̂α in X,

0 ≤ α < ω1, there is a set E ⊂ X×IN∞ of class B̂α that is universal in the sense

that: (a) every section Ey = {x ∈ X : (x, y) ∈ E}, y ∈ IN∞, is of class B̂α in X;

(b) for every set A of class B̂α in X, there is y ∈ IN∞ such that A = Ey.
(vi) Prove that for each α with 1 ≤ α < ω1, the space IN∞ contains a set of class

B̂α that belongs to no B̂β with 0 ≤ β < α. The same is true for any uncountable
Polish space.

Hint: in (i) and (ii) use that every countable family of indices αn is majorized
by some β. (iii) The fact that the cardinality of σ(E) does not exceed c follows by (i).
Let E be a countable family {En} and let f =

∑∞
n=1 3−nIEn . If f assumes infinitely

many values, then σ(E) contains infinitely many disjoint sets, whence it follows that
the cardinality of σ(E) is at least c. But if f has only finitely many values, then
σ({En}) is finite, hence so is {En}. In (iv) and (v) use transfinite induction. (vi) Let

α ≥ 2. There is a set E of class B̂α in IN∞×IN∞ that is universal for the B̂α-sets
in IN∞. Let A = ∆ ∩ E, where ∆ is the diagonal in IN∞×IN∞. Show that A is of

class B̂α in IN∞×IN∞. Take the set B = ∆\A and show that B is in B̂α+1, but

belongs to no B̂β with 0 ≤ β < α+ 1.

6.10.32. (Sierpiński [1715]) Let F be a family of subsets in a set X and let
B(F) be the class of all sets that can be obtained from F by means of finite or
countable intersections and unions in an arbitrary order. Prove that B(F) coincides
with the σ-algebra σ(F) generated by F if and only if E1\E2 ∈ B(F) for all sets
E1, E2 ∈ F .

6.10.33. Show that every complete nonempty metric space without isolated
points contains a Borel set that is homeomorphic to IN∞.

Hint: modify the proof of Theorem 6.1.13.

6.10.34.◦ Let X be a locally convex space and let X0 be its linear subspace
equipped with the induced topology. Show that the σ-algebra in X0 generated by
the dual space X∗

0 coincides with the intersection of X0 with the σ-algebra in X
generated by X∗.

6.10.35.◦ Show that the closed unit ball in l1 is not metrizable in the weak
topology.

Hint: weak and strong convergences are equivalent for countable sequences
in l1, hence the metrizability of the ball in the weak topology would imply the
coincidence of the weak and strong topologies on the ball, which is impossible, since
every nonempty weakly open set contains a straight line and meets the sphere.

6.10.36. Let X be the space “two arrows” from Example 6.1.20. Prove that
B(X) is the class of all sets B for which there exists a set E ∈ B[0, 1] such that
B � π−1(E) is at most countable, where π : X → [0, 1] is the natural projection.
Hence B(X) ⊂ B(IR2) and B(X) is generated by a countable family and singletons
(but is not countably generated). In addition, every measure on B(X) is separable.
Finally, if B ∈ B(X) is uncountable, then π|B is not injective.

Hint: the class B of all sets B with the indicated property is a σ-algebra. All
one-point sets are closed in X and hence belong to B(X), i.e., B(X) contains all
countable sets. By the continuity of π, we have π−1(E) ∈ B(X) for all E ∈ B[0, 1],
whence one has B ⊂ B(X). Since X is hereditary Lindelöf, every open set is an at
most countable union of elements of the considered topology base. The elements
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of the base differ only in one point sets from the preimages of intervals under π,
whence it follows that B(X) ⊂ B. The elements of the base with rational endpoints
along with singletons generate B(X), since every element of the base is a countable
union of elements with rational endpoints with a possible added point. Finally, a
countable family of sets in B(X) cannot separate the points in X, hence cannot
generate B(X).

6.10.37. Construct an example of two countably generated σ-algebras B1 and
B2 such that B1 ∩ B2 is not countably generated.

Hint: see Rao, Rao [1532]; one can take the sub-σ-algebras B1 and B2 in B(IR1)
consisting of the sets invariant with respect to translations to 1 and π, respectively.

6.10.38. Let X be a space with a countably generated σ-algebra A and let
X0 ⊂ X. Show that the σ-algebra of subsets of X0 that have the form X0 ∩A with
A ∈ A, is countably generated as well.

Hint: apply Theorem 6.5.5.

6.10.39. Let X be a normal space and let X0 be closed in X. Prove that
Ba(X0) = {B ∩X0 : B ∈ Ba(X)}.

Hint: any function f ∈ C(X0) extends to a continuous function on X, see
Engelking [532, Theorem 2.1.8].

6.10.40.◦ Let (X,B) be a measurable space and let Y and S be separable metric
spaces. Suppose that a mapping F : X×Y → S is continuous in y for every fixed
x ∈ X and, for every fixed y ∈ Y , the mapping x �→ F (x, y) is measurable with
respect to B and B(S). Prove that the mapping F is measurable with respect to
B⊗B(Y ) and B(S).

Hint: for every n take a countable partition of Y into Borel sets Bn,j of diam-
eter at most 2−n, pick in Bn,j a point bn,j and set fn(x, y) = f(x, bn,j) whenever
y ∈ Bn,j ; the obtained mappings are measurable with respect to B⊗B(Y ) and B(S)
and converge pointwise to f .

6.10.41. (Rudin [1625]) Let X be a metric space, let Y be a topological space,
let E be a locally convex space, and let a mapping f : X×Y → E be continuous
in every argument separately. Prove that f is a pointwise limit of a sequence of
continuous mappings. In particular, if E is metrizable, then f is Borel measurable.

Hint: use the following consequence of paracompactness: for every n one can
find continuous functions ϕα,n : X → [0, 1] with the following properties: one has∑
α ϕα,n(x) = 1 for all x, every point has a neighborhood in which all functions ϕα,n,

with the exception of finitely many of them, vanish and the support of every function
ϕα,n has diameter at most 1/n. Choose xα,n such that ϕα,n(xα,n) > 0 and set
fn(x, y) =

∑
α ϕα,n(x)f(xα,n, y).

6.10.42. (i) Let X and Y be Souslin spaces, let A ⊂ X×Y be a Souslin set,
let πX(A) be the projection of A on X, and let f be a bounded Borel function on A
(or, more generally, let the sets {f < r} be Souslin). Show that the sets

{
x ∈ πX(A) : inf

y
f(x, y) < r

}
and {x ∈ πX(A) : inf

y
f(x, y) ≤ r}

are Souslin. Prove an analogous assertion for the sets
{
x ∈ πX(A) : sup

y
f(x, y) > r

}
and

{
x ∈ πX(A) : sup

y
f(x, y) ≥ r

}
.
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Show that if (E, E) is a measurable space, A ∈ E⊗B(Y ), and f is a bounded
E⊗B(Y )-measurable function on A, then the sets

{
x ∈ πE(A) : inf

y
f(x, y) < r

}
and

{
x ∈ πE(A) : inf

y
f(x, y) ≤ r

}

belong to S(E).
(ii) Show that there exists a bounded Borel function f on the plane such that

the function g(x) = supy f(x, y) is not Borel.
Hint: in (i) represent the indicated sets as projections; in (ii) consider the

indicator of a Borel set whose projection is not Borel measurable.

6.10.43.◦ Prove that there exists a non-Borel (even nonmeasurable) function in
the plane that is Borel in every variable separately.

Hint: see Exercise 3.10.49.

6.10.44. (Talagrand [1826]) Show that there is a nonseparable metric space
whose Borel σ-algebra is generated by balls.

6.10.45.◦ Give an example of a compact space whose Borel σ-algebra is not
generated by closed Gδ-sets.

Hint: consider the product of the continuum of compact intervals.

6.10.46. Give an example of a Polish space whose Borel σ-algebra is not gen-
erated by compact sets.

Hint: consider any infinite-dimensional separable Banach space X; observe
that σ-algebra generated by compact sets in X is contained in the σ-algebra of all
sets A such that either A or X\A is a first category set.

6.10.47. (Bourbaki [242, Ch. V, �8, n 5], Chentsov [335]) For every x ∈ IR,
let Ix be a copy of [0, 1] and let Ux be a copy of (0, 1]. Prove that

∏
x∈IR Ux is not

Borel in the compact space
∏
x∈IR Ix.

Hint: see a more general fact in Exercises 7.14.157 and 7.14.158, and also Wise,
Hall [1993, Example 6.24].

6.10.48.◦ Let X be the space “two arrows” from Example 6.1.20. Prove that
the mappings f1 : (0, 1) → X, f1(x) = (x, 1), f2 : (0, 1) → X, f2(x) = (x, 0), are
Borel measurable, but f = (f1, f2) : (0, 1) → X×X is not Borel measurable.

Hint: the induced topology of the diagonal of X×X is discrete, hence every
subset of it is Borel in the induced topology.

6.10.49. Suppose that sets E(n1, . . . , nk) form a monotone table and satisfy
the following condition: if E(n1, . . . , nk) ∩ E(m1, . . . ,mp) is nonempty for some
k ≤ p, then n1 = m1, . . . , nk = mk. Prove that

⋃

(ni)∈IN∞

∞⋂

k=1

E(n1, . . . , nk) =

∞⋂

k=1

⋃

(ni)∈IN∞
E(n1, . . . , nk).

Hint: the left-hand side always belongs to the right-hand side; verify the inverse
inclusion by using that if x belongs to the set

⋃
(ni)∈IN∞ E(n1, . . . , nk) for all indices

k = 1, . . . , n, then there exist m1, . . . ,mn such that x ∈ E(m1, . . . ,mn); this gives
a sequence (mn) with x ∈

⋂∞
k=1E(m1, . . . ,mk).

6.10.50. Let (X,A) be a measurable space, let S ⊂ [0,∞) be a countable set,
and let {As}s∈S ⊂ A be a cover of X such that As ⊂ At whenever s < t. Set

f(x) = inf{s ∈ S : x ∈ As}.
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Show that the function f is measurable with respect to A, f(x) ≤ s if x ∈ As,
f(x) ≥ s if x �∈ As.

6.10.51. Under the assumption of Martin’s axiom prove that there exists an
injective function f : IR1 → IR1 that is nonmeasurable with respect to every proba-
bility measure whose domain of definition is a σ-algebra and contains all singletons.

Hint: see Kharazishvili [992, Theorem 6, p. 173].

6.10.52. (Sierpiński [1720]) Construct a sequence of continuous functions fn
on [0, 1] that has cluster points in the topology of pointwise convergence, but all
such cluster points are nonmeasurable functions.

6.10.53.◦ Let f be a surjective Borel mapping of a Souslin space X onto a
Souslin space Y and let a set E ⊂ Y be such that f−1(E) is a Borel set in X. Prove
that E is Borel as well.

Hint: the sets E = f
(
f−1(E)

)
and Y \E = f

(
X\f−1(E)

)
are disjoint Souslin.

6.10.54. (i) (Purves [1505], the implication (b)⇒(a) was obtained by Lusin
[1209]) Prove that for a Borel mapping F from a Borel subset X of a Polish space
to a Polish space Y , the following conditions are equivalent:

(a) F (B) is Borel in Y for every Borel set B ⊂ X;
(b) the set of all values y such that F−1(y) is uncountable, is at most countable.
(ii) (Maitra [1236]) Prove that the equivalent conditions (a) and (b) are also

equivalent to the following condition: F−1
(
F (B)

)
is Borel in X for every Borel set

B ⊂ X.

6.10.55. (i) Let (X,B) be a measurable space, let Y ⊂ X, and let us set
BY = {Y ∩ B,B ∈ B}. Prove that every BY -measurable function on Y is the
restriction of some B-measurable function on all of X.

(ii) (Shortt [1702]) Let B be a σ-algebra of subsets of a space X. Suppose that
B is countably generated and countably separated. Prove that (X,B) is a standard
measurable space precisely when for every measurable space (Ω,F) and every set
Ω′ ⊂ Ω, every mapping f : Ω′ → (X,B) that is measurable with respect to F ∩ Ω′,
extends to a measurable mapping (Ω,F) → (X,B).

Hint: (i) it suffices to consider bounded functions passing to arctgf ; observe
that if sets Bi ∩ Y , where i = 1, . . . , k and Bi ∈ B, are pairwise disjoint, then
one can find pairwise disjoint sets B′

i ∈ B with B′
i ∩ Y = Bi ∩ Y . Assuming that

0 < f < 1, consider the sets Ai,n = {(i − 1)2−n < f ≤ i2−n}, i = 1, . . . , 2n. Let
fn = i2−n if x ∈ Ai,n. Then |f − fn| ≤ 2−n. By using the above observation, one
can find B-measurable functions gn such that gn|Y = fn and max |gn − gn−1| =
max |fn − fn−1| ≤ 22−n. The required extension can be defined by g = lim

n→∞
gn.

6.10.56. (i) (Sodnomov [1759], [1760], Erdős, Stone [535], Rogers [1588])
Construct two Borel sets A and B on the real line such that the set A + B is not
Borel. Show that this is possible even if A is compact and B is a Gδ-set. Construct
also a Borel set B on the real line such that B −B is not Borel.

(i) (Rao [1531]) Show that there is no countably generated σ-algebra E in IR1

that is contained in the σ-algebra of Lebesgue measurable sets and has the property
that A+B ∈ E for all Borel sets A,B.

6.10.57. (Sierpiński [1713]) Show that every Souslin set E ⊂ [0, 1] can be
represented as E = f

(
[0, 1)

)
with some left continuous function f .
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6.10.58.◦ Show that there exists a countable family of intervals on the real line
such that it generates the Borel σ-algebra, but every proper subfamily does not.

Hint: consider the intervals
(
(k−1)2−n, k2−n) with integer n and k and verify

that they separate points, but if one deletes one interval, then this property is lost;
say, if one deletes an interval with k = 2l, then its left endpoint and the middle
point are not separated by the remaining intervals; see also Elstrodt [530, p. 109],
Rao, Shortt [1535].

6.10.59. (Jackson, Mauldin ([874]) Let IRd be equipped with some norm and
let L0 be the smallest class of sets containing all open balls for this norm and closed
with respect to the operations of complementation and countable union of disjoint
sets. Prove that L0 = B(IRd) (it is shown in Keleti, Preiss [970] that the analogous
assertion fails for infinite-dimensional separable Banach spaces).

6.10.60. (Szpilrajn [1812]) Let N be some class of subsets of a set X with the
following properties: if N1 ∈ N and N2 ⊂ N1, then N2 ∈ N , and if Ni ∈ N , then⋃∞
i=1Ni ∈ N (such a class is sometimes called a zero class). Suppose that we are

given a class M of subsets of X satisfying the following conditions: (a) M is closed
with respect to countable unions and countable intersections, (b) M contains the

complements of all sets in N , (c) for every set S, there exists a set S̃ ∈ M such

that S ⊂ S̃ and if M ∈ M is such that S ⊂ M ⊂ S̃, then S̃\M ∈ N . Prove that
the class M is closed with respect to the A-operation and derive from this that the
class of measurable sets is closed under the A-operation.

Hint: see, e.g., Rogers, Jayne [1589, Theorem 2.9.2]. For applications to

measurable sets, take for N the class of all measure zero sets and for S̃ a measurable
envelope of S.

6.10.61. (Mazurkiewicz [1283]) Let Z be a closed subset of IN∞ and f : Z → Y
a continuous mapping with values in a Souslin space Y . Show that there exists a
coanalytic set E ⊂ Z such that f(E) = f(Z) and f is injective on E. In particular,
every Souslin set is the continuous and one-to-one image of some coanalytic set.

Hint: see Theorem 6.9.1 or Kuratowski [1082, �39, p. 491].

6.10.62.◦ Let X be a Souslin space and let f be a Borel function on X. Prove
that there is a stronger topology on X generating the initial Borel structure such
that X remains Souslin and f becomes continuous.

Hint: observe that the graph of f is a Souslin space that is Borel isomorphic
to X (the natural projection operator is a Borel isomorphism), and f is continuous
in the topology on X imported from this graph.

6.10.63.◦ Let X be a Borel set in a Polish space and let A be a countably
generated sub-σ-algebra in B(X). Prove that there exist a Souslin set E ∈ IR1 and
a Borel function f on X with f(X) = E such that A = {f−1(B), B ∈ B(E)}.

6.10.64. (i) Prove Theorem 6.10.15. (ii) Let A be a countably generated σ-
algebra in a spaceX and let A contain all singletons. Prove that (X,A) is isomorphic
to a Souslin subspace of the real line with the induced Borel σ-algebra precisely when
for every A-measurable function f , the set f(X) is Souslin.

Hint: (i) use the existence of an injective A-measurable function f generat-
ing A. (ii) Take the same function as in (i) and prove that all sets f(A), A ∈ A, are
Souslin, hence Borel in f(X) by the separation theorem, since f(A)∩ f(X\A) = ∅.
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6.10.65. (Maitra [1235]) (i) Let A be a Blackwell coanalytic set in a Polish
space. Show that for every injective Borel mapping f : X → Y , where Y is a Polish
space, the set f(A) is coanalytic. (ii) Construct an example of a coanalytic set in
[0, 1] that is not Blackwell.

Hint: (i) apply Theorem 6.2.11; (ii) take a non-Borel Souslin set E ⊂ [0, 1] and
a continuous mapping f from the space R of irrational numbers in (0, 1) onto E;
use Exercise 6.10.61 to obtain a coanalytic set A ⊂ R such that f(A) = E and f is
injective on A. The set A is a required one.

6.10.66. Let K be a class of subsets of a set X such that every collection
of sets in K with the empty intersection has a finite subcollection with the empty
intersection. Suppose that for every pair of distinct points x and y, there exist sets
Kx,Ky ∈ K such that x �∈ Kx and y �∈ Ky. Show that X can be equipped with a
Hausdorff topology such that X and all sets in K are compact.

Hint: consider the topology generated by all sets X\K, where K ∈ K.

6.10.67. Prove Theorem 6.10.6.
Hint: it is clear that σ(X∗) is contained in the Baire σ-algebra of the space X

with the weak topology. In order to verify the inverse inclusion it suffices to show
that for every weakly continuous function F on X, the set {x ∈ X : F (x) > 0}
belongs to σ(X∗). One can assume that X is embedded as an everywhere dense
linear subspace in IRT , where T = X∗. Then the weak topology of X coincides
with the one induced from IRT . For any rational r, let Ur = {x ∈ X : F (x) > r},

Vr = {x ∈ X : F (x) < r}. There exist open sets Ũr and Ṽr in IRT such that

Ũr ∩X = Ur, Ṽr ∩X = Vr. Note that Ũr ∩ Ṽr = ∅, since X is dense in IRT . Now we
can use Bokstein’s theorem (see [532, 2.7.12(c)]), according to which there exist a

countable set S and open sets U ′
r, V

′
r in IRS such that U ′

r ∩ V ′
r = ∅, Ũr ⊂ π−1

S (U ′
r),

Ṽr ⊂ π−1
S (V ′

r ). The open sets U ′
r, V

′
r in the metrizable space IRS are Baire, hence

X ∩ π−1
S (U ′

r) and X ∩ π−1
S (V ′

r ) are contained in σ(X∗). It remains to observe that

{x ∈ X : F (x) > 0} coincides with the union of the sets X∩π−1
S (U ′

r) over all rational
r > 0, which is verified directly.

6.10.68.◦ Let A and B be two σ-algebras and let E ∈ S(A⊗B). Show that there
exists two sequences {An} ⊂ A and {Bn} ⊂ B such that E ∈ S({An}×{Bn}).

Hint: every A⊗B-Souslin set is generated by a countable table of sets in A⊗B,
hence it remains to apply Exercise 1.12.54.

6.10.69.◦ Let E be a σ-algebra in a space X, let Y be a Souslin space, and let
Z be a Souslin set in Y . Show that S

(
E⊗B(Z)

)
⊂ S

(
E×B(Y )

)
.

Hint: it suffices to verify that E ⊗B(Z) ⊂ S
(
E ×B(Y )

)
; since E ×B(Z) is

a semialgebra and S
(
E ×B(Y )

)
is a monotone class, it remains to observe that

E×B ∈ S
(
E×B(Y )

)
for all E ∈ E and B ∈ B(Z) ⊂ S

(
B(Y )

)
.

6.10.70. (Jayne [887]) Let X be a topological space. Show that Ba(X) is the
smallest class of sets that contains all functionally closed sets and admits countable
unions of disjoint sets and arbitrary countable intersections.

6.10.71.◦ Let X be a topological space and let F0 be the class of all functionally
closed sets in X. Show that S

(
Ba(X)

)
= S(F0). In particular, in every metric space,

all Borel sets are F-analytic.
Hint: observe that if F ∈ F0, then X\F =

⋃∞
n=1 Fn, where Fn ∈ F0; consider

the class E := {B ∈ Ba(X) : B,X\B ∈ S(F0)} and verify that E = Ba(X).
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6.10.72. Let (X,A, µ) be a probability space, A a countably generated σ-
algebra, (T,B) a measurable space, and let µt, where t ∈ T , be a family of bounded
measures on A absolutely continuous with respect to µ such that for every A ∈ A,
the function t �→ µt(A) is measurable with respect to B. Prove that one can find
an A⊗B-measurable function f on X×T such that for every t ∈ T , the function
x �→ f(x, t) is the Radon–Nikodym density of the measure µt with respect to µ.

Hint: if X = [0, 1] and A = B([0, 1]), then, by Theorem 5.8.8, for every t, the
Radon–Nikodym density of µt with respect to µ is given by the equality

f(x, t) = lim
n→∞

µt([x− εn, x+ εn])/µ([x− εn, x+ εn]),

where εn = n−1, f(x, t) = 0 if µ([x−εn, x+εn]) = 0 for some n. One can assume that
the measure µ has no atoms, since for its purely atomic part the claim is obvious. It
is readily seen that the functions µt([x−εn, x+εn])/µ([x−εn, x+εn]) are measurable
with respect to B([0, 1])⊗B, since the numerator and denominator are continuous in
x due to the absence of atoms and are B-measurable in t. The above limit exists for
a.e. x if t is fixed, for all other x we set f(x, t) = 0. In the general case, according
to Theorem 6.5.5, there exists an A-measurable function ξ : X → [0, 1] such that
A =

{
ξ−1(B), B ∈ B([0, 1])

}
. Set ν = µ◦ξ−1, νt = µt◦ξ−1. Then νt � ν and by the

above there exists a B([0, 1])⊗B-measurable version (x, t) �→ �(x, t) of the Radon–
Nikodym densities of the measures νt with respect to ν. Set f(x, t) := �

(
ξ(x), t

)
.

The function f is measurable with respect to A⊗B. Let t be fixed. Given a set
A ∈ A, we can find a set B ∈ B([0, 1]) with A = ξ−1(B). Since IB

(
ξ(x)

)
= IA(x),

we obtain

µt(A) = νt(B) =

∫

B

�(y, t) ν(dy) =

∫

X

IB
(
ξ(x)

)
f(x, t)µ(dx) =

∫

A

f(x, t)µ(dx).

6.10.73. (i) (C. Doléans-Dade) Let (X,A, µ) be a probability space, (T,B)
a measurable space, and let fn(x, t) be a sequence of A⊗B-measurable functions
on X×T such that for every fixed t, the sequence of functions x �→ fn(x, t) is
fundamental in measure µ. Show that there exists an A⊗B-measurable function f
such that fn( · , t) → f( · , t) in measure µ for every t.

(ii) (Stricker, Yor [1793]) Let (X,A, µ) be a probability space with a separable
measure µ, (T,B) a measurable space, and let fn(x, t) be a sequence of A⊗B-
measurable functions on X×T such that for every fixed t, the functions x �→ fn(x, t)
are integrable against the measure µ and converge weakly in L1(µ). Show that there
exists an A⊗B-measurable function f integrable in x such that fn( · , t) → f( · , t)
weakly in L1(µ) for every t.

Hint: (i) one can assume that the functions fn are uniformly bounded, passing
to arctg fn. Then, for every t, the sequence fn( · , t) is fundamental in L2(µ). The
functions

gn,k(t) =

∫

X

|fn(x, t) − fk(x, t)|2 µ(dx)

are measurable with respect to B. For every p ∈ IN, let mp(t) be the smallest m
such that gn,k(t) ≤ 8−p for all n, k ≥ m. It is easy to see from the proof of the Riesz
theorem that for every t, the sequence fmp(t)(x, t) converges µ-a.e. In addition, it
is readily verified that the functions mp(t) are B-measurable. Hence the function
fmp(t)(x, t) is measurable with respect to A⊗B. The desired function is defined
as follows: f(x, t) = lim

p→∞
fmp(t)(x, t) if this limit exists and f(x, t) = 0 otherwise.

Assertion (ii) follows by Exercise 6.10.72.
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6.10.74. Let (M,d) be a separable metric space and let D ⊂ M∞ consist of
all sequences without isolated points. Show that D is a Gδ-set.

Hint: let {am} be a countable everywhere dense set in M . Verify that for every
fixed k, m, and n, the set of all sequences {xj} ∈M∞ such that d(xk, am) ≤ 2−n−1

and d(xj , am) ≥ 2−n for all j �= k, is closed.

6.10.75. Let τ be an uncountable ordinal. Show that for every continuous
function f on the space [0, τ) with the order topology, there exists τ0 < τ such that
f is constant on [τ0, τ).

Hint: for every k, there exists αk < τ such that |f(α) − f(β)| < 1/k when-
ever α, β > αk. Indeed, otherwise one could construct by induction an increasing
sequence αkn with |f(αkn+1) − f(αkn)| ≥ 1/k. This contradicts the continuity of f
since such a sequence converges to supαkn . There exists τ0 < τ such that αk < τ0
for all k. It is clear that τ0 is the required ordinal.

6.10.76.◦ A set E in a topological space X is said to have the Baire property
if there exists an open set U such that E� U is a first category set. Show that the
class BP(X) of all sets in X with the Baire property is a σ-algebra containing B(X).

Hint: if F is closed, then F ∈ BP(X), since one can take for U the interior
of F . If A ∈ BP(X) and A � B is a first category set, then it is easy to see
that B ∈ BP(X). This yields that if E ∈ BP(X), then X\E ∈ BP(X), since
(X\E) � (X\U) = E � U , where U is open. Finally, it is readily verified that
BP(X) admits countable unions. All open sets belong to BP(X) by definition.

6.10.77. Suppose that X and Y are compact spaces, Y is metrizable, µ is
a probability measure on B(Y ), and f : X → Y is continuous. Prove that there
exists a

(
B(Y )µ,B(X)

)
-measurable mapping g : Y → X with g(y) ∈ f−1(y) for

all y ∈ f(X).
Hint: see Graf [718].

6.10.78. (i) Let X = Q be equipped with the topology which is obtained by
reinforcing the usual induced topology with the complement of the sequence {1/n}.
Show that we obtain a countable Hausdorff space (in particular, a Souslin space)
that has a countable base but is not regular. (ii) Construct a countable Hausdorff
space with a countable base such that some point in this space is not a Baire set.

Hint: (i) see Arkhangel’skĭı, Ponomarev [68, Ch. II, Problem 103]; (ii) see
Steen, Seebach [1774, p. 98, Counterexample 80].

6.10.79.◦ (A.D. Alexandroff [30]) Let Zn be disjoint functionally closed sets in
a topological space X.

(i) Let Zn have pairwise disjoint functionally open neighborhoods Un such that
Z :=

⋃∞
n=1 Zn is closed. Prove that Z is functionally closed.

(ii) Suppose that every union of sets Zn is functionally closed. Show that the
sets Zn possess pairwise disjoint functionally open neighborhoods Un.

(iii) Show that if the space X is normal, then the assumption that all unions of
Zn are closed yields that they are functionally closed.

Hint: (i) there are continuous functions fn : X → [0, 3−n] such that fn = 0
outside Un and Zn = {fn = 3−n}. The function f =

∑∞
n=1 fn is continuous. Note

that Z coincides with f−1(S), where S is the closed countable set consisting of the

numbers sn :=
∑n
k=1 3−k and their limit 1/2. Indeed, f |Zn = sn since supports

of fn are disjoint. Hence Zn ⊂ f−1(S), i.e., Z ⊂ f−1(S). If x ∈ f−1(S) and
f(x) = sn, then x ∈ Zn, since

∑∞
j=n+1 3−j < 3−n. If we had f(x) = 1/2, then
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by the above the point x would be a limit point of Z, hence it would belong to
one of the sets Zn because Z is closed. However, this is impossible. (ii) Sets Un
are constructed by induction. We find disjoint functionally open neighborhoods U1

and V1 of the functionally closed sets Z1 and
⋃∞
n=2 Zn. Next, in V1 we find disjoint

functionally open neighborhoods of the sets Z2 and
⋃∞
n=3 Zn and so on. (iii) For

any normal space X the reasoning in (ii) is applicable to arbitrary closed sets, hence
the assertion follows by (i).

6.10.80.◦ (A.D. Alexandroff [30]) (i) Let Fn be functionally closed sets in a topo-
logical space X and let Fn+1 ⊂ Fn for all n ∈ IN. Prove that there exist functionally
open sets Gn such that Fn ⊂ Gn and Gn+1 ⊂ Gn for all n and

⋂∞
n=1Gn =

⋂∞
n=1 Fn.

(ii) Suppose that in (i) one has the equality
⋂∞
n=1 Fn = ∅. Let Zn := Fn\Gn+1.

Show that the sets Zn are disjoint, and for every sequence {nk} of natural numbers,
the set

⋃∞
k=1 Znk is functionally closed.

Hint: (i) there exist fn ∈ C(X) with 0 ≤ fn ≤ 1, Fn = f−1
n (0). Let us set

hn := f1 + · · · + fn and Gn := {x : hn(x) < 1/n}. Then Fn ⊂ Gn, Gn+1 ⊂ Gn. If
x �∈

⋂∞
n=1 Fn, then there exists n such that hn(x) > 0. Hence there exists m > n

such that hm(x) > 1/m, i.e., x �∈
⋂∞
n=1Gn.

(ii) It is obvious that the sets Zn are disjoint, since Zn ∩ Fn+1 = ∅. By induc-
tion we find two sequences of functionally open sets Un and Vn with the following
properties: Zn ⊂ Un ⊂ Gn, Un ∩ Vn = ∅, Fn+1 ⊂ Vn, Un+1 ⊂ Vn. To this end, we
include Z1 and F2 into disjoint functionally open sets U1 and V1 contained in G1.
Next we consider the functionally open set G2 ∩ V1 containing disjoint functionally
closed sets Z2 and F3 and so on. The sets Un are disjoint. Every set

⋃∞
k=1 Znk

is functionally closed. Indeed, suppose x is not in this set. We find k such that
x �∈ Gnk . Since X\Gnk and Fnk are disjoint functionally closed sets and Zj ⊂ Fnk
for all j ≥ nk, the point x has a functionally open neighborhood W not meeting
the sets Zj , j ≥ nk. Since x does not belong to Zn1 , . . . , Znk−1 , there exists a func-
tionally open neighborhood of x not meeting

⋃∞
k=1 Znk . By Exercise 6.10.79 the set⋃∞

k=1 Znk is functionally closed.

6.10.81. Show that the set D := {(s,−s) ∈ Z2} in the Sorgenfrey plane Z2

(see Example 6.1.19) is Baire and that for every Baire set B ∈ Z2, the intersection
B ∩D is Borel with respect to the usual topology of the plane.

Hint: the function (x, y) �→ x+ y is continuous on Z2, hence D is functionally
closed. Therefore, it suffices to verify that every functionally closed set F ⊂ D
belongs to B(IR2). Let F = f−1(0), where f ∈ C(Z2). Let us write x = (t, s) and
set Bk(x) := [t, t+ 1/k)×[s, s+ 1/k),

Un :=
{
x : |f(x)| < (2n)−1}, Un,k :=

{
x ∈ F : Bk(x) ⊂ Un

}
.

Let Wn,k be the closure of Un,k in the usual topology and let B :=
⋂∞
n=1

⋃∞
k=1Wn,k.

Then B ∈ B(IR2) and it suffices to show that F = B. Since for every n ∈ IN, by
the continuity of f we have F =

⋃∞
k=1 Un,k, one obtains F ⊂ B. Let x �∈ F . Then,

for some n, we have |f(x)| ≥ 1/n. There is k ∈ IN such that |f(y)| > (2n)−1 for all
y ∈ Bk(x). This yields that x belongs to no Wn,k, since the sets Bk(x) and Bk(z)
meet if z ∈ D and |x− z| < (2k)−1. Thus, x �∈ B, i.e., B ⊂ F .

6.10.82. Let X be a topological space such that there exists a continuous
injective mapping h from X to some metric space. Let A ⊂ X. Suppose that
every infinite sequence in A has a limit point in X. Show that the closure of A is
metrizable and compact.
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Hint: observe that h(A) = h(A). Indeed, h(A) ⊂ h(A) by the continuity of h.

If y ∈ h(A), then y = lim
n→∞

h(xn), where xn ∈ A. Hence either y ∈ h(A), or we may

assume that {xn} is infinite and then y = h(x), where x is a limit point of {xn}.

One can also conclude that the set h(A) in a metric space is compact. The same

is true for every subset of A, whence it follows that h−1 : h(A) → A is continuous,

since the preimages of all closed sets in A are compact. Thus, h is a homeomorphism

between A and h(A).

6.10.83. Prove that the σ-algebra generated by Souslin sets in [0, 1] is strictly
smaller than the σ-algebra of all Lebesgue measurable sets.

Hint: the first σ-algebra has the cardinality of the continuum c (see Exer-
cise 6.10.31), and the cardinality of the second one is 2c . A much deeper fact is
contained in the next result.

6.10.84. (Kunugui [1079]) Prove that the σ-algebra generated by Souslin sets
in [0, 1] is not closed with respect to the A-operation.

6.10.85. Let (X,A) be a measurable space and let a function f : [0, 1]×X → IR1

be such that, for every t ∈ [0, 1], the function x �→ f(t, x) is A-measurable, and, for
every x ∈ X, the function t �→ f(t, x) is increasing. Suppose that f(1, x) ≥ 0. Show
that the function g(x) := inf

{
t ∈ [0, 1] : f(t, x) ≥ 0

}
is A-measurable.

Hint: one has g(x) = inf
{
t ∈ [0, 1] ∩ Q : f(t, x) ≥ 0

}
, since for every t ∈ [0, 1]

and ε > 0, there is a rational number s ∈ (t, t + ε) and f(s, x) ≥ f(t, x). Let {tn}
be the set of all rational numbers in [0, 1] and let gn(x) be the minimal number
in the finite set {t1, . . . , tn, 1} such that f(ti, x) ≥ 0 (such a number exists since
f(1, x) ≥ 0). It is readily seen that the function gn is A-measurable. Hence so is
g(x) = lim

n→∞
gn(x).

6.10.86. Let (X,A) be a measurable space and let Y be a metrizable Souslin
space. For any A ⊂ X×Y let

Acl :=
{

(x, y) ∈ X×Y : y ∈ Ax
}
, Aint :=

{
(x, y) ∈ X×Y : y ∈ IntAx

}
,

and Abd = Acl\Aint, where Ax := {y ∈ Y : (x, y) ∈ A}, M is the closure of a set M
and IntM is the interior of M . Prove that:

(i) if Y is metrizable by a metric d, then for all r one has
{

(x, y) ∈ X×Y : d(y,Ax) ≤ r
}
∈ S

(
A⊗B(Y )

)
, where d(y,∅) := +∞,

(ii) if A ∈ S
(
A⊗B(Y )

)
, then Acl ∈ S

(
A⊗B(Y )

)
,

(iii) if X×Y \A ∈ S
(
A⊗B(Y )

)
, then X×Y \Acl ∈ S

(
A⊗B(Y )

)
,

(iv) if A ∈ A⊗B(Y ), then Abd ∈ S
(
A⊗B(Y )

)
.

Hint: let E = {(x, y, z) ∈ X×Y 2 : (x, z) ∈ A}; apply Exercise 6.10.42 and the
equality d(y,Ax) = inf{d(y, z) : z ∈ E(x,y)}. Now (ii) follows from (i), since one has

Acl = {(x, y) : d(y,Ax) = 0}. Finally, (iii) and (iv) follow from (ii).

6.10.87.◦ (i) Let us equip the set X = [0, 1]2 with the order topology with
respect to the lexicographic ordering, i.e., (x1, y1) < (x2, y2) if x1 < x2 and if x1 = x2

and y1 < y2. Show that X is compact and the natural projection f : X → [0, 1] is
continuous. (ii) Show that the space “two arrows”, denoted by X0, is closed in X.

(iii) Show that the sets {x}×(0, 1) are open in X, hence one can find an open
set in X whose projection is not Lebesgue measurable.

Hint: (i) a neighborhood of a point (x, 0) contains a strip; (ii) and (iii) are
straightforward.



CHAPTER 7

Measures on topological spaces

As soon as we establish what is required from a naval architect
in his speciality, then immediately the corresponding volume of
knowledge from calculus and mechanics is set up. But here one
must be very careful not to introduce superfluous requirements;
for the fact that the upper deck is covered with wood does not
necessitate the study of botany, or that a sofa in the ward-room
is upholstered with leather does not force one to study zoology;
the same is here: if a consideration of some particular question
involves a certain formula, then it is much better to present
it without proof rather than introduce in the course a whole
branch of mathematics in order to give a full derivation of that
single formula.

A.N. Krylov. My recollections.

7.1. Borel, Baire and Radon measures

In classical measure theory, it is customary to fix some domain of defini-
tion of a measure (say, the σ-algebra of all measurable sets). This domain is
either given in advance or is obtained as a result of some extension procedure
(for example, the Lebesgue–Carathéodory extension). However, in many ap-
plications, as we shall see below, the choice of domain of measure turns out to
be a very delicate question, and the problem of extension to a larger domain
is not always solved by completing. Typical examples of such a situation are
related to measures on topological spaces or spaces equipped with filtrations.
Such problems occur in the study of the distributions of random processes in
functional spaces. This chapter is devoted to a broad circle of problems related
to regularity and domains of definition of measures. We discuss Borel and
Baire measures and their regularity properties such as tightness, τ -additivity
etc. We shall see that any Baire measure is regular. On the other hand,
we shall encounter examples of Borel measures that are neither regular nor
tight, and examples of Borel measures on compact spaces that are not Radon
(although are tight). It will be shown that there exist Baire measures with-
out countably additive extensions to the Borel σ-algebra. This picture will
be complemented by the theorem that every tight Baire measure can be ex-
tended to a Borel measure and has a unique extension to a Radon measure.
In particular, any Baire measure on a compact space X can be (uniquely)
extended to a Radon measure on X (although non-Radon extensions to B(X)
may exist as well). Radon measures are most frequently encountered in real
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applications, so they are given particular attention. Throughout we consider
measures of bounded variation unless the opposite is explicitly said (regarding
infinite measures, see �7.11 and �7.14(xviii)). In addition, we consider only
Hausdorff spaces (although not everywhere is this essential).

7.1.1. Definition. Let X be a topological space.
(i) A countably additive measure on the Borel σ-algebra B(X) is called a

Borel measure on X.
(ii) A countably additive measure on the Baire σ-algebra Ba(X) is called

a Baire measure on X.
(iii) A Borel measure µ on X is called a Radon measure if for every B in

B(X) and ε > 0, there exists a compact set Kε ⊂ B such that |µ|(B\Kε) < ε.

A set in a topological space X is called universally measurable if it belongs
to the Lebesgue completion of B(X) with respect to every Borel measure
on X. A set measurable with respect to every Radon measure on X is called
universally Radon measurable. A mapping F from X to a topological space
Y is called universally measurable if so are the sets F−1(B) for all B ∈ B(Y ).

The following lemma shows that Borel measures are uniquely determined
by their values on open sets.

7.1.2. Lemma. If two Borel measures on a topological space coincide on
all open sets, then they coincide on all Borel sets.

Proof. It suffices to verify that a Borel measure µ vanishing on all open
sets is identically zero. The measures µ+ and µ− are nonnegative and coincide
on all open sets. Then µ+ = µ− by Lemma 1.9.4 because the class of all open
sets admits finite intersections. Since µ+ ⊥ µ−, one has µ+ = µ− = 0. �

We observe that, by definition, a measure µ is Radon if and only if the
measure |µ| is Radon. This is also equivalent to that both measures µ+ and
µ− are Radon.

Radon measures constitute the most important class of measures for ap-
plications. As we shall see later, on many spaces (including complete separable
metric spaces) all Borel measures are Radon. However, first we consider an
example due to Dieudonné [445], which shows that even on a compact space
a Borel measure may fail to be Radon.

7.1.3. Example. There exists a compact topological space X with a
Borel measure µ such that µ assumes only two values 1 and 0, but is not
Radon.

Proof. We take for X the set of all ordinals not exceeding the first
uncountable ordinal ω1. Then X is an uncountable well-ordered set with the
maximal element ω1, and for any α �= ω1 the set {x : x ≤ α} is at most
countable. We equip X with the order topology (�6.1); in this topology X is
compact. Let X0 = X\{ω1}. Denote by F0 the class of all uncountable closed
subsets in the space X0 equipped with the induced topology. The measure
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µ on B(X) is defined as follows: µ(B) = 1 if B contains a set from F0 and
µ(B) = 0 otherwise. Let us show that µ is countably additive. To this end,
let us introduce the class E of all sets E ⊂ X such that either E or X\E
contains an element from F0. The class E is a σ-algebra: it is closed under
complementation and countable intersections, since F :=

⋂∞
n=1 Fn ∈ F0 if

Fn ∈ F0. Indeed, if F is countable, there is α < ω1 such that F ⊂ [0, α].
By induction one can easily find a strictly increasing sequence of ordinals
αj ∈ (α, ω1) that contains infinitely many elements from every Fn (because
Fn is uncountable and [0, αj ] is countable). Then {αj} has a limit α′ ∈ F
and α′ > α. In addition, B(X) ⊂ E . Indeed, if A is closed and uncountable,
then A ∩X0 ∈ F0. If A is at most countable, then its complement contains
an element from F0 since A ⊂ [0, α] for some α < ω1. Suppose now that
{Bn} ⊂ B(X) is a sequence of disjoint sets. As shown above, at most one of
them contains an element from F0, and if there is no such Bn, every X\Bn
contains a set Fn ∈ F0, hence

⋂∞
n=1 Fn ∈ F0, so

⋃∞
n=1Bn has no subsets

from F0. Therefore, µ is countably additive. Every point x �= ω1 has a
neighborhood of measure zero, hence µ(K) = 0 for every compact set K ⊂ X0.
Since µ({ω1}) = 0, µ is not Radon (moreover, it even has no support, i.e., the
smallest closed set of full measure because ω1 belongs to every closed set of
full measure; see below about supports of measures). �

The measure µ constructed in this example is called the Dieudonné mea-
sure.

Thus, in order to ensure the Radon property of a measure, it is not
enough to be able to approximate its value on the whole space by the values
on compact sets. The latter property has a special name.

7.1.4. Definition. A nonnegative set function µ defined on some system
A of subsets of a topological space X is called tight on A if for every ε > 0,
there exists a compact set Kε in X such that µ(A) < ε for every element A
in A that does not meet Kε. An additive set function µ of bounded variation
on an algebra (or a ring) is called tight if its total variation |µ| is tight.

A Borel measure µ is tight if and only if for every ε > 0 there is a compact
set Kε such that |µ|(X\Kε) < ε. However, already in the case of a general
Baire measure one has to formulate this property in the way indicated in the
foregoing definition because nonempty compact sets may not belong to the
domain of such a measure.

It is clear that any measure on a compact space is tight. What is missing
for a tight Borel measure to be Radon?

7.1.5. Definition. A nonnegative set function µ defined on some system
A of subsets of a topological space is called regular if for every A in A and
every ε > 0, there exists a closed set Fε such that Fε ⊂ A, A\Fε ∈ A and
µ(A\Fε) < ε.

An additive set function µ of bounded variation on an algebra (or a ring)
is called regular if its total variation |µ| is regular.
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By definition, every Radon measure on a Hausdorff space is regular and
tight. It is clear that if a Borel measure is regular and tight, then it is Radon,
since the intersection of a compact set and a closed set is compact. However,
a regular Borel measure may fail to be tight. Let us consider an example.

7.1.6. Example. Let M be a nonmeasurable subset of the interval [0, 1]
with zero inner measure and unit outer measure (see Chapter 1). We consider
M with the usual metric as a metric space. Then every Borel subset of this
space has the form M ∩ B, where B is a Borel subset in [0, 1]. We define a
measure on M by the formula µ(M∩B) = λ(B), where λ is Lebesgue measure,
i.e., µ is the restriction of λ to M in the sense of Definition 1.12.11. Since
Lebesgue measure is regular (see, for example, Theorem 1.4.8), the measure
µ is regular as well (we recall that the closed sets in M are the intersections
of M with closed subsets of [0, 1]). But it is not tight, since every compact
set K in the space M is also compact in [0, 1], hence, by construction, has
Lebesgue measure zero, whence we obtain µ(K) = 0.

The above example of a non-tight measure on a separable metric space
might seem artificial because of a rather exotic choice of the space M , and
one might be tempted to choose for M a more constructive space. In the
subsequent sections we shall see that exotic spaces are inevitable in such
examples and that this circumstance has deep set-theoretic reasons. The
following theorem shows that one cannot take for M a Borel set in [0, 1]. This
is one of the most important theorems in measure theory and is often used in
applications.

7.1.7. Theorem. Let X be a metric space. Then every Borel measure µ
on X is regular. If X is complete and separable, then the measure µ is Radon.

Proof. We can assume that µ ≥ 0. The regularity of µ has actually
been proven in Theorem 1.4.8 (no specific features of IRn have been used).
Let us suppose that X is complete and separable and show that the measure
µ is tight. Let ε > 0. By the separability of X, for every natural n, one can
cover X by a finite or countable family of open balls U jn of radius ε2−n. By
using the countable additivity of µ, one can find a finite union Wn =

⋃mn
j=1 U

j
n

such that µ(X\Wn) < ε2−n. The set W =
⋂∞
n=1Wn is completely bounded,

since for every δ > 0, it can be covered by finitely many balls of radius δ.
In addition, µ(X\W ) ≤

∑∞
n=1 µ(X\Wn) < ε. It remains to observe that the

closure K of the set W is compact by the completeness of X. The tightness
and regularity yield that our measure is Radon. �

7.1.8. Corollary. Every Baire measure µ on a topological space X is
regular. Moreover, for every Baire set E and every ε > 0, there exists a
continuous function f on X such that f−1(0) ⊂ E and |µ|

(
E\f−1(0)

)
< ε.

More generally, for any family Γ of continuous functions on X, every
measure µ on the σ-algebra σ(Γ) generated by Γ is regular.
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Proof. It suffices to consider nonnegative measures. We recall that the
set E has the form

E =
{
x :

(
f1(x), . . . , fn(x), . . .

)
∈ B

}
,

where B ∈ B(IR∞) and fn ∈ C(X) (in the second case, fn ∈ Γ). Let µ0 be
the image of the measure µ under the mapping x �→

(
f1(x), . . . , fn(x), . . .

)

from X to IR∞. This mapping is continuous. Since IR∞ is a metric space,
by the above theorem, there exists a continuous function g on IR∞ such that
g−1(0) ⊂ B and

µ0

(
B\g−1(0)

)
< ε.

It remains to observe that the function f(x) = g
(
f1(x), . . . , fn(x), . . .

)
is con-

tinuous on X and by the definition of the image measure, we have the equality
µ
(
E\f−1(0)

)
= µ0

(
B\g−1(0)

)
. �

We recall that a topological space X is called perfectly normal if every
closed set in X has the form f−1(0), where f ∈ C(X). It is clear that in
this case the Borel σ-algebra coincides with the Baire one. So the following
assertion follows from the definition and the previous corollary.

7.1.9. Corollary. Every Borel measure on a perfectly normal space is
regular.

7.1.10. Lemma. Let µ be a Baire measure on a topological space X.
Then, for every B ∈ Ba(X) and ε > 0, there exists a continuous function
ψ : X → [0, 1] such that

∣
∣
∣
∣

∫

X

ψ dµ− µ(B)
∣
∣
∣
∣ < ε.

In addition, there exists a continuous function ζ : X → [−1, 1] such that
∣
∣
∣
∣

∫

X

ζ dµ− |µ|(B)
∣
∣
∣
∣ < ε.

Proof. As in Corollary 7.1.8, it suffices to prove both assertions in the
case X = IR∞. In this special case, one can find a closed set Z ⊂ B and
an open set U ⊃ B with |µ|(U\Z) < ε/2. It remains to take a continuous
function ψ : X → [0, 1] that equals 1 on Z and 0 outside U (clearly, this is
possible since IR∞ is a metrizable space). It is easy to see that ψ is a required
function.

For the proof of the second assertion we take the Hahn decomposition
µ = µ+ − µ− and find disjoint closed sets Z1 and Z2 such that Z1 ∪ Z2 ⊂ B,
µ−(Z1) = 0, µ+(Z2) = 0 and µ+(B\Z1) + µ−(B\Z2) < ε/4. In addition,
we can find disjoint open sets U1 ⊃ Z1 and U2 ⊃ Z2 for which the inequality
|µ|(U1\Z1)+|µ|(U2\Z2) < ε/4 holds. Finally, let us take a continuous function
ζ equal to 1 on Z1, −1 on Z2 and 0 outside U1 ∪ U2. Then
∣
∣
∣
∣

∫

X

ζ dµ− |µ|(B)
∣
∣
∣
∣ ≤ |µ|(U1\Z1) + |µ|(U2\Z2) + |µ|

(
B\(Z1 ∪ Z2)

)
< ε.

The lemma is proven. �
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7.1.11. Lemma. If a Borel or Baire measure µ is tight (or Radon), then
every measure absolutely continuous with respect to µ is tight (respectively,
Radon).

Proof. Let µ be a tight Borel or Baire measure and let ν = f · µ,
where f ∈ L1(µ). Then the measure ν is tight by the absolute continuity
of the Lebesgue integral. Similarly, one proves that ν is Radon for a Radon
measure µ. �

In analogy with the case of scalar functions we shall say that a mapping
of a measure space (X,A, µ) to a topological space Y is µ-measurable if it is(
Aµ,B(Y )

)
-measurable. For example, if µ is a Borel measure, then Aµ is the

completion of B(X) with respect to µ.
We shall need the following modification of Egoroff’s theorem.

7.1.12. Theorem. Let Y be a separable metric space, (X,A, µ) a space
with a finite measure, and let fn : X → Y be a sequence of mappings mea-
surable with respect to the pair of the σ-algebras A and B(Y ) and convergent
µ-a.e. to a mapping f . Then, for every ε > 0, there exists a set Xε ∈ A
such that |µ|(X\Xε) < ε and the restrictions of the mappings fn to the set
Xε converge uniformly to the restriction of f .

Proof. The arguments employed in the proof of Egoroff’s theorem for
real functions remain valid if we observe that

{
x : �

Y

(
fn(x), fk(x)

)
≤ r

}
∈ A

for all r ≥ 0, n, k ∈ IN, where �
Y

is the metric of Y . This follows by the fact
that the mappings x �→

(
fn(x), fk(x)

)
, (X,A) →

(
Y ×Y,B(Y )⊗B(Y )

)
, are

measurable and the function (x, y) �→ �Y (x, y) is continuous, hence measur-
able with respect to the σ-algebra B(Y×Y ), which coincides with the σ-algebra
B(Y )⊗B(Y ) by the separability of Y . �

Now we give a generalization of Lusin’s classical theorem.

7.1.13. Theorem. Let X be a topological space with a Radon mea-
sure µ, let Y be a complete separable metric space, and let f : X → Y be a
µ-measurable mapping (i.e., f−1(B) ∈ Bµ(X) for all B ∈ B(Y )). Then, for
every ε > 0, there exists a compact set Kε ⊂ X such that |µ|(X\Kε) < ε and
f |Kε is continuous.

If X is completely regular and Y is a Fréchet space, then there exists a
continuous mapping fε : X → Y such that |µ|

(
x : f(x) �= fε(x)

)
< ε.

Proof. We observe that if our claim is true for µ-measurable mappings
fn convergent to f a.e., then it is true for f as well. Indeed, for each n, we
find a compact set Kn on which fn is continuous with |µ|(X\Kn) < ε4−n

and use Egoroff’s theorem to obtain a compact set K0 with |µ|(X\K0) < ε/4
on which convergence is uniform. Then we set Kε :=

⋂
n≥0Kn. Now it

suffices to prove our claim for mappings with countably many values because
f can be uniformly approximated by such mappings. To this end, given
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k ∈ IN, we partition Y into disjoint Borel parts Bj of diameter less than 1/j,
choose arbitrary elements yj ∈ Bj and define fk as follows: fk = yj on
f−1(Bj). Every fk is the pointwise limit of mappings with finitely many
values, so it remains to note that if f assumes finitely many distinct values
c1, . . . , cn, then our assertion is true. Indeed, every set Aj := f−1(cj) contains
a compact set Kj with |µ|(Aj\Kj) < ε/n. The mapping f is continuous on
K1 ∪ · · · ∪ Kn, since the sets Kj are disjoint and every point in Kj has a
neighborhood that does not meet other sets Ki. The last assertion follows
by Exercise 6.10.22, which enables us to extend continuous mappings from
compact sets in completely regular spaces.

In the case where X is a metric space, the following alternative proof of
Lusin’s theorem was given in Dellacherie [426]. One may assume that X is
compact and µ is a probability measure. The mapping g : x �→

(
x, f(x)

)
from

X to X×Y is measurable with respect to µ. Hence there exists a compact
set S ⊂ X×Y such that µ ◦ g−1(S) > 1− ε. Let K denote the projection of
S on X. It is clear that K is compact and µ(K) = µ ◦ g−1(S) > 1 − ε. The
mapping g on K takes values in the compact projection of S on Y , whence
we obtain the continuity of f on K. Indeed, suppose a sequence of points
xn ∈ K converges to a point x0 ∈ K. The sequence

(
xn, f(xn)

)
∈ S contains

a subsequence convergent to a point in S. This point can be only
(
x0, f(x0)

)
.

Hence {f(xn)} converges to f(x0). �

If we only require that Kε be closed, then the first assertion of the theorem
(with a similar proof) is valid for regular Borel measures. The second assertion
(for Radon measures) extends to arbitrary separable metric spaces in the
following weaker form: the mapping fε takes values in some separable Banach
space, in which Y is isometrically embedded (for Y itself, there might be no
such a mapping: it suffices to take Y = {0, 1}, X = [0, 1], f = I[0,1/2]). The
case where Y is a Souslin space is considered in Corollary 7.4.4. A non-trivial
generalization of this theorem is given in �7.14(ix).

7.2. τ-additive measures

There is one more important regularity property that is intermediate be-
tween the usual regularity and the Radon property.

7.2.1. Definition. A Borel measure µ on a topological space X is called
τ -additive (or τ -regular, τ -smooth) if for every increasing net of open sets
(Uλ)λ∈Λ in X, one has the equality

|µ|
(⋃

λ∈Λ

Uλ

)
= lim

λ
|µ|(Uλ). (7.2.1)

If (7.2.1) is fulfilled for all nets with
⋃
λ Uλ = X, then µ is called τ0-additive

(or weakly τ -additive).

It is clear from the definition that a measure µ is τ -additive precisely when
its total variation |µ| is τ -additive (the same is true for the τ0-additivity).
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One can verify that any regular τ0-additive Borel measure is τ -additive
(see Exercise 7.14.66). On the other hand, there exist τ0-additive measures
that are not τ -additive.

7.2.2. Proposition. (i) Every Radon measure is τ -additive.
(ii) Every τ -additive measure on a regular space is regular. In particular,

every τ -additive measure on a compact space is Radon.
(iii) Every tight τ -additive measure is Radon.
(iv) Every Borel measure on a separable metric space X is τ -additive.

Moreover, this is true if X is hereditary Lindelöf.

Proof. (i) Suppose we are given an increasing net of open sets Uλ,
a Radon measure µ and ε > 0. We find a compact set K ⊂

⋃
λ∈Λ Uλ with

|µ|
(⋃

λ∈Λ Uλ\K
)
< ε. It remains to take a finite subcover of K by sets Uλ.

(ii) Suppose we are given a τ -additive measure µ on a regular space X. Denote
by E the class of all Borel sets E in X such that

|µ|(E) = sup
{
|µ|(Z) : Z ⊂ E is closed

}
= inf

{
|µ|(U) : U ⊃ E is open

}
.

We know that E is a σ-algebra (see the proof of Theorem 1.4.8). Hence it
suffices to show that every open set U belongs to E . By the regularity of X
the set U can be represented in the form of the union of a family of open sets
V such that V ⊂ U . Therefore, U is covered by the directed family of open
subsets of U consisting of finite unions of sets V of the above type, partially
ordered by inclusion. Let ε > 0. Then, by the τ -additivity of µ, there exists
a finite family of open sets Vi ⊂ Vi ⊂ U , i = 1, . . . , n, such that letting
W =

⋃n
i=1 Vi, we have |µ|(U\W ) < ε. Then |µ|(U\W ) < ε. If X is compact,

then by the regularity of µ we obtain the Radon property. (iii) The restrictions
of a τ -additive measure to all compact subspaces are Radon, which by virtue
of tightness yields the Radon property on the whole space. (iv) It suffices to
use the countable additivity of our measure and the property that every open
cover of any subset of X contains an at most countable subcover. �

7.2.3. Corollary. Let two τ -additive measures µ and ν on a space X
coincide on all sets from some class U that contains a base of the topology in
X and is closed with respect to finite intersections. Then µ = ν.

Proof. Every open set U in X can be represented in the form of the
union of a net of increasing open sets Uα that are finite unions of sets in U . It is
easily seen that µ(Uα) = ν(Uα). By the τ -additivity we obtain µ(U) = ν(U).
By Lemma 7.1.2 both measures coincide on all Borel sets. �

We note that Example 7.1.6 gives a τ -additive measure that is not Radon.
Let us consider another interesting example.

7.2.4. Example. Let X = [0, 1) be the Sorgenfrey interval (with its
topology generated by all semiclosed intervals [a, b) ⊂ X). Then X is hered-
itary Lindelöf and all Borel sets in X are the same as in the usual topology
of the interval (since every open set in the Sorgenfrey topology is an at most
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countable union of intervals [a, b)). The usual Lebesgue measure on this space
is regular and τ -additive, but is not Radon, since compact subsets in X are
at most countable.

7.2.5. Proposition. Let µ be a regular Borel measure. Then the follow-
ing conditions are equivalent:

(i) the measure µ is τ -additive;
(ii) for every increasing net {Uα} of open sets with union U one has the

equality
µ(U) = lim

α
µ(Uα); (7.2.2)

(iii) for every decreasing net {Zα} of closed sets with intersection Z one
has the equality

µ(Z) = lim
α
µ(Zα); (7.2.3)

(iv) for every decreasing net {Zα} of closed sets with
⋂
α Zα = Z = ∅,

one has equality (7.2.3).

Proof. Relations (7.2.2) and (7.2.3) are equivalent for any measure and
are fulfilled for τ -additive measures. It follows by (7.2.3) and the regularity of
µ that the measures µ+ and µ− satisfy (7.2.3), hence satisfy (7.2.2). Therefore,
(7.2.1) is fulfilled, i.e., µ is τ -additive. Thus, (i)–(iii) are equivalent. Finally,
let (iv) be fulfilled and let {Zα} be a decreasing net of closed sets. Let us fix
ε > 0 and take an open set U such that Z = ∩αZα ⊂ U and |µ|(U\Z) < ε.
Then the closed sets Zα\U decrease to the empty set, so lim

α
µ(Zα\U) = 0.

It remains to observe that we have the inequalities µ(Zα) = µ(Zα\Z) + µ(Z)
and |µ(Zα\Z)− µ(Zα\U)| ≤ |µ|(U\Z) < ε. �

We recall that a function f on a topological space X is called lower semi-
continuous if for all c ∈ IR1, the sets {x : f(x) > c} are open (see Engelking
[532, 1.7.14]). It is clear that such functions are Borel. Note that the point-
wise limit of an increasing net of lower semicontinuous functions is lower
semicontinuous as well. A function f is called upper semicontinuous if all sets
{f < c} are open, i.e., the function −f is lower semicontinuous.

7.2.6. Lemma. Let µ be a regular τ -additive (for example, Radon) mea-
sure on a topological space X and let {fα} be an increasing net of lower
semicontinuous nonnegative functions such that the function f = lim

α
fα is

bounded. Then

lim
α

∫

X

fα(x)µ(dx) =
∫

X

f(x)µ(dx).

Proof. One can assume that µ is nonnegative; the general case is ob-
tained from the Jordan–Hahn decomposition. In addition, one can assume
that f < 1. Set

fα,n =
1
n

n∑

k=1

I{fα>(k−1)/n}, fn =
1
n

n∑

k=1

I{f>(k−1)/n}.



76 Chapter 7. Measures on topological spaces

By the lower semicontinuity of the functions fα, the function f is lower semi-
continuous as well. Thus, the sets {fα > (k − 1)/n} are open and for any
fixed n and k, they form a net increasing to the open set {f > (k−1)/n}. By
the τ -additivity we have lim

α
µ
(
fα > (k − 1)/n

)
= µ

(
f > (k − 1)/n

)
. Hence,

for every n, we have

lim
α

∫

X

fα,n dµ =
∫

X

fn dµ.

In view of the estimates |fα,n − fα| ≤ 1/n, |fn − f | ≤ 1/n this completes the
proof. �

7.2.7. Corollary. If µ is a regular τ -additive measure on a topological
space X and {fα} ⊂ Cb(X) is a net decreasing to zero, then

lim
α

∫

X

fα(x)µ(dx) = 0.

Proof. Let α0 be any fixed element. We observe that the net fα0 − fα,
α ≥ α0, increases to fα0 and consists of nonnegative functions. It remains to
apply the above lemma and the additivity of integral. �

Lemma 10.5.5 in Chapter 10 contains a close result for not necessarily
lower semicontinuous functions contained in the image of a lifting of an arbi-
trary measure µ.

7.2.8. Lemma. Let X be a completely regular space and let µ be a τ -
additive measure on X. Then, for every B ∈ B(X) and ε > 0, there exists a
continuous function ψ : X → [0, 1] such that

∣
∣
∣
∣

∫

X

ψ dµ− µ(B)
∣
∣
∣
∣ < ε.

In addition, there exists a continuous function f : X → [−1, 1] such that
∣
∣
∣
∣

∫

X

f dµ− |µ|(B)
∣
∣
∣
∣ < ε.

In particular, this is true for any Radon measure.

Proof. By Lemma 7.1.10, it suffices to show that for every δ > 0, there
exists a set Bδ ∈ Ba(X) such that |µ|(Bδ � B) < δ. Since the measure µ
is regular by the complete regularity of X and τ -additivity, one can find an
open set G ⊃ B with |µ|(G\B) < δ/2. Due to the complete regularity of X,
the set G is a union of an increasing net of functionally open sets. By using
the τ -additivity of µ once again, we find a functionally open set Bδ ⊂ G with
|µ|(G\Bδ) < δ/2. �

Let us introduce the following notation.
Notation. Given a topological space X, we shall use throughout the

following symbols:
Mσ(X) is the set of all Baire measures,
MB(X) is the set of all Borel measures,
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Mr(X) is the set of all Radon measures,
Mt(X) is the set of all tight Baire measures,
Mτ (X) is the set of all τ -additive Borel measures.
The symbols M+

σ (X), M+
B (X), M+

r (X), M+
t (X), M+

τ (X) stand for the
corresponding classes of nonnegative measures. Finally, the symbol P will
denote the subclass of probability measures in the respective classes.

An important application of the property of τ -additivity concerns the
concept of support of a Borel measure. For every Borel measure µ, one can
consider the closed set Sµ that is the intersection of all closed sets of full µ-
measure (i.e., the complements of sets of |µ|-measure zero). If this set also has
full measure, then it is called the support of µ and is denoted by suppµ (in this
case we say that the measure µ has support). The measure µ on a compact
space constructed in Example 7.1.3 has no support (one has Sµ = {ω1}).

7.2.9. Proposition. Every τ -additive measure has support. In particu-
lar, every Radon measure has support and every Borel measure on a separable
metric space has support.

Proof. By the τ -additivity, the union of any family of open sets of mea-
sure zero has measure zero. �

We recall that the weight of a metric space (X, d) is the minimal cardi-
nality of a topology base in X (and also the minimal cardinality m with the
property that every set S ⊂ X with infx,y∈S,x�=y d(x, y) > 0 is of cardinality
at most m; see Engelking [532, Theorem 4.1.15]).

7.2.10. Proposition. The weight of a metric space (X, d) is nonmea-
surable in the sense of �1.12(x) precisely when every Borel measure on X is
τ -additive (and then is Radon if X is complete). An equivalent condition:
every Borel measure on X has support.

Proof. Let the weight m of X be measurable. Then X contains a set
S of measurable cardinality m′ ≤ m such that d(x, y) ≥ r > 0 for all x �= y
in S. Indeed, by Zorn’s lemma, for every n ∈ IN, there is a maximal family
Mn of points such that d(x, y) ≥ n−1 whenever x, y ∈Mn. The cardinality of
some family Mn must be measurable, since otherwise the cardinality of their
union would be nonmeasurable, which contradicts the above-cited theorem.
There is a probability measure on the class of all subsets in S vanishing on
all singletons. Its extension to B(X) has no support, since the sets S\{x} are
closed and have measure 1. Conversely, suppose that there is a Borel proba-
bility measure µ on X that is not τ -additive. Then µ has no support, for its
support would be separable. Indeed, any nonseparable metric space contains
an uncountable collection of disjoint balls, which cannot all be of positive
measure. Therefore, we obtain a family Γ of open sets of µ-measure zero such
that their union has a positive µ-measure. According to Stone’s theorem (see
Engelking [532, Theorem 4.4.1]), there is a sequence Γn of collections of open
subsets of sets in Γ such that for every fixed n, the sets in Γn are pairwise
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disjoint, and the union of sets in all collections Γn coincides with the union of
all sets in Γ. Hence there is n such that the union of sets in Γn has a positive
measure. Thus, since the sets in Γn also have measure zero (as subsets of ele-
ments of Γ), we may assume that Γ consists of disjoint sets. On the set of all
subsets of Γ we obtain a nonzero measure ν by setting ν(E) = µ(

⋃
K∈E K

)
,

E ⊂ Γ. This measure is well-defined due to the disjointness of sets in Γ. All
one-element subsets in Γ have ν-measure zero. This shows that the cardinality
of X is measurable. Finally, if a Borel measure µ on X has support, then, as
noted above, this support is separable, hence µ is τ -additive (and is Radon if
X is complete). �

7.3. Extensions of measures

In this section, we discuss several important questions related to exten-
sions of measures to larger σ-algebras. In particular, we shall see that every
tight Baire measure can be extended to a Radon measure. Such constructions
are efficient in the study of measures on large functional spaces such as the
space of all functions on an interval. Before proving theorems on extensions of
tight measures, let us consider the following simple example of a tight Baire
measure that has a Radon extension to the Borel σ-algebra, but this extension
cannot be obtained by means of Lebesgue’s completion of Ba(X).

7.3.1. Example. Let X = IRT , where T is an uncountable set (for
example, an interval of the real line), let x0 be any element in X (for example,
the identically zero function), and let ν be the measure on the σ-algebra Ba(X)
defined by the formula: ν(B) = 1 if x0 ∈ B and ν(B) = 0 otherwise (i.e.,
ν is Dirac’s measure at x0). It is clear that this measure is tight and by
the same formula can be extended to B(X). However, the one-point set x0

is nonmeasurable with respect to Lebesgue’s completion of the measure ν on
Ba(X). Indeed, otherwise this set would be a union of a set in Ba(X) and a set
of outer measure zero with respect to ν on Ba(X), which is impossible, since
no singleton is Baire in our space, whereas the point x0 has outer measure 1.

The next theorem and its corollary are very useful in applications. The
proof employs the inner measure µ∗ generated by a nonnegative additive set
function µ on an algebra A by the formula

µ∗(E) = sup{µ(A) : A ∈ A, A ⊂ E}

in accordance with the general construction from �1.12(viii).

7.3.2. Theorem. Suppose an algebra A of subsets of a Hausdorff space
X contains a base of the topology. Let µ be a regular additive set function of
bounded variation on A.

(i) Suppose that µ is tight. Then it admits a unique extension to a Radon
measure on X.
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(ii) Suppose that X is regular and that for every increasing net {Uα} of
open sets in A with X =

⋃
α Uα, we have |µ|(X) = lim

α
|µ|(Uα). Then µ

admits a unique extension to a τ -additive measure on B(X).
If µ is nonnegative, then in both cases the corresponding extensions for

all B ∈ B(X) are given by the formula

µ̂(B) = inf
{
µ∗(U) : U is open in X and B ⊂ U

}
. (7.3.1)

Proof. It suffices to prove the theorem for nonnegative measures, since
the positive and negative parts of any set function µ with the properties from
(i) or (ii) possess those properties as well. First we verify claim (ii), which is
more difficult, and then explain the changes to be made for the proof of (i).
Let us show that

lim
α
µ(Uα) = µ∗(U) (7.3.2)

for every net of increasing open sets Uα ∈ A with
⋃

α
Uα = U . Indeed, other-

wise
µ∗(U)− lim

α
µ(Uα) ≥ ε > 0.

By the regularity of µ on the algebra A, there exists a closed set Z ⊂ U from
A with µ(Z) > µ∗(U)− ε/2. Let W = X\Z. Then

lim
α
µ(Uα ∪W ) ≤ lim

α
µ(Uα) + µ(X)− µ(Z)

≤ lim
α
µ(Uα) + µ(X)− µ∗(U) + ε/2 ≤ µ(X)− ε/2 < µ(X),

which contradicts the equality µ(X) = lim
α
µ(Uα ∪ W ) that follows by the

equality X =
⋃

α
(Uα ∪W ) due to the τ0-additivity of µ.

Now we show that
lim
α
µ∗(Uα) = µ∗(U) (7.3.3)

for every net of arbitrary open sets Uα increasing to U . We verify first that

lim
α
µ∗(Uα) ≥ µ(V ) (7.3.4)

for any open set V ⊂ U in A. To this end, we denote by W the class of all
open sets W in A such that W ⊂ Uα for some α. It is clear that W is a
directed (by increasing) family of sets with union U . According to (7.3.2) we
have

µ∗(U) = sup{µ(W ), W ∈ W}.
Since V =

⋃

W∈W
(V ∩W ), we obtain similarly

µ(V ) = µ∗(V ) = sup{µ(V ∩W ), W ∈ W}. (7.3.5)

By the definition of W we have V ∩W ⊂ Uα for some α, whence µ(V ∩W ) ≤
µ(W ) ≤ µ∗(Uα). Therefore, µ(V ∩W ) ≤ lim

α
µ∗(Uα). By (7.3.5) we arrive

at (7.3.4). Taking the supremum over all open sets V ⊂ U in A, we obtain
from (7.3.2) that lim

α
µ∗(Uα) ≥ µ∗(U). Since µ∗(Uα) ≤ µ∗(U), we arrive

at (7.3.3).
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Let us verify two other properties of µ∗: if U1 and U2 are open, then

µ∗(U1 ∪ U2) ≤ µ∗(U1) + µ∗(U2), (7.3.6)

and if U1 ∩ U2 = ∅, then

µ∗(U1 ∪ U2) = µ∗(U1) + µ∗(U2). (7.3.7)

Indeed, by the hypothesis of the theorem, there exist two nets of increasing
open sets W 1

α and W 2
β from A such that U1 =

⋃
αW

1
α and U2 =

⋃
βW

2
β . Then

µ(W 1
α ∪W 2

β ) ≤ µ(W 1
α) + µ(W 2

β ) ≤ µ∗(U1) + µ∗(U2).

By using (7.3.2) we obtain µ∗(W 1
α ∪U2) ≤ µ∗(U1) + µ∗(U2) for every fixed α.

Now (7.3.6) follows from (7.3.3). Similarly, we verify (7.3.7).
Let us now consider the set function

ν(A) = inf
{
µ∗(U) : U is open and A ⊂ U

}
, A ⊂ X.

It follows from (7.3.3) and (7.3.6) that ν is a Carathéodory outer measure
(see Chapter 1). Therefore,

Aν =
{
A : ν(A ∩B) + ν

(
(X\A) ∩B

)
= ν(B), ∀B ⊂ X

}

is a σ-algebra, on which the set function ν is countably additive. We show
that B(X) ⊂ Aν . It suffices to verify that every open set U belongs to Aν .
To this end, it suffices to establish the estimate

ν(U ∩B) + ν
(
(X\U) ∩B

)
≤ ν(B) (7.3.8)

for every B ⊂ X (the reverse inequality follows by (7.3.6)). Suppose that B
is open. Then (7.3.8) is written in the form

µ∗(U ∩B) + ν
(
(X\U) ∩B

)
≤ µ∗(B). (7.3.9)

By the regularity of X there exists a net of increasing open sets Uα with
U =

⋃
α Uα and Zα := Uα ⊂ U for all α, where Uα denotes the closure of Uα.

Then

B = (B ∩ Uα) ∪
(
B ∩ (X\Uα)

)
⊃ (B ∩ Uα) ∪

(
B ∩ (X\Zα)

)
.

Since the set B ∩ (X\Zα) is open, we obtain from (7.3.7) that

µ∗(B) ≥ µ∗(B ∩ Uα) + µ∗
(
B ∩ (X\Zα)

)
.

We observe that µ∗
(
B ∩ (X\Zα)

)
≥ ν

(
B ∩ (X\U)

)
, since B ∩ (X\U) belongs

to B ∩ (X\Zα) and the latter set is open. Thus,

µ∗(B) ≥ µ∗(B ∩ Uα) + ν
(
B ∩ (X\U)

)
.

By using (7.3.2), we obtain (7.3.9). Now let B be arbitrary and let W ⊃ B be
open. Then µ∗(W ) ≥ ν(B ∩U) + ν

(
B ∩ (X\U)

)
. Therefore, we have (7.3.8).

Thus, U ∈ Aν and hence B(X) ⊂ Aν . It remains to take for the desired exten-
sion µ̂ the restriction of ν to B(X). The measure µ̂ is τ -additive by (7.3.3),
since ν(U) = µ∗(U) for every open U . If U is open and belongs to A, we
have ν(U) = µ(U). Let A ∈ A. Given ε > 0, by the regularity of µ
we find an open set U ∈ A such that A ⊂ U and µ(A) > µ(U) − ε, i.e.,
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µ(A) > ν(U)− ε ≥ ν(A)− ε. Hence µ(A) ≥ ν(A). Then µ(X\A) ≥ ν(X\A),
as X\A ∈ A. Therefore, µ(A) = ν(A). Note that A may not belong to B(X),
but is contained in the completion of A∩B(X). The uniqueness of extension
follows by Corollary 7.2.3.

We now proceed to assertion (i). In the case of a regular space it follows
by the already proven assertion. In the general case, the above reasoning can
be slightly modified. We observe that in the proof of existence, the regularity
of X was only used in order to verify that B(X) ⊂ Aν . Hence, by taking
into account that our tight measure satisfies the condition indicated in (ii),
we conclude that the reasoning preceding the above-mentioned verification
remains valid. In order to show that also the inclusion B(X) ⊂ Aν is still true,
we observe that Aν contains all open sets U such that X\U is compact. Then
U =

⋃
α Uα for some net of increasing open sets Uα with Zα = Uα ⊂ U . This

follows from the fact that every point in U and the compact complement to U
have disjoint neighborhoods. Thus, the subsequent reasoning of the previous
step remains valid and U ∈ Aν . Hence all compact sets are in Aν . It remains
to show that every closed set Z is contained in Aν . Let us take a sequence
of compact sets Kn such that µ∗(Kn) > µ(X) − 1/n. Let K =

⋃∞
n=1Kn.

We observe that ν(Kn) = µ∗(Kn). Indeed, every open set V containing Kn

contains an open set W ∈ A that contains Kn, since every point x ∈ Kn has a
neighborhood Wx ⊂ V from A, and the cover obtained in this way has a finite
subcover. Therefore, µ∗(Kn) ≤ µ(W ) ≤ µ∗(V ), whence µ∗(Kn) ≤ ν(Kn). On
the other hand, by the regularity of µ, one has µ∗(Kn) = inf µ(W ), where inf
is taken over all open W ⊃ Kn in A. Since µ(W ) ≥ ν(Kn), this yields the
estimate µ∗(Kn) ≥ ν(Kn). It follows by the above on account of completeness
of the σ-algebra Aν that ν(X\K) = 0. It remains to observe that Z coincides
up to a ν-measure zero set with the set

⋃∞
n=1(Z ∩Kn), which belongs to Aν

by the above, since the sets Z∩Kn are compact. The uniqueness of extension
follows from the fact that every two extensions coincide on all finite unions of
elements of a base from A, hence coincide on all compact sets because every
open neighborhood of a compact set contains a neighborhood that is a finite
union of elements of the base. �

7.3.3. Corollary. Let X be a completely regular space. Then:
(i) every tight Baire measure µ on X admits a unique extension to a

Radon measure;
(ii) every Baire measure µ on X that is τ0-additive on Ba(X) in the

sense that |µ|(X) = supα |µ|(Uα) for all increasing nets of functionally open
sets Uα such that X =

⋃
α Uα, admits a unique extension to a τ -additive Borel

measure.

Proof. According to Corollary 7.1.8, every Baire is regular. Since X is
completely regular, functionally open sets form a base of the topology. �

7.3.4. Corollary. Let X be a σ-compact completely regular space. Then
every Baire measure on X has a unique extension to a Radon measure.



82 Chapter 7. Measures on topological spaces

Proof. It suffices to observe that on a σ-compact space, every Baire
measure is tight. �

Now we are able to reinforce Corollary 7.3.3.

7.3.5. Corollary. Let X be a completely regular space and let Γ be
a family of continuous functions on X separating the points in X. Then,
every tight measure µ on the σ-algebra σ(Γ) generated by Γ admits a unique
extension to a Radon measure on X. Moreover, the same is true if µ is a
regular and tight additive set function of bounded variation on the algebra
A(Γ) generated by Γ.

Proof. As above, it is sufficient to consider nonnegative measures, pass-
ing to the Jordan decomposition (in the case of the algebra A(Γ) this is possi-
ble due to our assumption of boundedness of variation). This corollary differs
from the main theorem in that A(Γ) may not contain a base of the topology
(for example, this is the case if X = l2 with the usual Hilbert norm and
Γ = (l2)∗). It is clear that the main theorem applies to the space X with
the topology τ generated by Γ (i.e., the weakest topology with respect to
which all functions in Γ are continuous). Note that all compact sets in the
initial topology are compact in the topology τ . Let µτ denote the unique
Radon extension of µ to (X, τ). We take a set Kn with µ∗(Kn) > µ(X)−1/n
that is compact in the initial topology. By the above theorem we obtain
µτ (Kn) = µ∗(Kn) > µ(X) − 1/n. Hence the measure µτ is concentrated on
the set X0 =

⋃∞
n=1Kn. We shall consider X0 with the initial topology, in

which it is σ-compact. According to Proposition 6.10.8, every Baire set B in
the space X0 has the form B = X0 ∩ E, E ∈ σ(Γ). Therefore, the restriction
µ0 of the measure µτ to Ba(X0) is well-defined. By using the previous corol-
lary we extend µ0 to a Radon measure µ̂ on X0 and then to a Radon measure
on all of X by setting µ̂(X\X0) = 0. It is clear that µ̂ is the required exten-
sion. Let us verify its uniqueness. Let µ1 and µ2 be two Radon measures that
coincide on the algebra A(U) generated by Γ. Then these measures coincide
on all compact sets in the topology τ , hence on all compact sets in the initial
topology, whence we have µ1 = µ2. �

7.3.6. Corollary. Let X be a locally convex space with the σ-algebra
σ(X∗) and let µ be a tight measure on σ(X∗). Then µ has a unique extension
to a Radon measure on X. The same is true for every tight regular additive
set function of bounded variation on the algebra generated by X∗ (or by any
subspace in X∗ separating the points in X).

Proof. The set X∗ separates the points in X. �
7.3.7. Example. Let X be a normed space and let µ be a measure on

the σ-algebra E in the space X∗ generated by the elements of X. Then µ has
a unique extension to a Radon measure on X∗ with the weak∗ topology.

Proof. By the Banach–Alaoglu theorem the balls in X∗ are compact in
the weak∗ topology. Hence the measure µ is tight. �
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7.3.8. Example. Let X be the product of the continuum of copies
of [0, 1]. Then Dirac’s measure δ at zero considered on the Baire σ-algebra of
X has a Borel extension that is not Radon.

Proof. It is known that the ordinal interval (0, ω1) is homeomorphic to a
subset of X (see Engelking [532, Theorem 2.3.23]). By using this homeomor-
phism we transport the Dieudonné measure µ to X and obtain a non-regular
Borel measure µ on X that assumes only the values 0 and 1. Its Baire restric-
tion has a unique Radon extension µ0. Then µ0 must be Dirac’s measure at
some point x0. Clearly, µ is a non-regular Borel extension of δx0 . As shown by
Keller [971], there is a homeomorphism h of X such that h(x0) = 0. In fact,
Keller proved the result for the countable power, but the uncountable case
follows at once by splitting [0, 1]c into a product of countable powers of [0, 1].
Now µ◦h−1 is a non-regular Borel extension of δ0. �

The results obtained above enable us to identify tight Baire measures on
a completely regular space X with their (unique) Radon extensions.

We recall that Lebesgue’s extension may not be sufficient for obtaining
the extension guaranteed by Theorem 7.3.2 (see Example 7.3.1).

Finally, there exist Baire measures without Borel extensions at all.

7.3.9. Example. Let I = [0, 1) be the Sorgenfrey interval with the
topology from Example 6.1.19 and let X = I2 be equipped with the product
topology (i.e., X is the set [0, 1)2 in the Sorgenfrey plane). According to
Exercise 6.10.81, the set T := {(t, s) ∈ X : t + s = 1} is Baire and for any
B ∈ Ba(X), the intersection B∩T is Borel with respect to the usual topology
of the plane. Hence the formula

µ(B) := λ
(
t ∈ [0, 1) : (t, 1− t) ∈ B

)
,

where λ is Lebesgue measure on [0, 1), defines a Baire probability measure
on X. Every point x = (u, 1 − u) ∈ T is measurable with respect to µ and
has measure zero because x belongs to the Baire set

E(x) := X ∩ [u, u+ 1)×[1− u, 2− u),

for which we have µ(E) = 0, since if t ∈ [0, 1) and (t, 1− t) ∈ E, then t = u. If
the measure µ could be extended to a countably additive measure on B(X),
then all subsets of T would be measurable with respect to the extension,
which along with the equality µ({x}) = 0, x ∈ T , would give a probability
measure on the set of all subsets of [0, 1) vanishing on all singletons. Accord-
ing to Corollary 1.12.41, this is impossible under the continuum hypothesis.
Exercise 7.14.69 proposes to construct analogous examples without use of the
continuum hypothesis; moreover, one can even take a locally compact space
for X.

Regarding extensions of Baire measures, see also �7.14(iii). The following
non-trivial reinforcement of assertion (i) of Corollary 7.3.3 is easily deduced
from a deep result presented in Exercise 7.14.84. It enables us to drop the
complete regularity assumption on X.
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7.3.10. Theorem. Any tight Baire measure on a Hausdorff space has a
Radon extension.

One more construction of Radon extensions was given in Henry [812].

7.3.11. Theorem. Let X be a Hausdorff space, let A be a subalgebra
in B(X), and let µ be a nonnegative additive set function on A satisfying the
following condition: for every A ∈ A and every ε > 0, there exists a compact
set Kε ⊂ A such that µ∗(A\Kε) < ε. Then µ extends to a Radon measure
on X.

Proof. Let us consider the set of all pairs (E , η), where E is a subalgebra
in B(X) containing A and η is a nonnegative additive function on E that
extends µ and possesses on E the same property of inner compact regularity
as µ has on A. Such pairs are partially ordered by the following relation:
(E1, η1) ≤ (E2, η2) if E1 ⊂ E2 and η2|E1 = η1. It is clear that every linearly
ordered part (Eα, ηα) of this set has an upper bound. Indeed, the union E of
all algebras Eα is an algebra (because for any two such algebras, one of them
is contained in the other), and A ⊂ E . The function η on E defined by the
equality η(E) = ηα(E) if E ∈ Eα is well-defined for the same reason, is additive
and extends µ. Finally, it is clear that η has the required approximation
property. By Zorn’s lemma, there is a maximal element (B, ν). We show
that B = B(X) and that ν is a Radon measure. Let us observe that ν is
countably additive on B due to the existence of an approximating compact
class. Therefore, one can extend ν to the σ-algebra σ(B), and the extension
is inner compact regular as well, which is seen from the proof of assertion (iii)
in Proposition 1.12.4. By the maximality of B this shows that B itself is a σ-
algebra and ν is a measure. Suppose that there is a closed set Z not belonging
to B. We shall obtain a contradiction if we prove the existence of a measure ν̃
that extends ν to B0 := σ(B ∪ {Z}) and is inner compact regular in the same
sense as µ. Set

ν̃(C) = ν∗(C ∩ Z) + ν∗
(
C ∩ (X\Z)

)
.

According to the proof of Theorem 1.12.14, B0 is the class of all sets of the
form C = (A∩Z)∪

(
B ∩ (X\Z)

)
, where A,B ∈ B, and ν̃ is a measure on B0

extending ν. We verify the inner compact regularity of ν̃. Given A ∈ B0 and
ε > 0, there exists a compact set Kε ⊂ A with ν∗(A\Kε) < ε. Then

ν̃∗
(
(A ∩ Z)\(Kε ∩ Z)

)
≤ ν̃∗(A\Kε) ≤ ν∗(A\Kε) ≤ ε.

Let Z̃ ∈ B be a measurable envelope of Z with respect to the measure ν

(see �1.12(iv)). Then ν̃(Z̃) = ν̃(Z), since ν∗(Z̃\Z) = 0 by the definition of
a measurable envelope. Since B ∩ (X\Z̃) ∈ B, there exists a compact set
Sε ⊂ B ∩ (X\Z̃) with ν∗

((
B ∩ (X\Z̃)

)
\Sε

)
< ε. Since Z ⊂ Z̃, one has

Sε ⊂ B ∩ (X\Z). On account of the equality ν̃(Z̃) = ν̃(Z) we obtain

ν̃
(
B ∩ (X\Z)

)
= ν̃

(
B ∩ (X\Z̃)

)
= ν

(
B ∩ (X\Z̃)

)

= ν∗
((
B ∩ (X\Z̃)

)
\Sε

)
+ ν∗(Sε) < ν∗(Sε) + ε.
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Therefore, (ν̃)∗
((
B∩(X\Z)

)
\Sε

)
< ε. Finally, Kε∩Z is compact, (Kε∩Z)∪Sε

is compact as well, (Kε ∩Z) ∪ Sε ⊂ C, and (ν̃)∗
(
C\
(
(Kε ∩Z) ∪ Sε

))
< 2ε as

required. �
The difference between this theorem and the previous results is that the

algebra A may be very small, but in place of tightness a stronger assumption is
imposed. An analogous theorem holds for infinite measures as well (see [812]).
Extensions of measures are also discussed in �9.8.

7.4. Measures on Souslin spaces

7.4.1. Theorem. Let µ be a Borel measure on a Hausdorff space X.
Then every Souslin set in X is measurable with respect to µ, i.e., belongs
to B(X)µ.

Proof. We know that any Souslin set is representable as the result of
the Souslin operation on closed sets in X. It remains to use that the Souslin
operation preserves the measurability according to Theorem 1.10.5. �

7.4.2. Example. Let X and Y be Souslin spaces and let f be a Borel
function on X×Y that is bounded from below. Set

g(x) = inf
y∈Y

f(x, y).

Then the function g is measurable with respect to every Borel measure on X.
If the function f is bounded above, then the function

h(x) = sup
y∈Y

f(x, y)

is measurable with respect to every Borel measure on X.

Proof. We observe that the set {x : g(x) < c} for any c is the projection
on X of the Borel set

{
(x, y) ∈ X×Y : f(x, y) < c

}
, i.e., is Souslin. In the

case of the function h we consider the set {x : h(x) > c}. �
A slightly more general fact is contained in Exercise 6.10.42.

7.4.3. Theorem. If X is a Souslin space, then every Borel measure
µ on X is Radon and is concentrated on a countable union of metrizable
compact sets. In addition, for every B in B(X) and every ε > 0, there exists
a metrizable compact set Kε ⊂ B such that |µ|(B\Kε) < ε.

Proof. It suffices to show that for every ε > 0, there is a compact set
Kε such that |µ|(X\Kε) < ε. Then it will follow that µ is Radon. Indeed,
compact subsets of Souslin spaces are metrizable by Corollary 6.7.8, and on
metrizable compact sets all Borel measures are Radon. The tightness can be
verified in two ways. The first possibility is to take a continuous mapping
f from IN∞ onto X and apply Theorem 6.9.1. Hence we obtain a mapping
g : X → IN∞ such that f

(
g(x)

)
= x for all x ∈ X and, in addition, for

every B ∈ B(IN∞), the set g−1(B) belongs to the σ-algebra generated by all
Souslin sets. As shown above, g is measurable with respect to µ. It remains
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to observe that µ = (µ ◦ g−1) ◦ f−1 and µ ◦ g−1 is a Borel, hence Radon,
measure on IN∞. By the continuity of f the measure µ is Radon as well. The
second possibility is to apply Theorem 7.14.34. To this end, one has to verify
that the set function B �→ |µ|∗

(
f(B)

)
is a Choquet capacity. This possibility

is left as Exercise 7.14.89. �

7.4.4. Corollary. Let ν be a Radon measure on a topological space T ,
let X be a Souslin space, and let f : T → X be measurable with respect to(
B(T )µ,B(X)

)
. Then, for every ε > 0, there is a compact set Sε ⊂ T such

that |ν|(T\Sε) < ε and f |Sε is continuous.

Proof. We find a compact set K ⊂ X with |ν| ◦ f−1(X\K) < ε and
then apply Theorem 7.1.13 to the mapping f : f−1(K) → K. �

7.5. Perfect measures

In this section, we discuss an interesting class of measures important for
applications: perfect measures. For notational simplicity we consider here
only finite nonnegative measures.

7.5.1. Definition. Let (X,S) be a measurable space. A nonnegative
measure µ on S is called perfect if for every S-measurable real function f and
every set E ⊂ IR with f−1(E) ∈ S, there exists a Borel set B such that B ⊂ E
and µ

(
f−1(B)

)
= µ

(
f−1(E)

)
.

It terms of µ ◦ f−1 perfectness means that the completion of B(IR1) with
respect to µ ◦ f−1 contains all sets E such that f−1(E) ∈ S. Indeed, for the
set D = IR1\E we also have f−1(D) = X\f−1(E) ∈ S, hence there is a Borel
set B′ ⊂ D with µ

(
f−1(B′)

)
= µ

(
f−1(D)

)
. Then for the Borel sets B and

B′′ = IR1\B′ we have B ⊂ E ⊂ B′′ and µ ◦ f−1(B) = µ ◦ f−1(B′′), since

µ ◦ f−1(B′′) = µ
(
f−1(IR1\B′)

)
= µ(X)− µ

(
f−1(B′)

)

= µ(X)− µ
(
f−1(D)

)
= µ(X)− µ

(
X\f−1(E)

)
= µ

(
f−1(E)

)
.

In particular, we have f(X) ∈ B(IR1)µ◦f−1 . However, the set f(A) may fail
to be µ ◦ f−1-measurable for a set A ∈ S, although the set f(A) is always
µA ◦ f 1 -measurable. For example, the identity mapping on the interval [0, 1]
with Lebesgue measure (which is perfect, as we shall see) can be redefined on
a measure zero set Z in such a way that the image of Z will be nonmeasurable
with respect to Lebesgue measure (note that Lebesgue measure is transformed
into itself).

It is clear from the definition that a perfect measure µ is perfect on every
σ-algebra S1 ⊂ S.

7.5.2. Proposition. A measure µ on (X,S) is perfect if and only if for
every S-measurable real function f , there exists a Borel set B ⊂ IR such that

B ⊂ f(X) and µ
(
f−1(B)

)
= µ(X).
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Proof. The above condition is obviously fulfilled for any perfect mea-
sure. Suppose now that it is fulfilled for some measure µ on S. Let f be an
S-measurable function, E ⊂ IR1 and f−1(E) ∈ S. Let us take an arbitrary
point c ∈ E and consider the following function: f0(x) = f(x) if x ∈ f−1(E),
f0(x) = c if x �∈ f−1(E). It is clear that f0 is an S-measurable function and
f0(X) = E. Hence there is a Borel set B ⊂ E with µ

(
f−1
0 (B)

)
= µ(X).

If c �∈ B, then f−1
0 (B) = f−1(B), whence µ

(
f−1(B)

)
= µ(X). Therefore,

µ
(
f−1(E)

)
= µ(X). If c ∈ B, then f−1

0 (B) = f−1(B)∪
(
X\f−1(E)

)
, whence

one has
µ
(
f−1(B)

)
+ µ

(
X\f−1(E)

)
= µ(X).

Therefore, µ
(
f−1(B)

)
− µ

(
f−1(E)

)
= 0. �

7.5.3. Example. Let X ⊂ [0, 1], λ∗(X) = 1, λ∗(X) = 0, where λ is
Lebesgue measure, and let µ be the restriction of λ to B(X), i.e., one has
µ(B ∩X) = λ(B), B ∈ B([0, 1]). Then µ is not perfect (it suffices to take the
function f : X → [0, 1], f(x) = x).

Let us mention some elementary properties of perfect measures. These
almost immediate properties are often useful in applications.

7.5.4. Proposition. (i) A measure µ on a σ-algebra S is perfect precisely
when its completion is perfect on Sµ.

(ii) If a measure µ on a σ-algebra S is perfect, then its restriction to any
set E ∈ Sµ equipped with the trace of an arbitrary sub-σ-algebra in Sµ is a
perfect measure.

(iii) Let a measure µ on (X,S) be perfect, let (Y,A) be a measurable space,
and let F : X → Y be an (S,A)-measurable mapping. Then, the induced
measure µ ◦ F−1 on A is perfect.

Proof. (i) Let a measure µ on S be perfect and let f be an Sµ-measurable
function. We shall assume that the set f(X) is uncountable, since otherwise
it can be taken as a required Borel set. We pick a point c ∈ f(X) with
µ
(
f−1(c)

)
= 0. There exist an S-measurable function f0 and a set X0 ∈ S

such that µ(X0) = µ(X) and f0 = f on X0. The function f0 can be redefined
in such a way that f0(x) = c if x ∈ X\X0. We take a Borel set B ⊂ f0(X)
with µ

(
f−1
0 (B)

)
= µ(X). It is clear that B ⊂ f(X) and µ

(
f−1(B)

)
= µ(X).

Claim (ii) follows by (i).
(iii) If a function f is measurable with respect to A, then the function f◦F

is measurable with respect to S. Hence there exists a Borel set B ⊂ f
(
F (X)

)

with µ
(
F−1

(
f−1(B)

))
= µ(X) = µ ◦ F−1(Y ). By Proposition 7.5.2, the

measure µ ◦ F−1 is perfect. �
As explained above, the image of a space X with a perfect measure µ

under a µ-measurable real function f is measurable with respect to the image
measure µ ◦ f−1 (but it may not be measurable with respect to other Borel
measures, for example, with respect to Lebesgue measure). The same is true
for mappings f with values in a measurable space (E, E) if E is countably
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generated and countably separated because (E, E) is isomorphic to a subset
of IR1 with the Borel σ-algebra. However, in general, the image of a space
with a complete perfect measure under a measurable mapping to a space with
a complete perfect measure may not be measurable.

7.5.5. Example. Let X = {0} be equipped with Dirac’s measure δ and
let Y be the product of the continuum of intervals. We equip Y with Dirac’s
measure δ at zero considered on the δ-completion of Ba(Y ). Then in both
cases the measure δ is perfect, the natural embedding X → Y is measurable,
but the point zero is not in Ba(Y )δ.

The previous example also shows that the restriction of a perfect measure
to a nonmeasurable set of full outer measure may be a perfect measure.

The next result shows that the class of perfect measures is very large.
Most measures actually encountered are perfect. The same result describes
close connections between perfect and compact measures.

7.5.6. Theorem. (i) Every measure possessing an approximating com-
pact class is perfect.

(ii) A measure µ on a σ-algebra S is perfect if and only if it possesses
an approximating compact class on every countably generated sub-σ-algebra
S1 ⊂ S.

(iii) A measure µ on (X,S) is perfect if and only if it is quasi-compact
in the following sense: for every sequence {Ai} ⊂ S and every ε > 0, there
exists a set A ∈ S such that µ(A) > µ(X)− ε and the sequence {A∩Ai} is a
compact class.

(iv) A measure on a countably separated σ-algebra is perfect if and only
if it has a compact approximating class.

Proof. (i) We show that any measure µ with an approximating compact
class K is quasi-compact. As explained in �1.12(ii), we may assume that the
class K belongs to S and admits finite unions and countable intersections.
Given ε > 0 and sets An ∈ S, we find Cn ⊂ An and Bn ⊂ X\An such that

Cn, Bn ∈ K, µ(An\Cn) < ε2−n−1, µ
(
(X\An)\Bn

)
< ε2−n−1.

Let A =
⋂∞
n=1(Cn ∪ Bn). Then Cn ∩ A ∈ K. It is easy to see that we have

An ∩ A = Cn ∩ A, which proves the compactness of the class {An ∩ A}. In
addition, µ(A) > µ(X)− ε.

We now prove that any quasi-compact measure µ is perfect. Let f be an
S-measurable function. Let {In} be the countable set of all open intervals
with rational endpoints. Let An = f−1(In). For every εk = 2−k, we take a
set Ek with µ(Ek) > µ(X) − 2−k such that the class {Ek ∩ An} is compact.
Set E =

⋃∞
k=1Ek. It is clear that µ(E) = µ(X). It remains to observe that

the sets f(Ek) are closed. Indeed, let k be fixed and let t be a limit point of
the set f(Ek). Then there exist numbers nj such that the intervals Inj are
decreasing and t =

⋂∞
j=1 Inj . It is clear that they all meet f(Ek) because

t ∈ f(Ek). Hence the sets Ek ∩ Anj are nonempty. By the definition of a
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compact class, there exists a point x in their intersection. Then f(x) = t
since f(x) ∈ f(Ek ∩Anj ) ⊂ Inj . Hence f(Ek) is closed. By Proposition 7.5.2
the measure µ is perfect.

(ii) Let the measure µ be perfect and let a σ-algebra S1 be generated
by a countable family of sets Ai ∈ S. As shown in Theorem 6.5.5, one has
S1 = f−1

(
B(IR1)

)
, where f =

∑∞
n=1 3−nIAn . Due to our assumption the

set f(X) is µ ◦ f−1-measurable. Hence the class E of its compact subsets is
approximating for the measure µ ◦ f−1. Then the class of sets f−1(E), where
E ∈ E , is compact and approximating for µ on S1.

If µ has an approximating compact class on every countably generated
σ-algebra in S, then the reasoning in (i) yields that µ is quasi-compact on S,
hence is perfect as shown above. Claim (iii) follows by the already proven
assertions.

(iv) If a measure µ on a countably separated σ-algebra S in X is perfect,
then we take an injective S-measurable real function f on X and denote by K
the class of all sets of the form f−1(E), where E is a compact subset in f(X).
If we are given a family of sets Kα = f−1(Eα) ∈ K such that every finite
subfamily has a nonempty intersection, then all finite families of compact sets
Eα have nonempty intersections. Hence

⋂
αEα �= ∅. By the injectivity of f

we obtain
⋂
αKα �= ∅. Thus, the class K is compact (even ℵ-compact, see

below). Furthermore, K approximates µ, as for every A ∈ S the measure µ|A
is perfect, which gives compact sets En ⊂ f(A) with µ

(
f−1(En)

)
→ µ(A). �

Vinokurov, Mahkamov [1930] and Musia	l [1346] give examples of spaces
with perfect, but not compact measures. Since their constructions are rather
involved, we do not reproduce them here.

Certainly, it can happen that on a given σ-algebra there are perfect and
non-perfect measures. The following result deals with the situation where all
measures on a given σ-algebra are perfect.

7.5.7. Theorem. (i) Let X ⊂ IR. Every Borel measure on B(X) is
perfect if and only if X is universally measurable, i.e., is measurable with
respect to the completion of every Borel measure on IR.

(ii) Let (X,S) be a measurable space. If for every S-measurable func-
tion f , the set f(X) ⊂ IR is universally measurable, then every measure
on every sub-σ-algebra S1 ⊂ S is perfect. Conversely, if every measure on
every countably generated sub-σ-algebra S1 ⊂ S is perfect, then for every S-
measurable function f , the set f(X) ⊂ IR is universally measurable.

(iii) Let S be a countably generated σ-algebra in a space X. Every probabil-
ity measure on S is perfect if and only if for some (and then for every) sequence
of sets An generating S, the set of values of the function h :=

∑∞
n=1 3−nIAn

is universally measurable on the real line.

Proof. (i) If X is measurable with respect to a Borel measure µ on
the real line, then µ is Radon on X, hence perfect. The converse follows by
Proposition 7.5.2.
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(ii) If we are given a measure µ on S and an S-measurable function f , then
the measurability of f(X) with respect to µ ◦ f−1 gives a Borel set B ⊂ f(X)
of full measure with respect to µ ◦ f−1. By Proposition 7.5.2 the measure µ
is perfect on S. The same is true for any sub-σ-algebra in S.

Suppose that every measure µ on every countably generated sub-σ-algebra
in S is perfect. If we are given an S-measurable function f and a measure
ν on B

(
f(X)

)
, then we can consider the measure µ : f−1(E) �→ ν(E) on

the countably generated σ-algebra of sets f−1(E), E ∈ B
(
f(X)

)
. Since by

hypothesis the measure µ is perfect, its image ν is perfect as well. By (i) the
set f(X) is universally measurable.

(iii) If every measure on S is perfect, then h(X) is universally measurable
(for any sequence {An} ⊂ S) according to (ii). Conversely, suppose that for
some sequence of sets An generating S the set h(X) is universally measurable
on the real line. Every S-measurable function f has the form g ◦ h, where g
is a Borel function on the real line. According to (i) every Borel measure on
h(X) is perfect. By (ii) the set g

(
h(X)

)
is universally measurable. �

7.5.8. Example. If X is a Souslin space (for example, a Borel set in
a Polish space), then every measure µ on an arbitrary sub-σ-algebra S1 in
S := B(X) is perfect. This is clear from assertion (ii) in the above theorem
and the fact that the image of a Souslin space under a Borel function is
universally measurable. However, µ may not be extendible to all of B(X) and
not approximated from within by compact sets (see Example 9.8.1).

7.5.9. Example. (Sazonov [1656]) Under the continuum hypothesis,
there exists a measurable space (X,S) such that every measure on S is perfect,
but there is a sub-σ-algebra S1 ⊂ S on which there are non-perfect measures.
Indeed, we take for X the interval [0, 1] with the σ-algebra S of all subsets.
We know (see �1.12(x)) that under the continuum hypothesis, every measure
on S is concentrated on a countable set, hence is perfect. On the other hand,
there are non-perfect measures on [0, 1], as we have seen in Example 7.5.3.

So far in our discussion of perfect measures no topological concepts have
been involved. It is time to do this.

7.5.10. Theorem. (i) Every Radon measure on a topological space is
perfect. Hence every tight Baire measure is perfect.

(ii) A Borel measure on a separable metric space is perfect if and only if
it is Radon.

(iii) A Borel measure on a metric space is Radon if and only if it is perfect
and τ -additive.

Proof. The first claim in (i) follows from Theorem 7.5.6 and Theo-
rem 7.3.10. The second claim follows from the first one and Proposition 7.5.4.
For the proof of assertion (ii) we suppose that a measure µ on a separable
metric space X is perfect and take a countable family of open balls Un with
all possible rational radii and centers at the points of a countable everywhere
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dense set. The function

ξ =
∞∑

n=1

3−nIUn

maps X one-to-one onto the set ξ(X) ⊂ IR1. If we equip this set with the
usual topology, the mapping ξ−1 : ξ(X) → X becomes continuous. Indeed,
let t ∈ ξ(X) and ε > 0. In the ε-neighborhood of the point x = ξ−1(t) we
pick a ball Un0 containing this point. Let s ∈ ξ(X) and |t − s| < 3−n0−1.
Then the point y = ξ−1(s) belongs to Un0 , since otherwise IUn0

(y) = 0 and
|t − s| = |ξ(x) − ξ(y)| ≥ 3−n0/2. Hence ξ−1 is continuous. By hypothesis,
there exists a Borel set B ⊂ ξ(X) such that µ(X) = µ

(
ξ−1(B)

)
. Since the

measure µ ◦ ξ−1 on the real line is Radon, for every ε > 0, one can find a
compact set Cε ⊂ B with µ

(
ξ−1(Cε)

)
> µ(X) − ε. It remains to observe

that Kε = ξ−1(Cε) is compact by the continuity of ξ−1. Claim (iii) follows
from (ii), since any τ -additive measure on a metric space has separable support
because any nonseparable metric space contains an uncountable collection of
disjoint balls. �

7.5.11. Example. (i) There exists a τ -additive Borel measure on a
separable metric space that is not perfect.

(ii) There exists a perfect measure on a locally compact space possessing
an approximating compact class, but not τ -additive.

(iii) There exists a perfect τ -additive Borel measure (which even has an
approximating compact class) that is not tight.

Proof. For the proof of (i) we take the measure from Example 7.5.3.
In order to construct an example in (ii), we take for X the space X0 from
Example 7.1.3 (the space of countable ordinals), and consider the measure
µ that equals 0 on all countable sets and 1 on their complements (such sets
exhaust all Borel sets in X0). One can verify that µ is not τ -additive, but
possesses an approximating compact class (namely, consisting of the empty
set and all sets of measure 1). Finally, Lebesgue measure on the Sorgenfrey
interval from Example 7.2.4 can be taken in (iii). This measure is perfect,
since the Borel σ-algebra corresponding to the Sorgenfrey topology is the usual
Borel σ-algebra of the interval. By Theorem 7.5.6(ii) it has an approximating
compact class. However, this measure vanishes on all compact sets in the
Sorgenfrey interval, since they are finite. �

Some authors call a measure µ on a σ-algebra A in a space X compact if
it has an approximating class K ⊂ A that is compact in the following stronger
sense: every collection of sets in K that has an empty intersection possesses a
finite subcollection whose intersection is empty. In this terminology, measures
(and classes) compact in our sense are called countably compact, semicom-
pact or ℵ0-compact. For the above-mentioned stronger property we shall use
the term ℵ-compactness. It is clear that any Radon measure possesses this
stronger property. However, not every compact (in our sense) measure is
ℵ-compact (see Exercise 1.12.105).
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7.6. Products of measures

In this section, we discuss regularity properties of product measures on
topological spaces. First of all, the kind of problems we have as compared
to the already discussed product measures must be explained. The point is
that the product of Baire or Borel σ-algebras may be strictly smaller than
the Baire and Borel σ-algebra of the product space. There are no problems if
we deal with countable products of Borel probability measures on separable
metric spaces (or on Souslin spaces).

7.6.1. Example. Let µn be Borel probability measures on separable
metric spaces Xn. Then µ =

⊗∞
n=1 µn is a Borel probability measure on the

separable metric space X =
∏∞
n=1Xn.

Proof. The measure µ is defined on the σ-algebra E generated by finite
products of Borel sets in Xn. But E = B(X) due to the fact that every open
set in X belongs to E , since it can be represented as a countable union of
finite products of open sets in Xn. �

We shall see below that the situation is not that simple for uncountable
products and for countable products of more complicated spaces. Another
simple, but important result concerns countable products of Radon measures.

7.6.2. Theorem. (i) Let µn be a sequence of Radon probability measures
on Hausdorff spaces Xn. Then their product µ =

⊗∞
n=1 µn uniquely extends

to a Radon measure on X =
∏∞
n=1Xn.

(ii) Let µn be a sequence of tight Baire probability measures on completely
regular spaces Xn. Then their product µ is a tight measure on the space⊗∞

n=1 Ba(Xn) and uniquely extends to a Radon measure on X =
∏∞
n=1Xn.

Proof. (i) Let ε > 0. The measure µ is defined on the σ-algebra
E =

⊗∞
n=1 B(Xn), which contains finite products of open sets, hence con-

tains a base of the topology in X. Every Xn contains a compact set Kn with
µn(Kn) > 1−ε2−n. It remains to observe that K =

∏∞
n=1Kn is compact and

µ(K) > 1− ε. Thus, the measure µ is tight. In order to apply Theorem 7.3.2,
we have to verify the regularity of µ on E . According to the cited theorem,
it suffices to verify the regularity of µ on the algebra R generated by finite
products of Borel sets in the spaces Xn (we observe that E is the σ-algebra
generated by R). The algebra R consists of finite unions of finite products of
sets in B(Xn), hence the required regularity follows by the regularity of each
measure µn.

In case (ii) the reasoning is analogous: we take compact sets Kn such
that µn(A) < ε2−n for every Baire set A disjoint with Kn. The set K =∏∞
n=1Kn is compact. If a set A ∈

⊗∞
n=1 Ba(Xn) does not meet K, then

µ(A) ≤ ε. Indeed, let νn be the Radon extension of µn to B(Xn). Then
νn(Kn) ≥ 1−ε2−n since otherwise we could take a compact set Cn ⊂ Xn\Kn

with νn(Cn) > ε2−n, next find a functionally open set Un with Cn ⊂ Un
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and Un ∩ Kn = ∅, which would give µn(Un) = νn(Un) > ε2−n. Hence
µ(A) =

(⊗∞
n=1 νn

)
(A) ≤ 1−

(⊗∞
n=1 νn

)
(K) ≤ ε. �

For uncountable products this theorem may fail.

7.6.3. Example. Let µα, α ∈ A, be an uncountable family of Baire
probability measures on spaces Xα without compact subsets of outer mea-
sure 1. Then ⊗αµα(K) = 0 for every compact set K ⊂

∏
αXα. In particular,

the measure ⊗αµα is not tight.

Proof. By the compactness of K, there exist compact sets Kα ⊂ Xα

such that K ⊂
∏
αKα. Since A is uncountable, our hypothesis yields that

for some q < 1, there is an infinite family of indices β with µ∗
β(Kβ) ≤ q.

We take in this family any countable subfamily B = {βn} and obtain the set
C =

∏∞
n=1Kβn×

∏
α�∈BKα of measure zero containing K. �

Obviously, it follows by the above theorem that finite products of Radon
measures have Radon extensions. But when dealing with products it is often
desirable to have not only the existence of a product measure, but also to be
able to apply Fubini’s theorem. Certainly, Fubini’s theorem is applicable to all
sets in the σ-algebra generated by rectangles (this has no topological specifics).
However, as we have already noted, in the case of general topological spaces,
there are Borel sets in the product not belonging to this σ-algebra. We shall
now see that Fubini’s theorem can be applied to such sets as well.

Let X1 and X2 be two spaces. For every set A ⊂ X1×X2, let

Ax1 =
{
x2 ∈ X2 : (x1, x2) ∈ A

}
, Ax2 =

{
x1 ∈ X1 : (x1, x2) ∈ A

}
.

7.6.4. Lemma. Let X1 and X2 be topological spaces and let ν be a
τ -additive measure on X1. Then:

(i) for every B ∈ B(X1×X2), the function x2 �→ ν(Bx2) is Borel on X2;
hence for every bounded Borel function f on X×Y the function

x2 �→
∫

X1

f(x1, x2) ν(dx1)

is Borel on X2;
(ii) if ν is nonnegative and the set U ⊂ X1×X2 is open, then the function

x2 �→ ν(Ux2) is lower semicontinuous on X2.

Proof. First we verify assertion (ii). If U = U1×U2, then we have
ν(Ux2) = ν(U1)IU2 and it remains to observe that the indicator of an open
set is lower semicontinuous. Our assertion remains true for any set U that is
a finite union of such products. Finally, an arbitrary open set U ⊂ X1×X2

can be represented as U =
⋃
α Uα, where {Uα} is a net of increasing open

sets that are finite unions of open rectangles. By the τ -additivity we obtain
ν(Ux2) = supα ν

(
(Uα)x2

)
, whence the claim follows.

It suffices to prove (i) for nonnegative measures. Denote by B′ the class of
all sets B ∈ B(X1×X2) such that the function x2 �→ ν(Bx2) is Borel. By the
above, B′ contains the class E of all open sets. It is clear that any countable
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union of pairwise disjoint sets in B′ belongs to B′ as well (since the sum of
the series of Borel functions is a Borel function). In addition, B1\B2 ∈ B′ for
all B1, B2 ∈ B′ such that B2 ⊂ B1. According to Theorem 1.9.3, we obtain
that the σ-algebra generated by E is contained in B′. Therefore, the class B′

coincides with B(X1×X2). �

7.6.5. Theorem. Suppose that µ1 and µ2 are τ -additive measures. Then
the measure µ = µ1⊗µ2 has a unique extension to a τ -additive measure µ on
B(X1×X2) and for every B ∈ B(X1×X2) one has

µ(B) =
∫

X2

µ1(Bx2)µ2(dx2) =
∫

X1

µ2(Bx1)µ1(dx1), (7.6.1)

where the functions x2 �→ µ1(Bx2) and x1 �→ µ2(Bx1) are Borel. If both
measures µ1 and µ2 are Radon, then the extension by formula (7.6.1) is Radon
as well and coincides with the extension from Theorem 7.6.2.

Proof. According to the above lemma the integrands in (7.6.1) are
Borel. Hence both integrals are well-defined and produce Borel measures
on X1×X2. In the justification of equality (7.6.1) it is sufficient to consider
nonnegative measures. Denote by E the class of all sets B ∈ B(X1×X2) on
which these measures are equal. As in the proof of the above lemma, the
class E is σ-additive. Hence for the proof of the equality E = B(X1×X2) it
suffices to show that every open set U belongs to E . We represent U in the
form U =

⋃
α Uα, where {Uα} is a net of increasing open sets that are finite

unions of open rectangles. Clearly, Uα ∈ E . The τ -additivity of µ1, the lower
semicontinuity of the functions x2 �→ µ1

(
(Uα)x2

)
, and Lemma 7.2.6 yield

∫

X2

µ1(Ux2)µ2(dx2) =
∫

X2

lim
α
µ1

(
(Uα)x2

)
µ2(dx2)

= lim
α

∫

X2

µ1

(
(Uα)x2

)
µ2(dx2) = lim

α
µ(Uα).

The same reasoning applies to the second integral, whence we obtain U ∈ E .
The proof of the τ -additivity of the obtained measure µ is analogous. The
uniqueness of a τ -additive extension follows from the fact that if a τ -additive
measure vanishes on all open rectangles, then it vanishes on all open sets,
hence on all Borel sets (this follows by Lemma 1.9.4). Finally, if the measures
µ1 and µ2 are Radon, then so is the constructed measure µ, since it is τ -
additive and obviously tight. �

7.6.6. Lemma. Let X and Y be topological spaces and let µ be a prob-
ability measure on B(X)⊗B(Y ). Suppose that the projections of µ on X and
Y are tight. Then µ is tight as well. If both projections are concentrated on
countable unions of metrizable compact sets, then µ has this property as well.

Proof. Given ε > 0, we find compact sets K ⊂ X and S ⊂ Y such that
µ(K×Y ) > 1− ε/2 and µ(X×S) > 1− ε/2. Then K×S is compact in X×Y
and µ(K×S) > 1− ε. The last claim is obvious from the proof. �
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Additional information about finite and infinite products of measures is
given in �7.14(i) and Exercises 7.14.100, 7.14.116, 7.14.157, and 7.14.158.

7.7. The Kolmogorov theorem

In many problems of measure theory and probability theory and their
applications, one has to construct measures on products of measurable spaces
that are more complicated than product measures. In this section, we prove
the principal result in this direction: the Kolmogorov theorem on consistent
probability distributions. The classical Kolmogorov result was concerned with
measures on products of real lines, and the abstract formulation given below
goes back to E. Marczewski.

Let T be a nonempty set. Suppose that we are given nonempty mea-
surable spaces (Ωt,Bt), t ∈ T . For every nonempty set Λ ⊂ T , we denote
by ΩΛ the product of the spaces Ωt, t ∈ Λ. The space ΩΛ is equipped with
the σ-algebra BΛ that is the product of the σ-algebras Bt, t ∈ Λ (see �3.5
in Chapter 3).

7.7.1. Theorem. Suppose that for every finite set Λ ⊂ T , we are given
a probability measure µΛ on (ΩΛ,BΛ) such that the following consistency con-
dition is fulfilled: if Λ1 ⊂ Λ2, then the image of the measure µΛ2 under
the natural projection from ΩΛ2 to ΩΛ1 coincides with µΛ1 . Suppose that
for every t ∈ T , the measure µt on Bt possesses an approximating compact
class Kt ⊂ Bt. Then, there exists a probability measure µ on the measurable
space

(
Ω :=

∏
t∈T Ωt,B :=

⊗
t∈T Bt

)
such that the image of µ under the

natural projection from Ω to ΩΛ is µΛ for each finite set Λ ⊂ T .

Proof. Every set B ∈ BΛ can be identified with the cylindrical set CΛ =
B×

∏
t∈T\Λ Ωt. It is clear that the family of such sets forms an algebra R.

This algebra is generated by the semialgebra of finite products
n∏

i=1

Bti×
∏

t�∈{t1,...,tn}
Ωt.

On the algebra R, we have the set function µ(CΛ) = µΛ(B). The consistency
condition yields that this function is well-defined, i.e., µ(CΛ) is independent
of the representation of CΛ in the above form. Indeed, if we replace B with
some other set B′ ∈ BΛ′ , where Λ ⊂ Λ′, then B is the image of B′ under
projecting ΩΛ′ to ΩΛ, hence µΛ(B) = µΛ′(B′).

We verify the countable additivity of the set function µ on the algebra R.
Let us recall that the class K of all finite unions of products of the form∏n
i=1Kti×ΩT\{t1,...,tn}, where Kti ∈ Kti , is compact (see Lemma 3.5.3). We

prove that this class approximates µ. It suffices to show that for every product
B =

∏n
i=1Bti×

∏
t�∈{t1,...,tn} Ωt and every ε > 0, there exists a set Kti ∈ Kti

such that the set K =
∏n
i=1Kti×

∏
t�∈{t1,...,tn} Ωt approximates B with respect

to µ up to ε. We take Kti ∈ Kti such that µti(Bti\Kti) < εn−1 and observe
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that one has the easily verified inclusion

B\K ⊂
n⋃

i=1

(
(Bti\Kti)×

∏

t�=ti

Ωt
)
,

whence we obtain

µ(B\K) ≤
n∑

i=1

µti(Bti\Kti) =
n∑

i=1

µ
(

(Bti\Kti)×
∏

t�=ti

Ωt
)
< ε,

which completes the proof. �
The measure µ is called the projective limit of the measures µΛ.
It is clear that the Kolmogorov theorem is applicable if µΛ are consistent

Radon measures.

7.7.2. Corollary. Let Xt, t ∈ T , be Souslin spaces and let Bt = B(Xt).
Suppose that for every finite set Λ ⊂ T , we are given a probability measure
µΛ on (ΩΛ,BΛ) such that the consistency condition from Theorem 7.7.1 is
fulfilled. Then, there exists a probability measure µ on the measurable space(
Ω =

∏
t∈T Ωt,B =

⊗
t∈T Bt

)
such that the image of µ under the natural

projection from Ω to ΩΛ is µΛ for all finite sets Λ ⊂ T .

Proof. It suffices to use the fact that all Borel measures on Souslin
spaces are Radon. �

Certainly, the same result is true for measurable spaces that are isomor-
phic to Souslin spaces with the Borel σ-algebras.

We remark that a particular case of the above theorem is the existence of
the product of the measures µt. Indeed, in this case one takes for µΛ, where
Λ is a finite set, the finite product

⊗
t∈Λ µt on

⊗
t∈Λ Bt. However, in this

particular case, as we know, no approximating compact class is needed (see
�3.5). Let us show that in Theorem 7.7.1 one cannot omit this condition.

7.7.3. Example. Let us take sets Xn ⊂ [0, 1] such that all Xn have outer
Lebesgue measure 1, Xn+1 ⊂ Xn and

⋂∞
n=1Xn = ∅ (see Exercise 1.12.58).

Let Bn be the Borel σ-algebra of Xn and let µn be the trace of Lebesgue
measure on Bn (see Chapter 1, Definition 1.12.11). For every n, let

πn : Xn →
n∏

i=1

Xi, πn(x) = (x, . . . , x).

On
⊗n

i=1 Bi we obtain the measure µ(1,...,n) = µn ◦ π−1
n . Then the family of

probability measures {µ(1,...,n), n ≥ 1} is consistent, but there is no measure
on the product (

∏∞
i=1Xi,

⊗∞
i=1 Bi) whose images under the projections to∏n

i=1Xi coincide with the measures µ(1,...,n) for all n.

Proof. Since Xn are separable metric spaces, one has
n⊗

i=1

Bi = B
( n∏

i=1

Xi

)
,
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in particular, the diagonal ∆n := {x = (x1, . . . , xn) : x1 = . . . = xn} be-
longs to

⊗n
i=1 Bi. It is clear from the construction that µ(1,...,n)(∆n) = 1 for

all n. If we had a measure µ on X with the projections µ(1,...,n), then we
would obtain µ(Ωn) = 1 for all sets Ωn = ∆n×

∏∞
k=n+1Xk. However, this is

impossible for a countably additive measure, since
⋂∞
n=1 Ωn = ∅ due to the

equality
⋂∞
n=1Xn = ∅. �

In books on probability theory and random processes, the Kolmogorov
theorem appears in the context of the distributions of random processes. We
recall the corresponding terminology. A random process ξ = (ξt)t∈T on a
nonempty set T is just a family of measurable functions ξt indexed by points
t ∈ T and defined on a probability space (Ω,A, P ). For every ordered finite
collection of distinct points t1, . . . , tn ∈ T , one obtains a Borel probability
measure on IRn defined by

Pt1,...,tn(B) := P
(
ω :

(
ξt1(ω), . . . , ξtn(ω)

)
∈ B

)
.

This measure is called a finite-dimensional distribution of the process ξ. The
finite-dimensional distributions are consistent in the following sense:

(1) the image of the measure Pt1,...,tn,s1,...,sk under the projection from
IRn+k to IRn coincides with Pt1,...,tn for all ti and sj ,

(2) for every permutation σ of the set {1, . . . , n}, one has

Ptσ(1),...,tσ(n) = Pt1,...,tn ◦ T−1,

where T : IRn → IRn, T (x1, . . . , xn) = (xσ(1), . . . , xσ(n)).
The latter property enables one to define the measures µΛ for subsets Λ in

T consisting of all (not ordered) collections ti, i = 1, . . . , n (note that Theorem
7.7.1 deals merely with subsets of T without any ordering or numbering, so
that {t1, t2} is the same subset as {t2, t1}). Namely, if we fix an arbitrary
enumeration of the points t1, . . . , tn, then every set B ∈ B(IRΛ) is identified
with some set B′ ∈ B(IRn). Hence one can set

PΛ

(
x ∈ IRΛ : x ∈ B

)
:= Pt1,...,tn(B′),

which gives a well-defined object due to the foregoing consistency condition.
Certainly, it is possible to consider the distributions Pt1,...,tn with multiple
points ti, but this is not necessary for applying Theorem 7.7.1.

The Kolmogorov theorem states the converse: given a nonempty set T and
a family of consistent (in the sense of conditions (1) and (2)) measures Pt1,...,tn
on the spaces IRn for all distinct ti ∈ T , there exist a probability space and
a random process ξ on it whose finite-dimensional distributions are Pt1,...,tn .
For a probability space Ω one can take the space IRT , and for P the measure
µ from the Kolmogorov theorem, in which for any Λ = {t1, . . . , tn} we set
µΛ := Pt1,...,tn . Any point ω ∈ Ω is a function on T and we set ξt(ω) := ω(t).
It is clear that we obtain a random process with the required properties. The
constructed measure µ on IRT is called the distribution of the process ξ in the
path space (the space of trajectories) and is denoted by µξ. The Kolmogorov
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theorem can be alternatively formulated as follows: an additive set function
on the cylindrical algebra in IRT with countably additive finite-dimensional
projections is itself countably additive.

In applications of Theorem 7.7.1 the following problem is typical. Usually,
it is clear that the random process ξ, the distribution of which is constructed
in this theorem, possesses trajectories with certain additional properties (for
example, continuous), and it is desirable that the corresponding measure µξ be
concentrated on the set X0 of such trajectories. However, the straightforward
application of the Kolmogorov theorem does not guarantee this in most of
the cases because the set X0 turns out to be nonmeasurable with respect
to µξ. A trivial example: the process is identically 0 and X0 is a point
(see Example 7.3.1). The effect of this in the study of random processes is
that the distribution of a process does not determine the process uniquely
(in particular, does not uniquely determine the properties of its trajectories
as functions of t). For example, it can occur that two processes ξ and η
have equal distributions, but ξt(ω) = 0 for all t and ω, whereas for every ω,
there exists t with ηt(ω) = 1. To this end, it suffices to take Ω = [0, 1]
with Lebesgue measure and set ηt(t) = 1 and ηt(ω) = 0 if ω �= t. Several
standard tricks are known to circumvent the obstacle. A natural and efficient
procedure (going back to Kolmogorov) is to verify the equality µ∗

ξ(X0) = 1,
which enables one to restrict µ to the set X0 of full outer measure. Let us
formulate another important theorem of Kolmogorov that gives a constructive
sufficient condition of the above equality (we do not include a proof, since it
is found in many textbooks, see, e.g., Wentzell [1973, �5.2]).

7.7.4. Theorem. Suppose that a random process ξ on a set T ⊂ IR1

satisfies the following condition:

IE|ξt − ξs|α ≤ L|t− s|1+β ,
where L,α, β are positive numbers and IE is the expectation (i.e., the integral).
Then µ∗

ξ

(
C(T )

)
= 1.

By means of two Kolmogorov’s theorems given above one can easily justify
the existence of the Wiener measure on C[0, 1], i.e., a measure µW such that
every functional x �→ x(t)− x(s) is a Gaussian random variable with

∫

C[0,1]

x(t)µW (dx) = 0,
∫

C[0,1]

|x(t)− x(s)|2 µW (dx) = |t− s|,

and, additionally, for all t1 < t2 < . . . < tn, the functionals x(ti+1)−x(ti) are
independent and x(0) = 0 for µW -a.e. x. Regarding this see Bogachev [208].

In the literature, one can find diverse sufficient conditions for various
sets X0 (for example, functions without discontinuities of second order); see
Gikhman, Skorokhod [685]. We remark that certain additional problems
arise in the case where for X0 one has to take a space whose elements are
equivalence classes rather than individual functions (for example, L2). One
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more procedure of fighting the arising nonmeasurabilities goes back to Doob
and employs his concept of a separable random process (see details in Doob
[467] and Neveu [1368]).

7.8. The Daniell integral

The construction of the integral presented in this book is based on a
preliminary introduction of a measure. However, it is possible to go in the
opposite direction and define measures by means of integrals. The following
result due to Daniell is at the basis of this approach. In the formulation we
use the concept of a vector lattice of functions, i.e., a linear space of real
functions on a nonempty set Ω such that max(f, g) ∈ F for all f, g ∈ F . Note
that then one has min(f, g) = −max(−f,−g) ∈ F and |f | ∈ F for all f ∈ F .
Since max(f, g) = (|f − g| + f + g)/2, it would be sufficient to require only
that F be a linear space closed with respect to taking the absolute values.
A vector lattice of functions is a particular case of an abstract vector lattice,
i.e., a linear space with a lattice structure that is consistent with the linear
structure in the sense that αx ≤ βx if x ≥ 0, α, β ∈ [0,∞), and x+ z ≤ y+ z
if x ≤ y. As an example one can take Lp[0, 1].

7.8.1. Theorem. Let F be a vector lattice of functions on a set Ω such
that 1 ∈ F . Let L be a linear functional on F with the following properties:
L(f) ≥ 0 whenever f ≥ 0, L(1) = 1, and L(fn) → 0 for every sequence
of functions fn in F monotonically decreasing to zero. Then, there exists a
unique probability measure µ on the σ-algebra A = σ(F) generated by F such
that F ⊂ L1(µ) and

L(f) =
∫

Ω

f dµ, ∀ f ∈ F . (7.8.1)

Proof. (i) Denote by L+ the set of all bounded functions f of the form
f(x) = lim

n→∞
fn(x), where fn ∈ F are nonnegative and the sequence {fn}

is increasing. Clearly, the sequence {fn} is uniformly bounded, hence the
sequence {L(fn)} is increasing and bounded by the properties of L. Set
L(f) = lim

n→∞
L(fn). We show that the extended functional is well-defined,

coincides on bounded nonnegative functions in F with the initial functional
and possesses the following properties:

(1) L(f) ≤ L(g) for all f, g ∈ L+ with f ≤ g;
(2) L(f + g) = L(f) + L(g), L(cf) = cL(f) for all f, g ∈ L+ and all

c ∈ [0,+∞);
(3) min(f, g) ∈ L+, max(f, g) ∈ L+ for all f, g ∈ L+ and

L(f) + L(g) = L
(
min(f, g)

)
+ L

(
max(f, g)

)
;

(4) lim
n→∞

fn ∈ L+ for every uniformly bounded increasing sequence of

functions fn ∈ L+, and one has L( lim
n→∞

fn) = lim
n→∞

L(fn).

We observe that if {fn} and {gk} are two increasing sequences of nonneg-
ative functions in F with lim

n→∞
fn ≤ lim

k→∞
gk, then lim

n→∞
L(fn) ≤ lim

k→∞
L(gk).
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Indeed, it follows by the hypotheses of the theorem that L(ψm) → L(ψ)
if nonnegative functions ψm in F are decreasing to ψ ∈ F . The functions
min(fn, gk) ∈ F are increasing to fn as k →∞, since fn ≤ lim

k→∞
gk. Hence

L(fn) = lim
k→∞

L
(
min(fn, gk)

)
≤ lim
k→∞

L(gk).

It remains to take the limit as n → ∞. This shows that L on L+ is well-
defined, i.e., is independent of our choice of an increasing sequence convergent
to an element in L+. In particular, we obtain that on F ∩L+ the constructed
functional coincides with the initial one. Properties (1) and (2) now follow at
once from the fact that they hold for functions in F . We have max(f, g) =
lim
n→∞

max(fn, gn) and min(f, g) = lim
n→∞

min(fn, gn) if nonnegative functions
fn, gn ∈ F are increasing to f and g, respectively. In addition, both limits are
monotone. Hence Property (3) follows by definition and the obvious equality
max(f, g) + min(f, g) = f + g. Let us verify (4). Suppose that nonnegative
functions fk,n ∈ F are increasing to fn ∈ L+ as k →∞. Set gm = max

n≤m
fm,n.

Then gm ∈ F , gm ≤ gm+1 and fm,n ≤ gm ≤ fm if n ≤ m. Hence we have
L(gm) ≤ L(gm+1) and L(fm,n) ≤ L(gm) ≤ L(fm) if n ≤ m. Therefore,
lim
m→∞

fm = lim
m→∞

gm ∈ L+ and

lim
m→∞

L(fm) = lim
m→∞

L(gm) = L( lim
m→∞

gm) = L( lim
m→∞

fm).

(ii) Denote by G the class of all sets G with IG ∈ L+. Set µ(G) = L(IG) for
all G ∈ G. We observe that IG1∩G2 = min(IG1 , IG2), IG1∪G2 = max(IG1 , IG2).
Hence by Property (3) established in (i), the class G is closed with respect
to finite intersections and finite unions, then also with respect to countable
unions by Property (4). In addition, µ is a nonnegative monotone additive
function on G, and one has

µ(G1 ∩G2) + µ(G1 ∪G2) = µ(G1) + µ(G2)

for all G1, G2 ∈ G, and µ(G) = lim
n→∞

µ(Gn) if the sets Gn ∈ G are increasing

to G. Note also that µ(Ω) = 1. According to Theorem 1.11.4 (applicable in
view of Example 1.11.5 and the fact that G is closed with respect to countable
unions), the function

µ∗(A) = inf{µ(G) : G ∈ G, A ⊂ G}
is a countably additive measure on the class

B =
{
B ⊂ Ω: µ∗(B) + µ∗(Ω\B) = 1

}
.

We shall denote by µ the restriction of µ∗ to B.
(iii) We verify that A ⊂ B. If f ∈ L+, then {f > c} ∈ G for all c, since

I{f>c} = lim
n→∞

min
(
1, nmax(f − c, 0)

)
.

Hence all functions in L+ are measurable with respect to the σ-algebra σ(G).
On the other hand, all such functions are measurable with respect to the σ-
algebra A generated by the class F . Since G ⊂ σ(L+) = σ(F), we obtain the
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equality A = σ(G). Thus, it suffices to show that G ⊂ B. Let G ∈ G. We take
an increasing sequence of nonnegative functions fn ∈ F with IG = lim

n→∞
fn.

Then µ∗(G) = µ(G) = lim
n→∞

L(fn). Since µ∗(G) + µ∗(Ω\G) ≥ 1, in order to

show the inclusion G ∈ B, it suffices to prove that µ∗(G) + µ∗(Ω\G) ≤ 1,
which is equivalent to the inequality

µ∗(Ω\G) ≤ lim
n→∞

L(1− fn). (7.8.2)

The functions 1 − fn are decreasing to IΩ\G. For any n and any c ∈ (0, 1),
the set Uc = {1 − fn > c} contains Ω\G and by the above belongs to G.
Therefore, the obvious inequality IUc ≤ c−1(1− fn) yields

µ∗(Ω\G) ≤ µ(Uc) = L(IUc) ≤ c−1L(1− fn).

Letting c→ 1 and then n→∞, we obtain (7.8.2).
(iv) It remains to prove that F ⊂ L1(µ) and that (7.8.1) is true. We know

that all functions in L+ are A-measurable. If f = IG, where G ∈ G, then
the required equality is fulfilled by the definition of µ. Clearly, this equality
remains true for any finite linear combinations of indicators of sets in G. Let
f ∈ L+ and f ≤ 1. Then f is the limit of the increasing sequence of functions

fn :=
2n−1∑

j=1

j2−nI{j2−n<f≤(j+1)2−n} = 2−n
2n−1∑

j=1

I{f>j2−n}.

It follows that
L(fn) =

∫

Ω

fn dµ.

Property (4) established in (i) and the properties of the integral show that
as n→∞, the right-hand side and left-hand side of this equality converge to
L(f) and ∫

Ω

f dµ,

respectively. Moreover, by the same reasoning (7.8.1) extends to all nonneg-
ative functions f ∈ F , since f = lim

n→∞
min(f, n) and min(f, n) ∈ L+. Finally,

for any function f ∈ F , we have f = max(f, 0) − max(−f, 0), which yields
our assertion.

The uniqueness of µ satisfying (7.8.1) follows from the fact that it is
uniquely determined on the class G, which is closed with respect to finite
intersections and generates A. �

A function L with the properties listed in the above theorem is called the
Daniell integral (see below the case 1 �∈ F).

7.8.2. Corollary. Suppose that in Theorem 7.8.1 the class F is closed
with respect to uniform convergence. Let GF be the class of all sets of the form
{f > 0}, f ∈ F , f ≥ 0. Then GF generates the σ-algebra A = σ(F), and one
has the equalities

µ(A) = inf
{
µ(G) : A ⊂ G,G ∈ GF

}
, ∀A ∈ A, (7.8.3)
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µ(G) = sup
{
L(f) : f ∈ F , 0 ≤ f ≤ IG

}
, ∀G ∈ GF . (7.8.4)

Proof. It suffices to verify that the class GF coincides with the class G
introduced in the proof of the theorem. It has been shown in that proof that
{f > 0} ∈ G for all nonnegative f ∈ F . On the other hand, if G ∈ G, then by
definition there exists an increasing sequence of nonnegative functions fn ∈ F
convergent to IG. Set f =

∑∞
n=1 2−nfn. By uniform convergence of the series

we have f ∈ F . It is clear that f ≥ 0 and G = {f > 0}. �

Functionals considered in the above theorem are called positive. Thus,
the expression L ≥ 0 means that L(f) ≥ 0 if f ≥ 0. However, this theorem
extends to not necessarily positive functionals.

7.8.3. Theorem. Let F be a vector lattice of bounded functions on a
set Ω such that 1 ∈ F . Suppose that we are given a linear functional L on F
that is continuous with respect to the norm ‖f‖ = supΩ |f(x)|. Then L can
be represented in the form L = L+ − L−, where L+ ≥ 0, L− ≥ 0, and for all
nonnegative f ∈ F one has

L+(f) = sup
0≤g≤f

L(g), L−(f) = − inf
0≤g≤f

L(g). (7.8.5)

In addition, letting |L| := L+ + L−, we have for all f ≥ 0

|L|(f) = sup
0≤|g|≤f

|L(g)|, ‖L‖ = L+(1) + L−(1).

Proof. Given two nonnegative functions f, g ∈ F and a function h ∈ F
such that 0 ≤ h ≤ f + g, we can write h = h1 + h2, where h1, h2 ∈ F ,
0 ≤ h1 ≤ f , 0 ≤ h2 ≤ g. Indeed, let h1 = min(f, h), h2 = h − h1. Then
h1, h2 ∈ F , 0 ≤ h1 ≤ f and h2 ≥ 0. Finally, h2 ≤ g. For, if h1(x) = h(x),
then h2(x) = 0, and if h1(x) = f(x), then h2(x) = h(x)− f(x) ≤ g(x), since
h ≤ g + f .

Let L+ be defined by equality (7.8.5). Note that the quantity L+(f) is
finite, since |L(h)| ≤ ‖L‖ ‖h‖ ≤ ‖L‖ ‖f‖. It is clear that L+(tf) = tL+(f) for
all nonnegative numbers t and f ≥ 0. Let f ≥ 0 and g ≥ 0 be in F . Keeping
the above notation we obtain

L+(f + g) = sup{L(h) : 0 ≤ h ≤ f + g}
= sup{L(h1) + L(h2) : 0 ≤ h1 ≤ f, 0 ≤ h2 ≤ g} = L+(f) + L+(g).

Now for all f ∈ F we set L+(f) = L+(f+)−L+(f−), where f+ = max(f, 0),
f− = −min(f, 0). Note that if f = f1 − f2, where f1, f2 ≥ 0, then

L+(f) = L+(f1)− L+(f2).

Indeed, f1 + f− = f2 + f+, hence L+(f1) + L+(f−) = L+(f2) + L+(f+). It
is clear that L+(tf) = tL+(f) for all t ∈ IR1 and f ∈ F . The additivity of
the functional L+ follows by its additivity on nonnegative functions. Indeed,
given f and g, we can write f = f+ − f−, g = g+ − g−, whence we have
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f + g = (f+ + g+) − (f− + g−), and according to what has been said above
we obtain

L+(f + g) = L+(f+ + g+)− L+(f− + g−) = L+(f) + L+(g).

By definition, one has L+(f) ≥ L(f) for nonnegative f , hence the functional
L− := L+ −L is nonnegative. It is easy to see that L− is given by the stated
formula.

Finally, ‖L‖ ≤ ‖L+‖+ ‖L−‖ = L+(1) + L−(1). On the other hand,

L+(1) + L−(1) = 2L+(1)− L(1) = sup{L(2ϕ− 1) : 0 ≤ ϕ ≤ 1}
≤ sup{L(h) : −1 ≤ h ≤ 1} ≤ ‖L‖.

The theorem is proven. �

7.8.4. Corollary. Suppose that in the situation of the previous theorem
the functional L has the following property: L(fn) → 0 for every sequence of
functions fn in F monotonically decreasing to zero. Then the functionals L+

and L− have this property as well. In particular, L+ and L− are defined by
nonnegative countably additive measures on σ(F) and L has representation
(7.8.1) with some signed countably additive measure µ on σ(F).

Proof. Let {fn} be a sequence in F monotonically decreasing to zero
and let ε > 0. By definition one can find ϕn ∈ F with 0 ≤ ϕn ≤ fn and
L(ϕn) ≥ L+(fn) − ε2−n. Set gn = min(ϕ1, . . . , ϕn). We verify by induction
that

L+(fn) ≤ L(gn) + ε
n∑

i=1

2−i. (7.8.6)

This is true if n = 1. Suppose that (7.8.6) is true for n = 1, . . . ,m. One has
the equalities

gm+1 = min(gm, ϕm+1),
max(gm, ϕm+1) + min(gm, ϕm+1) = gm + ϕm+1,

whence

L
(
max(gm, ϕm+1)

)
+ L(gm+1) = L(gm) + L(ϕm+1)

≥ L(gm) + L+(fm+1)− ε2−m−1.

On other hand, the estimates gm ≤ ϕm ≤ fm, ϕm+1 ≤ fm+1 ≤ fm and the
inductive assumption yield

L
(
max(gm, ϕm+1)

)
≤ L+(fm) ≤ L(gm) + ε

m∑

i=1

2−i.

Therefore,

L(gm) + L+(fm+1)− ε2−m−1 − L(gm+1) ≤ L(gm) + ε
m∑

i=1

2−i,

whence we obtain (7.8.6) for n = m+ 1. Thus, (7.8.6) is established for all n.
Since gn ≤ fn, the sequence {gn} is decreasing to zero. Therefore, L(gn) → 0
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and (7.8.6) yields lim supL+(fn) ≤ ε. Since ε > 0 is arbitrary and L+(fn) is
nonnegative, we obtain that L+(fn) → 0. The claim for L− follows too. �

7.8.5. Remark. In the above corollary, the functionals L+ and L− are
represented by the measures µ+ and µ−, where µ represents L. This can be
easily seen from (7.8.5) and the properties of the integral.

7.8.6. Theorem. Let F be a vector lattice of functions on a set Ω such
that 1 ∈ F . Suppose that L is a linear functional on F with the following
properties: L(f) ≥ 0 if f ≥ 0, L(1) = 1, and L(fα) → 0 for every net
of functions fα in F monotonically decreasing to zero. Then, there exists
a unique probability measure µ on the σ-algebra A = σ(F) generated by F
such that F ⊂ L1(µ) and (7.8.1) holds. In addition, µ(Gα) → µ

(⋃
αGα

)
for

every increasing net of sets Gα such that IGα ∈ L+, where L+ is the class
of all bounded functions that are the limits of increasing nets of nonnegative
functions in F .

Proof. The reasoning in the proof of Theorem 7.8.1, where we dealt
with σ-additive functionals, applies with minor changes. We take for L+ the
class of all bounded functions f representable as the limits of increasing nets
of nonnegative functions fα in F . The extension of L to L+ is defined as in
Theorem 7.8.1 with nets in place of sequences. All the arguments remain valid
and show that the extension possesses the following property: if an increasing
net of functions fα ∈ L+ converges to a function f ∈ L+, then L(fα) → L(f).
As in the cited theorem, we obtain a countably additive measure on the σ-
algebra σ(L+) generated by L+ such that the following equalities hold:

µ(G) = L(IG), G ∈ G := {G : IG ∈ L+}, µ(B) = inf
{
µ(G) : G ∈ G, B ⊂ G

}
,

∫

Ω

f dµ = L(f) for all f ∈ L+.

Moreover, F ⊂ L1(µ) and the previous equality holds for all f ∈ F . It should
be noted that in this situation the σ-algebra A = σ(F) may be strictly smaller
than σ(L+). It is clear from the construction that if an increasing net of sets
Gα gives in the union the set G, then µ(Gα) = L(IGα) → L(IG) = µ(G). �

We assumed in the above results that the lattice F contains 1. For this
reason they are not applicable so far to constructing infinite measures. It turns
out that if 1 �∈ F , then the above conditions are not sufficient for the existence
of a representing measure. One can construct an example of a set Ω, a vector
lattice F of functions on Ω, and a positive τ -smooth linear functional on F
that is not representable as the integral, see Fremlin, Talagrand [639], Fremlin
[635, �439H]. We give below a similar example (borrowed from Fremlin [619])
with a σ-smooth functional. However, one can improve the situation by adding
the Stone condition:

min(f, 1) ∈ F for all f ∈ F .



7.8. The Daniell integral 105

A natural example of a lattice satisfying the Stone condition and not contain-
ing 1 is the space of all continuous functions with compact support on IRn.
The proof of the following theorem is delegated to Exercise 7.14.126 (it can
also be derived from the previous results).

7.8.7. Theorem. Let F be a vector lattice of functions on a set Ω sat-
isfying the Stone condition. Suppose that L is a nonnegative linear functional
on F such that L(fn) → 0 for every sequence of functions fn ∈ F pointwise
decreasing to zero. Then, there exists a countably additive measure µ defined
on σ(F) and having values in [0,+∞] such that F ⊂ L1(µ) and (7.8.1) is
fulfilled.

In place of the Stone condition one can sometimes use the following condi-
tion: there exists a sequence of nonnegative functions ϕn ∈ F increasing to 1
(see Hirsch, Lacombe [834, p. 58]). One can verify that the Stone condition
is fulfilled on the space L of all functions f such that f+ and f− belong to
the class V of all functions of the form g = lim

n→∞
gn, where {gn} is increasing,

gn ∈ F and supL(gn) < ∞. The functional L extends to V by monotonicity
and then to L by linearity. The measure µ generating L is σ-finite in this
case, since µ({ϕn > 1/k}) <∞. Hence the aforementioned condition is more
restrictive than that of Stone.

As a simple corollary of the above results one obtains the existence of the
Lebesgue integral on IRn or on a cube. To this end, we take for F the class of
all continuous functions with bounded support (observe that every sequence
of such functions pointwise decreasing to zero converges uniformly) and for L
we take the Riemann integral. The same method works for constructing the
Lebesgue integral on any sufficiently regular manifold (certainly, it is necessary
that the Riemann integral of continuous functions be defined).

We now proceed to the aforementioned example of non-existence of rep-
resenting measures.

7.8.8. Example. Let F be the set of all real functions f on [0, 1] with the
following property: for some number α = α(f), the set

{
t : f(t) �= α(1 + t)

}

is a first category set. Let L(f) := α. Then F is a vector lattice of functions
with the natural order on IR[0,1], L is a nonnegative linear functional on F ,
and L(fn) → 0 for every sequence functions fn ∈ F pointwise decreasing to
zero, but L cannot be represented as the integral with respect to a countably
additive measure.

Proof. We observe that for each function f ∈ F , there is only one
number α with the indicated property, since the interval is not a first category
set. Hence the function L is well-defined. Given f ∈ F , we set

Ef :=
{
t : f(t) �= α(1 + t)

}
,

where α is the number corresponding to f . If f, g ∈ F and α = α(f),
β = α(g) are the corresponding numbers, then Ef ∪ Eg is a first category
set, and one has f(t) + g(t) = (α + β)(1 + t) outside it. For any real c
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we have cf(t) = cα(1 + t) outside the set Ef . Thus, F is a linear space.
It is easily seen that |f | ∈ F if f ∈ F . It is also clear that the function
L is linear. If f ≥ 0, then L(f) ≥ 0. If functions fn ∈ F are pointwise
decreasing to zero, then the union of the sets Efn is a first category set.
Hence there exists a point t such that L(fn) = fn(t)/(1 + t) simultaneously
for all n, whence lim

n→∞
L(fn) = 0. Suppose now that there exists a measure

µ on σ(F) with values in [0,+∞] such that F ⊂ L1(µ) and L(f) coincides
with the integral of f against the measure µ. The function ψ : t �→ 1 + t
belongs to F , whence we obtain that all open sets in [0, 1] belong to σ(F).
The estimate ψ ≥ 1 yields that µ([0, 1]) ≤ L(ψ) = 1. Thus, the restriction of
µ to B([0, 1]) is a finite measure. Therefore, there exists a first category Borel
set E such that µ([0, 1]\E) = 0. Indeed, one can take the union of nowhere
dense compact sets Kn with µ([0, 1]\Kn) < 1/n, which can be constructed by
deleting sufficiently small open intervals centered at the points of a countable
dense set of µ-measure zero. Let us consider the following function f : f(t) = 0
if t ∈ E, f(t) = 1 + t if t �∈ E. It is clear that f ∈ F and L(f) = 1. On the
other hand, the integral of f with respect to the measure µ is zero, which is
a contradiction. �

This example shows that one cannot always represent L as an integral,
but a closer look at the proof of Theorem 7.8.1 reveals that even without
the Stone condition one obtains the functional L with the basic properties
of the integral (which explains the term “the Daniell integral”). Let F be
some vector lattice of functions on a set Ω and let L be a nonnegative linear
functional on F such that L(fn) → 0 for every sequence {fn} ⊂ F pointwise
decreasing to zero. We shall use the term an L-zero set for sets S ⊂ Ω with the
property that for every ε > 0, there exists an increasing sequence of functions
fn ≥ 0 in F such that L(fn) < ε and supn fn(x) ≥ 1 on S. Let L+ denote
the class of all functions f with values in (−∞,+∞] for which one can find
an increasing sequence {fn} ⊂ F such that f(x) = lim

n→∞
fn(x) outside some

L-zero set and the sequence L(fn) is bounded. It is readily verified that such
a function f is finite outside some L-zero set. Set L(f) := lim

n→∞
L(fn). The

reasoning in the proof of Theorem 7.8.1 shows that L is well-defined on L+.
Let L denote the set of all functions f with f+, f− ∈ L+. For such functions,
we set L(f) := L(f+) − L(f−). The class L is equipped with the following
equivalence relation: two functions are equivalent if the set on which they
differ is L-zero. Then the set L̃ of all equivalence classes becomes a metric
space with the metric dL(f, g) := L(|f − g|). In addition, L̃ is a linear space.
It is clear by construction that F is everywhere dense in L.

7.8.9. Proposition. The functional L on L is linear, and the statements
of the Beppo Levi, Lebesgue, and Fatou theorems are true if the integral in
their formulations is replaced by L. In addition, L̃ is complete with respect to
the metric dL.
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Proof. We give only a sketch of the proof; more details can be found
in Shilov, Gurevich [1699, �2]. It is easily verified that L is linear on L and
L(f) ≤ L(g) if f ≤ g. We observe that the union S of L-zero sets Sn is an
L-zero set. Indeed, given ε > 0, for every n, there is an increasing sequence
of functions fn,k ≥ 0 in F with L(fn,k) ≤ ε2−n and supk fn,k(x) ≥ 1 on Sn.
Let gn := fn,1 + · · · + fn,n. Then {gn} is increasing, gn ≥ 0, L(gn) ≤ ε, and
supn gn(x) ≥ 1 on S. Suppose the sequence of functions fn ∈ L is increasing
outside an L-zero set and {L(fn)} is bounded. Passing to fn − f1 we may
assume that fn ≥ 0. For every n, we can find fn,k ∈ F increasing to fn outside
some L-zero set Sn. Let gn = maxk,m≤n fm,k. Then gn ∈ F , {gn} is increasing
and {L(gn)} is bounded. Then f = lim

n→∞
gn ∈ L+ and L(f) = lim

n→∞
L(gn).

Clearly, fn(x) → f(x) outside an L-zero set and L(f) = lim
n→∞

L(fn) because

L(gn) ≤ L(fn) and L(fn) = lim
k→∞

L(fn,k). Fatou’s theorem is deduced exactly

as in the case of the Lebesgue integral.
Suppose fn(x) → f(x) and |fn(x)| ≤ Φ(x) outside an L-zero set, where

fn,Φ ∈ L. Let ϕn(x) := infk≥n fk(x), ϕn(x) := supk≥n fk(x). Then, outside
an L-zero set, one has ϕn ≤ fn ≤ ψn, ϕn ≥ −Φ, ψn ≤ Φ, {ϕn} increases to f
and {ψn} decreases to f . Hence f ∈ L and L(f) = lim

n→∞
L(ϕn) = lim

n→∞
L(ψn),

which gives L(f) = lim
n→∞

L(fn).

Suppose {fn} ⊂ L is dL-fundamental. Passing to a subsequence we may
assume that dL(fn, fn+1) ≤ 2−n. As shown above, the series of |fn − fn−1|,
where f0 := 0, converges outside some L-zero set S to an element Φ of L.
Then the sums fn =

∑n
k=1(fk − fk−1) converge to a finite limit f outside S.

