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PROOF OF THE LEGENDRE’S CONJECTURE

ANKUSH GOSWAMI

ABSTRACT. Legendre’s conjecture states that there exists a prime between n?

and (n + 1)2, for every positive integer n. Here I prove that for sufficiently
large n, there is a prime number between n? and (n+ 1)2. The proof relies on
the idea of counting the maximum power, op(n) of a prime p < n such that
por (™) ||n.

1. NOTATIONS

We fix some notations and conventions that will be used throughout this paper.
n will always denote a sufficiently large positive integer, whose meaning would be
understood from the context.

e [z] denotes the greatest integer less than or equal to z.
e p will always denote a prime number.

Theorem 1.1. (Legendre’s Conjecture)
There is a prime number between n? and (n + 1) for every positive integer n

To prove (1.1), we need the following results.

2. SOME ESTABLISHED RESULTS
We state below some important results without proof.

Lemma 2.1. Given a positive natural number n > 1. If p denotes any prime less
than n. Then the mazimum power of p (denoted by o,(n!)) that occurs in n! is,

] -
Y > [5]

Theorem 2.2. Letn and k be positive integers with n < k. Suppose p < n be any
prime such that p™| (Z), for any natural number m. Then

p"<n
Theorem 2.3. For any positive real number x, denote

(2.2) v(z) =Y logp

p<z

Then v(z) < 1.01624x

v(x) is also known as the first Chebycheuv’s function.
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Theorem 2.4. The number of primes less than or equal to n, denoted by 7(n)
satisfies,

n <m(n)<6 -

1
6 logn logn

for any n > 1.
3. Proor or [l

Proof. Let there does not exist any prime between n? and (n + 1)2. Hence all the
numbers between n? and (n + 1)? are composite and their prime factors p satisfies

(n+1)2
< - 7
b= 2
The theorem will be proved if we can show that
0, ((n+1)2)—o0,(n?! (n + 1)2'

p< 7("21)2
We divide the proof into the following subsections.

3.1. Estimation of the product H pop((nJrl)Q!)*OP(”z)!.

(n+1)2
p<

Case A: If p > 2n + 1, then it is clear that o,((n + 1)2!) — 0,(n?!) < 1.
Case B: If p < 2n + 1, we estimate the following.

We know that
(n+1)% — n 11! ((n + 1)2)

n?2! 2n+1
Thus
op((n + 1)) — 0,(n1) = 0,((2n + 1)1) + 0, (((;nilf))
Hence
[ peres-aom — ] p<op<<2n+1>!>+op((<Z:if))>
p<2n+1 p<2n+1
(3.2) = I e T o ((EE)
p<2n+1 p<2n+1
P P>

3.1.1. Estimation of P;.
From Lemma 2.1l we obtain

[10g1(2n+1)]
— 2n+1
op(n+1)) = ) [ k]
k=1 p
[10g1(2n+1)]
<X 2n+1
<y
k=1
2
(3.3) < =

p—1
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Thus

(3.4) pop((2n+1)!) Sp%
3.1.2. Estimation of Ps.

To estimate P», we appeal to Theorem 2.2] to obtain

n1)2
(35) H pop<((2:{i)1 )) S (n 4 1)271'(271)
p<2n+1
Thus putting the estimates of (3.4) and (3.5) in (3.3), we obtain

11 p<°P<<"+1’2”‘°p("2”)§< 11 p%>(n+1)z”<2">.

p<2n+1 p<2n+1
And hence from Case A and Case B, we get

(3.6) II »< < pﬁ"l) (n 4 1)) I »
p<2n+1

p< ("21)2 2n+1<p< (n+21)2

Taking logarithm on both sides of (3.6) we obtain

1
og| [[ @)oot | < an 3O Og];+27r(2n)log(n+1)

p
ni1)? n+1
p< D= pe2nt Sa

S1

(3.7) + > log p

(n+1)2
2n+1§p§nT

S3
We evaluate each of the three terms on the right of (3.7) separately.

3.1.3. Ewaluation of Si.
We observe that p — 1 is even for every prime p > 2. Thus for sufficiently large n
we obtain the following using Theorem [2.3]

1
S < §><2n Z logp
p<2n+1
< 1.01624 nlog(2n + 1)

3.1.4. Ewaluation of So.
From Theorem 2.4 we obtain

Sy < 24n

3.1.5. Ewaluation of Ss.
In Case A, we noticed that
op(n+1)%) —o0,(n?) <1, if2n+1<p< %

Thus for 2n+1 <p < @, only multiples of p of the form kp, for some integer k

and (k,p) = 1 may occur among numbers from n? + 1 to (n+ 1)2. Said differently,
if such a multiple of p occurs that is, if

(3.8) n? <kp<(n+1)>
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then there should exist a k satisfying

2 1 2
(3.9) "o g D
p p
Thus the number, N of positive integers satisfying (3.9) satisfies
N < 2n+1
p

Hence if p > (2n + 1) logn, then since for sufficiently large n, N — 0, and since
the left hand side of (3.9) is a strict inequality, we will not be able to find any &
for which (3.9) holds and hence (3.8) does not hold as well. Thus we need to worry
about primes 2n + 1 < p < (2n+ 1)logn in S3, for sufficiently large n. Thus for
sufficiently large n we have

Sy = > log p

2n+1<p<(2n+1) logn

> logp

p<(2n+1)logn
(3.10) < 1.01624 (2n+1)logn
Putting the estimates for Sy, S2, and S3 in (3.7) we obtain

IN

log [ J] por(FD97onD | <1.01624 nlog(2n + 1) + 24n + 1.01624 (2n + 1) logn

(n+1)2
p<

(3.11)
(n+1)%

3.2. Estimation of 5
n?2!

We have
(n+1)2

(3.12) i

(n? +1)(n? +2)...(n* +2n + 1)

S p2@nt1)

Taking logarithm on both sides of (3.10), we obtain
(n+1)%

(3.13) log T

> 2(2n + 1)logn

3.3. Verification of B.1l
From (3.9) and (3.11) we obtain

2
log EDT [T prrs0onn®)

n?!
p< nt1?
> 2(2n+ 1)logn — [1.01624 nlog(2n + 1) + 24 n 4+ 1.01624 (2n + 1) logn]
> 0.98376(2n + 1)logn — 1.01624 nlog(2n + 1) — 24 n
1
> 0.98376(2n + 1) logn — 1.01624 nlogn — 1.01624 nlog(2 + —) — 24 n
n
1
> 0.95128 nlogn + 0.983761logn — 1.01624 nlog(2 4+ —) — 24 n
n

> 0
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for sufficiently large n. This verifies (3.1) and proves Theorem 1.1 for sufficiently
large n. O
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