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Preface

Matrix analysis is a research field of basic interest and has applications in
scientific computing, control and systems theory, operations research, mathe-
matical physics, statistics, economics and engineering disciplines. Sometimes
it is also needed in other areas of pure mathematics.

A lot of theorems in matrix analysis appear in the form of inequalities.
Given any complex-valued function defined on matrices, there are inequalities
for it. We may say that matrix inequalities reflect the quantitative aspect of
matrix analysis. Thus this book covers such topics as norms, singular values,
eigenvalues, the permanent function, and the Löwner partial order.

The main purpose of this monograph is to report on recent developments
in the field of matrix inequalities, with emphasis on useful techniques and
ingenious ideas. Most of the results and new proofs presented here were ob-
tained in the past eight years. Some results proved earlier are also collected
as they are both important and interesting.

Among other results this book contains the affirmative solutions of eight
conjectures. Many theorems unify previous inequalities; several are the cul-
mination of work by many people. Besides frequent use of operator-theoretic
methods, the reader will also see the power of classical analysis and algebraic
arguments, as well as combinatorial considerations.

There are two very nice books on the subject published in the last decade.
One is Topics in Matrix Analysis by R. A. Horn and C. R. Johnson, Cam-
bridge University Press, 1991; the other is Matrix Analysis by R. Bhatia,
GTM 169, Springer, 1997. Except a few preliminary results, there is no over-
lap between this book and the two mentioned above.

At the end of every section I give notes and references to indicate the
history of the results and further readings.

This book should be a useful reference for research workers. The prerequi-
sites are linear algebra, real and complex analysis, and some familiarity with
Bhatia’s and Horn-Johnson’s books. It is self-contained in the sense that de-
tailed proofs of all the main theorems and important technical lemmas are
given. Thus the book can be read by graduate students and advanced under-
graduates. I hope this book will provide them with one more opportunity to
appreciate the elegance of mathematics and enjoy the fun of understanding
certain phenomena.
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1. Inequalities in the Löwner Partial Order

Throughout we consider square complex matrices. Since rectangular matrices
can be augmented to square ones with zero blocks, all the results on singular
values and unitarily invariant norms hold as well for rectangular matrices.
Denote by Mn the space of n×n complex matrices. A matrix A ∈ Mn is often
regarded as a linear operator on C

n endowed with the usual inner product
〈x, y〉 ≡

∑
j xj ȳj for x = (xj), y = (yj) ∈ C

n. Then the conjugate transpose
A∗ is the adjoint of A. The Euclidean norm on C

n is ‖x‖ = 〈x, x〉1/2. A
matrix A ∈ Mn is called positive semidefinite if

〈Ax, x〉 ≥ 0 for all x ∈ C
n. (1.1)

Thus for a positive semidefinite A, 〈Ax, x〉 = 〈x, Ax〉. For any A ∈ Mn and
x, y ∈ C

n, we have

4〈Ax, y〉 =
3∑

k=0

ik〈A(x + iky), x + iky〉,

4〈x, Ay〉 =
3∑

k=0

ik〈x + iky, A(x + iky)〉

where i =
√

−1. It is clear from these two identities that the condition (1.1)
implies A∗ = A. Therefore a positive semidefinite matrix is necessarily Her-
mitian.

In the sequel when we talk about matrices A, B, C, . . . without specifying
their orders, we always mean that they are of the same order. For Hermitian
matrices G, H we write G ≤ H or H ≥ G to mean that H − G is positive
semidefinite. In particular, H ≥ 0 indicates that H is positive semidefinite.
This is known as the Löwner partial order; it is induced in the real space of
(complex) Hermitian matrices by the cone of positive semidefinite matrices.
If H is positive definite, that is, positive semidefinite and invertible, we write
H > 0.

Let f(t) be a continuous real-valued function defined on a real inter-
val Ω and H be a Hermitian matrix with eigenvalues in Ω. Let H =
Udiag(λ1, . . . , λn)U∗ be a spectral decomposition with U unitary. Then the
functional calculus for H is defined as

X. Zhan: LNM 1790, pp. 1–15, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 1. The Löwner Partial Order

f(H) ≡ Udiag(f(λ1), . . . , f(λn))U∗. (1.2)

This is well-defined, that is, f(H) does not depend on particular spectral
decompositions of H. To see this, first note that (1.2) coincides with the usual
polynomial calculus: If f(t) =

∑k
j=0 cjt

j then f(H) =
∑k

j=0 cjH
j . Second, by

the Weierstrass approximation theorem, every continuous function on a finite
closed interval Ω is uniformly approximated by a sequence of polynomials.
Here we need the notion of a norm on matrices to give a precise meaning of
approximation by a sequence of matrices. We denote by ‖A‖∞ the spectral
(operator) norm of A: ‖A‖∞ ≡ max{‖Ax‖ : ‖x‖ = 1, x ∈ C

n}. The spectral
norm is submultiplicative: ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. The positive semidefinite
square root H1/2 of H ≥ 0 plays an important role.

Some results in this chapter are the basis of inequalities for eigenvalues,
singular values and norms developed in subsequent chapters. We always use
capital letters for matrices and small letters for numbers unless otherwise
stated.

1.1 The Löwner-Heinz inequality

Denote by I the identity matrix. A matrix C is called a contraction if C∗C ≤
I, or equivalently, ‖C‖∞ ≤ 1. Let ρ(A) be the spectral radius of A. Then
ρ(A) ≤ ‖A‖∞. Since AB and BA have the same eigenvalues, ρ(AB) = ρ(BA).

Theorem 1.1 (Löwner-Heinz) If A ≥ B ≥ 0 and 0 ≤ r ≤ 1 then

Ar ≥ Br. (1.3)

Proof. The standard continuity argument is that in many cases, e.g., the
present situation, to prove some conclusion on positive semidefinite matrices
it suffices to show it for positive definite matrices by considering A+εI, ε ↓ 0.
Now we assume A > 0.

Let Δ be the set of those r ∈ [0, 1] such that (1.3) holds. Obviously
0, 1 ∈ Δ and Δ is closed. Next we show that Δ is convex, from which follows
Δ = [0, 1] and the proof will be completed. Suppose s, t ∈ Δ. Then

A−s/2BsA−s/2 ≤ I, A−t/2BtA−t/2 ≤ I

or equivalently ‖Bs/2A−s/2‖∞ ≤ 1, ‖Bt/2A−t/2‖∞ ≤ 1. Therefore

‖A−(s+t)/4B(s+t)/2A−(s+t)/4‖∞ = ρ(A−(s+t)/4B(s+t)/2A−(s+t)/4)
= ρ(A−s/2B(s+t)/2A−t/2)
= ‖A−s/2B(s+t)/2A−t/2‖∞
= ‖(Bs/2A−s/2)∗(Bt/2A−t/2)‖∞
≤ ‖Bs/2A−s/2‖∞‖Bt/2A−t/2‖∞
≤ 1.
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Thus A−(s+t)/4B(s+t)/2A−(s+t)/4 ≤ I and consequently B(s+t)/2 ≤ A(s+t)/2,
i.e., (s + t)/2 ∈ Δ. This proves the convexity of Δ. ��

How about this theorem for r > 1? The answer is negative in general.
The example

A =
[

2 1
1 1

]
, B =

[
1 0
0 0

]
, A2 − B2 =

[
4 3
3 2

]

shows that A ≥ B ≥ 0 ⇒ A2 ≥ B2.
The next result gives a conceptual understanding, and this seems a typical

way of mathematical thinking.
We will have another occasion in Section 4.6 to mention the notion of a C∗-

algebra, but for our purpose it is just Mn. Let A be a Banach space over C. If
A is also an algebra in which the norm is submultiplicative: ‖AB‖ ≤ ‖A‖ ‖B‖,
then A is called a Banach algebra. An involution on A is a map A �→ A∗ of
A into itself such that for all A, B ∈ A and α ∈ C

(i) (A∗)∗ = A; (ii) (AB)∗ = B∗A∗; (iii) (αA + B)∗ = ᾱA∗ + B∗.

A C∗-algebra A is a Banach algebra with involution such that

‖A∗A‖ = ‖A‖2 for all A ∈ A.

An element A ∈ A is called positive if A = B∗B for some B ∈ A.
It is clear that Mn with the spectral norm and with conjugate transpose

being the involution is a C∗-algebra. Note that the Löwner-Heinz inequality
also holds for elements in a C∗-algebra and the same proof works, since every
fact used there remains true, for instance, ρ(AB) = ρ(BA).

Every element T ∈ A can be written uniquely as T = A + iB with A, B
Hermitian. In fact A = (T + T ∗)/2, B = (T − T ∗)/2i. This is called the
Cartesian decomposition of T.

We say that A is commutative if AB = BA for all A, B ∈ A.

Theorem 1.2 Let A be a C∗-algebra and r > 1. If A ≥ B ≥ 0, A, B ∈ A
implies Ar ≥ Br, then A is commutative.

Proof. Since r > 1, there exists a positive integer k such that rk > 2. Suppose
A ≥ B ≥ 0. Use the assumption successively k times we get Ark ≥ Brk

.
Then apply the Löwner-Heinz inequality with the power 2/rk < 1 to obtain
A2 ≥ B2. Therefore it suffices to prove the theorem for the case r = 2.

For any A, B ≥ 0 and ε > 0 we have A + εB ≥ A. Hence by assumption,
(A + εB)2 ≥ A2. This yields AB + BA + εB2 ≥ 0 for any ε > 0. Thus

AB + BA ≥ 0 for all A, B ≥ 0. (1.4)

Let AB = G + iH with G, H Hermitian. Then (1.4) means G ≥ 0. Applying
this to A, BAB,
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A(BAB) = G2 − H2 + i(GH + HG) (1.5)

gives G2 ≥ H2. So the set

Γ ≡ {α ≥ 1 : G2 ≥ αH2 for all A, B ≥ 0 with AB = G + iH}

where G + iH is the Cartesian decomposition, is nonempty. Suppose Γ is
bounded. Then since Γ is closed, it has a largest element λ. By (1.4) H2(G2−
λH2) + (G2 − λH2)H2 ≥ 0, i.e.,

G2H2 + H2G2 ≥ 2λH4. (1.6)

From (1.5) we have (G2 − H2)2 ≥ λ(GH + HG)2, i.e.,

G4 + H4 − (G2H2 + H2G2)
≥ λ[GH2G + HG2H + G(HGH) + (HGH)G].

Combining this inequality, (1.6) and the inequalities GH2G ≥ 0, G(HGH)+
(HGH)G ≥ 0 (by (1.4) and G ≥ 0), HG2H ≥ λH4 (by the definition of λ)
we obtain

G4 ≥ (λ2 + 2λ − 1)H4.

Then applying the Löwner-Heinz inequality again we get

G2 ≥ (λ2 + 2λ − 1)1/2H2

for all G, H in the Cartesian decomposition AB = G + iH with A, B ≥ 0.
Hence (λ2 + 2λ − 1)1/2 ∈ Γ , which yields (λ2 + 2λ − 1)1/2 ≤ λ by definition.
Consequently λ ≤ 1/2. This contradicts the assumption that λ ≥ 1. So
Γ is unbounded and G2 ≥ αH2 for all α ≥ 1, which is possible only when
H = 0. Consequently AB = BA for all positive A, B. Finally by the Cartesian
decomposition and the fact that every Hermitian element is a difference of
two positive elements we conclude that XY = Y X for all X, Y ∈ A. ��

Since Mn is noncommutative when n ≥ 2, we know that for any r > 1
there exist A ≥ B ≥ 0 but Ar ≥ Br.

Notes and References. The proof of Theorem 1.1 here is given by G. K.
Pedersen [79]. Theorem 1.2 is due to T. Ogasawara [77].

1.2 Maps on Matrix Spaces

A real-valued continuous function f(t) defined on a real interval Ω is said to
be operator monotone if

A ≤ B implies f(A) ≤ f(B)
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for all such Hermitian matrices A, B of all orders whose eigenvalues are con-
tained in Ω. f is called operator convex if for any 0 < λ < 1,

f(λA + (1 − λ)B) ≤ λf(A) + (1 − λ)f(B)

holds for all Hermitian matrices A, B of all orders with eigenvalues in Ω. f
is called operator concave if −f is operator convex.

Thus the Löwner-Heinz inequality says that the function f(t) = tr, (0 <
r ≤ 1) is operator monotone on [0,∞). Another example of operator mono-
tone function is log t on (0,∞) while an example of operator convex function
is g(t) = tr on (0,∞) for −1 ≤ r ≤ 0 or 1 ≤ r ≤ 2 [17, p.147].

If we know the formula

tr =
sin rπ

π

∫ ∞

0

sr−1t

s + t
ds (0 < r < 1)

then Theorem 1.1 becomes quite obvious. In general we have the following
useful integral representations for operator monotone and operator convex
functions. This is part of Löwner’s deep theory [17, p.144 and 147] (see also
[32]).

Theorem 1.3 If f is an operator monotone function on [0,∞), then there
exists a positive measure μ on [0,∞) such that

f(t) = α + βt +
∫ ∞

0

st

s + t
dμ(s) (1.7)

where α is a real number and β ≥ 0. If g is an operator convex function on
[0,∞) then there exists a positive measure μ on [0,∞) such that

g(t) = α + βt + γt2 +
∫ ∞

0

st2

s + t
dμ(s) (1.8)

where α, β are real numbers and γ ≥ 0.

The three concepts of operator monotone, operator convex and operator
concave functions are intimately related. For example, a nonnegative contin-
uous function on [0,∞) is operator monotone if and only if it is operator
concave [17, Theorem V.2.5].

A map Φ : Mm → Mn is called positive if it maps positive semidefinite
matrices to positive semidefinite matrices: A ≥ 0 ⇒ Φ(A) ≥ 0. Denote by In

the identity matrix in Mn. Φ is called unital if Φ(Im) = In.
We will first derive some inequalities involving unital positive linear maps,

operator monotone functions and operator convex functions, then use these
results to obtain inequalities for matrix Hadamard products.

The following fact is very useful.

Lemma 1.4 Let A > 0. Then
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[
A B
B∗ C

]
≥ 0

if and only if the Schur complement C − B∗A−1B ≥ 0.

Lemma 1.5 Let Φ be a unital positive linear map from Mm to Mn. Then

Φ(A2) ≥ Φ(A)2 (A ≥ 0), (1.9)

Φ(A−1) ≥ Φ(A)−1 (A > 0). (1.10)

Proof. Let A =
∑m

j=1 λjEj be the spectral decomposition of A, where
λj ≥ 0 (j = 1, . . . , m) are the eigenvalues and Ej (j = 1, . . . , m) are the
corresponding eigenprojections of rank one with

∑m
j=1 Ej = Im. Then since

A2 =
∑m

j=1 λ2
jEj and by unitality In = Φ(Im) =

∑m
j=1 Φ(Ej), we have

[
In Φ(A)

Φ(A) Φ(A2)

]
=

m∑
j=1

[
1 λj

λj λ2
j

]
⊗ Φ(Ej),

where ⊗ denotes the Kronecker (tensor) product. Since[
1 λj

λj λ2
j

]
≥ 0

and by positivity Φ(Ej) ≥ 0 (j = 1, . . . , m), we have[
1 λj

λj λ2
j

]
⊗ Φ(Ej) ≥ 0,

j = 1, . . . , m. Consequently [
In Φ(A)

Φ(A) Φ(A2)

]
≥ 0

which implies (1.9) by Lemma 1.4.
In a similar way, using [

λj 1
1 λ−1

j

]
≥ 0

we can conclude that [
Φ(A) In

In Φ(A−1)

]
≥ 0

which implies (1.10) again by Lemma 1.4. ��

Theorem 1.6 Let Φ be a unital positive linear map from Mm to Mn and f
an operator monotone function on [0,∞). Then for every A ≥ 0,
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f(Φ(A)) ≥ Φ(f(A)).

Proof. By the integral representation (1.7) it suffices to prove

Φ(A)[sI + Φ(A)]−1 ≥ Φ[A(sI + A)−1], s > 0.