Since |fn| ≤ Φ, we conclude that {fn} converges to f in L̃. �

Let us now consider the class RL of all sets E ⊂ Ω such that there
exists a sequence of functions fn ∈ F convergent to IE outside some L-zero
set. Such sets will be called measurable (although no measure is introduced).
Given E ∈ RL, we set ν(E) := L(IE) if IE ∈ L and ν(E) = +∞ otherwise.
It is readily verified that RL is a σ-ring and the function ν is a countably
additive measure with values in [0,+∞]. One can also consider ν on the δ-
ring R0

L of all sets on which ν is finite. However, in the general case (without
Stone’s condition), the integral with respect to the measure ν does not coincide
with L. Say, in Example 7.8.8, the measure ν is identically zero. Indeed, in
that example the L-zero sets are precisely the first category sets, since if
α(fn) ≤ 1/3, then fn(t) ≤ 2/3 outside a first category set. The class L differs
from F only in that a function may now assume the values +∞ and −∞ on
first category sets. If functions fn ∈ F have a finite limit outside some first
category set, then this limit coincides with the function α(1+t) outside a first
category set, hence the indicator of a set can only appear if α = 0, i.e., only
the first category sets are measurable and they are L-zero.

We note that the theorems in this section do not involve topology. The
topological concepts will be employed in the next two sections.
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7.9. Measures as functionals

Every Baire measure µ on a topological space X defines a continuous
linear functional on the Banach space Cb(X) with the norm ‖f‖ = sup

X
|f(x)|

by the formula

f �→
∫

X

f(x)µ(dx). (7.9.1)

In this and the next sections, we discuss what functionals can be obtained
in such a way and what can be said about the properties of measures (such
as regularity) in terms of the corresponding functionals. If a net of functions
{fα} decreases pointwise to f (i.e., fα(x) ↓ f(x) ∀x), we write fα ↓ f .

Although we do not discuss measures other than countably additive ones,
for the purposes of this section it is useful to recall certain basic concepts
related to additive set functions. It should be noted that in most of the
literature, additive set functions are also called measures. However, following
our earlier convention, we reserve the term “measure” only for countably
additive set functions. Now let X be a topological space with the algebra
A(X) generated by all functionally closed sets. A set function m : A(X) → IR
is called an additive regular set function if it is (i) additive, (ii) uniformly
bounded, and (iii) for every A ∈ A(X) and ε > 0, there exists a functionally
closed set F such that F ⊂ A and |m(B)| < ε for all B ⊂ A\F , B ∈ A(X). It
is verified directly (Exercise 7.14.88) that such a function m can be written as
the difference of two nonnegative additive regular set functions m+ and m−,
where

m+(A) = sup{m(B) : B ∈ A(X), B ⊂ A},

m−(A) = − inf{m(B) : B ∈ A(X), B ⊂ A}.

Set ‖m‖ := m+(X) +m−(X).
In analogy with the Riemann integration, one can define the integral of a

bounded continuous function f on X with respect to an additive regular set
function m (see �4.7(ix)). The role of additive set functions can be seen from
the following fundamental result due to A.D. Alexandroff [30].

7.9.1. Theorem. If m is an additive regular set function on A(X), then

f �→
∫

X

f(x)m(dx)

is a bounded linear functional on Cb(X) whose norm equals ‖m‖. Conversely,
for any bounded linear functional L on Cb(X), there exists an additive regular
set function m on A(X) with ‖m‖ = ‖L‖ such that

L(f) =
∫

X

f(x)m(dx)

for all f ∈ Cb(X). In addition, m is nonnegative precisely when so is the
functional L.
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Proof. The direct claim is obvious. Let us prove the converse. Accord-
ing to what has been said above, we can assume that L is a nonnegative
functional on Cb(X). Let be Z the class of all functionally closed sets and

m(Z) = inf
{
L(f) : f ∈ Cb(X), IZ ≤ f ≤ 1

}
, Z ∈ Z.

We show that m∗ is the required set function. It is clear that m(Z) = m∗(Z)
for any Z ∈ Z, since the class Z admits finite unions. Let Z1, Z2 ∈ Z and
Z1 ⊂ Z2. We show that

m(Z2)−m(Z1) = m∗(Z2\Z1).

Note that m(Z2) −m(Z1) ≥ m∗(Z2\Z1) because Z1 ∪ Z ∈ Z if Z ∈ Z and
Z ⊂ Z2\Z1. Let ε > 0, f ∈ Cb(X) and f ≥ IZ1 . Let Y = {x : f(x) ≤ 1− ε}.
Then Y ∩ Z1 = ∅. We fix a function g ∈ Cb(X) with g ≥ IZ2∩Y . For all
x ∈ Z2 we have f(x) + g(x) > 1 − ε, since if x ∈ Y , then g(x) ≥ 1, and if
x �∈ Y , then f(x) > 1− ε. Since f + g ≥ 0, we obtain (1− ε)−1(f + g) ≥ IZ2 ,
whence L(f) +L(g) ≥ (1− ε)m(Z2). Taking the infimum in g, we obtain the
inequality L(f) +m(Z2 ∩Y ) ≥ (1− ε)m(Z2). By using that Z2 ∩Y ⊂ Z2\Z1,
we arrive at the estimate L(f) +m∗(Z2\Z1) ≥ (1− ε)m(Z2). Therefore,

m(Z1) +m∗(Z2\Z1) ≥ (1− ε)m(Z2),

which yields m(Z1)+m∗(Z2\Z1) ≥ m(Z2), since ε is arbitrary. Thus, we have
m(Z2)−m(Z1) = m∗(Z2\Z1).

Now let Z ∈ Z and let E be an arbitrary set. Let us verify the equality
m∗(E) = m∗(E∩Z)+m∗(E\Z), which means the Carathéodory measurability
of Z with respect to m∗. Since one always has m∗(E) ≥ m∗(E∩Z)+m∗(E\Z),
we have to verify the reverse inequality. Let Z0 ⊂ E, Z0 ∈ Z. By the above
we have m(Z0) = m(Z0∩Z)+m∗(Z0\(Z0∩Z)). The right-hand side does not
exceed m∗(E∩Z)+m∗(E\Z), which yields the required inequality. According
to Theorem 1.11.4, the class Mm∗ is an algebra, contains Z, and the function
m∗ is additive on Mm∗ . Hence the restriction of m∗ to A(X) is the required
function. �

It is clear that in the general case the set function m may not be countably
additive. In this and the next sections we clarify what functionals correspond
to countably additive, Radon, and τ -additive measures. Let us introduce the
following classes of functionals.

7.9.2. Definition. Let L ∈ Cb(X)∗.
(i) The functional L is called σ-smooth if for every sequence {fn} ⊂ Cb(X)

with fn ↓ 0, one has L(fn) → 0.
(ii) The functional L is called τ -smooth if for every net {fα} ⊂ Cb(X)

with fα ↓ 0, one has L(fα) → 0.
(iii) The functional L is called tight if for every net {fα} ⊂ Cb(X) such

that ‖fα‖ ≤ 1 and fα → 0 uniformly on compact subsets of X, one has
L(fα) → 0.

Let Mσ(X), Mτ (X), Mt(X) denote the spaces of σ-smooth, τ -smooth,
and tight functionals, respectively.



110 Chapter 7. Measures on topological spaces

7.9.3. Theorem. The following properties are equivalent:
(i) L ∈Mσ(X); (ii) L+, L− ∈Mσ(X); (iii) |L| ∈ Mσ(X).

Proof. Clearly, (ii) yields (i) and (iii), and (iii) yields (i). We show
that (i) implies (ii). Let us verify that L+ ∈ Mσ(X). If this is not true,
then there is a sequence of functions fn ∈ Cb(X) decreasing to zero such that
L+(fn) > c > 0. By the definition of L+ one can find g1 ∈ Cb(X) with
0 ≤ g1 ≤ f1 and L(g1) > c/2. We observe that the functions max(fn, g1)
are decreasing to g1. Hence L(max(fn, g1)) → L(g1) and there exists n1 with
L(max(fn1 , g1)) > c/2. Set h1 := max(fn1 , g1). Then 0 ≤ fn1 ≤ h1 ≤ f1 and
L(h1) > c/2. Repeating the same reasoning we find n2 ∈ IN and h2 ∈ Cb(X)
with 0 ≤ fn2 ≤ h2 ≤ fn1 and L(h2) > c/2. By induction, we obtain indices
nk and functions hk ∈ Cb(X) with the following properties: nk+1 > nk,
fnk+1 ≤ hk+1 ≤ fnk , and L(hk) > c/2. Then {hk} is decreasing to zero,
which leads to a contradiction. The case of L− is similar. �

7.9.4. Theorem. The following properties are equivalent:
(i) L ∈Mτ (X); (ii) L+, L− ∈Mτ (X); (iii) |L| ∈ Mτ (X).

Proof. As in Theorem 7.9.3, the main step is a verification of the inclu-
sion L+ ∈ Mτ (X) for any L ∈ Mτ (X). Suppose that there exists a net of
functions fα ∈ Cb(X) decreasing to zero such that L+(fα) > c > 0. Without
loss of generality we can assume that |fα| ≤ 1. The set T of all pairs (α, β) with
β > α will be equipped with the following partial order: (α1, β1) ≥ (α2, β2)
if either α1 ≥ β2 or α1 = α2 and β1 = β2. If (α3, β3) ≥ (α2, β2) and
(α2, β2) ≥ (α1, β1), where the three pairs are distinct, then α3 ≥ β2, β2 > α2

and α2 ≥ β1, hence α3 > β1, i.e., (α3, β3) ≥ (α1, β1). As in the case of se-
quences, for every α we find gα ∈ Cb(X) with 0 ≤ gα ≤ fα and L(gα) > c/2.
Taking T as a new index set, we observe that the net ϕα,β := max(gα, fβ),
(α, β) ∈ T , is decreasing to zero. Indeed, if (α, β) ≥ (α1, β1) and α �= α1, then
α ≥ β1 and β > α ≥ β1, so gα ≤ fα ≤ fβ1 and fβ ≤ fβ1 . Hence L(ϕα,β) → 0.
Let us take an index (α0, β0) such that |L(ϕα,β)| < c/2 if (α, β) ≥ (α0, β0).
Then for all β > β0 we obtain |L(ϕβ0,β)| < c/2. Note that the net ϕβ0,β is
decreasing to gβ0 . By hypothesis, we have L(ϕβ0,β) → L(gβ0) > c/2. Then
for some β > β0 we have |L(ϕβ0,β)| > c/2, which is a contradiction. �

7.9.5. Theorem. The following properties are equivalent:
(i) L ∈Mt(X); (ii) L+, L− ∈Mt(X); (iii) |L| ∈ Mt(X).

Proof. As in the two previous theorems, everything reduces to the proof
of the inclusion L+ ∈Mt(X) for L ∈Mt(X). Suppose we are given a net of
functions fα ∈ Cb(X) that converges to zero uniformly on compact sets and
|fα| ≤ 1. It is clear from the definition of L+ that there exists gα ∈ Cb(X)
such that 0 ≤ gα ≤ fα and 0 ≤ L+(|fα|) ≤ 2L(gα). Then the net {gα} also
converges to zero uniformly on compact sets and |gα| ≤ 1. Hence we obtain
L(gα) → 0, whence the assertion follows. �
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7.10. The regularity of measures in terms of functionals

Now we show that the functionals in the classes mentioned in the last three
theorems correspond one-to-one to Baire, τ -additive, and Radon measures.

7.10.1. Theorem. Let X be a topological space. The formula

L(f) =
∫

X

f(x)µ(dx) (7.10.1)

establishes a one-to-one correspondence between Baire measures µ on X and
continuous linear functionals L on Cb(X) with the following property:

lim
n→∞

L(fn) = 0

for every sequence {fn} pointwise decreasing to zero.

Proof. Any measure µ ∈ Ba(X) defines a continuous linear functional
on the space Cb(X). The converse follows by Theorem 7.8.1 and Corol-
lary 7.8.4. �

7.10.2. Remark. It is clear that every nonnegative linear functional L
on Cb(X) (i.e., nonnegative on nonnegative functions) is automatically con-
tinuous, since it satisfies the estimate |L(f)| ≤ L(1) sup |f |.

Certainly, not every continuous linear functional satisfies the condition of
Theorem 7.10.1.

7.10.3. Example. Let X = IN be equipped with the usual discrete
topology. Set

LIM(f) = lim
n→∞

f(n)

on the space C0(IN) of all functions f on IN for which this limit exists and
is finite. The functional LIM is continuous on the space C0(IN) by the esti-
mate |LIM(f)| ≤ sup |f |. By the Hahn–Banach theorem LIM extends to a
continuous linear functional on the space Cb(IN). It is clear that even on the
subspace C0(IN) the functional LIM cannot be represented as the integral
with respect to a countably additive measure on the space IN.

Such a situation is impossible for compact spaces. The following result is
called the Riesz representation theorem.

7.10.4. Theorem. Let K be a compact space. Then, for every contin-
uous linear functional L on the Banach space C(K), there exists a unique
Radon measure µ such that

L(f) =
∫

K

f(x)µ(dx), ∀ f ∈ C(K).

Proof. By Dini’s theorem, any sequence of continuous functions mono-
tonically decreasing to zero on a compact set is uniformly convergent (see
Engelking [532, 3.2.18]). Hence, in our case, every continuous linear func-
tional satisfies the hypothesis of Theorem 7.10.1. It remains to observe that
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every Baire measure on a compact space extends uniquely to a Radon measure
according to Theorem 7.3.2. �

The Riesz theorem yields at once a Radon extension of the product of
Radon measures µ and ν on compact spaces X and Y : the integral with
respect to µ⊗ν defines a continuous functional on C(X×Y ) (we recall that
for all compact spaces one has Ba(X×Y ) = Ba(X)⊗Ba(Y )).

7.10.5. Corollary. Let X be a compact space. Then formula (7.10.1) es-
tablishes a one-to-one correspondence between nonnegative linear functionals
on the space C(X) and nonnegative Radon measures on X.

The following two theorems characterize functionals generated by Radon
and τ -additive measures.

7.10.6. Theorem. Let X be a completely regular space. Formula (7.10.1)
establishes a one-to-one correspondence between Radon measures µ on X and
continuous linear functionals L on Cb(X) satisfying the following condition:
for every ε > 0, there exists a compact set Kε such that if f ∈ Cb(X) and
f |Kε= 0, then

|L(f)| ≤ ε sup |f |.
Proof. If µ is a Radon measure, then this condition is satisfied. Let

us prove the converse. Let {fn} be a sequence of bounded continuous func-
tions monotonically decreasing to zero. Let us verify the hypotheses of The-
orem 7.10.1. We may assume that |fn| ≤ 1 and ‖L‖ ≤ 1. Let us fix ε ∈ (0, 1)
and take the corresponding compact set Kε. By Dini’s theorem, there exists
a number n0 such that supKε |fn| < ε for all n > n0. For every n ≥ n0, we
find a function gn ∈ Cb(X) such that gn = fn on Kε and |gn| ≤ ε. Then
|L(gn)| ≤ ε. By hypothesis, |L(fn − gn)| ≤ 2ε, since fn − gn = 0 on Kε and
|fn − gn| ≤ 2. Hence |L(fn)| ≤ 3ε. Therefore, L is generated by a Baire
measure µ.

Let us verify that µ is tight. We observe that it suffices to consider
positive functionals L (this corresponds to nonnegative measures µ), since the
functional |L| generated by the measure |µ| satisfies the condition mentioned
in the formulation of the theorem. Indeed, if a compact set Kε is taken for ε
and L, and a function f ∈ Cb(X) vanishes outside Kε, then by Theorem 7.8.3
we have |L(f)| ≤ |L|(|f |) ≤ ε sup |f |, since |f | = 0 on Kε. Thus, we may
assume that µ is nonnegative. In order to show that µ is tight, suppose that a
Baire set B does not meet Kε. By the regularity of µ we can find a functionally
closed set Z ⊂ B such that µ(B\Z) < ε, and then a neighborhood U of Kε

disjoint with Z. By the complete regularity of X, there exists a continuous
function f : X → [0, 1] such that f = 0 on Kε and f = 1 outside U , in
particular, f = 1 on Z. Then

µ(Z) ≤
∫

X

f dµ < ε,

whence we obtain µ(B) < 2ε. �
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7.10.7. Theorem. Let X be a completely regular space. Formula (7.10.1)
establishes a one-to-one correspondence between τ -additive measures µ on X
and continuous linear functionals L on Cb(X) satisfying the following con-
dition: if a net {fα} of bounded continuous functions is decreasing to zero
pointwise, then L(fα) → 0.

Proof. According to Corollary 7.2.7, the functionals defined by τ -ad-
ditive measures satisfy the above condition. In view of Theorem 7.9.4, in
the proof of the converse assertion we can assume that the functional L is
nonnegative. It remains to apply Theorem 7.8.6. �

Thus, the classes of functionals Mσ(X), Mτ (X), and Mt(X) can be
identified with the respective classes of measures.

If an additive set function m ≥ 0 on Ba(X) is such that there is no nonzero
countably additive measure m1 ≥ 0 with m1 ≤ m, then m is called purely
finitely additive. If m is countably additive, but there is no nonzero τ -additive
m1 ≥ 0 with m1 ≤ m, then m is called purely countably additive. Finally, if
m is τ -additive, but there is no nonzero tight measure m1 ≥ 0 with m1 ≤ m,
thenm is called purely τ -additive. Let us mention the following decomposition
theorem obtained in Knowles [1015] (the existence of the compact regular
and τ -additive components was proved by Alexandroff [30], who raised the
question about the purely countably additive component).

7.10.8. Theorem. Every nonnegative additive set function m on the
Baire σ-algebra of a completely regular space X has a unique representation

m = mc +mτ +mσ +ma,

where mc ≥ 0 is a tight measure, mτ ≥ 0 is a purely τ -additive measure,
mσ ≥ 0 is a purely countably additive measure, and ma ≥ 0 is a purely
finitely additive set function on Ba(X). An analogous result is true for signed
additive set functions of bounded variation on Ba(X).

This result, excluding, possibly, the presence of the mτ -component, holds
for general Borel measures as well.

In connection with the Riesz representation theorem the following useful
condition of weak compactness in the space C(K) should be mentioned (see
Dunford, Schwartz [503, IV.6.14] for a proof and related references).

7.10.9. Theorem. Let K be a compact space and let F ⊂ C(K). Then
the following conditions are equivalent:

(i) the closure of F in the weak topology is compact,
(ii) every sequence in F has a weakly convergent subsequence,
(iii) F is norm bounded and is contained in a set in C(K) that is compact

in the topology of pointwise convergence.

7.11. Measures on locally compact spaces

Consideration of locally compact spaces brings some specific features in
the theory of integration. We recall that a Hausdorff topological space X is
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called locally compact if every point in X possesses an open neighborhood
with compact closure. A locally compact space is completely regular (see En-
gelking [532, Theorem 3.3.1]). By Lemma 6.1.5, for any compact set K in a
locally compact space X and any open set U ⊃ K, one can find a continu-
ous function f : X → [0, 1] such that f |K = 1 and f vanishes outside some
compact set contained in U . The set of all continuous functions on X with
compact support is denoted by C0(X). On typical non-locally compact spaces,
for example, infinite-dimensional normed spaces, the class C0(X) consists only
of the zero function. In the locally compact case, this class separates points,
which turns out to be of great importance in the theory of integration. Apart
from compact spaces, standard locally compact spaces encountered in appli-
cations are finite-dimensional manifolds and locally compact groups. Denote
by K(X) the class of all compact sets in X.

7.11.1. Theorem. Suppose that X is a locally compact space and that
τ : K(X) → [0,+∞) is a set function such that for all K1,K2 ∈ K(X), one
has

τ(K1∪K2) ≤ τ(K1)+τ(K2), τ(K1∪K2) = τ(K1)+τ(K2) if K1 ∩K2 = ∅,

and τ(K1) ≤ τ(K2) if K1 ⊂ K2. Then, there exists a unique measure µ on
B(X) with values in [0,+∞] that is outer regular in the sense that the measure
of every Borel set is the infimum of measures of the enclosing open sets, and
the value on every open set U is the supremum of measures of compact subsets
of U , and one has

µ(U) = sup
{
τ(K) : K ⊂ U, K ∈ K(X)

}
. (7.11.1)

In addition,
µ(Ko) ≤ τ(K) ≤ µ(K), ∀K ∈ K(X), (7.11.2)

where Ko is the interior of K.
If τ(K) = inf

{
τ(S) : S ∈ K(X), K ⊂ So

}
for all sets K ∈ K(X), then µ

coincides with τ on K(X).
Finally, the restrictions of µ to all Borel sets of finite measure are Radon

measures, and the formula

µ′(B) = sup
{
µ(K) : K ⊂ B, K ∈ K(X)

}
, B ∈ B(X), (7.11.3)

defines the Borel measure µ′ with values in [0,+∞] that coincides with µ on
compact sets, in particular, every function in C0(X) has equal integrals with
respect to µ and µ′ (the completion of µ′ is an infinite Radon measure in the
sense of �7.14(xviii)).

Proof. For every open set U , we define µ(U) by formula (7.11.1). We
obtain a monotone and additive function µ with values in [0,+∞] on the
class U of all open sets. Indeed, if U, V ∈ U are disjoint, then for every
compact set K ⊂ U ∪ V , the sets U ∩K and V ∩K are compact. This yields
µ(U ∪ V ) ≤ µ(U) + µ(V ) by the additivity of τ . The reverse inequality is
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easily verified as well. Further, one has

µ(U) = sup
{
µ(V ) : V ∈ U , V ⊂ U, V ∈ K(X)

}
.

This follows from the fact that for every compact set K ⊂ U , one can find a
set V ∈ U with the compact closure V such that K ⊂ V ⊂ V ⊂ U . Finally,
the function µ is countably subadditive. Indeed, if U =

⋃∞
i=1 Ui, Ui ∈ U ,

then, given ε > 0, there exists a set V ∈ U with compact closure such that
µ(V ) > µ(U) − ε and V ⊂ V ⊂ U . Then V ⊂

⋃n
i=1 Ui for some n, whence

µ(V ) ≤ µ
(⋃n

i=1 Ui

)
. Hence it suffices to establish the finite subadditivity of

µ on U . Now we can consider only two sets U1 and U2. For every compact set
K ⊂ U1∪U2, according to Exercise 7.14.71, there are continuous nonnegative
functions f1 and f2 with the compact supports K1 ⊂ U1 and K2 ⊂ U2,
respectively, such that f1 + f2 = 1 on K. The sets Qi = {fi ≥ 1/2} with
i = 1, 2 are compact in Ui and K = (K ∩Q1) ∪ (K ∩Q2). Hence

τ(K) ≤ τ(K ∩Q1) + τ(K ∩Q2) ≤ µ(U1) + µ(U2),

whence µ(U) ≤ µ(U1) + µ(U2). Then µ = µ∗ on U (Exercise 1.12.125). It is
readily seen that µ(A) = µ(A ∩ B) + µ∗(A\B) if A,B ∈ U , hence U ⊂ Mµ∗

(Exercise 1.12.126). The restriction of µ∗ to Mµ∗ will be denoted by µ as well.
Thus, we obtain an outer regular measure. For every K ∈ K(X), we have
µ(Ko) ≤ τ(K) by (7.11.1). Hence µ(Ko) ≤ τ(K) ≤ µ(K). The uniqueness of
µ follows by construction.

If for all K ∈ K(X) the condition τ(K) = inf{τ(S) : S ∈ K(X), K ⊂ So}
is fulfilled, then

µ(K) = inf{µ(U) : U ∈ U ,K⊂ U} ≤ inf{µ(So) : S∈ K(X),K⊂ So}
≤ inf{τ(S) : S∈ K(X),K⊂ So} = τ(K).

Note that under the aforementioned condition we could also apply Theo-
rem 1.12.33, which would give us the measure µ′.

If B ∈ B(X) and µ(B) < ∞, then the restriction of µ to B is a Radon
measure. Indeed, the outer regularity of µ yields that the restrictions of µ to
compact sets are Radon. Now, given ε > 0, we take an open set U ⊃ B with
µ(U\B) < ε/4, next we find a compact set K1 ⊂ U with µ(U\K1) < ε/4.
Since µ is Radon on K1, there exists a compact set K2 ⊂ K1 ∩ B with
µ
(
(K1 ∩ B)\K2

)
< ε/3. Hence K2 ⊂ B and µ(B\K2) < ε. Finally, for any

Borel set B with compact closure, we have µ′(B) = µ(B), since by the above
this is true for all sets of finite measure. The countable additivity of µ′ follows
by the additivity verified as follows. If A and B are disjoint and have finite
measures, then µ′ coincides with µ on A, B and A∪B, and if A or B has the
infinite measure, then A ∪B also does. �

7.11.2. Remark. (i) The measure µ constructed in the theorem may not
be inner compact regular, and the measure µ′ may not be outer regular, i.e.,
one cannot always combine both regularity properties (this happens for some
Haar measures, see also Example 7.14.65 and Exercise 7.14.160). Certainly,



116 Chapter 7. Measures on topological spaces

for finite measures this problem does not arise. The property of inner compact
regularity is more useful than the outer regularity, and in our discussion of
Haar measures in Chapter 9 we shall employ the measure µ′.

(ii) The assertions of the theorem remain valid if K(X) is a certain class of
compact sets in X that is closed with respect to finite unions and intersections
and contains all compact Gδ-sets. This is easily seen from the proof.

7.11.3. Theorem. Let X be a locally compact space and let L be a linear
function on C0(X) such that L(f) ≥ 0 if f ≥ 0. Then, there exists a Borel
measure µ on X with values in [0,+∞] such that

L(f) =
∫

X

f dµ, ∀ f ∈ C0(X). (7.11.4)

In addition, one can choose µ in such a way that it will be Radon on all sets
of finite measure (and even inner compact regular on B(X), and there is only
one measure with this property).

Proof. Here Theorem 7.8.7 is applicable, since if fn ∈ C0(X) and f ↓ 0,
then convergence is uniform. This theorem gives a measure on σ

(
C0(X)

)
that

can be extended to B(X) by the previous theorem and remark. Let us give an
alternative justification. For every open set V with the compact closure V , let
C0(V ) be the set of continuous functions on X with compact support in V .
Since V is open, the class C0(V ) can be identified with the set of all continuous
functions on V with compact support in V , extended to X by zero outside
the support. Thus, C0(V ) can be regarded as a linear subspace in the space
C(V ). The functional L on C0(V ) satisfies the condition L(f) ≤M maxV |f |
with some M ≥ 0. Indeed, let us find θ ∈ C0(X) with θ ≥ 0 and θ|V = 1.
Let M = L(θ). Then L(f) ≤ L(θ) if f ∈ C0(V ) and |f | ≤ 1. By the Hahn–
Banach theorem L extends to a continuous linear functional on C(V ), which
by the Riesz theorem gives a Radon measure ν on V such that

L(f) =
∫

V

f dν, ∀ f ∈ C0(V ).

Let µV = ν|V . Then

L(f) =
∫

V

f dµV , ∀ f ∈ C0(V ). (7.11.5)

It is clear that µV ≥ 0 and that if V,W are two open sets with compact
closure, then µV |V ∩W = µW |V ∩W . This follows by (7.11.5) due to the fact
that every Radon measure τ on V ∩W is uniquely determined by the values on
compact sets S ⊂ V ∩W and if τ ≥ 0, then τ(S) is the infimum of the integrals
with respect to τ of functions f ∈ C0(V ∩W ) with 0 ≤ f ≤ 1 and f |S = 1.
Thus, the required measure µ is constructed on the δ-ring of Borel sets whose
closures are compact. Given such a set B, we find its neighborhood V with
compact closure and set µ(B) := µV (B). It follows by the above that µ(B)
is well-defined. It remains to extend µ to all Borel sets. This can be done by
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formula (7.11.3). Certainly, one can also refer to the previous theorem and
remark. The uniqueness assertion is clear from the proof. �

If L is a nonnegative linear functional on the space C(X), then one might
hope to find a Borel measure µ such that (7.11.4) is true for all f ∈ C(X).
However, this is not always possible for general locally compact spaces. If
X is locally compact and σ-compact, then such a measure exists (details are
found in Exercise 7.14.161).

7.12. Measures on linear spaces

In this section, some of the general results obtained above are applied to
measures on linear spaces. If X is a linear space and G is some linear space
of linear functions on X, then sets of the form

C(f1, . . . , fn, B) =
{
x ∈ X :

(
f1(x), . . . , fn(x)

)
∈ B

}
,

where f1, . . . , fn ∈ G and B ∈ B(IRn), are called G-cylindrical. The family
of all G-cylindrical sets is denoted by Cyl(X,G). It is clear that the smallest
σ-algebra containing Cyl(X,G) is σ(G), i.e., the σ-algebra generated by G.

Any cylindrical set has the following representation. Suppose that the
functionals are fi linearly independent. Then, one can find linearly indepen-
dent vectors e1, . . . , en with fi(ej) = 0 if i �= j and fi(ei) = 1. The isomor-
phism (x1, . . . , xn) �→

∑n
i=1 xiei takes the set B to a set B′ in X. Then the

set C(f1, . . . , fn, B) is the cylinder B′ + L, where L is the intersection of the
kernels of the functionals fi, i.e., L =

⋂n
i=1 f

−1
i (0). Geometrically, one can

think of B′ + L as a cylinder with a base B′.
The most interesting case in applications is where X is a locally convex

space, X∗ is the space of all continuous linear functions on X, and G ⊂ X∗

is a linear subspace. If G = X∗, then the sets in Cyl(X,X∗) are called
cylindrical. Exercise 7.14.132 proposes to verify that the class Cyl(X,G) is
the algebra generated by G. The base of the topology σ(X,G) (see �4.7(ii))
consists of cylinders. Applying the general results from �7.1 to measures on
σ(X∗), where X is a locally convex space with the dual X∗, we see that
every measure µ on σ(X∗) is regular: for every A ∈ σ(X∗) and ε > 0, there
exists a closed set F ∈ σ(X∗) with F ⊂ A and |µ|(A\F ) < ε. We recall that
by Corollary 7.3.6 every tight nonnegative regular additive set function on
Cyl(X,X∗) has a unique extension to a nonnegative Radon measure on X.
Hence every Radon measure on a locally convex space is uniquely determined
by its values on Cyl(X,X∗). However, we shall prove this useful fact directly
in a different formulation.

7.12.1. Proposition. Let µ be a Radon measure on a locally convex
space X. Then, for every µ-measurable set A, there exists a set B ∈ σ(X∗)
such that |µ|(A�B) = 0. Moreover, if G ⊂ X∗ is an arbitrary linear subspace
separating the points in X, then such a set B can be chosen in σ(G).
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Proof. Let us verify that for every ε > 0, there exists a set C in
Cyl(X,G) such that |µ|(A � C) < ε. Since µ is Radon, it suffices to do
this for compact sets A. We find an open set U ⊃ A with |µ|(U\A) < ε/4
and a compact set S with |µ|(X\S) < ε/4. Now we use that on the compact
set S, the original topology of X coincides with the topology σ(X,G) (in
particular, if G = X∗, then with the weak topology). By the compactness
of A ∩ S one can find finitely many open G-cylindrical sets C1, . . . , Ck such
that A ∩ S ⊂ (C1 ∪ · · · ∪ Ck) ∩ S ⊂ U ∩ S. Let C = C1 ∪ · · · ∪ Ck. Then
C ∈ Cyl(X,G) and

|µ|(A�C) ≤ |µ|
(
(A∩S)� (C ∩S)

)
+ ε/4 ≤ |µ|

(
(U ∩S)\(A∩S)

)
+ ε/4 < ε,

as required. �

Let us explain why this proposition is not identical to Corollary 7.3.6.
The point is that the Lebesgue completion of σ(X∗) may not include B(X).
For example, we have already seen that if µ is Dirac’s measure at the point 0
on the product of the continuum of real lines, then this point does not belong
to σ

(
(IRc)∗

)
µ
. Hence the assertion of the proposition cannot be obtained by

using only the outer measure generated by the values of µ on Cyl(X,X∗) or
on σ(X∗). It is important that in this proposition the measure is already
defined on B(X).

7.12.2. Corollary. Let µ be a Radon measure on a locally convex
space X. Then the class of all bounded cylindrical functions on X is dense
in Lp(µ) for any p > 0. In the case of complex-valued functions, the same is
true for the linear space T generated by the functions exp(if), f ∈ X∗. More-
over, this assertion is true if we replace X∗ with any linear subspace G ⊂ X∗

separating the points in X.

Let µ be a set function on an algebra Cyl(X,G), where X is a locally
convex space and G ⊂ X∗. For every continuous linear operator P : X → IRn

of the form Px =
(
f1(x), . . . , fn(x)

)
, where fi ∈ G, one has the set function

µ ◦ P−1(B) := µ
(
P−1(B)

)
= µ

(
C(f1, . . . , fn, B)

)
, B ∈ B(IRn),

called the projection of µ generated by P .

7.12.3. Definition. An additive real function µ on Cyl(X,G) such that
all finite-dimensional projections µ ◦ P−1 are bounded and countably additive
is called a G-cylindrical quasi-measure. If G = X∗, then such a function is
called a cylindrical quasi-measure. A probability quasi-measure is a nonnega-
tive quasi-measure µ with µ(X) = 1.

It is clear that any countably additive measure on Cyl(X,G) is a G-
cylindrical quasi-measure, but the converse is false. Let us consider the follow-
ing simple example. Let X = l2, G = X∗ = l2, and let γ be the quasi-measure
defined as follows: if C = P−1(B), where P is the orthogonal projection to
a linear subspace L ⊂ X of dimension n and B is a Borel set in L, then
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γ(C) = γn(B), where γn is the standard Gaussian measure on L (with den-
sity (2π)−n/2e−|x|2/2 with respect to Lebesgue measure on L generated by the
inner product in X). It is clear that every cylinder can be written in such a
form. If the measure γ were countably additive on the algebra of cylinders,
then it would have a unique extension to a countably additive measure on the
σ-algebra generated by all cylinders (which coincides with the Borel σ-algebra
of X). However, direct computations show that in this case every ball has
measure zero. Indeed, if Un,R is the ball of radius R centered at the origin
in IRn, then lim

n→∞
γn(Un,R) = 0 for all R. This is a contradiction. Corol-

lary 7.3.6 states that a sufficient (in the case of a complete separable metric
space also necessary) condition of the countable additivity of a nonnegative
cylindrical quasi-measure is its tightness. In the next section we shall give
sufficient conditions in terms of characteristic functionals.

In applications, one usually deals with measures on separable Banach
spaces and also on some special nonnormable spaces such as the spaces S ′

and D′ of distributions. Measures on Fréchet spaces (i.e., complete metrizable
locally convex spaces) are concentrated on separable Banach spaces. The
proof of this fact employs the following construction, which is useful in diverse
problems of infinite-dimensional analysis. Let X be a locally convex space
and let K be a convex and symmetric compact set (the symmetry means that
−x ∈ K if x ∈ K). Denote by EK the linear subspace in X generated by K,
i.e., EK is the union of the sets nK. It turns out that EK can be made
a Banach space if we declare K to be the unit ball. More precisely, EK is
complete with respect to the norm pK(x) = inf{λ > 0: x/λ ∈ K}, called the
Minkowski functional of the set K. Moreover, in place of the compactness of
K it suffices that K be a bounded convex symmetric and sequentially complete
set (see Edwards [518, Lemma 6.5.2, p. 609].

7.12.4. Theorem. Let µ be a Radon probability measure on a Fréchet
space X. Then, there exists a linear subspace E ⊂ X such that µ(E) = 1 and
E with some norm ‖ · ‖E is a separable reflexive Banach space whose closed
balls are compact in X.

Proof. The topology of X is generated by a metric �. For every n,
we take a compact set Kn with µ(X\Kn) < 1/n. Then µ

(⋃∞
n=1Kn

)
= 1.

Let us pick a number cn > 0 such that cnKn belongs to the ball of radius
1/n centered at the origin. It is easily verified that the closure S of the
set

⋃∞
n=1 cnKn is compact. There is a convex symmetric compact set K0

containing S (see Schaefer [1661, Corollary in p. 80, �4, Ch. II]). This set
may not be what we want, since EK0 may not be even separable (just look at
the embedding of l∞ to IR∞). But according to Edwards [518, Lemma 9.6.4,
p. 922], one can take a larger convex symmetric compact set K1 such that K0

is compact as a subset of EK1 . The closure E0 of the linear span of K0 in EK1

is already a separable Banach space of full µ-measure. However, it may not
be reflexive, although its closed unit ball is compact in X (since K1 is the unit
ball in EK1). The measure µ can now be restricted to E0, since all Borel sets
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in E0 are Borel in X (see Chapter 6). Repeating this procedure once again,
we obtain a separable Banach space E2 ⊂ E0 of full µ-measure whose closed
unit ball is compact in E0. According to a well-known result in the theory
of Banach spaces (see Diestel [442, p. 124]), there exists a reflexive Banach
space E such that E2 ⊂ E ⊂ E0 and the unit ball from E is bounded in E0.
Note that E is automatically separable (Exercise 7.14.134), although one can
simply deal with the closure of E2 in E. The closed balls in E are compact
in X. This follows from the fact that they are closed in X, being convex and
weakly closed by their weak compactness in E (see [1661, Ch. IV]). �

The question arises as to which Banach spaces can be taken for E.
It is shown in Fonf, Johnson, Pisier, Preiss [596] that one cannot always

take for E a space with a Schauder basis or with the approximation property.
A Hilbert space E can be found even more rarely. Moreover, if in a Banach
space X every Radon measure is concentrated on a continuously embedded
Hilbert space, then X itself is linearly homeomorphic to a Hilbert space (see
Mouchtari [1337] and Sato [1651]). This assertion does not extend to Fréchet
spaces: for example, it is obvious that on IR∞ every Radon measure is concen-
trated on a continuously embedded Hilbert space

{
(xn) :

∑∞
n=1 cnx

2
n <∞

}
,

where the numbers cn > 0 decrease to zero sufficiently fast. Indeed, the unit
ball in the space E from the previous theorem is coordinate-wise bounded in
IR∞ and hence is contained in some Hilbert space of the indicated type. The
following interesting generalization of Theorem 7.12.4 is obtained in Matsak,
Plichko [1271]: one can take for E a closed subspace in the l2-sum of finite-
dimensional Banach spaces. Herer [819] and Okazaki [1397] considered the
so-called stochastic bases in a separable Fréchet space X with a Borel prob-
ability measure µ. A stochastic basis is a system of vectors ϕn ∈ X with the
following property: there exist fn ∈ X∗ with fn(ϕk) = δnk such that letting
Pnx :=

∑n
i=1 fi(x)ϕi, one has Pnx → x µ-a.e. It is shown in [1397] that

such a basis exists provided that all continuous seminorms are in L2(µ), the
elements of X∗ have zero means, and there is a sequence {fn} ⊂ X∗ whose
elements are independent random variables with respect to µ such that their
linear span is dense in X∗ with the metric from L2(µ). It is also shown in
the same work that the existence of a stochastic basis yields a Banach space
of full measure possessing a Schauder basis. Hence, by the above-mentioned
result, stochastic bases do not always exist.

7.13. Characteristic functionals

This section is devoted to the conditions of countable additivity of additive
set functions on certain algebras of subsets of a linear space. Our main tool
is the concept of a characteristic functional introduced by A.N. Kolmogorov.
However, we start our discussion with the following theorem of Bochner, giv-
ing the description of characteristic functionals of probability measures on IRn.
We already know that the characteristic functionals of probability measures
are positive definite, continuous and equal to 1 at the origin. It turns out that
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these properties completely identify the characteristic functionals of probabil-
ity measures.

7.13.1. Theorem. A function ϕ : IRn → C coincides with the character-
istic functional of a probability measure on IRn precisely when it is continuous,
positive definite and ϕ(0) = 1. Hence the class of all characteristic function-
als of nonnegative measures on IRn coincides with the class of all continuous
positive definite functions.

Proof. The necessity of the indicated conditions has already been es-
tablished. In the proof of sufficiency we suppose first that the function ϕ is
integrable. It was shown in the proof of Theorem 3.10.20 that ϕ coincides with
the characteristic functional of a probability measure possessing a density with
respect to Lebesgue measure. In the general case, we consider the integrable
functions ϕk(x) = ϕ(x) exp[−k−1|x|2/2], which are positive definite, since so
are the functions exp[−k−1|x|2/2] that are the Fourier transforms of Gaussian
densities. In addition, ϕk(0) = 1. Hence there exist probability measures µk
with µ̃k = ϕk. We show that for every δ > 0, there exists R > 0 such that

µk
(
x : |x| ≥ R

)
< δ, ∀ k ∈ IN. (7.13.1)

Since ϕ(x) = lim
k→∞

ϕk(x), for the standard Gaussian measure γn on IRn and

any t > 0, we have

lim
k→∞

∫

IRn
[1− ϕk(y/t)] γn(dy) =

∫

IRn
[1− ϕ(y/t)] γn(dy).

By (3.8.6) we obtain

lim sup
k→∞

µk
(
x : |x| ≥ R

)
≤ 3

∫

IRn
[1− ϕ(y/R)] γn(dy).

It remains to observe that as R→∞, the right-hand side tends to zero by the
dominated convergence theorem and continuity of ϕ. It follows by (7.13.1)
that for every bounded continuous function f on IRn, the integrals of f against
the measures µk converge. Indeed, such integrals have a limit for every smooth
function f with bounded support, since by the Parseval equality one has

∫

IRn
f dµk =

∫

IRn
(2π)n/2f̂ϕk dx,

where f̂ ∈ L1(IRn). This yields that such integrals converge for every continu-
ous function f with bounded support, and then (7.13.1) implies the existence
of a limit for every bounded continuous function. Moreover, (7.13.1) and The-
orem 7.11.3 yield the existence of a probability measure µ the integral with
respect to which of every bounded continuous function f equals the limit of
the above integrals (this also follows by a general theorem on the sequential
completeness in �8.7). It is easily verified that µ is the required measure. �
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We remark that by Theorem 3.10.20 and the Bochner theorem, every
measurable positive definite function ϕ almost everywhere equals the charac-
teristic functional of a nonnegative measure (however, even under the condi-
tion ϕ(0) = 1 it is not always true that this measure is probability, since the
continuous modification of ϕ may not equal 1 at zero). As has already been
noted, one cannot omit the measurability of ϕ.

We now proceed to infinite-dimensional analogs of the Bochner theorem.

7.13.2. Definition. The characteristic functional (the Fourier trans-
form) of a quasi-measure µ on Cyl(X,G) is the function µ̃ : G → C defined
by the equality

µ̃(f) =
∫

IR1
eit µ ◦ f−1(dt).

We remark that the function eit is integrable with respect to the bounded
measure µ ◦ f−1 on the real line.

The most important case for applications is where X is a locally convex
space and G = X∗ is its dual.

7.13.3. Definition. Let G be a linear space. A function ϕ : G → C is
called positive definite if

∑k
i,j=1 cicjϕ(yi − yj) ≥ 0 for all yi ∈ G, ci ∈ C,

i = 1, . . . , k, k ∈ IN.

The Bochner theorem yields the following.

7.13.4. Proposition. A function ϕ : G → C is the characteristic func-
tional of a probability quasi-measure precisely when it is positive definite, con-
tinuous on finite-dimensional linear subspaces in the space G and ϕ(0) = 1.

We note that if a quasi-measure µ is symmetric, i.e., µ(A) = µ(−A) for
every set A ∈ Cyl(X,G), then µ̃ is real.

7.13.5. Lemma. If µ and ν are measures on σ(X∗) and µ̃ = ν̃, then
one has µ = ν. The same is true for Radon measures.

Proof. For all functionals f1, . . . , fn ∈ X∗ by Proposition 3.8.6 we have
µ ◦ (f1, . . . , fn)−1 = ν ◦ (f1, . . . , fn)−1. Hence µ = ν on σ(X∗), which for
Radon measures yields the equality on B(X). �

It is clear that by the dominated convergence theorem the characteristic
functional of any measure on σ(X∗) is sequentially continuous. Hence if µ
is a measure on a normed space X, then the function µ̃ is continuous with
respect to the norm on X∗. In the general case, the characteristic functional
of a Radon measure is not continuous in the weak∗ topology σ(X∗,X). For
example, if X is an infinite-dimensional locally convex space, then the function
µ̃ is σ(X∗,X)-continuous only in the case, where µ is concentrated on the
union of a sequence of finite-dimensional subspaces (Exercise 7.14.133).

Let us give a sufficient condition of continuity of the Fourier transform of
a measure. Recall that a locally convex space X is called barrelled if every
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closed symmetric convex set whose multiples cover X contains a neighborhood
of zero. The Mackey topology τ(X∗,X) on the dual X∗ to a locally convex
space X is the topology of uniform convergence on convex symmetric weakly
compact sets in X. Regarding X as the dual to

(
X∗, σ(X∗,X)

)
, we obtain

the Mackey topology τ(X,X∗) on X. If the space X is barrelled, then its
topology is exactly the Mackey topology. A locally convex space is quasi-
complete if all closed bounded sets in it are complete, i.e., all fundamental
nets have limits.

7.13.6. Proposition. (i) Let µ be a Radon measure on a locally convex
space X. Then the function µ̃ is uniformly continuous in the topology of
uniform convergence on compact sets in X, and if X is quasi-complete, then
also in the Mackey topology τ(X∗,X).

(ii) If a measure µ is defined on the dual X∗ to a barrelled space X and
is Radon in the weak∗ topology, then the function µ̃ is uniformly continuous
on X.

Moreover, the characteristic functionals of Radon measures in a uniformly
tight bounded family are uniformly equicontinuous in both cases.

Proof. Let ‖µ‖ ≤ 1 and ε > 0. We can find a compact set K such
that |µ|(X\K) < ε. Let us take in X∗ the following neighborhood of zero:
U := {y ∈ X∗ : supx∈K |y(x)| < ε}. Then, by the estimate

∣
∣exp

(
iy(x)

)
−1
∣
∣ ≤

|y(x)| we have for all y ∈ U
∫

X

| exp(iy)− 1| d|µ| ≤ 2|µ|(X\K) +
∫

K

| exp(iy)− 1| d|µ| ≤ 2ε+ ε.

It remains to use the estimate
∣
∣µ̃(y1)− µ̃(y2)

∣
∣ ≤

∫

X

| exp(iy1)− exp(iy2)| d|µ| ≤
∫

X

| exp[i(y1− y2)]− 1| d|µ|.

If X is quasi-complete, then the closed convex envelope of any compact set
is compact, hence K can be made convex. In particular, this is the case
if X is the dual to a barrelled space (see Schaefer [1661, Ch. II, Corollary
in �4.3, Ch. IV, �6.1]). The last claim of the proposition is clear from our
reasoning. �

In general, µ̃ may not be continuous in the Mackey topology (see Kwapień,
Tarieladze [1095]).

We note the following simple estimate useful in the study of characteristic
functionals: if µ is a probability quasi-measure on Cyl(X,G), then for all l ∈ G
we have

|µ̃(l)− 1| ≤
∫

X

|l(x)|µ(dx) ≤
(∫

X

l(x)2 µ(dx)
)1/2

. (7.13.2)

One can ask under what conditions a function ϕ : X∗ → C is the char-
acteristic functional of a (Radon) measure on X. In the case of a nonneg-
ative measure on IRn, the Bochner theorem asserts that this is so if and
only if ϕ is continuous and positive definite. This is not true in general
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infinite-dimensional spaces. For example, the function e−(x,x) on the infinite-
dimensional Hilbert space X = l2 is not the characteristic functional of a
Borel measure because it is not sequentially continuous in the weak topol-
ogy. Important infinite-dimensional generalizations of the Bochner theorem
are given by the Minlos and Sazonov theorems. The Sazonov theorem [1655]
states that a function ϕ on a Hilbert space X is the characteristic functional
of a nonnegative Radon measure on X if and only if it is positive definite and
continuous in the topology generated by all seminorms of the form x �→ |Tx|,
where T is a Hilbert–Schmidt operator on X. According to the Minlos the-
orem [1320], if X is the dual to a barrelled nuclear space Y , then the same
is true for the Mackey topology on X. The role of Hilbert-Schmidt operators
in both theorems was clarified by Kolmogorov [1031].

A continuous linear operator on a Hilbert space X is called a Hilbert–
Schmidt operator if for some orthonormal basis {eα}, the sum of the se-
ries

∑
α |Teα|2 is finite (then this sum is independent of the basis). An

operator S on H is called nonnegative nuclear if S is a symmetric opera-
tor such that (Sx, x) ≥ 0 for all x and

∑
α(Seα, eα) < ∞ for some (and

then for all) orthonormal basis {eα}. Given a locally convex space X, we
denote by LS(X∗,X) the class of all operators R : X∗ → X of the form
R = ASA∗, where S is a symmetric nonnegative nuclear operator in some
separable Hilbert space H and A : H → X is a continuous linear operator.
Let T (X∗,X) be the locally convex topology on X∗ generated by all semi-
norms y �→

√
〈y,Ry〉, R ∈ LS(X∗,X). This topology is called the Sazonov

topology. Similarly, one defines the topology T (X,X∗) on X. The Sazonov
topology on a Hilbert space X is generated by the seminorms x �→ |Tx|, where
T is a Hilbert–Schmidt operator on X.

If X is a locally convex space, then the set M ⊂ X∗ is called σ(X∗,X)-
bounded if supl∈M |l(x)| <∞ for every x ∈ X. The strong topology β(X,X∗)
on X is the topology of uniform convergence on all σ(X∗,X)-bounded sets
in X∗.

7.13.7. Theorem. Let X be a locally convex space and let ϕ be a positive
definite function on X∗ that is continuous in the topology T (X∗,X) with
ϕ(0) = 1. Then ϕ is the characteristic functional of a probability measure on
X that is Radon with respect to the strong topology β(X,X∗).

Proof. By the finite-dimensional Bochner theorem, the function ϕ is the
characteristic functional of a cylindrical quasi-measure µ. We have to verify
that the measure µ is tight when X is considered with the strong topology.
The main idea of the proof is to apply the following estimate. Let µ be
a probability measure on IRn, and let A and B be symmetric nonnegative
operators on IRn such that B is invertible. Similarly to Corollary 3.8.16 one
proves that if 1 − Reµ̃(y) ≤ ε whenever (Ay, y) ≤ 1, then for all C > 0 one
has

µ
(
x : (Bx, x) ≥ C

)
≤

√
e√

e− 1
(
ε+ 2C−1traceAB

)
.
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Now one can verify that for every ε > 0, there exists a compact ellipsoid Kε

in X such that µ∗(Kε) > 1− ε. This ellipsoid is constructed in the following
way. Given δ > 0, there exists a seminorm qδ ∈ T (X∗,X) with the property
that 1−Reµ̃(y) ≤ δ whenever qδ(y) < 1. Let S := {y ∈ X∗ : qδ(y) < C} and

Kε :=
{
x ∈ X : sup

y∈S
|y(x)| ≤ 1

}
.

By using the aforementioned inequality one can choose δ and C such that the
set Kε will be as required. Since the corresponding arguments are presented in
detail in Bourbaki [242, Ch. IX, �6], Vakhania, Tarieladze, Chobanyan [1910,
Ch. VI, �4], Daletskii, Fomin [394, Ch. III, �1], and Smolyanov, Fomin [1755,
�4], we do not reproduce them here. �

7.13.8. Corollary. A function ϕ on a Hilbert space X with ϕ(0) = 1 is
the characteristic functional of a Radon probability measure on X if and only
if it is positive definite and continuous in the Sazonov topology generated by
all seminorms of the form x �→ |Tx|, where T is a Hilbert–Schmidt operator
on X.

Proof. The sufficiency of continuity in the Sazonov topology is clear
from the theorem, since R =

√
S is a Hilbert–Schmidt operator for any non-

negative nuclear operator S on X. Now let µ be a Radon probability measure
on X. It suffices to verify the continuity in the Sazonov topology in the case
where µ is concentrated on the ball of radius M centered at the origin, since
the measures IUn · µ, where Un is the ball of radius n centered at the ori-
gin, converge in the variation norm to µ, and their characteristic functionals
converge uniformly to µ̃. The nonnegative operator S defined by the equality

(Su, v) =
∫

X

(u, x)(v, x)µ(dx),

is nuclear, since for any orthonormal basis {ej} one has
∞∑

j=1

(Sej , ej) =
∫

X

|x|2 µ(dx) ≤M2.

It remains to apply (7.13.2), which yields |µ̃(y)− 1| ≤ |
√
Sy|. �

In general Banach spaces, the condition of Theorem 7.13.7 is not necessary
(see Vakhania, Tarieladze, Chobanyan [1910], Mushtari [1348]). Moreover,
the Radon measures on a Banach space X with T (X∗,X)-continuous char-
acteristic functionals are precisely the measures concentrated on continuously
embedded separable Hilbert spaces. In order to obtain the Minlos theorem,
one has to consider the case where X is the dual to a nuclear space. Namely,
by using Theorem 7.13.7 one proves the following.

7.13.9. Theorem. Let E be a nuclear locally convex space.
(i) Let ϕ be a positive definite function on E with ϕ(0) = 1 that is con-

tinuous in the topology T (E,E∗). Then ϕ is the characteristic functional of
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a probability measure on E∗ that is Radon with respect to the strong topology
β(E∗, E).

(ii) If E∗ is metrizable or barrelled, then the characteristic functional of
any probability measure on E∗ that is Radon in the weak∗ topology σ(E∗, E)
(e.g., is Radon in the strong topology β(E∗, E)) satisfies the conditions in (i).

It should be noted that in the above theorem, it is not enough to have only
the sequential continuity of the characteristic functional. For example, for any
compact symmetric nonnegative operator S on l2 that has no finite trace, the
function exp

(
−(Sx, x)

)
is the characteristic functional of a non-countably ad-

ditive Gaussian cylindrical quasi-measure on l2 and is sequentially continuous
even in the weak topology (which is weaker than the Sazonov topology).

The analysis of the proof of Theorem 7.13.7 yields at once the following
statement (see details in Daletskii, Fomin [394, Ch. III], Smolyanov, Fomin
[1755, �4]).

7.13.10. Corollary. (i) Let M be a family of probability measures on
the σ-algebra σ(X∗) in a locally convex space X such that their characteristic
functionals are equicontinuous at the origin in the topology T (X∗,X). Then
the family M is uniformly tight with respect to the strong topology β(X,X∗).

(ii) If a locally convex space X is barrelled and nuclear, then the char-
acteristic functionals of any uniformly tight family of Radon (with respect to
the topology σ(X∗,X)) probability measures on X∗ are equicontinuous at the
origin in the topology of space X.

It is important for applications that the above analogs of the Bochner
theorem are valid for such spaces as IR∞, S(IRn), S ′(IRn), D(IRn), D′(IRn).

7.14. Supplements and exercises

(i) Extensions of product measures (126). (ii) Measurability on products (129).
(iii) Mař́ık spaces (130). (iv) Separable measures (132). (v) Diffused and atom-
less measures (133). (vi) Completion regular measures (133). (vii) Radon
spaces (135). (viii) Supports of measures (136). (ix) Generalizations of
Lusin’s theorem (137). (x) Metric outer measures (140). (xi) Capacities (142).
(xii) Covariance operators and means of measures (142). (xiii) The Choquet
representation (145). (xiv) Convolution (146). (xv) Measurable linear func-
tions (149). (xvi) Convex measures (149). (xvii) Pointwise convergence (151).
(xviii) Infinite Radon measures (154). Exercises (155).

7.14(i). Extensions of product measure

Let X1 and X2 be topological spaces with σ-algebras of one of our stan-
dard classes (say, Borel or Baire). The space X = X1×X2 is topological as
well and can be equipped with the corresponding σ-algebra. If the inclusions
B(X1)⊗B(X2) ⊂ B(X), Ba(X1)⊗Ba(X2) ⊂ Ba(X) are strict, then the ques-
tion arises about extensions of a product measure µ to these larger σ-algebras
(see �7.6). There are trivial cases, where µ is defined on B(X) or Ba(X). For
example, if the spaces Xi have countable bases, then B(X) = B(X1)⊗B(X2),
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and if both X1 and X2 are compact, then Ba(X) = Ba(X1)⊗Ba(X2) (see
Lemma 6.4.2).

According to Fremlin [622], B(X1×X2) may not belong to the Lebesgue
completion of B(X1)⊗B(X2) with respect to the measure µ1⊗µ2 even if both
measures µ1 and µ2 are completion regular (see Definition 7.14.17) Radon
measures on compact spaces. However, as we know, the product measure
admits a Radon extension. It remains an open problem whether the product
of two Borel measures on topological spaces can be always extended to a
Borel measure (this problem is not solved even for purely atomic measures
on compact spaces). It is not known whether there exists a non-Radon Borel
extension of the product of two Radon measures on compact spaces. The
following result shows that the condition in Theorem 7.6.5 can be partly
relaxed.

7.14.1. Theorem. Let µ1 and µ2 be Borel measures on topological spaces
X1 and X2, respectively. Then, the product measure µ = µ1⊗µ2 extends to a
Borel measure on X = X1×X2 in either of the following cases:

(i) at least one of the measures µ1 and µ2 is τ -additive (for example, is
Radon);

(ii) either X1 or X2 is a first countable space.

Assertion (i) is obvious from Lemma 7.6.4 (it was noted in Godfrey, Sion
[703], Ressel [1555], Johnson [911]), and (ii) can be found in Johnson [907].
As observed by R.A. Johnson (see Gardner [660, Section 26]), in case (i) there
may exist two different Borel extensions of µ1⊗µ2. The proof of (i) employs the
following natural construction of a product of two probability Borel measures
µ and ν on topological spaces X and Y . Given a set B ∈ B(X×Y ), the sets
Bx := {y : (x, y) ∈ B} are Borel in Y . Hence the function x �→ ν(Bx) is
well-defined. If this function is µ-measurable (as is the case if ν is τ -additive),
then we shall say that the measure νµ is defined and set

νµ(B) :=
∫

X

ν(Bx)µ(dx).

It is clear that such a measure is a Borel extension of µ⊗ν. However, Johnson
[908] constructed examples where the measure νµ is not defined. In addition,
he constructed an example where the measure νµ is defined whereas the mea-
sure µν is not. Finally, there is an example (Exercise 7.14.111) where X = Y ,
and both measures νµ and µν are defined, but are not equal.

We close this subsection with two interesting results on infinite products.

7.14.2. Theorem. Let µn be τ -additive probability measures on topo-
logical spaces Xn, n ∈ IN. Then the measure µ =

⊗∞
n=1 µn on the σ-algebra⊗∞

n=1 B(Xn) in the space X =
∏∞
n=1Xn is τ -additive as well and extends to

a τ -additive measure on B(X).

The proof is delegated to Exercise 7.14.70.
We have seen in Example 7.3.1 that the Lebesgue completion of an un-

countable product of Dirac measures is not defined on all Borel sets. The
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following theorem shows that this effect is caused by open sets of zero mea-
sure in the factors.

7.14.3. Theorem. Let T be a nonempty set and let Xt, t ∈ T , be sep-
arable metric (or Souslin) spaces with Radon probability measures µt such
that for every t, the measure µt does not vanish on nonempty open sets. Let
X :=

∏
t∈T Xt and µ =

⊗
t∈T µt. Then B(X) belongs to the Lebesgue com-

pletion of
⊗

t∈T B(Xt) with respect to µ, and µ is τ -additive. In particular, in
the case of separable metric spaces or completely regular Souslin spaces, µ is
completion regular in the sense of Definition 7.14.17 below.

Proof. (1) Let Uα, where α belongs to some index set, be nonempty open
sets of the form Vα×Yα, where Vα is an open set in the product of finitely
many spaces Xt and Yα is the product of the remaining Xt. Let U :=

⋃
α Uα.

We show that there exists a finite or countable set of indices αn such that
µ
(
U\
⋃∞
n=1 Uαn

)
= 0. By Corollary 4.7.3, there exists a countable set of

indices αn such that µ
(
Uα\

⋃∞
n=1 Uαn

)
= 0 for each α. We show that this is

the required set. Since each Uαn depends only on finitely many coordinates,
one can find a finite or countable set S ⊂ T with the property that every
Uαn has the form Uαn = Wn×Y , where Wn is an open set in

∏
s∈S Xs

and Y :=
∏
t∈T\S Xt. Denote by π the projection to the countable product

∏
s∈S Xs and set U ′ :=

⋃∞
n=1 Uαn . The set π(U) is open in

∏
s∈S Xs. Since

U ′ ⊂ U ⊂ π−1
(
π(U)

)
, where the open sets U ′ and π−1

(
π(U)

)
belong to⊗

t∈T B(Xt), it suffices to show that µ(U ′) = µ
(
π−1

(
π(U)

))
. Suppose that

µ(U ′) < µ
(
π−1

(
π(U)

))
, i.e., µ ◦ π−1

(
π(U ′)

)
< µ ◦ π−1

(
π(U)

)
. In the case

of separable metrizable spaces, the product
∏
s∈S Xs is separable metrizable

as well, and the set π(U) is the union of open (in this space) sets π(Uα).
Therefore, π(U) coincides with some finite or countable union of these sets.
The same is true in the case of Souslin spaces. Hence, there exists α such that

µ ◦ π−1
(
π(Uα)\π(U ′)

)
> 0. (7.14.1)

The set Uα can be written in the form Uα = W1 ∩W2, where

W1 = G×
∏

s∈S\F
Xs×

∏

t∈T\S
Xt, W2 =

∏

s∈S
Xs×W×

∏

t∈T\(S∪N)

Xt,

F ⊂ S and N ⊂ T\S are finite sets, G is open in
∏
s∈F Xs, W is open

in
∏
t∈N Xt. It is clear that µ(Uα\U ′) = µ(W2)µ(W1\U ′) by the definition

of the product measures (in this case everything reduces to the countable
product over the indices in S ∪ N). Our hypothesis yields that µ(W2) > 0,
since this number equals the measure of the nonempty open set W in the
finite product of the spaces Xt, t ∈ N . By the construction of U ′ we have
µ(Uα\U ′) = 0. Hence µ(W1\U ′) = 0. This contradicts (7.14.1), since we have
π(Uα) = G×

∏
s∈S\F Xs = π(W1) and µ(W1\U ′) = µ ◦ π−1

(
π(W1)\π(U ′)

)
.

(2) By the above, all open sets belong to the completion of
⊗

t∈T B(Xt),
hence it contains B(X). In addition, we obtain the τ -additivity of µ. �
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7.14.4. Remark. It is clear from the proof that this theorem extends to
more general spaces, for example, hereditary Lindelöf. One could also require
the validity of the conclusion for all finite products of τ -additive measures µt
that are positive on nonempty open sets.

7.14(ii). Measurability on products

When one considers functions on the product X×Y of topological spaces,
the following two questions frequently arise:

(a) the measurability of the function f(x, y) in the situation where the
functions x �→ f(x, y) and y �→ f(x, y) possess certain nice properties,

(b) the measurability or continuity of the function

x �→
∫

Y

f(x, y) ν(dy), (7.14.2)

where ν is a measure on Y ,
(c) the measurability of the function f

(
x, ϕ(x)

)
for a mapping ϕ : X → Y .

In Lemma 6.4.6 and Exercise 6.10.43 we have already encountered ques-
tion (a); Corollary 3.4.6 and Lemma 7.6.4 were concerned with question (b).
In this subsection, some additional related facts are mentioned. Exercises
7.14.102–7.14.106 contain information on question (a). In particular, it turns
out that if X and Y are equipped with Radon measures µ and ν, and all
compact sets in Y are metrizable (for example, Y is a Souslin space), then
the continuity of f in y and its µ-measurability in x yield the measurability
with respect to µ⊗ν. However, one cannot omit the requirement of metriz-
ability of compact sets in Y . Under the continuum hypothesis, Fremlin [621]
constructed a counter-example (see Exercise 7.14.106). Let us mention an
interesting result from Johnson [905] and Moran [1329], extended in Fremlin
[621] to arbitrary finite products.

7.14.5. Theorem. Let µ and ν be Radon probability measures on X
and Y and let a function f : X×Y → IR1 be continuous in every argument
separately. Then f is measurable with respect to the Radon measure on X×Y
that is the extension of µ⊗ν.

The proof and a more general assertion can be found in Exercise 7.14.105.
We remark that this theorem follows at once from Proposition 5.2 in Burke,
Pol [285], according to which every separately continuous function on the
product of two compact spaces is jointly Borel measurable.

Concerning question (b) we note that if a function f is bounded and con-
tinuous in every argument separately, then in the case of a metrizable space X,
the function (7.14.2) is continuous on X by the dominated convergence theo-
rem. If X is Souslin (or compact sets in X are metrizable), then such functions
are µ-measurable due to the sequential continuity. In the general case, the
function (7.14.2) may fail to be continuous.

7.14.6. Example. Let X = [0, 1] be equipped with Lebesgue measure
and let Y be the space of all continuous functions from [0, 1] to [0, 1] with the
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topology of pointwise convergence. Set F (x, y) = y(x), x ∈ X, y ∈ Y . The
function F is continuous in every argument separately, but the function

ϕ(y) =
∫ 1

0

F (x, y) dx =
∫ 1

0

y(x) dx

is discontinuous on Y since for any x1, . . . , xn ∈ [0, 1], there is y ∈ Y with
y(xi) = 0 and ϕ(y) > 1/2, although ϕ is sequentially continuous.

Now we give a positive result from Glicksberg [697].

7.14.7. Theorem. Let X be a compact space, let Y be a Hausdorff
space, and let f : X ×Y → IR1 be a bounded function that is continuous
in every argument separately. Then, for every Radon measure ν on Y , the
function (7.14.2) is continuous.

Proof. Since ν is a limit of a sequence of Radon measures with compact
support convergent in variation, it suffices to consider the case where Y is
compact. For every x ∈ X, we consider the function fx : y �→ f(x, y). By the
continuity of f in the second argument, we have fx ∈ C(Y ). By the continuity
of f in the first argument, the mapping x �→ fx from X to the space C(Y )
with the topology of pointwise convergence is continuous. Hence the image
Φ of this mapping is compact in the pointwise topology. By the boundedness
of f the set Φ is norm bounded in C(Y ). By Theorem 7.10.9 the topology of
pointwise convergence coincides on Φ with the weak topology. Therefore, the
considered mapping is continuous if we equip C(Y ) with the weak topology,
which proves our assertion. �

Exercise 7.14.107 gives some generalization of this theorem. For jointly
continuous functions the situation simplifies; the proof of the next result is
left as Exercise 7.14.108.

7.14.8. Proposition. Suppose that X and Y are Hausdorff spaces. Let µ
be a τ -additive measure on Y and let f : X×Y → IR1 be a bounded continuous
function. Then the function (7.14.2) is continuous.

Concerning question (c), see Exercise 7.14.113. The measurability of sep-
arately continuous functions is also considered in Janssen [883].

7.14(iii). Mař́ık spaces

Mař́ık [1267] obtained the following result.

7.14.9. Theorem. If a space X is normal and countably paracompact,
then every Baire measure µ on X has a regular Borel extension ν that, for
every open set U ⊂ X, satisfies the condition

|ν|(U) = sup
{
|µ|(F ) : F ⊂ U, F = f−1(0), f ∈ Cb(X)

}
.

This nice result gave rise to the problem of characterization of topological
spaces with the Mař́ık property.
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7.14.10. Definition. Let X be a completely regular space.
(i) The space X is called a Mař́ık space if every Baire measure on X

extends to a regular Borel measure.
(ii) The space X is called a quasi-Mař́ık space if every Baire measure on

X extends to a Borel measure (not necessarily regular).
(iii) The space X is called measure-compact (or almost Lindelöf) if every

Baire measure on X has a τ -additive Borel extension.

By definition, every normal countably paracompact space is a Mař́ık
space. It has already been noted (see Example 7.3.9 and Exercise 7.14.69)
that not all completely regular spaces are Mař́ık. A general result, which
gives a lot of examples with additional interesting properties, is proved in
Ohta, Tamano [1394]. In particular, according to [1394, Example 3.5], there
exists a countably paracompact space X with a Baire measure µ without
Borel extensions. Under some additional set-theoretic assumptions, there ex-
ists a normal space X with a Baire measure without Borel extensions (see
Fremlin [635, �439N]). Thus, both conditions in Mař́ık’s theorem are essen-
tial. Trivial examples of Mař́ık spaces are perfectly normal spaces. Compact
spaces are less trivial examples, since we know that a Baire measure on a
compact space may possess Borel extensions that are not regular. It is clear
by Theorem 7.3.2(ii) that any measure-compact space is Mař́ık. As shown
in Fremlin [623], under Martin’s axiom and the negation of the continuum
hypothesis, the space INω1 is measure-compact (hence Mař́ık), but is neither
normal nor countably paracompact. As shown in Moran [1328] and Kemper-
man, Maharam [980], such standard spaces of measure theory as IRc and INc,
where c is the cardinality of the continuum, are not measure-compact. Under
some additional set-theoretic axiom, Aldaz [19] established the existence of a
normal quasi-Mař́ık space that is not Mař́ık. On the other hand, it is shown
in [19] that a quasi-Mař́ık space X is Mař́ık if every countable open cover
of X has a pointwise finite refinement. It is known that the product of any
family of metric spaces is a quasi-Mař́ık space (Ohta, Tamano [1394]). It is
unknown whether such a product is always Mař́ık (in particular, it is even
unknown whether any power of IN is a Mař́ık space). According to [1394,
Example 3.16], the union of two Mař́ık spaces may not be a quasi-Mař́ık space
even if one of them is a functionally open set and the other one is a functionally
closed set. There exists a first countable locally compact space X possessing
a Baire probability measure µ that has no Borel extensions (see Fremlin [635,
�439L]). Aldaz [19] has shown that the union X = Y ∪ K and the product
X = Y ×K, where Y is a Mař́ık space and K is compact, are Mař́ık spaces.
Gale [651] proved that the union of a compact space and a measure-compact
space is measure-compact. It is worth noting that every F-analytic set (hence
every Baire set) in a measure-compact space is measure-compact, see Fremlin
[635, �436G]. Some additional information can be found in Adamski [7], Al-
daz [19], Bachman, Sultan [89], Gale [651], Gardner, Gruenhage [664], Kirk
[1004], Koumoullis [1046], Ohta, Tamano [1394], Wheeler [1978], [1979].
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7.14(iv). Separable measures

In applications it is often desirable to deal with separable measures. By
definition (see �1.12(iii)), a bounded measure µ on (X,B) is separable if there
exists an at most countable family C ⊂ B such that for every B ∈ B and
every ε > 0, one can find a set C ∈ C with |µ|(B�C) < ε (in other words,
the countable family C is dense in the measure algebra associated with |µ|).
It is easily verified that µ is separable if and only if all spaces Lp(µ), where
p ∈ (0,∞), are separable (in fact, the separability of either of these spaces
is enough, see Exercise 4.7.63). The connections between the separability of
a measure and its topological regularity properties are not very strong. For
example, the product µ of the continuum of copies of Lebesgue measure on
I = [0, 1] is a nonseparable Radon measure on a separable compact space Ic

(the mutual distances in L2(µ) between the coordinate functions are equal
positive numbers). On the other hand, let us consider an example of a Radon
measure µ on a compact space X that vanishes on every metrizable compact
set, hence on every Souslin set in X (according to Exercise 7.14.156, so does
the above-mentioned product), but has separable L1(µ).

7.14.11. Example. Let X be the space “two arrows” (see Example
6.1.20). The space X is compact, separable, perfectly normal, hereditary
Lindelöf and satisfies the first axiom of countability, but every metrizable
subspace in X is at most countable. In addition:

(i) the Borel σ-algebra of X is generated by a countable family and sin-
gletons, and every Borel measure on X is separable;

(ii) there exists a Radon probability measure µ on X (the natural nor-
malized linear Lebesgue measure on X) such that its image under the natural
projection coincides with Lebesgue measure on [0, 1], and µ vanishes on all
metrizable subspaces in X (hence on all Souslin subsets in X).

Proof. The topological properties of X are listed in Example 6.1.20.
We recall that B(X) is contained in the Borel σ-algebra generated by the
standard topology of IR2, since X is hereditary Lindelöf and every open set
in X is an at most countable union of elements of the base. According to
Exercise 6.10.36, B(X) consists of all sets B such that for some Borel set
E ⊂ [0, 1], the set B � π−1(E) is at most countable, where π : X → [0, 1] is
the natural projection. It is clear from this description that B(X) is generated
by a countable family and singletons and that every measure on B(X) is
separable. The measure µ is given by the formula µ(B) = λ(E). The Radon
property of µ is obvious from the fact that the set S := π

(
B � π−1(E)

)
is

at most countable, hence for every ε > 0, the set E\S contains a compact
subset K with λ(K) > λ(E) − ε, and the set π−1(K) is compact in X. By
construction, µ vanishes on all countable sets, hence by property (i) on all
metrizable subsets (which yields that it vanishes on all Souslin subset in X).
Note that µ is a unique probability measure on B(X) with the projection λ.
We observe that every measure on B(X) is Radon (the proof is similar). �
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The following result (its proof is delegated to Exercise 7.14.147) gives
some sufficient conditions of separability.

7.14.12. Proposition. Either of the following conditions is sufficient
for separability of a Borel measure µ on a space X:

(i) the space X is hereditary Lindelöf and there exists a countable family
of measurable sets approximating with respect to µ every element of some base
of the topology in X;

(ii) for each ε > 0, there exists a metrizable compact set Kε such that one
has |µ|(X\Kε) < ε.

7.14.13. Example. Suppose that all compact subsets in X are metriz-
able. Then every Radon measure on X is separable.

We recall that a simple necessary and sufficient condition of the metriz-
ability of a compact space K is the existence of a countable family of contin-
uous functions separating the points in K.

7.14(v). Diffused and atomless measures

7.14.14. Definition. A Borel measure on a Hausdorff space is called
diffused or continuous if it vanishes on all singletons.

Let us recall a concept already encountered in �1.12(iii).

7.14.15. Definition. Let (M,M, µ) be a space with a nonnegative mea-
sure. An element A ⊂ M is called an atom of the measure µ if µ(A) > 0
and every element B in M that is contained in A, has measure either zero
or µ(A). A measure without atoms is called atomless.

It is clear that any atomless Borel measure is diffused. The following
assertion is obvious (see Exercise 7.14.148).

7.14.16. Lemma. Every diffused τ -regular (for example, Radon) mea-
sure is atomless.

There exist diffused Borel measures with atoms. An example is the
Dieudonné measure (see Example 7.1.3), for which the whole space is an
atom (since this measure assumes only two values).

It is shown in Grzegorek [751] that there exist two countably generated σ-
algebras S1 and S2 such that on each of them there exist atomless probability
measures, but there are no such measures on σ(S1 ∪S2).

7.14(vi). Completion regular measures

7.14.17. Definition. (i) A Baire measure is called completion regular
if its Lebesgue extension contains the Borel σ-algebra. A Borel measure is
called completion regular if its restriction to the Baire σ-algebra is completion
regular; in other words, for every B ∈ B(X), there exist B1, B2 ∈ Ba(X) with

B1 ⊂ B ⊂ B2 and |µ|(B1\B2) = 0.
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(ii) A Baire measure is called monogenic if it has a unique regular Borel
extension. A Borel measure is called monogenic if so is its Baire restriction.

It is clear that any completion regular measure is monogenic, but the
converse is not true (for example, for the Dieudonné measure). There exists
a Radon measure on a Radon space (a space on which every Borel measure
is Radon, see the next subsection) such that it is not completion regular. See
references and additional results in Gardner [660, �21].

According to Theorem 7.14.3, the product of any family of Radon proba-
bility measures on separable metric (or Souslin) spaces is completion regular,
provided these measures are positive on nonempty open sets. An important
example of a completion regular measure is the Haar measure on any locally
compact group (see Theorem 9.11.6).

It is unknown whether in the ZFC there exists an example of a com-
pletion regular, but not τ -additive measure on a completely regular space.
Moran [1328] constructed an example of a Baire measure on IRc that is not
τ -additive, but his measure is not completion regular. Assuming that there
is a measurable cardinal, we obtain a Baire measure on a metric space that is
not τ -additive (but is completion regular, of course). Let us consider a class
of spaces on which any completion regular measure is τ -additive.

A space X is called dyadic if it is a continuous image of the space {0, 1}I
for some set I. The following spaces are dyadic: (i) compact metric spaces,
(ii) finite unions and arbitrary products of dyadic spaces, (iii) functionally
closed sets in dyadic spaces, (iv) compact topological groups. Fremlin and
Grekas [637] introduced the larger class of quasi-dyadic spaces, i.e., continuous
images of arbitrary products of separable metric spaces. According to [637],
continuous images, arbitrary products, and countable unions of quasi-dyadic
spaces are quasi-dyadic. In addition, the Baire subsets of quasi-dyadic spaces
are quasi-dyadic. The following two results are obtained in [637].

7.14.18. Theorem. Let X be a quasi-dyadic space with a completion
regular Borel probability measure µ. Then µ is τ -additive. If, in addition,
ν is a τ -additive Borel probability measure on a space Y , then every open
subset in X×Y is measurable with respect to the usual product measure µ⊗ν.

7.14.19. Corollary. Let Xα, α ∈ A, be a family of quasi-dyadic spaces
equipped with completion regular Borel probability measures µα. Suppose that
all, with the exception of at most countably many, measures µα are positive
on nonempty open sets. Then the measure ⊗αµα on the space

∏
α∈AXα is

defined on the Borel σ-algebra and is completion regular.

It is worth noting in this connection that according to Gryllakis, Kou-
moullis [750], if µα are τ -additive Borel probability measures such that all τ -
additive finite sub-products are completion regular and all measures µα, with
the exception of at most countably many of them, are positive on nonempty
open sets, then the usual product measure is defined on the Borel σ-algebra
of
∏
Xα and is τ -additive, i.e., µ is completion regular.
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7.14(vii). Radon spaces

Let us consider the following classes of topological spaces.

7.14.20. Definition. (i) A topological space X is called a Radon space
if every Borel measure on X is Radon.

(ii) A topological space X is called Borel measure-complete if every Borel
measure on X is τ -additive.

Any Radon space is Borel measure-complete, but the converse is false
(example: a nonmeasurable subset of an interval). Exercise 7.14.128 lists some
properties of Radon spaces. Not all compact spaces are Radon (example: the
Dieudonné measure). There exists a first countable compact space that is not
Radon (see Fremlin [635, �439J]). The class of Radon spaces is not closed
with respect to weakening the topology, taking continuous (even injective)
images and, under the continuum hypothesis, the product of two compact
Radon spaces may not be a Radon space (see Wage [1955]). It is unknown
whether every continuous image of a Radon compact space in a Hausdorff
space is Radon. All known examples of Radon compact spaces are sequentially
compact. Some special classes of spaces (for example, Eberlein compacts
or Corson compacts) are known to be Radon under additional set-theoretic
axioms (see Fremlin [635], Gardner [660], Schachermayer [1660]). Although
the definition of Radon spaces is simple and the membership in this class
may be important, it appears, on the basis of the above facts, that it would
be unlikely that a complete characterization of Radon spaces, were it to be
found, could be of great use in applications.

7.14.21. Remark. Sometimes, considering a measure µ on a completely
regular space X, it is useful to extend it to the Stone–Čech compactifica-
tion βX by the formula µβ(B) := µ(B ∩ X). This is possible for Borel or
Baire measures, but X may be nonmeasurable with respect to the corre-
sponding extension µβ of the measure µ (i.e., may fail to belong to B(βX)µβ
or Ba(βX)µβ ). Then one of the following additional assumptions may be
useful: (1) X ∈ Ba(βX), (2) X ∈ B(βX), (3) X is measurable with respect
to all Radon measures on βX, (4) X is measurable with respect to all Borel
measures on βX.

For example, if X is locally compact, then it is open in βX, in particular,
X ∈ B(βX).

7.14.22. Example. (see Alexandroff [30], Knowles [1015]) Let X be
completely regular. Every τ -additive measure on X is Radon if and only if X
is measurable with respect to every Radon measure on βX (i.e., is universally
Radon measurable in βX).

Proof. If X is universally Radon measurable in βX and µ is a τ -additive
measure on X, then its extension µβ to βX is Radon, which yields that µ is
Radon. In order to obtain the inverse implication, it suffices to consider
the case where ν is a Radon measure on βX such that X is a set of full
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outer ν-measure. Then the measure µ on X defined by µ(B ∩ X) = ν(B),
B ∈ B(βX), is τ -additive. By our hypothesis, it is Radon on X, whence the
ν-measurability of X follows. �

7.14(viii). Supports of measures

In connection with supports of measures, questions arise concerning:
(a) the existence of a non-trivial atomless (in the sense of �7.14(v)) Borel

measure µ on a given space X,
(b) the existence of µ with the additional property suppµ = X,
(c) the properties of the support of a given measure (for example, the

metrizability).
We recall that for Radon measures the absence of atoms is equivalent to

the absence of points of positive measure, but in the general case the first
property is strictly stronger. In �9.12(iii), there is a simple proof of the fact
that on every nonempty compact space without isolated points, there is an
atomless Radon probability measure (but its support may be smaller than
the whole space). The following more general result is obtained in Knowles
[1014].

7.14.23. Theorem. (i) If X is Čech complete and has no isolated points,
then there exists a non-trivial regular atomless Borel measure on X.

(ii) If every subset of X contains an isolated point and X is Borel measure-
complete (see Definition 7.14.20), then there is no non-trivial regular atomless
Borel measure on X.

Babiker [83] constructed an example (under the continuum hypothesis)
of a completely regular space without isolated points on which there is no
non-trivial atomless Borel measure. Necessary and sufficient conditions for
the existence of a Radon measure µ with full support on a compact space are
obtained in Hebert, Lacey [805]. However, such a measure may be atomic.
As shown in [805], if X is compact and first countable and has no isolated
points, then the existence of a Radon measure µ with support X implies the
existence of an atomless Radon measure ν with support X. In particular, such
a measure ν exists if X is a separable first countable compact space without
isolated points. In such problems, various additional set-theoretic assump-
tions may be essential. For example, under the continuum hypothesis, Kunen
[1077] constructed a compact, hereditary Lindelöf first countable space X
that is nonseparable, but is the support of a Radon measure µ (see also Hay-
don [802]). On the other hand, under Martin’s axiom and the negation of the
continuum hypothesis, such a space cannot exist (see Juhász [921], Fremlin
[627]). On some spaces, Radon measures are concentrated on subspaces with
nice properties. For example, according to the Phillips–Grothendieck theo-
rem, every Radon measure on a weakly compact set in a Banach space has a
norm metrizable support. A more general result is given in �7.14(xvii). Let us
give a simple result in this direction (see its application in Exercise 7.14.131).
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7.14.24. Proposition. Let µ be a Radon measure on a topological space
X such that there exists a sequence of µ-measurable functions fn separating
the points in X. Then, for every ε > 0, there exists a metrizable compact set
Kε with |µ|(X\Kε) < ε.

Proof. The hypothesis yields the existence of an injective µ-measurable
function g. Since µ is Radon, for every ε > 0, there is a compact set Kε such
that |µ|(X\Kε) < ε and g is continuous on Kε. By the injectivity of g the
compact sets Kε are metrizable. �

7.14(ix). Generalizations of Lusin’s theorem

The classical Lusin’s theorem states that a measurable function f on the
space X = [0, 1] is almost continuous in the sense that given ε > 0, one can
find a compact set Kε such that λ([0, 1]\Kε) < ε and f is continuous on Kε.
There are a number of generalizations of this theorem: to more general spaces
X or to more general spaces of values Y (or both). One can construct an ex-
ample of a Borel mapping from X = [0, 1] to a compact space Y that is
not almost continuous with respect to Lebesgue measure (Exercise 7.14.76).
A standard generalization (Theorem 7.1.13) covers the case where X is a space
with a Radon measure µ and Y is a separable metric space. If, in addition,
X is completely regular and Y is a Fréchet space, then as in the classical
Lusin theorem, given ε > 0, there exists a continuous mapping fε : X → Y
with |µ|(f �= fε) < ε. Further generalizations are obtained in Fremlin [625]
and Koumoullis, Prikry [1049] (the latter deals with multivalued mappings),
where it is shown that for every Radon measure µ on a space X and every
µ-measurable mapping f from X to a metric space Y , there exists a separable
subspace Y0 in Y such that f(x) ∈ Y0 for µ-a.e. x. In particular, the follow-
ing generalization of Lusin’s theorem is obtained in [625]; for simplicity we
formulate it for finite measures (for another proof, see Kupka, Prikry [1081]).

7.14.25. Theorem. Let µ be a Radon measure on a topological space
X and let Y be a metric space. A mapping f : X → Y is measurable with
respect to µ if and only if it is almost continuous.

In the case of Lebesgue measure the proof is simplified (Exercise 7.14.75).
It is shown in Burke, Fremlin [288] that under certain additional set-theore-
tical assumptions, there exists a measurable mapping f : [0, 1] → [0, ω1] that
is not almost continuous, but there are some other set-theoretic assumptions
making this impossible according to Fremlin [625]; see also Fremlin [628].

The next result is a generalization of a theorem obtained in Scorza Drag-
oni [1686] and Krasnosel’skĭı [1055] in the case X = Y = [a, b], in which
it is a direct corollary of Lusin’s theorem for C[a, b]-valued mappings. We
follow Berliocchi, Lasry [159] (see also Castaing [317]). Kucia [1069] gives
an extension to the case of f with values in a topological space Z with a
countable base and to the case of multivalued mappings. The latter case un-
der various assumptions is discussed in many papers on multivalued analysis
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(see, e.g., Averna [81]). Other important results and a survey can be found
in Bouziad [247].

7.14.26. Theorem. Let X and Y be two topological spaces such that Y
has a countable base, let µ be a regular Borel probability measure on X and
let a function f : X×Y → IR1 be such that, for µ-a.e. x ∈ X, the function
y �→ f(x, y) is continuous, and for every y ∈ Y , the function x �→ f(x, y) is
µ-measurable. Then, for every ε > 0, there exists a closed set F ⊂ X such
that µ(X\F ) < ε and f |F×Y is continuous.

Proof. It suffices to consider functions with values in (0, 1). Let {Un}
be a countable topology base in Y , let {yk} be a dense sequence in Y , and
let ϕn,q = qIUn , q ∈ Q ∩ (0, 1). Set En,q,k := {x ∈ X : f(x, yk) ≥ ϕn,q(yk)}.
Then En,q =

⋂∞
k=1En,q,k ∈ B(X)µ. It is readily seen that

En,q = {x ∈ X : f(x, y) ≥ ϕn,q(y) ∀y ∈ Y }.
Letting ψn,q(x, y) = IEn,q (x)ϕn,q(y), we obtain f = supn,q ψn,q. There-
fore, arranging the pairs (n, q) in a single sequence, we can write f(x, y) =
sup IAk(x)gk(y), where Ak ∈ B(X)µ and each gk is a lower semicontinuous
function. For every k, there exist a closed set Fk and an open set Gk such
that Fk ⊂ Ak ⊂ Gk and µ(Gk\Fk) < ε2−k−2. The restriction of IAk to the
closed set Bk = Fk ∪ (X\Gk) is lower semicontinuous, hence the restriction
of IAkgk to Bk×Y is lower semicontinuous. The set F ′ =

⋂∞
k=1Bk is closed,

µ(X\F ′) < ε/2, and f |F ′ is lower semicontinuous. Applying the same reason-
ing to 1−f we find a closed set F ′′ such that µ(X\F ′′) < ε/2 and −f is lower
semicontinuous on F ′′×Y . Finally, letting F = F ′ ∩ F ′′, we obtain a desired
set. Note that if Y is a compact metric space, then the result follows imme-
diately by Lusin’s theorem applied to the following mapping: Φ: X → C(Y ),
Φ(x)(y) = f(x, y). �

It is clear from the proof that an analogous theorem holds for lower semi-
continuous functions (see also the papers cited above).

The existence of a countable base in Y is essential and cannot be replaced,
for example, by the assumption that Y is a Lusin space. Indeed, let Y be
C[0, 1] with the pointwise convergence topology (this is a Lusin space with
the same Borel σ-algebra as for the standard norm on C[0, 1]), X = [0, 1] with
Lebesgue measure, f(x, y) = y(x). Suppose we have a positive measure set F
such that f is continuous on F×Y . Then F contains an infinite convergent
sequence {xn}. One can find a sequence of continuous functions yn convergent
to zero pointwise with yn(xn) →∞, which leads to a contradiction.

Let us see how the above theorem works.

7.14.27. Example. Let µ be a Radon probability measure on a topo-
logical space X and let a function Φ: X× IR1× IR1 → IR1 be measurable
in the first variable and continuous in the couple of the last variables. Sup-
pose that a sequence of µ-measurable functions fn converges in measure to
a µ-measurable function f and a sequence of µ-measurable functions gn is
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bounded in measure in the sense that lim
M→∞

supn µ
(
x : |gn(x)| ≥ M

)
= 0

(which is fulfilled, e.g., if {gn} is bounded in L1(µ)). Then the sequence
ψn(x) := Φ

(
x, fn(x), gn(x)

)
−Φ

(
x, f(x), gn(x)

)
converges to zero in measure.

Observe that in general one cannot replace the functions Φ
(
x, f(x), gn(x)

)
by

Φ
(
x, f(x), g(x)

)
.

Proof. It suffices to show that any subsequence in {ψn} contains a fur-
ther subsequence for which the claim is true because convergence in measure
is metrizable. Hence we may assume that {fn} converges a.e. Given ε > 0, we
combine Theorem 7.14.26 and Egoroff’s theorem to find a compact set K ⊂ X
such that µ(K) > 1− ε, the restriction of Φ to K×IR1×IR1 is continuous, f is
bounded on K, and the sequence {fn} converges to f uniformly on K. There
is M such that µ

(
x : |gn(x)| ≥ M

)
≤ ε for all n. Hence for some N ≥ M

one has |fn(x)| ≤ N for all x ∈ K and all n ≥ N . By the compactness of
K×[−N,N ], there exists δ > 0 such that |Φ(x, t, s)−Φ(x, t′, s)| ≤ ε whenever
t, t′ ∈ [−N,N ] and |t− t′| ≤ δ. Hence |ψn(x)| ≤ ε if x ∈ K, |fn(x)| ≤ N , and
|gn(x)| ≤ N . Let n ≥ N . Then

µ
(
x : |ψn(x)| ≥ ε

)
≤ µ(X\K) + µ

(
x : |gn(x)| ≥ N

)
≤ 2ε,

which completes the proof. �

Yet another aspect of Lusin’s theorem is related to the approximate con-
tinuity. Approximately continuous functions on topological spaces are con-
sidered in Sion [1733]. Let X be a topological space equipped with a finite
nonnegative regular Borel measure µ, let x ∈ X, and let N (x) denote a basis
of neighborhoods of x. A mapping f on X with values in a topological space
Y is said to be µ-continuous at x if, for every ε > 0 and every neighborhood
V of f(x), there exists a neighborhood Ux of x such that for every W be-
longing to N (x) and contained in Ux, we have µ

(
W − f−1(V )

)
≤ εµ(W ).

Let us consider the following property (V) (Vitali’s property): there exists
α > 0 such that, for every A ∈ B(X)µ and every family U of open sets
with the property that every neighborhood W of every x ∈ A contains some
U ∈ U ∩ N (x), one can find a countable subfamily {Un} of U such that
(1) µ

(
A −

⋃∞
n=1 Un

)
= 0, (2) for every µ-measurable set B ⊂

⋃∞
n=1 Un one

has
∑
W∈F ′(B ∩W ) ≤ αµ(B). The following result is proved in [1733].

7.14.28. Theorem. Let Y have a countable base and let µ have prop-
erty (V). Then f : X → Y is µ-measurable if and only if f is µ-continuous
at µ-almost all x. In addition, for every A ∈ B(X)µ, one has the equality

lim
W∈N (x)

µ(A ∩W )/µ(W ) = 0 for µ-almost all x.

The last assertion remains true if in place of property (V) the measure µ
possesses property (V’) that is defined as follows: only (1) in the definition of
(V) is required for some disjoint family {Un}.
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7.14(x). Metric outer measures

We shall discuss here an application of Carathéodory’s method to con-
structing the so-called metric outer measures on metric spaces, including cer-
tain generalizations of Hausdorff measures. A metric outer measure on a
metric space (X, d) is a Carathéodory outer measure m such that

m(A ∪B) = m(A) + m(B) if dist (A,B) > 0, (7.14.3)

where dist(A,B) := infa∈A,b∈B d(a, b), dist(A,∅) := +∞. We have already
encountered this condition in Chapter 1, where we have in fact proved the
following result (see Theorem 1.11.10).

7.14.29. Theorem. A Carathéodory outer measure m on a metric space
X is a metric outer measure precisely when all Borel sets are m-measurable.

We know that the Hausdorff measures Hs satisfy this condition. The
measures Hs are obtained as a special case of the measure Hh generated by
a set function h : F → [0,+∞] defined on some class F of subsets of X and
satisfying the condition h(∅) = 0. By means of this function one defines the
Carathéodory outer measures

Hh,ε(A) = inf
{ ∞∑

j=1

h(Fj) : Fj ∈ F ,diamFj ≤ ε,A ⊂
∞⋃

j=1

Fj

}
, ε > 0.

If there are no such Fj , then we set Hh,ε(A) = ∞. According to the termi-
nology of Chapter 1, the function Hh,ε is the Carathéodory outer measure
generated by the function h with the domain consisting of all sets in the class
F of diameter at most ε. Now let

Hh(A) := lim
ε→0

Hh,ε(A) = sup
ε>0

Hh,ε(A).

Letting h(F ) = α(s)2−s(diamF )s, α(s) = Γ(1 + s/2)−1, and F = 2X , we
obtain the r-dimensional Hausdorff measure Hs. One can take more general
functions h(F ) = ψ(diamF ). Certainly, Hh also depends on the choice of the
class F .

The proof of the following theorem is the subject of Exercise 7.14.85.

7.14.30. Theorem. The above-defined Carathéodory outer measure Hh

is a metric outer measure.

Howroyd [856] established the following important fact.

7.14.31. Theorem. Let X be a Souslin metric space and let Hr be the
r-dimensional Hausdorff measure on X. Then, for every Borel set B ⊂ X and
every α < Hr(B), there exists a compact set K ⊂ B with α ≤ Hr(K) <∞.

According to a theorem of Davies (see Davies [410], Rogers [1587]), in
the case of Souslin subspaces of IRn the analogous assertion is true for the
measure Hh with an arbitrary strictly increasing continuous function h such
that h(0) = 0. However, for general compact metric spaces, this is not true,
as an example in Davies, Rogers [417] shows.
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7.14.32. Proposition. Let X be a separable metric space, let F be
a family of subsets of X containing B(X), and let h : F → [0,+∞] be a
monotone countably subadditive set function. Then, for every Hh-measurable
set A, one has

Hh(A) = sup
Π

∑

B∈Π

h(B),

where Π runs through the family of all partitions of X into countably many
disjoint Borel sets.

In addition, Hh(A) = limj→∞
∑
B∈Πj

h(B) for every sequence of parti-
tions Πj of the set A into countably many disjoint Borel parts of diameter at
most δj, where δj → 0.

Proof. Let Ak be Borel sets of diameter at most δ covering A. Then
h(A) ≤

∑∞
k=1 h(Ak), whence we obtain h(A) ≤ Hh,δ(A) for all δ > 0. Hence

h(A) ≤ Hh(A). For every sequence of pairwise disjoint Borel sets Ek ⊂ A, we
obtain Hh(E) ≥

∑∞
k=1H

h(Ek) ≥
∑∞
k=1 h(Ek). Thus, Hh(A) is not smaller

than the indicated supremum denoted by S. On the other hand, for every
ε > 0, there exists δ > 0 such that Hh(A) ≤ Hh,δ(A) + ε. It is clear from the
definition of Hh,δ(A) that the right-hand side is estimated by S + ε because
we can consider partitions of A into Borel parts Ek of diameter at most δ.
Therefore, Hh(A) ≤ S. The last claim is clear from the estimate Hh,δj (A) ≤∑
B∈Πj

h(B). �

7.14.33. Theorem. (i) Let X be a separable metric space, let (Y,A, µ)
be a measure space, and let f : X → Y satisfy the condition f

(
B(X)

)
⊂ A.

We set F := B(X) and h(B) := µ
(
f(B)

)
, B ∈ B(X). Then, for every

Hh-measurable set A, one has

Hh(A) =
∫

Y

Card
(
A ∩ f−1(y)

)
µ(dy).

(ii) If X is a complete separable metric space, Y is a metric space, and a
mapping f : X → Y is Lipschitzian with constant L, then for all B ∈ B(X)
one has

Hn
(
f(B)

)
≤
∫

Y

Card
(
B ∩ f−1(y)

)
Hn(dy) ≤ LnHn(B), n ∈ IN.

Proof. (i) Since there exist Borel sets B1 and B2 with B1 ⊂ A ⊂ B2 and
Hh(B1) = Hh(B2), it suffices to prove our theorem for any Borel set A. Let
us take a sequence of decreasing partitions Πj of the set A into Borel parts
Aj,k of diameter at most 2−j . Then the functions

∑∞
k=1 If(Aj,k)(x) increase

to Card
(
A ∩ f−1(x)

)
as j →∞. It remains to use the equalities

Hh(A) = lim
j→∞

∞∑

k=1

h(Aj,k) = lim
j→∞

∞∑

k=1

∫

X

If(Aj,k)(x)µ(dx)

and the monotone convergence theorem.



142 Chapter 7. Measures on topological spaces

(ii) For every B ∈ B(X), the set f(B) is measurable with respect to Hm.
In addition, h(B) := Hn

(
f(B)

)
≤ LnHn(B). Let us take a sequence of

decreasing partitions Πk of the set A into Borel parts Ak,j of diameter at
most 2−j . Then

Hh(A) = lim
k→∞

∞∑

j=1

Hn
(
f(Ak,j)

)
≤ Ln lim

k→∞

∞∑

j=1

Hn(Ak,j) = LnHn(A).

Hence we obtain the inequality

Hn
(
f(A)

)
≤
∫

Y

Card
(
A ∩ f−1(y)

)
Hn(dy) = Hh(A) ≤ LnHn(A)

as required. �

7.14(xi). Capacities

Let us make several remarks about capacities, an interesting class of
set functions. A Choquet capacity is a function C defined on the family
of all subsets of a topological space X and having values in [0,+∞] such that
C(A) ≤ C(B) if A ⊂ B, lim

n→∞
C(An) = C(A) if the sets An are increasing

to A, and lim
n→∞

C(Kn) = C(K) if the sets Kn are compact and decrease to K.
If µ is a nonnegative Borel measure on X, then µ∗ is a Choquet capacity.
Similarly to Theorem 1.10.5 one proves the following Choquet theorem.

7.14.34. Theorem. Let C be a Choquet capacity on a Souslin space X
such that C(X) < ∞. Then, for every ε > 0, there exists a compact set Kε

such that C(Kε) > C(X)− ε.

Unlike the case of measures, this property of capacities does not mean
that there exist compact sets Sε with C(X\Sε) < ε. Regarding capacities,
see Bogachev [208], Choquet [349], Dellacherie [424], [425], Goldshtein,
Reshetnyak [709], Meyer [1311], Sion [1734].

7.14(xii). Covariance operators and means of measures

Throughout this subsection X is a locally convex space and all measures
under consideration are nonnegative. Let X∗ denote the dual space to X (the
space of all continuous linear functions on X).

7.14.35. Definition. (i) A measure µ on σ(X∗) is said to have a weak
moment of order r > 0 (or to be of weak order r) if X∗ ⊂ Lr(µ).

(ii) A Borel (or Baire) measure µ on X is said to be a measure with a
strong moment of order r > 0 (or to be of strong order r) if ψ ∈ Lr(µ) for
every continuous seminorm ψ on X.

The atomic measure µ on l2 with µ(nen) = n−2, where {en} is the stan-
dard basis, has a weak first moment because

∑∞
n=1 n

−1|yn| <∞ if (yn) ∈ l2,
but has no strong first moment, since

∑∞
n=1 n

−1 = ∞.
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7.14.36. Definition. Let µ be a measure on X of weak order 1. We
shall say that µ has the mean (or barycenter) mµ ∈ X if for every l ∈ X∗,
one has

l(mµ) =
∫

X

l(x)µ(dx).

In the general case, the existence of weak moments does not guarantee the
existence of the mean. For example, let the measure µ be defined on the space
c0 by µ(2nen) = 2−n, where en are the elements of the standard basis in c0.
Then µ has a weak first moment, but has no mean (otherwise all coordinates
of the mean would equal 1). It is interesting to note that such an example is
impossible in the spaces that do not contain c0.

7.14.37. Proposition. If a complete metrizable locally convex space
X has no subspace that is linearly homeomorphic to c0, then every Radon
measure µ on X of weak order 1 has the mean mµ.

The proof is given in Vakhania, Tarieladze [1909].
For any measure µ of weak order p on a locally convex space X we obtain

the operator Tµ : X∗ → Lp(µ) of the natural embedding.

7.14.38. Lemma. Let a measure µ on a normed space X have a weak
moment of order p. Then the operator Tµ : X∗ → Lp(µ) has a closed graph
in the norm topologies and hence is continuous.

Proof. If fn, f ∈ X∗ and fn(x) → f(x) pointwise and fn → g in Lp(µ),
then the sequence {|fn|p} is uniformly integrable, whence we obtain that
fn → f in Lp(µ) and f = g a.e. The second claim follows by the closed graph
theorem due to the completeness of X∗. �

7.14.39. Definition. Let µ be a probability measure of weak order 2. Its
covariance Cµ : X∗×X∗ → IR is defined by the formula

Cµ(l1, l2) =
∫

X

l1(x)l2(x)µ(dx)−
∫

X

l1(x)µ(dx)
∫

X

l2(x)µ(dx).

The covariance operator Rµ from X∗ to the algebraic dual of X∗ is defined
by the equality Rµ : X∗ → (X∗)′, Rµ(f)(g) = Cµ(f, g).

It is clear that every covariance operator R has the following properties:
(1) linearity, (2) nonnegativity, i.e., 〈f,R(f)〉 ≥ 0 for all f ∈ X∗, (3) symme-
try, i.e., 〈R(f), g〉 = 〈R(g), f〉 for all f, g ∈ X∗.

Under broad assumptions, the covariance operators have values in such
subspaces of the algebraic dual of X∗ as X∗∗ or X and are continuous in
reasonable topologies. This question is thoroughly investigated in Vakhania,
Tarieladze [1909]. We mention only few results.

7.14.40. Theorem. Let µ be a Radon probability measure on a com-
plete (or quasi-complete) locally convex space X and let µ have a weak second
moment. Then Rµ(X∗) ⊂ X.
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7.14.41. Theorem. The class of covariance operators of measures of
weak second order on a separable Fréchet space X coincides with the class of
all symmetric nonnegative operators from X∗ to X.

Typically, the class of covariance operators of measures of strong second
order is smaller.

7.14.42. Proposition. Let H be a separable Hilbert space and let µ be
a measure of weak order 2. Then µ has a strong second moment if and only
if its covariance operator Rµ is nuclear.

On non-Hilbert spaces, the covariance operators do not characterize the
existence of strong moments.

7.14.43. Theorem. Let X be a Banach space. The following two condi-
tions are equivalent: (i) X is linearly homeomorphic to a Hilbert space; (ii) for
every two Radon probability measures µ and ν with Rµ = Rν , the existence
of the strong second moment of µ implies the existence of the strong second
moment of ν.

There exists extensive literature on the covariance operators of Gauss-
ian measures (see references in Bogachev [208], Vakhania, Tarieladze [1909],
Vakhania, Tarieladze, Chobanyan [1910]). The consideration of strong mo-
ments is especially efficient for measures on Banach spaces. Given a Borel
probability measure µ on a separable Banach space with a strong first mo-
ment, it is often necessary in applications to be able to approximate in the
mean the identity operator by “finite-dimensional mappings”, i.e., to con-
struct mapping Fn such that

∫

X

‖x− Fn(x)‖µ(dx) → 0, (7.14.4)

where Fn is finite-dimensional in a reasonable sense, for example, has a finite-
dimensional range or depends on finitely many linear functionals (has the
form Fn = Gn(l1, . . . , lk), where li ∈ X∗ and Gn : IRk → X).

7.14.44. Proposition. Let X be a separable Banach space, let µ be a
Borel probability measure on X, and let F : X → X be a measurable mapping
with ∫

X

‖F (x)‖p µ(dx) <∞,

where p ∈ [1,∞). Then, for every ε > 0, there exist continuous linear func-
tions l1, . . . , ln on X and a continuous mapping ϕ : IRn → X with compact
support and values in a finite-dimensional subspace such that

∫

X

∥
∥
∥F (x)− ϕ

(
l1(x), . . . , ln(x)

)∥∥
∥
p

µ(dx) < ε.

The proof can be found in Exercise 7.14.145.
The obtained approximation is a function of finitely many functionals and

has values in a finite-dimensional subspace, but is not linear even for linear
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continuous F . If X has a Schauder basis {ei} and F is a continuous linear
operator, then one can easily construct finite-dimensional linear approxima-
tions of F by setting Fn(x) =

∑n
i=1 li

(
F (x)

)
ei, where li are the coefficients

in the expansion with respect to the basis {ei}. Corollary 7.14.46 below uses
a weaker requirement on X, namely, the approximation property. This prop-
erty means that for every compact set K ⊂ X and every ε > 0, there exists
a continuous linear operator T : X → X with a finite-dimensional range such
that ‖x − Tx‖ < ε for all x ∈ K. It is known that not every Banach space
possesses such a property.

7.14.45. Theorem. Let µ be a Borel probability measure on a separable
Banach space X with the strong moment of some order r > 0. Then, there
exists a linear subspace E ⊂ X with the following properties:

(i) E with some norm ‖ · ‖E is a separable reflexive Banach space whose
closed balls are compact in X; (ii) µ(E) = 1 and

∫

E

‖z‖rE µ(dz) <∞.

If µ on X has all strong moments, then E can be chosen with such a
property. Finally, these assertions are true for separable Fréchet spaces.

The proof can be found in Exercise 7.14.146 (see also Exercise 8.10.127).

7.14.46. Corollary. Let µ be a Borel probability measure on a separable
Banach space X having the strong moment of order r. Suppose that X has
the approximation property. Then, for every ε > 0, there exists a continuous
linear operator T with a finite-dimensional range such that

∫

X

‖x− Tx‖r µ(dx) < ε.

Proof. Let E be the space from the above theorem and let K be its unit
ball. We find ε0 > 0 such that the integral of the function ‖z‖rE on E is less
than ε/ε0. Take a finite-dimensional operator T with supK ‖z − Tz‖ ≤ ε0.
Then we have ‖z − Tz‖ ≤ ε0‖z‖E if z ∈ E. Thus,

∫

E

‖z − Tz‖r µ(dz) ≤ ε0

∫

E

‖z‖rE µ(dz) < ε.

The assertion is proven. �
This corollary does not extend to arbitrary Banach spaces (see Fonf, John-

son, Pisier, Preiss [596]).

7.14(xiii). The Choquet representation

Let K be a compact set in a locally convex space X. Then, for every
element b in the closed convex envelope of K, there exists a Radon probability
measure µ on K for which b is the barycenter, i.e.,

l(b) =
∫

K

l dµ for all l ∈ X∗.
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See Exercise 7.14.144 for a proof. In this case µ is called a representing
measure for b. For convex compact sets, it is useful to have a representing
measure concentrated on the set of extreme points. The existence of such
measures is established by the following Choquet–Bishop–de Leeuw theorem.
Choquet proved this theorem for metrizable K. In this case the set extK of
extreme points of K is a Gδ-set, in particular, it belongs to B(K). This is not
true in the general case, which leads to modifications in the formulation. See
Phelps [1448] for a proof.

7.14.47. Theorem. Let K be a convex compact set in a locally convex
space X. Then for every k ∈ K, there exists a Radon probability measure
µ on K representing k and vanishing on all Baire sets in K\extK. If K
metrizable, then µ(extK) = 1.

Let K be a convex metrizable compact set in a locally convex space X.
Denote by E the set of its extreme points. Let us consider the mapping
β : Pr(E) → K that associates to every Radon probability measure µ on E
its barycenter β(µ). By the Choquet theorem this mapping is surjective. It
is clear that β is affine and continuous if Pr(E) is equipped with the weak
topology, in which Pr(E) is a Souslin space. Hence there exists a universally
measurable mapping ψ : K → Pr(E) such that k is the barycenter of the
measure ψ(k) for all k ∈ K.

There is extensive literature devoted to representation theorems of the
Choquet type, see, for example, Alfsen [35], Edwards [518], Meyer [1311],
Phelps [1448], von Weizsäcker [1968], von Weizsäcker, Winkler [1971].

7.14(xiv). Convolution

Let us observe that if µ and ν are two measures defined on the σ-algebra
σ(X∗) in a locally convex space X, then their product µ⊗ν is a measure
on σ

(
(X×X)∗

)
. It follows by Theorem 7.6.2 that if µ and ν are Radon (or

τ -additive) measures, then their product µ⊗ν has a unique extension to a
Radon (respectively, τ -additive) measure on X×X. The same is true if X is
a Hausdorff topological vector space. Under the product of Radon measures
we shall always understand this extension.

7.14.48. Definition. Let µ and ν be Radon (or τ -additive) measures on
a locally convex (or Hausdorff topological vector) space X. Their convolution
µ∗ν is defined as the image of the measure µ⊗ν (extended to a Radon measure
as stated above) on the space X×X under the mapping (x, y) �→ x + y from
X×X to X.

7.14.49. Theorem. Let µ and ν be Radon measures on a locally convex
space X. Then for every Borel set B ⊂ X, the function x �→ µ(B − x) is
ν-measurable and one has

µ ∗ ν(B) =
∫

X

µ(B − x) ν(dx).

In addition, µ ∗ ν = ν ∗ µ and µ̃ ∗ ν = µ̃ν̃.
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The proof is left as Exercise 7.14.151.
It is clear that by analogy one can define the convolution of two cylindrical

quasi-measures.

7.14.50. Proposition. Let µ and λ be Radon probability measures on a
locally convex space X. Suppose that there exists a positive definite function
ϕ : X∗ → C such that λ̃ = ϕµ̃. Then, there exists a Radon probability measure
ν on X with ν̃ = ϕ. In addition, λ = ν ∗ µ.

Proof. It follows by our hypothesis that the restrictions of the function
ϕ to finite-dimensional subspaces are continuous at the origin, hence at any
other point. Therefore, ϕ is the characteristic functional of a nonnegative
quasi-measure ν on the algebra of cylindrical sets. It remains to show that the
set function ν is tight because then the equality λ̃ = ν̃µ̃ will give the equality
λ = ν ∗µ. Let ε > 0 and let S be a compact set with µ(X\S)+λ(X\S) < ε/2.
One can assume that 0 ∈ S. The set K := S − S is compact and S ⊂ K.
Let be C be a cylindrical set with C ∩ K = ∅. The set C has the form
C = P−1(B), where B ∈ B(IRn) and P : X → IRn is a continuous linear
mapping. We observe that B ∩ P (K) = ∅. Indeed, if x ∈ C, then x+ h ∈ C
for all h ∈ KerP . In particular, B ∩P (S) = ∅, whence C ∩P−1

(
P (S)

)
= ∅.

The set C0 := P−1
(
P (S)

)
is cylindrical, and we have S ⊂ C0 and

1− ε/2 ≤ λ(S) ≤ λ(C0) =
∫

X

ν(C0 − x)µ(dx) ≤
∫

S

ν(C0 − x)µ(dx) + ε/2,

whence we obtain the existence of x0 ∈ S such that ν(C0 − x0) ≥ 1 − ε. In
addition, (C0 − x0) ∩ C = ∅, since P (C0 − x0) ⊂ P (S − S) because x0 ∈ S.
Thus, ν(C) ≤ ε, i.e., the quasi-measure ν is tight. �

For the proof of the following result, see Vakhania, Tarieladze, Chobanyan
[1910, �VI.3].

7.14.51. Proposition. Let µ1 and µ2 be two nonnegative cylindrical
quasi-measures on the algebra of cylindrical sets in a locally convex space X
such that µ1 is symmetric, i.e., µ1(A) = µ1(−A). If µ := µ1 ∗ µ2 admits a
Radon extension, then both measures µ1 and µ2 admit Radon extensions.

The assumption that µ1 is symmetric cannot be omitted. Indeed, let l be
a discontinuous linear functional on X∗ (which exists, for example, if X is an
infinite-dimensional Banach space). Then the functionals exp(il) and exp(−il)
are the Fourier transforms of cylindrical quasi-measures on Cyl(X,X∗) with-
out Radon extensions, but their convolution is the Dirac measure δ. This
example is typical: according to Rosiński [1611], if µ and ν are nonnegative
cylindrical quasi-measures on Cyl(X,X∗) such that µ ∗ ν is tight, then there
exists an element l in the algebraic dual of X∗ with the property that the
cylindrical quasi-measures µ ∗ δl and ν ∗ δ−l (where δl and δ−l are cylindri-
cal quasi-measures with the Fourier transforms exp(il) and exp(−il), respec-
tively) are tight on X (and hence have Radon extensions). These results can
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be generalized to families of measures as follows (see Vakhania, Tarieladze,
Chobanyan [1910, Proposition I.4.8]).

7.14.52. Proposition. Let {µλ} and {νλ} be two families of τ -additive
probability measures on a Hausdorff topological vector space X. Suppose that
the family {µλ∗νλ} is uniformly tight, i.e., for every ε > 0, there is a compact
set Kε such that µλ ∗ νλ(X\Kε) < ε for all λ. Then, there exists a family
{xλ} of points in X such that {µλ ∗ δxλ} is a uniformly tight family. If, in
addition, the measures µλ are symmetric, then both families {µλ} and {νλ}
are uniformly tight.

In a similar manner one defines the convolution of measures on a topo-
logical group. Namely, let (G,B) be a measurable group (i.e., the mappings
x �→ −x and (x, y) �→ x + y are measurable with respect to B and B⊗B,
respectively). Let µ and ν be two measures on B. The image of the measure
µ⊗ν on G×G under the mapping � : (x, y) �→ x+ y is called the convolution
of µ and ν and is denoted by µ ∗ ν.

One can verify that for every B ∈ B one has

µ ∗ ν(B) =
∫

G

µ(B − x) ν(dx) =
∫

G

ν(−x+B)µ(dx). (7.14.5)

If G is commutative, then so is the convolution.
Let G be a topological group. Then, as we have seen above in the case of

a locally convex space, G may not be a measurable group with the σ-algebra
B = B(G). However, if µ and ν are τ -additive or Radon, then µ⊗ν admits a
τ -additive (respectively, Radon) extension to G×G. Therefore, in this case the
convolution can be defined as the image of this extension under the mapping �,
which is continuous. Then (7.14.5) remains valid for B ∈ B(G).

Equipped with the operation of convolution, the space of Radon (or τ -ad-
ditive) probability measures on a topological group G becomes a topological
semigroup; its neutral element is Dirac’s measure at the neutral element of G.

It is shown in [1910, Corollary of Lemma I.4.3] that if {µλ} and {νλ} are
two families of τ -additive probability measures on a topological group G such
that the family {µλ ∗ νλ} is uniformly tight, then there exists a family {xλ}
of elements of G such that the family {µλ ∗ δxλ} is uniformly tight.

According to [1910, Proposition I.4.6], if µ and ν are two τ -additive prob-
ability measures on a topological group G, then the support of µ ∗ ν coincides
with the closure of the set Sµ + Sν . This means that the Dirac measures δx,
x ∈ G, are the only invertible elements in the topological semigroup Pτ (G).

Finally, let us make a remark about random vectors. Let X be a lo-
cally convex space and let (Ω,F , P ) be a probability space. A measurable
mapping ξ : Ω →

(
X,σ(X)

)
is called a random vector in X. The measure

Pξ(C) = P
(
ξ−1(C)

)
is called the distribution (law) of ξ. It is clear that every

probability measure on σ(X∗) has such a form (with the identity mapping
ξ(x) = x). If we have a family of probability measures µn on X, then there
exists a family of independent random vectors ξn on a common probability
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space Ω such that Pξn = µn (we take Ω =
∏∞
n=1Xn, Xn = X, P =

⊗∞
n=1 µn,

ξn(ω) = ωn); see �10.10(i) about independent random elements. In particular,
two random vectors ξ and η with values in X are called independent if

P (ξ ∈ A, η ∈ B) = P (ξ ∈ A)P (η ∈ B), ∀A,B ∈ σ(X∗).

Several interesting classes of measures on infinite-dimensional spaces are
defined by means of independent random vectors or convolutions. For exam-
ple, a random vector ξ with values in a locally convex space X is called (see
Tortrat [1888]) stable of order α ∈ (0, 2] if for every n, there exists a vector
an ∈ X such that, given independent random vectors ξ1, . . . , ξn with the same
distribution µ of the vector ξ, the random vector n−1/α(ξ1 + · · · + ξn) − an
has the distribution µ as well. The stable of order 2 random vectors are pre-
cisely the Gaussian vectors. The distributions of stable vectors are mixtures
of Gaussian measures (see Sztencel [1820]). One-dimensional stable distribu-
tions are studied in depth in Zolotarev [2033].

7.14(xv). Measurable linear functions

Let µ be a Radon probability measure on a locally convex space X with
the topological dual X∗. A function l : X → IR1 is called proper linear µ-
measurable if it is linear on all of X in the usual sense and is µ-measurable.
The collection of all such functions is denoted by Λ(µ). Let Λ̃(µ) denote the
class of all functions having modifications in the class Λ(µ). However, there
is another natural way of defining measurable linear functions. Namely, let
Λ0(µ) be the closure of X∗ in L0(µ), i.e., l ∈ Λ0(µ) if there exists a sequence of
functions ln ∈ X∗ convergent to l in measure. Since {ln} contains an almost
everywhere convergent subsequence, we may assume that ln → l a.e.

7.14.53. Lemma. One has Λ0(µ) ⊂ Λ̃(µ).

The proof is left as Exercise 7.14.152. There are examples where Λ̃(µ)
does not coincide with Λ0(µ) even for symmetric measures µ, see Kanter [949],
[950], Urbanik [1902]. One such example is the distribution of the stable of
order α < 2 random process with independent increments.

7.14(xvi). Convex measures

The convexity of a Radon probability measure µ on a locally convex space
X is defined exactly as in IRn. Namely, it is required that

µ∗
(
αA+ (1− α)B

)
≥ µ(A)αµ(B)1−α

for all nonempty Borel sets A and B and all α ∈ [0, 1]. Convex measures are
also called logarithmically concave.

If X is a Souslin space, then the algebraic sum of two Borel sets is Souslin,
hence there is no need to consider the inner measure.

7.14.54. Lemma. A Radon probability measure µ is convex precisely
when all its finite-dimensional projections are convex.
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Proof. If we take for A and B cylindrical sets, then we obtain the con-
vexity of finite-dimensional projections. Conversely, suppose that all such
projections are convex and let A and B be Borel sets. Since µ is Radon, it
suffices to consider the case where A and B are compact. In that case, since
in the weak topology µ is Radon and A and B are compact, given ε > 0 and
α ∈ (0, 1), one can find an open cylindrical set C such that

αA+ (1− α)B ⊂ C and µ(C) < µ
(
αA+ (1− α)B

)
+ ε.

By using the compactness of A and B once again, we find a convex cylindrical
neighborhood of the origin V such that α(A+ V ) + (1− α)(B + V ) ⊂ C. As
one can easily see, A + V and B + V are cylinders. The required estimate
is true for all cylinders by the convexity of the finite-dimensional projections.
Hence we obtain

µ(C) ≥ µ
(
α(A+ V ) + (1− α)(B + V )

)
≥ µ(A+ V )αµ(B + V )1−α

≥ µ(A)αµ(B)1−α,

which yields the required estimate because ε is arbitrary. �

7.14.55. Corollary. (i) If µ is a convex Radon probability measure on
a locally convex space X and T : X → Y is a continuous linear mapping to a
locally convex space Y , then the measure µ ◦ T−1 is convex.

(ii) If µ is a convex Radon probability measure on a locally convex space
X and ν is a convex Radon measure on a locally convex space Y , then µ⊗ν
is a convex measure on X×Y . In particular, if X = Y , then µ ∗ ν is a convex
measure.

7.14.56. Theorem. (Borell [236]) Let µ be a convex Radon probability
measure on a locally convex space X and let p be a seminorm on X that is
measurable with respect to µ. Then, there exists c > 0 such that exp(cp) is
µ-integrable. In particular, p ∈ Lr(µ) for all r ∈ (0,∞).

7.14.57. Theorem. (Borell [238]) Let µ be a convex Radon probability
measure on a locally convex space X, h ∈ X a nonzero vector and Y a closed
hyperplane such that X = Y ⊕ IR1h. Then, on the straight lines y + IR1h,
y ∈ Y , there exist convex probability measures µy such that

µ(B) =
∫

Y

µy(B) ν(dy), B ∈ B(X),

where ν is the image of µ under the natural projection X → Y .

Bobkov [194] proved that for any convex measure µ, as in the well-known
Gaussian case, convergence in measure in the space of polynomials of degree
at most d in continuous linear functionals is equivalent to convergence in all
Lp(µ), p ∈ [1,+∞). On convex measures, see also Exercise 8.10.115.
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7.14(xvii). Pointwise convergence

We know that pointwise convergence of a sequence of measurable func-
tions yields convergence in measure, but this is no longer true for nets. The
inverse implication also is false in the general case. Here we consider condi-
tions under which the topology of convergence in measure on a given class
of functions coincides with the topology of pointwise convergence. The main
results were obtained in Ionescu Tulcea [862], [863] and reinforced in Edgar
[515], Fremlin [621], Talagrand [1831]. A detailed presentation of these re-
sults is given in Fremlin [635, v. 4].

7.14.58. Proposition. Let (X,F , µ) be a complete probability space and
let M ⊂ L∞(µ) be a set such that if two functions in M are equal a.e., then
they coincide everywhere. Then the following assertions are true.

(i) If the set M is countably compact in the topology τp of pointwise con-
vergence, then for every x ∈ X, the function f �→ f(x) is continuous on
M with the topology τµ of convergence in measure, i.e., the identity mapping
(M, τµ) → (M, τp) is continuous. In addition, M is closed in L0(µ).

(ii) If the set M is sequentially compact in the topology τp, then the iden-
tity mapping (M, τp) → (M, τµ) is continuous and is a homeomorphism, and
M is a metrizable compact space in these topologies.

(iii) If the set M is countably compact in the topology τp and is convex
and uniformly integrable, then the following topologies coincide on M : τp, τµ,
the weak topology σ(L1, L∞), and the norm topology of L1.

(iv) If the set M is compact in the topology τp and convex, then the topol-
ogy τp coincides on M with the metrizable topology τµ.

Proof. (i) Let x ∈ X and let fn → f in measure, fn, f ∈ M . If
fn(x) �→ f(x), then, by pointwise boundedness, which follows by count-
able compactness, there exists a subsequence {f ′n} such that f ′n(x) converges,
but not to f(x). Let us take an a.e. convergent subsequence {f ′′n} in {f ′n}.
By countable compactness, {f ′′n} has a limit point g ∈ M in the topol-
ogy τp. Then g(x) = f(x) a.e. (at all points x where {f ′′n (x)} converges),
but g(x) = lim

n→∞
f ′′n (x) �= f(x), contrary to our hypothesis on M . It is easily

verified that M is closed in L0(µ).
(ii) The set M is compact in the metrizable topology τµ because every

sequence {fn} in M contains a subsequence that is pointwise convergent to
a function from M , hence in measure. Now (i) applies, since M is countably
compact by sequential compactness, and the continuous images of compact
sets are compact.

(iii) We observe that M is closed in L1(µ) by virtue of (i). By convexity
M is closed in the weak topology. On account of uniform integrability this
yields the weak compactness of M in L1(µ). Let us show that the mapping(
M,σ(L1, L∞)

)
→ (M, τp) is continuous, i.e., for every fixed x ∈ X, the

function f �→ f(x) is continuous on
(
M,σ(L1, L∞)

)
. To this end, it suffices

to verify that for every real number c, the sets {f ∈ M : f(x) ≤ c} and
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{f ∈M : f(x) ≥ c} are closed in the topology σ(L1, L∞). Since these sets are
closed in the topology of pointwise convergence, it follows by (i) that they are
closed in the topology τµ, hence in the norm topology on M . Since M is closed
in L1(µ), both sets are closed subsets of L1(µ), which by convexity yields
that they are weakly closed. Thus, the mapping

(
M,σ(L1, L∞)

)
→ (M, τp)

is continuous, hence by the weak compactness of M it is a homeomorphism.
By the uniform integrability of M the norm topology coincides on M with τµ.
The already-established weak compactness of M by the Eberlein–Šmulian
theorem gives weak sequential compactness, which means (by the equality of
τp and σ(L1, L∞) on the set M) sequential compactness in τp. According
to (ii) all the indicated topologies coincide on M .

(iv) According to assertion (i) the identity mapping (M, τµ) → (M, τp) is
continuous and the set M is closed in L0(µ). Hence it suffices to prove the
compactness of M in the metrizable topology τµ. Suppose we are given a
sequence {fn} ⊂ M . Let us show that it contains a convergent subsequence.
The function g(x) := 1 + supn |fn(x)| is finite and measurable, since the
sequence {fn(x)} is bounded for every x by compactness in the topology τp.
The measure ν := g−2 · µ is finite and equivalent to the measure µ. Hence
it also satisfies our principal condition on M . Let M0 be the closed convex
envelope of {fn} in the topology τp. Then M0 is a convex compact set in this
topology. For every function f ∈ M0, we have |f(x)| ≤ g(x), x ∈ X, since
this inequality is fulfilled for all fn and is preserved by convex combinations
and the pointwise limits. Therefore, the integral of |f |2 with respect to the
measure ν does not exceed 1 for all f ∈ M0. Thus, the set M0 is uniformly
integrable with respect to the measure ν. By assertion (iii) the topology τp
coincides on M0 with τν and M0 is compact in these topologies. Hence {fn}
contains a subsequence {fnk} convergent in measure µ. �

A typical example where condition (ii) is fulfilled is the case where M
is a set of continuous functions on a topological space X such that M is
sequentially compact in the topology of pointwise convergence and X is the
support of a Radon measure µ.

7.14.59. Corollary. Let X be a normed space and let µ be a probability
measure on σ(X∗) such that µ

(
x : l(x) = 0

)
< 1 for every nonzero l ∈ X∗.

Then X is separable, and on the closed unit ball of X∗ the weak∗ topology
coincides with the topology of convergence in measure µ.

Proof. The set M := {f ∈ X∗ : ‖f‖ ≤ 1} is compact in the weak∗

topology by the Banach–Alaoglu theorem and is convex. The metrizability of
M in the weak∗ topology yields the separability of X. �

7.14.60. Example. (i) Let X be a normed space, let µ be a probability
measure on σ(X∗), and let Vµ be the intersection of all closed linear subspaces
of outer measure 1. Suppose that µ∗(Vµ) = 1. Then µ has a τ -additive
extension in the norm topology (Radon if X is Banach).
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(ii) Every τ -additive in the weak topology (in particular, every Radon
in the weak topology) probability measure on a Banach space has a Radon
extension in the norm topology.

(iii) If X is a reflexive Banach space, then every measure on σ(X∗) has a
Radon extension with respect to the norm topology.

Proof. (i) Let us consider the restriction of µ to Vµ (in the sense of
Definition 1.12.11). Let f be a nonzero element in V ∗

µ . We extend f to a
functional f0 ∈ X∗. If µ(f = 0) = 1, then µ(f0 = 0) = 1. This contradicts
the choice of Vµ, since Vµ ∩ f−1

0 (0) is a proper closed subspace in Vµ. Then
Vµ is separable by the above corollary, whence the claim follows. (ii) By the
τ -additivity in the weak topology, the measure µ has the topological support
S in the weak topology, whence µ(Vµ) = 1, since S ⊂ Vµ. (iii) By the weak
compactness of balls in reflexive spaces µ is tight in the weak topology, hence
is τ -additive. �

The reader is warned that this example does not extend to locally convex
spaces (Exercise 7.14.149): there exists a measure that is Radon in the weak
topology, but is not tight in the original topology.

The proofs of the following interesting and deep facts can be found in
Fremlin [621], [635, �463].

7.14.61. Theorem. Let (X,A, µ) be a complete probability space with a
perfect measure µ and let a set M ⊂ L0(µ) be countably compact in the topol-
ogy of pointwise convergence. Then every sequence in M has a subsequence
convergent a.e. and M is compact in the topology of convergence in measure.
If every two distinct (i.e., not identically equal) functions in M differ on a
set of positive measure, then the topology of pointwise convergence and the
topology of convergence in measure coincide on the set M , which turns out to
be a metrizable compact set.

It is unclear how essential the assumption of perfectness of the measure
is. Talagrand [1834] showed that if the set M is compact in the topology τp
and a.e. equal functions in M are equal pointwise, then under Martin’s axiom
the topologies τp and τµ coincide on M .

7.14.62. Theorem. Let (X,A, µ) be a complete probability space and let
an infinite set M ⊂ L0(µ) be compact in the topology of pointwise convergence.
Suppose that every two different functions in M differ on a set of positive
measure. Then M contains a pointwise convergent subsequence.

Let us mention the following Fremlin alternative (see Fremlin [621], [635,
�463H], and also Talagrand [1834]).

7.14.63. Theorem. Let (X,A, µ) be a complete probability space with a
perfect measure µ and let fn, n ∈ IN, be µ-measurable functions. Then, either
{fn} contains an a.e. convergent subsequence or {fn} contains a subsequence
for which no µ-measurable function is a limit point in the topology of pointwise
convergence.
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Talagrand [1832] obtained sufficient conditions (including the continuum
hypothesis or Martin’s axiom) for the closed convex envelope of a set of mea-
surable functions in the topology of pointwise convergence to consist of mea-
surable functions.

7.14(xviii). Infinite Radon measures

All Radon measures discussed in this book are finite by definition. How-
ever, in some applications it is useful to enlarge this concept (which has al-
ready been done in �7.11). Obvious examples are Lebesgue measure on IRn,
Hausdorff measures, and Haar measures on noncompact groups. Yet, the first
of them is σ-finite and there is no need to develop a special terminology to deal
with it (although the classical work of Radon was concerned with infinite, in
general, measures on IRn). But Hausdorff and Haar measures are not always
σ-finite. Thus, what should one understand by a “Radon measure with values
in [0,+∞]”? Different definitions are possible, leading to the same object in
the case of a finite measure. The following definition appears to be reasonable
(see Fremlin [619], [635]).

7.14.64. Definition. Let X be a Hausdorff space. A measure µ with
values in [0,+∞] defined on a σ-algebra S of subsets of X is called a Radon
measure with values in [0,+∞] if µ is complete, locally determined (see Ex-
ercise 1.12.135), all open sets belong to S, every point has a neighborhood of
finite measure, and for all E ∈ S one has

µ(E) = sup{µ(K) : K ⊂ E, K is compact}.

In the case of a finite measure, this definition corresponds to the com-
pletion of a Radon (in our usual meaning) measure on the Borel σ-algebra.
According to another definition frequently used in the literature, a Radon
measure with values in [0,+∞] is defined on the Borel σ-algebra, every point
has a neighborhood of finite measure, and one has the inner compact regular-
ity condition from the above definition. Such a measure extends uniquely to a
Radon measure in the sense of the above definition (see [619]). The product
of two infinite Radon measures extends uniquely to an infinite Radon measure
(see [619]). If X is locally compact, then every positive linear functional on
C0(X) is given as the integral with respect to a Radon measure with values
in [0,+∞] (Theorem 7.11.3). An infinite Radon measure may not be outer
regular (i.e., may not satisfy the condition µ(B) = inf µ(U), where U ⊃ B is
open).

7.14.65. Example. Let us consider the metric space X = Ω× IR1,
where Ω is the real line with the discrete metric and IR1 is equipped with the
standard metric. Then X with the product topology is locally compact and
B(X) = B(Ω)⊗B(IR1). For every B ∈ B(X), we set

µ(B) :=
∑

ω∈Ω

λ(Bω),
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where Bω = {t : (ω, t) ∈ B} and λ is Lebesgue measure, i.e., µ is the product
of the counting measure on Ω and Lebesgue measure. Then µ(Ω×{0}) = 0,
but µ(U) = +∞ for every open set U ⊃ Ω×{0}. It is readily seen that µ is
inner compact regular. Indeed, given B ∈ B(X) and c < µ(B), we can find
points ω1, . . . , ωn ∈ Ω and compact sets Ki ⊂ Bωi such that the µ-measure of
the compact set

⋃n
i=1{ωi}×Ki is greater than c.

A more general example: a non-σ-finite inner compact regular Haar mea-
sure (see �9.11). However, there exist σ-finite measures that are inner compact
regular but not outer regular; see Exercise 7.14.160.

A system C of nonempty pairwise disjoint compact sets in a space X is
called a concassage for a Radon measure µ on X with values in [0,+∞] if the
intersections of the sets in C with open sets are either empty or have positive
measures, and for every set E in the domain of definition of µ one has

µ(E) =
∑

C∈C

µ(C ∩ E).

Every Radon measure with values in [0,+∞] possesses a concassage (this is
readily verified by Zorn’s lemma, see details in Gardner, Pfeffer [666, Propo-
sition 12.10]). Any saturated (see Chapter 1) Radon measure with values
in [0,+∞] is decomposable, hence is Maharam (it is easy to verify that a
concassage of such a measure µ gives its decomposition, see Gardner, Pfeffer
[667]), however, neither completeness nor the property to be saturated can
be omitted (see Fremlin [620]).

It is shown in Bauer [132] that in the situation of Theorem 7.8.7 in the
Daniell–Stone approach, there exists a locally compact space T with a Radon
measure ν with values in [0,+∞] such that Ω is embedded into T as a dense
subset, the measure ν naturally extends µ, every function f ∈ F extends to
a continuous function f ′ on T decreasing to zero at the infinity, and such
extensions separate the points in T and do not vanish at any point in T ,
provided the latter two properties hold for F . On infinite Radon measures,
see also Fremlin [635], Gardner, Pfeffer [666], [667], Gruenhage, Pfeffer [747].

Exercises

7.14.66.◦ Show that every regular τ0-additive Borel measure is τ -additive.
Hint: given a net of increasing open sets Uα whose union is U , we fix ε > 0,

take a closed set F ⊂ U with |µ|(U\F ) < ε, and consider the sets Uα ∪ (X\F ) that
are open and increase to X.

7.14.67.◦ Let X be an uncountable space, let A be the σ-algebra in X consisting
of finite and countable sets and their complements, and let the measure µ equal 0
on all countable sets and 1 on their complements. Show that µ is perfect. Deduce
that any measure on A is perfect.

Hint: use that every A-measurable function assumes at most countably many
values; any measure on A has at most countably many points of positive measure.
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7.14.68. (Adamski [6]) Construct an example of a non-regular τ -additive mea-
sure on some non-regular second countable space (in particular, assertion (ii) of
Proposition 7.2.2 may be false for non-regular spaces).

Hint: let S be a subset of [0, 1] with λ∗(S) = 0 < λ∗(S), where λ is Lebesgue
measure. Let X be [0, 1] with the topology generated by the standard topology of
[0, 1] together with the set S (the open sets in X have the form [0, 1]∩

(
U ∪(V ∩S)

)
,

where U and V are open in IR1). It is clear that the space X satisfies the second
axiom of countability, but is not regular. Let µ be the image of the restriction λS
of λ to S (see Definition 1.12.11) under the natural embedding S → X (which is
continuous). The measure µ is τ -additive by the last assertion in Proposition 7.2.2.
But it is not regular, since µ(S) > 0, whereas µ(F ) = 0 for every set F ⊂ S that
is closed in X, since such a set is compact in the standard topology of [0, 1], hence
λ(F ) = 0 due to our choice of S.

7.14.69. (i) (Wheeler [1978], [1979]) There exist a completely regular space
X and a Baire probability measure on X that has no countably additive extensions
to the Borel σ-algebra.

(ii) (Ohta, Tamano [1394]) There exists a locally compact space X with the
property indicated in (i). In addition, there exists a countably paracompact space
with such a property.

Hint: for constructing an example in (i) it suffices to have a Baire probability
measure µ on X that assumes only the values 0 and 1, has a discrete Baire set T
of full measure and cardinality of the continuum c, but vanishes on all singletons.
A Borel extension of µ would be a measure defined on all subsets in T and vanishing
on all singletons (which contradicts the fact that c is not two-valued measurable).
Concrete examples are discussed in the cited papers. It is also possible to replace
in Example 7.3.9 the set I by a set I0 ⊂ I of the least cardinality among all sets
of outer measure 1 and equip I0 with the restriction of Lebesgue measure and the
Sorgenfrey topology.

7.14.70. Prove Theorem 7.14.2.
Hint: let An be the σ-algebra of all cylindrical sets with bases in B

(∏n
i=1Xi

)
.

The union of all An is an algebra; µ extends to this algebra as a countably additive
measure, which is verified similarly to the proof of the theorem on countable products
of measures. The τ0-additivity of µ follows from this. To this end, a given net of
open cylinders is split into parts containing the cylinders with bases in

∏n
i=1Xi.

See also Ressel [1555], Amemiya, Okada, Okazaki [46].

7.14.71.◦ Suppose that a compact set K in a completely regular space is covered
by two open sets U1 and U2. Show that there exist continuous nonnegative functions
f1 and f2 with the compact supports K1 ⊂ U1 and K2 ⊂ U2, respectively, such that
f1 + f2 = 1 on K.

7.14.72.◦ Let µ be a nonnegative Baire measure on a normal space X. Prove
that for every closed set C ⊂ X and every ε > 0, there exists a functionally closed
set Z such that C ⊂ Z and µ(Z) ≤ µ∗(C) + ε.

Hint: there exists a functionally open set U such that C ⊂ U and µ(U) ≤
µ∗(C)+ε; sinceX is normal, there exists a functionally closed set Z with C ⊂ Z ⊂ U .

7.14.73.◦ Let fn be measurable mappings from a space with a finite measure µ to
a separable metric space (Y, �Y ) convergent in measure to a measurable mapping f ,
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i.e., for all c > 0 we have lim
n→∞

µ
(
�Y (fn, f) > c

)
= 0. Show that there exists a

subsequence {fni} that converges a.e.

Hint: consider the completion Y of Y and use the reasoning from the scalar
case.

7.14.74. Let fn be measurable mappings from a probability space (X,µ) to a
separable metric space S convergent in measure to a mapping f . Let Ψ: S →M be
a continuous mapping with values in a metric space (M,d). Show that the mappings
Ψ ◦ fn converge in measure to Ψ ◦ f .

Hint: show that the integrals of min
(
1, d(Ψ◦fn,Ψ◦f)

)
converge to zero; to this

end, use that any subsequence in {fn} contains a further subsequence convergent to
f almost everywhere.

7.14.75. Let Y be a metric space and let a function f : [0, 1] → Y be measur-
able with respect to Lebesgue measure. Prove that there exists a separable subspace
Y0 ⊂ Y such that f(x) ∈ Y0 for a.e. x and deduce that for every ε > 0, there exists
a compact set Kε of measure at least 1 − ε on which f is continuous.

Hint: apply Theorem 1.12.19.

7.14.76. (i) Let X = [0, 1] be equipped with the standard topology and
Lebesgue measure µ and let Y = [0, 1] be equipped with the topology generated by
all intervals [a, b) ∩ [0, 1], a < b (i.e., the Sorgenfrey interval with the added point 1
as an open set, see Example 7.2.4). Show that the identity mapping f : X → Y is
Borel, but its restriction to any uncountable set is not continuous.

(ii) Construct an example of a Borel mapping from the interval [0, 1] with the
standard topology and Lebesgue measure to a compact space such that the analog
of Lusin’s theorem fails for it.

(iii) Let µ be the measure on (0, 1)×{0, 1} that is the product of Lebesgue
measure and the measure on {0, 1} assigning 1/2 to the points 0 and 1. Let X be
the space “two arrows” from Example 6.1.20 equipped with its natural normalized
Lebesgue measure λ. Consider the natural mapping f from (0, 1)×{0, 1} to X.
Show that f is measurable and µ ◦ f−1 = λ, but there is no compact set of positive
µ-measure on which f is continuous.

(iv) Let X = [0, 1]c be the product of the continuum of intervals and let X
be equipped with the Radon measure µ that is the extension of the product of the
continuum of Lebesgue measures. Let f : X → X be defined as follows: f(x)(s) =
x(s) if 0 < x(s) < 1, f(x)(s) = 1 − x(s) if x(s) = 0 or x(s) = 1. Show that f is
measurable with respect to µ, but is not almost continuous.

Hint: (i) is verified directly; (ii) consider the compactification of Y from (i);
(iii) any continuous image of a metrizable compact space is metrizable, but any
metrizable set in X is at most countable; (iv) see Fremlin [625, example 3G].

7.14.77. Construct an example of a Borel probability measure ν on a compact
space X and a Borel function f : X → IR such that for every continuous function
g : X → IR, one has ν

(
x : f(x) �= g(x)

)
≥ 1/2.

Hint: let µ be the Dieudonné measure from Example 7.1.3, let ν = (µ+ δω1)/2
and f = I{ω1}; use Exercise 6.10.75; see also Wise, Hall [1993, Example 4.48].

7.14.78. (i) Show that Cb(X) is dense in L1(µ) for every Radon measure µ on
a completely regular space X.

(ii) Construct an example of a Borel probability measure ν on a compact space
X such that C(X) is not dense in L1(ν).
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(iii) (Hart, Kunen [789].) There is a Radon probability measure µ on a compact
space such that L2(µ) has no orthonormal basis consisting of continuous functions.

Hint: (i) apply Lusin’s theorem; (ii) use the previous exercise.

7.14.79.◦ Let µ and ν be two Radon measures on a topological space X and let
F be a family of bounded continuous functions such that fg ∈ F for all f, g ∈ F
and every function f ∈ F has equal integrals with respect to µ and ν. Suppose that
1 ∈ F and F separates the points in X. Show that µ = ν.

Hint: the mapping T : x �→
(
f(x)

)
f∈F from X to the compact space Y that

is the product of the closed intervals If = [infx f(x), supx f(x)] is continuous, the
measures µ′ := µ ◦ T−1 and ν′ := ν ◦ T−1 on Y are Radon and assign equal
integrals to any polynomial in finitely many coordinate functions on Y . By the
Stone–Weierstrass theorem µ′ = ν′. Since T is injective, we obtain µ(K) = ν(K)
for every compact set K in X, hence µ = ν.

7.14.80.◦ Let (X,A, µ) be a measure space with a perfect measure µ, let (Y,B)
be a measurable space such that B is countably generated and countably separated,
and let f : X → Y be a µ-measurable mapping. Prove that a real function g on Y is
measurable with respect to the measure µ ◦ f−1 (i.e., Bµ◦f−1 -measurable) precisely
when the function g ◦ f is measurable with respect to µ.

Hint: the µ◦f−1-measurability of g yields the µ-measurability of g◦f . In order
to prove the converse, recall that (Y,B) is isomorphic to a subset of an interval
with the Borel σ-algebra. Hence Bµ◦f−1 = {B ⊂ Y : f−1 ∈ Aµ}. Now the µ-

measurability of g ◦ f yields the µ ◦ f−1-measurability of the sets {g ≤ c}.

7.14.81.◦ Give an example of a probability measure µ on a σ-algebra A in a
space X and a mapping F : X → Y with values in a compact space Y such that
F−1(B) ∈ Aµ for all B ∈ B(Y ), but there is no mapping G which µ-a.e. equals F
and G−1(B) ∈ A for all B ∈ B(Y ) (in other words, F is measurable with respect to
completion of µ, but is not equivalent to any A-measurable mapping).

Hint: consider X = [0, 1]c , A = Ba([0, 1]c), take for µ on A the product
of the continuum of Lebesgue measures, and let F be the identity mapping from
X to X. The measurability of F follows by Theorem 7.14.3. If there exists a(
Ba(X),B(X)

)
-measurable modification G of the mapping F , then there is a set

A ∈ Ba(X) of full measure, dependent only on countably many coordinates xti ,
such that A∩B ∈ Ba(X) for all B ∈ B(X). This leads to a contradiction if we take
for B the set

{
x : xt = 0, ∀ t �∈ {ti}

}
.

7.14.82.◦ Give an example of a regular Borel probability measure µ on a locally
compact Hausdorff space that has no support, in particular, is not τ -additive.

Hint: consider the measure constructed in Example 7.1.3 on X0.

7.14.83.◦ Let X = [0, 1] be equipped with the following topology: all singletons
in (0, 1] are open and all sets of the form [0, 1]\{x1, . . . , xn}, where xi ∈ (0, 1], are
open. Verify that the generated topology is Hausdorff and is X compact in this
topology. Show that X cannot be the support of a Radon measure.

7.14.84. Let X be a Hausdorff space, let A be an algebra of subsets in X, and
let m be a nonnegative finitely additive set function on A such that

m(A) = sup{m(Z) : Z ⊂ A,Z ∈ A, Z is closed}
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for all A ∈ A and

m(X) = sup
K∈K

{
inf{m(E) : E ∈ A, K ⊂ E}

}
,

where K is the class of all compact sets. Prove that m extends to a Radon measure
on X.

Hint: see Fremlin [635, �416O].

7.14.85. Prove Theorem 7.14.30.

7.14.86. Prove that the algebra A(X) generated by all functionally closed
subsets of a topological space X consists of finite unions of the form

⋃n
i=1(Fi\F ′

i ),
where Fi, F

′
i are functionally closed and F ′

i ⊂ Fi. Prove the analogous assertion for
the algebra generated by all closed sets.

Hint: see Exercise 1.12.51.

7.14.87. Let X be a completely regular space, let βX be its Stone–Čech com-
pactification, and let L be a continuous linear functional on the space Cb(X). Let
the functional L′(g) = L(g ◦ j) on Cb(βX), where j : X → βX is the canonical
embedding, be represented by a Baire measure ν on βX. Prove that L is repre-
sented by some Baire measure µ on X precisely when |ν|∗(X) = |ν|(βX), where the
outer measure is defined by means of Ba(βX); in addition, ν extends µ to βX. The
analogous assertion is true for τ -additive measures if the outer measure is defined
by means of B(βX).

Hint: if |ν|∗(X) = |ν|(βX) in the case of the Baire σ-algebra, then ν can be
restricted to X by means of the standard construction of restricting to a set of
full outer measure, and the induced σ-algebra coincides with Ba(X). The obtained
measure µ on X represents the functional L, since any function f ∈ Cb(X) extends

uniquely to a function f̂ ∈ Cb(βX), whence one has

L(f) = L′(f̂) =

∫

βX

f̂ dν =

∫

X

f dµ.

7.14.88. Prove that every additive regular set function m on the algebra A(X)
generated by all functionally closed subsets in a topological space X (see the def-
inition in �7.9) is the difference of two nonnegative additive regular set functions
defined before Theorem 7.9.1.

7.14.89. Let X and Y be topological spaces and let µ be a Borel probability
measure on Y . Prove that given a continuous mapping f : X → Y , the equality
κ(A) = µ∗(f(A)

)
defines a Choquet capacity on X.

7.14.90. (Shortt [1703]) We shall say that a separable metric space is uni-
versally measurable if it is measurable with respect to every Borel measure on its
completion. Suppose that a set X is equipped with two metrics d1 and d2 with
respect to which X is separable and the corresponding Borel σ-algebras coincide.
(i) Prove that X is universally measurable with the metric d1 precisely when it is
universally measurable with the metric d2. (ii) Deduce from (i) and Theorem 7.5.7
that a separable metric space X is universally measurable precisely when every Borel
probability measure on X is perfect.

7.14.91. (Sazonov [1656]) Prove without the continuum hypothesis that on
the set of all subsets in [0, 1] there is no perfect probability measure vanishing on
all singletons.
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Hint: let µ be such a measure and let F (x) = µ
(
[0, x)

)
; then the measure

ν = µ ◦F−1 is defined on the set of all subsets of the interval and extends Lebesgue
measure; in addition, ν is perfect being the image of a perfect measure; we take a
set A with outer Lebesgue measure 1 and inner Lebesgue measure 0; let ν(A) > 0
(otherwise ν([0, 1]\A) = 1 and we can deal with [0, 1]\A); the restriction of ν to
A is a perfect measure, which is impossible (it suffices to take f(x) = x). See a
generalization in Pachl [1415].

7.14.92. (Sazonov [1656]) Let X be a metric space containing no system of
disjoint nonempty open sets of cardinality greater than that of the continuum. Prove
that a Borel measure on X is perfect precisely when it is tight. See a generalization
in Pachl [1415].

7.14.93. (Zink [2031], Saks, Sierpiński [1643] for Y = IR) Let (X,S, µ) be a
probability space and let (Y, d) be a separable metric space. Let f : X → Y be an
arbitrary mapping. Prove that for every ε > 0, there exists a

(
B(Y ), S)

)
-measurable

mapping g : X → Y such that d
(
f(x), g(x)

)
< ε for every x, with the exception of

points of a set of inner measure zero.

7.14.94. Let X be an uncountable Souslin space. Prove that there exists a
family of mutually singular atomless Radon probability measures on X having the
cardinality of the continuum.

Hint: find in X a collection of cardinality of the continuum of disjoint Borel
sets of cardinality of the continuum.

7.14.95. (Plebanek [1465]) Let K be some compact class of subsets of a set
X such that to every K ∈ K there corresponds a number rK . Denote by AK the
algebra generated by K. Suppose that for every finite collection K1, . . . ,Kn ∈ K,
there is an additive set function µK1,...,Kn : AK → [0, 1] with µK1,...,Kn(Ki) ≥ rKi ,
i = 1, . . . , n. Then there exists a probability measure µ on σ(K) with µ(K) ≥ rK
for all K ∈ K.

7.14.96.◦ Let µ be an atomless Radon measure on a metric space X. Prove
that for every ε > 0, there exists δ > 0 such that µ(B) < ε for every Borel set B of
diameter less than δ.

Hint: it suffices to consider the restriction of µ to a compact set K of a suf-
ficiently large measure; for every point x ∈ K, there exists r(x) > 0 such that one
has µ

(
K
(
x, 2r(x)

))
< ε/2; hence there is a finite cover of K by the balls K(xi, r) of

some radius r > 0 with µ
(
K(xi, 2r)

)
< ε/2; let δ = r/2.

7.14.97. (Davies, Schuss [418]) Let µ be a Radon probability measure on a
topological space X, let f be a µ-integrable function, and let J be its integral. Prove
that for every ε > 0, every point x ∈ X can be associated with an open set G(x)
containing x such that given measurable sets Bi having pairwise intersections of
measure zero and covering X up to a measure zero set and any given points xi ∈ Bi

satisfying the condition Bi ⊂ G(xi), one has
∣
∣
∣
∑∞
i=1 f(xi)µ(Bi) − J

∣
∣
∣ < ε.

7.14.98. Let M be a metric space, let F be some σ-algebra in M containing
all singletons, and let µ be a probability measure on F . Prove that the following
conditions are equivalent: (1) µ(p) = 0 for all p ∈ M ; (2) for every p ∈ M and
ε > 0, there exists r > 0 such that if a set E in F is contained in the ball of radius
r centered at p, then µ(E) < ε.

Hint: see Hahn [770, p. 409] or Sierpiński [1717].
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7.14.99. (Rao, Rao [1536]) Show that on the Borel σ-algebra of the space
[0, ω1), where ω1 is the first uncountable ordinal, there exists no atomless countably
additive probability measure (see generalizations in Mauldin [1275]).

7.14.100. (Marczewski, Ryll-Nardzewski [1259]) (i) Let µ be a countably ad-
ditive probability measure on an algebra A of subsets of a space X and let ν be
a countably additive probability measure on an algebra B of subsets of a space Y
possessing a compact approximating class. Suppose that on the algebra E generated
by the rectangles A×B, where A ∈ A, B ∈ B, one has a nonnegative additive set
function σ such that σ(A×Y ) = µ(A) for all A ∈ A and σ(X×B) = ν(B) for all
B ∈ B. Prove that σ is countably additive.

(ii) Construct an example showing that assertion (i) may be false if one does
not require the existence of a compact approximating class for at least one of the
measures µ or ν.

