Transcendence of e by Rich Schwartz

I adapted this proof from the one in $\S 5.2$ of Herstein's Topics in Algebra. I think this proof is simpler and more businesslike.

The Main Step: Assume e is algebraic. Then e satisfies a polynomial equation with integer coefficients, having the following form.

$$
\begin{equation*}
\sum_{k=0}^{n} c_{k} e^{k}=0 ; \quad c_{0} \neq 0 ; \quad \max _{k}\left|c_{k}\right|<n \tag{1}
\end{equation*}
$$

Note that the degree of this equation might be less than n.
Below, we will produce an integer $p>n$ and a list $F(0), \ldots, F(n)$ of integers such that

1. $F(0) \in \boldsymbol{Z}-p \boldsymbol{Z}$.
2. $F(1), \ldots, F(n) \in p \boldsymbol{Z}$.
3. $\left|F(k)-e^{k} F(0)\right|<1 / n^{2}$ for $k=1, \ldots, n$.

We have

$$
\begin{gather*}
1 \leq^{*}\left|\sum_{k=0}^{n} c_{k} F(k)\right|=\left|\sum_{k=0}^{n} c_{k} F(k)-0 \times F(0)\right|=\left|\sum_{k=0}^{n} c_{k} F(k)-\left(\sum_{k=0}^{n} c_{k} e^{k}\right) \times F(0)\right| \\
=\left|\sum_{k=0}^{n} c_{k}\left(F(k)-e^{k} F(0)\right)\right|<n \sum_{k=0}^{n} \mid F(k)-e^{k}(F(0) \mid<1 \tag{2}
\end{gather*}
$$

The starred inequality needs explanation. Since $0<\left|c_{0}\right|<n$, we have $c_{0} F(0) \in \boldsymbol{Z}-p \boldsymbol{Z}$. Also, $c_{k} F(k) \in p \boldsymbol{Z}$ for all $k=1, \ldots, n$. So, the right hand side of the starred inequality lies in $\boldsymbol{Z}-p \boldsymbol{Z}$ and hence is a nonzero integer. The contradiction is that $1<1$. Hence e is transcendental.

Producing the List of Integers: It remains to produce the magic list of integers. Consider the function

$$
\begin{equation*}
F=\sum_{i=0}^{\infty} f^{(i)} ; \quad f(x)=\frac{x^{p-1}(1-x)^{p}(2-x)^{p} \ldots(n-x)^{p}}{(p-1)!} ; \tag{3}
\end{equation*}
$$

Here $f^{(i)}$ is the i th derivative of f. The sum for F is finite, because f is a polynomial. f is called a Hermite polynomial.

Property 1: We can write $f=a \times b$, where

$$
\begin{equation*}
a(x)=\frac{x^{p-1}}{(p-1)!} ; \quad b(x)=(1-x)^{p} \ldots(n-x)^{p} . \tag{4}
\end{equation*}
$$

By the product rule for derivatives,

$$
\begin{equation*}
f^{(N)}=\sum_{i=0}^{N} a^{(i)} b^{(N-i)} \tag{5}
\end{equation*}
$$

We have $a^{(p-1)}(0)=1$ and otherwise $a^{(i)}(0)=0$. Hence

$$
F(0)=\sum_{i=0}^{\infty} b^{(i)}(0)=b(0)+\sum_{i=1}^{\infty} b^{(i)}(0)=(n!)^{p}+p(\ldots) \in \boldsymbol{Z}-p \boldsymbol{Z} .
$$

Property 2: We can write $f=a \times b$, where

$$
\begin{equation*}
a(x)=\frac{(x-k)^{p}}{(p-1)!} ; \quad b(x)=\frac{x^{p-1}(1-x)^{p} \ldots(n-x)^{p}}{(k-x)^{p}} \tag{6}
\end{equation*}
$$

Note that $b \in \boldsymbol{Z}[x]$. We again have Equation 5. This time $a^{(p)}(k)=p$ and otherwise $a^{(i)}(k)=0$. Hence

$$
F(k)=p \times \sum_{i=0}^{\infty} b^{(i)}(k) \in p \boldsymbol{Z}
$$

Property 3: Let $\phi(x)=e^{-x} F(x)$. We compute
$\phi^{\prime}(x)=-e^{-x}\left(F(x)-F^{\prime}(x)\right)=-e^{-x}\left(\sum_{i=0}^{\infty} f^{(i)}(x)-\sum_{i=1}^{\infty} f^{(i)}(x)\right)=-e^{-x} f(x)$.
The sums are finite, because f is a polynomial. Our equation tells us that $\left|\phi^{\prime}(x)\right| \leq|f(x)|$ for $x \geq 0$. Hence
$\left|F(k)-e^{k} F(0)\right|=\left|e^{k}\right||\phi(k)-\phi(0)| \leq k e^{k} \max _{[0, k]}\left|\phi^{\prime}\right| \leq n e^{n} \max _{[0, n]}|f| \leq \frac{e^{n}\left(n^{n+2}\right)^{p}}{(p-1)!}$
For p sufficiently large, this last bound is less than $1 / n^{2}$.