Since A(sI + A)−1 = I − s(sI + A)−1 and similarly for the left side, this is
equivalent to

[Φ(sI + A)]−1 ≤ Φ[(sI + A)−1]

which follows from (1.10). ��

Theorem 1.7 Let Φ be a unital positive linear map from Mm to Mn and g
an operator convex function on [0,∞). Then for every A ≥ 0,

g(Φ(A)) ≤ Φ(g(A)).

Proof. By the integral representation (1.8) it suffices to show

Φ(A)2 ≤ Φ(A2) (1.11)

and
Φ(A)2[sI + Φ(A)]−1 ≤ Φ[A2(sI + A)−1], s > 0. (1.12)

(1.11) is just (1.9). Since

A2(sI + A)−1 = A − sI + s2(sI + A)−1,

Φ(A)2[sI + Φ(A)]−1 = Φ(A) − sI + s2[sI + Φ(A)]−1,

(1.12) follows from (1.10). This completes the proof. ��

Since f1(t) = tr (0 < r ≤ 1) and f2(t) = log t are operator monotone
functions on [0,∞) and (0,∞) respectively, g(t) = tr is operator convex on
(0,∞) for −1 ≤ r ≤ 0 and 1 ≤ r ≤ 2, from Theorems 1.6, 1.7 we get the
following corollary.

Corollary 1.8 Let Φ be a unital positive linear map from Mm to Mn. Then

Φ(Ar) ≤ Φ(A)r, A ≥ 0, 0 < r ≤ 1;

Φ(Ar) ≥ Φ(A)r, A > 0, −1 ≤ r ≤ 0 or 1 ≤ r ≤ 2;

Φ(log A) ≤ log(Φ(A)), A > 0.

Given A = (aij), B = (bij) ∈ Mn, the Hadamard product of A and B is
defined as the entry-wise product: A ◦ B ≡ (aijbij) ∈ Mn. For this topic see
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[52, Chapter 5]. We denote by A[α] the principal submatrix of A indexed by
α. The following simple observation is very useful.

Lemma 1.9 For any A, B ∈ Mn, A ◦ B = (A ⊗ B)[α] where α = {1, n +
2, 2n + 3, . . . , n2}. Consequently there is a unital positive linear map Φ from
Mn2 to Mn such that Φ(A ⊗ B) = A ◦ B for all A, B ∈ Mn.

As an illustration of the usefulness of this lemma, consider the following
reasoning: If A, B ≥ 0, then evidently A ⊗ B ≥ 0. Since A ◦ B is a principal
submatrix of A ⊗ B, A ◦ B ≥ 0. Similarly A ◦ B > 0 for the case when
both A and B are positive definite. In other words, the Hadamard product
of positive semidefinite (definite) matrices is positive semidefinite (definite).
This important fact is known as the Schur product theorem.

Corollary 1.10

Ar ◦ Br ≤ (A ◦ B)r, A, B ≥ 0, 0 < r ≤ 1; (1.13)

Ar ◦ Br ≥ (A ◦ B)r, A, B > 0, −1 ≤ r ≤ 0 or 1 ≤ r ≤ 2; (1.14)

(log A + log B) ◦ I ≤ log(A ◦ B), A, B > 0. (1.15)

Proof. This is an application of Corollary 1.8 with A there replaced by A⊗B
and Φ being defined in Lemma 1.9.

For (1.13) and (1.14) just use the fact that (A ⊗ B)t = At ⊗ Bt for real
number t. See [52] for properties of the Kronecker product.

For (1.15) we have

log(A ⊗ B) =
d

dt
(A ⊗ B)t|t=0 =

d

dt
(At ⊗ Bt)|t=0

= (log A) ⊗ I + I ⊗ (log B).

This can also be seen by using the spectral decompositions of A and B. ��

We remark that the inequality in (1.14) is also valid for A, B ≥ 0 in the
case 1 ≤ r ≤ 2.

Given a positive integer k, let us denote the kth Hadamard power of
A = (aij) ∈ Mn by A(k) ≡ (ak

ij) ∈ Mn. Here are two interesting consequences
of Corollary 1.10: For every positive integer k,

(Ar)(k) ≤ (A(k))r, A ≥ 0, 0 < r ≤ 1;

(Ar)(k) ≥ (A(k))r, A > 0, −1 ≤ r ≤ 0 or 1 ≤ r ≤ 2.

Corollary 1.11 For A, B ≥ 0, the function f(t) = (At ◦ Bt)1/t is increasing
on [1,∞), i.e.,

(As ◦ Bs)1/s ≤ (At ◦ Bt)1/t, 1 ≤ s < t.
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Proof. By Corollary 1.10 we have

As ◦ Bs ≤ (At ◦ Bt)s/t.

Then applying the Löwner-Heinz inequality with the power 1/s yields the
conclusion. ��

Let Pn be the set of positive semidefinite matrices in Mn. A map Ψ from
Pn × Pn into Pm is called jointly concave if

Ψ(λA + (1 − λ)B, λC + (1 − λ)D) ≥ λΨ(A, C) + (1 − λ)Ψ(B, D)

for all A, B, C, D ≥ 0 and 0 < λ < 1.
For A, B > 0, the parallel sum of A and B is defined as

A : B = (A−1 + B−1)−1.

Note that A : B = A − A(A + B)−1A and 2(A : B) = {(A−1 + B−1)/2}−1 is
the harmonic mean of A, B. Since A : B decreases as A, B decrease, we can
define the parallel sum for general A, B ≥ 0 by

A : B = lim
ε↓0

{(A + εI)−1 + (B + εI)−1}−1.

Using Lemma 1.4 it is easy to verify that

A : B = max
{

X ≥ 0 :
[

A + B A
A A − X

]
≥ 0

}

where the maximum is with respect to the Löwner partial order. From this
extremal representation it follows readily that the map (A, B) �→ A : B is
jointly concave.

Lemma 1.12 For 0 < r < 1 the map

(A, B) �→ Ar ◦ B1−r

is jointly concave in A, B ≥ 0.

Proof. It suffices to prove that the map (A, B) �→ Ar ⊗ B1−r is jointly
concave in A, B ≥ 0, since then the assertion will follow via Lemma 1.9.

We may assume B > 0. Using Ar ⊗ B1−r = (A ⊗ B−1)r(I ⊗ B) and the
integral representation

tr =
sin rπ

π

∫ ∞

0

sr−1t

s + t
ds (0 < r < 1)

we get
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Ar ⊗ B1−r =
sin rπ

π

∫ ∞

0
sr−1(A ⊗ B−1)(A ⊗ B−1 + sI ⊗ I)−1(I ⊗ B)ds.

Since A ⊗ B−1 and I ⊗ B commute, it is easy to see that

(A ⊗ B−1)(A ⊗ B−1 + sI ⊗ I)−1(I ⊗ B) = (s−1A ⊗ I) : (I ⊗ B).

We know that the parallel sum is jointly concave. Thus the integrand above
is also jointly concave, and so is Ar ⊗ B1−r. This completes the proof. ��

Corollary 1.13 For A, B, C, D ≥ 0 and p, q > 1 with 1/p + 1/q = 1,

A ◦ B + C ◦ D ≤ (Ap + Cp)1/p ◦ (Bq + Dq)1/q.

Proof. This is just the mid-point joint concavity case λ = 1/2 of Lemma
1.12 with r = 1/p. ��

Let f(x) be a real-valued differentiable function defined on some real
interval. We denote by Δf(x, y) ≡ [f(x)−f(y)]/(x−y) the difference quotient
where Δf(x, x) ≡ f ′(x).

Let H(t) ∈ Mn be a family of Hermitian matrices for t in an open real
interval (a, b) and suppose the eigenvalues of H(t) are contained in some
open real interval Ω for all t ∈ (a, b). Let H(t) = U(t)Λ(t)U(t)∗ be the
spectral decomposition with U(t) unitary and Λ(t) = diag(λ1(t), . . . , λn(t)).
Assume that H(t) is continuously differentiable on (a, b) and f : Ω → R is
a continuously differentiable function. Then it is known [52, Theorem 6.6.30]
that f(H(t)) is continuously differentiable and

d

dt
f(H(t)) = U(t){[Δf(λi(t), λj(t))] ◦ [U(t)∗H ′(t)U(t)]}U(t)∗.

Theorem 1.14 For A, B ≥ 0 and p, q > 1 with 1/p + 1/q = 1,

A ◦ B ≤ (Ap ◦ I)1/p(Bq ◦ I)1/q.

Proof. Denote
C ≡ (Ap ◦ I)1/p ≡ diag(λ1, . . . , λn),

D ≡ (Bq ◦ I)1/q ≡ diag(μ1, . . . , μn).

By continuity we may assume that λi = λj and μi = μj for i = j.
Using the above differential formula we compute

d

dt
(Cp + tAp)1/p

∣∣∣∣
t=0

= X ◦ Ap
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and
d

dt
(Dq + tBq)1/q

∣∣∣∣
t=0

= Y ◦ Bq

where X = (xij) and Y = (yij) are defined by

xij = (λi − λj)(λ
p
i − λp

j )
−1 for i = j and xii = p−1λ1−p

i ,

yij = (μi − μj)(μ
q
i − μq

j)
−1 for i = j and yii = q−1μ1−q

i .

By Corollary 1.13

C ◦ D + tA ◦ B ≤ (Cp + tAp)1/p ◦ (Dq + tBq)1/q

for any t ≥ 0. Therefore, via differentiation at t = 0 we have

A ◦ B ≤ d

dt
(Cp + tAp)1/p ◦ (Dq + tBq)1/q|t=0

= X ◦ Ap ◦ D + C ◦ Y ◦ Bq

= (X ◦ I)(Ap ◦ I)D + C(Y ◦ I)(Bq ◦ I)
= p−1C1−p(Ap ◦ I)D + q−1CD1−q(Bq ◦ I)
= (Ap ◦ I)1/p(Bq ◦ I)1/q.

This completes the proof. ��

We will need the following result in the next section and in Chapter 3.
See [17] for a proof.

Theorem 1.15 Let f be an operator monotone function on [0,∞), g an
operator convex function on [0,∞) with g(0) ≤ 0. Then for every contraction
C, i.e., ‖C‖∞ ≤ 1 and every A ≥ 0,

f(C∗AC) ≥ C∗f(A)C, (1.16)

g(C∗AC) ≤ C∗g(A)C. (1.17)

Notes and References. As already remarked, Theorem 1.3 is part of the
Löwner theory. The inequality (1.16) in Theorem 1.15 is due to F. Hansen
[43] while the inequality (1.17) is proved by F. Hansen and G. K. Pedersen
[44]. All other results in this section are due to T. Ando [3, 8].

1.3 Inequalities for Matrix Powers

The purpose of this section is to prove the following result.
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Theorem 1.16 If A ≥ B ≥ 0 then

(BrApBr)1/q ≥ B(p+2r)/q (1.18)

and
A(p+2r)/q ≥ (ArBpAr)1/q (1.19)

for r ≥ 0, p ≥ 0, q ≥ 1 with (1 + 2r)q ≥ p + 2r.

Proof. We abbreviate “the Löwner-Heinz inequality” to LH, and first prove
(1.18).

If 0 ≤ p < 1, then by LH, Ap ≥ Bp and hence BrApBr ≥ Bp+2r. Applying
LH again with the power 1/q gives (1.18).

Next we consider the case p ≥ 1. It suffices to prove

(BrApBr)(1+2r)/(p+2r) ≥ B1+2r

for r ≥ 0, p ≥ 1, since by assumption q ≥ (p + 2r)/(1 + 2r), and then (1.18)
follows from this inequality via LH. Let us introduce t to write the above
inequality as

(BrApBr)t ≥ B1+2r, t =
1 + 2r

p + 2r
. (1.20)

Note that 0 < t ≤ 1, as p ≥ 1. We will show (1.20) by induction on k =
0, 1, 2, . . . for the intervals (2k−1 −1/2, 2k −1/2] containing r. Since (0,∞) =
∪∞

k=0(2
k−1 − 1/2, 2k − 1/2], (1.20) is proved.

By the standard continuity argument, we may and do assume that A, B
are positive definite. First consider the case k = 0, i.e., 0 < r ≤ 1/2. By
LH A2r ≥ B2r and hence BrA−2rBr ≤ I, which means that A−rBr is a
contraction. Applying (1.16) in Theorem 1.15 with f(x) = xt yields

(BrApBr)t = [(A−rBr)∗Ap+2r(A−rBr)]t

≥ (A−rBr)∗A(p+2r)t(A−rBr)
= BrABr ≥ B1+2r,

proving (1.20) for the case k = 0.
Now suppose that (1.20) is true for r ∈ (2k−1 − 1/2, 2k − 1/2]. Denote

A1 = (BrApBr)t, B1 = B1+2r. Then our assumption is

A1 ≥ B1 with t =
1 + 2r

p + 2r
.

Since p1 ≡ 1/t ≥ 1, apply the already proved case r1 ≡ 1/2 to A1 ≥ B1 to
get

(Br1
1 Ap1

1 Br1
1 )t1 ≥ B1+2r1

1 , t1 ≡ 1 + 2r1

p1 + 2r1
. (1.21)

Note that t1 = 2+4r
p+4r+1 . Denote s = 2r + 1/2. We have s ∈ (2k − 1/2, 2k+1 −

1/2]. Then explicitly (1.21) is
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(BsApBs)t1 ≥ B1+2s, t1 =
1 + 2s

p + 2s
,

which shows that (1.20) holds for r ∈ (2k − 1/2, 2k+1 − 1/2]. This completes
the inductive argument and (1.18) is proved.

A ≥ B > 0 implies B−1 ≥ A−1 > 0. In (1.18) replacing A, B by B−1, A−1

respectively yields (1.19). ��

The case q = p ≥ 1 of Theorem 1.16 is the following

Corollary 1.17 If A ≥ B ≥ 0 then

(BrApBr)1/p ≥ B(p+2r)/p,

A(p+2r)/p ≥ (ArBpAr)1/p

for all r ≥ 0 and p ≥ 1.

A still more special case is the next

Corollary 1.18 If A ≥ B ≥ 0 then

(BA2B)1/2 ≥ B2 and A2 ≥ (AB2A)1/2.

At first glance, Corollary 1.18 (and hence Theorem 1.16) is strange: For
positive numbers a ≥ b, we have a2 ≥ (ba2b)1/2 ≥ b2. We know the matrix
analog that A ≥ B ≥ 0 implies A2 ≥ B2 is false, but Corollary 1.18 asserts
that the matrix analog of the stronger inequality (ba2b)1/2 ≥ b2 holds.

This example shows that when we move from the commutative world to
the noncommutative one, direct generalizations may be false, but a judicious
modification may be true.

Notes and References. Corollary 1.18 is a conjecture of N. N. Chan and
M. K. Kwong [29]. T. Furuta [38] solved this conjecture by proving the more
general Theorem 1.16. See [39] for a related result.

1.4 Block Matrix Techniques

In the proof of Lemma 1.5 we have seen that block matrix arguments are
powerful. Here we give one more example. In later chapters we will employ
other types of block matrix techniques.

Theorem 1.19 Let A, B, X, Y be matrices with A, B positive definite and
X, Y arbitrary. Then

(X∗A−1X) ◦ (Y ∗B−1Y ) ≥ (X ◦ Y )∗(A ◦ B)−1(X ◦ Y ), (1.22)
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X∗A−1X + Y ∗B−1Y ≥ (X + Y )∗(A + B)−1(X + Y ). (1.23)

Proof. By Lemma 1.4 we have[
A X
X∗ X∗A−1X

]
≥ 0,

[
B Y
Y ∗ Y ∗B−1Y

]
≥ 0.