7.14.101. Construct an example of a function f on [0, 1]∞ that is constant
in every variable if the remaining variables are fixed, but is not measurable with
respect to the countable product of Lebesgue measures.

Hint: see Marczewski, Ryll-Nardzewski [1257].

7.14.102.◦ (Ursell [1904]) Let µ be a finite nonnegative measure on a space X.
(i) Let a function f : X× [0, 1] → IR1 be such that for every fixed t, the function
x �→ f(x, t) is µ-measurable, and for µ-a.e. x, the function t �→ f(x, t) is increasing.
Prove that the function f is measurable with respect to the measure µ⊗λ, where λ
is Lebesgue measure.

(ii) Let E ⊂ X× [0, 1] be such that the sections Et := {x : (x, t) ∈ E} are
µ-measurable and Et ⊂ Es if t < s. Prove that E is measurable with respect
to µ⊗λ.

(iii) (S. Hartman) Let A be a non-Borel set on the line {(x, y) : x+y = 0} in IR2

and let E be the union of A and the open half-plane {(x, y) : x + y > 0}. Show
that the function IE has the following properties: it is nondecreasing and one-sided
continuous in every variable separately, but is not Borel in both variables. Hence in
assertion (i) one cannot assert the Borel measurability of f even if X = [0, 1] with
the Borel σ-algebra.

Hint: (i) follows by considering the approximations

fn(x, t) = f(x, j2−n) if t ∈
[
j2−n, (j + 1)2−n), j = 0, . . . , 2n − 1,

gn(x, t) = f(x, (j + 1)2−n) if t ∈
[
j2−n, (j + 1)2−n), j = 0, . . . , 2n,

with fn(x, 1) = gn(x, 1) = f(x, 1). One has fn ≤ f ≤ gn. The set Ω of all points
where both sequences {fn(x, t)} and {gn(x, t)} converge to a common limit ϕ(x, t)
is µ⊗λ-measurable. It follows from our hypotheses that, for µ-a.e. x, one has
ϕ(x, t) = f(x, t), hence the section Ωx may differ from [0, 1] only in an at most
countable set. By Fubini’s theorem µ⊗λ(Ω) = 1, i.e., ϕ(x, t) = f(x, t) for µ⊗λ-
a.e. (x, t). Clearly, ϕ is µ⊗λ-measurable. Assertion (ii) follows from (i). Assertion
(iii) is readily verified.

7.14.103. (Marczewski, Ryll-Nardzewski [1257]) Let (X,F) be a measurable
space, T a separable metric space, Y a metric space, and let a mapping f : X×T → Y
be such that for every fixed t, the mapping x �→ f(x, t) is measurable with respect
to F , provided that Y is equipped with the Borel σ-algebra.
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(i) Let T = IR1. Suppose additionally that for every x, the mapping t �→ f(x, t)
is right continuous. Then f is F⊗B(T )-measurable.

(ii) Let Y = IR1, ν a measure on F , λ a measure on B(T ), µ = ν⊗λ, and let Q
be some countable everywhere dense set in T . Suppose additionally that for every x,
the set of discontinuity points of the function t �→ f(x, t) has λ-measure zero and
lim infr→t,r∈Q f(r, x) ≤ f(x, t) ≤ lim supr→t,r∈Q f(r, x). Prove that the function f

is measurable with respect to
(
F⊗B(T )

)
µ
.

7.14.104.◦ Let µ be a finite nonnegative measure on a measurable space (X,A).
Let a function f : X× [0, 1] → IR1 be such that for every fixed t, the function
x �→ f(x, t) is µ-measurable, and for µ-a.e. x, the function t �→ f(x, t) is Riemann
integrable. Set

f0(x, t) :=
d

dt
F (x, t), F (x, t) :=

∫ t

0

f(x, s) ds,

where f0(x, t) = 0 if f(x, s) is not Riemann integrable or the derivative does not
exist. Prove that the function f0 is measurable with respect to the measure µ⊗λ,
where λ is Lebesgue measure, and that for a.e. x, one has f0(t, x) = f(t, x) for a.e. t,
although f may not be µ⊗λ-measurable.

Hint: observe that the function F (x, t) is measurable in x for any fixed t and
is continuous in t for a.e. x.

7.14.105. (Talagrand [1834, p. 140]) Let Xi, i = 1, . . . , n, be compact spaces
with Radon probability measures µi which for all i ≥ 2 do not vanish on nonempty
open sets. Suppose that the function f :

∏n
i=1Xi → IR is continuous in every vari-

able separately. Then, there exist metrizable compact sets Ki, continuous surjec-
tions hi : Xi → Ki, and a function g :

∏n
i=1Ki → IR, continuous in every variable

separately, such that f(x1, . . . , xn) = g
(
h1(x1), . . . , hn(xn)

)
. In particular, f is a

Baire function.
Hint: we consider only the simpler case n = 2 and take a mapping h1 : x �→ fx,

where fx(y) = f(x, y), from X1 to the space C(X2) with the topology of pointwise
convergence. This mapping is continuous and its range K1 := h1(X1) is compact.
By Theorem 7.10.9, any sequence in K1 has a pointwise convergent subsequence.
Since K1 consists of continuous functions and the support of µ2 coincides with X2,
the set K1 is compact in the topology τµ2 of convergence in measure µ2. Analogous
arguments show that the topology τµ2 on K1 is stronger than the topology of point-
wise convergence and hence coincides with the latter, which means the metrizability
of K1. Let h2 : X2 → C(K1) be given by the formula h2(y)(fx) = f(x, y), y ∈ X2,
fx ∈ K1, where C(K1) is equipped with the topology of pointwise convergence.
Then K2 := h2(X2) is compact in this topology, which implies the metrizability
of K2. Finally, let g(u, v) = v(u), u ∈ K1, v ∈ K2 ⊂ C(K1). Then we have
f(x, y) = g

(
h1(x), h2(y)

)
.

7.14.106. (i) (Fremlin [621, Proposition 4J]) Prove that under the continuum
hypothesis there exist a compact space X with a Radon measure µ and a function
f on X×[0, 1] that is continuous in the first argument, is Lebesgue measurable in
the second argument, but is not measurable with respect to the Radon extension of
the measure µ⊗λ, where λ is Lebesgue measure.

(ii) Let µ be a probability measure on a space (X,A), let ν be a Radon proba-
bility measure on a compact metric space Y , and let a function f : X×Y → IR1 be
continuous in the second argument and µ-measurable in the first argument. Prove
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that f is measurable with respect to Aµ⊗B(Y ), in particular, measurable with re-
spect to the measure µ⊗ν. Extend the latter assertion to the case, where Y is a
space with metrizable compacts.

Hint: (ii) let ϕx(y) := f(x, y). The mapping x �→ ϕx, X �→ C(Y ), where C(Y )
is equipped with its usual norm and the σ-algebra B

(
C(Y )

)
, is Aµ-measurable, since

by hypothesis the functions x �→ ϕx(y), y ∈ Y , are Aµ-measurable and B
(
C(Y )

)

is generated by the functions y �→ ϕ(y). Then the mapping Ψ: (x, y) �→ (ϕx, y),
X×Y → C(Y )×Y , is Aµ⊗B(Y )-measurable, and f is the composition of Ψ and the
continuous function (ϕ, y) �→ ϕ(y) on C(Y )×Y . An alternative proof: approximate
f by simple functions as in Lemma 6.4.6.

7.14.107. (Nussbaum [1387]) Let X be a compact (or locally compact) space,
let Y be a Hausdorff space, and let ν be a Radon measure on X. Suppose that a
function f : X×Y → IR1 is continuous in every variable separately. Suppose also
there exists a ν-integrable function g such that |f(x, y)| ≤ g(y) for all x ∈ X, y ∈ Y .
Prove that the function

x �→
∫

Y

f(x, y) ν(dy)

is continuous.

7.14.108.◦ Prove Proposition 7.14.8.
Hint: one can assume that ‖ν‖ ≤ 1 and |f | ≤ 1; given x0 ∈ X and ε > 0, for

every point y ∈ Y , one can find open sets U(y) and Vy such that y ∈ U(y), x0 ∈ Vy
and |f(x, z) − f(x0, y)| < ε for all (x, z) ∈ Vy×U(y). By the τ -additivity, there

exists a finite collection U(y1),. . . ,U(yk) such that |ν|
(⋃k

i=1 U(yi)
)
> 1− ε. Letting

V := Vy1 ∩ · · · ∩ Vyk , one obtains
∫

Y

|f(x, y) − f(x0, y)| ν(dy) ≤ 2ε

for all x ∈ V .

7.14.109. (Babiker, Knowles [88]) (i) Let X be a completely regular space
and let µ be a Baire probability measure on X. Suppose that for every completely
regular space Y and every function f ∈ Cb(X×Y ), the function

g(y) =

∫

X

f(x, y)µ(dx)

is continuous. Prove that the measure µ is τ -additive.
(ii) Let X and Y be completely regular spaces such that Ba(X)⊗Ba(Y ) =

Ba(X ×Y ). Prove that for every Baire measure µ on X and every function f
in Cb(X×Y ), the function g in (i) is continuous.

7.14.110. (Johnson [905]) Let X and Y be compact spaces, let µ be a Radon
measure onX, and let f be a bounded function onX×Y that is separately continuous
in every argument.

(i) Prove that the set of functions fx : y �→ f(x, y), x ∈ suppµ, is separable in
the Banach space C(Y ).

(ii) Give an example showing that in (i) the set of all functions fx, x ∈ X, may
be nonseparable.

(iii) Prove that the function f is measurable with respect to every Radon mea-
sure on X×Y .

(iv) Prove that if X = suppµ, then the function f is Borel.
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7.14.111. Construct a Borel probability measure µ on a topological space X
with the following property: for every set B ∈ B(X×X), the functions

x2 �→ µ
({
x1 : (x1, x2) ∈ B

})
and x1 �→ µ

({
x2 : (x1, x2) ∈ B

})

are measurable with respect to µ, but have different integrals for some B.
Hint: see Johnson, Wilczynski [914]; take for X the set of all infinite ordinals

smaller than the first uncountable ordinal ω1 with the Dieudonné measure µ from
Example 7.1.3 (in the notation of that example, the space is X0). Finally, take the
set B =

{
(x1, x2) : x1 ≥ x2

}
.

7.14.112. Construct an example of completely regular first countable spaces
X and Y equipped with Baire probability measures µ and ν such that the Baire
measures ζ and ζ′ on X×Y defined by the formulas
∫

X×Y
f dζ =

∫

X

∫

Y

f(x, y)µ(dx) ν(dy),

∫

X×Y
f dζ′ =

∫

Y

∫

X

f(x, y) ν(dy)µ(dx)

do not coincide.
Hint: see Fremlin [635, �439Q].

7.14.113.◦ (Carathéodory [308]) Let µ be a finite nonnegative measure on a
measurable space X.

(i) Let a function f : X×IR1 → IR1 be such that for every fixed t, the function
x �→ f(x, t) is µ-measurable, and for µ-a.e. x, the function t �→ f(x, t) is continuous.
Prove that for every µ-measurable function ϕ, the function x �→ f

(
x, ϕ(x)

)
is µ-

measurable.
(ii) Let T1, . . . , Tk be separable metric spaces and let f : X×T1×· · ·×Tk → IR1

be a function that is separately continuous in every ti for µ-a.e. x and, for all
fixed (t1, . . . , tk), is µ-measurable in x. Prove that for every µ-measurable mapping
ϕ : X → T1×· · ·×Tk, the function f

(
x, ϕ(x)

)
is µ-measurable.

Hint: (i) if ϕ assumes finitely many values ci on measurable sets Ai, then
f
(
x, ϕ(x)

)
= f(x, ci) for all x ∈ Ai, whence the measurability follows. In the

general case, there is a sequence of simple functions ϕn convergent a.e. to ϕ, hence
lim
n→∞

f
(
x, ϕn(x)

)
= f

(
x, ϕ(x)

)
a.e. (for all x at which one has the continuity of f in t

and ϕ(x) = lim
n→∞

ϕn(x)). (ii) For k = 1 the reasoning from (i) is applicable, the gen-

eral case follows by induction on k, since for a.e. x the function f
(
x, ϕ1(x), t2, . . . , tk

)

is separately continuous in ti.

7.14.114. (Grande, Lipiński [728]) Assuming the continuum hypothesis, con-
struct a nonmeasurable function F : IR2 → IR1 such that for every Lebesgue mea-
surable function f : IR1 → IR1, the function F

(
x, f(x)

)
is measurable (cf. Exer-

cise 9.12.62).

7.14.115. Let (X,A, µ) be a complete probability space, let L0(µ) be equipped
with the metric d0 of convergence in measure, and let (T, T ) be a measurable space.
Prove that the following conditions on a mapping F : T → L0(µ) are equivalent:
(i) F (T ) is separable and F is measurable, (ii) there exists a T ⊗A-measurable
function G on T×X such that for every t ∈ T , one has F (t)(x) = G(t, x) for a.e. x.

Hint: if one has (i), then there is a sequence of points tk ∈ T such that the set
{F (tk)} is dense in F (T ). Fix some representatives fk of the classes F (tk) ∈ L0(µ).
By the measurability of F we have Tn,k :=

{
t ∈ T : d0

(
F (t), F (tk)

)
< 2−n} ∈ T for

all n, k ∈ IN. The sets Dn,k := Tn,k\
⋃k−1
i=1 Tn,i for every fixed n form a measurable
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partition of T . Set Gn(t, x) = fk(x) if t ∈ Dn,k. It is clear that we obtain T ⊗A-
measurable functions. Let G(t, x) := lim

n→∞
Gn(t, x) at all points (t, x) where this

limit exists and is finite (this set belongs to T ⊗A), and let G(t, x) = 0 at all other
points. Now one can verify that G is the required function. If one has (ii), then it
suffices to verify (i) for bounded functions G, which by using uniform approximations
reduces the claim to the case of the indicator of a set E in T⊗A. The separability of
F (T ) and measurability of F are verified directly for sets E in the algebra generated
by the products S×A, S ∈ T , A ∈ A. Now the monotone class theorem yields the
claim for all E ∈ T ⊗A.

7.14.116.◦ Let X and Y be compact spaces with Radon probability measures
µ and ν and let µ∗(A) = ν∗(B) = 1. Show that (µ⊗Rν)∗(A×B) = 1, where µ⊗Rν
is the Radon extension of µ⊗ν to X×Y .

Hint: let K be compact in X×Y ; if µ⊗Rν(K) > 0, then there exists x ∈ A such
that ν(Kx) > 0, i.e., there exists y ∈ B such that (x, y) ∈ K. Hence K ∩ (A×B) is
nonempty.

7.14.117. (Talagrand [1834, p. 121]) Let (X,A, µ) be a probability space, let
Y be a compact space with a Radon probability measure ν, and let a function f
on X×Y be continuous in y and measurable with respect to µ⊗ν. Show that for
every ε > 0, there exist two sequences of sets An ∈ A and Bn ∈ B(Y ) such that
µ⊗ν

(⋃∞
n=1An×Bn

)
= 1 and on every An×Bn the oscillation of f does not exceed ε.

7.14.118.◦ (Tolstoff [1863]) Let (X,A, µ) be a probability space, let (Y, d) be
a complete separable metric space, and let y0 ∈ Y be a fixed point. Suppose that
a function f : X×Y → IR is measurable with respect to A⊗B(Y ) and the equality
limy→y0 f(x, y) = f(x, y0) holds for every x ∈ X. Prove that for every ε > 0, there
exists a set Aε ∈ A such that µ(Aε) > 1−ε and limy→y0 f(x, y) = f(x, y0) uniformly
in x ∈ Aε.

Hint: in the solution to Exercise 2.12.46, use Theorem 6.10.9 in place of Propo-
sition 1.10.8.

7.14.119.◦ Let K be a compact space and let µ be a Radon probability measure
on K with support K.

(i) Prove that the following conditions on a bounded function f are equivalent:
(a) there exists a bounded function g such that the set of all discontinuity points of
g has µ-measure zero and f(x) = g(x) µ-a.e., (b) there exists a set Z of measure
zero such that the restriction of f to K\Z is continuous.

(ii) Construct an example showing that in (i) one cannot always find a contin-
uous function g.

Hint: (i) if (b) is fulfilled, then the set A = K\Z is everywhere dense in K and
one can define g(x) = lim supy→x,y∈A f(y) if x ∈ Z.

7.14.120. One says that a Radon measure µ has a metrizable-like support if
there exists a sequence of compact sets Kn ⊂ X such that for every open set U ⊂ X
and ε > 0, there exists n with Kn ⊂ U and |µ|(U\Kn) < ε. Show that this prop-
erty is strictly stronger than the separability of µ. Show that the existence of a
metrizable-like support follows from the existence of a sequence of metrizable com-
pact sets Kn with |µ|(X) = |µ|(

⋃∞
n=1Kn), but is weaker than the latter condition.

Hint: see Gardner [660, Section 24]; see also Example 9.5.3.
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7.14.121. (Lozanovskĭı [1195]) Let K1 and K2 be compact spaces without
isolated points. Prove that there is no Radon probability measure µ on K1×K2

such that µ(K) = 0 for every nowhere dense compact set K.

7.14.122. (Fremlin [630]) Let µ be a Radon probability measure on a topologi-
cal space X, regarded on B(X)µ, let µ∗ and µ∗ be the corresponding outer and inner
measures, and let ν be the measure generated by the Carathéodory outer measure
m := (µ∗ + µ∗)/2 (see Exercise 1.12.143). Prove that µ = ν. Show that the same is
true for every complete perfect atomless probability measure.

7.14.123. (i) (Varadarajan [1918]) Let µ be a τ -additive Borel measure on a
paracompact space X. Prove that the topological support of µ is Lindelöf.

(ii) (Plebanek [1469]) Show that there exists a τ -additive Baire measure with-
out Lindelöf subspaces of full measure.

Hint: (i) let S be the support of µ and let Ut, where t ∈ T , be an open cover
of S. Since S is closed, the space S is paracompact too. Hence one can inscribe in
the given cover an open cover V representable in the form V =

⋃∞
n=1 Vn, where every

subfamily Vn consists of disjoint sets Vn,α (see Engelking [532, Theorem 5.1.12]). It
is clear from the definition of S that |µ|(Vn,α ∩S) > 0. Therefore, for every fixed n,
one has at most countably many nonempty sets Vn,αk ∩ S, which gives a countable
cover of S by the sets Vn,αk , consequently, a countable subcover in {Ut}.

7.14.124. (Aldaz, Render [20]) Let X be a K-analytic Hausdorff space in the
sense of Definition 6.10.12, let F be the class of all closed sets in X, and let µ
be a probability measure on some σ-algebra E such that for every E ∈ E , one has
µ(E) = sup{µ(F ) : F ⊂ E,F ∈ F ∩ E}. Prove that µ extends to a Radon measure
on X.

7.14.125. Let X be a K-analytic space in the sense of Definition 6.10.12. Prove
that every Borel probability measure on X is tight.

Hint: let Ψ be a mapping from IN∞ to the set of compact subsets of X,
representing X. Let Ψ(A) =

⋃
a∈A Ψ(a) and C(A) = µ∗(Ψ(A)

)
, A ⊂ IN∞. It is

verified directly that Ψ(K) is compact for every compact K. Next we verify that C
is a Choquet capacity on IN∞. A direct proof is found in Fremlin [635, �432B].

7.14.126. (i) (Kindler [998]) Let F be a vector lattice of functions on a set
Ω and let L be a nonnegative linear functional on F such that L(fn) → 0 for each
sequence {fn} ⊂ F that decreases pointwise to zero. Given f, g ∈ F with f ≤ g, let

[f, g[:= {(x, t) ∈ Ω×IR1 : f(x) ≤ t < g(x)} and ν([f, g[) := L(g − f).

Prove that the class R of all such sets [f, g[ is a semiring and the function ν is
well-defined and countably additive on R.

(ii) Apply (i) to prove Theorem 7.8.7 letting

µ
(
{f > 1}

)
:= ν

(
{f > 1}×[0, 1)

)
, f ∈ F .

(iii) Show that the measure µ is uniquely defined on the σ-ring generated by
the sets {f > 1}, where f ∈ F , and give an example where µ is not unique on the
σ-algebra generated by F .

Hint: see Dudley [495, �4.5].

7.14.127. Show that the Sorgenfrey line is measure-compact, but its square is
not.

Hint: see Fremlin [635, �439P].
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7.14.128. Show that the class of all Radon spaces is closed under the following
operations: (i) countable topological sums, (ii) countable unions of Radon subspaces,
(iii) countable intersections of Radon subspaces, (iv) passage to universally Borel
measurable subspaces. In addition, the countable product of Radon spaces in each
of which all compact sets are metrizable, is Radon as well.

Hint: if µ is a Borel probability measure on the product of Radon spaces Xn
with metrizable compacts, then its projections are Radon, which yields that µ is
concentrated on a countable union of metrizable compacts (note that countable
products of metrizable compacts are metrizable). Other assertions are immediate.

7.14.129.◦ Let X be a Radon space that is homeomorphically embedded into
a topological space Y . Prove that X is measurable with respect to every Borel
measure on Y .

Hint: let µ be a nonnegative Borel measure on Y and let Y0 ∈ B(Y ) be a
measurable envelope of X in Y . Consider the measure ν(B ∩ X) := µ(B ∩ Y0),
B ∈ B(Y ), and observe that B(X) = B(Y ) ∩X.

7.14.130.◦ Prove that IRc and [0, 1]c are not Radon spaces.
Hint: the space from Example 7.1.3 can be embedded into [0, 1]c .

7.14.131.◦ Let two Radon measures µ and ν on a space X coincide on a count-
able algebra A that is contained in B(X)|µ|∩B(X)|ν| and separates the points in X.
Prove that µ = ν.

Hint: in view of Proposition 7.14.24, one can assume that X is a countable
union of metrizable compact sets. Let η = |µ| + |ν|. For every A ∈ A we find Borel
sets A′, A′′ with A′ ⊂ A ⊂ A′′, η(A′) = η(A′′). We obtain a countable collection B0

of Borel sets separating points. Hence the generated algebra A0 is countable and
σ(A0) = B(X) (see Theorem 6.8.9). Finally, one has µ = ν on A0. Indeed, it suffices
to observe that given B1, . . . , Bk in B0, we find sets A1, . . . , Ak ∈ A such that Bi
is associated to Ai as A′

i or A′′
i , whence η

(
(B1 ∩ · · · ∩ Bk) � (A1 ∩ · · · ∩ Ak)

)
= 0,

and consequently µ(B1 ∩ · · · ∩Bk) = ν(B1 ∩ · · · ∩Bk), since A1 ∩ · · · ∩Ak ∈ A. The
assertion of this exercise is found in the literature in close formulations (see, e.g.,
Stegall [1775]).

7.14.132.◦ Prove that Cyl(X,G) is the algebra of sets generated by G (see
�7.12).

7.14.133. Let µ be a Radon measure on an infinite-dimensional locally convex
space X. Show that its characteristic functional µ̃ is continuous in the weak∗ topol-
ogy σ(X∗, X) only in the case where µ is concentrated on the union of a sequence
of finite-dimensional subspaces.

Hint: see Vakhania, Tarieladze, Chobanyan [1910, Ch. VI, �3, Theorem 3.3].

7.14.134.◦ Let X and Y be Banach spaces such that Y is separable and X is
reflexive and let T : X → Y be a continuous injective linear mapping. Prove that
X is separable.

Hint: embed Y injectively into l2; in the case Y = l2 verify that the range of
the adjoint mapping T ∗ : l2 → X∗ is dense.

7.14.135. Construct an example of a cylindrical quasi-measure of unbounded
variation on l2 such that its characteristic functional is bounded and continuous in
the Sazonov topology.

Hint: see Bogachev, Smolyanov [225, Remark 4.2].
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7.14.136. (Kwapień [1093]) Let {ξn} be a sequence of random variables on a
probability space (Ω,F , P ) such that the series

∑∞
n=1 λnξn converges in probability

for every sequence of numbers λn → 0. Prove that
∑∞
n=1 |ξn|

2 < ∞ a.e. Deduce

that the embedding l1 → l2 is a radonifying operator, i.e., it takes every nonnega-
tive cylindrical quasi-measure on l1 with a continuous characteristic functional to a
Radon measure on l2.

7.14.137. (Schwartz [1679]) Let a linear function l on a Banach space X be
measurable with respect to every Radon measure on X. Prove that l is continuous.

Hint: see Christensen [355] and Kats [962], where more general results are
proven.

7.14.138. (Talagrand [1829]) Prove that under Martin’s axiom every infinite-
dimensional separable Banach space X contains a hyperplane X0 that is not closed,
but is measurable with respect to every Borel measure on X. By the previous
exercise X0 cannot be the kernel of a universally measurable linear function.

7.14.139. (Talagrand [1834, p. 184]) Let E be the Banach space of all bounded
functions on [0, 1] that are nonzero on an at most countable set and let E be equipped
with the norm sup |f(t)|. Denote by w the weak topology of the space E. Then, there
exists a probability measure on the weak Borel σ-algebra B

(
(E,w)

)
that assumes

only two values 0 and 1, but is not Radon.

7.14.140. (von Weizsäcker [1969]) (i) Let X be the space of all Borel measures
on [0, 1] equipped with the weak topology (i.e., the weak∗ topology of C[0, 1]∗) and
let K be the convex compact set in X consisting of all probability measures. Let
λ be Lebesgue measure and let µ be the image of λ under the continuous (in the
indicated topology) mapping π : t �→ δt, [0, 1] → K, where δt is Dirac’s measure at
the point t. Let

C :=
∞⋂

n=1

{
m ∈ K : λ+ n−1(λ−m) ∈ K

}
.

Prove that C is a convex Gδ-set in K and µ(C) = 1, but µ(S) = 0 for every convex
compact set S ⊂ C.

(ii) Let K be a convex compact set in a locally convex space X such that the
linear span of K is infinite-dimensional. Prove that there exist a convex set C ⊂ K
and a Radon probability measure µ on K such that C is a Gδ-set in some metrizable
convex compact set K0 ⊂ K and µ(C) = 1, but µ(S) = 0 for every convex compact
set S ⊂ C.

Hint: (i) it is easily verified that C is convex and can be represented as the
intersection of a sequence of open sets in K with the weak topology. In addition,

C = K\
⋃

ε>0

{
m ∈ K : λ+ ε(λ−m) ∈ K

}
.

Let D be the set of all Dirac measures. Then D is compact in K and µ(D) = 1.
If S ⊂ C is a convex compact set with µ(C) > 0, then µ(S ∩ D) > 0. Then
A := π−1(S ∩D) is compact and λ(A) > 0. Since δt ∈ S if t ∈ A, by using that S
is convex and closed we obtain that every probability measure ν on A belongs to S.
In particular, ν := λ(A)−1λ|A ∈ S. The measure λ + λ(A)(λ − ν) is probability,
hence belongs to K. According to the above equality for C we obtain that ν �∈ C.
This contradicts the fact that ν ∈ S ⊂ C. Claim (ii) is deduced from (i) by using a
suitable mapping (see details in [1969]).
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7.14.141. Let µ and ν be τ -additive measures on a locally convex space X
with equal Fourier transforms. Prove that µ = ν.

Hint: let p be a continuous seminorm on X, let Xp be the normed space
obtained by the factorization of X with respect to p−1(0), and let πp : X → Xp be
the natural projection. Sets of the form π−1

p (U), where p is a continuous seminorm
and U is open in Xp, form a topology base in X. Hence it suffices to show the
equality of µ and ν on such sets. The measures µ ◦ π−1

p and ν ◦ π−1
p on Xp have

equal Fourier transforms and are τ -additive. Both properties are preserved for the
natural extensions of the two measures to the completion of Xp. Since on a Banach
space all τ -additive measures are Radon, we obtain the equality of the indicated
extensions on the completion of Xp, hence the equality µ◦π−1

p = ν ◦π−1
p . Therefore,

µ
(
π−1
p (U)

)
= ν

(
π−1
p (U)

)
for all open sets U ⊂ Xp.

7.14.142. (i) Let µ be a Radon probability measure on a convex compact set
K in a locally convex space X. Show that µ has a barycenter b ∈ K.

(ii) Let X be a complete locally convex space and let µ be a τ -additive proba-
bility measure on X with bounded support. Prove that µ has a barycenter.

Hint: (i) it is not difficult to show that there is a net of probability measures
µα with finite support in K possessing the following property:

lim
α

∫

K

f dµα =

∫

K

f dµ for every f ∈ X∗.

It is obvious that the measures µα have barycenters bα ∈ K that possess an accu-
mulation point b ∈ K, which is the barycenter of µ. (ii) See Fremlin [635, �461E].

7.14.143.◦ Let K be a convex compact set in a locally convex space X. Suppose
that a sequence of Radon probability measures µn on K converges to µ in the weak∗

topology on C(K)∗. Prove that the barycenters of the measures µn converge to the
barycenter of µ.

Hint: the weak topology on K coincides with the original topology.

7.14.144.◦ Let K be a compact set in a locally convex space X. Prove that

its closed convex envelope K̂ coincides with the set of barycenters of all Radon
probability measures on K.

Hint: if µ is a Radon probability measure on K and b is its barycenter, then for
every l ∈ X∗ we have l(b) ≤ supx∈K l(x), whence by the Hahn–Banach theorem we

obtain b ∈ K̂. The converse is verified first for finite sets. Then the convex envelope

of K belongs to the set of barycenters of probability measures on K. Let b ∈ K̂.
There is a net of points bα in the convex envelope K convergent to b. Let us take
a probability measure µα on K with the barycenter bα. The net {µα} has a limit
point µ in the weak topology on Pt(K) (see Chapter 8). Then b is the barycenter
of µ.

7.14.145.◦ Prove Proposition 7.14.44.
Hint: it is clear from Lemma 6.2.3 that there exists a Borel mapping G with a

finite range such that the integral of the function ‖F (x)−G(x)‖p is less than εp2−p.
SinceG takes values in some finite-dimensional subspace E, by Corollary 7.12.2 there
exists a mapping F0 of the form F0 = ϕ ◦ P , where P : X → IRn is a continuous
linear mapping and ϕ : IRn → E is a continuous mapping with compact support
such that the integral of ‖F0(x) −G(x)‖p is less than εp2−p.
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7.14.146. Prove Theorem 7.14.45.
Hint: one can modify the proof of Theorem 7.12.4 (see Bogachev [209]; another

proof is outlined in Ostrovskĭı [1406]). Let ϕ ≥ 0 be a decreasing function on [0,∞)
with

∑∞
n=1 ϕ(n) <∞. One can find αn ↓ 0 with αnn→ ∞ and

∑∞
n=1 ϕ(αnn) <∞.

Let ϕ(R) = µ(x : ‖x‖ > R1/r). Then
∑∞
n=1 ϕ(n) < ∞. Take αn as above. For

every n, there is a compact set Kn in the ball Un of radius n1/r centered at the

origin such that µ(α
1/r
n Kn) ≥ µ(α

1/r
n Un) − 2−n. The set K =

⋃∞
n=1 cnKn, where

cn := α
1/r
n n−1/r, has compact closure. The closed convex envelope V of the set K

is compact too. Let pV be the Minkowski functional of V and EV the associated
Banach space. Since {pV ≤ c} = cV as c ≥ 0, the function pV is measurable. One

has α
1/r
n Kn ⊂ n1/rK ⊂ {pV ≤ n1/r} = n1/rV. By our choice of Kn we obtain

prV ∈ L1(µ), since

µ
(
x : prV (x) > n

)
= 1 − µ

(
x : pV (x) ≤ n1/r) ≤ 1 − µ

(
α1/r
n Kn

)

≤ 1 + 2−n − µ
(
α1/r
n Un

)
= 2−n + µ

(
x : ‖x‖ > α1/r

n n1/r) = 2−n + ϕ(αnn).

It is clear that µ(EV ) = 1 and µ
(
α

1/r
n Kn

)
→ 1, since the balls α

1/r
n Un have radii

(αnn)1/r → ∞ (note that αnn→ ∞). We argue further as in Theorem 7.12.4. The
case of a Fréchet space reduces to the considered case by passing to the subspace
X0 := {q < ∞}, where qr :=

∑∞
n=1 cnq

r
n, {qn} is a sequence of seminorms defining

the topology, and cn = 2−n(‖qrn‖L1(µ) + 1)−1.

7.14.147. Prove Proposition 7.14.12.

7.14.148. Prove Lemma 7.14.16.

7.14.149. Construct an example of a probability measure on a locally convex
space (X, τ) that is defined on σ(X∗) and is tight in the weak topology σ(X,X∗),
but is not tight in the original topology τ .

Hint: let E = C[0, 1], let X := E∗ be equipped with the topology σ(E∗, E),
and let µ be the image of Lebesgue measure on [0, 1] under the mapping t �→ δt.
Then µ is a tight Baire measure with respect to the topology σ(E∗, E). Let us take
for τ the Mackey topology τ(E∗, E). If µ were tight in this topology, then it would
be tight in the topology σ(E∗, E∗∗) according to Exercise 8.10.124. Then µ would
have a Radon extension in the norm topology, hence it would have a norm separable
support. This leads to a contradiction since ‖δt − δs‖ = 2 if t �= s.

7.14.150.◦ Let K be a compact space and let a set X ⊂ K be measurable with
respect to all Radon measures on K. Prove that Mτ (X) = Mr(X).

Hint: see Example 7.14.22.

7.14.151. Prove Theorem 7.14.49.

7.14.152.◦ Prove Lemma 7.14.53.
Hint: if l ∈ Λ0(µ), then there is a sequence {ln} ⊂ X∗ convergent to l a.e.

The set X0 of all points of convergence of {ln} is a Borel linear subspace in X and
µ(X0) = 1. Let f(x) = lim

n→∞
ln(x) if x ∈ X0. Then f is a Borel linear function on

X0 and f = l a.e. on X0. There is a linear subspace X1 ⊂ X such that X is the
direct algebraic sum of X0 and X1. Hence f can be extended to a linear function
on all of X by letting f |X1 = 0. The extension is µ-measurable since µ(X0) = 1,
i.e., we obtain a version of l in the class Λ(µ).
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7.14.153. Show that there exists a probability measure µ on some compact
metric space K such that

∑∞
n=1 µ(Bn) < 1/2 for every sequence of disjoint closed

balls with radii at most 1.
Hint: see Davies [412] or Wise, Hall [1993, Example 4.49].

7.14.154. Let (X,A, µ) be a space with a complete locally determined (see
Exercise 1.12.135) measure with values in [0,+∞] and let K be a family of sets such
that µ(A) = sup{µ(K) : K ∈ K∩A,K ⊂ A} for all A ∈ A. Prove that the following
conditions on a set A ⊂ X are equivalent:

(i) A ∈ A,
(ii) A ∩K ∈ A for all K ∈ K ∩A,
(iii) µ∗(K ∩A) + µ∗(K\A) = µ∗(K) for all K ∈ K,
(iv) µ∗(K ∩A) = µ∗(K ∩A) for all K ∈ K ∩A.
Hint: see, e.g., Fremlin [635, �413F].

7.14.155. Show that the property to be Radon or τ -additive for a Borel prob-
ability measure on a product of two compact spaces does not follow from the fact
that its projections on the factors are Radon.

Hint: according to Wage [1955], under the continuum hypothesis there exist
Radon compact spaces X and Y such that there is a non-Radon Borel probability
measure on their product. Both projections of this measure are Radon.

7.14.156. (i) Let T be an uncountable set, let X = IRT , and let µ be a separable
probability measure on Ba(X) (i.e., L2(µ) is separable). Prove that there exist a
countable set {tn} ⊂ T and a probability measure ν on IR∞ such that µ = ν ◦ π−1,
where π = (πt) : IR∞ → X, πt are measurable functions on IR∞, πtn(x) = xn, and
for every t �∈ {tn}, the function xt is a.e. the limit of a subsequence in {xtn}.

(ii) Let T be an uncountable set, let X = IRT , and let µ =
⊗

t∈T µt, where all
measures µt coincide with an atomless Borel probability measure σ on the real line.
Show that the restriction of µ to every set of positive measure is not separable.

(iii) Let µ be the Radon extension of the product of an uncountable family of
copies of Lebesgue measure on [0, 1]. Prove that µ(S) = 0 for every Souslin set S,
in particular, for every metrizable compact set S.

Hint: (i) one can deal with the space (0, 1)T , then the coordinate functions
xt belong to L2(µ). By the separability of L2(µ), there exists a countable set
{tn} ⊂ T such that the sequence of functions xtn is everywhere dense in the set of
all functions xt, t ∈ T , with the metric from L2(µ). Hence for every t �∈ {tn}, there
exists a sequence of indices sk ∈ {tn} such that xt = lim

k→∞
xsk in L2(µ). Passing to a

subsequence, we can assume that this relationship is true µ-a.e. Its right-hand side
we take for πt. Let πtn(x) = xn. Let ν be the projection of µ under the mapping
(xt)t∈T �→ (xtn)∞n=1. (ii) As in (i) we can deal with (0, 1)T in place of IRT . If
µ(E) > 0, then the measure ν := µ|E is positive. If this measure is separable, then
according to (i), there exist a countable set {tn} ⊂ T and an index t �∈ {tn} such
that for some subsequence {sk} ⊂ {tn}, we have xt = lim

k→∞
xsk ν-a.e. This leads

to a contradiction, since the set Ω :=
{

(u0, u1, . . .) ∈ (0, 1)∞ : u0 = lim
k→∞

uk
}

has

measure zero with respect to the product of countably many copies of σ. This
follows by Fubini’s theorem because if we fix numbers uk with k ≥ 1, the set
{u : (u, u1, u2, . . .) ∈ Ω} is either empty or consists of a single point and has measure
zero with respect to σ. Assertion (iii) follows from (ii) by the separability of any
Borel measure on a Souslin space.



172 Chapter 7. Measures on topological spaces

7.14.157. (Bourbaki [242, Ch. V, �8.5, exercise 13]) Let T be an uncountable
set and let µt, where t ∈ T , be a family of Radon probability measures on compact
spaces Xt such that the support of µt coincides with Xt. Denote by µ the Radon
measure obtained as the extension of the product of µt. Let E =

∏
t∈T Et, where

Et �= Xt for every t.
(i) Prove that µ∗(E) = 0.
(ii) Let µt(Et) = 1 for all t. Prove that E does not belong to the Lebesgue com-

pletion of B
(∏

t∈T Xt

)
with respect to µ, in particular, is not Borel. For example, in

the case of uncountable T , the sets (0, 1)T and (0, 1]T in [0, 1]T are not measurable
with respect to the Radon extension of the product of T copies of Lebesgue measure
on [0, 1].

Hint: (i) for any compact K ⊂ E, its projections Kt to Xt are compact and
differ from Xt. Hence there exists n ∈ IN such that the set of all t for which
µt(Kt) ≤ 1 − n−1 is infinite. We take a countable set of such points tj and obtain
the set

∏∞
j=1Ktj×

∏
t�∈{tj}Xt that contains K and has µ-measure zero. (ii) Suppose

that E is measurable. Then, according to (i), we have µ(E) = 0, hence there is a
Borel set B with E ⊂ B and µ(B) = 0. On the other hand, one can consider the
product of the measures µt on the space E. It has a τ -additive extension µ′ to B(E),
hence a τ -additive extension µ′′ to

∏
t∈T Xt, which coincides with µ by the equality

on all cylinders. This leads to a contradiction, since µ′′(B) = 1. An alternative
reasoning: we take a compact set S in the complement of E with µ(S) > 0, find a
set A ⊃ S that depends on countably many indices tj such that µ(A) = µ(S), apply
to S Fubini’s theorem and use the compactness of the sections of S.

7.14.158. (Chentsov [335], [337]) LetX = [0, 1]T , T = [0, 1], and let Ω = [0, 1]
be equipped with Lebesgue measure λ. Set ξ1(t, ω) = t − ω + 1 if t ∈ [0, ω),
ξ1(t, ω) = t − ω if t ∈ [ω, 1], ξ2(t, ω) = t − ω + 1 if t ∈ [0, ω], ξ2(t, ω) = t − ω if
t ∈ (ω, 1]. Let f1, f2 : Ω → X, f1(ω)(t) = ξ1(t, ω), f2(ω)(t) = ξ1(t, ω). Finally, let us
consider two probability measures µ1 = λ ◦ f−1

1 and µ2 = λ ◦ f−1
2 on the σ-algebras

A1 and A2 consisting of all sets in X whose preimages with respect to f1 and f2,
respectively, are Lebesgue measurable. Show that µ1 and µ2 are Radon on B(X)
and coincide on all cylinders, whence one has their equality on B(X). However,
µ1

(
(0, 1]T

)
= 0, µ2

(
(0, 1]T

)
= 1.

7.14.159. Let X be a Hausdorff topological vector space and let µ and ν be
Radon probability measures with µ = µ ∗ ν. Show that ν is Dirac’s measure at the
origin.

Hint: see Vakhania, Tarieladze, Chobanyan [1910, Proposition I.4.7].

7.14.160. Let X be the union of all open sets G in βIN with
∑
n∈π(G) n

−1 <∞,

where π(E) := E ∩ IN for E ⊂ βIN. Show that the measure µ(B) :=
∑
n∈π(B) n

−1

on B(X) is σ-finite and inner compact regular, but is not outer regular.
Hint: µ(X\IN) = 0, but there is no open set U ⊃ X\IN with µ(U) < ∞.

Indeed, if U ⊃ X\IN is open, the set X\U ⊂ IN is closed and finite because otherwise
it would contain an infinite sequence S = {sn} with

∑∞
n=1 s

−1
n < ∞. This is

impossible, since the closure G of S in βIN is open, hence G ⊂ X, but this closure
must contain a point from βIN\IN. Thus, µ(U) is infinite.

7.14.161. (i) Let X = βIN\{a}, where a ∈ βIN\IN. Show that X is locally
compact, but there is a nonnegative linear functional on C(X) that is not represented
by a measure.
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(ii) Show that if X is any locally compact and σ-compact space, then for every
nonnegative linear functional L on C(X), there is a measure µ on B(X) with values
in [0,+∞] such that C(X) ⊂ L1(µ) and L is represented by µ.

(iii) Construct an example of a Radon probability measure µ on a locally com-
pact space with a noncompact support and C(X) ⊂ L1(µ).

Hint: (i) C(X) = Cb(X) according to Engelking [532, Example 3.10.18]; take

L(f) = f̂(a), where f̂ is the extension of f to C(βIN). (ii) Show that there is a
compact set K ⊂ X such that L(f) = 0 if f |K = 0. Otherwise we could construct
compact sets Kn and functions fn ∈ C(X) such that Kn is contained in the interior
of Kn+1,

⋃∞
n=1Kn = X, fn ≥ 0, fn|Kn = 0, and L(fn) > 1. This is impossible since

the function
∑∞
n=1 fn is continuous. (iii) Take in (i) the measure µ =

∑∞
n=1 2−nδn.

7.14.162. Prove that the product of a family of perfect probability measures
is perfect. See also Exercise 9.12.70.

Hint: apply Theorem 7.5.6(ii) and Corollary 3.5.4.

7.14.163. (Pachl [1413]) Let (X,A, µ) be a probability space. Prove that µ
has a compact approximating class if and only if µ is weakly compact in the sense
of Erohin [537], i.e., there exists a family U of subsets of X that contains X and
∅ and is closed with respect to finite intersections and countable unions (such a
family is called a σ-topology) and has the property that for every ε > 0, there is a
set Kε ⊂ X such that X\Kε ∈ U , µ∗(Kε) > 1 − ε and Kε is U-compact, i.e., every
countable family of sets from U covering Kε contains a finite subfamily covering Kε.

7.14.164. Suppose that a Borel probability measure µ on a topological space
X assumes only the values 0 and 1 and is ℵ-compact in the sense explained at the
end of �7.5. Prove that µ is Dirac’s measure at some point.

Hint: let K ⊂ B(X) be an ℵ-compact approximating class for µ. The subclass
K0 in K consisting of all sets of positive measure is ℵ-compact. The class K0 is
not empty. Since all sets in K0 have measure 1, any finite intersection of such sets
is not empty, whence we obtain that the intersection of all sets in K0 contains at
least one point x. Then µ({x}) = 1, since otherwise µ({x}) = 0, which leads to a
contradiction due to the existence of a set K ∈ K0 that is contained in X\{x}.

7.14.165. A probability measure µ on a σ-algebra A in a space X is called
pure (see Rao [1537]) if there exists a subalgebra A0 ⊂ A such that

µ(A) = inf
{ ∞∑

n=1

µ(Bn) : Bn ∈ A0, A ⊂
∞⋃

n=1

Bn
}

for every A ∈ A, and for every decreasing sequence of sets An ∈ A0 whose inter-
section is empty, there exists a number k such that µ(Ak) = 0. If there exists an
algebra A0 ⊂ A that is a compact class and satisfies the indicated equality, then
the measure µ is called purely ℵ0-compact.

(i) (Froĺık, Pachl [643]) Prove that a probability measure µ on a countably
generated σ-algebra A is pure if and only if it is compact. In particular, every pure
measure is perfect.

(ii) (Aniszczyk [54]) Construct a measure with values in {0, 1} that is not pure.

7.14.166. (Krupa, Ziȩba [1065]) Let (Ω,B, P ) be a probability space, X a
Polish space, and let a sequence of measurable mappings ξn : Ω → X converge a.e.
to a mapping ξ. Prove that for every ε > 0, there exists a compact set Kε ⊂ X such
that P

(⋂∞
n=1 ξ

−1
n (Kε)

)
> 1 − ε.
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Hint: we may assume that X is a complete separable metric space with a
metric d. Let us take a set Ωε ∈ B such that P (Ωε) > 1 − ε/2 and the mappings ξn
converge uniformly on Ωε. There is a compact set K0 ⊂ X such that P

(
ξ−1(K0)

)
>

1 − ε/4. There exist strictly increasing numbers nk with d
(
ξn(ω), ξ(ω)

)
< 2−k

for all n ≥ nk and ω ∈ Ωε. Finally, we can find a compact set K1 such that
P
(
ξ−1
n (K1)

)
> 1− ε/8 whenever n ≤ n1, next we find a compact set K2 in the 1/2-

neighborhood of K0 such that P
(
ξ−1
n (K2)

)
> 1−ε/16 whenever n1 < n ≤ n2 and so

on: a compact set Kp is chosen by induction in the 21−p-neighborhood of K0 in such
a way that P

(
ξ−1
n (K2)

)
> 1−ε2−p/8 whenever np−1 < n ≤ np. It remains to observe

that the set S :=
⋃∞
n=0Kn is completely bounded and P

(⋂∞
n=1 ξ

−1
n (S)

)
> 1 − ε.

For Kε we take the closure of S.

7.14.167. (Iwanik [873]) Let (X,A, µ) and (Y,B, ν) be probability spaces and
let the measure µ be perfect. Prove that for every continuous linear operator
T : L1(µ) → L1(ν), there is a countably additive measure σ on A⊗B such that

∫

Y

g(y)Tf(y) ν(dy) =

∫

X×Y
f(x)g(y)σ(dxdy)

for all A-measurable f ∈ L1(µ) and B-measurable g ∈ L∞(ν). In addition, the
projections of σ on X and Y are absolutely continuous with respect to µ and ν, in
particular, σ extends to Aµ⊗Bν .

7.14.168.◦ Let X and Y be Souslin spaces with Borel probability measures µ
and ν, where ν has no atoms, and let πX denote the projection on X. Suppose a
set E ⊂ X×Y is measurable with respect to µ⊗ν. Show that there is a set Z ⊂ E
such that µ⊗ν(Z) = 0, πX(Z) = πX(E), and for every x ∈ πX(Z), the section
{y : (x, y) ∈ Z} consists of a single point.

Hint: take a Borel set A ⊂ E with µ⊗ν(A) = µ⊗ν(E); by Corollary 6.9.17
there is a coanalytic set S ⊂ A which is projected one-to-one on πX(A). By Fubini’s
theorem we have µ⊗ν(S) = 0, since ν has no points of positive measure. The set
E′ = E\

(
πX(A)×Y

)
⊂ E\A has µ⊗ν-measure zero, hence it is trivial to find a

required set Z′ for it. Let us set Z = S ∪ Z′.

7.14.169.◦ Let (Ω,F , P ) be a probability space and let {µω}ω∈Ω and {νω}ω∈Ω

be two families of probability measures on a measurable space (X,A), such that for
every A ∈ A, the functions ω �→ µω(A) and ω �→ νω(A) are P -measurable. Let

µ(A) :=

∫

Ω

µω(A)P (dω), ν(A) :=

∫

Ω

νω(A)P (dω).

Show that if µ ⊥ ν, then µω ⊥ νω for P -a.e. ω. Show that the converse is false.
Hint: take B ∈ A with µ(B) = ν(X\B) = 0; then we have µω(B) =

νω(X\B) = 0 for P -a.e. ω. In order to see that the converse is false, write Lebesgue
measure λ on [−1/2, 1/2] as the integral of the Dirac measures δω, ω ∈ [−1/2, 1/2],
with respect to λ and also as the integral of the measures δ−ω, ω ∈ [−1/2, 1/2].

7.14.170. Show that there is no injective Borel function on the space [0, ω1)
of all countable ordinals equipped with the order topology with values in [0, 1). No
such such functions exist on [0, 1]c .

Hint: if such a function f exists, then the image of the Dieudonné measure
must be a Borel measure ν on [0, 1) with values 0 and 1, hence ν is Dirac’s measure
at some point x0, which is impossible for an injective function. The second claim
follows since [0, ω1) can be embedded into [0, 1]c .



CHAPTER 8

Weak convergence of measures

The linkage of general ideas exposed here arose, however,
not by itself, but from the investigation of weak convergence of
additive set-functions.

A.D. Alexandroff. Additive set functions in abstract spaces.

8.1. The definition of weak convergence

Let {µα} be a net (for example, a countable sequence) of finite measures
defined on the Baire σ-algebra Ba(X) of a topological space X. In this section,
we introduce one of the most important modes of convergence of such nets.
We recall that the space of all Baire measures on X is denoted by Mσ(X).
Other notation frequently used in this chapter can be found in ��6.1, 6.2, 7.1,
and 7.2.

8.1.1. Definition. A net {µα} ⊂ Mσ(X) is called weakly convergent to
a measure µ ∈Mσ(X) if for every bounded continuous real function f on X,
one has

lim
α

∫

X

f(x)µα(dx) =
∫

X

f(x)µ(dx). (8.1.1)

Notation: µα ⇒ µ.

We shall say that a sequence of Baire measures µn on a space X is weakly
fundamental if, for every bounded continuous function f on X, the sequence
of the integrals ∫

X

f dµn

is fundamental (hence converges).
Weak convergence of Borel measures is understood as weak convergence

of their Baire restrictions. In �8.10(iv) we discuss another natural convergence
of Borel measures (convergence in the A-topology), which in the general case
is not equivalent to weak convergence, but is closely related to it.

Weak convergence can be defined by a topology.

8.1.2. Definition. Let X be a topological space. The weak topology on
the space Mσ(X) of Baire measures on X is the topology σ

(
Mσ(X), Cb(X)

)
,

i.e., the base of the weak topology consists of the sets

Uf1,...,fn,ε(µ) =
{
ν :

∣
∣
∣
∣

∫

X

fi dµ−
∫

X

fi dν

∣
∣
∣
∣ < ε, i = 1, . . . , n

}
, (8.1.2)
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where µ ∈ Mσ(X), fi ∈ Cb(X), ε > 0. A set of such a form is called a
fundamental neighborhood of µ in the weak topology.

In fact, the weak topology is the weak∗ topology in the terminology of
functional analysis (however, following the tradition, we call it “weak topol-
ogy”). Convergence in this topology is also called w∗-convergence (or narrow
convergence). Random elements are called convergent in distribution if their
distributions converge weakly.

8.1.3. Example. If a net of measures µα converges in the variation norm
to a measure µ, then it weakly converges to µ. More generally, if there exists
α1 such that supα≥α1

‖µα‖ <∞, and lim
α
µα(B) = µ(B) for every B ∈ Ba(X)

or at least for every B of the form B = {f < c}, where f ∈ Cb(X) and
|µ|({f = c}) = 0, then µα ⇒ µ.

Proof. It suffices to prove the last assertion. Let ‖µα‖ ≤ C, ‖µ‖ ≤ C,
let f ∈ Cb(X), and let ε > 0. We may assume that |f | ≤ 1. We can find
ci ∈ [−1, 1], i = 1, . . . , n, such that 0 < ci+1 − ci < ε, c1 = −1, cn = 1 and
|µ|({f = ci}) = 0. Let g(x) = ci if ci ≤ f(x) < ci+1. Then |f(x)− g(x)| < ε.
For all indices α larger than some α0 we have the estimate

∣
∣
∣
∣

∫

X

g dµα −
∫

X

g dµ

∣
∣
∣
∣ < ε

because limα µα({ci ≤ f < ci+1}) = µ({ci ≤ f < ci+1}) by our hypothesis
and the equality {ci ≤ f < ci+1} = {f < ci+1}\{f < ci}. Hence for all
α ≥ α0 the absolute value of the difference between the integrals of f with
respect to the measures µ and µα does not exceed (2C + 1)ε. �

However, weak convergence does not imply convergence even on open
Baire sets. The following simple example is very typical.

8.1.4. Example. Let p be a probability density on the real line and let
νn be probability measures defined by the densities pn(t) = np(nt). Then the
measures νn converge weakly to Dirac’s measure δ at zero, although there is
no convergence on IR\{0}. Indeed, if f ∈ Cb(R), then

lim
n→∞

∫ +∞

−∞
f(t)pn(t) dt = lim

n→∞

∫ +∞

−∞
f(s/n)p(s) ds = f(0).

8.1.5. Example. A net {xα} of elements of a completely regular space X
converges to an element x ∈ X if and only if the Dirac measures δxα converge
weakly to δx (we recall that δx(A) = 1 if x ∈ A, δx(A) = 0 if x �∈ A).

A justification of this example is Exercise 8.10.66.

8.1.6. Example. (i) The set of all measures of the form
∑n
j=1 cjδxj ,

where cj ∈ IR1, xj ∈ X, is everywhere dense in Mσ(X) in the weak topology.
(ii) Let µ be a Borel measure on a separable Hilbert space X and let

Pn(x) =
∑n
i=1(x, ei)ei, where {en} is an orthonormal basis. Then the mea-

sures µ ◦ P−1
n converge weakly to µ.
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Proof. (i) Suppose we are given a neighborhood U of the form (8.1.2).
We may assume that ‖µ‖ ≤ 1. There are simple functions gi such that
supx |fi(x) − gi(x)| < ε/4 for all i = 1, . . . , n. We show that U contains a
measure ν of the required form with ‖ν‖ ≤ 1. It suffices to find a finite linear
combination ν of Dirac’s measures such that ‖ν‖ ≤ 1 and every gi has equal
integrals with respect to µ and ν. Now, given a finite partition of X into
disjoint Baire sets Ai, i = 1, . . . , k, everything reduces to finding points xi
and numbers ci such that ν(Ai) = µ(Ai). It remains to take a point xi in
every Ai and set ci := µ(Ai). Assertion (ii) is obvious from the dominated
convergence theorem, since f

(
Pn(x)

)
→ f(x) for all continuous f . �

8.1.7. Proposition. Let M ⊂ Mσ(X) be a family of measures such
that

sup
µ∈M

∫

X

f dµ <∞ for all f ∈ Cb(X).

Then supµ∈M ‖µ‖ < ∞. In particular, every weakly convergent sequence of
Baire measures is bounded in the variation norm.

Proof. We apply the Banach–Steinhaus theorem and the fact that the
variation of a Baire measure µ equals the norm of the functional on Cb(X)
generated by µ (see �7.9). �

The analogous assertion is true, of course, for complex-valued measures
if we consider the absolute values of integrals (in the real case this gives an
equivalent condition because in place of f one can take −f).

8.1.8. Proposition. A sequence of signed measures µn on the interval
[a, b] converges weakly to a measure µ precisely when supn ‖µn‖ < ∞ and
every subsequence in the sequence of the distribution functions Fµn of the
measures µn contains a further subsequence convergent to Fµ at all points,
with the exception of points of an at most countable set. In the case of non-
negative measures, the whole sequence Fµn converges to the function Fµ at all
continuity points of the latter.

An equivalent condition: supn ‖µn‖ < ∞ and for every closed interval
[c, d] ⊂ [a, b] and every ε > 0, there exists N such that

inf
t∈[c,d]

|Fµ(t)− Fµn(t)| < ε for all n ≥ N .

In the case of measures on IR1, the conditions listed above must be comple-
mented by the following one: for every ε > 0 there is a compact interval [a, b]
such that |µn|(IR1\[a, b]) < ε for all n.

Proof. Suppose that the measures µn are uniformly bounded and sat-
isfy the indicated condition with subsequences, but do not converge weakly
to µ. Since every continuous function f can be uniformly approximated by
smooth functions, we obtain, taking into account the boundedness of ‖µn‖,
that there exists a smooth function f such that the integrals of f against the
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measures µn do not converge to the integral of f against µ. Passing to a sub-
sequence, we may assume that the difference between the indicated integrals
remains greater than some δ > 0. Passing to a subsequence once again we can
assume that lim

n→∞
Fµn(t) = Fµ(t) everywhere, with the exception of finitely or

countably many points. The functions Fµ and Fµn are constant on (b,+∞),
hence µ([a, b]) = lim

n→∞
µn([a, b]). Then the integration by parts formula (see

Exercise 5.8.112) yields that the right-hand side of the equality
∫ b

a

f(t)µn(dt) = f(b)Fµn(b+)−
∫ b

a

f ′(t)Fµn(t) dt (8.1.3)

converges to

f(b)Fµ(b+)−
∫ b

a

f ′(t)Fµ(t) dt =
∫ b

a

f(t)µ(dt),

which leads to a contradiction. In the case of nonnegative measures, the
functions Fµn are increasing. Hence by Exercise 5.8.67, every subsequence in
{Fµn} contains a subsequence convergent to Fµ at the continuity points of Fµ,
whence we obtain convergence of the whole sequence at such points.

Conversely, let measures µn converge weakly to µ. Then, by the above we
have supn ‖µn‖ <∞. This yields the uniform boundedness of variations of the
functions Fµn . Every subsequence in {Fµn} contains a further subsequence
that converges at every point. Indeed, Fµn = ϕn − ψn, where the functions
ϕn and ψn are increasing. Hence we can apply Exercise 5.8.67. Thus, we may
assume that the sequence Fµn converges pointwise to some function G. Now
(8.1.3) and the equality

lim
n→∞

Fµn(b+) = lim
n→∞

µn([a, b]) = µ([a, b]) = Fµ(b+)

yield by weak convergence and the dominated convergence theorem that
∫ b

a

f(t)µ(dt) = f(b)Fµ(b+)−
∫ b

a

f ′(t)G(t) dt.

Hence ∫ b

a

f ′(t)G(t) dt =
∫ b

a

f ′(t)Fµ(t) dt

for every polynomial f . Hence G(t) = Fµ(t) a.e. Therefore, the functions G
and Fµ coincide at all points where both are continuous, i.e., on the comple-
ment of an at most countable set (which depends on G, in particular, on the
initial subsequence).

Let us turn to the second condition. If it is not fulfilled, then either our
measures are not uniformly bounded and then there is no weak convergence,
or there exist an interval [c, d], a number ε > 0, and a subsequence {nk} with
|Fµ(t) − Fµnk (t)| > ε for all t ∈ [c, d], which contradicts the condition with
subsequences. Conversely, suppose that the second condition is fulfilled. Since
C[a, b] is separable, every bounded sequence in C[a, b]∗ contains a weakly∗

convergent subsequence, i.e., every bounded sequence of measures contains
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a weakly convergent subsequence. Thus, if there is no weak convergence
of µn to µ, then {µn} contains a subsequence that is weakly convergent to
some measure ν on [a, b] distinct from µ. According to what has already
been proven, this subsequence contains a further subsequence with indices
{nk} such that the functions Fµnk converge to Fν on the complement of
an at most countable set. Passing to another subsequence we may assume
that the sequences {µ+

nk
} and {µ−

nk
} have weak limits ν1 and ν2 and that

nk = k. The set of convergence of Fµk contains a point τ at which the
functions Fµ, Fν , Fν1 , and Fν2 are continuous and |Fµ(τ1)− Fν(τ1)| = ε > 0
(otherwise µ = ν). There exist τ2 ∈ [a, b] and N ∈ IN such that we have
|Fν(t)−Fµ(t)| > ε/2 and |Fνi(t)−Fνi(s)| ≤ ε/16 whenever t, s ∈ I = [τ1, τ2],
|Fµ+

k
(τi) − Fν1(τi)| ≤ ε/16 and |Fµ−

k
(τi) − Fν2(τi)| ≤ ε/16 whenever k ≥ N .

Then supt∈I |Fµ+
k

(t)−Fν1(t)| ≤ 3ε/16, supt∈I |Fµ−
k

(t)−Fν2(t)| ≤ 3ε/16, hence
supt∈I |Fµk(t) − Fν(t)| ≤ 3ε/8, i.e., inft∈I |Fµ(t) − Fµk(t)| ≥ ε/8 if k ≥ N .
The case of the whole real line is similar. �

An alternative proof along with some useful similar results can be found
in Exercise 8.10.135 (see also Exercise 8.10.137).

The reader is warned that in the case of signed measures weak convergence
does not imply pointwise convergence of the distribution functions on a dense
set (Exercise 8.10.69).

A.D. Alexandroff [30, �15] gave the following criterion of weak conver-
gence. Let Z be the class of all functionally closed sets and let G be the class
of all functionally open sets in a given space.

8.1.9. Theorem. A sequence of Baire measures µn is fundamental in
the weak topology precisely when it is bounded in the variation norm and for
every Z ∈ Z and U ∈ G with U ⊃ Z and every ε > 0, there exists N ∈ IN
such that for all n, k > N one has

inf
{
|µn(V )− µk(V )| : V ∈ G, Z ⊂ V ⊂ U

}
< ε.

In addition, weak convergence of µn to µ is equivalent to the following: {µn}
is bounded in variation and for every Z ∈ Z and U ∈ G with U ⊃ Z one has

lim
n→∞

inf
{
|µn(V )− µ(V )| : V ∈ G, Z ⊂ V ⊂ U

}
= 0.

Finally, in the case of weak convergence of nonnegative measures, there exists
V ∈ G with Z ⊂ V ⊂ U and lim

n→∞
µn(V ) = µ(V ).

Proof. Suppose that the sequence {µn} is fundamental in the weak
topology. By Lemma 6.3.2, there exists a function f ∈ Cb(X) such that
Z = f−1(0), X\U = f−1(1). In order to find a set V ∈ G with Z ⊂ V ⊂ U
and |µn(V )− µk(V )| < ε for all sufficiently large n and k, one can take some
of the sets {f < t} with a suitable t ∈ (0, 1). This follows by the second
condition in Proposition 8.1.8 and the fact that the measures µn ◦ f−1 on
[0, 1] form a fundamental sequence and hence converge weakly (we recall that
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the dual to C[0, 1] is identified with the space of measures). If the measures
µn are nonnegative and the distribution functions of µ ◦ f−1 are continuous
at the point t, then Proposition 8.1.8 yields that lim

n→∞
µn(V ) = µ(V ).

Conversely, suppose that the condition of the theorem is fulfilled. We
may assume that ‖µn‖ ≤ 1. We observe that the sequence µn(X) converges,
for one can take Z = U = X. Let ϕ ∈ Cb(X), 0 ≤ ϕ < 1, and let ε = 1/p,
where p ∈ IN. We consider the sets Uj = {ϕ < εj}, Zj = {ϕ ≤ ε(j − 1)},
j = 1, . . . , p. By hypothesis, there exists N such that for every j ≤ p and every
n, k > N , there exist functionally open sets Vj,n,k such that Zj ⊂ Vj,n,k ⊂ Uj
and one has |µn(Vj,n,k) − µk(Vj,n,k)| < εp−2. One can also assume that
|µn(X)− µk(X)| < εp−2 for all n, k > N . For all fixed n and k, the sets

W1,n,k := V1,n,k,W2,n,k := V2,n,k\V1,n,k, . . . ,Wp+1,n,k := X\Vp,n,k
form a partition of X. It is easily seen that the values of the measures µn and
µk on these sets differ in absolute value in at most ε/p; for example, we have
|µn(V1,n,k)− µk(V1,n,k)| < εp−2,

|µn(V2,n,k\V1,n,k)− µk(V2,n,k\V1,n,k)| < 2εp−2,

and so on. It remains to observe that
∣
∣
∣
∣

∫

X

ϕdµn −
p+1∑

j=1

(j − 1)p−1µn(Wj,n,k)
∣
∣
∣
∣ ≤ ε

and that
∣
∣
∣
∑p+1
j=1(j − 1)p−1

(
µn(Wj,n,k) − µk(Wj,n,k)

)∣∣
∣ ≤ ε(p + 1)/p. The as-

sertion about convergence to µ is proved in a similar way. �

A very important property of weak convergence is described in the fol-
lowing result due to A.D. Alexandroff [30, �18].

8.1.10. Proposition. Suppose that a sequence of Baire measures µn on
a topological space X converges weakly to a measure µ. Then this sequence
has no “eluding load” in Alexandroff’s sense, i.e., lim

n→∞
supk |µk|(Zn) = 0

for every sequence of pairwise disjoint functionally closed sets Zn with the
property that the union of every subfamily in {Zn} is functionally closed.

Proof. Suppose the contrary. Taking a subsequence, we may assume
that |µn(Zn)| ≥ c > 0. By Exercise 6.10.79, there exist pairwise disjoint
functionally open sets Un with Zn ⊂ Un and |µn|(Un\Zn) ≤ c/2. Let us
show that there exist functions fn ∈ Cb(X) with the following properties:
0 ≤ fn ≤ 1, fn = 0 outside Un,

∣
∣
∣
∫

X

fn dµn

∣
∣
∣ ≥ c/2, (8.1.4)

and for every bounded sequence {cn} of real numbers, the function
∑∞
n=1 cnfn

is bounded and continuous. This will lead to a contradiction. Indeed, by our
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hypothesis the sequence of integrals of such a function with respect to the
measures µn is convergent, i.e., the sequence

ln :=
{∫

fk dµn

}∞

k=1

of elements in l1 is weakly convergent, which contradicts (8.1.4) by Corol-
lary 4.5.8. In order to construct the required functions fn, we take (applying
Lemma 6.3.2) a continuous function f such that 0 ≤ f ≤ 1, f = 1 on

⋃∞
n=1 Zn

and f = 0 outside
⋃∞
n=1 Un. Set fn = f on Un and fn = 0 outside Un. The

nonnegative function fn is continuous, since for every c ≥ 0, we have

{fn > c} = {f > c} ∩ Un, {fn < c} = {f < c}
⋃(⋃

k �=n
Uk

)
,

and the sets on the right-hand side are open. For the same reason we have
the continuity of any function h =

∑∞
n=1 cnfn, |cn| < 1 because we have

{h > c} =
⋃

n : cn>0

(
Un ∩ {f > c/cn}

)
, c ≥ 0,

{h > c} =
⋃

n : cn<0

(
Un ∩ {f < c/cn}

)
∪ {f < |c|} ∪

( ⋃

n : cn≥0

Un

)
, c < 0.

Similarly, one proves that the sets {h < c} are open. �

8.1.11. Remark. A.D. Alexandroff [30, �17] introduced the following
terminology. A set M of Borel measures on a normal topological space X has
an eluding load equal to the number a �= 0 if M contains an infinite sequence
of measures µn such that for some sequence of pairwise disjoint functionally
closed sets Zn with the property that the union of every subfamily in {Zn} is
functionally closed (such sequences are called by Alexandroff divergent), we
have µn(Zn)/a ≥ 1. If for some a �= 0 the set M has an eluding load equal
to a, then we say that M has an eluding load. It is clear that the absence of
eluding load is equivalent to that lim

n→∞
supµ∈M |µ|(Zn) = 0 for every divergent

sequence of functionally closed sets Zn. Indeed, if |µn|(Zn) ≥ a > 0, then,
taking a subsequence, we may assume that µ+

n (Zn) ≥ a/2 (otherwise we have
µ−
n (Zn) ≤ −a/2). Then, there exist functionally closed sets Fn ⊂ Zn ∩X+

n ,
where X = X+

n ∪ X−
n is the Hahn decomposition for µn, such that one has

µn(Fn) ≥ a/4. It remains to observe that the sequence Fn is divergent as
well. The condition on the sets Zn used above coincides with Alexandroff’s
condition for normal spaces (see Exercise 6.10.79).

The next result is due to A.D. Alexandroff [30, �18].

8.1.12. Proposition. A family M of Baire measures on a topological
space X has no eluding load precisely when for every sequence of functionally
closed sets Zn with Zn ↓ ∅, one has

lim
n→∞

sup
µ∈M

|µ|(Zn) = 0. (8.1.5)
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Proof. Suppose that M has no eluding load and Zn are decreasing func-
tionally closed sets with empty intersection. If (8.1.5) is not fulfilled, then,
taking a subsequence, we may assume that we are given measures µn ∈ M
with |µn|(Zn) > c > 0. Taking a subsequence once again, we reduce every-
thing to the case where µ+

n (Zn) > c/2. In view of Exercise 6.10.80, there exist
decreasing functionally open sets Gn with empty intersection and Zn ⊂ Gn.
We can find n1 with µ+

1 (Gn1) < c/4. Then µ+
1 (Z1\Gn1) > c/4. Next we find

n2 > n1 with µ+
n1

(Gn2) < c/4, whence µ+
n1

(Zn1\Gn2) > c/4. By induction,
we obtain strictly increasing numbers nk with µ+

nk
(Znk\Gnk+1) > c/4. By the

definition of µ+
nk

, for every k, one can find a functionally closed set Fk in
Znk\Gnk+1 such that µnk(Fk) > µ+

nk
(Znk\Gnk+1) − c/8 > c/8. By assertion

(ii) in Exercise 6.10.80 the sets Znk\Gnk+1 , hence also the sets Fk, form a
divergent sequence. Thus, M has an eluding load, which is a contradiction.

Let M have an eluding load. Then, there exist a divergent sequence of
functionally closed sets Fn, measures µn ∈ M, and a number a �= 0 with
µn(Fn)/a ≥ 1. The sets Zn :=

⋃∞
k=n Fk are functionally closed and decrease

to the empty set; in addition, one has |µn|(Zn) ≥ |µn(Fn)| ≥ |a|. �

We discuss below many other properties of weak convergence of measures,
but it is worth noting already now that, excepting trivial cases, the weak
topology on the space of signed measures on X is not metrizable (for example,
if X is an infinite metric space, see Exercise 8.10.72). It may occur, yet,
that although the weak topology on Mσ(X) is not metrizable, but there
is a metric on Mσ(X) in which convergence of sequences is equivalent to
weak convergence. For example, this is the case if X = IN with the usual
metric (Exercise 8.10.68). It will be shown later that for any separable metric
space X, the weak topology is metrizable on the set M+

σ (X) of nonnegative
measures.

8.2. Weak convergence of nonnegative measures

A base of the weak topology on the set of probability measures can be
defined by means of values on certain sets. Let us consider the following two
classes of sets in the space Pσ(X) of Baire probability measures:

WF1,...,Fn,ε(µ) =
{
ν ∈ Pσ(X) : ν(Fi) < µ(Fi) + ε, i = 1, . . . , n

}
,

Fi = f−1
i (0), fi ∈ C(X), ε > 0, (8.2.1)

WG1,...,Gn,ε(µ) =
{
ν ∈ Pσ(X) : ν(Gi) > µ(Gi)− ε, i = 1, . . . , n

}
,

Gi = X\f−1
i (0), fi ∈ C(X), ε > 0. (8.2.2)

We recall that in the case of a metrizable space, the Fi’s represent arbi-
trary closed sets and the Gi’s represent arbitrary open sets.
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8.2.1. Theorem. The above-mentioned bases generate the weak topology
on the set of probability measures Pσ(X).

Proof. The coincidence of the bases (8.2.1) and (8.2.2) is obvious from
the defining formulas. Let U be a neighborhood of the form (8.1.2). We
may assume that 0 < fi < 1. Let us fix k ∈ IN with k−1 < ε/4. For every
i = 1, . . . , n, there exist points ci,j ∈ [0, 1] such that 0 = ci,0 < · · · < ci,m = 1,
ci,j+1 − ci,j < ε/4 and µ

(
f−1
i (ci,j)

)
= 0. Set Ai,1 = {0 ≤ fi < ci,1}, . . . ,

Ai,m = {ci,m−1 ≤ fi < ci,m}. Let us show that there is a neighborhood V
of the form (8.2.1) such that for all i, j and ν ∈ V , we have the estimate
|µ(Ai,j) − ν(Ai,j)| < δ, where δ = (4m)−1ε. Then we shall have V ⊂ U by

the inequality
∣
∣
∣fi −

∑m
j=1 ci,jIAi,j

∣
∣
∣ < ε/4. Indeed,

∣
∣
∣
∣

∫

X

fi dµ−
∫

X

fi dν

∣
∣
∣
∣ ≤

m∑

j=1

ci,j |µ(Ai,j)− ν(Ai,j)|+ ε/2 < ε.

The required neighborhood V can be taken as the intersection of the neigh-
borhood V1 of the form (8.2.1), where we take the functionally closed sets
Fi,j = {ci,j−1 ≤ fi ≤ ci,j}, i ≤ n, j ≤ k, and δ in place of ε, and the anal-
ogous neighborhood V2 of the form (8.2.2), where we take the functionally
open sets Gi,j = {ci,j−1 < fi < ci,j}. It is clear that

ν(Ai,j) ≥ ν(Gi,j) > µ(Gi,j)− δ = µ(Ai,j)− δ

for all ν ∈ V2. Similarly, one has ν(Ai,j) < µ(Ai,j) + δ for all ν ∈ V1.
Let us show that every neighborhood of the form (8.2.1) contains a neigh-

borhood in the weak topology. It suffices to consider neighborhoods defined
by a single closed set F1. We can assume that F1 = f−1

1 (0), where 0 ≤ f1 ≤ 1.
Let us find c > 0 such that µ

(
{0 < f < c}

)
< ε/2. Let ζ be a continuous

function on the real line, ζ(t) = 1 if t ≤ 0, ζ(t) = 0 if t ≥ c and 0 < ζ(t) < 1
if t ∈ (0, c). Set f = ζ ◦ f1. It remains to observe that ν(F1) < µ(F1) + ε if

∫

X

f dν <

∫

X

f dµ+ ε/2.

Indeed,

ν(F1) ≤
∫

X

f dν,

since f = 1 on F1. On the other hand,
∫

X

f dµ ≤ µ
(
f−1(1)

)
+ µ

(
{0 < f < 1}

)
= µ(F1) + µ

(
{0 < f < c}

)
,

which is less than µ(F1) + ε/2. �

8.2.2. Remark. A similar reasoning shows that the neighborhoods of
the form (8.2.1) or (8.2.2) together with the neighborhoods

{
ν : |µ(X)− ν(X)| < ε

}
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form a base of the weak topology in the space of all nonnegative Baire mea-
sures M+

σ (X).

We observe that the closed set {0} in Example 8.1.4 has measure zero
with respect to every measure νn, but is a full measure set for δ, whereas the
situation with the open set IR\{0} is the opposite. Thus, there is no conver-
gence on sets, but for every Borel set B whose boundary does not contain
zero, one has νn(B) → δ(B). We shall see below that this example is typical.
Having it in mind, one can easily remember the formulation of the following
classical theorem of A.D. Alexandroff on weak convergence (see [30]), which
is an immediate corollary of Theorem 8.2.1.

Given a net of numbers (cα)α∈Λ, the quantity lim supα cα is defined as
the supremum of numbers c such that for every α0 ∈ Λ, there exists α > α0

with cα ≥ c; lim infα cα := − lim supα−cα. We note that even for countable
nets, these quantities may differ from the upper and lower limits of the set of
numbers cα because the set {α < α0} may be infinite.

8.2.3. Theorem. Suppose we are given a topological space X, a net of
Baire probability measures {µα}, and a Baire probability measure µ on X.
Then the following conditions are equivalent:

(i) the net {µα} converges weakly to µ;
(ii) for every functionally closed set F one has

lim sup
α

µα(F ) ≤ µ(F ); (8.2.3)

(iii) for every functionally open set U one has

lim inf
α

µα(U) ≥ µ(U). (8.2.4)

In the case of not necessarily probability measures µα, µ ∈M+
σ (X), condition

(i) is equivalent to either of conditions (ii) and (iii) complemented by the
condition lim

α
µα(X) = µ(X).

Since a Baire measure may fail to have a Borel extension (or may have
several Borel extensions), the discussion of relationships (8.2.3) and (8.2.4)
for arbitrary closed sets F and open sets U requires additional assumptions.
Certainly, no additional conditions are needed if all closed sets are functionally
closed (i.e., if X is perfectly normal).

8.2.4. Corollary. (a) If X is metrizable (or at least is perfectly normal),
then condition (i) is equivalent to condition (ii) for every closed set F and con-
dition (iii) for every open set U . The same is true if X is completely regular,
the measures µα are Borel and the measure µ is τ -additive (for example, is
Radon).

(b) If in Theorem 8.2.3 the space X is completely regular and the limit
measure µ is τ0-additive, then condition (i) implies condition (ii) for all closed
Baire sets F (not necessarily functionally closed) and condition (iii) for all
open Baire sets U . In particular, this is true if the measure µ is tight.
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Proof. The first claim in (a) is obvious. The second one follows by the
fact that in the case of a completely regular space X, the value of a τ -additive
measure µ on every open set U is the supremum of measures of functionally
open sets inscribed in U . For the proof of assertion (b), it suffices to apply
Theorem 7.3.2 on the existence of a τ -additive extension of the measure µ
and assertion (a). �

8.2.5. Corollary. Suppose that a net of Borel probability measures µα
on a completely regular space X converges weakly to a Borel probability mea-
sure µ that is τ -additive (for example, is Radon). If f is a bounded upper
semicontinuous function, then

lim sup
α

∫

X

f dµα ≤
∫

X

f dµ.

If f is a bounded lower semicontinuous function, then

lim inf
α

∫

X

f dµα ≥
∫

X

f dµ.

Proof. We may assume that 0 < f < 1. For every fixed n, let us set
Uk := {x : f(x) > k/n}, k = 1, . . . , n. In the case of a lower semicontinuous
function f the sets Uk are open. Hence, letting fn := n−1

∑n
k=1 IUk , we have

lim inf
α

∫

X

fn dµα ≥
∫

X

fn dµ.

It remains to observe that |f(x) − fn(x)| ≤ n−1 for all x ∈ X. Indeed, if
m/n < f(x) ≤ (m + 1)/n, where m ≥ 1, then IUk(x) = 1 for all k ≤ m and
IUk(x) = 0 for all k > m, whence fn(x) = m/n. If m = 0, then fn(x) = 0. �

In general, weak convergence of measures does not yield any reasonable
convergence of their densities with respect to a common dominating measure
(see, e.g., Exercise 8.10.70). Note, however, the following simple fact.

8.2.6. Example. Suppose that Baire probability measures µn on a topo-
logical space X converge weakly to a Baire probability measure µ. Let ν be
a Baire probability on X such that the measures µn and µ are absolutely
continuous with respect to ν, i.e., µn = �n · ν, µ = � · ν. Then the functions
�nI{=0} converge to zero in measure ν.

In particular, if a Baire probability measure λ on X is mutually singular
with µ, then the densities of the absolutely continuous parts of µn with respect
to λ converge to zero in measure λ.

Proof. Given ε > 0, we find a functionally closed set F ⊂ E := {� = 0}
with ν(E\F ) < ε. Since µ(F ) = 0, we have µn(F ) → 0, i.e., ‖�nIF ‖L1(ν) → 0.
Hence �nIF → 0 in measure ν, which proves the first claim. The second claim
follows by choosing ν such that µn � ν, µ� ν and λ� ν. �

One can see from Theorem 8.2.1 that weak convergence ensures conver-
gence on certain “sufficiently regular” sets (see also Example 8.1.3). Let us
discuss this phenomenon in greater detail.



186 Chapter 8. Weak convergence of measures

8.2.7. Theorem. A net {µα} of Baire probability measures on a topo-
logical space X converges weakly to a Baire probability measure µ if and only
if the equality

lim
α
µα(E) = µ(E) (8.2.5)

is fulfilled for every set E ∈ Ba(X) with the following property: there exist a
functionally open set W and a functionally closed set F such that W ⊂ E ⊂ F
and µ(F\W ) = 0.

Proof. In the case of weak convergence we have

lim sup
α

µα(E) ≤ lim sup
α

µα(F ) ≤ µ(F ) = µ(E).

Similarly, lim infα µα(E) ≥ µ(E), whence we obtain (8.2.5). Suppose now
that we have (8.2.5). Let U = {f > 0}, where f ∈ C(X), and let ε > 0. It is
easily seen that there exist c > 0 such that one has µ(U) < µ

(
{f > c}

)
+ ε

and µ
(
{f > c}

)
= µ

(
{f ≥ c}

)
. Then the set E = {f > c} satisfies (8.2.5),

since one can take the sets W = E and F = {f ≥ c}, the first of which is
functionally open and the second one is functionally closed. Thus, we have
the inequality lim infα µα(U) ≥ µ(U) − ε, which yields (8.2.4) because ε is
arbitrary. �

It is clear that in the case where X is a metric space, the sets E with
the foregoing property are exactly the sets with the boundaries of µ-measure
zero. Let us formulate an analogous assertion in the case of Borel measures.
Let µ be a nonnegative Borel measure on a topological space X. Denote by
Γµ the class of all Borel sets E ⊂ X with boundaries of µ-measure zero. The
boundary ∂E of any set E is defined as the closure of E without the interior
of E, hence is a Borel set for arbitrary E. The sets in Γµ are called the
continuity sets of µ or µ-continuity sets.

8.2.8. Proposition. (i) Γµ is a subalgebra in B(X).
(ii) If X is completely regular, then Γµ contains a base of the topology of X.

Proof. Claim (i) follows from the fact that E and X\E have a common
boundary, and the boundary of the union of two sets is contained in the
union of their boundaries. In order to prove (ii), given a bounded continuous
function f on X, we set U(f, c) = {x : f(x) > c} and observe that the set

Mf =
{
c ∈ IR: µ

(
∂U(f, c)

)
> 0

}

is at most countable, since ∂U(f, c) ⊂ f−1(c) and the measure µ ◦ f−1 has
at most countably many atoms. The sets U(f, c), c ∈ IR\Mf , belong to
the class Γµ. By the complete regularity of X these sets form a base of
the topology. Indeed, for every point x and every open set U containing x,
there exists a continuous function f : X → [0, 1] with f(x) = 1 that equals 0
outside U . Thus, U contains the set U(f, c) for some c ∈ IR\Mf . �
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8.2.9. Theorem. Let {µα} be a net of Borel probability measures on a
topological space X and let µ be a Borel probability measure on X. Then the
following assertions are true. (i) If we have

lim
α
µα(E) = µ(E) for all E ∈ Γµ, (8.2.6)

then the net {µα} converges weakly to µ.
(ii) Let X be completely regular. If the net {µα} converges weakly to µ and

µ is τ -additive, then one has (8.2.6). If X is metrizable (or at least perfectly
normal), then the τ -additivity of µ is not required.

Proof. In order to prove (i) it suffices to observe that any set E with the
property indicated in Theorem 8.2.7 is contained in Γµ. Assertion (ii) follows
by Corollary 8.2.4 and the arguments used in the proof of Corollary 8.2.7. It
is worth noting that for weak convergence of signed measures relation (8.2.6)
is sufficient, but not necessary (Example 8.1.3 and Exercise 8.10.69). �

An immediate corollary of the above results is the following assertion.

8.2.10. Corollary. Let X be metrizable (or at least perfectly normal).
Then the following conditions are equivalent:

(i) a net {µα} of Borel probability measures converges weakly to a Borel
probability measure µ;

(ii) lim sup
α

µα(F ) ≤ µ(F ) for every closed set F ;

(iii) lim inf
α

µα(U) ≥ µ(U) for every open set U ;

(iv) lim
α
µα(E) = µ(E) for every set E ∈ Γµ.

These conditions remain equivalent for an arbitrary completely regular space
X if the measure µ is τ -additive (for example, is Radon).

8.2.11. Corollary. A net {µα} of probability measures on the real line
converges weakly to a probability measure µ precisely when the correspond-
ing distribution functions Fµα converge to the distribution function Fµ of the
measure µ at the points of continuity of Fµ, where Fµ(t) = µ

(
(−∞, t)

)
.

Proof. The necessity of the foregoing condition follows by assertion (iv)
of the previous corollary because the boundary of (−∞, t), i.e., the point t, has
µ-measure zero if the function Fµ is continuous at this point. The sufficiency is
clear from representation (8.2.2) of neighborhoods of the measure µ. Indeed,
given ε > 0 and open sets G1, . . . , Gn on the real line, one can find open sets
G′

1, . . . , G
′
n consisting of finite collections of intervals with the endpoints at

the continuity points of Fµ such that G′
i ⊂ Gi and µ(G′

i) > µ(Gi) − ε/2,
i = 1, . . . , n. Then the neighborhood (8.2.2) contains the measure µα for all α
such that µα(G′

i) > µ(G′
i)− ε/2, i.e., for all α greater than some index, since

the net {µα(G′
i)} converges to µ(G′

i). �

8.2.12. Example. Suppose that Borel probability measures µn on IRd

converge weakly to a Borel probability measure µ that is absolutely continu-
ous. Then lim

n→∞
µn(E) = µ(E) for every Jordan measurable Borel set E. In
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particular, if µn and µ are Borel probability measures on [0, 1] such that µ is
absolutely continuous, and lim

n→∞
µn([a, b]) = µ([a, b]) for every interval [a, b],

then convergence holds on every Jordan measurable Borel set.

The last assertion in the case of absolutely continuous measures µn was
proved by Fichtenholz [575], who also constructed an example when there is
no convergence on some Borel set E. The existence of such an example is easily
derived from the basic properties of weak convergence. Namely, let E ⊂ [0, 1]
be a nowhere dense compact set of positive Lebesgue measure. It is clear
from the previous results that one can find probability measures νn on [0, 1]
that converge weakly to Lebesgue measure λ on [0, 1] and are concentrated on
finite sets in the complement of E. Hence one can find probability measures
µn that converge weakly to λ and are given by smooth densities vanishing
on E (it suffices to take such a measure µn in the ball of radius 1/n and
center νn with respect to the metric determining weak convergence, which is
discussed in the next section).

One more sufficient condition of weak convergence in terms of convergence
on certain sets is given in the following theorem from Prohorov [1497].

8.2.13. Theorem. Let E be a class of Baire sets in a topological space X
such that E is closed with respect to finite intersections and every functionally
open set is representable as a finite or countable union of sets from E. Suppose
that µ and µn, where n ∈ IN, are Baire probability measures on X such
that µn(E) → µ(E) for all E ∈ E. Then {µn} converges weakly to µ. The
analogous assertion is true for Radon (or τ -additive) measures and Borel sets.

Proof. We observe that

lim
n→∞

µn

( k⋃

j=1

Ej

)
= µ

( k⋃

j=1

Ej

)
for all E1, . . . , Ek ∈ E .

Indeed, if k = 2, then by hypothesis we have convergence on E1, E2 and
E1 ∩E2, which yields convergence on E1\(E1 ∩E2) and E2\(E1 ∩E2), hence
also on the set E1∪E2 that equals the disjoint union of E1∩E2, E1\(E1∩E2),
and E2\(E1 ∩E2). By induction on k we obtain our assertion. Indeed, if it is
true for some k, then it is true for k + 1, since the set (E1 ∪ . . . ∪Ek) ∩Ek+1

is the union of the sets Ei ∩ Ek+1 ∈ E , i = 1, . . . , k, which gives convergence
on this set. Suppose we are given a set U = {f > 0}, where f ∈ Cb(X). It
can be represented as an at most countable union of sets Ej ∈ E . Hence one
has

µ(U) = lim
k→∞

µ
( k⋃

j=1

Ej

)
= lim
k→∞

lim
n→∞

µn

( k⋃

j=1

Ej

)
≤ lim inf

n→∞
µn(U),

whence the assertion follows. �
It is easily seen from the proof that this theorem remains valid if U is

representable as an at most countable union of sets from E up to a set of
µ-measure zero (Exercise 8.10.78).
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Let us consider examples of classes E satisfying the hypotheses of this
theorem.

8.2.14. Corollary. Let E be some class of Borel sets in a separable met-
ric space X such that E is closed with respect to finite intersections. Suppose
that for every point x ∈ X and every neighborhood U of x, one can find a
set Ex ∈ E containing some neighborhood of the point x and contained in U .
Then convergence of a sequence of Borel probability measures on all sets in E
yields its weak convergence. The same is true if X is completely regular and
hereditary Lindelöf.

Proof. Let U be open. By hypothesis, for every point x ∈ U , there
exists Ex ∈ E such that x ∈ Ex ⊂ U , and x has a neighborhood Vx ⊂ Ex.
By the separability of X, the cover of U by the sets Vx contains an at most
countable subcover {Vxn}, which means that U =

⋃∞
n=1Exn . The second

claim is proven by the same reasoning. �

8.2.15. Corollary. Let X be a separable metric space and let µ and µn,
where n ∈ IN, be Borel probability measures on X such that µn(E) → µ(E) for
every set E that is a continuity set for µ (i.e., E ∈ Γµ) and is representable
as a finite intersection of open balls. Then µn ⇒ µ.

Proof. The family of sets with the indicated properties satisfies the hy-
potheses of the previous corollary. Indeed, finite intersections of such sets
are continuity sets as well. In addition, for every point x and every ε > 0,
there exists r ∈ (0, ε) such that the boundary of the ball of radius r centered
at x has µ-measure zero because for different r these boundaries have empty
intersections (note that the boundary of the ball of radius r is contained in
the sphere of radius r with the same center). �

8.2.16. Example. A sequence {µn} of Borel probability measures on
IR∞ converges weakly to a Borel probability measure µ if and only if the
finite-dimensional projections of the measures µn, i.e., the images of µn under
the projections πd : IR∞ → IRd, (xi) �→ (x1, . . . , xd), converge weakly to the
corresponding projections of µ for every fixed d.

Proof. The necessity of weak convergence of projections is obvious. Its
sufficiency follows by Corollary 8.2.14 applied to the class of open cylinders
of the form

C = {x : (x1, . . . , xd) ∈ U}, where U ⊂ IRd is open,

with boundaries of µ-measure zero. The equality lim
n→∞

µn(C) = µ(C) follows

by the equality µ ◦ π−1
d (∂U) = µ(∂C) = 0. �

A generalization of Theorem 8.2.13 given in Exercise 8.10.78 yields the
following result due to Kolmogorov and Prohorov [1034]. However, we shall
give a simple direct proof.
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8.2.17. Theorem. Let {µα} be a net of Borel probability measures on a
topological space X and let µ be a τ -additive probability measure on X. Sup-
pose that the equality lim

α
µα(U) = µ(U) is fulfilled for all elements U of some

base O of the topology of X that is closed with respect to finite intersections.
Then the net of measures µα converges weakly to µ.

Proof. Denote by U the family of all finite unions of sets in O. Conver-
gence on O and stability of O with respect to finite intersections yields that
lim
α
µα(U) = µ(U) for all U ∈ U . For every open set G and every set U ∈ U

with U ⊂ G, we have

µ(U) = lim
α
µα(U) ≤ lim inf

α
µα(G),

whence by the τ -additivity of µ we obtain that

µ(G) = sup
{
µ(U) : U ⊂ G, U ∈ U

}
≤ lim inf

α
µα(G),

since G is the union of the directed family of all sets U ⊂ G from U (we recall
that O is a topology base). As we know, the obtained estimate is equivalent
to weak convergence of µα to µ. �

The following theorem of R. Rao [1544] gives a useful effective sufficient
condition of uniform convergence of integrals with respect to weakly conver-
gent measures.

8.2.18. Theorem. Suppose that a net {µα} of Baire probability measures
on a completely regular Lindelöf space X (for example, on a separable metric
space) converges weakly to a Baire probability measure µ. If Γ ⊂ Cb(X) is
a uniformly bounded and pointwise equicontinuous family of functions (i.e.,
for every x and ε > 0, there exists a neighborhood U of the point x with
|f(x)− f(y)| < ε for all y ∈ U and f ∈ Γ), then

lim
α

sup
f∈Γ

∣
∣
∣
∣

∫

X

f dµα −
∫

X

f dµ

∣
∣
∣
∣ = 0. (8.2.7)

Proof. We may assume that the measures µα and µ are Borel and τ -
additive, since by the Lindelöf property of X they satisfy the hypothesis of
Corollary 7.3.3(ii), which yields the existence and uniqueness of a τ -additive
extension. One can also assume that |f | ≤ 1 for all f ∈ Γ. Let ε > 0. In
view of the complete regularity of X and our hypothesis, every point x has a
functionally open neighborhood Ux such that µ(∂Ux) = 0 and |f(x)−f(y)| < ε
for all y ∈ Ux and f ∈ Γ. Since X is Lindelöf, some countable collection of sets
Uxn covers X. Let Vn = Uxn\

⋃n−1
i=1 Vi, V1 = Ux1 . It is readily verified that the

pairwise disjoint sets Vn cover X and µ(∂Vn) = 0. Let ν =
∑∞
n=1 µ(Vn)δxn ,

να =
∑∞
n=1 µα(Vn)δxn . We observe that

lim
α

sup
f∈Γ

∣
∣
∣
∣

∫

X

f dνα −
∫

X

f dν

∣
∣
∣
∣ ≤ lim

α

∞∑

n=1

|µα(Vn)− µ(Vn)| = 0. (8.2.8)
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The last equality in (8.2.8) follows by the equality lim
α
µα(Vn) = µ(Vn) for

every fixed n (which holds according to Theorem 8.2.9(ii)) and the equality∑∞
n=1 µα(Vn) =

∑∞
n=1 µ(Vn) = 1. We observe that

∣
∣
∣
∣

∫

X

f dµα −
∫

X

f dµ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

X

f dµα −
∫

X

f dνα

∣
∣
∣
∣+

∣
∣
∣
∣

∫

X

f dνα −
∫

X

f dν

∣
∣
∣
∣+

∣
∣
∣
∣

∫

X

f dν −
∫

X

f dµ

∣
∣
∣
∣

≤
∞∑

n=1

∫

Vn

|f(x)− f(xn)| (µα + µ)(dx) +
∣
∣
∣
∣

∫

X

f dνα −
∫

X

f dν

∣
∣
∣
∣

≤ 2ε+
∣
∣
∣
∣

∫

X

f dνα −
∫

X

f dν

∣
∣
∣
∣,

since |f(x)−f(xn)| ≤ ε for all x ∈ Vn because Vn ⊂ Uxn . Now equality (8.2.7)
follows by (8.2.8), since ε is arbitrary. �

Concerning signed measures, see Exercises 8.10.133 and 8.10.134.

8.3. The case of a metric space

In this section X is a metric space with a metric �. Thus, the classes of
Borel and Baire measures coincide and, as we have already seen, the formu-
lations of some results are simplified. Nevertheless, there still remains some
difference between the case where X is separable and the general case. We
shall see below that the situation is most favorable for complete separable
metric spaces.

We have already noted in �8.1 that except for the case of finiteX, the weak
topology on Mσ(X) is not metrizable, hence is not normable. But Mσ(X)
can be equipped with a norm such that the generated topology coincides with
the weak topology on the set of τ -additive nonnegative measures (hence on
the set of probability measures).

Let us equip the space Mσ(X) with the following Kantorovich–Rubinsh-
tein norm:

‖µ‖0 = sup
{∫

X

f dµ : f ∈ Lip1(X), sup
x∈X

|f(x)| ≤ 1
}
,

where

Lip1(X) :=
{
f : X → IR1, |f(x)− f(y)| ≤ �(x, y), ∀x, y ∈ X

}
.

It is clear that ‖µ‖0 ≤ ‖µ‖. The metric generated by the Kantorovich–
Rubinshtein norm is called the Kantorovich–Rubinshtein metric (in � 8.10(viii)
we consider a modification of this metric).

If the space X contains an infinite convergent sequence, then the norm
‖ · ‖0 is strictly weaker than the total variation norm ‖ · ‖. Indeed, if xn → x,
then the measures δxn converge in the norm ‖ · ‖0 to the measure δx, since
|f(xn) − f(x)| ≤ �(xn, x) for all f ∈ Lip1(X), but ‖δx − δxn‖ = 2 if xn �= x.
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In particular, in this case the space Mσ(X) cannot be complete with respect
to the norm ‖ · ‖0 because it is complete in the variation norm and then
by the Banach theorem both norms would be equivalent. If �(x, y) ≥ δ > 0
whenever x �= y, then the norms ‖ · ‖0 and ‖ · ‖ are equivalent, since in that
case we have f ∈ Lip1(X) provided that |f(x)| ≤ δ/2. It is shown below that
the topology generated by the norm ‖ · ‖0 coincides with the weak topology
on the set of nonnegative τ -additive measures. One frequently employs the
equivalent norm

‖µ‖∗BL := sup
{∫

X

f dµ : f ∈ BL(X), ‖f‖BL ≤ 1
}
,

where BL(X) is the space of all bounded Lipschitzian functions on X with
the norm

‖f‖BL := sup
x∈X

|f(x)|+ sup
x�=y

|f(x)− f(y)|
�(x, y)

.

‖µ‖∗BL ≤ ‖µ‖0 ≤ 2‖µ‖∗BL,

since ‖f‖BL ≤ 2 whenever f ∈ Lip1(X) and supX |f(x)| ≤ 1.

8.3.1. Remark. It follows by Theorem 8.2.3 that weak convergence of a
net {µα} of nonnegative measures to a measure µ is equivalent to the equality

lim
α

∫

X

f(x)µα(dx) =
∫

X

f(x)µ(dx)

for all bounded uniformly continuous functions f on X (this is also true for
uniform spaces, hence for completely regular spaces equipped with suitable
uniformities, see Topsøe [1873]). Indeed, given a closed set F and ε > 0,
one can find a bounded uniformly continuous (even Lipschitzian) function
f such that 0 ≤ f ≤ 1, f |F = 1 and the integral of f against µ is es-
timated by the number µ(F ) + ε. Then lim supα µα(F ) ≤ µ(F ) + ε, hence
lim supα µα(F ) ≤ µ(F ). Clearly, the same is true for Lipschitzian functions in
place of uniformly continuous ones (this is also seen from Exercise 8.10.71). In
particular, convergence of a net of nonnegative measures in the Kantorovich–
Rubinshtein metric implies weak convergence. However, if X is not compact,
then one can choose a metric on X generating the same topology such that
there exist a sequence of signed measures µn and a measure µ such that the
integrals with respect to µn of every bounded uniformly continuous function
f converge to the integral of f against the measure µ, but the measures µn
do not converge weakly to µ (Exercise 8.10.77). The original metric does not
always have such a property (for example, take X = IN with the usual metric),
but in the case X = IR1 the standard metric also works: it suffices to have
two sequences {xn} and {yn} with xn �= yn which have no limit points, but
the distance between xn and yn tends to zero.

For every B ⊂ X, we let Bε = {x : dist(x,B) < ε}.

It is readily verified that BL(X) with this norm is complete. It is clear that
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8.3.2. Theorem. The topology generated by the norm ‖ · ‖0 coincides
with the weak topology on the set M+

τ (X) of nonnegative τ -additive measures.
In addition, on the set Pτ (X) of probability τ -additive measures the weak
topology is generated by the following Lévy–Prohorov metric:

dP (µ, ν) = inf
{
ε > 0: ν(B) ≤ µ(Bε) + ε, µ(B) ≤ ν(Bε) + ε, ∀B ∈ B(X)

}
.

In particular, if X is separable, then the weak topology on the set M+
σ (X) is

generated by the metric d0(µ, ν) := ‖µ− ν‖0.
Finally, if Pσ(X) �= Pτ (X), then the weak topology is not metrizable

on Pσ(X).

Proof. We verify that dP is a metric on Pσ(X). It is clear that we have
dP (µ, ν) = dP (ν, µ). If dP (µ, ν) = 0, then µ(B) = ν(B) for every closed set B
and hence µ = ν. Let ν(B) ≤ µ(Bε)+ε, µ(B) ≤ ν(Bε)+ε, µ(B) ≤ η(Bδ)+δ,
η(B) ≤ µ(Bδ) + δ for all B ∈ B(X). Then ν(B) ≤ η(Bε+δ) + ε + δ and
η(B) ≤ ν(Bε+δ) + ε + δ, whence dP (ν, η) ≤ dP (ν, µ) + dP (µ, η). Let us
show that every neighborhood W of the form (8.2.1) contains a ball of a
positive radius with respect to the Lévy–Prohorov metric. To this end, we
pick δ ∈ (0, ε/2) such that µ(F δi ) < µ(Fi) + ε/2 for all i = 1, . . . , n. If
dP (µ, ν) < δ, then ν(Fi) < µ(F δi ) + δ < µ(Fi) + ε, i.e., ν belongs to the
neighborhood W . We note that at this stage no separability of measures is
used.

Now we show that every ball with respect to the Lévy–Prohorov metric
with the center µ and radius ε contains a neighborhood of the form (8.2.1).
We pick δ > 0 such that 3δ < ε. Let us cover the separable support of
the measure µ by countably many open balls Vn of diameter less than δ
having the boundaries of µ-measure zero (by the τ -additivity the support
exists and is separable). We construct pairwise disjoint sets An that have
boundaries of µ-measure zero and cover the support of µ. To this end, let
An =

⋃n
i=1 Vi\

⋃n−1
i=1 Vi, A1 = V1. There is k such that

µ
( k⋃

i=1

Ai

)
> 1− δ. (8.3.1)

By Corollary 8.2.10 there exists a neighborhood W of the form (8.2.1) such
that

|µ(A)− ν(A)| < δ (8.3.2)

for all ν ∈W and every set A that is a union of some of the sets A1,. . . , Ak.
We verify that dP (µ, ν) < ε for all ν ∈ W . Let B ∈ B(X). Let us consider
the set A that is the union of those sets A1, . . . , Ak that do not meet B. Then
B ⊂ A

⋃⋃∞
i=k+1Ai and A ⊂ Bδ, since the diameter of every Ai is less than δ.

Given ν ∈W , we obtain by (8.3.1) and (8.3.2) that

µ(B) < µ(A) + δ < ν(A) + 2δ ≤ ν(Bδ) + 2δ.
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Since (8.3.1) and (8.3.2) yield that ν
(⋃k

i=1Ai

)
> 1− 2δ, we obtain similarly

that ν(B) < µ(Bδ) + 3δ. Thus, dP (µ, ν) < 3δ < ε.
According to the remark above, convergence in the Kantorovich–Rubinsh-

tein metric yields weak convergence for nets in M+
σ (X). On the other hand,

if a sequence of nonnegative τ -additive measures µn converges weakly to a
τ -additive measure µ, then there exists a separable closed subspace X0 on
which all measures µn and µ are concentrated. Hence by Theorem 8.2.18 we
have

sup
f∈Lip1(X),|f |≤1

∣
∣
∣
∣

∫

X

f dµ−
∫

X

f dµn

∣
∣
∣
∣→ 0.

Thus, the families of convergent sequences in the weak topology on M+
τ (X)

and in the metric d0 coincide. It follows by the already obtained results that
on Pτ (X) the metrics dP and d0 generate one and the same topology, namely,
the weak topology. So all the three topologies have the same convergent nets.
Suppose now that a net {µα} ⊂ M+

τ (X) converges to a measure µ ∈M+
τ (X)

in the weak topology. If µ = 0, then µα(X) → 0 and hence d0(µα, 0) → 0. If
µ �= 0, then we may assume that cα := µα(X) > 0. Since cα → µ(X), one has
µα/cα → µ/µ(X) in the weak topology. By the already established assertion
for probability measures, µα/cα → µ/µ(X) in the metric d0, whence one has
that ‖µα − µ‖0 → 0.

Finally, if the weak topology is metrizable on Pσ(X), then in view of
Example 8.1.6, every measure µ ∈ Pσ(X) is the limit of a sequence of measures
µn with finite supports, hence has a separable support. �

8.3.3. Example. If µ ∈ Pσ(X) has no atoms and α ∈ (0, 1), then there
exist sets Bn ∈ B(X) with µ(Bn) = α such that the measures µn := α−1IBn ·µ
converge to µ in the norm ‖ · ‖0. Indeed, let us partition X into Borel parts
En,i of diameter less than 1/n with µ(En,i) > 0. Next we find Borel sets
Bn,i ⊂ En,i with µ(Bn,i) = αµ(En,i) and take Bn :=

⋃∞
i=1Bn,i. Let f belong

to Lip1(X). The absolute value of the integral of f against the measure
µn−µ does not exceed 2/n, since taking xi ∈ Bn,i we obtain that the integral
of fIEn,i against the measure µ differs from f(xi)µ(En,i) in at most µ(En,i)/n
and the same is true for the measure µn.

In �8.9 we discuss the completeness of M+
τ (X) in the metric d0.

8.4. Some properties of weak convergence

In this section, we discuss the behavior of weak convergence under some
operations on measures: transformation of measures, restrictions to sets, mul-
tiplication by functions, and products of measures.

8.4.1. Theorem. Suppose a net of Baire measures µα on a topological
space X converges weakly to a measure µ. Then the following assertions are
true.

(i) For every continuous mapping F : X → Y to a topological space Y ,
the net of measures µα ◦ F−1 converges weakly to the measure µ ◦ F−1.
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(ii) Suppose that X is a completely regular space, the measures µα and
µ are nonnegative Borel, and the measure µ is τ -additive. Let F be a Borel
mapping from X to a topological space Y such that F is continuous µ-almost
everywhere. Then µα ◦ F−1 ⇒ µ ◦ F−1.

(iii) Let X be a separable metric space, let the measures µα be nonnegative,
and let Fα be pointwise equicontinuous mappings from X to a metric space
Y such that the measures µ ◦ F−1

α converge weakly to the measure µ ◦ F−1,
where F : X → Y is some Borel mapping. Then the measures µα ◦ F−1

α also
converge weakly to µ ◦ F−1.

Proof. Assertion (i) is obvious. Let us verify (ii). Let Z be a closed set
in Y . Denote by DF the set of discontinuity points of F . We observe that
F−1(Z) ⊂ F−1(Z)∪DF , where A is the closure of A. Then by Corollary 8.2.4
one has

lim sup
α

µα ◦ F−1(Z) ≤ lim sup
α

µα

(
F−1(Z)

)
≤ µ

(
F−1(Z)

)
= µ

(
F−1(Z)

)
,

which yields that µα ◦ F−1 ⇒ µ ◦ F−1

For the proof of assertion (iii) we fix a uniformly continuous bounded
function ϕ on Y . The functions ϕ ◦ Fα on X are uniformly bounded and
pointwise equicontinuous. By Theorem 8.2.18, for every ε > 0, there exists
an index α0 such that for all α ≥ α0 one has

∣
∣
∣
∣

∫

X

ϕ ◦ Fα dµα −
∫

X

ϕ ◦ Fα dµ
∣
∣
∣
∣ < ε/2.

It follows by our hypothesis that there exists an index α1 ≥ α0 such that for
all α ≥ α1 we have

∣
∣
∣
∣

∫

X

ϕ ◦ Fα dµ−
∫

X

ϕ ◦ F dµ
∣
∣
∣
∣ < ε/2.

These two estimates yield the claim. �

8.4.2. Corollary. Let {µα} be a net of Borel probability measures on
a completely regular space X and let µ be a τ -additive probability measure.
Then {µα} converges weakly to µ if and only if the equality

lim
α

∫

X

f dµα =
∫

X

f dµ

is true for every bounded Borel function f that is continuous µ-almost every-
where.

Proof. The sufficiency of the above condition is obvious. Its necessity
follows by assertion (ii) in the previous theorem in view of the equality

∫

X

f dµα =
∫

IR1
h d(µα ◦ f−1),

where h ∈ Cb(IR1) and h(t) = t if |t| ≤ sup |f |, and the analogous equality
for µ. �
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8.4.3. Lemma. If a net {µα} of Baire probability measures on a topolog-
ical space X converges weakly to a Baire measure µ, then for every continuous
function f on X satisfying the condition

lim
R→∞

sup
α

∫

|f |≥R
|f | dµα = 0,

one has

lim
α

∫

X

f dµα =
∫

X

f dµ

If X is completely regular, µα and µ are Radon and for every ε > 0, there
exists a compact set Kε such that µα(X\Kε) < ε for all α, then the continuity
of f can be relaxed to the continuity on each Kε.

Proof. We observe that f ∈ L1(µ). Indeed, let fn = min(|f |, n). Then
fn ≤ |f | and hence by the hypothesis of the lemma we obtain

M := sup
n,α

∫

X

fn dµα <∞.

Since fn ∈ Cb(X), one has
∫
fn dµ ≤M

for all n, whence f ∈ L1(µ). Let ε > 0. Pick R > 0 such that for all α
∫

|f |≥R
|f | dµα +

∫

|f |≥R
|f | dµ < ε.

Let g = max
(
min(f,R),−R

)
. For all α with

∣
∣
∣
∫

X

g dµα −
∫

X

g dµ
∣
∣
∣ < ε,

we obtain
∣
∣
∣
∫

X

f dµα −
∫

X

f dµ
∣
∣
∣ ≤ 3ε,

since |g(x)| ≤ |f(x)| and g(x) = f(x) whenever |f(x)| ≤ R. The second
assertion is proved similarly. Letting A = {|f | ≤ R}, we find a compact set
K ⊂ A on which f is continuous and µα(A\K) + µ(A\K) < εR−1 for all α.
Then f |K can be extended to a continuous function g on all of the space such
that |g| ≤ R (Exercise 6.10.22). �

Let us consider the behavior of weak convergence under restricting mea-
sures to subsets. It is clear that in the general case there is no convergence of
restrictions: in Example 8.1.4, the convergent measures vanish on the set {0},
but the limit Dirac measure is concentrated on that set.

The next result follows by the last assertion in Corollary 8.2.10.
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8.4.4. Proposition. Suppose that a net {µα} of Borel probability mea-
sures on a completely regular space X converges weakly to a τ -additive Borel
probability measure µ. Let a set X0 ⊂ X be equipped with the induced topol-
ogy. Then the induced measures µ0

α on X0 converge weakly to the measure µ0

induced by µ in either of the following cases:
(i) X0 is a set of full outer measure for all measures µα and µ;
(ii) X0 is either open or closed and lim

α
µα(X0) = µ(X0).

This assertion remains valid for nonnegative, not necessarily probability, mea-
sures provided that lim

α
µα(X) = µ(X).

It is easy to see that in the general case weak convergence is not preserved
by the elements of the Jordan–Hahn decomposition and does not commute
with taking the total variation. Let us consider some examples.

8.4.5. Example. (i) Let µn be measures on the interval [0, 2π] defined as
follows: µn = 0 if n is odd and µn = sin(nx) dx if n is even. It is readily seen
that the measures µn converge weakly to the zero measure, but the measures
|µn| have no weak limit.

(ii) The measures δ0 − δ1/n on the real line converge weakly to the zero
measure, but their total variations |δ0 − δ1/n| = δ0 + δ1/n converge weakly
to 2δ0.

The next example due to Le Cam [1138] exhibits another interesting
aspect of this phenomenon.

8.4.6. Example. Let X be a subset of [0, 1] containing all numbers of
the form k2−n with n, k ∈ IN and having the inner measure zero and outer
measure 1. We equip X with the induced topology and the measure µ that is
the restriction of Lebesgue measure λ to X (see Definition 1.12.11). Set

νn(k2−n) = 2−n for k = 1, . . . , 2n, µn = νn+1 − νn.

The sequence {µn} of Radon measures converges weakly to zero, but the
sequence of measures |µn| = νn+1 converges weakly to the measure µ, which
is τ -additive, but not Radon.

The following result from Varadarajan [1918, Part 2, Theorem 3] is useful
for the study of weak convergence of signed measures.

8.4.7. Theorem. Suppose that a net of Baire measures µα converges
weakly to a Baire measure µ. Then, for every functionally open set U we
have

lim inf
α

|µα|(U) ≥ |µ|(U).

In this situation, the net of measures |µα| converges weakly to |µ| precisely
when |µα|(X) → |µ|(X).

Proof. Let ε > 0. By Lemma 7.1.10, one can find a function g ∈ Cb(X)
such that 0 ≤ g ≤ 1, g = 0 on X\U , and

∫

X

g d|µ| > |µ|(U)− ε.
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It is readily seen that there exists a function h ∈ Cb(X) such that |h| ≤ g and
∣
∣
∣
∣

∫

X

h dµ

∣
∣
∣
∣ >

∫

X

g d|µ| − ε.

It is clear that |h| ≤ 1 and h = 0 on X\U . In addition,
∣
∣
∣
∫

X

h dµ
∣
∣
∣ > |µ|(U)− 2ε.

Since ∫

X

h dµα →
∫

X

h dµ,

one has

lim inf
α

|µα|(U) ≥ lim
α

∣
∣
∣
∣

∫

X

h dµα

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

X

h dµ

∣
∣
∣
∣ > |µ|(U)− 2ε.

Letting ε → 0, we obtain the first assertion. If |µα|(X) → |µ|(X) > 0, then
weak convergence of |µα| to |µ| follows by the first claim. If |µ|(X) = 0, then
one has convergence in the variation norm. �

8.4.8. Corollary. Suppose that a net of Baire measures µα converges
weakly to a Baire measure µ and that

lim
α
|µα|(X) = |µ|(X).

Let µα = µ+
α −µ−

α and µ = µ+−µ−. Then, the nets {µ+
α} and {µ−

α } converge
weakly to µ+ and µ−, respectively.

Proof. We apply the equalities µ+
α = (|µα|+µα)/2, µ−

α = (|µα|−µα)/2
and the theorem proven above. �

Now we can investigate the problem of preservation of weak convergence
under multiplication by a function. It follows by definition that if measures
µα converge weakly to a measure µ, then for every bounded continuous func-
tion f , the measures f · µα converge weakly to the measure f · µ. However,
there are less trivial results of this sort. For example, Proposition 8.4.4 and
Corollary 8.4.2 yield the following assertion.

8.4.9. Proposition. Suppose that a net of Borel probability measures
µα on a completely regular space X converges weakly to a τ -additive Borel
probability measure µ and a bounded Borel function f is continuous at µ-
almost all points of a set X0 that has full measure with respect to all measures
µα and µ. Then, the measures f · µα converge weakly to the measure f · µ.

8.4.10. Theorem. Let {µα} and {να} be two nets of τ -additive prob-
ability measures on completely regular spaces X and Y convergent weakly to
τ -additive measures µ and ν, respectively. Then the τ -additive extensions
of the measures µα⊗να converge weakly to the τ -additive extension of the
measure µ⊗ν.
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Proof. Denote by Uµ and Uν the classes of open sets in X and Y with
boundaries of zero measure with respect to µ and ν, correspondingly. By
Proposition 8.2.8 these families form topology bases in X and Y . Hence the
family U = {U×V : U ∈ Uµ, V ∈ Uν} is a topology base in X×Y . The family
U is closed with respect to finite intersections because, as one can easily see,
Uµ and Uν have such a property. For all U ∈ Uµ and V ∈ Uν one has

lim
α
µα⊗να(U×V ) = lim

α
µα(U) lim

α
να(V ) = µ⊗ν(U×V ).

Hence Theorem 8.2.17 yields the claim. �

8.5. The Skorohod representation

Suppose that P is a probability measure on some measurable space (Ω,F)
and {ξn} is a sequence of

(
F ,Ba(X)

)
-measurable mappings from Ω to a topo-

logical space X equipped with the Baire σ-algebra Ba(X). Assume also
that there exists a

(
F ,Ba(X)

)
-measurable mapping ξ : Ω → X such that

ξ(ω) = lim
n→∞

ξn(ω) for P -a.e. ω ∈ Ω. It is clear that the measures µn = P ◦ξ−1
n

converge weakly to the measure µ = P ◦ ξ−1 because, for all ϕ ∈ Cb(X), we
have

lim
n→∞

∫

Ω

ϕ
(
ξn(ω)

)
P (dω) =

∫

Ω

ϕ
(
ξ(ω)

)
P (dω)

by the dominated convergence theorem. Skorohod [1739], [1740] discovered
that every weakly convergent sequence of probability measures on a complete
separable metric space X admits the above representation and that one can
take for P Lebesgue measure on [0, 1] (for measures on X = IRd this was shown
in Hammersley [783]). Blackwell and Dubins [184] and Fernique [566] estab-
lished that one can simultaneously parameterize all probability measures on
X by mappings from [0, 1] in such a way that to weakly convergent sequences
of measures there will correspond almost everywhere convergent sequences of
mappings. This section contains a simple derivation of this result by means
of functional-topological arguments. The following concept introduced in Bo-
gachev, Kolesnikov [211] will be useful in our discussion. This concept is of
independent interest.

8.5.1. Definition. We shall say that a topological space X has the strong
Skorohod property for Radon measures if to every Radon probability measure
µ on X, one can associate a Borel mapping ξµ : [0, 1] → X such that µ is
the image of Lebesgue measure under the mapping ξµ and ξµn(t) → ξµ(t) a.e.
whenever the measures µn converge weakly to µ.

If such a parameterization exists for the class of all Borel probability
measures on X, then the obtained property will be called the strong Skorohod
property for Borel measures. By analogy one can define the strong Skorohod
property for other classes of measures (for example, discrete).

8.5.2. Lemma. Let X be a space with the strong Skorohod property for
Radon measures. Then:
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(i) every subset Y of X has this property as well;
(ii) if F is a continuous mapping from X to a topological space Y and

there exists a mapping Ψ: Pr(Y ) → Pr(X) continuous in the weak topology
such that Ψ(ν)◦F−1 = ν for all ν ∈ Pr(Y ), then Y has the strong Skorohod
property for Radon measures.

Proof. (i) Every Radon measure µ on Y extends uniquely to a Radon
measure on X, and Y is measurable with respect to this extension, since Y
contains compact sets Kn (these sets are also compact in X) whose union has
full measure. Let ξµ : [0, 1] → X be a Borel mapping corresponding to µ in the
definition of the strong Skorohod property (i.e., we fix some parameterization).
As noted above, there exists a set B ⊂ Y of full µ-measure that is σ-compact
inX and Y . Let ηµ(t) = ξµ(t) if t ∈ ξ−1

µ (B) and ηµ(t) = z if t �∈ ξ−1
µ (B), where

z is an arbitrary point in Y . Then λ
(
ξ−1
µ (B)

)
= 1 and hence ηµ(t) = ξµ(t) for

almost all t in [0, 1], whence λ◦η−1
µ = λ◦ξ−1

µ . If probability measures µn on Y
converge weakly to the measure µ, then their extensions to X converge weakly
to the extension of µ, whence one has lim

n→∞
ξµn(t) = ξµ(t) almost everywhere.

Therefore, lim
n→∞

ηµn(t) = ηµ(t) almost everywhere.

(ii) Given ν ∈ Pr(Y ), let ην(t) = F
(
ξΨ(ν)(t)

)
, where ξ is a parameteri-

zation of measures in Pr(X) by Borel mappings from the interval [0, 1] to X.
Then

λ ◦ η−1
ν =

(
λ ◦ ξ−1

Ψ(ν)

)
◦ F−1 = Ψ(ν) ◦ F−1 = ν.

If measures νn converge weakly to the measure ν on Y , then the measures
Ψ(νn) converge weakly to the measure Ψ(ν) on X, hence ξΨ(νn)(t) → ξΨ(ν)(t)
for almost all t in [0, 1], whence ηνn(t) → ην(t) for such points t due to the
continuity of F . �

The mapping Ψ in assertion (ii) of this lemma is called a continuous right
inverse to the induced mapping F̂ : Pr(X) → Pr(Y ), µ �→ µ ◦ F−1.

Let F : X → Y be a continuous surjection of compact spaces X and Y .
A linear operator U : C(X) → C(Y ) is called a regular averaging operator
for F if Uψ ≥ 0 whenever ψ ≥ 0 and U(ϕ ◦ F ) = ϕ for all ϕ ∈ C(Y ). Such
an operator is automatically continuous and has the unit norm. It is easy to
see that the operator V = U∗ : Mr(Y ) = C(Y )∗ → Mr(X) = C(X)∗ takes
Pr(Y ) to Pr(X) and that F̂ ◦ V is the identity mapping on Mr(Y ), i.e., V is
a continuous right inverse for F̂ . Indeed, for all ν ∈ Mr(Y ) and ϕ ∈ C(Y ),
we have

∫

Y

ϕ(y) F̂
(
V (ν)

)
(dy) =

∫

X

ϕ
(
F (x)

)
V (ν)(dx)

=
∫

Y

U(ϕ ◦ F )(y) ν(dy) =
∫

Y

ϕ(y) ν(dy).
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A compact space S is called a Milyutin space if for some cardinality τ ,
there exists a continuous surjection F : {0, 1}τ → S, where {0, 1} is the two-
point space, such that F has a regular averaging operator. According to the
celebrated Milyutin lemma (see Pe	lcziński [1430, Theorem 5.6], Fedorchuk,
Filippov [561, Ch. 8, �4]), the closed interval is a Milyutin space. In addition,
it is known that the direct product of an arbitrary family of compact metric
spaces is a Milyutin space. In particular, S = [0, 1]∞ is a Milyutin space, and
for τ one can take IN. Since the space {0, 1}∞ is homeomorphic to the classical
Cantor set C ⊂ [0, 1], consisting of all numbers in the interval [0, 1] whose
ternary expansions do not contain 1 (see Engelking [532, Example 3.1.28]),
we arrive at the following result.

8.5.3. Lemma. Let S be a nonempty metrizable compact space and let
C be the Cantor set. Then, there exists a continuous surjection F : C → S

such that the mapping F̂ has a linear continuous right inverse.

8.5.4. Theorem. Let X be a universally measurable set in a complete
separable metric space. Then, to every Borel probability measure µ on X, one
can associate a Borel mapping ξµ : [0, 1] → X such that µ = λ ◦ ξ−1

µ , where λ
is Lebesgue measure, and ξµn(t) → ξµ(t) for almost all t ∈ [0, 1] whenever the
measures µn converge weakly to the measure µ. If X is an arbitrary subset
of a complete separable metric space, then the analogous assertion is true for
Radon probability measures.

Proof. Every Polish space is homeomorphic to a Gδ-set in [0, 1]∞ (The-
orem 6.1.12). Hence in view of Lemma 8.5.2(i) we may assume that X is
contained in [0, 1]∞. By part (ii) of the cited lemma and Lemma 8.5.3 it
suffices to verify our claim only for subsets in [0, 1], which reduces everything
to the case X = [0, 1]. In the latter case, the required mapping is given by
the explicit formula

ξµ(t) = sup
{
x ∈ [0, 1] : µ

(
[0, x)

)
≤ t
}
. (8.5.1)

Indeed, it is easy to see that for every point c, one has λ◦ξ−1
µ

(
[0, c)

)
= µ

(
[0, c)

)
.

Hence λ ◦ ξ−1
µ = µ. If measures µn converge weakly to the measure µ, then

their distribution functions Fµn(t) = µn
(
[0, t)

)
converge to the distribution

function Fµ of the measure µ at all continuity points of Fµ. Let t ∈ [0, 1]
and ε > 0. If

lim sup
n→∞

ξµn(t) > ξµ(t) + 2ε,

then there is a point x0 in the interval
(
ξµ(t)+ε, ξµ(t)+2ε

)
such that Fµ(x0) =

lim
n→∞

Fµn(x0). For some infinite sequence of nk we have ξµnk (t) > x0, i.e.,

Fµnk (x0) ≤ t, whence Fµ(x0) ≤ t. Hence ξµ(t) ≥ x0, which is a contradiction.
Similarly, one considers the case lim inf

n→∞
ξµn(t) ≤ ξµ(t) − 2ε. Therefore, we

have lim
n→∞

ξµn(t) = ξµ(t). In the case of Radon measures a similar reasoning
applies to arbitrary subsets of Polish spaces. �
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Thus, any subspace of a Polish space possesses the strong Skorohod prop-
erty for Radon measures (and the universally measurable subspaces have the
strong Skorohod property for Borel measures). It is shown in Bogachev,
Kolesnikov [211] that all complete metric spaces possess the strong Skoro-
hod property for Radon measures.

Additional results on this property can be found in the cited work and
in Banakh, Bogachev, Kolesnikov [115], [114], [116], where, in particular,
it is shown that there are non-metrizable spaces with the strong Skorohod
property, for example, the countable subspace X = IN ∪ {p} in the Stone–
Čech compactification βIN of the space of natural numbers, where p ∈ βIN\IN.

In relation to the material of this section see also �8.10(v).

8.6. Weak compactness and the Prohorov theorem

The conditions for the weak compactness of families of measures, i.e.,
compactness in the weak topology σ

(
M, Cb(X)

)
, are very important for the

most diverse applications. The following problem is especially frequent: can
one select a weakly convergent subsequence in a given sequence of measures?
It turns out that for reasonable spaces the problem reduces to the study of the
uniform tightness of the given family of measures. In this section, we discuss
the principal results in this direction.

8.6.1. Definition. A family M of Radon measures on a topological space
X is called uniformly tight if for every ε > 0, there exists a compact set Kε

such that |µ|(X\Kε) < ε for all µ ∈M.
A family M of Baire measures on a topological space X is called uniformly

tight if for every ε > 0, there exists a compact set Kε such that |µ|∗(X\Kε) < ε
for all µ ∈M.

For a completely regular space, the uniform tightness of a family of Baire
measures is equivalent to the existence of uniformly tight Radon extensions
of these measures.

Sometimes, for brevity, uniformly tight families are called tight families.
The following fundamental theorem due to Yu.V. Prohorov [1497] (who

considered probability measures) is the most important result for applications.

8.6.2. Theorem. Let X be a complete separable metric space and let
M be a family of Borel measures on X. Then the following conditions are
equivalent:

(i) every sequence {µn} ⊂ M contains a weakly convergent subsequence;
(ii) the family M is uniformly tight and uniformly bounded in the varia-

tion norm.
The above conditions are equivalent for any complete metric space X if

M⊂Mt(X).

Proof. Let (i) be fulfilled. The uniform boundedness of measures in M
follows by the Banach–Steinhaus theorem. Suppose that M is not uniformly
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tight. We show that there exists ε > 0 with the following property: for every
compact set K ⊂ X, one can find a measure µK ∈M such that

|µK |(X\Kε) > ε, (8.6.1)

where Kε is the closed ε-neighborhood of K. Indeed, otherwise for every
ε > 0, there exists a compact set K(ε) ⊂ X such that

|µ|
(
X\K(ε)ε

)
≤ ε, ∀µ ∈M.

For any fixed number δ > 0 we let Kn = K(δ2−n)δ2
−n

and obtain the set
K =

⋂∞
n=1Kn, which is compact and satisfies the inequality

|µ|(X\K) ≤
∞∑

n=1

|µ|(X\Kn) ≤ δ, ∀µ ∈M,

which is a contradiction. Now by using (8.6.1) we find by induction pairwise
disjoint compact sets Kj and measures µj ∈M with the following properties:

(1) |µj |(Kj) > ε,
(2) Kj+1 ⊂ X\

⋃j
i=1K

ε
i .

Let µ1 ∈ M be an arbitrary measure with ‖µ1‖ > ε (which exists due
to (8.6.1)) and let K1 be a compact set with |µ1|(K1) > ε. By applying (8.6.1)
to K1 we find µ2. Next we take a compact set K2 ⊂ X\Kε

1 with |µ2|(K2) > ε.
By using Q2 = K1 ∪K2 we find a measure µ3 with |µ3|(X\Qε2) > ε and so
on. Property (2) yields that the sets Uj := K

ε/4
j are pairwise disjoint. There

exist continuous functions fj such that fj = 0 outside Uj , |fj | ≤ 1 and
∫

Uj

fj dµj > ε.

By hypothesis, the sequence {µj} contains a weakly convergent subsequence.
For notational simplicity we shall assume that the whole sequence {µj} is
weakly convergent. Let

ain =
∫

X

fi(x)µn(dx).

Then an = (a1
n, a

2
n, . . .) ∈ l1, since

∑∞
i=1 |fi| ≤ 1. For every λ = (λi) ∈ l∞,

the function fλ =
∑∞
i=1 λifi is continuous on X and |fλ| ≤ supi |λi|. Since

the sequence of numbers

〈λ, an〉 =
∫

X

fλ dµn

converges, the sequence {an} is Cauchy in the topology σ(l1, l∞). According
to Corollary 4.5.8 the sequence {an} converges in the norm of l1. Hence
lim
n→∞

ann = 0, which contradicts our choice of fn. Thus, M is uniformly tight.

Suppose that (ii) is fulfilled, supµ∈M ‖µ‖ = C and {µn} ⊂ M. We recall
that every norm bounded sequence of linear functionals on a separable normed
space contains a pointwise convergent subsequence. Hence every uniformly
bounded sequence of measures on a metrizable compact space K contains a
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weakly convergent subsequence. Let us take an increasing sequence of compact
sets Kj such that |µn|(X\Kj) < 2−j for all n. It is clear from what has been
said above that by the diagonal process one can find a sequence of measures
µni whose restrictions to every Kj converge weakly. Let f ∈ Cb(X). We show
that the sequence ∫

f dµni

is fundamental. Let ε > 0. We may assume that |f | ≤ 1. Let us pick j with
2−j < ε. Then

∣
∣
∣
∣

∫

X

f dµni −
∫

X

f dµnm

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

Kj

f dµni −
∫

Kj

f dµnm

∣
∣
∣
∣+ 2ε,

whence our claim follows. �

The following assertion is implicitly contained in the proof of the Prohorov
theorem.

8.6.3. Corollary. Every weakly fundamental sequence of Radon mea-
sures µn on a complete metric space X is uniformly tight. Moreover, if the
measures µn are nonnegative, then for their uniform tightness it is sufficient
that for every bounded Lipschitzian function f the sequence of the integrals

∫

X

f dµn

be fundamental.

Proof. The first assertion has actually been proven. We shall explain
the necessary changes in our reasoning in order to cover the second assertion
as well. It suffices to take functions fj such that they are Lipschitzian with
a common constant and satisfy the following conditions: 0 ≤ fj ≤ 1 on X,
fj = 1 on Kj , and fj = 0 outside Uj . This is possible, since Uj = K

ε/4
j .

Moreover, the functions fλ are Lipschitzian. As µn and fn are nonnegative,
the integral of fn against µn is at least µn(Kn) > ε. �

For nonnegative measures, Prohorov’s theorem can be proved more con-
cisely. Moreover, as it was first observed by Le Cam (see his theorem below),
in the case of nonnegative measures the completeness of X is not needed pro-
vided that the limit measure is tight as well. The nonnegativity of measures
is essential: we recall that in Example 8.4.6 we constructed a sequence of
signed measures µn on a separable metric space X (a subset of an interval)
that converges weakly to zero such that the measures |µn| converge weakly to
a measure that is not tight. It is clear that such a sequence {µn} cannot be
uniformly tight.

8.6.4. Theorem. If a sequence of nonnegative Radon measures µn on a
metric space X converges weakly to a Radon measure µ, then this sequence is
uniformly tight.
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Proof. Let ε > 0. There is a compact set K such that µ(X\K) < ε/4.
Set Gk = {x : dist(x,K) < 1/k}. By Theorem 8.4.7, there exists an increasing
sequence of indices nk such that

µn(X\Gk) < µ(X\Gk) + ε/4 < ε/2, ∀n ≥ nk. (8.6.2)

For every n with nk ≤ n ≤ nk+1, we find a compact set Kn ⊂ Gk such that

µn(Gk\Kn) < ε/4.

Let Qk = K ∪
(⋃nk+1

n=nk
Kn

)
and Kε =

⋃∞
k=1Qk. We observe that the sets

Qk are compact, K ⊂ Qk ⊂ Gk and µn(Gk\Qk) < ε/4 if nk ≤ n ≤ nk+1. It
follows by (8.6.2) that µn(X\Qk) < ε if nk ≤ n ≤ nk+1, whence we obtain
µn(X\Kε) < ε for all n. It remains to verify that Kε is compact. Indeed,
let {xj} ⊂ Kε. If one of the sets Qk contains an infinite part of {xj}, then
in Qk, hence in Kε, there is a limit point of this sequence. If there is no
such Qk, then there exist two infinite sequences of indices jm and im such
that xjm ∈ Qim . Since Qim ⊂ Gim , there exist points zm ∈ K such that the
distance between xjm and zm does not exceed i−1

m . The sequence {zm} has a
limit point z ∈ K, which is obviously a limit point of {xjm}. �

Prohorov’s theorem gives a criterion of the weak sequential compactness
of a set of measures on a complete separable metric space. It is natural to
ask about weak compactness in the usual topological sense (we recall that in
nonmetrizable spaces, compactness is not equivalent to sequential compact-
ness) and about the situation in more general topological spaces. However,
before going further, we consider several examples which may help to verify
the uniform tightness of measures.

8.6.5. Example. (i) A family M of probability measures on a complete
separable metric space X is uniformly tight precisely when there exists a Borel
function V : X → [0,+∞] such that the sets {V ≤ c}, c < +∞, are compact,
µ(V = +∞) = 0 for all µ ∈M, and

sup
µ∈M

∫

X

V (x)µ(dx) <∞.

(ii) A family M of Borel probability measures on a separable reflexive
Banach space X is uniformly tight on X with the weak topology precisely
when there exists a function V : X → [0,∞) continuous in the norm topology
such that

lim
‖x‖→∞

V (x) = ∞ and sup
µ∈M

∫

X

V (x)µ(dx) <∞.

Proof. The sufficiency of the condition in (i) follows by Chebyshev’s
inequality:

µ(V > c) ≤ c−1

∫

X

V dµ.

In order to see its necessity, we take an increasing sequence of compact sets Kn

with µ(Kn) > 1− 2−n for all µ ∈M and define V = +∞ on the complement
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to the union of Kn, V = 1 on K1, V = n on Kn+1\Kn, n ≥ 1. Then, for all
µ ∈M, we have

∫

X

V dµ = µ(K1) +
∞∑

n=1

nµ(Kn+1\Kn) ≤ 1 +
∞∑

n=1

n2−n.

Claim (ii) is proved similarly, taking into account the compactness of closed
balls in any reflexive Banach space with the weak topology. In this case, the
function V can be taken in the form V (x) = f(‖x‖) for some increasing to
infinity (even concave) positive continuous function f on [0,+∞). �

8.6.6. Example. A subset K of a metric space X has compact closure
if and only if the family of measures {δx, x ∈ K} has compact closure in the
weak topology.

Now we prove the following reinforced version of one implication in Pro-
horov’s theorem.

8.6.7. Theorem. Let K ⊂ Mr(X) be a uniformly bounded in the vari-
ation norm and uniformly tight family of Radon measures on a completely
regular space X. Then K has compact closure in the weak topology.

If, in addition, for every ε > 0, there exists a metrizable compact set Kε

such that |µ|(X\Kε) < ε for all µ ∈ K (which is the case if all compact subsets
of X are metrizable), then every sequence in K contains a weakly convergent
subsequence.

Proof. We consider K as a subset of the dual space of the Banach space
Cb(X) equipped with the weak∗ topology. By the Banach–Alaoglu theorem
(which is applicable by the norm boundedness ofK) any infinite setK′ ⊂ K has
a limit point F . We have to verify that F is representable as the integral with
respect to a Radon measure. It is here that we need the uniform tightness.
We can assume that ‖µ‖ ≤ 1 for all µ ∈ K. Let ε > 0 and let Kε be a compact
set such that |µ|(X\Kε) < ε for all µ ∈ K. If f ∈ Cb(X), |f | ≤ 1 and f = 0
on Kε, then

|F (f)| ≤ lim sup
µ∈K

∣
∣
∣
∫

X

f dµ
∣
∣
∣ ≤ ε.

By Theorem 7.10.6 the functional F is represented by some Radon measure ν,
which is the required limit point of K′ in the weak topology. The second claim
has in fact been obtained in the proof of Prohorov’s theorem, since we have
used there only the metrizability of compact sets Kε on which the considered
sequence of measures is uniformly concentrated. �

In many spaces the uniform tightness is a necessary condition of the weak
compactness of families of measures. We shall discuss such spaces in �8.10(ii).
Here we establish only the following fact.

8.6.8. Theorem. Let X be a complete metric space. Then every weakly
compact subset of Mr(X) is uniformly tight.



8.6. Weak compactness and the Prohorov theorem 207

Proof. Suppose that we have a weakly compact set M in Mr(X) that
is not uniformly tight. Let us consider the functions fj and measures µn
constructed in the proof of Theorem 8.6.2 (in their construction, we only used
the failure of uniform tightness, the fact that all measures in M are Radon
and that X is complete). Now, however, we only have the relative weak
compactness of {µn}, which does not mean the existence of a convergent
subsequence. Nevertheless, by the relative weak compactness of {µn} the
sequence an = (ain) ∈ l1, where ain is the integral of fi against µn, is relatively
weakly compact in l1. Indeed, the mapping from Mr(X) to l1 that to every
measure µ associates the sequence of the integrals of fi against µ is continuous
provided that Mr(X) and l1 are equipped with the weak topology. This
is clear from the fact that, as observed in the proof of Theorem 8.6.2, for
every element λ = (λi)∞i=1 ∈ l∞ = (l1)∗, the function fλ =

∑∞
i=1 λifi is

continuous and bounded. Therefore, the image of M under this mapping
is weakly compact in l1. It follows that ann → 0, i.e., we arrive again at a
contradiction. �

In the general case, unlike the case of a complete metric space, the con-
dition in Theorem 8.6.7 is not necessary: even on a countable nonmetrizable
space, a weakly convergent sequence of probability measures may not be uni-
formly tight.

8.6.9. Example. Let X = IN∪{∞}, where all points in IN are open and
the neighborhoods of ∞ have the form U∪{∞}, where U is a subset of IN with
density 1, i.e., lim

n→∞
N(U, n)/n = 1, where N(U, n) is the number of points in

U not exceeding n. Then the sequence n−1
∑n
i=1 δi of the arithmetic means

of the Dirac measures at the points i converges weakly to Dirac’s measure δ∞,
but is not uniformly tight. The proof is left as Exercise 8.10.92.

In applications, various special conditions of weak compactness are often
useful. For example, for the distributions of random processes in function
spaces such conditions can be expressed in terms of the covariance functions,
sample moduli of continuity, etc., and for measures on linear spaces, there are
efficient conditions in terms of the Fourier transform (see �8.8).

8.6.10. Example. Let X =
⋃∞
n=1Xn be a locally convex space that is

the strict inductive limit of an increasing sequence of closed subspaces Xn, i.e.,
every Xn is a proper closed subspace in a locally convex space Xn+1, and the
convex neighborhoods of the origin in X are convex sets V such that V ∩Xn

is a neighborhood of the origin in Xn. If a sequence {µi} of nonnegative τ -
additive (for example, Radon) measures onX converges weakly to a τ -additive
measure µ, then for every ε > 0, there exists n ∈ IN such that µi(X\Xn) < ε
for all i ∈ IN.

Moreover, if a family {µα} of nonnegative τ -additive measures on X has
compact closure in the weak topology in the space Mτ (X), then for every
ε > 0, there exists n ∈ IN such that µα(X\Xn) < ε for all α.
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Proof. Without loss of generality we may assume that µi and µ are
probability measures (if µi(X) → 0, then the claim is trivial). If our claim
is false, then for every n ∈ IN, there exists i(n) ∈ IN with µi(n)(Xn) < 1 − ε.
Passing to a new sequence of measures, we may assume that i(n) = n. We
pick m ∈ IN such that µ(Xm) > 1− ε/2. Set k1 := m. Next we find k2 > m
with µm(Xk2) > 1 − ε/2. Then we find a convex symmetric open set U1 in
Xk2 such that Xm ⊂ U1 and µm(U1) < 1− ε. Such a set U1 indeed exists. To
show this, we observe that by the Hahn–Banach theorem the subspace Xm is
the intersection of all closed hyperplanes containing it. By the τ -additivity
of µm, there exists a finite collection of closed hyperplanes L1, . . . , Lp in Xk2

such that Xm ⊂
⋂p
i=1 Li and µm

(⋂p
i=1 Li

)
< 1 − ε. Then Li = l−1

i (0) for
some li ∈ X∗

k2
, and the set

⋂p
i=1 l

−1
i (−δ, δ) can be taken for U1 provided

δ > 0 is sufficiently small. Next we take k3 ≥ k2 with µk2(Xk3) > 1 − ε/2.
There exists a convex symmetric neighborhood of zero W ⊂ Xk3 such that
W ∩Xk2 = U1 (see Schaefer [1661, II.6.4, Lemma]). As above, there exists
a convex symmetric open set V in the space Xk3 such that Xk2 ⊂ V and
µk2(V ) < 1 − ε. Set U2 := W ∩ V . Continuing the described process by
induction, we obtain an increasing sequence of indices kn ≥ n such that every
space Xkn+1 contains a convex symmetric open set Un with the following
properties: (1) Un ∩Xkn = Un−1, (2) µkn(Un) < 1− ε, µkn(Xkn+1) > 1− ε/2.
By the definition of the strict inductive limit, the set U =

⋃∞
n=1 Un is a

neighborhood of zero in X. By construction, for every n one has

µkn(U) < µkn(U ∩Xkn+1) + ε/2 = µkn(Un) + ε/2 < 1− ε/2,

which contradicts weak convergence (see Corollary 8.2.10), since we have the
estimate µ(U) > 1 − ε/2. In the case of a relatively weakly compact family
{µα} the reasoning is similar. We construct a sequence {µα(n)} as above
and denote by µ its weak limit point. The previous choice of U leads again
to a contradiction with Corollary 8.2.10, since there exists a subnet {µβ} in
{µα(n)} convergent weakly to µ. �

Now we give a simple criterion of relative weak compactness in the space
of nonnegative Baire measures on an arbitrary space X. We shall say that
a sequence of functionally closed sets Zn in a topological space X is regular
if X =

⋃∞
n=1 Zn, Zn ⊂ Zn+1, and there exist functionally open sets Un such

that Zn ⊂ Un ⊂ Zn+1.

8.6.11. Theorem. A bounded set M ⊂M+
σ (X) has compact closure in

the weak topology precisely when

lim
n→∞

sup
µ∈M

∫

X

fn dµ = 0

for every sequence of functions fn ∈ Cb(X) pointwise decreasing to 0. An
equivalent condition: for every regular sequence of functionally closed sets Zn

lim
n→∞

sup
µ∈M

µ(X\Zn) = 0.
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Proof. Let the first condition be fulfilled. The bounded set M has the
compact closure M ′ in the space Cb(X)∗. Every element µ ∈ M ′ belongs to
M+

σ (X) by Theorem 7.10.1. Conversely, if M has the compact closure M ′ in
the weak topology, then all measures in M ′ are nonnegative and the functions

µ �→
∫

X

fn dµ

on M ′ decrease to 0. By Dini’s theorem they converge to 0 uniformly on M ′.
If {Zn} is a regular sequence, then there exists a sequence {fn} ⊂ Cb(X)

with fn ↓ 0 such that fn = 1 on X\Zn (see Lemma 6.3.2). Then for all µ ∈M
one has

µ(X\Zn) ≤
∫

X

fn dµ.

Conversely, if functions fn ∈ Cb(X) decrease to 0, then, given ε > 0, let
Un = {fn < ε}. It is readily verified that there exists a regular sequence
of functionally closed sets Zn with Zn ⊂ Un; one can take sets Zn :=
{min(fn, ε) ≤ ε− 1/n}. Then

∫

X

fn dµ ≤ εµ(X) + µ(X\Zn),

which shows the equivalence of both conditions. �

8.7. Weak sequential completeness

In this section, we show that any weakly fundamental sequence of Baire
measures converges weakly to some Baire measure, i.e., the space of Baire
measures is weakly sequentially complete.

8.7.1. Theorem. Suppose that a sequence of Baire measures µn on a
topological space X is weakly fundamental. Then {µn} converges weakly to
some Baire measure on X.

Proof. By the Banach–Steinhaus theorem the formula

L(ϕ) = lim
n→∞

∫
ϕdµn, ϕ ∈ Cb(X),

defines a continuous linear functional on Cb(X). According to Theorem 7.10.1,
this functional is represented by a Baire measure under the following condi-
tion: L(ϕj) → 0 for every sequence of functions ϕj ∈ Cb(X) that decreases
pointwise to zero. Suppose that this condition is not fulfilled, i.e., the sequence
L(ϕj) does not converge to zero. We may assume that 0 ≤ ϕn ≤ 1 for all n.
Set I = [0, 1]∞ and consider the mapping F : X → I, F (x) =

(
ϕj(x)

)∞
j=1

.
We equip the space Y = F (X) with the topology induced from I (since I is
metrizable, then Y is metrizable as well). It is clear that F is continuous as
a mapping from X to Y , hence the sequence of measures νn := µn ◦ F−1 on
Y is weakly fundamental (for all ψ ∈ Cb(Y ) we have ψ ◦ F ∈ Cb(X)). The
natural extensions of the measures νn to I will again be denoted by νn. It is
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clear that on the compact space I the measures νn converge weakly to some
measure ν. One has∫

I

xj ν(dx) = lim
n→∞

∫

I

xj νn(dx) = lim
n→∞

∫

X

ϕj(x)µn(dx) = L(ϕj).

In order to obtain a contradiction with the fact that L(ϕj) �→ 0, it suffices to
establish that the measure ν is concentrated on the set

I0 :=
{
x = (xj) ∈ I : lim

j→∞
xj = 0

}
.

This will be done if we verify that |ν|(K) = 0 for every compact set K
in I\I0. Let ε > 0. The set U = I\K is open. Since Y ⊂ I0 ⊂ U , it
follows that the measures νn on U also form a weakly fundamental sequence.
We recall that U is a Polish space (as an open subset in a Polish space).
By Prohorov’s theorem, the sequence {νn} is uniformly tight on U , i.e., one
can find a compact set Q ⊂ U such that |νn|(U\Q) < ε for all n. Then
|ν|(K) ≤ |ν|(I\Q) ≤ lim inf

n→∞
|νn|(I\Q) ≤ ε by weak convergence on I (see

Theorem 8.4.7) and the equality |νn|(I\Q) = |νn|(U\Q). Since ε is arbitrary,
one has |ν|(K) = 0, as required. �

The proof of the next assertion is left as Exercise 8.10.67.

8.7.2. Example. Let {xn} be a sequence in a metric space X such that
the sequence of measures δxn is weakly fundamental. Then {xn} converges in
the space X.

It should be noted that although the weak topology on Pτ (X) is gen-
erated by a metric d (for example, by the Lévy–Prohorov and Kantorovich–
Rubinshtein metrics), the collections of Cauchy sequences in this topology
and such a metric may be different. For example, if a separable metric space
X does not admit a complete metric, then there exists a sequence of mea-
sures µn ∈ Pσ(X) that is fundamental with respect to d, but has no limit
(otherwise Pσ(X) and hence X would be Polish). This sequence {µn} is not
fundamental in the weak topology, since the latter is sequentially complete.

8.8. Weak convergence and the Fourier transform

In this section, we are concerned with characterizations of weak conver-
gence and weak compactness in terms of characteristic functionals (Fourier
transforms). We begin with the following theorem due to P. Lévy.

8.8.1. Theorem. (i) A sequence {µj} of probability measures on IRd

converges weakly precisely when the sequence of their characteristic functionals
µ̃j converges at every point and the function ϕ(x) := lim

j→∞
µ̃j(x) is continuous

at the origin. In that case, ϕ is the characteristic functional of a probability
measure µ that is the limit of the measures µj in the weak topology.

(ii) A family M of probability measures on IRd is uniformly tight if and
only if the family of functions µ̃, µ ∈ M , is uniformly equicontinuous on IRd

(the uniform equicontinuity at the origin is enough).
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Proof. (i) Weak convergence of measures yields pointwise convergence
of their characteristic functionals. Let us prove the converse. It is easy to
observe that estimates (3.8.6) and (3.8.7), obtained in Chapter 3, along with
pointwise convergence of the characteristic functionals and the dominated
convergence theorem ensure the uniform tightness of the sequence {µj}. This
yields weak convergence of µj to µ. Claim (ii) is proven similarly by using
the same estimates (3.8.6) and (3.8.7). �

8.8.2. Remark. In assertion (i), one cannot omit the assumption of
continuity of ϕ. Indeed, for every n, the function (cosx)2n is the characteristic
functional of the 2n-fold convolution of the probability measure ν that assigns
the value 1/2 to the points −1 and 1. These functions converge pointwise to
the function ϕ equal to 1 at the points πk and 0 at all other points. It is
clear that ϕ is not a characteristic functional because of its discontinuity. Let
us also note that the function ϕ in (i) always has a continuous modification
which is the characteristic functional of some nonnegative measure µ (since it
is measurable and positive definite), but this measure may not be a probability
measure (in the above example µ = 0). Hence in place of continuity of ϕ one
can require that ϕ be almost everywhere equal to the characteristic functional
of some probability measure.

Now we turn to infinite-dimensional spaces. Corollary 7.13.10 yields the
following assertion.

8.8.3. Theorem. Let X be a locally convex space equipped with the strong
topology β(X,X∗). Let a family M of Radon probability measures on X be
such that their characteristic functionals are equicontinuous at the point 0 in
the topology T (X∗,X). Then M has compact closure in the weak topology.

8.8.4. Corollary. Let X be a reflexive nuclear space and let M be a
family of Radon probability measures on X∗ such that their characteristic
functionals are equicontinuous at zero. Then M has compact closure in the
weak topology.

This corollary is applicable to such spaces X∗ as the classical spaces of
distributions S ′(IRd) and D′(IRd) (see the definition in Exercise 6.10.27).

8.9. Spaces of measures with the weak topology

In this section, we discuss some basic topological properties of spaces of
measures on a topological space X, in particular, connections between the
properties of X and the corresponding properties of the spaces of measures.
The most natural connections with topological concepts arise when the spaces
of measures are equipped with the weak topology. In applications, the follow-
ing problems related to spaces of measures are most important:

(1) completeness and sequential completeness;
(2) compactness conditions;
(3) metrizability and separability;
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(4) existence of some additional properties, for example, the membership
in the class of Souslin spaces.

Since we are interested in the weak topology, it is reasonable to consider
completely regular spaces. For the metric case, see also �8.10(viii).

8.9.1. Remark. Suppose that a completely regular space X is homeo-
morphically embedded into a completely regular space Y . For every measure
µ ∈Mτ (X), let µ̂ denote its extension to B(Y ) defined by µ̂(B) := µ(B∩X),
B ∈ B(Y ). Then µ̂ ∈ Mτ (Y ). The mapping µ �→ µ̂ on M+

τ (X) is a home-
omorphic embedding, which is clear from Corollary 8.2.4 and the fact that
the open sets in X are precisely the intersections of X with open sets in Y .
Moreover, by Theorem 8.4.7, the same is true for the space M1

τ (X) of all
signed measures in Mτ (X) whose total variation is 1. However, this mapping
need not be a homeomorphic embedding of the whole space Mτ (X). For
example, if X = (0, 1] and Y = [0, 1] with the their standard topologies, then
the sequence of measures δ1/(2n) − δ1/(2n+1) weakly converges to zero on Y ,
but not on X because there is a bounded continuous function f on X such
that f

(
1/(2n)

)
= 1 and f

(
1/(2n + 1)

)
= 0 for all n. On the space Pσ(X),

the mapping µ �→ µ̂ need not be even injective (see Wheeler [1979, �14]). If
X is closed and Y is normal, then the embedding of Mτ (X) into Mτ (Y ) is
homeomorphic, which is straightforward.

8.9.2. Lemma. Let X be completely regular. Then X is homeomor-
phic to the set of all Dirac measures on X and this set is closed in Mτ (X)
and in Mt(X) as well as in the corresponding subspaces of nonnegative and
probability measures equipped with the weak topology.

Proof. Let j(x) = δx. Then the mapping j : X →Mσ(X) is a topolog-
ical embedding. Indeed, according to Example 8.1.5, a net {xα} converges to
x precisely when the net {j(xα)} converges to j(x).

Suppose now that a τ -additive measure µ is a limit point of the set of
Dirac measures in the weak topology. Then, there exists a net {δxα} weakly
convergent to µ, in particular, µ is a probability measure. Let us take an arbi-
trary point x in the topological support of µ (which exists by its τ -additivity).
We show that the net {xα} converges to x. If this is not the case, then outside
some neighborhood U of the point x, there is a subnet {x′α} of the initial net.
There exists a bounded nonnegative continuous function f that equals 1 on
some neighborhood V of the point x and vanishes outside U . Since f(x′α) = 0,
one has ∫

X

f dµ = 0,

whence we obtain µ(V ) = 0 contrary to the fact that x belongs to the support.
Thus, xα → x, whence it follows that µ = δx. �

In Exercise 8.10.80 it is proposed to construct an example of a completely
regular space X such that the set of all Dirac measures is not closed in the
space M+

σ (X).
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It is worth recalling that if X is completely regular, then the spaces
Mt(X) and Mr(X) regarded as subspaces in Cb(X)∗ coincide because ev-
ery tight Baire measure has a unique Radon extension. Certainly, in general
Mt(X) and Mr(X) may not coincide as spaces of measures: the point is
that Mt(X) consists of Baire measures (but the distinction disappears if we
consider only Baire sets).

8.9.3. Theorem. (i) Let X be a compact space. Then the spaces
Pσ(X) = Pt(X) and Pτ (X) = Pr(X) are compact in the weak topology.

(ii) If X is completely regular and Pt(X) (or Pτ (X)) is compact in the
weak topology, then X is compact as well.

Proof. The compactness of Pt(X) is an immediate corollary of the
Banach–Alaoglu theorem on the weak∗ compactness of balls in the dual space
and the Riesz theorem identifying the dual of C(X) with Mt(X). The com-
pactness of the space Pr(X) (which coincides with Pτ (X) by the compactness
of X, see Proposition 7.2.2) is clear from the above remark. The necessity of
compactness of X in the second assertion follows by Lemma 8.9.2. �

We observe that in (ii) one cannot replace Pt(X) by Pσ(X). One can
verify that the space in Exercise 8.10.80 gives a counter-example.

8.9.4. Theorem. Let X be completely regular.
(i) The space M+

τ (X) with the weak topology is metrizable if and only
if X is metrizable. In that case, the metrizability of M+

τ (X) by a complete
metric is necessary and sufficient for the metrizability of X by a complete
metric. The analogous assertions are valid for Pτ (X), Pt(X), and M+

t (X)
in place of M+

τ (X).
(ii) If X is separable, then the spaces of measures Mσ(X), Mτ (X) and

Mt(X) are separable in the weak topology as well as the corresponding sub-
spaces of nonnegative and probability measures.

Proof. (i) Lemma 8.9.2 yields that the aforementioned properties of the
spaces of measures imply the respective properties of X. Let us show the
converse assertion. Theorem 8.3.2 gives at once the metrizability of M+

τ (X)
with the weak topology. In order to verify the completeness of M+

τ (X) in
the metric d0 from Theorem 8.3.2 in the case of a complete space X, suppose
that a sequence of nonnegative Radon (which in this case is equivalent to the
τ -additivity) measures µn is fundamental in the metric d0. Then the sequence

∫

X

f dµn

converges for every bounded Lipschitzian function f . According to Corol-
lary 8.6.3 the measures µn are uniformly tight. Therefore, the measures µn
converge weakly to some Radon measure µ. Hence d0(µn, µ) → 0. The case
of the spaces M+

t (X) and Pt(X) follows by the same reasoning (note that if
X is a complete metric space, then Mτ (X) = Mt(X), and Mt(X) ⊂Mτ (X)
for any metric space).
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(ii) If X contains an everywhere dense countable set of points xj , then the
countable set of all finite linear combinations of the measures δxj with rational
coefficients is everywhere dense in Mσ(X), and its subset corresponding to
nonnegative coefficients is everywhere dense in M+

σ (X). Linear combinations
with nonnegative coefficients whose sum is 1 give a countable everywhere
dense set in Pσ(X). This also shows the separability of Mτ (X) and Mt(X)
and their subspaces M+

τ (X), M+
t (X), Pτ (X), and Pt(X). �

The reader is warned that the separability of Pt(X) with the weak topol-
ogy does not yield the separability of X, and the separability of the whole
space Mt(X) with the weak topology does not guarantee the separability of
Pt(X) even if X is compact (see �8.10(vi)).

8.9.5. Theorem. If E is a Polish space, then so is the subspace M1(E)
in M(E) := Mσ(E) consisting of all measures µ with ‖µ‖ = 1.

Proof. We recall that the space E is homeomorphic to a Gδ-set in the
compact space Q = [0, 1]∞. Hence it suffices to consider the case where E is
a Gδ-set in Q. Let P(E) = Pσ(E), M(Q) = Mσ(Q). The unit ball

T =
{
µ ∈M(Q) : ‖µ‖ ≤ 1

}

in M(Q) is compact and metrizable in the weak topology. Our set M1(E)
in the metrizable compact space T is the union of the following three sets:
P(E), −P(E), and D := M1(E)\

(
P(E) ∪

(
−P(E)

))
. The first two sets are

Polish spaces and hence are Gδ-sets (see �6.1). We verify that D is a Gδ-set
as well. Then the union of three Gδ-sets will be a set of the same type in the
metrizable compact space T , hence a Polish space. We recall that as noted in
Remark 8.9.1, the weak topology on M1(E) coincides with the induced weak
topology of T .

Since the space P(E) is Polish, the space Z := P(E)×P(E)×(0, 1) is
Polish as well. Let us consider the mapping ψ : (µ, ν, α) �→ αµ − (1 − α)ν
from Z to M(E). This mapping is continuous if the spaces of measures are
equipped with the weak topology. Let Ur = {µ ∈M(E) : ‖µ‖ ≤ r}. The sets
Ur are closed in the weak topology. Let

H :=
{

(µ, ν, α) ∈ Z : ‖αµ− (1− α)ν‖ = 1
}
.

The set H is the intersection of the sequence of open sets ψ−1
(
M(E)\U1−1/n

)
,

i.e., is a Gδ-set, hence a Polish space. Now it is important to observe that the
mapping ψ homeomorphically maps H onto the set D. Indeed, if measures
µ, ν ∈ P(E) are such that ‖αµ − (1 − α)ν‖ = 1, then it is easy to see that
they are mutually singular (see Exercise 3.10.33). It is clear from this that if
αµ − (1 − α)ν = α′µ′ + (1 − α′)ν′ has the variation 1 for some α, α′ ∈ (0, 1)
and µ, µ′, ν, ν′ ∈ P(E), then α = α′, µ = µ′ and ν = ν′. Thus, ψ maps
H one-to-one onto D (that ψ(H) = D is obvious from the decomposition
µ = µ+−µ−, where µ+(E)+µ−(E) = 1 and µ+(E) > 0, µ−(E) > 0). Finally,
the mapping ψ−1 : D → H is continuous. Indeed, let a net of measures µτ
from D converge weakly to a measure µ in D. By Theorem 8.4.7 we obtain
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µ+
τ → µ+ and µ−

τ → µ− in the weak topology. This yields weak convergence of
the measures ψ−1(µτ ) to the measure ψ−1(µ) since µ+

τ /µ
+
τ (X) → µ+/µ+(X)

and µ−
τ /µ

−
τ (X) → µ−/µ−(X) due to µ+(X) > 0 and µ−(X) > 0. Thus,

D is homeomorphic to the Gδ-set H in a Polish space, which completes the
proof. �

8.9.6. Theorem. Let X be completely regular. If X is a Souslin (or
Lusin) space, then so are the spaces Mσ(X), M+

σ (X) and Pσ(X) with the
weak topology (note that these spaces consist of Radon measures). Conversely,
if one of the spaces Mt(X), M+

t (X) or Pt(X) is Souslin (or Lusin), then so
is the space X.

Proof. By assumption, we have a Polish space E and a continuous sur-
jection ϕ : E → X. The induced mapping ϕ̂ : Mσ(E) →Mσ(X) is continu-
ous. It will be shown in Chapter 9 (see Theorem 9.1.5) that the mapping ϕ̂
is surjective. If ϕ is injective, then ϕ̂ is injective as well. Hence it remains to
prove that the space Mσ(E) is Lusin. This follows by the previous theorem,
since Mσ(E) = 0 ∪

(
M1(E)×(0,∞)

)
. �

If X is not completely regular, then an analogous theorem is valid for the
A-topology considered in �8.10(iv).

8.9.7. Proposition. Let X be completely regular. The space X∞ is
homeomorphic to a closed subset in M+

τ (X) and to a subset in M+
t (X).

The proof is delegated to Exercise 8.10.96.
Thus, every topological property that is inherited by closed sets but is

not preserved by countable products does not extend from X to the spaces
M+

τ (X), and M+
t (X). The normality and the Lindelöf property deliver such

examples. For the same reason the spaces M+
τ (X) and M+

t (X) may not be
Radon spaces for a Radon space X (even for compact X).

Now we prove a useful result on measurability in spaces of measures es-
tablished in Hoffmann-Jørgensen [844].

8.9.8. Proposition. Suppose that f is a bounded Baire function on a
topological space X. Then the following functions on the space Mσ(X) with
the weak topology are Borel measurable:

F1(µ) =
∫

X

f dµ, F2(µ) =
∫

X

f dµ+,

F3(µ) =
∫

X

f dµ−, F4(µ) =
∫

X

f d|µ|.

If X is completely regular, then these functions are Borel on Mτ (X) and
Mt(X) with the weak topology for every bounded Borel function f . Finally,
if, in addition, f is nonnegative and lower semicontinuous, then the functions
F2, F3, and F4 are lower semicontinuous on Mτ (X) and Mt(X).
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Proof. It is readily seen that it suffices to verify our claim for F2.
Clearly, it reduces to the case of a simple function and then to the case of an
indicator function. Let f = IU , where the set U is functionally open. Then

µ+(U) = sup
{∫

X

ϕdµ : ϕ ∈ Cb(X), 0 ≤ ϕ ≤ IU

}
.

Indeed, given ε > 0, one can find a functionally open set W ⊂ U such that
for the set X+ from the Hahn decomposition we obtain U ∩ X+ ⊂ W and
|µ|
(
W\(U ∩X+)

)
< ε. Next we find in U ∩X+ a functionally closed set Z

for which |µ|
(
(U ∩X+)\Z

)
< ε. There exists a function ϕ ∈ Cb(X) such that

0 ≤ ϕ ≤ 1, ϕ|Z = 1, ϕ|X\W = 0.

Then ∣
∣
∣
∫
ϕdµ− µ+(U)

∣
∣
∣ ≤ 3ε.

The functions

µ �→
∫
ϕdµ, where ϕ ∈ Cb(X),

are continuous on Mσ(X). Hence the function F2 is lower semicontinuous.
The class E of all sets E ∈ Ba(X) for which the function F2 generated by
f = IE is Borel is σ-additive. By Theorem 1.9.3 we obtain E = Ba(X),
since the class of all functionally open sets admits finite intersections and the
σ-algebra generated by it is Ba(X).

Let us consider the space Mτ (X) in the case of a completely regular
space X. The preceding reasoning remains valid if we take arbitrary open
sets U . The indicated equality for µ+(U) remains true by the τ -additivity
of µ, since µ+(U) equals sup{µ+(V )}, where sup is taken over all functionally
open sets V ⊂ U . Finally, the assertion about the lower semicontinuity is
clear from the proof, since any lower semicontinuous nonnegative function f
can be uniformly approximated by finite linear combinations of the indicators
of open sets with nonnegative coefficients (see the proof of Lemma 7.2.6). �

8.9.9. Corollary. Let X be a completely regular space. Then for every
τ -additive measure Ψ on Mτ (X) with respect to which the function q �→ ‖q‖
is integrable, the measures

σ(B) :=
∫

Mτ (X)

q(B) Ψ(dq), η(B) :=
∫

Mτ (X)

|q|(B) |Ψ|(dq)

on B(X) are defined and τ -additive. Hence, for any B ∈ B(X) and ε > 0,
there is an open set U ⊃ B such that |Ψ|

(
q : |q|(U\B

)
> ε) < ε.

Proof. According to Proposition 8.9.8, for every B ∈ B(X), the func-
tions q �→ q(B) and q �→ |q|(B) are Borel measurable on Mτ (X). By the
integrability of q �→ ‖q‖ the measures σ and η are defined. Let us show that
η ∈ Mτ (X). Suppose a net of open sets Uλ ⊂ X increases to an open
set U . Then the net of functions q �→ |q|(Uλ) increases to the function
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q �→ |q|(U) by the τ -additivity of |q|, and these functions are lower semi-
continuous on Mτ (X). Now we can use Lemma 7.2.6. The same reasoning
applies to q+ and q− in place of |q|, which yields the τ -additivity of σ. �

8.10. Supplements and exercises

(i) Weak compactness (217). (ii) Prohorov spaces (219). (iii) Weak sequential

completeness of spaces of measures (226). (iv) The A-topology (226). (v) Con-

tinuous mappings of spaces of measures (227). (vi) The separability of spaces

of measures (230). (vii) Young measures (231). (viii) Metrics on spaces of

measures (232). (ix) Uniformly distributed sequences (237). (x) Setwise con-

vergence of measures (241). (xi) Stable convergence and ws-topology (246).

Exercises (249).

8.10(i). Weak compactness

A useful technical result characterizing weak compactness for nonnegative
measures was obtained in Topsøe [1874].

8.10.1. Theorem. Let X be a completely regular space. Then a set
M ⊂M+

t (X) has compact closure in the weak topology if and only if:
(i) M is uniformly bounded,
(ii) for every ε > 0 and every collection U of open sets with the property

that every compact set is contained in a set from U , there exist U1, . . . , Un ∈ U
such that inf

{
µ(X\Ui) : 1 ≤ i ≤ n

}
< ε for all µ ∈M.

8.10.2. Corollary. Let Y ⊂ X be closed and let a set M ⊂ M+
t (X)

have compact closure in the weak topology in M+
t (X). Then the family of

restrictions of the measures from M to Y has compact closure in the weak
topology in M+

t (Y ).

This corollary is rather unexpected (although for Polish spaces it is ob-
vious from Prohorov’s criterion and for normal spaces it follows from The-
orem 8.6.11), since weak convergence does not imply convergence on closed
sets. In particular, the limit of restrictions of measures from a weakly conver-
gent sequence to a closed set may not coincide with the restriction of the limit
of that sequence (as in Example 8.1.4). In the case of a complete metric space,
the previous corollary holds for signed measures as well due to Theorem 8.6.8,
but it fails for signed measures on general spaces.

8.10.3. Example. Let X =
(
[0, ω1]× [0, ω0]

)
\(ω1, ω0), where ω0 is the

ordinal corresponding to IN, ω1 is the first uncountable ordinal, and both
intervals of ordinals are equipped with the natural order topology. Let

Y = {(ω1, 2n)}∞n=1, M = {δ(ω1, 2n)− δ(ω1, 2n+ 1)}∞n=1 ∪ {0}.
The set M is weakly compact in Mt(X), but the restrictions of measures
from M to Y form a discrete set in Mt(Y ) without accumulation points.

The next three theorems are proved in Hoffmann-Jørgensen [844].



218 Chapter 8. Weak convergence of measures

8.10.4. Theorem. Let X be a completely regular space that admits a
continuous injective mapping to a metric space. Then, for every set M in the
space M+

t (X) with the weak topology, the following conditions are equivalent:
(i) every infinite sequence in M has a limit point in M+

t (X); (ii) every infinite
sequence in M has a convergent subsequence in M+

t (X); (iii) the closure of
M is compact; (iv) the closure of M is compact and metrizable.

Proof. It suffices to show that (i) implies (iv). Let h : X → Y be
a continuous injective mapping to a metric space Y . Then the mapping
ĥ : M+

t (X) →M+
t (Y ) is continuous in the weak topology and injective (be-

cause any measure in Mt(X) has a unique Radon extension, and h is a home-
omorphism on any compact set). Since M+

t (Y ) with the weak topology is
metrizable, the claim follows by Exercise 6.10.82. �

Every Souslin completely regular space satisfies the above hypothesis
on X. On the other hand, under this hypothesis, all compact sets in X
are metrizable.

8.10.5. Theorem. Let X be a completely regular space. Then, every
weakly compact set M in Mτ (X) is contained in a centrally symmetric convex
weakly compact set. In particular, the closed convex envelope of M is weakly
compact.

Proof. According to Corollary 8.9.9, for every Radon measure Ψ on the
compact set M , the measure

T (Ψ)(B) :=
∫

M

µ(B) Ψ(dµ)

is τ -additive on X. For every function f ∈ Cb(X), one has
∫

X

f(x)T (Ψ)(dx) =
∫

M

∫

X

f(x)µ(dx) Ψ(dµ).

Hence the mapping T : Mr(M) →Mτ (X) is continuous in the weak topology.
The closed unit ball K in Mr(M) is compact in the weak topology. Hence
T (K) is a centrally symmetric convex compact set. It remains to observe that
M ⊂ T (K), since one has µ = T (δµ) for all µ ∈M . �

8.10.6. Theorem. Let X be a completely regular space such that one has
Mτ (X) = Mr(X), and let Ψ be a Radon measure on the space Mτ (X) with
the weak topology. Then, for every Borel set M in Mr(X) and every ε > 0,
there exists a compact uniformly tight set Mε ⊂M such that |Ψ|(M\Mε) ≤ ε.

Proof. By hypothesis there exists a compact set K ⊂ M such that
|Ψ|(M\K) < ε/2. By Corollary 8.9.9 the measure

η(B) =
∫

K

|µ|(B) |Ψ|(dµ), B ∈ B(X),
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is defined and τ -additive. By hypothesis this measure is Radon. Hence there
exist compact sets Cn ⊂ X such that η(X\Cn) ≤ ε8−n. Let

Kn := {µ ∈ K : |µ|(X\Cn) ≤ 2−n}.
The sets Kn are closed in the weak topology according to Proposition 8.9.8.
Then the set Mε :=

⋂∞
n=1Kn is compact in the weak topology and uniformly

tight. By the Chebyshev inequality we have

|Ψ|(K\Kn) ≤ 2n
∫

K

|µ|(X\Cn) |Ψ|(dµ) = 2nη(X\Cn) ≤ ε4−n.

Hence |Ψ|(K\Mε) ≤
∑∞
n=1 |Ψ|(K\Kn) ≤ ε/2, so |Ψ|(M\K) < ε. �

This theorem is valid, for example, for completely regular Souslin spaces.
We observe that in this case not every weakly compact set in Mt(X) is uni-
formly tight.

8.10.7. Remark. Pachl [1416] studied the duality between the space
Mt(X) and the space Cbu(X) of bounded uniformly continuous real func-
tions on X in the case where X is a complete metric space. He proved that(
Mt, σ(Mt, Cbu)

)
is sequentially complete and that a norm bounded sub-

set Mt is relatively σ(Mt, Cbu)-compact (or countably compact) if and only
if its restriction to the class Lip1(X) of all functions on X with Lipschitz
constant 1, where Lip1(X) is equipped with the topology of pointwise conver-
gence, is pointwise equicontinuous. As a corollary one obtains generalizations
to uniform measures on uniform spaces.

8.10(ii). Prohorov spaces

8.10.8. Definition. (i) A completely regular topological space X is called
a Prohorov space if every set in the space of measures M+

t (X) that is compact
in the weak topology is uniformly tight.

(ii) A completely regular topological space X is called sequentially Pro-
horov if every sequence of nonnegative tight Baire measures weakly convergent
to a tight measure is uniformly tight.

We could speak of Radon measures in this definition because every tight
Baire measure on X admits a unique Radon extension.

The Prohorov and Le Cam theorems proved above can be reformulated
as follows.

8.10.9. Theorem. Every complete separable metric space is a Prohorov
space. An arbitrary metric space is sequentially Prohorov.

It is clear that a Prohorov space is sequentially Prohorov. We shall see
below that the space Q of rational numbers is sequentially Prohorov, but not
Prohorov. We observe that the sequential Prohorov property is weaker than
the requirement that weakly convergent sequences of tight Baire measures be
uniformly tight (because their limits may not be tight).
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If in the definition of a Prohorov space one allows signed measures, then
we shall say that X is strongly Prohorov (respectively, strongly sequentially
Prohorov). Theorem 8.6.8 says that all complete metric spaces are strongly
Prohorov. Some remarks on various related options are made in the biblio-
graphic comments.

8.10.10. Theorem. The class of Prohorov spaces is stable under forma-
tion of countable products and countable intersections, and passing to closed
subspaces and open subspaces, hence to Gδ-subsets.

In addition, a space is Prohorov provided that every point has a neighbor-
hood that is a Prohorov space (for example, if the space admits a locally finite
cover by closed Prohorov subspaces).

The proof can be found in Hoffmann-Jørgensen [843] (see also Exer-
cise 8.10.91).

We recall that a space X is called hemicompact if it has a fundamental
sequence of compact sets Kn (i.e., every compact set in X is contained in
one of the sets Kn). If the continuity of a function on X is ensured by
its continuity on all compact sets, then X is called a kR-space. The latter
property is fulfilled for every k-space, i.e., a space in which the closed sets are
exactly the sets having closed intersections with all compact sets.

8.10.11. Corollary. Every Čech complete space X is Prohorov. Hence
all locally compact spaces and all hemicompact kR-spaces are Prohorov.

We have seen in Example 8.6.9 that the union of two Prohorov subspaces,
one of which is a point, may not be Prohorov. The same example shows that
a countable union of closed Prohorov subspaces is not always Prohorov.

Let us give several results and examples that enable one to construct
broader classes of Prohorov and sequentially Prohorov spaces by means of the
operations mentioned in Theorem 8.10.10.

8.10.12. Proposition. Let X be a completely regular space possess-
ing a countable collection of closed subspaces Xn with the following property:
a function on X is continuous if and only if its restriction to every Xn is
continuous.

(i) Suppose that every Xn is Prohorov. Then so is X.
(ii) Suppose that all the spaces Xn are either complete metrizable or com-

pact. Then every weakly fundamental sequence in Mr(X) is uniformly tight.
In particular, X is a strongly sequentially Prohorov space.

Proof. We may assume that Xn ⊂ Xn+1, considering a new system
X ′
n =

⋃n
i=1Xi. Let Y =

⋃∞
n=1Xn. It follows from our hypothesis that an

arbitrary extension of a continuous function on Y to all of X is continuous
on X. Hence X\Y is a functionally closed discrete subspace and its compact
subsets are finite. Moreover, every subset of X\Y is Baire in X. Hence, for
every weakly compact set M in Mr(X), the restrictions of measures from
M to Y and X\Y form weakly compact families in Mr(Y ) and Mr(X\Y ),
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respectively. This reduces everything to the case where X = Y , which we
further assume.

(i) Let M ⊂ M+
r (X) be weakly compact. Let us show that for every

ε > 0, there exists a number n = n(ε) such that µ(X\Xn) ≤ ε for all µ ∈M .
Indeed, otherwise for every n, there exists a measure µin ∈ M such that
µin(X\Xn) > ε. Passing to subsequences, we may assume that there are two
increasing sequences of indices in and jn with

µin(Xjn+1\Xjn) > ε, µin(X\Xjn+1) < ε/2.

The sequence {µin} has a limit point µ ∈ M . Let us pick a number m with
µ(X\Xm) < ε/2. For every n, there exists a compact set Kn ⊂ Xjn+1\Xjn

with µin(Kn) ≥ ε. We may assume that j1 > m. There is a continuous
function fn : X → [0, 1] such that fn|Kn = 1 and fn = 0 on Xjn . Let us
set f(x) = supn fn(x). Then 0 ≤ f ≤ 1 and f is continuous because the
restriction of f to every Xk coincides with the maximum of finitely many
functions fn, hence is continuous. Then

∫

X

f dµ < ε/2,

whereas ∫

X

f dµin ≥ ε.

This contradiction shows that there exists n = n(ε) with µ(X\Xn) < ε for
all µ ∈ M . According to Corollary 8.10.2, the family M restricted to Xn

is relatively weakly compact. Hence by the Prohorov property for Xn it is
uniformly tight.

(ii) Let {µn} ⊂ Mr(X) be a weakly fundamental sequence. Then it
converges weakly to a Baire measure µ. Every measure µn is purely atomic
on X\Y . Let A = {an} be the set of all their atoms in X\Y . We observe
that |µ|

(
X\(Y ∪ A)

)
= 0. Indeed, otherwise there is a set B ⊂ X\(Y ∪ A)

on which µ is either strictly positive or strictly negative. The function IB
is continuous on X, its integrals against all the measures µn vanish, but the
integral against µ is not zero, which leads to a contradiction. The same
reasoning shows that the measures µn converge to µ on every set in A. Thus,
we may assume that X = Y . A reasoning similar to the one employed in
the proof of Theorem 8.6.2 shows that, for every ε > 0, there is a number
n = n(ε) such that |µi|(X\Xn) ≤ ε for all i. Indeed, otherwise one can find
increasing sequences of indices in and jn such that

|µin |(Xjn+1\Xjn) > ε.

For every n, there is a compact set Kn ⊂ Xjn+1\Xjn with |µin |(Kn) > ε.
There exists a continuous function ξ on Xj2 with values in [1, 1/2] that equals
1 on K1. This function can be extended to a continuous function on Xj3 that
takes values in [1, 1/2] and equals 1/2 on K2. Consequently extending ξ from
Xjn to Xjn+1 in such a way that the extension is continuous, takes values in
[1, 1/n] and equals 1/n on Kn, we obtain a function on all of X with values
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in [0, 1]. By hypothesis, this function is continuous. It is clear that the sets
Un = {1/n − δn < ξ < 1/n + δn}, where δn = (2n + 1)−2, are open and
disjoint. In addition, every point x ∈ X possesses a neighborhood that meets
at most finitely many sets Un. Hence for any choice of continuous functions
ϕn with support in Un the series

∑∞
n=1 ϕn converges and defines a continuous

function. For every n, we take a continuous function fn with values in [−1, 1]
and support in Un such that the integral of fn against the measure µn be
greater than ε. Let us denote the integral of fi against the measure µn by ain.
Then an = (a1

n, a
2
n, . . .) ∈ l1, since

∑∞
i=1 |fi| ≤ 1. For every λ = (λi) ∈ l∞

the function fλ =
∑∞
i=1 λifi is bounded and continuous. By hypothesis, the

sequence of integrals of fλ with respect to the measures µn converges. This
means that the sequence {an} is fundamental in the weak topology of l1. By
Corollary 4.5.8 the sequence {an} converges in the norm of l1, whence we
obtain lim

n→∞
ann = 0, a contradiction. In the case where all the spaces Xn are

compact, the proof is complete. In the case where every Xn is a Polish space,
it suffices to verify the uniform tightness of the restrictions of the measures
µn to every space Xk. Suppose these restrictions are not uniformly tight. The
reasoning from the proof of Prohorov’s theorem shows that for some ε > 0
there exist a subsequence of measures µin and a sequence of pairwise disjoint
compact sets Kn ⊂ Xk with the following properties: |µin |(Kn) > ε and
the ε-neighborhoods of Kn (with respect to a complete metric defining the
topology of Xk) are disjoint. Let us take a continuous function ξ on Xk with
values in [0, 1] that equals 1/n on Kn for every n. Now the same reasoning
as above leads to a contradiction. �

8.10.13. Example. In either of the following cases every weakly funda-
mental sequence of tight measures on X is uniformly tight:

(i) X is a hemicompact kR-space.
(ii) X is a locally convex space that is the inductive limit of an increasing

sequence of separable Banach spaces En such that the embedding of every En
into En+1 is a compact operator.

Proof. Claim (i) follows from Proposition 8.10.12. (ii) We observe that
X is a k-space possessing a fundamental sequence of compact sets. To this
end, one can take an increasing sequence of closed balls Un in the spaces Xn

with
⋃∞
n=1 Un = X and denote by Kn the compact closure of Un in Xn+1.

Suppose a set A ⊂ X has closed intersections with all Kn. It is readily seen
that the sets A∩En are closed in En. Suppose A has a limit point a �∈ A. By
induction we construct an increasing sequence of convex sets Vn ⊂ En that
are open in En such that a ∈ Vn and Vn ∩ A = ∅. To this end, we observe
that if a convex compact set K in a Banach space does not meet a closed
set M , then K has a convex neighborhood whose closure does not meet M .
By definition the set V =

⋃∞
n=1 Vn is open in X. As a ∈ V and A ∩ V = ∅,

we arrive at a contradiction. �
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8.10.14. Example. Let X be a locally convex space that is the strict
inductive limit of an increasing sequence of its closed subspaces Xn. Then
X is a Prohorov space if all spaces Xn are Prohorov. In particular, if each
Xn is a separable Fréchet space, then every weakly fundamental sequence of
nonnegative Baire measures on X is uniformly tight.

Proof. According to Example 8.6.10, given a weakly compact family
M of nonnegative Radon measures on X, for every ε > 0, all measures in
M are concentrated up to ε on some subspace Xn. By Corollary 8.10.2,
the restrictions of measures from M to Xn form a relatively weakly compact
family. In order to prove the last assertion, it suffices to recall that the union
of a sequence of separable Fréchet spaces is Souslin, hence every Baire measure
on such a space is Radon. �

Obviously, one can multiply the number of such examples by taking count-
able products and passing to closed subsets. We observe that many classical
spaces of functional analysis such as D(IRd), D′(IRd), S(IRd), and S ′(IRd)
are Prohorov spaces, since they can be obtained by means of the indicated
operations.

8.10.15. Remark. The space D(IR1) is a Prohorov space, but is neither
a kR-space (Exercise 6.10.27) nor a semicompact space (in addition, it is not
σ-compact). The absence of a countable family of compact sets that would be
either fundamental or exhausting follows by Baire’s theorem applied to the
subspaces Dn(IR1) and the fact that every compact set in D(IR1) is contained
in one of the subspaces Dn(IR1).

The following result is proved in Wójcicka [1995].

8.10.16. Theorem. Let X be a Prohorov space. Then Pr(X) with the
weak topology is Prohorov.

Proof. Let S = βX be the Stone–Čech compactification of X. Then
Pr(S) is a compact set in the weak topology, hence the mapping

T : Pr
(
Pr(S)

)
→ Pr(S), T (Ψ)(B) =

∫

Pr(S)

q(B) Ψ(dq),

considered in Theorem 8.10.5 is well-defined (it is clear that T (Ψ) is the
barycenter of Ψ). The spaces Pr(X) and Pr

(
Pr(X)

)
are naturally embedded

into the spaces Pr(S) and Pr
(
Pr(S)

)
, respectively. If Ψ ∈ Pr

(
Pr(X)

)
, then

T (Ψ) ∈ Pr(X). Indeed, for every ε > 0, there is a compact set Q ⊂ Pr(X)
with Ψ(Q) > 1 − ε. By hypothesis, there is a compact set K ⊂ X such that
q(K) > 1−ε for all q ∈ Q. This yields T (Ψ)(K) ≥ (1−ε)2, i.e., T (Ψ) ∈ Pr(X).
Suppose M is compact in Pr

(
Pr(X)

)
and ε > 0. Then the compact set T (M)

is contained in Pr(X) as shown above, which by hypothesis gives compact sets
Kn ⊂ X with Kn ⊂ Kn+1 and T (Ψ)(Kn) ≥ 1 − ε24−n for all Ψ ∈ M . It is
readily seen that the sets Qn := {q ∈ Pr(S) : q(Kn) ≥ 1− ε2−n} are compact
and Q :=

⋂∞
n=1Qn ⊂ Pr(X). For every Ψ ∈ M one has Ψ(Qn) ≥ 1 − ε2−n,
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as T (Ψ)(X\Kn) ≤ ε24−n, whence Ψ
(
q : q(X\Kn) ≥ ε2−n

)
≤ ε2−n. Finally,

we obtain Ψ(Q) ≥ 1− ε, and Q is compact in Pr(X). �

No topological description of Prohorov spaces is known. The following two
examples show that the class of Prohorov spaces is not closed with respect to
formation of countable unions. The first of them has already been described
in Example 8.6.9. The countable space X constructed there is hemicompact,
is Baire and is an Fσ-set in the Prohorov space βX, but is not Prohorov itself.

The second example is due to Preiss [1486]. This deep and difficult
theorem is a fundamental achievement of the topological measure theory.

8.10.17. Theorem. The space of rational numbers Q with its standard
topology is not a Prohorov space.

We recall that by Theorem 8.10.9, Q is a sequentially Prohorov space.
The first examples of separable metric spaces that are not Prohorov spaces

were constructed in Choquet [353] and Davies [413]. A simplified (but still
highly non-trivial) proof of Theorem 8.10.17 is given in Topsøe [1874].

Fernique [563] observed that the space l2 with its weak topology is not
Prohorov.

8.10.18. Example. A sequence of measures µn = n−3
∑n3

i=1 δnei , where
{ei} is the standard orthonormal basis in l2, converges weakly to Dirac’s
measure at zero if l2 is equipped with the weak topology, but obviously is not
tight. For the verification of weak convergence, it suffices to observe that for
every set of the form S = {x : |(x, v)| < 1}, v ∈ l2, one has µn(S) → 1, which
is obvious from the estimates

µn(l2\S) ≤
∫

l2
|(x, v)|2 µn(dx) ≤ n−3

n3
∑

i=1

n2v2
i ≤ n−1(v, v).

The space l2 with the weak topology provides an example of a hemicom-
pact σ-compact space that is not Prohorov. In Fremlin, Garling, Haydon
[636], this example was generalized as follows.

8.10.19. Proposition. Let X be an infinite-dimensional Banach space.
Then, the spaces

(
X,σ(X,X∗)

)
and

(
X∗, σ(X∗,X)

)
are not Prohorov spaces.

According to Fernique [563], the strong dual to a locally convex Fréchet–
Montel space X is Prohorov. In particular, the dual to X = IR∞ is IR∞

0 , which
is a countable union of finite-dimensional subspaces (here IR∞

0 is equipped
with the topology of inductive limit). Thus, a nonmetrizable Prohorov space
may not be a Baire space.

Another result from Fremlin, Garling, Haydon [636] improves on assertion
(i) in Example 8.10.13 with a close proof.

8.10.20. Theorem. Let X be a hemicompact kR-space. Then every
weakly compact subset of Mt(X) is uniformly tight, i.e., X is strongly Pro-
horov.
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Proof. There are compact sets Xn ⊂ Xn+1 such that every compact
set in X is contained in one of the sets Xn, and the continuity of a function
on every Xn yields its continuity on all of X. Suppose a weakly compact
set M ⊂ Mt(X) is not uniformly tight. As in the proof of assertion (ii) of
Proposition 8.10.12, one can find measures µn ∈ M and increasing numbers
jn with |µn|(Xjn+1\Xjn) > ε. Let us take the functions fi constructed in that
proof such that

∑∞
i=1 |λi||fi| ≤ ‖λ‖ if λ = (λi) ∈ l∞, and the integral of

fn against µn is greater than ε. The mapping from M to l1 that takes the
measure µ to the sequence of the integrals of fi against µ is continuous with
respect to the weak topologies on M and l1. The image of M under this
mapping is weakly compact in l1, which yields its norm compactness. This
contradicts the fact that the integral of fn against µn is greater than ε. �

Note that any σ-compact locally compact space is a hemicompact kR-
space. Let us mention the following important result due to Preiss [1486].

8.10.21. Theorem. (i) A first category metric space cannot be Prohorov
(unlike the above-mentioned space IR∞

0 with the topology of inductive limit).
(ii) Let X be a separable coanalytic metric space. Then X is a Prohorov

space if and only if X is metrizable by a complete metric. An equivalent
condition: the space X contains no countable Gδ-set dense in itself.

(iii) Under the continuum hypothesis, there exists a separable metric Pro-
horov space that does not admit a complete metric.

Since every countable space dense in itself is homeomorphic to Q, assertion
(ii) explains the role of Q in Theorem 8.10.17.

Under some additional set-theoretic assumptions, there exists a Souslin
Prohorov subset of [0, 1] that is not Polish (see Cox [379], Gardner [660]).
It is an open question whether it is consistent with ZFC that every univer-
sally measurable Prohorov space X ⊂ [0, 1] is topologically complete (i.e., is
Polish).

Bouziad [246] and Choban [342] constructed examples showing that the
image Y of a Prohorov space X under a continuous open mapping may not
be Prohorov (such a space X may be even countable and a mapping may
be compact). This answers a question raised in Topsøe [1874], where the
following result was proved (see [1874, Corollary 6.2].

8.10.22. Proposition. Let π : X → Y be a perfect surjection. Then X
is a Prohorov space if and only if so is Y .

It is interesting to compare the Prohorov and Skorohod properties (de-
fined in �8.5). It was shown in Bogachev, Kolesnikov [211] that the space
IR∞

0 of all finite sequences (with its natural topology of the inductive limit of
an increasing sequence of finite-dimensional spaces) does not have the Sko-
rohod property, although is Souslin and Prohorov. On the other hand, in
Banakh, Bogachev, Kolesnikov [114], the class of almost metrizable spaces
was considered (i.e., spaces X for which there exists a bijective continuous
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proper mapping from a metric space onto X) and it was shown that an al-
most metrizable space is sequentially Prohorov precisely when it has the strong
Skorohod property for Radon measures.

8.10(iii). The weak sequential completeness of spaces of
measures

Several remarks on the weak sequential completeness of the space Mt(X)
are in order. First of all, two obvious observations.

8.10.23. Example. Let X be a completely regular space. The space
of measures Mt(X) is weakly sequentially complete provided that either
Mσ(X) = Mt(X) or every weakly fundamental sequence in Mt(X) is uni-
formly tight.

Proof. It suffices to use the weak sequential completeness of Mσ(X)
and Theorem 8.6.7. �

8.10.24. Example. For every σ-compact completely regular space X,
the space Mt(X) is weakly sequentially complete.

Proof. The claim follows by the weak sequential completeness of the
space Mσ(X), since every Baire measure on X is tight. �

Proposition 8.10.12 (ii) and Example 8.10.23 give one more example.

8.10.25. Example. Let X be a completely regular space possessing a
sequence of compact subspaces Kn such that any function on X continuous
on every Kn is continuous on all of X. Then the space Mt(X) is weakly
sequentially complete.

The following result is obtained in Moran [1331].

8.10.26. Theorem. Let X be a normal and metacompact space (i.e., in
every open cover of X one can inscribe a pointly finite open cover). Then the
space Mτ (X) is weakly sequentially complete. The same is true for Mt(X)
if, additionally, X is Čech complete.

8.10(iv). The A-topology

There is another natural way to topologize the space of probability mea-
sures inspired by the Alexandroff theorem, which is used if X is not completely
regular or if the class of Borel measures does not coincide with the class of
Baire measures. Let G be the class of all open sets in X.

The A-topology on the space P(X) of all Borel probability measures (or
its subspaces Pr(X) and Pτ (X)) is defined by means of neighborhoods of the
form

U(µ,G, ε) =
{
ν : µ(G) < ν(G) + ε

}
,

where µ ∈ P(X), G ∈ G, ε > 0. A net {µα} converges in this topology to µ
if and only if lim infα µα(G) ≥ µ(G) for every G ∈ G. By Lemma 7.1.2 the
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A-topology is Hausdorff. It follows from �8.2 that in the case of a completely
regular space the A-topology coincides with the weak topology on Pτ (X).
Certainly, in the general case the A-topology is stronger than the weak topol-
ogy (which may be trivial if there are no non-trivial continuous functions
on X). Another possible advantage of the A-topology is that it is applicable
to Borel measures, whereas the weak topology is naturally connected with
Baire measures (it may not be Hausdorff on Borel measures). In order to
define the A-topology on the space M+(X) of all nonnegative Borel mea-
sures, in addition to the indicated neighborhoods one adds the neighborhoods
U ′(µ, ε) =

{
ν : |µ(X)− ν(X)| < ε

}
. Many results proved above for the weak

topology have natural analogs for the A-topology (see, for example, Topsøe
[1873] and Exercise 8.10.123). In particular, X is homeomorphic to the set of
all Dirac measures with the A-topology, which is closed in the spaces Pr(X)
and Pτ (X) with the A-topology. In addition, the following holds.

8.10.27. Theorem. The space M+
τ (X) with the A-topology is regular,

completely regular or second countable if and only if X has the corresponding
property.

Note the following result from Holický, Kalenda [851].

8.10.28. Theorem. (i) Let Y be a Hausdorff space and let X ⊂ Y .
Suppose that X is a set of one of the following types: Gδ, Borel, F-Souslin,
B-Souslin (i.e., is obtained from Borel sets by the A-operation). Then M+(X)
and M+

r (X) are sets of the corresponding type in M+(Y ) and M+
r (Y ) with

the A-topology.
(ii) If X is Čech complete, then so is M+

r (X) with the A-topology.

Certainly, for completely regular spaces the assertions for M+
r (X) hold

for the weak topology.

8.10(v). Continuous mappings of spaces of measures

A continuous mapping f : X → Y generates the mapping

f̂ : Mr(X) →Mr(Y ), µ �→ µ ◦ f−1,

which is continuous in the weak topology. One also obtains the mappings

f̂ : Mt(X) →Mt(Y ), f̂ : Mτ (X) →Mτ (Y ), f̂ : Mσ(X) →Mσ(Y ),

and the mappings between the corresponding spaces of nonnegative or proba-
bility measures. It is readily verified that if f is injective, then so is the map-
ping f̂ : Mr(X) →Mr(Y ) (see a more general assertion in Exercise 9.12.39).
Certainly, this is also true for the classes Mt, but not always for Mτ .

8.10.29. Example. Let S ⊂ [0, 1] be a set with λ∗(S) = 1, λ∗(S) = 0,
where λ is Lebesgue measure (see Example 1.12.13). Let us consider the
natural projection f :

(
S×{0}

)
∪
(
([0, 1]\S)×{1}

)
→ [0, 1]. Then f is continu-

ous and injective, but Lebesgue measure on [0, 1] is the image of two different
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τ -additive probability measures µ1 and µ2 that are induced by Lebesgue mea-
sure on S×{0} and ([0, 1]\S)×{1}, respectively.

See also Remark 8.9.1 made above. Perfect mappings between spaces
induce perfect mappings between spaces of measures (Koumoullis [1044]):

8.10.30. Theorem. Let f : X → Y be a continuous surjection of com-
pletely regular spaces. Then, for s = t and s = τ , the induced mapping
f̂ : M+

s (X) →M+
s (Y ), µ �→ µ ◦ f−1, is perfect if and only if f is perfect.

As observed in [1044], this result may fail for s = σ and for spaces of
signed measures.

This theorem and Froĺık’s result that the space X is Lindelöf and Čech
complete precisely when it admits a perfect surjection onto a complete sepa-
rable metric space, was employed in [1044] to obtain the following result.

8.10.31. Corollary. Let X be completely regular. The space M+
s (X),

where s = t or s = τ , is Lindelöf and Čech complete if and only if so is X. In
addition, M+

s (X) is paracompact and Čech complete precisely when so is X.

In Ditor, Eifler [457], Eifler [524], Schief [1669], [1670], Banakh [113],
Banakh, Radul [120], and Bogachev, Kolesnikov [211], open mappings be-
tween spaces of measures are studied. Let us mention a result from [1670].
Set M+(X) := M+

B (X), P(X) := PB(X).

8.10.32. Theorem. Let X and Y be Hausdorff spaces and let f : X → Y
be a Borel surjection that is open, i.e., takes open sets to open sets. Suppose
that for every open set G ⊂ X we have f̂

(
M+(G)

)
= M+

(
f(G)

)
. Then the

mapping f̂ : M+(X) →M+(Y ) is open in the A-topology.

8.10.33. Corollary. Let X and Y be Souslin spaces and let f : X → Y
be a Borel surjection. If f is an open mapping, then the induced mappings
f̂ : M+(X) →M+(Y ) and f̂ : P(X) → P(Y ) are open in the A-topology.

A close result is obtained in Bogachev, Kolesnikov [211] for the spaces of
Radon probability measures: the mapping f̂ : Pr(X) → Pr(Y ) is a continuous
open surjection if f is a continuous open surjection of completely regular
spaces X and Y such that f̂

(
Pr(G)

)
= Pr

(
f(G)

)
for every open set G ⊂ X.

In particular, the next result is proved in [211].

8.10.34. Proposition. Let f : X → Y be an open continuous surjective
mapping between complete metric spaces. Then, the mapping Pr(X) → Pr(Y )
is an open surjection.

Interesting connections between the Skorohod representation, open map-
pings, and selection theorems are discussed in Bogachev, Kolesnikov [211].
We formulate some results of this work. We recall the following classical
result, called Michael’s selection theorem (see Michael [1314] or Repovš, Se-
menov [1552, p. 190]). Let M be a metrizable space, let P be a complete
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metrizable closed subset of locally convex space E, and let Φ: M → 2P be
a lower semicontinuous mapping with values in the set of nonempty convex
closed subsets of P . Then, there exists a continuous mapping f : M → P
such that f(x) ∈ Φ(x) for all x. For our purposes, it will be enough to deal
with the case where E is a normed space; a short proof for this case can be
found in Repovš, Semenov [1552, A�1] (note that Filippov [585] constructed
an example showing that one cannot omit the requirement that P is closed
even if P is a Gδ-set in a Hilbert space). Namely, we shall deal with the
situation where P and M are the sets of all Radon probability measures on
Polish spaces X and Y ; the weak topology on these sets is generated by the
Kantorovich–Rubinshtein norm on Mr(X) and Mr(Y ). A typical application
of this theorem is this: let T : P → M be a continuous open affine mapping
of a complete metrizable convex closed set P in a locally convex space to a
metrizable set M in a locally convex space. Then Φ(x) = T−1(x) satisfies
the hypotheses of Michael’s theorem. Hence T has a continuous right inverse,
and Theorem 8.10.32 yields the following assertion.

8.10.35. Theorem. Let f : X → Y be a continuous open surjection
of Polish spaces. Then the induced mapping f̂ : P(X) → P(Y ) has a right
inverse continuous in the weak topology. In the case of arbitrary complete
metric spaces, the same is true for Pr(X) and Pr(Y ).

8.10.36. Corollary. For every universally measurable set Y in a Polish
space Z, there exist a universally measurable subset X of the space R of irra-
tional numbers in [0, 1] and a continuous surjection f : X → Y such that the
mapping f̂ : P(X) → P(Y ) has a right inverse g : P(Y ) → P(X) continuous
in the weak topology. For an arbitrary set Y ⊂ Z, the analogous assertion, but
without universal measurability of X, is true for the spaces Pr(X) and Pr(Y ).

In the general case, it may occur in the situation of the preceding theorem
that there is no linear continuous right inverse operator. However, as shown in
Michael [1313], if X and Y are metrizable compact spaces, then every contin-
uous open surjection f : X → Y has a regular averaging operator, hence the
mapping f̂ : Mr(X) →Mr(Y ) has a linear continuous in the weak topology
right inverse. We remark that according to �8.5, the assumption that f is
open is not necessary for the existence of a regular averaging operator and a
linear continuous right inverse of f̂ . For example, in Lemma 8.5.3, the Cantor
set cannot be mapped onto [0, 1] by an open mapping. The proof of the next
result is given in Bogachev, Kolesnikov [211].

8.10.37. Proposition. For any universally measurable set Y in a Polish
space, there exist a universally measurable subset X of the Cantor set C and
a continuous surjective mapping f : X → Y such that the associated mapping
f̂ : P(X) → P(Y ) has a linear right inverse g : P(Y ) → P(X) continuous in
the weak topology. In the case of compact Y , the set X can be chosen com-
pact. For an arbitrary set Y , the analogous assertion, but without universal
measurability of X, is true for the spaces Pr(X) and Pr(Y ).
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8.10(vi). Separability of spaces of measures

The separability properties of spaces of measures with the weak topology
are investigated in Koumoullis, Sapounakis [1051], Pol [1473], Talagrand
[1830]. We recall that if X is separable, then the space Mt(X) with the
weak topology is separable as well (Theorem 8.9.4). The converse is false even
for compact spaces (see [1830]). As shown in [1830] under the continuum
hypothesis, there exists a compact space K such that the space Mt(K) is
separable in the weak topology, but the unit ball of Mt(K) is not. In addition,
the separability of the unit ball in Mt(K) in the weak topology does not imply
the metrizability of K: according to [1830] (also under CH), it may even occur
that there is no separable measure with support K.

A set of measures M ⊂Mσ(X) is called countably separated if there exists
a sequence {fn} ⊂ Cb(X) such that, whenever µ and ν are in M , the equality

∫

X

fn(x)µ(dx) =
∫

X

fn(x) ν(dx), ∀n ∈ IN,

implies that µ = ν.
A subset M ⊂Mσ(X) is called countably determined in Mσ(X) if there

exists a sequence {fn} ⊂ Cb(X) such that, whenever µ ∈M and ν ∈Mσ(X),
the equality

∫

X

fn(x)µ(dx) =
∫

X

fn(x) ν(dx), ∀n ∈ IN,

implies the inclusion ν ∈ M . By analogy one defines the property to be
countably determined in M+

σ (X).
It is easy to see that for a compact space X, the set M+

σ (X) is countably
separated if and only if X is metrizable (see Exercise 8.10.81). The following
simple lemma from Koumoullis [1044] is useful in such considerations.

8.10.38. Lemma. Let H be a countable family of bounded Baire func-
tions on a topological space X. Then, there exists a countable set K ⊂ Cb(X)
with the following property: if for a pair of Baire measures µ and ν on X one
has the equality

∫

X

ϕ(x)µ(dx) =
∫

X

ϕ(x) ν(dx), ∀ϕ ∈ K,

then this equality is fulfilled for all h ∈ H in place of ϕ.

Proof. It suffices to consider the case where H consists of a single func-
tion h. The class H of all bounded Baire functions h for which our claim is
true contains Cb(X), is a linear space and is closed with respect to the point-
wise limits of uniformly bounded sequences. By Theorem 2.12.9 the class H
coincides with the class of all bounded Baire functions. �

It is clear from the lemma that in the definitions of countably separated
and countably determined sets one can consider bounded Baire functions (or
even sequences of Baire sets).
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Since a compact space K is metrizable precisely when there is a countable
family of continuous functions separating the points in K, it is clear that a
compact (in the weak topology) set M ⊂ Mσ(X) is countably separated if
and only if it is metrizable. According to [1051, Proposition 2.3], a compact
set M ⊂ Mσ(X) is countably determined if and only if it is a Gδ-set in
Mσ(X) (and similarly for sets in M+

σ (X)). It is clear that these assertions
may fail for noncompact sets (for example, typically Mσ(X) is not metrizable
in the weak topology). The following result (see Koumoullis, Sapounakis
[1051, Theorem 4.1]) describes the situation for the whole space of measures.
We recall that a space Y is called countably submetrizable if there exists a
sequence of continuous functions separating the points in Y (in other words,
a continuous injection Y → IR∞).

8.10.39. Theorem. Let X be a Hausdorff space and let s be one of the
symbols σ, τ or t. The following assertions are equivalent:

(i) Ms(X) is countably separated;
(ii) M+

s (X) is countably separated;
(iii) Cb(X) is separable in the topology σ

(
Cb(X),Ms(X)

)
;

(iv) Ms(X) is countably submetrizable;
(v) every point in Ms(X) is a Gδ-set.

In addition, for s = t conditions (i)–(v) are equivalent to the submetrizability
of the space X.

8.10(vii). Young measures

Let (Ω,B) and (S,A) be two measurable spaces and let µ be a bounded
positive measure on B. Denote by Y(Ω, µ, S) the set of all positive measures ν
on B⊗A such that the image of ν under the natural projection Ω×S → Ω co-
incides with µ. Measures in Y(Ω, µ, S) are called Young measures. A typical
example of a Young measure: the measure ν := µ◦F−1, where F : Ω → Ω×S,
F (x) =

(
x, u(x)

)
and u : Ω → S is a measurable mapping. Such a measure

ν is called the Young measure generated by the mapping u. Young mea-
sures are useful in variational calculus; there exist some connections between
convergence of mappings and convergence of the associated Young measures.
A simple example of this connection is given in Exercise 8.10.86; additional
information can be found in Castaing, Raynaud de Fitte, Valadier [318], Gi-
aquinta, Modica, Souček [683], Valadier [1912], [1913]. To Young measures
are partially related the next section and �9.12(vii). The proof of the follow-
ing proposition is given in Valadier [1912, Theorem 17].

8.10.40. Proposition. Let µ be a Radon probability measure on a Haus-
dorff space Ω, let un be measurable mappings from Ω to a separable metric
space S, and let νn be the corresponding Young measures. Let Ψ: Ω×S → IR
be a B⊗B(S)-measurable function such that for every fixed x, the function
y �→ Ψ(x, y) is continuous, and the sequence of functions x �→ Ψ

(
x, un(x)

)

is uniformly µ-integrable. Suppose that the measures νn converge weakly to a
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measure ν. Then the function Ψ is ν-integrable and
∫

Ω×S
Ψ dν = lim

n→∞

∫

Ω

Ψ
(
x, un(x)

)
µ(dx).

8.10.41. Lemma. Let µ ≥ 0 be a Radon measure on a topological space
Ω and let U ⊂ L1(µ) be a norm bounded set. Then the corresponding set of
Young measures νu, u ∈ U , is uniformly tight on Ω×IR. If µ is concentrated
on a countable union of metrizable compact sets, then for every ε > 0, there
is a metrizable compact Kε ⊂ Ω× IR such that supu∈U νu

(
(Ω×IR)\Kε

)
≤ ε.

Proof. Let πu the projection of νu to IR. We observe that

sup
u∈U

∫

IR

|t|πu(dt) = sup
u∈U

∫

Ω×IR

|t| νu(dωdt) = sup
u∈U

∫

Ω

|u| dµ ≤ sup
u∈U

‖u‖L1(µ).

Hence the projections of the measures νu on IR form a tight family. The
projection to Ω is the tight measure µ. Now we can apply Lemma 7.6.6. �

The next result shows that Young measures that are not generated by
mappings arise naturally as the limits of sequences of Young measures gener-
ated by mappings.

8.10.42. Proposition. Suppose that a Radon probability measure µ on a
completely regular space Ω is concentrated on a countable union of metrizable
compact sets. Suppose that a sequence {un} converges weakly in L1(µ) to
a function u, but does not converge in the norm. Then the sequence of the
associated Young measures νn on Ω × IR1 has a subsequence that converges
weakly to some Young measure ν that cannot be generated by a function.

Proof. The sequence {un} is uniformly integrable. According to our hy-
pothesis, there exist c > 0 and a subsequence {unk} with ‖u− unk‖L1(µ) ≥ c
for all k. By using Lemma 8.10.41 and Theorem 8.6.7, one can find a fur-
ther subsequence (again denoted by unk) such that the corresponding Young
measures converge weakly to some measure ν. It is clear that ν is a Young
measure. Suppose that ν is generated by some measurable function v. Ac-
cording to Exercise 8.10.86, the sequence {unk} converges in measure, hence
by the Lebesgue–Vitali theorem it converges in the norm. Then its limit in
L1(µ) must coincide with u, which is a contradiction. �

8.10(viii). Metrics on spaces of measures

In �8.3 we have already discussed the Lévy–Prohorov and Kantorovich–
Rubinshtein metrics on the space of probability measures on a given metric
space (X, d). Here some additional results on these and related metrics are
presented. The definitions of dP , ‖ · ‖0 and ‖ · ‖∗BL are given in �8.3.

8.10.43. Theorem. For every two Borel probability measures µ and ν
on a metric space X, the following relationship between the Lévy–Prohorov
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and Kantorovich–Rubinshtein metrics holds:
2dP (µ, ν)2

2 + dP (µ, ν)
≤ ‖µ− ν‖∗BL ≤ ‖µ− ν‖0 ≤ 3dP (µ, ν). (8.10.1)

In addition, ‖µ− ν‖∗BL ≤ 2dP (µ, ν). If X is complete, then the space Pr(X)
with any of the above-mentioned metrics is complete as well.

Proof. Let dP (µ, ν) > r > 0. It is clear from the definition of dP that
we may assume that there exists a closed set B with µ(B) > ν(Br)+r. There
exists a Lipschitzian function f with |f | ≤ 1 and |f(x) − f(y)| ≤ 2d(x, y)/r
such that f equals 1 on B and −1 outside Br, e.g., f(x) = θ

(
dist(x,B)

)
− 1,

θ(t) = 2(1− t/r)I[0,r](t). Then

(1 + 2/r)‖µ− ν‖∗BL ≥
∫

X

f d(µ− ν)

=
∫

X

(f + 1) d(µ− ν) ≥ 2µ(B)− 2ν(Br) ≥ 2r.

Therefore, ‖µ−ν‖∗BL ≥ 2r2/(2+r). Since r < dP (µ, ν) is arbitrary, we obtain
the first inequality in (8.10.1). Now suppose that f ∈ Lip1(X), |f | ≤ 1 and

∫

X

f d(µ− ν) > 3r > 0.

Set Φµ(t) = µ(f < t), Φν(t) = ν(f < t). Then, integrating by parts and
taking into account the equalities Φµ(1+) = Φν(1+) = 1 (see Exercise 5.8.112)
and applying the change of variable formula (3.6.3) we find
∫ 1

−1

[
Φν(t)− Φµ(t)

]
dt =

∫ 1

−1

t d(Φµ − Φν)(t) =
∫

X

f d(µ− ν) > 3r. (8.10.2)

Let us show that there exists τ ∈ [−1, 1] such that

Φν(τ) > Φµ(τ + r) + r. (8.10.3)

Indeed, otherwise Φν(t) ≤ Φµ(t+ r) + r for all t. The integration yields
∫ 1

−1

Φν(t) dt ≤
∫ 1+r

−1+r

Φµ(t) dt+ 2r.

Since Φµ(t) = 1 for all t > 1, we obtain by the previous inequality
∫ 1

−1

Φν(t) dt ≤
∫ 1

−1

Φµ(t) dt+ 3r

contrary to (8.10.2). Set B := f−1
(
[−1, τ)

)
. Then Br ⊂ f−1

(
[−1, τ + r)

)

since f ∈ Lip1(X). Hence (8.10.3) yields ν(B) > µ(Br) + r, which gives the
estimate dP (µ, ν) ≥ r. Now the last estimate in (8.10.1) follows by choosing
3r sufficiently close to ‖µ − ν‖0. The estimate ‖µ − ν‖∗BL ≤ 2dP (µ, ν) is
proved similarly, taking into account that the equality ‖f‖BL = 1 yields that
the function f is Lipschitzian with constant 1−supx |f(x)|. The last assertion
of the theorem has been verified in the proof of Theorem 8.9.4 for d0(µ, ν) =
‖µ−ν‖0, hence it holds for the other metrics mentioned in the formulation. �
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Denote by M1(X) the set of all Borel probability measures on X such
that the functions x �→ d(x, x0) are integrable for all x0 ∈ X (by the triangle
inequality, it suffices to have the integrability for some x0). On the set M1(X)
we define the following modified Kantorovich–Rubinshtein metric:

‖µ− ν‖∗0 := sup
{∫

X

f d(µ− ν) : f ∈ Lip1(X)
}
.

It is clear that ‖µ− ν‖0 ≤ ‖µ− ν‖∗0 ≤ max(diamX, 1)‖µ− ν‖0 and

‖µ− ν‖∗0 ≤
∫
d(x, a) (µ+ ν)(dx)

for every a ∈ X, since f(x) can be replaced by f(x)−f(a) due to the equality
µ(X) = ν(X) and the estimate |f(x) − f(a)| ≤ d(x, a). If diamX ≤ 1, then
‖µ− ν‖0 = ‖µ− ν‖∗0. Note that ‖δx− δy‖∗0 = d(x, y) and ‖δx− δy‖0 ≤ 2. The
mapping x �→ δx is an isometry from X to the space M1(X) ∩ Pτ (X) with
metric ‖ · ‖∗0 and its image is closed. The space

(
M1(X) ∩ Pτ (X), ‖ · ‖∗0

)
is

complete precisely when so is (X, d) (the proof is similar to the case of d0).
The quantity ‖µ − ν‖∗0 is indeed a norm of the measure µ − ν if we

consider the linear space M0(X) of all signed Borel measures σ on X such
that σ(X) = 0 and the function x �→ d(x, x0) is integrable with respect to |σ|
(equivalently, Lip1(X) ∈ L1(|σ|)). The above formula defines the norm ‖σ‖∗0
on M0(X). We observe that σ can be written as ‖σ+‖µ − ‖σ−‖ν, where
µ, ν ∈ M1(X), µ = σ+/‖σ+‖, ν = σ−/‖σ−‖. The Kantorovich–Rubinshtein
norm ‖ · ‖∗0 can be extended to the linear space of all bounded Borel measures
on X that integrate all Lipschitzian functions. To this end, we set

‖σ‖∗0 = |σ(X)|+ sup
{∫

X

f dσ : f ∈ Lip1(X), f(x0) = 0
}
.

In nontrivial cases
(
M0(X), ‖ · ‖∗0

)
is not complete (see p. 192).

8.10.44. Lemma. For all µ, ν ∈M1(X), one has

‖µ− ν‖∗0 = Ŵ (µ, ν) := sup
{∫

X

f dµ+
∫
g dν : (8.10.4)

f, g ∈ C(X), f(x) + g(y) ≤ d(x, y)
}
.

Proof. We have ‖µ− ν‖∗0 ≤ Ŵ (µ, ν), since f(x)− f(y) ≤ d(x, y) for all
f ∈ Lip1(X) and one can take g(y) = −f(y). On the other hand, if f and g
are such that f(x) + g(y) ≤ d(x, y), then, letting h(x) = infy[d(x, y) − g(y)],
we obtain f ≤ h ≤ −g and h(x) − h(x′) ≤ supy[d(x, y) − d(x′, y)] ≤ d(x, x′)
for all x, x′, whence we have h ∈ Lip1(X). In addition,

∫
f dµ+

∫
g dν ≤

∫
h d(µ− ν).

Thus, equality (8.10.4) is proven. �
The next result gives another expression for ‖µ− ν‖∗0.
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8.10.45. Theorem. The Kantorovich–Rubinshtein distance ‖µ − ν‖∗0
between Radon probability measures µ and ν in the class M1(X) can be rep-
resented in the form

‖µ− ν‖∗0 = W (µ, ν) := inf
λ∈M(µ,ν)

∫

X×X
d(x, y)λ(dx, dy), (8.10.5)

where M(µ, ν) is the set of all Radon probability measures λ on X×X such that
the projections of λ to the first and second factors are µ and ν. In addition,
there exists a measure λ0 ∈M(µ, ν) at which the value W (µ, ν) is attained.

Proof. We observe that ‖µ − ν‖∗0 ≤ W (µ, ν), since for all λ ∈ M(µ, ν)
and every function f ∈ Lip1(X) we have

∫

X

f d(µ− ν) =
∫

X×X
[f(x)− f(y)]λ(dx, dy) ≤

∫

X×X
d(x, y)λ(dx, dy).

The case of a finite space X is left as Exercise 8.10.111. In the general case,
we find two sequences of probability measures µn and νn that have finite
supports Xn and converge weakly to µ and ν, respectively, such that both
sequences are uniformly tight. We may assume that all sets Xn contain some
point a. Let λn ∈M(µn, νn) be a probability measure on Xn×Xn with

∫

X×X
d(x, y)λn(dx, dy) = ‖µn − νn‖∗0.

The sequence of measures λn with uniformly tight projections is uniformly
tight on X. Passing to a subsequence, we may assume that the measures
λn converge weakly to a measure λ on X×X. It is clear that λ ∈ M(µ, ν).
Since the measures µ and ν are Radon, we can assume that the space X is
separable. For every n, there is a function fn on Xn that is Lipschitzian with
constant 1, fn(a) = 0 and

∫

X

fn d(µn − νn) = ‖µn − νn‖∗0 = W (µn, νn)

=
∫

X×X
d(x, y)λn(dx, dy). (8.10.6)

The functions fn can be extended to the whole space X with the same Lips-
chitzian constant (see Exercise 8.10.71). We denote the extension again by fn
and find in {fn} a subsequence convergent on a countable everywhere dense
set. By the uniform Lipschitzness this subsequence, denoted again by {fn},
converges at every point. It is clear that the limit f of this subsequence is
Lipschitzian with constant 1 and f(a) = 0. By Theorem 8.2.18 we obtain

lim
n→∞

∫

X

fn d(µn − νn) =
∫

X

f d(µ− ν). (8.10.7)

In addition, one has
∫

X×X
d(x, y)λ(dx, dy) ≤ lim inf

n→∞

∫

X×X
d(x, y)λn(dx, dy)
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by the continuity of the function d (see Exercise 8.10.73). Therefore, taking
into account (8.10.6) and (8.10.7) we obtain

W (µ, ν) ≤
∫

X×X
d(x, y)λ(dx, dy) ≤

∫

X

f d(µ− ν) ≤ ‖µ− ν‖∗0.

Since ‖µ− ν‖∗0 ≤W (µ, ν), one has equalities in this chain of inequalities. �
Note that if (X, d0) is any metric space, then the metric d = d0/(1 + d0)

(or the metric d = min(1, d0)) generates the same topology and is bounded, so
M1

(
(X, d)

)
= PB(X). Hence the function W defined in (8.10.5) is a metric on

Pr(X) that generates the weak topology. But this is not true for the original
metric d0 if diam (X, d0) = ∞: taking cn := d0(xn, x0) → ∞, we obtain
µn := cn(cn + 1)−1(δx0 + c−1

n δxn) ⇒ δx0 and ‖µn− δx0‖∗0 = cn(cn + 1)−1 → 1.
In many interesting cases, the measure λ0, at which the extremum is at-

tained, can be obtained in the form µ ◦Ψ−1 with some measurable mapping
Ψ: X → X×X. Moreover, under certain assumptions (but not always, of
course), the mapping Ψ can be even obtained in the form Ψ(x) =

(
x, F (x)

)

with some mapping F : X → X. This is one of the links between this problem
and the study of transformations of measures, since ν = µ◦F−1. It should be
also added that under broad assumptions, F turns out to be sufficiently regu-
lar (for example, it is the differential or subdifferential of a convex function).
Unfortunately, it is not possible to provide here more details on this interesting
direction at the intersection of measure theory, variational calculus, and the
theory of nonlinear differential equations. The interested reader can consult
Ambrosio [42], Bogachev, Kolesnikov [214], Brenier [252], Caffarelli [300],
Feyel, Üstünel [571], Kolesnikov [1019], Lipchius [1175], McCann [1285],
Rachev, Rüschendorf [1508], Sudakov [1803], Villani [1928].

We shall mention an interesting theorem due to Strassen [1791] (its proof
can also be found in the book Dudley [495, �11.6]).

8.10.46. Theorem. Let µ and ν be two Radon probability measures on
a metric space (X, d). Then, there exist a probability space (Ω,F , P ) and two
measurable mappings ξ and η from Ω to X such that µ = P ◦ξ−1, ν = P ◦η−1

and dP (µ, ν) = K(µ, ν), where K(µ, ν) is the Ky Fan metric defined by the
formula

K(ξ, η) := inf
{
ε > 0: P

(
d(ξ, η) > ε

)
≤ ε

}
.

Regarding measures with given projections to the factors, see also the
results in �9.12(vii).

Now we briefly discuss a concept of merging of measures. Let us say that
two sequences of Baire measures {µn} and {νn} on a topological space X are
weakly merging if the sequence of measures µn−νn converges weakly to zero. If
{µn} and {νn} are weakly merging sequences of Borel probability measures on
a separable metric space (X, d), then according to Exercise 8.10.134 we have
‖µn − νn‖0 → 0 and dP (µn, νn) → 0. However, the fact that dP (µn, νn) → 0
(or, equivalently, ‖µn − νn‖0 → 0) does not imply that {µn} and {νn} are
weakly merging. For example, let µn be Dirac’s measure at the point n on
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the real line and let νn be Dirac’s measure at the point n + 1/n. It is clear
that ‖µn − νn‖0 → 0, but the measures δn − δn+1/n do not converge weakly.
See Dudley [495, � 11.7] for the proof of the following result.

8.10.47. Proposition. Suppose that (X, d) is a separable metric space
and that {µn}, {νn} ⊂ Pσ(X). Then the following conditions are equivalent:

(a) dP (µn, νn) → 0, (b) ‖µn − νn‖0 → 0,
(c) there exist a probability space (Ω, P ) and measurable mappings ξn, ηn

from Ω to X such that P ◦ ξ−1
n = µn, P ◦ η−1

n = νn and d(ξn, ηn) → 0 a.e.

In the case of a separable metric space X a stronger concept of merging of
measures, called F -merging, is considered in D’Aristotile, Diaconis, Freedman
[404], where it is required that �(µn, νn) → 0 for every metric � on Pσ(X)
that metrizes the weak topology. In order to see that this is indeed a stronger
condition, consider the following example. Let a measure µn on the real line
assign the value 1/n to the points 1, . . . , n and let νn = µn+1. Then the
measures µn− νn converge to zero even in the variation norm, but are not F -
merging. Indeed, the sets {µ2n} and {ν2n} are closed in P(IR1) and disjoint,
which yields a function Φ ∈ Cb

(
P(IR1)

)
such that the numbers Φ(µn)−Φ(νn)

do not approach zero (then one can take the metric dP (µ, ν) + |Φ(µ)−Φ(ν)|
on Pσ(X)). In [404] among other things the following result is established.

8.10.48. Theorem. Let X be a separable metric space and let {µn} and
{νn} be two sequences in Pσ(X). The following conditions are equivalent:

(a) the sequences {µn} and {νn} are F -merging,
(b) for every function Φ ∈ Cb

(
Pσ(X)

)
, one has Φ(µn)− Φ(νn) → 0,

(c) for every function Ψ ∈ Cb
(
Pσ(X)×Pσ(X)

)
vanishing on the diagonal,

one has Ψ(µn, νn) → 0.
If µn �= νn for all n, then yet another equivalent condition is:
(d) every subsequence in {µn} contains a further subsequence that con-

verges weakly, and the corresponding subsequence in {νn} converges weakly to
the same limit.

Finally, if X is complete, then the latter condition is equivalent to that
both sequences are uniformly tight and are weakly merging.

Weak merging is equivalent to F -merging precisely when X is compact.
Analogous problems are studied in [404] for nets.

8.10(ix). Uniformly distributed sequences

An interesting concept related to weak convergence of measures is that
of a uniformly distributed sequence. We shall give several basic facts re-
lated to this concept and refer the reader to detailed accounts in the books
Hlawka [836] and Kuipers, Niederreiter [1074], which contain extensive bib-
liographies. Note only that as early as at the beginning of the 20th century,
P. Bol, W. Sierpiński, and H. Weyl (see [1976]) studied uniformly distributed
sequences of numbers, and at the beginning of the 1950s the study of their
analogs in topological spaces began (see Hlawka [835]).
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8.10.49. Definition. A sequence of points xn in a topological space X
is called uniformly distributed with respect to a Borel (or Baire) probability
measure µ on X if the measures (δx1 + · · ·+ δxn)/n converge weakly to µ.

Thus, it is required that for all f ∈ Cb(X)

lim
n→∞

f(x1) + · · ·+ f(xn)
n

=
∫

X

f(x)µ(dx).

An important example of a uniformly distributed sequence was indicated
independently by P. Bol, W. Sierpiński, and H. Weyl (its justification is left
as Exercise 8.10.103). Let [x] denote the integer part of a real number x.

8.10.50. Example. (i) For every irrational number θ ∈ (0, 1), the se-
quence xn := nθ − [nθ] is uniformly distributed with respect to Lebesgue
measure on [0, 1].

It is clear from the properties of weak convergence that for every uni-
formly distributed sequence {xn} in [0, 1] with Lebesgue measure, the quanti-
ties n−1

∑n
i=1 f(xi) converge to the integral of f for every Riemann integrable

function f .
We observe that if {xn} is a uniformly distributed sequence for a Radon

measure µ on a completely regular space X and T : X → Y is a Borel mapping
to a space Y such that the set of discontinuity points of T has µ-measure
zero, then µ◦T−1 is a Radon measure and the sequence {T (xn)} is uniformly
distributed with respect to µ ◦ T−1 (see Theorem 8.4.1). This simple fact
along with Theorem 9.12.29 enables one to construct uniformly distributed
sequences in many spaces. The existence of such sequences can be deduced
from a general theorem due to Niederreiter [1370], proven below. The proof
is based on the following combinatorial lemma.

8.10.51. Lemma. Let X be a nonempty set. For every probability mea-
sure ν with a finite support {z1, . . . , zk} ⊂ X, there exists a sequence {yn}
with yn ∈ {z1, . . . , zk} such that, for every set M ⊂ X and every N ∈ IN, one
has ∣

∣
∣
SN (M, {yn})

N
− ν(M)

∣
∣
∣ ≤ C(ν)

N
, (8.10.8)

where SN (M, {yn}) :=
∑N
n=1 IM (yn) and C(ν) = (k − 1)k.

Proof. Suppose that we have found a sequence {yn} such that
∣
∣
∣
SN (zi, {yn})

N
− ν(zi)

∣
∣
∣ ≤ k − 1

N
, ∀ i ≤ k,∀N ≥ 1. (8.10.9)

Then one can take C(ν) = (k − 1)k. Indeed, since yn ∈ {z1, . . . , zk} and
µ is concentrated at {z1, . . . , zk}, it suffices to verify (8.10.8) for sets M
in {z1, . . . , zk}. Then the left-hand side of (8.10.8) is estimated by k(k−1)N−1

in view of (8.10.9). Now we show by induction on k that one can ob-
tain (8.10.9). If k = 1, then we take the sequence yn ≡ z1. Suppose that
our claim is true for k − 1. Let ν(zi) = λi > 0, i = 1, . . . , k. Let us con-
sider a probability measure ν′ with support at the points z1, . . . , zk−1 and
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ν′(zi) = λi(1 − λk)−1. By the inductive assumption there exists a sequence
{y′n} such that y′n ∈ {z1, . . . , zk−1} and

∣
∣
∣
SN (zi, {y′n})

N
− ν′(zi)

∣
∣
∣ ≤ k − 2

N
, ∀ i ≤ k − 1,∀N ≥ 1.

Now we define the sequence {yn} as follows: if n =
[
m(1 − λk)−1

]
for some

m ∈ IN, where [p] is the integer part of p, then we set yn := y′m, otherwise
we set yn := zk. Note that such a number m is unique. We verify (8.10.9).
Let us consider the case i ≤ k − 1. Then SN (zi, {yn}) equals the cardinality
of the set of natural numbers m such that

[
m(1− λk)−1

]
≤ N and y′m = zi.

Hence SN (zi, {yn}) = SL(zi, {y′n}), where L = [(N +1)(1−λk)]−ε and ε = 1
or 0 depending on whether the number (N + 1)(1− λk) is an integer or not.
Thus,

∣
∣
∣
SN (zi, {yn})

N
− ν(zi)

∣
∣
∣ =

∣
∣
∣
L

N

SL(zi, {y′n})
L

− (1− λk)ν′(zi)
∣
∣
∣

≤ L

N

∣
∣
∣
SL(zi, {y′n})

L
− ν′(zi)

∣
∣
∣+ ν′(zi)

∣
∣
∣
L

N
− (1− λk)

∣
∣
∣

≤ k − 2
N

+
ν′(zi)
N

∣
∣N(1− λk)− [(N + 1)(1− λk)] + ε

∣
∣.

It remains to observe that the second summand on the right-hand side is
estimated by N−1, since the number

∣
∣N(1 − λk) − [(N + 1)(1 − λk)] + ε

∣
∣

equals λk if (N + 1)(1− λk) is an integer and this number does not exceed 1
otherwise. Finally, let us consider the point zk. It is readily seen that we have
the equality SN (zk, {yn}) = N −L, where L is defined above. Hence one has

∣
∣
∣
SN (zk, {yn})

N
− ν(zk)

∣
∣
∣ =

∣
∣
∣λ1 + · · ·+ λk−1 −

L

N

∣
∣
∣ ≤ 1

N
,

which completes the proof. �

Now we prove a criterion of the existence of uniformly distributed se-
quences.

8.10.52. Theorem. Let µ be a Radon (or τ -additive) probability mea-
sure on a completely regular space X. The existence of a sequence uniformly
distributed with respect to µ is equivalent to the existence of a sequence of
probability measures with finite supports weakly convergent to µ.

Proof. If {xn} is a uniformly distributed sequence in the space X, then
the measures n−1(δx1 + · · · + δxn) have finite supports and converge weakly
to µ. The converse is not that simple. Suppose that probability measures µj
with finite supports converge weakly to µ. By the above lemma, for every j,
there exist a number Cj := C(µj) and a sequence {yjn} such that for all
M ⊂ X and N ∈ IN one has the inequality

∣
∣
∣
SN (M, {yjn})

N
− µj(M)

∣
∣
∣ ≤ Cj

N
.



240 Chapter 8. Weak convergence of measures

For every j we take a natural number rj ≥ j(C1 + · · · + Cj+1). Now we
construct the required sequence {xn} as follows. Every natural number n is
uniquely written in the form n = r1 + · · ·+ rj−1 +s, where j ∈ IN, 0 < s ≤ rj ,
and r0 := 0. Let xn := yjs. The obtained sequence is as required. Indeed, let
a set M have the boundary of µ-measure zero. Every natural number N > r1
is written in the form N = r1 + · · ·+ rk + r, 0 < r ≤ rk+1. Then, as one can
easily verify, we have

SN (M, {xn}) =
k∑

j=1

Srj (M, {yjn}) + Sr(M, {yk+1
n }).

Therefore,

SN (M, {xn})
N

− µ(M) =
k∑

j=1

rj
N

(Srj (M, {yjn})
rj

− µj(M)
)

+
r

N

(Sr(M, {yk+1
n })

r
− µk+1(M)

)
+

k∑

j=1

rj
N
µj(M) +

r

N
µk+1(M)− µ(M),

which is bounded in the absolute value by

k∑

j=1

rj
N

Cj
rj

+
r

N

Ck+1

r
+
∣
∣
∣

1
N

( k∑

j=1

rjµj(M) + rµk+1(M)
)
− µ(M)

∣
∣
∣

≤ 1
rk

k+1∑

j=1

Cj +
∣
∣
∣

1
N

( k∑

j=1

rjµj(M) + rµk+1(M)
)
− µ(M)

∣
∣
∣

≤ 1
k

+
∣
∣
∣

1
N

( k∑

j=1

rjµj(M) + rµk+1(M)
)
− µ(M)

∣
∣
∣.

Letting N → ∞ we have k → ∞. Hence the first term on the right-hand
side of the obtained estimate tends to zero. The second term tends to zero
as well, since we have µj(M) → µ(M) by weak convergence and the equality
N =

∑k
j=1 rj + r. �

8.10.53. Corollary. Let X be a completely regular space. The following
conditions are equivalent:

(i) for every Radon probability measure on X, there exists a uniformly
distributed sequence,

(ii) the sequential closure of the set of probability measures with finite
support coincides with Mr(X).
In particular, for every Borel probability measure on a completely regular
Souslin space, there exists a uniformly distributed sequence.

We emphasize that it is important in this corollary to deal with the se-
quential closure (the set of the limits of all convergent sequences), but not with
the larger closure in the usual topological sense, which, as we know, always
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coincides with Mr(X). Not every Radon measure on an arbitrary compact
space has a uniformly distributed sequence. Let us consider an example con-
structed by Losert [1187].

8.10.54. Example. Let X = βIN be the Stone–Čech compactification
of IN. Then, there exists a Radon probability measure on X that has no
uniformly distributed sequences.

Proof. We show that any atomless Radon probability measure µ on βIN
has no uniformly distributed sequences. The existence of atomless measures
on βIN follows by Theorem 9.1.9, since βIN can be mapped continuously onto
[0, 1]. To this end, we set f(n) = rn, where {rn} is the set of all rational num-
bers in [0, 1]. Next we extend f to a continuous function on βIN with values
in [0, 1]. Suppose that there is a sequence of discrete measures weakly conver-
gent to µ. Then, by Proposition 8.10.59 below, the measure µ is concentrated
on a countable set, which contradicts the fact that it has no atoms. �

The following result is due to Losert [1188] too.

8.10.55. Proposition. Let X be a compact space such that there exists
a continuous mapping from the space {0, 1}ℵ1 onto X, where ℵ1 is the least
uncountable cardinal. Then every Radon probability measure on X has a
uniformly distributed sequence. In particular, this is true for [0, 1]c under the
continuum hypothesis.

Additional information on uniformly distributed sequences can be found
in the above cited works and in Losert [1189], Mercourakis [1303], Plebanek
[1471], and Sun [1806], [1807], as well as in Exercises 8.10.104–8.10.109.

8.10(x). Setwise convergence of measures

As early as in 1916, G.M. Fichtenholz (see [576, �30], [578] and the
comments in V. 1 related to ��4.5–4.6) discovered a remarkable fact: if the
integrals of functions fn over every open set in the interval [0, 1] converge to
zero, then the integrals over every Borel set converge to zero as well. Thirty-
five years later Dieudonné [448] proved that if a sequence of measures on
a compact metric space converges on every open set, then it converges on
every Borel set. Grothendieck [744] extended the Dieudonné theorem to lo-
cally compact spaces. The method used by Fichtenholz can be modified for
Radon measures; moreover, in view of Theorem 9.6.3, his result yields easily
the Dieudonné result. So the assertion that a sequence of Radon measures
convergent on open sets converges on all Borel sets can naturally be called
the Fichtenholz–Dieudonné–Grothendieck theorem. Later several authors ex-
tended the result to more general cases. We shall give a proof of a useful
generalization obtained in Pfanzagl [1442], and then mention a number of
other results.
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8.10.56. Theorem. Let a topology base U0 in a Hausdorff space X be
closed with respect to countable unions and let a sequence of Radon measures
µn converge on every set in U0. Then it converges on every Borel set.

Proof. The assertion reduces to the case where the measures µn con-
verge to zero on every set in U0. Indeed, if the assertion is false, then there
exist B ∈ B(X) and ε > 0 such that for every n there exists k(n) > n with
|µn(B)− µk(n)(B)| > ε. Then the sequence of measures µn − µk(n) converges
to zero on all sets in U0, but not on B.

We assume further that µn(U) → 0 for all U ∈ U0. Let C be compact.
We show that for every ε > 0, there exists U ∈ U0 such that

C ⊂ U, |µn|(U\C) ≤ ε for all n. (8.10.10)

Otherwise for some ε > 0 and all U ∈ U0 with C ⊂ U we have |µn|(U\C) > ε
for infinitely many n. Indeed, if the set of such numbers n were finite and
consisted of the elements n1, . . . , nk, then due to the assumption that U0 is
a topology base closed with respect to finite unions, one could find a set
V ∈ U0 such that C ⊂ V ⊂ U and

∑k
i=1 |µni |(V \C) < ε. Let us verify

that there exist a decreasing sequence of sets Ui ∈ U0 with C ⊂ Ui, sets
Vi ∈ U0 with Vi ⊂ Ui−1\Ui, and an increasing sequence of numbers ni such
that |µni(Vi)| > ε/4 for all i. We argue by induction. Let U0 be any set in U0

containing C. Suppose that Ui, Vi, and ni are constructed for i = 1, . . . , j−1.
As noted above, there exists nj > nj−1 with |µnj |(Uj−1\C) > ε. Let us take
a compact set Cj ⊂ Uj−1\C with |µnj (Cj)| > ε/2. The compact sets C and
Cj do not meet and hence possess disjoint neighborhoods. Hence one can find
sets Uj , Vj ∈ U0 such that Uj ∩Vj = ∅, C ⊂ Uj ⊂ Uj−1, Cj ⊂ Vj ⊂ Uj−1, and
|µnj |(Vj\Cj) < ε/4. It is then clear that Vj ⊂ Uj−1\Uj and

|µnj (Vj)| ≥ |µnj (Cj)| − |µnj |(Vj\Cj) > ε/4.

The constructed sets Vi are disjoint, since Vi ⊂ Ui−1\Ui. According to Exer-
cise 8.10.112, there is an infinite set S ⊂ IN with infi∈S

∣
∣µni

(⋃
j∈S Vj

)∣∣ > 0.
Since

⋃
j∈S Vj ∈ U0, we arrive at a contradiction, which proves (8.10.10).

Now we show that for every B ∈ B(X) and every ε > 0, there exists
a compact set C ⊂ B such that |µn|(B\C) ≤ ε for all n ∈ IN. Together
with (8.10.10) this will yield that lim

n→∞
µn(B) = 0. Suppose that for some

B ∈ B(X) and ε > 0, there is no such compact set. It is then clear that
for every compact set C ⊂ B, we obtain |µn|(B\C) > ε for infinitely many
numbers n. We show that this gives a sequence of disjoint compact sets
Ci ⊂ B and a sequence of numbers ni with |µni(Ci)| > ε/2 for all i. These
sequences are constructed inductively, by setting C0 = ∅. If Ci and ni are
already found for all i ≤ j−1, then by the compactness of Kj := C1∪· · ·∪Cj−1

and the above observation, there exists nj > nj−1 with |µnj |(B\Kj) > ε.
Next we find a compact set Cj ⊂ B\Kj with |µnj (Cj)| > ε/2. Relationship
(8.10.10) implies that the values of the measures µn on every compact set
tend to zero. Applying Exercise 8.10.112 once again, we obtain an infinite set
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D ⊂ IN such that
δ := inf

i∈D

∣
∣µni

( ⋃

j∈D
Cj
)∣∣ > 0.

By (8.10.10) for every j, there exists Vj ∈ U0 with Cj ⊂ Vj and

|µn|(Vj\Cj) < δ2−j−1

for all n ∈ IN. Then |µn|
(⋃

j∈D Vj\
⋃
j∈D Cj

)
≤ δ/2 for all n ∈ IN. Hence∣

∣µni
(⋃

j∈D Vj
)∣∣ ≥ δ/2 for all i ∈ D, which is a contradiction. �

The measures µn have densities fn with respect to some bounded Radon
measure ν (for example, of the form

∑∞
n=1 cn|µn|), and it follows by Theorem

4.5.6 that the functions fn are uniformly integrable and converge to some
function f ∈ L1(ν) in the weak topology of L1(ν). In particular, convergence
of µn takes place on even a larger class than B(X). The limit of {µn} is
a Radon measure. Finally, the above theorem yields the fact (which is not
obvious) that the measures µn are uniformly bounded. However, this fact can
be obtained under a weaker hypothesis.

8.10.57. Corollary. Suppose that a topology base U0 in a Hausdorff
space X is closed with respect to countable unions. Let a family M of Radon
measures on X be such that sup

{
|µ(U)| : µ ∈M

}
<∞ for all U ∈ U0. Then

the family M is bounded in the variation norm.

Proof. It suffices to deal with a sequence of measures µn bounded on
every U ∈ U0. If it is not bounded in the variation norm, then we may as-
sume that ‖µn‖ ≥ n. Then the sequence n−1/2µn converges to zero on U0.
By the above theorem it converges to zero on every Borel set, which by Corol-
lary 4.6.4 yields the boundedness in the variation norm contrary to the esti-
mate ‖n−1/2µn‖ ≥ n1/2. �

8.10.58. Theorem. Let M be a bounded set of Radon measures on a
Hausdorff space X. Then M has compact closure in the topology of con-
vergence on Borel sets precisely when lim

n→∞
supµ∈M |µ(Kn)| = 0 for every

sequence of pairwise disjoint compact sets Kn. If X is regular, then this is
equivalent to the condition that for every sequence of pairwise disjoint open
sets Un one has lim

n→∞
supµ∈M |µ(Un)| = 0.

Proof. The first claim follows by Lemma 4.6.5 and the Radon property
of our measures. The necessity of the second condition is also clear from that
lemma. For the proof of sufficiency we observe that for every compact set K
and every ε > 0, there exists an open set U ⊃ K such that |µ|(U\K) ≤ ε
for all µ ∈ M . Otherwise we let V1 = X and take a measure µ1 ∈ M with
|µ1|(V1\K) > ε. The set V1\K contains a compact set S with |µ1|(S) > ε.
The compact sets S and K have disjoint neighborhoods U1 and V2. Then
we repeat the construction for V2 and continue it inductively, which gives a
sequence of pairwise disjoint open sets Un and measures µn with |µn|(Un) > ε
contrary to the hypothesis. It remains to verify that lim

n→∞
supµ∈M |µ|(An) = 0
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for every disjoint sequence of compact sets An. If this is not the case, then for
some ε > 0, there exist measures µk ∈M and indices nk with |µk|(Ank) > ε.
As we have shown, there exists a neighborhood W1 of the compact set An1

such that |µ|(W1\An1) < ε/4 for all µ ∈ M . By the regularity of X, there
exists a neighborhood V1 of the compact set An1 such that V1 ⊂W1. The sets
Ank\W1 are compact and disjoint and |µk|(Ank\W1) > 3ε/4 for all k ≥ 2.
By induction we construct pairwise disjoint open sets Vk with |µk|(Vk) > ε/2.
The obtained contradiction completes the proof. �

It should be noted that Theorem 8.10.56 fails for arbitrary Borel mea-
sures (Exercise 8.10.113). However, the Radon property of measures can be
somewhat weakened at the expense of certain restrictions on the space. For
example, if X is regular and the measures µn are τ -additive, then, as shown
in Adamski, Gänssler, Kaiser [11], convergence on every open set implies con-
vergence on every Borel set (moreover, it suffices to have convergence on every
regular open set, i.e., a set that is the interior of its closure). In this case, one
says that the class of open sets is a convergence class. If X is completely reg-
ular and the measures µn are τ -additive, then the class of functionally open
sets is a convergence class, see [11]. If we deal with Baire measures µn, then,
according to Landers, Rogge [1103], convergence on functionally open sets
implies convergence on all Baire sets for every topological space. More special
results in this direction and additional references can be found in Adamski,
Gänssler, Kaiser [11], Gänssler [652], [653], Landers, Rogge [1103], Rogge
[1591], Sazhenkov [1654], Stein [1780], Topsøe [1872], Wells [1972].

We know that setwise convergence implies weak convergence of measures,
but the converse is false in general. However, there is a class of spaces for
which the converse is true as well. We recall that a compact space X is called
extremally disconnected if the closure of every open set is open (see Engelking
[532, �6.2]). This is equivalent to saying that the closures of disjoint open
sets in X do not meet. Note that X has a topology base consisting of sets
that are simultaneously open and closed (such sets are called clopen). The
following result is due to Grothendieck [744].

8.10.59. Proposition. Let X be an extremally disconnected compact
space. Then every weakly convergent sequence of Radon measures converges
on every Borel set. In particular, this is true if X = βIN is the Stone–Čech
compactification of IN.

Proof. We may assume that our sequence of measures µn converges
weakly to zero. Suppose that we are given a sequence of pairwise disjoint sets
Vk that are open and closed. By weak convergence of our measures to zero
and continuity of IVk for every k, we have lim

n→∞
µn(Vk) = 0. In addition, for

every subset S ⊂ IN, the closure Z(S) of the open set
⋃
k∈S Vk is open (by

the definition of extremal disconnectedness) and hence lim
n→∞

µn
(
Z(S)

)
= 0. If

the sets S1 and S2 are disjoint, then Z(S1) and Z(S2) are disjoint as well and
Z(S1∪S2) = Z(S1)∪Z(S2). Thus, on the set of all subsets of IN we obtain the
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additive functions νk(S) := µk
(
Z(S)

)
such that lim

n→∞
νn(S) = 0 for all S ⊂ IN.

By Lemma 4.7.41 one has lim
n→∞

∑∞
k=1 |νn(k)| = 0. So lim

n→∞
µn
(⋃∞

k=1 Vk
)

= 0.
It remains to observe that for every open set U in X, one can find a sequence
of disjoint clopen sets Vk ⊂ U with |µn|

(
U\
⋃∞
k=1 Vk

)
= 0 for all n. To this

end, we take the measure ν :=
∑∞
n=1 2−n(‖µn‖ + 1)−1|µn|, find a clopen set

V1 ⊂ U with ν(U\V1) < 1/2 (which is possible because ν is Radon and there
is a base of topology consisting of clopen sets), then we find a clopen set V2

in the open set U1 := U\V1 with ν(U1\V1) < 1/4 and so on. It follows that
lim
n→∞

µn(U) = 0. �

The measurability of mappings of the form µ �→ µ(A) was investigated
in Ressel [1555]. Here are two results from his work. Let X be a Haus-
dorff space and let K(X) be the set of all its compact subsets. The space
K(X) can be equipped with a natural topology (the Vietoris topology, see
Fedorchuk, Filippov [561, Ch. 4]) that is generated by all sets of the form
{K ∈ K(X) : K ⊂ U} and {K ∈ K(X) : K ∩ U �= ∅}, where U ⊂ X is open.
If X is a Polish space, then so is K(X) with the Vietoris topology.

8.10.60. Theorem. Let X be a Souslin space and let the space M+(X)
of nonnegative Radon measures be equipped with the weak topology (or the
A-topology if X is not completely regular).

(i) If Y is a Polish space and f : Y → X is a continuous mapping, then
the function (µ,K) → µ

(
f(K)

)
on M+(X)×K(Y ) is upper semicontinuous.

(ii) If A ⊂ X is a Souslin set, then the function ϕA : µ �→ µ(A) on
M+(X) is an S-function, i.e., the sets {ϕA > t} are Souslin for all t ∈ IR1.
If A is a set in the σ-algebra generated by Souslin sets, then the function ϕA
is measurable with respect to the σ-algebra generated by Souslin sets.

8.10.61. Theorem. (i) Let X, Y , and Z be Souslin spaces and let a
mapping f : X×Y → Z be universally measurable (i.e., f−1(B) is measurable
with respect to all Borel measures on X×Y for all B ∈ B(Z)). Let us set
fy(x) := f(x, y). We equip the space of measures with the A-topology (the
weak topology in the case of completely regular spaces). Then the mapping

F : M+(X)×Y →M+(Z), (µ, y) �→ µ ◦ f−1
y ,

is universally measurable. In addition, if f is continuous or Borel, then so
is F . Finally, if f is measurable with respect to the σ-algebra generated by
Souslin sets, then F has the same property.

(ii) If, additionally, Z = IR1 and the function f is bounded, then the
following function is universally measurable:

Ψ: M+(X)×Y → IR1, (µ, y) �→
∫

X

f(x, y)µ(dx).

If f is A-measurable (or is, respectively, an S-function, Borel measurable,
upper semicontinuous, continuous), then Ψ has the respective property.
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8.10(xi). Stable convergence and ws-topology

Here we discuss one more mode of convergence of measures, which is use-
ful in applications and combines weak convergence and setwise convergence.
Suppose we are given a measurable space (Ω,A) and a topological space T .
Let us consider the space M(Ω×T ) of all bounded measures on the product
Ω×T equipped with one of the σ-algebras A⊗B(T ) or A⊗Ba(T ). The set of all
nonnegative measures in M(Ω×T ) is denoted by M+(Ω×T ). We say that a
net of measures µα ∈M(Ω×T ) converges to a measure µ in the ws-topology
if, for every bounded A-measurable function ψ and every function ϕ ∈ Cb(T ),
one has

lim
α

∫

Ω×T
ψ(ω)ϕ(t)µα(dωdt) =

∫

Ω×T
ψ(ω)ϕ(t)µ(dωdt). (8.10.11)

It is clear that this convergence is indeed generated by a topology: we equip
the space M(Ω×T ) with the seminorms

∣
∣
∣
∣

∫

Ω×T
ψ(ω)ϕ(t)µ(dωdt)

∣
∣
∣
∣.

Fundamental neighborhoods of the element µ ∈M(Ω×T ) have the form

Uψ1,...,ψn;ϕ1,...,ϕn;ε(µ) :=
{
ν :

∣
∣
∣
∫
ψjϕj d(ν − µ)

∣
∣
∣ < ε, j = 1, . . . , n

}
,

(8.10.12)
where ε > 0, ϕj ∈ Cb(T ), and ψj is a bounded A-measurable function. Con-
vergence of a uniformly bounded net (e.g., consisting of probability measures)
in the ws-topology is equivalent to equality (8.10.11) with ψ of the form
ψ = IA, A ∈ A. The same is true for nets of nonnegative measures on Ω×T .
If A = {Ω,∅}, then the ws-topology reduces to the weak topology M(T ) and
if T is a singleton, then we obtain the topology of convergence on bounded
A-measurable functions.

8.10.62. Theorem. Let T be a completely regular space in which all
compact subsets are metrizable and let a net of measures µα ∈ M(Ω×T )
converge to a measure µ ∈ M(Ω×T ) in the ws-topology and be uniformly
bounded in the variation norm. If the projections of the measures |µα| and |µ|
on T are uniformly tight and the projections of the measures |µα| on Ω are
uniformly countably additive, then

lim
α

∫
f dµα =

∫
f dµ

for every bounded A⊗B(T )-measurable function f with the property that for
every ω ∈ Ω, the function t �→ f(ω, t) is continuous.

Proof. Without loss of generality we may assume that |f | ≤ 1 and
‖µα‖ ≤ 1, ‖µ‖ ≤ 1. Let us fix ε > 0. Let πT and πΩ denote the projection
mappings on T and Ω, respectively. By hypothesis, there exists a compact
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set K ⊂ T such that

|µα| ◦ π−1
T (T\K) + |µ| ◦ π−1

T (T\K) ≤ ε for all α.

The space C(K) is separable because K is metrizable. For every ω ∈ Ω,
we denote by gω the continuous function t �→ f(ω, t) on K. It is clear that
the mapping g : Ω → C(K), ω �→ gω, is Borel. Since the projections of
our measures on Ω are uniformly countably additive, there is a probability
measure ν onA with respect to which they have uniformly integrable densities.
By using the separability of the Banach space C(K) and applying Lusin’s
theorem to the mapping g and the measure ν, we can find a finite partition of
Ω into sets A1, . . . , Ap, Ap+1 ∈ A and functions f1, . . . , fp ∈ C(K) such that
‖fi‖C(K) ≤ 1, ‖gω − fi‖C(K) ≤ ε whenever ω ∈ Ai, i ≤ p, and

|µα| ◦ π−1
Ω (Ap+1) + |µ| ◦ π−1

Ω (Ap+1) ≤ ε for all α.

Since T is completely regular, every function fi extends to T with the preser-
vation of the maximum of the absolute value. The extension is denoted again
by fi. By hypothesis, there exists an index α0 such that the absolute value
of the difference between the integrals of h(ω, t) :=

∑p
i=1 fi(t)IAi(ω) against

the measures µα and µ does not exceed ε for all α ≥ α0. We observe that
supx |f(x)− h(x)| ≤ 2, |f(x)− h(x)| ≤ ε on

⋃p
i=1Ai×K and

|µα|
(
Ω×(T\K)

)
+ |µα|(Ap+1×T ) ≤ 2ε.

It remains to use the estimate
∫

Ω×T
|f − h| d|µα| ≤

∫

⋃p
i=1 Ai×K

|f − h| d|µα|+ 4ε ≤ 5ε,

and a similar estimate for µ. �

8.10.63. Corollary. Suppose that a sequence of nonnegative measures
µn on Ω×T converges to a measure µ in the ws-topology and that T is a Polish
space. Then the conclusion of Theorem 8.10.62 is valid. More generally, the
same is true if T is a Prohorov space in which all compact sets are metrizable,
and the projections of the measures µn and µ on T are Radon.

Proof. We have µα = |µα|. The projections of the measures µα on Ω
are uniformly countably additive, which follows by setwise convergence on A.
The projections of the measures µα on T converge weakly, hence are uniformly
tight (in the case where the space is Prohorov and the projections are Radon,
this follows by the hypotheses). �

Under broad assumptions, compact sets in the ws-topology are metriz-
able, although on the whole space this topology is not metrizable in non-trivial
cases.

8.10.64. Proposition. Let T be a Polish space and let A be a countably
generated σ-algebra. Then any set M ⊂ M+(Ω×T ) that is compact in the
ws-topology is metrizable.
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Proof. There exists a countable algebra A0 = {An} generating A. In
addition, there exists a countable collection of functions F = {fj} ⊂ Cb(T )
such that the weak topology on P(T ) is generated by the metric

d(µ, ν) :=
∞∑

j=1

2−jψj(µ− ν)
(
1 + ψj(µ− ν)

)−1
, ψj(µ− ν) =

∣
∣
∣
∫
fj d(µ− ν)

∣
∣
∣.

We may assume that f1 = 1. Let us equip M+(Ω×T ) with the metric

�(µ, ν) :=
∞∑

n=1

2−nd
(
(IAn · µ) ◦ π−1

T , (IAn · ν) ◦ π−1
T

)
.

We observe that the sets of measures obtained from M by projecting on Ω
and T are compact in the topology of setwise convergence and in the weak
topology respectively. It is readily seen from this that every neighborhood
U of µ ∈ M in the ws-topology that has the form (8.10.12) with functions
ϕj ∈ Cb(T ) and ψj = IBj , where Bj ∈ A, contains some ball with respect
to the metric �. To this end, we first inscribe in U a neighborhood U ′ of the
form Uψ1,...,ψn;h1,...,hn;ε′(µ) with ε′ < ε and hj ∈ F . Next we find in U ′ a
neighborhood Ug1,...,gn;h1,...,hn;ε′′(µ) with ε′′ < ε′ and gj = IAnj . Note that,
without explicit construction of a metric, we could use just as well the fact
that the compact set MΩ is metrizable in the setwise convergence topology
(Exercise 4.7.148 in Ch. 4), the compact set MT is metrizable in the weak
topology, and the compact set M is homeomorphic to its image under the
natural mapping into the metrizable compact set MΩ×MT . �

The following result is obtained in Raynaud de Fitte [1546].

8.10.65. Theorem. Let T be a metrizable Souslin space with a met-
ric d. Any of the following conditions is equivalent to convergence of a net of
measures µα ∈M+(Ω×T ) to a measure µ ∈M+(Ω×T ) in the ws-topology:

(i) for every bounded A⊗B(T )-measurable function f such that the func-
tion t �→ f(ω, t) is lower semicontinuous for every ω ∈ Ω, one has

lim inf
α

∫
f dµα ≥

∫
f dµ;

(ii) for every bounded A⊗B(T )-measurable function f with the property
that the function t �→ f(ω, t) is continuous for every ω ∈ Ω, one has

lim
α

∫
f dµα =

∫
f dµ;

(iii) the equality in (ii) holds for every function f of the form f(ω, t) =
IA(ω)ϕ(t), where A ∈ A and ϕ is a bounded Lipschitzian function on T .

It is not clear whether convergence in the ws-topology implies property (ii)
in the case of an arbitrary completely regular space. The ws-topology is also
called the stable topology, and the corresponding convergence is called stable
convergence (see Rényi [1551]). However, in many works this terminology is
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attached to property (ii), which is equivalent to ws-convergence in the case
of a Polish space T .

According to Castaing, Raynaud de Fitte, Valadier [318, Theorem 2.2.3],
if T is a completely regular space in which all compact sets are metrizable
and a measure µ ∈ P(Ω×T ) is such that its projection µT to T is Radon and
its projection µΩ to Ω has no atoms, then µ is the limit in the ws-topology
of a net of measures of the form µΩ ◦ F−1

α , Fα(x) =
(
x, ϕα(x)

)
, for some

measurable mappings ϕα : Ω → T . It would be interesting to know whether
a convergent sequence in place of a net can be found.

Additional information on the ws-topology can be found in Balder [96],
Castaing, Raynaud de Fitte, Valadier [318], Jacod, Mémin [877], Lebedev
[1117], Letta [1159], Raynaud de Fitte [1546], Schäl [1663].

Exercises

8.10.66.◦ Prove that a net {xα} of elements of a completely regular space X
converges to an element x ∈ X if and only if the measures δxα converge weakly
to δx.

Hint: observe that if a net {xα} does not converge to x, then there exists its
subnet {x′α} such that f(x′α) = 0 and f(x) = 1 for some function f ∈ Cb(X).

8.10.67.◦ Let X be a completely regular space and let {xn} be a sequence in
X such that the sequence of measures δxn is weakly fundamental. Show that the
sequence {xn} converges in X.

Hint: first observe that {xn} has limit points. Otherwise one can find pairwise
disjoint neighborhoods Un of the points xn such that Un contains the closure of
some smaller neighborhood Wn of the point xn. For every n, there is a continuous
function fn with 0 ≤ fn ≤ 1, f(x2n+1) = 1 and f = 0 outside W2n+1. The function f
that equals fn on W2n+1 and 0 outside the union of the sets W2n+1, is bounded and
continuous, but its integrals with respect to δx2n+1 equal 1, whereas the integrals
with respect to δx2n equal 0, which contradicts the weak fundamentality. It is
readily verified that there is only one limit point. Finally, the same applies to any
subsequence in {xn}.

8.10.68.◦ Show that a sequence of measures µn on the space IN converges weakly
to a measure µ precisely when ‖µ− µn‖ → 0.

Hint: see Corollary 4.5.8.

8.10.69.◦ Give an example of a weakly convergent sequence of signed measures
µn on [0, 1] for which the distribution functions converge at no point of (0, 1).

Hint: consider the measures µn := δxn − δyn , where the sequence of intervals
[xn, yn] is obtained in the following way: for every m ∈ IN, we take the consecutive
intervals of length 2−m with the endpoints of the form k2−m and arrange all such
intervals in a single sequence such that the intervals obtained for m+1 are preceded
by those obtained for m. The measures µn converge weakly to the zero measure,
but the functions Fµn converge at no point of (0, 1).

8.10.70.◦ Give an example of a sequence of probability measures µn on the in-
terval [0, 1] that are defined by smooth uniformly bounded densities �n with respect



250 Chapter 8. Weak convergence of measures

to Lebesgue measure and converge weakly to a measure µ with a smooth density �,
but the functions �n do not converge in measure.

Hint: consider �n(x) = 1 + sin(2πnx) and �(x) = 1.

8.10.71.◦ Let (X, d) be a metric space. (i) Let f be a bounded function on a
set A ⊂ X with |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ A. Let

g(x) := max
{

sup
y∈A

(
f(y) − d(x, y)

)
, inf
A
f
}
.

Verify that g(x) = f(x) if x ∈ A, supy∈X |g(y)| = supx∈A |f(x)|, and |g(x)− g(y)| ≤
d(x, y) for all x, y ∈ X. (ii) Prove that every bounded uniformly continuous function
on X is uniformly approximated by bounded Lipschitzian functions.

8.10.72.◦ Let X be an infinite metric space. Show that the weak topology on
the space Mσ(X) of signed measures is not metrizable.

Hint: consider the case of a countable space that is either discrete (i.e., the
distances between distinct points are separated from zero) or is a Cauchy sequence.
The first case reduces to the weak topology of X = l1. In the second case, if a
Cauchy sequence {xn} has no limit, then it is homeomorphic to IN, hence the first
case applies; if {xn} converges to x, then K = {xn} ∪ {x} is compact, hence C(K)∗

is not metrizable in the ∗-weak topology.

8.10.73.◦ Let Baire probability measures µn on a topological space X converge
weakly to a measure µ and let f ≥ 0 be a continuous function. Show that

∫

X

f dµ ≤ lim inf
n→∞

∫

X

f dµn.

Hint: let fk = min(f, k). Then fk ∈ Cb(X) and for all k ∈ IN one has
∫

X

fk dµ = lim
n→∞

∫

X

fk dµn ≤ lim inf
n→∞

∫

X

f dµn.

8.10.74.◦ (A.D. Alexandroff [30, �17]) Suppose that a sequence of Baire mea-
sures µn ≥ 0 converges weakly to a measure µ and that Z and Zn, n ∈ IN, are
functionally closed sets such that µ(Z) = lim

n→∞
µ(Zn) and for every n, there exists

m with Zn+k ⊂ Zn for all k ≥ m. Prove that lim supn→∞ µn(Zn) ≤ µ(Z).

8.10.75. (Varadarajan [1918]) Let X be a paracompact space and let τ -
additive measures µn, n ∈ IN, converge weakly to a Baire measure µ. Prove that µ
has a unique τ -additive Borel extension.

Hint: according to Exercise 7.14.123 the topological supports Sn of the mea-
sures µn are Lindelöf. Let Z be the closure of

⋃∞
n=1 Sn. Then Z is Lindelöf. Indeed,

let {Ut} be an open cover of Z. As in Exercise 7.14.123, there is a finer open cover V
consisting of a sequence of families Vk = {Vk,α}, where for each fixed k the sets Vk,α
are open and disjoint. For every k, there is an at most countable set of indices αj
with Z ∩Vk,αj �= ∅, since this is true for every Sn in place of Z, and the union of all
Sn is everywhere dense in Z. We obtain a countable cover of Z by the sets Vk,αj ,
which implies the existence of a countable subcover in {Ut}. By Exercise 7.14.72
we have |µ|∗(X\Z) = 0. Hence the measure µ is τ0-additive. Indeed, if X is the
union of an increasing net of functionally open sets Gα, we can find a countable se-
quence {Gαn} covering Z, which by the above gives |µ|

(
X\

⋃∞
n=1Gαn

)
= 0. Hence

µ has a unique τ -additive Borel extension by Corollary 7.3.3.
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8.10.76. (A.D. Alexandroff [30], Varadarajan [1918]) Let X be a paracompact
space and let τ -additive measures µn, n ∈ IN, converge weakly to a Baire measure µ.
Prove that for every net of open sets Uα increasing to X, one has lim

α
|µn|(X\Uα) = 0

uniformly in n.
Hint: by the previous exercise the measure µ is τ -additive and there exists a

Lindelöf closed subspace Z ⊂ X with |µ|(X\Z) = |µn|(X\Z) = 0 for all n. The
restrictions of the measures µn to Z converge weakly to the restriction of the measure
µ (every continuous function on Z extends to a continuous function on X because X
is normal, and our measures are concentrated on Z). Hence everything reduces to a
Lindelöf space, which by the complete regularity of X reduces the claim to the case
of a countable increasing sequence of functionally open sets Uk, when Proposition
8.1.12 is applicable.

8.10.77. Let (X, d) be a noncompact metric space. Show that one can find a

new metric d̃ on X defining the same topology and possessing the following property:
there exist a sequence of signed Radon measures µn and a Radon measure µ such

that the integrals of every bounded function f , uniformly continuous in the metric d̃,
with respect to the measures µn converge to the integral of f with respect to the
measure µ, but the measures µn do not converge weakly to µ. The original metric
has such a property provided that there are two sequences {xn} and {yn} with
xn �= yn which have no limit points and the distance between xn and yn tends to
zero.

Hint: if the latter condition is fulfilled, then take the measures µn = δxn − δyn
and observe that the integrals of any uniformly continuous function against these
measures tend to zero. Every point xn has a neighborhood Vn which contains no
point from both sequences distinct from xn. There is a bounded continuous function
f such that f(xn) = 1 for all n and f = 0 outside

⋃∞
n=1 Vn. Hence there is no weak

convergence of {µn} to zero. In the general case we can find a metric d0 which
generates the original topology and d0(x, y) ≤ 1 for all x, y. Either X contains a
sequence {xn} that is Cauchy but not convergent, i.e., the aforementioned condition
is fulfilled, or there is a countable set of points xn whose mutual distances are
separated from zero. It suffices to consider the case where for some r > 0, there
are no points x with d0(x, xn) ≤ r (otherwise we are in the already-considered

situation). Now we define a new metric on X as follows: d̃(x, y) = d0(x, y) if

x, y �∈ {xn}, d̃(x, xn) = r + 1 if x �∈ {xn}, d̃(xn, xk) := r|1/n − 1/k|. See also
Varadarajan [1918, Part 2, Theorem 4].

8.10.78.◦ Let µ be a Radon probability measure on a completely regular space X
and let E be some class of Borel sets that is closed with respect to finite intersections.
Suppose that for every open set U and every ε > 0, one can find sets E1, . . . , Ek ∈ E
such that

⋃k
i=1 Ei ⊂ U and µ

(
U\
⋃k
i=1 Ei

)
< ε. Prove that if a sequence of Radon

probability measures µn is such that lim
n→∞

µn(E) = µ(E) for all E ∈ E , then the

measures µn converge weakly to µ. Prove the analogous assertion for Baire measures
and Baire sets.

Hint: observe that in the proof of Theorem 8.2.13 it suffices to represent U as
the union of a sequence of sets in E up to a set of µ-measure zero.

8.10.79. (Wichura [1982]) Let (X, d) be a metric space, (Ω, P ) a probability
space, ξn, ξ : Ω → X measurable mappings, and let Tn : X → X be Borel mappings
such that for every n, the measures P ◦ (Tn ◦ ξk)−1 converge weakly to the measure
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P ◦ (Tn ◦ ξ)−1 as k → ∞. Suppose that the sequence d(ξ, Tn ◦ ξ) converges to 0 in
probability and that for every ε > 0 one has

lim
n→∞

lim sup
k→∞

P
(
d(ξk, Tn ◦ ξk) ≥ ε

)
= 0.

Prove that the measures P ◦ ξ−1
k converge weakly to the measure P ◦ ξ−1.

8.10.80. Construct an example of a completely regular space X such that the
set of all Dirac measures is not closed in M+

σ (X).
Hint: let ω1 be the least uncountable ordinal and let X = [0, ω1) be equipped

with the order topology. For every continuous function f on X, there exists τ < ω1

such that f is constant on [τ, ω1) (Exercise 6.10.75). Let the measure µ equal 0
on all countable sets and 1 on their complements. Then µ is defined on all Baire
sets. The net of Dirac measures δα, α < ω1, converges weakly to µ. Indeed, if a
continuous function f equals 1 on [τ, ω1), then it has the integral 1 with respect to
the measure µ (because the set [0, τ) is countable) and the measures δα, α ≥ τ .

8.10.81.◦ Let X be a compact space. Prove that the set M+
σ (X) is countably

separated if and only if Cb(X) is norm separable, which, in turn, is equivalent to
the metrizability of X.

Hint: use Exercise 6.10.24.

8.10.82.◦ Let Baire probability measures µn on a topological space X be given
by densities �n with respect to a fixed Baire probability measure ν. Suppose that
for some p ∈ [1,+∞) the sequence {�n} is bounded in Lp(ν).

(i) Show that in the case 1 < p < ∞, the functions �n converge in the weak
topology of the space Lp(ν) to a function � ∈ Lp(ν) precisely when the measures
µn converge weakly to the measure � · ν.

(ii) Show that weak convergence of the functions �n to the function � in L1(ν)
implies weak convergence of the measures µn to the measure � · ν, but the converse
is false.

(iii) Give an example showing that in the case where ν is Lebesgue measure on
the whole line and � is a probability density, weak convergence of �n to � in Lp(ν),
p > 1, is not sufficient for weak convergence of the measures µn to � · ν, i.e., the
assumption that ν is bounded is essential in (i).

8.10.83. Suppose that bounded (possibly signed) measures µn on the real line
are given by densities �n and converge weakly to a measure µ with a density � such
that one has ∫ +∞

−∞

√
1 + �2

n dx→
∫ +∞

−∞

√
1 + �2 dx.

Prove that ‖µ− µn‖ → 0.
Hint: see Reshetnyak [1553], Giaquinta, Modica, Souček [683, v. 2, �3.4,

Proposition 1].

8.10.84.◦ Let X be a locally compact space and let {µn} be a sequence of
Radon measures of bounded variation on X such that there exists a bounded Radon
measure µ satisfying the equality

lim
n→∞

∫

X

ϕdµn =

∫

X

ϕdµ

for every continuous function ϕ with compact support. Suppose that ‖µn‖ → ‖µ‖.
Prove that the sequence {µn} is uniformly tight and converges weakly to µ.
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Hint: given ε > 0, find a compact set K and a number nε such that one has
|µ|(K) > ‖µ‖ − ε and ‖µn‖ < ‖µ‖ + ε for all n ≥ nε; let f be a continuous function
with compact support S containing K such that |f | ≤ 1 and the integral of f over
X is greater than |µ|(K) − ε. There exists N ≥ nε such that

∫

X

f dµn ≥
∫

X

f dµ− ε

for all n ≥ N ; then |µn|(S) ≥ ‖µn‖ − 4ε whenever n ≥ N ; now it is easy to verify
weak convergence to µ.

8.10.85.◦ Let µn be Borel measures on IRd with supn ‖µn‖ <∞. Assume that
there exists a bounded Borel measure µ such that the characteristic functionals
µ̃n of the measures µn converge pointwise to the characteristic functional µ̃ of the
measure µ. Prove that

lim
n→∞

∫

IRd
ϕdµn =

∫

IRd
ϕdµ

for every continuous function ϕ with compact support.
Hint: it suffices to prove the indicated equality for every function ϕ ∈ C∞

0 (IRd);
in that case it remains to observe that the Fourier transform ϕ̂ of the function ϕ is
integrable and
∫

IRd
ϕdµn = (2π)d/2

∫

IRd
µ̃n(y)ϕ̂(y) dy → (2π)d/2

∫

IRd
µ̃(y)ϕ̂(y) dy =

∫

IRd
ϕdµ

by the dominated convergence theorem.

8.10.86. Let (S, d) be a separable metric space and let Ω be a Hausdorff space
with a Radon probability measure µ. Let {un} be a sequence of measurable map-
pings from Ω to S and let u∞ be a measurable mapping from Ω to S. Prove that
the mappings un converge to u∞ in measure if and only if the associated Young
measures νn converge weakly to the Young measure ν∞ generated by u∞.

Hint: convergence in measure implies convergence of integrals for every boun-
ded continuous function ψ on Ω×S, since the functions ψ

(
x, un(x)

)
converge in

measure to ψ
(
x, u(x)

)
according to Exercise 7.14.74. Conversely, suppose we have

weak convergence of the measures νn. Let ψ(x, y) = min
(
1, d

(
u∞(x), y

))
. Then the

integral of ψ with respect to ν∞ vanishes and the integral with respect to νn equals
∫

min
(
1, d(un, u∞)

)
dµ.

Therefore, in order to show that un → u∞ in measure, it suffices to prove that the
integrals of ψ against νn converge to the integral of ψ against ν∞. This convergence
holds if we replace u∞ by a continuous mapping v. In the general case, we may
assume that S = IR∞ because S is homeomorphic to a set in IR∞. It remains to
apply Lusin’s theorem, which for every ε > 0 gives a set E ⊂ Ω with µ(Ω\E) < ε
and a continuous mapping v : Ω → S such that v = u∞ on E. The difference
between ∫

Ω×S
min

(
1, d

(
v(x), y

))
νn(dx) =

∫

Ω

min
(
1, d(v, un)

)
dµ

and ∫

Ω

min
(
1, d(un, u∞)

)
dµ

is at most 2ε and the same is true for u∞ in place of un.
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8.10.87. (Hartman, Marczewski [790]) Let (X,A, µ) be a probability space, let
(Y, d) be a separable metric space, and let f, fn : X → Y be µ-measurable mappings.

Prove that fn → f in measure, i.e., lim
n→∞

µ
(
d
(
fn(x), f(x)

)
> ε

)
= 0 for all ε > 0,

precisely when lim
n→∞

µ
(
f−1
n (E)� f−1(E)

)
= 0 for every set E ∈ B(Y ) such that the

boundary of E has measure zero with respect to µ ◦ f−1.

8.10.88.◦ (G. Pólya) Let µ be a probability measure and let f and fn, where
n ∈ IN, be measurable functions such that the measures µ ◦ f−1

n converge weakly to
the measure µ◦f−1, which has no atoms. Prove that the corresponding distribution
functions converge uniformly.

8.10.89.◦ Let µ be a probability measure and let fn, f be µ-integrable functions
such that the measures µ ◦ f−1

n converge weakly to the measure µ ◦ f−1. Show that
if the sequence {fn} is uniformly integrable, then

∫
fn dµ→

∫
f dµ.

Hint: given ε > 0, find C > 0 with
∫

{|fn|≥C}
|fn| dµ < ε/3,

∫

{|f|≥C}
|f | dµ < ε/3,

set ϕ(t) := sign(t) min(|t|, C), take N such that whenever n ≥ N , the integrals of
ϕ ◦ fn and ϕ ◦ f differ at most in ε/3, and then observe that

∫
fn dµ−

∫
f dµ =

∫
t µ◦f−1

n (dt) −
∫
t µ◦f−1(dt),

∫

|t|≥C
|t|µ◦f−1

n (dt) < ε/3,

∫

|t|≥C
|t|µ◦f−1(dt) < ε/3.

8.10.90. (Borel [233], Gâteaux [672]) Let µn, n ∈ IN, be a probability measure
on IRn obtained by normalizing the surface measure on the sphere of radius

√
n

centered at the origin. Prove that the sequence of measures µn regarded as measures
on IR∞ (by means of the natural embedding of IRn into IR∞) converges weakly to
the countable product of the standard Gaussian measures on IR1.

Hint: it suffices to verify weak convergence of the projections on each IRd with
fixed d. The coordinate functions xn on (IR∞, γ) form a sequence of independent

standard Gaussian random variables. Let ζn :=
√
x2

1 + · · · + x2
n. One can verify that

the image of the measure γ under the mapping
√
n(x1, . . . , xn)/ζn is the normalized

surface measure on the sphere of radius
√
n in IRn. Hence the projection of this

surface measure to IRd coincides with the image of the measure γ under the mapping
fn =

√
n(x1, . . . , xd)/ζn from IR∞ to IRd. Letting n → ∞, by the law of large

numbers we have ζn/
√
n→ 1 a.e. (see Chapter 10). Hence the measures γ ◦ f−1

n on
IRd converge weakly to the projection of the measure γ on IRd.

8.10.91. (Hoffmann-Jørgensen [844]) Suppose we are given Prohorov spaces
Xn and continuous mappings fn from a completely regular space X to Xn such that
if sets Kn are compact in Xn, then

⋂∞
n=1 f

−1
n (Kn) is compact in X. Prove that X

is a Prohorov space and derive from this assertions (i)–(ii) of Theorem 8.10.10.

8.10.92. Justify Example 8.6.9.
Hint: n−1∑n

i=1 δi(U) → 1 for every open neighborhood U of the point ∞, one
has δ∞(U) = 0 for other open sets. Any compact set in the indicated topology is
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finite. Indeed, any infinite sequence {nk} contains an infinite subsequence {nki}
such that the complement U of {nki} is open in the regarded topology. Then U and
the points nki form an open cover of {nk} ∪ {∞} that has no finite subcovers.

8.10.93. (Choquet [353], Fremlin, Garling, Haydon [636]) Let X be a metric
space. Prove that every countable set in M+

t (X) that is compact in the weak
topology is uniformly tight.

8.10.94. Let X be a completely regular space possessing a sequence of closed
subspaces Xn such that Mσ(Xn) = Mt(Xn) and every function on X that is
continuous on each Xn, is continuous on all of X. Suppose that all Baire subsets of
Xn are Baire in X. Prove that the space Mt(X) is weakly sequentially complete.

Hint: as in the proof of Proposition 8.10.12, the complement of the set Y =⋃∞
n=1Xn is discrete and all its subsets are Baire in X. One can replace the measures

µn by their (unique) Radon extensions. All measures µn are purely atomic on X\Y ,
and the collection of their atoms in X\Y is an at most countable discrete subset A
of X. As in the proof of the cited proposition, |µ|

(
X\(Y ∪ A)

)
= 0. In particular,

the limit Baire measure µ is tight on X\Y . It follows by our hypotheses that the
restriction of µ is tight on every Xm (it is well-defined due to our hypothesis).
Therefore, the measure µ is tight on Y , hence on X.

8.10.95.◦ (i) (Dembski [428]) Let X be a separable metric space. A class D
of Borel sets is called determining weak convergence if, for any Borel probability
measures µn and µ on X, the relation lim

n→∞
µn(D) = µ(D) for all D ∈ D with

µ(∂D) = 0 yields weak convergence of µn to µ. Show that if D is a class deter-
mining weak convergence, then, for every Borel probability measure ν, the class Dν

consisting of all Borel sets in D that have boundaries of ν-measure zero is a class
determining weak convergence.

(ii) Given a Borel probability measure ν, let Dν be the class of all Borel sets
that have boundaries of ν-measure zero. Show that convergence of a sequence of
Borel probability measures µn to a Borel probability measure µ on every set in Dν
yields weak convergence.

(iii) Let D be the class of all compact sets in [0, 1] with boundaries of positive
Lebesgue measure. Show that convergence of a sequence of Borel probability mea-
sures µn on [0, 1] to a Borel probability measure µ on every set in D implies weak
convergence, although D is not a class determining weak convergence.

Hint: (i) if lim
n→∞

µn(D) = µ(D) for all D ∈ Dν with µ(∂D) = 0, then we have

lim
n→∞

(µn + ν)(D) = (µ + ν)(D) for all D ∈ Dν with (µ + ν)(∂D) = 0, hence the

measures (µn + ν)/2 converge weakly to (µ + ν)/2, which yields weak convergence
of {µn} to µ. Clearly, (ii) follows from (i). (iii) Let µn and µ be Borel probability
measures on [0, 1] such that lim

n→∞
µn(D) = µ(D) for all D ∈ D. We have to show that

lim
n→∞

Fµn(t) = Fµ(t) for every continuity point t of the distribution function Fµ of the

measure µ. If there is ε > 0 such that Fµn(t) > Fµ(t) + ε for infinitely many n, then
we can find s > t such that Fµ(s) < Fµ(t) + ε/2. Clearly, (t, s) contains a compact
set K with boundary of positive Lebesgue measure. Then D = [0, t]∪K ∈ D and we
obtain a contradiction because µn(D) ≥ Fµn(t). If Fµn(t) < Fµ(t) − ε for infinitely
many n, then there is s < t such that Fµ(s) > Fµ(t)−ε/2. Again we find a set D ∈ D
of the form D = [0, s] ∪K, K ⊂ (s, t), which gives µn(D) ≤ Fµn(t) ≤ µ(D) − ε/2,
since µ(D) ≥ Fµ(s).
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8.10.96. Prove Proposition 8.9.7.
Hint: consider the map (xn) �→

∑∞
n=1 2−nδxn ; see Grömig [740], Koumoullis

[1044].

8.10.97.◦ Let X be a completely regular space. Prove that the set M ⊂ Pτ (X)
has compact closure in the weak topology precisely when for every net of open sets
Uα increasing to X, one has

sup
α

inf
µ∈M

µ(Uα) = 1.

In addition, this is equivalent to the following property: for every net of bounded
continuous functions fα on X pointwise decreasing to zero, one has

inf
α

sup
µ∈M

∫

X

fα dµ = 0.

Hint: the necessity is easily verified. The sufficiency follows from the compact-
ness of balls in Cb(X)∗ in the weak∗ topology and Theorem 7.10.7.

8.10.98. (Pachl [1416]) Let X be a complete metric space and let Ub(X) be
the set of all bounded uniformly continuous functions on X. (i) Prove that the
space Mr(X) of all Radon measures on X is sequentially complete in the topology
σ
(
Mr(X), Ub(X)

)
.

(ii) Prove that for every bounded set M ⊂ Mr(X), the following conditions are
equivalent: (a) M has compact closure in the Kantorovich–Rubinshtein norm ‖ · ‖0;
(b) the closure of M in the topology σ

(
Mr(X), Ub(X)

)
is countably compact.

8.10.99. (Haydon [801]) Show that the Stone–Čech compactification of IN
contains a set Z such that Pt(Z) �= Pτ (Z), but every weakly compact set of measures
in Pt(Z) is uniformly tight, i.e., Z is Prohorov.

8.10.100. (Lange [1107]) Let X be a Polish space and µ ∈ Pr(X).
(i) Prove that the sets {ν ∈ Pr(X) : ν � µ} and {ν ∈ Pr(X) : ν ∼ µ} are Borel

in Pr(X) with the weak topology.
(ii) If X is locally compact, then the following subsets of Pr(X) are Borel as

well: (a) measures with compact supports, (b) measures with compact connected
supports, (c) measures with a given closed support, (d) measures with supports
contained in a given closed set, (e) measures with supports containing a given closed
set, (f) measures with supports without inner points, (g) measures with supports
without isolated points, (h) measures with supports consisting of at most k points.
However, this may be false for a non-locally compact space.

(iii) If X = IRn, then the set of all probability measures with convex supports
and the set of all probability measures having the finite moment of a fixed order p
are Borel.

8.10.101. Suppose we are given a sequence of measurable spaces (Xn,An) and
for every n, there are two probability measures Pn and Qn on An. The sequences
{Qn} and {Pn} are called contigual (or mutually contigual) if for all An ∈ An, the
condition Pn(An) → 0 is equivalent to Qn(An) → 0. Let

λn = (Pn +Qn)/2, fn = dPn/dλn, gn = dQn/dλn,

and Λn = log(gn/fn) if fngn > 0 and Λn = 0 otherwise. Prove that the follow-
ing conditions are equivalent: (i) {Qn} and {Pn} are contigual, (ii) {Pn ◦ Λ−1

n } is
uniformly tight, (iii) {Qn ◦ Λ−1

n } is uniformly tight.
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Hint: see Roussas [1616, Ch. 1].

8.10.102. Let X be a separable Banach space and let µ be a Borel probability
measure on X. For every compact set K ⊂ X, we define the concentration func-
tion Cµ(K) by the formula Cµ(K) = supx∈X µ(K + x). Prove that the following
conditions are equivalent for every sequence of Borel probability measures µn on X:

(i) sup
K∈K

inf
n
Cµn(K) = 1, where K is the family of all compact sets in X,

(ii) every subsequence in {µn} contains a further subsequence {νn} such that
for some vectors xn ∈ X the sequence of measures νn( · + xn) is uniformly tight.

Hint: see Hengartner, Theodorescu [810, Ch. 5], where one can find additional
information about concentration functions.

8.10.103. Justify Example 8.10.50.

8.10.104.◦ (Weyl [1976]) Let {xn} ⊂ [0, 1). Prove that the following condi-
tions are equivalent: (i) the sequence {xn} is uniformly distributed with respect to
Lebesgue measure on [0, 1),

(ii) for all [α, β] ⊂ [0, 1], one has lim
N→∞

N−1F (N,α, β) = β−α, where F (N,α, β)

is the number of all n ≤ N such that α ≤ xn < β,
(iii) lim

N→∞
supα,β |N−1F (N,α, β) − (β − α)| = 0,

(iv) for every integer m �= 0, one has lim
N→∞

N−1∑N
n=1 exp(2πimxn) = 0.

Hint: the equivalence of (i)–(iii) is easily seen from the general properties of
weak convergence; (iv) follows from (i); Finally, (iv) yields (i), since every mea-

sure that is a limit point of the sequence of measures N−1∑N
n=1 δxn in the weak

topology assigns the same integral to any finite linear combination of the functions
exp(i2πmx) as Lebesgue measure does, hence equals Lebesgue measure.

8.10.105. (de Bruijn, Post [267]) Let f be a function on [0, 1] such that for

every uniformly distributed sequence {xn} ⊂ [0, 1], the limit lim
N→∞

N−1∑N
n=1 f(xn)

exists and is finite. Prove that the function f is Riemann integrable in the proper
sense.

8.10.106. (Losert [1188]) Let X and Y be compact metric spaces.
(i) Let µ be a Radon probability measure on X×Y and let πX : X×Y → X be

the natural projection. Show that if a sequence {xn} ⊂ X is uniformly distributed
with respect to µ ◦ π−1

X , then Y contains a sequence {yn} such that the sequence
(xn, yn) is uniformly distributed with respect to µ.

(ii) Construct an example showing that (i) may fail for non-metrizable compact
spaces even if µ is the product of Radon measures on X and Y .

(iii) Let π : X → Y be a continuous surjection, let d be the metric of Y , and
let µ be a Radon probability measure on X. Set ν = µ ◦ π−1. Show that for every
sequence {yn} that is uniformly distributed with respect to ν, there exists a sequence
{xn} uniformly distributed with respect to µ such that lim

n→∞
d
(
π(xn), yn

)
= 0.

(iv) Let π : X → Y be a continuous surjection, let µ be a Radon probability
measure onX, and let ν = µ◦π−1. Show that the following conditions are equivalent:
(a) for every sequence {yn} that is uniformly distributed with respect to ν, there
exists a sequence {xn} uniformly distributed with respect to µ such that yn = π(xn),
(b) the set of all points x possessing neighborhoods whose images under π are not
open, has µ-measure zero.
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8.10.107. (Losert [1188]) Assuming the continuum hypothesis, show that
there is a Radon probability measure µ on [0, 1]c such that there exist sequences
that are uniformly distributed with respect to µ, but such a sequence cannot be
chosen in the topological support of µ.

Hint: [0, 1]c contains a compact set homeomorphic to βIN; there is a Radon
measure µ on βIN without uniformly distributed sequences (Example 8.10.54), but
this measure has uniformly distributed sequences in X by Proposition 8.10.55.

8.10.108. (Losert [1188]) Show that {0, 1}c contains an everywhere dense set
M such that M contains no uniformly distributed sequence with respect to the
measure µ that is the power of the measure equal 1/2 at the points 0 and 1.

8.10.109. (Hlawka [835]) Let X be a completely regular space such that there
exists a countable family of functions fj ∈ Cb(X) with the property that if for a
sequence of Radon probability measures µn and a Radon probability measure µ, one
has

lim
n→∞

∫

X

fj dµn =

∫

X

fj dµ

for all j, then the sequence {µn} converges weakly to µ. Let µ∞ be the countable
power of µ. Prove that µ∞-almost every sequence in X∞ is uniformly distributed
with respect to µ.

Hint: by the law of large numbers (see Chapter 10), for every j, the set of

sequences (xn) such that the arithmetic means N−1∑N
n=1 fj(xn) converge to the

integral of fj with respect to the measure µ has full µ∞-measure.

8.10.110. (Kawabe [966]) Let X be a Hausdorff space, let Y be a completely
regular space, and let the space Pτ (Y ) be equipped with the weak topology.

(i) Prove that a mapping λ : X → Pτ (Y ), x �→ λ(x, · ), is continuous if and only
if for every open set U ⊂ X×Y , the function x �→ λ(x, Ux) is upper semicontinuous
on X, where, as usual, Ux = {y ∈ Y : (x, y) ∈ U}.

(ii) Show that if the mapping λ in (i) is continuous, then for every B ∈ B(X×Y ),
the function x �→ λ(x,Bx) is Borel on X. Hence for every Borel measure µ on X we
obtain a Borel measure

µ ◦ λ(B) :=

∫

X

λ(x,Bx)µ(dx), B ∈ B(X×Y ).

(iii) Show that if the measure µ in (ii) is τ -additive, then so is µ ◦ λ.
(iv) Let X be a k-space (e.g., a locally compact or metrizable space), let Y be

a compact space, f ∈ Cb(X×Y ), λ ∈ C
(
X,Pτ (Y )

)
. Prove that the function

x �→
∫

Y

f(x, y)λ(x, dy)

is continuous on X.
(v) Let X be a completely regular k-space (for example, locally compact or

metrizable). Suppose we are given a net of mappings λα : X → Pτ (Y ) that are
pointwise equicontinuous on every compact set in X, and for every x ∈ X, the net
of measures λα(x, · ) is uniformly tight and converges weakly to λ(x, · ) for some
continuous mapping λ : X → Pτ (Y ). Prove that if a net of measures µα ∈ Pτ (X)
is uniformly tight and converges weakly to a measure µ ∈ Pτ (X), then the net of
measures µα ◦ λα converges weakly to the measure µ ◦ λ.

(vi) Let X and Y be the same as in (iv), let P ⊂ Pτ (X) be a uniformly tight
family, and let a family of mappings Q ⊂ C

(
X,Pτ (Y )

)
be pointwise equicontinuous
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on every compact set in X. Assume that for every x ∈ X, the family of measures
λ(x, · ) := Q(x) on Y is uniformly tight. Prove that for every net of measures
µα ◦ λα, where µα ∈ P , λα ∈ Q, there exist a measure µ ∈ Pτ (X), a mapping
λ ∈ C

(
X,Pτ (Y )

)
, and a subnet {µα′ ◦ λα′} in {µα ◦ λα} such that one has weak

convergence µα′ ⇒ µ, λα′(x, · ) ⇒ λ(x, · ) for every x ∈ X and µα′ ◦ λα′ ⇒ µ ◦ λ.
In particular, the set P ◦ Q := {ν ◦ ζ : ν ∈ P, ζ ∈ Q} is relatively weakly compact
in Pτ (X×Y ). Show also that if, in addition, Y is Prohorov, then the family of
measures P ◦Q is uniformly tight.

8.10.111. Prove Theorem 8.10.45 for measures on a finite set X.
Hint: we show that Ŵ (µ, ν) = W (µ, ν). One has Ŵ (µ, ν) ≤ W (µ, ν). Let L

be the linear space of all functions of the form ϕ(x, y) = f(x) + g(y) on X×X. We
consider the functional

l(ϕ) =

∫

X

f dµ+

∫

X

g dν

on L. It is easy to see that l is well-defined. The set

U =
{
ϕ ∈ C(X×X) : ϕ(x, y) < d(x, y)

}

is convex and open in C(X×X) and l is bounded on U ∩ L. By the Hahn–Banach
theorem l extends to a linear functional l0 on C(X×X) with supU l0 = supU∩L l. In
addition, one has l0(u) ≥ 0 whenever u ≥ 0, since d− 1 − cu ∈ U for all c > 0 and
supc>0 l(d − 1 − cu) < ∞. Hence there exists a nonnegative measure λ on X×X
representing l0. Since l0 = l on L, one has

∫
f(x)λ(dx, dy) = l(f) =

∫
f(x)µ(dx),

∫
g(y)λ(dx, dy) = l(g) =

∫
g(y) ν(dy),

i.e., λ ∈M(µ, ν). It is easy to see that

Ŵ (µ, ν) =

∫
d(x, y)λ(dx, dy).

8.10.112.◦ Let µn be bounded measures on a σ-algebra A and let Ek ∈ A be
disjoint sets such that lim

n→∞
µn(Ek) = 0 for every k and infn |µn(En)| > 0. Prove

that there exists a sequence {nj} with

inf
n∈{nj}

∣
∣∣µn

( ∞⋃

j=1

Enj
)∣∣∣ > 0.

Hint: let infn |µn(En)| = δ. It suffices to find a sequence {nj} with

j−1∑

i=1

|µnj (Eni)| < δ/3,

∞∑

n=nj

|µnj−1(En)| < δ/3,

which will give
∣∣µnj

(⋃∞
i=1 Eni

)∣∣ > δ/3. Letting n0 = 1, we construct nj inductively.

If n1, . . . , nj are already found, we find n′
j+1 ≥ nj + 1 with

∑j
i=1 |µn(Eni)| < δ/3

for all n ≥ n′
j+1. Next we find nj+1 > n′

j+1 with
∑∞
n=nj+1

|µnj (En)| < δ/3.

8.10.113. Construct a sequence of Borel probability measures on a Hausdorff
space that converges on every open set, but does not converge on some Borel set.

Hint: see Pfanzagl [1442, Example 2].
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8.10.114.◦ (i) Prove that if a set of Radon measures on a Hausdorff space is
compact in the topology of convergence on Borel sets, then it is uniformly tight.

(ii) Prove that a set M of Radon measures on a Hausdorff space is relatively
compact in the space of all Radon measures on X with the topology of convergence
on Borel sets precisely when M is bounded and uniformly tight and for every com-
pact set K and every ε > 0 there exists an open set U ⊃ K such that |µ|(U\K) < ε
for all µ ∈M .

(iii) Prove that a sequence of Radon measures µn on a Hausdorff space X
converges to a Radon measure µ on every Borel set precisely when it is uniformly
tight and lim

n→∞
µn(K) = µ(K) for every compact set K.

Hint: (i) if a set M is compact in the indicated topology, then according
to �4.7(v), there exists a Radon probability measure µ0 such that all measures in
M are uniformly absolutely continuous with respect to µ0. The necessity of the
conditions mentioned in (ii) follows from (i) and the proof of Theorem 8.10.58. The
sufficiency reduces to the case of a compact space due to the uniform tightness, and
also follows in that case from the proof of the cited theorem. (iii) The necessity
of the indicated conditions is clear. The sufficiency follows by Theorem 8.10.56
applied to the restrictions of the considered measures to compact sets Kj chosen
such that |µ|(X\Kj) < 2−j for all µ ∈ M . For every compact set K ⊂ Kj , one has
convergence on the set Kj\K, and every set U ⊂ Kj that is open in the induced
topology has such a form.

8.10.115.◦ Let µn be convex Radon probability measures on a locally convex
space X (see �7.14(xvi)) convergent weakly to a Radon measure µ. Prove that µ is
convex as well.

Hint: apply Lemma 7.14.54, reduce the assertion to the case of IRn, consider
open sets A and B with boundaries of µ-measure zero.

8.10.116. (Y. Peres) Let the spaces P([0, 1]) and P([0, 1]2) of all Borel proba-
bility measures on [0, 1] and [0, 1]2 be equipped with the topology τs of convergence
on all Borel sets. Show that the mapping µ �→ µ⊗µ is sequentially continuous, but
is not continuous at the point λ, where λ is Lebesgue measure (a question about
this was raised by F. Götze).

Hint: the sequential continuity is obvious from Fubini’s theorem and the dom-
inated convergence theorem. In order to show the discontinuity at the point λ, we
take the set A =

{
(x, y) ∈ [0, 1]2 : x − y ∈ Q

}
. This set is Borel and λ⊗λ(A) = 0.

We observe that every neighborhood of the point λ in the topology τs contains a
measure ν ∈ P([0, 1]) such that ν⊗ν(A) = 1. To this end, it suffices to show that
for every finite partition of [0, 1] into Borel parts Bi, there exist points xi ∈ Bi
such that xi − xj ∈ Q if i �= j. Then we take ν :=

∑n
i=1 λ(Bi)δxi . The required

points indeed exist, since the set B :=
∏n
i=1Bi in IRn has positive measure, hence

B−B contains a neighborhood, in particular, B−B contains a point with rational
coordinates.

8.10.117. (Schief [1670]) (i) Construct an example of locally compact spaces
X and Y and a continuous open surjection f : X → Y such that the mapping

f̂ : P(X) → P(Y ) is open, but not surjective.
(ii) Assuming the continuum hypothesis, construct a Hausdorff space X and a

continuous open surjection f : X → IR1 such that the mapping f̂ : P(X) → P(IR1)

is not surjective. Show also that f̂ may be surjective but not open.
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8.10.118. (Schief [1667], [1668]) Let X be a Hausdorff space. Show that the
mapping (µ, ν) �→ µ − ν is continuous in the A-topology on the set of all pairs of
nonnegative Borel measures (µ, ν) on X with µ − ν ≥ 0. Prove that the mapping
(µ, ν) �→ µ+ν on the set of all nonnegative Borel measures is open in the A-topology.

8.10.119. (Ressel [1556]) Let X and Y be Hausdorff spaces and let {µt}t∈T
be a net of Radon probability measures on X×Y such that their projections on X
converge weakly to a Radon measure ν, and their projections on Y converge weakly
to Dirac’s measure δa at some point a ∈ Y . Show that the net {µt} converges weakly
to the Radon extension of the measure ν⊗δa to B(X×Y ). Prove the analogous
assertion for τ -additive measures.

Hint: let U ⊂ X×Y be an open set whose projection on Y contains a. Given
ε > 0, one can find a compact set K ⊂ X such that K×a ⊂ U and the estimate
ν⊗ δa(K×a) > ν⊗ δa(U) − ε holds. There exist sets V and W that are open,
respectively, in X and Y with K×a ⊂ V ×W ⊂ U . In view of weak convergence of
projections, there exists t1 such that µt(X×W ) > 1 − ε whenever t > t1, hence

µt(V ×W ) ≥ µt(V ×Y ) − µt
(
X×(Y \W )

)
> µt(V ×Y ) − ε.

There is t2 > t1 such that µt(V ×Y ) > ν(V ) − ε for all t > t2. Then we obtain
µt(U) ≥ µt(V ×W ) > ν(V ) − 2ε > ν⊗δa(U) − 3ε.

8.10.120.◦ (Slutsky [1743]) Let (Ω,A, P ) be a probability space, let E be a
separable Banach space, and let ξn, ξ, and ηn be

(
A,B(E)

)
-measurable mappings.

Suppose that the measures P ◦ ξ−1
n converge weakly to P ◦ ξ−1 and ηn → 0 a.e.

Show that the measures P ◦ (ξn + ηn)−1 converge weakly to P ◦ ξ−1 as well.
Hint: apply Egoroff’s theorem to {ηn}.

8.10.121. (Dellacherie [425, Ch. 4, Theorem 31]) Let X be a Polish space, let
M be a Souslin subset of the space of Borel probability measures P(X) with the
weak topology, and let A ⊂ X be a Souslin set such that µ(A) = 0 for all µ ∈ M .
Prove that there exists a Borel set B ⊂ X such that A ⊂ B and µ(B) = 0 for all
measures µ ∈M .

8.10.122. Let X be a Polish space and let M be a compact subset of the space
of Borel probability measures P(X) with the weak topology.

(i) (Dellacherie [425]) Prove that the function I(E) := supµ∈M µ∗(E) is a Cho-
quet capacity and derive from this that for every Souslin set A and every ε > 0,
there exists a compact set Kε ⊂ A with I(Kε) > I(A) − ε.

(ii) (Choquet [353]) Let S be a compact or σ-compact set in X such that
µ(S) = 0 for all µ ∈M . Prove that for every ε > 0, there exists an open set U ⊃ S
such that µ(U) < ε for all µ ∈M .

(iii) (Choquet [353]) Show that under the continuum hypothesis there exists a
function f : [0, 1] → [0, 1] such that its graph S is measurable with respect to every
Borel measure on [0, 1]2 and every atomless measure vanishes on S. Prove that the
set M of all Borel probability measures on [0, 1]2 having Lebesgue measure as the
projection to the first factor is compact, but for M and S assertion (ii) fails.

(iv) (Choquet [353]) Show that on an uncountable power of [0, 1], there exist a
sequence of Radon probability measures µn weakly convergent to Dirac’s measure
µ0 = δ0 and a Gδ-set S such that assertion (ii) fails for M = {µn}n≥0.

Hint: (i) for every compact set K, the function µ �→ µ(K) is upper semicontin-
uous. This gives I(K) = lim

n→∞
I(Kn) for any sequence of compact sets Kn decreasing
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to K. If sets En are increasing to E, then the equality I(E) = lim
n→∞

I(En) is easily

verified by using Proposition 1.5.12. (ii) In the case of compact S the assertion is
easily deduced from (i) (or is proved directly by a similar reasoning); if S =

⋃∞
n=1 Sn,

where Sn are compact sets, then one can take sets Un corresponding to Sn and ε2−n,
and let U =

⋃∞
n=1 Un.

8.10.123.◦ Show that any uniformly tight set of Radon probability measures
on a Hausdorff space X has compact closure in the A-topology.

Hint: suppose we have a uniformly tight sequence of Radon measures µj on X.
We may assume that X =

⋃∞
n=1Kn, where the sets Kn are compact, Kn ⊂ Kn+1

and µj(Kn) ≥ 1−1/n for all n, j. Passing to a subsequence, we may assume that for
every n the numbers µj(Kn) converge. Therefore, if {µj} has a subnet of measures
whose restrictions to some Kn converge weakly, then we have weak convergence of
their restrictions to Kn−1. Hence there exist Radon measures νn on Kn such that
νn|Kn−1 = νn−1 and νn is a limit point of the sequence of measures µj |Kn on Kn.
One has νn(Kn) ≥ 1 − 1/n and the measures νn converge in the variation norm to
a Radon probability measure ν that is a limit point for {µj} in the A-topology.

8.10.124. (Grothendieck [745, p. 229]) Let K be a compact space and let
M := Mr(K) = C(K)∗. Suppose a set M ⊂ M has compact closure in the
Mackey topology τ

(
M, C(K)

)
. Show that M has compact closure in the topology

σ(M,M∗) as well.
Hint: by the Eberlein–Šmulian theorem and Theorems 8.10.58 and 4.7.25, it

suffices to show that lim
n→∞

µn(Un) = 0 for every sequence of measures µn ∈ M and

every sequence of disjoint open sets Un ⊂ K. If this is not true, then there exist
functions fn ∈ C(K) such that |fn| ≤ 1, fn = 0 outside Un and the integral of
fn against µn is greater than some ε > 0. The sequence {fn} converges to zero
pointwise, hence in the weak topology of C(K). It is readily verified that its closed
convex envelope is weakly compact. This contradicts the compactness of the closure
of M in the topology of uniform convergence on convex weakly compact sets.

8.10.125. (Kallenberg [939]) Let (X,A) be a measurable space and let P(A)
be the set of all probability measures on A equipped with the σ-algebra F generated
by the functions µ �→ µ(A), A ∈ A. Given a sequence of A⊗F-measurable functions
fn on X×P(A), denote by Λ the set of all measures µ ∈ P(A) such that the sequence
of functions x �→ fn(x, µ) converges in measure µ. Prove that Λ ∈ F .

Hint: suppose first that |fn| ≤ 1; observe that for any fixed n, k,m, the set of
all µ with ‖fn( · , µ)− fk( · , µ)‖L1(µ) < m−1 belongs to F . The general case reduces
easily to the considered one.

8.10.126. Let X and Y be Polish spaces, let A ⊂ X×Y be a Souslin set, and let
Ax := {y ∈ Y : (x, y) ∈ A}. Prove that {(µ, x, α) ∈ Pr(Y )×X×[0, 1] : µ(Ax) > α}
is a Souslin set, provided that Pr(Y ) is equipped with the weak topology.

Hint: see Kechris [968, Theorem 29.26]

8.10.127.◦ Let M be a uniformly tight family of Radon measures on a Fréchet
space X. Show that there exists a reflexive separable Banach space E continuously
embedded into X such that all measures from M are concentrated on E and form
there a uniformly tight family.

Hint: in the proof of Theorem 7.12.4 choose Kn common for all measures in M .
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8.10.128. (Dall’Aglio [396, p. 42], Vallander [1914]) Show that the Kantoro-
vich–Rubinshtein distance between two probability measures µ and ν on the real
line with the distribution functions Φµ and Φν equals ‖Φµ − Φν‖L1(IR1).

8.10.129. (Hoffmann-Jørgensen [844]) Let X be a completely regular space
such that Mσ(X) = Mt(X). Then Mt(X) with the Mackey topology is complete.

Hint: in place of Lemma 1 in [844] use Theorem 7.10.1.

8.10.130. Let X be a noncompact complete metric space. Show that the weak
topology on the ball U1 := {µ ∈ Mr(X) : ‖µ‖ ≤ 1} is not metrizable.

Hint: there exists a sequence of points xn ∈ X whose mutual distances are
separated from zero, hence it suffices to consider the case X = IN. Then we have
Mr(X) = l1. The unit ball is not metrizable in the weak topology because otherwise
the weak topology on it would coincide with the norm topology due to the fact that
every weakly convergent sequence in l1 is norm convergent.

8.10.131. Suppose a sequence of Baire probability measures µn on a topological
space X converges weakly to a Baire probability measure µ and µn = fn · ν, where
ν is some Baire probability measure. Let

sup
n

∫
Ψ ◦ fn dν ≤ C <∞,

where Ψ is a convex function on [0,+∞) with lim
t→+∞

Ψ(t)/t = +∞. Show that µ� ν

and ∫
Ψ ◦ f dν ≤ C, where f = dµ/dν.

Hint: by the Komlós theorem one can find a subsequence {fnk} such that the
functions gk := (fn1 + · · · + fnk )/k converge a.e. to some function f . Then

sup
k

∫
Ψ ◦ gk dν ≤ C.

Hence gk → f in L1(ν) and by Fatou’s theorem
∫

Ψ ◦ f dν ≤ C.

The measures gk ·ν converge to f ·ν in variation, hence weakly. Since they converge
weakly to µ, one has µ = f · ν.

8.10.132. Let E be a Gδ-set in a topological space X. Show that Pr(E) is a
Gδ-set in Pr(X) with the weak topology.

Hint: we can identify Pr(E) with the set PE in Pr(X) consisting of the mea-
sures vanishing on X\E because the natural mapping of Pr(E) onto PE is a home-
omorphism. If E is open, then Pr(X)\Pr(E) =

⋃∞
k=1Mk, where Mk is defined by

Mk := {µ ∈ Pr(X) : µ(X\E) ≥ 1/k}. The set X\E is closed, hence Mk is closed
as well. Therefore, Pr(E) is a Gδ set. If E =

⋂∞
k=1Ek, where the sets Ek are open,

then Pr(E) =
⋂∞
k=1 Pr(Ek).