Applying the Schur product theorem gives[
A ◦ B X ◦ Y

(X ◦ Y )∗ (X∗A−1X) ◦ (Y ∗B−1Y )

]
≥ 0. (1.24)

Applying Lemma 1.4 again in another direction to (1.24) yields (1.22).
The inequality (1.23) is proved in a similar way. ��

Now let us consider some useful special cases of this theorem. Choosing
A = B = I and X = Y = I in (1.22) respectively we get

Corollary 1.20 For any X, Y and positive definite A, B

(X∗X) ◦ (Y ∗Y ) ≥ (X ◦ Y )∗(X ◦ Y ), (1.25)

A−1 ◦ B−1 ≥ (A ◦ B)−1. (1.26)

In (1.26) setting B = A−1 we get A ◦ A−1 ≥ (A ◦ A−1)−1 or equivalently

A ◦ A−1 ≥ I, for A > 0. (1.27)

(1.27) is a well-known inequality due to M. Fiedler.
Note that both (1.22) and (1.23) can be extended to the case of arbitrarily

finite number of matrices by the same proof. For instance we have

k∑
1

X∗
j A−1

j Xj ≥
(

k∑
1

Xj

)∗( k∑
1

Aj

)−1( k∑
1

Xj

)

for any Xj and Aj > 0, j = 1, . . . , k, two special cases of which are particu-
larly interesting:

k

k∑
1

X∗
j Xj ≥

(
k∑
1

Xj

)∗( k∑
1

Xj

)
,

k∑
1

A−1
j ≥ k2

(
k∑
1

Aj

)−1

, each Aj > 0.

We record the following fact for later use. Compare it with Lemma 1.4.
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Lemma 1.21 [
A B
B∗ C

]
≥ 0 (1.28)

if and only if A ≥ 0, C ≥ 0 and there exists a contraction W such that
B = A1/2WC1/2.

Proof. Recall the fact that [
I X

X∗ I

]
≥ 0

if and only if X is a contraction. The “if” part is easily checked.
Conversely suppose we have (1.28). First consider the case when A >

0, C > 0. Then [
I A−1/2BC−1/2

(A−1/2BC−1/2)∗ I

]

=
[

A−1/2 0
0 C−1/2

] [
A B
B∗ C

] [
A−1/2 0

0 C−1/2

]
≥ 0.

Thus W ≡ A−1/2BC−1/2 is a contraction and B = A1/2WC1/2.
Next for the general case we have[

A + m−1I B
B∗ C + m−1I

]
≥ 0

for any positive integer m. By what we have just proved, for each m there
exists a contraction Wm such that

B = (A + m−1I)1/2Wm(C + m−1I)1/2. (1.29)

Since the space of matrices of a given order is finite-dimensional, the unit
ball of any norm is compact (here we are using the spectral norm). It follows
that there is a convergent subsequence of {Wm}∞

m=1, say, limk→∞ Wmk
= W.

Of course W is a contraction. Taking the limit k → ∞ in (1.29) we obtain
B = A1/2WC1/2. ��

Notes and References. Except Lemma 1.21, this section is taken from
[86]. Note that Theorem 1.19 remains true for rectangular matrices X, Y.
The inequality (1.22) is also proved independently in [84].



2. Majorization and Eigenvalues

Majorization is one of the most powerful techniques for deriving inequalities.
We first introduce in Section 2.1 the concepts of four kinds of majorizations,
give some examples related to matrices, and present several basic majoriza-
tion principles. Then in Section 2.2 we prove two theorems on eigenvalues
of the Hadamard product of positive semidefinite matrices, which generalize
Oppenheim’s classical inequalities.

2.1 Majorizations

Given a real vector x = (x1, x2, . . . , xn) ∈ R
n, we rearrange its components

as x[1] ≥ x[2] ≥ · · · ≥ x[n].

Definition. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n, if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n

then we say that x is weakly majorized by y and denote x ≺w y. If in addition
to x ≺w y,

∑n
i=1 xi =

∑n
i=1 yi holds, then we say that x is majorized by y

and denote x ≺ y.

For example, if each ai ≥ 0,
∑n

1 ai = 1 then

(
1
n

, . . . ,
1
n

) ≺ (a1, . . . , an) ≺ (1, 0, . . . , 0).

There is a useful characterization of majorization. We call a matrix non-
negative if all its entries are nonnegative real numbers. A nonnegative ma-
trix is called doubly stochastic if all its row and column sums are one. Let
x, y ∈ R

n. The Hardy-Littlewood-Pólya theorem ([17, Theorem II.1.10] or
[72, p.22]) asserts that x ≺ y if and only if there exists a doubly stochastic
matrix A such that x = Ay. Here we regard vectors as column vectors, i.e.,
n × 1 matrices.

By this characterization we readily get the following well-known theorem
of Schur via the spectral decomposition of Hermitian matrices.

X. Zhan: LNM 1790, pp. 17–25, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Theorem 2.1 If H is a Hermitian matrix with diagonal entries h1, . . . , hn

and eigenvalues λ1, . . . , λn then

(h1, . . . , hn) ≺ (λ1, . . . , λn). (2.1)

In the sequel, if the eigenvalues of a matrix H are all real, we will always
arrange them in decreasing order: λ1(H) ≥ λ2(H) ≥ · · · ≥ λn(H) and denote
λ(H) ≡ (λ1(H), . . . , λn(H)). If G, H are Hermitian matrices and λ(G) ≺
λ(H), we simply write G ≺ H. Similarly we write G ≺w H to indicate
λ(G) ≺w λ(H). For example, Theorem 2.1 can be written as

H ◦ I ≺ H for Hermitian H. (2.2)

The next two majorization principles [72, p.115 and 116] are of primary
importance. Here we assume that the functions f(t), g(t) are defined on some
interval containing the components of x = (x1, . . . , xn) and y = (y1, . . . , yn).

Theorem 2.2 Let f(t) be a convex function. Then

x ≺ y implies (f(x1), . . . , f(xn)) ≺w (f(y1), . . . , f(yn)).

Theorem 2.3 Let g(t) be an increasing convex function. Then

x ≺w y implies (g(x1), . . . , g(xn)) ≺w (g(y1), . . . , g(yn)).

To illustrate the effect of Theorem 2.2, suppose in Theorem 2.1 H > 0
and without loss of generality, h1 ≥ · · · ≥ hn, λ1 ≥ · · · ≥ λn. Then apply
Theorem 2.2 with f(t) = − log t to the majorization (2.1) to get

n∏
i=k

hi ≥
n∏

i=k

λi, k = 1, 2, . . . , n. (2.3)

Of course the condition H > 0 can be relaxed to H ≥ 0 by continuity. Note
that the special case k = 1 of (2.3) says detH ≤

∏n
1 hi, which is called the

Hadamard inequality.

Definition. Let the components of x = (x1, . . . , xn) and y = (y1, . . . , yn) be
nonnegative. If

k∏
i=1

x[i] ≤
k∏

i=1

y[i], k = 1, 2, . . . , n

then we say that x is weakly log-majorized by y and denote x ≺wlog y. If
in addition to x ≺wlog y,

∏n
i=1 xi =

∏n
i=1 yi holds, then we say that x is

log-majorized by y and denote x ≺log y.
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The absolute value of a matrix A is, by definition, |A| ≡ (A∗A)1/2. The
singular values of A are defined to be the eigenvalues of |A|. Thus the singular
values of A are the nonnegative square roots of the eigenvalues of A∗A. For
positive semidefinite matrices, singular values and eigenvalues coincide.

Throughout we arrange the singular values of A in decreasing order:
s1(A) ≥ · · · ≥ sn(A) and denote s(A) ≡ (s1(A), . . . , sn(A)). Note that the
spectral norm of A, ‖A‖∞, is equal to s1(A).

Let us write {xi} for a vector (x1, . . . , xn). In matrix theory there are the
following three basic majorization relations [52].

Theorem 2.4 (H. Weyl) Let λ1(A), . . . , λn(A) be the eigenvalues of a matrix
A ordered so that |λ1(A)| ≥ · · · ≥ |λn(A)|. Then

{|λi(A)|} ≺log s(A).

Theorem 2.5 (A. Horn) For any matrices A, B

s(AB) ≺log {si(A)si(B)}.

Theorem 2.6 For any matrices A, B

s(A ◦ B) ≺w {si(A)si(B)}.

Note that the eigenvalues of the product of two positive semidefinite ma-
trices are nonnegative, since λ(AB) = λ(A1/2BA1/2).

If A, B are positive semidefinite, then by Theorems 2.4 and 2.5

λ(AB) ≺log s(AB) ≺log {λi(A)λi(B)}.

Therefore
A, B ≥ 0 ⇒ λ(AB) ≺log {λi(A)λi(B)}. (2.4)

We remark that for nonnegative vectors, weak log-majorization is stronger
than weak majorization, which follows from the case g(t) = et of Theorem
2.3. We record this as

Theorem 2.7 Let the components of x, y ∈ R
n be nonnegative. Then

x ≺wlog y implies x ≺w y

Applying Theorem 2.7 to Theorems 2.4 and 2.5 we get the following

Corollary 2.8 For any A, B ∈ Mn
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|trA| ≤
n∑

i=1

si(A),

s(AB) ≺w {si(A)si(B)}.

The next result [17, proof of Theorem IX.2.9] is very useful.

Theorem 2.9 Let A, B ≥ 0. If 0 < s < t then

{λ
1/s
j (AsBs)} ≺log {λ

1/t
j (AtBt)}.

By this theorem, if A, B ≥ 0 and m ≥ 1 then

{λm
j (AB)} ≺log {λj(AmBm)}.

Since weak log-majorization implies weak majorization, we have

{λm
j (AB)} ≺w {λj(AmBm)}.

Now if m is a positive integer, λm
j (AB) = λj [(AB)m] and hence

{λj [(AB)m]} ≺w {λj(AmBm)}.

In particular we have
tr (AB)m ≤ trAmBm.

Theorem 2.10 Let G, H be Hermitian. Then

λ(eG+H) ≺log λ(eGeH).

Proof. Let G, H ∈ Mn and 1 ≤ k ≤ n be fixed. By the spectral mapping
theorem and Theorem 2.9, for any positive integer m

k∏
j=1

λj [(e
G
m e

H
m )m] =

k∏
j=1

λm
j (e

G
m e

H
m ) ≤

k∏
j=1

λj(eGeH). (2.5)

The Lie product formula [17, p.254] says

lim
m→∞(e

X
m e

Y
m )m = eX+Y

for any two matrices X, Y. Thus letting m → ∞ in (2.5) yields

λ(eG+H) ≺wlog λ(eGeH).
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Finally note that det eG+H = det(eGeH). This completes the proof. ��

Note that Theorem 2.10 strengthens the Golden-Thompson inequality:

tr eG+H ≤ tr eGeH

for Hermitian G, H.
From the minimax characterization of eigenvalues of a Hermitian matrix

[17] it follows immediately that A ≥ B implies λj(A) ≥ λj(B) for each j.
This fact will be repeatedly used in the sequel.

Notes and References. For a more detailed treatment of the majorization
theory see [72, 5, 17, 52]. For the topic of log-majorization see [46].

2.2 Eigenvalues of Hadamard Products

Let A, B = (bij) ∈ Mn be positive semidefinite. Oppenheim’s inequality
states that

det(A ◦ B) ≥ (detA)
n∏

i=1

bii. (2.6)

By Hadamard’s inequality, (2.6) implies

det(A ◦ B) ≥ det(AB). (2.7)

We first give a generalization of the determinantal inequality (2.7), whose
proof uses several results we obtained earlier, and then we generalize (2.6).

Let x = {xi}, y = {yi} ∈ R
n with x1 ≥ · · · ≥ xn, y1 ≥ · · · ≥ yn. Observe

that if x ≺ y then
n∑

i=k

xi ≥
n∑

i=k

yi, k = 1, . . . , n.

Also if the components of x and y are positive and x ≺log y then

n∏
i=k

xi ≥
n∏

i=k

yi, k = 1, . . . , n.

Theorem 2.11 Let A, B ∈ Mn be positive definite. Then

n∏
j=k

λj(A ◦ B) ≥
n∏

j=k

λj(AB), k = 1, 2, . . . , n. (2.8)

Proof. By (1.15) in Corollary 1.10 we have
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log(A ◦ B) ≥ (log A + log B) ◦ I

which implies

log[
n∏

j=k

λj(A ◦ B)] =
n∑

j=k

λj [log(A ◦ B)]

≥
n∑

j=k

λj [(log A + log B) ◦ I]

for k = 1, 2, . . . , n. According to Schur’s theorem (see (2.2))

(log A + log B) ◦ I ≺ log A + log B,

from which it follows that
n∑

j=k

λj [(log A + log B) ◦ I] ≥
n∑

j=k

λj(log A + log B)

for k = 1, 2, . . . , n.
On the other hand, in Theorem 2.10 setting G = log A, H = log B we

have
λ(elog A+log B) ≺log λ(AB).

Since λj(elog A+log B) = eλj(log A+log B), this log-majorization is equivalent to
the majorization

λ(log A + log B) ≺ {log λj(AB)}.

But log λj(AB) = log λj(A1/2BA1/2) = λj [log(A1/2BA1/2)], so

log A + log B ≺ log(A1/2BA1/2).

Hence
n∑

j=k

λj(log A + log B) ≥
n∑

j=k

λj [log(A1/2BA1/2)]

= log[
n∏

j=k

λj(AB)]

for k = 1, 2, . . . , n. Combining the above three inequalities involving eigen-
values we get

n∏
j=k

λj(A ◦ B) ≥
n∏

j=k

λj(AB), k = 1, 2, . . . , n

which establishes the theorem. ��
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Denote by GT the transpose of a matrix G. Since for B > 0 log BT =
(log B)T , we have

(log BT ) ◦ I = (log B)T ◦ I = (log B) ◦ I.

Therefore in the above proof we can replace (log A + log B) ◦ I by (log A +
log BT ) ◦ I. Thus we get the following

Theorem 2.12 Let A, B ∈ Mn be positive definite. Then

n∏
j=k

λj(A ◦ B) ≥
n∏

j=k

λj(ABT ), k = 1, 2, . . . , n. (2.9)

Note that the special case k = 1 of (2.8) is the inequality (2.7).
For A, B > 0, by the log-majorization (2.4) we have

n∏
j=k

λj(AB) ≥
n∏

j=k

λj(A)λj(B), k = 1, 2, . . . , n. (2.10)

Combining (2.8) and (2.10) we get the following

Corollary 2.13 Let A, B ∈ Mn be positive definite. Then

n∏
j=k

λj(A ◦ B) ≥
n∏

j=k

λj(A)λj(B), k = 1, 2, . . . , n.

Next we give a generalization of Oppenheim’s inequality (2.6).
A linear map Φ : Mn → Mn is said to be doubly stochastic if it is positive

(A ≥ 0 ⇒ Φ(A) ≥ 0), unital (Φ(I) = I) and trace-preserving (trΦ(A) = trA
for all A ∈ Mn). Since every Hermitian matrix can be written as a difference
of two positive semidefinite matrices: H = (|H| + H)/2 − (|H| − H)/2, a
positive linear map necessarily preserves the set of Hermitian matrices.

The Frobenius inner product on Mn is 〈A, B〉 ≡ trAB∗.

Lemma 2.14 Let A ∈ Mn be Hermitian and Φ : Mn → Mn be a doubly
stochastic map. Then

Φ(A) ≺ A.

Proof. Let

A = Udiag(x1, . . . , xn)U∗, Φ(A) = Wdiag(y1, . . . , yn)W ∗

be the spectral decompositions with U, W unitary. Define

Ψ(X) = W ∗Φ(UXU∗)W.
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Then Ψ is again a doubly stochastic map and

diag(y1, . . . , yn) = Ψ(diag(x1, . . . , xn)). (2.11)

Let Pj ≡ eje
T
j , the orthogonal projection to the one-dimensional subspace

spanned by the jth standard basis vector ej , j = 1, . . . , n. Then (2.11) implies

(y1, . . . , yn)T = D(x1, . . . , xn)T (2.12)

where D = (dij) with dij = 〈Ψ(Pj), Pi〉 for all i and j. Since Ψ is doubly
stochastic, it is easy to verify that D is a doubly stochastic matrix. By the
Hardy-Littlewood-Pólya theorem, the relation (2.12) implies

(y1, . . . , yn) ≺ (x1, . . . , xn),

proving the lemma. ��

A positive semidefinite matrix with all diagonal entries 1 is called a cor-
relation matrix.