8.10.133. Show that Rao’s theorem 8.2.18 does not extend to uniformly boun-
ded nets of signed measures even if Γ is a uniformly Lipschitzian and uniformly
bounded family.

Hint: since the weak topology on the unit ball U in l1 is weaker than the norm
topology, there exists a net {µα} ⊂ U that weakly converges to zero, but is not
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norm convergent. Let us regard µα as measures on IN. The set Γ of all functions f
on IN with sup |f | ≤ 1 is uniformly Lipschitzian with constant 2 and

‖µα‖ = sup
{∫

f dµα : f ∈ Γ
}
.

8.10.134. Suppose a sequence of Baire measures µn on a completely regular
space X converges weakly to a tight Baire measure µ and, in addition, is uniformly
tight. Let a family Γ ⊂ Cb(X) be uniformly bounded and pointwise equicontinuous.
Show that

lim
n→∞

sup
f∈Γ

∣
∣
∣
∫
f d(µn − µ)

∣
∣
∣ = 0.

Hint: we may assume that |f | ≤ 1 for all f ∈ Γ and ‖µn‖ ≤ 1. Suppose that
for some ε > 0 and some sequence {fn} ⊂ Γ we have

∣
∣
∣
∫
fn d(µn − µ)

∣
∣
∣ > ε.

Let us find a compact set K such that |µ|(X\K)+|µn|(X\K) < ε/4 for all n. By the
Ascoli–Arzela theorem (see Dunford, Schwartz [503, Theorem IV.6.7]) the sequence
{fn} contains a subsequence that converges uniformly on K to some function f . We
may assume that the whole sequence {fn} has this property. There is a function
g ∈ Cb(X) with g|K = f |K and |g| ≤ 1. For all sufficiently large n we obtain

sup
x∈K

|g(x) − fn(x)| ≤ ε/4 and
∣∣
∣
∫
g d(µn − µ)

∣∣
∣ ≤ ε/4,

which leads to a contradiction.

8.10.135. (i) (A.N. Kolmogorov, see Glivenko [699, p. 157]) Prove that a
sequence of Borel measures µn on a closed interval [a, b] converges weakly to a Borel
measure µ if and only if:

(1) the variations of the measures µn are uniformly bounded,
(2) µ([a, b]) = lim

n→∞
µn([a, b]),

(3) for the corresponding distribution functions one has

lim
n→∞

∫ b

a

|Fµn(t) − Fµ(t)| dt = 0.

(ii) Observe that (1) and (3) yield ‖Fµn − Fµ‖Lp[a,b] → 0 for any p ∈ [1,+∞).

(iii) Prove analogous assertions for the cube [a, b]d in IRd, where the distribution
functions are defined by Fµn(t1, . . . , td) := µn

(
[a, t1)×· · ·×[a, td)

)
for all (t1, . . . , td) ∈

[a, b]d and similarly for µ.
Hint: weak convergence yields conditions (1) and (2); condition (3) follows

by the uniform boundedness of Fµn and Proposition 8.1.8. Let condition (1) be
fulfilled. Weak convergence will follow from convergence of the integrals of each
smooth function f against µn to the integral of f against µ. Due to the integration
by parts formula and the equality Fµ(b+) = lim

n→∞
Fµn(b+) it remains to observe

that the integral of f ′(Fµ − Fµn) over [a, b] tends to zero. Claim (ii) is trivial.
Let us give an alternative reasoning, which can be easily extended to the mul-

tidimensional case. Let [a, b] = [0, 2π], ϕk(t) = exp(ikt), k ∈ Z. Set fn,k :=
(ϕk, Fµn)L2[0,2π], fk := (ϕk, Fµ)L2[0,2π]. If supn ‖µn‖ ≤ C <∞, then

∣
∣∣
∫ 2π

0

ϕk dµn

∣
∣∣ ≤ C.



8.10. Supplements and exercises 265

By the integration by parts formula

ik

∫ 2π

0

ϕk(t)Fµn(t) dt = Fµn(2π+) −
∫ 2π

0

ϕk(t) dFµn(t) dt.

Hence |kfn,k| ≤ 2C. Thus, the sequence {Fµn} is completely bounded in L2[0, 2π].
If the measures µn converge weakly to µ, we have fn,k → fk for every k, which is
clear from the above-mentioned integration by parts formula (if k = 0, then we use
the equality t′ = ϕ0(t)). This gives convergence of Fµn to Fµ in L2[0, 2π]. By the
uniform boundedness of {Fµn}, convergence in L2[0, 2π] is equivalent to convergence
in every Lp[0, 2π], p <∞, and is equivalent to convergence in measure. In the case
of a cube we take the basis ϕk1,...,kd(t1, . . . , td) := ϕk1(t1) · · ·ϕkd(td) and estimate

(Fµn , ϕk1,...,kd)L2([0,1]d) by const · k−1
1 · · · k−1

d .

8.10.136. Suppose a sequence of signed Borel measures µn on a closed interval
[a, b] is bounded in the variation norm. Prove that a sufficient (but not necessary)
condition of weak convergence of µn to a measure µ is convergence of Fµn(t) to
Fµ(t) at the points of an everywhere dense set on the real line.

Hint: let f be a continuous function on [a, b] and let ε > 0. Let us consider
the functions fm(t) =

∑m
k=1 f(ak,m)I[ak,m,ak+1,m)(t), where the points ak,m belong

to the set of convergence of Fµn to Fµ, a1,m = a, ak,m < ak+1,m, am,m = b + m−1

and supk |ak,m − ak+1,m| → 0 as m→ ∞, where we set f(t) := f(b) if t > b. Then
∫
fm dµn →

∫
fm dµ

as n→ ∞ and fm → f uniformly on [a, b].

8.10.137. (cf. Fichtenholz’s theorem in Glivenko [699, p. 154]) Prove that a
sequence of bounded Borel measures µn on IRd converges weakly to a bounded Borel
measure µ if and only if (1) the sequence {µn} is uniformly bounded in variation
and is uniformly tight, (2) the sequence {Fµn} converges to Fµ in measure with
respect to Lebesgue measure on every cube.

Hint: reduce the assertion to the case of measures on a cube by using the
mapping T : (x1, . . . , xd) �→ (arctg x1, . . . , arctg xd).

8.10.138. Construct a sequence of measures µn on the real line such that
µn = �n dx, where �n is a bounded function with support in [n, n + 1], ‖µn‖ = 1,
and for the Kantorovich norm one has ‖µn‖0 ≤ 2−n. Thus, the sequence {µn}
converges to zero in the Kantorovich norm, but is not uniformly tight, in particular,
does not converge weakly.

Hint: take the partition of [n, n + 1] into 2n equal intervals Ik of length 2−n

and let �n := (−1)k on Ik, �n = 0 outside [n, n+ 1]. Let

Fn(x) :=

∫ x

0

�n(t) dt.

Then

∫ n+1

n

|�n(t)| dt = 1 and

∫ +∞

−∞
|Fn(x)| dx ≤ 2−n. If f is Lipschitzian with

constant 1, the equality Fn(n) = Fn(n+ 1) = 0 yields
∫ +∞

−∞
f(t)�n(t) dt = −

∫ n+1

n

f ′(t)Fn(t) dt,

which is bounded in the absolute value by 2−n.
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8.10.139. Construct a net of continuous functions fα on [0, 1] such that one
has 0 ≤ fα ≤ 1, lim

α
fα(x) = 1 for all x, but

lim
α

∫ 1

0

fα(x) dx = 0.

Hint: let the index set Λ consist of all finite subsets α of the interval [0, 1] and
be partially ordered by inclusion. For every set α ∈ Λ consisting of n points, find
fα ∈ C[0, 1] with 0 ≤ fα ≤ 1 which equals 1 on α and has the integral less than 1/n.

8.10.140. (Padmanabhan [1417]) Let (Ω,B, P ) be a probability space and let
X be a Polish space. Prove that a sequence of measurable mappings ξn : Ω → X
converges in probability to a mapping ξ if and only if for every measure Q that is
equivalent to P , the measures Q ◦ ξ−1

n converge weakly to the measure Q ◦ ξ−1.
Hint: it is easy to reduce the assertion to the case X = [0, 1]. Then, if P ◦ξ−1

n ⇒
P ◦ ξ−1, we have ‖ξn‖2 → ‖ξ‖2. Given A ∈ B with P (A) > 0, we have (ξn, IA)2 →
(ξ, IA)2. Indeed, otherwise we may assume that |(ξn, IA)2 − (ξ, IA)2| ≥ c > 0. Let
Q(B) = (1 − ε)P (B ∩ A) + εP (B ∩ (Ω\A)), ε = c/4. Then the integrals of ξn with
respect to the measure Q do not converge to the integral of ξ with respect to Q,
a contradiction. By Corollary 4.7.16 one has ‖ξn − ξ‖2 → 0.

8.10.141. Let X be a Souslin space, let Y be a Polish space, and let random
elements ξ, ξn, n ∈ IN, on a probability space (Ω,A, P ) with values in X and Borel
mappings f, fn : X → Y be such that the distributions of the elements fn ◦ ξn
converge weakly to the distribution of f ◦ ξ. Show that there exist random elements

ξ̃, ξ̃n in X such that P ◦ ξ−1 = P ◦ ξ̃−1, P ◦ ξ−1
n = P ◦ ξ̃−1

n , and fn ◦ ξ̃n → f ◦ ξ a.e.
Hint: there exist random elements η and ηn in Y such that ηn → η a.e. and

P ◦ η−1 = P ◦ (f ◦ ξ)−1, P ◦ η−1
n = P ◦ (f ◦ ξn)−1. By using the measurable choice

theorem one can find Borel mappings g, gn : Y → X such that f
(
g(y)

)
= y for

P ◦ η−1-a.e. y, fn
(
gn(y)

)
= y for P ◦ η−1

n -a.e. y. Let ξ̃ = g ◦ η, ξ̃n = gn ◦ ηn. Then

f ◦ ξ̃ = η and fn ◦ ξ̃n = ηn a.e.

8.10.142. (Bergin [154]) Let X and Y be separable metric spaces, µ ∈ Pσ(X),
ν ∈ Pσ(Y ), and let η ∈ Pσ(X×Y ) be such that its projections on X and Y are
µ and ν. Suppose we are given two sequences {µn} ⊂ Pσ(X) and {νn} ⊂ Pσ(Y )
weakly convergent to µ and ν, respectively. Prove that there are measures ηn in
Pσ(X×Y ) weakly convergent to η such that, for each n, the projections of ηn on X
and Y are µn and νn.

8.10.143. Let (X, d) be a bounded separable metric space. Prove that any
continuous linear functional L on the normed space

(
M0(X), ‖ · ‖∗0

)
of signed Borel

measures σ on X with σ(X) = 0, where ‖ · ‖∗0 is defined in �8.10(viii), is represented
in the integral form by means of a Lipschitzian function F . Prove the same for
unbounded X and the space of measures that integrate all Lipschitzian functions.

Hint: let F (x) := L(δx − δa), where a ∈ X is fixed. Then |F (x) − F (y)| ≤
‖L‖‖δx− δy‖∗0 ≤ ‖L‖d(x, y) and L(δx− δy) equals the integral of F against δx− δy.
This yields the same for all measures in M0(X). Indeed, given two probability mea-
sures µ and ν on X, we find finite sums µn =

∑n
i=1 ci,nδxi,n and νn =

∑n
i=1 ci,nδyi,n

such that ‖µn − µ‖∗0 → 0 and ‖νn − ν‖∗0 → 0. The general case is similar.



CHAPTER 9

Transformations of measures and isomorphisms

Now what is science?... It is before all a classification, a manner
of bringing together facts which appearances separate, though
they were bound together by some natural and hidden kinship.
Science, in other words, is a system of relations.

H. Poincaré. The value of science.

9.1. Images and preimages of measures

Let µ be a Borel measure on a topological space X and let f be a µ-
measurable mapping from X to a topological space Y . Then on Y we obtain
the Borel measure ν = µ ◦ f−1 : B �→ µ

(
f−1(B)

)
. The measure ν is called

the image of µ under the mapping f , and µ is called a preimage of µ. The
same terms are used in the case of general measurable mappings of measur-
able spaces. The questions naturally arise about the regularity properties
of the measure ν and the properties of the induced mapping µ �→ µ ◦ f−1.
Such questions are important for measure theory as well as for its applica-
tions; these questions have already been touched upon in Chapter 8, see �8.5
and �8.10(v). In particular, it is interesting to know when for a given measure
ν on Y , there exists a measure µ with ν = µ ◦ f−1, and when one of the two
given measures can be transformed into the other by a transformation with
certain additional properties (for example, of continuity). These questions
are related to the classification problems for measures. Another important
problem concerns invariant measures of a measurable transformation f on a
measurable space (X,A), i.e., measures µ on (X,A) such that µ = µ ◦ f−1.
In this case, one says that f preserves the measure µ. There is an inverse
problem of characterization of transformations preserving a given measure µ.
In the subsequent sections all these questions are discussed in detail.

9.1.1. Theorem. Let X and Y be two Hausdorff spaces.
(i) Let f : X → Y be a continuous mapping. If a measure µ on X is

Radon (or is tight or τ -additive), then so is µ ◦ f−1.
(ii) Let Y be a Souslin space (for example, a complete separable metric

space) and let f : X → Y be a Borel mapping. Then, the image of every Borel
measure µ on X is a Radon measure on Y .

Proof. Claim (i) follows directly from the definitions. Claim (ii) follows
from the fact that every Borel measure on Y is Radon. �
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Our next example shows that assertion (ii) may fail if Y is not Souslin
even if X is a Souslin space.

9.1.2. Example. There exists a one-to-one Borel mapping from the in-
terval [0, 1] with the standard topology and Lebesgue measure onto a hered-
itary Lindelöf topological space Y such that the image of Lebesgue measure
is not a Radon measure.

Proof. We have already encountered an example of this sort: take for Y
the Sorgenfrey interval [0, 1) (see Examples 6.1.19 and 7.2.4) with the added
isolated point 2. The Borel σ-algebra of the space Y coincides with the usual
Borel σ-algebra of this set on the real line, but the image of Lebesgue measure
on [0, 1] under the mapping f(t) = t, t < 1, f(1) = 2, is not a Radon measure
on Y since any compact subset in Y is at most countable. �

In the investigation of transformations of measures it is important to be
able to find one-sided inverse mappings to not necessarily injective mappings.
The next theorem, which is an immediate corollary of Theorem 6.9.1, plays
the main role in this circle of problems.

9.1.3. Theorem. Let X and Y be Souslin spaces and let f : X → Y be a
Borel mapping such that f(X) = Y . Then, there exists a mapping g : Y → X
such that f

(
g(y)

)
= y for all y ∈ Y and g is measurable with respect to every

Borel measure on Y .

9.1.4. Corollary. Suppose that in the situation of the foregoing theorem
Y is equipped with a Borel measure ν. Then, there exists a Borel set Y0 ⊂ Y
such that |ν|(Y \Y0) = 0 and g|Y0 is a Borel mapping.

Proof. Follows by Corollary 6.7.6. �

The next important result also follows from the previous theorem.

9.1.5. Theorem. Let X and Y be Souslin spaces and let f : X → Y be
a Borel mapping such that f(X) = Y . Then, for every Borel measure ν on Y ,
there exists a Borel measure µ on X such that ν = µ ◦ f−1 and ‖µ‖ = ‖ν‖.

If f is a one-to-one mapping, then µ is unique.

Proof. By the measurable selection theorem, there exists a mapping
g : Y → X, measurable with respect to the σ-algebra generated by Souslin
sets in Y , such that f

(
g(y)

)
= y for all y ∈ Y . Then the measure µ = ν ◦ g−1

is as required. Indeed, by construction we have µ ◦ f−1 = ν. It remains to
observe that ‖ν‖ = ‖µ ◦ f−1‖ ≤ ‖µ‖ and ‖µ‖ = ‖ν ◦ g−1‖ ≤ ‖ν‖. If f is
one-to-one, then µ = ν ◦ g−1 because g

(
f(x)

)
= x for all x ∈ X. �

9.1.6. Corollary. Suppose that in Theorem 9.1.5 the following condition
is fulfilled: |ν|

(
f(W )

)
> 0 for every nonempty open set W ⊂ X. Then the

measure µ can be chosen in such a way that its support will be the whole
space X.
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Proof. Suppose first that ν is a probability measure. We observe that
there is a countable collection of Souslin sets Wi ⊂ X such that ν

(
f(Wi)

)
> 0

and every nonempty open set U ⊂ X contains at least one of the sets Wi.
Indeed, X is the image of a complete separable metric space E under a contin-
uous mapping ψ. Let us take a countable base U in E. SetWi = ψ(Ui), Ui∈ U ,
where we take into account only those Ui for which ν

(
f(Wi)

)
> 0. If U ⊂ X

is open and nonempty, then ψ−1(U) is a countable union of elements Vj ∈ U ,
where the sets f

(
ψ(Vj)

)
cannot simultaneously have ν-measure zero (other-

wise f(U) would have measure zero). Therefore, ψ−1(U) contains some set Ui
from the above-chosen collection, hence Wi ⊂ U . By the foregoing theorem,
there exists a nonnegative measure µ1

i on Wi such that µ1
i ◦ f−1 = ν|f(Wi).

Next we find a nonnegative measure µ2
i on X\Wi that is a preimage of the

measure ν|Y \f(Wi). Let µi = µ1
i + µ2

i . Then µi is a probability measure,
µi ◦ f−1 = ν, and µi(Wi) > 0. Let µ =

∑∞
i=1 2−iµi. It is clear that µ is a

probability measure. The support of µ coincides with X, since µ(Wi) > 0 for
all i, which due to our choice of Wi yields the positivity of µ on all nonempty
open sets. In addition,

µ ◦ f−1 =
∞∑

i=1

2−iµi ◦ f−1 =
∞∑

i=1

2−iν = ν.

If ν is a signed measure, then, as we have established, there exists a
nonnegative Borel measure µ0 with support X such that µ0 ◦ f−1 = |ν|. Let
ν = ν+ − ν− be the Jordan–Hahn decomposition and let Borel sets Y1 and
Y2 be such that Y1 ∩ Y2 = ∅, Y1 ∪ Y2 = Y and ν+(Y2) = ν−(Y1) = 0. The
measure |ν| can be written as |ν| = ζ · ν, where ζ is the Borel function that
equals 1 on Y1 and −1 on Y2. Set µ = (ζ ◦ f) · µ0. Then |µ| = µ0, hence the
support of µ is X. In addition, ‖µ‖ = ‖ν‖. Finally, for every bounded Borel
function ψ on Y we have

∫

X

ψ
(
f(x)

)
µ(dx) =

∫

X

ψ
(
f(x)

)
ζ
(
f(x)

)
µ0(dx)

=
∫

Y

ψ(y)ζ(y) |ν|(dy) =
∫

Y

ψ(y) ν(dy),

which gives the equality µ ◦ f−1 = ν. �

Let us prove another useful result close to measurable selection theorems.

9.1.7. Proposition. Let µ be a Radon probability measure on a metric
(or Souslin) space X and let f be a µ-measurable function. Then, there exists
a µ-measurable set E ⊂ X such that f(E) = f(X) and the function f is
injective on E. The same is true for µ-measurable mappings with values in a
metric space Y .

Proof. By induction one can find compact sets Kn with Kn ⊂ Kn+1

whose union has full measure and the restriction of f to every Kn is contin-
uous. By Theorem 6.9.7, every Kn contains a Borel part Bn on which f is
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injective and f(Bn) = f(Kn). Let K =
⋃∞
n=1Kn and

B =
∞⋃

n=1

(
Bn\f−1

(
f(Kn−1)

))
, K0 = ∅.

The sets Kn ∩ f−1
(
f(Kn−1)

)
are compact by the continuity of f on Kn.

Hence B is Borel. It is clear that X\K has µ-measure zero. We show that
f : B → f(K) is one-to-one. Let y ∈ f(K) and let n be the smallest number
with y ∈ f(Kn). Then

y ∈ f(Kn)\f(Kn−1) ⊂ f
(
Bn\f−1

(
f(Kn−1)

))
.

Hence there exists x ∈ Bn\f−1
(
f(Kn−1)

)
⊂ B with f(x) = y, i.e., y ∈ f(B).

If we had another element x0 ∈ B with f(x) = f(x0), then for some l > n,
we would obtain x0 ∈ Bl\f−1

(
f(Kl−1)

)
. But f(x0) = y ∈ f(Kn) ⊂ f(Kl−1),

i.e., one has x0 ∈ f−1
(
f(Kl−1)

)
, which is a contradiction. Thus, f maps B

one-to-one onto f(K). In the set X\K of measure zero, we can choose an
arbitrary subset B0 that is mapped one-to-one onto the set f(X\K)\f(B) if
the latter is nonempty. It suffices to pick exactly one element in every set
f−1(y), y ∈ f(X\K)\f(B). The set E = B ∪ B0 is as required. The case
where f takes values in a separable metric space follows from the considered
case, but can also be proved directly by the same reasoning. In the case of a
nonseparable Y we apply Theorem 7.14.25 and find a set X0 of full measure
that is mapped to a separable part of Y , find in X0 a measurable subset
mapped injectively onto f(X0), and then in X\X0 we choose a subset mapped
injectively onto f(X)\f(X0). One can give another proof by employing the
measurable choice theorem. �

Clearly, this theorem admits extensions to formally more general settings.
For example, it is obvious that the existence of a Souslin subspace of full
measure is enough.

Now we consider more general spaces X and Y and the mapping be-
tween the spaces of measures generated by a mapping f : X → Y . Even if
f is continuous and one-to-one, the corresponding mapping from MB(X) to
MB(Y ) may be neither injective (as in Example 8.10.29) nor surjective. Let
us consider an example of this sort assuming the continuum hypothesis.

9.1.8. Example. Under the continuum hypothesis, there exists a one-
to-one continuous mapping f from some complete metric space M onto the
interval [0, 1] with its usual metric such that no Borel measure onM is mapped
to Lebesgue measure.

Proof. We equip [0, 1] with the discrete metric. Then all subsets of
this space M are closed and the natural mapping of M to [0, 1] with the
standard metric is continuous. Suppose there exists a measure µ on B(M)
such that its image is Lebesgue measure. This yields a possibility to extend
Lebesgue measure to a measure on the σ-algebra of all subsets of the inter-
val vanishing on all points, which contradicts the continuum hypothesis (see
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Corollary 1.12.41). In fact, we have used only that the cardinality of the
continuum is not measurable. �

It is clear from this example that Radon and Baire measures may not
have preimages under continuous mappings. In addition, it may occur that a
Radon measure has a Borel preimage under a continuous mapping, but has
no Radon preimages. To see this, it suffices to interchange the spaces in Ex-
ample 9.1.2, i.e., take for X the Sorgenfrey interval with its natural Lebesgue
measure λ, and take for Y the interval [0, 1) with the standard topology and
Lebesgue measure λ1, which is the image of λ under the continuous natural
projection X → Y , but has no Radon preimages, since all Radon measures
on X are purely atomic.

An obvious necessary condition of the existence of a Radon preimage of a
Borel measure ν is the existence for every ε > 0 a compact set Kε in X such
that |ν|∗

(
f(Kε)

)
> ‖ν‖ − ε. It turns out that for continuous f this condition

is sufficient.

9.1.9. Theorem. Let f be a mapping from a topological space X to a
topological space Y with a Radon measure ν. Suppose that there exists an
increasing sequence of compact sets Kn ⊂ X such that f is continuous on
every Kn and

lim
n→∞

|ν|
(
f(Kn)

)
= ‖ν‖.

Then, there exists a Radon measure µ on X with µ ◦ f−1 = ν. In addition,
this measure can be chosen with the property ‖ν‖ = ‖µ‖. In particular, this
is true if X and Y are compact and f is a continuous surjection.

Proof. Suppose first that ν is a nonnegative measure on Y such that one
has ν(Y \Q) = 0, where Q = f(K), K ⊂ X is compact and f |K is continuous.
On the subspace of the space C(K) consisting of all functions of the form
ϕ ◦ f , where ϕ ∈ Cb(Y ), we define a linear functional L by the formula

L(ϕ ◦ f) =
∫

Q

ϕ(y) ν(dy).

Since ∣
∣
∣
∣

∫

Q

ϕ(y) ν(dy)
∣
∣
∣
∣ ≤ ν(Y ) sup

Q
|ϕ| = ν(Y ) sup

K
|ϕ ◦ f |,

this functional is continuous and by the Hahn–Banach theorem can be ex-
tended (with the same norm) to all of C(K). By the Riesz theorem, there
exists a Radon measure µ on K with

L(ψ) =
∫

K

ψ dµ, ∀ψ ∈ C(K).

Therefore,
∫

K

ϕ
(
f(x)

)
µ(dx) = L(ϕ ◦ f) =

∫

Q

ϕ(y) ν(dy), ∀ϕ ∈ Cb(Y ).
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It is clear that µ ◦ f−1 = ν because any continuous function ϕ has equal
integrals with respect to the Radon measures µ ◦ f−1 and ν. In addition, one
has ‖µ‖ = ‖ν‖.

Let us extend our assertion to signed measures on Q. Let ν = ν+ − ν−

be the Jordan–Hahn decomposition, in which the measures ν+ and ν− are
concentrated on disjoint Borel sets Y + and Y − with Y + ∪ Y − = Y . We take
the nonnegative Radon measures µ1 and µ2 constructed above on K such
that ν+ = µ1 ◦ f−1, ν− = µ2 ◦ f−1. One has µ1

(
f−1(Y −)

)
= ν+(Y −) = 0

and similarly, µ2

(
f−1(Y +)

)
= 0. Thus, the measures µ1 and µ2 are mutually

singular. Hence, letting µ = µ1−µ2, we have the equality ‖µ‖ = ‖µ1‖+‖µ2‖ =
‖ν+‖ + ‖ν−‖ = ‖ν‖. It is clear that ν = µ ◦ f−1. It is obvious from our
construction for nonnegative measures that the obtained measure µ has the
following property: if |ν|(C) = 0 for some Borel set C, then |µ|

(
f−1(C)

)
= 0

(certainly, the measure ν may have preimages without such a property, for
example, the zero measure may have a nonzero signed preimage).

Let us consider the general case. The sets Qn = f(Kn) are compact. Let
Sn = Qn\Qn−1, Q0 = ∅. Applying the considered case to the restriction
νn of the measure ν to the set Sn, considered in the compact space Qn, we
obtain a Radon measure µn on Kn such that νn = µn ◦ f−1. In addition,
according to the above construction, the measures µn are concentrated on the
disjoint sets f−1(Sn) ∩Kn and ‖µn‖ = ‖νn‖. Therefore, the series

∑∞
n=1 µn

converges and defines the measure µ with the required properties. We note
that the measure µ is concentrated on the union of the sets Kn, hence the
behavior of f outside this union does not affect the measurability of f and
the image of µ. �

It is clear that the measure µ constructed above may be non-unique.
However, it is unique if f is injective (Exercise 9.12.39).

Let us establish a result on the existence of a preimage of a measure on
the preimage of the σ-algebra.

9.1.10. Theorem. Let F be a mapping from a set X to a measure space
(Y,B, ν) with a finite measure ν such that F (X) ∈ B. Let us consider the
σ-algebra A := F−1(B) = {F−1(B), B ∈ B}. Then F (A) ∈ B for all A ∈ A,
and the set function µ(A) := ν

(
F (A)

)
, A ∈ A, is countably additive on A,

and if Y \F (X) has |ν|-measure zero, then µ ◦ F−1 = ν.

Proof. If A ∈ A, then by definition A = F−1(B), where B ∈ B. Hence
F (A) = B∩F (X) ∈ B. If sets Aj ∈ A are disjoint, then F (Aj) are disjoint as
well. Indeed, Aj = F−1(Bj), hence the sets F (Aj) = Bj ∩F (X) do not meet.
Therefore, µ is a measure on A. If F (X) has full ν-measure, then we may
assume that F (X) = Y . Then it is clear that µ

(
F−1(B)

)
= ν(B), B ∈ B. �

In addition to the inclusion F (X) ∈ B required in the above theorem, its
essential difference as compared to our previous results is that the measure µ
is defined on a rather narrow σ-algebra. For example, if F is the projection
from the plane to the real line, then A contains only the cylinders B×IR1.
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Even in the case where µ extends to a larger σ-algebra, the extension may not
be defined by the indicated formula because that formula on a larger σ-algebra
may give a non-additive set function.

Now we discuss the question when a given probability measure can be
transformed into Lebesgue measure.

9.1.11. Proposition. Let µ be an atomless probability measure on
a measurable space (X,A). Then, there exists an A-measurable function
f : X → [0, 1] such that µ ◦ f−1 is Lebesgue measure.

Proof. We give two different proofs employing typical arguments based
on two different ideas. It suffices to show that there exists an A-measurable
function f : X → [0, 1] such that the Borel measure µ ◦ f−1 on [0, 1] has no
atoms because such a measure can be transformed into Lebesgue measure
(see Example 3.6.2). Suppose that this is not true. The space F of all A-
measurable functions f : X → [0, 1] is a closed subset in the Banach space
of all bounded functions on X with the norm supx |f(x)|. For every n, we
consider the set Fn consisting of all f ∈ F for which the measure µ ◦ f−1 has
an atom of measure at least n−1. We observe that the sets Fn are closed, since
if functions fj ∈ Fn converge uniformly to a function f , then the measures
µ ◦ f−1

j converge weakly to µ ◦ f−1. The atoms of these measures on the
interval are points of positive measures. If µ ◦ f−1

j (cj) ≥ n−1 and c is a limit
point of {cj}, then µ◦f−1(c) ≥ n−1, since otherwise one could find an interval
I = [c − δ, c + δ] with µ ◦ f−1(I) < n−1, and then µ ◦ f−1

j (I) < n−1 for all
sufficiently large j, which leads to a contradiction. By the Baire theorem, some
Fn contains a ball U of positive radius r in the space F . Let h be the center
of this ball. We shall arrive at a contradiction if we show that U contains a
function g ∈ F such that the measure µ◦g−1 does not have atoms of measure
greater than or equal to (2n)−1. The measure µ ◦ h−1 has only finitely many
different atoms c1,. . . ,ck of measure at least (2n)−1. Let us take δ < r/4 such
that the intervals [ci− δ, ci+ δ] are pairwise disjoint. Since the measure µ has
no atoms, by Corollary 1.12.10 every set Ei := h−1(ci) can be partitioned into
finitely many measurable disjoint subsets Ei,j with µ(Ei,j) < (4n)−1. Since
the total number of atoms of the measure µ ◦ h−1 is finite or countable, one
can find distinct numbers ai,j ∈ [ci − δ, ci + δ] ∩ [0, 1] that are not atoms of
this measure. Now let g(x) = h(x) if x �∈

⋃k
i=1Ei, g(x) = ai,j if x ∈ Ei,j .

For every c ∈ [0, 1], we have µ ◦ g−1(c) < (2n)−1. Indeed, if c differs from
all ai,j , then the set g−1(c) = h−1(c) does not meet

⋃k
i=1Ei and hence has

µ-measure at most (2n)−1. If c = ai,j , then g−1(c) differs from Ei,j in a set
of µ-measure zero and also has µ-measure at most (2n)−1. It is clear that
g ∈ U . This reasoning is frequently used in other situations (see the following
proposition).

There is a shorter reasoning based on the fact that every set of positive
measure α (for an atomless measure) contains a subset of measure α/2. By
using this fact and induction, for every rational number r of the form k2−n
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with n, k ∈ IN, we construct a set Xr with µ(Xr) = r such that Xr ⊂ Xs if
r < s. Namely, we deal first with r = 1/2, next with r = 1/4 and r = 3/4,
and so on. Then one can set f(x) = inf{r : x ∈ Xr}. Taking into account
that Xr ⊂ {f ≤ r}, it is readily verified that µ({f ≤ r}) = r for all r of the
above form, which proves the claim. �

If we are given a measure on a topological space, then it is natural to
investigate the problem of transforming it into Lebesgue measure by means
of a continuous mapping.

9.1.12. Proposition. Let µ be an atomless Radon probability measure
on a completely regular space X. Then, there exists a continuous function
f : X → [0, 1] such that µ ◦ f−1 is Lebesgue measure. The same is true in the
case of a Baire measure on an arbitrary space.

Proof. The reasoning in the first proof of the previous proposition re-
mains valid if we take for F the set of all continuous functions and verify that
a function g in U can also be chosen continuous (certainly, the function h is
continuous as well). To this end, we consider the same Ei,j and ai,j as above,
but now c1, . . . , ck are all atoms of µ◦h−1 of measure at most (4n)−1, and we
pick the points ai,j in (ci, ci + δ) (if i = k, then in (ck − δ, ck)). Every set Ei,j
contains a compact set Ki,j with µ(Ei,j\Ki,j) < (8nM)−1, where M is the
total number of sets Ei,j . There are pairwise disjoint neighborhoods Ui,j of
the compact sets Ki,j such that µ(Ui,j\Ki,j) < (4nM)−1 and |h(x)−ai,j | ≤ δ
if x ∈ Ui,j . Let D := X\

⋃
i,j Ui,j . By the complete regularity of X there

exists a continuous function g on X such that g = h on D, g|Ki,j = ai,j ,
and |g(x) − ai,j | ≤ 2δ if x ∈ Ui,j . To this end, it suffices to take continuous
functions ζi,j : X → [0, ai,j − ci] such that ζi,j = ai,j − ci on Ki,j and ζi,j = 0
outside Ui,j . Now let

g(x) = h(x) +
∑

i,j

ζi,j(x).

It is clear that supx |g(x) − h(x)| ≤ δ. For every c ∈ [0, 1], the set g−1(c) is
the union of the sets g−1(c) ∩Ki,j , g−1(c) ∩D, and g−1(c) ∩ (Ui,j\Ki,j). If c
is not equal to any ai,j and ci, then

µ
(
g−1(c)

)
≤ µ

(
h−1(c)

)
+ (4n)−1 < (2n)−1

since g = h on D. The estimate µ(Ei ∩ D) ≤ µ(Ei\
⋃
j Ki,j) < (8n)−1

yields that µ
(
g−1(ci)

)
< (8n)−1 + (4n)−1 < (2n)−1. If c = ai,j , then

µ
(
g−1(c)

)
< (4n)−1 +M(4nM)−1 = (2n)−1 since µ(Ki,j) ≤ µ(Ei,j) < (4n)−1

and µ(h−1
(
ai,j)

)
= 0.

In the case of a Baire measure, in place of compact setsKi,j in the previous
reasoning we take functionally closed sets and choose functionally open sets
Ui,j (then there exist the corresponding functions ζi,j). Certainly, the claim
for Radon measures can be easily derived from the claim for Baire measures,
but one should remember that the absence of atoms of a Baire measure is not
reduced to vanishing on singletons. �
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9.2. Isomorphisms of measure spaces

9.2.1. Definition. Let (X,A, µ) and (Y,B, ν) be two measurable spaces
with nonnegative measures.

(i) A point isomorphism T of these spaces is a one-to-one mapping of X
onto Y such that T (A) = B and µ ◦ T−1 = ν.

(ii) The spaces (X,A, µ) and (Y,B, ν) are called isomorphic mod0 if there
exist sets N ∈ Aµ, N ′ ∈ Bν with µ(N) = ν(N ′) = 0 and a point isomorphism
T of the spaces X\N and Y \N ′ that are equipped with the restrictions of the
measures µ and ν and the σ-algebras Aµ and Bν .

Usually, for brevity, isomorphic mod0 measure spaces are called isomor-
phic, and when one is concerned with point isomorphisms (or isomorphisms
with other additional properties), this is appropriately specified.

In the case when (X,A, µ) = (Y,B, ν), the isomorphisms of the above
types are called automorphisms.

We observe that it follows by the definition of a point isomorphism that
µ(A) = ν

(
T (A)

)
for all A ∈ A, since by condition we have T (A) ∈ B and

A = T−1
(
T (A)

)
. But it is important to remember that a mapping T may not

be a point isomorphism even if it is one-to-one, measurable and µ ◦ T−1 = ν.
The point is that the images of sets in A may not be in B. For example, this
is the case if Lebesgue measure on [0, 1] is considered on the σ-algebra A of
Lebesgue measurable sets and one takes for T the identity mapping to [0, 1]
with the Borel σ-algebra B. Certainly, in this example, passing to the com-
pleted σ-algebras we change the situation, but more complicated situations
are possible.

9.2.2. Theorem. Let (X,µ) be a Souslin (for example, complete separa-
ble metric) space with a Borel probability measure µ. Then (X,µ) is isomor-
phic mod0 to the space ([0, 1], ν), where ν is some Borel probability measure.
If µ is an atomless measure, then one can take for ν Lebesgue measure. Both
assertions remain valid for Radon measures concentrated on Souslin subsets.

Proof. By Theorem 6.7.4, it suffices to consider the case where X is
a Souslin subset of [0, 1]. Thus, the first claim is already contained in the
cited theorem. We only need to show the existence of an isomorphism with
Lebesgue measure when the measure µ on [0, 1] has no atoms and is a prob-
ability. In that case, its distribution function F (t) = µ

(
[0, t)

)
= µ

(
[0, t]

)
is

continuous and increasing, F (0) = 0 and F (1) = 1. It has been verified in
Example 3.6.2 that F takes the measure µ to Lebesgue measure λ. If this
function were strictly increasing, then it would be a homeomorphism of the
interval. However, it is easily seen that F is strictly increasing on the topo-
logical support S of µ and F (S) = [0, 1]. Sometimes it is more convenient to
use the inverse function to F that takes λ to µ. Let

G(x) = inf
{
t ∈ [0, 1] : F (t) = x

}
, x ∈ [0, 1].
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The function G is strictly increasing on (0, 1), since F is increasing and has no
jumps. Hence G is a Borel function that maps the interval (0, 1) one-to-one to
the Borel set Y := G

(
(0, 1)

)
. We verify that G transforms Lebesgue measure

on (0, 1) to the measure µ. In order to prove the equality µ = λ ◦ G−1, it
suffices to show that µ

(
(0, c]

)
= λ ◦ G−1

(
(0, c]

)
for all c ∈ (0, 1). This is

equivalent to the equality F (c) = λ
(
G−1(0, c]

)
. Let c0 = G

(
F (c)

)
. Then one

has c0 ≤ c and F (c0) = F (c). It remains to observe that we have the equality
G−1(0, c] =

(
0, G−1(c0)

]
=
(
0, F (c)

]
. �

9.2.3. Corollary. Let µ be a nonnegative Radon measure on a space X.
The following assertions are equivalent:

(i) there exists a nonnegative Radon measure ν on a compact metric space
Y such that the spaces (X,µ) and (Y, ν) are isomorphic mod0;

(ii) one has µ(B) = sup
{
µ(K) : K ⊂ B is a metrizable compact set

}
for

all sets B ∈ B(X).

Proof. If we have (i), then we may assume that Y = [a, b]. We observe
that if a function f : X → [a, b] is injective and continuous on a compact set
K ⊂ X, then K is metrizable. Indeed, in that case f maps K one-to-one
and continuously on the compact set f(K) ⊂ [a, b]. Then it is well known
that f is a homeomorphism. By Lusin’s theorem on the almost continuity of
measurable functions (Theorem 7.1.13) we obtain (ii). If (ii) is fulfilled, then
(i) follows by Theorem 9.2.2. �

9.2.4. Lemma. Let µ be a nonnegative Borel measure on a Souslin space
X and let F : X → X be a Borel mapping such that

µ(B) = µ
(
F (B)

)
= µ

(
F−1(B)

)
, ∀B ∈ B(X). (9.2.1)

Then, there exists a Souslin set X0 ⊂ X of full µ-measure that is mapped by
F one-to-one onto itself.

Proof. By Corollary 9.1.4, there exist a Borel set Y of full µ-measure and
a Borel mapping Φ: Y → X such that F

(
Φ(y)

)
= y for all y ∈ Y . It is clear

that Φ maps Y one-to-one onto Φ(Y ). In addition, Z := Φ(Y ) is a Souslin set
of full measure, since F maps it onto Y . We observe that F is injective on Z.
We set Z0 = Z∩F−1(Z) and for every integer k we define inductively the sets
Zk by Zk+1 = Z0∩F (Zk), k ≥ 0, Zk−1 = Z0∩F−1(Zk), k ≤ 0. All these sets
have full measure and are Souslin. Then the set X0 =

⋂
k∈Z

Zk is a Souslin set
of full measure, F is injective on X0 and F (X0) = X0. Indeed, let x ∈ Zk for
all k ∈ Z. Then F (x) ∈ F (Zk−1) ⊂ Zk if k ≤ 0 and F (x) ∈ Z0∩F (Zk) = Zk+1

if k ≥ 0. Further, x = F (z), where z ∈ Z0. By the inclusion F (z) ∈ Zk+1 we
obtain z ∈ Zk if k ≥ 0. Next we obtain z ∈ Zk = Z0 ∩ F−1(Zk+1) if k < 0,
since F (z) = x ∈ Zk+1. Thus, z ∈ X0. �

9.2.5. Corollary. The statement of Lemma 9.2.4 remains valid for any
µ-measurable mapping F satisfying condition (9.2.1) provided that F (B) is
µ-measurable for every B ∈ B(X).
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Proof. By Corollary 6.7.6, there exist a Borel set N0 of µ-measure zero
and a Borel mapping F0 equal to F outside N0. We redefine F0 on N0 by
setting F0|N0 = a, where a is an arbitrary point in N0. Since by hypothesis
µ
(
F (N0)

)
= 0, the mapping F0 satisfies the hypothesis of Lemma 9.2.4, hence

there exists a Souslin set X0 ⊂ X\N0 of full measure that is mapped by F0

(hence by F ) one-to-one onto itself. �

Apart from a rather rough classification of measures by means of gen-
eral measurable mappings, in many problems it is important to employ finer
classifications, for example, by means of continuous or smooth mappings (or
mappings with other additional special properties). Brief comments on this
are given in �9.6 and �9.12(vi) (see also �5.8(x)).

9.3. Isomorphisms of measure algebras

Let (X,A, µ) be a measure space with a finite nonnegative measure µ and
let the σ-algebra A be complete with respect to µ. In this case we shall call
the metric Boolean algebra A/µ considered in Chapter 1 a measure algebra
and denote it by Eµ. The elements of this algebra are equivalence classes of
µ-measurable sets with the metric �(A,B) = µ(A�B). We recall that Eµ is
a complete metric space (note that by our definition, A/µ is complete even
if A is not; completeness of A is assumed for convenience). One defines the
operations of union, intersection and complementation for all elements of Eµ
as the respective operations on representatives of the equivalence classes.

9.3.1. Definition. Two measure algebras Eµ1 and Eµ2 generated by
measure spaces (X1,A1, µ1) and (X2,A2, µ2) are called isomorphic if there
exists a one-to-one mapping J from Eµ1 onto Eµ2 (called a metric Boolean
isomorphism) such that J preserves the measure, i.e., µ2

(
J(A)

)
= µ1(A) for

all A ∈ Eµ1 , and, in addition,

J(A\B) = J(A)\J(B) and J(A ∪B) = J(A) ∪ J(B)

(then also J(A ∩B) = J(A) ∩ J(B)).

It is clear from the definition that the equivalence class of X1 corresponds
to the equivalence class of X2. We may assume that the isomorphism J
maps A1 to A2 such that the correspondence of unions, intersections, and
complements holds up to sets of measure zero.

In the investigation of measure algebras an important role is played by
countable measurable partitions, i.e., partitions of a measure space (X,A, µ)
into pairwise disjoint measurable sets Xn. The diameter of the partition
X = {Xn} is the number

δ(X ) = sup
n
µ(Xn).

A partition X called is a refinement of a partition Y if every element of X is
contained in an element of Y.
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9.3.2. Lemma. Let Xn be a sequence of partitions of [0, 1] into finite
collections of intervals (open, closed or half-closed) such that lim

n→∞
δ(Xn) = 0.

Then, the set of all finite unions of elements of the partitions Xn is everywhere
dense in the measure algebra Eλ, where λ is Lebesgue measure on [0, 1].

Proof. It suffices to show that for every interval I = [a, b] ⊂ [0, 1] and
every ε > 0, one can find a finite collection I1, . . . , Ik of elements of the
partitions Xn with λ

(
I �

⋃k
i=1 Ii

)
< ε. Let us pick n such that δ(Xn) < ε/2.

Let I1 be the uniquely defined interval in Xn containing a. If b ∈ I1, then I1
gives the required approximation. Otherwise we take the consecutive intervals
I1, . . . , Ik in the partition Xn such that b ∈ Ik. It is clear that the union of Ij
approximates I up to ε with respect to Lebesgue measure. �

9.3.3. Lemma. Let µ be an atomless probability measure on a space
(X,A, µ) and let {Xn} be a sequence of countable measurable partitions such
that Xn+1 is a refinement of Xn for all n and the set of all finite unions of
elements of these partitions is everywhere dense in the measure algebra Eµ.
Then lim

n→∞
δ(Xn) = 0.

Proof. Suppose this is not true. Let Xn consist of sets An,j . The diam-
eters δ(Xn) of our decreasing partitions are decreasing to some δ > 0. There
exists an index k1 such that for all n one has

sup
j
µ(A1,k1 ∩An,j) ≥ δ − δ/4.

Indeed, there are only finitely many sets A1,j1 , . . . , A1,jm in {A1,j} with mea-
sure not less than δ − δ/4. Among these sets, at least one, which will be
denoted by A1,k1 , contains sets with measure at least δ − δ/4 from infin-
itely many Xn because any set An,j with µ(An,j) ≥ δ − δ/4 must be entirely
contained in one of A1,j1 , . . . , A1,jm . But then A1,k1 contains such sets from
every Xn, since any An,j is contained in some An−1,i. Next, by the same
reasoning, we can find A2,k2 ⊂ A1,k1 such that

sup
j
µ(A2,k2 ∩An,j) ≥ δ − δ/4− δ/8

for all n. By induction, for each m ∈ IN, we find Am,km ⊂ Am−1,km−1 with

sup
j
µ(Am,km ∩An,j) ≥ δ − δ

m∑

i=1

2−1−i for all n.

Let A =
⋂∞
m=1Am,km . It is clear that µ(A) ≥ δ/2 > 0. Since Eµ has no

atoms, there exists a measurable set B ⊂ A with 0 < µ(B) < µ(A). Let us fix
a positive number ε < min

(
µ(B), µ(A\B)

)
. By hypothesis, B is approximated

in Eµ up to ε by the union of some sets B1, . . . , Bk from the partitions Xn.
We observe that for any element C in any partition Xn, the set B is either
contained in C or does not meet C. Indeed, if B is not contained in C, then
the set An,kn is not contained in C. All elements of the partition Xn are
disjoint, hence C ∩ An,kn = ∅, whence it follows that C ∩ B = ∅. Since



9.3. Isomorphisms of measure algebras 279

µ(B) > ε, some of the sets Bi contain B. We may assume that B ⊂ B1.
Then µ(B1\B) < ε, and in order to obtain a contradiction, it remains to
observe that at the same time we have µ(B1\B) > ε. This follows by the
inclusion A\B ⊂ B1\B, implied by the inclusion A ⊂ B1, which is verified as
follows. We have B1 = An,j for some n and j. Then B1 = An,kn . Indeed,
otherwise An,j ∩An,kn = ∅, hence B1 ∩A = ∅, which is impossible, since we
have B ⊂ B1 and B ⊂ A. �

9.3.4. Theorem. Every separable atomless measure algebra is isomor-
phic to the measure algebra of some interval with Lebesgue measure.

Proof. Let Eµ be the separable atomless measure algebra generated by
a probability measure µ on a space X and let {En} be a countable everywhere
dense family in Eµ. We show that there exists an isomorphism J : Eµ → Eλ,
where λ is Lebesgue measure on [0, 1]. For every fixed n, we consider the
partition of X into measurable pairwise disjoint sets of the form

⋂n
i=1Ai,

where for every i = 1, . . . , n, the set Ai is either Ei or X\Ei. The sets ob-
tained in this way are denoted by An,j , j ≤ 2n. The required isomorphism
J is first defined inductively on the sets An,j , which will be sent to some
intervals (closed or semiclosed). Let J(A1,1) = [0, a], J(A1,2) = (a, 1], where
a = µ(A1,1). If intervals J(An,j) are already found for some n ≥ 1, then the
choice of J(An+1,j) is made in the following way. Every element An,j consists
of two elements An+1,j′ and An+1,j′′ and is already mapped to the interval
J(An,j) of length µ(An,j). We partition this interval into two subintervals of
length µ(An+1,j′) and µ(An+1,j′′), then associate the first of them to the el-
ement An+1,j′ , and the second one to the element An+1,j′′ . Next we proceed
by induction. By construction, for every fixed n, the intervals J(An,j) are
pairwise disjoint, have lengths µ(An,j), and form a partition of [0, 1]. Now J
extends to all finite unions of disjoint sets An1,k1 , . . . , Anm,km : such a union
is mapped to the union of the corresponding intervals J(Ani,ki). The con-
structed mapping is an isometry on the union of An,j , n ∈ IN, j ≤ 2n. If we
show that the domain of definition is everywhere dense in Eµ and the set of
values is everywhere dense in Eλ, then we can extend J by continuity to Eµ.
Since J on the already-existing domain of definition satisfies the conditions
J(X\A) = [0, 1]\J(A) and J(A∩B) = J(A)∩J(B), these conditions hold on
all of Eµ in the result of extension by continuity (we recall that the elements
of Eµ are equivalence classes, not individual sets). Finite unions of disjoint
sets An,j give all sets En, hence the initial domain of definition of J is every-
where dense in Eµ. That the range is dense follows by Lemma 9.3.2, since
lim
n→∞

maxj≤2n µ(An,j) = 0 by Lemma 9.3.3. �

For every set A of positive measure, the restriction µA of the measure µ
to A defines another measure algebra Eµ,A. The measure algebra Eµ is called
homogeneous if all metric spaces Eµ,A (where µ(A) > 0) have equal weights
(the weight of a metric space is the least cardinality of its topology bases).
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The following fundamental result on the structure of measure algebras is
due to D. Maharam [1228]. It is valid even in the more general framework of
Boolean algebras (see Vladimirov [1947]).

9.3.5. Theorem. (i) Every atomless measure algebra is the direct sum
of at most countably many homogeneous measure algebras.

(ii) Every atomless homogeneous measure algebra corresponding to a prob-
ability measure is isomorphic to the measure algebra generated by certain
power of unit intervals with Lebesgue measure.

It is important to note that an isomorphism of measure algebras does not
always yield an isomorphism of the underlying measure spaces (see Example
9.5.3 below). In �9.5, we discuss certain important cases when such an impli-
cation is true. A discussion of measure algebras and further references can be
found in Fremlin [629], [635].

9.4. Lebesgue–Rohlin spaces

A class of measure spaces important for applications was introduced and
studied by V.A. Rohlin, who called them Lebesgue spaces. In this section, we
consider only finite nonnegative measures.

We shall say that a measure space (M,M, µ) has a countable basis {Bn}
if the sets Bn ∈M separate the points in M (i.e., for every two distinct points
x and y, there exists Bn such that either x ∈ Bn, y �∈ Bn or x �∈ Bn, y ∈ Bn)
and the Lebesgue completion of σ({Bn}) coincides with the completion of M
(i.e., σ({Bn})µ = Mµ). In other words, every µ-measurable set is contained
between two sets from σ({Bn}) of equal measure.

A space with such a property will be called separable in the sense of
Rohlin. In our earlier-introduced terminology, a measure space (M,M, µ)
is separable in the sense of Rohlin precisely when one can find a countably
generated and countably separated σ-algebra A ⊂M with Aµ = Mµ.

Let Ω = {0, 1}∞ be the space of all sequences ω = (ωi), where ωi is 1
or 0. For every ω ∈ Ω, let

Eω =
∞⋂

n=1

Bn(ωn),

where Bn(ωn) = Bn if ωn = 1 and Bn(ωn) = M\Bn if ωn = 0.
If the sets Bn separate the points in M , then each set Eω contains at

most one point.
The space M is called complete with respect to its basis {Bn} if every

Eω is nonempty.
Thus, for a complete space, the set Eω is some point xω ∈M , and every

point x ∈M coincides with some Eω: for ω = ω(x) we take the sequence such
that ωn = 1 if x ∈ Bn, ωn = 0 if x �∈ Bn. The formula ψ : x �→ ω(x) defines
a one-to-one mapping of M onto Ω. In particular, M has cardinality of the
continuum.
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9.4.1. Example. Let us equip the space Ω with its natural σ-algebra
B generated by the cylinders Cn = {ω ∈ Ω: ωn = 1} (i.e., B = B(Ω) if Ω is
regarded as a topological product, in which case it becomes a compact metric
space). Then, for every Borel measure ν on Ω, the space (Ω,B, ν) is complete
with respect to the basis {Cn}.

Proof. We only have to verify that the sets Eω are nonempty. Since the
complement to Cn consists of all sequences with the zero nth component, the
point xω is found explicitly: its nth component is ωn. �

The completeness with respect to a basis means, in particular, that all
Bn have a nonempty intersection (and if we replace some of them by their
complements, then such sets will have a common point, too). Hence the
natural basis of Lebesgue measure on [0, 1], consisting of all intervals with the
rational endpoints, does not satisfy this condition. Generally speaking, it is
not a very trivial task to construct a basis with respect to which a given space
is complete, as we shall now see from an example of Lebesgue measure. For
this reason, a considerably broader concept of completeness mod0 is discussed
below.

9.4.2. Example. Let M be an uncountable Borel set in a complete
separable metric space and let µ be a Borel measure on M . Then the space(
M,B(M), µ

)
has a countable basis with respect to which it is complete.

Proof. By Corollary 6.8.8 the space M is Borel isomorphic to {0, 1}∞.
A basis in M with the required properties can be constructed as follows: we
consider the basis in {0, 1}∞ described above and take its image under the
Borel isomorphism J : {0, 1}∞ →M . �

In some cases, one can find a basis with the completeness property in a
more constructive way.

9.4.3. Example. Let M be the set of all points in [0, 1] whose ternary
expansions do not contain 2 and let Bn be the set of all points in M that have
1 at the nth position in the ternary expansion. Then M with an arbitrary
Borel measure is complete with respect to the basis {Bn}. In addition, the
mapping ω �→

∑∞
n=1 ωn3−n defines an isomorphism between {0, 1}∞ and M .

9.4.4. Example. The space
(
[0, 1],B([0, 1]), λ

)
, where λ is Lebesgue

measure, has a countable basis with respect to which it is complete (this
follows by Example 9.4.2, but there is no explicit construction there).

Proof. The points in [0, 1] have the binary expansions x =
∑∞
n=1 ωn2−n,

where ωn equals 1 or 0. With the exception of points of some countable set
S ⊂ [0, 1], the indicated expansion is unique. Thus, X = [0, 1]\S is in a one-
to-one correspondence with the complement in Ω = {0, 1}∞ of the countable
set S′ consisting of all sequences whose components are constant from a certain
position. The sets S and S′ can also be put into a one-to-one correspondence.
Let Bn be the set in [0, 1] corresponding to the set Cn in Example 9.4.1 under
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the above-described Borel isomorphism between [0, 1] and Ω. Thus, if we
neglect the countable set S, then Bn is a finite collection of binary rational
intervals in X containing all numbers with 1 at the nth place in the binary
expansion. According to Example 9.4.1, the basis {Bn} has the completeness
property. �

9.4.5. Definition. Let (M,M, µ) be a measure space with a countable
basis {Bn}. We shall say that this space is complete mod0 with respect to the
basis {Bn} if there exist a measurable space (M̃,M̃, µ̃), complete with respect
to some basis {B̃n}, a set M0 ∈ M̃µ̃ of full µ̃-measure, and a one-to-one
measurable mapping π : M →M0 such that

π(Bn) = B̃n ∩M0 and µ ◦ π−1 = µ̃.

In fact, the property of completeness mod0 is a possibility to realize the
given space M as a subset of full measure in some space M̃ with a basis with
respect to which M̃ is complete such that the intersections of elements of
this basis with M form the given basis of M . We observe that the condition
π(Bn) = B̃n ∩M0 yields the

(
σ({Bn}), σ({B̃n})

)
-measurability of π.

The following important definition uses the concept of isomorphism mod0
from Definition 9.2.1.

9.4.6. Definition. A measure space (M,M, µ) is called a Lebesgue–
Rohlin space if it is isomorphic mod0 to some measure space (M ′,M′, µ′)
with a countable basis with respect to which M ′ is complete.

It is clear that if a space (M,M, µ) is complete mod0 with respect to some
basis, then it is a Lebesgue–Rohlin space. Unlike the property of completeness,
the property of completeness mod0 is independent of the choice of a basis.

9.4.7. Theorem. Let (M,M, µ) be a Lebesgue–Rohlin space with a prob-
ability measure µ. Then it is isomorphic mod0 to the interval [0, 1] with the
measure ν = cλ +

∑∞
n=1 αnδ1/n, where c = 1 −

∑∞
n=1 αn, αn = µ(an) and

{an} is the family of all atoms of µ.

Proof. Suppose that M has a basis {Bn} with respect to which it is com-
plete. Let us consider the above-constructed one-to-one mapping π : x �→ ω(x)
from M onto Ω = {0, 1}∞. It is readily verified that π(Bn) = Cn, where
{Cn} is the basis in Ω indicated in Example 9.4.1. Therefore, π is an isomor-
phism between

(
M,σ({Bn})

)
and

(
Ω,B(Ω)

)
. Let ν = µ ◦ π−1. Then π is

an isomorphism between (M,Mµ, µ) and (Ω,Bν , ν), since σ({Bn})µ = Mµ.
According to Theorem 9.2.2, there exists an isomorphism mod0 between the
space (Ω,Bν , ν) and the measurable space generated on [0, 1] by the probabil-
ity measure cλ+

∑∞
n=1 cnδ1/n, where cn = ν(xn) and {xn} is the family of all

atoms of ν. The general case by definition reduces to the considered one. �
9.4.8. Theorem. If a measure space (M,M, µ) is separable in the sense

of Rohlin and complete mod0 with respect to some basis, then it is complete
mod0 with respect to every basis.
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Proof. By Theorem 9.4.7, it suffices to prove our claim for the interval
[0, 1] with a Borel measure µ. Let {Bn} be a basis consisting of Borel sets.
To every point x ∈ [0, 1], we associate the point ω = π(x) ∈ Ω = {0, 1}∞ such
that ωn = 1 if x ∈ Bn and ωn = 0 if x �∈ Bn. Since {Bn} separates the points,
we obtain an injective mapping to Ω. We observe that π(Bn) = Cn∩π([0, 1]),
where {Cn} is the basis in Ω from Example 9.4.1. Hence for completing the
proof it remains to verify that π is a Borel mapping because in that case
π([0, 1]) is a Borel set and ν = µ◦π−1 is a Borel measure concentrated on this
set. Since {Cn} is a basis in Ω, the inclusion π−1

(
B(Ω)

)
⊂ B([0, 1]) follows

by the easily verified equality π−1(Cn) = Bn. �

It is useful to introduce also the concept of a basis mod0. We shall say
that a sequence of sets Bn in a measure space (M,M, µ) is a basis mod0 if
Bn ∈ M and there exists a set Z ∈ Mµ of µ-measure zero such that the
sets B′

n = Bn ∩ (M\Z) form a basis in the space M\Z equipped with the
induced σ-algebra and the restriction of the measure µ. If the latter space
is complete mod0 with respect to {B′

n}, then we shall say that (M,M, µ) is
complete mod0 with respect to its basis mod0. It is clear that the existence of
a basis mod0 with respect to which the space is complete mod0 is equivalent
to saying that the given space is a Lebesgue–Rohlin space.

Let us explain why one should use the concept mod0 in dealing with bases
as well as with completeness. Let us take for M a set of cardinality greater
than that of the continuum with the σ-algebra of all subsets. Let µ be Dirac’s
measure at the point m. Here it is necessary to delete a set of measure zero in
order that the remaining set could be embedded into an interval. Now suppose
that only the point m is left: we may assume that we have the point 0 in [0, 1].
The singleton (as well as any at most countable set) has no basis with the
property of completeness, since the complement of the only nonempty set is
empty. Hence one has to enlarge the space, embedding it, for example, in an
interval. Then the basis of the singleton 0 consisting of the single set 0 can be
obtained as the intersection of a basis in the interval with the point 0. The
concept of a basis mod0 turns out to be much more flexible, so that many
natural systems (such as the rational intervals) become such bases.

9.4.9. Lemma. Suppose that a measure space (M,M, µ) is separable in
the sense of Rohlin and {Bn} ⊂ Mµ is a sequence of sets such that every set
in Mµ coincides up to a set of measure zero with some set in σ({Bn}). Then
{Bn} is a basis mod0.

Proof. Let {An} be some basis in M . For every n, there exists a set
En ∈ σ({Bn}) with µ(An � En) = 0. We verify that in the new space
M0 = M\

⋃∞
n=1(An � En) the sets B′

n = Bn ∩ M0 form a basis. Let x
and y be two distinct points in M0. We find a set An separating them.
We may assume that x ∈ An, y �∈ An. Then x ∈ En, since An\En does
not meet M0. Similarly, one verifies that y �∈ En. Thus, the sets {En}
separate the points in M0. By Lemma 6.5.3, the sets {B′

n} have the same
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property. Let A ⊂ M0 and A ∈ Mµ. Let us show that there exist sets
E,E′ in σ({B′

n}) with equal measures and E ⊂ A ⊂ E′. To this end, we
observe that An ∩M0 = En ∩M0 and hence the σ-algebra generated by the
sets An ∩ M0 is contained in the σ-algebra generated by the sets B′

n. By
our hypothesis, there exist sets D,D′ ∈ σ({An}) such that D ⊂ A ⊂ D′

and µ(D) = µ(D′). Therefore, the sets E := D ∩M0 and E′ := D′ ∩M0

belong to σ({An ∩M0}) ⊂ σ({B′
n}), E ⊂ A ⊂ E′ and µ(E) = µ(E′). �

9.4.10. Proposition. (i) Every measurable subset in a Lebesgue–Rohlin
space with the induced measurable structure is a Lebesgue–Rohlin space.

(ii) Let a measure space (M,M, µ) be separable in the sense of Rohlin
and let A ⊂ M . Suppose that the space (A,MA, µA), where MA = M∩ A
and µA is the restriction of the outer measure to MA (see �1.12(iv)) is a
Lebesgue–Rohlin space. Then A ∈Mµ.

Proof. Assertion (i) is obvious from Theorem 9.4.7. Let us prove asser-
tion (ii). According to Theorem 6.5.7, we may assume that M is contained
in [0, 1], B(M) ⊂ M and Mµ = B(M)µ. In addition, we may assume that
µ(M) = 1 and µ∗(A) = 1. By Theorem 9.4.7, there exist a set A0 ⊂ A with
µA(A0) = 1, a Borel set B0 ⊂ [0, 1], and a one-to-one mapping f : B0 → A0

such that f−1(B) ∈ B([0, 1]) for all B in B(A0). This means that f is a Borel
function. Hence A0 = f(B0) is a Borel set. It is then clear that µ(A0) = 1
and hence the set A is µ-measurable. �

The discussion of Lebesgue–Rohlin spaces will be continued in �10.8,
where we consider measurable partitions. Here we only note that the pre-
sented proofs of the main results on the structure of Lebesgue–Rohlin spaces
are shorter than the original ones (mostly due to the use of some earlier-
obtained results). In spite of this, the reader is strongly encouraged to get
acquainted with the classical work of Rohlin [1595], where the techniques
of proof correspond perfectly to the general idea and spirit of the work: to
distinguish in intrinsic terms of a measurable structure the properties enjoyed
by a broad class of spaces that are most diverse from the topological point of
view.

9.5. Induced point isomorphisms

In this section, we consider only finite nonnegative measures.
It is clear that every isomorphism mod0 induces a metric Boolean isomor-

phism. As Example 9.5.3 shows, the converse is false. However, a classical
result due to von Neumann [1361] states that any metric Boolean automor-
phism of the measure algebra corresponding to an interval with a Borel mea-
sure is induced by an automorphism mod0. Here is an abstract version of this
important result.

9.5.1. Theorem. Let (M1,M1, µ1) and (M2,M2, µ2) be Lebesgue–
Rohlin spaces with probability measures. If the corresponding measure algebras
Eµ1 and Eµ2 are isomorphic in the sense of Definition 9.3.1, then there exists
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an isomorphism mod0 between these measure spaces. In particular, this is the
case if both measures are atomless.

Proof. Suppose first that both measures have no atoms. By the iso-
morphism theorem it suffices to consider the case where M1 and M2 coincide
with M := {0, 1}∞, M1 = M2 = B(M) and µ1 = µ2 = µ. Let J be an
automorphism of the measure algebra Eµ. Let us take the standard basis
Ck = {(ωi) : ωk = 1} of the space {0, 1}∞. Let Bk be an arbitrary Borel
representative of the class J(Ck). By hypothesis, J preserves (up to sets of
measure zero) finite unions, finite intersections, and complements and pre-
serves the measure. Hence all µ-measurable sets are approximated mod0 by
sets from the σ-algebra generated by {Bn}. By Lemma 9.4.9, {Bn} is a ba-
sis mod0. According to Theorem 9.4.8, the space M is complete mod0 with
respect to {Bn}. This means that M contains a Borel set M0 of full µ-measure
that can be embedded into some measurable space (M̃,M̃, µ̃) with a basis B̃n
with respect to which M̃ is complete, such that the sets Bn ∩M0 are mapped
to the sets B̃n, M0 is mapped to a measurable set of full µ̃-measure, and the
measure µ is transformed to µ̃. We may assume that M̃ is obtained by adding
to M0 some Borel set Z ⊂M with µ(Z) = 0 and that µ̃ = µ so that the em-
bedding is the identity mapping. Let us consider the mapping f : M → M̃ ,
ω �→

⋂∞
k=1 B̃k(ωk). This mapping is a Borel isomorphism between M and M̃

and takes the standard basis {Cn} of the space M to the basis {B̃n}. We
observe that by construction one has

µ(Cn) = µ(Bn) = µ(B̃n) = µ
(
f(Cn)

)
.

By using that f is one-to-one, that J(Cn) = f(Cn) up to a set of measure
zero and that J is an isometry, we obtain that for every set C in the algebra
generated by {Cn}, one has the equality µ(C) = µ

(
f(C)

)
. Then this equality

remains true for all sets C ∈M = σ({Cn}). Therefore, f preserves µ and the
induced mapping on Eµ coincides with J . In the general case, the measures
µ1 and µ2 have atoms, but it is easy to see that the atoms a1

n of the measure
µ1 are taken by the mapping J to the atoms a2

n of the measure µ2. We may
assume again that both measures are realized on {0, 1}∞. Then the atoms are
points of positive measure. It is clear that J is a metric Boolean isomorphism
of the measure algebras Eν1 and Eν2 , where νi is the restriction of µi to
Ni = M\{ain}. It is easily seen that the measures νi have no atoms. As
already shown, there exists an isomorphism mod0 of the spaces N1 and N2

generating the above-mentioned metric isomorphism. It remains to extend
this isomorphism to {a1

n}, by associating to every atom a1
n the atom a2

n. �

9.5.2. Corollary. Let (X,µ) and (Y, ν) be Souslin spaces with proba-
bility Borel measures. If the corresponding measure algebras Eµ and Eν are
isomorphic in the sense of Definition 9.3.1, then there exists an isomorphism
mod0 between these measure spaces. In particular, this is the case if both
measures are atomless.
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The above theorem does not extend to arbitrary topological spaces even
with Radon measures.

9.5.3. Example. Let X be the space “two arrows of P.S. Alexandroff”
defined in Example 7.14.11 (this space is compact) with its natural normal-
ized Lebesgue measure µ, described in that example. Then the corresponding
measure algebra is atomless and separable, therefore, is metric Boolean iso-
morphic to the measure algebra of the unit interval. However, there exists no
isomorphism mod0 between the two spaces.

Proof. This follows by Corollary 9.2.3, taking into account that metriz-
able subsets of X are at most countable and the measure λ vanishes on
them. �

For additional results, see �9.11(iv).

9.6. Topologically equivalent measures

9.6.1. Definition. Let X and Y be two topological spaces, let µ be a
Borel measure on X, and let ν be a Borel measure on Y .

(i) The measure spaces
(
X,B(X), µ

)
and

(
Y,B(Y ), ν

)
are called homeo-

morphic if there exists a homeomorphism h : X → Y with µ ◦ h−1 = ν.
(ii) The measure spaces

(
X,B(X), µ

)
and

(
Y,B(Y ), ν

)
are called almost

homeomorphic (or topologically equivalent) if there exist sets N ⊂ X, N ′ ⊂ Y
with

|µ|(N) = |ν|(N ′) = 0
and a homeomorphism h : X\N → Y \N ′ such that µ ◦ h−1 = ν.

Measures that are almost homeomorphic to Lebesgue measure are called
topologically Lebesgue.

The next two important results on homeomorphisms of measure spaces
are due to Oxtoby [1408].

9.6.2. Theorem. Let X be a topological space equipped with a Borel
probability measure µ that has no atoms and is positive on nonempty open
sets. In order that the space (X,µ) be homeomorphic to (R, λ), where R is
the space of all irrational numbers in the interval (0, 1) and λ is Lebesgue
measure, it is necessary and sufficient that X be homeomorphic to R.

Proof. We have to show that if X and R are homeomorphic, then
there exists a homeomorphism transforming µ into λ. Hence we may as-
sume that X = R. One can introduce a metric d on R defining the usual
topology, but making R a complete space (see �6.1).

Let us prove the following auxiliary assertion: if U and V are nonempty
open sets in R such that µ(U) = λ(V ), then for every ε > 0, there exists a
partition {Un} of the set U and a partition {Vn} of the set V into nonempty
open sets of diameter less than ε in the metric d such that µ(Un) = λ(Vn) for
all n. To this end, we take a partition of V into nonempty open sets Wi of
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diameter less than ε in the metric d. We observe that V is homeomorphic to
R (this is clear from the fact that V is the intersection of R with a finite or
countable union of disjoint intervals). Then by Exercise 9.12.41, there exists
a partition of U into open sets Gi with λ(Wi) = µ(Gi) for all i ∈ IN. Every Gi
can be partitioned into nonempty pairwise disjoint open sets Gij of diameter
less than ε in the metric d. As above, every Wi can be partitioned into open
sets Wij with λ(Wij) = µ(Gij) for all j ∈ IN. The families {Gij} and {Wij}
are desired partitions.

By this auxiliary assertion, we obtain partitions Un = {U(i1, . . . , in)} and
Vn = {V (i1, . . . , in)} consisting of nonempty open sets of diameter less than
1/n in the metric d, with the following properties:

U(i1, . . . , in+1) ⊂ U(i1, . . . , in), V (i1, . . . , in+1) ⊂ V (i1, . . . , in),

µ
(
U(i1, . . . , in)

)
= λ

(
V (i1, . . . , in)

)
for all n ∈ IN and all indices ij . For every

x ∈ R, there exists exactly one sequence {in} with x ∈
⋂∞
n=1 U(i1, . . . , in).

The same is true for the family of sets V (i1, . . . , in). Let

f(x) =
∞⋂

n=1

V (i1, . . . , in).

Then f is a one-to-one mapping of R onto itself. One has the equality
f
(
U(i1, . . . , in)

)
= V (i1, . . . , in), which is readily verified by using the above-

stated property of both families of sets. We observe that any nonempty open
set in R can be represented as a finite or countable union of pairwise dis-
joint sets in the partitions Vn. The same is true for the partitions Un. This
yields that f is a homeomorphism and µ

(
f−1(W )

)
= λ(W ) for every open

set W ⊂ R. Hence µ ◦ f−1 = λ. �

9.6.3. Theorem. Let µ be a Borel probability measure on a Polish
space X without points of positive measure. Then, there is a Gδ-set Y ⊂ X
such that µ(X\Y ) = 0 and the space (Y, µY ) is homeomorphic to the space
R of irrational numbers of the interval (0, 1) with Lebesgue measure λ. In
particular, (X,µ) and ([0, 1], λ) are almost homeomorphic.

Proof. Let d be a complete metric on X. Let us take a countable ev-
erywhere dense set {xi} ⊂ X and a sequence of numbers rj > 0 such that
lim
j→∞

rj = 0 and µ
(
{x : d(x, xi) = rj}

)
= 0. This is possible, since for every i,

the set of numbers r such that µ
(
{x : d(x, xi) = r}

)
> 0 is at most countable.

Let
Sij = {x : d(x, xi) = rj} and Uij = {x : d(x, xi) < rj}.

It is clear that the collection {Uij} forms a topology base. We denote by S
the union of all Sij , and by G the union of all Uij with µ(Uij) = 0. Then
µ(S∪G) = 0. Let us consider the set Z = X\(S∪G). It is clear that µ(Z) = 1
and that Z can be represented as a countable intersection of open sets, i.e., is
a Gδ-set (we recall that any closed set in a metric space is Gδ). We take in Z
a countable everywhere dense set D. Let us show that the set Y = Z\D is as
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required. Indeed, µ(Y ) = 1. If U is an open set meeting Y , then µ(U) > 0,
since otherwise one could find a set Uij of zero measure meeting Y . Thus, the
measure µY on the space Y is positive on nonempty open subsets of Y . In ad-
dition, µY has no points of positive measure. In order to apply Theorem 9.6.2,
it remains to verify that Y is homeomorphic to R. By construction, Y is an
everywhere dense Gδ-set in the space Z. By the Mazurkiewicz theorem (see
Kuratowski [1082, �36, subsection II, Theorem 3]), it suffices to verify that
Z\Y is everywhere dense in Z and that Z is a Polish space of zero dimension,
i.e., every point has an arbitrarily small clopen neighborhood. Since Z is a
Gδ-set in a Polish space, it is Polish as well. The set D = Z\Y is dense in
Z by construction. Finally, the fact that Z has dimension zero follows by the
property that the sets Uij ∩ Z are closed in Z, since all sets Sij are deleted
from Z. �

Additional results on almost homeomorphisms are given in �9.12(vi).
We remark that there exists a Radon probability measure µ on a compact

space X such that the space (X,µ) is isomorphic mod0 to the interval [0, 1]
with Lebesgue measure, but is not almost homeomorphic to [0, 1] (hence to
no compact metric space); see Exercise 9.12.60.

The following criterion of the existence of almost homeomorphisms is
proved in Babiker [85].

9.6.4. Theorem. Let µ be a Radon probability measure on a com-
pact space X such that (X,µ) is isomorphic mod0 to the interval [0, 1] with
Lebesgue measure. Then, the measure µ is topologically Lebesgue if and only if
it is completion regular on its topological support Sµ, i.e., B(Sµ) ⊂ Ba(Sµ)µ.

Finally, we mention two results on usual homeomorphisms of topological
spaces with measures.

9.6.5. Theorem. A Borel probability measure µ on the cube [0, 1]n is
homeomorphic to Lebesgue measure λ on [0, 1]n if and only if it satisfies the
following conditions: (a) µ is atomless; (b) µ is positive on all nonempty open
sets in [0, 1]n; (c) µ vanishes on the boundary of [0, 1]n.

9.6.6. Theorem. (i) A Borel probability measure µ on [0, 1]∞ is homeo-
morphic to the measure λ∞ on [0, 1]∞ that is the countable product of Lebesgue
measures if and only if it is atomless and positive on all nonempty open sets
in [0, 1]∞.

(ii) Every two atomless Borel probability measures on l2, positive on all
nonempty open sets, are homeomorphic.

Further information, including references and proofs, can be found in
Alpern, Prasad [38] and Akin [17].

9.7. Continuous images of Lebesgue measure

In this section, we discuss the following question: when can a measure µ
on a topological space X be represented as the image of Lebesgue measure
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on the interval [0, 1] under a continuous mapping from [0, 1] to X? A simple
answer to this question in terms of the topological support of the measure has
been given by Kolesnikov [1018]. In order to formulate the principal result,
we need the notions of connectedness and local connectedness.

We recall that a nonempty open set in a topological space is called con-
nected if it cannot be represented as the union of two disjoint nonempty open
sets. A topological space is called locally connected at a point x if every open
neighborhood of the point x contains its connected neighborhood. A topolog-
ical space is called locally connected if it is locally connected at every point.

It is known that a metrizable compact space is a continuous image of the
interval precisely when it is connected and locally connected (see Engelking
[532, 6.3.14]).

If a measure µ on a space X is the image of Lebesgue measure under a
continuous mapping f : [0, 1] → X, then the topological support of µ (i.e.,
the smallest closed set of full measure) is the compact set K = f([0, 1]), hence
is a connected and locally connected metrizable compact space. It turns out
that the converse is true as well. It should be observed, however, that if the
support of a measure µ is the image of the interval [0, 1] under some continuous
mapping ϕ, then this does not mean that µ is the image of Lebesgue measure
under ϕ. For example, let ϕ(t) = 0 if t ≤ 1/2 and ϕ(t) = 2(t−1/2) if t ≥ 1/2.
Then the image of Lebesgue measure with respect to ϕ does not coincide with
Lebesgue measure, although ϕ([0, 1]) = [0, 1].

9.7.1. Theorem. Let K be a compact metric space that is the image of
[0, 1] under a continuous mapping f and let µ be a Borel probability measure
on K such that K is its support. Then, there exists a continuous mapping
g : [0, 1] → K such that µ = λ ◦ g−1, where λ is Lebesgue measure on [0, 1].

Proof. (1) First we show that every point y ∈ K has an arbitrarily
small closed neighborhood that is a continuous image of [0, 1]. Let [0, 1] =
A1∪A2∪. . .∪An, where Ak = [(k−1)/n, k/n]. Let U =

⋃
k : y∈f(Ak)

f(Ak). It
is clear that U is a continuous image of [0, 1]. This set is a closed neighborhood,
since, along with y, it contains the open set K \

⋃
k : y/∈f(Ak)

f(Ak), which
follows by the equality K = f([0, 1]). By the uniform continuity of f and the
triangle inequality, the neighborhood U can be made as small as we wish.

(2) The main step of the proof is the verification of the existence of a
continuous mapping ϕ from [0, 1] onto K such that µ

(
ϕ(V )

)
�= 0 for every

nonempty open set V ⊂ [0, 1]. Let U0 be the union of all open sets that are
taken by f to measure zero sets. Then U0 =

⋃∞
i=1 Ji, where Ji = (ai, bi), or

Ji = [0, bi), or Ji = (ai, 1], and Ji∩Jj = ∅ if i �= j. We assume further that the
length of Ji does not increase as i is increasing. Let m1 be the smallest natural
number for which there exist intervals J1, J2,. . . , Jk1 of length not less than
1/2m1 (i.e., at least one such interval). For the middle point c1 of the interval
J1 we find N such that the neighborhood V1 of the point f(c1) constructed
for the case n = N as in the previous step is of diameter less than 1/2 (in
the metric �K of K). In addition, we may assume that (c1 − 1/N, c1 + 1/N)
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belongs to J1. We can construct a continuous surjective mapping f1 of the
interval [c1 − 1/N, c1 + 1/N ] onto V1 such that

f1(c1 − 1/N) = f(c1 − 1/N), f1(c1 + 1/N) = f(c1 + 1/N).

Similarly, for all 1 ≤ i ≤ k1, we can construct mappings fi in neighborhoods of
the points ci, where ci is the middle point of Ji. Let the mapping ϕ1 coincide
with f outside these neighborhoods and coincide with fi on the corresponding
neighborhood. Then ϕ1 is continuous and �(f, ϕ1) ≤ 1/2, where �(ϕ,ψ) =
supt∈[0,1] �K

(
ϕ(t), ψ(t)

)
. The largest open set taken by ϕ1 to a measure zero

set does not contain intervals of length greater than 1/2m1 , since µ(Vi) �= 0,
where 1 ≤ i ≤ k1. Let us pick intervals Jk1+1, Jk1+2,. . . , Jk2 of length greater
than 1/2m2 , where m2 > m1 is the smallest natural number in (m1,+∞)
for which this is possible. As above, we construct a continuous mapping ϕ2

such that �(ϕ1, ϕ2) ≤ 1/4. Repeating the described construction countably
or finitely many times, we obtain a sequence of continuous mappings ϕn such
that �(ϕn, ϕn+1) ≤ 1/2n+1. In the limit we obtain a continuous mapping ϕ.
Let X0 = [0, 1] \ U0, Xi = [0, 1] \ Ui, where Ui is the largest open set taken
by ϕi to a measure zero set. By construction, every mapping ϕj coincides on
Xi with ϕi whenever j > i, and the set

⋃∞
i=1Xi is everywhere dense in [0, 1].

Hence the mapping ϕ takes nonempty open sets to sets of positive measure.
Finally, ϕ([0, 1]) = K, since already f(X0) = K (otherwise one would obtain
a nonempty open set in K of zero µ-measure).

(3) For completing the proof it remains to apply Corollary 9.1.6 and the
following simple fact: any Borel probability measure ν on the interval [0, 1]
with support [0, 1] is the image of Lebesgue measure on [0, 1] under some
continuous surjective mapping ζ : [0, 1] → [0, 1]. One can take

ζ(t) = sup
x∈[0,1]

{
x : F (x) ≤ t

}

for such a mapping, where F (t) = ν
(
[0, t)

)
, F (0) = 0. It is clear that ζ is

increasing, ζ(0) = 0 (since F (t) > 0 if t > 0) and ζ(1) = 1. It follows by the
strict increasing of F that the function ζ has no jumps, hence is continuous.
The fact that the image of Lebesgue measure with respect to ζ is the measure
µ is verified in the same manner as in the proof of Theorem 9.2.2. �

9.7.2. Corollary. The continuous images of Lebesgue measure on [0, 1]
are precisely the Radon probability measures whose topological supports are
connected and locally connected metrizable compact sets.

9.7.3. Corollary. Let µ be a Radon probability measure whose topological
support is a connected and locally connected metrizable compact space and let
ν be an atomless Radon probability measure on a compact space. Then µ is a
continuous image of ν.

Proof. We apply Proposition 9.1.12 and the above theorem. �
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9.7.4. Remark. The requirement of continuity of mappings in the above
considerations is, of course, an essential restriction. If we admit Borel map-
pings, then every Borel probability measure µ on a Souslin space X can be
obtained as the image of Lebesgue measure on [0, 1] under a Borel mapping.
This is obvious from the isomorphism theorem for atomless measures and the
fact that any measure concentrated at a point is obtained by means of a con-
stant mapping. If X is realized as a subset in [0, 1], then a required mapping
can be defined by the following explicit formula:

fµ(x) := inf
{
t : Fµ(t) ≥ x

}
,

where Fµ is the distribution function of µ. If ν is an atomless Borel probability
measure on [0, 1], then there is a natural monotone function ϕ such that
µ = ν ◦ ϕ−1, namely, ϕ := fµ ◦ Fν .

9.8. Connections with extensions of measures

We have already discussed the problem of extending measures. In partic-
ular, it has been shown that one can always extend a measure to the σ-algebra
obtained by adding a single set or even a family of disjoint sets. In this section,
we show that a measure on a countably generated sub-σ-algebra of the Borel
σ-algebra of a Souslin space can be extended to the whole Borel σ-algebra.
This problem is connected with finding preimages of measures.

Let (X,A) and (Y,B) be measurable spaces and let f : X → Y be an
(A,B)-measurable mapping. Suppose we are given a probability measure ν
on B such that ν∗

(
f(X)

)
= 1. Then we obtain a probability measure on the

σ-algebra f−1(B) := {f−1(B) : B ∈ B} defined by the formula

ν0
(
f−1(B)

)
:= ν(B).

Note that ν0 is well-defined: if B1, B2 ∈ B and f−1(B1) = f−1(B2), then
ν(B1) = ν(B2). Let a probability measure µ on A be a preimage of ν, i.e.,
ν = µ◦f−1. Clearly, ν∗

(
f(X)

)
= 1. It follows that µ is an extension of ν0

to the whole σ-algebra A. Conversely, any extension of ν0 to A is a preimage
of ν; the uniqueness of extension corresponds to the uniqueness of a preimage.

Now we give an example where a separable measure on a sub-σ-algebra
in the Borel σ-algebra of an interval has no Borel extensions.

9.8.1. Example. Let A be the class of all first category Borel sets
(i.e., countable unions of nowhere dense sets) in the interval [0, 1] and their
complements. Let µ(A) = 0 if A is a first category Borel set and µ(A) = 1
if A is the complement of such a set. Then A is a σ-algebra and µ is a
countably additive measure (since in any collection of disjoint sets in A, at
most one can have a nonzero measure). The measure µ is separable on A
(every set of positive µ-measure has µ-measure 1 and hence up to a measure
zero set coincides with [0, 1]). However, there exists no countably additive
extension of µ to the Borel σ-algebra of the interval. Indeed, according to
Exercise 1.12.50, every Borel measure on an interval is concentrated on a first
category set. Another close example is described in Exercise 9.12.49.
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Now we show that slightly strengthening our requirements on the σ-
algebra we obtain a positive result.

9.8.2. Theorem. Let X be a Souslin space and let A be a countably
generated sub-σ-algebra in B(X). Then, every measure µ on A can be extended
to a measure on B(X).

Proof. We know that the countably generated σ-algebra A has the form
f−1

(
B([0, 1])

)
, where f : X → [0, 1] is some function. Since A ⊂ B(X),

the function f is Borel measurable. Therefore, f(X) is a Souslin set. By
Theorem 9.1.5 there exists a Borel measure µ0 on X with µ0 ◦ f−1 = µ ◦ f−1.
Let us verify that µ0 is an extension of µ. Indeed, if A = f−1(B), where
B ∈ B([0, 1]), then

µ0(A) = µ0

(
f−1(B)

)
= µ0 ◦ f−1(B) = µ ◦ f−1(B) = µ(A),

as required. �
9.8.3. Corollary. Let X be a Souslin space and let a measure µ be

defined on some σ-algebra A ⊂ B(X). Suppose that there exists a countable
collection of sets An ∈ A with A ⊂ σ({An})µ. Then, the measure µ can be
extended to a measure on B(X).

Proof. By the above theorem µ extends from σ({An}) to B(X). This
extension µ̃ coincides on A with the initial measure, since for every A ∈ A by
our hypothesis there exist two sets B1, B2 ∈ σ({An}) with B1 ⊂ A ⊂ B2 and
|µ|(B2\B1) = 0. �

Let us now turn to the problem of uniqueness of extensions.

9.8.4. Proposition. In the situation of Theorem 9.8.2, the measure µ
uniquely extends to B(X) precisely when B(X) ⊂ Aµ.

Proof. The only thing that is not obvious is that there exist at least two
different extensions in the case where B(X) is not covered by the Lebesgue
completion of µ. In this case, there exists a set B ∈ B(X) that does not
belong to Aµ. Therefore, the set B has distinct inner and outer measures
corresponding to µ on A. By Theorem 1.12.14, there exist two different
extensions of µ to the σ-algebra generated by A and the set B. As shown
above, both extensions can be further extended to Borel measures. �

Additional remarks on uniqueness of extension are made in �9.12(ii).

9.9. Absolute continuity of the images of measures

In this section, we consider only bounded measures. We note that al-
though every Borel mapping between Souslin spaces takes every Borel set to
a Souslin (hence universally measurable) set, it may occur even for continuous
functions on the real line that the image of a Lebesgue measurable set is not
Lebesgue measurable. For example, if C0 is the Cantor function, then the
function h(x) = 1

2

(
x+C(x0)

)
is a homeomorphism of [0, 1] that takes certain
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sets of Lebesgue measure zero to nonmeasurable sets. In order to characterize
mappings taking all measurable sets to measurable ones, we consider Lusin’s
property (N) already encountered in �3.6 in Chapter 3 and studied in sev-
eral exercises in Chapter 5, where, in particular, it is shown that absolutely
continuous functions have property (N). We recall the definition and a result
from Chapter 3.

9.9.1. Definition. Let µ be a finite measure on a measurable space
(M,M). A mapping F : M0 ⊂ M → M is said to satisfy Lusin’s condition
(N) on M0 (or to have Lusin’s property (N)) if for every set Z ⊂ M0 such
that Z ∈M and |µ|(Z) = 0, one has F (Z) ∈Mµ and |µ|

(
F (Z)

)
= 0.

It is clear that if F satisfies Lusin’s condition (N) on M , then for every
|µ|-zero set Z in Mµ (not necessarily in M) we have |µ|

(
F (Z)

)
= 0, since Z

is contained in some |µ|-zero set from M.
Note that when we say that F has property (N) on M , the mapping

F is supposed to be defined everywhere. Unlike many other properties of
measurable mappings, property (N) may not be preserved when changing a
function on a set of measure zero. For example, the identically zero function
on [0, 1] can be redefined on a set C of measure zero and cardinality of the
continuum so that it will map C onto [0, 1].

9.9.2. Remark. By analogy one defines Lusin’s (N)-property for map-
pings F : (M1,M1, µ1) → (M2,M2, µ2) between two measure spaces: it is
required that the equality |µ2|

(
F (Z)

)
= 0 be true if |µ1|(Z) = 0.

The next result has already been proved in Theorem 3.6.9 in Chapter 3
for mappings on IRn. Clearly, the same is true for mappings on measurable
sets.

9.9.3. Theorem. Let S ⊂ IR1 be a measurable set equipped with Lebesgue
measure µ and let F be a measurable function on S. Then F satisfies Lusin’s
condition (N) if and only if F takes every Lebesgue measurable subset of S to
a measurable set.

9.9.4. Corollary. Let (M,M, µ) be a measure space that is isomorphic
mod0 to a measurable set S ⊂ IR1 with Lebesgue measure. The following
conditions are equivalent for any (Mµ,M)-measurable mapping F : M →M :

(i) F satisfies Lusin’s condition (N);
(ii) F takes every µ-measurable subset of M to a µ-measurable set (in

other words, F (Mµ) ⊂Mµ).
In particular, this equivalence holds if M is a Souslin space with an atomless
Borel measure µ and M = B(M).

Proof. Let h : (M,M, µ) → (S,L, λ) be an isomorphism mod0, where
λ is Lebesgue measure. We may assume that the function h is defined on
a set M0 of full µ-measure and maps it one-to-one onto the set S with the
preservation of measure. We set g(s) = h−1(s) and define h on M\M0 by zero.
Let G(s) = h

(
F
(
g(s)

))
. If F has property (N), then G also does, since g takes
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sets of λ-measure zero to sets of µ-measure zero and h takes sets of µ-measure
zero to sets of λ-measure zero. Therefore, G takes Lebesgue measurable sets
to measurable ones. For every A ∈ Mµ we have F (A) = F (Z) ∪ F (M0 ∩A),
Z = (M\M0) ∩A. By hypothesis, F (Z) has µ-measure zero. In addition,

F (M0 ∩A) ∩M0 = g
(
G
(
h(M0 ∩A)

))
∩M0.

This equality yields the µ-measurability of F (M0 ∩ A), since M0 has full µ-
measure and the mappings h, G, and g take measurable sets to measurable
ones (with respect to the corresponding measures). Thus, (i) implies (ii).
The converse is proved as in the theorem, since we only need that every
set of positive µ-measure have a nonmeasurable subset, which follows by the
existence of an isomorphism mod0 with a Lebesgue measurable set in IR1. �

Regarding property (N), see also Exercise 9.12.44, 9.12.46.
The above equivalence may fail in the case where there are atoms: it

suffices to take the measure µ on the set consisting of two points 0 and 1 such
that µ({0}) = 0, µ({1}) = 1 and the function F ≡ 1. This function takes all
sets to measurable ones, but the point of zero measure is taken to the point
of positive measure.

9.9.5. Proposition. Let a mapping F : (M,M, µ) → (M,M, µ) have
Lusin’s property (N) and be (Mµ,M)-measurable. Then, for every µ-mea-
surable subset A ⊂ F (M), the measure IA · µ is absolutely continuous with
respect to the measure |µ| ◦ F−1. If F (M) ∈ M|µ|◦F−1 , then F (M) ∈ Mµ

and µ|F (M) �
(
|µ| ◦ F−1

)
|F (M).

Proof. Let B ⊂ F (M), B ∈ M, |µ|
(
F−1(B)

)
= 0. Then |µ|(B) = 0,

since B = F
(
F−1(B)

)
. Therefore, given a set A ∈ Mµ that is contained

in F (M) and a set B ∈ M with |µ| ◦ F−1(B) = 0, we find a set E ⊂ A with
E ∈M and |µ|(A\E) = 0. Hence |µ|(A∩B) = 0, since |µ|

(
F−1(B ∩E)

)
= 0.

Thus, µ � |µ| ◦ F−1 on µ-measurable sets in F (M). If F (M) ∈ M|µ|◦F−1 ,
then we can find sets E1, E2 ∈ M such that E1 ⊂ F (M), F (M) ⊂ E1 ∪ E2

and |µ| ◦F−1(E2) = 0. By property (N) we have |µ|
(
F (F−1(E2))

)
= 0, hence

|µ|
(
E2 ∩ F (M)

)
= 0, which means that F (M) ∈Mµ. �

Certainly, one does not always have µ� µ◦F−1 on the whole space. For
example, one can take F ≡ 0 on [0, 1] with Lebesgue measure.

9.9.6. Corollary. Let µ be a finite nonnegative measure on (M,M)
and let F : M →M be a one-to-one (Mµ,M)-measurable mapping such that
F (M) ⊂ Mµ◦F−1 (or, more generally, F has a modification F̃ such that
F̃ (M) ⊂Mµ◦F−1). Then, the condition µ� µ ◦F−1 is equivalent to Lusin’s
condition (N).

In particular, such an equivalence holds for one-to-one Borel mappings
between Souslin spaces.
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Proof. Suppose that µ � µ ◦ F−1. We show that F has property (N).
Observe that for any set E ∈ Mµ◦F−1 one has µ ◦ F−1(E) = µ

(
F−1(E)

)
,

since there exist sets E1, E2 ∈ M such that E1 ⊂ E ⊂ E2 and the equality
µ ◦ F−1(E1) = µ ◦ F−1(E) = µ ◦ F−1(E2) holds. Let B ∈ M be such that
µ(B) = 0. Since F is bijective, we have B = F−1

(
F (B)

)
. Suppose that

F (B) ∈ Mµ◦F−1 . Then µ ◦ F−1
(
F (B)

)
= µ(B) = 0. Hence µ

(
F (B)

)
= 0.

Suppose now that the µ ◦ F−1-measurability of F̃ (B) is given just for some
modification F̃ with F̃ (M) ⊂Mµ◦F−1 . Take a set M0 ∈M of full µ-measure
on which F = F̃ . Let M1 = M\M0. Then F (B ∩M0) = F̃ (B ∩M0) belongs
to Mµ◦F−1 . By the previous step we have µ

(
F (B ∩M0)

)
= 0. It remains to

show that µ
(
F (M1)

)
= 0. This follows by the equality µ ◦ F−1

(
F (M1)

)
= 0,

which is clear from the fact that F (M0) = F̃ (M0) ∈Mµ◦F−1 is a full measure
set for µ ◦ F−1 and F (M1) = X\F (M0), since F is one-to-one.

The converse has already been proven. The last claim is clear from the
fact that the images of Borel sets in Souslin spaces under Borel mappings are
measurable with respect to all Borel measures. �

9.9.7. Lemma. Let (M,M, µ) be a measure space and let T : M → M
be a (Mµ,M)-measurable mapping such that the sets T (N) and T−1(N) have
measure zero for every set N of measure zero. Suppose that there exists a µ-
measurable mapping S such that T

(
S(x)

)
= S

(
T (x)

)
= x for µ-a.e. x. Then,

there exists a set M0 of full µ-measure such that T maps M0 one-to-one onto
itself (and S is its inverse) and T (M\M0) ⊂M\M0.

Proof. The hypotheses yield that µ ◦ T−1 ∼ µ. Denote by Ω0 the set
of all points x such that T

(
S(x)

)
= S

(
T (x)

)
= x. The mappings T and

S are obviously injective on Ω0. Let ∆ = M\Ω0. By hypothesis, T (∆) has
measure zero. Since µ ∼ µ◦T−1, the set T−1

(
T (∆)

)
has measure zero as well.

Hence T is a one-to-one mapping of the full measure set Ω1 = Ω0\T−1
(
T (∆)

)

and T (Ω1). In addition, the complement of Ω1 is taken to the complement
of the set T (Ω1). Since µ ∼ µ ◦ T−1 and µ

(
T−1(Ω1)

)
= µ ◦ T−1(Ω1), the

set T−1(Ω1) has full measure. Let Z0 = Ω1 ∩ T−1(Ω1). On the set Z0 of
full measure T is injective, S

(
T (Z0)

)
⊂ Ω1 and S

(
T (x)

)
= x. Hence for

every B ⊂ Z0 with B ∈ M we have T (B) = S−1(B) ∈ Mµ. Since T
takes sets of measure zero to sets of measure zero, this yields that T takes
µ-measurable sets to µ-measurable sets. By the equivalence of the measures
µ and µ ◦ T−1, one can conclude that sets of full measure are taken to sets of
full measure. For all integer k we define inductively sets Zk by the equalities
Zk+1 = Z0 ∩ T (Zk) if k ≥ 0, Zk−1 = Z0 ∩ T−1(Zk) if k ≤ 0. It follows from
the above that the sets Zk have full measure. Now let Ω =

⋂
k Zk. This set

has full measure. It is verified directly that T maps it one-to-one onto itself,
whereas T (M\Ω) ⊂M\Ω. �

The following assertion has been obtained in the course of the proof.
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9.9.8. Corollary. The mapping T in Lemma 9.9.7 takes all µ-measurable
sets to µ-measurable sets.

9.9.9. Lemma. Let T be a one-to-one mapping of a measure space
(M,M, µ) such that the mappings T and S = T−1 are (Mµ,M)-measurable
and µ ◦ T−1 ∼ µ. Then

d(µ ◦ S−1)/dµ =
1

� ◦ T , where � = d(µ ◦ T−1)/dµ.

Proof. Since T = S−1, one has T (B) = S−1(B) ∈ Mµ provided that
B ∈M and µ ◦ S−1(B) = µ

(
T (B)

)
. We observe that

µ
(
T (B)

)
=
∫

T (B)

1
�
d(µ ◦ T−1) =

∫

M

IT (B) ◦ T
1

� ◦ T dµ.

Since IT (B) ◦ T = IB, the claim follows. �

9.9.10. Proposition. Let µ be a measure on a measurable space (X,A),
let ν be a Radon probability measure on a completely regular space Y , and let
T, Tn : X → Y be

(
A|µ|,B(Y )

)
-measurable mappings such that the sequence

{Tn(x)} converges |µ|-a.e. to T (x). Let us assume that µ ◦ T−1 is a Radon
measure, the measures µ◦T−1

n are absolutely continuous with respect to ν and
that their Radon–Nikodym densities �n form a uniformly integrable sequence.
Then, the measure µ ◦ T−1 is absolutely continuous with respect to ν and
its Radon–Nikodym density � is the limit of the sequence {�n} in the weak
topology of the space L1(ν).

Proof. Let K be a compact set of ν-measure zero and let ε > 0. Suppose
that |µ ◦ T−1(K)| > ε. We may assume that µ ◦ T−1(K) > ε. The uniform
integrability ensures the existence of δ > 0 such that

∫

A

|�n(y)| ν(dy) ≤ ε

2
, ∀n ∈ IN,

for every measurable set A with ν(A) ≤ δ. Let us find an open set U ⊃ K
with ν(U) < δ and |µ ◦ T−1|(U\K) < ε/2. By Lemma 6.1.5, there exists a
continuous function f : Y → [0, 1] that equals 1 on K and 0 outside U . Then
we have

∫

Y

f(y)µ ◦ T−1(dy) =
∫

X

f
(
T (x)

)
µ(dx) = lim

n→∞

∫

X

f
(
Tn(x)

)
µ(dx)

= lim
n→∞

∫

Y

f(y) �n(y) ν(dy) ≤ sup
n

∫

U

|�n(y)| ν(dy) ≤ ε

2
,

whence we obtain µ ◦ T−1(K) ≤ ε, which is a contradiction. Therefore,
µ ◦ T−1(K) = 0, which by the Radon property of our measures yields the
relation µ ◦ T−1 � ν. Letting � := d(µ ◦ T−1)/dν, we obtain

∫

Y

f � dν =
∫

X

f ◦ T dµ = lim
n→∞

∫

Y

f �n dν (9.9.1)
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for every bounded continuous function f . According to Corollary 4.7.19, every
subsequence of the sequence {�n} contains a weakly convergent subsequence
in L1(ν). However, (9.9.1) shows that all such weakly convergent sequences
may have only one limit �, whence we obtain convergence of {�n} to � in the
weak topology. �

The condition that ν and µ ◦ T−1 are Radon can be replaced by the one
that both measures are Baire provided that the mappings T are Tn measurable
with respect to the pair

(
A|µ|,Ba(Y )

)
(then no complete regularity of Y is

needed). The only change in the proof is that in place of a compact set K we
take a functionally closed set and U must be functionally open.

9.9.11. Corollary. Suppose that in the situation of the above proposition
the measure µ is nonnegative and there is a sequence of ν-measurable functions
fn convergent in measure ν to a function f . Then, the functions fn ◦ Tn
converge in measure µ to f ◦ T .

Proof. We may assume that µ is a probability measure. In addition,
we may assume that the functions fn converge to f almost everywhere with
respect to ν because it suffices to verify that every subsequence in {fn} con-
tains a further subsequence for which the conclusion is true. Let ε > 0. By
using the uniform integrability of the densities �n and Lusin’s and Egoroff’s
theorems, we find a compact set K ⊂ Y and a number N1 such that f is
continuous on K, µ

(
T−1(K)

)
> 1 − ε, µ

(
T−1
n (K)

)
> 1 − ε for all n, and

supy∈K |fn(y)− f(y)| < ε for all n ≥ N1. There is a continuous function g on
Y such that g|K = f |K . By using the continuity of g and almost everywhere
convergence of Tn to T , we find N2 ≥ N1 such that for all n ≥ N2 one has
the estimate µ

(
x :
∣
∣g
(
Tn(x)

)
− f

(
T (x)

)∣∣ > ε
)
≤ ε. Then

µ
(
x :
∣
∣f
(
Tn(x)

)
− f

(
T (x)

)∣∣ > ε
)
≤ µ

(
x :
∣
∣g
(
Tn(x)

)
− g

(
T (x)

)∣∣ > ε
)

+ µ ◦ T−1(Y \K) + µ ◦ T−1
n (Y \K) ≤ 3ε

for all n ≥ N2. It remains to observe that

µ
(
x :
∣
∣fn
(
Tn(x)

)
− f

(
Tn(x)

)∣∣ > ε
)
≤ µ

(
x : Tn(x) �∈ K

)
< ε

whenever n ≥ N2. Hence µ
(
x :
∣
∣fn
(
Tn(x)

)
− f

(
T (x)

)∣∣ > 2ε
)
≤ 4ε. �

The established proposition and corollary are often applied in the situa-
tion where X = Y and µ = ν, so one deals with transformations of a single
space. In this case, one has to verify that the transformed measures have
uniformly integrable densities with respect to the initial measure.

9.10. Shifts of measures along integral curves

Let F : IRn → IRn be a vector field for which the ordinary differential
equation

x′(t) = F
(
x(t)

)
, x(0) = x,
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for every initial condition x has a solution that we denote by Ut(x), assuming
that it exists on the whole real line. Thus, for every fixed t, we obtain a
mapping x �→ Ut(x). The action of this mapping consists in shifting along the
integral curves of the given equation. The family of mappings Ut is called the
flow generated by the vector field F because under broad assumptions, the
family {Ut} has the semigroup property: UtUs = Ut+s. In the theory of dy-
namical systems, it is often useful to know how a given measure is transformed
by the flow {Ut}. An answer to this question enables one, in particular, to
find measures that are invariant with respect to transformations Ut. In cer-
tain problems, one is interested in measures µ that may not be invariant with
respect to Ut, but are transformed into equivalent measures. In this section,
we solve the above-mentioned problems. Since complete proofs are technically
involved, we consider in detail only the simplest partial case.

In this section, Lebesgue measure of a set D is denoted by |D|. The norm
of a vector v in IRn is denoted by |v|. We recall that the divergence of a
vector field F = (F 1, . . . , Fn) on IRn, where F j ∈ W 1,1

loc (IRn) (for example,
F j ∈ C1(IRn)), is defined by the equality

divF =
n∑

j=1

∂xjF
j .

According to the integration by parts formula, for every smooth function ϕ
with compact support, one has the equality

∫

IRn
(∇ϕ,F ) dx = −

∫

IRn
ϕdivF dx.

The divergence of a vector field determines how Lebesgue measure is trans-
formed by the corresponding flow.

9.10.1. Theorem. Let Ψ: IRn → IRn be a smooth vector field with
compact support and let {Ut} be the corresponding flow. Then, every mapping
Ut is a diffeomorphism transforming Lebesgue measure into the measure with
density

�t(x) = exp
{
−
∫ t

0

divΨ
(
U−s(x)

)
ds

}
. (9.10.1)

Proof. It is known from the theory of ordinary differential equations
that the corresponding global flow {Ut} exists and that the mapping Ut is a
diffeomorphism of IRn. It is clear that Ut(x) = x for all t and all x �∈ D, where
D is a ball containing the support of Ψ. The image of Lebesgue measure with
respect to Ut has a density �t that is continuous in both arguments, since Ut(x)
is continuously differentiable in both arguments. For every ϕ ∈ C∞

0 (IRn), we
have

∂

∂t
ϕ ◦ Ut =

∂

∂τ
ϕ ◦ Ut ◦ Uτ |τ=0 =

(
∇(ϕ ◦ Ut),Ψ

)
.
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Therefore,

∫
ϕ(x)�t(x) dx =

∫
ϕ(x) dx+

∫ t∫

0

(
∇(ϕ ◦ Us)(x),Ψ(x)

)
ds dx

=
∫
ϕ(x) dx+

∫ t

0

∫ (
∇(ϕ ◦ Us)(x),Ψ(x)

)
dx ds

=
∫
ϕ(x) dx−

∫ t

0

∫
divΨ(x)ϕ

(
Us(x)

)
dx ds

=
∫
ϕ(x) dx−

∫ t

0

∫
divΨ

(
U−s(y)

)
ϕ(y)�s(y) dy ds.

Since ϕ is arbitrary, we obtain that for all t and x, one has

�t(x) = 1−
∫ t

0

divΨ
(
U−s(x)

)
�s(x) ds,

which yields the required relationship. �

It is clear that this theorem is valid in the case of Riemannian manifolds.
Formula (9.10.1) yields the following assertion (the Liouville theorem).

9.10.2. Corollary. In the situation of the above theorem, Lebesgue mea-
sure is invariant with respect to the transformations Ut clarify when the equal-
ity divΨ = 0 holds.

In addition, one can derive from expression (9.10.1) a number of useful
estimates. To this end, we need two lemmas.

9.10.3. Lemma. Let f be an integrable function on the interval [0, t],
where t ≥ 0. Then, letting t ∨ 1 := max(t, 1), we have

exp
(∫ t

0

f(s) ds
)
≤ 1 +

∫ t

0

e(t∨1)f(s) ds. (9.10.2)

Proof. By Jensen’s inequality one has

exp
(
t−1

∫ t

0

tf(s) ds
)
≤ t−1

∫ t

0

etf(s) ds.

If t ≥ 1, then this immediately yields (9.10.2). If t < 1, then we apply the
obtained estimate on the interval [0, 1] to the function g that equals f on [0, t]
and 0 on (t, 1]. Since eg(s) = 1 on (t, 1], we arrive again at (9.10.2). �

9.10.4. Lemma. Let ν be a finite nonnegative measure on a space Ω
and let {Ut}|t|≤T be a family of measurable transformations of Ω such that
ν ◦ U−1

t = rt · ν, where

rt(x) = exp
{∫ t

0

f
(
U−s(x)

)
ds

}
,
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the function f
(
U−s(x)

)
is measurable in (s, x), and exp(|f |) ∈ Lp(ν) for all

p ∈ (0,∞). Suppose that the estimate
∫ T

−T
‖rt‖1+ε dt <∞ (9.10.3)

where ‖·‖α := ‖·‖Lα(ν), is true for some ε > 0. Then it is true for every ε > 0.
In addition, for every p > 1 and t ∈ [−T, T ], one has

‖rt‖p ≤
(
2 + 2ν(Ω)

)
eC(p,T )|t|, (9.10.4)

where

C(p, T ) =
(∫

Ω

eqp(T∨1)|f(x)| ν(dx)
)1/q

and
1
p

+
1
q

= 1.

Proof. By Lemma 9.10.3, for every t ∈ [0, T ] we obtain

rt(x)p ≤ 1 +
∫ t

0

exp
{
p(t ∨ 1)f

(
U−s(x)

)}
ds.

According to Hölder’s inequality with k defined by 1
k + 1

1+ε = 1, we obtain
∫

Ω

rt(x)p ν(dx) ≤ ν(Ω) +
∫

Ω

∫ t

0

exp
{
p(t ∨ 1)f

(
U−s(x)

)}
ds ν(dx)

= ν(Ω) +
∫ t

0

∫

Ω

exp
{
p(t ∨ 1)f(x)

}
r−s(x) ν(dx) ds

≤ ν(Ω) +
∥
∥exp{p(t ∨ 1)f}

∥
∥
k

∫ t

0

‖r−s‖1+ε ds.

Similarly, for negative t we have
∫

Ω

rt(x)p ν(dx) ≤ ν(Ω) +
∥
∥exp{p(|t| ∨ 1)f}

∥
∥
k

∫ |t|

0

‖rs‖1+ε ds.

Thus, the function t �→ ‖rt‖p is essentially bounded on [−T, T ], and (9.10.3)
holds for every ε > 0. Since the function t �→ rt(x) is continuous for ν-a.e. x,
we obtain by the Lebesgue–Vitali theorem that the function t �→ ‖rt‖p is
continuous, hence the above estimate holds for every t.

Let It denote the interval [0, |t|]. Then the above estimate is true with
1 + ε = p (and k = q), so that for all |t| ≤ T we have

∫

Ω

rt(x)p ν(dx) ≤ ν(Ω) +
∥
∥exp{p(T ∨ 1)f}

∥
∥
q

∫

It

‖r−s‖p ds.

Since a ≤ 1 + ap for a ≥ 0, we obtain

‖rt‖p ≤ 1 + ν(Ω) + C(p, T )
∫

It

‖r−s‖p ds.

Letting ψ(t) = ‖rt‖p + ‖r−t‖p, we arrive at the estimate

ψ(t) ≤ 2 + 2ν(Ω) + C(p, T )
∫ |t|

0

ψ(s) ds.
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We recall that by Gronwall’s inequality one has a.e.

u(t) ≤ C exp
∫ t

0

v(s) ds

for any nonnegative integrable functions u and v satisfying a.e. the inequality

u(t) ≤ C +
∫ t

0

v(s)u(s) ds.

This yields the desired estimate. �

9.10.5. Corollary. In the situation of Theorem 9.10.1, for every ball D
that contains the support of Ψ and every p > 1, one has

‖�t‖p := ‖�t‖Lp(D) ≤MDe
C(p,t)|t|,

where MD := 2(1 + |D|), C(p, t) :=
∥
∥exp{p(|t| ∨ 1)|divΨ|}

∥
∥
Lp/(p−1)(D)

. In
addition,

∥
∥|∇Ut|

∥
∥
Lp(D)

≤ 2MD

∥
∥exp{(|t| ∨ 1)|∇Ψ|}

∥
∥
L2p(D)

e(C(2,t)+1)|t|/p,

∥
∥
∥
∣
∣∂Ut/∂t

∣
∣
∥
∥
∥
Lp(D)

≤MD

∥
∥|Ψ|

∥
∥p
L2p(D)

eC(2,t)|t|.

The proof is given in Bogachev, Mayer-Wolf [220].
Let us now see how more general measures are transformed. As in the case

of Lebesgue measure, the answer will be expressed in terms of the divergence of
the vector field with respect to the given measure. Suppose that µ is a measure
on IRn with a positive density � such that � is continuously differentiable (or,
more generally, on every ball is separated from zero and belongs to the Sobolev
class W 1,1

loc ). Let F be a vector field on IRn belonging to the Sobolev class
W 1,1
loc such that the function |∇F | is locally µ-integrable. The divergence of

F with respect to µ is the function denoted by the symbol δµF and defined
by the formula

δµF (x) := divF (x) +
(
F (x),

∇�(x)
�(x)

)
.

By the integration by parts formula it is readily verified that the function δµF
is characterized by the identity

∫

IRn
(∇ϕ,F ) dµ = −

∫

IRn
ϕδµF dµ, ϕ ∈ C∞

0 (IRn).

9.10.6. Theorem. Let Ψ: IRn → IRn be a smooth vector field with
compact support and let µ be a probability measure on IRn with a positive
continuously differentiable density �. Then, for every t ∈ IR1, the measure
µ ◦ U−1

t is absolutely continuous with respect to µ and its Radon–Nikodym
density is given by the equality

d
(
µ ◦ U−1

t

)

dµ
= rt(x) = exp

{
−
∫ t

0

δµΨ
(
U−s(x)

)
ds

}
.
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In addition, if Λ(p, t) =
∥
∥exp{(|t| ∨ 1)p|δµΨ|}

∥
∥
Lp/(p−1)(µ)

, then one has the
following estimates:

‖rt‖Lp(µ) ≤ 4 exp
[
Λ(p, t)|t|

]
,

∥
∥|∇Ut|

∥
∥
Lp(µ)

≤ 4
∥
∥
∥exp

[
(|t| ∨ 1)|∇Ψ|

]∥∥
∥
L2p(µ)

exp
[(

Λ(2, t) + 1
)
|t|/p

]
,

∥
∥
∥
∣
∣∂Ut/∂t

∣
∣
∥
∥
∥
Lp(µ)

≤ 4
∥
∥|Ψ|

∥
∥p
L2p(µ)

exp
[
Λ(2, t)|t|

]
.

Proof. Since Ψ = 0 outside some ball, one has δµΨ
(
U−s(x)

)
= 0 for all

s ∈ [0, t] and all x with a sufficiently large norm. The expression for rt(x) is
obtained in the same manner as the formula for �t(x) in Theorem 9.10.1. Then
the same reasoning based on Lemma 9.10.3, Lemma 9.10.4, and Gronwall’s
inequality yields the stated estimates. �

We note that the hypotheses on the density of the measure µ can be
weakened: it suffices that � ∈ W 1,1

loc (IRn), the function � be locally uniformly
separated from zero and that for every c ∈ IR1 the function exp

(
c(Ψ,∇�/�)

)

be locally µ-integrable (see Bogachev, Mayer-Wolf [220]).
Now we extend the above results to more general vector fields, in particu-

lar, not necessarily smooth and not necessarily with compact support. Let us
precise what we mean by a flow generated by a more general vector field. Let
µ be a measure on IRn and let F be a µ-measurable vector field. A mapping
(t, x) ∈ IR1×IRn �→ UFt (x) ∈ IRn is called a solution of the equation

Ut(x) = x+
∫ t

0

F
(
Us(x)

)
ds, (9.10.5)

if
(a) for µ-almost every x equality (9.10.5) is fulfilled with U = UF for all

t ∈ IR1 (in particular, the right-hand side must be meaningful),
(b) for every t ∈ IR1, the measure µ ◦ U−1

t is absolutely continuous with
respect to µ.

The Radon–Nikodym derivative d(µ ◦ U−1
t )/dµ will be denoted by rt.

The family (Ut)t∈IR1 = (UFt )t∈IR1 is called a flow if, in addition, we have
for µ-a.e. x

Ut+s(x) = Ut
(
Us(x)

)
, ∀s, t ∈ IR1. (9.10.6)

The quasi-invariance (condition (b) above) is essential when dealing with
equivalence classes of vector fields if we want to have solutions independent
of concrete representatives in the equivalence classes: according to Exer-
cise 9.12.59, if F (x) = G(x) µ-a.e. and (UFt )t∈IR1 is a solution for the field F ,
then it is a solution for the field G.

Simple examples such as the field F (x) = x2 on the real line show that the
smoothness of the field is not sufficient for the existence of a global solution.

The following result is obtained in Bogachev, Mayer-Wolf [220].
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9.10.7. Theorem. Let µ be a measure on IRn having a locally uniformly
positive density � ∈ W 1,1

loc (IRn) and let F ∈ W 1,1
loc (IRn, IRn) be a vector field

such that
e|δµF | ∈

⋂

p>1

Lp(µ)

and either e|∇F | ∈
⋂
p>1 L

p(µ) or |F | ∈ L1+ε(IRn) and e|∇F | ∈
⋂
p>1 L

p(K,µ)
for every ball K. Then equation (9.10.5) has a flow.

This theorem ensures the existence of global solutions to ordinary differ-
ential equations for many rapidly increasing vector fields. To this end, one has
to find a measure µ such that the functions indicated in the formulation are
integrable. Let us consider the special case where µ is the standard Gaussian
measure on IRn, i.e.,

�(x) = (2π)−n/2 exp
(
−|x|2/2

)
.

In this case∇�(x)/�(x) = −x. Suppose that the field F is locally Lipschitzian.
Then for the existence of a flow generated by this field we need that the
functions

|F (x)|1+ε and exp
[
c
∣
∣divF (x)−

(
x, F (x)

)∣∣
]

be µ-integrable for all c and some ε > 0. Effectively verified sufficient condi-
tions are the estimates

|F (x)| ≤ C1e
C2|x|,

∣
∣divF (x)−

(
x, F (x)

)∣∣ ≤ C2|x|
with some constants C1 and C2. We remark that even for smooth fields F
satisfying the condition δµF = 0, one cannot omit the µ-integrability of F
(see [220]). Yet, the main restriction is the exponential integrability of δµF .
Given a smooth (or locally Lipschitzian) field F , it is not difficult to find a
measure µ with a rapidly decreasing density such that the function |F |2 is µ-
integrable. However, one cannot always achieve the exponential integrability
of δµF . Constructing a measure µ with the required properties is analogous to
constructing Lyapunov functions used in the theory of differential equations.

The problems considered in this section are being intensively investigated
for infinite-dimensional spaces; see [220].

9.11. Invariant measures and Haar measures

Let X be a locally compact topological space and let G be a locally
compact topological group (as usual, we consider Hausdorff spaces). Suppose
that we are given an action of the groupG onX, i.e., a mapping A : G×X → X
such that A(e, · ) is the identity mapping on X (e is the unity element of G)
and one has the equality

A(g1g2, x) = A
(
g1, A(g2, x)

)
, ∀ g1, g2 ∈ G, ∀x ∈ X.

In particular, A(g−1, · ) is the inverse mapping to A(g, · ). In other words,
we are given a homomorphism of G to the group of transformations of X.
For notational simplicity the transformation A(g, x) is usually denoted by gx.
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If we take G for X, then the usual left multiplication by g ∈ G provides an
important example of an action. Another example: the natural action of the
group of isometries of a metric space X.

In applications, one usually deals with actions that are measurable or
even continuous. In this section, we consider only continuous actions.

9.11.1. Definition. (i) Let µ be a Borel measure on X with values in
[0,+∞] (or a measure on the σ-ring generated by compact sets) that is finite
on compact sets and inner compact regular, i.e., for every B ∈ B(X), one
has µ(B) = sup

{
µ(K) : K ⊂ B is compact

}
. Let χ be a function on G.

The measure µ is called χ-covariant if the image of µ under the mapping
x �→ A(g, x) is χ(g) · µ for all g ∈ G. In the case χ = 1, the measure µ is
called G-invariant.

(ii) If G acts on itself by the left multiplication, then nonzero G-invariant
measures are called left (or left invariant) Haar measures and if G acts on
itself by means of the formula (g, x) �→ xg−1, then nonzero G-invariant mea-
sures are called right (or right invariant) Haar measures.

It is clear that if χ = 1, then the χ-covariance means just the invariance
with respect to the action of G, i.e., for any left invariant Haar measure µL
on a group G one has

∫

G

f(gx)µL(dx) =
∫

G

f(x)µL(dx)

for all f ∈ C0(G). If the measure µ is not zero, then χ is a character of G,
i.e., a homomorphism to the multiplicative group IR\{0}. Note also that the
mapping j : x �→ x−1 on the group G takes left Haar measures to right Haar
measures and vice versa. Indeed, if a measure µL is left invariant, then for
any g ∈ G and f ∈ C0(G) we have
∫

G

f(xg−1)µL ◦ j−1(dx) =
∫

G

f(x−1g−1)µL(dx)

=
∫

G

f
(
(gx)−1

)
µL(dx) =

∫

G

f(x−1)µL(dx) =
∫

G

f d(µL ◦ j−1).

Usually χ-covariant measures are called quasi-invariant. Analogous no-
tions make sense and are very interesting in the case of groups that are not
locally compact (such as the group of diffeomorphisms of a manifold). How-
ever, the corresponding theory is much more involved and we do not discuss
it here. The principal reason for its higher level of complexity is the absence
of measures on such groups that are invariant or quasi-invariant with respect
to all shifts. For this reason, one has to consider measures that are quasi-
invariant with respect to the action of certain subgroups. For example, there
is no Borel probability measure on the infinite-dimensional separable Hilbert
space that is quasi-invariant with respect to all translations, but there are
measures quasi-invariant with respect to translations from everywhere dense
subspaces, and on the group of C1-diffeomorphisms of the circle there is no
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Borel probability measure quasi-invariant with respect to all shifts, but there
are measures quasi-invariant with respect to subgroups of diffeomorphisms of
higher smoothness. In recent decades the investigation of such measures on
infinite-dimensional linear spaces and groups has been intensively developing;
see references in Bogachev [206], Malliavin [1243].

Set A(g,W ) = {A(g, y), y ∈ W}. We call the action A of G equicontin-
uous if, for every x ∈ X and every neighborhood V of the point x, one can
find a neighborhood W of this point such that if A(g,W ) ∩ W �= ∅, then
A(g,W ) ⊂ V .

9.11.2. Theorem. Suppose that G acts equicontinuously on X and that
for every x the mapping g �→ A(g, x) is surjective and open. Then, there is a
nonzero G-invariant measure µ on X.

Proof. Let H ⊂ X be a compact set with nonempty interior. (1) We
fix a point p in the interior of H and denote by Up the set of all open neigh-
borhoods of p with compact closure. For every set E with compact closure
and every set F with nonempty interior, one can cover E by finitely many
translations of F . The smallest possible number of such translations is denoted
by [E : F ]. Let [∅, F ] = 0. It is clear that [gE : F ] = [E : gF ] = [E : F ] for all
g ∈ G and [E : F ] ≤ [D : F ] if E ⊂ D. In addition, [E : F ] ≤ [E : A] · [A : F ]
for every set A with compact closure and nonempty interior. Given U ∈ Up,
we let ξU (E) = [E : U ]/[H : U ]. It is clear that ξU (E) ≤ [E : H], ξU (gE) =
ξU (E) if g ∈ G and ξU (H) = 1. In addition, ξU (E ∪ F ) ≤ ξU (E) + ξU (F )
and ξU (E1) ≤ ξU (E2) if E1 ⊂ E2. Finally, for any disjoint compact sets K1

and K2, one can find a neighborhood U ∈ Up such that for all V ∈ Up with
V ⊂ U one has

ξV (K1 ∪K2) = ξV (K1) + ξV (K2). (9.11.1)

Indeed, by the equicontinuity of the action of G, there exists a neighborhood
U ∈ Up such that for every g ∈ G either gU ∩K1 = ∅ or gU ∩K2 = ∅. Hence
every cover of K1 ∪K2 by translations of U is a disjoint union of covers of K1

and K2, which yields ξU (K1 ∪K2) ≥ ξU (K1) + ξU (K2). The same is true for
every smaller neighborhood. Since the reverse inequality is true as well, we
arrive at (9.11.1).

(2) Our next step is to define λ(K) as the limit of ξU (K) as U is shrink-
ing. The precise definition is this. Let Θ be the linear space of all bounded
functions on the set Up. For every ξ ∈ Θ we let

p(ξ) = inf
U∈Up

sup
V⊂U,V ∈Up

ξ(V ), q(ξ) = sup
U∈Up

inf
V⊂U,V ∈Up

ξ(V ).

We observe that q(ξ) ≤ p(ξ). Indeed, if U1, U2 ∈ Up, then U = U1 ∩ U2 ∈ Up
and

inf
V⊂U1

ξ(V ) ≤ inf
V⊂U

ξ(V ) ≤ sup
V⊂U2

ξ(V ).

It is easy to see that p(0) = 0, p(ξ + η) ≤ p(ξ) + p(η), and p(αξ) = αp(ξ) for
all α ≥ 0 and ξ, η ∈ Θ. In addition, q(ξ) = −p(−ξ). By the Hahn–Banach
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theorem, the zero functional on the zero subspace of Θ extends to a linear
function Λ on Θ such that Λ(ξ) ≤ p(ξ). One has

−Λ(ξ) = Λ(−ξ) ≤ p(−ξ) = −q(ξ),
whence q(ξ) ≤ Λ(ξ) ≤ p(ξ). Hence Λ(1) = 1. If ξ ≥ 0, then q(ξ) ≥ 0 and
hence Λ(ξ) ≥ 0. Thus, whenever ξ ≥ η, we have Λ(ξ) ≥ Λ(η).

(3) We note one more property of Λ: if functions ξ, η ∈ Θ are such that
for some U ∈ Up we have ξ(V ) = η(V ) for all V ∈ Up with V ⊂ U , then
Λ(ξ) = Λ(η). To this end, we set ζ = ξ−η and observe that p(ζ) = 0, whence
Λ(ζ) ≤ 0. Replacing ζ by −ζ, we obtain Λ(ζ) ≥ 0, hence Λ(ζ) = 0.

(4) For every compact set K we let

λ(K) = Λ
(
ξ•(K)

)
,

where ξ•(K) : U �→ ξU (K) is the element of Θ generated by K. It is clear
that λ(gK) = λ(K), since ξU (gK) = ξU (K). In addition, λ(H) = 1, since
ξU (H) = 1 if U ∈ Up. Finally, for any disjoint compact sets K1 and K2 we
obtain

λ(K1 ∪K2) = λ(K1) + λ(K2).
This follows by (9.11.1) and the property established in (3).

(5) According to Theorem 7.11.1, there exists a countably additive mea-
sure µ on B(X) (the measure µ′ from the cited theorem) with values in [0,+∞]
and finite on all compact sets such that for every Borel set B ⊂ X one has
µ(B) = supλ(K), where sup is taken over all compact sets K ⊂ B. Then
we obtain µ(H) = λ(H) = 1. Finally, the equality λ(gK) = λ(K) for all
compact sets K and all g ∈ G yields the equality µ(gB) = µ(B) for all Borel
sets B. �

In some books (see Hewitt, Ross [825]), one constructs an outer regular
Haar measure (see Remark 7.11.2), which coincides with µ on compact sets,
but may differ from µ on some Borel sets if µ is not σ-finite. If µ has no
atoms, then by the inner compact regularity µ(D) = 0 for every discrete
set D, although µ(U) = +∞ for any uncountable union U of disjoint open
sets, in particular, for every neighborhood U of D. In particular, let G =
IR×IR1, where IR is the additive group of all real numbers with the discrete
topology and IR1 is the same additive group with the usual topology (as in
Example 7.14.65). Then G is a locally compact commutative group and its
Haar measure µ is the product of the counting measure on IR and Lebesgue
measure on IR1. Here µ(IR×{0}) = 0, but µ(U) = +∞ for every open set
U ⊃ IR×{0}. A similar example exists in every locally compact group whose
Haar measure has no atoms (i.e., the group is not discrete) and is not σ-
finite: it suffices to take an uncountable set of points with pairwise disjoint
neighborhoods.

9.11.3. Example. The hypotheses of Theorem 9.11.2 are fulfilled in
the following cases: (i) (g, h) �→ gx is the action of G on itself by the left
multiplication; (ii) (g, h) �→ xg−1 is the action of G on itself by the right
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multiplication; (iii) (g, x) = g(x) is the natural action of the group of invertible
matrices GLn on IRn\{0}.

9.11.4. Corollary. On every locally compact group, there is a unique,
up to a constant factor, left invariant Haar measure. The same is true for
right invariant measures.

Proof. Let ν be a right invariant Haar measure on G, µ a left invariant
Haar measure on G, ψ ∈ C0(G), ψ ≥ 0, and let ψ not vanish identically. We
observe that µ and ν are positive on nonempty open sets. Let

∆(x) :=
∫

G

ψ(y−1x) ν(dy). (9.11.2)

It is easy to see that the function ∆ is continuous and strictly positive. Mul-
tiplying µ and ν by constants, we may assume that

∫

G

ψ(x)µ(dx) =
∫

G

ψ(y−1) ν(dy) = 1.

Let Γ(x) = ∆(x)−1. For any ϕ ∈ C0(G), by Fubini’s theorem and the respec-
tive invariance of the two measures we have∫

G

ϕ(x)µ(dx) =
∫

G

ϕ(x)Γ(x)∆(x)µ(dx)

=
∫

G

∫

G

ϕ(x)Γ(x)ψ(y−1x) ν(dy)µ(dx)

=
∫

G

∫

G

ϕ(x)Γ(x)ψ(y−1x)µ(dx) ν(dy) =
∫

G

∫

G

ϕ(yx)Γ(yx)ψ(x)µ(dx) ν(dy)

=
∫

G

∫

G

ϕ(yx)Γ(yx)ψ(x) ν(dy)µ(dx) =
∫

G

ϕ(y)Γ(y) ν(dy)
∫

G

ψ(x)µ(dx).

Thus, any function in C0(G) has equal integrals against the measures µ and
Γ ·ν, which yields the coincidence of these measures on all compact sets, hence
on B(G) by the inner compact regularity. Moreover, Γ is independent of µ,
which shows the uniqueness of ν with the above-chosen normalization of the
integral of ψ(y−1). The assertion for µ is analogous. �

The function ∆ defined by formula (9.11.2) with ∆(e) = 1 is called the
modular function of the group G. It does not depend on ψ. Indeed, if we
take another function ψ′ with ∆′(e) = 1, then for the corresponding function
Γ′ we obtain Γ′ = cΓ with some constant, since Γ = dµ/dν. In addition,
Γ(e) = Γ′(e) = 1.

9.11.5. Corollary. If µ is a left invariant Haar measure and ν is a
right invariant Haar measure on G, then ν = c∆ · µ, where c is a constant.
In addition, ∆(xy) = ∆(x)∆(y).

If ∆ = 1, then the group G is called unimodular. This is equivalent to
the existence of two-sided invariant Haar measures on G. For example, all
commutative and all compact groups are unimodular. The group of invertible
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matrices n×n is unimodular as well, but the group of all upper triangle 2×2
matrices with the numbers u > 0 and 1 at the diagonal is not.

It is easy to verify that if a Haar measure is finite, then the group is
compact (see Hewitt, Ross [825, �15]).

Note the following important fact discovered in Kakutani, Kodaira [937]
(its proof can be read in Halmos [779, �64], Hewitt, Ross [825, �19], Fremlin
[635, �463]).

9.11.6. Theorem. Let G be a locally compact group and let λ be a Haar
measure on G (left or right invariant). Then λ is completion regular in the
following sense: for every Borel set B ⊂ G, we have µ(B) = supµ(Z), where
sup is taken over all functionally closed sets Z ⊂ B. In particular, if µ is
σ-finite, then B(G) belongs to the Lebesgue completion of Ba(G).

9.12. Supplements and exercises

(i) Projective systems of measures (308). (ii) Extremal preimages of measures

and uniqueness (310). (iii) Existence of atomless measures (317). (iv) In-

variant and quasi-invariant measures of transformations (318). (v) Point and

Boolean isomorphisms (320). (vi) Almost homeomorphisms (323). (vii) Mea-

sures with given marginal projections (324). (viii) The Stone representa-

tion (325). (ix) The Lyapunov theorem (326). Exercises (329)

9.12(i). Projective systems of measures

We have discussed above images and preimages of a measure in the sit-
uation where there is a single transformation. Now we intend to consider
analogous questions for families of transformations. An especially important
case is connected with the so-called projective systems of measures.

Let T be a directed set and let {Xα}α∈T be a projective system of spaces
with mappings παβ : Xβ → Xα, α ≤ β, i.e., παα = Id and παβ ◦ πβγ = παγ if
α ≤ β ≤ γ. Suppose also we are given a space X with a system of mappings
πα : X → Xα that are consistent with the mappings πβα in the following
way: πα = παβ ◦ πβ if α ≤ β. Such a space X is called the inverse limit
of spaces Xα. A simple example: a decreasing countable sequence of spaces
Xn ⊃ Xn+1 with the natural embeddings πnk : Xk → Xn, X =

⋂∞
n=1Xn,

and the natural embeddings πn : X → Xn. Another example: X = IR∞,
Xn = IRn is identified with the subspace in IR∞ that consists of all sequences
of the form (x1, . . . , xn, 0, 0, . . .), and πnk and πn are the natural projections.

Suppose that the spaces Xα are equipped with σ-algebras Bα and mea-
sures µα on Bα such that the mappings παβ are measurable. In typical cases
(but not always) Xα is a topological space with its Borel σ-algebra and παβ is
continuous (hence Borel measurable). In the described setting, the problem
arises whether there exists a measure µ on X, called a projective limit of the
measures µα, such that

µ ◦ π−1
α = µα for all α. (9.12.1)
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Clearly, a necessary condition is this:

παβ(µβ) := µβ ◦ π−1
αβ = µα if α ≤ β. (9.12.2)

For this reason, we shall discuss problem (9.12.1) under condition (9.12.2)
(and assuming that X is nonempty).

An important example of such a situation (and the starting point of the
related research) is the case where X is the space of mappings x : [0, 1] → E,
where E is a topological space, A is the collection of all finite subsets of [0, 1]
with their natural partial ordering by inclusion, Xα =

{
x : {t1, . . . , tn} → E

}
,

where α = {t1, . . . , tn}, and παβ is the natural projection if α ⊂ β. Thus,
we are in the situation discussed in �7.7 in connection with the distributions
of random processes. As has been noted there, one cannot always find a
measure satisfying (9.12.1). We shall give some sufficient conditions for the
existence of a solution, covering many cases important in applications. It
should be noted that the idea of consideration of projective systems goes back
to A.N. Kolmogorov, S. Bochner, and Yu.V. Prohorov. The main work in this
direction was done in order to obtain suitable generalizations of Kolmogorov’s
theorem given in �7.7. The following result goes back to Prohorov [1497].
Now let X and Xα be topological spaces.

9.12.1. Theorem. Let X be completely regular, let the mappings πα
and παβ be continuous, and let (9.12.2) be fulfilled. Suppose that every µα is
a Radon probability measure. A Radon probability measure µ on X satisfying
(9.12.1) exists if and only if for every ε > 0, there exists a compact set Kε ⊂ X
with µα

(
πα(Kε)

)
≥ 1− ε for all α.

This result was extended to signed measures in Fremlin, Garling, Hay-
don [636]. We include the proof (borrowed from the cited work) for this
generalization because the case of probability measures is not much simpler.

9.12.2. Theorem. Let X be completely regular, let µα be Radon mea-
sures on Xα, and let the mappings πα and παβ be continuous and satisfy
condition (9.12.2). A Radon measure µ on X satisfying (9.12.1) exists if and
only if supα ‖µα‖ < ∞ and for every ε > 0, there exists a compact set
Kε ⊂ X with |µα|

(
Xα\πα(Kε)

)
< ε for all α. If the mappings πα separate

the points in X, then such a measure µ is unique.

Proof. The necessity of this condition is obvious. Suppose it is fulfilled.
We may assume that supα ‖µα‖ ≤ 1. For every n ∈ IN, there exists a compact
set Kn ⊂ X such that |µα|

(
Xα\πα(Kn)

)
≤ 1/n for all α ∈ T . Let

M :=
{
µ ∈Mr(X) : ‖µ‖ ≤ 1, |µ|(X\Kn) ≤ 1/n, ∀n ∈ IN

}
.

It is clear that M is a nonempty uniformly tight set in Mr(X) (we can assume
that Kn ⊂ Kn+1; then any Dirac measure on K1 is in M). Hence its closure M
is compact in the weak topology. Let Mα :=

{
µ ∈M : µ◦π−1

α = µα
}
, α ∈ T.

Every set Mα is closed in M in the weak topology and hence is compact. By
Theorem 9.1.9 these sets are nonempty (since there is a Radon measure µ
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with ‖µ‖ = ‖µα‖, |µ|
(
X\

⋃
nKn

)
= 0 and µ ◦ π−1

α = µα). Whenever α ≤ β
we have Mβ ⊂Mα. Indeed, let µ ∈Mβ . Then

µ ◦ π−1
α =

(
µ ◦ π−1

β

)
◦ π−1

αβ = µβ ◦ π−1
αβ = µα

according to (9.12.2). The directed system of compact setsMα has a nonempty
intersection. Any element in this intersection is a required measure. The
uniqueness assertion is delegated to Exercise 9.12.76. �

Theorem 9.12.2 has versions for measures with compact approximating
classes and for perfect measures (Exercise 9.12.70).

9.12(ii). Extremal preimages of measures and uniqueness

Let (Y,B, ν) be a probability space, let (X,A) be a measurable space,
and let f : X → Y be an (A,B)-measurable mapping. Denote by Mν the set
of all probability measures µ on (X,A) with ν = µ ◦ f−1. This set is convex,
so the question arises about its extreme points (the set of extreme points is
an important characteristic of a convex set). It turns out that under broad
assumptions the extreme points of Mν are precisely the images of the measure
ν under measurable sections of the mapping f . This description is of interest
also from another point of view: we recall that for a surjective mapping f
between Souslin spaces, a preimage of the measure ν has been constructed in
Theorem 9.1.5 as the image of ν with respect to a measurable section of f ,
which is not unique.

We shall say that a mapping π : Y → X is a (Bν ,A)-measurable weak
section of f if π is measurable in the indicated sense and for every B ∈ B,
the set π−1

(
f−1(B)

)
coincides with B up to a set of ν-measure zero. A short

proof of the next assertion is given in Graf [719].

9.12.3. Theorem. For every measure µ ∈Mν , the following conditions
are equivalent:

(i) µ is an extreme point of Mν ;
(ii) there exists a σ-homomorphism Φ: A → B/ν (see �9.12(v) below)

such that µ(A) = ν
(
Φ(A)

)
for all A ∈ A and B ∈ Φ

(
f−1(B)

)
for all B ∈ B;

(iii) the mapping ϕ �→ ϕ ◦ f from L1(ν) to L1(µ) is surjective;
(iv) for every A ∈ A, there exists B ∈ B such that µ

(
A� f−1(B)

)
= 0.

This theorem and Theorem 9.12.23 yield easily the following fact (see
Graf [719]).

9.12.4. Corollary. Let X be a Hausdorff space with a Radon probabil-
ity measure µ, let A = B(X), and let f : X → Y be an (A,B)-measurable
mapping. The following conditions are equivalent:

(i) µ is an extreme point of Mν ;
(ii) there exists a (Bν ,A)-measurable weak section π : Y → X of the map-

ping f such that µ = ν ◦ π−1.
If f is surjective and B is countably separated, then conditions (i) and (ii)

are also equivalent to the following condition:
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(iii) there exists a (Bν ,A)-measurable section π : Y → X of the mapping
f with µ = ν ◦ π−1.

Finally, if, in addition, A is countably generated and for some σ-algebra S
with B ⊂ S ⊂ Bν there exists an (S,A)-measurable section of the mapping f ,
then the indicated conditions are equivalent to the following condition:

(iv) there exists an (S,A)-measurable section π of the mapping f such
that µ = ν ◦ π−1.

9.12.5. Example. The most interesting for applications is the case
where X and Y are Souslin spaces with their Borel σ-algebras and f : X → Y
is a surjective Borel mapping. Then the conditions formulated before asser-
tion (iv) are fulfilled if we take for S the σ-algebra generated by all Souslin
sets. Thus, in this situation, the extreme points of the set Mν are exactly the
measures of the form ν ◦ π−1, where π : Y → X is measurable with respect
to (S,A) and f

(
π(y)

)
= y for all y ∈ Y .

It was shown in Graf [719] that a parameterization of measurable sections
of the mapping π by preimages of the measure µ can be made measurable in
a certain natural sense. About representation of preimages in the form of
images with respect to measurable sections, see also Hackenbroch [761]. The
following generalization of Corollary 9.12.4 was obtained in Rinkewitz [1580].

9.12.6. Theorem. Let µ be an ℵ-compact probability measure on A such
that µ ◦ f−1 = ν. Then the following conditions are equivalent:

(i) µ is an extreme point in Mν ;
(ii) there exists a measurable weak section π of f such that ν ◦ π−1 = µ.
Moreover, the measure ν is ℵ-compact as well.

The condition of ℵ-compactness in this theorem cannot be weakened to
the compactness in our sense. For example, one can take for (X,A, µ) the
interval [0, 1] with the σ-algebra of all at most countable sets and their com-
plements and equip it with the measure that equals 1 on the complements of
countable sets. Let Y = [0, 1], B = {∅, [0, 1]}, ν(X) = 1, and let f be the
identity mapping. Any Bν-measurable function is constant, hence it trans-
forms ν into Dirac’s measure, and µ cannot be the image of ν. Here one
has µ ∈ Mν . Indeed, if µ = (µ1 + µ2)/2, where µ1 and µ2 are probability
measures on A, then µ1(C) = µ2(C) = 0 for every countable set C, which
yields µ1 = µ2 = µ. It is shown in Rinkewitz [1580] that if a measure ν
on B is ℵ-compact, then the set of all extreme points of the collection of all
ℵ-compact probability measures µ on A such that µ ◦ f−1 = ν coincides with
the set of images of ν under measurable weak sections of f .

Now we continue a discussion of the uniqueness problem for preimages
of measures started in �9.8 and consider three different characterizations of
uniqueness given by Ershov [539], Eisele [525], and Lehn, Mägerl [1146] for
Souslin spaces and by Graf [720] in a more general situation. Our presentation
follows Bogachev, Sadovnichĭı, Fedorchuk [224]. Let ν be a probability mea-
sure on (Y,B), let f : (X,A) → (Y,B) be measurable, and let ν∗

(
f(X)

)
= 1.
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The measure ν0 on f−1(B) is defined in �9.8 by ν0(B) := ν
(
f−1(B)

)
.

Ershov [539] introduced the following condition of uniqueness:

the completion of f−1(B) with respect to ν0 contains A. (E1)

In other words, for every A ∈ A there exist sets B1 and B2 in B such that
ν(B2) = 0 and A � f−1(B1) ⊂ f−1(B2). It is obvious that this condition
ensures the existence and uniqueness of a preimage. Indeed, let µ be the
restriction of the completion of ν0 to A. Then µ is a preimage, and every
preimage coincides on A with the completion of ν0 due to (E1).

Another condition was studied in Eisele [525] and Lehn, Mägerl [1146]:

for ν-almost every y, the set f−1(y) is a singleton. (E2)

Given a class of sets K ⊂ A, let us introduce the following condition:

ν
(
f(K1) ∩ f(K2)

)
= 0 if K1,K2 ∈ K and K1 ∩K2 = ∅. (UK)

This condition is very close to the following condition from Graf [720]: for any
disjoint compacts K1 and K2 in a topological space X, one has the equality
ν∗
(
f(K1) ∪ f(K2)

)
= ν∗

(
f(K1)

)
+ ν∗

(
f(K2)

)
, where the measure ν and the

mapping f are subject to certain technical restrictions.
It is clear that condition (UK) is weakened when we make the class K

smaller. It becomes the most restrictive when we set K = A.

9.12.7. Theorem. (i) Condition (E1) implies condition (UA), hence
also condition (UK) for every class K ⊂ A.

(ii) Condition (E2) implies condition (UA), hence also condition (UK) for
every class K ⊂ A.

(iii) Condition (E2) implies condition (E1) if the images of sets in A are
ν-measurable. More generally, condition (E2) implies condition (E1) if the
σ-algebra A is generated by a class of sets whose images are ν-measurable.

(iv) Let A = σ(K) and let the images of sets in K be ν-measurable. Then
condition (E1) is equivalent to condition (UK∪Kc), where Kc is the class of
complements of sets in K. Condition (UK∪Kc) can be written in the form

ν
(
f(K) ∩ f(X\K)

)
= 0 ∀K ∈ K.

In particular, conditions (UK) and (E1) are equivalent if A = σ(K), the
images of sets in K are ν-measurable, and for every K ∈ K there exist sets
Kn ∈ K with X\K =

⋃∞
n=1Kn (the latter is fulfilled if the class K is closed

with respect to complementation).
(v) Let X and Y be Souslin spaces equipped with their Borel σ-algebras,

let f : X → Y be a Borel surjection, and let ν be a Borel probability mea-
sure on Y . Then either of conditions (E1), (E2) and (UK) with the class
of all compact sets is equivalent to the uniqueness of a preimage of ν in the
class of Borel probability measures. In particular, all the three conditions are
equivalent.

Proof. (i) Let (E1) be fulfilled and let A1, A2 ∈ A be disjoint. By
assumption there exist sets B1, B2, C1, C2 ∈ B such that one has the equality



9.12. Supplements and exercises 313

ν(C1) = ν(C2) = 0 and the inclusions f−1(B1) ⊂ A1, A1\f−1(B1) ⊂ f−1(C1),
f−1(B2) ⊂ A2, and A2\f−1(B2) ⊂ f−1(C2). Then ν(B1 ∩ B2) = 0. Since
f(A1) ∩ f(A2) ⊂ C1 ∪ C2 ∪ (B1 ∩B2), we obtain ν

(
f(A1) ∩ f(A2)

)
= 0.

(ii) If K1,K2 ⊂ X and K1 ∩K2 = ∅, then f(K1) ∩ f(K2) is a subset of
the set of points with a non-unique preimage.

(iii) Let condition (E2) be fulfilled and let A ∈ A. By assumption, in the
ν-measurable set f(A), the subset M of points with a non-unique preimage
has ν-measure zero. Let us take a set B ∈ B with B ⊂ f(A)\M and ν(B) =
ν
(
f(A)

)
. Then there exists a set N ∈ B of ν-measure zero that contains

f(A)\B. Let E = f−1(B). We obtain that E�A ⊂ f−1(N). Thus, the set A
belongs to the completion of f−1(B) with respect to the measure ν0. The same
reasoning proves a more general assertion, where one requires the existence of
a class K of sets generating the σ-algebra A and having ν-measurable images.
Indeed, in this case we obtain the ν0-measurability of the sets in K, which
gives the ν0-measurability of the sets in A. Below we give an example showing
that the ν-measurability of the images of sets from A (or, at least, from a class
generating A) is essential for the validity of the established implication.

(iv) Let condition (UK∪Kc) be fulfilled and let K ∈ K. We take sets
B,C1, C2 ∈ B such that the relations B = f(K) ∪C1, f(K) ∩ f(X\K) ⊂ C2,
and ν(C1) = ν(C2) = 0 hold. The setK differs from the set f−1(B) in a subset
of the set f−1(C1 ∪ C2) that has ν0-measure zero. Hence K is measurable
with respect to ν0. The second claim in (iv) follows from the first one, since
f(X\K) =

⋃∞
n=1 f(Kn). Note that the first claim in (iv) does not assume the

ν-measurability of the images of the complements of sets in K.
(v) We know from Proposition 9.8.4 that (E1) is equivalent to the unique-

ness of a preimage. In addition, (E2) implies (E1). Suppose that (E1) is not
fulfilled. The set M of all points in Y with more than one preimage is Souslin
along with the set S := f−1(M). Since ν(M) > 0, by the measurable selection
theorem we can find a Borel set B ⊂ M with ν(B) = ν(M) and a Borel set
A ⊂ S such that f maps A onto B and is one-to-one. Clearly, f(S\A) = B.
There exist nonnegative measures σ1 and σ2 on A and S\A, respectively, such
that their images under f coincide with ν|B . Since f is sujective, there is some
preimage µ of ν. By using the measures σ1 and σ2 one can redefine µ on A in
two different ways and obtain two different preimages of ν. Hence (E1) and
(E2) are equivalent. We know that either of them implies (UK). Now let (UK)
be fulfilled. We observe that (E2) is fulfilled as well. Indeed, otherwise it is
easily seen from the above reasoning that one can find compact sets K1 ⊂ A
and K2 ⊂ S\A such that ν

(
f(K1)∩ f(K2)

)
> 0, which contradicts (UK). �

The restrictions on f and K indicated in the second part of (iv) are
fulfilled for continuous mappings of compact spaces and Radon measures if
we take for K the class of functionally closed sets. Indeed, the complement of
a functionally closed set is a countable union of functionally closed sets. In
particular, if X is perfectly normal, then the whole class of compact sets can
be taken.
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In Example 9.12.14 given below, conditions (E2) and (UA) are fulfilled,
but condition (E1) is not. For the projection f of the space “two arrows”
to [0, 1] with Lebesgue measure, condition (E1) and condition (UA) are ful-
filled for the class A of all Borel sets of this space. Indeed, every such Borel
set B differs in an at most countable set from a set of the form f−1(B0),
where B0 ∈ B([0, 1]) (see Exercise 6.10.36). Hence the projections of two
disjoint Borel sets have an at most countable intersection. In addition, the
set B � f−1(B0) is at most countable and has measure zero with respect
to ν0. The projections of all sets from A are Borel in the interval. However,
condition (E2) is not fulfilled: every point in (0, 1) has two preimages. Thus,
in assertion (iii), conditions (E1) and (E2) are not equivalent even when the
images of all sets in A are measurable with respect to ν. In Example 9.12.12,
a continuous surjection of a compact space onto [0, 1] satisfies condition (UK)
with the class of all compact sets, but condition (E1) is not fulfilled. Hence in
assertion (iv) one cannot omit additional assumptions that ensure the equiv-
alence of (E1) and (UK).

A simple proof of the following result is given in Bogachev, Sadovnichĭı,
Fedorchuk [224].

9.12.8. Theorem. Let a class K ⊂ A be such that the images of sets
in K are ν-measurable. Suppose that condition (UK) is fulfilled. If ν has
a preimage in the set of those probability measures on A for which K is an
approximating class, then there are no other preimages in this set.

9.12.9. Example. Suppose X is a topological space, A = B(X), F is
the class of all closed sets. Let f satisfy condition (UF ) with respect to ν
and let the images of all closed sets be ν-measurable. If two regular Borel
probability measures µ1 and µ2 on X are preimages of ν, then µ1 = µ2. If
the measures µ1 and µ2 are Radon and the images of all compact sets are
ν-measurable, then µ1 = µ2 provided that condition (UK) is fulfilled with the
class K of all compact sets.

9.12.10. Proposition. Suppose that X and Y are topological spaces
and that f : X → Y is a continuous mapping. Let µ be a Radon probability
measure on X and let ν = µ◦f−1. Then condition (UK) with the class K of
all compact sets is necessary and sufficient for the uniqueness of a preimage
of ν in the class of Radon probability measures.

Proof. This fact follows from Graf [720, Theorem 5.5], but can be ver-
ified directly. Indeed, suppose we are given disjoint compact sets K1 and K2

with ν
(
f(K1) ∩ f(K2)

)
> 0. Then the compact sets

S1 := K1 ∩ f−1
(
f(K1) ∩ f(K2)

)
and S2 := K2 ∩ f−1

(
f(K1) ∩ f(K2)

)

do not meet and f(S1) = f(S2) = f(K1) ∩ f(K2). There exist nonnegative
Radon measures σ1 and σ2 on S1 and S2 that are transformed by f to the
restriction of the measure ν on f(S1) = f(S2) = f(K1)∩ f(K2). By using σ1

and σ2 we can redefine µ on S1 ∪ S2 and obtain two distinct preimages of ν.
The converse follows by Example 9.12.9. �
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The following simple example shows that in the general case condition
(E1) is not necessary for the uniqueness of a Radon preimage of a measure.

9.12.11. Example. Let X = Y be the product of the continuum of
copies of [0, 1], let A = B(X), and let B be the Baire σ-algebra of the space X.
Let us take for f the identity mapping and for ν Dirac’s measure δ at zero.
Then the unique Radon preimage of ν is the same Dirac measure, condition
(E2) is fulfilled, but condition (E1) is broken because the set consisting of the
single point zero does not belong to the completion of the Baire σ-algebra
with respect to the measure δ (its outer measure equals one and its inner
measure equals zero, since it is not a Baire set). However, in this example,
there are non-regular Borel probability preimages of ν.