Suppose C is a correlation matrix. Define ΦC(X) = X ◦ C. Obviously ΦC

is a doubly stochastic map on Mn. Thus we have the following

Corollary 2.15 If A is Hermitian and C is a correlation matrix. Then

A ◦ C ≺ A.

Theorem 2.16 Let A, B ∈ Mn be positive definite and β1 ≥ · · · ≥ βn be a
rearrangement of the diagonal entries of B. Then for every 1 ≤ k ≤ n

n∏
j=k

λj(A ◦ B) ≥
n∏

j=k

λj(A)βj . (2.13)

Proof. Let B = (bij). Define two matrices C = (cij) and H = (hij) by

cij =
bij

(biibjj)1/2 , hij = (biibjj)1/2.

Then C is a correlation matrix and B = H ◦ C. By Corollary 2.15

A ◦ B = (A ◦ H) ◦ C ≺ A ◦ H.

Applying Theorem 2.2 with f(t) = − log t to this majorization yields

n∏
j=k

λj(A ◦ B) ≥
n∏

j=k

λj(A ◦ H). (2.14)
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Note that A ◦H = DAD where D ≡ diag(
√

b11, . . . ,
√

bnn) and λj(D2) =
βj , j = 1, . . . , n. Thus λ(A ◦ H) = λ(DAD) = λ(AD2). By the log-
majorization (2.4) we have

n∏
j=k

λj(A ◦ H) =
n∏

j=k

λj(AD2) ≥
n∏

j=k

λj(A)λj(D2)

=
n∏

j=k

λj(A)βj .

Combining (2.14) and the above inequality gives (2.13). ��

Oppenheim’s inequality (2.6) corresponds to the special case k = 1 of
(2.13). Also note that since

∏n
j=k βj ≥

∏n
j=k λj(B), Theorem 2.16 is stronger

than Corollary 2.13.
We remark that in general Theorem 2.16 and Theorem 2.11 are not com-

parable. In fact, both λn(AB) > λn(A)βn and λn(AB) < λn(A)βn can occur:
For A = diag(1, 2), B = diag(2, 1)

λ2(AB) − λ2(A)β2 = 1

while for

A = I2, B =
[

2 1
1 2

]

λ2(AB) − λ2(A)β2 = −1.

Notes and References. M. Fiedler [37] first proved the case k = n of
Theorem 2.12. Then C. R. Johnson and L. Elsner [58] proved the case k = n
of Theorem 2.11, and in [57] C. R. Johnson and R. B. Bapat conjectured the
general inequalities (2.8) in Theorem 2.11. T. Ando [6] and G. Visick [82]
independently solved this conjecture affirmatively. What we presented here
is Ando’s elegant proof. Theorem 2.12 is also proved in [6].

Corollary 2.13 is a conjecture of A. W. Marshall and I. Olkin [72, p.258].
R. B. Bapat and V. S. Sunder [12] solved this conjecture by proving the
stronger Theorem 2.16. Corollary 2.15 is also due to them. Lemma 2.14 is
due to T. Ando [5, Theorem 7.1].



3. Singular Values

Recall that the singular values of a matrix A ∈ Mn are the eigenvalues of
its absolute value |A| ≡ (A∗A)1/2, and we have fixed the notation s(A) ≡
(s1(A), . . . , sn(A)) with s1(A) ≥ · · · ≥ sn(A) for the singular values of A.
Singular values are closely related to unitarily invariant norms, which are
the theme of the next chapter. Singular value inequalities are weaker than
Löwner partial order inequalities and stronger than unitarily invariant norm
inequalities in the following sense:

|A| ≤ |B| ⇒ sj(A) ≤ sj(B), for each j ⇒ ‖A‖ ≤ ‖B‖

for all unitarily invariant norms.
Note that singular values are unitarily invariant: s(UAV ) = s(A) for every

A and all unitary U, V.

3.1 Matrix Young Inequalities

The most important case of the Young inequality says that if 1/p + 1/q = 1
with p, q > 1 then

|ab| ≤ |a|p
p

+
|b|q
q

for a, b ∈ C.

A direct matrix generalization would be

|AB| ≤ |A|p
p

+
|B|q
q

which is false in general. If A, B ≥ 0 is a commuting pair, however, AB ≥ 0
and via a simultaneous unitary diagonalization [51, Corollary 4.5.18] it is
clear that

AB ≤ Ap

p
+

Bq

q

holds.
It turns out that the singular value version generalization of the Young

inequality is true.

X. Zhan: LNM 1790, pp. 27–54, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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We will need the following special cases of Theorem 1.15.

Lemma 3.1 Let Q be an orthogonal projection and X ≥ 0. Then

QXrQ ≤ (QXQ)r if 0 < r ≤ 1,

QXrQ ≥ (QXQ)r if 1 ≤ r ≤ 2.

Theorem 3.2 Let p, q > 1 with 1/p + 1/q = 1. Then for any matrices
A, B ∈ Mn

sj(AB∗) ≤ sj

( |A|p
p

+
|B|q
q

)
, j = 1, 2, . . . , n. (3.1)

Proof. By considering the polar decompositions A = V |A|, B = W |B| with
V, W unitary, we see that it suffices to prove (3.1) for A, B ≥ 0. Now we make
this assumption.

Passing to eigenvalues, (3.1) means

λk((BA2B)1/2) ≤ λk(Ap/p + Bq/q) (3.2)

for each 1 ≤ k ≤ n. Let us fix k and prove (3.2).
Since λk((BA2B)1/2) = λk((AB2A)1/2), by exchanging the roles of A and

B if necessary, we may assume 1 < p ≤ 2, hence 2 ≤ q < ∞. Further by the
standard continuity argument we may assume B > 0.

Here we regard matrices in Mn as linear operators on C
n.

Write λ ≡ λk((BA2B)1/2) and denote by P the orthogonal projection (of
rank k) to the spectral subspace spanned by the eigenvectors corresponding
to λj((BA2B)1/2) for j = 1, 2, . . . , k. Denote by Q the orthogonal projection
(of rank k) to the subspace M ≡ range(B−1P ). In view of the minimax
characterization of eigenvalues of a Hermitian matrix [17], for the inequality
(3.2) it suffices to prove

λQ ≤ QApQ/p + QBqQ/q. (3.3)

By the definition of Q we have

QB−1P = B−1P (3.4)

and that there exists G such that Q = B−1PG, hence BQ = PG and

PBQ = BQ. (3.5)

Taking adjoints in (3.4) and (3.5) gives

PB−1Q = PB−1 (3.6)
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and
QBP = QB. (3.7)

By (3.4) and (3.7) we have

(QB2Q) · (B−1PB−1) = QB2 · QB−1PB−1

= QB2 · B−1PB−1

= QBPB−1 = Q

and similarly from (3.6) and (3.5) we get

(B−1PB−1) · (QB2Q) = Q.

These together mean that B−1PB−1 and QB2Q map M onto itself, vanish
on its orthogonal complement and are inverse to each other on M.

By the definition of P we have

(BA2B)1/2 ≥ λP

which implies, via commutativity of (BA2B)1/2 and P,

A2 ≥ λ2B−1PB−1.

Then by the Löwner-Heinz inequality (Theorem 1.1) with r = p/2 we get

Ap ≥ λp · (B−1PB−1)p/2,

hence by (3.4) and (3.6)

QApQ ≥ λp · (B−1PB−1)p/2.

Since B−1PB−1 is the inverse of QB2Q on M, this means that on M

QApQ ≥ λp · (QB2Q)−p/2. (3.8)

To prove (3.3), let us first consider the case 2 ≤ q ≤ 4. By Lemma 3.1
with r = q/2 we have

QBqQ ≥ (QB2Q)q/2. (3.9)

Now it follows from (3.8) and (3.9) that on M

QApQ/p + QBqQ/q ≥ λp · (QB2Q)−p/2/p + (QB2Q)q/2/q.

In view of the Young inequality for the commuting pair,
λ · (QB2Q)−1/2 and (QB2Q)1/2, this implies

QApQ/p + QBqQ/q ≥ λ · (QB2Q)−1/2 · (QB2Q)1/2 = λQ,

proving (3.3).



30 3. Singular Values

Let us next consider the case 4 < q < ∞. Let s = q/2. Then 0 < 2/s < 1
and q/s = 2. By Lemma 3.1 with r = q/s we have

QBqQ ≥ (QBsQ)q/s. (3.10)

On the other hand, by Lemma 3.1 with r = 2/s we have

(QBsQ)2/s ≥ QB2Q,

and then by the Löwner-Heinz inequality with r = p/2

(QBsQ)p/s ≥ (QB2Q)p/2,

hence on M
(QBsQ)−p/s ≤ (QB2Q)−p/2. (3.11)

Combining (3.8) and (3.11) yields

QApQ ≥ λp · (QBsQ)−p/s. (3.12)

Now it follows from (3.12) and (3.10) that

QApQ/p + QBqQ/q ≥ λp · (QBsQ)−p/s/p + (QBsQ)q/s/q.

In view of the Young inequality for the commuting pair,
λ · (QBsQ)−1/s and (QBsQ)1/s , this implies

QApQ/p + QBqQ/q ≥ λ · (QBsQ)−1/s · (QBsQ)1/s = λQ,

proving (3.3). This completes the proof. ��

The case p = q = 2 of Theorem 3.2 has the following form:

Corollary 3.3 For any X, Y ∈ Mn

2sj(XY ∗) ≤ sj(X∗X + Y ∗Y ), j = 1, 2, . . . , n. (3.13)

The conclusion of Theorem 3.2 is equivalent to the statement that there
exists a unitary matrix U , depending on A, B, such that

U |AB∗|U∗ ≤ |A|p
p

+
|B|q
q

.

It seems natural to pose the following

Conjecture 3.4 Let A, B ∈ Mn be positive semidefinite and 0 ≤ r ≤ 1. Then

sj(ArB1−r + A1−rBr) ≤ sj(A + B), j = 1, 2, . . . , n. (3.14)
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Observe that the special case r = 1/2 of (3.14) is just (3.13) while the
cases r = 0, 1 are trivial.

Another related problem is the following

Question 3.5 Let A, B ∈ Mn be positive semidefinite. Is it true that

s
1/2
j (AB) ≤ 1

2
sj(A + B), j = 1, 2, . . . , n? (3.15)

Since the square function is operator convex on R, i.e.,

(
A + B

2

)2

≤ A2 + B2

2
,

the statement (3.15) is stronger than (3.13).

Notes and References. Theorem 3.2 is due to T. Ando [7]. Corollary 3.3
is due to R. Bhatia and F. Kittaneh [22]. Conjecture 3.4 is posed in [89] and
Question 3.5 is in [24].

3.2 Singular Values of Hadamard Products

Given A = (aij) ∈ Mn, we denote the decreasingly ordered Euclidean
row and column lengths of A by r1(A) ≥ r2(A) ≥ · · · ≥ rn(A) and
c1(A) ≥ c2(A) ≥ · · · ≥ cn(A) respectively, i.e., rk(A) is the kth largest
value of (

∑n
j=1 |aij |2)1/2, i = 1, . . . , n and ck(A) is the kth largest value of

(
∑n

i=1 |aij |2)1/2, j = 1, . . . , n.
The purpose of this section is to prove the following

Theorem 3.6 For any A, B ∈ Mn

s(A ◦ B) ≺w {min{ri(A), ci(A)}si(B)}. (3.16)

The proof of this theorem is divided into a series of lemmas. The first fact
is easy to verify.

Lemma 3.7 For any A, B, C ∈ Mn, (A ◦ B)C and (A ◦ CT )BT have the
same main diagonal. In particular,

tr(A ◦ B)C = tr(A ◦ CT )BT .
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A matrix that has r singular values 1 and all other singular values 0 is
called a rank r partial isometry.

Lemma 3.8 For any C ∈ Mn and 1 ≤ k ≤ n, there is a rank k partial
isometry Ck ∈ Mn such that

k∑
i=1

si(C) = tr(CCk).

Proof. Let C = U |C| be the polar decomposition with U unitary and
U |C|U∗ =

∑n
i=1 si(C)Pi be the spectral decomposition where P1, . . . , Pn

are mutually orthogonal rank one projections. Then Ck ≡ U∗(
∑k

i=1 Pi) does
the job. ��

Lemma 3.9 Every B ∈ Mn can be written as

B =
n∑

i=1

μiKi

where each μi ≥ 0 and each Ki is a rank i partial isometry such that

n∑
i=k

μi = sk(B), k = 1, . . . , n.

Proof. Let B = U |B| be the polar decomposition with U unitary and |B| =∑n
i=1 si(B)Pi be the spectral decomposition where P1, . . . , Pn are mutually

orthogonal rank one projections. Then

μi ≡ si(B) − si+1(B), i = 1, . . . , n − 1, μn ≡ sn(B)

and

Ki ≡ U
i∑

j=1

Pj , i = 1, . . . , n

satisfy the requirements. ��

Lemma 3.10 Let A ∈ Mn and α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 be given. If

s(A ◦ B) ≺w {αis1(B)} for all B ∈ Mn, (3.17)

then
s(A ◦ B) ≺w {αisi(B)} for all B ∈ Mn. (3.18)
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Proof. Assume (3.17). We first show that if Kr, Kt ∈ Mn are partial isome-
tries with respective ranks r and t then

|tr(A ◦ Kr)Kt| ≤
min{r, t}∑

i=1

αi. (3.19)

In view of Lemma 3.7, we may assume, without loss of generality, that t ≤ r.
Using Corollary 2.8 and the assumption (3.17) we compute

|tr(A ◦ Kr)Kt| ≤
n∑

i=1

si[(A ◦ Kr)Kt]

≤
n∑

i=1

si(A ◦ Kr)si(Kt)

=
t∑

i=1

si(A ◦ Kr)

≤
t∑

i=1

αi,

proving (3.19).
Next for any k with 1 ≤ k ≤ n, by Lemma 3.8 there is a rank k partial

isometry Ck such that
∑k

i=1 si(A ◦ B) = tr(A ◦ B)Ck. Using Lemma 3.9 and
(3.19) we have

k∑
i=1

si(A ◦ B) = tr(A ◦ B)Ck

= tr[A ◦ (
n∑

j=1

μjKj)]Ck

=
n∑

j=1

μjtr(A ◦ Kj)Ck

≤
n∑

j=1

μj |tr(A ◦ Kj)Ck|

≤
n∑

j=1

μj(
min{j, k}∑

i=1

αi)

=
k∑

i=1

αisi(B).

This proves (3.18). ��
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Lemma 3.11 For any A, B ∈ Mn

si(A ◦ B) ≤ min{ri(A), ci(A)}s1(B), i = 1, 2, . . . , n.

Proof. By Corollary 1.20

(A ◦ B)∗(A ◦ B) ≤ (A∗A) ◦ (B∗B).

Since B∗B ≤ s1(B)2I, the Schur product theorem implies

(A∗A) ◦ (B∗B) ≤ (A∗A) ◦ (s1(B)2I).

Thus
(A ◦ B)∗(A ◦ B) ≤ (A∗A) ◦ (s1(B)2I). (3.20)

Note that 0 ≤ X ≤ Y ⇒ si(X) ≤ si(Y ), i = 1, 2, . . . . By the definition of
ci(A), (3.20) implies

si(A ◦ B) ≤ ci(A)s1(B). (3.21)

Now replace A and B in (3.21) by their adjoints A∗, B∗ to get

si(A ◦ B) ≤ ri(A)s1(B).

This completes the proof. ��

Proof of Theorem 3.6. Set αi = min{ri(A), ci(A)}. Lemma 3.11 gives

s(A ◦ B) ≺w {αis1(B)}.