A situation is also possible when for a one-to-one mapping (E1) is not
fulfilled (conditions (E2) and (UA) are fulfilled, of course), and there are no
Radon preimages, but a Borel preimage is not unique: see Example 8.10.29.

Now under the assumption that the cardinality of the continuum is not
measurable, which means the absence of nonzero measures without points of
positive measure on the class of all subsets of an interval (for which it suffices
to accept the continuum hypothesis or Martin’s axiom), we give an example of
a continuous surjection of a compact space onto [0, 1] such that Lebesgue mea-
sure has a unique preimage in the whole class of Borel probability measures
and condition (UK) is fulfilled, but (E1) and (E2) are not fulfilled.

9.12.12. Example. Let the set X = [0, 1]2 be equipped with the order
topology with respect to the lexicographic ordering as in Exercise 6.10.87 and
let A = B(X). Then X is compact and the natural projection f : X → [0, 1]
is continuous. The space “two arrows”, denoted by X0, is closed in X. Let
ν = λ be Lebesgue measure on [0, 1]. Condition (E1) is broken, since the
interior U of the square with the usual topology is open in the order topology,
but does not belong to the completion of f−1

(
B([0, 1])

)
with respect to ν0.

Indeed, the only set from f−1
(
B([0, 1])

)
containing U is the whole space X,

but their difference has full outer measure with respect to ν0. Let us show
that ν has a unique preimage in the class of Borel probability measures if
there are no nonzero measures without points of positive measure on the class
of all sets in [0, 1]. This unique preimage is the Radon probability measure
µ concentrated on the subspace X0 and having the projection λ. Let µ1

be another probability Borel preimage. The sets {x}×(0, 1) are open in X
and have zero µ1-measure because their projections are points, which have
zero Lebesgue measure. It follows from our assumption that µ1(X\X0) = 0,
since otherwise on the class of all subsets of the interval we obtain a nonzero
measure σ(E) := µ1

(
E×(0, 1)

)
without points of positive measure. Now we

have to verify that there is only one Borel probability measure on X0 whose
projection is ν. This is seen from the fact (see Exercise 6.10.36) that every
Borel set B in X0 differs in an at most countable set from a set of the form
f−1(B0), where B0 ∈ B([0, 1]). Hence µ1(B) = ν(B0), since µ1 has no points
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of positive measure. It is easily seen that condition (UK) is fulfilled with the
class K of all compacts, but (E2) and (UA) are not fulfilled.

Without additional set-theoretic assumptions one can find a continuous
surjection of a compact X onto a metrizable compact Y with a probability
measure ν such that ν has only one Radon probability preimage, but there
are non-regular Borel probability preimages.

9.12.13. Example. In Section 439J of volume 4 of the book Fremlin
[635] the set X = [0, 1]∞×{0, 1} is given some topology τ with the following
properties:

(1) (X, τ) is a compact space with the first countability axiom, and the
natural projection π : (x, y) �→ x of the space X onto [0, 1]∞ with the usual
topology τ0 of a countable product of closed intervals (in which it is a metriz-
able compact) is continuous, (2) the set [0, 1]∞×{0} is compact in X, and
the topology τ on this set coincides with τ0, (3) subsets of [0, 1]∞×{1} that
are compact in the topology τ are finite or countable, (4) there is a Borel
probability measure µ on X that is not Radon, but is mapped by π to the
measure ν equal the countable power of Lebesgue measure on [0, 1].

It is clear that besides µ, the same measure µ0 = ν transported to the
subspace [0, 1]∞×{0} is mapped to the measure ν. Thus, there are distinct
preimages in the class of all probability Borel measures on X. However, the
only preimage in the subclass of Radon measures is µ0. Indeed, let µ′ be
another Radon preimage. Then µ′ cannot have points of positive measure,
which by property (3) yields the equality µ′([0, 1]∞×{1}) = 0, i.e., the measure
µ′ is concentrated on [0, 1]∞×{0}. Therefore, µ′ = µ0 because the mapping
π is a homeomorphism between [0, 1]∞×{0} and [0, 1]∞.

In this example, too, condition (UK) is fulfilled with the class K of all
compacts and conditions (E1) and (E2) are not fulfilled.

Thus, in the case of continuous surjections of compacts, conditions (E1)
and (E2) are not necessary for the uniqueness of a preimage in the class of
Borel probability measures. Here (E2) ⇒ (E1) ⇒ (UK), where the implica-
tions are not invertible, and condition (UK) is necessary and sufficient for the
uniqueness of a preimage in the class of Radon probability measures.

If one does not confine oneself to continuous surjections of compacts, then
one can give an example where condition (UA) is fulfilled and ν has exactly
one probability preimage, but (E1) is not fulfilled. According to assertion (iv)
of Theorem 9.12.7, this would be impossible under the additional assumption
of the ν-measurability of the images of the sets in A (observe that in this case
Theorem 9.12.8 ensures the uniqueness of a probability preimage provided
that such a preimage exists).

9.12.14. Example. (i) Let X = Y = [0, 1], B = B([0, 1]), and let ν = λ
be Lebesgue measure. Let us take a Lebesgue nonmeasurable set E ⊂ [0, 1]
of cardinality of the continuum with λ∗(E) = 0. Let A be the σ-algebra
generated by all Borel sets in [0, 1] and all subsets of E. Note that the measure
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λ extends to a measure µ on A that satisfies the condition µ(E) = 0. Indeed,
by the equality λ∗(E) = 0 the measure λ has an extension λ′ to the σ-algebra
E generated by B([0, 1]) and E such that λ′(E) = 0 (see Theorem 1.12.14).
Then all subsets of E are measurable with respect to the completion of λ′,
i.e., one can take for µ the restriction of the completion of λ′ to A. Under
the assumption that the cardinality of the continuum is not measurable there
are no other extensions to the class of all subsets of E. Let f be the identity
mapping ([0, 1],A) → ([0, 1],B). Then condition (UA) is obviously fulfilled,
but (E1) is not.

(ii) Under the continuum hypothesis, it is easy to modify the example in
(i) in such a way that X becomes a separable metric space whose identity em-
bedding into the interval is continuous. Indeed, according to Corollary 3.10.3,
under the continuum hypothesis E contains a countable collection of sets
En such that the generated σ-algebra σ({En}) contains B(E), but carries
no nonzero measure vanishing on all one point sets. Let A be the σ-algebra
generated by all Borel sets in [0, 1] and all En. By the same reasoning as
above, Lebesgue measure has a unique extension to A. Now we equip X with
a countable topology base that consists of the rational intervals intersected
with X and the sets En.

(iii) A close example is possible without additional set-theoretic assump-
tions. Take for B the σ-algebra consisting of the first category sets in [0, 1] and
their complements. Let ν(B) = 0 for all first category sets B and ν(B) = 1
in the opposite case. Note that ν∗([0, 1/2]) = 0. Take for A the σ-algebra
generated by B and all Borel subsets of [0, 1/2]. As above, ν has an extension
µ to A with µ([0, 1/2]) = 0. There are no other extensions, since every Borel
measure on [0, 1/2] is concentrated on a first category set.

9.12(iii). Existence of atomless measures

Here we give two results on existence of atomless measures.

9.12.15. Proposition. Let K be a nonempty compact space without
isolated points. Then, there exists an atomless Radon probability measure
on K.

Proof. We give two different proofs. The first one is based on the fact
that there exists a continuous surjective mapping f from K onto [0, 1] (see Ex-
ercise 6.10.26). For the required measure one can take any Radon probability
measure whose image is Lebesgue measure (such a measure exists according
to Theorem 9.1.9).

Another reasoning, used in Knowles [1014], is based on the fact that
the space Pr(K) of all Radon probability measures on K is compact in the
weak topology. Hence it cannot be represented as the union of a sequence
of nowhere dense closed sets. Let us consider the sets Mn consisting of all
measures µ ∈ Pr(K) that have atoms of measure at least 1/n. The sets Mn are
closed in Pr(K) with the weak topology. Indeed, let ν be a limit point of Mn.
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There is a net of measures µα ∈ Mn convergent to ν. Every measure µα has
a point xα of measure at least 1/n. The points {xα} have a limit point x,
hence we may assume that the net {xα} converges to x. If ν({x}) < 1/n,
then there exists a closed set Z whose interior contains x and ν(Z) < 1/n.
There is α0 such that xα ∈ Z if α ≥ α0. Hence µα(Z) ≥ 1/n, which by
weak convergence yields ν(Z) ≥ 1/n, a contradiction. In addition, the sets
Mn are nowhere dense. Indeed, let ν ∈ Pr(K). Every neighborhood of ν
in the weak topology contains a finite linear combination of Dirac measures.
Since K has no isolated points, such a combination can be found in the form
ν0 =

∑k
j=1 cjδaj where cj < (2n)−1 and the points aj are distinct. As shown

above, ν0 has a neighborhood that does not meet Mn. �
9.12.16. Proposition. Let K be a compact space. One can find an

atomless Radon probability measure on K precisely when there exists a con-
tinuous function f : K → [0, 1] with f(K) = [0, 1].

Proof. If such a function exists, then Theorem 9.1.9 applies. If there is
an atomless Radon probability measure µ on K, then the topological support
of µ is a compact set K0 without isolated points. According to Exercise
6.10.26, there exists a continuous function f on K0 with f(K0) = [0, 1]. It
remains to extend f to a continuous function from K to [0, 1]. �

9.12(iv). Invariant and quasi-invariant measures of transforma-
tions

Let f be a Borel mapping from a topological space X into itself. We recall
that a Borel measure µ on X is called an invariant measure of the transfor-
mation f if one has µ ◦ f−1 = µ. The problem of existence of invariant
measures of transformations arises in probability theory, ergodic theory, non-
linear analysis, the theory of representations of groups, statistical physics, and
many other branches of mathematics and physics. The following fundamental
result goes back to N.N. Bogolubov and N.M. Krylov [227].

9.12.17. Theorem. Let {Tα} be a family of commuting continuous map-
pings of a compact space X into itself. Then, there exists a Radon probability
measure λ on X that is invariant with respect to all Tα.

Proof. According to the Riesz theorem, the space C(X)∗ can be iden-
tified with the space of all Radon measures on X. Any continuous mapping
T : X → X induces a linear mapping T̂ : C(X)∗ → C(X)∗, λ �→ λ ◦ T−1,
which is continuous if C(X)∗ is equipped with the weak∗ topology. Indeed,
let U :=

{
λ : − ε < λ(fi) < ε, i = 1, . . . , n

}
, where fi ∈ C(X) and λ(f)

denotes the integral of f against the measure λ. Then T̂−1(U) contains the
neighborhood of zero

{
m : − ε < m(fi ◦ T ) < ε, i = 1, . . . , n

}
because

m(f ◦T ) = T̂ (m)(f). By the Banach–Alaoglu theorem, the closed unit ball in
C(X)∗ is compact in the weak∗ topology. Its subset P consisting of function-
als L such that L(1) = 1 and L(f) ≥ 0 whenever f ≥ 0 (i.e., corresponding
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to probability measures) is closed and convex. Therefore, it is a convex com-
pact set. The continuous linear mappings T̂α take P to P and commute.
According to the well-known Markov–Kakutani theorem (see Edwards [518,
Theorem 3.2.1]), there exists a point λ ∈ P such that T̂α(λ) = λ for all α.
Thus, λ is a common invariant measure of all Tα. �

9.12.18. Corollary. Every continuous mapping of a compact space into
itself has an invariant Radon probability measure.

An immediate corollary of Theorem 9.12.17 is the existence of a Haar
measure on every commutative compact topological group, i.e., a Radon prob-
ability measure invariant with respect to translations.

9.12.19. Example. Let a bounded set K in a Hilbert space be closed
in the weak topology. Then any continuous in the weak topology mapping
F : K → K has an invariant probability measure.

In this example, it is important that the set is closed in the weak topology
as well as that the mapping is continuous in this topology. Let us consider the
following example from Bogachev, Prostov [221] (an analogous, but not poly-
nomial, mapping was used by Kakutani in his example of a homeomorphism
of the ball without fixed points).

9.12.20. Example. There exists a mapping f of the closed unit ball
U in l2 into itself such that f is a diffeomorphism (i.e., a diffeomorphism of
some neighborhoods of U and a homeomorphism of U) and, in addition, a
second-order polynomial, i.e., f(x) = B(x, x) +A(x) + c, where B is bilinear,
A is linear, c ∈ U , but has no invariant measures.

Proof. Let us represent l2 as the space of two-sided sequences x = (xn),
n ∈ Z, take its natural basis {en}, denote by T the isometry defined by
Ten = en−1 and let

f(x) = T
(
x+ ε

(
1− (x, x)

)
e0
)
,

where ε ∈ (0, 1/2). All our claims are verified directly (see [221]), in partic-
ular, the absence of invariant measures follows by the fact that, as one can
verify, for every x, the sequence fn(x) converges weakly to 0, but Dirac’s
measure at 0 is not invariant. If we consider T on the unit sphere, then we
obtain a mapping that is weakly continuous, but has no invariant measures.
Certainly, the reason is that the sphere is not weakly closed. �

It would be interesting to find conditions on a smooth mapping (different
from its compactness) that ensure the existence of invariant measures. In
some applications, the weaker property of quasi-invariance is more useful.
For example, there exist no finite invariant Haar measures on noncompact
topological groups. We shall say that µ is a quasi-invariant measure of a family
of transformations {Tα} if µ ◦ T−1

α � µ for all α. It is clear that for a single
transformation T , one can always find a quasi-invariant probability measure:
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let µ =
∑∞
n=1 2−nµ ◦ (Tn)−1, where µ is any probability measure. However,

in the general case this is often a difficult problem. Certainly, there exist
families that have no quasi-invariant measures at all. A non-trivial example is
the additive group of an infinite-dimensional Banach space: it does not admit
nonzero quasi-invariant finite Borel measures. The concepts of invariance and
quasi-invariance are meaningful for transformations of spaces of measures on
X that are not necessarily generated by transformations of the space X itself.
For example, invariant measures of a stochastic process in a topological space
X with the transition semigroup {Tt} on the space of bounded Borel functions
are defined as invariant measures of the associated operators T ∗

t on M(X).
Regarding extensions of Haar measures, see Hewitt, Ross [825, �16]. In the
consideration of infinite Haar measures it is sometimes more convenient to
deal with invariant integrals, rather than with measures. This is one of the
situations where one can exploit advantages of the Daniell–Stone approach.

9.12(v). Point and Boolean isomorphisms

Many papers are devoted to generalizations of a result due to von Neu-
mann (see Theorem 9.5.1), according to which any automorphism of a measure
algebra is generated by a mapping of the measure space under some restric-
tions on a measure or a space; see Choksi [345], [346], Choksi, Fremlin [347],
Maharam [1232]. In Maharam [1233], for any Radon probability measure µ,
one constructs an isomorphism of the measures µ⊗λτ and λτ , where λτ is
some power of Lebesgue measure on [0, 1]. We mention a result from Choksi,
Fremlin [347].

9.12.21. Theorem. Suppose that Xα, α ∈ A, are compact metric spaces.
Let X =

∏
α∈AXα and let µ and ν be Radon probability measures on X. If the

measure algebras Eµ and Eν are isomorphic in the sense of Definition 9.3.1,
then there exists an isomorphism mod0 of the measure spaces

(
X,Ba(X)µ, µ

)

and
(
X,Ba(X)ν , ν

)
.

In particular, if A is at most countable, then there exists an isomorphism
mod0 of the spaces

(
X,B(X)µ, µ

)
and

(
X,B(X)ν , ν

)
.

For uncountable products of unit intervals, the last assertion is false,
as shown in Panzone, Segovia [1421]. According to Vinokurov [1929], two
infinite products (of the same cardinality) of atomless Lebesgue spaces are iso-
morphic mod0 provided that they have equal metric structures. In addition,
every power Eτ of an atomless Lebesgue space that generates a homogeneous
metric measure algebra of the weight τ is point isomorphic mod0 to the com-
pact space [0, 1]τ .

Note the following result (see Fremlin [635, �344I]).

9.12.22. Theorem. Let (X,A, µ) and (Y,B, ν) be atomless perfect prob-
ability measures on countably separated σ-algebras. Then the measure spaces
(X,Aµ, µ) and (Y,Bν , ν) are isomorphic.
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Let (X,A, µ) be a complete probability space, Y a Hausdorff space,
B = B(Y ). The next interesting result is obtained in Graf [719] by using
important ideas from Edgar [512]. If A1 and A2 are Boolean algebras, then
a mapping Φ: A1 → A2 is called a Boolean σ-homomorphism if Φ preserves
the operations of intersection, complementation, and countable union.

9.12.23. Theorem. Let Φ: B → A/µ be a Boolean σ-homomorphism
such that µ ◦ Φ is a Radon measure on Y . Then, there exists an (A,B)-
measurable mapping f : X → Y such that Φ(B) is the equivalence class of the
set f−1(B) for every B ∈ B, i.e., the mapping f induces Φ.

Proof. Denote by K the class of all compact sets in Y . As will be shown
in �10.5, there exists a lifting L : A/µ→ A, i.e., a mapping L that associates
to every class of µ-equivalent sets (we recall that A = Aµ) a representative of
this class in such a way that

L(X) = X, L(∅) = ∅, L(A ∩B) = L(A) ∩ L(B), L(A ∪B) = L(A) ∪ L(B).

Then Ψ = L ◦Φ is a homomorphism of the Boolean algebras B and A. Since
the measure µ ◦ Φ is Radon, one has

µ(X) = sup
{
µ
(
Φ(K)

)
: K ∈ K

}
.

The family of sets Ψ(K) is an increasing (by inclusion) net, hence, according
to Lemma 10.5.5, we obtain that the set X0 :=

⋃
K∈K Ψ(K) is measurable

and µ(X\X0) = 0. For every x ∈ X, let Kx := {K ∈ K : x ∈ Ψ(K)}.
We observe that for any x ∈ X0 the class Kx is nonempty. We show that
Πx :=

⋂
K∈Kx K consists of exactly one point that we denote by f(x). Indeed,

the class Kx consists of nonempty compact sets every finite intersection of
which is nonempty, since their images under the homomorphism Ψ contain x.
Hence the intersection of all these compact sets is nonempty as well. Suppose
that Πx contains two distinct elements y1 and y2. Let us take an arbitrary
compact set K ∈ Kx. Then y1, y2 ∈ K. These two points possess disjoint
neighborhoods U1 and U2. The sets K1 = K\U1 and K2 = K\U2 are compact
and K = K1 ∪K2. Then x belongs either to Ψ(K1) or to Ψ(K2). We may
assume that x ∈ Ψ(K1) and then K1 ∈ Kx. This shows that U1 does not
meet Πx, since U1 does not meet K1 ⊃ Πx, i.e., y1 �∈ Πx, a contradiction.
Now we extend f outside X0 by any constant value y0 ∈ Y . We obtain a
required mapping. Indeed, for every open set U ⊂ Y , the set f−1(U) either
coincides with E := X0∩f−1(U) or differs from E in X\X0. Hence it suffices
to show that E ∈ A. It is easy to see that the inclusion Πx ⊂ U is equivalent
to that K ⊂ U for some K ∈ Kx. In addition, for every compact set K ⊂ U ,
we have X0 ∩ Ψ(K) ⊂ E because if x ∈ X0 ∩ Ψ(K), then K ∈ Kx and
Πx ⊂ K ⊂ U , i.e., x ∈ E. Thus,

E = X0 ∩
⋃{

Ψ(K) : K ⊂ U, K is compact
}
.

As above, we obtain that E ∈ A and µ
(
Ψ(U)\E

)
= 0. By the equality

µ
(
f−1(U)�E

)
= 0, we conclude that Φ(U) is the equivalence class of the set
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f−1(U). Taking into account that Φ is a σ-homomorphism, this remains true
for all Borel sets in Y . �

We observe that if Y is a Souslin space, then the measure µ ◦ Φ is au-
tomatically Radon. Moreover, in this case it is not necessary to assume the
completeness of the measure µ, since one can apply the theorem to Aµ and
then take an (A,B)-measurable version of the obtained mapping.

It is clear that if a measurable mapping T : (X,A, µ) → (Y,B, ν) of prob-
ability spaces has the property that ν = µ◦T−1, then T generates a measure-
preserving embedding Ψ: Eν → Eµ such that the equivalence class of the
set B ∈ B is taken to the equivalence class of the set Ψ(B) = T−1(B). The
fact that Ψ is well-defined and µ

(
Ψ(B)

)
= ν(B) is clear from the equality

ν = µ ◦ T−1. In this situation, T and Ψ may not be isomorphisms.
The next result was obtained in Edgar [512]; Fremlin [625] pointed out

its simple derivation from Theorem 9.12.23.

9.12.24. Theorem. Let (X,A, µ) be a probability space with a complete
measure µ and let

(
Y,B(Y )ν , ν

)
be a topological space with a Radon probability

measure ν. Suppose that there exists a measure-preserving mapping Ψ of the
measure algebra Eν to Eµ. Then Ψ is induced by some measurable mapping
T : X → Y .

9.12.25. Corollary. Let
(
Y,B(Y )ν , ν

)
be a topological space with a

Radon probability measure ν. Then, there exist a cardinal κ and a measurable
mapping T : {0, 1}κ → Y , where {0, 1}κ is equipped with the measure µ that
is the product of the standard Bernoulli probability measures, such that the
equality ν = µ ◦ T−1 holds.

Proof. We apply Theorem 9.3.5 and Theorem 9.12.24. �
Every probability measure µ can be decomposed into the sum of a purely

atomic measure ν and a measure µ0 without atoms. Then Lp(µ) is the direct
sum of Lp(ν) and Lp(µ0), and Lp(ν) can be identified with Lp(ν0) for some
measure ν0 on IN. The structure of the second component is described by the
following theorem, which is a corollary of Theorem 9.3.5.

9.12.26. Theorem. Suppose that µ is an atomless probability measure
and let 1 ≤ p < ∞. Then, there exists a countable family of infinite cardinal
numbers βn such that Lp(µ) is linearly isometric and isomorphic in the sense
of its natural order to the space

[
⊕nLp([0, 1]βn , λβn)

]
p

defined as the space of
all sequences (fn) with fn ∈ Lp([0, 1]βn , λβn) which have finite norm

(fn)p :=
(∑

n

‖fn‖pp
)1/p

.

9.12.27. Corollary. Let µ be a separable atomless probability measure
and let 1 ≤ p < ∞. Then Lp(µ) is linearly isometric to Lp[0, 1]. If µ has
atoms, but is not purely atomic, then Lp(µ) is linearly isometric to the direct
sum of Lp[0, a] and Lp(ν) for some a < 1 and some finite measure ν on IN.
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9.12(vi). Almost homeomorphisms

Almost homeomorphisms of measure spaces considered in �9.6 may be
very discontinuous when extended to the whole space. The question arises
about the existence of almost homeomorphisms with better properties. Two
such properties are described in the following definition.

9.12.28. Definition. Let (X,µ) and (Y, ν) be topological spaces with
Borel measures µ and ν. (i) We shall say that these spaces are K-isomorphic
if there exist mappings S : X → Y and S′ : Y → X such that S is continuous
µ-a.e., S′ is continuous ν-a.e., S′(S(x)

)
= x for µ-a.e. x, S

(
S′(y)

)
= y for

ν-a.e. y, and ν = µ ◦ S−1, where µ is extended to B(X)µ.
(ii) We shall say that these spaces are S-isomorphic if there exists a one-

to-one Borel mapping T from X onto Y such that ν = µ◦T−1, T is continuous
µ-a.e., and T−1 is continuous ν-a.e.

The names for the above types of isomorphisms are explained by the fact
that they were investigated in Krickeberg [1059], [1060], Böge, Krickeberg,
Papangelou [226] and Sun [1806], [1807], respectively. The following theo-
rem is established in Sun [1806].

9.12.29. Theorem. Let µ be a Borel probability measure on a Polish
space X. Then the following assertions are true.

(i) There exist a Borel set Y ⊂ [0, 1] and a Borel probability measure ν
on Y such that (X,µ) and (Y, ν) are S-isomorphic.

(ii) One can take [0, 1] for Y precisely when every atom of the measure µ
is an accumulation point in X.

(iii) If µ has no atoms, then (X,µ) and ([0, 1], λ), where λ is Lebesgue
measure, are S-isomorphic, and given a countable set D in the topological
support of µ, an isomorphism T can be chosen in such a way that D belongs
to the set of the continuity points of T and T (D) belongs to the set of the
continuity points of T−1.

This theorem does not extend to arbitrary Borel sets in Polish spaces. As
shown in Sun [1807], the situation is this.

9.12.30. Theorem. Let X be a Borel set in a Polish space and let µ be
a Borel probability measure on X. Then:

(i) the existence of a Borel probability measure ν on [0, 1] such that (X,µ)
and ([0, 1], ν) are S-isomorphic is equivalent to the existence of a set Y ⊂ X
of measure 1 that is a Polish space such that all atoms of µ are accumulation
points of X;

(ii) if µ has no atoms, then the existence of an S-isomorphism between
(X,µ) and ([0, 1], λ) is equivalent to the existence of a set Y ⊂ X of measure 1
that is a Polish space. In this case, given a countable set D in the intersection
of the support of µ with Y , an isomorphism T can be chosen in such a way
that D belongs to the set of the continuity points of T and T (D) belongs to
the set of the continuity points of T−1.
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Certainly, one cannot always find a Polish subspace of full µ-measure.
For example, if X = Q = {rn} is the set of all rational numbers and µ
equals

∑∞
n=1 2−nδrn , then obviously such subspaces do not exist, since Q is

not a Polish space. This example can be easily modified in order to obtain an
atomless measure (for example, take the measure µ⊗λ on Q×[0, 1]).

It is clear that every S-isomorphism is a K-isomorphism. The converse is
not true at least for the reason that a K-isomorphism may be neither one-to-
one nor Borel. We remark that even if a K-isomorphism S is one-to-one, one
cannot always take for S′ the mapping S−1 (see Exercise 3.10.74). Sun [1806]
constructs simple examples where K-isomorphic spaces (X,µ) and (Y, ν) are
not S-isomorphic. In such examples, it can even occur that there is a one-
to-one measure-preserving Borel mapping between X and Y . Thus, different
isomorphisms may possess some of the properties required in the definition
of S-isomorphisms, but they cannot be obtained simultaneously for a single
mapping. It may also occur that there exists a K-isomorphism, but there is
no measure-preserving one-to-one Borel mapping. Finally, the existence of a
Borel isomorphism between X and Y transforming µ into ν does not yield
that (X,µ) and (Y, ν) are K-isomorphic.

9.12(vii). Measures with given marginal projections

Given two probability measures µ and ν on spaces X and Y , there exist
measures on X×Y whose projections to the factors are µ and ν (for ex-
ample, the measure µ⊗ν). In many applications, it is important to have
such a measure with certain additional properties (say, concentrated on a
given set). For example, on the square [0, 1]2, apart from the two-dimensional
Lebesgue measure, there is a measure concentrated on the diagonal x = y
such that its projections to the sides are Lebesgue measures: the normalized
linear measure on the diagonal. However, on the set {(x, y) : x < y}, there
is no Borel measure whose projections are Lebesgue measures on the sides
(Exercise 9.12.79). Let us mention several typical results in this direction.
The next theorem on measures with given projections to the factors (called
the marginal projections) was found by Strassen [1791] in the case of Polish
spaces, and then generalized by several authors (see Skala [1738], whence the
presented formulation is borrowed).

9.12.31. Theorem. Let X and Y be completely regular spaces and let
M be a convex set in Pr(X×Y ), closed in the weak topology (or let X and Y be
general Hausdorff spaces and let M be closed in the A-topology). The existence
of a measure λ ∈ M with given projections µ ∈ Pr(X) and ν ∈ Pr(Y ) on X
and Y is equivalent to the following condition: for all bounded Borel functions
f on X and g on Y one has

∫

X

f dµ+
∫

Y

g dν ≤ sup
{∫

X×Y

(
f(x) + g(y)

)
σ(dx, dy) : σ ∈M

}
.
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In particular, if Z is a closed set in X×Y , then the existence of a measure λ
in Pr(X×Y ) with the marginals µ ∈ Pr(X) and ν ∈ Pr(Y ) and λ(Z) = 1 is
equivalent to the inequality

∫

X

f dµ+
∫

Y

g dν ≤ sup
{
f(x) + g(y) : (x, y) ∈ Z

}

for all bounded Borel functions f on X and g on Y .

Let (X1,A1, P1) and (X2,A2, P2) be probability spaces and let P(P1, P2)
be the set of all probability measures on (X1×X2,A1⊗A2) whose projections
on X1 and X2 equal P1 and P2, respectively. Let h be a bounded measurable
function on (X1×X2,A1⊗A2) and let

S(h) = sup
µ∈P(P1,P2)

∫

X1×X2

h dµ,

I(h) = inf
{∫

X1

h1 dP1 +
∫

X2

h2 dP2

}
,

where inf is taken over all hi ∈ L1(Pi) with h(x1, x2) ≤ h1(x1) + h2(x2).
Integrating the latter inequality with respect to P1⊗P2 we get I(h) ≥ S(h).
The next general result is proved in Ramachandran, Rüschendorf [1524].

9.12.32. Theorem. If at least one of the measures P1 and P2 is perfect,
then S(h) = I(h).

It is shown in Ramachandran, Rüschendorf [1525] that the assumption
of perfectness of one of the measures cannot be omitted. The results in this
subsection are strongly related to those in �8.10(viii), where we dealt with the
case h(x, y) = −d(x, y) for a metric d.

9.12(viii). The Stone representation

A Boolean algebra is a nonempty set X with two binary operations
(A,B) �→ A ∩ B and (A,B) �→ A ∪ B and an operation A �→ −A that
are related by the same identities as the usual set-theoretic operations of in-
tersection, union, and complement (see Sikorski [1725, Ch. 1]). In this case,
the elements A ∩ (−A) and A ∪ (−A) are independent of A and are called,
respectively, the zero and unit of the algebra. A Boolean homomorphism of
Boolean algebras is a mapping h with the properties

h(A ∪B) = h(A) ∪ h(B), h(A ∩B) = h(A) ∩ h(B), h(−A) = −h(A).

A one-to-one Boolean homomorphism is called a Boolean isomorphism. Ear-
lier we encountered special cases of these concepts when dealing with the
metric Boolean algebra of a measure space (in this case, the Boolean opera-
tions on equivalence classes of sets are the usual set-theoretic operations of
intersection, union, and complement on representatives of those classes). One
can define a Boolean algebra in terms of partially ordered sets (see Vladimirov
[1947]), and also in algebraic terms as an associative ring with a unit such
that all elements satisfy the condition a · a = a (to this end, the operation
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of addition of sets is defined as the symmetric difference, which corresponds
to the addition mod 2 of indicator functions). The next important result due
to Stone identifies abstract Boolean algebras with algebras of clopen sets. A
proof of the Stone theorem can be found in Dunford, Schwartz [503], Lacey
[1098], Sikorski [1725], Vladimirov [1947].

9.12.33. Theorem. Every Boolean algebra A is isomorphic to the Boo-
lean algebra of all simultaneously open and closed sets in some totally discon-
nected compact space S (i.e., a compact space that has a base consisting of
clopen sets).

Suppose that on an algebra A of subsets of a space X we have a non-
negative additive set function m with m(X) = 1. By the Stone theorem we
represent A as the algebra A0 of all clopen subsets of a compact space S. The
function m corresponds to a nonnegative additive set function m0 on A0 with
m0(S) = 1. Since A0 consists of compact subsets of S, the measure m0 is
countably additive and hence admits a countably additive extension to σ(A0).
Moreover, by Theorem 7.3.11, there exists a Radon probability measure µ on
S that extends m0. We emphasize that the initial measure m need not be
countably additive (this seeming contradiction is explained by the fact that
the above-mentioned isomorphism may not preserve countable unions).

Loomis [1182] and Sikorski [1724] obtained a sharpening of the Stone
theorem for Boolean σ-algebras A (Boolean algebras with countable unions):
they proved that there exist a σ-algebra A0 and its σ-ideal ∆ such that the
algebra A is isomorphic to the factor-algebra A0/∆. Moreover, one can take
for A0 the σ-algebra generated by all clopen sets in the Stone space S of the
algebra A and for ∆ the σ-ideal of all first category sets in A0.

9.12(ix). The Lyapunov theorem

Here we consider a nice application of measurable transformations to vec-
tor measures given by A.A. Lyapunov. We shall see that under broad assump-
tions, several measures can be transformed into a given one by a common
transformation. Lyapunov [1216] (see also Lyapunov [1217, p. 234]) proved
the following interesting result. Let ψ be an absolutely continuous function
on [0, 1] with ψ(0) = 0. Then there exists a Borel function f : [0, 1] → [0, 1]
such that for all t ∈ [0, 1] one has λ

(
s : f(s) ≤ t

)
= t, where λ is Lebesgue

measure, and ∫

{f≤t}
ψ′(s) ds = tψ(1).

We prove this result in an equivalent formulation.

9.12.34. Theorem. Given an absolutely continuous measure ν on [0, 1]
(possibly signed), there exists a Borel transformation f of [0, 1] that preserves
Lebesgue measure λ and takes the measure ν to ν([0, 1])λ.

Proof. We define a function f by means of the sets

Enk = {x : k2−n < f(x) < (k + 1)2−n}, k = 0, 1, . . . , 2n − 1, n = 0, 1, . . . ,
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which will be constructed by induction. Let ν([0, 1]) = α and let E00 = [0, 1].
Suppose that for some n ≥ 1 sets Enk are constructed in such a way that
λ(Enk) = 2−n, ν(Enk) = α2−n. Let us show how to construct sets En+1,2k

and En+1,2k+1 for k = 0, . . . , 2n − 1. We find x1 ∈ [0, 1] with

λ
(
Enk ∩ [0, x1]

)
= 2−n−1.

For every x ∈ [0, x1], there is the smallest number ξ(x) > x with

λ
(
Enk ∩ [x, ξ(x)]

)
= 2−n−1.

It is clear that the function ξ on [0, x1] is continuous. Hence the function
η : x �→ ν

(
Enk ∩ [x, ξ(x)]

)
on [0, x1] is continuous as well. We observe that

there is z ∈ [0, x1] with η(z) = α2−n−1. Indeed, ξ(0) ≤ x1, hence the set

D :=
(
[0, ξ(0)] ∪ [x1, ξ(x1)]

)
∩ Enk

has Lebesgue measure 2−n, i.e., coincides with En,k up to a set of measure
zero. Then η(0) + η(x1) = ν(D) = α2−n. Therefore, the numbers η(0) and
η(x1) cannot be simultaneously greater than α2−n−1 or smaller than α2−n−1,
which by the continuity of η yields the required number z. Now let

En+1,2k := En,k ∩ [z, ξ(z)], En+1,2k+1 := Enk\En+1,2k.

It is clear from our inductive construction that every Enk is the union of
finitely many intervals (closed, open or semi-open). The function f is de-
fined as follows: given x ∈ [0, 1], for every n there is a unique number kn
such that x ∈ Enkn ; then we set f(x) :=

⋂∞
n=1[kn2−n, (kn + 1)2−n]. The set

{k2−n < f < (k + 1)2−n} coincides with Enk up to finitely many endpoints
of the intervals constituting Enk. Hence the function f is Borel and one has
λ◦f−1(Enk) = λ(Enk) and ν ◦f−1(Enk) = αλ(Enk), which gives the required
equalities on all Borel sets. �

We apply this theorem to simultaneous transformations of measures.

9.12.35. Corollary. Let (X,A, µ) be a probability space and let µ be
atomless. Suppose we are given finitely many measures ν1, . . . , νk on A that
are absolutely continuous with respect to µ. Then there exists an A-measurable
function f : X → [0, 1] such that one has µ ◦ f−1 = λ and νi ◦ f−1 = νi(X)λ
for all i = 1, . . . , k, where λ is Lebesgue measure on [0, 1].

Proof. There exists an A-measurable function f1 : X → [0, 1] such that
one has µ ◦ f−1

1 = λ. Then νi ◦ f−1
1 � λ, which reduces our assertion to

the case X = [0, 1] and µ = λ. We prove it by induction on k. For k = 1
the assertion is already proven. Suppose that it is true for some k ≥ 1 and
that we are given measures νi � λ, i ≤ k + 1. There exists a Borel function
fk such that λ ◦ f−1

k = λ and νi ◦ f−1
k = νi([0, 1])λ for all i ≤ k. Then

νk+1 ◦ f−1
k � λ. Let us take a Borel function g such that λ ◦ g−1 = λ

and νk+1 ◦ f−1
k ◦ g−1 = νk+1([0, 1])λ. The function g ◦ fk has the required

property. �
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9.12.36. Corollary. Suppose that µ is an atomless Borel probability
measure on a Souslin space X and let ν1, . . . , νk be Borel measures absolutely
continuous with respect to µ. Then there exists a Borel mapping T : X → X
such that µ ◦ T−1 = µ and νi ◦ T−1 = νi(X)µ for all i = 1, . . . , k.

9.12.37. Corollary. Let µ1, . . . , µn be atomless Borel probability mea-
sures on a Souslin space X. Then, for every Borel probability measure ν on X,
there exists a Borel transformation T : X → X such that µi ◦ T−1 = ν for
all i ≤ n.

Proof. By Corollary 9.12.36 we find a mapping that transforms the
measures µi into the measure µ = (µ1 + · · · + µn)/n; then we transform µ
into ν by Theorem 9.2.2. �

By using these results one can easily prove the following remarkable the-
orem due to A.A. Lyapunov [1216].

9.12.38. Theorem. Let ν be a countably additive vector measure with
values in IRn defined on a measurable space (X,A), i.e., ν = (ν1, . . . , νn),
where each νi is a real measure on A. Suppose that the measures νi have no
atoms. Then the set of values of ν is convex and compact.

Proof. Let v1 = ν(A1), v2 = ν(A2), where Ai ∈ A, and let t ∈ (0, 1).
We consider the sets

A = A1 ∩A2, X1 = A1\A2, X2 = A2\A1.

Let us show that tv1 + (1− t)v2 = ν(B) for some B ∈ A. It is clear that
tv1 + (1− t)v2 = tu1 + (1− t)u2 + w,

where u1 = ν(X1), u2 = ν(X2), w = ν(A). The set B will be found in the form
B1∪A∪B2, where Bi ⊂ Xi. Let us consider the measure µ = |ν1|+· · ·+|νn|. If
µ(X1) = 0, then v1 = 0 and we set B1 = ∅. Suppose µ(X1) > 0. Applying the
above corollary to the measure µ on X1, we obtain a function f1 : X1 → [0, 1]
such that

µ|X1 ◦ f−1
1 = µ(X1)λ and νi|X1 ◦ f−1

1 = νi(X1)λ, i = 1, . . . , n,

where λ is Lebesgue measure. Letting B1 := f−1
1 ([0, t]) we have the equality

νi(B1) = tνi(X1), i = 1, . . . , n, whence we obtain ν(B1) = tu1. Similarly,
there exists a set B2 ∈ A with B2 ⊂ X2 and ν(B2) = (1 − t)u2. Now let
us set B := B1 ∪ A ∪ B2. Since the sets B1, A,B2 are disjoint, one has
ν(B) = tv1 + (1− t)v2, i.e., the set K of all values of ν is convex.

Let us show that K is closed by induction on n. For n = 1 this is true by
Corollary 1.12.10. Suppose our claim is true for n− 1. Let v be a limit point
of K. Suppose that v is not an inner point of K. Then there is an (n − 1)-
dimensional hyperplane L passing through v such that K belongs to one of the
two closed half-spaces with the boundary L. Without loss of generality we may
assume that L = {x1 = 1}. For every i = 2, . . . , n, there is a set Ei ∈ A such
that νi|Ei � |ν1|Ei and |ν1|(X\Ei) = 0. Let X1 :=

⋂n
i=2Ei and X2 = X\X1.

Then one has |ν1|(X2) = 0 and νi|X1 � |ν1|X1 for all i ≤ n. The restriction



9.12. Supplements and exercises 329

of the measure ν to X2 takes values in the hyperplane L0 = {x1 = 0},
hence by the inductive assumption the set of values of ν on X2 is a convex
compact set K2. Let K1 := {ν(A) : A ∈ A, A ⊂ X1}. Let us consider the
Hahn decomposition X1 = Y + ∪ Y − for the measure ν1. Since the set of
values of ν1 is closed, one has ν1(Y +) = 1. We observe that if Aj ∈ A are
such that Aj ⊂ X1 and ν1(Aj) → 1, then ν(Aj) → ν(Y +). Indeed, the
value 1 is maximal for ν1, whence we obtain that |ν1|(Aj ∩ Y −) → 0 and
ν1(Aj ∩Y +) → 1, i.e., one has |ν1|(Aj�Y +) → 0. By the absolute continuity
of νi|X1 with respect to |ν1| we obtain |νi|(Aj � Y +) → 0 for every i ≤ n,
which gives ν(Aj) → ν(Y +). By the definition of v, there exist sets Bj ∈ A
with ν(Bj) → v. Then ν1(Bj∩X1) → 1, whence we have ν(Bj∩X1) → ν(Y +)
as shown above. On the other hand, since K2 is closed, there is a set B ∈ A
such that B ⊂ X2 and ν(B) = lim

j→∞
ν(Aj ∩X2). Then v = ν(Y + ∪B). �

A completely different proof of Lyapunov’s theorem can be found in Di-
estel, Uhl [444, Ch. IX]. However, that proof does not give the other results
in this section.

Exercises

9.12.39.◦ Let Kn, where n ∈ IN, be increasing compact sets in a Hausdorff
space X and let f : X → Y be an injective mapping to a Hausdorff space Y such
that f is continuous on every Kn. Prove that if a Radon measure ν is concentrated
on the union of the compact sets f(Kn), then it has a unique Radon preimage with
respect to f .

Hint: observe that if µ1 and µ2 are Radon preimages of ν, then they are
concentrated on

⋃∞
n=1Kn, and their restrictions to every compact set Kn coincide;

in order to verify the latter, use that if two Radon measures µ1 and µ2 on
⋃∞
n=1Kn

are not equal, then µ1(S) �= µ2(S) for some compact set S in one of the sets Kn,
hence the compact set f(S) has different measures with respect to their images.

9.12.40.◦ Let (X,A, µ) be a probability space, let (Y, E) be a measurable space,
and let π : X → Y be an (Aµ, E)-measurable mapping. Suppose that the measure
ν = µ ◦ π−1 on E (or on Eν) has a compact approximating class and π(X) ∈ Eν .
Show that the measure µ on B = π−1(E) also has a compact approximating class.

Hint: suppose first that π(X) = Y ; let K be a compact approximating class for
ν on E and let K0 = π−1(K). Then K0 is a compact class. Indeed, if Cn = π−1(Kn),
Kn ∈ K and

⋂n
i=1 Ci �= ∅ for all n, then the sets

⋂n
i=1Ki are nonempty. There

exists y ∈
⋂∞
i=1Ki. There is x with π(x) = y. Then x ∈

⋂∞
i=1 Ci. Clearly, K0 is an

approximating class for µ on B. In the general case, let K1 = {K ∈ K : K ⊂ π(X)}.
It is clear that K1 is a compact class of subsets of π(X). In order to reduce our
assertion to the case π(X) = Y , it suffices to verify that the class K1 approximates
the measure ν on π(X). Let E ∈ E and ε > 0. By hypothesis, there exists a set
Y0 ⊂ π(X) such that Y0 ∈ E and ν

(
π(X)\Y0

)
= 0. In addition, there exist sets

E0 ∈ E and K ∈ K such that E0 ⊂ K ⊂ E ∩ Y0 and ν
(
(Y0 ∩E)\E0

)
< ε. It is clear

that K ⊂ π(X), i.e., K ∈ K1. Finally, K ⊂ E and ν(E\E0) < ε.

9.12.41.◦ Let µ be a Borel measure on the space R of irrational numbers in (0, 1),
positive on nonempty open sets and having no points of positive measure. Prove
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that for every sequence of numbers αn > 0 with
∑∞
n=1 αn = µ(R), there exist

disjoint open sets Un such that R =
⋃∞
n=1 Un and µ(Un) = αn for all n.

Hint: let a(i, j) = αij/(j + 1), i, j ∈ IN. Observe that one can find a sequence
of rational numbers rk, r0 = 0, increasing to 1 and having the following property:
if IN×IN is ordered according to the rule (i, j) < (i′, j′) whenever i+ j < i′ + j′ or
i+j = i′ +j′ and j < j′, and if (rk−1, rk)∩R is denoted by I(i, j), where (i, j) is the
element with the number k in the indicated ordering, then we have the estimates
a(i, j) <

∑j
n=1 µ

(
I(i, n)

)
< a(i, j + 1). The numbers rk are constructed inductively

by using that the function µ([0, x]∩R) is strictly increasing and continuous on [0, 1].
The sets Ui =

⋃∞
j=1 I(i, j) give the required partition. An alternative reasoning is

this. We find rational numbers r1,n, r1,1 = 0, increasing to a rational number r
and having the property that 2αn/3 ≤ µ

(
(r1,n, r1,n+1)

)
≤ αn. Let us repeat this

procedure for the interval (r, 1) and numbers αn − µ
(
(r1,n, r1,n+1)

)
. We proceed

inductively and take the sets Un =
⋃∞
k=1(rk,n, rk,n+1).

9.12.42.◦ Let X be a complete separable metric space and let µ ≥ 0 be a
finite Borel measure on X without points of positive measure. Show that for every
A ∈ B(X) with µ(A) > 0 and every ε > 0, there exists a set K ⊂ A homeomorphic
to the Cantor set such that µ(A\K) < ε.

Hint: we may assume that µ is a probability measure; there exists a Borel set
B ⊂ X such that µ(X\B) = 0 and (B,µB) is homeomorphic to (R, λ), where R
is the space of irrational numbers in (0, 1) with Lebesgue measure λ. Let h be the
corresponding homeomorphism. The set h(A ∩ B) contains a perfect compact set
C with λ(C) > λ

(
h(A ∩B)

)
− ε. Then h−1(C) is a required set (see also Gelbaum

[674], Oxtoby [1408]). We could also use a Borel isomorphism and Lusin’s theorem.

9.12.43.◦ Let U ⊂ IRn be an open set, Y a Souslin space, µ a Borel probability
measure on Y , and let f : U → Y be a Borel mapping. Prove that there exists a se-
quence of pairwise disjoint open cubes Kj ⊂ U with edges parallel to the coordinate
axes such that µ

(
f(U)

)
= µ

(
f
(⋃∞

j=1Kj

))
.

Hint: take a Borel measure ν on U such that µ|f(U) = ν ◦ f−1 and apply
Exercise 1.12.72.

9.12.44. Let X and Y be metric or Souslin spaces with nonnegative Radon
measures µ and ν and let f : X → Y be a

(
B(X)µ,B(Y )

)
-measurable mapping

having property (N) with respect to the pair (µ, ν). Prove that for ν-a.e. y ∈ Y ,
the set f−1(y) is at most countable.

Hint: let Y denote the class of all Borel sets Y ′ ⊂ Y such that f−1(y) is at
most countable for every y ∈ Y ′. Let α be the supremum of the ν-measures of sets
in Y. There are sets Yn ∈ Y with ν(Yn) → α. Let Y0 =

⋃∞
n=1 Yn. Then Y0 ∈ Y

and ν(Y0) = α. Suppose ν
(
f(X)\Y0

)
> 0. Let X0 := f−1(Y \Y0). Then µ(X0) > 0

because otherwise ν
(
f(X0)

)
= 0 by property (N). According to Proposition 9.1.7

there is a µ-measurable set A1 ⊂ f−1(Y \Y0) such that f(A1) = f(X0) and f is
injective on A1. Then µ(A1) > 0 by property (N). We may take A1 in such a way
that its measure is greater than one half of the supremum of µ-measures of sets with
such a property. Repeating this reasoning, we obtain a finite or countable collection
of disjoint µ-measurable sets An on each of which f is injective and the equality
µ
(
X0\

⋃∞
n=1An

)
= 0 holds. This leads to a contradiction, since f

(
X0\

⋃∞
n=1An

)

has ν-measure zero, and every point in f(X0)\f
(
X0\

⋃∞
n=1An

)
has at most count-

ably many preimages.
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9.12.45. (Federer, Morse [556]) Let µ be a Radon probability measure on a
metric (or Souslin) space X and let f be a µ-measurable function. Let Y (ℵ0) denote
the set of all points y having infinite preimages and let Y (ℵ1) denote the set of all
points y with uncountable preimages.

(i) Prove that there exists a µ-measurable set C ⊂ X such that f(C) = Y (ℵ0)
and the set f−1(y)\C is finite for each y ∈ f(X).

(ii) Prove that for every ε > 0, there exists a µ-measurable set L ⊂ X with
µ(L) < ε such that f(L) = Y (ℵ0) and f is injective on L.

(iii) Prove that there exists a set Z ⊂ X with µ(Z) = 0 such that f(Z) = Y (ℵ1)
and f is injective on Z.

9.12.46.◦ Let X,Y be Souslin spaces with Borel probability measures µ and ν,
respectively, and let f : X → Y be a Borel mapping. Show that f has property (N)
with respect to (µ, ν) precisely when ν

(
f(K)

)
= 0 for every compact set K with

µ(K) = 0.
Hint: let B ∈ B(X), µ(B) = 0, but ν

(
f(B)

)
> 0; by Theorem 7.14.34, there

exists a compact set K ⊂ B with ν
(
f(K)

)
> 0, which is a contradiction.

9.12.47. (i) It is known that the constructability axiom in set theory yields the
existence of a coanalytic set X ⊂ [0, 1] and a continuous function ϕ : X → [0, 1] such
that the set ϕ(X) has inner measure zero and positive outer measure (see Novikov
[1384] and Jech [891]). Let Ω = X ∪ [2, 3] be equipped with the usual topology
and consider on Ω the measure µ that vanishes on X and coincides with Lebesgue
measure on [2, 3]. Let f(x) = ϕ(x) if x ∈ X and f(x) = x if x ∈ [2, 3]. Show that
f(K) has Lebesgue measure zero for every compact set K ⊂ Ω with µ(K) = 0. In
addition, f(X) is nonmeasurable, although X is a closed subset of Ω. In particular,
f has no property (N).

(ii) Assuming the constructability axiom prove that there exists a coanalytic
set X in [0, 1] such that on some countably generated σ-algebra S ⊂ B(X), there is
a probability measure having no countably additive extensions on B(X).

Hint: (i) the sets K ∩X and K ∩ [2, 3] are compact in Ω and one has

λ
(
f(K ∩ [2, 3])

)
= λ

(
K ∩ [2, 3]

)
= µ

(
K ∩ [2, 3]

)
= 0

and λ
(
f(K ∩ X)

)
= λ

(
ϕ(K ∩ X)

)
= 0 by the compactness of ϕ(K) ∩ X and the

equality λ∗
(
ϕ(X)

)
= 0.

(ii) Take a coanalytic set X ⊂ [0, 1] and a continuous function f : X → [0, 1]
such that f(X) has inner measure zero and positive outer measure. Let us consider
the class S =

{
f−1(B), B ∈ B

(
f(X)

)}
. Then S is a countably generated σ-algebra

in B(X). The measure µ on S defined by the formula µ
(
f−1(B)

)
= λ∗(B) is

countably additive, but has no countably additive extensions to B(X). Indeed, we
have µ(X) = λ∗(f(X)

)
> 0 and at the same time µ(K) = 0 for every compact set

K in X because f(K) is compact in f(X) and hence λ
(
f(K)

)
= 0.

9.12.48.◦ Let (X,A, µ) and (Y,B, ν) be probability spaces and f ∈ L1(µ⊗ν).
Show that the image of the measure f · (µ⊗ν) under the natural projection X×Y
to X is given by the density

�(x) =

∫

Y

f(x, y) ν(dy)

with respect to the measure µ.
Hint: express the integral of IA×Y against the measure f · (µ⊗ν) via �.
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9.12.49.◦ Let E be a Souslin subset of [0, 1] that is not Borel. Denote by S
the class of all sets of the form S = B ∪ C, where B and C are Borel sets with
B ⊂ E and C ⊂ [0, 1]\E. Let E be the class of all sets of the form S1 ∪ ([0, 1]\S2),
where S1, S2 ∈ S. Show that E is a σ-algebra and that the formula µ(S) = 0,
µ([0, 1]\S) = 1 if S ∈ S defines a probability measure on E that has no countably
additive extensions to B([0, 1]).

Hint: if µ′ is a Borel extension of µ, then E is measurable with respect to the
Lebesgue completion of µ′ and µ′(E) = 0, since for every compact set K ⊂ E we
have µ(K) = 0 because K ∈ S. Similarly, µ′([0, 1]\E) = 0, whence µ([0, 1]) = 0,
a contradiction.

9.12.50. (Steinhaus [1784]) For every point ξ ∈ (0, 1), let us consider its
binary expansion 0, ξ1, ξ2, . . .. Let the mapping θ : (0, 1) → (0, 1)∞ be defined by
the formula θ : ξ �→ (θn),

θ1 = 0, ξ1, ξ3, ξ6, ξ10, . . . , θ2 = 0, ξ2, ξ5, ξ9, ξ14, . . . , θ3 = 0, ξ4, ξ8, ξ13, ξ19

and so on. In other words, to the point θ with θn = 0, θn1, θn2, . . . we map the point
ξ = 0, θ11, θ21, θ12, θ31, . . . Show that the image of Lebesgue measure λ is λ∞.

9.12.51. Let µ be the measure on X = {0, 1}∞ that is the countable power of
the measure on {0, 1} assigning 1/2 to {0} and {1}. Prove that every measurable
set of positive µ-measure contains a pair of points that differ only in one coordinate.

Hint: use an isomorphism with Lebesgue measure defined by the mapping
(xn) �→

∑∞
n=1 xn2−n and the fact that every set of positive measure in [0, 1] contains

points with difference as small as we like.

9.12.52.◦ Let µ be an atomless perfect probability measure on a measurable
space (X,A). Prove that X contains a measure zero set of cardinality of the con-
tinuum.

Hint: there is a measurable function f : X → [0, 1] such that µ◦f−1 is Lebesgue
measure. The set f(X) contains a Borel set of measure 1 and this set contains a
Borel set E of measure zero and cardinality of the continuum. Then the cardinality
of f−1(E) is not less than that of the continuum.

9.12.53.◦ Let µ be an atomless Radon probability measure on a compact
space K. Prove that there exists a set E ⊂ K that does not belong to the Lebesgue
completion of B(K) with respect to µ.

Hint: take a continuous function f : K → [0, 1] transforming µ into Lebesgue
measure and a set A ⊂ [0, 1] with λ∗(A) = λ∗([0, 1]\A) = 0. Then at least one of
the sets B = f−1(A) and C = f−1([0, 1]\A) is not measurable with respect to µ,
since both have zero inner measure: for example, if S ⊂ B is compact and µ(S) > 0,
then f(S) is a compact set in A and λ

(
f(S)

)
> 0.

9.12.54. (i) (Herz [821]) Let X and Y be locally compact spaces and let
f : X → Y be a continuous mapping. Prove that for every Radon measure ν on Y ,
one can find Radon measures µ and ν′ on X and Y , respectively, such that

ν = µ ◦ f−1 + ν′, ‖ν‖ = ‖µ‖ + ‖ν′‖,
and ν′

(
f(K)

)
= 0 for every compact set K ⊂ X.

(ii) Let X and Y be Souslin spaces and let f : X → Y be a Borel mapping.
Show that for every Borel measure ν on Y , one can find a Borel measure µ on X
and a Borel measure ν′ on Y such that ν = µ ◦ f−1 + ν′ and |ν′|

(
Y \f(X)

)
= 0.
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Hint: (ii) take ν′ = ν|Y \f(X) and find µ such that µ ◦ f−1 = ν|f(X).

9.12.55. Let G be a compact group with the Haar probability measure λ and
let (X,µ) be a measure space such that G acts on X, i.e., we are given a λ⊗µ-
measurable mapping (G, x) �→ G(x) determining a homomorphism of G to the group
of transformations of X. Let f be a µ-integrable function on X such that for every
G ∈ G, the functions f and f ◦ G are equal almost everywhere. Prove that there
exists a function f0 that is equal to f almost everywhere and is invariant with respect
to all transformations G ∈ G.

Hint: consider the function

f0(x) =

∫

G
f
(
G(x)

)
λ(dG).

9.12.56.◦ Prove that the standard surface measure on the sphere in IRn is a
unique, up to a constant factor, spherically invariant finite measure on the sphere.

Hint: the unitary group acts transitively on the sphere.

9.12.57. (Beck, Corson, Simon [140]) Let G be a locally compact group with
a Haar measure λ, A,B ⊂ G, λ∗(A) > 0, λ∗(B) > 0, where A is measurable. Prove
that A−B := {ab−1 : a ∈ A, b ∈ B} contains a neighborhood of the neutral element.

9.12.58. (Reiter [1547]) A locally compact group G is called amenable if on
the space B of all bounded Borel functions on G, there exists a linear functional Λ
(called an invariant mean) satisfying the conditions Λ(1) = 1, Λ(f) ≥ 0 if f ≥ 0 and
Λ
(
f(g∗·)

)
= Λ(f) for all g ∈ G and f ∈ B, where f(g∗·) denotes the function f(gx).

In the case of a compact group, the integral with respect to the probability Haar
measure can be taken for Λ. The noncompact group IR1 is amenable. Prove that a
locally compact group G is amenable precisely when for every function f ∈ L1(λ),
where λ is a left invariant Haar measure, one has

∣
∣∣
∣

∫

G

f(x)λ(dx)

∣
∣∣
∣ = inf

∫

G

∣∣
∣
n∑

i=1

αif(xi ∗ x)
∣∣
∣ λ(dx),

where inf is taken over all n ∈ IN, xi ∈ G and αi ≥ 0 with α1 + · · · + αn = 1.
Hint: see Greenleaf [733, �3.7], Reiter [1547].

9.12.59. Suppose that the mappings UFt satisfy (9.10.5) and that F (x) = G(x)
µ-a.e. Show that (UFt )t∈IR1 satisfies equation (9.10.5) with G in place of F .

9.12.60. Construct a Radon probability measure µ on a compact space X
such that the space (X,µ) is isomorphic mod0 to the interval [0, 1] with Lebesgue
measure λ, but is not almost homeomorphic to ([0, 1], λ).

Hint: take a nonmetrizable countable subspace S = {sn} in some compact
space K with the property that {sn} contains no sequences convergent in K. For
example, let K = βIN (the Stone–Čech compactification of IN), S = IN∪{n0}, where
n0 is a point in βIN\IN. Let X = K×[0, 1], ν =

∑∞
n=1 2−nδsn and µ = ν⊗λ. Then

one can construct a Borel isomorphism between S×[0, 1] and [0, 1] transforming µ
into λ. However, there is no almost homeomorphism between (X,µ) and ([0, 1], λ).
Indeed, if we had homeomorphic sets A ⊂ X and B ⊂ [0, 1] with unit measures,
then for every n ≥ 0, we could find a set En ⊂ [0, 1] of Lebesgue measure 1 with
(sn, x) ∈ A for all x ∈ En. Let us fix a point x0 ∈ E0. Then one can choose points
xn ∈ En such that xn → x0 as n→ ∞. The set M = {(sn, xn)} is metrizable. One
can verify that M is homeomorphic to S, which leads to a contradiction.
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9.12.61. (Babiker, Knowles [87]) Construct an atomless Radon probability
measure µ on a compact space X, a continuous mapping ϕ : X → [0, 1] and an
open set G ⊂ X with the following properties: (i) µ ◦ ϕ−1 is Lebesgue measure λ
on [0, 1], (ii) ϕ(G) is not Lebesgue measurable, (iii) the measure algebras generated
by µ and λ are isomorphic, but the measures µ and λ are not almost homeomorphic,
(iv) there exists a λ-measurable mapping ψ : [0, 1] → X with ϕ

(
ψ(t)

)
= t for all

t ∈ [0, 1], but there is no almost continuous (in the sense of Lusin) mapping ψ with
such a property. To this end, use Example 9.12.12.

9.12.62. Let X be a complete separable metric space and let f : X → IR1.
Prove that the following conditions are equivalent:

(i) for every continuous mapping g : IR1 → X, the composition f ◦g : IR1 → IR1

is Lebesgue measurable,
(ii) the function f is measurable with respect to every Borel measure on X.
Hint: let (i) be fulfilled and let µ be a Borel measure on X; it suffices to consider

the case where µ is a probability atomless measure. By Theorem 9.6.3, there exist
Borel sets Y ⊂ X and B ⊂ [0, 1] with µ(Y ) = 1, λ(B) = 1, where λ is Lebesgue
measure, and a homeomorphism h : B → Y with µ = λ ◦h−1. Given ε > 0, one can
find a compact set K ⊂ B with λ(K) > 1 − ε. Let us extend h|K to a continuous
mapping g : [0, 1] → X and choose in K a compact set Q with λ(Q) > 1 − ε on
which the function ψ = f ◦ g is continuous. We observe that f is continuous on the
compact set g(Q), since g(Q) = h(Q) ⊂ Y and f(x) = ψ

(
h−1(x)

)
for all x ∈ Y . In

addition, µ
(
h(Q)

)
= λ(Q) > 1− ε. If (ii) is fulfilled and the mapping g : [0, 1] → X

is continuous, then f is measurable with respect to the measure µ = λ ◦ g−1, which
yields the Lebesgue measurability of f ◦ g.

9.12.63. Let X = [0, 1]∞. Given n ∈ IN and t ∈ [0, 1], we denote by Xn,t the
closed set in [0, 1]∞ consisting of all points whose nth coordinate equals t. Then
Xt :=

⋃∞
n=1Xn,t is a Borel set for every t. This set generates the finite σ-algebra

Xt = {∅, X,Xt, X\Xt}. Let us define the probability measure µt on Xt by the
equalities µt(Xt) = 1, µt(X\Xt) = 0. Denote by X the σ-algebra generated by
all Xt, where t ∈ [0, 1].

(i) Show that there exists a unique measure µ on X that coincides with µt on
Xt for each t and assumes only two values 0 and 1, hence is separable (Eµ contains
only two classes, corresponding to ∅ and X).

(ii) Verify that µ has no countably additive extensions to B(X).
Hint: (i) it suffices to show that there is a countably additive measure µ on

the algebra A0 generated by all Xt with µ(Xt) = 1. This follows by Theorem
10.10.4, but a straightforward verification is possible. Any set in A0 has the form
A =

⋃n
i=1Ai, where every Ai is the intersection

⋂m
j=1 Yj with Yj being one of the

sets Xt or X\Xt. Let µ(A) = 1 if at least for one of Ai among Yj there are no
complements of the sets Xt, otherwise let µ(A) = 0. Let us verify the countable
additivity of µ. If {ti} is a finite or countable set of distinct numbers and sets
Yti ∈ Xti are nonempty, then

⋂∞
i=1 Yti is nonempty as well. Hence if a set B ∈ A0 is

a finite or countable union of disjoint sets Bj ∈ A0, then at most one of them has a
nonzero measure. (ii) If such an extension µ̃ exists, then µ̃(Xt) = 1 for all t ∈ [0, 1].
For every t, there exist numbers n(t) such that µ̃(Xn(t),t) = µ(Xn(t),t) > 0. The
cardinality arguments show that there exist n0 and an uncountable set T ⊂ [0, 1]
such that n(t) = n0 for all t ∈ T . This gives a contradiction, since Xn0,t∩Xn0,s = ∅

if t �= s.
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9.12.64. (Marczewski [1252]) Let µ be a Borel probability measure on a metric
space (X, d) and let ft, t ≥ 0, be a family of one-to-one measurable transformations
such that µ

(
ft(E)

)
= µ(E) for all measurable sets E and all t. Suppose that f0 is the

identity transformation and for every ε > 0, there is δ > 0 such that d
(
ft(x), x)

)
< ε

whenever t < δ and x ∈ X. Prove that for every measurable set E, there exists
τ > 0 such that E ∩ ft(E) is nonempty for all t ≤ τ .

9.12.65. (Holický, Ponomarev, Zaj́ıček, Zelený [852]) Let n ∈ IN and let X be
a metrizable Souslin space with an atomless Radon probability measure µ. Prove
that there exists a compact set K ⊂ X with µ(K) > 0 that is homeomorphic to the
Cantor set and that can be mapped onto [0, 1]n by means of a continuous mapping
ψ with the following property: λn(A) = 0 precisely when µ

(
ψ−1(A)

)
= 0, where λn

is Lebesgue measure.

9.12.66. Prove that there is no nonzero countably additive σ-finite measure on
B(IR∞) that is invariant with respect to all translations.

Hint: any σ-finite Borel measure on a separable Fréchet space is concentrated
on a proper subspace.

9.12.67. (Baker [95]) Prove that on B(IR∞), there exists a countably additive
measure λ∞ with values in [0,+∞] that is invariant with respect to translations

and λ∞
(∏∞

i=1(ai, bi)
)

=
∏∞
i=1 |bi − ai| for all intervals (ai, bi) with the convergent

product of lengths (the measure λ∞ cannot be σ-finite).

9.12.68. (Kwapień [1094]) Let f be a bounded Lebesgue measurable function
on [0, 1] with the zero integral over [0, 1]. Prove that there exist a one-to-one trans-
formation T : [0, 1] → [0, 1] preserving Lebesgue measure and a bounded measurable
function g on [0, 1] with f = g ◦ T − g a.e.

9.12.69. (Anosov [55]) (i) Let T be a measure-preserving mapping on a prob-
ability space (X,A, µ) and let f ∈ L1(µ). Suppose that there exists a measurable
function g such that g

(
T (x)

)
−g(x) = f(x) a.e. Prove that the integral of f vanishes.

(ii) Prove that for every irrational number α, there exist a continuous function
f and a nonnegative measurable function g on the real line that have a period 1 and
satisfy the equality g(x+ α) − g(x) = f(x) a.e., but g is not integrable over [0, 1].

(iii) Prove that there exists an irrational number α such that in (ii) one can
take for f an analytic function.

9.12.70. (Ryll-Nardzewski [1631], Marczewski [1254]) Suppose (Xi,Si, µi),
i ∈ I, is an arbitrary family of measurable spaces with perfect probability measures.
Let X =

∏
iXi, let πi : X → Xi be the natural projections, and let A be the

algebra generated by all sets π−1
i (Ai), Ai ∈ Si. Suppose that ν is a finitely additive

nonnegative set function on A such that its image under the projection πi coincides
with µi for all i ∈ I. Prove that ν is countably additive and its countably additive
extension to S =

⊗
i Si is a perfect measure. In particular, every product of perfect

probability measures is perfect. Prove an analogous assertion for compact measures.

9.12.71. (Plebanek [1466]) (i) Let (X,A, µ) and (Y,B, ν) be probability spaces
such that at least one of them is perfect. For any E ⊂ X×Y let

η(E) := sup
{
µ(A) + ν(B) : A ∈ A, B ∈ B, (A×B) ∩ E = ∅

}
.

Let D ∈ A⊗B and d ≥ 0. Prove that the following conditions are equivalent:
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(a) for every ε > 0, there exists a probability measure ϕ on A⊗B such that its
projections on X and Y are, respectively, µ and ν, and ϕ(D) ≥ 1 − ε− d;

(b) for every ε > 0, there exists a set L in the minimal lattice of sets that is
closed with respect to countable intersections and contains A×B, such that L ⊂ D
and η(L) ≤ 1 + ε+ d.

(ii) Let X and Y be Hausdorff spaces, let µ be a Radon probability measure
on X, and let ν be a Borel probability measure on Y . Suppose that D ⊂ X×Y is a
closed set and d ≥ 0. Prove that the existence of a Borel probability measure ϕ on
X×Y with the projections µ and ν and ϕ(D) ≥ 1− d is equivalent to the inequality
µ(A) + ν(B) ≤ 1 + d for every Borel rectangle A×B ⊂ (X×Y )\D.

9.12.72. Let (X,A, µ) be a probability space.
(i) Let fn : X → [a, b] be µ-measurable functions, n ∈ IN. Prove that there

exists a strictly increasing sequence of µ-measurable functions nk : X → IN such
that lim

k→∞
fnk(x)(x) = lim sup

n→∞
fn(x) for every x ∈ X.

(ii) Let K be a compact metric space and let fn : X → K be µ-measurable
mappings, n ∈ IN. Prove that there exists a strictly increasing sequence of µ-
measurable functions nk : X → IN such that, for every x ∈ X, the sequence fnk(x)(x)
converges in K.

Hint: (i) the function ϕ(x) = lim sup
n→∞

fn(x) is measurable, hence the inductively

defined functions nk(x) = min
{
n > nk−1(x) : fn(x) ≥ ϕ(x) − k−1

}
are measurable.

Indeed, the set {x : nk(x) = j} consists of the points x such that j > nk−1(x),
fj(x) ≥ ϕ(x) − k−1 and either j − 1 ≤ nk−1(x) or j − 1 > nk−1(x) and fj−1(x) <
ϕ(x) − k−1. (ii) There exist a compact set S ⊂ [0, 1] and a continuous mapping ψ
from S onto K. According to Theorem 6.9.7, there exists a Borel set B ⊂ S that ψ
maps injectively onto K. Let g : K → B be the inverse mapping to ψ|B . Since g is
Borel, one can apply (i) to the functions g◦fn and use that if a sequence g◦fnk(x)(x)
is fundamental in B, then the sequence fnk(x)(x) converges in K.

9.12.73. Let T be a Borel automorphism of a complete separable metric space
E and let C ⊂ E be a nonempty compact set.

(i) (Oxtoby, Ulam [1411]) Let lim sup
n→∞

n−1∑n
k=1 IC(T kp) > 0 for some p ∈ C.

Prove that there exists a Borel probability measure µ on E with µ(C) > 0 that is
invariant with respect to T .

(ii) (Oxtoby, Ulam [1410]) Prove that there is a point p ∈ C such that there
exists lim

n→∞
n−1∑n

k=1 IC(T kp).

Hint: (i) see [1411]; (ii) if for some p ∈ C condition (i) is fulfilled, then the
claim follows by the ergodic theorem (see Chapter 10) applied to the measure µ and
the function IC ; otherwise, for every point p ∈ C, the above limit equals zero, so
that again the claim is true.

9.12.74. (Adamski [9]) Suppose we are given a Hausdorff space X and a con-
tinuous mapping T : X → X. Prove that the following conditions are equivalent:

(i) there exists a Radon probability measure µ invariant with respect to T ,
(ii) there exists a Radon probability measure ν such that for every open set

U ⊂ X, the images of ν with respect to the functions n−1∑n−1
i=0 IU ◦ T i converge

weakly,
(iii) there exist a compact set K ⊂ X and a point x0 ∈ X such that the following

inequality holds: lim sup
n→∞

n−1∑n−1
i=0 IK ◦ T i(x0) > 0.
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9.12.75. (Fremlin, Garling, Haydon [636]) Let X and Y be topological spaces
such that continuous functions separate their points. Let f : X → Y be a continuous

mapping. Set f̂ : Mt(X) → Mt(Y ), µ �→ µ ◦ f−1.

(i) Suppose that for every uniformly tight set M ⊂ f̂
(
Mt(X)

)
, there exists

a uniformly tight set M ′ ⊂ Mt(X) such that f̂(M ′) = M . Show that for every
compact set K ⊂ f(X), there exists a compact set K′ ⊂ X such that f(K′) = K.

(ii) Construct an example where the assertion inverse to (i) is false.

Hint: (i) let D = {δy, y ∈ K}. Then D ⊂ f̂
(
Mt(X)

)
and D is uniformly

tight. Let C ⊂ Mt(X) be uniformly tight and f̂(C) = D. Let us take a compact
set K0 ⊂ X such that |µ|(X\K0) ≤ 1/2 for all µ ∈ C. Let K′ := K0 ∩ f−1(K). If

y ∈ K, then there is µ ∈ C with f̂(µ) = δy. Then µ
(
f−1(y)

)
= 1. Hence f−1(y) is

not contained in X\K0, i.e., there exists x ∈ K0 with f(x) = y. Thus, K ⊂ f(K′),
whence f(K′) = K. (ii) Let X = IN, Y = β IN, f(n) = n.

9.12.76. Prove the uniqueness assertion in Theorem 9.12.2.
Hint: see Fremlin, Garling, Haydon [636, Theorem 12].

9.12.77. (i) Let (X,M, µ) be a Lebesgue–Rohlin space with a probability mea-
sure µ and let f be a finite measurable function. Prove that there exists a measur-
able mapping h : M → M that is one-to-one on a set of full measure such that the
function f ◦ h is integrable.

(ii) Suppose that in (i) the measurable space is the unit cube with Lebesgue
measure. Show that for h one can take some homeomorphism.

Hint: (i) the probability measure ν := c(1+|f |)−1 ·µ, where c is a normalization
constant, is equivalent to the measure µ and f ∈ L1(ν). There exists an isomorphism
h of the spaces (X,M, µ) and (X,M, ν). It remains to observe that the integral of
|f | ◦ h with respect to the measure µ equals the integral of |f | with respect to the
measure µ ◦ h−1 = ν. (ii) The existence of a homeomorphism h in the case of the
cube with Lebesgue measure follows by Theorem 9.6.5.

9.12.78. Let µ be a Haar measure on a locally compact group G. Show that
L2(µ) has an orthonormal basis consisting of continuous functions.

Hint: see Fremlin [635, �444X(n)].

9.12.79. Show that on the set {(x, y) : x < y} in the square [0, 1]2, there is no
Borel measure whose projections to the sides are Lebesgue measures.

Hint: for any α ∈ (0, 1), the triangle y < α, x < y must have measure α
with respect to such a measure, and the triangle y > α, α < x < y must have
measure 1 − α, which for the rectangle x < α, y > α leaves only measure zero.

9.12.80. Let E be a nowhere dense Souslin set in a closed cube K in IRn.
Prove that there exists a homeomorphism h : K → K such that h(E) has measure
zero. In particular, any nowhere dense compact set is homeomorphic to a compact
set of Lebesgue measure zero.

Hint: take the measure µ : B �→ λ(B\E)/λ(K\E) on K and apply Theo-
rem 9.6.5.

9.12.81. (A.V. Korolev) Let Λk denote the set of the images of Lebesgue
measure under k times continuously differentiable mappings from [0, 1] to [0, 1],
k ∈ IN ∪ {∞}. Show that all the classes Λk are distinct.

Hint: show that for every measure µ ∈ Λk, every interval contains a subinterval
on which µ has a k − 1 times continuously differentiable density.
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9.12.82. (Ochakovskaya [1389]) Show that there is a one-to-one transforma-
tion Φ ∈ C∞(IRn, IRn) with a positive Jacobian such that, for every ball B1(y) of
unit radius one has λn

(
Φ
(
B1(y)

))
= λn

(
B1(y)

)
, but Φ does not preserve Lebesgue

measure.

9.12.83. (Burkholder [289]) Let µ be an atomless probability measure and let
f be a µ-measurable function. Show that there is a µ-measurable function g with
values in [0, 1] such that the measure µ ◦ (f + g)−1 has no atoms.

Hint: the measure µ ◦ f−1 has at most countably many atoms dn; for every n,
there is a µ-measurable function gn on En := f−1(dn) that transforms the measure
µ(En)−1µ|En into Lebesgue measure on [0, 1]. Let g(x) = gn(x) if x ∈ En and
g(x) = 0 if x �∈

⋃∞
n=1 En. It is readily seen that µ

(
(f + g)−1(c)

)
= 0 for all c ∈ IR1.

9.12.84. (Blackwell [179]) Prove the following extension of Lyapunov’s theo-
rem: if µ1, . . . , µn are atomless measures on a measurable space (X,A), E ⊂ IRn,
then the set of all vectors of the form (v1, . . . , vn), where

vi =

∫

X

ai dµ, ai ∈ L1(µi), (a1, . . . , an) : X → E,

is convex. Lyapunov’s theorem corresponds to the set E consisting of the two points
(0, . . . , 0) and (1, . . . , 1).

9.12.85. Let µ be an atomless Borel probability measure on a separable metric
space X. Show that there exists a sequence of sets Xn ⊂ X such that Xn+1 ⊂ Xn,
µ∗(Xn) = 1,

⋂∞
n=1Xn = ∅.

Hint: by means of an isomorphism reduce the assertion to the case of Lebesgue
measure restricted to a subset of (0, 1) and use the method from Exercise 1.12.58.

9.12.86. (i) Let µ be a probability measure on a σ-algebra A and let E be
a family of sets from A with the following property: for every set A ∈ A with
µ(A) > 0, there is a set E ∈ E with E ⊂ A and µ(E) > 0. Show that for every set
A ∈ A with µ(A) > 0, there is an at most countable family of pairwise disjoint sets
En ∈ E with En ⊂ A and µ

(⋃∞
n=1 En

)
= µ(A).

(ii) Let (X,A, µ) and (Y,B, ν) be probability spaces. Suppose a mapping
f : X → Y has the following property: for every set B ∈ B with ν(B) > 0, there
is a set E ∈ B such that E ⊂ B, ν(E) > 0, f−1(E) ∈ Aµ and µ

(
f−1(E)

)
≥ ν(E).

Prove that f is (Aµ,B)-measurable and µ ◦ f−1 = ν.
Hint: (i) take a maximal (in the sense of inclusion) family of sets from E that

have positive measures and are contained in A. (ii) Consider the class of sets

E =
{
E ∈ B : f−1(E) ∈ Aµ, µ

(
f−1(E)

)
≥ ν(E)

}
.

By (i), for every B ∈ B, there is E ∈ E with E ⊂ B and ν(E) = ν(B). Observe
that ν(E) = µ

(
f−1(E)

)
if E ∈ E . Indeed, one can find D ∈ E with D ⊂ Y \E and

ν(D) = 1 − ν(E), whence it follows that

ν(E) + ν(D) ≤ µ
(
f−1(E)

)
+ µ

(
f−1(D)

)
≤ 1 = ν(E) + ν(D),

which is only possible if ν(E) = µ
(
f−1(E)

)
. It follows that E is closed under

complementation. Hence there is E′ ∈ E with Y \B ⊂ E′ and ν(E′) = 1 − ν(B),
which yields B ∈ E .
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Conditional measures and conditional
expectations

Then look round and see that none
of the uninitiated are listening. They
are the ones who think nothing else ex-
ists except what they can grasp firmly
in their hands, and do not allow actions,
processes, or any thing that is not visible
to have any share in being.

Plato. Theaetetus.

10.1. Conditional expectations

Let (Ω,A, µ) be a measure space and let B be a sub-σ-algebra in A.

10.1.1. Definition. Let f ∈ L1(µ). A conditional expectation of f with
respect to the σ-algebra B and the measure µ is a B-measurable µ-integrable
function IEB

µf such that
∫

Ω

gf dµ =
∫

Ω

gIEB
µf dµ (10.1.1)

for every bounded B-measurable function g.

A conditional expectation of an individual integrable function f is defined
as the conditional expectation of the corresponding class in L1(µ).

We note that if a B-measurable function ψ equals IEB
µf a.e., then it is

a conditional expectation of f , too; however, among functions equivalent to
IEB
µf , there are functions that are not B-measurable. This requires certain

additional precautions in the usual identifications of individual functions and
their equivalence classes. Clearly, if we define the conditional expectation as
an equivalence class of B-measurable functions, then it is unique. In what
follows, we shall not always distinguish individual functions serving as a con-
ditional expectation from their equivalence class of B-measurable functions.

The defining equality (10.1.1) is equivalent to the following relationship
obtained by the substitution g = IB :

∫

B

f dµ =
∫

B

IEB
µf dµ, ∀B ∈ B. (10.1.2)

The equivalence of the two relationships follows from the fact that every
bounded B-measurable function is the uniform limit of simple B-measurable
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functions. Clearly, one has
∫

Ω

f dµ =
∫

Ω

IEB
µf dµ.

If B = {∅,Ω}, then IEBf coincides with the integral of f over Ω. If µ is
a probability measure, the integral of f over the whole space Ω is denoted
sometimes by IEf and is called the expectation of f . This tradition from
probability theory explains the above notation and terminology.

In the case where only one measure µ is given, for simplification of no-
tation and terminology, in place of IEB

µ one uses the symbol IEB and in the
corresponding term the indication of the measure is omitted: IEBf is called the
conditional expectation of f with respect to B. In the probabilistic literature
one frequently uses the notation IE(f |B). If ξ is an integrable function on a
probability space and B is generated by a measurable function (or mapping) η,
then one uses the notation IE(ξ|η), i.e., IE(ξ|η) = IEσ(η)ξ.

10.1.2. Example. Let µ be a probability measure and let Ω be parti-
tioned into finitely or countably many pairwise disjoint measurable sets Bi
with µ(Bi) > 0. Denote by B the σ-algebra generated by the sets Bi. Then
one has

IEBf(ω) =
∞∑

i=1

∫

Bi

f dµ
IBi(ω)
µ(Bi)

.

Proof. It is clear that the above series defines an integrable B-measu-
rable function. It is easily seen that the B-measurable functions are exactly
the functions that are constant on the sets Bi. Hence it suffices to verify that
both sides of the equality to be proven have equal integrals after multiplication
by IBi . The integral of IBiIE

Bf by definition equals the integral of f over the
set Bi, which obviously coincides with the integral of the right-hand side
multiplied by IBi , since Bi ∩Bj = ∅ if j �= i. �

10.1.3. Example. Let µn be Borel probability measures on the real line,
let Ω = IR∞, and let µ =

⊗∞
n=1 µn. Let Bn be the σ-algebra generated by

the first n coordinate functions. Then

IEBnf(x1, . . . , xn) =
∫
f(x1, . . . , xn, xn+1, . . .)

∞⊗

k=n+1

µk
(
d(xn+1, xn+2, . . .)

)
,

where the integration is taken over the product of real lines corresponding to
the variables xk with k ≥ n+ 1.

Proof. Suppose that g is a bounded Borel function of x1, . . . , xn. By
Fubini’s theorem the integral of the right-hand side of the equality to be
proven multiplied by g equals the integral of fg. �

10.1.4. Example. Let us consider Lebesgue measure λ on [0, 1) and let
Tk(x) = (x+ 2−k)mod(1), k ∈ IN, x ∈ [0, 1). Let

Bk :=
{
B ∈ B

(
[0, 1)

)
: Tk(B) = B

}
.
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Then a Borel function f is measurable with respect to Bk if and only if the
equality f = f ◦ Tk holds. In addition, one has

IEBkf = 2−k
2k−1∑

j=0

f ◦ T jk , ∀ f ∈ L1[0, 1). (10.1.3)

Proof. The first claim is true because it is true for indicators of sets.
Denote by g the function on the right-hand side of (10.1.3). It is clear that
g ◦ Tk = g and hence g is measurable with respect to Bk. Since

∫ 1

0

ψ dx =
∫ 1

0

ψ ◦ Tk dx

for all ψ ∈ L1[0, 1), given B ∈ Bk, in view of the equality IB ◦ Tk = IB we
have

∫

B

g(x) dx = 2−k
2k−1∑

j=0

∫ 1

0

IB(x)f
(
T jk (x)

)
dx

= 2−k
2k−1∑

j=0

∫ 1

0

IB
(
T jk (x)

)
f
(
T jk (x)

)
dx =

∫ 1

0

IB(x)f(x) dx,

which proves the second assertion. �

The existence of conditional expectation and its basic properties are es-
tablished in the next theorem.

10.1.5. Theorem. Suppose that µ is a probability measure. To every
function f ∈ L1(µ), one can associate a B-measurable function IEBf such that

(1) IEB is a conditional expectation of f with respect to B;
(2) IEBf = f µ-a.e. for every B-measurable µ-integrable function f ;
(3) IEBf ≥ 0 µ-a.e. if f ≥ 0 µ-a.e.;
(4) if a sequence of µ-integrable functions fn converges monotonically

decreasing or increasing to a µ-integrable function f , then IEBfn → IEBf
µ-a.e.;

(5) For every p ∈ [1,+∞], the mapping IEB defines a continuous linear
operator with norm 1 on the space Lp(µ). In addition, IEB is the orthogonal
projection of L2(µ) to the closed linear subspace generated by B-measurable
functions.

Proof. It is clear that the restriction of the measure f ·µ to B is a measure
absolutely continuous with respect to the restriction of µ to B. By the Radon–
Nikodym theorem, there exists a B-measurable µ-integrable function IEBf
such that one has (10.1.2). We show that this function possesses the required
properties. It is clear that IEBf depends only on the equivalence class of f .
The mapping IEB defines a linear operator with values in L1(µ), i.e., one has
IEB(f +g) = IEBf +IEBg and IEB(cf) = cIEBf µ-a.e. for all f, g ∈ L1(µ) and
c ∈ IR1. This follows by the fact that the Radon–Nikodym density is defined
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uniquely up to equivalence. Substituting in (10.1.1) the function g = sign IEBf
(this function is B-measurable), we conclude that the norm of the operator IEB

on L1(µ) does not exceed 1. In fact, it equals 1, since IEB1 = 1. Properties (2)
and (3) are obvious. If a sequence of functions fn ∈ L1(µ) is increasing to a
function f ∈ L1(µ), then by Property (3) the sequence of functions gn = IEBfn
is a.e. increasing. The function g = lim

n→∞
gn is B-measurable and µ-integrable

by Fatou’s theorem. It is clear by (10.1.2) and the dominated convergence
theorem that g can be taken for IEBf . Property (5) follows by the established
properties, but it can be verified directly. To this end, it suffices to observe
that ‖IEBf‖Lp(µ) coincides with the supremum of the quantities

∫

Ω

ψIEBf dµ =
∫

Ω

ψf dµ

over all B-measurable functions ψ such that ‖ψ‖Lq(µ) = 1 and q−1 + p−1 = 1.
It remains to apply Hölder’s inequality. Finally, if p = 2, then f − IEBf ⊥ h
for every B-measurable function h ∈ L2(µ). If the function h is bounded, this
follows by (10.1.1), and in the general case this is obtained in the limit. �

The established theorem remains valid for σ-finite measures: see Exer-
cise 3.10.31(ii) in Chapter 3. In the case p < ∞ it extends to arbitrary infi-
nite measures, since every function f ∈ Lp(µ) is concentrated on a set with a
σ-finite measure. Finally, in the obvious way IEB extends to complex-valued
functions.

10.1.6. Corollary. Suppose that µ is a nonnegative measure with values
in [0,+∞]. Then, for every p ∈ [1,+∞), there exists a bounded operator
IEB : Lp(µ) → Lp(µ) that possesses properties (1)–(4) on L1(µ) ∩ Lp(µ).

It can be observed from the proof that the constructed mapping IEB may
not be pointwise linear, i.e., it is not claimed that

IEB(f + g)(ω) = IEB(f)(ω) + IEB(g)(ω) for all f, g ∈ L1(µ) and ω ∈ Ω.

The problem of the existence of versions with pointwise preservation of linear
relationships is discussed in �10.4, where we study the so-called regular con-
ditional measures, by means of which one can effectively define conditional
expectations.

Let us establish some other useful properties of conditional expectations.
For simplification of formulations we shall extend the conditional expectation
to those non-integrable functions f for which one of the functions f+ or f− is
integrable. In this case we let IEB

µf = IEB
µf

+ − IEB
µf

−, where for any nonneg-
ative measurable function ϕ : Ω → [0,+∞], the conditional expectation IEB

µϕ

is defined as IEB
µϕ := lim

n→∞
IEB
µ min(ϕ, n). One can also use Exercise 3.10.31

in Chapter 3, but it should be noted that even for a finite function ϕ, the
restriction of the σ-finite measure ν := ϕI{ϕ<∞} · µ to B need not be σ-finite
(see Exercise 1.12.80 in Chapter 1).
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10.1.7. Proposition. Suppose that B is a sub-σ-algebra in A and that
fn ∈ L1(µ), n ∈ IN. Then:

(i) if fn → f and |fn| ≤ F µ-a.e., where F ∈ L1(µ), then

IEB
µf = lim

n→∞
IEB
µfn µ-a.e.;

(ii) if fn ≤ F µ-a.e., where F ∈ L1(µ), then

lim sup
n

IEB
µfn ≤ IEB

µ lim sup
n

fn µ-a.e.;

(iii) if fn ≥ G µ-a.e., where G ∈ L1(µ), then

IEB
µ lim inf

n
fn ≤ lim inf

n
IEB
µfn µ-a.e.

Proof. (i) Set hn = supk≥n |fk − f |. Then the sequence hn decreases
a.e. to zero. The sequence IEBhn decreases a.e., hence h := lim

n→∞
IEBhn exists

a.e. By the already-known properties of the conditional expectation one has

|IEBfn − IEBf | = |IEB(fn − f)| ≤ IEB|fn − f | ≤ IEBhn a.e.

Hence it suffices to verify that h = 0 a.e. It remains to observe that the
integral of the nonnegative function h equals zero, since for all n we have

∫

Ω

h dµ ≤
∫

Ω

IEBhn dµ =
∫

Ω

hn dµ,

and the right-hand side of this relationship tends to zero by the dominated
convergence theorem, which is applicable by the estimate 0 ≤ hn ≤ 2F .

(ii) Set f = lim
n→∞

supk≥n fk. The functions supk≥n fk are decreasing to f

and majorized by F . If f is integrable, then by (i) we have a.e.

IEBf = lim
n→∞

IEB sup
k≥n

fk = lim sup
n→∞

IEB sup
k≥n

fk ≥ lim sup
n→∞

IEBfn.

In the general case, we have to justify the first equality in the above relation-
ship, i.e., to show that if integrable functions gn are decreasing to a function
g and gn ≤ F , then IEBgn → IEBg a.e. Note that IEBgn+1 ≤ IEBgn a.e. Hence
ζ := lim

n→∞
IEBgn exists a.e. Since ζ ≤ IEBF and IEBg ≤ IEBgn ≤ IEBF a.e.,

for every B ∈ B such that ζIB ∈ L1(µ), we have
∫

B

ζ dµ = lim
n→∞

∫

B

gn dµ =
∫

B

g dµ.

It is easy to see that this equality remains valid in the case where the integral
of ζIB equals −∞. Therefore, ζ = IEBg a.e. Finally, (iii) follows by (ii). �

Note the following simple property of the conditional expectation: if B1

is a sub-σ-algebra in B, then

IEB1IEBf = IEB1f = IEBIEB1f. (10.1.4)

Indeed, for every bounded B1-measurable function g we have
∫

Ω

gIEB1IEBf dµ =
∫

Ω

gIEBf dµ =
∫

Ω

gf dµ,



344 Chapter 10. Conditional measures and conditional expectations

since g is B-measurable. The second equality in (10.1.4) follows by Prop-
erty (2) in Theorem 10.1.5.

10.1.8. Proposition. Let (X,A, µ) be a probability space, let B ⊂ A be
a sub-σ-algebra, and let a function f be measurable with respect to B. Suppose
that g ∈ L1(µ) and fg ∈ L1(µ). Then we have IEB(fg) = fIEBg a.e.

Proof. If f is bounded, then this equality is obvious from the definition.
In the general case, we consider the functions fI{|f |≤n} convergent a.e. to f
and majorized by |f |, and apply assertion (i) of the previous proposition. �

Let us extend Jensen’s inequality to the conditional expectation.

10.1.9. Proposition. Let µ be a probability measure, let f be a µ-
integrable function, and let V be a convex function defined on an interval
(a, b) (possibly unbounded) such that f takes values in (a, b) and the function
V ◦ f is µ-integrable. Then V (IEBf) ≤ IEB(V ◦ f) µ-a.e.

Proof. Suppose first that f =
∑n
i=1 ciIAi , where

∑n
i=1 IAi = 1. Then

we have
∑n
i=1 IEBIAi = 1 a.e. Therefore,

V
( n∑

i=1

ciIEBIAi

)
≤

n∑

i=1

V (ci)IEBIAi a.e.

The left-hand side of this inequality coincides with V (IEBf) and the right-
hand side equals IEB(V ◦f). Let us consider the general case. If f is bounded
and takes values in an interval [c, d] ⊂ (a, b), then f is uniformly approximated
by simple functions with values in [c, d], which yields the required inequality
in view of the above-considered case and the continuity of V on (a, b). If
f is unbounded, then we set fn = f if |f | ≤ n, fn = n if f ≥ n, and
fn = −n if f ≤ −n. We may assume that (a, b) contains the origin. Then the
functions V ◦ fn are defined. For fn the claim is already proven and one has
IEBfn → IEBf almost everywhere, whence we obtain V (IEBfn) → V (IEBf)
almost everywhere. Finally, IEB(V ◦fn) → IEB(V ◦f) almost everywhere, since
V (fn) → V (f) almost everywhere and in L1(µ). The latter follows by the fact
that the functions V (fn) have an integrable majorant |V (f)| + |V (f1)| + C,
where C = 0 if infs V (s) = −∞ and C = | infs V (s)| otherwise. �

If a function f ∈ L1(µ) is fixed, then varying sub-σ-algebras of the main
σ-algebra A we obtain a uniformly integrable family of functions.

10.1.10. Example. Let (X,A, µ) be a probability space and let Aα ⊂ A
be some family of sub-σ-algebras in A, where α ∈ Λ. Then {IEAαf}α∈Λ is a
uniformly integrable family.

Proof. Since IEAαf ≤ IEAα |f |, one can assume that f ≥ 0. We apply
the criterion of de la Vallée Poussin (Theorem 4.5.9). Let us take a nonneg-
ative increasing convex function G on [0,+∞) with lim

t→∞
G(t)/t = +∞ and
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G ◦ |f | ∈ L1(µ). By Jensen’s inequality for conditional expectation we have
∫

X

G ◦ IEAαf dµ ≤
∫

X

G ◦ f dµ,

which by the cited theorem yields the uniform integrability of our family of
functions. �

In the case f = IA, where A ∈ A, the conditional expectation IEBf is
denoted by µB(A) or µ(A|B) and is called the conditional measure (conditional
probability in the case of probability measures) of A with respect to B. In
the case when B is the σ-algebra generated by a measurable function ξ, the
notation µ(A|ξ) is also used. If ξ assumes only finitely or countably many
values xj on sets of positive measure, then one can express µ(A|ξ) by means
of the numbers

µ(A|ξ = xi) =
µ
(
A ∩ {ξ = xi}

)

µ
(
{ξ = xi}

)

according to Example 10.1.2. In general, one can only say that for every
A ∈ A, there exists a Borel function ζA such that µ(A|ξ)(x) = ζA

(
ξ(x)

)
.

Then one can set µ(A|ξ = x) := ζA(x). The latter expression is referred to
as “the measure of A under conditioning ξ = x”. But it is not even claimed
that for a fixed point x the conditional measure is indeed a measure in A
(this may be false). Below we return to the question of when such a property
can be achieved. In addition, we shall clarify a simple geometric meaning of
conditional measures and conditional expectations.

In the case where B is generated by a mapping to IRn, the conditional
expectation can be evaluated by using the results on differentiation of mea-
sures obtained in �5.8(iii). Suppose that on a probability space (Ω,A, P ) we
are given an integrable random variable ξ and a random vector η with values
in IRn. Let B(x, r) denote the open ball with the center x and radius r. Then

IE(ξ|η) := IEσ(η)ξ = f(η),

where the function f on IRn is defined by the formula

f(x) = lim
r→0

1
P
(
η ∈ B(x, r)

)
∫

{η∈B(x,r)}
ξ dP

if this limit exists and f(x) = 0 if there is no finite limit. In particular, for
every B ∈ B(IR1) we have

P (ξ ∈ B|η) = f(η), f(x) = lim
r→0

P
(
ξ ∈ B, η ∈ B(x, r)

)

P
(
η ∈ B(x, r)

) .

Indeed, let µ be the image of the measure P under the mapping η and let ν
be the image of the measure ξ ·P . Since ν � µ, the Radon–Nikodym density
dν/dµ equals

f(y) = lim
r→0

µ
(
B(y, r)

)

ν
(
B(y, r)

)
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for µ-a.e. y (see Theorem 5.8.8), which by the change of variable formula
coincides with the above expression. For every function of the form ψ(η),
where ψ is a bounded Borel function on IRn, we have

IE[ξψ(η)] =
∫

IRn
ψ dν =

∫

IRn
ψf dµ = IE[ψ(η)f(η)],

which proves our claim.

10.2. Convergence of conditional expectations

The following theorem on convergence of conditional expectations with
respect to an increasing family of σ-algebras is very important for applications.
Most often one encounters increasing countable sequences of σ-algebras, but
sometimes one has to deal with nets, so we prove this theorem in greater
generality.

10.2.1. Theorem. Let (X,A, µ) be a probability space. Suppose we are
given an increasing net of sub-σ-algebras Bα ⊂ A. Denote by B∞ the σ-algebra
generated by all Bα. Then, for every p ∈ [1,+∞) and every f ∈ Lp(µ), the
net IEBαf converges in Lp(µ) to IEB∞f .

Proof. We may assume that A = B∞, since by the inclusion Bα ⊂ B∞
one has

IEBαf = IEBαIEB∞f.

Let f = IB , B ∈ B∞. Given ε > 0, there exists a set C with µ(B � C) < ε
belonging to one of the σ-algebras Bα (since such a set exists in the algebra
generated by all Bα, and every set in this algebra is contained in one of the
σ-algebras Bα due to the fact that they form a directed family). Let g = IC .
Then IEBαg = g for all α greater than some α0 such that C ∈ Bα0 . Therefore,

f − IEBαf = f − g + IEBα(g − f).

The estimate

‖IEBαf − IEBαg‖Lp(µ) ≤ ‖f − g‖Lp(µ) ≤ ε1/p

shows that our claim is true for indicators. Therefore, it is true for all simple
functions. Since simple functions are dense in Lp(µ), the general case follows
by the fact that the operator IEBα on Lp(µ) has the unit norm. �

In the case of a countable sequence of σ-algebras, in addition to con-
vergence in the mean one has almost everywhere convergence. The proof of
this important fact is less elementary and is based on the following Doob
inequality, which has a considerable independent interest.

10.2.2. Proposition. Let (X,A, µ) be a probability space and let {Bn}
be an increasing sequence of sub-σ-algebras in A. Then, for all f in L1(µ)
and c > 0, one has

µ
(
x : sup

i
|IEBif(x)| > c

)
≤ 1
c

∫

X

|f | dµ. (10.2.1)
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Proof. It suffices to establish (10.2.1) for nonnegative f . Let fi = IEBif ,
E =

{
x : supi fi(x) > c

}
and

Ej =
{
x : f1(x) ≤ c, f2(x) ≤ c, . . . , fj−1(x) ≤ c, fj(x) > c

}
,

where j ∈ IN. It is clear that the sets Ej are measurable and disjoint and
that their union is E. In addition, Ej ∈ Bj , since B1 ⊂ B2 ⊂ · · · ⊂ Bj and
function fi is Bi-measurable. Therefore,
∫

X

f dµ ≥
∫

E

f dµ =
∞∑

j=1

∫

Ej

f dµ =
∞∑

j=1

∫

Ej

fj dµ ≥ c
∞∑

j=1

µ(Ej) = cµ(E),

as required. �

10.2.3. Theorem. Let (X,A, µ) be a probability space, let {Bn} be an
increasing sequence of sub-σ-algebras in A, and let f ∈ L1(µ). Denote by B∞
the σ-algebra generated by all Bn. Then

IEB∞f(x) = lim
n→∞

IEBnf(x) for µ-a.e. x.

Proof. Since IEBnf = IEBnIEB∞f by the inclusion Bn ⊂ B∞, we may
assume that A = B∞ and prove that IEBnf → f a.e. Set

ψ(x) := lim sup
n→∞

|IEBnf(x)− f(x)|.

We show that ψ(x) = 0 a.e. Let ε > 0. For every sufficiently large n, there
exists a Bn-measurable integrable function g such that ‖f − g‖L1(µ) < ε2.

Then on account of the equality IEBmg = g for all m ≥ n, we obtain

ψ(x) ≤ lim sup
n→∞

|IEBn(f − g)(x)|+ lim sup
n→∞

|IEBng(x)− g(x)|+ |f(x)− g(x)|

= lim sup
n→∞

|IEBn(f − g)(x)|+ |f(x)− g(x)|. (10.2.2)

By Doob’s inequality we have

µ
(
x : lim sup

n→∞
|IEBn(f − g)(x)| > ε

)
≤ µ

(
x : sup

n
|IEBn(f − g)(x)| > ε

)

≤ 1
ε
‖f − g‖L1(µ) < ε.

Finally, according to Chebyshev’s inequality

µ
(
x : |f(x)− g(x)| > ε

)
≤ 1
ε
‖f − g‖L1(µ) < ε.

Thus, (10.2.2) yields

µ
(
x : ψ(x) > 2ε

)
≤ µ

(
x : lim sup

n→∞
|IEBn(f − g)(x)| > ε

)

+ µ
(
x : |f(x)− g(x)| > ε

)
≤ 2ε,

whence we conclude that ψ = 0 a.e., since ε is arbitrary. �
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10.2.4. Corollary. Let (Xn,An, µn), n ∈ IN, be probability spaces and
let (X,A, µ) be their product. For every function f ∈ L1(µ) and every n ∈ IN,
let the function fn be defined as follows: fn(x1, . . . , xn) equals the integral

∫

∏∞
k=n+1Xk

f(x1, . . . , xn, xn+1, . . .)
∞⊗

k=n+1

µk
(
d(xn+1, xn+2, . . .)

)
.

Then, the functions fn, regarded as functions on X, converge to f a.e. and
in L1(µ).

In the next section we discuss the results of this section in a broader
context of the theory of martingales.

10.3. Martingales

The theory of martingales is one of many intersection points of measure
theory and probability theory. We present here a number of basic results of
the theory of martingales, but our illustrating examples are typical in the
first place for measure theory: in the books on probability theory the same
results are presented in their more natural environment of random walks,
betting systems, and options. Following the tradition, we denote by IE the
expectation (integral) on a probability space.

10.3.1. Definition. Let (Ω,F , P ) be a probability space. A sequence of
functions ξn ∈ L1(P ), where n = 0, 1, . . ., is called a martingale with respect
to the sequence of σ-algebras Fn with Fn ⊂ Fn+1 ⊂ F if the function ξn is
measurable with respect to Fn and IEFnξn+1 = ξn a.e. for all n ≥ 0.

More generally, if T is a directed set and {Ft}, where t ∈ T , is a family
of σ-algebras in F with Fs ⊂ Ft whenever s < t, then a family of functions
ξt ∈ L1(P ) is called a martingale with respect to {Ft} if for every s the
function ξs is measurable with respect to Fs and for every pair t ≥ s one has
IEFsξt = ξs a.e. (where a measure zero set may depend on t, s).

If a function ξs ∈ L1(P ) is measurable with respect to Fs and for every
pair t ≥ s one has IEFsξt ≥ ξs a.e., then {ξt} is called a submartingale with
respect to {Ft}, and if IEFsξt ≤ ξs a.e., then {ξt} is called a supermartingale
with respect to {Ft}.

If T = {0,−1,−2, . . .}, Fn ⊂ Fn+1, ξn is Fn-measurable, and we have
IEFnξn+1 = ξn a.e., then the sequence {ξn} is called a reversed (or backward)
martingale with respect to {Fn}.

We draw the reader’s attention to the fact that replacing a function ξn by
an equivalent one may destroy the Fn-measurability, so it has to be postulated
separately.

A simple, but very important example of a martingale is the family IEFnξ,
where ξ ∈ L1(P ) and {Fn} is an increasing sequence of sub-σ-algebras in F .
This follows by the properties of conditional expectation.

In this section, we prove the basic theorems on convergence of martingales.
These theorems are important in measure theory. The proofs employ an
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interesting estimate of the number of upcrossings of a fixed level. We start
with this estimate (it is instructive to compare it with an analogous result
in the section on ergodic theory). Let {ξn}, n = 0, 1 . . . , be a submartingale
with respect to {Fn} and a < b. Set N0 = −1 and for k ≥ 1 we set

N2k−1 = inf{m > N2k−2 : ξm ≤ a}, N2k = inf{m > N2k−1 : ξm ≥ b},

where Ni = +∞ if the corresponding set is empty. Note that between the
moments N2k−1 and N2k the sequence ξm is crossing [a, b] upwards. Let
Un = sup{k : N2k ≤ n}I{N2≤n}. We recall that f+ := max(f, 0).

10.3.2. Lemma. For every submartingale {ξn}, where n = 0, 1, . . ., one
has (b− a)IEUn ≤ IE(ξn − a)+ − IE(ξ0 − a)+.

Proof. Let ηn = a+(ξn−a)+. According to Exercise 10.10.58, {ηn} is a
submartingale. Set hm = 1 if N2k−1 < m ≤ N2k for some k ∈ IN and hm = 0
otherwise. Then the function hm is measurable with respect to Fm−1. For
any two sequences of functions g = {gn} and ζ = {ζn}, we set

[g, ζ]n :=
n∑

m=1

gm(ζm − ζm−1).

It is readily verified that (b− a)Un ≤ [h, η]n. Let gm = 1− hm. By Exercise
10.10.59 the sequence [g, η]n is a submartingale, whence one has IE[g, η]n ≥
IE[g, η]0 = 0 and (b− a)IEUn ≤ IE[h, η]n ≤ IE(ηn − η0), as required. �

10.3.3. Theorem. Let {ξn}, n = 0, 1, . . . , be a submartingale. Suppose
that supn IE(ξ+n ) <∞. Then ξ(ω) = lim

n→∞
ξn(ω) exists a.e. and IE|ξ| <∞.

Proof. By Lemma 10.3.2, we obtain IEUn ≤ (b − a)−1
(
|a| + IEξ+n

)
for

any fixed a and b. Hence IE supn Un <∞, which yields

P
(
ω : lim inf

n→∞
ξn(ω) < a < b < lim sup

n→∞
ξn(ω)

)
= 0,

since otherwise on a set of positive measure we would have infinitely many
upcrossings of [a, b]. The established fact is true for all rational a and b.
Hence we obtain the existence of a limit ξ = lim

n→∞
ξn a.e. By Fatou’s theorem,

ξ < +∞ a.e. and ξ+ is integrable because supn IEξ+n < ∞. On the other
hand, IE min(ξn, 0) = IEξn−IEξ+n ≥ IEξ0−IEξ+n , since {ξn} is a submartingale,
whence by Fatou’s theorem we obtain the integrability of ξ−. �

10.3.4. Corollary. Let functions ξn ≥ 0, where n = 0, 1, . . . , form a
supermartingale. Then a.e. there exists a finite limit ξ(ω) = lim

n→∞
ξn(ω) and

one has IEξ ≤ IEξ0.

Proof. The functions ηn = −ξn form a submartingale and η+
n = 0.

Hence our claim follows by the above theorem. �
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The hypotheses of Theorem 10.3.3 do not guarantee convergence in L1

(see Example 10.3.8 below).
The next example is a good illustration of the use of this theorem in

measure theory.

10.3.5. Example. Let µ and ν be probability measures on a measurable
space (X,F), where F is generated by a sequence of sub-σ-algebras Fn with
Fn ⊂ Fn+1. Denote by µn and νn the restrictions of µ and ν to Fn and
assume that νn � µn for all n. Let �n = dνn/dµn and � = lim sup

n→∞
�n. Then

{�n} is a martingale on the probability space (X,F , µ) and one has

ν(B) =
∫

B

� dµ+ ν
(
B ∩ {� = ∞}

)
, ∀B ∈ F . (10.3.1)

Proof. Let us consider the probability measure γ := (µ + ν)/2 and
denote by γn the restriction of γ to Fn. It is clear that µ � γ and ν � γ
and that the Radon–Nikodym densities �µn := dµn/dγn and �νn := dνn/dγn
are majorized by 2. We observe that {�µn} and {�νn} are martingales with
respect to the sequence {Fn} on the probability space (X,F , γ), since for all
A ∈ Fn ⊂ Fn+1 we have

∫

A

�µn+1 dγ = µn+1(A) = µ(A) = µn(A) =
∫

A

�µn dγ.

Certainly, the same calculation with �n and µ in place of �µn+1 and γ shows
that {�n} is a martingale with respect to the measures µ. The verification for
{�νn} is similar. Therefore, by the uniform boundedness, the following limits
exist γ-a.e. and in L1(γ):

�µ := lim
n→∞

�µn, �ν := lim
n→∞

�νn.

The functions �µ and �ν are the Radon–Nikodym densities of the measures
µ and ν with respect to γ. Indeed, it is clear by the above relationships and
convergence of �µn to �µ in L1(γ) that for every A ∈ Fn the integral of �µ with
respect to the measure γ equals µ(A). Since the union of Fn is an algebra
generating F , we obtain the above claim.

We observe that γ-a.e. one has �n = �νn/�
µ
n, where we set �νn(x)/�µn(x) = 0

if �µn(x) = 0. This is clear from the equality �n�
µ
n · γn = �νn · γn. Thus,

for γ-a.e. x, there exists a limit �(x) := lim
n→∞

�n(x), possibly infinite. In

fact, the set Y := {x : �(x) = ∞} has µ-measure zero. This follows by
Corollary 10.3.4, since the same computation as above shows that the sequence
{�n} is a nonnegative martingale with respect to {Fn} on the probability
space (X,F , µ) and hence µ-a.e. has a finite limit. Let us show that the
restriction of ν to X\Y is absolutely continuous with respect to µ. Let us set
SN :=

{
x : supn �n(x) ≤ N

}
. It suffices to verify that ν|SN � µ for every

fixed number N ∈ IN. Let B ∈ F , B ⊂ SN , and µ(B) = 0. For fixed ε > 0,
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we find Bm ∈ Fm with γ(B �Bm) < ε/N . Since

ν(Bm) =
∫

Bm

�m dµ ≤ Nµ(Bm) < 2ε,

one has ν(B) < 4ε, which yields ν(B) = 0. Thus, ν|X\Y � µ.
By the dominated convergence theorem ν = f · µ + ν0, where f ∈ L1(µ)

and the measure ν0 is mutually singular with µ. It is clear that ν0 = ν|Y .
It remains to show that f(x) = �(x) for µ-a.e. x. Let B ∈ F and B ⊂ SN .
Then for every x ∈ B, the sequence �n(x) is majorized by N and converges
γ-a.e. to �(x), which on account of convergence of �µn to �µ in L1(γ) yields
the following chain of equalities:
∫

B

f dµ = ν(B) = lim
n→∞

∫

B

�νn dγ

= lim
n→∞

∫

B

�νn
�µn
�µn dγ = lim

n→∞

∫

B

�n�
µ
n dγ =

∫

B

��µ dγ =
∫

B

� dµ.

It follows that f |SN = �|SN µ-a.e., hence f = � µ-a.e. �

As an application we prove the following alternative of Kakutani [935].

10.3.6. Theorem. Suppose that for every n we are given a measurable
space (Xn,Bn) with two probability measures µn and νn such that νn � µn and
�n is the Radon–Nikodym density of νn with respect to µn. Set µ =

⊗∞
n=1 µn,

ν =
⊗∞

n=1 νn. Then either ν � µ or ν ⊥ µ, and the latter is equivalent to
the equality

∞∏

n=1

∫

Xn

√
�n dµn := lim

N→∞

N∏

n=1

∫

Xn

√
�n dµn = 0.

Proof. We observe that
∫

Xn

√
�n dµn ≤ 1

by the Cauchy–Bunyakowsky inequality. Hence the corresponding infinite
product either diverges to zero or converges to a number in (0, 1]. For
every n, we consider the σ-algebra Fn consisting of all sets of the form
B = Bn×

∏∞
i=n+1Xi, Bn ∈

⊗n
i=1 Bi. The functions ξn(ω) =

∏n
i=1 �i(ωi)

on the probability space

(X,B, µ) :=
( ∞∏

i=1

Xi,

∞⊗

i=1

Bi, µ
)

form a martingale with respect to the σ-algebras Fn. Indeed, for every set
B ∈ Fn of the indicated form we have

∫

B

ξn+1 dµ =
(n+1⊗

i=1

νi

)
(Bn×Xn+1) =

( n⊗

i=1

νi

)
(Bn) =

∫

B

ξn dµ.
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According to Corollary 10.3.4, there exists a µ-integrable limit ξ = lim
n→∞

ξn.

In Example 10.3.5, we justified equality (10.3.1), which in the present case is
applied to ξ in place of �. If our product diverges to zero, then

∫

X

√
ξn dµ→ 0,

whence by Fatou’s theorem we obtain the equality
∫

X

√
ξ dµ = 0,

i.e., ξ = 0 µ-a.e. and ν ⊥ µ. On the other hand, on account of the Cauchy–
Bunyakowsky inequality, the estimate |

√
ξn+k +

√
ξn|2 ≤ 2ξn+k + 2ξn, and

the equalities
√
ξn+kξn = �1 · · · �n

√
�n+1 · · · �n+k and

∫

X

ξm dµ = 1,

we obtain∫

X

|ξn+k − ξn| dµ

≤
(∫

X

|
√
ξn+k −

√
ξn|2 dµ

)1/2(∫

X

|
√
ξn+k +

√
ξn|2 dµ

)1/2

≤
(

4
∫

X

|
√
ξn+k −

√
ξn|2 dµ

)1/2

=
(

8− 8
n+k∏

i=n+1

∫

Xi

√
�i dµi

)1/2

,

which in the case of convergence of the product to a positive number shows
that {ξn} in L1(µ) is fundamental. Then for any fixed m and every B ∈ Fm,
we have

ν(B) =
∫

B

ξm dµ = lim
n→∞

∫

B

ξn dµ =
∫

B

ξ dµ.

Therefore, ν � µ and ξ is the Radon–Nikodym density of ν with respect to µ,
which completes the proof. �

10.3.7. Remark. Given a martingale {ξn} with respect to increasing
σ-algebras Fn, the formula ν(A) = IE(ξnIA), A ∈ An, defines an additive set
function on the algebra R :=

⋃∞
n=1An. Indeed, if also A ∈ Ak with some

k > n, then ξkIA and ξnIA have equal expectations. Hence ν is well-defined.
Clearly, ν is additive. However, it may fail to be countably additive as the
following example shows. Note that the restriction of ν to An is a measure
absolutely continuous with respect to the restriction of P . Conversely, for
any additive function ν on R with the latter property, the Radon–Nikodym
densities ξn := dν|Fn/dP |Fn form a martingale.

10.3.8. Example. Let Ω = IN be equipped with the σ-algebra F of all
subsets of Ω. By letting P ({n}) = 2−n for every n ∈ IN, we define a probability
measure on Ω. Denote by Fn the finite sub-σ-algebra in F generated by the
points 1, . . . , n and the set Mn := {n + 1, n + 2, . . .}. Finally, let us set
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ξn := P (Mn)−1IMn
. Each ξn is a probability density with respect to P . The

integral of ξk over a set A ∈ An with n < k coincides with the integral of
ξn over A. Indeed, both integrals vanish if A ⊂ {1, . . . , n} and equal 1 if
A = Mn. Hence {ξn} is a martingale with respect to {Fn}. However, the
additive function ν defined in the remark above is not countably additive,
since ν({n}) = 0 for every n and ν(IN) = 1. Note also that lim

n→∞
ξn(ω) = 0

pointwise, in particular, there is no convergence in L1(P ).

Let us proceed to convergence of martingales in Lp. Let (Ω,F , P ) be a
probability space equipped with a sequence of increasing σ-algebras Fn ⊂ F ,
n = 0, 1, . . .. An F-measurable function τ with values in the set of nonnegative
integer numbers is called a stopping time if {τ = n} ∈ Fn for all n ∈ IN∪{0}.

10.3.9. Proposition. Let {ξn}, where n = 0, 1, . . . , be a submartingale
and let τ be a stopping time such that τ ≤ k a.e. Then IEξ0 ≤ IEξτ ≤ IEξk.

Proof. By Exercise 10.10.61 the sequence ξmin(τ,n) is a submartingale,
whence IEξ0 = IEξmin(τ,0) ≤ IEξmin(τ,k) = IEξτ . For every m ∈ {0, 1, . . . , k}
one has

IE(ξkI{τ=m}) = IE(IEFmξkI{τ=m}) ≥ IE(ξmI{τ=m}) = IE(ξτI{τ=m}),

which yields the claim by summing in m. �
An immediate corollary of this result is the following inequality of Doob,

the derivation of which from the proposition is left as Exercise 10.10.64.

10.3.10. Corollary. Let {ξn}, where n = 0, 1, . . . , be a submartingale
and let

Xn := max
0≤k≤n

ξ+k .

Then, for every r > 0, we have

rP
(
{Xn ≥ r}

)
≤
∫

{Xn≥r}
ξ+n dP ≤ IEξ+n .

10.3.11. Corollary. Under the hypotheses of the previous corollary, for
every p > 1 with ξ+n ∈ Lp(P ), we have

IEXp
n ≤

(
p/(p− 1)

)pIE(ξ+n )p.

If {ξn} is a martingale and ξn ∈ Lp(P ), then

IE
[

max
0≤k≤n

|ξk|
]p ≤

(
p/(p− 1)

)pIE|ξn|p.

Proof. The second claim follows from the first one by passing to |ξn|.
By Doob’s inequality we obtain

IEXp
n = p

∫ ∞

0

rp−1P
(
Xn ≥ r

)
dr ≤ p

∫ ∞

0

rp−2

∫

{Xn≥r}
ξ+n dP dr

= p

∫

Ω

ξ+n

∫ Xn

0

rp−2 dr dP =
p

p− 1

∫

Ω

ξ+nX
p−1
n dP.



354 Chapter 10. Conditional measures and conditional expectations

Set q = p/(p − 1). By Hölder’s inequality the right-hand side of the above
inequality is estimated by q

(
IE(ξ+n )p

)1/p(IEXp
n

)1/q. This yields our claim. �

The boundedness of {ξn} in L1(P ) does not imply the boundedness of
{Xn} in L1(P ): see Example 10.3.8 (but also see Exercise 10.10.65).

10.3.12. Theorem. Let {ξn}, where n = 0, 1, . . . , be a martingale such
that supn IE|ξn|p < ∞, where 1 < p < ∞. Then {ξn} converges a.e. and in
the space Lp(P ).

Proof. Almost everywhere convergence to some limit ξ ∈ Lp(P ) is clear
from Theorem 10.3.3. It follows by Corollary 10.3.11 that supn |ξn| ∈ Lp(P ).
Since we have |ξk − ξ|p ≤ 2p supn |ξn|p, it remains to apply the dominated
convergence theorem. �

Example 10.3.8 shows that the statement on convergence in Lp may be
false for p = 1. In the case p = 1 the situation is this.

10.3.13. Theorem. Let {ξn} be a submartingale with respect to a se-
quence of σ-algebras Fn, n = 0, 1, . . .. The following conditions are equivalent:

(i) the sequence {ξn} is uniformly integrable;
(ii) the sequence {ξn} converges in L1(P );
(iii) the sequence {ξn} converges a.e. and in L1(P ).
If {ξn} is a martingale, then (i)–(iii) are equivalent to the existence of a

function ξ ∈ L1(P ) with ξn = IEFnξ for all n. Then {ξn} is called a closable
martingale.

Proof. The uniform integrability implies boundedness in L1(P ), which
by Theorem 10.3.3 yields the existence of a limit ξ = lim

n→∞
ξn a.e. Then we

also obtain convergence in L1(P ). This shows that (i) yields (ii) and (ii)
yields (iii). It is clear that (iii) implies (i). It remains to show that in the
case of a martingale we have ξn = IEFnξ (the fact that such a sequence is
a martingale has already been noted and the uniform integrability follows
by Example 10.1.10). If B ∈ Fn, then we have IE(ξIB) = lim

k→∞
IE(ξkIB).

However, for all k ≥ n we have IE(ξkIB) = IE(ξnIB), whence the desired
equality follows. �

It follows from this theorem that the measure ν associated with the mar-
tingale {ξn} in Remark 10.3.7 is countably additive and absolutely continuous
with respect to P if and only if {ξn} is closable. However, it may happen
that ν is countably additive, but not absolutely continuous with respect to P
(it suffices to take mutually singular measures µ and ν in Example 10.3.5).
A necessary and sufficient condition for the countable additivity of ν is given
in Exercise 10.10.62.

Let us derive Theorem 10.2.3 on convergence of conditional expectations
from the martingale convergence theorem.
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10.3.14. Example. Let (X,F , µ) be a space with a finite nonnegative
measure, let Fn be an increasing sequence of sub-σ-algebras in F , and let F∞
be the σ-algebra generated by {Fn}. Then, for every function f ∈ L1(µ),
we have IEFnf → IEF∞f a.e. and in L1(µ). If ϕn → ϕ in L1(µ), then
IEFnϕn → IEF∞ϕ in L1(µ).

Proof. We may assume that F∞ = F . Then we have IEF∞f = f . The
sequence fn := IEFnf is a uniformly integrable martingale. Hence it converges
a.e. and in L1(µ) to some function g. We show that f = g a.e. It suffices to
show that f and g have equal integrals over every set B ∈ Fn. The integral
of fIB equals the integral of fmIB for all m ≥ n, which coincides with the
integral of gIB. The last claim is obvious from the fact that for all n we have
‖IEFnψ‖L1(µ) ≤ ‖ψ‖L1(µ). �

10.3.15. Example. If A ∈ F∞, then IEFnIA → IA a.e.

Finally, let us consider reversed martingales.

10.3.16. Theorem. Let {ξn} be a reversed martingale with respect
to {Fn}, n = 0,−1, . . .. Then ξ−∞ := lim

n→−∞
ξn exists a.e. and in L1(P ).

In addition, one has ξ−∞ = IEF−∞ξ0, where F−∞ =
⋂
n≤0 Fn.

Proof. As in the case of a direct martingale, for every fixed a and b, we
denote by Un the number of upcrossings of [a, b] by ξ−|n|, . . . , ξ0. By using
Lemma 10.3.2, we obtain

(b− a)IEUn ≤ IE(ξ0 − a)+.

Similarly to the reasoning in Theorem 10.3.3 this yields the existence of a
limit ξ−∞ = lim

n→−∞
ξn a.e. However, in the present case, the sequence {ξn}

is at once uniformly integrable, since ξn = IEFnξ0 for all n = 0,−1, . . .. This
ensures mean convergence. It is clear that the function ξ−∞ is measurable with
respect to F−∞. Given A ∈ F−∞, we have IE(IAξ0) = IE(IAξn) → IE(IAξ−∞),
whence we obtain the last assertion. �

10.3.17. Corollary. Suppose that (X,F , µ) is a probability space and
that {Fn}n∈{0,−1,...} is a sequence of sub-σ-algebras in F with Fn−1 ⊂ Fn for
all n. Set

F−∞ =
⋂

n≤0

Fn.

Then, for every function f ∈ L1(µ), one has IEFnf → IEF−∞f a.e. and
in L1(µ).

Proof. The sequence ξn = IEFnf is a reversed martingale. As shown
above, it converges a.e. and in L1(µ) to ξ−∞ = IEF−∞IEF0f = IEF−∞f . �

Reversed martingales can be applied to convergence of the Riemann sums.
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10.3.18. Example. Let f be a function integrable on [0, 1) and defined
on the whole real line periodically with a period 1. For every n ∈ IN, we define
a function Fn by

Fn(x) = 2−n
2n−1∑

j=0

f(j2−n + x).

Then, for almost all x ∈ [0, 1], we have

lim
n→∞

Fn(x) =
∫ 1

0

f(t) dt.

Proof. By Example 10.1.4, Fk is the conditional expectation of f with
respect to the σ-algebra Bk generated by 2−k-periodic functions. Clearly,
Bk+1 ⊂ Bk. According to Exercise 5.8.109 only constants are measurable with
respect to the σ-algebra

⋂
k≥1 Bk. It remains to apply the above corollary with

Fn = B−n. �

Finally, let us mention the following interesting fact.

10.3.19. Proposition. Let {ξn}, n ∈ IN, be a supermartingale with
respect to an increasing sequence of σ-algebras Fn. Then one can find a
martingale {ηn} and an increasing process {ζn} such that ξn = ηn − ζn.

Proof. Let αk := IE(ξk−ξk+1|Fk). Since {ξn} is a supermartingale, one
has αk ≥ 0. Let ζn :=

∑n−1
k=1 αk. Then ζn+1 ≥ ζn. It is easy to verify that

the sequence ξn + ζn is a martingale. �

The decomposition obtained above (called the Doob decomposition) is
a special case of the Doob–Meyer decomposition for supermartingales {ξt},
t ≥ 0, satisfying certain mild assumptions (see Dellacherie [424, Ch. IV]).

10.4. Regular conditional measures

We have already encountered the concept of conditional measure in �10.1.
We have discussed there the following situation. Let µ be a measure on a
measurable space (X,A) and let B be a sub-σ-algebra in A. We may assume
that B is generated by a measurable mapping π from X to some measurable
space (Y, E). One can take (Y, E) = (X,B) with the identity embedding π.

As we know, in the case of a nonnegative measure µ, for every A ∈ A,
there exists a B-measurable function µ(A, · ) such that

µ(A ∩B) =
∫

B

µ(A, x)µ(dx), A ∈ A, B ∈ B.

By the B-measurability of the function x �→ µ(A, x) and Theorem 2.12.3, there
exists an E-measurable function y �→ µy(A) on Y with µ(A, x) = µπ(x)(A).
Letting ν := µ ◦ π−1, this formula can be written as follows:

µ
(
A ∩ π−1(E)

)
=
∫

E

µy(A) ν(dy), E ∈ E .
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In particular, letting E = Y we obtain

µ(A) =
∫

Y

µy(A) ν(dy), A ∈ A.

Thus, if µy is a measure on π−1(y) for every y ∈ Y , then the previous equality
is a generalized Fubini-type theorem: in order to find the measure of A, one
has to compute the conditional measures of A on the level sets π−1(y) and
then integrate in y with respect to the measure ν.

However, as we shall see below, it is not always the case that for µ-almost
all x the set function µ(A, x) (or µy(A) for ν-almost all y) is a countably
additive measure. Nevertheless, this becomes possible under some additional
conditions of set-theoretic or topological character.

10.4.1. Definition. Suppose we are given a σ-algebra A, its sub-σ-
algebra B, and a measure µ on A. We shall say that a function

µB( · , · ) : A×X → IR1

is a regular conditional measure on A with respect to B if:
(1) for every x, the function A �→ µB(A, x) is a measure on A;
(2) for every A ∈ A, the function x �→ µB(A, x) is measurable with respect

to B and |µ|-integrable;
(3) one has

µ(A ∩B) =
∫

B

µB(A, x) |µ|(dx), ∀ A ∈ A, B ∈ B. (10.4.1)

In the cases where there is no risk of ambiguity the shortened notation
µ(A, x) is used. An alternative notation for the same objects: µB(A|x) and
µ(A|x). The measures A �→ µB(A, x) also are called regular conditional mea-
sures (to distinguish the individual measures µB( · , x) and the whole function
µB( · , · ), the latter is sometimes called a system of conditional measures).

The term “regular conditional measure” is used in order to avoid confusion
with the conditional probabilities in the sense of conditional expectations
(which are not always countably additive). However, in the cases where there
is no risk of confusion we shall omit the word “regular” for brevity.

If x �→ ‖µB( · , x)‖ is |µ|-integrable (which is not always the case), equality
(10.4.1) can be written in the following integral form: for every bounded A-
measurable function f and every B ∈ B, one has

∫

B

f(x)µ(dx) =
∫

B

∫

X

f(y)µB(dy, x) |µ|(dx). (10.4.2)

Indeed, for the indicators of sets in A this coincides with (10.4.1). Hence
equality (10.4.2) holds for simple functions, which by means of uniform ap-
proximations enables us to extend it to all bounded A-measurable functions.
If the measures µ and µB( · , x) are nonnegative, then (10.4.2) extends to all
A-measurable µ-integrable functions f . Indeed, for nonnegative f , we con-
sider the functions fn = min(f, n). By the previous step, the integrals of the
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functions

x �→
∫

X

fn(y)µB(dy, x)

are uniformly bounded. By Fatou’s theorem, for µ-a.e. x, the function f is
integrable against µB(dy, x). It remains to apply the monotone convergence
theorem. In the general case, we consider separately f+ and f−.

In the situation where the σ-algebra B is generated by a measurable map-
ping π : (X,A) → (Y, E), it is more convenient to parameterize conditional
measures by points of the space Y .

10.4.2. Definition. A system of regular conditional measures µy, y ∈ Y ,
generated by an (A, E)-measurable mapping π : X → Y is defined as a function
(A, y) �→ µy(A) on A×Y such that, for every fixed y, it is a measure on A,
for every fixed A ∈ A is measurable with respect to E and |µ| ◦π−1-integrable,
and for all A ∈ A and E ∈ E satisfies the equality

µ
(
A ∩ π−1(E)

)
=
∫

E

µy(A) |µ| ◦ π−1(dy). (10.4.3)

If for |µ| ◦ π−1-almost every point y ∈ Y we have π−1(y) ∈ A and the
measure µy is concentrated on π−1(y), then we shall call µy proper conditional
measures.

Sometimes the following more general definition of conditional measures
is useful. Let A0 be a sub-σ-algebra in A (not necessarily containing B). Then
the conditional measures µB

A0
(A, x) on A0 with respect to B are defined as

above, but with A0 in place of A in conditions (1)–(3). In particular, now in
place of (10.4.1) we require the equality

µ(A ∩B) =
∫

B

µB
A0

(A, x) |µ|(dx), ∀ A ∈ A0, B ∈ B. (10.4.4)

In a similar manner one defines regular conditional measures µyA0
on A0

in the case where B is generated by a mapping π.

10.4.3. Lemma. Let A be countably generated. Then regular condi-
tional measures are essentially unique: given two regular conditional measures
µB

1 ( · , · ) and µB
2 ( · , · ) on A, there exists a set Z ∈ B with |µ|(Z) = 0 such

that µB
1 (A, x) = µB

2 (A, x) for all A ∈ A and x ∈ X\Z. Similarly, the mea-
sures µB

A0
( · , x) on A0 are essentially unique if A0 is countably generated (the

whole σ-algebra A need not be countably generated in this case).
If, in addition, µ is a probability measure, then µB( · , x) is a probability

measure for µ-a.e. x.

Proof. There is a countable algebra R = {An} generating A. By equal-
ity (10.4.1), for every An ∈ R, there is a set Zn ∈ B such that |µ|(Zn) = 0
and µB

1 (An, x) = µB
2 (An, x) for all x ∈ X\Zn. Now we take Z :=

⋃∞
n=1 Zn.

The case of A0 is similar.
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If µ is a probability measure, then, for every n, the function µB(An, x)
is nonnegative µ-a.e. because its integral over every B ∈ B is nonnegative.
Similarly, µB(X,x) = 1 for µ-a.e. x. Hence for µ-a.e. x, the measure µB( · , x) is
nonnegative onR and µB(X,x) = 1, which yields that µB( · , x) is a probability
measure for such x. �

For an arbitrary σ-algebra A, both assertions may be false even if µ is
separable (see Exercise 10.10.44 for a simple counterexample).

10.4.4. Remark. (i) We observe that if a signed measure µ possesses reg-
ular conditional measures µB( · , x) and X = X+∪X− is the Hahn decomposi-
tion for µ, then the measures |µ|B( · , x) := µB( · ∩X+, x)−µB( · ∩X−, x) serve
as regular conditional measures for |µ|. Conversely, given regular conditional
measures |µ|B( · , x) (possibly, signed) for |µ|, we obtain regular conditional
measures |µ|B( · ∩ X+, x) and |µ|B( · ∩ X−, x) for µ+ and µ−, respectively.
Hence µ has regular conditional measures |µ|B( · ∩X+, x)− |µ|B( · ∩X−, x).

(ii) Let µ be a probability measure such that there exist probability mea-
sures A �→ ν(A, x), x ∈ X, on A and a probability measure σ on B satisfying
the equality

µ(A ∩B) =
∫

B

ν(A, x)σ(dx)

for all A ∈ A and B ∈ B, where the functions x �→ ν(A, x) are measurable with
respect to B. Letting A = X, we see that σ coincides with the restriction of
µ to B, i.e., we obtain regular conditional measures. If the measures ν( · , x)
and σ are nonnegative, but not necessarily normalized, then the function
θ(x) = ν(X,x) is B-measurable, and the measure σ0 := θ · σ is probabilistic.
Replacing ν( · , x) by the probability measure ν0( · , x) = θ(x)−1ν( · , x) for all
x with θ(x) > 0, we arrive at the previous case.

10.4.5. Theorem. (i) Suppose that the σ-algebra A is countably gen-
erated and that µ has a compact approximating class in A. Then, for every
sub-σ-algebra B ⊂ A, there exists a regular conditional measure µB on A.

(ii) More generally, let A0 be a sub-σ-algebra in the σ-algebra A such that
there exists a countable algebra U generating A0. Assume, additionally, that
there is a compact class K such that for every A ∈ U and ε > 0, there exist
Kε ∈ K and Aε ∈ A with Aε ⊂ Kε ⊂ A and |µ|(A\Aε) < ε. Then, for every
sub-σ-algebra B ⊂ A, there exists a regular conditional measure µB

A0
on A0

(a probability if µ is nonnegative).
In addition, for every A0-measurable µ-integrable function f , one has

∫

X

f dµ =
∫

X

∫

X

f(y)µB
A0

(dy, x) |µ|(dx). (10.4.5)

Proof. Let us consider first the case of a probability measure.
(1) We shall prove the more general second assertion. Let U consist of

countably many sets An. For every n, we find sets Cn,k ∈ K and An,k ∈ A,
k ∈ IN, such that

An,k ⊂ Cn,k ⊂ An and µ(An\An,k) < 1/k. (10.4.6)
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The sets An,k along with the sets An generate a countable algebra U0 ⊂ A. By
the Radon–Nikodym theorem, for every set A ∈ U0, there exists a nonnegative
B-measurable function x �→ p0(A, x) such that p0(X,x) = 1, p0(∅, x) = 0 for
all x, and

µ(A ∩B) =
∫

B

p0(A, x)µ(dx), ∀B ∈ B. (10.4.7)

We observe that there exists a measure zero set N0 ∈ B such that for all
x ∈ X\N0, the function A �→ p0(A, x) is additive on U0. Indeed, it follows by
(10.4.7) that p0(A ∪ B, x) = p0(A, x) + p0(B, x) µ-a.e. whenever A,B ∈ U0

and A ∩B = ∅. Since the set of pairs (A,B), where A,B ∈ U0, is countable,
the union of all sets on which the indicated equality fails for some pair of sets
in U0 has measure zero.

(2) We now prove that for a.e. x one has

p0(An, x) = sup
k
p0(An,k, x), ∀n ∈ IN. (10.4.8)

In particular, for such x, the set function p0( · , x) is approximated on the
algebra U by the class K with respect to the algebra U0 (see Remark 1.4.7).
We denote the right-hand side of (10.4.8) by qn(x). It is clear that the function
qn is measurable with respect to B. The inclusion An,k ⊂ An yields that
there exist measure zero sets Nn,k ∈ B such that p0(An,k, x) ≤ p0(An, x) for
all x �∈ Nn,k. Hence

qn(x) ≤ p0(An, x), ∀x �∈ N0 :=
⋃∞
n,k=1Nn,k.

On the other hand, the obvious inequality p0(An,k, x) ≤ qn(x) yields that

µ(An,k) =
∫

X

p0(An,k, x)µ(dx) ≤
∫

X

qn(x)µ(dx),

whence on account of the equality µ
(⋃∞

n,k=1Nn,k

)
= 0 we obtain

sup
k
µ(An,k) ≤

∫

X

qn(x)µ(dx) ≤
∫

X

p0(An, x)µ(dx) = µ(An).

Since the left-hand side equals µ(An), we have qn(x) = p0(An, x) everywhere,
with the exception of some measure zero set N1 ∈ B.

(3) According to steps (1) and (2), for all x �∈ N := N0 ∪N1 the additive
set function p0( · , x) on the algebra U0 has the property that the compact
class K approximates p0( · , x) on U with respect to U0. By Remark 1.4.7, this
set function is countably additive on U and extends uniquely to a countably
additive measure on A0, which we take for µ( · , x) = µB

A0
( · , x). It is clear

that we obtain a probability measure. Finally, for all x ∈ N let µ( · , x) = µ.
(4) Let us verify that we have obtained the required conditional measures.

Indeed, if A = An, then the function x �→ µ(A, x) is measurable with respect
to B. The class of all sets A ∈ σ(U) for which this is true is monotone. Hence
it coincides with σ(U). Further, if B ∈ B and A = An, then by construction
one has (10.4.7). Let B ∈ B be fixed. The class E of all sets A ∈ σ(U)
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such that (10.4.7) holds is monotone: if sets Ej ∈ E are increasing to E,
then lim

j→∞
µ(Ej , x) = µ(E, x), whence by the dominated convergence theorem

we obtain the inclusion E ∈ E . Therefore, E = σ(U). Since σ(U) = A0 by
hypothesis, we arrive at (10.4.4).

(5) It suffices to obtain equality (10.4.5) for the indicators of sets in A0,
but in this case it is true by definition.

If µ is nonnegative, but is not probabilistic, the conditional probability
measures for µ/‖µ‖ are conditional measures for µ as well (if µ = 0 and X is
not empty, then one can take a fixed Dirac measure for conditional measures).
Finally, conditional measures for a signed measure µ are constructed as the
differences of the conditional measures for µ+ and µ− in the following way. For
the measure µ+ we take probability conditional measures µ1( · , x), x ∈ X+,
concentrated on X+; for the measure µ− we take probability conditional
measures µ2( · , x), x ∈ X−, concentrated on X−. Let µ1( · , x) = 0 if x ∈ X−,
µ2( · , x) = 0 if x ∈ X+. Then the measures µ( · , x) := µ1( · , x) − µ2( · , x)
are conditional for µ and one has ‖µ( · , x)‖ = 1 (moreover, either µ( ·, , x) is
a probability measure or −µ( ·, , x) is a probability measure). �

Let us note that by construction we have ‖µB
A0

( · , x)‖ = 1.

We now give the major special case for applications.

10.4.6. Corollary. Let µ be a Borel measure on a Souslin space X.
Then, for every sub-σ-algebra B ⊂ B(X), there exists a regular conditional
measure µB on B(X).

Proof. It suffices to recall that the measure µ is Radon and B(X) is
countably generated. �

10.4.7. Corollary. Let X be a Hausdorff space and let µ be a Radon
measure on X. Then, for every sub-σ-algebra B ⊂ B(X) and every countably
generated sub-σ-algebra A0 ⊂ B(X), there exists a regular conditional measure
µB
A0

on A0.

Proof. Let A = B(X) and take for K the class of all compact sets in
the space X. �

Let us represent the obtained results in terms of a mapping π generating
the σ-algebra B.

10.4.8. Theorem. Let µ be a measure (possibly signed) on a measurable
space (X,A), let (Y, E) be a measurable space, and let π : (X,A) → (Y, E) be
a mapping measurable with respect to (Aµ, E). Suppose that π(X) ∈ E|µ|◦π−1 ,
where E|µ|◦π−1 is the completion of E with respect to the measure |µ| ◦ π−1.
Assume also that A is countably generated and that the measure µ has a
compact approximating class. Then, there exist regular conditional measures
µy, y ∈ Y , generated by π on A (probabilities if µ ≥ 0).
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More generally, π generates regular conditional measures µyA0
, y ∈ Y , on

every countably generated σ-algebra A0 ⊂ A on which µ possesses a compact
approximating class.

Proof. Set B := π−1(E). By Theorem 10.4.5 (assertion (ii) is applicable
with A0 = A and A = Aµ), there is a conditional measure µB(A, x) on A
such that the function µB(A, x) is measurable with respect to B. This means
that for every A ∈ A, one has an E-measurable function η(A, y) such that
µB(A, x) = η

(
A, π(x)

)
. By hypothesis, there exists Y0 ∈ E with Y0 ⊂ π(X)

and |µ| ◦π−1(Y \Y0) = 0. It is clear that for each y ∈ Y0, η(A, y) is a measure
as a function of A. We take this measure for µy. If y �∈ Y0, then let µy = µ.
For every A ∈ A, the function µy(A) is E-measurable, since Y \Y0 ∈ E . The
same reasoning proves the last assertion. �

10.4.9. Remark. Suppose that in the situation of Theorem 10.4.8 we
have A0 := ξ−1(F), where ξ is a mapping from X to a measurable space
(Z,F), ν = |µ|◦ξ−1, ξ(X) ∈ Fν . Then for the existence of regular conditional
measures µyA0

generated by π on A0 the following conditions are sufficient:
F is countably generated and the measure ν on F (or on Fν) has a compact
approximating class. This follows from the fact that the σ-algebra ξ−1(F) is
countably generated and the measure µ on A0 has a compact approximating
class according to Exercise 9.12.40.

The use of the measure |µ| ◦ π−1 in the case of a signed measure µ is
absolutely natural because the measure µ ◦ π−1 may be identically zero for a
nonzero measure µ. We note that the measures µy constructed above may not
be concentrated on the sets π−1(y) (which may not be even measurable). Let
us give a sufficient condition of the existence of proper conditional measures.

10.4.10. Corollary. Suppose that in Theorem 10.4.8 the σ-algebra E
is countably generated and contains all singletons. Then, there exist regular
conditional measures µy on the σ-algebra A′ generated by A and π−1(E) such
that, for |µ| ◦ π−1-a.e. y, the measure µy is concentrated on the set π−1(y).
If π has an (A, E)-measurable version π̃ such that π̃(A) ⊂ E|µ|◦f−1 , then
π−1(y) ∈ Aµy for |µ| ◦ π−1-a.e. y.

Proof. It suffices to consider only probability measures. Let ν = µ◦π−1.
Under our assumptions one has π−1(y) ∈ A′. There exists a countable algebra
of sets E0 = {En} generating E . It is clear that A′ is countably generated
as well. We know that there exist regular conditional measures µy, y ∈ Y ,
on A′. Let us fix En ∈ E0. For every E ∈ E one has

∫

E

µy
(
π−1(En)

)
ν(dy) = µ

(
π−1(E) ∩ π−1(En)

)
= µ

(
π−1(E ∩ En)

)

= ν(E ∩ En) =
∫

E

IEn(y) ν(dy),

whence µy
(
π−1(En)

)
= IEn(y) ν-a.e. Therefore, there exists a set Y0 of full

ν-measure such that µy
(
π−1(En)

)
= IEn(y) for all y ∈ Y0 and all n. This
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yields the relationship

µy
(
π−1(E)

)
= IE(y), ∀ y ∈ Y0, E ∈ E .

Indeed, for every fixed y ∈ Y0 both sides of this equality are measures as
functions of E and coincide on E0. In particular, we obtain µy

(
π−1(y)

)
= 1.

If there is a modification π̃ with the properties listed in the formulation, then
there exists a set X0 ∈ A of full µ-measure on which π coincides with π̃ and
is (A, E)-measurable. Then Y0 := π(X0) = π̃(X0) ∈ Eν . The measure µ on
X0 possesses regular conditional measures µy, y ∈ Y0, on AX0 = A∩X0, such
that µy

(
X0 ∩ π−1(y)

)
= 1 for ν-a.e. y ∈ Y0. We extend the measures µy to A

by setting µy(X\X0) = 0. Since X0 ∩ π−1(y) belongs to A and is contained
in π−1(y), the last assertion is proved. �

We recall that if E is countably generated and countably separated, a map-
ping f : X → E is measurable with respect to (Aµ, E), and |µ| is perfect, then
the set f(X) is |µ| ◦ f−1-measurable.

10.4.11. Example. Let X and Y be Souslin spaces, µ a measure on
A = B(X), E = B(Y ), and let π : X → Y be measurable with respect to µ.
Then there exist regular conditional measures µy, y ∈ Y , on B(X) such that
|µy|

(
X\π−1(y)

)
= 0 for |µ| ◦ π−1-a.e. y.

Proof. If π is Borel measurable, then the above results apply, since
B(X) and B(Y ) are countably generated and separate the points. In the
general case, there is a set X0 ∈ B(X) with |µ|(X) = |µ|(X0) on which π
is Borel. Then Y0 := π(X0) is a Souslin set, hence there exists a Borel set
E ⊂ Y0 with |µ| ◦ π−1(Y0\E) = 0. If y ∈ E, then we take measures µy

constructed for π|X0 ; if y �∈ E, then we let µy = µ. �
In general, one cannot combine the E-measurability of all functions µy(A),

A ∈ A, and the equality |µy|
(
X\π−1(y)

)
= 0 for all y ∈ π(X). Counter-

examples exist even for continuous functions on a Borel subset of the interval
(see Exercise 10.10.48). At the expense of the E-measurability of all functions
µy(A), A ∈ A, but requiring their |µ| ◦ π−1-measurability, the measures µy

in Example 10.4.11 can be chosen in such a way that for every y ∈ π(X) the
measure µy will be concentrated on π−1(y). To this end, for all y ∈ π(X)\Y0

we take for µy a measure concentrated at an arbitrary point in π−1(y).
In the case of a Borel mapping one can find a σ(SY )-measurable version

of proper conditional measures, where SY is the class of Souslin sets in Y .

10.4.12. Proposition. Let X and Y be Souslin spaces, let µ be a Borel
probability measure on X, and let f : X → Y be a Borel mapping. Then there
exist Borel probability measures µ( · , y), y ∈ Y , on X such that:

(i) the functions y �→ µ(B, y), B ∈ B(X), are σ(SY )-measurable,
(ii) one has µ

(
f−1(y), y

)
= 1 for every y ∈ f(X),

(iii) for all B ∈ B(X) and E ∈ B(Y ) one has

µ
(
B ∩ f−1(E)

)
=
∫

E

µ(B, y)µ ◦ f−1(dy).
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Proof. We know that there exist regular conditional measures µy on X
such that (i) (even with the Borel measurability in place of σ(SY )-measura-
bility) and (iii) hold, and (ii) holds for µ ◦ f−1-a.e. y. In order to obtain (ii)
for all y ∈ f(X), we redefine µy as follows. There is a Borel set Y0 ⊂ Y such
that µ ◦ f−1(Y0) = 1 and (ii) holds for all y ∈ Y0. In addition, there is a(
σ(Sf(X)),B(X)

)
-measurable mapping g : f(X) → X such that f

(
g(y)

)
= y

for all y ∈ f(X). Now let µ( · , y) = µy if y ∈ Y0 and µ( · , y) = δg(y) if
y ∈ f(X)\Y0. It is readily seen that we obtain desired measures. �

The constructed measures are also called conditional, although property
(i) is weaker than the corresponding requirement in Definition 10.4.2. Such
measures give a disintegration in the sense of �10.6.

10.4.13. Corollary. Let X be a Souslin space and let A ⊂ B(X) be a
countably generated sub-σ-algebra. Then, for every Borel probability measure
µ on X, there exist Borel probability measures µ( · , x), x ∈ X, such that:

(i) the functions x �→ µ(B, x), B ∈ B(X), are σ
(
S(A)

)
-measurable,

(ii) µ(A, x) = 1 for all A ∈ A and all x ∈ A,
(iii) for all B ∈ B(X) and A ∈ A one has

µ(A ∩B) =
∫

A

µ(B, x)µ(dx).

Proof. There is a Borel function f : X → [0, 1] such that A = f−1(B),
B = B([0, 1]). Let us take measures µ( · , y) according to the proposition
and set µ0(B, x) := µ

(
B, f(x)

)
. Then we have (i), as f−1(S[0,1]) ⊂ S(A),

and (iii). In order to verify (ii) we observe that A = f−1(E), where E ∈ B.
Hence y = f(x) ∈ E and µ0(A, x) = µ

(
f−1(E), y

)
≥ µ

(
f−1(y), y

)
= 1. �

Clearly, both results extend to signed measures in the same spirit as
above.

Now we consider the following important special case: Ω = X×Y , where
(X,AX) and (Y,AY ) are two measurable spaces, A = AX⊗AY . Let BX and
BY be the sub-σ-algebras in A formed, respectively, by the sets A×Y with
A ∈ AX and sets X×B with B ∈ AY . Let µX and µY be the images of µ
under the natural projections to X and Y , and let |µ|X and |µ|Y denote the
projections of the measure |µ|. As above, let

Ay =
{
A ∩ (X×{y})

}
and Ay =

{
x : (x, y) ∈ A

}
.

10.4.14. Theorem. Suppose that AX is countably generated and that
|µ|X on AX has a compact approximating class. Then, for every y ∈ Y , there
exist a measure µ( · , y) on A and a measure µy on AX (probabilistic if so
is µ) such that the function y �→ µ(A, y) = µy(Ay) is measurable with respect
to |µ|Y for every A ∈ A and for all B ∈ AY one has

µ
(
A ∩ (X×B)

)
=
∫

B

µ(A, y) |µ|Y (dy) =
∫

B

µ(A, y) |µ|Y (dy), (10.4.9)
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where µ(A, y) = µ(Ay, y) if AY contains the singletons. In addition, for every
A-measurable µ-integrable function f one has

∫

Ω

f(x, y)µ
(
d(x, y)

)
=
∫

Y

∫

X

f(x, y) ηy(dx) |µ|Y (dy). (10.4.10)

Finally, for any other families of measures µ′( · , y) and µ′
y with the stated

properties one has µ′( · , y) = µ( · , y) and µ′
y = µy for |µ|Y -a.e. y.

Proof. It suffices to consider nonnegative measures by taking the Jor-
dan–Hahn decomposition. The sets in BX have the form E×Y , E ∈ AX .
According to Remark 10.4.9 applied to π = πY and ξ = πX , there exist
probability measures µyBX , y ∈ Y , on BX such that for all E ∈ AX , B ∈ AY ,
one has

µ
(
(E×Y ) ∩ (X×B)

)
=
∫

B

µyBX (E×Y )µY (dy), (10.4.11)

where the integrand is AY -measurable. We define probability measures µy on
AX by µy(E) = µyBX (E×Y ). Set

µ(A, y) = µy(Ay), A ∈ A.

By using that Ay ∈ AX , it is readily verified that µ( · , y) is a probability
measure on A for every y ∈ Y . Then, given A = (E×Y )∩ (X×B), in view of
the relationship πX

(
(E×Y )y

)
= E, equality (10.4.11) is written in the form

µ(A) =
∫

Y

µ(Ay, y)µY (dy), (10.4.12)

since the section Ay is empty if y �∈ B. It is clear that the class of all sets
A ∈ A for which the function y �→ µ(Ay, y) is measurable with respect to AY
and (10.4.12) holds, is monotone. By the above this class contains any finite
unions of measurable rectangles, hence it coincides with A. Then (10.4.9)
holds as well, as

(
A ∩ (X×B)

)y = Ay if y ∈ B, and if y �∈ B, then this
set is empty. If AY contains all singletons, then Ay ∈ A for all A ∈ A and
hence µ(A, y) = µ(Ay, y) because both sides equal µy(Ay). Formula (10.4.10)
follows from what we have proved. The uniqueness statement follows by
Lemma 10.4.3. �

If AY does not contain all singletons, then Ay �∈ A and one has to employ
the measures µy. Certainly, from the very beginning we could deal with the
sets Ay, i.e., the projections of the geometric sections, as is done in Fubini’s
theorem. However, it is often more convenient to assume that the conditional
measures are defined on X×{y}. If Ay �∈ A, then this can be achieved by
defining the measures µy by the equality µy(A) := µy(Ay) on the distinct
σ-algebras AX×{y} = A ∩ X×{y} on X×{y} (which yields a disintegra-
tion in the sense of �10.6). There is no principal difference here, one should
only remember that this is a question of conventions, in which one has to be
consistent.
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It is clear that the conclusion of the above theorem is true in the case
where the whole σ-algebra A is countably generated and the measure µ on
A has a compact approximating class (this follows from Theorem 10.4.5, but
also is a corollary of the above theorem because one can verify that AX is
countably generated and has a compact approximating class). The next result
demonstrates the advantages of our more general formulation.

10.4.15. Corollary. Let Ω = X×Y , where X is a Souslin space with its
Borel σ-algebra AX = B(X) and (Y,AY ) is a measurable space, and let µ be
a measure on A = AX⊗AY . Then, for all y ∈ Y , there exist Radon measures
µy on the spaces X × {y} and Radon measures µy on X such that for every
set A ∈ AX⊗AY , the function y �→ µy(Ay) = µy(Ay) is AY -measurable and
one has the equalities

µ(A) =
∫

Y

µy(Ay) |µ|Y (dy) =
∫

Y

µy(Ay) |µ|Y (dy).

For every other collection of measures µ′
y with the same properties one has

µ′
y = µy for |µ|Y -a.e. y and similarly for µy.