Then applying Lemma 3.10 shows (3.16). This completes the proof. ��

A norm ‖ · ‖ on Mn is called unitarily invariant if

‖UAV ‖ = ‖A‖

for all A ∈ Mn and all unitary U, V ∈ Mn. The Fan dominance principle
(Lemma 4.2 in the next chapter) says that for A, B ∈ Mn, ‖A‖ ≤ ‖B‖ for
all unitarily invariant norms if and only if s(A) ≺w s(B).

Let us consider an application of Theorem 3.6. By a diagonal of a matrix
A = (aij) we mean the main diagonal, or a superdiagonal, or a subdiagonal,
that is, a set of all the entries aij with i − j being a fixed number. Let Φk be
an operation on Mn which keeps any but fixed k diagonals of a matrix and
changes all other entries to zero, 1 ≤ k < 2n − 1. Denote by E ∈ Mn the
matrix with all entries equal to 1. Then for any A ∈ Mn, Φk(A) = Φk(E)◦A.
Applying Theorem 3.6 yields

‖Φk(A)‖ ≤
√

k‖A‖
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for all unitarily invariant norms. In particular, if T (A) ∈ Mn is the tridiagonal
part of A ∈ Mn, then

‖T (A)‖ ≤
√

3‖A‖.

The constant
√

3 will be improved in Section 4.7.
Finally we pose the following two questions.

Question 3.12 Is it true that for any given A, B ∈ Mn there exist unitary
matrices U, V ∈ Mn such that

|A ◦ B| ≤ (U |A|U∗) ◦ (V |B|V ∗)?

The next weaker version involves only singular values.

Question 3.13 Is it true that for any given A, B ∈ Mn there exist unitary
matrices U, V ∈ Mn such that

si(A ◦ B) ≤ si[(U |A|U∗) ◦ (V |B|V ∗)], i = 1, 2, . . . , n?

Notes and References. Theorem 3.6 is proved by X. Zhan [85]. A weaker
conjecture is posed by R. A. Horn and C. R. Johnson [52, p.344].

Questions 3.12 and 3.13 are in [89].
See [52, Chapter 5] for more inequalities on the Hadamard product.

3.3 Differences of Positive Semidefinite Matrices

For positive real numbers a, b, |a− b| ≤ max{a, b}. Now let us generalize this
fact to matrices.

We need the following approximation characterization of singular values:
For G ∈ Mn and 1 ≤ j ≤ n

sj(G) = min{‖G − X‖∞ : rankX ≤ j − 1, X ∈ Mn}. (3.22)

Let us prove this fact. The following characterization [52, Theorem 3.1.2]
is an immediate consequence of the minimax principle for eigenvalues of Her-
mitian matrices:

sj(G) = min
K ⊂ C

n

dimK = n − j + 1

max
u ∈ K

‖u‖ = 1

‖Gu‖.

Suppose rankX ≤ j − 1. Then dim ker(X) ≥ n − j + 1. Choose any subspace
K0 ⊂ ker(X) with dimK0 = n − j + 1. We have
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sj(G) ≤ max
u ∈ K0
‖u‖ = 1

‖Gu‖ = max
u ∈ K0
‖u‖ = 1

‖(G − X)u‖ ≤ ‖G − X‖∞.

On the other hand, let G = Udiag(s1(G), . . . , sn(G))V be the singular
value decomposition [52, Theorem 3.1.1] of G with U, V unitary. Then
X ≡ Udiag(s1(G), . . . , sj−1(G), 0, . . . , 0)V satisfies rankX ≤ j − 1 and
sj(G) = ‖G − X‖∞. This proves (3.22).

Denote the block diagonal matrix
[

A 0
0 B

]
by A ⊕ B.

Theorem 3.14 Let A, B ∈ Mn be positive semidefinite. Then

sj(A − B) ≤ sj(A ⊕ B), j = 1, 2, . . . , n. (3.23)

First Proof. Note that s(A ⊕ B) = s(A) ∪ s(B). It is easily verified (say, by
using the spectral decompositions of A, B) that for a fixed j with 1 ≤ j ≤ n
there exist H, F ∈ Mn satisfying 0 ≤ H ≤ A, 0 ≤ F ≤ B, rankH + rankF ≤
j − 1 and

sj(A ⊕ B) = ‖(A − H) ⊕ (B − F )‖∞.

Thus sj(A ⊕ B) = max{‖A − H‖∞, ‖B − F‖∞} ≡ γ. Recall that we always
denote by I the identity matrix.

Since

A − H ≥ 0, B − F ≥ 0, rank(H − F ) ≤ rankH + rankF ≤ j − 1,

by (3.22) we have

sj(A − B) ≤ ‖A − B − (H − F )‖∞

= ‖(A − H − γ

2
I) − (B − F − γ

2
I)‖∞

≤ ‖(A − H) − γ

2
I‖∞ + ‖(B − F ) − γ

2
I‖∞

≤ γ

2
+

γ

2
= γ = sj(A ⊕ B).

This proves (3.23). ��

Second Proof. In (3.13) of Corollary 3.3 setting

X =
[

A1/2 −B1/2

0 0

]
, Y =

[
A1/2 B1/2

0 0

]

yields (3.23). ��

The above second proof shows that Theorem 3.14 follows from Corollary
3.3. Now let us point out that Theorem 3.14 implies Corollary 3.3, and hence
they are equivalent.
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Let

T =
[

X 0
Y 0

]
, U =

[
I 0
0 −I

]
.

Then U is unitary. By Theorem 3.14,

2sj

[
XY ∗ 0

0 XY ∗

]
= 2sj

[
0 XY ∗

Y X∗ 0

]
= sj [TT ∗ − U(TT ∗)U∗]

≤ sj

[
TT ∗ 0

0 U(TT ∗)U∗

]

= sj

[
T ∗T 0

0 T ∗T

]

= sj

[
(X∗X + Y ∗Y ) ⊕ 0 0

0 (X∗X + Y ∗Y ) ⊕ 0

]
.

Thus 2sj(XY ∗) ≤ sj(X∗X + Y ∗Y ).
In the proof of Theorem 4.25 in Section 4.3 we will see that sometimes it

is convenient to use Theorem 3.14.
For positive real numbers a, b, |a − b| ≤ max{a, b} ≤ a + b. How about

the matrix generalization of the weaker relation |a − b| ≤ a + b? In view of
Theorem 3.14 one may formulate the following: A, B ≥ 0 implies sj(A−B) ≤
sj(A + B), which is in general false for j ≥ 2. Consider the example

A =
[

6 −4
−4 3

]
, B =

[
9 0
0 0

]
.

s(A−B) = {5, 5}, s(A+B) = {16.21 · · · , 1.78 · · ·}. The correct matrix analog
is included in Theorem 3.16 below.

A unitarily invariant norm is usually considered as defined on Mn for all
orders n by the rule

‖A‖ =
∥∥∥∥
[

A 0
0 0

]∥∥∥∥ ,

that is, adding or deleting zero singular values does not affect the value of
the norm. In this way, Fan’s dominance principle can be applied to matrices
of different sizes. Since Theorem 3.14 implies s(A−B) ≺w s(A⊕B), we have
the following

Corollary 3.15 Let A, B ∈ Mn be positive semidefinite. Then

‖A − B‖ ≤ ‖A ⊕ B‖

for all unitarily invariant norms.

The next result contains two weak log-majorization relations for singular
values.
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Theorem 3.16 Let A, B ∈ Mn be positive semidefinite. Then for any com-
plex number z

s(A − |z|B) ≺wlog s(A + zB) ≺wlog s(A + |z|B). (3.24)

Proof. We first prove the following determinant inequality for positive
semidefinite matrices P, Q of the same order:

| det(P − |z|Q)| ≤ |det(P + zQ)|. (3.25)

Without loss of generality, suppose P is positive definite. Let the eigenvalues
of P−1Q be λ1 ≥ · · · ≥ λk ≥ 0. Then

| det(P − |z|Q)| = | det P · det(I − |z|P−1Q)|
= detP

∏
i

|1 − |z|λi|

≤ det P
∏

i

|1 + zλi|

= | det P · det(I + zP−1Q)|
= | det(P + zQ)|.

This shows (3.25).
Since A − |z|B is Hermitian, for 1 ≤ k ≤ n there exists an n × k matrix

U such that U∗U = I and

k∏
j=1

sj(A − |z|B) = | det[U∗(A − |z|B)U ]|.

Using (3.25) and the fact that for any G ∈ Mn, sj(U∗GU) ≤ sj(G), j =
1, . . . , k, we have

k∏
j=1

sj(A − |z|B) = | det[U∗(A − |z|B)U ]|

= | det(U∗AU − |z|U∗BU)|
≤ |det(U∗AU + zU∗BU)|

=
k∏

j=1

sj [U∗(A + zB)U ]

≤
k∏

j=1

sj(A + zB).

In the third equality above we have used the fact that for any F ∈ Mk,
| det F | =

∏k
j=1 sj(F ). This proves the first part of (3.24).
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Recall [17, p.268] that a continuous complex-valued function f on Mn is
said to be a Lieb function if it satisfies the following two conditions:
(i) 0 ≤ f(A) ≤ f(B) if 0 ≤ A ≤ B;
(ii) |f(A∗B)|2 ≤ f(A∗A)f(B∗B) for all A, B.

It is known [55, Theorem 6] that if N, R ∈ Mn are normal, then for every
Lieb function f on Mn

|f(N + R)| ≤ f(|N | + |R|). (3.26)

It is easy to verify (see [17, p.269]) that f(G) ≡
∏k

j=1 sj(G) is a Lieb function.
Applying (3.26) to this f with N = A, R = zB yields

s(A + zB) ≺wlog s(A + |z|B).

This completes the proof. ��

Since weak log-majorization is stronger than weak majorization, Theorem
3.16 implies the following

Corollary 3.17 Let A, B ∈ Mn be positive semidefinite. Then for any com-
plex number z and any unitarily invariant norm,

‖A − |z|B‖ ≤ ‖A + zB‖ ≤ ‖A + |z|B‖.

Notes and References. Corollaries 3.15 and 3.17 are due to R. Bhatia and
F. Kittaneh [22, 23]. See also [17, p.280] for Corollary 3.15. Theorems 3.14
and 3.16 are proved in X. Zhan [90]. The formula (3.22) can be found in [40,
p.29].

3.4 Matrix Cartesian Decompositions

In this section i ≡
√

−1. Every matrix T can be written uniquely as T =
A + iB with A, B Hermitian:

A =
T + T ∗

2
, B =

T − T ∗

2i
. (3.27)

This is the matrix Cartesian decomposition. A and B are called the real and
imaginary parts of T. We will study the relations between the eigenvalues of
A, B and the singular values of T.

We need the following two results [17, p.71 and p.24] on eigenvalues
of Hermitian matrices. Note that we always denote the eigenvalues of a
Hermitian matrix A in decreasing order: λ1(A) ≥ · · · ≥ λn(A) and write
λ(A) ≡ (λ1(A), . . . , λn(A)).
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Lemma 3.18 (Lidskii) Let G, H ∈ Mn be Hermitian. Then

{λj(G) + λn−j+1(H)} ≺ λ(G + H) ≺ {λj(G) + λj(H)}.

Lemma 3.19 (The Minimum Principle) Let A ∈ Mn be Hermitian. Then
for every 1 ≤ k ≤ n

n∑
j=n−k+1

λj(A) = min{trU∗AU : U∗U = I, U ∈ Mn,k}

where Mn,k is the space of n × k matrices.

Throughout this section we consider the Cartesian decomposition T =
A + iB ∈ Mn, and denote by s1 ≥ · · · ≥ sn the singular values of T, by αj

and βj the eigenvalues of A and B respectively ordered in such a way that
|α1| ≥ · · · ≥ |αn| and |β1| ≥ · · · ≥ |βn|.

Theorem 3.20 The following majorization relations hold:

{|αj + iβn−j+1|2} ≺ {s2
j}, (3.28)

{(s2
j + s2

n−j+1)/2} ≺ {|αj + iβj |2}. (3.29)

Proof. By Lemma 3.18 with G = A2 and H = B2 we have

{|αj + iβn−j+1|2} ≺ {sj(A2 + B2)} ≺ {|αj + iβj |2}. (3.30)

Next note that
A2 + B2 = (T ∗T + TT ∗)/2

and
sj(T ∗T ) = sj(TT ∗) = s2

j .

Applying Lemma 3.18 again with G = T ∗T/2, H = TT ∗/2 gives

{(s2
j + s2

n−j+1)/2} ≺ {sj(A2 + B2)} ≺ {s2
j}. (3.31)

Combining (3.30) and (3.31) we get (3.28) and (3.29). ��

An important class of unitarily invariant norms are Schatten p-norms.
They are the lp norms of the singular values:

‖A‖p ≡

⎛
⎝ n∑

j=1

sj(A)p

⎞
⎠

1/p

, p ≥ 1, A ∈ Mn.
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Note that the case p = ∞ of this notation coincides with what we have used:
‖A‖∞ = s1(A) is just the spectral norm. ‖ · ‖2 is the Frobenius (or Hilbert-
Schmidt) norm: ‖A‖2 = (trAA∗)1/2 = (

∑
j,k |ajk|2)1/2 for A = (ajk) and

‖ · ‖1 is called the trace norm.

Theorem 3.21 Let T = A + iB with A, B Hermitian. Then

22/p−1(‖A‖2
p + ‖B‖2

p) ≤ ‖T‖2
p ≤ 21−2/p(‖A‖2

p + ‖B‖2
p) (3.32)

for 2 ≤ p ≤ ∞ and

22/p−1(‖A‖2
p + ‖B‖2

p) ≥ ‖T‖2
p ≥ 21−2/p(‖A‖2

p + ‖B‖2
p) (3.33)

for 1 ≤ p ≤ 2.

Proof. When p ≥ 2, f(t) = tp/2 on [0,∞) is convex and when 1 ≤ p ≤ 2,
g(t) = −tp/2 on [0,∞) is convex. Using Theorem 2.2 we get from (3.29)

{2−p/2(s2
j + s2

n−j+1)
p/2} ≺w {|αj + iβj |p} for p ≥ 2,

{−2−p/2(s2
j + s2

n−j+1)
p/2} ≺w {−|αj + iβj |p} for 1 ≤ p ≤ 2.

In particular, we get

n∑
j=1

(s2
j + s2

n−j+1)
p/2 ≤ 2p/2

n∑
j=1

|αj + iβj |p for p ≥ 2, (3.34)

n∑
j=1

(s2
j + s2

n−j+1)
p/2 ≥ 2p/2

n∑
j=1

|αj + iβj |p for 1 ≤ p ≤ 2. (3.35)

Since for fixed nonnegative real numbers a, b, the function t �→ (at +bt)1/t

is decreasing on (0,∞),

sp
j + sp

n−j+1 ≤ (s2
j + s2

n−j+1)
p/2 for p ≥ 2

and this inequality is reversed when 1 ≤ p ≤ 2. Hence from (3.34) and (3.35)
we obtain

n∑
j=1

sp
j ≤ 2p/2−1

n∑
j=1

|αj + iβj |p for p ≥ 2, (3.36)

n∑
j=1

sp
j ≥ 2p/2−1

n∑
j=1

|αj + iβj |p for 1 ≤ p ≤ 2. (3.37)

Finally applying the Minkowski inequality

(
∑

j

(xj + yj)r)1/r ≤ (
∑

j

xr
j)

1/r + (
∑

j

yr
j )1/r, r ≥ 1,
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(
∑

j

(xj + yj)r)1/r ≥ (
∑

j

xr
j)

1/r + (
∑

j

yr
j )1/r, 0 < r ≤ 1

for nonnegative sequences {xj}, {yj} to the above two inequalities yields
the right-hand sides of (3.32) and (3.33). The left-hand sides of these two
inequalities can be deduced from the majorization (3.28) in a similar way.

��

From the majorization relations in (3.31), using a similar argument as
above we can derive the following two inequalities:

‖(A2 + B2)1/2‖p ≤ ‖T‖p ≤ 21/2−1/p‖(A2 + B2)1/2‖p (3.38)

for 2 ≤ p ≤ ∞ and

‖(A2 + B2)1/2‖p ≥ ‖T‖p ≥ 21/2−1/p‖(A2 + B2)1/2‖p (3.39)

for 1 ≤ p ≤ 2.
The example

T =
[

0 0
2 0

]
, A =

[
0 1
1 0

]
, B =

[
0 i
−i 0

]

shows that the second inequalities in (3.32), (3.33), (3.38) and (3.39) are
sharp, while the example

A =
[

1 0
0 0

]
, B =

[
0 0
0 1

]

shows that the first inequalities in both (3.32) and (3.33) are sharp. Note
that in this latter example, A and B are positive semidefinite, so even in this
special case, the first inequalities in both (3.32) and (3.33) are also sharp. But
as we will see soon, when A or (and) B is positive semidefinite, the second
inequalities in (3.32) and (3.33) can be improved. The first inequalities in
(3.38) and (3.39) are obviously sharp, since they are equalities when the
matrices are scalars.

Theorem 3.22 Let T = A + iB ∈ Mn where A and B are Hermitian with
respective eigenvalues αj and βj ordered so that |α1| ≥ · · · ≥ |αn| and |β1| ≥
· · · ≥ |βn|. Then

| det T | ≤
n∏

j=1

|αj + iβn−j+1|.

Proof. Since the set of invertible matrices is dense in Mn, we may assume
that T is invertible. Then every sj > 0 and (3.28) implies |αj + iβn−j+1| > 0
for each j. Applying the convex function f(t) = − 1

2 log t on (0, ∞) to the
majorization (3.28) completes the proof. ��
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Now we consider the case when one of the real and imaginary parts,
say, the real part A, is positive semidefinite. For the case when B ≥ 0, by
considering −iT we return to the former case and all the results are similar.

We take the same argument line as above: First establish a majorization
relation, and then apply majorization principles to obtain inequalities for
Schatten p-norms. The trace norm case will be treated separately.

Continue to use the notation sj , αj , βj . From {βj} we define another
nonnegative n-tuple {γj} as follows. If n is an even number and n = 2m,
then

γ2
j ≡

{
β2

2j−1 + β2
2j for 1 ≤ j ≤ m,

0 for m + 1 ≤ j ≤ n.

If n is an odd number and n = 2m + 1, then

γ2
j ≡

⎧⎨
⎩

β2
2j−1 + β2

2j for 1 ≤ j ≤ m,
β2

n for j = m + 1,
0 for m + 2 ≤ j ≤ n.

Theorem 3.23 Let T = A + iB ∈ Mn with A positive semidefinite and B
Hermitian. Then we have the majorization

{s2
j} ≺ {α2

j + γ2
j }. (3.40)

Note that the relation (3.40) is equivalent to the following three state-
ments together:

k∑
j=1

s2
j ≤

k∑
j=1

α2
j +

2k∑
j=1

β2
j for 1 ≤ k < n/2, (3.41)

k∑
j=1

s2
j ≤

k∑
j=1

α2
j +

n∑
j=1

β2
j for n/2 ≤ k ≤ n, (3.42)

n∑
j=1

s2
j =

n∑
j=1

α2
j +

n∑
j=1

β2
j . (3.43)

Of these, the equation (3.43) is a restatement of

‖T‖2
2 = ‖A‖2

2 + ‖B‖2
2 (3.44)

which is easy to verify.
For the proof we need the following lemma.

Lemma 3.24 Let k, n be positive integers with 1 ≤ k < n/2. Let μ1 ≥ μ2 ≥
· · · ≥ μn and λ1 ≥ λ2 ≥ · · · ≥ λn−k be real numbers satisfying the interlacing
inequalities
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μj ≥ λj ≥ μj+k for j = 1, 2, . . . , n − k.

Then we can choose n − 2k distinct indices j1, . . . , jn−2k out of the set
{1, . . . , n − k} so that

|λjs
| ≥ |μk+s| for s = 1, 2, . . . , n − 2k.

Proof. Three different cases can arise. We list them and the corresponding
choices in each case.

(i) If μn−k ≥ 0, choose

{j1, . . . , jn−2k} = {1, 2, . . . , n − 2k}.

(ii) If for some r with n − k > r ≥ k + 1, we have μr ≥ 0 > μr+1, choose

{j1, . . . , jn−2k} = {1, . . . , r − k, r + 1, . . . , n − k}.

(iii) If 0 > μk+1, choose

{j1, . . . , jn−2k} = {k + 1, . . . , n − k}.

In each case the assertion of the lemma is readily verified. ��

Proof of Theorem 3.23. Let k < n/2. Because of (3.43), the inequality
(3.41) is equivalent to

n∑
j=k+1

s2
j ≥

n∑
j=k+1

α2
j +

n∑
j=2k+1

β2
j . (3.45)

By Lemma 3.19 there exists an n× (n−k) matrix U with U∗U = I such that

n∑
j=k+1

s2
j = trU∗T ∗TU. (3.46)

Since UU∗ ≤ I,
trU∗T ∗TU ≥ trU∗T ∗U · U∗TU.

From this, we obtain using the relation (3.44) (with U∗TU in place of T )

trU∗T ∗TU ≥ tr (U∗AU)2 + tr (U∗BU)2. (3.47)

Let V be an n×k matrix such that W ≡ (U, V ) is unitary. Then U∗AU and
U∗BU are principal submatrices of W ∗AW and W ∗BW respectively. Note
also that λ(W ∗AW ) = λ(A) and λ(W ∗BW ) = λ(B). Hence by Cauchy’s in-
terlacing theorem for eigenvalues of Hermitian matrices [17, Corollary III.1.5]
we have
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λj(U∗AU) ≥ λj+k(A), 1 ≤ j ≤ n − k,

and
λj(B) ≥ λj(U∗BU) ≥ λj+k(B), 1 ≤ j ≤ n − k.

The first of these inequalities shows that

tr (U∗AU)2 =
n−k∑
j=1

[λj(U∗AU)]2 ≥
n∑

j=k+1

α2
j . (3.48)

Applying Lemma 3.24 to the second inequality, we deduce that there exist
n − 2k distinct indices j1, . . . , jn−2k such that

|λjs
(U∗BU)| ≥ |λk+s(B)|, s = 1, . . . , n − 2k.

Therefore

tr (U∗BU)2 =
n−k∑
j=1

[λj(U∗BU)]2 ≥
n∑

j=2k+1

β2
j . (3.49)

Combining (3.46)-(3.49) we obtain the desired inequality (3.45).
Now let n/2 ≤ k ≤ n. Again, because of (3.43) the inequality (3.42) is

equivalent to
n∑

j=k+1

s2
j ≥

n∑
j=k+1

α2
j .

The proof of this is easier. Just drop the last term in (3.47) and use (3.48).
��

To apply Theorem 3.23 we need to establish a relation between the norms
of the tuples {γj} and {βj}. Given an n-tuple δ = {δ1, . . . , δn} and an m-tuple
σ = {σ1, . . . , σm} we write δ ∨σ for the (n+m)-tuple obtained by combining
them. We identify δ ∨ 0 with δ. We write δ2 for the tuple {δ2

1 , . . . , δ2
n}.

Note that from the definition of {γj} it follows that

γ2 ∨ γ2 ≺ 2β2. (3.50)

Lemma 3.25 We have the inequalities

‖γ‖2
p ≤ 21−2/p‖β‖2

p for 2 ≤ p ≤ ∞,

‖γ‖2
p ≥ 21−2/p‖β‖2

p for 1 ≤ p ≤ 2.

Proof. For all values of p > 0,

‖γ‖2
p = 2−2/p‖γ ∨ γ‖2

p = 2−2/p‖γ2 ∨ γ2‖p/2.
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Using familiar properties of majorization, one has from (3.50)

‖γ2 ∨ γ2‖p/2 ≤ 2‖β2‖p/2 for 2 ≤ p ≤ ∞,

and the opposite inequality for 1 ≤ p ≤ 2. Hence for 2 ≤ p ≤ ∞, we have

‖γ‖2
p ≤ 21−2/p‖β2‖p/2 = 21−2/p‖β‖2

p,

and for 1 ≤ p ≤ 2, the inequality is reversed. ��

Theorem 3.26 Let T = A + iB with A positive semidefinite and B Hermi-
tian. Then

‖T‖2
p ≤ ‖A‖2

p + 21−2/p‖B‖2
p (3.51)

for 2 ≤ p ≤ ∞ and
‖T‖2

p ≥ ‖A‖2
p + 21−2/p‖B‖2

p (3.52)

for 1 ≤ p ≤ 2.

Proof. Denote Γ = diag(γ1, . . . , γn). Let p ≥ 2. Using the convexity of the
function f(t) = tp/2 on the positive half-line, Theorem 2.2, and the Minkowski
inequality we obtain from (3.40) the inequality

‖T‖2
p ≤ ‖A‖2

p + ‖Γ‖2
p.

Now use Lemma 3.25 to obtain (3.51).
All the inequalities involved in this argument are reversed for 1 ≤ p ≤ 2.

This leads to (3.52). ��

We now discuss the sharpness of the bounds (3.51) and (3.52). When
p ≥ 2, the factor 21−2/p occurring in (3.51) can not be replaced by any
smaller number. Consider the example

A =
[

1 0
0 0

]
, B =

[
0 t
t 0

]

where t is a real number. We see that in this case the right-hand side of (3.51)
is equal to 1+2t2 for all values of p. If for some 2 < p < ∞, we could replace
the factor 21−2/p in (3.51) by a smaller number, then we would have in this
case

(1 + 2t2 +
√

1 + 4t2)/2 = ‖T‖2
∞ ≤ ‖T‖2

p < 1 + (2 − ε)t2.

But the left-hand side is larger than the right-hand side for small t.
Because of symmetry considerations one would expect the inequality

(3.52) to be sharp as well. But this is not the case as we will now see.

Theorem 3.27 Let T = A + iB with A positive semidefinite and B Hermi-
tian. Then

‖T‖2
1 ≥ ‖A‖2

1 + ‖B‖2
1. (3.53)
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Proof. First consider the case when the order of matrices n = 2. Because of
(3.44) the inequality (3.53) is equivalent to the statement

| det T | ≥ det A + | det B|. (3.54)

By applying unitary conjugations, we may assume

A =
[

a c
c b

]
, B =

[
s 0
0 t

]
,

where a, b are positive and c, s, t are real numbers. The inequality (3.54) then
says

|(ab − c2 − st) + i(at + bs)| ≥ ab − c2 + |st|.
If st is negative, this is obvious. If st is positive, this inequality follows from

(ab − c2 + st)2 − (ab − c2 − st)2 = 4(ab − c2)st
≤ 4abst ≤ (at + bs)2.

Now let the order n be arbitrary. Again, because of (3.44) the inequality
(3.53) reduces to the statement∑

j<k

sjsk ≥
∑
j<k

αjαk +
∑
j<k

|βjβk|,

where sj , αj and |βj |, 1 ≤ j ≤ n are the singular values of T, A and B
respectively. Let ∧2T denote the second antisymmetric tensor power [17] of
T. Then this inequality can be restated as

‖ ∧2 T‖1 ≥ ‖ ∧2 A‖1 + ‖ ∧2 B‖1. (3.55)

For each pair j < k, let Cjk(T ) be the determinant of the 2 × 2 principal

submatrix of T defined as
[

tjj tjk

tkj tkk

]
. These are the diagonal entries of the

matrix ∧2T.
Since every unitarily invariant norm is diminished when we replace a

matrix by its diagonal part (see (4.76) in Section 4.7),

‖ ∧2 T‖1 ≥
∑
j<k

|Cjk(T )|.

By (3.54), |Cjk(T )| ≥ Cjk(A) + |Cjk(B)| for all j < k. By applying a unitary
conjugation we may assume that B is diagonal. Then, it is easy to see from
the above considerations that

‖ ∧2 T‖1 ≥ tr ∧2 A + tr | ∧2 B|.
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This proves (3.55). ��

In view of Theorem 3.27, the inequality (3.52) for p = 1 is not sharp. So
it is natural to pose the following

Problem 3.28 For 1 < p < 2, determine the largest constant cp such that

‖T‖2
p ≥ ‖A‖2

p + cp‖B‖2
p

holds for all T = A + iB with A positive semidefinite and B Hermitian. In
particular, is it true that cp = 1 for all 1 < p < 2?

The majorization (3.40) can be used to derive several other inequalities.
Using the convexity of the function f(t) = − 1

2 log t on the positive half-line
we get from it the family of inequalities

n∏
j=k

sj ≥
n∏

j=k

(α2
j + γ2

j )1/2, 1 ≤ k ≤ n.

The special case k = 1 gives

| det T | ≥
n∏

j=1

(α2
j + γ2

j )1/2.

This sharpens a well-known inequality of Ostrowski and Taussky which says

| det T | ≥ det A =
n∏

j=1

αj

whenever T = A + iB with A positive semidefinite and B Hermitian.
Next we consider the still more special case when both the real and the

imaginary parts are positive semidefinite. Reasonably the results for this case
have the most pleasant form.

Theorem 3.29 Let T = A + iB ∈ Mn where A and B are positive semidefi-
nite. Then

{s2
j} ≺ {α2

j + β2
j }. (3.56)

Proof. By (3.43), to prove (3.56) it suffices to show

n∑
j=n−k+1

s2
j ≥

n∑
j=n−k+1

(α2
j + β2

j ), 1 ≤ k ≤ n. (3.57)

The left-hand side of (3.57) has an extremal representation (see Lemma 3.19)

n∑
j=n−k+1

s2
j = min{trU∗T ∗TU : U ∈ Mn,k, U∗U = I}. (3.58)
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From the condition U∗U = I we get I ≥ UU∗. This implies

U∗T ∗TU = U∗T ∗ · I · TU ≥ U∗T ∗ · UU∗ · TU

= U∗(A − iB)U · U∗(A + iB)U
= (U∗AU)2 + (U∗BU)2 + i[U∗AU, U∗BU ]

where [X, Y ] stands for the commutator XY − Y X. It follows that

trU∗T ∗TU ≥ tr (U∗AU)2 + tr (U∗BU)2. (3.59)

The operator U∗AU is a compression of A to a k-dimensional subspace.
Hence, by Cauchy’s interlacing theorem [17, Corollary III.1.5] we have

λj(U∗AU) ≥ αj+n−k, 1 ≤ j ≤ k.

By the same argument

λj(U∗BU) ≥ βj+n−k, 1 ≤ j ≤ k.

So, from (3.59) we have

trU∗T ∗TU ≥
n∑

j=n−k+1

(α2
j + β2

j ). (3.60)

The inequality (3.57) follows from (3.58) and (3.60). ��

As before, the next two theorems follow as corollaries.

Theorem 3.30 Let T = A + iB where A and B are positive semidefinite.
Then

‖T‖2
p ≤ ‖A‖2

p + ‖B‖2
p for 2 ≤ p ≤ ∞, (3.61)

‖T‖2
p ≥ ‖A‖2

p + ‖B‖2
p for 1 ≤ p ≤ 2. (3.62)

Proof. Using Theorem 2.2, apply the convex functions f(t) = tp/2 (p ≥ 2),
g(t) = −tp/2 (1 ≤ p ≤ 2) to the majorization (3.56), and then use the
Minkowski inequality. ��

The inequalities (3.61) and (3.62) are obviously sharp.

Theorem 3.31 Let T = A + iB where A and B are positive semidefinite.
Then

n∏
j=k

sj ≥
n∏

j=k

|αj + iβj |, 1 ≤ k ≤ n. (3.63)

Proof. Using Theorem 2.2, apply the convex function f(t) = − 1
2 log t on the

positive half-line to the majorization (3.56). ��
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Note that the case k = 1 of (3.63) can be written as

| detT | ≥
n∏

j=1

|αj + iβj |. (3.64)

Looking at the inequalities in Theorems 3.21, 3.26 and 3.30, we see a
complete picture for the three cases, from the general to the special.