10.4.16. Example. LetX be a Souslin space, let Y be a Hausdorff space,
and let µ be a Radon measure on X×Y . Then, there exist Radon measures
µy on the spaces X × {y}, y ∈ Y , such that for every set A ∈ B(X×Y ) the
function y �→ µy

(
A ∩ (X×{y})

)
is |µ|Y -measurable and one has the equality

µ(A) =
∫

Y

µy
(
A ∩ (X×{y})

)
|µ|Y (dy).

The measures µy are defined uniquely up to a set of |µ|Y -measure zero since
B(X×Y ) ⊂ σ

(
S
(
B(X)

))
⊗ B(Y ) by Lemma 6.4.2 and Theorem 6.9.1.

As noted above, equality (10.4.15) (or (10.4.12)) is equivalent to (10.4.9),
hence implies the essential uniqueness of measures µy. Certainly, the equality

µ(A) =
∫

Y

µ(A, y) |µ|Y (dy)

uniquely determines the measures µ( · , y) for |µ|Y -a.e. y only if we have the
equality µ(A, y) = µy(Ay).

The next result follows easily from Theorem 10.4.14 (consider first the
indicators of rectangles).

10.4.17. Corollary. Let (X,A) be the product of measurable spaces
(Xi,Ai), i = 1, . . . , n. Suppose that A is countably generated and that a
probability measure µ on A has a compact approximating class. Denote by
µ(dxk+1, x1, . . . , xk) a regular conditional probability on Ak+1 with respect to⊗k

i=1Ai. Then the integral of any A-measurable function f ∈ L1(µ) with
respect to the measure µ equals

∫

X1

· · ·
∫

Xn

f(x1, . . . , xn)µ(dxn, x1, . . . , xn−1) · · ·µ(dx2, x1)µ1(dx1),

where µ1 is the projection of µ on X1.



10.4. Regular conditional measures 367

Now we consider how to construct conditional expectations by means of
regular conditional measures; a justification is clear from (10.4.5).

10.4.18. Proposition. In the situation of Theorem 10.4.5, for every
function f ∈ L1(µ) one has

IEBf(x) =
∫

X

f(y)µ(dy, x). (10.4.13)

In the situation of Theorem 10.4.8, one has

IEBf(x) =
∫

X

f(z)µπ(x)(dz).

Now we give an example where there is no regular conditional measure
even for a countably generated σ-algebra. Thus, the existence of a compact
approximating class is an essential condition. Let us take two disjoint sets
S1 and S2 in the interval [0, 1] such that both have inner measure 0, outer
measure 1, and S1 ∪ S2 = [0, 1] (see Example 1.12.13). Let B be the Borel
σ-algebra of the interval and let A be the σ-algebra generated by B and the
set S1. It is clear that both σ-algebras are countably generated. Every set
A ∈ A has the form

A = (B1 ∩ S1) ∪ (B2 ∩ S2), B1, B2 ∈ B([0, 1]).

Let λ be Lebesgue measure on [0, 1]. It has been shown in Theorem 1.12.14
that the formula µ(A) =

(
λ(B1) + λ(B2)

)
/2 defines a measure on A that

coincides with λ on B.

10.4.19. Example. On A, there are no regular conditional measures
with respect to B.

Proof. It is clear that the identity mapping of ([0, 1],A) to ([0, 1],B)
is measurable. The image of the measure µ under this mapping is λ. It is
seen from the proof of Corollary 10.4.10 that for λ-a.e. y, regular conditional
measures must be Dirac measures: µy(A) = δy(A). In particular, µy(S1) =
δy(S1) for all y outside some set Z of Lebesgue measure zero. Obviously, this
contradicts the requirement of the λ-measurability of the function µy(S1),
which equals 1 on a set that differs from the nonmeasurable set S1 only in a
set of Lebesgue measure zero. �

See also Example 10.6.4 and Example 10.6.5 in �10.6. Taking Lebesgue
measure λ on B([0, 1]) and the mapping π(x) = x to the interval [0, 1] equipped
with the σ-algebra E generated by the singletons, we obtain an example where
there exist regular conditional measures λ(A, y) ≡ λ(A), but there are no
proper conditional measures, since such measures would coincide with δy,
whereas the function �→ δy([0, 1/2]) is not E-measurable.

Now we consider some examples of computation of conditional measures.

10.4.20. Example. Let µ be a Borel probability measure on the square
[0, 1]2 defined by a density f with respect to Lebesgue measure. Then, regular
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conditional measures with respect to the projection to the first coordinate axis
have the form

µx(B) =
∫

{y : (x,y)∈B}

f(x, y)
f1(x)

dy, x ∈ [0, 1], (10.4.14)

where

f1(x) =
∫ 1

0

f(x, y) dy,

and we set f(x, y)/f1(x) = 0 if f1(x) = 0. In other words, the measure
µx is concentrated on the vertical interval {x}× [0, 1] and is given by the
density y �→ f(x, y)/f1(x) with respect to the natural Lebesgue measure on
this interval.

Proof. According to Exercise 9.12.48 the image of the measure µ under
the projection to the first coordinate axis (which we denote by ν) is given
by the density f1. By Fubini’s theorem, the function defined by the right-
hand side of (10.4.14) is finite for almost all x and ν-integrable. In addition,
integrating this function against the measure ν, we obtain the integral of
fIB against Lebesgue measure. Since this function depends only on x, our
assertion is proved. �

10.4.21. Example. Suppose that for a probability measure µ on a
measurable space (X,A) we know regular conditional measures with respect
to a sub-σ-algebra B ⊂ A. Then, for every measure η with a density �
with respect to the measure µ, regular conditional measures are given by the
formula

η(A, x) =
1

�B(x)

∫

A

�(y)µ(dy, x), (10.4.15)

where �B is the Radon–Nikodym density of the restriction of η to B with
respect to the restriction of µ to B, |η|({�B = 0}) = 0, and we set η(A, x) = 0
if �B(x) = 0 (one can also set η(A, x) = µ(A)).

Proof. Let Z := {x : �B(x) = 0}. Then |η|(Z) = 0 because for every
bounded B-measurable function ϕ we have

∫

Z

ϕdη =
∫

X

IZϕ� dµ =
∫

X

IZϕ�B dµ = 0.

It follows by (10.4.2) that the function defined by the right-hand side of
(10.4.15) is finite η-a.e. It is readily verified that this function is measur-
able with respect to B (it suffices to approximate the function � by simple
functions). Finally, according to (10.4.2) one has

∫

B

η(A, x) η(dx) =
∫

B

∫

A

�(y)µ(dy, x)µ(dx)

=
∫

B

IA(x)�(x)µ(dx) = η(A ∩B)

for all B ∈ B. �
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In a similar manner the next example is justified.

10.4.22. Example. (i) Let (X1,B1, µ1) and (X2,B2, µ2) be two spaces
with probability measures. Then, for the measure µ := µ1⊗µ2 on B1⊗B2, the
conditional measures with respect to the σ-algebra generated by the projection
to X1 have the form

µ(B, x1, x2) = µ2

(
y2 ∈ X2 : (x1, y2) ∈ B

)
.

In other words, µ( · , x1, x2) = δx1 ⊗ µ2. In terms of conditional measures
generated by the indicated projection this can be written as µx1 = δx1 ⊗ µ2.

(ii) Let ν be a probability measure on B1⊗B2 absolutely continuous with
respect to the measure µ = µ1 ⊗ µ2 in (i) and let � = dν/dµ. Then, the
conditional measures for ν with respect to the σ-algebra generated by the
projection to X1 have the following form:

ν(B, x1, x2) =
(∫

X2

�(x1, y2)µ2(dy2)
)−1 ∫

X

IB(x1, y2)�(x1, y2)µ2(dy2).

Now we consider convergence of conditional measures in variation.

10.4.23. Proposition. Suppose that measures µn on a measurable space
(X,A) converge in variation to a measure µ. Let B be a sub-σ-algebra in A
such that the measure ν :=

∑∞
n=1 2−n|µn| on A has a regular conditional

probability measure ν( · , · ) with respect to B (which is the case if X is a
Souslin space and A = B(X)). Then one can choose a subsequence {ni} and
regular with respect to B conditional measures µni( · , · ) and µ( · , · ) for µni
and µ such that for |µ|-a.e. x, the measures µni( · , x) converge in variation
to µ( · , x).

Proof. It is clear that µn � ν and µ � ν. Let us set fn := dµn/dν,
f := dµ/dν, where we choose A-measurable versions, and let gn and g be the
conditional expectations of fn and f with respect to the σ-algebra B and the
measure ν. In view of Example 10.4.21 one has

µn( · , x) = gn(x)−1fn( · ) · ν( · , x)

for µn-a.e. x (where |µn|({gn = 0}) = 0) and

µ( · , x) = g(x)−1f( · ) · ν( · , x)

for µ-a.e. x (where |µ|({g = 0}) = 0). If gn(x) = 0 or g(x) = 0, then we set
respectively µn( · , x) = ν( · , x) or µ( · , x) = ν( · , x). We have

‖µn − µ‖ =
∫

X

|fn − f | dν =
∫

X

∫

X

|fn(y)− f(y)| ν(dy, x) ν(dx).

Since the measures µn converge to µ in variation, there is a subsequence {ni}
such that for ν-a.e. x, the sequence of functions fni converges to the function
f in L1

(
ν( · , x)

)
, i.e., the measures fni · ν( · , x) converge in variation to the

measure f · ν( · , x). The functions gn converge to g in L1(ν), which gives
convergence almost everywhere if we choose a suitable subsequence in {ni}
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denoted by the same symbol. Since g(x) �= 0 for |µ|-a.e. x, we obtain a desired
subsequence. �

Let us note that in the case of probability measures the obtained result
gives the µ-a.e. convergence of the conditional expectations IEB

µni
f → IEB

µf

for any bounded A-measurable function f .
If we require the ν-a.e. convergence fn → f and gn → g (as in Gänssler,

Pfanzagl [655]), then we obtain the |µ|-a.e. convergence of the conditional
measures.

The following example shows that in the considered situation, there might
be no convergence (even in the weak topology!) of the whole sequence, so that
it is indeed necessary to select a subsequence.

10.4.24. Example. There is a sequence of Borel probability measures
µn on [0, 1]×[0, 1] with densities �n > 0 that converges in variation to Lebesgue
measure λ, but, for every fixed x ∈ [0, 1], the conditional measures µxn do not
converge weakly on [0, 1], in particular, do not converge in variation.

Proof. Let �n(x, y) = 1 + ϕn(x)ψ(y), where ψn(y) = 1 if y ∈ [0, 1/2],
ψn(y) = −1 if y ∈ (1/2, 1], 0 ≤ ϕn ≤ 1, and {ϕn} converges to 0 in mea-
sure but at no point. Then |�n(x, y) − 1| ≤ ϕn(x), which yields conver-
gence in L1([0, 1]×[0, 1]). The conditional measure µxn is given by the density
y �→ �n(x, y), which is a probability density. Clearly, there is no weak conver-
gence of these conditional measures. Indeed, the integral of �n(x, y) in y over
[0, t] equals t+ tϕn(x) if t ≤ 1/2. �

The following result on convergence of conditional measures is proved in
Blackwell, Dubins [181].

10.4.25. Proposition. Suppose we are given a sequence of measur-
able spaces (Xi,Ai) and two probability measures µ and ν on their product
(X,A) with ν � µ. Assume that for every n, the measure µ has regular
conditional probability measures µx1,...,xn , (x1, . . . , xn) ∈

∏n
i=1Xi, on the σ-

algebra Bn+1 := An+1

⊗
An+2

⊗
· · · in the space Zn+1 := Xn+1×Xn+2× · · · .

Then the measure ν also has regular conditional probability measures νx1,...,xn

on Bn+1, and for ν-a.e. (x1, x2, . . .) ∈ X one has

lim
n→∞

‖µx1,...,xn − νx1,...,xn‖ = 0.

Proof. Let us fix an A-measurable version � of the Radon–Nikodym
density dν/dµ. Let

�n(x1, . . . , xn) =
∫

Zn+1

�(x1, x2, . . .)µx1,...,xn

(
d(xn+1, xn+2, . . .)

)
,

ξn(x1, . . . , xn, xn+1, . . .) =
�(x1, x2, . . .)
�n(x1, . . . , xn)
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whenever �n(x1, . . . , xn) �= 0 and ξn(x1, . . . , xn, xn+1, . . .) = 0 otherwise. Let
us introduce functions

ψx1,...,xn(xn+1, . . .) = ξn(x1, . . . , xn, xn+1, . . .)

on Zn+1. Then the measures

νx1,...,xn := ψx1,...,xn · µx1,...,xn

serve as regular conditional probability measures for ν. For every ε > 0, we
have

‖µx1,...,xn − νx1,...,xn‖ =
∫

Zn+1

|1− ψx1,...,xn | dµx1,...,xn

= 2
∫

{ψx1,...,xn>1}
[ψx1,...,xn − 1] dµx1,...,xn

≤ 2ε+ 2
∫

{ψx1,...,xn>1+ε}
[ψx1,...,xn − 1] dµx1,...,xn

≤ 2ε+ 2νx1,...,xn

(
{ψx1,...,xn > 1 + ε}

)
.

Let us observe that

νx1,...,xn

(
{ψx1,...,xn > 1 + ε}

)
= IEFn

ν I{ξn>1+ε}(x1, . . . , xn),

where Fn := A1

⊗
· · ·
⊗
An. By the martingale convergence theorem, for ν-

a.e. (x1, x2, . . .) the sequence �n(x1, . . . , xn) converges to �(x1, x2, . . .), which
yields convergence of the sequence ξn(x1, . . . , xn, xn+1, . . .) to 1. Hence one
has I{ξn>1+ε} → 0. Therefore, IEFn

ν I{ξn>1+ε}(x1, . . . , xn) → 0 for ν-a.e. point
(x1, x2, . . .) according to Exercise 10.10.39, which completes the proof. �

10.5. Liftings and conditional measures

In this section, we consider another approach to constructing conditional
measures that is based on the concept of lifting, which definitely deserves a
discussion in its own right. This concept arises in fact right after introducing
classes of equivalent functions in the sense of equality almost everywhere. Is
it possible to pick in every equivalence class in the set of all bounded mea-
surable functions exactly one representative in such a way that the algebraic
relationships (sums and products) that hold for classes be fulfilled pointwise
for these representatives? Such a choice is called a lifting. Let us give precise
definitions.

10.5.1. Definition. Let (X,A, µ) be a measurable space with a nonnega-
tive measure µ (possibly with values in [0,+∞]) and let L∞

A be the space of all
bounded A-measurable functions. A lifting on L∞

A is a mapping L : L∞
A → L∞

A
satisfying the following conditions:

(i) L(f) = f µ-a.e.;
(ii) L(f)(x) = L(g)(x) for all x ∈ X if f = g µ-a.e.;
(iii) L(f)(x) = 1 for all x ∈ X if f = 1 µ-a.e.;
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(iv) L(αf + βg)(x) = αL(f)(x) + βL(g)(x) for all x ∈ X, f, g ∈ L∞
A and

α, β ∈ IR1;
(v) L(fg)(x) = L(f)(x)L(g)(x) for all x ∈ X, f, g ∈ L∞

A .

We observe that if L is a lifting, then for all A ∈ A we have L(IA) =
L(I2

A) = L(IA)2, i.e., the function L(IA) takes values in {0, 1} and hence is
the indicator of some set Ã ∈ A. This enables us to define the mapping
L : A → A, L(A) := Ã. By the properties of liftings, this mapping satisfies
the following conditions:

(1) µ
(
L(A)�A

)
= 0,

(2) L(A) = L(B) if µ(A�B) = 0,
(3) L(X) = X, L(∅) = ∅,
(4) L(A ∪B) = L(A) ∪ L(B),
5) L(A ∩B) = L(A) ∩ L(B).
The mapping L : A → A is called a lifting of the σ-algebra A. It is clear

that every lifting of the σ-algebra A uniquely defines a lifting on L∞
A by the

formula L(IA) := IL(A), extended by linearity to all simple functions and then
by means of uniform approximations to all of the space L∞

A . Thus, liftings
correspond one-to-one to liftings of the σ-algebra.

For every lifting we have
(iv’) L(f) ≥ 0 if f ≥ 0 µ-a.e.
Indeed, L(f) = L(

√
f)L(

√
f).

The most important is the case when A is Aµ. This is exactly the above-
mentioned problem of selecting in every equivalence class in L∞(µ) a repre-
sentative with pointwise preservation of the algebraic operations. It is clear
that liftings of L∞(µ) can be identified with homomorphisms from the alge-
bra L∞(µ) to the algebra L∞(µ) such that any equivalence class is sent to its
representative. For this reason, L is also called a lifting of L∞(µ).

A weaker concept than a lifting is a linear lifting. This is a mapping L
with properties (i)–(iv) and (iv’). The following result enables one to reduce
the construction of a lifting to finding a linear lifting, which is somewhat
simpler, as we shall see below.

10.5.2. Lemma. Let L0 be a linear lifting for a complete probability
measure µ on a measurable space (X,A). For each A ∈ A let

E(A) :=
{
x : L0(IA)(x) = 1

}
, P (A) :=

{
x : L0(IA)(x) > 0

}
.

Then, there exists a lifting L such that IE(A) ≤ L(IA) ≤ IP (A) for all A ∈ A.

Proof. We consider the set Λ of all linear liftings l such that

IE(A) ≤ l(IA) ≤ IP (A), A ∈ A.
Then L0 ∈ Λ, which follows by the definition of E(A) and P (A), since we
have 0 ≤ L0(IA) ≤ 1. The set Λ is convex if it is regarded as a subset in the
product IRΩ, Ω = L∞

A ×X, by means of the natural embedding

l �→
(
l(f)(x)

)
(f,x)∈Ω

.
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It is clear that Λ is contained in the product of compact intervals, since
|l(f)(x)| ≤ supy∈X |f(y)| for all l ∈ Λ by property (iv’) of a linear lifting.

The set Λ is closed in IRΩ in the product topology. Indeed, let an element
ξ : (f, x) �→ ξ(f, x) ∈ IRΩ be the limit of a net of elements lα ∈ Λ, i.e.,

ξ(f, x) = lim
α
lα(f)(x) for all f ∈ L∞

A and x ∈ X.

We set l(f)(x) := ξ(f, x) and show that l ∈ Λ. It is obvious that conditions
(ii)–(iv) and (iv’) from the definition of a linear lifting are satisfied and one
has the estimate

IE(A) ≤ l(IA) ≤ IP (A) for all A ∈ A,

since all these relationships are pointwise. However, we have to verify the
equality l(f) = f a.e. (because we deal with a possibly uncountable net). Let
f = IA, where A ∈ A. Then one has a.e.

IE(A) ≤ l(IA) ≤ IP (A) and IE(A)(x) = IP (A)(x) = IA(x)

which by the completeness of the measure µ on A yields the A-measurability
of l(f) and the equality l(f)(x) = f(x) a.e. This equality extends to finite
linear combinations of indicators of sets in A. An arbitrary function f ∈ L∞

A
is the uniform limit of a sequence of simple functions fj ∈ L∞

A , for which
the equality l(fj) = fj a.e. is already established. Since the functions l(fj)
converge uniformly to l(f) by property (iv’), we obtain l(f) = f a.e.

Since the product of compact intervals is compact, the set Λ is convex
and compact. By the Krein–Milman theorem (see Dunford, Schwartz [503,
Ch. V, �8]) Λ has extreme points, i.e., points that are not representable as
a convex combination tl′ + (1 − t)l′′ with t ∈ (0, 1), l′, l′′ ∈ Λ. Let L be
such an extreme point. We show that L is a required lifting. In fact, we
have to verify that L(fg) = L(f)L(g). Suppose that this is not true, i.e.,
there exist f, g ∈ L∞

A and a ∈ X such that L(fg)(a) �= L(f)(a)L(g)(a).
Then we observe that one can take g with 0 ≤ g ≤ 1 (the validity of the
above equality for all g with this restriction yields its validity for all g). Let
L1(ϕ) = L(ϕ) + L(gϕ)− L(g)L(ϕ), L2(ϕ) = L(ϕ)− L(gϕ) + L(g)L(ϕ). It is
clear that L = (L1 + L2)/2 and L1 �= L2 because L1(f)(a) �= L2(f)(a). Let
us verify that L1, L2 ∈ Λ. The functionals L1 and L2 are linear and L1(1) =
L2(1) = 1. If ϕ ≥ 0, then L1(ϕ) =

(
1−L(g)

)
L(ϕ)+L(gϕ) ≥ 0, since L(g) ≤ 1,

L(ϕ) ≥ 0 and L(gϕ) ≥ 0. Similarly, L2(ϕ) ≥ 0. Therefore, 0 ≤ Li(ψ) ≤ 1,
i = 1, 2, whenever 0 ≤ ψ ≤ 1. It is clear that L1(ϕ) = L2(ϕ) = ϕ a.e. Finally,
we have IE(A) ≤ L1(IA) ≤ IP (A) and IE(A) ≤ L2(IA) ≤ IP (A), since these
inequalities hold for L = (L1 + L2)/2 and 0 ≤ Li(IA) ≤ 1. Hence we obtain
a contradiction with the fact that L is an extreme point. �

Linear liftings are easier to construct. We shall consider a special case –
Lebesgue measure on an interval, which makes transparent the proof in the
general case.
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10.5.3. Example. All functions on [0, 1] will be extended by zero outside
[0, 1]. We know that for every bounded measurable function f the limit of the
quantities

Enf(x) := n

∫ x+n−1

x

f(y) dy

a.e. equals f(x). On the space m of all bounded sequences with the sup-norm,
there exists a generalized limit, i.e., a continuous linear functional Λ that is
nonnegative on nonnegative sequences and coincides with the usual limit on
all convergent sequences (see Exercise 2.12.100). Set

L(f)(x) := Λ
((
Enf(x)

)∞
n=1

)
.

Then L(f)(x) = f(x) at all points x where f(x) = lim
n→∞

Enf(x), i.e., almost
everywhere. The linearity and nonnegativity of L are obvious. Thus, L is a
linear lifting and L(f) = f for all continuous f . By Lemma 10.5.2 we obtain
the existence of a lifting on [0, 1] with Lebesgue measure.

10.5.4. Theorem. For every complete probability measure µ, there exists
a lifting on L∞(µ).

Proof. We consider the set M consisting of all pairs (E , L), where E is a
sub-σ-algebra in A containing the σ-algebra A0 generated by all measure zero
sets and L is a lifting on E . The set M is not empty, since on A0 one has the
lifting L0 defined as follows: L0(IA) = 0 if µ(A) = 0, L0(IA) = 1 if µ(A) = 1.
The set M is equipped with the following order: (E1, L1) ≤ (E2, L2) if E1 ⊂ E2

and L2|E1 = L1. We show that M contains a maximal element. By Zorn’s
lemma it suffices to verify that every linearly ordered part {(Eα, Lα)} in M
has an upper bound. Let E be the σ-algebra generated by all Eα. We shall
construct on E a lifting L whose restriction to Eα is Lα for all α. Then the
pair (E , L) will be an upper bound.

Suppose first that for every sequence (Eαn , Lαn) in M one has an upper
bound (Eβ , Lβ) in M. Then L can be defined in the following way. It is easy to
see that for every E-measurable bounded function f , there exists a countable
collection of indices αn such that f is measurable with respect to the σ-algebra
generated by all Eαn . We take β with (Eαn , Lαn) ≤ (Eβ , Lβ) for all n and set
L(f) = Lβ(f). It is readily verified that due to the linear ordering of the
considered collection, L is well-defined. It is clear that L is a lifting. Suppose
now that our assumption is false for some sequence (Eαn , Lαn). It is clear
that this sequence can be taken as increasing. Since for every α, there exists
n with (Eα, Lα) ≤ (Eαn , Lαn) because otherwise αn ≤ α for all n, we obtain
that E is generated by an increasing sequence of σ-algebras Eαn . By Theorem
10.2.3, for every bounded E-measurable function f , almost everywhere there
exists a limit lim

n→∞
IEEnf(x) and this limit equals f(x) a.e. By means of this

limit we define a linear lifting L0. To this end, as in the case of the interval,
we take a generalized limit Λ on the space m of all bounded sequences and
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set

L0(f)(x) := Λ
((
Lαn

[
IEEnf

]
(x)
)∞
n=1

)
.

Then L0 is a linear mapping, 0 ≤ L0(f) ≤ 1 whenever 0 ≤ f ≤ 1, and one has
L0(f) = Lαn(f) if the function f is measurable with respect to Eαn . Indeed,
in this case for all k ≥ n we have Lαk

[
IEEkf

]
= Lαn

[
IEEnf

]
= Lαn(f), whence

the indicated equality follows. For every E-measurable bounded function f we
have L0(f) = f a.e., since we have f(x) = lim

n→∞
IEEnf(x) a.e. and IEEnf(x) =

Lαn
[
IEEnf

]
(x) a.e. Let L be a lifting on E given by Lemma 10.5.2. The

restriction of L to Eα is Lα for every α. Indeed, there is n with α ≤ αn, whence
for anyA ∈ Eα we obtain L0(IA) = Lαn(IA). Hence IE(A) = IP (A) = Lαn(IA).
Therefore, L(IA) = Lαn(IA), which yields the equality on all bounded Eα-
measurable functions.

Thus, M has at least one maximal element (E , L). We show that E = A,
which will bring our proof to an end. As we have explained earlier, it suffices
to prove that if there is a measurable set E0 �∈ E , then there exists a lifting of
the σ-algebra E0 generated by E and E0 that extends the given lifting L on E .
The elements of E0 are all sets of the form

C = (E0 ∩A) ∪ [(X\E0) ∩B], A,B ∈ E . (10.5.1)

For every set S, let Z(S) denote the collection of all sets E ∈ E such that
µ(E ∩ S) = 0. Let Ω1 denote the union of the sets L(D) over all D ∈ Z(E0),
and let Ω2 be the union of the sets L(F ) over all F ∈ Z(X\E0). Let

E′
0 :=

(
E0 ∩ (X\Ω1)

)
∪
(
(X\E0) ∩ Ω2

)
.

There exist sets En ∈ Z(E0) such that En ⊂ En+1 and

lim
n→∞

µ(En) = sup{µ(E) : E ∈ Z(E0)}.

It is clear that E∞ :=
⋃∞
n=1En ∈ Z(E0). We observe that L(E∞) = Ω1.

Indeed, L(E∞) ⊂ Ω1. On the other hand, for every set D ∈ Z(E0), we
have µ(D\E∞) = 0 by the construction of E∞, whence one has the inclusion
L(D) ⊂ L(E∞). Thus, Ω1 ∈ Z(E0) ⊂ E . Similarly, we prove the existence
of a set D∞ ∈ Z(X\E0) such that Ω2 = L(D∞) ∈ Z(X\E0). Therefore,
E′

0 ∈ E0. One can readily verify the equality µ(E0 � E′
0) = 0. Further,

Ω1 ∩ Ω2 = L(E∞) ∩ L(D∞) = L(E∞ ∩D∞) = ∅.

Now for every A ∈ Z(E0), we obtain E′
0 ∩ L(A) ⊂ E′

0 ∩ Ω1 ⊂ Ω2 ∩ Ω1 = ∅.
Similarly, for all B ∈ Z(X\E0), we have (X\E′

0)∩L(B) = ∅. For sets of the
form (10.5.1), we let

L0(C) :=
(
E′

0 ∩ L(A)
)
∪
[
(X\E′

0) ∩ L(B)
]
.

By using the above relationships it is easily verified that L0 is a lifting on E0

such that L0|E = L and L0(E0) = E′
0. �
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It is clear that a lifting exists for any complete nonnegative σ-finite mea-
sure (even for any decomposable measure, and the converse is true, see Exer-
cise 10.10.52).

It remains an open question how essential the completeness of the measure
µ is (which has been used in Lemma 10.5.2). For example, the question arises
whether in the lifting theorem one can choose Borel representatives in the
equivalence classes in the case of Lebesgue measure on the real line. It was
shown in von Neumann, Stone [1367] under the continuum hypothesis that
a Borel lifting exists in the case of Lebesgue measure. However, according
to Shelah [1695], it is consistent with set theory ZFC that there is no such
lifting.

There are no linear liftings on the spaces Lp[0, 1] with 1 ≤ p <∞ (Exer-
cise 10.10.53).

Now we employ liftings to prove one more result on the existence of regular
conditional measures. We begin with an auxiliary lemma. Let (X,A, µ) be a
measurable space with a finite nonnegative measure, let L be a lifting on the
space L∞(µ), and let L := L

(
L∞(µ)

)
. Then L turns out to be a complete

vector lattice (see Chapter 4, �4.7(i)). Due to property (ii) of liftings the
order relation in L is the pointwise inequality f(x) ≤ g(x) (unlike the a.e.
inequality in L∞(µ)). Let M be a subset of L bounded from above. Denote
by ∨(M) the lattice supremum of M (which exists, since L is complete) and
set

sup(M)(x) := sup{f(x) : f ∈M}.
It turns out that the function sup(M) is measurable. Certainly, this is

due to a special structure of the set L: it is easy to give an example of a
family of uniformly bounded measurable functions whose supremum is not
measurable.

10.5.5. Lemma. (i) Suppose that M is a subset of L bounded from
above. Then sup(M) is a µ-measurable function, sup(M) = ∨(M) a.e. and
sup(M) ≤ ∨(M) everywhere.

(ii) Let {fα} be a bounded increasing net in L. Then
∫

X

sup
α
fα(x)µ(dx) = sup

α

∫

X

fα(x)µ(dx).

In particular, if {Aα} is an increasing net of measurable sets, then the set⋃
α L(Aα), where L also denotes the lifting of Aµ, is measurable and its mea-

sure is supα µ(Aα).

Proof. (i) We have the pointwise inequality sup(M)(x) ≤ ∨(M)(x),
since f(x) ≤ ∨(M)(x) for all x (we recall again that the order relation in
L is the pointwise inequality). By Corollary 4.7.2, there exists a sequence
{fn} ⊂M such that ∨(M) = ∨{fn}. Let f = supn fn. Then the function f is
measurable with respect to µ and f ≤ sup(M) ≤ ∨(M) everywhere. On the
other hand, f ≥ fn for every n, hence by the definition of a lifting Lf ≥ fn
everywhere. Therefore, Lf ≥ ∨{fn} = ∨(M), whence f ≥ ∨(M) a.e.
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(ii) Set M = {fα} and choose a sequence {fn} as above. One can assume
that {fn} is increasing because due to the increasing of {fα} one can pass to
the sequence maxni=1 fi. Then sup(M) = supn fn = lim

n→∞
fn a.e., so one has

∫

X

sup(M)(x)µ(dx) = lim
n→∞

∫

X

fn(x)µ(dx),

which is majorized by

sup
α

∫

X

fα(x)µ(dx).

The reverse inequality is trivial. �

It should be noted that the equality in (ii) does not extend to arbitrary
increasing bounded nets, i.e., the membership in the range of a lifting is
essential. For example, one can take a net of functions on [0, 1] with finite
supports on which these functions equal 1, such that the supremum of this
net equals 1 at every point, but the integrals are all zero.

10.5.6. Theorem. Let µ be a Radon measure on a topological space X
and let π be a µ-measurable mapping from X to a measurable space (Y, E).
Then, there exist Radon conditional measures on X, i.e., there exists a map-
ping (B, y) �→ µ(B, y), B(X)×Y → IR1, with the following properties:

(1) for every y ∈ Y , the set function B �→ µ(B, y) is a Radon measure
on X;

(2) for every B ∈ B(X), the function y �→ µ(B, y) is measurable with
respect to the measure ν := |µ| ◦ π−1;

(3) for all B ∈ B(X) and E ∈ E, one has
∫

E

µ(B, y) ν(dy) = µ
(
B ∩ π−1(E)

)
. (10.5.2)

Proof. Suppose first that µ is a probability measure and X is compact.
For every ϕ ∈ C(X), let

µϕ(E) =
∫

π−1(E)

ϕ(x)µ(dx), E ∈ E .

The measure µϕ is absolutely continuous with respect to ν, the mapping
ϕ �→ µϕ is linear, and one has the estimate

|µϕ|(E) ≤ ‖ϕ‖∞ν(E).

Denote by p(ϕ, ·) the Radon–Nikodym density of µϕ with respect to ν. By the
above estimate, the norm of p(ϕ, ·) in L∞(ν) is majorized by ‖ϕ‖∞. According
to Theorem 10.5.4, there exists a lifting L of the space L∞(ν). Therefore, one
can set

r(ϕ, ·) := L
(
p(ϕ, ·)

)
.

By the definition of the Radon–Nikodym density and properties of liftings we
obtain that for every y ∈ Y the mapping ϕ �→ r(ϕ, y) is a positive linear func-
tional on the space C(X), r(1, y) = 1 and |r(ϕ, y)| ≤ supx |ϕ(x)|. According
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to the Riesz theorem, there exist Radon probability measures µ( · , y) on the
compact space X such that

∫

X

ϕ(x)µ(dx, y) = r(ϕ, y).

We recall that the function r(ϕ, ·) represents the equivalence class of the
density of the measure µϕ with respect to ν.

We verify that the family of measures µ(·, y) has the required properties.
Let F denote the class of all bounded Borel functions ϕ on X for which the
function

y �→
∫

X

ϕ(x)µ(dx, y)

on Y is measurable with respect to the Lebesgue completion of ν and for every
E ∈ E one has the equality

∫

E

∫

X

ϕ(x)µ(dx, y) ν(dy) =
∫

π−1(E)

ϕ(x)µ(dx). (10.5.3)

By construction, this class contains C(X). In addition, it is a linear space
that is closed with respect to pointwise convergence of uniformly bounded
sequences, i.e., if ϕn ∈ F , |ϕn| ≤ C, ϕ(x) = lim

n→∞
ϕn(x), then ϕ ∈ F . Let us

verify that the indicator functions of open sets belong to F . Let U be open
in X. Set

Ψ =
{
ψ ∈ C(X) : 0 ≤ ψ ≤ IU

}
, Ψ∗ =

{
r(ψ, · ) : ψ ∈ Ψ

}
.

The subset Ψ∗ in the lattice L = L
(
L∞(ν)

)
is bounded from above by the

unit function. We observe that for every y ∈ Y , in view of the Radon property
of µ( · , y) one has

µ(U, y) = sup
{
r(ψ, y) : ψ ∈ Ψ

}
. (10.5.4)

Indeed, given ε > 0, there exists a compact set K in U with µ(U\K, y) < ε.
Since X is compact, there exists a continuous function ψ : X → [0, 1] that
equals 1 on K and 0 outside U . By the definition of µ( · , · ), we have

r(ψ, y) =
∫

X

ψ(x)µ(dx, y) ≥ µ(K, y) ≥ µ(U, y)− ε.

In view of the inequality r(ψ, y) ≤ µ(U, y), we arrive at (10.5.4). By Lemma
10.5.5 (or Lemma 7.2.6), the function y �→ µ(U, y) is measurable with respect
to the Lebesgue completion of ν. Let us fix a set E ∈ E and verify the validity
of formula (10.5.3). Since the measure Iπ−1(E) · µ is Radon, one has

µ
(
U ∩ π−1(E)

)
= sup

{∫

X

IE
(
π(x)

)
ψ(x)µ(dx) : ψ ∈ Ψ

}
,

which equals

sup
{∫

Y

IE(y)r(ψ, y) ν(dy) : ψ ∈ Ψ
}
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because (ψ ·µ)◦π−1 = r(ψ, · ) ·ν. On the other hand, applying Lemma 10.5.5
to the family of functions {r(ψ, · ) : ψ ∈ Ψ} on the space Y with the measure
IE · ν, we obtain

∫

Y

IE(y)µ(U, y) ν(dy) = sup
{∫

Y

IE(y)r(ψ, y) ν(dy) : ψ ∈ Ψ
}
.

Thus, (10.5.3) is verified. By Theorem 2.12.9, the class F coincides with the
collection of all bounded Borel functions. In particular, for every B ∈ B(X),
the function y �→ µ(B, y) is measurable with respect to ν. In addition, one
has (10.5.2).

We observe that if µ is a nonnegative (but not probability) measure, then
applying the above construction to the corresponding normalized measure,
we obtain the required representation, where all conditional measures are
probabilities.

Now we consider the case where µ is still a probability measure, but the
space X is arbitrary. We choose an increasing sequence of compact sets Kn

with µ(Kn) → 1 and let Sn = Kn\Kn−1, S1 = K1. Let µn = ISn · µ and let
�n be the Radon–Nikodym density of the measure µn ◦ π−1 with respect to
ν = µ◦π−1. Let us apply the case considered to every measure µn considered
on the compact set Kn. We denote the corresponding conditional measures
on Kn by µn( · , y). We observe that

∑∞
n=1 µn = µ and

∑∞
n=1 �n = 1 ν-a.e.

Letting µ(B, y) =
∑∞
n=1 �n(y)µn(B ∩ Sn, y), we obtain (10.5.2). To this end,

it suffices to observe that this equality is true if B ⊂ Sn. Indeed,
∫

E

µ(B, y) ν(dy) =
∫

E

�n(y)µn(B, y) ν(dy) =
∫

E

µn(B, y)µn ◦ π−1(dy)

= µn
(
π−1(E) ∩B

)
= µ

(
π−1(E) ∩B

)
.

In the general case, we apply the already-proven assertions to the mea-
sures µ+ and µ− that yield two families of conditional probability measures
µ′( · , · ) and µ′′( · , · ), respectively. Let �+ and �− be the Radon–Nikodym
densities of the measures µ+ ◦π−1 and µ− ◦π−1 with respect to ν = |µ| ◦π−1.
Letting

µ(B, y) = �+(y)µ′(B, y)− �−(y)µ′′(B, y),
we arrive at the desired representation. �

10.5.7. Corollary. Suppose that under the hypotheses of Theorem 10.5.6
the graph of π belongs to B(X)⊗E. Then, the conditional probability µ( · , · )
has the following property: for ν-almost every y ∈ Y , the measure µ( · , y) is
concentrated on the set π−1(y) (and all such sets are Borel).

Proof. There exist {Bn} ⊂ B(X) and {En} ⊂ E such that the graph Γπ
of π belongs to the σ-algebra generated by the sets Bn×En. The sets π−1(y)
belong to σ({Bn}) because IΓπ = ϕ(IB1IE1 , IB2IE2 , . . .), where ϕ is a Borel
function on IR∞. Hence the reasoning from Corollary 10.4.10 is applicable. �

This result yields easily the already-known assertion from Example 10.4.11
on conditional measures in the case of measurable mappings of Souslin spaces.
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10.6. Disintegrations of measures

In this section, we discuss certain generalizations of conditional measures.
The principal difference as compared to our previous setting is that now con-
ditional measures will be defined on different σ-algebras.

Let (X,F, µ) be a probability space, let B ⊂ F be a sub-σ-algebra, and
let B ∩ E = BE denote the restriction of B to E ⊂ X.

10.6.1. Definition. Suppose that for each x ∈ X we are given a sub-σ-
algebra Fx ⊂ F and a measure µ( · , x) on Fx satisfying the following condi-
tions:

(i) for every A ∈ F, there exists a set NA ∈ B such that µ(NA) = 0 and
A ∈ Fx for all x �∈ NA, and the function x �→ µ(A, x) on X\NA is measurable
with respect to B ∩ (X\NA) and µ-integrable;

(ii) for all A ∈ F and B ∈ B one has
∫

B

µ(A, x)µ(dx) = µ(A ∩B).

Then we shall say that the measures µ( · , x) give a disintegration of the mea-
sure µ with respect to B and call these measures conditional measures.

It is clear that if there exist regular conditional measures µ( · , x) with
respect to B, then they give a disintegration, and one can let Fx = F for all x.
The difference between disintegrations and regular conditional measures is
that, in the first place, the measures µ( · , x) may be defined on different σ-
algebras, and, secondly, the condition of B-measurability of µ(A, x) is weak-
ened at the expense of admitting sets NA of measure zero. As we shall see
below, these distinctions lead indeed to a more general object. However, we
shall show first that in the case of a countably generated σ-algebra F, the exis-
tence of a disintegration is equivalent to the existence of conditional measures
with respect to B (we recall that conditional measures do not always exist
even for countably generated σ-algebras, see Example 10.4.19). Somewhat
different disintegrations are considered below in �10.10(ii).

10.6.2. Proposition. Suppose that F is a countably generated σ-algebra.
Then, the existence of a disintegration with respect to a σ-algebra B ⊂ F is
equivalent to the existence of a regular conditional measure with respect to B.

Proof. If we have a regular conditional measure, then we have a dis-
integration. Let us show the converse. Suppose that measures µ( · , x) on
Fx ⊂ F give a disintegration of the measure µ on F with respect to B and
construct a new disintegration µ1( · , x) such that all conditional measures
are defined on F. Let R be a countable algebra generating F. For every
Ai ∈ R, we find a measure zero set NAi ⊂ B with the properties from Defi-
nition 10.6.1. We may assume that µ(Ai, x) ≥ 0 and µ(X,x) = 1 if x �∈ NAi
since µ(Ai, x) ≥ 0 a.e. and µ(X,x) = 1 a.e. by the identity in (ii) in the
definition. Let N =

⋃∞
i=1NAi . It is clear that N ∈ B and µ(N) = 0. By

Lemma 10.4.3 we may assume that µ( · , x) is a probability measure for each
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x ∈ X\N . Let us consider the class of all sets E ∈ F such that E ∈ Fx
for all x ∈ X\N and the function x �→ µ(E, x) on X\N is measurable with
respect to B∩ (X\N). It is clear that this class contains R and is monotone.
Therefore, it coincides with F. Now we let µ1(A, x) = µ(A, x) if x �∈ N and
A ∈ F. This is possible because A ∈ Fx if x �∈ N . If x ∈ N , then we set
µ1(A, x) = µ(A). Since N ∈ B, it follows that for every A ∈ F, the function
x �→ µ1(A, x) is measurable with respect to B. Finally, if B ∈ B, then by
the equality µ(N) = 0, the integral of µ1(A, x) over B equals the integral of
µ(A, x) over B, hence equals µ(A ∩B). �

10.6.3. Remark. There is yet another definition of conditional measures
that is intermediate between regular conditional measures and disintegrations.
We shall say that a family of measures µ( · , x) on F gives for the measure µ
conditional measures with respect to B ⊂ F in the sense of Doob if in Defi-
nition 10.4.1 of regular conditional measures in place of the B-measurability
of functions x �→ µ(A, x) with A ∈ F, we require only their Bµ-measurability.
The connection between conditional measures in the sense of Doob and dis-
integrations consists in the following: the existence of conditional measures
with respect to B in the sense of Doob is equivalent to the existence of a
disintegration µ( · , x) with Fx = F for all x ∈ X (Exercise 10.10.49).

Now we give an example (using the continuum hypothesis) that shows
that the existence of a disintegration does not guarantee the existence of
regular conditional measures.

10.6.4. Example. Let X = [0, 1]2×[0, 1], F = L2⊗L1, where L2 and L1

are the σ-algebras of Lebesgue measurable sets in [0, 1]2 and [0, 1], respectively.
Let

µ(A) = λ2

(
(x1, x2) : (x1, x2, x2) ∈ A

)
, A ∈ F,

where λ2 is Lebesgue measure on [0, 1]2. Let us take for B the σ-algebra of all
cylinders B = [0, 1]2×B0, B0 ∈ L1. Then the set of all compact sets in X is
a compact approximating class for µ on F and there exists a disintegration of
µ with respect to B. However, under the continuum hypothesis, one cannot
choose conditional measures µ( · , x) such that for µ-a.e. x, the measure µ( · , x)
be defined on F.

Proof. We observe that the measure µ is well-defined on F, since the
mapping ψ : (x1, x2) �→ (x1, x2, x2) is measurable with respect to the σ-
algebras L2 and L2 ⊗ L1 because ψ−1(A2×A1) = A2 ∩ ([0, 1]×A1) ∈ L2

for all A2 ∈ L2 and A1 ∈ L1. According to our definition, µ = λ2 ◦ ψ−1. It
is readily seen that the measure µ is approximated by the class of all com-
pact sets. As shown in Theorem 10.6.6 below, this implies the existence of a
disintegration with respect to B. Let us show that one cannot have almost
all conditional measures defined on F. Suppose the contrary. We show that
there exists a set M ∈ B such that µ(M) = 0 and, for all x �∈M and all Borel
sets E ⊂ [0, 1]2, one has the equality

µ(E×[0, 1], x) = λ1(Ex3), x = (x1, x2, x3), Ex3 = {t : (t, x3) ∈ E}. (10.6.1)
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Since B([0, 1]2) is a countably generated σ-algebra and both sides of (10.6.1)
are measures as set functions on E ∈ B([0, 1]2), it suffices to verify that there
exists a set M ∈ B of µ-measure zero such that (10.6.1) is true for all x �∈M
and every set E in some countable algebra generating B([0, 1]2). Hence it
suffices to show that for any fixed set E, equality (10.6.1) is true µ|B-a.e. In
turn, it suffices to show that the integrals of both sides of (10.6.1) over every
set B ∈ B coincide. Since B = [0, 1]2×B0, the integral over B of the left-hand
side is

µ
(
B ∩ (E×[0, 1])

)
= λ2

(
E ∩ ([0, 1]×B0)

)
=
∫

B0

λ1(Ex3)λ1(dx3)

by the definition of a disintegration and Fubini’s theorem. It remains to
observe that ∫

B0

λ1(Ex3)λ1(dx3) =
∫

[0,1]2×B0

λ1(Ex3)µ(dx),

since λ1(Ex3) does not depend on (x1, x2) and the image of µ under the
mapping (x1, x2, x3) �→ x3 is λ1 (the latter is easily verified). Thus, we obtain
a required set M . Now let x = (x1, x2, x3) �∈ M . We observe that for
an arbitrary set C ⊂ [0, 1], the set C × {x3}× [0, 1] belongs to F, since we
have λ2(C × {x3}) = 0. Due to our assumption that almost all conditional
measures are defined on F, there exists at least one point x �∈ M for which
the set function λ(C) = µ(C × {x3}× [0, 1], x) is defined on the class of all
sets C ⊂ [0, 1]. It is clear that λ is a countably additive measure that vanishes
on all singletons by (10.6.1). According to Corollary 1.12.41 we have λ = 0,
a contradiction. �

Let us consider one more close example, in which, however, the σ-algebra
B is not complete with respect to µ.

10.6.5. Example. Assume the continuum hypothesis. Let X = [0, 1]2,
let F be the σ-algebra of all Lebesgue measurable sets in [0, 1]2, let µ be
Lebesgue measure on [0, 1]2, and let B be the σ-algebra generated by the
projection to the first coordinate, i.e., the collection of all sets of the form
B = B0×[0, 1], B0 ∈ B([0, 1]). Then, one cannot choose conditional measures
µ( · , x) in such a way that for each x, the measure µ( · , x) be defined on F.

Proof. Suppose that such conditional measures exist. The functions
µ(A, x) depend only on the first coordinate x1 of the point x ∈ [0, 1]2. Hence
we may denote them by λ(A, x1). Similarly to Corollary 10.4.10 one verifies
that for almost all x1 one has the equality λ({x1}×[0, 1], x1) = 1. Let {Bn}
be the set of all rational intervals in [0, 1] and λ Lebesgue measure on [0, 1].
For every B ∈ B([0, 1]), we have

λ(Bn)λ(B) = µ
((

[0, 1]×Bn
)
∩
(
B × [0, 1]

))
=
∫

B

λ
(
[0, 1]×Bn, x1

)
λ(dx1),

whence it follows that λ([0, 1]×Bn, x1) = λ(Bn) for almost all x1. This means
that for almost all x1 the measure λ( · , x1) on the class of Borel sets is the
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natural Lebesgue measure on the interval {x1}×[0, 1]. Let x1 be such a value.
Then λ( · , x1) gives a countably additive extension of Lebesgue measure to
all subsets of {x1}×[0, 1], since such sets have zero measure in the square and
hence belong to F. This contradicts the continuum hypothesis. �

10.6.6. Theorem. Let (X,F, µ) be a probability space and let B be a sub-
σ-algebra in F such that the measure µ|B is complete. Suppose that there exists
a compact class K ⊂ F that is closed with respect to finite unions and countable
intersections, contains ∅ and approximates µ. Then, there is a disintegration
{Fx, µ( · , x)}x∈X with respect to B such that for every x ∈ X, µ( · , x) is a
probability measure, and the class K belongs to Fx and approximates µ( · , x)
on Fx.

Proof. Let L be a lifting on (X,B, µ|B). For every A ∈ F, we fix some
version of the conditional expectation IEBIA with respect to B. Set

βx(K) = L(IEBIK)(x), K ∈ K.

It follows by the properties of conditional expectations and liftings that βx is
a monotone modular function with βx(X) = 1. According to Lemma 1.12.38,
for every x, there exists a monotone modular function ζx on K with ζx ≥ βx,
ζx(X) = 1, and ζx(K) + (ζx)∗(X\K) = 1, ∀K ∈ K. Let

Fx =
{
E ∈ F : (ζx)∗(E) + (ζx)∗(X\E) = 1

}
.

Denote by µ( · , x) the restriction of (ζx)∗ to Fx. By Corollary 1.12.39, Fx is
a σ-algebra and µ( · , x) is a countably additive measure on Fx, in addition,
the class K is contained in Fx and approximates the measure µ( · , x). It
remains to verify that we have obtained a disintegration. Let A ∈ F. We find
two increasing sequences {Kn}, {Ln} in K such that Kn ⊂ A, Ln ⊂ X\A,
µ(Kn) → µ(A), and µ(Ln) → µ(X\A). For every B ∈ B, we have

µ(B ∩A) = lim
n→∞

µ(B ∩Kn) = lim
n→∞

∫

B

IEBIKn(x)µ(dx)

= lim
n→∞

∫

B

βx(Kn)µ(dx) =
∫

B

lim
n→∞

βx(Kn)µ(dx). (10.6.2)

Similarly, we verify that

µ(B ∩A) = µ(B)− µ
(
B ∩ (X\A)

)
=
∫

B

lim
n→∞

[
1− βx(Ln)

]
µ(dx). (10.6.3)

We observe that for every x, one has the inequalities

lim
n→∞

βx(Kn) ≤ (ζx)∗(A) ≤ 1− (ζx)∗(X\A) ≤ 1− lim
n→∞

βx(Ln).

Hence (10.6.2) and (10.6.3) yield that for µ|B-a.e. x, one has the equalities

(ζx)∗(A) = 1− (ζx)∗(X\A) and
∫

B

(ζx)∗(A)µ(dx) = µ(B ∩A).
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Thus, for µ|B-a.e. x, we obtain that A ∈ Fx and

µ(A, x) = (ζx)∗(A) = lim
n→∞

βx(Kn).

In particular, the function µ(A, x) is measurable with respect to the mea-
sure µ|B. Finally, one has equality (10.6.2). �

10.6.7. Corollary. Let (X,F, µ) be a probability space such that µ has
a compact approximating class. Then, for every sub-σ-algebra B ⊂ F, there
exists a disintegration

{
Fx, µ( · , x)

}
x∈X with respect to B such that µ( · , x) is

a probability measure with a compact approximating class in Fx for every x.

Proof. According to Proposition 1.12.4, there is a compact class K ⊂ F
that approximates µ and is closed with respect to finite unions and countable
intersections. The class K is approximating for the completed σ-algebra Fµ
as well. Let Bµ be the completion of B with respect to µ|B. By the above
theorem the measure µ on Fµ has a disintegration

{
Fx, µ( · , x)

}
x∈X with

respect to Bµ such that K is contained in Fx ⊂ Fµ and approximates µ(x, · )
for all x. Let Fx = Fx ∩ F and µ( · , x) = µ( · , x)|Fx . We verify that this
is a required disintegration. Let A ∈ F. Let us take a set N ∈ Bµ of µ-
measure zero such that for each x �∈ N the set A belongs to Fx and the
function µ(A, x) on X\N is measurable with respect to Bµ ∩ (X\N). Next
we find a set M ∈ B containing N and having µ-measure zero such that
the function µ(A, x) on X\M is measurable with respect to B ∩ (X\M).
Thus, for each x �∈ M , we have A ∈ Fx and the function µ(A, x) on X\M is
measurable with respect to B ∩ (X\M). In addition, for all x, the class K
is contained in Fx and approximates µ( · , x) on Fx. Finally, it is clear that
for any B ∈ B, the integral of µ(A, x) over B coincides with the integral of
µ(A, x) and equals µ(B ∩A). �

10.7. Transition measures

Conditional measures provide an example of transition measures, which
we discuss in greater detail in this section.

10.7.1. Definition. Let (X1,B1) and (X2,B2) be a pair of measurable
spaces. A transition measure for this pair is a function P ( · | · ) : X1×B2 → IR1

with the following properties:
(i) for every fixed x ∈ X1, the function B �→ P (x|B) is a measure on B2;
(ii) for every fixed B ∈ B2, the function x �→ P (x|B) is measurable with

respect to B1.

In the case where transition measures are probabilities in the second ar-
gument, they are called transition probabilities.

10.7.2. Theorem. Let P ( · | · ) be a transition probability for spaces
(X1,B1) and (X2,B2) and let ν be a probability measure on B1. Then, there
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exists a unique probability measure µ on (X1×X2,B1 ⊗ B2) with

µ(B1×B2) =
∫

B1

P (x|B2) ν(dx), ∀B1 ∈ B1, B2 ∈ B2. (10.7.1)

In addition, given any function f ∈ L1(µ), for ν-a.e. x1 ∈ X1, the function
x2 �→ f(x1, x2) on X2 is measurable with respect to the completed σ-algebra
(B2)P (x1| · ) and P (x1| · )-integrable, the function

x1 �→
∫

X2

f(x1, x2)P (x1|dx2)

is measurable with respect to (B1)ν and ν-integrable, and one has
∫

X1×X2

f(x1, x2)µ
(
d(x1, x2)

)
=
∫

X1

∫

X2

f(x1, x2)P (x1|dx2) ν(dx1).

(10.7.2)

Proof. In order to prove the first assertion, it suffices to show that the
nonnegative set function µ defined by the right-hand side of (10.7.1) on the
semialgebra of rectangles is countably additive. Let A×B =

⋃∞
n=1An×Bn,

where A,An ∈ B1, B,Bn ∈ B2, and An×Bn are pairwise disjoint. This
means that IA(x1)IB(x2) =

∑∞
n=1 IAn(x1)IBn(x2). By using the countable

additivity of P (x1| · ) and interchanging the summation and integration we
obtain

IA(x1)P (x1|B) =
∞∑

n=1

IAn(x1)P (x1|Bn).

Integrating against the measure ν, we obtain µ(A×B) =
∑∞
n=1 µ(An×Bn),

as required. Now we prove that for every set E ∈ B1 ⊗ B2, the function
x1 �→ P (x1|Ex1), where Ex1 = {x2 : (x1, x2) ∈ E}, is measurable with respect
to B1. To this end, we observe that Ex1 ∈ B2 according to Proposition 3.3.2
and that the class E of all sets E ∈ B1 ⊗ B2 with the property to be proven
is an algebra and by definition contains all rectangles. It is clear that the
class E is closed with respect to formation of unions of increasing sequences.
Therefore, E is a σ-algebra that coincides with B1 ⊗ B2.

It follows that for every bounded B1 ⊗ B2-measurable function f , the
function

f̂ : x1 �→
∫

X2

f(x1, x2)P (x1|dx2)

is measurable with respect to B1 and one has (10.7.2).
Now let f be a nonnegative B1⊗B2-measurable function that is integrable

with respect to µ. We consider the functions fn = min(f, n) and obtain that
the corresponding functions f̂n are measurable with respect to B1 and equality
(10.7.2) is fulfilled for them. By the monotone convergence theorem the func-
tion f̂ is µ-integrable as well and satisfies (10.7.2). Thus, the second assertion
of the theorem is true for all B1 ⊗ B2-measurable µ-integrable functions.

Finally, we extend the result to all functions f ∈ L1(µ). As in the previous
step, it suffices to do this for bounded functions. In turn, it suffices to consider
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the indicator of a µ-measurable set E. The set E is the union of a set E0

in B1 ⊗ B2 and some set C with µ(C) = 0. It remains to observe that for
ν-a.e. x1, the set Cx1 = {x2 : (x1, x2) ∈ C} has P (x1| · )-measure zero. This
follows from the fact that there exists a set D ∈ B1 ⊗ B2 such that C ⊂ D
and µ(D) = 0. Indeed, Cx1 ⊂ Dx1 for all x1 ∈ X1 and P (x1|Dx1) = 0 for
ν-a.e. x1 according to (10.7.2). �

It is clear that this theorem extends to signed measures if the function
‖P (x| · )‖ is integrable with respect to |ν|.

Now we prove the following theorem of Ionescu Tulcea, which is useful in
the theory of random processes.

10.7.3. Theorem. Let (Xn,Bn), n = 0, 1, . . ., be measurable spaces such
that for every n = 0, 1, . . . , we are given a transition probability P 0,...,n

n+1 for
the pair of spaces

( n∏

k=0

Xk,

n⊗

k=0

Bk
)

and (Xn+1,Bn+1).

Then, for every x0 ∈ X0, there exists a unique probability measure Px0 on the
measurable space (X,B) =

(∏∞
n=0Xn,

⊗∞
n=0 Bn

)
such that for all Bk ∈ Bk

Px0

( n∏

k=0

Bk

)
=
∫

B1

. . .

∫

Bn

P 0,...,n−1
n (x0, . . . , xn−1|dxn) (10.7.3)

· · ·P 0,1
2 (x0, x1|dx2)P 0

1 (x0|dx1) IB0(x0).

Proof. Suppose first that we are given a finite sequence of spaces Xk

and transition probabilities P 0,...,k
k+1 , k = 0, 1, . . . , N . We define probabilities

Px0,...,xk on
∏N
j=0Xj by the recursive formulas (in the order of decreasing

indices k)
Px0,...,xN (A) = IA(x0, . . . , xN ),

Px0,...,xk(A) =
∫

Xk+1

Px0,...,xk,xk+1(A)P 0,...,k
k+1 (x0, . . . , xk|dxk+1).

It is easy to see that Px0,...,xk is a probability measure on
⊗

j≤N Bj , and for
every set A ∈

⊗
j≤N Bj , the function Px0,...,xk(A) is

⊗
j≤k Bj-measurable with

respect to (x0, . . . , xk), and for any fixed (x0, . . . , xk−1), it is Bk-measurable
with respect to xk. It is clear that for every nonnegative

⊗
j≤N Bj-measurable

function ζ and all k ≤ N , one has the equality
∫
ζ dPx0,...,xk =

∫

XN

· · ·
∫

Xk+1

ζ(x0, . . . , xN )P 0,...,N−1
N (x0, . . . , xN−1|dxN )

· · ·P 0,...,k
k+1 (x0, . . . , xk|dxk+1).

We proceed to the infinite sequence case. As above, we shall construct prob-
abilities Px0,...,xk . For every N , the construction of the previous step gives
probabilities P (N)

x0,...,xk on
⊗

j≤N Bj . It is seen from our construction that these
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probabilities are consistent for different N . Thus, on the algebra A obtained
as the union of

⊗
j≤N Bj , we are given set functions Px0,...,xN whose restric-

tions to
⊗

j≤N Bj coincide with P
(N)
x0,...,xk . It is clear that these functions are

additive. If we show that they are countably additive on A, then their count-
ably additive extensions to B will be the required probabilities. In particular,
we shall have probability measures Px0 . Let sets An ∈ A be decreasing to ∅.
Suppose that lim

n→∞
Py0,...,yN (An) > 0 for some N and y0, . . . , yN . Then

∫

XN+1

lim
n→∞

Py0,...,yN ,xN+1(An)P 0,...,N
N+1 (y0, . . . , yN |dxN+1)

= lim
n→∞

Py0,...,yN (An) > 0.

Therefore, there exists yN+1 such that lim
n→∞

Py0,...,yN+1(An) > 0. By induction

we find a sequence y = (y0, y1, . . .) with

lim
n→∞

Py0,...,yk(An) > 0 for all k ≥ N .

On the other hand, for every fixed n, we have An ∈
⊗

j≤m Bj for all suffi-
ciently large m, whence one has Py0,...,ym(An) = IAn(y0, . . . , ym). Therefore,
y ∈ An for all n, which contradicts the fact that the intersection of the sets
An is empty. Thus, we have established the countable additivity of the mea-
sures Px0,...,xn . �

It follows by this theorem that for every bounded
⊗

j≤n Bj-measurable
function ζ, one has
∫

X0

ζ(x)Px0(dx) =
∫

X1

· · ·
∫

Xn

ζ(x0, x1, · · · , xn)P 0,...,n−1
n (x0, . . . , xn−1|dxn)

· · ·P 0,1
2 (x0, x1|dx2)P 0

1 (x0|dx1).

10.7.4. Corollary. Let (Xn,Bn), n = 0, 1, . . . , be measurable spaces
such that for every n, we are given a transition probability P 0,...,n

n+1 for the
spaces

( n∏

k=0

Xk,
n⊗

k=0

Bk
)

and (Xn+1,Bn+1).

Let P0 be a probability measure on (X0,B0). Then, there exists a unique
probability measure P on the space (X,B) :=

(∏∞
n=0Xn,

⊗∞
n=0 Bn

)
satisfying

P
( n∏

k=0

Bk

)
=
∫

B0

∫

B1

. . .

∫

Bn

P 0,...,n−1
n (x0, . . . , xn−1|dxn)

· · ·P 0,1
2 (x0, x1|dx2)P 0

1 (x0|dx1)P0(dx0).

As already noted above, transition measures can be constructed by using
conditional measures.

Let us consider the following example of application of Theorem 10.4.14.
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10.7.5. Example. Suppose that (Ω,A, P ) is a probability space, X is
a Souslin space, (Y,AY ) is a measurable space, ξ : (Ω,A) →

(
X,B(X)

)
and

η : (Ω,A) → (Y,AY ) are measurable mappings. Then there is a transition
probability (y,B) �→ µ(y|B) on Y ×B(X) such that for every B ∈ B(X), one
has P (ξ ∈ B|η) = µ(η|B) a.e. The family of measures µ(y| · ) is uniquely
determined up to a redefinition on a set of P ◦ η−1-measure zero.

Proof. Let µ be the image of P under the mapping (ξ, η) with values
in X×Y . Set µ(y|B) := µ(B, y), where the measures µ( · , y) are constructed
in the cited theorem. For any fixed B ∈ B(X) and every E ∈ AY we have

IE[IE ◦ ηP (ξ ∈ B|η)] = IE[IE ◦ ηIB ◦ ξ] =
∫

X×Y
IE(y)IB(x)µ

(
d(x, y)

)

=
∫

E

µ(B, y)µY (dy) = IE[IE ◦ ηµ(B, η)],

whence we obtain P (ξ ∈ B|η) = µ(B, η) a.e. The uniqueness assertion can be
easily derived from the fact that B(X) is countably generated. �

The following result enables one to obtain transition probabilities as dis-
tributions of random elements.

10.7.6. Proposition. Let (X,A) be a measurable space, let T be a
Souslin space, and let (x,B) �→ µ(x|B) be a transition probability on X×B(T ).
Then there exists an

(
A⊗B([0, 1]),B(T )

)
-measurable mapping f : X×[0, 1] → T

such that for every random variable ξ with the uniform distribution in [0, 1],
the mapping f(x, ξ) has the distribution µ(x| · ) for all x ∈ X.

Proof. We may assume that T ⊂ [0, 1]. Set

f(x, t) = sup
{
r ∈ [0, 1] : µ(x|[0, r]) < t

}
.

The function f is measurable, since the indicated supremum can be taken
over all rational numbers r, and the function (x, t) �→ µ(x|[0, r])− t is measur-
able with respect to A⊗B([0, 1]). For every random variable ξ on (Ω,F , P )
uniformly distributed in [0, 1] we have

P
(
f(x, ξ) ≤ s

)
= P

(
ξ ≤ µ(x|[0, s])

)
= µ(x|[0, s])

for all s ∈ [0, 1]. Hence the mapping f(x, ξ) has the distribution µ(x| · ). �

10.7.7. Corollary. Let (Ω,A, P ) be a probability space, (S,S) a mea-
surable space, T a Souslin space, and let

ξ, ξ′ : (Ω,A) → (S,S) and η : (Ω,A) →
(
T,B(T )

)

be measurable mappings such that ξ and ξ′ have a common distribution. Sup-
pose there exists a random variable θ uniformly distributed in [0, 1] such that
θ and ξ′ are independent. Then there exists a measurable mapping η′ : Ω → T
such that the mappings (ξ, η) and (ξ′, η′) have a common distribution.

Moreover, η′ can be taken in the form η′ = f(ξ′, θ) with some measurable
mapping f : S×[0, 1] → T .
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Proof. We know that there exist probability measures µ( · , s), s ∈ S,
on B(T ) such that the functions s �→ µ(B, s) are measurable with respect to
S and µ(B, ξ) = P (η ∈ B|ξ) a.e. (see Example 10.7.5). According to the
above proposition, there exists a measurable mapping f : S×[0, 1] → T such
that the random element f(s, θ) has the distribution µ( · , s) for each s ∈ S.
Let η′ = f(ξ′, θ). For every bounded S⊗B(T )-measurable function g on S×T
we obtain

IEg(ξ′, η′) = IEg
(
ξ′, f(ξ′, θ)

)
= IE

∫ 1

0

g
(
ξ, f(ξ, u)

)
du

= IE
∫

T

g
(
ξ, f(ξ, t)

)
µ(dt, ξ) = IEg(ξ, η),

which gives the equality of the distributions of (ξ′, η′) and (ξ, η). �

10.8. Measurable partitions

A partition of a measure space (M,M, µ) is a representation of M in the
form of the union of pairwise disjoint measurable sets ζα, where the index α
runs through some nonempty set T . Let ζ = (ζα)α∈T . A basic example is the
partition into preimages of points under a measurable function.

Arbitrary unions of elements of a partition ζ will be called ζ-sets. For
example, if ζ is the partition of the square [0, 1]2 into intervals parallel to the
ordinate axis, then the ζ-sets are sets of the form A×[0, 1], where A ⊂ [0, 1].

Suppose we are given a countable family of measurable sets S = (Sn).
For every sequence ω = (ωn) ∈ {0, 1}∞, let Sn(ωn) = Sn if ωn = 1 and
Sn(ωn) = M\Sn if ωn = 0. Let us consider the set

⋂∞
n=1 Sn(ωn). It is clear

that the obtained sets (we take into account only nonempty ones) form a
partition, which is denoted by ζ(S). The family S is called a basis of the
partition.

10.8.1. Definition. A partition ζ is called measurable if it has the form
ζ = ζ(S) for some at most countable collection S of measurable sets.

We have the following characterization of measurable partitions.

10.8.2. Lemma. A partition is measurable if and only if it has the form
ζ =

(
f−1(c)

)
c∈[0,1]

for some measurable function f : M → [0, 1].

Proof. The partition into preimages of points is measurable, since it
has a basis f−1(In), where {In} are all intervals with rational endpoints.
Conversely, let S = (Sn) be a basis of a measurable partition ζ. The mapping

g : M → {0, 1}∞, g(x) =
(
ISn(x)

)∞
n=1

,

is measurable if {0, 1}∞ is equipped with its standard Borel σ-algebra. It is
clear that ζ coincides with the partition into preimages of points under the
mapping g. It remains to take an injective Borel function ϕ : {0, 1}∞ → [0, 1]
and set f = ϕ ◦ g. �
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It is clear that any partition into preimages of points under a measurable
mapping to a space with a countably generated and countably separated σ-
algebra is measurable. Since the elements of a measurable partition have
the form f−1(c), c ∈ IR1, according to �10.4 one obtains regular conditional
measures on them.

We shall say that two partitions ζ and ζ ′ are identical mod0 if there
exists a set M0 of full µ-measure such that the partitions of the set M0 that
are induced by ζ and ζ ′ are equal.

The set of partitions has the following natural order: ζ ≤ ζ ′ if every
element of the partition ζ is constituted of some collection of elements of the
partition ζ ′. In this case, ζ ′ is called a finer partition (respectively, ζ is called
a coarser partition).

For every sequence of measurable partitions ζn, there is the coarsest par-
tition ζ that is finer than every ζn. This partition is denoted by

∨∞
n=1 ζn and

can be defined as the partition into preimages of points under the mapping
x �→

(
fn(x)

)
, M → [0, 1]∞, where fn generates the partition ζn according to

the above lemma and [0, 1]∞ is equipped with its natural Borel σ-algebra.
Let µ be a probability measure. Two measurable partitions ζ and η

are called independent if they are generated by functions f and g that are
independent random variables on (M,M, µ), i.e., one has

µ
(
x : f(x) < a, g(x) < b

)
= µ

(
x : f(x) < a

)
µ
(
x : g(x) < b

)

for all a, b ∈ IR1 (see �10.10(i)). According to Exercise 10.10.50, this is equiv-
alent to saying that for every measurable ζ-set A and every measurable η-set
B one has the equality

µ(A ∩B) = µ(A)µ(B).

Two measurable partitions ζ and η are called mutually complementary
if ζ

∨
η is identical mod0 to the partition into single points. Thus, if ζ is

generated by a function f and η is generated by a function g, then it is required
that the mapping (f, g) : M → IR2 be injective on a set of full measure.

Mutually complementary independent partitions are called independent
complements of each other.

10.8.3. Theorem. Suppose that ζ is a measurable partition of a Lebes-
gue–Rohlin space (M,M, µ), where µ is a probability measure, such that al-
most all conditional measures on the elements of the partition have no atoms.
Then ζ possesses an independent complement.

Proof. In terms of random variables we have to prove the following. Let
a measurable function f : M → [0, 1] be such that for µ ◦ f−1-a.e. y the con-
ditional measure µy on f−1(y) has no atoms. Then, there exists a measurable
function g onM with values in [0, 1] such that the mapping (f, g) : M → [0, 1]2

is injective on a set of full measure and transforms µ into a measure ν⊗ν0,
where ν = µ ◦ f−1 and ν0 is some probability measure. By the isomorphism
theorem we may assume that µ is a Borel measure on [0, 1] and f is a Borel
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function. Let
g(x) = µf(x)

(
[0, x)

)
.

We observe that the function (x, t) �→ µf(x)
(
[0, t)

)
is Borel measurable. This

follows by Lemma 6.4.6 since the function µy([0, t]) is Borel in y for any
fixed t and left continuous in t for any fixed y. Then g is a Borel function.
The mapping (f, g) is injective on the set Ω of all x ∈ M such that the
measure µf(x) has no atoms and g(x) < g(x+ n−1) for all n ∈ IN. Indeed, if
x1, x2 ∈ Ω and x1 < x2, then either f(x1) �= f(x2) or f(x1) = f(x2) = y and
g(x1) < g(x2) because x2 > x1 + n−1 for some n. One has µ(Ω) = 1 since
Ω contains the intersection Ω0 of the set {x : g(x) < g(x + n−1) ∀n ∈ IN}
and the set f−1(E), where E is a Borel set such that ν(E) = 1 and the
conditional measures µy have no atoms. Indeed, the set Ω0 is µ-measurable,
and µy(Ω0) = 1 for all y ∈ E, which is clear from the following observation:
for every atomless Borel probability measure σ on [0, 1] with the distribution
function Fσ, for σ-a.e. t, one has Fσ(t) < Fσ(t+n−1) for all n (the topological
support of σ has the form [0, 1]\

⋃∞
k=1(ak, bk), so every point t �∈

⋃∞
k=1[ak, bk]

has the aforementioned property). We show that the measure µ is transformed
by the mapping (f, g) to the product of the measure ν and Lebesgue measure
λ on [0, 1]. To this end, it suffices to show that whenever a < b, c < d, one
has the equality

µ
(
(f, g)−1([a, b]×[c, d])

)
= ν([a, b])λ([c, d]).

Since µy
(
f−1(y)

)
= 1, the left-hand side of this equality is

∫

[a,b]

µy
(
(f, g)−1([a, b]×[c, d])

)
ν(dy) =

∫

[a,b]

µy
(
f−1(y) ∩ g−1([c, d])

)
ν(dy).

It remains to observe that on the set f−1(y) the function g coincides with the
distribution function of the measure µy. Since the measure µy is concentrated
on f−1(y), it follows by Example 3.6.2 that for all y ∈ E we have µy

(
f−1(y)∩

g−1([c, d])
)

= λ([c, d]), which yields the assertion. �

10.9. Ergodic theorems

In this section, we prove several principal theorems of ergodic theory — an
intensively developing field of mathematics on the border of measure theory,
the theory of dynamical systems, mathematical physics, and probability the-
ory. In these theorems, one is concerned with a family of measure-preserving
transformations Tt, where the parameter t takes values in IN or [0,+∞), and
the problem is the study of the asymptotic behavior of these transformations
for large t. Certainly, in this introductory discussion, it is impossible even to
mention all interesting problems of measure theory arising in the described
situation. The interested reader is referred to the books Arnold, Avez [71],
Billingsley [168], Cornfeld, Sinăı, Fomin [376], Garsia [671], Halmos [780],
Krengel [1058], Petersen [1437], Sinai [1730].
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One of the first results of ergodic theory was the following Poincaré re-
currence theorem.

10.9.1. Theorem. Let (Ω,B, µ) be a probability space and let T : Ω → Ω
be a (Bµ,B)-measurable mapping such that µ◦T−1 = µ. If A is a µ-measurable
set, then for µ-almost every x ∈ A, there exists an infinite sequence of indices
ni such that Tnix ∈ A. In particular, if µ(A) > 0, then there exists a point
x ∈ A such that Tnx ∈ A for infinitely many n.

Proof. If µ(A) = 0, then our claim is true in the trivial way. We assume
further that µ(A) > 0. We prove first a weaker assertion that for almost every
x ∈ A, there exists n ∈ IN such that Tnx ∈ A. Points with such a property are
called recurrent. Denote by E the set of all points x ∈ A such that Tnx �∈ A
for all n ≥ 1. It is easy to see that the set E is measurable. In order to show
that µ(E) = 0, it suffices to verify that the sets E, T−1(E), T−1

(
T−1(E)

)

and so on are pairwise disjoint, since by hypothesis they have equal measures.
These sets will be denoted by Ek: Ek+1 := T−1(Ek), E0 := E. Suppose that
x ∈ Em ∩ Ep, where m > p. Then

T px ∈ E ∩ T pEm = E ∩ Em−p.

Therefore, letting y = T px ∈ E we obtain Tm−py ∈ E ⊂ A contrary to the
definition of E.

Now the initial assertion follows by the considered partial case. Indeed,
for every k ∈ IN, the measurable mapping T k transforms the measure µ into µ.
As we have proved, almost all points in A are recurrent for T k. Therefore,
almost all points in A are recurrent simultaneously for all T k, which completes
the proof. �

We shall now see that the Poincaré theorem admits a substantial rein-
forcement. The so-called individual ergodic theorem (the Birkhoff–Khinchin
theorem) proven below is one of the key results of ergodic theory. Given
a measurable transformation T of a probability space (Ω,B, µ), we denote
by T the σ-algebra of all sets B ∈ B with B = T−1(B). The conditional
expectation with respect to T will be denoted by IET .

We observe that if T : Ω → Ω is a (Bµ,B)-measurable mapping that
preserves the measure µ, i.e., µ = µ ◦ T−1, then µ

(
T−1(Z)

)
= 0 for every

set Z of µ-measure zero. Hence, for any f ∈ L1(µ), the function f ◦ T is a.e.
defined and µ-integrable.

10.9.2. Lemma. Let T be a measure-preserving transformation of a
probability space (Ω,B, µ), f ∈ L1(µ), k ∈ IN, and let

fk(x) = f(T kx), Sk = f0 + · · ·+ fk−1, Mk = max(0, S1, . . . , Sk).

Then ∫

{Mk>0}
f dµ ≥ 0.
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Proof. For all j ≤ k we have Mk(Tx) ≥ Sj(Tx), whence

Mk(Tx) + f(x) ≥ Sj(Tx) + f(x) = Sj+1(x),

i.e., we have the inequality f(x) ≥ Sj+1(x) − Mk(Tx), j = 1, . . . , k. In
addition, we have f(x) = S1(x) ≥ S1(x)−Mk(Tx). Hence

∫

{Mk>0}
f dµ ≥

∫

{Mk>0}

[
max(S1, . . . , Sk)−Mk ◦ T

]
dµ

=
∫

{Mk>0}
[Mk −Mk ◦ T ] dµ ≥ 0,

since the integral of Mk−Mk ◦T over Ω vanishes, whereas on the complement
of {Mk > 0} we have Mk = 0 and Mk ◦ T ≥ 0. �

10.9.3. Corollary. In the situation of the above lemma one has

µ
(
max(S1, S2/2, . . . , Sk/k) > r

)
≤ r−1

∫

Ω

|f | dµ, ∀ r > 0.

Proof. Let us set B =
{

max(S1, S2/2, . . . , Sk/k) > r
}

and

g = f − r, S̃k = g + · · ·+ g ◦ T k−1, M̃k = max(0, g, . . . , S̃k).

By the lemma the integral of g over {M̃k > 0} is nonnegative. We observe
that B = {M̃k > 0}. Indeed, S̃j = Sj − jr, hence the inequalities S̃j > 0
and Sj/j > r are equivalent. Therefore, rµ(B) does not exceed the integral
of f over B . Since the integral of f is majorized by that of |f |, the claim
follows. �

Now we can prove the Birkhoff–Khinchin theorem.

10.9.4. Theorem. Let (Ω,B, µ) be a probability space and let f be a µ-
integrable function. Suppose that T : Ω → Ω is a (Bµ,B)-measurable mapping
such that µ ◦ T−1 = µ. Then for µ-a.e. x, there exists a limit

lim
n→∞

1
n

n−1∑

k=0

f(T kx) := f(x).

In addition, f is in L1(µ), coincides a.e. with IET f and
∫

Ω

f dµ =
∫

Ω

f dµ.

Proof. Since T preserves µ, we may assume that f is defined everywhere
(its redefinition on a measure zero set does not affect our assertion). We
observe that (IET f) ◦T = IET f . Indeed, IB ◦T = IB for all B ∈ T , hence for
every bounded T -measurable function ψ we have ψ ◦ T = ψ, which yields the
same equality for every T -measurable function. Therefore, one can pass to
f−IET f and assume further that IET f = 0. Let Sk = f+f ◦T+· · ·+f ◦T k−1,
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g = lim supn→∞ Sn/n, ε > 0, and E := {g > ε}. We show that µ(E) = 0.
Let

fε = (f − ε)IE , Sεk = fε + · · ·+ fε ◦ T k−1, Mε
k = max(0, Sε1 , . . . , S

ε
k).

It is clear that E ∈ T , since g ◦ T = g. In addition, the sequence of functions
Mε
k is increasing and E =

⋃∞
k=1{Mε

k > 0}. This is easily seen from the
equality Sεk = (Sk − kε)IE . Therefore, by Lemma 10.9.2 and the monotone
convergence theorem we obtain

0 ≤
∫

{Mε
k>0}

fε dµ→
∫

E

fε dµ.

By virtue of the equality IET f = 0 and the inclusion E ∈ T , we have according
to the definition of conditional expectation

∫

E

f dµ =
∫

E

IET f dµ = 0.

Thus, the above estimate can be written in the form −εµ(E) ≥ 0, i.e., one
has µ(E) = 0. Hence Sn/n→ 0 a.e.

Now we prove mean convergence. For any fixed N ∈ IN let us set
ψN = fI{|f |≤N}, ϕN = f − ψN . Then |ψN | ≤ N and by the previous step
the functions n−1

∑n−1
k=0 ψN ◦ T k converge to IET ψN in L1(µ) as n → ∞.

We observe that by the invariance of µ with respect to T and the estimate
‖IET ϕN‖L1(µ) ≤ ‖ϕN‖L1(µ), one has the inequality

∫

Ω

∣
∣
∣n−1

n−1∑

k=0

ϕN ◦ T k − IET ϕN

∣
∣
∣ dµ

≤ n−1
n−1∑

k=0

∫

Ω

|ϕN ◦ T k| dµ+
∫

Ω

|IET ϕN | dµ ≤ 2
∫

Ω

|ϕN | dµ.

Since the right-hand side of this inequality tends to zero as N → ∞ and
f = ψN + ϕN , the theorem is proven. �

Let us consider continuous time systems.

10.9.5. Corollary. Let (Ω,B, µ) be a probability space and let (Tt)t≥0

be a semigroup of measure-preserving transformations, i.e., T0 = I, Ts+t =
Ts ◦ Tt, the mappings Tt are (Bµ,B)-measurable, and µ ◦ T−1

t = µ. Suppose
f ∈ L1(µ) is such that (x, t) �→ f

(
Tt(x)

)
is Bµ⊗B

(
[0,+∞)

)
-measurable. Then

µ-a.e. and in L1(µ) there exists a limit

f(x) := lim
t→+∞

t−1

∫ t

0

f
(
Ts(x)

)
ds

and f = IET∞f a.e., where T∞ is the σ-algebra generated by all µ-measurable
functions ϕ such that, for every τ > 0, one has ϕ

(
Tτ (x)

)
= ϕ(x) a.e.
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Proof. Let us apply the ergodic theorem to the function g defined as
follows: g(x) is the Lebesgue integral of f(Ts(x)) in s over [0, 1]. We observe
that the function g is measurable and that the equality

n−1∑

k=0

g(T k1 x) = Sn(x) :=
∫ n

0

f
(
Ts(x)

)
ds

holds. Hence a.e. there exists a limit h(x) := lim
n→∞

n−1Sn(x). It suffices
to consider the case f ≥ 0. This gives at once the existence of the limit
indicated in the theorem almost everywhere and its coincidence with h(x)
because n−1

(
Sn+1(x) − Sn(x)

)
→ 0 a.e. In order to prove convergence in

L1(µ) it suffices to consider bounded functions f since the L1-norm of the
function

St(x) = t−1

∫ t

0

f
(
Ts(x)

)
ds

does not exceed the norm of f . For bounded f , the equality lim
n→∞

‖St−f‖1 = 0

is obvious from the already-established facts. It is clear that f
(
Tτ (x)

)
= f(x)

a.e. for each τ > 0. For any T∞-measurable bounded function ϕ we have
∫

Ω

f(x)ϕ(x)µ(dx) =
∫

Ω

f
(
Ts(x)

)
ϕ
(
Ts(x)

)
µ(dx)

=
∫

Ω

f
(
Ts(x)

)
ϕ(x)µ(dx),

which yields the equality f = IET∞f . �

One can find a version f with values in [−∞,+∞] such that f
(
Tt(x)

)
=

f(x) for all x ∈ Ω, t ≥ 0. To this end, for nonnegative functions f , we set

f(x) := lim
r→+∞

lim sup
n→∞

n−1

∫ r+n

r

f
(
Ts(x)

)
ds.

10.9.6. Example. Let Ω = [0, 1) be equipped with Lebesgue measure
λ and let T (x) = x + θ(mod 1), where θ ∈ IR1 is a fixed number. Then T
preserves the measure λ. If θ is irrational, then for every Borel set B, one has

n−1
n−1∑

k=0

IB ◦ T k → λ(B) a.e.

This follows by the ergodic theorem taking into account that the σ-algebra
T is trivial: every T -measurable function a.e. equals some constant, since by
the irrationality of θ it has arbitrarily small periods (see Exercise 5.8.109).

Kozlov and Treschev [1054] discovered the following very interesting av-
eraging property in the case of continuous time.

10.9.7. Theorem. Suppose that in the situation of Corollary 10.9.5 the
function f is bounded. Let � be a probability density on [0,+∞). Then, the
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function (x, t, s) �→ f
(
Tst(x)

)
is Bµ⊗B

(
[0,+∞)

)
⊗B
(
[0,+∞)

)
-measurable and

µ-a.e. one has

f(x) = lim
t→+∞

∫ ∞

0

f
(
Tst(x)

)
�(s) ds.

Proof. Let us approximate � in L1(IR1) by a sequence of compactly
supported probability densities that assume finitely many values and are piece-
wise constant. The claim for such densities follows by Corollary 10.9.5. It
remains to observe that the difference between the considered integrals for
� and �n does not exceed ‖�n − �‖L1 supx |f(x)|. Additional results in this
direction can be found in Bogachev, Korolev [219]. �

In connection with the ergodic theorem several interesting concepts arise,
of which we only mention the ergodicity and mixing.

10.9.8. Definition. Suppose that (Ω,B, µ) is a probability space and T is
a transformation preserving the measure µ. Then T is called ergodic if every
set in T has measure either 0 or 1.

If for every A,B ∈ B we have

lim
n→∞

µ
(
A ∩ T−n(B)

)
= µ(A)µ(B), (10.9.1)

then T is called mixing.

Ergodicity is equivalent to the property that the space of all T -measurable
functions in L1(µ) consists of constants. In turn, this is equivalent to the
property that IET coincides with the usual expectation. Hence for any er-
godic measure, the averages indicated in the ergodic theorem converge to the
integral of the function over the space. In other words, the time averages
coincide with the space averages, which has an important physical sense.

It is clear that the mixing implies the ergodicity, since we have the equality
µ(A) = µ(A)2 whenever A = B ∈ T . On the other hand, the ergodicity is
equivalent to a somewhat weaker relationship than (10.9.1), namely, to the
following property:

lim
n→∞

1
n

n−1∑

k=0

µ
(
A ∩ T−k(B)

)
= µ(A)µ(B), A,B ∈ B. (10.9.2)

Indeed, by the ergodic theorem, for any ergodic T we have a.e.

lim
n→∞

1
n

n−1∑

k=0

IB ◦ T k = µ(B),

which after integration over A yields (10.9.2). If (10.9.2) is fulfilled, then on
account of the relationship n−1

∑n−1
k=0 IB ◦ T k → IET IB a.e., we obtain

∫

A

IET IB dµ = µ(A)µ(B).

This means that IET IB = µ(B) a.e., hence T is trivial.
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10.9.9. Example. (i) A transformation T with irrational θ in Example
10.9.6 is ergodic, but not mixing. Indeed, its ergodicity has been explained
in Example 10.9.6. In order to see that it is not mixing we observe that,
by the irrationality of θ, there exists a sequence of natural numbers nk with
nkθ(mod 1) → 1/2. Let A = B = [0, 1/4). Then, for large k, the sets A and
T−nk(B) do not meet, so that (10.9.1) is impossible.

(ii) Let (X,A, µ) be a probability space and let Ω = XZ be equipped
with a measure P that is the product of countably many copies of µ. Then
the transformation T : (xn) �→ (xn+1) preserves P and is mixing. Indeed,
for cylindrical sets A and B, for all sufficiently large n we have the equality
P
(
A ∩ T−n(B)

)
= P (A)P (B), which yields (10.9.1) for all measurable sets.

Bourgain [244] proved that if T is an ergodic measure-preserving trans-
formation of a probability space (Ω,B, µ), then for all f, g ∈ L∞(µ) and all
natural numbers p and q, the limit lim

n→∞
n−1

∑n
k=1 f(T pkx)g(T qkx) exists a.e.

We close this section with some results from the recent paper Ivanov
[872], where very interesting connections between certain ergodic type limit
theorems and elementary properties of increasing functions have been discov-
ered.

Let S be a measurable set of finite measure on the real line and let F be
an increasing function on S. We fix two numbers α and β with 0 < α < β.
A screen of the point x ∈ S is any interval (y, z) ⊂ S such that x < y and

F (y + 0)− F (x) ≥ β(y − x), F (z − 0)− F (x) ≤ α(z − x).

Let S∗ denote the set of all points in S possessing screens (with these α and β).
V.V. Ivanov [871], [872] discovered the following surprising inequality.

10.9.10. Theorem. Under the assumptions made above, one has the
estimate λ(S∗) ≤ α

βλ(S).

10.9.11. Corollary. Let I = [a, b] and let F be an increasing function
on I. Given 0 < α < β and k ∈ IN, let Ik denote the set of all points x ∈ I
for which there exists a chain x < y1 < z1 < · · · < yk < zk ≤ b such that

[F (yi)− F (x)]/(yi − x) ≥ β and [F (zi)− F (x)]/(zi − x) ≤ α

for all i = 1, . . . , k. Then λ(Ik) ≤ (α/β)kλ(I).

The remarkable inequality of Ivanov has already found applications, one
of which is discussed below. For these applications, it suffices to be able to
prove Ivanov’s inequality in the simplest case where S is a closed interval and
the function F is piece-wise constant and assumes only finitely many values.
Surprisingly enough, even in this partial case, the proof, although completely
elementary, is rather involved (in fact, in [872], the general case is reduced to
this partial case whose accurate justification takes about two pages).

Now we consider a probability space (Ω,B, µ) and a semigroup {Tt}t≥0

of mappings Tt : Ω → Ω preserving the measure µ. We shall assume that the
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mapping Tt(ω) is measurable in (t, ω). Then, for every integrable function f
on Ω, one obtains µ-integrable functions

σt(ω) :=
1
t

∫ t

0

f
(
Ts(ω)

)
ds.

In the case where the transformations Tn are defined only for n ∈ IN, i.e.,
Tn = Tn, where T is a measure-preserving transformation, we set

σn(ω) := n−1
n∑

k=1

f
(
Tk(ω)

)
.

For any fixed 0 < α < β and k ∈ IN, we denote by Ωk(α, β) the set of all
points ω ∈ Ω such that there exists a chain 0 < s1 < t1 < · · · < sk < tk for
which σsi(ω) ≥ β and σti(ω) ≤ α for all i = 1, . . . , k. Thus, the trajectory
of the point ω up-crosses at least k times the strip between the levels α
and β. Analogous sets are defined in the discrete time case. According to
Exercise 10.10.70, the sets Ωk(α, β) are measurable. By using Theorem 10.9.10
the following remarkable estimate is derived in [872].

10.9.12. Theorem. Let f ≥ 0. Then µ
(
Ωk(α, β)

)
≤ (α/β)k.

It is clear from the proof of the individual ergodic theorem that this
estimate not only implies the ergodic theorem, but also gives a universal
estimate of fluctuations of the averages. In the continuous time case, Ivanov’s
estimate gives an alternative proof of the existence of a limit f∗ = lim

t→∞
σt. For

a bounded function f , by the dominated convergence theorem and invariance
of µ we obtain that the integrals of f∗ and f are equal, which yields easily
that the same is true for all integrable functions.

10.10. Supplements and exercises

(i) Independence (398). (ii) Disintegrations (403). (iii) Strong liftings (406).

(iv) Zero–one laws (407). (v) Laws of large numbers (410). (vi) Gibbs mea-

sures (416). (vii) Triangular mappings (417). Exercises (427).

10.10(i). Independence

In this subsection we briefly discuss the concept of independence, which is
crucial for probability theory, and is often of use and importance in measure
theory.

10.10.1. Definition. Let (X,A, µ) be a probability space and let

ξ : X → E1 and η : X → E2

be measurable mappings to measurable spaces (E1, E1) and (E2, E2). The map-
pings ξ and η are called independent (or stochastically independent) if

µ(ξ ∈ A1, η ∈ A2) = µ(ξ ∈ A1)µ(η ∈ A2) for all A1 ∈ E1, A2 ∈ E2.
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It is clear that if a measurable mapping η is constant, then, for any
measurable mapping ξ, the mappings ξ and η are independent. In addition, if
ξ and η are independent and ψ1 : E1 → E1 and ψ2 : E2 → E2 are measurable
mappings, then ψ1 ◦ ξ and ψ2 ◦ η are independent. If E1 = E2 = IR1 and
E1 = E2 = B(IR1), then the independence of ξ and η is equivalent to the
equality µ(ξ < a, η < b) = µ(ξ < a)µ(η < b) for all a and b. This follows
from the fact that µ(ξ ∈ A1, η ∈ A2) and µ(ξ ∈ A1)µ(η ∈ A2) are measures
as functions of A1 and A2, and any Borel measure on the real line is uniquely
determined by its values on rays.

It is seen from the definition that the concept of independence is re-
lated not only to the mappings and measure, but also to the σ-algebras Ei.
The most important for applications is the case where E1 = E2 = IR1 and
E1 = E2 = B(IR1). In that case, it suffices to take for A1 and A2 only inter-
vals. We remark that one can introduce a stronger concept of independence
(independence in the sense of Kolmogorov) by requiring the equality

µ(ξ ∈ A1, η ∈ A2) = µ(ξ ∈ A1)µ(η ∈ A2)

for all Ai ⊂ Ei such that ξ−1(A1) ∈ A, η−1(A2) ∈ A. Even in the case
E1 = E2 = IR1 and E1 = E2 = B(IR1), this definition is strictly stronger
(Exercise 10.10.73). However, if E1 = E2 = IR1, E1 = E2 = B(IR1), and
the measure µ is perfect, then both definitions are obviously equivalent (see
Ramachandran [1519] on other cases of equivalence).

It is clear that measurable mappings ξ and η with values in (E1, E1) and
(E2, E2) are independent precisely if

µ ◦ (ξ, η)−1 = (µ ◦ ξ−1)⊗(µ ◦ η−1)

on (E1×E2, E1⊗E2). By analogy one defines independence of families of
measurable mappings. Namely, given a sequence (finite or countable) of mea-
surable mappings ξn on X with values in measurable spaces (En, En), we call
it a sequence of independent random elements if the image of µ under the
mapping (ξ1, ξ2, . . .) to

∏∞
n=1En coincides with the countable product of the

measures µ ◦ ξ−1
n . Obviously, this is equivalent to the equality

µ
(
x : ξ1(x) ∈ A1, . . . , ξn(x) ∈ An

)
= µ

(
x : ξ1(x) ∈ A1

)
· · ·µ

(
x : ξn(x) ∈ An

)

for all n ∈ IN and Ai ∈ Ei. More generally, given a family of measurable
mappings ξt with values in measurable spaces (Et, Et), we call it indepen-
dent random elements if every finite subfamily is independent in the above
sense. It should be noted that this independence is stronger than the pairwise
independence of ξt (Exercise 10.10.80).

Two measurable sets A and B in a probability space (X,A, µ) are called
(stochastically) independent if their indicators IA and IB are independent.
This is equivalent to the equality µ(A ∩ B) = µ(A)µ(B). More generally,
a family of measurable sets At in a probability space (X,A, µ) is called
(stochastically) independent if the family of functions IAt is independent.
An equivalent condition: µ(At1 ∩ · · ·Atn) = µ(At1) · · ·µ(Atn) for all distinct
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t1, . . . , tn. Two family of sets A and B are called independent if µ(A ∩ B) =
µ(A)µ(B) for all A ∈ A, B ∈ B. Finally, families At of measurable sets are
called independent if the sets At are independent whenever At ∈ At. All these
properties refer to an a priori given probability measure.

10.10.2. Lemma. If two functions ξ and η on (X,A, µ) are independent
and integrable, then the function ξη is integrable as well and one has

∫

X

ξη dµ =
∫

X

ξ dµ

∫

X

η dµ.

Proof. Let ξ assume finitely many values ai on disjoint sets Xi, i =
1, . . . , n, and let η assume finitely many values bj on disjoint sets Yj , j =
1, . . . ,m. Then the integral of ξη equals

∑
i,j aibjµ(Xi ∩ Yj), which coincides

with the product of the integrals of ξ and η, since µ(Xi ∩ Yj) = µ(Xi)µ(Yj)
due to independence. Let ξ and η be bounded and take values in (−M,M).
For every k ∈ IN, we partition [−M,M ] into k disjoint intervals Ii = (ai, bi]
of the same length and set ξk(x) = bi if ξ(x) ∈ Ii. Similarly, we define
the functions ηk. The functions ξk and ηk are independent for any fixed k,
since ξk = ϕk ◦ ξ, ηk = ϕk ◦ η, where ϕk is a Borel function defined by the
equality ϕk(t) = bi whenever t ∈ Ii. Since the equality to be proven is true
for ξk and ηk, it remains valid for ξ and η. When ξ and η are not bounded,
we consider the functions min(k, |ξ|) and min(k, |η|) and by the monotone
convergence theorem obtain the desired equality for |ξ| and |η|. This shows
the integrability of ξη. Now the same reasoning completes the proof. �

Let us give two interesting results (due to Banach and Marczewski) related
to independence. A class of sets E in a space X is called independent if for
every sequence of distinct sets Ei ∈ E we have

⋂∞
i=1Di �= ∅, where Di is

either Ei or X\Ei. Note that this concept involves no measures. Marczewski
[1250] (see also the papers [1817], [1251] by the same author) obtained the
following result.

10.10.3. Theorem. Let E be an independent class of subsets of a space
X and let ν be a function on E with values in [0, 1]. Then, on the σ-algebra
σ(E) generated by the class E, there exists a probability measure µ such that

µ(E) = ν(E) for all E ∈ E,

and the sets in E are stochastically independent with respect to µ.

Suppose we are given a family At of σ-algebras in a space X, where t ∈ T .
This family is called countably independent if for every countable collection of
nonempty sets Ai ∈ Ati with distinct ti we have

⋂∞
i=1Ai �= ∅. Banach [107]

proved the following theorem, which substantially generalizes the previous one
(the proof below is due to Sherman [1696]; it is considerably shorter than the
original one). The previous theorem corresponds to the case where each At
is generated by a single set At.
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10.10.4. Theorem. Suppose we are given a countably independent fam-
ily of σ-algebras At, t ∈ T , in a space X such that every At is equipped with
a probability measure µt. Then, on the σ-algebra A generated by all At, there
exists a probability measure µ such that µ(A) = µt(A) for all A ∈ At and
µ
(⋂∞

i=1Ai
)

=
∏∞
i=1 µti(Ai) for all Ai ∈ Ati , where ti �= tj if i �= j, i.e., the

σ-algebras At are stochastically independent with respect to µ.

Proof. The measure
⊗

t∈T µt on the σ-algebra B :=
⊗

t∈T At will be
denoted by ν. Let us consider the mapping ϕ : X → XT defined by the
formula ϕ(x) = (xt)t∈T , where xt = x for all t ∈ T . Let D be the image of ϕ.
We define µ by the equality µ

(
ϕ−1(B)

)
:= ν(B), B ∈ B. The theorem will be

proven once we establish that the mapping ϕ−1 : B → A is a σ-isomorphism.
It is clear that ϕ−1 takes complements to complements and countable unions
(or intersections) to countable unions (respectively, intersections). For every
fixed τ ∈ T and any E ∈ Aτ , the image of the set B = {(xt)t∈T : xτ ∈ E}
is the set E. Together with the aforementioned properties this means that
ϕ−1(B) = A. It remains to verify the injectivity of ϕ−1. It suffices to show
that if B ∈ B and B ∩D = ∅, then B = ∅. It is at this stage that we need
the countable independence of At.

Suppose first that B has the form B = {(xt)t∈T : xti ∈ Bi}, where {ti}
is a finite or countable set and Bi ∈ Ati . Sets of such a form will be called
blocks. If B is nonempty, then all Bi are nonempty. By hypothesis, there
exists a point x ∈

⋂∞
i=1Bi, which gives a point in B∩D. In order to complete

the proof we show that every set in B is a union (possibly, uncountable) of
a family of blocks. Denote by B0 the subclass in B consisting of all sets for
which this is true. Since B0 contains all blocks, for the proof of the equality
B0 = B it suffices to show that B0 is a monotone class. Obviously, B0 admits
arbitrary unions. Let Bn ∈ B0 and Bn+1 ⊂ Bn for all n. For every point
x ∈ B :=

⋂∞
n=1Bn and every n, there is a block Cn(x) ⊂ Bn that contains x.

The sets C(x) :=
⋂∞
n=1 Cn(x) are blocks and their union over x ∈ B is B

because C(x) ⊂ B. Thus, B0 is a monotone class, hence we obtain B0 = B. �

We note that the independent σ-algebras At can have in common only the
empty set and the whole space X (otherwise A∩ (X\A) would be nonempty).
Hence the measures µt yield at once a well-defined single set function on all
At (as was assumed from the very beginning in Banach’s paper). However,
the existence of a further extension is not obvious.

For independent random variables one has the so-called zero–one laws,
discussed in �10.10(iv), and laws of large numbers, discussed in �10.10(v).

Let us briefly discuss the concept of conditional independence, which is
useful for the study of many probabilistic problems, in particular, related to
limit theorems, Markov processes, and Gibbs measures.

Let (Ω,A, P ) be a probability space and let F1, . . . ,Fn,G ⊂ A be sub-
σ-algebras. We shall say that F1, . . . ,Fn are conditionally independent with
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respect to G (or given G) if for all Bk ∈ Fk, k = 1, . . . , n, we have

PG(B1 ∩ · · · ∩Bn) =
n∏

k=1

PG(Bk) a.e.

For an infinite family of σ-algebras Ft, t ∈ T , conditional independence with
respect to G is defined as conditional independence for every finite collection
Fti with distinct ti. The concept of conditional independence is transferred
to random elements. Random elements ξ and η are called conditionally inde-
pendent with respect to a random element ζ if σ(ξ) and σ(η) are conditionally
independent with respect to σ(ζ).

It is clear that the σ-algebras F and G are conditionally independent
given G. Independence of the σ-algebras F1 and F2 does not imply their
conditional independence given G. For example, the coordinate functions on
[−1/2, 1/2]2 with Lebesgue measure are independent, but are not condition-
ally independent given the function ζ(x1, x2) = x1x2 because their conditional
expectations with respect to σ(ζ) vanish (which is seen from the fact that the
integral of x1(x1x2)n vanishes for all n = 0, 1, . . .).

As we shall now see, conditional independence means that enlarging G by
F does not change the corresponding conditional expectations.

10.10.5. Proposition. Sub-σ-algebras F and E are conditionally inde-
pendent with respect to a sub-σ-algebra G if and only if for every E ∈ E

Pσ(F∪G)(E) = PG(E) a.e.

Proof. Conditional independence yields that for any F ∈ F , G ∈ G,
E ∈ E we have∫

F∩G
PG(E) dP =

∫

Ω

PG(F )PG(G)PG(E) dP

=
∫

G

PG(F ∩ E) dP = P (G ∩ F ∩ E).

By the monotone class theorem we conclude that for every A ∈ σ(F ∪G), the
integral of IAPG(E) equals P (A ∩ E), which gives the indicated equality. If
this equality holds, then for all F ∈ F and E ∈ E we have

IEG(IF IE) = IEGIEσ(F∪G)(IF IE) = IEG(IF IEσ(F∪G)IE) = IEGIEIEGIF ,

which shows conditional independence. �
10.10.6. Proposition. Let (Ω,A, P ) be a probability space, let X be a

Souslin space, let (Y,B) and (Z, E) be measurable spaces, and let mappings

ξ : (Ω,A) →
(
X,B(X)

)
, η : (Ω,A) → (Y,B), ζ : (Ω,A) → (Z, E)

be measurable. Suppose that there exists a random variable θ on Ω uniformly
distributed in [0, 1] such that θ and (η, ζ) are independent. Then conditional
independence of ξ and ζ with respect to η is equivalent to the existence of a
measurable mapping f : Y × [0, 1] → X and a random variable θ̃ uniformly
distributed in [0, 1] such that θ̃ and (η, ζ) are independent and ξ = f(η, θ̃) a.e.
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Proof. We may assume that X ⊂ [0, 1]. If such a function f exists,
then it suffices to use conditional independence of (η, θ) and ζ with respect
to η, which follows by independence of θ and (η, ζ) and Proposition 10.10.5.
If we are given conditional independence, then by Corollary 10.7.7 there ex-
ists a measurable function f : Y × [0, 1] → X such that the random element
ξ̃ = f(η, θ) has the same distribution as ξ, and (ξ, η) and (ξ̃, η) also have a
common distribution. As shown above, ξ̃ and ζ are conditionally independent
with respect to η. According to Proposition 10.10.5 and the equality of the
distributions of (ξ, η) and (ξ̃, η) we obtain

P
(
ξ̃ ∈ B|(η, ζ)

)
= P (ξ̃ ∈ B|η) = P (ξ ∈ B|η) = P

(
ξ ∈ B|(η, ζ)

)
,

which yields the equality of the distributions of (ξ̃, η, ζ) and (ξ, η, ζ). By Corol-
lary 10.7.7, there exists a random variable θ̃ uniformly distributed in [0, 1] such
that the random element (ξ, η, ζ, θ̃) has the same distribution as (ξ̃, η, ζ, θ).
Then θ̃ and (η, ζ) are independent, and the random elements

(
ξ, f(η, θ̃)

)
and

(
ξ̃, f(η, θ)

)
have equal distributions. Since ξ̃ − f(η, θ) = 0 a.e., one has

ξ − f(η, θ̃) = 0 a.e. �
Under very broad assumptions on a probability space (Ω,F , P ) and a

measurable space E, for any random element π on Ω with values in E, one
can find a random element π′ with the same distribution as π and a random
variable θ uniformly distributed in [0, 1] such that π′ and θ are independent.
For example, it suffices that Ω and E be Souslin spaces equipped with their
Borel σ-algebras and that the measure P be Borel and atomless. This follows
from the fact that, given a Borel function π : [0, 1] → [0, 1], one can transform
Lebesgue measure λ on [0, 1] into the measure λ⊗(λ◦π−1) on [0, 1]2. Certainly,
one cannot always take π′ = π. For example, if P = λ and π(t) = t on [0, 1],
then there is no Borel function θ such that λ ◦ (π, θ)−1 = λ⊗λ.

10.10(ii). Disintegrations

This subsection contains additional information about disintegrations.

10.10.7. Lemma. Let (Y,B, ν) be a probability space such that ν pos-
sesses a compact approximating class, let X ⊂ Y be a set with ν∗(X) = 1, let
F = BX , and let µ = ν|X (see Chapter 1 about restrictions of measures). Let
B̂ denote the σ-algebra generated by B and X and let ν̂ denote the measure on
B̂ defined by the formula ν̂(A) = µ(A∩X), A ∈ B̂. Suppose that the measure
ν̂ on (Y, B̂) has a disintegration with respect to B. Then the measure µ has
a compact approximating class.

Proof. We know from �1.12(ii) that one can find a compact class L ⊂ B
that approximates the measure ν and is closed with respect to countable inter-
sections. By hypothesis, the measure ν̂ has a disintegration

{
Fy, ν̂( · , y)

}
y∈Y

with respect to B. Let

K =
{
K ∈ F| ∃L ∈ L : K = L ∩X ∈ Fy, ν̂(K, y) = 1,∀ y ∈ L

}
.
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It is clear that the class K is closed with respect to countable intersections.
We show that K is a compact class. Suppose that sets Kn ∈ K are decreasing
and

⋂∞
n=1Kn = ∅. For every n we find Ln ∈ L such that Ln ∩ X = Kn,

Kn ∈ Fy and ν̂(Kn, y) = 1 for all y ∈ Ln. We may assume that the sets Ln
are decreasing, passing to

⋂n
i=1 Li and using that the sets Kn are decreasing

and L is closed with respect to intersections. Then one has
⋂∞
n=1 Ln = ∅.

Indeed, if y ∈
⋂∞
n=1 Ln, then by the definition of Ln we arrive at the following

contradiction:

1 = lim
n→∞

ν̂(Kn, y) = ν̂
( ∞⋂

n=1

Kn, y
)

= ν(∅, y) = 0.

Therefore, there exists m such that Lm = ∅, whence Km = ∅. Thus, K is a
compact class.

Now we show that K approximates µ. Let A ∈ F and ε > 0. We can find
B1 ∈ B with B1 ∩ X = A. Let us choose L1 ∈ L with L1 ⊂ B1 such that
ν(B1\L1) < ε/2. By definition we have L1 ∩X ∈ Fy for ν̂-a.e. y ∈ L1 and

∫

L1

ν̂(L1 ∩X, y) ν(dy) = µ(L1 ∩X) = ν(L1).

Hence there exists a set B2 ∈ B with B2 ⊂ L1 and ν(L1\B2) = 0 such that
L1 ∩X ∈ Fy and ν̂(L1 ∩X, y) = 1 for all y ∈ B2. Next we find a set L2 ∈ L
with L2 ⊂ B2 such that ν(B2\L2) < ε/4, and a set B3 ∈ B such that

B3 ⊂ L2, ν(L2\B3) = 0, L2∩X ∈ Fy and ν̂(L2∩X, y) = 1 for all y ∈ B3.

Continuing our construction by induction we obtain two sequences of sets
Bn ∈ B and Ln ∈ L such that

Bn+1 ⊂ Ln ⊂ Bn, ν(Ln\Bn+1) = 0, ν(Bn\Ln) < ε2−n, Ln ∩X ∈ Fy,

ν̂(Ln ∩X, y) = 1 for all y ∈ Bn+1.

Set L =
⋂∞
n=1 Ln =

⋂∞
n=1Bn and K = L ∩ X. Then K ∈ F and K ⊂ A.

For all y ∈ L we have K ∈ Fy and ν̂(K, y) = lim
n→∞

ν̂(Ln ∩X, y) = 1. Hence
K ∈ K. Finally, one has

µ(A\K) = ν(B1\L) =
∞∑

n=1

ν(Bn\Bn+1) < ε.

The lemma is proven. �

The following deep result has been obtained in Pachl [1414]. The question
on its validity remained open for a long time in spite of its very elementary
formulation.

10.10.8. Theorem. Suppose that (X,F, µ) is a probability space such
that F contains a compact class approximating µ. Let F∗ be a sub-σ-algebra
in F. Then F∗ also contains a compact class that approximates µ|F∗ .
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Proof. Let µ0 be the restriction of µ to F∗. By the existence of an appro-
ximating compact class the measure µ has a disintegration {Fx, µ( · , x)}x∈X
with respect to F∗. For every x ∈ X let

F∗
x = Fx ∩ F∗.

It is readily verified that {F∗
x, µ( · , x)}x∈X is a disintegration of µ with respect

to F∗. Now one can take Y = X, ν = µ, B = F∗ and apply the foregoing
lemma, according to which the measure µ0 on F∗ has a compact approximating
class. �

The role of the compactness condition in the problem of the existence of
disintegrations in the case of product spaces has been investigated in Pachl
[1414], where somewhat different disintegrations have been considered (see
also Edgar [511], Valadier [1911]).

Let (X,A, µ) and (Y,B, ν) be two probability spaces and let λ be a prob-
ability measure on A⊗ B such that λ ◦ π−1

X = µ and λ ◦ π−1
Y = ν, where πX

and πY are, respectively, the projection operators from X×Y to X and Y .
A family {Ay, µy}, y ∈ Y , is called a ν-disintegration of the measure λ if:

(1) for every y ∈ Y , the class Ay is a σ-algebra in X and µy is a probability
measure on Ay;

(2) for every A ⊂ A, there exists a set Z ⊂ B such that ν(Z) = 0,
A ∈ Ay for all y ∈ Y \Z, and the function y �→ µy(A) on

(
Y \Z,B ∩ (Y \Z)

)
is

measurable;
(3) for all A ∈ A and B ∈ B, one has

∫

B

µy(A) ν(dy) = λ(A×B).

10.10.9. Remark. Suppose that Y = X and B ⊂ A. Let ν be the
restriction of µ to B. Let us take for λ the image of the measure µ under the
mapping x �→ (x, x). Then a disintegration {Ax, µ( · , x)}x∈X of µ with respect
to B in the sense of Definition 10.6.1 with probability conditional measures
exists precisely when there exists a ν-disintegration {Ay, µ( · , y)}y∈Y of the
measure λ (Exercise 10.10.66).

The following result (see the proof in [1414, Theorem 3.5]) reinforces
Theorem 10.4.14.

10.10.10. Theorem. Suppose that in the situation described above the
measure space (Y,B, ν) is complete and that µ has a compact approximating
class K ⊂ A. Then, the measure λ has a ν-disintegration {Ay, µy}, y ∈ Y ,
such that K ⊂ Ay for all y. If the class K is closed with respect to finite
unions and finite intersections, then such a disintegration can be found with
the additional property that K approximates µy for each y.

According to the following important result from [1414], the existence of
a compact approximating class is necessary for the existence of disintegrations
for all possible λ.
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10.10.11. Theorem. Suppose that a probability space (X,A, µ) has the
following property: for every complete probability space (Y,B, ν) and every
probability measure λ on A⊗B with λ◦π−1

X = µ and λ◦π−1
Y = ν, there exists

a ν-disintegration. Then µ has a compact approximating class K ⊂ A.

This theorem along with the results in �10.6 yields that the class of prob-
ability measures µ possessing a ν-disintegration for every probability measure
ν coincides with the class of probability measures µ that have disintegrations
in the sense of Definition 10.6.1 with probability conditional measures (since
in both cases one obtains the class of compact measures). A direct proof of
the coincidence of these two classes has been given in Remy [1548].

According to Sazonov [1656, Theorem 7], analogous results are valid for
perfect measures.

10.10.12. Theorem. Let P be a perfect probability measure on a space
(X,S) and let S1, S2 be two σ-algebras of measurable sets such that S1 is
countably generated. Then, there exists a function p( · , · ) : S1×X → [0, 1]
such that:

(i) the function x �→ p(E, x) is S2-measurable for every E ∈ S1;
(ii) E �→ p(E, x) is a perfect probability measure on S1 for every x ∈ X;
(iii) for all E ∈ S1 and B ∈ S2, one has

P (E ∩B) =
∫

B

p(E, x)P (dx).

Proof. By Theorem 7.5.6 any perfect measure has a compact approxi-
mating class on every countably generated sub-σ-algebra. �

10.10(iii). Strong liftings

In many special cases (for example, for the interval with Lebesgue mea-
sure), there exist liftings with stronger properties.

10.10.13. Definition. Let X be a topological space and let µ be a Borel
(or Baire) measure on X that is positive on nonempty open sets. We shall say
that L is a strong lifting on L∞(µ) if L is a lifting with the following property:
L(f) = f for all f ∈ Cb(X).

10.10.14. Theorem. A strong lifting exists in the case of Lebesgue
measure on an interval.

Proof. Follows by Example 10.5.3 and an obvious modification of the
reasoning in Lemma 10.5.2. �

The existence of a strong lifting on a space implies the existence of mea-
surable selections of some special form for mappings to this space. It is known
that a strong lifting exists if X is a compact metric space (see A. & C. Ionescu
Tulcea [867]). It was unknown for quite a long time whether one can omit
the assumption of metrizability. It turned out that the answer is negative:
Losert [1190] constructed his celebrated counter-example.
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10.10.15. Theorem. There exists a Radon probability measure on a
compact space of the form X = {0, 1}τ such that it is positive on all nonempty
open sets and has no strong lifting.

There exist strong liftings that are not Borel liftings (see Johnson [915]).
The next result (see A. & C. Ionescu Tulcea [867, Theorem 3, p. 138]

establishes a close connection between strong liftings and proper regular con-
ditional measures.

10.10.16. Theorem. Let T be a compact space and let µ be a positive
Radon measure on T with suppµ = T . The following assertions are equiva-
lent:

(i) there exists a strong lifting for µ;
(ii) for every triple {S, ν, π}, where S is a compact space with a positive

Radon measure ν and π : S → T is a continuous mapping of S onto T with
µ = ν ◦ π−1, there exists a mapping t �→ λt of the space T to the space Pr(S)
of Radon probability measures such that the functions t �→ λt(E), E ∈ B(S),
are µ-measurable and one has suppλt ⊂ π−1(t) for every t ∈ T and

ν(E) =
∫

T

λt(E)µ(dt), E ∈ B(S).

10.10(iv). Zero–one laws

Zero–one laws (0-1 laws) are assertions of the sort that under certain
conditions every set in some class has probability either 0 or 1. Let con-
sider some examples. The most important of them is the following 0-1 law
of Kolmogorov. Suppose we are given measurable spaces (Xi,Ai), i ∈ IN.
Their product X =

∏∞
i=1Xi is equipped with the σ-algebra A =

⊗∞
i=1Ai.

Let Xn :=
⊗∞

i=n+1Ai and X :=
⋂∞
n=1 Xn, where sets from Xn are naturally

identified with subsets of X. The following terms are used for X : the tail
σ-algebra, the asymptotic σ-algebra. The class X contains sets that are un-
changed under all transformations of the space X which alter only finitely
many coordinates. Typical examples of sets in X are

L :=
{
x ∈ IR∞ : ∃ lim

n→∞
xn

}
, S :=

{
x ∈ IR∞ : lim sup

n→∞
xn <∞

}
.

10.10.17. Theorem. Let µi be probability measures on (Xi,Ai) and let
µ =

⊗∞
i=1 µi. Then, for every E ∈ X , we have either µ(E) = 1 or µ(E) = 0.

In particular, every X -measurable function a.e. equals some constant.

Proof. By Corollary 10.2.4 the functions
∫
IE(x1, . . . , xn, xn+1, . . .)

∞⊗

k=n+1

µk
(
d(xn+1, xn+2, . . .)

)

converge to IE a.e. and in L1(µ). If E ∈ X , then these functions are constant,
hence IE a.e. coincides with some constant. It is clear that such a constant
can be only 0 or 1. �
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As an application of this theorem we note that in the case where IR∞

is equipped with a measure µ that is the countable product of probability
measures on the real line, given a sequence of numbers cn > 0, one has that
either lim

n→∞
cnxn exists for a.e. x or there is no limit for a.e. x. Certainly,

the theorem does not tell us which of the two cases occurs, but sometimes it
is useful to know that no other case is possible. In probabilistic terms, this
means that for any sequence of independent random variables xn, the above
limit either exists almost surely or does not exist almost surely. In general,
diverse asymptotic properties of sequences of independent random variables
are a typical object of applications of zero–one laws.

In the case where all (Xn,An) coincide with the space (X1,A1), one can
consider yet another interesting σ-algebra, called the symmetric σ-algebra and
defined by the equality S :=

⋂∞
n=1 Sn, where Sn is the σ-algebra generated by

all A-measurable functions that are invariant with respect to permutations of
x1, . . . , xn, i.e., functions f such that

f(x1, . . . , xn, xn+1, . . .) = f(xσ(1), . . . , xσ(n), xn+1, . . .)

for every permutation σ of the set {1, . . . , n}. It is clear that Xn ⊂ Sn and
hence X ⊂ S. This inclusion, however, may be strict. Indeed, let us consider
the set

E =
{
x ∈ IR∞ :

n∑

i=1

xi = 0 for infinitely many n
}
.

Then E ∈ S, but E �∈ X , since the point (−1, 1, 0, 0, . . .) belongs to E, but
the point (0, 1, 0, 0, . . .), which differs only in the first coordinate, does not. It
turns out that for some classes of measures, the classes S and X coincide up
to sets of measure zero.

A measure µ on A will be called invariant with respect to permutations
or symmetric if it is invariant with respect to all transformations of X of the
form (xi) �→ (xσ(i)), where σ is a permutation of IN that replaces only finitely
many elements. An example of such a measure is the product of identical
measures µn on (Xn,An).

The following result is the zero–one law of Hewitt and Savage.

10.10.18. Theorem. Let µ be a probability measure on A that is invari-
ant with respect to permutations. Then IEX = IES on the space L1(µ).

In particular, if µ is the product of identical measures µn, then for all
E ∈ S we have either µ(E) = 1 or µ(E) = 0.

Proof. It suffices to verify that IESf = IEX f a.e. for every bounded
measurable function f that depends on the coordinates xi, i ≤ n, since the
set of such functions is dense in L1(µ) and the operators IEX and IES are
continuous on L1(µ). Whenever k > n we set fk(x) = f(x1+k, . . . , xn+k). We
observe that fk(x) = f(xσ(1), . . . , xσ(n)), where σ is the permutation of the set
{1, . . . , n+k} that interchanges i and i+k, i = 1, . . . , n, and leaves unchanged
the elements n+1, . . . , k. Since the sequence {fk} is uniformly bounded, there
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exists a subsequence {fkj} that converges to some function g ∈ L2(µ) in the
weak topology of L2(µ). Then IESfkj → IESg in the weak topology. The
function fk does not depend on x1, . . . , xk, i.e., is measurable with respect
to Xk. Hence the function g a.e. equals some X -measurable function h. Since
X ⊂ S, we obtain that IESg = h = g a.e. On the other hand, IESfk = IESf
a.e. by the invariance of µ. Thus, IESf = IESg = g = h a.e. The inclusion
X ⊂ S and the X -measurability of h yield that IESf = IEX f a.e. The last
claim follows by the Kolmogorov zero–one law. �

This theorem means that for every set E ∈ S, there is a set E′ ∈ X with
µ(E � E′) = 0. Indeed, IE(x) = IEX IE(x) a.e. and for E′ one can take the
set E′ =

{
x : IEX IE(x) = 1

}
.

The next theorem proved in Ressel [1557] generalizes a classical result
of de Finetti (see de Finetti [419]) and a number of its subsequent improve-
ments (see Hewitt, Savage [826], Aldous [22], Diaconis, Freedman [440]).
According to this theorem, any probability measure invariant with respect to
permutations is a mixture of product measures.

10.10.19. Theorem. Let X = T∞, where T is a completely regular
space. Then, for every Radon probability measure µ on X that is invariant
with respect to permutations, there exists a Radon probability measure Π on
the space Pr(T ) equipped with the weak topology such that

µ(B) =
∫

Pr(T )

m∞(B) Π(dm), B ∈ B(X),

where for any measure m ∈ Pr(T ), the symbol m∞ denotes the Radon exten-
sion of the countable power of m.

If we are given a sequence of independent random variables ξn on a proba-
bility space (Ω,F , P ), then the series

∑∞
n=1 ξn either converges a.e. or diverges

a.e. The following “Kolmogorov three series theorem” determines which of the
two cases occurs. Its proof can be read in Shiryaev [1700]. Let ξ(c)n (ω) = ξn(ω)
if |ξn(ω)| ≤ c and ξ

(c)
n (ω) = 0 if |ξn(ω)| > c. Let IEξ denote the expectation

(integral) of a random variable ξ.

10.10.20. Theorem. Let {ξn} be a sequence of independent random
variables on a probability space (Ω,F , P ). The series

∑∞
n=1 ξn converges a.e.

precisely when for every c > 0, one has convergence of the series
∞∑

n=1

P (|ξn| ≥ c),
∞∑

n=1

IEξ(c)n ,

∞∑

n=1

IE
(
ξ(c)n − IEξ(c)n

)2
.

Moreover, convergence of these series for some c > 0 is sufficient.

10.10.21. Example. Let random variables ξn be independent.
(i) If |ξn| ≤ c for some c > 0, then a necessary and sufficient condition of

a.e. convergence of the series
∑∞
n=1 ξn is convergence of the two series with the
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terms IEξn and IE(ξn−IEξn)2. If, in addition, IEξn = 0, then only convergence
of the series of IEξ2n is required.

(ii) If IEξn = 0 and the series of IEξ2n converges, then the series
∑∞
n=1 ξn

converges a.e. Indeed, the Chebyshev inequality yields convergence of the
series of P (|ξn| ≥ 1). The series of IE|ξ(1)n |2 converges as well, which by the
Cauchy–Bunyakowsky inequality yields convergence of the series of |IEξ(1)n |2.
Hence the series of IE

(
ξ
(1)
n − IEξ(1)n

)2 converges. We note that this partial case
is usually proved before Kolmogorov’s theorem and is used in its proof.

(iii) One has
∑∞
n=1 ξ

2
n a.e. precisely when

∑∞
n=1 IE

(
ξ2n/(1 + ξ2n)

)
< ∞.

Indeed, convergence of the latter series yields a.e. convergence of the series
of ξ2n/(1 + ξ2n), which, as one can easily see, is equivalent to convergence of
the series of ξ2n. If the series of ξ2n converges a.e., then the series of uniformly
bounded variables ξ2n/(1 + ξ2n) converges a.e. as well, which gives convergence
of their expectations according to (i).

For various special classes of measures and sets, there are other 0-1
laws based on specific features of the involved objects. See Bogachev [208],
Buczolich [271], Dudley, Kanter [497], Fernique [564], Hoffmann-Jørgensen
[846], Janssen [884], Smolyanov [1752], Takahashi, Okazaki [1825], Zinn
[2032], and Exercise 10.10.76.

10.10(v). Laws of large numbers

A law of large numbers is an assertion about convergence of the normal-
ized sums (ξ1 + · · ·+ ξn)/n for a given sequence of random variables. Results
of this kind constitute an important branch in probability theory (see Bauer
[136], Loève [1179], Petrov [1439], [1440], Révész [1558], Shiryaev [1700],
and references therein). As an example we mention the following theorem due
to Kolmogorov.

10.10.22. Theorem. Suppose that random variables ξn are independent,
equally distributed and integrable. Then the sequence (ξ1+· · ·+ξn)/n converges
a.e. to the expectation of ξ1.

We prove a law of large numbers in another case that will be used in the
proof of the Komlós theorem stated in Chapter 4.

10.10.23. Theorem. Let (Ω, P ) be a probability space, let {ξn} ⊂ L2(P ),
and let IE(ξn|ξ1, . . . , ξn−1) be the conditional expectation of ξn with respect
to the σ-algebra generated by ξ1, . . . , ξn−1. Let us set ζ1 := ξ1 − IEξ1 and
ζn := ξn − IE(ξn|ξ1, . . . , ξn−1) if n ≥ 2. Then:

(i) for all ε > 0, m = 0, 1, . . . and n ∈ IN, we have

P
(

max
1≤k≤n

∣
∣
∣
k+m∑

j=1+m

ζj

∣
∣
∣ ≥ ε

)
≤ 1
ε2

m+n∑

k=m+1

IEζ2
k ; (10.10.1)

(ii) if
∑∞
k=1 IE(ξk − IEξk)2 <∞, then the series

∑∞
k=1 ζk converges a.e.;

(iii) if
∑∞
k=1 k

−2IE(ξk − IEξk)2 <∞, then lim
n→∞

n−1
∑n
k=1 ζk = 0 a.e.
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Proof. (i) Let ε > 0, m ∈ {0, 1, . . .}, and n ∈ IN be fixed. We set

A :=
{
x : max

1≤k≤n

∣
∣
∣
m+k∑

j=m+1

ζj

∣
∣
∣ ≥ ε

}
, ηk := ζm+1 + · · ·+ ζm+k,

Ak :=
{
x : |η1(x)| < ε, · · · , |ηk−1(x)| < ε, |ηk(x)| ≥ ε

}
.

Then Ai ∩Aj = ∅ if i �= j and A =
⋃n
k=1Ak. We observe that the functions

ζi are mutually orthogonal in L2(P ). Moreover, it is readily verified that for
any i < j and every set B in the σ-algebra generated by ξ1, . . . , ξj−1, one has
(IBζi, ζj)L2(P ) = 0. In particular, for every k ≤ n, one has

(ηn − ηk, IAkηk)L2(P ) = 0.

Hence
∫

Ak

η2
n dP =

∫

Ak

η2
k dP +

∫

Ak

(ηn − ηk)2 dP + 2
∫

Ak

(ηn − ηk)ηk dP

=
∫

Ak

η2
k dP +

∫

Ak

(ηn − ηk)2 dP ≥
∫

Ak

η2
k dP ≥ ε2P (Ak),

whence we obtain

ε2P (A) ≤
n∑

k=1

∫

Ak

η2
n dP ≤

m+n∑

k=m+1

IEζ2
k .

(ii) Let Sk = ζ1 + · · ·+ ζk, αm(x) := supk |Sm+k(x)−Sm(x)| and α(x) :=
infm αm(x). If α(x) = 0, then lim

k→∞
Sk(x) exists and is finite. Hence it suffices

to show that α(x) = 0 a.e. According to (10.10.1), for any m < n we have

P
(
x : sup

1≤k≤n
|Sm+k(x)− Sm(x)| ≥ ε

)
≤ 1
ε2

m+n∑

k=m+1

IEζ2
k .

Therefore, for all m we obtain

P
(
x : α(x) ≥ ε

)
≤ P

(
x : αm(x) ≥ ε

)
≤ 1
ε2

∞∑

k=m+1

IEζ2
k .

We observe that IEζ2
k ≤ IE(ξk − IEξk)2, since ζk is the orthogonal projection

of ξk to the closed linear subspace in L2(P ) formed by the functions that are
measurable with respect to the σ-algebra generated by ξ1, . . . , ξk−1.

(iii) Applying (ii) to the functions ξk/k we obtain a.e. convergence of
the series

∑∞
k=1 k

−1ζk, which by the well-known Kronecker lemma yields our
claim. �

10.10.24. Corollary. Let
∞∑

n=1

n−2

∫

Ω

ξ2n dP <∞, lim
n→∞

IE(ξn|ξ1, . . . , ξn−1) = 0 a.e.
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Then lim
n→∞

n−1(ξ1 + · · ·+ ξn) = 0 a.e. In particular, this is true if ξk ∈ L2(P )
are independent and have zero means.

Now we are in a position to prove the Komlós theorem.

10.10.25. Theorem. Let µ be a probability measure and let a sequence
{ξn} be bounded in L1(µ). Then, there exist a subsequence {ηn} in {ξn} and
a function η ∈ L1(µ) such that for every subsequence {η′n} in {ηn}, one has
almost everywhere lim

n→∞
n−1

(
η′1(x) + · · ·+ η′n(x)

)
= η(x).

Proof. The main idea of the proof is to achieve a situation where the
hypotheses of Theorem 10.10.23 are satisfied. First we show how to pick a
subsequence {ηn} in {ξn} with the convergent arithmetic means, and then the
necessary changes will be described in order to cover all subsequences in {ηn}
as well. One can assume from the very beginning (passing to a subsequence)
that

∞∑

n=1

µ
(
|ξn| ≥ n

)
<∞. (10.10.2)

For every k, the sequence ξn,k := ξnI[−k,k] ◦ ξn is bounded in L2(µ) and hence
has a weakly convergent subsequence. By the standard diagonal procedure
we pick a subsequence {ξ′n} in {ξn} such that, for every fixed k, the sequence
ξ′n,k = ξ′nI[−k,k]◦ξ′n converges weakly in L2(µ) to some function βk as n→∞.
By Proposition 4.7.31, there exists a function η ∈ L1(µ) such that

lim
k→∞

βk(x) = η(x) a.e. and lim
k→∞

‖βk − η‖L1(µ) = 0. (10.10.3)

One can pick in {ξ′n} a further subsequence
{
ξ
(1)
n

}
such that for some number

p1 ∈ [0, 1] one has

lim
n→∞

µ
(

0 ≤
∣
∣ξ(1)n

∣
∣ < 1

)
= p1,

p1

2
≤ µ

(
0 ≤

∣
∣ξ(1)n

∣
∣ < 1

)
< p1 + 1, ∀n ∈ IN.

By induction, for every k ∈ IN, we construct a sequence
{
ξ
(k)
n

}
⊂
{
ξ
(k−1)
n

}

such that for all n ∈ IN, one has

lim
n→∞

µ
(
k − 1 ≤

∣
∣ξ(k)n

∣
∣ < k

)
= pk,

pk
2
≤ µ

(
k − 1 ≤

∣
∣ξ(k)n

∣
∣ < k

)
< pk +

1
k3
,

where 0 ≤ pk ≤ 1. Set ζn = ξ
(n2)
n . Then, for the sequence {ζn} and each of

its subsequences, we have

lim
n→∞

µ
(
k − 1 ≤ |ζn| < k

)
= pk, ∀ k ∈ IN, (10.10.4)

pk
2
≤ µ

(
k − 1 ≤ |ζn| < k

)
< pk +

1
k3
, ∀n ∈ IN, k = 1, . . . , n2. (10.10.5)

The last inequality yields

n2
∑

k=1

kpk ≤ 2
n2
∑

k=1

kµ
(
k − 1 ≤ |ζn| < k

)
≤ 2

(
‖ζn‖L1(µ) + 1

)
≤ 2C + 2,
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where C := supn ‖ξn‖L1(µ), whence we obtain
∞∑

k=1

kpk ≤ 2C + 2. (10.10.6)

Now let {ηn} be an arbitrary subsequence in {ζn} and ηn := ηnI[−n,n] ◦ ηn.
We show that

∞∑

n=1

n−2‖ηn‖22 ≤ 4C + 8. (10.10.7)

Indeed, by (10.10.5) we have

‖ηn‖22 ≤
n∑

k=1

k2µ
(
k − 1 ≤ |ηn| < k

)
<

n∑

k=1

k2(pk + k−3).

In view of (10.10.6) and the estimate
∑∞
n=k n

−2 ≤ 2k−1 this yields
∞∑

n=1

n−2‖ηn‖22 <
∞∑

n=1

n∑

k=1

n−2k2(pk + k−3) =
∞∑

k=1

k2(pk + k−3)
∞∑

n=k

n−2

≤ 2
∞∑

k=1

k(pk + k−3) ≤ 4C + 8.

Similarly to (10.10.7) one proves the estimate
∞∑

n=1

n−2‖βn‖22 ≤ 4C + 8. (10.10.8)

Indeed, let ζn,k := ζnI[−k,k] ◦ ζn. For any m ≥ n we have by (10.10.5)

‖ζm,n‖22 <
n∑

k=1

k2µ
(
k − 1 ≤ |ζm| < k

)
<

n∑

k=1

k2(pk + k−3).

Hence ‖βn‖22 ≤
∑n
k=1 k

2(pk + k−3), since ζm,n → βn weakly as m → ∞. As
above, we arrive at (10.10.8). By the inequality µ(ηn �= ηn) = µ(|ηn| > n)
and (10.10.2) we have

∞∑

n=1

µ(ηn �= ηn) <∞.

By the Borel–Cantelli lemma (see Exercise 1.12.89), for almost every x we
obtain ηn(x) = ηn(x) for all n > n(x). Hence the equalities

µ
(

lim
n→∞

n−1
n∑

k=1

ηk = η
)

= 1 and µ
(

lim
n→∞

n−1
n∑

k=1

ηk = η
)

= 1

are equivalent. In view of (10.10.3) it suffices to achieve a situation where,
letting γk := ηk − βk, one has

µ
(

lim
n→∞

n−1
n∑

k=1

γk = 0
)

= 1. (10.10.9)
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To this end, we pick in {ζn} a suitable subsequence {ηn} as follows. For a > 0,
we set

Ga(t) = ak if ak ≤ t < ak + a, k ∈ Z.

Let η1 = ζ1, γ1 = η1I[−1,1] ◦ η1 − β1, η′1 = G1/2 ◦ γ1. The function γ1 is
bounded, hence the function η′1 assumes only finitely many values and the
σ-algebra generated by η′1 is finite. Let A1,1,. . . ,A1,N1 be all sets of positive
measure in this σ-algebra. Let ε1 = min1≤k≤N1 µ(A1,k). As m → ∞ the
sequence {ζm,2} converges weakly in L2(µ) to β2, since ζm,k = ξm,k whenever
m ≥ k2 by our choice of ηn. There is m2 such that

∣
∣
∣
∣

∫

A1,k

(ζm,2 − β2) dµ
∣
∣
∣
∣≤

ε1
2
, ∀ k = 1, . . . , N1, ∀m ≥ m2.

Let η2 = ζm2 , γ2 = η2 − I[−2,2] ◦ η2 − β2, and η′2 = Gε1/4 ◦ γ2. Since the
functions η′1 and η′2 assume only finitely many values, they generate a finite
σ-algebra. Let A2,1,. . . ,A2,N2 be all sets of positive measure in this σ-algebra.
Let ε2 = min1≤k≤N2 µ(A2,k). As above, the sequence of functions ζm,3 − β3

converges weakly to zero in L2(µ) and hence there exists m3 > m2 with
∣
∣
∣
∣

∫

A2,k

(ζm,3 − β3) dµ
∣
∣
∣
∣≤

ε2
3
, ∀ k = 1, . . . , N2, ∀m ≥ m3.

We set η3 = ζm3 , γ3 = η3I[−3,3] ◦ η3 − β3, η′3 = Gε2/8 ◦ γ3 and continue our
construction inductively. Let

ηn := ζmn , γn := ηnI[−n,n] ◦ ηn − βn, η
′
n := Gεn−1/2n ◦ γn,

and let En be the finite σ-algebra generated by the functions η′1,. . . ,η′n−1.
Thus, we obtain numbers mn > mn−1 such that for all m ≥ mn one has

∣
∣
∣
∣

∫

An−1,k

(ζm,n − βn) dµ
∣
∣
∣
∣≤

εn−1

n
, ∀ k = 1, . . . , Nn−1, (10.10.10)

where An−1,k are all sets of positive measure in En and

εn−1 = min
1≤k≤Nn−1

µ(An−1,k).

We show that (10.10.9) is fulfilled. It follows by the definition of η′n and
Gεn−1/2n that

0 ≤ γn − η′n ≤ εn−12−n ≤ 2−n.

Hence

0 ≤ γ1 + · · ·+ γn
n

− η′1 + · · ·+ η′n
n

≤ 1
n
.

Thus, it suffices to establish that (η′1 + · · ·+ η′n)/n→ 0 a.e. This will be done
by using Theorem 10.10.23. According to (10.10.7) and (10.10.8) we have

∞∑

n=1

n−2‖γn‖22 <∞.
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Hence
∑∞
n=1 n

−2‖η′n‖22 < ∞. It remains to verify that for the conditional
expectation with respect to the σ-algebra An−1 generated by η′1, . . . , η

′
n−1 we

have
lim
n→∞

IEAn−1η′n = 0 a.e.

To this end, by virtue of (10.10.10) we obtain almost everywhere

|IEAn−1η′n| ≤ max
1≤k≤Nn−1

µ(An−1,k)−1

∣
∣
∣
∣

∫

An−1,k

η′n dµ

∣
∣
∣
∣

≤ ε−1
n−1

∣
∣
∣
∣

∫

An−1,k

γn dµ

∣
∣
∣
∣+ ε−1

n−1

∣
∣
∣
∣

∫

An−1,k

[η′n − γn] dµ
∣
∣
∣
∣

≤ εn−1n
−1ε−1

n−1 + ε−1
n−1‖η′n − γn‖1 ≤ n−1 + 2−n.

Now it is clear how to modify our reasoning in order to have convergence
of the arithmetic means of every subsequence in {ηn} and not only of the
sequence itself. In the inductive construction of ηn we shall find positive
numbers ϕn as follows. Let ϕ1 = 1/2. Instead of a single function η′n−1 we
shall consider all possible collections Fn−1 of functions Gϕl/2il ◦(ηl,n−1−βn−1),
1 ≤ l ≤ n−1. The finite σ-algebra generated by the functions in the collections
F1, . . . , Fn−1 is denoted by An−1 and the minimum of measures of all sets of
positive measure in An−1 is denoted by ϕn. Then we find numbers mn,k such
that for every set A ∈ An−1 one has the inequality

∣
∣
∣
∣

∫

A

(ζm,k − βk) dµ
∣
∣
∣
∣ ≤ ϕnk

−1, ∀m ≥ mn,k.

Finally, let mn = max1≤k≤nmn,k and ηn = ζmn . As above, one verifies that
{ηn} is a required sequence. �

Let us briefly comment on further generalizations of the Komlós theo-
rem. A sequence of numbers sn is called Cesàro summable to s ∈ [0,+∞] if
s1 + · · ·+ sn

n
→ s. Berkes [157] has shown that a subsequence in the Komlós

theorem can be found in such a way that all its permutations will also be
Cesàro summable. von Weizsäcker [1970] investigated the role of the con-
dition that the functions ξn are integrable and their norms are uniformly
bounded. Simple examples show that one cannot completely drop this con-
dition. However, some generalizations in this direction are possible. For
example, it is obvious that it suffices to have the above condition with respect
to some measure equivalent to the measure µ. This simple observation en-
larges considerably the range of admissible sequences. Surprisingly enough,
for nonnegative ξn this is the best possible extension of the Komlós theorem
if one admits only finite functions. We state the corresponding result from
von Weizsäcker [1970].

10.10.26. Theorem. Let {ξn} be a sequence of nonnegative measur-
able functions on a probability space (Ω,F , P ). Then, there exist a measur-
able function ξ with values in [0,+∞] and a subsequence {ξnk} such that



416 Chapter 10. Conditional measures and conditional expectations

every permutation of {ξnk} is a.e. Cesàro summable to ξ, and the sequence
{I{ξ<∞}ξnk} is bounded in L1(Q) for some probability measure Q equivalent
to the measure P .

Talagrand [1835] considered “stable classes” of functions on a probability
space (X,A, µ). One of the equivalent descriptions of a stable class S of
uniformly bounded measurable functions is this:

lim
k→∞

sup
f∈S

∣
∣
∣
1
k

k∑

i=1

f(xi)−
∫

X

f dµ
∣
∣
∣ = 0

for a.e. (xi) ∈ X∞ with respect to the countable power of µ.

10.10(vi). Gibbs measures

The fundamental Kolmogorov theorem enables us to construct measures
on infinite-dimensional spaces from their finite-dimensional projections. Here
we consider a dual (in a certain sense) problem of constructing measures from
their conditional measures on finite-dimensional subspaces. Suppose that we
are given an infinite index set S (usually in applications S is a countable
set like the integer lattice Z

d) and that for every s ∈ S, a measurable space
(Xs,Bs) is given. In typical applications Xs is a set in IRn or in some manifold.
As usual, XS will denote the space of all collections x = (xs)s∈S , where
xs ∈ Xs. If all Xs coincide with one and the same space X, then XS is the
usual power. For every subset Λ ⊂ S, let XΛ denote the class of all collections
x = (xs)s∈Λ with xs ∈ Xs. The space XΛ is equipped with the σ-algebra BΛ

generated by the coordinate mappings πsi : (xs)s∈Λ �→ xsi , si ∈ Λ, from XΛ

to (Xsi ,Bsi). Let πE denote the natural projection of XS to XE for every
set E ⊂ S.

10.10.27. Definition. Suppose that for every finite set Λ ⊂ S we are
given a transition probability PΛ( · , · ) on BΛ×XS\Λ. We shall say that a
probability measure P on BS is Gibbs with the conditional distributions PΛ if
for every finite set Λ ⊂ S one has the equality

P (B) =
∫

XS\Λ
PΛ(B, y)P ◦ π−1

S\Λ(dy), B ∈ BS . (10.10.11)

The first questions arising in connection with this definition are whether
Gibbs measures exist and whether they are unique. Certainly, in the theory
of Gibbs measures there are many other questions. It is worth noting that
this theory, which has been created relatively recently and in which unsolved
problems are in abundance, is a very promising field of applications of mea-
sure theory. We shall briefly consider only the “finite-dimensional” case, i.e.,
the problem of recovering a measure on a finite product from its conditional
measures.

10.10.28. Example. Let (X1,B1, λ1) and (X2,B2, λ2) be two probabil-
ity spaces and let µ be a measure on X1×X2 given by a positive density f with
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respect to the measure λ1 ⊗ λ2. Let B1 and B2 contain all singletons. Then
the measure µ is uniquely determined by the conditional measures µ1( · , x2)
on X1×{x2} and conditional measures µ2( · , x1) on {x1}×X2.

Proof. According to Exercise 9.12.48, the projection of µ on X1 is given
by the density

�1(x1) =
∫

X2

f(x1, x2)λ2(dx2)

with respect to λ1. The projection of µ on X2 is given by the density

�2(x2) =
∫

X1

f(x1, x2)λ1(dx1)

with respect to λ2. In addition, the conditional measures µ1( · , x2) on the
sections X1×{x2} are given by the densities

ψ1(x1, x2) := f(x1, x2)/�2(x2)

with respect to the measures λ1⊗δx2 and the conditional measures µ2( · , x1)
on {x1}×X2 are given by the densities

ψ2(x1, x2) := f(x1, x2)/�1(x1)

with respect to δx1⊗λ2. Thus, we have to recover µ knowing a pair of positive
functions ψ1 and ψ2. Let us integrate the function ψ1(x1, x2)/ψ2(x1, x2) in
x1 against the measure λ1. Then we obtain 1/�2(x2). Thus, the function �2

is uniquely recovered from the functions ψ1 and ψ2. Now we can uniquely
recover the measure µ itself: we have found its projection on X2 and we know
the conditional measures for every fixed x2. �

Note that we have actually used the positivity of the densities �1 and
�2 and the positivity of conditional densities. For infinite products, however,
this is not enough (Exercise 10.10.72). The positivity of conditional densities
is essential even in the case of finite products.

10.10.29. Example. Let E1 = [0, 1/2]×[0, 1/2], E2 = (1/2, 1]×(1/2, 1].
Let f1(x1, x2) = 2 if (x1, x2) ∈ E1∪E2, f1 = 0 outside E1∪E2, f2(x1, x2) = 3
if (x1, x2) ∈ E1, f2(x1, x2) = 1 if (x1, x2) ∈ E2. Then f1 and f2 are distinct
probability densities on [0, 1]2 and their projections to the sides of the square
have strictly positive densities with respect to Lebesgue measure. However,
both measures have equal conditional measures on the horizontal and vertical
lines. For example, on the section of the square with the ordinate x2 ∈ [0, 1/2],
the corresponding common conditional density equals 2I[0,1/2](x1), and on the
section with the ordinate x2 ∈ (1/2, 1], it equals 2I(1/2,1](x1).

10.10(vii). Triangular mappings

In this subsection we consider an interesting class of measure transforma-
tions on product-spaces. Suppose we are given a finite or countable family
of measurable spaces (Xn,An). Let (X,A) denote their product. A mapping
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T = (T1, T2, . . .) : X → X is called triangular if, for every n, the component
Tn depends only on x1, . . . , xn. In the case where all the spaces Xn coincide
with the real line (or are subsets of the real line), the mapping T is called in-
creasing if, for every n, the function xn �→ Tn(x1, . . . , xn−1, xn) is increasing
for all fixed x1, . . . , xn−1. The same terminology is used for mappings de-
fined on subsets of product-spaces. The term “triangular” is explained by the
fact that the derivative of a differentiable triangular mapping on IRn is given
by a triangular matrix. Triangular transformations arise naturally in many
problems, see, e.g., Knothe [1013], Talagrand [1837], and the recent papers
Aleksandrova [25], Bogachev, Kolesnikov [212], [213], Bogachev, Kolesnikov,
Medvedev [217], [218], on which our exposition is based. In spite of their
rather special form, triangular mappings provide us with a powerful tool for
transforming measures. Say, the countable product of Lebesgue measures on
[0, 1] can be transformed by a Borel increasing triangular transformation into
an arbitrary Borel probability measure on [0, 1]∞.

We recall that every Borel probability measure µ on the product of two
Souslin spaces X1 and X2 possesses conditional Borel probability measures
µx1 , x1 ∈ X1, on X2 such that, for every Borel set B in X1×X2, the function
x1 �→ µx1(Bx1), where Bx1 = {x2 ∈ X2 : (x1, x2) ∈ B}, is Borel on X1 and
one has

µ(B) =
∫

X1

µx1(Bx1)µ1(dx1),

where µ1 is the projection of µ on X1. Note that given a Borel measure µ on
the product of three Souslin spaces X1,X2, and X3, its conditional measures
on X2 serve as conditional measures for its projection on the space X1×X2.

10.10.30. Theorem. (i) Let X1 and X2 be Souslin spaces and let µ and
ν be two Borel probability measures on X1×X2. Suppose that the projection of
µ onto the first factor and the conditional measures µx1 , x1 ∈ X1, on X2 have
no atoms. Then there exists a Borel triangular mapping T : X1×X2 → X1×X2

such that µ ◦ T−1 = ν.
(ii) Let X =

∏∞
n=1Xn, where every Xn is a Souslin space. Let µ be

a Borel probability measure on X such that its projection on
∏n
j=1Xj and

the conditional measures on Xn have no atoms for all n. Then, for every
Borel probability measure ν on X, there exists a triangular Borel mapping
T : X → X such that µ ◦ T−1 = ν.

Proof. (i) First we consider the case X1 = X2 = [0, 1]. Let µ1 and ν1
denote the projections on the first factor. There exists a monotone function
T1 such that µ1◦T−1

1 = ν1. We shall use the canonical version of this function
defined by the formula T1(t) = Gν1

(
Fµ1(t)

)
, where

Gν1(t) := inf
{
s ∈ [0, 1] : Fν1(s) ≥ t

}
,

and Fµ1 and Fν1 are the distribution functions of the measures µ1 and ν1,
respectively, i.e., Fµ1(t) = µ1

(
[0, t)

)
. It is readily seen that Gν1 is increas-

ing. In addition, it is left-continuous. Indeed, if a sequence {ti} increases
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to t and Gν1(ti) ≤ Gν1(t) − ε for some ε > 0, then Fν1
(
Gν1(t) − ε

)
≥ ti,

hence Fν1
(
Gν1(t) − ε

)
≥ t, which is impossible. Therefore, T1 is increasing

and left-continuous as well. The function Fµ1 transforms µ1 into Lebesgue
measure (see Example 3.6.2) and the function Gν1 transforms Lebesgue mea-
sure into ν1. In Theorem 8.5.4, for transforming Lebesgue measure we used
the function ξν1(t) = sup

{
s ∈ [0, 1] : Fν1(s) ≤ t

}
, but this function may

differ from Gν1 only at countably many points. For every x1 ∈ [0, 1], we
take the above-defined canonical increasing function x2 �→ T2(x1, x2) that
takes µx1 to νT1(x1). The function T2 is Borel. Indeed, it is increasing and
left-continuous in x2. Hence its Borel measurability follows by its Borel mea-
surability in x1 for every fixed x2 (see Lemma 6.4.6). In order to verify the
Borel measurability in x1 we recall that

T2(x1, x2) = GT1(x1)
(
µx1

(
[0, x2)

))
,

where the function x1 �→ µx1

(
[0, x2)

)
on [0, 1] is Borel and

Gz(t) := inf
{
s ∈ [0, 1] : νz

(
[0, s)

)
≥ t
}
, t ∈ [0, 1].

Therefore, it is sufficient to verify the Borel measurability of the function
g(z) := Gz(t) with respect to z for every fixed t, since x1 �→ T1(x1) is a Borel
function. Thus, we consider the function

g(z) = inf
{
s : νz

(
[0, s)

)
≥ t
}
.

According to our choice of conditional measures, the Borel measurability of g
follows by Exercise 6.10.85. Let us verify that ν = µ ◦ T−1. Let E = A×B,
where A and B are Borel sets. Then one has

µ ◦ T−1(E) =
∫ 1

0

∫ 1

0

IE
(
T (x)

)
µx1(dx2)µ1(dx1)

=
∫ 1

0

IA
(
T1(x1)

) ∫ 1

0

IB
(
T2(x1, x2)

)
µx1(dx2)µ1(dx1)

=
∫ 1

0

IA
(
T1(x1)

) ∫ 1

0

IB(y2) νT1(x1)(dy2)µ1(dx1)

=
∫ 1

0

∫ 1

0

IA(y1)IB(y2) νy1(dy2) ν1(dy1) = ν(E).

In the general case there exist injective Borel functions hi : Xi → [0, 1].
Hence we may assume that the spaces Xi are Souslin subsets of the interval
[0, 1]. Extending both measures to [0, 1]2 we find the mapping T constructed
above. The set X1 contains a Borel subset Y1 of full measure with respect
to µ1 such that T1(Y1) ⊂ X1. Outside Y1 we redefine T1 by some constant
value from X1. This gives a Borel function T̃1 on X1 with values in X1 that
µ1-a.e. equals T1. Finally, one can find a Borel function T̃2 on X1 ×X2 with
values in X2 such that T̃2(x1, x2) = T2(x1, x2) for µ-a.e. (x1, x2). To this
end, we observe that µ

(
(x1, x2) ∈ X1×X2 : T2(x1, x2) ∈ X2

)
= 1. Indeed,

the indicated set is Souslin. For µ1-almost every fixed x1, the conditional
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measure µx1 is concentrated on X2, and also for ν1-almost every fixed y1,
the conditional measure νy1 is concentrated on X2. Hence for µ1-a.e. x1, the
conditional measure νT1(x1) is concentrated on X2, i.e., one has the inclusion
T2(x1, x2) ∈ X2 for µ-a.e. (x1, x2).

(ii) Induction on n proves our assertion for every finite product of the
spaces Xj . Denoting by µn and νn the projections of µ and ν on

∏n
j=1Xj

and using the finite product case we obtain Borel mappings Tn from
∏n
j=1Xj

to Xn such that µn ◦ (T1, . . . , Tn)−1 = νn for all n. Then µ ◦ T−1 = ν, where
T = (Tn)∞n=1. �

In the case where the spaces Xn coincide with the interval [0, 1], the Borel
triangular mappings constructed above have the property that the functions
xk �→ T (x1, . . . , xk) are increasing and left continuous. We shall call these in-
creasing Borel triangular mappings canonical triangular mappings. A canon-
ical triangular transformation of a measure µ to a measure ν will be de-
noted by Tµ,ν . In the case where the measures µ and ν are defined on all
of IRn, an analogous construction yields a triangular increasing Borel map-
ping Tµ,ν = (T1, . . . , Tn) with values in IRn defined on some Borel set Ω ⊂ IRn

of full µ-measure. Moreover, every function Tk as a function of the variables
x1, . . . , xk is defined on some Borel set in IRk whose intersections with the
straight lines parallel to the kth coordinate line are intervals. This is obvious
from our inductive construction and the one-dimensional case, in which the
composition Gν1 ◦Fµ1 is defined either on the whole real line or on a ray or on
an interval (if the function Gν1 has no finite limits at the points 0 and 1 and
the measure µ1 is concentrated on a bounded interval). For example, if µ is
Lebesgue measure on [0, 1] considered on the whole real line and ν is the stan-
dard Gaussian measure, then the mapping Tµ,ν is defined on the interval (0, 1),
but has no increasing extension to the whole real line. If the measure ν on IRn

has a bounded support, then the mapping Tµ,ν is defined on all of IRn. The
same is true for any measure ν if the projection of µ on the first coordinate
line and its conditional measures on the other coordinate lines are not con-
centrated on bounded sets. For example, this is the case if the measure µ is
equivalent to Lebesgue measure because one can take a strictly positive Borel
version of its density. We observe that the case of IRn reduces to that of [0, 1]n.
To this end, by using the mapping (x1, . . . , xn) �→ (arctgx1, . . . , arctgxn) and
its inverse we pass from IRn to (0, 1)n (this preserves the class of increasing
triangular Borel mappings). Given two measures µ and ν on (0, 1)n, we take
the mapping Tµ,ν on the cube [0, 1]n corresponding to their extensions to this
cube and let Ω = T−1

µ,ν

(
(0, 1)n

)
.

Since conditional measures are uniquely determined up to sets of mea-
sure zero, canonical triangular mappings are defined up to modifications, too.
However, we shall now see that the uniqueness of a canonical mapping holds
in a broader class of transformations.

10.10.31. Lemma. Let µ and ν be two Borel probability measures on
IRn possessing atomless projections on the first coordinate line and atomless
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conditional measures on the other coordinate lines. Then the mapping Tµ,ν
is injective on a Borel set of full µ-measure. The same is true for measures
on IR∞.

Proof. It suffices to consider the case of IRn because in the case of an
infinite product we obtain the injectivity on the set of full µ-measure that is
the intersection of the sets En×IR1×IR1×· · · of full µ-measure, where En is a
Borel set in IRn of full measure with respect to the projection of µ such that
the mapping (T1, . . . , Tn) is injective on En. The conditional measures on the
first n coordinate lines for the projection of µ on IRn are atomless, since they
coincide with the corresponding conditional measures of the measure µ. In the
case n = 1 the mapping Tµ,ν is strictly increasing on the set IR1\

⋃∞
k=1[ak, bk],

where IR1\
⋃∞
k=1(ak, bk) is the topological support of µ. The multidimensional

case is justified by induction. To this end, we take a set E ⊂ IRn−1 with
µn−1(E) = 1 on which the mapping (T1, . . . , Tn−1) is injective. The set E×IR1

contains a set of full µ-measure on which Tµ,ν is injective, since for every
y = (x1, . . . , xn−1) ∈ E, the function t �→ Tn(x1, . . . , xn−1, t) is injective on a
set of full µy-measure. �

10.10.32. Lemma. Let µ be a Borel probability measure on IR∞. Sup-
pose we are given two increasing triangular Borel mappings T = (Tn)∞n=1 and
S = (Sn)∞n=1 such that µ ◦ T−1 = µ ◦ S−1 and, for every n, the mapping
(T1, . . . , Tn) is injective on a Borel set of full measure with respect to the
projection of µ on IRn. Then T (x) = S(x) for µ-a.e. x.

In particular, if the projections of the measures µ and ν on the spaces
IRn are absolutely continuous, then there exists a canonical triangular map-
ping Tµ,ν , and it is unique up to µ-equivalence in the class of increasing Borel
triangular mappings transforming µ into ν.

Proof. Clearly, the assertion reduces to the case of IRn. Let us prove
it by induction on n. Let n = 1. Suppose that a point x0 belongs to the
topological support of µ. If T (x0) < S(x0), then x0 cannot be an atom
of µ, since µ

(
x : T (x) < t

)
= µ

(
x : S(x) < t

)
for all t, and one can take

t =
(
T (x0) + S(x0)

)
/2. Now we may assume that both functions T and

S are continuous at x0, since the sets of their discontinuity points are at
most countable. By the continuity of both functions at x0, there exists a
point x1 > x0 that is not an atom of µ such that the functions T and S are
continuous at x1 and T (x1) < S(x0). Taking t = T (x1) we obtain that there
exists a point y < x0 such that µ

(
(y, x1)

)
= 0, contrary to the fact that x0

belongs to the topological support of µ.
Suppose our assertion is already proven for some n ≥ 1. Let us consider

the case of IRn+1. Set ν := µ ◦ T−1 = µ ◦ S−1. Denote by µn and νn the
projections of µ and ν on IRn. On the last coordinate axis we fix conditional
measures µy and νy, y ∈ IRn. By the inductive assumption, whenever i ≤ n,
we have Ti(x) = Si(x) for µ-a.e. x. Indeed, the images of the measure µn
under the mappings T0 := (T1, . . . , Tn) and S0 := (S1, . . . , Sn) are equal (they
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coincide with νn). This gives T0 = S0 µn-a.e., which is equivalent to the
equality of these mappings µ-a.e., since they depend only on y := (x1, . . . , xn).
Now let us show that for µn-a.e. y = (x1, . . . , xn), we have the equality
Tn+1(x1, . . . , xn, xn+1) = Sn+1(x1, . . . , xn, xn+1) for µy-a.e. xn+1. To this
end, by the one-dimensional case it suffices to verify the equality µn-a.e. of
the measures µy ◦ F−1

y and µy ◦G−1
y , where

Fy(t) = Tn+1(x1, . . . , xn, t), Gy(t) = Sn+1(x1, . . . , xn, t).

By hypothesis, there exists a Borel set E ⊂ IRn with µn(E) = 1 such that the
mapping T0 = S0 is Borel and injective on E. One can find a Borel mapping
J on IRn such that J

(
T0(y)

)
= J

(
S0(y)

)
= y for all y ∈ E. Let us take a

countable family of bounded Borel functions ϕi on IRn separating the Borel
measures, and an analogous countable family of functions ψj on the real line.
Set ζi = ϕi ◦J . Then ζi

(
S0(y)

)
= ζi

(
T0(y)

)
= ϕi(y) for all y ∈ E, i.e., µn-a.e.

For all i and j, one has the equality
∫

IRn+1
ζi(y)ψj(t) ν(dydt) =

∫

IRn+1
ζi
(
S0(y)

)
ψj
(
Sn+1(y, t)

)
µ(dydt)

=
∫

IRn

(∫

IR1
ψj
(
Sn+1(y, t)

)
µy(dt)

)
ϕi(y)µn(dy)

=
∫

IRn

(∫

IR1
ψj(t)µy ◦G−1

y (dt)
)
ϕi(y)µn(dy).

The same equality is fulfilled for the measures µy ◦ F−1
y in place of µy ◦G−1

y .
According to our choice of the functions ϕi and ψj we obtain the equality
µy ◦G−1

y = µy ◦ F−1
y for µn-a.e. y. �

The assumption that ν possesses atomless conditional measures on the
coordinate lines is essential for the uniqueness statement. Indeed, let µ be
Lebesgue measure on [0, 1]2 and let T1(x1) = S1(x1) = 0, T2(x1, x2) = x2,
S2(x1, x2) = (x2 + 1)/2 if 0 ≤ x1 ≤ 1/2, and S2(x1, x2) = (x2 − 1)/2 if
1/2 < x1 ≤ 1. Then T and S transform µ into Lebesgue measure on the unit
interval of the second coordinate line.

10.10.33. Theorem. Let {µj} and {νj} be two sequences of Borel prob-
ability measures on IR∞ convergent in variation to measures µ and ν, respec-
tively. Suppose that the measures µj and µ satisfy the hypotheses of The-
orem 10.10.30. Then the canonical triangular mappings Tµj ,νj , extended in
an arbitrary way to Borel mappings of the whole space outside their initial
domains, converge in measure µ to the mapping Tµ,ν .

Proof. If follows from our previous considerations that it suffices to con-
sider the case of measures on [0, 1]n. Moreover, it suffices to show that every
subsequence in the given sequence of mappings has a further subsequence that
converges almost everywhere.

First we consider the case when all the measures µj coincide with µ.
In fact, we need the case where µ is Lebesgue measure. Let n = 1. Then
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limj→∞ Tµ,νj (t) = Tµ,ν(t) for almost every t, since µ has no atoms and
limj→∞Gνj (u) = Gν(u) for all points u ∈ [0, 1] at which the function Gν
is continuous, i.e., with the exception of an at most countable set (in the case
of Lebesgue measure Tµ,νj = Gνj ). Suppose the theorem is proved for some
n ≥ 1 and we are given probability measures νj convergent in variation to a
measure ν on In+1 := [0, 1]n+1. It suffices to verify that every subsequence in
{Tµ,νj} contains a subsequence convergent µ-a.e.

Denote by πn the projection on In = [0, 1]n and let µ0 := µ ◦ π−1
n ,

ν0 = ν ◦ π−1
n , Tµ,νj = (T j1 , . . . , T

j
n+1), Tµ,ν = (T1, . . . , Tn+1). Let νy and

νjy, y ∈ In, denote the conditional measures for ν and νj corresponding to
the factorization In+1 = In×[0, 1]. By the inductive assumption and Riesz’s
theorem we may assume that the mappings (T j1 , . . . , T

j
n) converge µ0-a.e. to

the mapping (T1, . . . , Tn), since by our construction they coincide with the
canonical mappings Sj := Tµ0,νj◦π−1

n
and S := Tµ0,ν0 on In. It follows by

the above inductive construction of the components of canonical mappings
and the considered one-dimensional case that in order to have convergence
of the functions T jn+1 to Tn+1 it suffices to obtain weak convergence of the
one-dimensional conditional measures νjSj(y) to the conditional measure νS(y)

for µ0-almost all y ∈ In. In turn, for every fixed k ∈ IN letting

ψj(y) :=
∫ 1

0

tk νjy(dt), ψ(y) :=
∫ 1

0

tk νy(dt),

it suffices to have convergence µ0-a.e. of the numbers ψj
(
Sj(y)

)
to ψ

(
S(y)

)
.

Moreover, as observed above, it suffices to ensure this for some subsequence
of indices j. According to Proposition 10.4.23, passing to a subsequence, we
may assume that the measures νjz converge in variation to the measure νz
for ν0-a.e. z. Then the functions z �→ ψj(z) converge ν0-almost everywhere
to the function z �→ ψ(z). By convergence of the measures µ0 ◦ S−1

j to the
measure µ0 ◦ S−1 in variation and Corollary 9.9.11 we obtain convergence of
the functions ψj

(
Sj(y)

)
to ψ

(
S(y)

)
in measure µ0. Passing to a subsequence

once again we obtain convergence almost everywhere.
Now let us consider another special case where a sequence of measures µj

convergent in variation is transformed into Lebesgue measure λ on [0, 1]n. In
this case all the components of our canonical triangular mappings transform
the conditional measures (or one-dimensional projections) into Lebesgue mea-
sure, i.e., are the distribution functions of the corresponding measures. There-
fore, arguing by induction, it suffices to pass to a subsequence of measures for
which one has convergence in variation for the conditional measures.

Finally, in the general case we have Tµj ,νj = Tλ,νj ◦ Tµj ,λ. In view of
the two cases considered above the sequences of mappings Tµj ,λ and Tλ,νj
converge in measure with respect to the measures µ and λ, correspondingly.
Since the measures µ ◦ T−1

µj ,λ
converge in variation to the measure λ (this

follows by the fact that µj ◦ T−1
µj ,λ

= λ and ‖µj − µ‖ → 0), Corollary 9.9.11
used above yields the desired convergence. We recall that if the projections
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of µ and µj to all subspaces IRn are equivalent to Lebesgue measure, then the
canonical triangular mappings are defined on the whole space from the very
beginning. �

It follows from the theorem that some subsequence of mappings Tµj ,νj
converges to Tµ,ν almost everywhere with respect to µ. In such a formulation,
the theorem extends to countable products of arbitrary Souslin spaces (see
Aleksandrova [25]), and if the factors are metrizable, then convergence of the
whole sequence in measure µ remains valid. As Example 10.4.24 shows, there
might be no almost everywhere convergence of the whole sequence Tµj ,νj .

We have the following change of variables formula for increasing triangular
mappings.

10.10.34. Lemma. Let T = (T1, . . . , Tn) : IRn → IRn be an increasing
Borel triangular mapping. Suppose that the functions

xi �→ Ti(x1, . . . , xi)

are absolutely continuous on bounded intervals for a.e. (x1, . . . , xi−1) ∈ IRi−1.
Let us set by definition detDT :=

∏n
i=1 ∂xiTi. Then for every Borel function

ϕ that is integrable on the set T (IRn), the function ϕ ◦ T detDT is integrable
over IRn and one has

∫

T (IRn)

ϕ(y) dy =
∫

IRn
ϕ
(
T (x)

)
detDT (x) dx. (10.10.12)

If the mapping T is defined only on a Borel set Ω ⊂ IRn and every function Ti
is defined on a Borel set in IRi whose sections by the straight lines parallel to
the ith coordinate line are intervals and the indicated condition is fulfilled for
the compact intervals in those sections, then the same assertion is true with
Ω in place of IRn.

Proof. For n = 1 our assertion coincides with the classic change of
variables formula for absolutely continuous functions. Next we apply in-
duction on n and assume the assertion to be true in the case of dimen-
sion n − 1. We make the function ϕ zero outside the Souslin set T (IRn).
Let S = (T1, . . . , Tn−1). Then for almost every yn ∈ IR1, the function
(y1, . . . , yn−1) �→ ϕ(y1, . . . , yn) is integrable over IRn−1, hence by the inductive
assumption and the fact that the mapping S on IRn−1 satisfies our hypotheses,
we obtain
∫

T (IRn)

ϕ(y) dy =
∫

IRn
ϕ(y) dy =

∫ +∞

−∞

∫

IRn−1
ϕ
(
S(z), yn

)
detDS(z) dz dyn,

which after interchanging the limits of integration and the change of vari-
able yn = Tn(z, xn) for fixed z ∈ IRn−1 leads to (10.10.12) by the equality
detDT = (detDS)∂xnTn. A similar reasoning applies to the second case
mentioned in the formulation, when T is defined on Ω. �
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Let us give a simple sufficient condition on the measures µ and ν ensuring
the absolute continuity of the ith component of Tµ,ν with respect to the
variable xi.

10.10.35. Lemma. A canonical triangular mapping Tµ,ν on IRn that
transforms an absolutely continuous probability measure µ to a probability
measure ν equivalent to Lebesgue measure satisfies the hypothesis of the pre-
ceding lemma.

Proof. It suffices to observe that in the one-dimensional case the func-
tion Tµ,ν is absolutely continuous on the intervals, since Tµ,ν = Gν ◦Fµ, where
both functions are increasing and absolutely continuous on the intervals. The
absolute continuity of Fµ is obvious and the absolute continuity (on every
bounded interval) of the function Gν that is inverse to the absolutely con-
tinuous function Fν follows by the fact that it is continuous, increasing and
has Lusin’s property (N) (see Exercise 5.8.51). Property (N) follows by the
condition F ′

ν > 0 a.e. (see Lemma 5.8.13). �

If the measure ν is not equivalent to Lebesgue measure, then the ith
component of the canonical triangular mapping may be discontinuous. For
example, the canonical mapping of Lebesgue measure on [0, 1] to the measure
ν with density 2 on [0, 1/4] ∪ [3/4, 1] and 0 on (1/4, 3/4) has a jump. Never-
theless, the change of variables formula proven above remains valid without
assumption on the absolute continuity made in the lemma if T is a canonical
mapping of absolutely continuous measures (certainly, not every increasing
Borel triangular mapping has this property).

10.10.36. Proposition. Let µ and ν be probability measures on IRn with
densities �µ and �ν with respect to Lebesgue measure. Then, for the canonical
triangular mapping Tµ,ν = (T1, . . . , Tn), we have the equality

�µ(x) = �ν
(
Tµ,ν(x)

)
detDTµ,ν(x) for µ-a.e. x, (10.10.13)

where detDTµ,ν :=
∏n
i=1 ∂xiTi exists almost everywhere by the monotonicity

of Ti in xi.

Proof. Let us consider first the one-dimensional case. Then Tµ,ν = S◦T ,
where T is the canonical mapping of the measure µ to Lebesgue measure λ
on (0, 1), i.e., the distribution function of the measure µ, and S is the canonical
mapping of the measure λ to the measure ν, i.e., the inverse function to the
distribution function Fν of the measure ν. By differentiating the identity
Fν
(
S(y)

)
= y we obtain �ν

(
S(y)

)
S′(y) = 1 a.e. Indeed, it suffices to observe

that if Z is a Lebesgue measure zero set on which the derivative of Fν does
not exist or differs from �ν , then S−1(Z) has Lebesgue measure zero. This is
a direct consequence of the equality λ ◦ S−1 = ν and the absolute continuity
of ν. Now we observe that

�ν

(
S
(
T (x)

))
S′(T (x)

)
= 1 for µ-a.e. x.
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This is clear from the equality µ◦T−1 = λ. By using this equality we conclude
as above that

T ′
µ,ν(x) = S′(T (x)

)
T ′(x) for µ-a.e. x.

Thus, for µ-a.e. x we obtain

�ν
(
Tµ,ν(x)

)
T ′
µ,ν(x) = �ν

(
Tµ,ν(x)

)
S′(T (x)

)
T ′(x) = T ′(x) = �µ(x).

Next we use induction on n and assume that our assertion is true in dimen-
sion n − 1. We write the points of IRn in the form (x, xn), x ∈ IRn−1. Set
T̃ (x) =

(
T1(x), . . . , Tn−1(x)

)
. The projections of the measures µ and ν on

IRn−1 are denoted by µ′ and ν′, and their densities with respect to Lebesgue
measure on IRn−1 are denoted by �µ′ and �ν′ , respectively. We observe that
T̃ coincides with Tµ′,ν′ . By the inductive assumption one has

�µ′(x) = �ν′
(
T̃ (x)

)
detDT̃ (x) µ′-a.e. (10.10.14)

For µ′-a.e. fixed x ∈ IRn−1, the function t �→ Tn(x, t) transforms the one-
dimensional conditional density �xµ(xn) = �µ(x, xn)/�µ′(x) of the measure µ
to the conditional density

�T̃ (x)
ν (xn) = �ν

(
T̃ (x), xn

)
/�ν′

(
T̃ (x)

)

of the measure ν. According to the one-dimensional case we obtain

�µ(x, xn)
�µ′(x)

=
�ν
(
T̃ (x), Tn(x, xn)

)

�ν′
(
T̃ (x)

) ∂xnTn(x, xn) for µx-a.e. xn.

By using the equality detDT (x, xn) = ∂xnTn(x, xn) detDT̃ (x) and relation
(10.10.14) we complete the proof. �

We emphasize once again that the partial derivative in the formulation is
an almost everywhere existing usual partial derivative, not the one in the sense
of distributions (which has a singular component in the case of a function that
is not absolutely continuous).

We shall say that a Borel probability measure µ with a twice differentiable
density exp(−Φn) on IRn is uniformly convex with constant C > 0 if Φn is
a convex function and D2Φn(x) ≥ C · I, i.e., ∂2

eΦn(x) ≥ C for every unit
vector e ∈ IRn. A Borel probability measure µ on IR∞ is called uniformly
convex with constant C > 0 if its projections on the spaces IRn are uniformly
convex with constant C.

The following result is proved in Bogachev, Kolesnikov, Medvedev [217],
[218]. This result generalizes the inequality obtained by Talagrand [1837] in
the case of a Gaussian measure.

10.10.37. Theorem. Suppose that a probability measure µ on IRn is
uniformly convex with constant C (for example, let µ be the standard Gaussian
measure). Let ν be an absolutely continuous probability measure on IRn such
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that for f := dν/dµ one has f log f ∈ L1(µ). Then, there exists a Borel
increasing triangular mapping T such that ν = µ ◦ T−1 and

∫

IRn
|x− T (x)|2 µ(dx) ≤ 2

C

∫

IRn
f(x) log f(x)µ(dx).

In the case of the standard Gaussian measure, one has C = 1.

Let H := l2 and |h|
H

:=
(∑∞

n=1 h
2
n

)1/2. The following theorem is proved
in Bogachev, Kolesnikov [213].

10.10.38. Theorem. Suppose that a Borel probability measure µ on
X := IR∞ is uniformly convex with constant C > 0. Let ν � µ be a probability
measure and let f := dν/dµ.

(i) If f log f ∈ L1(µ), then the canonical triangular mapping Tµ,ν has the
property that

∫

X

|Tµ,ν(x)− x|2
H
µ(dx) ≤ 2

C

∫

X

f log f dµ.

(ii) If µ has the form µ1 ⊗ µ′, where µ′ is a measure on the product of
the remaining real lines, then there exists a Borel triangular mapping T of the
form T (x) = x+ F (x) with F : X → H such that ν = µ ◦ T−1.

(iii) If µ is equivalent to the measure µe1 : B �→ µ(B − e1), where e1 =
(1, 0, 0, . . .), then there exists a Borel mapping T of the form T (x) = x+F (x)
with F : X → H such that ν = µ ◦ T−1.

The assumptions (ii) and (iii) are fulfilled for the countable power of any
uniformly convex measure on the real line. In particular, this theorem applies
to the countable power of the standard Gaussian measure on the real line.
Consequently, the conclusion is true for every Radon Gaussian measure.

Exercises

10.10.39.◦ Let (Ω,F , P ) be a probability space, let Fn be an increasing sequence
of σ-algebras generating F , and let |ξn| ≤ η, where ξn and η are integrable. Suppose
that ξn → ξ a.e. Prove that IEFnξn → ξ a.e.

Hint: as IEFnξ → ξ a.e. by the martingale convergence theorem, the assertion
reduces to the case ξ = 0. Given ε > 0, one can find a set E with P (E) < ε such
that |ξn| ≤ ε outside E for all n ≥ nε. Then for all n ≥ nε we have

IEFn |ξn| ≤ ε+ IEFn(ηIE) a.e.

It remains to observe that IEFn(ηIE) → ηIE a.e. and ηIE vanishes outside E.

10.10.40.◦ (Moy [1339], Rota [1614]) Show that if µ is a probability measure
on a space (X,F) and T : Lp(µ) → Lp(µ) is a linear operator for some p ∈ [1,∞)
such that ‖T‖ = 1, T1 = 1 and T (gTf) = TgTf for all g ∈ L∞(µ), f ∈ Lp(µ), then
there exists a sub-σ-algebra in E ⊂ F such that Tf = IEEf .

Hint: let T ∗ be the adjoint operator on Lq(µ), q = p(p − 1)−1. It follows
that T ∗1 = 1, as the integral of T ∗1 equals 1 by the equality T1 = 1 and the
estimate ‖T ∗1‖q ≤ 1. Note also that Tf ∈ L∞(µ) if f ∈ L∞(µ). Indeed, we have
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(Tf)2 = T (fTf) ∈ Lp(µ). By induction one has (Tf)n = T
(
f(Tf)n−1

)
∈ Lp(µ)

for all n. By the equality ‖T‖ = 1 and Hölder’s inequality we find

‖Tf‖npnp ≤ ‖f(Tf)n−1‖pp ≤ ‖f‖pnp‖Tf‖np−pnp ,

whence it follows that ‖Tf‖np ≤ ‖f‖∞ for all n, hence Tf ∈ L∞(µ). Let us consider
the class Φ of all bounded F-measurable functions ϕ with Tϕ = ϕ a.e. and denote
by E the σ-algebra generated by Φ. By induction one obtains T (ϕ)n = ϕn for
all n ∈ IN and ϕ ∈ Φ. Hence T [ψ(ϕ)] = ψ(ϕ) for all polynomials ψ, which gives
T [ψ(ϕ)] = ψ(ϕ) for any bounded Borel function ψ. Therefore, Tg = g for every
bounded E-measurable function g. Let f ∈ L∞(µ). Then T (Tf) = Tf , so Tf has a
version ϕ ∈ Φ. Finally, for any E ∈ E the integral of the function

IETf = TfTIE = T (fTIE) = T (fIE)

equals the integral of fIE , i.e., ϕ = IEEf .

10.10.41.◦ (Šidák [1705]) Let µ be a probability measure on a space (X,F)
and let M be a closed linear subspace in L2(µ). Show that the following conditions
are equivalent:

(i) 1 ∈M and max(f, g) ∈M for all f, g ∈M ,
(ii) there exists a sub-σ-algebra E ⊂ F such that M = IEE(L2(µ)).
Hint: (i) yields that E := {E ∈ F : IE ∈M} is a σ-algebra. Let L be the closed

linear subspace in L2(µ) generated by the functions IE , E ∈ E . Then L ⊂M . Note
that min(f, g) ∈ M if f, g ∈ M . If −1 ≤ f ≤ 0, then max(nf,−1) → −I{f<0},
which gives {f < 0} ∈ E . It follows that {f < c} ∈ E for all f ∈ M and c ∈ IR.
Hence f ∈ L, i.e., one has M = L. It is readily verified that (ii) implies (i).

10.10.42. (Ziȩba [2029]) Let (X,A, µ) be a probability space and let B ⊂ A
be a sub-σ-algebra. A sequence {ηn} of measurable functions is called uniformly
B-integrable if for every B-measurable a.e. positive function α, there exists a B-
measurable function β such that β(x) > 0 a.e. and supn IEB(|ηn|I{|ηn|>β}

)
< α a.e.

(i) Prove that if a sequence {ξn} of integrable functions is such that the sequence
of functions ξ+n is uniformly B-integrable, then lim sup

n→∞
IEBξn ≤ IEB lim sup

n→∞
ξn a.e. If

the sequence {ξn} is uniformly B-integrable and converges a.e. to ξ, then we have
lim
n→∞

IEBξn = IEBξ a.e.

(ii) Construct an example showing that the usual uniform integrability of ξ+n is
not sufficient for the conclusion in (i).

10.10.43. (Blackwell, Dubins [182]) Show that if functions fn ≥ 0 are in-
tegrable with respect to a probability measure µ and converge a.e. to a func-
tion f ∈ L1(µ) such that the function g := supn fn is not integrable, then one
can find a probability space (Ω,F , P ), functions ϕn, ϕ ∈ L1(P ), and a sub-σ-
algebra E ⊂ F such that the sequence (ϕ,ϕ1, ϕ2, . . .) has the same distribution
as (f, f1, f2, . . .) (i.e., both sequences induce one and the same measure on IR∞) and
P
(
ω : lim

n→∞
IEEϕn(ω) = IEEϕ(ω)

)
= 0.

10.10.44.◦ Let X = [−1/2, 1/2] be equipped with the σ-algebra A of all sets that
are either at most countable or have at most countable complements, let B = A,
and let λ be Lebesgue measure. Show that Dirac’s measures δx serve as regular
conditional measures λB( · , x). Show that the probability measures λx := δ−x as
well as the signed measures λx := 2δx−δ−x also serve as regular conditional measures
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for λ. Hence there is no essential uniqueness of regular conditional measures even in
the class of probability conditional measures, although µ is separable; in addition, a
probability measure may have signed regular conditional measures. Finally, letting
λx := [x−1 + 1]δx − x−1δ−x if x �= 0, we get regular conditional measures with
non-integrable ‖λx‖.

Hint: the first claim is trivial. The second claim follows from the fact that for
any countable set A, the functions λx(A) = I−A(x) and λx(A) = 2IA(x) − I−A(x)
are B-measurable and their Lebesgue integrals vanish; if A = X, then both functions
equal 1.

10.10.45.◦ (cf. Krylov [1066]) Let E be a Borel (or coanalytic) set in a complete
separable metric spaceM and letD(E) be the space of all mappings x : [0,+∞) → E
that are right-continuous and have left limits. Let A denote the smallest σ-algebra
in D(E) making measurable all mappings x �→ x(t), t ≥ 0. Prove that for every
probability measure µ on A and every sub-σ-algebra B ⊂ A, there exists a regular
with respect to B conditional probability on A.

Hint: use that D(E) is a coanalytic set in the Polish space D(M) (see The-
orem 6.10.19) and that A is generated by countably many mappings x �→ x(t),
t ∈ Q.

10.10.46.◦ Let (X,A) and (Y,B) be measurable spaces. Suppose that for every
x ∈ X, we are given a probability measure µx on B such that the function x �→ µx(B)
is measurable with respect to A for all B ∈ B. Show that for every E ∈ A⊗B, the
function x �→ µx(Ex), where Ex := {y ∈ Y : (x, y) ∈ E}, is measurable with respect
to A.

Hint: the class E of all sets E ∈ A⊗B with the required property is σ-additive
and contains the class of all products A× B, where A ∈ A, B ∈ B, which is closed
with respect to intersections. Hence E = A⊗B (see �1.9).

10.10.47. (Blackwell, Ryll-Nardzewski [186]) Let X and Y be Borel sets in
Polish spaces and let A be a countably generated sub-σ-algebra in B(X). Suppose
we are given a set S ∈ A⊗B(Y ) and a mapping x �→ µx from X to P(Y ) such that
for all B ∈ B(Y ), the function µx(B) is measurable with respect to A.

(i) Show that for every θ ∈ [0, 1), there exists a set E ∈ A⊗B(Y ) such that
E ⊂ S, all sections Ex := {y : (x, y) ∈ E} are closed and µx(Ex) ≥ θµx(Sx) for
all x ∈ X.

(ii) Let µx(Sx) > 0 for all x ∈ X. Prove that S contains the graph of some(
A,B(Y )

)
-measurable mapping f : X → Y .

Hint: (i) the class F of all sets in A⊗B(Y ) with the required property admits
finite unions, countable unions of increasing sets and countable intersections of de-
creasing sets. For example, let F =

⋂∞
n=1 F

n, Fn ∈ F , Fn+1 ⊂ Fn and θ ∈ (0, 1).
By the previous exercise the function ψ : x �→ µx(Fx) is measurable with respect
to E . Let Xk := {(k + 1)−1 ≤ ψ < k−1}. Then A⊗B contains a set En ⊂ Fn with
closed sections such that µx(Fnx \Enx ) ≤ (k + 1)−1(1 − θ)2−n for all x ∈ Xk. Let
E :=

⋂∞
n=1 E

n. Then E ⊂ F and whenever µx(Fx) > 0, we have

µx(Ex) ≥ µx(Fx)
[
1 −

∞∑

n=1

µx(Fx\Enx )/µx(Fx)
]
≥ θµx(Fx),

since µx(Fx\Enx ) ≤ µx(Fnx \Enx ) ≤ (k + 1)−1(1 − θ)2−n ≤ (1 − θ)2−nµx(Fx). It
is clear that F contains all sets of the form A×B, where A ∈ A and B ⊂ Y is
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closed. The same is true for the complements of such sets, since any open set in Y
is the union of a sequence of increasing closed sets. (ii) We may assume that Y is
a complete separable metric space. By using (i) one can find sets Sn ∈ A⊗B with
Sn+1 ⊂ Sn ⊂ S such that their sections are closed, nonempty and have diameters
at most 1/n in the metric Y . Hence

⋂∞
n=1 Sn is the graph of a mapping f , and this

mapping is A-measurable; see Blackwell, Ryll-Nardzewski [186], another proof is
given in Kechris [968, Corollary 18.7].

10.10.48. (Blackwell, Ryll-Nardzewski [186]) (i) Let µ be a Borel probability
measure on a Borel set X in a Polish space and let f be a Borel function on X. Let
σ(f) be the σ-algebra generated by f . Prove that the existence of regular conditional
probabilities µy, y ∈ IR1, that for all y ∈ f(X) are concentrated on f−1(y) and for
which all functions y �→ µy(A), A ∈ B(X), are Borel measurable, is equivalent to the
existence of a mapping F : X → X that is

(
σ(f),B(X)

)
-measurable and satisfies

the condition f
(
F (x)

)
= f(x).

(ii) Show that a necessary condition for the existence of a mapping F as in (i)
is the Borel measurability of the set f(X). In particular, there exists a continuous
(even smooth) mapping f on a Borel set in [0, 1] for which there are no conditional
measures with the properties mentioned in (i).

Hint: in the case where the indicated conditional measures exist we apply
Exercise 10.10.47 to X = Y , A = σ(f) and the mapping x �→ µf(x), taking for S the
set of all (x, y) with f(x) = f(y). Then S contains the graph of some

(
σ(f),B(X)

)
-

measurable mapping F and f
(
F (x)

)
= f(x). There is a Borel mapping g : IR1 → X

with F (x) = g
(
f(x)

)
. Hence the image of f is the Borel set

{
t : f

(
g(t)

)
= t

}
.

Conversely, if F with the listed properties exists, then we take regular with respect
to σ(f) conditional measures B �→ µ(B, x), x ∈ X, and set µf(x)(B) := µ

(
B,F (x)

)

for all x ∈ F−1(B), µf(x)(B) := 0 for all x �∈ F−1(B). If y �∈ f(X), then µy := δ0.

10.10.49. Show that the existence of conditional measures in the sense of
Doob with respect to B (see Remark 10.6.3) is equivalent to the existence of a
disintegration µ( · , x) with Fx = F for all x ∈ X.

Hint: if one has conditional measures in the sense of Doob, then for every set
A ∈ F, there is a measure zero set NA ∈ B on the complement to which the function
µ(A, x) is B-measurable. The converse is obvious.

10.10.50. Let (M,M, µ) be a probability space. Prove that measurable par-
titions ζ and η are independent precisely when for every measurable ζ-set A and
every measurable η-set B, one has the equality µ(A ∩B) = µ(A)µ(B).

10.10.51. (Dieudonné [447]) Let X = [0, 1]∞ be equipped with the measure µ
that is the countable product of Lebesgue measures on [0, 1]. For every µ-integrable
function f and every finite set J ⊂ IN, we let J ′ := IN\J and

fJ(x) :=

∫

[0,1]J
′
f(xJ , xJ′)µJ′(dxJ′),

where xJ := (xn)n∈J and µJ′ is the projection of µ on [0, 1]J
′
, i.e., the sub-product

of the copies of Lebesgue measure corresponding to J ′. Given an increasing sequence
Jn of finite parts of IN with the union IN, we obtain by the martingale convergence
theorem that fJn(x) → f(x) a.e. Show that this assertion may fail for nets, by
constructing a measurable set E of positive µ-measure whose indicator f = IE has
the following property: the net {fJ} indexed by all finite sets J ⊂ IN does not



10.10. Supplements and exercises 431

converge to f , i.e., it is not true that for µ-a.e. x ∈ X and every ε > 0, there
exists a finite set J0 ⊂ IN such that |f(x) − fJ(x)| < ε for every finite set J that
contains J0.

10.10.52. Let µ be a measure with values in [0 + ∞] on a σ-algebra A. Prove
that the existence of a lifting on L∞

A is equivalent to that µ is decomposable.
Hint: see, e.g., A. & C. Ionescu Tulcea [867, p. 48], Levin [1164, Ch. 3, �3].

10.10.53.◦ Show that there are no linear liftings on the spaces Lp[0, 1] in the
case 1 ≤ p <∞.

Hint: if L is a linear lifting on Lp[0, 1], 1 ≤ p < ∞, then for every t, the
functional lt(f) = L(f)(t) on Lp[0, 1] is linear and nonnegative on nonnegative
functions, which by Exercise 4.7.88 yields its continuity. Hence the functional lt is
represented by a function gt in Lq[0, 1], q = p/(p−1). For every n, we partition [0, 1]
into n intervals Jn,1, . . . , Jn,n by the points k/n. Let En,k :=

{
x : L(IJn,k)(x) = 1

}

and En :=
⋃n
k=1 En,k. Then λ(En) = 1 by the properties of liftings. There exists a

point t ∈
⋂∞
n=1 En. For every n, there is j(n) with t ∈ En,j(n), i.e., L(IJn,j(n))(t) = 1.

Since L(IJn,k) = IJn,k a.e., for all k we have

L(IJn,k)(t) =

∫ 1

0

IJn,k(s)gt(s) ds ≤ n−1/p‖gt‖Lq ,

which leads to a contradiction. The same reasoning applies to any continuous mea-
sure, see A. & C. Ionescu Tulcea [867].

10.10.54.◦ Let (X,A, µ) be a probability space and let T : X → X be a trans-
formation that preserves the measure µ and is ergodic. Suppose that f is a µ-
measurable nonnegative function such that µ-a.e. I(x) := lim

n→∞
n−1∑n

k=1 f(T kx)

exists and is finite. Prove that the function f is integrable.
Hint: let fN = min(f,N), then for any fixed N the analogous limit exists and

equals the integral of fN for a.e. x. Hence the integral of fN is majorized by I(x)
a.e. for every N , which yields the boundedness of the sequence of integrals of fN ,
since it suffices to find a common point x for all N .

10.10.55. Let n ∈ IN and let fn be the transformation of the interval [0, 1] into
itself taking x to the fractional part of nx.

(i) Prove that λ ◦ f−1
n = λ, where λ is Lebesgue measure.

(ii) Prove that for every set E ⊂ [0, 1] of positive measure, almost every point
x ∈ [0, 1] has the property that fn(x) ∈ E for infinitely many n.

Hint: see Billingsley [168, Ch. 1, �3].

10.10.56. Let T be the transformation of the space [0, 1) into itself that takes
x > 0 to the fractional part of 1/x, T (0) = 0. Let us consider the following Gauss
measure: µ := (ln 2)−1(x + 1)−1 dx. (i) Prove that µ ◦ T−1 = µ. (ii) Prove that T
is ergodic on [0, 1) with the measure µ and hence for every integrable function f on
[0, 1) for a.e. x one has

lim
n→∞

1

n

n−1∑

k=0

f(T kx) =
1

ln 2

∫ 1

0

f(y)

1 + y
dy.

Hint: see Billingsley [168, Ch. 1, �4].

10.10.57. (Khinchin [997]) Let f be a positive continuous function on (0,+∞)
such that xf(x) is a decreasing function. Prove that if the integral of f over [0,∞)
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is infinite, then for almost all α the inequality |α − p/q| < f(q)/q has infinitely
many solutions in integer numbers p and q (q > 0), and if this integral is finite, then
for almost all α the indicated inequality has finitely many solutions. Apply this to
f(x) = x−1(log x)−1 and f(x) = x−1(log x)−2.

Hint: see Billingsley [168, Ch. 1, �4], Khinchin [997, �14].

10.10.58.◦ (i) Let {ξn} be a martingale with respect to {Fn} and let ψ be a
convex function such that the functions ψ(ξn) are integrable. Prove that {ψ(ξn)} is
a submartingale with respect to {Fn}. In particular, {|ξn|p} is a submartingale if
the functions |ξn|p are integrable. (ii) Prove that the conclusion in (i) remains true
if {ξn} is a submartingale and ψ is an increasing convex function. In particular, the
functions max(ξn − c, 0) form a submartingale for all c.

10.10.59.◦ Let {ξn}, n = 0, 1, . . . , be a submartingale and let a bounded non-
negative function gn be measurable with respect to Fn−1 for each n ≥ 1. Prove that
the sequence [g, ξ]n :=

∑n
m=1 gm(ξm − ξm−1), [g, ξ]0 := 0, is a submartingale.

10.10.60. Construct an example of a martingale {ξn} that converges to zero
in measure, but not a.e. and an example of a martingale {ξn} that tends to +∞ a.e.

10.10.61.◦ Let {ξn} be a supermartingale with respect to {Fn} and let τ be a
stopping time. Prove that {ξmin(τ,n)} is a supermartingale.

10.10.62. Let {ξn} be a martingale with respect to {Fn} and let ν be the
corresponding additive set function on the algebra R =

⋃∞
n=1 Fn defined in Re-

mark 10.3.7. Show that ν is countably additive if and only if IEξτ = IEξ1 for all
finite stopping times τ . In this case ξ∞ = lim

n→∞
ξn is the Radon–Nikodym density

of the absolutely continuous component of ν with respect to P .
Hint: see Neveu [1369, Proposition III-1].

10.10.63. (Gilat [686]) Let {ξn} be a nonnegative submartingale on a prob-
ability space (Ω,F , P ). Prove that there exists a martingale {ηn} on some proba-
bility space (Ω′,F ′, P ′) such that the image of the measure P under the mapping
ξ = (ξn) : Ω → IR∞ coincides with the image of the measure P ′ under the map-
ping η = (|ηn|) : Ω′ → IR∞, i.e., the sequences {ξn} and {|ηn|} have the same
distribution.

10.10.64. (i) Deduce Corollary 10.3.10 from Proposition 10.3.9.
(ii) Deduce from Corollary 10.3.10 the following inequality of Kolmogorov: if

ξn are independent square integrable random variables with the zero mean, then

P
(

max
1≤k≤n

|ξ1 + · · · + ξn| ≥ r
)
≤ r−2IE|ξ1 + · · · + ξn|2, ∀ r > 0.

10.10.65. (i) Show that the boundedness of the sequence {‖ξ+n ‖L1(P )} does
not imply the boundedness of {‖Xn‖L1(P )} in the situation of Corollary 10.3.11.

(ii) Prove that in the situation of Corollary 10.3.11 one has

IEXn ≤ e

e− 1

(
1 + IEξ+n max(log ξ+n , 0)

)
.

Hint: see Example 10.3.8 and Durrett [505, �4.4, Exercises 4.2, 4.7].

10.10.66. Prove the claim in Remark 10.10.9.
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10.10.67. (Gaposhkin [658]) Let µ be a probability measure and let a sequence
of functions fn converge to zero in the weak topology of Lp(µ) for some p ∈ [1,∞).
Prove that there exist a subsequence {fnk} and a sequence of functions gk ∈ Lp(µ)
such that

∞∑

k=1

‖fnk − gk‖Lp(µ) <∞ and IE(gk|g1, . . . , gk−1) = 0, ∀ k ∈ IN.

10.10.68. (Oxtoby, Ulam [1411]) Show that the set of all points x in (0, 1) for
which the number of units among the first n coefficients in the expansion in negative
powers of 2 divided by n tends to 1/2 is a first category set (i.e., the law of large
numbers fails for category in place of measure).

10.10.69. (Bryc, Kwapień [268]) Let (Ω,F , P ) be a probability space, let Fi be
a sequence of mutually independent sub-σ-algebras in F , and let ξi ∈ L1(Ω,Fi, P ) be
such that the integral of ξi is zero. Prove that the following conditions are equivalent:
(a) there exists ξ ∈ L1(Ω,F , P ) with ξi = IEFiξ for all i, (b) lim

i→∞
‖ξi‖L1(P ) = 0.

10.10.70.◦ Let (Ω,A, µ) be a probability space and let f(t, ω) be a measurable
function on [0, 1]×Ω, continuous in t. Denote by Ωk the set of all ω for which
there exists a chain 0 < s1 < t1 < · · · < sk < tk ≤ 1 such that f(si, ω) ≥ 1 and
f(ti, ω) ≤ 0 for all i = 1, . . . , k. Show that Ωk is measurable.

Hint: for any fixed ε > 0, consider the set Ωk,ε that is defined analogously to
Ωk with the inequalities f(si, ω) > 1 − ε and f(ti, ω) < ε. By the continuity of f
in t, one can pass to rational si and ti, which gives measurability of Ωk,ε. One has
Ωk =

⋂∞
j=1 Ωk,1/j by the continuity of f in t.

10.10.71. (Bellow [145]) Suppose that (Ω,F , µ) is a complete probability space
and Λ is a lifting on L∞(µ). Let K be a compact space and let a mapping g : Ω → K
be
(
F ,Ba(K)

)
-measurable. For every ω ∈ Ω, consider the function ψ �→ Λ(ψ ◦g)(ω)

on Cb(K). (i) Show that there exists a unique element ΛK(g)(ω) ∈ K such that
the equality ψ

(
ΛK(g)(ω)

)
= Λ(ψ ◦ g)(ω) holds for all ψ ∈ Cb(K). (ii) Prove that

the mapping ΛK(g) : Ω → K is Borel measurable. (iii) Prove that the image of the
measure µ with respect to ΛK(g) is a Radon measure on K.

10.10.72. Construct two distinct centered Gaussian measures on IR∞ that for
all n have equal conditional measures on all lines y + IR1en, y ∈ Πn, where Πn is
the hyperplane {x ∈ IRn : xn = 0}, en = (ejn), enn = 1 and ejn = 0 if j �= n.

Hint: see Bogachev [208, Theorem 7.3.7] or Bogachev, Röckner [223].

10.10.73. (Jessen [897], Doob [466]) Construct an example of a probability
measure µ on a space Ω and two independent measurable functions ξ and η that are
not independent in the sense of Kolmogorov (see remark after Definition 10.10.1).

10.10.74. (Stroock [1796], Kallianpur, Ramachandran [941]) Let X be a
nonempty set with two σ-algebras A and B. Let µ be a probability measure on A
and ν a probability measure on B. A probability measure η on the σ-algebra σ(A∪B)
is called a splicing of the measures µ and ν if η(A ∩ B) = µ(A)ν(B) for all A ∈ A,
B ∈ B. Thus, η = µ on A, η = ν on B, and A and B are independent with
respect to η. Prove that a splicing of measures µ and ν exists precisely when∑∞
n=1 µ(An)ν(Bn) ≥ 1 for all sequences of sets An ∈ A and Bn ∈ B such that

X =
⋃∞
n=1(An ∩Bn).
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10.10.75. (i) (Lipchius [1174]) Let (Ω,F , P ) be a probability space, (X,A) a
measurable space with a countably generated and countably separated σ-algebra A.
Suppose that two mappings f, g : Ω → X are measurable and independent and that
g satisfies the following two conditions: 1) g(E) ∈ AP◦g−1 for all E ∈ F , 2) for every
sequence of pairwise disjoint sets Ak ∈ F such that P (Ak) > 0 and lim

k→∞
P (Ak) = 0,

there exists n such that P ◦ g−1
(
g(An)

)
< 1.

Prove that f coincides a.e. with a finitely many valued mapping.
(ii) (Ottaviani [1407]) Let g be an absolutely continuous function on [0, 1] that

is not a constant. Suppose that a measurable function f on [0, 1] is such that f and
g are independent random variables on [0, 1] with Lebesgue measure. Prove that f
coincides a.e. with a function that assumes only finitely many values. Note that (i)
implies (ii).

10.10.76. (Borell [236]) Let µ be a convex Radon probability measure on a
locally convex space X and let G be an additive subgroup in X. Prove that either
µ∗(G) = 0 or µ∗(G) = 1.

10.10.77.◦ Let µ be a probability measure. Prove that two µ-measurable func-
tions f and g are independent precisely when for all t and s one has the equality

∫
exp(itf + isg) dµ =

∫
exp(itf) dµ

∫
exp(isg) dµ.

Hint: if this equality holds, then for any function ψ that is a finite linear
combination of the functions of the form exp(itx), the integral of ψ(f)ψ(g) equals
the product of the integrals of ψ(f) and ψ(g). It is clear by the Weierstrass theorem
that this remains true for all ψ ∈ C0(IR), hence for all bounded Borel functions.

10.10.78. (Rüschendorf, Thomsen [1628]) Suppose that (X,A) and (Y,B) are
measurable spaces. Let µ be a probability measure on (X × Y,A ⊗ B), let µX be
the projection of µ on X, and let µY be the projection of µ on Y . Set

S :=
{
f ∈ L0(µ) : f(x, y) = ϕ(x) + ψ(y), ϕ ∈ L0(µX), ψ ∈ L0(µY )

}
.

(i) Let g be a positive finite µ-measurable function. Prove that the set

{f ∈ S : |f(x, y)| ≤ g(x, y) a.e.}

is closed in L0(µ).
(ii) Give an example showing that S may not be closed.

10.10.79. (Jacobs [875]) Let Ω be a Polish space, µ a Borel probability mea-
sure on Ω, and T : Ω → Ω a continuous transformation. Suppose that there is an
increasing sequence of integers kn → ∞ such that the measures µ◦(T kn)−1 converge
weakly to µ. Prove the following extension of the Poincaré recurrence theorem: for
µ-a.e. x, there is a sequence of integers pn → ∞ such that T pnx→ x.

Hint: let U be open; the set G =
⋃
n≥0 T

−n(U) is open, T−1(G) ⊂ G,

G\T−1(G) = U\U1, where U1 is the set of all points in U that return to U . It
suffices to show that µ(G) = µ

(
T−1(G)

)
. Let ε > 0 and let f ∈ Cb(Ω) be such that

0 ≤ f ≤ 1,
∫
f dµ ≥ µ(G) − ε.
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By weak convergence, there is n such that
∫
f ◦ Tn dµ ≥ µ(G) − 2ε.

Hence µ(G) ≥ µ
(
T−1(G)

)
≥ µ

(
T−n(G)

)
≥ µ(G) − 2ε, whence the claim follows.

10.10.80. Construct three random variables on a probability space that are
pairwise independent, but are not independent.

10.10.81. (i) Let X be a Souslin space with a Borel measure µ, A a sub-
σ-algebra in B(X), and let µ( · , · ) be a regular conditional measure with respect
to A. Suppose that the measures µ( · , x) are absolutely continuous with respect to
a nonnegative measure ν on A. Prove that there exists an A⊗B(X)-measurable
function � on X2 such that dµ( · , x1)/dν(x2) = �(x1, x2).

(ii) Let X and Y be Polish spaces, µ a Borel measure on X×Y , µY the pro-
jection of µ on Y , and let ν be a Borel probability measure on X such that µY -a.e.
conditional measures µy on X are absolutely continuous with respect to ν. Prove
that there exists a Borel function � on X×Y such that dµy/dν(x) = �(x, y).

Hint: use Exercise 6.10.72.

10.10.82. Suppose that the distribution Pξ of a random vector ξ = (ξ1, . . . , ξn)
in IRn is invariant with respect to permutations of coordinates and a Borel function ϕ
on IRn is invariant with respect to permutations of coordinates. Let B denote the σ-
algebra generated by the random variable ϕ(ξ1, . . . , ξn). Show that if the variables ξi
are integrable, then IEBξ1 = IEBξi for all i ≤ n. In particular, if ϕ(x) = x1 +· · ·+xn,
then the equality IEBξi = (ξ1 + · · · + ξn)/n holds.

Hint: for every bounded Borel function ψ on the real line, the integral of
the function (x1 − xk)ψ ◦ ϕ(x1, . . . , xn) with respect to Pξ vanishes because the
transformation that interchanges the first and the kth coordinates leaves this integral
unchanged, but at the same time transforms it into the opposite number.

10.10.83. (i) (Burkholder [289]) Let ξ be an integrable random variable and
ξ1, ξ2, . . . independent random variables each with the same distribution as ξ. Show
that the following statements are equivalent:

(a) |ξ| log+ |ξ| is not integrable, where log+ x = log x if x > 1 and log+ x = 0
otherwise,

(b) supn |ξn|/n is not integrable,
(c) supn[|ξ1| + · · · + |ξn|]/n is not integrable.
(ii) (Blackwell, Dubins [182]) Show that if ξ is a nonnegative integrable random

variable such that ξ log+ ξ is not integrable, then there exist a probability space
(Ω,F , P ), a decreasing sequence of sub-σ-fields Fn ⊂ F , and a random variable ξ1
on (Ω,F , P ) with the same distribution as ξ such that supn IEFnξ is not integrable.

Hint: (ii) let ξ1, ξ2, . . . be independent and have the same distribution as ξ and
let Fn be generated by ξ1 + · · · + ξk, k ≥ n; observe that IEFnξ1 = IEFnξk for each
k ≤ n, hence IEFnξ1 = (ξ1 + · · · + ξn)/n.

10.10.84.◦ Let (Ω,A, P ) be a probability space. Prove that the following condi-
tions on sub-σ-algebras F ,G ⊂ A are equivalent: (i) IEFξ = IEGξ a.e. for every inte-
grable function ξ, (ii) for every F ∈ F , there exists a set G ∈ G with P (F �G) = 0,
and for every G ∈ G, there exists a set F ∈ F with P (F �G) = 0.
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Hint: if we have (i) and F ∈ F , then IF = IEFIF = IEGIF a.e. and one can
take G = {IEGIF = 1}. If we have (ii), then every F-measurable function equals
a.e. some G-measurable function and conversely.

10.10.85.◦ Let (Ω,A, P ) be a probability space, let F ,G ⊂ A be sub-σ-algebras,
and let ξ, η ∈ L1(P ). Suppose that a set A ∈ F ∩ G is such that ξ = η a.e. on A
and {A ∩G : G ∈ G} = {A ∩ F : F ∈ F}. Show that IEFξ = IEGη a.e. on A.

Hint: let E := A ∩ {IEFξ > IEGη}. Observe that E ∈ F ∩ G and show that
P (E) = 0 by verifying that the integral of IEFξ − IEGη over E vanishes.

10.10.86.◦ Let ξ ≥ 0 be an integrable random variable on a probability space
(Ω,A, P ) and let B ⊂ A be a sub-σ-algebra. Show that if ξ > 0 on a set of positive
measure, then IEBξ > 0 on a set of positive measure.

Hint: if IEBξ = 0 a.e., then IEξ = 0.

10.10.87.◦ Suppose we are given a probability space (Ω,A, P ), a sequence
of integrable functions ξn ≥ 0, and a sequence of sub-σ-algebras An ⊂ A. Let
IEAnξn → 0 in probability. Prove that ξn → 0 in probability.

Hint: observe that IEAnξn(ξn + 1)−1 → 0 in probability, which yields conver-
gence ξn(ξn + 1)−1 → 0 in L1-norm.

10.10.88.◦ Let f be an integrable function on a probability space (X,A, µ) and
let B ⊂ A be a sub-σ-algebra. Let V be a strictly convex function on the real line,
i.e., V (x) − V (y) > V ′

+(y)(x − y) whenever x �= y, and let the function V ◦ f be

integrable. Suppose that IEB(V ◦ f) = V ◦ IEBf a.e. Prove that f = IEBf a.e.
Hint: letting g := IEBf we have h := V (f) − V (g) − V ′

+(g)(f − g) ≥ 0 a.e. If

µ({f �= g}) > 0, then µ({h > 0}) > 0, whence µ({IEBh > 0}) > 0. It remains to
observe that IEB[V ′

+(g)(f − g)] = IEBV ′
+(g)IEB(f − g) = 0 a.e.

10.10.89. Let f be an integrable function on a probability space (X,A, µ) and
let B ⊂ A be a sub-σ-algebra. Show that if IEBf and f have equal distributions,
then we have f = IEBf a.e.

Hint: there exists a strictly increasing convex function V such that the func-
tion V (f) is integrable. One has IEBV (f) ≥ V (IEBf) by Jensen’s inequality, and
the integrals of both sides are equal, since IEBf and f are equally distributed. This
is possible only if IEBV (f) = V (IEBf) a.e., which gives f = IEBf a.e. by Exer-
cise 10.10.88.

10.10.90. Suppose that on a probability space we are given integrable random
variables ξ, ξ′ and random variables η, η′ such that (ξ, η) and (ξ′, η′) have the same
distribution. Prove that IE(ξ|η) and IE(ξ′|η′) have a common distribution.

Hint: IE(ξ|η) = f(η) for some Borel function f , whence for every bounded
Borel function ϕ we obtain

IE[ϕ◦η′IE(ξ′|η′)] = IE[ξ′(ϕ◦η′)] = IE[ξ(ϕ◦η)] = IE[(f ◦η)(ϕ◦η)] = IE[(f ◦η′)(ϕ◦η′)],
which gives IE(ξ′|η′) = f ◦ η′ a.e.

10.10.91. Let random elements ξ and η on a probability space (Ω,A, P ) take
values in a Souslin space S. Suppose that a Borel mapping F : S → S is such that
the random elements (ξ, F ◦η) and (ξ, η) have one and the same distribution. Prove
that:

(i) Pσ(η)(A) = Pσ(F◦η)(A) for all A ∈ σ(ξ),
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(ii) the random elements ξ and η are conditionally independent with respect
to F ◦ η.

Hint: (i) the function IA has the form ψ ◦ξ, the function IEσ(η)IA has the form
θ ◦ η and is a unique (up to equivalence) function of η on which the minimum of
the distances from ψ ◦ ξ to elements of the subspace of σ(η)-measurable functions
is attained. Since the function θ(F ◦ η) is σ(η)-measurable and the function ψ ◦ ξ−
θ(F ◦ η) has the same L2-norm as ψ ◦ ξ − θ ◦ η, we obtain θ ◦ η = θ(F ◦ η) a.e.,
hence θ ◦ η has a σ(F ◦ η)-measurable modification. (ii) By (i) for all A ∈ σ(ξ) and
B ∈ σ(η) we have

IEσ(F◦η)(IAIB) = IEσ(F◦η)IEσ(η)(IAIB) = IEσ(F◦η)(IBIEσ(η)IA)

= IEσ(F◦η)(IBIEσ(F◦η)IA) = IEσ(F◦η)IBIEσ(F◦η)IA.

10.10.92.◦ Let random variables ξ, η, ζ be such that the vector (ξ, ζ) and η are
independent. Show that ξ and η are conditionally independent given ζ.

Hint: let bounded functions f , g, and h be measurable with respect to σ(ξ),
σ(η), and σ(ζ), respectively. Then IE(fgh) = IEgIE(fh) and

IE[hIE(f |ζ)IE(g|ζ)] = IE[hgIE(f |ζ)] = IEgIE[hIE(f |ζ)] = IEgIE(fh),

which gives the equality IE(fg|ζ) = IE(f |ζ)IE(g|ζ).

10.10.93. Let µ and ν be probability measures on a measurable space (X,A)
such that ν � µ and let σ be a probability measure on a measurable space (Y,B).
Suppose that T : X×Y → Z be a measurable mapping with values in a measurable
space (Z, E). Prove that νσ,T := (ν⊗σ) ◦ T−1 � µσ,T := (µ⊗σ) ◦ T−1 and that

∫

Z

V
( dνσ,T
dµσ,T

)
dµσ,T ≤

∫

X

V
( dν
dµ

)
dµ

for any convex function V such that V (dν/dµ) ∈ L1(µ).
Hint: it is obvious that ν⊗σ � µ⊗σ and d(ν⊗σ)/d(µ⊗σ) = f , where f := dν/dµ

is regarded as a function on X×Y , hence νσ,T � µσ,T . Let g := dνσ,T /dµσ,T and
let F be the σ-algebra generated by T . It is readily verified that g ◦ T = IEF

µ⊗σf . It
remains to apply Jensen’s inequality for conditional expectations.

10.10.94. Let X and Y be Polish spaces and let a Borel probability measure µ
on X×Y be such that its projection µX on X has no atoms. Prove that there exists
a sequence of Borel mappings ϕn : X → Y such that the measures µn := µX ◦F−1

n ,
where Fn(x) =

(
x, ϕn(x)

)
, converge weakly to µ.

Hint: let µx, x ∈ X, be conditional probabilities on Y for the measure µ. Since
the weak topology on P(X×Y ) is metrizable and the mapping x �→ µx from X to
P(Y ) is measurable, it suffices to prove the assertion in the case where the mapping
x �→ µx is simple, i.e., the space X is partitioned into finitely many Borel parts
Bi such that µx = µi for every x ∈ Bi, µi ∈ P(Y ). Clearly, this case reduces to
the case where µ = µX ⊗ν with some ν ∈ P(Y ). We can approximate µX ⊗ν by
a sequence of measures of the form µX⊗νn, where νn has a finite support. Hence
we may assume that ν =

∑p
i=1 ciδyi , yi ∈ Y , 0 < ci ≤ 1,

∑p
i=1 ci = 1. Now we

proceed as in Example 8.3.3: given n, we partition X in Borel sets Bj of positive
µX -measure and diameter less than 1/n; each Bj is partitioned into p Borel parts
Bj,i with µX (Bj,i) = ciµX (Bj). Finally, let ϕn be defined as follows: ϕn(x) = yi if
x ∈ Bj,i. Let f ∈ Lip1(X×Y ). The difference between the integrals of f against µ
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and µX ◦ F−1
n does not exceed 2/n. Indeed, pick xj ∈ Bj . Then

∣
∣
∣∣

∫

X×Y
f dµ−

p∑

i=1

∞∑

j=1

cif(xj , yi)µX (Bj)

∣
∣
∣∣ ≤ 1/n

because |f(x, y) − f(xj , y)| ≤ 1/n whenever x ∈ Bj . Similarly,
∣
∣
∣
∣

∫

X

f ◦ Fn dµX −
∞∑

j=1

p∑

i=1

f(xj , yi)µX (Bj,i)

∣
∣
∣
∣ ≤ 1/n.

It remains to recall that µX (Bj,i) = ciµX (Bj).

10.10.95. Suppose a sequence of Borel probability measures µn on [0, 1]2 con-
verges weakly to Lebesgue measure. Is it possible that, for all n and x ∈ [0, 1], the
conditional measures µxn on the vertical line are Dirac measures at some points?

Hint: yes, it is: see the previous exercise.

10.10.96. Bogachev, Korolev [219]) Show that Theorem 10.9.7 may fail for
unbounded functions f . More specifically, show that in the case of the group of
rotations of the unit circle with Lebesgue measure there exist an unbounded Borel
function f on the unit circle and a probability density � on [0, 1] for which Theorem
10.9.7 fails.
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Upon superficial observation mathematics appears to be
a fruit of many thousands of scarcely related individuals
scattered through the continents, centuries and millenni-
ums. But the internal logic of its development looks much
more like the work of a single intellect that is developing his
thought continuously and systematically, using as a tool
only the variety of human personalities. As in an orches-
tra performing a symphony by some composer, a theme is
passing from one instrument to another, and when a per-
former has to finish his part, another one is continuing it
as if playing from music.

I.R. Shafarevich. On some tendencies of the develop-
ment of mathematics.

Unfortunately, it is in the very nature of such a sys-
tematic exposition that newly obtained knowledge merges
with the old one, so that the historical development be-
comes unrecognizable.

C. Carathéodory. Vorlesungen über reelle Funktionen.

Chapter 6.

��6.1–6.8. In this chapter, along with some topological concepts we
present the basic facts of the so-called descriptive set theory which are nec-
essary for applications in measure theory. This theory arose simultaneously
with measure theory, to a large extent under the influence of the latter (let
us mention Lebesgue’s work [1123]). Considerable contributions to its cre-
ation are due to E. Borel, R. Baire, H. Lebesgue, N.N. Lusin, F. Hausdorff,
M.Ya. Souslin, W. Sierpiński, P.S. Alexandroff, P.S. Novikoff, A.A. Lyapunov,
and other researchers; see comments to �1.10 in Volume 1 concerning the his-
tory of discovery of Souslin sets and Arsenin, Lyapunov [72], Hausdorff [797]
Kanovei [947], Kuratowski [1082], Lyapunov [1217], Novikov [1385], and
comments in [216], [1209], [1211]. The Souslin sets (A-sets or analytic sets
in the terminology of that time; the term “Souslin sets” was introduced by
Hausdorff in his book [797]) were first considered by Souslin, Lusin, Sierpiński,
and other researchers in the space IRn and its subspaces, but already then the
special role of the space of irrational numbers (or the space of all sequences)
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was realized. So the step to a study of Souslin sets in topological spaces was
natural; see, e.g., Shneider [1701]. Among later works note Bressler, Sion
[253], Choban [341], Choquet [350], Froĺık [642], Hoffmann-Jørgensen [841],
Jayne [886], [887], Rao, Rao [1532], Sion [1731], [1732], Topsøe [1881], and
Topsøe, Hoffmann-Jørgensen [1882], where one can find additional references.
A more detailed exposition of this direction can be found in Dellacherie [425],
Kechris [968], Rogers, Jayne [1589], Srivastava [1772]. Dellacherie [424] dis-
cusses descriptive set theory in relation to the theory of capacities and certain
measurability problems in the theory of random processes. In the 1920–1930s
a whole direction arose and was intensively developing at the intersection of
measure theory, descriptive set theory, general topology and partly mathe-
matical logic; this direction can be called set-theoretic measure theory. Con-
siderable contributions to this direction are due to Banach [108], Sierpiński
[1721], [1723], Szpilrajn-Marczewski [1819], [1256], Ulam [1898].

Proposition 6.5.4 was obtained in Hoffmann-Jørgensen [841] for Souslin
spaces; for separable Banach spaces it was also noted in Afanas’eva, Petunin
[12] and Perlman [1432].

In order to describe the σ-algebra generated by a sequence of sets En
and construct isomorphisms of measurable spaces Szpilrajn [1815], [1816]
employed “the characteristic function of a sequence of sets”, i.e., the function
f defined by f(x) = 2

∑∞
n=1 3−nIEn(x); it was noted in [1815] that a compact

form of representation of such a function had been suggested by Kuratowski.
The absence of a countable collection of generators of the σ-algebra S gen-

erated by Souslin sets was established in Rao [1529] (whence we borrowed the
reasoning in Example 6.5.9) and Mansfield [1247]; see also Rao [1530]. Rao
[1528] proved that under the continuum hypothesis there exists a countably
generated σ-algebra of subsets of the interval [0, 1] containing all Souslin sets
(the question about this as well as the problem of the existence of countably
many generators of S was raised by S. Ulam, see Fund. Math., 1938, V. 30,
p. 365). In the same work [1528], the following more general fact was estab-
lished: if X is a set of cardinality κ equal to the first uncountable cardinal,
then for every collection of sets Xα ⊂ X that has cardinality κ, there exists a
countably generated σ-algebra containing all singletons in X and all sets Xα.

A simple description of the Borel isomorphic types of Borel sets leads to
the analogous problem for Souslin sets. However, here the situation is more
complicated, and one cannot give an answer without additional set-theoretic
axioms. It is consistent with the standard axioms that every two non-Borel
Souslin sets on the real line are Borel isomorphic. On the other hand, one can
add an axiom which ensures the existence of a non-Borel Souslin set A that
is not Borel isomorphic to A2 and A × [0, 1]. For example, if there exists a
non-Borel coanalytic set C ⊂ [0, 1] without perfect subsets, then one can take
A = [0, 1]\C. See details in Cenzer, Mauldin [321], Maitra, Ryll-Nardzewski
[1239], Mauldin [1276].
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�6.9. Measurable selection theorems go back to Lusin (see [1209], [1208])
and Novikoff (see [1383], [1385]) in respect of fundamental ideas and gen-
eral approach, but the first explicit result of the type of Theorem 6.9.1 was
obtained by Jankoff [882]. Some authors call this theorem the Lusin–Jankoff
(Yankov) theorem, see Arsenin, Lyapunov [72]; it was shown in Lusin [1208]
that every Borel set B in the plane is uniformizable by a coanalytic set C
(a set M1 is said to be uniformizable by a set M2 ⊂ M1 if M2 is the graph
of a function defined on the projection of M1 to the axis of abscissas), and
Jankoff observed that one can take for C the graph of a measurable function,
which yields a measurable selection. This approach is described in detail
in [72]. The measurable selection theorem was later proved independently by
von Neumann [1363]. For this reason, the discussed theorem is also called the
Jankoff–von Neumann theorem. It appears that this terminology is justified
and that, on the other hand, the name “the measurable selection theorem”
has an advantage in being informative and a disadvantage in being applicable
to too many results in this area. There are comments in Wagner [1956] with
some information that von Neumann could have proved the result even before
World War II, but since no analogous investigation with respect to the other
authors was done, we refer only to the published works.

Theorem 6.9.3 was discovered by Rohlin [1596] and later by Kuratowski
and Ryll-Nardzewski [1084]. Wagner [1956] detects a gap in the proof
in [1596], but also indicates a simple and sufficiently obvious way to cor-
rect it, keeping the main idea; independently of the way of correcting that
gap, it is obvious that the very fact of announcing such an important theo-
rem had a principal significance. Regarding measurable selections, see also
Castaing, Valadier [319], Graf [721], Graf, Mauldin [723], Levin [1164],
Saint-Raymond [1639], Wagner [1956], [1957]; related questions (such as
measurable modifications) are discussed in Cohn [361], Mauldin [1277].

�6.10. The idea of applying compact classes to the characterization of
abstract Souslin sets as projections goes back to the work Marczewski, Ryll-
Nardzewski [1258]. It should be noted that many results of this chapter
on Souslin spaces are valid in a more abstract setting, where no topologies
are employed and the main role is played by compact classes, see Hoffmann-
Jørgensen [841].

Interesting results related to the Borel structure can be found in Chris-
tensen [355]. Various problems connected with measurability in functional
spaces (in particular, with Borel or Souslin sets) arise in the theory of random
processes and mathematical statistics, see Dellacherie [424], Dynkin [507],
Chentsov [335], [336], [337], [338], Ma, Röckner [1219], Dellacherie, Meyer
[427], Rao [1539], Thorisson [1854].

The assertion of Exercise 6.10.53 is found in Kuratowski, Szpilrajn [1085]
with attribution to M-lle Braun.
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Chapter 7.

��7.1–7.4. Measure theory on topological spaces began to develop in the
1930s under the influence of descriptive set theory and general topology as
well as in connection with problems of functional analysis, dynamical systems,
and other fields. In particular, this development was considerably influenced
by the discovery of Haar measures on locally compact topological groups.
This influence was so strong that until recently the chapters on measures on
topological spaces in measure theory textbooks (in those advanced treatises
where such chapters were included) dealt almost exclusively with locally com-
pact spaces. Among the works of the 1930–1950s that played a particularly
significant role in the development of measure theory on topological spaces we
note the following: Alexandroff1 [30], Bogoliouboff, Kryloff [227], Choquet
[349], Gnedenko, Kolmogorov [700], Haar [758], Hopf [854], Marczewski
[1254], Oxtoby, Ulam [1412], Prohorov [1496], [1497], Rohlin [1595], Stone
[1788], [1789], [1790], Weil [1965], as well as Halmos’s book [779] and the
first edition of Bourbaki [242]. It should be added that Radon [1514] had
already worked out the key ideas of topological measure theory in the case
of the space IRn. Certainly, an important role was played by research on
the border of measure theory and descriptive set theory (Lusin, Sierpiński,
Szpilrajn-Marczewski, and others). Finally, topological measure theory was
obviously influenced by the investigations of Wiener, Kolmogorov, Doob, and
Jessen on integration in infinite-dimensional spaces and the distributions of
random processes; this influence became especially significant in the subse-
quent decades.

The first thorough and very general investigation of measures on topologi-
cal spaces was accomplished in a series of papers (of book size) by A.D. Alexan-
droff [30], after which it became possible to speak of a new branch of mea-
sure theory. In this fundamental work, under very general assumptions on
the considered spaces (even more general than topological, although in many
statements one was concerned with normal topological spaces), regular ad-
ditive set functions of bounded variation (called charges) were investigated.
A.D. Alexandroff introduced and studied the concept of a τ -additive signed
measure (he called such measures “real”), considered tight measures (mea-
sures concentrated on countable unions of compact sets; the term “tight”
was later coined by Le Cam), established the correspondence between charges
and functionals on the space of bounded continuous functions, in particular,
the correspondence between τ -additive measures and τ -smooth functionals,
and obtained the decomposition of a τ -additive measure into the difference
of two nonnegative τ -additive measures, and many other results, which along
with later generalizations form the basis of our exposition. In addition, in
the same work, the investigation of weak convergence of measures on topo-
logical spaces was initiated, which is the subject of Chapter 8. Varadarajan

1An alternative spelling used in the translations of some later works is Aleksandrov.
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[1918] wrote a survey of the main directions in topological measure the-
ory, based principally on the works by A.D. Alexandroff and Yu.V. Prohorov,
with a number of important generalizations and simplifications. The books by
Bourbaki [242], Parthasarathy [1424], Topsøe [1873], Schwartz [1681], and
Vakhania, Tarieladze, Chobanyan [1910] have become standard references in
measure theory on metric or topological spaces. A very informative survey of
measures on topological spaces is included in Tortrat [1887]. Schwartz’s book
[1681] has played an important role in the development and popularization of
the theory of Radon measures on general topological spaces. Recently, an ex-
tensive treatise by Fremlin [635] has been published, a large portion of which
is devoted to measures on topological spaces and related set-theoretic prob-
lems. Detailed surveys covering many special directions were published by
Gardner [660], Gardner, Pfeffer [666], Wheeler [1979], and the author [207].
These surveys contain many additional results and references. Note also that
Gardner [660], Gardner, Pfeffer [666], and Fremlin [635] contain a lot of in-
formation on infinite Borel measures, which is outside the scope of this book
(except for a few occasional remarks).

S. Ulam (see [1899], [1411]) was one of the first to notice the property
of tightness of Borel measures on complete separable metric spaces. As al-
ready mentioned in the comments to Volume 1, for IRn this property had
already been found by Radon. A bit later this property was independently
established by A.D. Alexandroff. It seems that at the end of the 1930s sev-
eral other mathematicians observed this simple, but very important property,
namely Kolmogorov, von Neumann, and Rohlin; however, in published form
it appeared only in their later works. After A.D. Alexandroff, the property of
τ -additivity was considered by many authors, see Amemiya, Okada, Okazaki
[46], Gardner [660], Gardner, Pfeffer [666], and Tortrat [1889], [1890], where
one can find additional references.

The concept of a universally measurable set was first considered, appar-
ently, by Marczewski (see Marczewski [1256, p. 168]).

Some authors call the set Sµ defined in �7.2 the support of µ if |µ|(Sµ) > 0
(but Sµ does not necessarily have full measure); then measures concentrated
on Sµ are called support concentrated.

Among many papers devoted to extensions of measures on topological
spaces we especially note the classical works by A.D. Alexandroff [30] and
Marczewski [1254] that revealed the role of compact approximations, and
the subsequent works in this circle of ideas by Choksi [344], Erohin [537],
Henry [812], Kisyński [1007], Mallory [1245], Topsøe [1878], [1879], [1880].
Very important for applications, Theorem 7.3.2 goes back to Prohorov [1498].
The formulation in the text along with the proof is borrowed from Vakhania,
Tarieladze, Chobanyan [1910]. We note that the regularity of the space in
(ii) is essential (see a counter-example in Fremlin [635, �419H]). There are
many papers on extensions of measures with values in more general spaces
(see, e.g., Lipecki [1177]), but here we are only concerned with real measures.
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In the classical book by Halmos [779], the Baire sets are defined as sets
in the σ-algebra generated by compact Gδ-sets, whereas the Borel sets are
elements of the σ-ring generated by compact sets in a locally compact space;
this differs from the modern terminology.

Measures on Souslin spaces (first for subspaces of the real line, then in
the abstract setting) became a very popular object of study starting from
old works by Lusin and Sierpiński (see comments to �1.10). Such spaces
turned out to be very convenient in applications, since they include most of
the spaces actually encountered and enable one to construct various necessary
objects of measure theory (conditional measures, measurable selections, etc.).
In this connection we note the paper Mackey [1223]. The fact that any Borel
measure on a Souslin space is Radon can be deduced from the properties of
capacities (which was pointed out by G. Choquet).

It is known that it is consistent to assume that there exists a Souslin set on
the plane such that the projection of its complement is not Lebesgue measur-
able. This result was noted by K. Gödel and proved by P.S. Novikov [1384].

�7.5. Perfect measures were introduced in the classical book by Gnedenko
and Kolmogorov [700]; for injective functions the main determining property
was considered by Halmos and von Neumann [781] among other properties
characterizing their “normal measures”. Perfect measures were thoroughly
investigated by Ryll-Nardzewski [1631] who characterized them in terms of
quasi-compactness and by Sazonov [1656]. Compact measures introduced by
Marczewski [1254] turned out to be closely connected with perfect measures.
Vinokurov [1929] noted the existence of a perfect but not compact measure.
The first example of such a measure was given in Vinokurov, Mahkamov
[1930]; another example was constructed in Musia	l [1346]. The relative
intricacy of these examples also shows that both properties are very close.
Dekiert [422] established the existence of a perfect probability measure with-
out a monocompact, in the sense of Theorem 1.12.5, approximating class
(actually, it was proved that so is the measure from Musia	l [1346]). Frem-
lin [634] constructed a probability measure that possesses a monocompact
approximating class but has no compact approximating classes. Our expo-
sition of the fundamentals of the theory of perfect measures follows mainly
the paper [1656] and the book Hennequin, Tortrat [811], although it con-
tains a lot of additional results. Perfect measures and related objects are
also discussed in Adamski [8], Darst [406], van Dulst [498], Froĺık, Pachl
[643], Koumoullis [1043], [1045], Koumoullis, Prikry [1050], Musia	l [1345],
[1347], Ramachandran [1521], Remy [1548].

�7.6–7.7. Products of measures on topological spaces, in particular, prod-
ucts of Radon measures are investigated in Bledsoe, Morse [188], Bledsoe,
Wilks [189], Elliott [527], Godfrey, Sion [703], Grekas [734], Grekas, Gryl-
lakis [737], [738], Gryllakis, Grekas [749], Johnson [907], [908], [909], [910],
[911], [912], Johnson, Wajch, Wilczyński [913], Plebanek [1466]. It is proved
in de Leeuw [423] that the function

∫
h(x, y)µ(dy) is Borel measurable pro-

vided that µ is a Radon measure on a compact space K and h is a bounded
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Borel function on K2. Concerning measurability of functions on product
spaces, see also Grande [726], [727].

For probability distributions on the countable product of real lines, Daniell
[402] obtained a result close to the Kolmogorov theorem (which appeared
later), but presented it in a less convenient form in terms of the distribu-
tion functions of infinitely many variables (functions of bounded variation
and positive type according to Daniell’s terminology), i.e., Daniell charac-
terized functions of the form F (x1, x2, . . .) = µ

(∏∞
n=1(−∞, xn)

)
, where µ is

a probability measure on IR∞. In order to derive the Kolmogorov theorem
from this result, given consistent finite-dimensional distributions, one has to
construct the corresponding function on IR∞. By using compact classes, Mar-
czewski [1254] obtained an important generalization of Kolmogorov’s theorem
on consistent probability distributions. Later this direction was developing in
the framework of projective systems of measures (see �9.12(i)). Its relations
to transition probabilities and conditional probabilities are discussed in Din-
culeanu [451], Lamb [1101].

�7.8. Daniell’s construction [399], [400], [403] turned out to be very
efficient in the theory of integration on locally compact spaces. It enabled
one to construct the integral without prior constructing measures, which is
convenient when the corresponding measures are not σ-finite. This was man-
ifested especially by the theory of Haar measures. In that case, it turned
out to be preferable to regard measures as functionals on spaces of contin-
uous functions. Daniell’s construction was substantially developed by Stone
[1790]; let us also mention the work of Goldstine [710] that preceded Stone’s
series of papers and was concerned with the representation of functionals as
integrals in Daniell’s spirit. Certain constructions close to Daniell’s approach
had been earlier developed by Young (see [2010], [2013], [2015]). It should
be noted that also in the real analysis, F. Riesz proposed a scheme of integra-
tion avoiding prior construction of measure theory and leading to a somewhat
more economical presentation of the fundamentals of the theory of integra-
tion (see Riesz [1571], [1572] and the textbooks mentioned below). In the
middle of the 20th century there was a very widespread point of view in fa-
vor of presentation of the theory of integration following Daniell’s approach,
and some authors even declared the traditional presentation to be “obsolete”.
Apart the above-mentioned conveniences in the consideration of measures
on locally compact spaces, an advantage of such an approach for pedagog-
ical purposes seemed to be that it “leads to the goal much faster, avoiding
auxiliary constructions and subtleties of measure theory”. In Wiener, Paley
[1987, p. 145], one even finds the following statement: “In an ideal course
on Lebesgue integration, all theorems would be developed from the point of
view of the Daniell integral”. But fashions pass, and now it is perfectly clear
that the way of presentation in which the integral precedes measure can be
considered as no more than equivalent to the traditional one. This is caused
by a number of reasons. First of all, we note that the economy of Daniell’s
scheme can be seen only in considerations of the very elementary properties
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of the Lebesgue integral (this may be important if perhaps in the course of
the theory of representations of groups one has to explain briefly the concept
of the integral), but in any advanced presentation of the theory this initial
economy turns out to be imaginary. Secondly, the consideration of measure
theory (and not only the integral) is indispensable for most applications (in
many of which measures are the principal object), so in Daniell’s approach
sooner or later one has to prove the same theorems on measures, and they do
not come as simple corollaries of the theory of the integral. It appears that
even if there are problems whose investigation requires no measure theory,
but involves the Lebesgue integral, then it is very likely that most of them
can also be managed without the latter.

It should be added that in order to define the integral in the traditional
way one needs very few facts about measures (they can be explained in a cou-
ple of lectures), so that the fears of “subtleties of measure theory” necessary
for the usual definition of integral are considerably exaggerated. Also from
the methodological point of view, the preliminary acquaintance with the basic
concepts of measure theory is very useful for the true understanding of the
role of different conditions encountered in any definition of the integral (for
example, the monotone convergence). In addition, it must be said that the
use of the concept of a measure zero set without definition of measure (which
is practised in a number of approaches to the integral) seems to be highly un-
natural independently of possible technical advantages of such constructions.
Finally, it should be remarked that the approach based on Daniell’s scheme
turned out to be of little efficiency in the construction and investigation of
measures on infinite-dimensional spaces, although consideration of measures
as functionals (which was a source of Daniell’s method and which should not
be identified with the latter) is used here very extensively. Taking into account
all these circumstances, one can conclude that application of Daniell’s method
in a university course on measure and integration is justified chiefly by a de-
sire to diversify the course, to provide a stronger functional-analytic trend and
minimize the set-theoretic considerations. Lebesgue [1133, p. 320] remarked
in this connection: “S’il ne s’agit que d’une question d’ordre de paragraphes,
peu m’importe, mais je crois qu’il serait mauvais de se passer de la théorie des
ensembles”. Certainly, for the researchers in measure theory and functional
analysis, acquaintance with Daniell’s method is necessary for broadening the
technical arsenal. Among many books offering a systematic presentation of
Daniell’s approach we mention Bichteler [166], Cotlar, Cignoli [377], Filter,
Weber [586], Hildebrandt [831], Hirsch, Lacombe [834], Janssen, van der
Steen [885], Klambauer [1009], Nielsen [1371], Pfeffer [1445], Riesz, Sz.-
Nagy [1578], Shilov, Gurevich [1699], and Zaanen [2020].

��7.9–7.10. F. Riesz [1568] proved his famous representation theorem
in the case X = [a, b]; Radon [1514] extended it to compact sets in IRn.
For metrizable compact spaces this result was proved by Banach and Saks
(see Banach [104], Saks [1642]). Markov [1268] obtained related results
for more general normal spaces by using finitely-additive measures, and for
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general compact spaces Theorem 7.10.4 was stated explicitly and proven in
Kakutani [932]. A thorough investigation of such problems was undertaken
by A.D. Alexandroff [30] and continued by Varadarajan [1918]. Theorem
7.10.6 is found in Bourbaki [242, Ch. IX, �5.2]. It can be extracted from the
results in [1918]. For additional comments, see Batt [131], Dunford, Schwartz
[503, Chapter IV].

It is worth noting that in [30] (see �2, 3o, Definition 6, p. 326; �10, 2o,
Definition 2, p. 596), in the definition of a convergent net of functions fα,
the following condition is forgotten: for every pair of indices α and β, there
exists an index γ such that α ≤ γ, β ≤ γ and fα ≥ fγ , fβ ≥ fγ . It is
obvious from the proofs that this condition is implicitly included, and with-
out it many assertions are obviously false. The main results of [30] on the
correspondence between measures and functionals (with the aforementioned
condition, of course) are equivalent to the results established in ��7.9,7.10 in
terms of monotone nets. To this end, it suffices to observe that if we are
given a net of functions fα satisfying the above condition, then one can take
a new directed index set Λ̃ which consists of finite subsets of the initial index
set Λ partially ordered by inclusion. For every λ = (α1, . . . , αn) ∈ Λ̃ we let
gλ := min(fα1 , . . . , fαn). Our new net {gλ}λ∈Λ̃ is decreasing. Moreover, for
every α ∈ Λ and λ ∈ Λ̃, there exist α′ ∈ Λ and λ′ ∈ Λ̃ such that λ ≤ λ′,
gλ′ ≤ fα, α ≤ α′, and fα′ ≤ gλ. Indeed, under our assumptions one can find
an index α′ such that αi ≤ α′ and fα′ ≤ fαi whenever i = 1, . . . , n.

Various results connected to integral representations of linear functionals
on function spaces and related topologies on spaces of functions and measures,
in particular, generalizations of the Riesz theorem, are discussed in Anger,
Portenier [53], Collins [364], Fremlin [619], Garling [668], Hewitt [824],
Lorch [1183], Mosiman, Wheeler [1336], Pollard, Topsøe [1480], Topsøe
[1876], Zakharov, Mikhalev [2024]. The number of related publications is
very high. It should be noted, though, that in this direction there are many
rather artificial settings of problems that are far removed from any applica-
tions.

�7.11. Measure theory on locally compact spaces is presented in many
books, including Bourbaki [242], Dinculeanu [453]. For this reason, in this
book we give minimal attention to this question, although we include the
principal results.

�7.12. The investigation of general probability measures on Banach and
more general linear spaces was initiated by Kolmogorov [1026], Fréchet (see
[615], [616], [618]), Fortet, Mourier [600], Mourier [1338], Bochner [202],
Prohorov [1497]. An important motivation was the construction of the Wiener
measure [1984], [1986]. Later, measures on linear spaces were studied in
Badrikian [91], Badrikian, Chevet [92], Chevet [339], Da Prato, Zabczyk
[392], Gelfand, Vilenkin [677], Grenander [739], Hoffmann-Jørgensen [845],
Kuo [1080], Ledoux, Talagrand [1140], Schwartz [1683], [1685], Skorokhod



448 Bibliographical and Historical Comments

[1741], S	lowikowski [1742], Umemura [1901], Vakhania [1907], Vershik, Su-
dakov [1926], Xia [1999], Yamasaki [2000]. The most complete exposition
of the linear theory is given in the book Vakhania, Tarieladze, Chobanyan
[1910], which has become a standard reference in the field. Sudakov [1803]
developed an interesting direction in measure theory on linear spaces, con-
nected with geometry and approximation theory.

For the theory of random processes, it is important to consider measures
in sufficiently general function spaces. In those cases where such a space is
not Polish or Souslin (like, e.g., the space of all functions on the interval with
the topology of pointwise convergence), there arise various problems with
measurability, partly described in the text. Such problems were investigated
in Ambrose [41], Doob [467], [463], [465], Chentsov [335], [336], [337], [338],
Kakutani [933], Nelson [1359]. The main motif of these works is an extension
of a measure µ on the σ-algebra generated by cylinders in the spaces [0, 1]T

or IRT to a measure on larger σ-algebras. Such a question arose naturally
after the appearance of Kolmogorov’s theorem. One of the observations in
Kakutani [933] (see also Nelson [1359]) is that if in place of IRT one considers
the compact space IR

T
, where IR is the one-point compactification of the

real line, then a Baire measure µ on this compact space can be extended
to a Radon measure, which makes measurable many more sets than in the
usual construction of Kolmogorov. However, Bourbaki and N.N. Chentsov
observed independently that anyway, many natural and effectively described
sets remain nonmeasurable (see Exercises 7.14.157, 7.14.158); a result of this
kind is found in Hewitt, Ross [825, �16.13(f)]. Related aspects are discussed
in Kendall [981], Talagrand [1833].

Kuelbs [1073] showed that a Radon measure on a Banach space X is
concentrated on a compactly embedded Banach space E, and the constructed
space E was a dual space (not necessarily separable). Ostrovskĭı [1406]
showed in a different way that E can be taken to be a dual space, and Buldy-
gin [274] proved that E can be chosen to be separable reflexive. In Bogachev
[205], this fact was extended to Fréchet spaces by means of a short reasoning
combining some ideas from [1073] and [274] (it is given in Theorem 7.12.4).

Concerning moments of measures, see Vakhania, Tarieladze, Chobanyan
[1910], Kruglov [1063], Graf, Luschgy [722], Ledoux, Talagrand [1140],
Kwapień, Woyczyński [1096].

Convergence of random series and other limit theorems in infinite-dimen-
sional spaces are considered in Buldygin [273], Vakhania [1907], Vakhania,
Tarieladze, Chobanyan [1910], Buldygin, Solntsev [276], Kwapień, Woy-
czyński [1096].

Differential properties of measures on infinite-dimensional spaces are in-
vestigated in Bogachev [206], Bogachev, Smolyanov [225], Dalecky, Fomin
[394], and Uglanov [1896], which contain extensive bibliographies.

�7.13. Characteristic functionals of measures on infinite-dimensional spa-
ces were introduced by Kolmogorov [1027]. Later they were considered by
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many other authors (see, e.g., Le Cam [1137], Prohorov [1497], [1498], Pro-
horov, Sazonov [1499]). Important ideas related to characteristic functionals
and developed later in other works were proposed in Prohorov [1497]. As ob-
served by Kolmogorov [1031], the work [1497] contained the main inequality
on which are based the celebrated theorems of Minlos and Sazonov on the
description of characteristic functionals of measures on the duals to nuclear
spaces and Hilbert spaces. It should be noted that in spite of the subsequent
intensive studies in this field and numerous generalizations of these two theo-
rems, in applications one uses these original results. Extensive information on
characteristic functionals of measures on locally convex spaces is presented in
the books Vakhania, Tarieladze, Chobanyan [1910] and Mushtari [1348]. See
also the papers Gross [743], Kwapień, Tarieladze [1095], Mouchtari [1337],
Mushtari, Chuprunov [1349], Smolyanov [1754], Smolyanov, Fomin [1755],
Tarieladze [1839]. There is an extensive literature (see the works cited above)
devoted to the so-called sufficient topologies on locally convex spaces (i.e.,
topologies τ on X∗ such that the τ -continuity of the Fourier transform of
a nonnegative cylindrical quasi-measure ν on X implies the tightness of ν)
and necessary topologies (respectively, the topologies τ on X∗ in which are
continuous the characteristic functionals of all tight nonnegative cylindrical
quasi-measures on X). An important result due to Tarieladze [1840], [1841]
states that any sufficient topology is sufficient for signed measures as well
in the following sense: let τ be a sufficient topology on X∗ and let ϕ be
the τ -continuous Fourier transform of a signed cylindrical quasi-measure µ
of bounded variation on σ(X∗); then µ is countably additive and tight (the
question about this was raised by O.G. Smolyanov in the 1970s and in some
special cases was answered positively by E.T. Shavgulidze). However, in this
assertion one cannot replace the boundedness of variation of µ by the bound-
edness of |ϕ| (Exercise 7.14.135). Smolyanov, Shavgulidze [1756] simplified
the proof of the Tarieladze theorem. Related to this circle of problems is
the concept of measurable seminorm (not in the sense of measurability with
respect to a measure), which is discussed in Dudley, Feldman, Le Cam [496],
Maeda [1225], Maeda, Harai, Hagihara [1226], Smolyanov [1754].

�7.14. An interesting example connected with measurability on products
is constructed in Dudley [492], [493].

The term “completion regular” was used in Halmos [779]. Moran [1330]
introduced the property of measure-compactness. Related properties were
also considered in Gardner [660], Gardner, Pfeffer [666], Okada, Okazaki
[1396].

The separability of Radon measures on compact spaces was investigated
in Dzamonja, Kunen [509], Kunen, van Mill [1078], and Plebanek [1467],
where one can find additional references. In particular, it was shown that the
question of the existence of a first countable Corson compact space that is
the support of a nonseparable Radon measure is undecidable in ZFC (with
an extra set-theoretic assumption such a space is constructed in [1078], and
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the non-existence result is established in [1467] under the negation of that
additional assumption).

Theorem 7.14.3 goes back to a result of Kakutani [933] who proved that
if Ωγ , γ ∈ Γ, are compact metric spaces equipped with Borel probability mea-
sures µγ that are positive on nonempty open sets, then the Lebesgue comple-
tion of the product measure

⊗
γ∈Γ µγ coincides with the Radon measure µ

constructed from the measure
⊗

γ∈Γ µγ by means of the Riesz theorem; in
other words, all Borel sets belong to the Lebesgue completion of

⊗
γ∈Γ B(Ωγ).

Concerning other results connected with completion regular measures, see also
Babiker, Graf [86], Babiker, Knowles [87], Gryllakis [748]. Wheeler [1979]
raised the question whether any finite τ -additive Baire measure µ on a com-
pletely regular space X has a Lindelöf subset of full µ-outer measure. If such
a set exists, then (X,µ) is said to have property L. Aldaz [18] investigated
from this point of view the Sorgenfrey plane X with Lebesgue measure λ. He
proved that (i) there exists a model of the set theory ZF in which (X,λ) has
no property L, (ii) (X,λ) has property L in ZFC+CH, (iii) the existence of a
τ -additive measure without property L is consistent with ZFC. Finally, Ple-
banek [1469]) constructed an example (in ZFC) of a τ -additive Baire measure
without Lindelöf subspaces of full measure.

Interesting examples of compact spaces without strictly positive mea-
sures (i.e., positive on nonempty open sets) are constructed in Argyros [65].
A discussion of connections between strictly positive measures on a compact
space X, strictly convex renormings of C(X), and the chain condition can be
found in Comfort, Negrepontis [366, Ch. VI]. Connections between nonmea-
surable cardinals and existence of separable supports of measures on metric
spaces are studied in Marczewski, Sikorski [1260]. For additional information
about supports of measures, see Adamski [6], van Casteren [320], Gardner
[660], Gardner, Pfeffer [666], Hebert, Lacey [805], Kharazishvili [988], Okada
[1395], Plebanek [1468], Sato [1651], Seidel [1690].

Generalizations of Lusin’s theorem were considered by many authors. For
example, Schaerf [1662] gave a generalization in the case of mappings from
topological spaces to second countable spaces. Sometimes the measurability
is defined as Lusin’s C-property (see Bourbaki [242]).

Approximations of analytical sets by compact sets for some outer mea-
sures were also constructed in Glivenko [698], Kelley [977]. The paper Mat-
tila, Mauldin [1273] deals with the measurability of functions of the form
K �→ h(K) on the space of compact sets in a Polish space equipped with the
Hausdorff distance, where h is some set function, for example, a Hausdorff
measure.

The foundations of the abstract theory of capacities were laid by Choquet
[349], [350], [351], but certain assertions had been known earlier. For exam-
ple, Korovkin [1041] proved an analog of Egoroff’s theorem for capacities.
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As shown by Alexandroff [30] and Glicksberg [696], a Hausdorff space X
is pseudocompact if and only if every additive regular set function on X is
countably additive on Ba(X).

Vakhania, Tarieladze, Chobanyan [1910, �I.5] give a more direct (but
longer) proof of Corollary 7.14.59.

There are examples where two distinct Borel probability measures on a
compact metric space coincide on all balls, see Davies [412], [415], Darst
[408]. According to Preiss, Tǐser [1491], two Radon probability measures on
a Banach space that agree on all balls are equal. The problem of to what
extent a measure is determined by its values on balls is discussed in Riss
[1582], [1583]. For related results, see Gorin, Koldobskĭı [714], Mejlbro,
Preiss, Tǐser [1298], Preiss [1487], Preiss, Tǐser [1490].

Connections between measure and category had already been examined in
the 1930s, see, e.g., Sierpiński [1718], Szpilrajn [1813], Marczewski, Sikorski
[1261]; as a few later works we mention Oxtoby [1409], Ayerbe-Toledano
[82], Gardner [660].

Concerning the theory of infinitely divisible and stable measures we refer
to the books Hazod, Siebert [804], Kruglov [1063], Linde [1172] and the
papers Acosta [1], Acosta, Samur [2], Bogachev [204], Dudley, Kanter [497],
Fernique [564], Kanter [949], Linde [1172], Sztencel [1820], Tortrat [1888].

Convex measures are studied in Bobkov [193], Bogachev, Kolesnikov
[213], [214], Borell [236], [238], [239], Krugova [1064].

The theory of Gaussian measures is presented in detail in the recent books
Bogachev [208], Fernique [570], and Lifshits [1171], where one can find an
extensive bibliography.

The notion of a measurable linear function is connected with that of
the linear kernel of a measure µ (i.e., the topological dual to the space X∗

equipped with the topology of convergence in measure µ), which is not dis-
cussed here; see Chevet [339], [340], Khafizov [984], Kwapień, Tarieladze
[1095], Smoleński [1747], [1748], [1749], [1750], Takahashi [1824], Tien,
Tarieladze [1855], Urbanik [1902] and the references therein. Measurable
polylinear functions are considered in Smolyanov [1751].

Measures on groups and related concepts are studied in Armstrong [69],
Becker, Kechris [141], Berg, Christensen, Ressel [152], Bloom, Heyer [191],
Csiszár [389], Edwards [519], Fox [601], Grekas [735], [736], Hazod, Siebert
[804], Hewitt, Ross [825], Heyer [828], [829], Högnäs, Mukherjea [849],
Panzone, Segovia [1421], Peterson [1438], Pier [1454], Sazonov, Tutubalin
[1658], and Wijsman [1988], where one can find a more complete bibliogra-
phy.

Various regularity properties of measures are discussed in Adamski [7],
[10], Anger, Portenier [53], Babiker [84], Babiker, Graf [86], Bachman, Sul-
tan [89], Berezanskĭı [150], Cooper, Schachermayer [375], Dixmier [458],
Flachsmeyer, Lotz [589], Fremlin [626], Gardner [660], [666], Gould, Ma-
howald [715], Katětov [960], Kharazishvili [988], [990], Kubokawa [1068],
Lotz [1193], de Maria, Rodriguez-Salinas [1265], Métivier [1308], Plebanek
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[1470], [1471], Prinz [1495], Rao [1541], Sondermann [1766], Topsøe [1873],
[1878], [1879], [1880].

Radon measures are considered in many papers and books, in particular,
in Anger, Portenier [53], Bogachev [208], Bourbaki [242], Schwartz [1681],
Semadeni [1691], Tjur [1861], Vakhania, Tarieladze, Chobanyan [1910].

Assertion (i) in Example 7.14.60 goes back to Ionescu Tulcea [862], [863];
Tortrat [1890] extended it to metrizable locally convex spaces (the proof is
similar; this result is called the Tortrat theorem). The existence of Radon
extensions with respect to the norm topology for weakly Radon measures goes
back to Phillips [1452] where a result of this sort (called the Phillips theorem)
is obtained in the form of the strong measurability of weakly measurable
mappings; an analogous assertion was also obtained by A. Grothendieck.

Measures on Banach spaces with the weak topology are discussed in many
works, see, e.g., de Maria, Rodriguez-Salinas [1266], Jayne, Rogers [888],
Rybakov [1630], Schachermayer [1659], Talagrand [1834].

In addition to the works cited in �7.14(xviii), infinite Borel measures are
studied in Jimenez-Guerra, Rodriguez-Salinas [901], Novoa [1386], Rodri-
guez-Salinas [1585]. Products of infinite measures are considered in Elliott
[527], Elliott, Morse [528], Hahn [772], and Luther [1213], where one can
find additional references.

Certain special properties of compact sets related to measures are studied
in Dzamonja, Kunen [508], [509], Fremlin [632], Kunen, van Mill [1078].

Chapter 8.

��8.1–8.4. A large portion of the results in this chapter is taken from
the outstanding works of A.D. Alexandroff [30] and Yu.V. Prohorov [1497]
who laid the foundations of the modern theory. As pointed by A.D. Alexan-
droff himself, a source of his abstract work in general measure theory was his
research [29] (see Alexandrov [32]) in geometry of convex bodies. Among
important earlier works we note Helly [809], Radon [1514], Bray [250], and
a series of works of Lévy, including his book [1167] containing results on con-
vergence of the distribution functions. Close to them in the sense of ideas
are the paper Gâteaux [672] and Lévy’s book [1166] on averaging on func-
tional spaces. Let us also mention Glivenko [699]. The subsequent devel-
opment of this area was considerably influenced by the works of Skorohod
[1739], [1740], Le Cam [1138], and Varadarajan [1918]. It had already been
shown by Radon [1514] that every bounded sequence of signed measures on
a compact set in IRn contains a weakly convergent subsequence; earlier in the
one-dimensional case the result had been obtained by Helly [809] in terms of
functions of bounded variation. The term “schwach konvergent” — weakly
convergent — was used by Radon in [1516]. The space of measures and weak
convergence were employed by Radon in the study of the operators adjoint to
linear operators on spaces of continuous functions and in potential theory. Bo-
golubov and Krylov [227] (in the paper spelled as Bogoliouboff and Kryloff)
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showed that a complete separable metric space X is compact precisely when
the space of probability measures on X is compact in the weak topology. In
the same work, they proved the uniform tightness of any weakly compact
set of probability measures on a metric space whose balls are compact. The
space of probability measures with the weak topology was also investigated
in Blau [187] (who considered the A-topology). It should be noted that in
many works Alexandroff’s theorem on weak convergence (Theorem 8.2.3) is
called the “portmanteau theorem”. The English word “portmanteau” (orig-
inally a French word, meaning a coat-hanger) has the archaic meaning of a
large traveling bag and may also denote multi-purpose or multi-function ob-
jects or concepts. I do not know who invented such a nonsensical name for
Alexandroff’s theorem. It seems there is no need to attach a meaningless
label without any mnemonic content to a result with obvious and generally
recognized authorship, rather than just calling it by the inventor’s name.

The continuity sets of measures on IRn were considered in Gunther [752,
p. 13], Jessen, Wintner [900], Cramér, Wold [381]. Romanovsky [1603] stud-
ied locally uniform convergence of multivariate characteristic functions. Mul-
tivariate distribution functions and their weak convergence were also consid-
ered in Haviland [799].

Beginning from the 1950s, in the theory of weak convergence of measures,
apart from a purely probabilistic direction related to the study of asymp-
totic behavior of random variables, there has been intensive development of
the direction laid by the above-mentioned works by A.D. Alexandroff and
Yu.V.Prohorov and belonging rather to measure theory and functional anal-
ysis but in many respects furnishing the foundations for the first direction.
Naturally, in our book only this second direction is discussed.

The fundamentals of the theory of weak convergence of measures on met-
ric spaces are presented in the books Billingsley [169] and Gikhman, Sko-
rokhod [685]. See also Bergström [155], [156], Dalecky, Fomin [394], Dud-
ley [495], Ethier, Kurtz [543], Gänssler [654], Gänssler, Stute [656], Hen-
nequin, Tortrat [811], Hoffmann-Jørgensen [847], Kruglov [1063], Pollard
[1478], Shiryaev [1700], Stroock [1797], Stroock, Varadhan [1799], Vakha-
nia, Tarieladze, Chobanyan [1910]. Weak convergence and weak compactness
are investigated in an important series of works by Topsøe (see [1873] and
[1870], [1871], [1872], [1874], [1875], [1877]).

Proposition 8.2.8 was obtained in Prohorov [1497] in the case of com-
plete separable metric spaces, but extensions to more general cases meet no
difficulties (this concerns Theorem 8.2.13 and Theorem 8.2.17 as well).

The Kantorovich–Rubinshtein metric goes back to Kantorovich’s work
[951]. Later this metric was used in Fortet, Mourier [599] in the study of
convergence of empirical distributions. In relation to some extremal prob-
lems, the Kantorovich–Rubinshtein metric was considered in Kantorovich,
Rubinshtein [953], [954] in the case of compact metric spaces (in a somewhat
different form); see also Kantorovich, Akilov [952, Ch. VIII, �4] and comments
in Vershik [1925]. In form (8.10.5) this metric was also defined in Vasershtein
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[1919] (sometimes W (µ, ν) is also called the Wasserstein metric, see, e.g.,
Dobrushin [460], although there is no author with this name). An exten-
sive bibliography on related problems can be found in Rachev [1506], [1507].
Some comments given below in relation to metrics on spaces of probability
measures also concern the Kantorovich–Rubinshtein metric. For a study of
geometry of metric spaces of measures, see Ambrosio [45] and Sturm [1800].

�8.5. Additional results on the Skorohod representation and parameter-
ization of weakly convergent sequences of measures or the set of all proba-
bility measures can be found in Banakh, Bogachev, Kolesnikov [114], [115],
[116], [117], Bogachev, Kolesnikov [211], Choban [342], Cuesta-Albertos,
Matrán-Bea [391], Jakubowski [879], Letta, Pratelli [1160], Schief [1671],
Tuero [1894], Wichura [1981]. An interesting approach to parameteriza-
tion of measures on IRn has been suggested by Krylov [1067] who obtained
a parameterization with certain differentiability properties. This method is
also connected with the Monge–Kantorovich problem (see, e.g., Bogachev,
Kolesnikov [214, Example 2.1]) and certain extremal problems for measures
with given marginals, which is briefly discussed in �9.12(vii). It is to be noted
that in Blackwell, Dubins [184], there is a very short sketch of the proof of
Theorem 8.5.4, but a detailed proof on this way with the verification of all
details is not that short (see Fernique [566] and Lebedev [1117, Ch. 5]).

��8.6–8.9. Investigations of weak compactness in spaces of measures and
conditions of tightness were considerably influenced by the already-mentioned
Prohorov work [1497], the ideas, methods, and concrete results of which are
now presented in textbooks and have for half a century been successfully
applied by many researchers. It is worth noting that in this work the funda-
mental Prohorov theorem was proved for probability measures on complete
separable metric spaces, but the term “Prohorov theorem” is traditionally ap-
plied to numerous later generalizations of the whole theorem or only its direct
or inverse assertions. This is explained by the exceptional importance of the
phenomenon discovered in the theorem, whose value in the theory and appli-
cations even in the case of the simplest spaces is not overshadowed by deep
and non-trivial extensions. A.D. Alexandroff [30] established the “absence of
eluding load” (his own terminology) for weakly convergent sequences of mea-
sures (see Proposition 8.1.10), which yields directly certain partial cases of the
Prohorov theorem. The idea to apply weak convergence in l1 to weak con-
vergence of measures is also due to A.D. Alexandroff [30]. Dieudonné [449]
established the uniform tightness of any weakly convergent sequence of Radon
measures on a paracompact locally compact space and constructed an exam-
ple showing that the local compactness alone is not enough. Le Cam [1138]
proved that in the case of a locally compact σ-compact space X, a family of
measures is relatively compact in Mt(X) with the weak topology precisely
when it is uniformly tight. He also observed that this assertion follows from
Dieudonné [448]. The fact that the uniform tightness of a family of mea-
sures implies the compactness of its closure in the case of general completely
regular spaces was observed by several researchers (L. Le Cam, P.-A. Meyer,
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L. Schwartz) soon after the appearance of Prohorov’s work and under its in-
fluence. The proof of this fact is quite simple, unlike the less obvious inverse
assertion and the sequential compactness which hold for more narrow classes
of spaces. Certainly, the consideration of signed measures brings additional
difficulties. Example 8.6.9 is borrowed from Varadarajan [1918]. Compact-
ness conditions for capacities are considered in O’Brien, Watson [1388].

The important Theorem 8.7.1 was established by A.D. Alexandroff [30]
for Borel measures on perfectly normal spaces, but an analogous proof applies
to Baire measures on arbitrary spaces. The proof given in the text is due to
Le Cam [1138].

Theorem 8.9.4 is due to Varadarajan [1918] (see also Granirer [729] for
another proof).

It was proved in Varadarajan [1917], Hoffmann-Jørgensen [841], Schwartz
[1681], and Oppel [1401], [1402] that the spaces of measures on a space X
are Souslin or Lusin in the weak topology under appropriate conditions on X.
The fact that the space of signed measures of unit variation norm on a Polish
space is Polish in the weak topology was established in Oppel [1402]. Addi-
tional results and references concerning properties of spaces of measures and
connections with general topology can be found in Banakh [113], Banakh,
Cauty [118], Banakh, Radul [119], [120], Brow, Cox [261], Constantinescu
[367], [368], [369], [370], Fedorchuk [557], [559], [558], Flachsmeyer, Terpe
[590], Frankiewicz, Plebanek, Ryll-Nardzewski [602], Kirk [1005], [1006],
Koumoullis [1044], Talagrand [1830].

A number of authors investigated locally convex topologies on the space
Cb(X) for which the dual spaces are spaces of measures; these investigations
are also connected with consideration of tight or weakly compact families of
measures, see Conway [373], Hoffmann-Jørgensen [843], Mosiman, Wheeler
[1336], Sentilles [1692], and the survey Wheeler [1979].

It is shown in Mohapl [1325] that if X is a complete metric space, then
the space Mr(X) of Radon measures coincides with the space of all bounded
linear functionals l on the space of bounded Lipschitzian functions on X such
that the restriction of l to the unit ball in the sup-norm is continuous in the
topology of uniform convergence on compact sets.

��8.10. Prohorov’s work [1497] had a decisive influence on the develop-
ment of the theory of weak convergence, and the appearance of the concept
of a “Prohorov space” illustrates this. It is worth noting that in the literature
one can find several different notions of a “Prohorov space”. Indeed, for gener-
alizations of the Prohorov theorem one has at least the following possibilities:
(1) to consider compact families of tight nonnegative Baire measures (as in
Definition 8.10.8); (2) to consider compact families of not necessarily tight
nonnegative Baire measures; (3) to consider weakly convergent sequences of
tight nonnegative Baire measures with tight limits; (4) to consider count-
ably compact families of type (1) or (2); (5) to consider in (1)–(4) completely
bounded (i.e., precompact) families instead of compact; (6) to deal with signed
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measures in place of nonnegative ones. Certainly, there exist other reasonable
possibilities. The situation with signed measures is less studied.

Prohorov spaces are investigated in Banakh, Bogachev, Kolesnikov [114],
[115], Choban [342], Cox [379], Koumoullis [1047], [1048], Mosiman, Whee-
ler [1336], Smolyanov [1753]. Saint-Raymond [1638] gives a simpler proof
that Q is not a Prohorov space.

The last claim of Example 8.10.14 (borrowed from Hoffmann-Jørgensen
[844]) was stated in Smolyanov, Fomin [1755] for signed measures (and re-
produced in Daletskii, Smolyanov [394]); however, it is not clear whether it
remains true for signed measures because its proof was based on the erroneous
Lemma 3 in [1755] (see also [394, Lemma 2.1, Ch. III] and [395]) asserting
that for any disjoint sequence of compact sets Kn with disjoint open neigh-
borhoods and any weakly convergent sequence {µn} of Radon measures one
has lim

n→∞ supi |µi|(Kn) = 0. Clearly, this is false if Kn is the point 1/n in

[0, 1] and µn is Dirac’s measure at this point. Example 8.10.25 is taken from
Fremlin, Garling, Haydon [636] (its special case can also be found in [1755,
�5, Theorem 3], but the proof contains the above-mentioned gap). In their
spirit and ideas, these assertions are close to the results of A.D. Alexandroff
in �8.1 on the “absence of eluding load”.

Concerning weak convergence of measures on nonseparable metric spaces,
see Dudley [488], [490], van der Vaart, Wellner [1915].

In addition to the already-mentioned works, the weak topology and weak
convergence of measures are the main subjects in Adamski [5], Baushev [137],
Borovkov [240], Conway [374], Crauel [382], De Giorgi, Letta [420], Dudley
[489], [491], Fernique [563], [567], [568], Kallianpur [940], Léger, Soury
[1144], Mohapl [1324], Nakanishi [1354], Pollard [1475], [1477], Prigarin
[1494], Wilson [1992].

On weak compactness in spaces of measures, see also Adamski, Gänssler,
Kaiser [11], Fernique [567], [568], Gerard [681], [682], Haydon [801], Pollard
[1476]. Uniformity in weak convergence is studied in Billingsley, Topsøe [171].
Some properties of the weak topology on the space of measures on a compact
space and averaging operators are considered in Bade [90].

Young measures are called after L.C. Young (who used them in the cal-
culus of variations, see [2004]), a son of W.H. Young and G.C. Young.

Metrics on certain subspaces of the space of measures (mainly on the
subspace of probability measures) were studied in Dudley [491], [494], [495],
Givens, Shortt [692], Kakosyan, Klebanov, Rachev [931], Rachev, Rüschen-
dorf [1508], Zolotarev [2034], [2035], where one can find additional refer-
ences. Theorem 8.10.45 was proved in Kantorovich, Rubinshtein [954]. Other
proofs were proposed by a number of authors, see Fernique [565], Szulga
[1821]. A metric analogous to the Lp-metric of the Kantorovich–Rubinshtein
type was considered in Kusuoka, Nakayama [1091] on the set of pairs (µ, ξ),
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where µ is a probability measure and ξ is a mapping. The Kantorovich–
Rubinshtein norm on the space of signed measures was considered in Fe-
dorchuk, Sadovnichĭı [560], Hanin [784], and Sadovnichii [1635] (note that
in [784, Proposition 4] it is mistakenly claimed that convergence with re-
spect to the Kantorovich–Rubinshtein norm is equivalent to weak convergence
for uniformly bounded sequences of signed measures; see Exercise 8.10.138).
The property of the Kantorovich–Rubinshtein norm ‖ · ‖∗0 described in Ex-
ercise 8.10.143 was discovered by Kantorovich and Rubinshtein [954]. This
property means that the space of Lipschitzian functions on a bounded metric
space vanishing at a fixed point is the dual space to the space M0 of signed
measures of total zero mass equipped with norm ‖ · ‖∗0. This gives another
proof of the fact that in nontrivial cases the weak topology on the whole space
M0 does not coincide with the topology generated by ‖ · ‖∗0.

Convergence classes for probability measures in the sense of Theorem
8.10.56 have been investigated by several authors. It has been established
that (i) the class G of all open sets is a convergence class for τ -additive mea-
sures on regular spaces; (ii) the class G0 of all functionally open sets is a
convergence class for Baire measures on Hausdorff spaces, for τ -additive mea-
sures on completely regular spaces, and for regular Borel measures on normal
spaces; (iii) the class Gr of all regular open sets is a convergence class for
τ -additive measures on regular spaces and for regular Borel measures on nor-
mal spaces. Proofs of these facts and additional references can be found in
Adamski, Gänssler, Kaiser [11].

In some problems, one has to consider spaces of locally finite measures
on a locally compact space M with the topology of duality with C0(M). For
example, the configuration space ΓM is the set of all measures of the form γ =∑∞
n=1 knδxn , where kn are nonnegative integer numbers and {xn} ⊂ M has

no limit points. The compactness conditions in ΓM are obtained in Bogachev,
Pugachev, Röckner [222], where one can find additional references.

Chapter 9.

��9.1–9.2. Some results on nonlinear transformations of measures were
known in the early years of the theory of integration. For example, Riesz
[1569, p. 497] noted without proof that every measurable set in IRn of mea-
sure m can be mapped by means of a measure-preserving one-to-one func-
tion onto an interval of length m, and Radon [1514, p. 1342] considered an
isomorphism between a square with the two-dimensional Lebesgue measure
and an interval with the linear Lebesgue measure (these observations were
not forgotten and were later noted, for example, in Bochner, von Neumann
[203]). Intensive investigations of transformations of measures began in the
1930s, when problems related to transformations of measures arose not only
in measure theory, but also in such fields as the theory of dynamical systems,
functional analysis, and probability theory. Steinhaus [1784] constructed a
mapping θ : (0, 1) → (0, 1)∞ that is one-to-one on a set of full measure and
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transforms Lebesgue measure λ into λ∞ (see Exercise 9.12.50). The goal of
his work was to study random series. This goal was shared by a series of works
by Wiener, Paley, and Zygmund (see references and comments in the book
Wiener, Paley [1987]). In particular, the Wiener measure on the infinite-
dimensional space of continuous functions was represented as the image of
Lebesgue measure under some measurable mapping. The theory of dynami-
cal systems was also an important impetus in the development of the theory of
nonlinear transformations of measures. In this connection one has to mention
the works Birkhoff [174], Bogoliouboff, Kryloff [227], Hopf [854], von Neu-
mann [1362], [1361] (see also Halmos, Neumann [781]), and Oxtoby, Ulam
[1411], [1412]. Finally, an important role was played by works on invariant
measures on groups.

Application of measurable selection theorems to the proof of the existence
of preimages of measures, as in Theorem 9.1.3, is standard and was employed
by many authors (see, e.g., Varadarajan [1917, Lemma 2.2], Mackey [1223]).
In Bourbaki [242, Ch. IX, �2.4], the existence of a preimage of a measure
under a surjection of Souslin spaces is deduced from Theorem 9.1.9 and certain
properties of capacities. A result analogous to Theorem 9.1.9 was proved in
Fremlin, Garling, Haydon [636]. Lembcke [1149], [1150], [1152], introduced
the following terminology: a Borel mapping f : X → Y between topological
spaces is called conservative if every nonnegative Radon measure µ on Y such
that µ∗(C∩f(X)) = µ(C) for every compact set C ⊂ Y , has a Radon preimage
in X (in these works, unbounded measures are considered as well). Such a
mapping is called strongly conservative if a preimage exists provided that
the set Y \f(X) is µ-zero. According to [1152, Theorem 3.3], a continuous
mapping f is strongly conservative if f−1(C) is contained in a K-analytic
subset of X for every compact set C ⊂ Y , and f is conservative if the same is
true for all compact sets C ⊂ f(X). Preimages of measures were also studied
in Bauer [133], [134].

Proposition 9.1.7 was proved in Federer, Morse [556] by using an analo-
gous result for continuous f obtained earlier by Banach [100] (this result was
presented in Saks [1640, p. 282, Ch. IX, �7, Lemma 7.1] and found indepen-
dently also by Kolmogorov [1025]).

An analog of Proposition 9.1.12 for infinite Baire measures is obtained
in Kellerer [976], which gives a necessary and sufficient condition for the
existence of a continuous transformation of an infinite Baire measure into
Lebesgue measure on a half-line or on the whole real line.

The existence of simultaneous preimages for a family of measures µα on
spaces Xα and mappings fα : X → Xα was investigated in Lembcke [1149],
[1150], [1152] and in the works cited therein. Related problems were consid-
ered by Ershov [538], [539], [540], [542] who developed a general approach
to stochastic equations as the problem of finding preimages of measures under
measurable mappings. On a related problem of finding measures with given
marginal projections, see �9.12(vii).
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��9.3–9.5. Kolmogorov [1022] defined an isometry between two measures
as an isometry between the corresponding measure algebras and singled out
the separable case, noting that in that case there is an isometry with a mea-
sure on an interval. Szpilrajn [1818] showed that for a probability measure µ
on (X,A), the space A/µ is isometric to the space L/λ, where λ is Lebesgue
measure on [0, 1] and L is the class of all measurable sets, precisely when µ is
separable and has no atoms. A finer classification of separable measure spaces
was proposed independently by Halmos and von Neumann [781] and Rohlin
[1595]. Maharam [1228], [1229], [1230] obtained fundamental results on the
structure of general measure spaces. We remark that V.A. Rohlin announced
his results before World War II, but their publication was considerably de-
layed: Rohlin participated in the war as a volunteer, was captured and spent
several years in the concentration camps, then in special filtration camps for
former prisoners of war, and in the subsequent years had to overcome a lot of
obstacles on his way back to science (see [1601]). The spaces called “Lebesgue
spaces” by Rohlin deserve the name “Lebesgue–Rohlin spaces”, and we follow
this terminology. This class of spaces coincides with the class introduced by
Halmos and von Neumann, but Rohlin’s axiomatics turned out to be more
convenient, and, what is most principal, Rohlin developed a deep structural
theory of such spaces (see [1593], [1594], [1596], [1597], [1598], [1599],
[1600], [1601]), which influenced the subsequent applications in the theory
of dynamical systems. Lebesgue–Rohlin spaces and related objects are stud-
ied in Haezendonck [764], Ramachandran [1520], [1522], Rudolph [1626], de
La Rue [1627], Vinokurov [1929]. The books Samorodnitskĭı [1645], [1646]
develop a theory of nonseparable analogs of Lebesgue–Rohlin spaces.

There are interesting problems of classification of measure spaces with
additional structures (for example, metric, linear or differential-geometric)
with the preservation of a given structure. For example, one can consider
isometries of metric spaces with measures that preserve measure (see Gromov
[742], Vershik [1924]).

��9.6–9.7. Theorem 9.6.3 for compact metric spaces had been earlier
proved by Bourbaki (see Bourbaki [242, Ch. V, �6, Exercise 8c]). On measure-
preserving homeomorphisms, see Alpern, Prasad [38], Katok, Stepin [961].
The problem of description of continuous images of Lebesgue measure was
raised by P.V. Paramonov as part of a more general problem of characteriza-
tion of images of Lebesgue measure (on an interval or a cube) under mappings
of the class Ck. This general problem is open (see also Exercise 9.12.81).

�9.8. Example 9.8.1 is borrowed from Maitra, Rao, Rao [1238], where
it is attributed to E. Marczewski. The example from Exercise 9.12.63 was
constructed by Ershov [539]; the example from Exercise 9.12.49 is borrowed
from Fremlin [635, �439].

�9.9. Theorem 9.9.3 goes back to a theorem from Lusin [1205, �47] ac-
cording to which a continuous function without property (N) takes some per-
fect set of measure zero to a set of positive measure. The necessity part of
Theorem 9.9.3 was obtained by Rademacher [1509, Satz VII, p. 196] who also
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proved the sufficiency part for continuous functions (see Satz VIII in p. 200 of
the cited work). In view of Lusin’s theorem, an analogous reasoning applies
to any measurable functions and yields the general result that was explicitly
given in Ellis [529] (the proof for continuous functions given in Natanson
[1356, �3 Ch. IX] also applies to measurable functions in view of Lusin’s
theorem). The proofs given in the cited works are quite simple and follow,
essentially, by the measurability of images of Borel sets under Borel mappings
combined with the elementary fact that every set of positive Lebesgue mea-
sure contains a nonmeasurable subset. Moreover, these proofs apply to much
more general cases (in particular, yield the results from Wísniewski [1994]).
Some problems related to transformations of measures on IRn are considered
in Radó, Reichelderfer [1513].

Nonlinear transformations of general measures arise in the study of trans-
formations of various special measures, for example, Gaussian, see Bogachev
[208], Üstünel, Zakai [1905].

�9.10. Transformations of measures generated by shifts along trajecto-
ries of dynamical systems, in particular, along integral curves of differential
equations, were considered by Liouville, Poincaré, Birkhoff, Kolmogorov, von
Neumann, Bogolubov and Krylov, and other classics. This problematic re-
mains an important source of new problems in measure theory as well as a field
of application of new results and methods. The study of infinite-dimensional
systems appears to be a promising direction. Additional results and refer-
ences can be found in Ambrosio [43], Ambrosio, Gigli, Savaré [45], Bogachev,
Mayer-Wolf [220], Cruzeiro [386], DiPerna, Lions [456], and Peters [1436].

�9.11. Haar [758] gave the first general construction of the measures that
now bear his name. Simplified constructions were given by von Neumann,
H. Cartan, Weyl, and other researchers (see Banach [103], Cartan [315], Weyl
[1965], Johnson [906]). Haar measures are discussed in many works, see, e.g.,
Bourbaki [242], Hewitt, Ross [825], Nachbin [1352], Naimark [1353], Weyl
[1965]; in particular, in several courses on measure theory, see, e.g., Federer
[555], Halmos [779], Royden [1618]. The books Greenleaf [733] and Paterson
[1426] deal with more general invariant means on groups.

�9.12. Projective systems of measures appeared under the influence of
the Kolmogorov theorem and were introduced in a more abstract setting by
Bochner; they are studied in Bourbaki [242], Choksi [343], Mallory [1244],
[1245], Mallory, Sion [1246], Métivier [1307], Rao, Sazonov [1543].

Let λ∞ be the countable power of Lebesgue measure on [0, 1]. Let [0, 1]∞

be equipped with the following metric d: d(x, y)2 =
∑∞
n=1 an(xn−yn)2, where

an > 0 and
∑∞
n=1 an < ∞. S. Ulam raised the question about the equality

λ∞(A) = λ∞(B) for isometric sets A and B in
(
[0, 1]∞, d

)
(it is not assumed

that the isometry extends to the whole space). Mycielski [1351] gave a partial
answer to this question: isometric open sets have equal measures. In the same
paper, he constructed metrics on [0, 1]∞ that define the same topology and
have the property that λ∞ is invariant with respect to all isometries. The
results of Mycielski [1350] yield that on any nonempty compact metric space,
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there is a Borel probability measure such that isometric open sets have equal
measures (the paper contains a more general assertion).

In relation to �9.12(vii), see Dudley [495], Jacobs [876], Kellerer [972],
[973], [975], Ramachandran, Röschendorf [1524], [1525], Sazonov [1657],
Skala [1738], Strassen [1791], Sudakov [1803]. Some historical comments
on measures with given marginals are given in Dall’Aglio [397]. This sub-
section is closely related to the Monge–Kantorovich problem of optimal mea-
sure transport, on which there is extensive literature; see the works cited in
�8.10(viii) and the recent work Léonard [1153], where one can find many
references.

In addition to his well-known theorem on representation of Boolean al-
gebras given in the text, Stone [1788], [1789] obtained many other results
on the structure of Boolean algebras. The Stone theorem can be extended
to semifinite measures (the corresponding space will be locally compact), see
Fremlin [635, �343B].

Chapter 10.

��10.1–10.3. The concept of conditional expectation was introduced by
Kolmogorov [1026]; an important role was played by the abstract Radon–
Nikodym theorem just discovered by Nikodym. Later this concept was inves-
tigated by B. Jessen, P. Lévy, J. Doob, and many other authors (see [895],
[1167], [467]). Certainly, one should have in mind that the heuristic con-
cept of conditional probability had existed long before the cited works: we
speak here of rigorous constructions in the framework of general measure the-
ory. The first attempts to construct sufficiently general countably additive
conditional probabilities (i.e., the regular conditional probabilities discussed
in �10.4) were made in Doob [463] and Halmos [777], but Andersen and
Jessen (see [49]) and Dieudonné (see [446]) constructed disproving counter-
examples; see also Halmos [778]. Below we return to this question.

In addition to the characterization of conditional expectations as orthog-
onal projections or other operators with certain special properties, there is
their description by means of L1-valued measures, see Olson [1400].

Fundamental theorems on convergence of conditional expectations and
more general martingale convergence theorems were obtained by Jessen [895],
P. Lévy [1167, p. 129], Doob [464], [467], and Andersen and Jessen [48],
[49], [50] (Kolmogorov was interested in this question too, see, e.g., his
note [1030]), and then they became the subject of intensive studies by many
authors, see the books Hall, Heyde [776], Hayes, Pauc [803], Woyczynski
[1998], and the papers Chatterji [326], [329] which emphasize the functional-
analytic aspects. There is an extensive probabilistic literature on the theory of
martingales and their applications (see, e.g., Bass [129], Bauer [136], Durrett
[504], [505], Edgar, Sucheston [517], Letta [1157], Neveu [1369], Rao [1540],
and Shiryaev [1700], where one can find further references).
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Interesting results on the equivalence of product measures are obtained
in Fernique [569].

Remarks related to Example 10.3.18 are given in the comments to Chap-
ter 4.

��10.4–10.6. Regular conditional measures in the case of product mea-
sures were explicitly indicated by Jessen. When Doob addressed the problem
of their existence in more general cases, and the above-mentioned examples
by Andersen, Jessen, and Dieudonné were found, it became clear that one
has to impose additional conditions of the topological character. The first
general results on regular conditional measures were obtained by Dieudonné
[446], Rohlin [1595], Jǐrina [903], [904], Sazonov [1656]. In this chapter,
they are presented in the modern form accumulating the contributions of
many authors. Conditional measures and disintegrations are discussed in
Blackwell, Dubins [183], Blackwell, Maitra [185], Blackwell, Ryll-Nardzewski
[186], Calbrix [302], Chatterji [325], Császár [387], Dubins, Heath [476],
Graf, Mauldin [724], Hennequin, Tortrat [811], Kulakova [1075], Ma [1218],
Maitra, Ramakrishnan [1237], Metivier [1306], [1307], Musial [1345], Pachl
[1414], [1415], Pellaumail [1431], Pfanzagl [1443], Ramachandran [1520],
[1521], [1522], [1523], Rao [1538], [1539], [1540], [1542], Remy [1548],
Rényi [1549], [1550], Saint-Pierre [1637], Schwartz [1682], [1684], Sokal
[1763], Tjur [1860].

A number of authors, starting with A. Ionescu Tulcea and C. Ionescu
Tulcea [865], [866], constructed conditional measures by using liftings; our
exposition is close to Hoffmann-Jørgensen [842].

Concerning proper conditional measures, see Blackwell, Dubins [183],
Blackwell, Ryll-Nardzewski [186], Faden [547], Musia	l [1345], Sokal [1763].

An important role in the study of disintegrations and conditional measures
was played by Pachl’s work [1414]. One of its fascinating results was the proof
of the fact that the restriction of any compact measure to a sub-σ-algebra
is compact. This work, as well as Ramachandran’s work [1522], became a
basis of our exposition of part of the results in �10.5. Ramachandran [1523]
observed that Example 10.6.5, constructed in [1414], solves a problem raised
by Sazonov in [1656], i.e., shows that there exist a perfect probability space
and a σ-algebra for which there are no regular conditional probabilities in the
sense of Doob.

Schwartz [1682], Valadier [1911], and Edgar [511] considered disinte-
grations on product spaces. In Dieudonné [446], as well as in [511], [1682],
[1684], the investigation of disintegrations is based on vector measures and
the Radon–Nikodym theorem for such measures (instead of liftings). Disinte-
grations for unbounded measures are studied in Saint-Pierre [1637]. Adamski
[8] gave a characterization of perfect measures by means of conditional mea-
sures.

The existence of a lifting for Lebesgue measure on the interval was proved
by von Neumann [1360]. Maharam [1231] gave a proof in the general case,
considerably more difficult than the case of Lebesgue measure (she noted
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that earlier von Neumann had presented orally his proof for the general
case which was never written down and the details of which are unknown).
Shortly after that a different proof was given by A.&C. Ionescu Tulcea (see
[864], [867]). A somewhat more elementary proof was proposed in Traynor
[1892]. The theory of liftings is thoroughly discussed in the book A. Ionescu
Tulcea, C. Ionescu Tulcea [867]. Extensive information is presented in the
books Fremlin [635], Levin [1164]. In the literature, one can find differ-
ent proofs of the existence of liftings; in addition to the already-mentioned
works, see Dinculeanu [452], Jacobs [876], Sion [1736]. On the theory of
liftings, in particular, on liftings with certain additional properties (e.g., con-
sistent with products of spaces), see also Burke [286], [287], Edgar, Suche-
ston [517], Grekas, Gryllakis [737], [738], Losert [1191], [1192], Macheras,
Strauss [1220], [1221], [1222], Sapounakis [1649], Talagrand [1832], [1834].
Measurability problems related to liftings are considered in Cohn [360], [361],
Talagrand [1836]. A recent survey is Strauss, Macheras, Musia	l [1792].

�10.7. The Ionescu Tulcea theorem on transition probabilities (obtained
in [868]) was generalized by several authors, see, e.g., Jacobs [876], Er-
shov [541]. This theorem is presented in many books, our exposition follows
Neveu [1368].

In relation to conditional and transition measures, Burgess, Mauldin
[283], Gardner [661], Maharam [1234], Mauldin, Preiss, von Weizsäcker
[1278], and Preiss, Rataj [1489] studied families of measures possessing di-
verse disjointness properties (for example, pairwise mutually singular). It is
shown in Fremlin, Plebanek [638] that under Martin’s axiom, there exists a
compact space X of cardinality of the continuum c such that one can find 2c

mutually singular Radon measures on X.
�10.8. Measurable partitions play an important role in ergodic theory, in

particular, in the classification of dynamical systems; see the books on ergodic
theory cited at the beginning of �10.9 and the work Vershik [1923].

�10.9. The Poincaré recurrence theorem was discovered by him in con-
nection with considerations of systems of the classical mechanics (see [1472,
pp. 67–72] or p. 314 in V. 7 of his works), but his reasoning with obvious
changes is applicable in the general case as well, which was observed by
Carathéodory [309] (see V. 4 in [311]). Theorem 10.9.4, called the Birkhoff
or Birkhoff–Khinchin theorem, was obtained in Birkhoff [175] in a somewhat
less general form and was soon generalized (with certain simplification and
clarification of the proof and keeping the main idea) in Khinchin [996]. In
subsequent years many interesting applications and generalizations of this
theorem were found (see Dunford, Schwartz [503, Ch. VIII]); we only men-
tion a couple of old works by Hartman, Marczewski, Ryll-Nardzewski [791]
and Riesz [1576], where, in particular, transformations of the interval with
Lebesgue measure were considered; the modern bibliography can be found in
the books cited in �10.9. A survey of estimates of the rate of convergence
in ergodic theorems is given in Kachurovskĭı [924]. Important works in this
direction are Ivanov [871], [872] and Bishop [177].
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�10.10. The concept of independence (of functions, sets, σ-algebras) is one
of the central ones in probability theory; it is important in measure theory
as well. Diverse problems of measure theory related to this concept have
been studied in many works. Among many old functional-analytic works we
mention Banach [106], [107], Fichtenholz, Kantorovitch [584], Kac [922],
Kac, Steinhaus [923], Marczewski [1250], [1251], [1253]; one can hardly
estimate the number of works of probabilistic nature. See Chaumont, Yor
[330] for exercises on conditional independence.

Fremlin [633] gave a different proof of Theorem 10.10.8, also using dis-
integrations. Theorem 10.10.18 was obtained in Hewitt, Savage [826]; the
presented proof is borrowed from Letta [1158]. See Novikoff, Barone [1382]
for some historical remarks.

Several results close to the Komlós theorem are obtained in Chatterji
[324], [327], [328], Gaposhkin [658]. Interesting and very broad generaliza-
tions of this theorem are found in Aldous [21], Berkes, Péter [158], Péter
[1435].

Gibbs measures are a very popular object in the literature on probability
theory and statistical physics; they originated in the works by Dobrushin
[460], [461] and Lanford and Ruelle [1104] and have been investigated by
many authors. The books Georgii [680], Preston [1492], Prum, Fort [1500],
Sinai [1729], [1730] are devoted to this direction.

Triangular transformations of measures is a very interesting and suffi-
ciently new object of study requiring modest background. In spite of the fact
that such transformations are almost as universal as general isomorphisms of
measures, their advantageous distinction is an effective method of construc-
tion and a simple character of dependence of the components on the coor-
dinates. Triangular mappings have been employed in Bogachev, Kolesnikov,
Medvedev [218] to give a positive answer to a long-standing question on the
possibility of transforming a Gaussian measure µ into every probability mea-
sure ν that is absolutely continuous with respect to µ by a mapping of the
form T (x) = x+F (x), where F takes on values in the Cameron–Martin space
of the measure µ (this result follows from assertion (ii) in Theorem 10.10.38).
It remains unknown whether in assertions (ii) and (iii) in Theorem 10.10.38
one can take for T the canonical triangular mappings Tµ,ν . It is of inter-
est to continue the study of the continuity and differentiability properties of
canonical triangular mappings.
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Učenie Zap. Leningrad. Gos. Pedagog. Inst. 1962. V. 238. P. 102–118 (in Russian).

[63]∗ Areshkin G.Ya., Aleksjuk V.N., Klimkin V.M. On some properties of vector mea-
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F. Terpe eds., pp. 49–55. Ernst-Moritz-Arndt-Universität, Greifswald, 1982. [451]

[416]∗ Davies R.O. Two remarks on the measure of product sets. Classical real analysis,
pp. 45–48, Contemp. Math., 42, Amer. Math. Soc., Providence, Rhode Island, 1985.

[417] Davies R.O., Rogers C.A. The problem of subsets of finite positive measure. Bull.
London Math. Soc. 1969. V. 1. P. 47–54. [140]

[418] Davies R.O., Schuss Z. A proof that Henstock’s integral includes Lebesgue’s. J. Lon-
don Math. Soc. (2). 1970. V. 2. P. 561–562. [160]
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[609]∗ Fréchet M. Des familles et fonctions additives d’ensembles abstraits. Fund. Math.
1923. V. 4. P. 329–365.
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[711]∗ Gomes R.L. Intégral de Riemann. Junta de Investiga̧o Matemática, Porto, 1949;
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Kurven- und Flächenintegrale. Vektoranalysis. 2e Aufl. Springer-Verlag, Berlin –
New York, 1977; xiv+210 S.
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physique mathématique. Trudy Steklov Mat. Inst., Moscow, 1932; 494 pp. (2e éd.:
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Madrid, 1979; x+171 pp.
[758] Haar A. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math.

(2). 1933. V. 34. P. 147–169. [442, 460]



496 References

[759]∗ Haaser N.B., Sullivan J.A. Real analysis. Dover Publications, New York, 1991;
x+341 pp.
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Sci. Paris. 1935. T. 200. P. 1717–1718; English transl.: Laplace transformation in
linear spaces, [1032, V. 1, p. 194–195]. [448]

[1028]∗ Kolmogorov A.N. Lectures on a course of Analysis–III. Moscow Univ., Moscow,
1946–1947 (in Russian).

[1029]∗ Kolmogorov A.N. Towards exposition of the foundations of Lebesgue’s measure
theory. Uspehi Mat. Nauk. 1950. V. 5, �1. P. 211–213 (in Russian).

[1030] Kolmogorov A.N. A theorem on convergence of conditional expectations and some of
its applications. A lecture at the First Congress of the Hungarian Mathematicians,
pp. 367–376. Akadémiai Kiado, Budapest, 1950 (in Russian). [461]

[1031] Kolmogorov A.N. A note on the papers of R.A. Minlos and V. Sazonov. Teor. Vero-
jant. i Primen. 1959. V. 4, �2. P. 237–239 (in Russian); English transl.: Theory
Probab. Appl. 1959. V. 4. P. 221–223. [124, 449]

[1032]∗ Kolmogorov A.N. Selected works. V. I,II. Kluwer Academic Publ., Dordrecht, 1991,
1992.

[1033]∗ Kolmogorov A.N., Fomin S.V. Introductory real analysis. V. 1. Metric and normed
spaces. V. 2. Measure. The Lebesgue integral. Hilbert space. Transl. from the 2nd
Russian ed. Corr. repr. Dover, New York, 1975; xii+403 pp. (Russian ed.: Elements
of the theory of functions and functional analysis, Moscow, 1954, 1960).



References 507

[1034] Kolmogoroff A., Prochorow Ju.W. Zufällige Funktionen und Grenzverteilugssätze.
Bericht über die Tagung Wahrscheinlichkeitsrechnung und mathematische Statistik,
Berlin. 1956. S. 113–126 (English transl.: Random functions and limit theorems,
[1032, V. 2, p. 442–458]). [189]

[1035]∗ Kölzow D. Differentiation von Maßen. Lecture Notes in Math. V. 65. Springer-
Verlag, Berlin – New York, 1968; 102 S.

[1036]∗ Komlós J. A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hun-
gar. 1967. V. 18. P. 217–229.

[1037]∗ König H. Measure and integration. An advanced course in basic procedures and
applications. Springer–Verlag, Berlin, 1997; xxii+260 pp.

[1038]∗ Königsberger K. Analysis 2. 4e Aufl. Springer, Berlin, 2002; xii+459 S.
[1039]∗ Korevaar J. Mathematical methods. V. I: linear algebra, normed spaces, distribu-

tions, integration. Academic Press, London, 1968; x+505 pp.
[1040]∗ Körner T.W. Besicovitch via Baire. Studia Math. 2003. V. 158, �1. P. 65–78.
[1041] Korovkin P.P. A generalization of the D.Th. Egoroff theorem. Dokl. Akad. Nauk

SSSR. 1947. V. 58, �7. P. 1265–1267 (in Russian). [450]
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[1120]∗ Lebesgue H. Sur une propriété des fonctions. C. R. Acad. Sci. 1903. T. 137, �26.
P. 1228–1230.
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[1142]∗ Lee P.Y., Výborný R. Integral: an easy approach after Kurzweil and Henstock.
Cambridge University Press, Cambridge, 2000; xii+311 pp.

[1143] Leese S.J. Measurable selections and the uniformization of Souslin sets. Amer. J.
Math. 1978. V. 100, �1. P. 19–41. [39]
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Integral, Topologische Räume, Vektorräume, Funktionalanalysis, Integralgleichun-
gen. 4e Aufl. S. Hirzel, Stuttgart, 1990; xv+612 S.

[1187] Losert V. Uniformly distributed sequences on compact, separable, non-metrizable
groups. Acta Sci. Math. (Szeged). 1978. V. 40, �1-2. P. 107–110. [241]

[1188] Losert V. On the existence of uniformly distributed sequences in compact topological
spaces. I. Trans. Amer. Math. Soc. 1978. V. 246. P. 463–471. [241, 257]



References 513

[1189] Losert V. On the existence of uniformly distributed sequences in compact topological
spaces. II. Monatsh. Math. 1979. B. 87, �3. S. 247–260. [241]

[1190] Losert V. A measure space without the strong lifting property. Math. Ann. 1979.
B. 239, �2. S. 119–128. [406]

[1191] Losert V. A counterexample on measurable selections and strong lifting. Lecture
Notes in Math. 1980. V. 794. P. 153–159. [463]

[1192] Losert V. Strong liftings for certain classes of compact spaces. Lecture Notes in
Math. 1982. V. 945. P. 170–179. [463]

[1193] Lotz S. A survey on hyperdiffuse measures. IV. In: Proceedings of the Conference
Topology and Measure III. Part 1,2. J. Flachsmeyer, Z. Froĺık, Yu. M. Smirnov,
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sels, 1992; iv+808 pp.

[1281]∗ Mayrhofer K. Inhalt und Maß. Wien, 1952; vii+265 S.
[1282]∗ Maz’ja V.G. Sobolev spaces. Translated from the Russian. Springer-Verlag, Berlin,

1985; xix+486 pp. (Russian ed.: Leningrad, 1985).
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[1552] Repovš D., Semenov P.V. Continuous selections of multivalued mappings. Kluwer
Academic Publ., Dordrecht, 1998; 356 pp. [228]

[1553] Reshetnyak Yu.G. General theorems on semicontinuity and convergence with a func-
tional. Sibirsk. Mat. Zh. 1967. V. 8, �5. P. 1051–1069 (in Russian); English transl.:
Sib. Math. J. 1967. V. 8. P. 801–816. [252]

[1554]∗ Reshetnyak Yu.G. Property N for the space mappings of class W 1
n,loc. Sibirsk. Mat.

Zh. 1987. V. 28, �5. P. 149–153 (in Russian); English transl.: Sib. Math. J. 1987.
V. 28, �5. P. 810–813.

[1555] Ressel P. Some continuity and measurability results on spaces of measures. Math.
Scand. 1977. V. 40, �1. P. 69–78. [127, 156, 245]

[1556] Ressel P. A topological version of Slutsky’s theorem. Proc. Amer. Math. Soc. 1982.
V. 85, �2. P. 272–274. [261]

[1557] Ressel P. De Finetti-type theorems: an analytical approach. Ann. Probab. 1985.
V. 13, �3. P. 898–922. [409]
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[1576] Riesz F. Sur la théorie ergodique. Comment. Math. Helv. 1944–1945. V. 17. P. 221–
239. [463]
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[1666]∗ Scheffé H. A useful convergence theorem for probability distributions. Ann. Math.

Statist. 1947. V. 18. P. 434–438.
[1667] Schief A. The continuity of subtraction and the Hausdorff property in spaces of Borel

measures. Math. Scand. 1988. V. 63, �2. P. 215–219. [261]
[1668] Schief A. Topological properties of the addition map in spaces of Borel measures.

Math. Ann. 1988. B. 282, �1. S. 23–31. [261]
[1669] Schief A. On continuous image averaging of Borel measures. Topol. Appl. 1989.

V. 31, �3. P. 309–315. [228]
[1670] Schief A. An open mapping theorem for measures. Monatsh. Math. 1989. B. 108,

�1. S. 59–70. [228, 260]



532 References

[1671] Schief A. Almost surely convergent random variables with given laws. Probab. The-
ory Related Fields. 1989. V. 81. P. 559–567. [454]

[1672]∗ Schilling R. Measures, integrals and martingales. Cambridge University Press, Cam-
bridge, 2005; 380 pp.

[1673]∗ Schlesinger L., Plessner A. Lebesguesche Integrale und Fouriersche Reihen. De
Gruyter, Berlin – Leipzig, 1926; 229 S.
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Zap. Moskov. Gos. Univ. 1949. �135. Matematika. T. II. P. 37–85 (in Russian).
[440]

[1702] Shortt R.M. The extension of measurable functions. Proc. Amer. Math. Soc. 1983.
V. 87, �3. P. 444–446. [60]

[1703] Shortt R.M. Universally measurable spaces: an invariance theorem and diverse char-
acterizations. Fund. Math. 1984. V. 121, �2. P. 169–176. [159]

[1704] Shortt R.M., Rao K.P.S. Bhaskara. Generalized Lusin sets with the Blackwell prop-
erty. Fund. Math. 1987. V. 127, �1. P. 9–39. [50]
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[1710]∗ Sierpiński W. Sur les rapports entre l’existence des intégrales
∫ 1
0 f(x, y)dx,

∫ 1
0 f(x, y)dy et

∫ 1
0 dx

∫ 1
0 f(x, y)dy. Fund. Math. 1920. V. 1. P. 142–147.
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[1965] Weil A. L’intégration dans les groupes topologiques et ses applications. Hermann et

Cie, Paris, 1940; 158 pp. [442, 460]
[1966]∗ Weir A.J. Lebesgue integration and measure. Cambridge University Press, London

– New York, 1973; xii+281 pp.
[1967]∗ Weir A.J. General integration and measure. Cambridge University Press, London –

New York, 1974; xi+298 pp.
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[1976] Weyl H. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 1916. B. 77.
S. 313–352. [237, 257]

[1977]∗ Wheeden R.L., Zygmund A. Measure and integral. Marcel Dekker, New York –
Basel, 1977; 274 pp.

[1978] Wheeler R. Extensions of a σ-additive measure to the projective cover. Lecture Notes
in Math. 1980. V. 794. P. 81–104. [131, 156]

[1979] Wheeler R.F. A survey of Baire measures and strict topologies. Expos. Math. 1983.
V. 1, �2. P. 97–190. [131, 156, 212, 443, 450, 455]

[1980]∗ Whitney H. Totally differentiable and smooth functions. Pacif. J. Math. 1951. V. 1.
P. 143–159.

[1981] Wichura M.J. On the construction of almost uniformly convergent random variables
with given weakly convergent image laws. Ann. Math. Statist. 1970. V. 41, �1.
P. 284–291. [454]

[1982] Wichura M.J. A note on the weak convergence of stochastic processes. Ann. Math.
Statist. 1971. V. 42, �5. P. 1769–1772. [251]

[1983]∗ Widom H. Lectures on measure and integration. Van Nostrand Reinhold, New York,
1969; viii+166 pp.

[1984] Wiener N. Differential space. J. Math. Phys. 1923. V. 2. P. 131–174. [I: 419; II: 447]
[1985]∗ Wiener N. The Fourier integral and certain of its applications. Dover, New York,

1958; 201 pp.
[1986] Wiener N. Collected works. V. 1–3, The MIT Press, Cambridge, 1976–1981. [I: 409,

419; II: 447]
[1987] Wiener N., Paley R. Fourier transforms in the complex domain. Amer. Math. Soc.,

New York, 1934; viii+184 pp. [I: 430; II: 445, 458]
[1988] Wijsman R.A. Invariant measures on groups and their use in statistics. Institute of

Mathematical Statistics, Hayward, California, 1990; viii+238 pp. [451]
[1989]∗ Wilcox H.J., Myers D.L. An introduction to Lebesgue integration and Fourier series.

Dover Publications, New York, 1994; viii+159 pp.
[1990]∗ Williams D. Probability with martingales. Cambridge University Press, Cambridge,

1994; xv+251 pp.
[1991]∗ Williamson J.H. Lebesgue integration. Holt, Rinehart and Winston, New York,

1962; viii+117 pp.
[1992] Wilson R.J. Weak convergence of probability measures in spaces of smooth functions.

Stoch. Proc. Appl. 1986. V. 23, �2. P. 333–337. [456]
[1993] Wise G.L., Hall E.B. Counterexamples in probability and real analysis. Oxford Uni-

versity Press, New York – Oxford, 1994; xii+211 pp. [I: 81, 228, 395, 414; II: 59,
171]
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[2037]∗ Zubieta Russi G. Teoŕıa de la integral. Editorial Trillas, Mexico City, 1970; 222 pp.
[2038]∗ Zygmund A. Trigonometric series. V. I,II. 3d ed. Cambridge University Press, Cam-

bridge, 2002; xiv+383 pp., viii+364 pp.



Author Index

Acosta A. de II: 4511

Adams M. I: 413
Adams R.A. I: 379
Adamski W. II: 131, 156, 244, 336, 444, 450,
451, 456, 462
Afanas’eva L.G. II: 440
Airault H. I: 414
Akcoglu M. I: 435
Akhiezer (Achieser) N.I. I: 247, 261, 305
Akilov G.P. I: 413; II: 453
Akin E. II: 288
Alaoglu L. I: 283
Aldaz J.M. II: 131, 166, 450
Aldous D.J. II: 409, 464
Alekhno E.A. I: 157, 434
Aleksandrova D.E. I: 382; II: 418, 424
Aleksjuk V.N. I: 293, 423, 433
Alexander R. I: 66
Alexandroff (Aleksandrov) A.D. I: vii, viii,
237, 409, 417, 422, 431, 429; II: 64, 108,
113, 135, 179, 184, 250, 442, 443, 447, 451,
452, 453, 454
Alexandroff P.S. I: 411, 420, 437; II: 8, 9,
439
Alfsen E.M. II: 146
Aliprantis Ch.D. I: 413, 415
Alpern S. II: 288, 459
Alt H.W. I: 413
Amann H. I: 413
Ambrose W. II: 448
Ambrosio L. I: 379; II: 236, 454, 460
Amemiya I. II: 156, 443
Amerio L. I: 414
Andersen E.S. II: 461
Anderson T.W. I: 225
Anger B. I: 413, 415; II: 447, 451
Aniszczyk B. II: 173
Anosov D.V. II: 335
Ansel J.-P. I: 415
Antosik P. I: 319

1The labels I and II indicate the
volume.
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Hölder O. I: 140
Holdgrün H.S. I: 414
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Kisyński J. I: 422; II: 443
Klambauer G. I: 414; II: 446
Klebanov L.V. II: 456
Klei H.-A. I: 308
Klimkin V.M. I: 293, 322, 423, 433
Klir G.J. I: 423
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Nikolskĭı S.M. I: 379
Nirenberg L. I: 373
Novikoff A. II: 464
Novikov (Novikoff) P.S. II: 33, 38, 331, 439,
441, 444
Novoa J.F. II: 452
Nowak M.T. I: 415
Nussbaum A.E. II: 163
O’Brien G.L. II: 455



556 Author Index

Ochakovskaya O.A. II: 338
Ochan Yu.S. I: 415, 437
Oden J.T. I: 414
Ohta H. II: 131, 156
Okada S. II: 156, 443, 449, 450
Okazaki Y. II: 120, 156, 410, 443, 449
Okikiolu G.O. I: 414, 430, 436
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Weizsäcker H. von II: 146, 168, 415, 463
Wellner J.A. II: 456
Wells B.B. Jr. II: 244
Wentzell A.D. II: 98
Wesler O. I: 91
Weyl H. I: 426; II: 237, 257
Wheeden R.L. I: 414
Wheeler R.F. II: 131, 156, 212, 443, 447,
450, 455, 456
Whitney H. I: 82, 373
Wichura M.J. II: 251, 454
Widom H. I: 414
Wiener N. I: 409, 417, 419, 430; II: 98, 442,
445, 447, 458
Wierdl M. I: 435
Wijsman R.A. II: 451
Wilcox H.J. I: 414
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Mař́ık, II: 131

measurable, I: 4

measure-compact, II: 131

metric

complete, I: 249

separable, I: 252

metrizable, II: 2

Milyutin, II: 201

normal, II: 4

normed, I: 249

complete, I: 249

uniformly convex, I: 284

of measures, I: 273

Orlicz, I: 320

paracompact, II: 5

perfectly normal, II: 4

Polish, II: 6

probability, I: 10

Prohorov, II: 219, 455

quasi-dyadic, II: 134
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