Notes and References. Theorem 3.20 is due to T. Ando and R. Bhatia
[9]. Theorem 3.21 and the inequalities (3.38), (3.39) are proved by R. Bhatia
and F. Kittaneh [25] using a different approach. Theorem 3.22 is due to J. F.
Queiró and A. L. Duarte [80]; the proof given here is in [9]. The inequality
(3.64) is due to N. Bebiano.

All the other results in this section are proved by R. Bhatia and X. Zhan
in the two papers [27] and [28].

3.5 Singular Values and Matrix Entries

Let λ1, . . . , λn be the eigenvalues of a matrix A = (aij) ∈ Mn. Then Schur’s
inequality says that

n∑
j=1

|λj |2 ≤
n∑

i,j=1

|aij |2 = ‖A‖2
2

and the equality is attained if and only if A is normal. This is a relation
between eigenvalues and matrix entries.

What can be said about the relationship between singular values and
matrix entries? Two obvious relations are the following: The modulus of each
entry is not greater than the largest singular value (the spectral norm), i.e.,

max
i,j

|aij | ≤ s1(A) and
n∑

i,j=1

|aij |2 =
n∑

j=1

sj(A)2.

Now let us prove more.

Theorem 3.32 Let s1, s2, . . . , sn be the singular values of a matrix A =
(aij) ∈ Mn. Then

n∑
j=1

sp
j ≤

n∑
i,j=1

|aij |p for 0 < p ≤ 2, (3.65)

n∑
j=1

sp
j ≥

n∑
i,j=1

|aij |p for p ≥ 2. (3.66)
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Proof. Let cj = (
∑n

i=1 |aij |2)1/2 be the Euclidean length of the jth column
of A. Then c2

1, . . . , c
2
n and s2

1, . . . , s
2
n are respectively the diagonal entries and

eigenvalues of A∗A. By Schur’s theorem (Theorem 2.1) we have

{c2
j} ≺ {s2

j}. (3.67)

First consider the case p ≥ 2. Since the function f(t) = tp/2 is convex on
[0 ∞), applying Theorem 2.2 with f(t) to the majorization (3.67) yields

{cp
j} ≺w {sp

j}.

In particular,
n∑

j=1

cp
j ≤

n∑
j=1

sp
j . (3.68)

On the other hand we have
n∑

i=1

|aij |p ≤ (
n∑

i=1

|aij |2)p/2 = cp
j , j = 1, . . . , n

and hence
n∑

i,j=1

|aij |p ≤
n∑

j=1

cp
j . (3.69)

Combining (3.69) and (3.68) gives (3.66).
When 0 < p ≤ 2, by considering the convex function g(t) = −tp/2, on

[0 ∞), all the above inequalities are reversed. This proves (3.65). ��

Note that taking the 1/p-th power of both sides of (3.66) and letting
p → ∞ we recapture the fact that maxi,j |aij | ≤ ‖A‖∞.

Let λ1, . . . , λn be the eigenvalues of a matrix A. By Weyl’s theorem (The-
orem 2.4) we have

{|λj |p} ≺log {sp
j} for any p > 0.

Since weak log-majorization implies majorization (Theorem 2.7), we get

{|λj |p} ≺w {sp
j} for any p > 0.

In particular,
n∑

j=1

|λj |p ≤
n∑

j=1

sp
j for any p > 0. (3.70).

Combining (3.70) and (3.65) we get the next

Corollary 3.33 Let λ1, . . . , λn be the eigenvalues of a matrix A = (aij) ∈
Mn. Then
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n∑
j=1

|λj |p ≤
n∑

i,j=1

|aij |p for 0 < p ≤ 2. (3.71)

Observe that Schur’s inequality mentioned at the beginning of this section
corresponds to the case p = 2 of (3.71).

Next let us derive two entrywise matrix inequalities, one of which is an
application of Theorem 3.32.

For two n-square real matrices A, B, we write A ≤e B to mean that
B − A is (entrywise) nonnegative. Denote N ≡ {1, 2, . . . , n}. For α ⊆ N , αc

denotes the complement N\α and |α| the cardinality of α. Given α, β ⊆ N
and A = (aij) ∈ Mn, we write A(α, β) ≡

∑
i∈α,j∈β aij .

A proof of the following lemma can be found in [5, p.192].

Lemma 3.34 Assume that the n-square nonnegative matrices B and C sat-
isfy C ≤e B. Then there exists a doubly stochastic matrix A such that

C ≤e A ≤e B

if and only if

B(α, β) ≥ C(αc, βc) + |α| + |β| − n for all α, β ⊆ N .

A nonnegative matrix Z is called doubly superstochastic if there is a doubly
stochastic matrix A such that A ≤e Z; correspondingly a nonnegative matrix
W is called doubly substochastic if there is a doubly stochastic matrix A such
that W ≤e A. The following corollary is an immediate consequence of Lemma
3.34.

Corollary 3.35 Let Z, W be n-square nonnegative matrices. Then
(i) Z is doubly superstochastic if and only if

Z(α, β) ≥ |α| + |β| − n for all α, β ⊆ N ;

(ii) W is doubly substochastic if and only if all row sums and column
sums of W are less than or equal to 1.

For A = (aij) ∈ Mn and a real number p > 0, we denote A|◦|p ≡ (|aij |p) ∈
Mn. The following entrywise inequalities involve the smallest and the largest
singular values.

Theorem 3.36 Let A ∈ Mn and let p, q be real numbers with 0 < p ≤ 2 and
q ≥ 2. Then there exist two doubly stochastic matrices B, C ∈ Mn such that

sn(A)pB ≤e A|◦|p (3.72)

and
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A|◦|q ≤e s1(A)qC. (3.73)

Proof. In view of Corollary 3.35(i), to prove (3.72) it suffices to show

A|◦|p(α, β) ≥ (|α| + |β| − n)sn(A)p (3.74)

for all , α, β ⊆ N .
For an r × t matrix X, we define its singular values to be the eigenvalues

of (X∗X)1/2 or (XX∗)1/2 according as r ≥ t or r < t. This is just to avoid
obvious zero singular values. It is known [52, Corollary 3.1.3] that if X is an
r × t submatrix of an n-square matrix Y and r + t − n ≥ 1 then

sj(X) ≥ sj+2n−r−t(Y ) for j ≤ r + t − n.

In particular
sr+t−n(X) ≥ sn(Y ). (3.75)

Since nonsquare matrices can be augmented to square ones by adding
zero rows or columns, Theorem 3.32 is also true for rectangular matrices.
For instance, given an r × t matrix X = (xij), the inequality (3.65) has the
following form:

min(r,t)∑
i=1

si(X)p ≤
r∑

i=1

t∑
j=1

|xij |p for 0 < p ≤ 2. (3.76)

Now we prove (3.74). If |α| + |β| − n ≤ 0, (3.74) holds trivially. Assume
|α|+|β|−n ≥ 1. Denote by A[α|β] the submatrix of A with rows and columns
indexed respectively by α and β. Then from (3.75) we have

s1(A[α|β]) ≥ · · · ≥ s|α|+|β|−n(A[α|β]) ≥ sn(A). (3.77)

Let A = (aij). Using (3.76) and (3.77) we obtain

A|◦|p(α, β) =
∑

i∈α,j∈β

|aij |p

≥
min(|α|, |β|)∑

i=1

si(A[α|β])p

≥ (|α| + |β| − n)sn(A)p.

This proves (3.74) and hence (3.72).
Denote by ν(X) the largest of the row and column sums of a nonnegative

matrix X. By Corollary 3.35(ii), the following inequality

ν(A|◦|q) ≤ s1(A)q (3.78)
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will imply the existence of a doubly stochastic matrix C satisfying (3.73).
But (3.78) is equivalent to

[ν(A|◦|q)]1/q ≤ s1(A)

which is obvious since for q ≥ 2,

[ν(A|◦|q)]1/q ≤ [ν(A|◦|2)]1/2 ≤ s1(A).

This proves (3.73). ��

We remark that in (3.72) p can not be taken as p > 2 and in (3.73) q can
not be taken as q < 2. To see this just consider any unitary matrix that is
not a generalized permutation matrix and compare the row or column sums
of both sides in (3.72) and (3.73).

Notes and References. Theorem 3.32 is based on K. D. Ikramov [56] where
the case 1 ≤ p ≤ 2 is treated. The case p = q = 2 of Theorem 3.36 is due to
L. Elsner and S. Friedland [34]; the theorem itself seems new.



4. Norm Inequalities

Recent research on norm inequalities is very active. Such inequalities are not
only of theoretical interest but also of practical importance.

On the one hand, all norms on a finite-dimensional space are equivalent in
the sense that for any two norms ‖·‖α and ‖·‖β there exist positive constants
c1 and c2 such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α for all x.

Thus all norms on a finite-dimensional vector space generate the same topol-
ogy. So for topological problems, e.g., the convergence of a sequence of matri-
ces or vectors which is of primary significance for iterative methods, different
choices of norms have equal effect. On the other hand, in applications (nu-
merical analysis, say) to solve a particular problem it may be more convenient
to use one norm than the other. For example, the spectral norm has good ge-
ometric properties but it is difficult to compute its accurate value, while the
Frobenius norm is easy to compute but might not be suitable for describing
the problem. Therefore we need various kinds of norms.

Recall that a norm ‖·‖ on Mn is called unitarily invariant if ‖UAV ‖ = ‖A‖
for all A and all unitary U, V. The singular value decomposition theorem [52,
Theorem 3.1.1] asserts that for any given A ∈ Mn, there are unitary ma-
trices U, V such that A = Udiag(s1(A), . . . , sn(A))V. Thus unitarily invari-
ant norms are functions of singular values. von Neumann (see [17] and [52])
proved that these are symmetric gauge functions, i.e., those norms Φ on R

n

satisfying
(i) Φ(Px) = Φ(x) for all permutation matrices P and x ∈ R

n,
(ii) Φ(ε1x1, . . . , εnxn) = Φ(x1, . . . , xn) if εj = ±1.
In other words, we have a one to one correspondence between unitarily

invariant norms ‖ · ‖Φ and symmetric gauge functions Φ and they are related
in the following way:

‖A‖Φ = Φ(s1(A), . . . , sn(A)) for all A ∈ Mn.

In the preceding chapter we have talked about a class of unitarily invari-
ant norms: the Schatten p-norms. Another very important class of unitarily
invariant norms are the Fan k-norms defined as

X. Zhan: LNM 1790, pp. 55–98, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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‖A‖(k) =
k∑

j=1

sj(A), 1 ≤ k ≤ n.

Note that in this notation, ‖ · ‖(1) = ‖ · ‖∞ and ‖ · ‖(n) = ‖ · ‖1.
Let ‖ · ‖ be a given norm on Mn. The dual norm of ‖ · ‖ with respect to

the Frobenius inner product is defined by

‖A‖D ≡ max{|trAB∗| : ‖B‖ = 1, B ∈ Mn}.

It is easy to verify that the dual norm of a unitarily invariant norm is also
unitarily invariant. By Corollary 2.8, the dual norm of a unitarily invariant
norm can be written as

‖A‖D = max{
n∑

j=1

sj(A)sj(B) : ‖B‖ = 1, B ∈ Mn}. (4.1)

Thus we have (‖ · ‖D)D = ‖ · ‖ by the duality theorem [51, Theorem 5.5.14].
Given γ = (γ1, . . . , γn) with γ1 ≥ · · · ≥ γn ≥ 0, γ1 > 0, we define

‖A‖γ ≡
n∑

j=1

γjsj(A), A ∈ Mn.

Then this is a unitarily invariant norm. Using this notation and considering
the preceding remark, from (4.1) we get the following

Lemma 4.1 Let ‖ · ‖ be a unitarily invariant norm on Mn and denote Γ =
{s(X) : ‖X‖D = 1, X ∈ Mn}. Then for all A

‖A‖ = max{‖A‖γ : γ ∈ Γ}.

From this lemma and the formula

‖A‖γ =
n−1∑
j=1

(γj − γj+1)‖A‖(j) + γn‖A‖(n)

follows the next important

Lemma 4.2 (Fan Dominance Principle) Let A, B ∈ Mn. If

‖A‖(k) ≤ ‖B‖(k) for k = 1, 2, . . . , n

then
‖A‖ ≤ ‖B‖

for all unitarily invariant norms.
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4.1 Operator Monotone Functions

In this section we derive some norm inequalities involving operator monotone
functions and give applications.

We need the following fact [17, p.24].

Lemma 4.3 Let A ∈ Mn be Hermitian. Then for 1 ≤ k ≤ n

k∑
j=1

λj(A) = max
k∑

j=1

〈Axj , xj〉

where the maximum is taken over all orthonormal k-tuples
(x1, . . . , xk) in C

n.

By Theorem 1.3, every nonnegative operator monotone function f(t) on
[0,∞) has the following integral representation

f(t) = α + βt +
∫ ∞

0

st

s + t
dμ(s) (4.2)

where α, β ≥ 0 are constants and μ is a positive measure on [0,∞).
In this case, for any A ≥ 0 and any vector u

〈f(A)u, u〉 = α〈u, u〉 + β〈Au, u〉 +
∫ ∞

0
s〈A(A + sI)−1u, u〉dμ(s). (4.3)

Since f(t) is increasing, for j = 1, 2, . . . , n, a unit eigenvector uj of A cor-
responding to λj(A) becomes a unit eigenvector of f(A) corresponding to
λj(f(A)) = f(λj(A)), so that by the definition of Fan norms

‖f(A)‖(k) =
k∑

j=1

〈f(A)uj , uj〉, k = 1, 2, . . . , n. (4.4)

Our first result is the following

Theorem 4.4 Let A, B be positive semidefinite matrices and ‖ · ‖ be any
unitarily invariant norm. Then the following assertions hold.

(I) For every nonnegative operator monotone function f(t) on [0,∞)

‖f(A + B)‖ ≤ ‖f(A) + f(B)‖. (4.5)

(II) For every nonnegative function g(t) on [0,∞) with g(0) = 0 and
g(∞) = ∞, whose inverse function is operator monotone

‖g(A + B)‖ ≥ ‖g(A) + g(B)‖. (4.6)
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The main part of the proof is to show successively two lemmas.
Now we denote by ‖X‖F the Frobenius norm (i.e., the Schatten 2-norm)

of a rectangular l × m matrix X = (xij) :

‖X‖F ≡ {tr (X∗X)}1/2 = {tr (XX∗)}1/2 = {
∑
i,j

|xij |2}1/2.

Obviously the Frobenius norm is unitarily invariant in the sense that

‖UXV ‖F = ‖X‖F

for all X and all unitary matrices U ∈ Ml and V ∈ Mm.

Lemma 4.5 Given a matrix C ≥ 0, let λ1 ≥ λ2 ≥ · · · ≥ λn be its eigenvalues
with corresponding orthonormal eigenvectors v1, v2, . . . , vn. Take any integer
k with 1 ≤ k ≤ n and define an n × k matrix U1 and an n × (n − k) matrix
U2 as

U1 ≡ (vn, vn−1, . . . , vn−k+1) and U2 ≡ (vn−k, vn−k−1, . . . , v1).

Then for every Hermitian matrix H

‖HCU1‖F ≤ ‖CHU1‖F and ‖HCU2‖F ≥ ‖CHU2‖F .

Proof. Let
D1 ≡ diag(λn, λn−1, . . . , λn−k+1),

D2 ≡ diag(λn−k, λn−k−1, . . . , λ1).

Then by definition we have

CU1 = U1D1 and CU2 = U2D2.

Since the matrix W ≡ (U1, U2) and its adjoint W ∗ are unitary, we have

‖HCU1‖2
F = ‖W ∗HU1D1‖2

F

=
∥∥∥∥
[

U∗
1 HU1D1

U∗
2 HU1D1

]∥∥∥∥
2

F

= ‖U∗
1 HU1D1‖2

F + ‖U∗
2 HU1D1‖2

F

≤ ‖U∗
1 HU1D1‖2

F + λ2
n−k+1‖U∗

2 HU1‖2
F

where we have used the fact

(U∗
2 HU1D1)(U∗

2 HU1D1)∗ = (U∗
2 HU1)D2

1(U
∗
2 HU1)∗

≤ λ2
n−k+1(U

∗
2 HU1)(U∗

2 HU1)∗.
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In a similar way we have

‖CHU1‖2
F = ‖(CHU1)∗W‖2

F

= ‖U∗
1 HC · (U1, U2)‖2

F

= ‖[U∗
1 HU1D1, U

∗
1 HU2D2]‖2

F

= ‖U∗
1 HU1D1‖2

F + ‖U∗
1 HU2D2‖2

F

= ‖U∗
1 HU1D1‖2

F + ‖D2U
∗
2 HU1‖2

F

≥ ‖U∗
1 HU1D1‖2

F + λ2
n−k‖U∗

2 HU1‖2
F .

Combining these two inequalities yields the first inequality of the assertion. A
similar consideration proves the second inequality. This completes the proof.

��

Lemma 4.6 Let A, B ≥ 0 and let uj be the orthonormal eigenvectors of A+B
corresponding to λj(A + B), j = 1, 2, . . . , n. Then the following inequalities
hold:

k∑
j=1

〈{A(A + I)−1 + B(B + I)−1}uj , uj〉

≥
k∑

j=1

〈(A + B)(A + B + I)−1uj , uj〉

for k = 1, 2, . . . , n.

Proof. Let C ≡ (A + B + I)−1/2 and denote its eigenvalues by λ1 ≥ λ2 ≥
· · · ≥ λn. Since

(A + B)(A + B + I)−1 = CAC + CBC,

for the proof of the lemma it suffices to prove the following two inequalities:

k∑
j=1

〈{A(A + I)−1}uj , uj〉 ≥
k∑

j=1

〈CACuj , uj〉 (4.7)

and
k∑

j=1

〈{B(B + I)−1}uj , uj〉 ≥
k∑

j=1

〈CBCuj , uj〉. (4.8)

For each j = 1, 2, . . . , n the vector uj coincides with the eigenvector
vn−j+1 of C corresponding to λn−j+1. Let

U1 ≡ (vn, vn−1, . . . , vn−k+1) = (u1, u2, . . . , uk).

Then the inequality (4.7) can be written as
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tr [U∗
1 A(A + I)−1U1] ≥ tr (U∗

1 CACU1). (4.9)

Applying Lemma 4.5 with A1/2 in place of H, and using the obvious inequality

C2 = (A + B + I)−1 ≤ (A + I)−1

we obtain

tr (U∗
1 CACU1) = ‖A1/2CU1‖2

F

≤ ‖CA1/2U1‖2
F = tr (U∗

1 A1/2C2A1/2U1)
≤ tr (U∗

1 A1/2(A + I)−1A1/2U1)
= tr (U∗

1 A(A + I)−1U1),

which proves (4.9). Finally (4.8) follows from (4.7) via interchange of the
roles of A and B. This completes the proof. ��

Proof of Theorem 4.4. It is easy to see from Lemma 4.6 that for every
s > 0

k∑
j=1

s〈(A + B)(A + B + sI)−1uj , uj〉

≤
k∑

j=1

〈{sA(A + sI)−1 + sB(B + sI)−1}uj , uj〉.

Then by the representation (4.3) we have

k∑
j=1

〈f(A + B)uj , uj〉 ≤
k∑

j=1

〈{f(A) + f(B)}uj , uj〉,

and by (4.4) applied to A + B in place of A,

k∑
j=1

〈f(A + B)uj , uj〉 = ‖f(A + B)‖(k).

On the other hand, Lemma 4.3 shows

k∑
j=1

〈{f(A) + f(B)}uj , uj〉 ≤ ‖f(A) + f(B)‖(k)

and consequently

‖f(A + B)‖(k) ≤ ‖f(A) + f(B)‖(k)
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for k = 1, 2, . . . , n. Finally apply the Fan dominance principle (Lemma 4.2)
to complete the proof of (I).

To prove (II), apply (I) to the inverse function f(t) of g(t), which is
operator monotone, matrices g(A), g(B) ≥ 0, and the Fan norms to get

‖A + B‖(k) = ‖f [g(A)] + f [g(B)]‖(k)

≥ ‖f [g(A) + g(B)]‖(k).

Thus

‖A + B‖(k) ≥ ‖f [g(A) + g(B)]‖(k) for k = 1, 2, . . . , n. (4.10)

Since a nonnegative continuous function defined on [0,∞) is operator
monotone if and only if it is operator concave [17, Theorem V.2.5], f(t) is
an increasing concave function. Hence g(t) is an increasing convex function.
Applying Theorem 2.3 with g(t) to (4.10) we get

‖g(A + B)‖(k) ≥ ‖g(A) + g(B)‖(k) for k = 1, 2, . . . , n

which implies, by Lemma 4.2,

‖g(A + B)‖ ≥ ‖g(A) + g(B)‖

for all unitarily invariant norms. This completes the proof. ��

Corollary 4.7 For all X, Y ≥ 0 and every unitarily invariant norm ‖ · ‖,

‖(X + Y )r‖ ≤ ‖Xr + Y r‖ (0 < r ≤ 1) (4.11)

and
‖(X + Y )r‖ ≥ ‖Xr + Y r‖ (1 ≤ r < ∞). (4.12)

Proof. Since tr is operator monotone for 0 < r ≤ 1 and the inverse function
of tr is operator monotone for 1 ≤ r < ∞, applying Theorem 4.4 completes
the proof. ��

Corollary 4.7 will be used in the proofs of Theorems 4.16 and 4.35 below.

Corollary 4.8 For all A, B ≥ 0 and every unitarily invariant norm ‖ · ‖,

‖ log(A + B + I)‖ ≤ ‖ log(A + I) + log(B + I)‖

and
‖eA + eB‖ ≤ ‖eA+B + I‖.

Proof. The first inequality follows from Theorem 4.4, applied to the operator
monotone function log(t+1). Again by Theorem 4.4, applied to the Fan norms
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and the function et −1 whose inverse function is operator monotone, we have
for every 1 ≤ k ≤ n

‖(eA − I) + (eB − I)‖(k) ≤ ‖eA+B − I‖(k).

Since by the definition of Fan norms

‖(eA − I) + (eB − I)‖(k) = ‖eA + eB‖(k) − 2k

and
‖eA+B − I‖(k) = ‖eA+B + I‖(k) − 2k,

we can conclude
‖eA + eB‖(k) ≤ ‖eA+B + I‖(k)

for every 1 ≤ k ≤ n. Now the Fan dominance principle yields the second
inequality. ��

Corollary 4.9 Let g(t) be a nonnegative operator convex function on [0,∞)
with g(0) = 0. Then

‖g(A + B)‖ ≥ ‖g(A) + g(B)‖

for all A, B ≥ 0 and every unitarily invariant norm.

Proof. It is known [17, Theorem V.2.9] that a function g(t) on [0,∞) with
g(0) = 0 is operator convex if and only if g(t)/t is operator monotone. There-
fore we may assume that g(t) = tf(t) with f(t) being operator monotone.
It is proved in [4, Lemma 5] that the inverse function of tf(t) is operator
monotone. Thus applying Theorem 4.4(II) completes the proof. ��

We remark that the following result on matrix differences was proved
earlier by T. Ando [4] : Under the same conditions as in Theorem 4.4,

‖f(|A − B|)‖ ≥ ‖f(A) − f(B)‖,

‖g(|A − B|)‖ ≤ ‖g(A) − g(B)‖
which can be found in [17, Section X.1].

A norm on Mn is said to be normalized if ‖diag(1, 0, . . . , 0)‖ = 1. Evidently
all the Fan k-norms (k = 1, . . . , n) and Schatten p-norms (1 ≤ p ≤ ∞) are
normalized.

If ‖ · ‖ is a unitarily invariant norm on Mn and A ≥ 0, then Lemma 4.1
has the following equivalent form:

‖A‖ = max{trAB : B ≥ 0, ‖B‖D = 1, B ∈ Mn}. (4.13)

Theorem 4.10 Let f(t) be a nonnegative operator monotone function on
[0,∞) and ‖ · ‖ be a normalized unitarily invariant norm. Then for every
matrix A,
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f(‖A‖) ≤ ‖f(|A|)‖. (4.14)

Proof. Since ‖A‖ = ‖ |A| ‖, it suffices to prove (4.14) for the case when A is
positive semidefinite. Now we make this assumption. By (4.13) there exists a
matrix B ≥ 0 with ‖B‖D = 1 such that

‖A‖ = trAB. (4.15)

It is easy to see [17, p.93] that every normalized unitarily invariant norm
satisfies

‖X‖∞ ≤ ‖X‖ ≤ ‖X‖1 for all X.

Since ‖ · ‖ is normalized, ‖ · ‖D is also a normalized unitarily invariant norm.
Hence

1 = ‖B‖D ≤ ‖B‖1 = trB. (4.16)

From ‖A‖∞ ≤ ‖A‖ and (4.15) we have

s‖A‖
s + ‖A‖ ≤ s‖A‖

s + ‖A‖∞
= tr

sAB

s + ‖A‖∞

= trB1/2 sA

s + ‖A‖∞
B1/2

≤ trB1/2{sA(sI + A)−1}B1/2

= tr sA(sI + A)−1B

for any real number s > 0. In the above latter inequality we have used the
fact that sA/(s + ‖A‖∞) ≤ sA(sI + A)−1. Thus

s‖A‖
s + ‖A‖ ≤ tr sA(sI + A)−1B. (4.17)

Using the integral representation (4.2) of f(t), (4.16), (4.15), (4.17) and
(4.13) we compute

f(‖A‖) = α + β‖A‖ +
∫ ∞

0

s‖A‖
s + ‖A‖ dμ(s)

≤ αtrB + βtrAB +
∫ ∞

0
tr sA(sI + A)−1B dμ(s)

= tr
{

αI + β A +
∫ ∞

0
sA(sI + A)−1dμ(s)

}
B

= tr f(A)B
≤ ‖f(A)‖.

This completes the proof. ��
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We say that a norm ‖·‖ is strictly increasing if 0 ≤ A ≤ B and ‖A‖ = ‖B‖
imply A = B. For instance, the Schatten p-norm ‖ · ‖p is strictly increasing
for all 1 ≤ p < ∞. Now we consider the equality case of (4.14).

Theorem 4.11 Let f(t) be a nonnegative operator monotone function on
[0,∞) and assume that f(t) is non-linear. Let ‖ · ‖ be a strictly increasing
normalized unitarily invariant norm and A ∈ Mn with n ≥ 2. Then f(‖A‖) =
‖f(|A|)‖ if and only if f(0) = 0 and rankA ≤ 1.

Proof. First assume that f(0) = 0 and |A| = λP with P a projection of
rank one. Then ‖A‖ = λ‖P‖ = λ by the normalization assumption and
‖f(|A|)‖ = ‖f(λ)P‖ = f(λ) = f(‖A‖).

Conversely, assume f(‖A‖) = ‖f(|A|)‖. If A = 0, then since ‖ · ‖ is
normalized and strictly increasing we must have f(0) = 0. Next suppose
A = 0. Let μ be the measure in the integral representation (4.2) of f(t).
Since f(t) is non-linear, μ = 0. From the proof of Theorem 4.10 we know
that f(‖A‖) = ‖f(|A|)‖ implies ‖A‖∞ = ‖A‖ or equivalently

‖diag(s1, 0, . . . , 0)‖ = ‖diag(s1, s2, . . . , sn)‖

where s1 ≥ s2 ≥ · · · ≥ sn are the singular values of A. Now the strict
increasingness of ‖ · ‖ forces s2 = · · · = sn = 0, that is, rankA = 1. So write
|A| = λP with P a projection of rank one. Since f(‖A‖) = ‖f(|A|)‖ means

‖f(λ)P‖ = ‖f(λ)P + f(0)(I − P )‖,

we have f(0) = 0 due to I −P = 0 and the strict increasingness of ‖ · ‖ again.
This completes the proof. ��

Theorem 4.10 can be complemented by the following reverse inequality
for unitarily invariant norms with a different normalization.

Theorem 4.12 Let f(t) be a nonnegative operator monotone function on
[0,∞) and ‖ · ‖ be a unitarily invariant norm with ‖I‖ = 1. Then for every
matrix A,

f(‖A‖) ≥ ‖f(|A|)‖.

Proof. We may assume that A is positive semidefinite. Since

f(A) = αI + βA +
∫ ∞

0
sA(sI + A)−1 dμ(s)

as in the proof of Theorem 4.10, we have

‖f(A)‖ ≤ α + β‖A‖ +
∫ ∞

0
‖sA(sI + A)−1‖ dμ(s)

due to ‖I‖ = 1. Hence it suffices to show
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‖A(sI + A)−1‖ ≤ ‖A‖
s + ‖A‖ (s > 0). (4.18)

For each s > 0, since
x

s + x
≤ t2 + (1 − t)2

x

s

for all x > 0 and 0 < t < 1, we get

A(sI + A)−1 ≤ t2I + (1 − t)2s−1A

so that

‖A(sI + A)−1‖ ≤ ‖t2I + (1 − t)2s−1A‖ ≤ t2 + (1 − t)2s−1‖A‖. (4.19)

Minimize the right-hand side of (4.19) over t ∈ (0, 1) to obtain (4.18). This
completes the proof. ��

Denote E ≡ diag(1, 0, . . . , 0). Combining Theorems 4.10 and 4.12, we get
the following two corollaries.

Corollary 4.13 Let f(t) be a nonnegative operator monotone function on
[0,∞) and ‖ · ‖ be a unitarily invariant norm. Then for every matrix A,

‖E‖ · f

(‖A‖
‖E‖

)
≤ ‖f(|A|)‖ ≤ ‖I‖ · f

(‖A‖
‖I‖

)
.

As an immediate consequence of the above corollary we have the next

Corollary 4.14 Let g(t) be a strictly increasing function on [0,∞) such that
g(0) = 0, g(∞) = ∞ and its inverse function g−1 on [0,∞) is operator
monotone. Let ‖ · ‖ be a unitarily invariant norm. Then for every matrix A,

‖I‖ · g

(‖A‖
‖I‖

)
≤ ‖g(|A|)‖ ≤ ‖E‖ · g

(‖A‖
‖E‖

)
.

Next we study monotonicity properties of some norm functions by apply-
ing several special cases of Theorems 4.4 and 4.10.

Given a unitarily invariant norm ‖ · ‖ on Mn, for p > 0 define

‖X‖(p) ≡ ‖ |X|p ‖1/p (X ∈ Mn). (4.20)

Then it is known [17, p.95] (or [46, Lemma 2.13]) that when p ≥ 1, ‖ · ‖(p) is
also a unitarily invariant norm.

Theorem 4.15 Let ‖ · ‖ be a normalized unitarily invariant norm. Then
for any matrix A, the function p �→ ‖A‖(p) is decreasing on (0,∞). For any
unitarily invariant norm
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lim
p→∞ ‖A‖(p) = ‖A‖∞.

Proof. The monotonicity part is the special case of Theorem 4.10 when
f(t) = tr, 0 < r ≤ 1, but we may give a short direct proof. It suffices to
consider the case when A is positive semidefinite, and now we make this
assumption. First assume that ‖ · ‖ is normalized. Let us show

‖Ar‖ ≥ ‖A‖r (0 < r ≤ 1), (4.21)

‖Ar‖ ≤ ‖A‖r (1 ≤ r < ∞). (4.22)

Since ‖A‖∞ ≤ ‖A‖, for r ≥ 1 we get

‖Ar‖ = ‖AAr−1‖ ≤ ‖A‖ ‖Ar−1‖∞
= ‖A‖ ‖A‖r−1

∞ ≤ ‖A‖ ‖A‖r−1 = ‖A‖r,

proving (4.22). The inequality (4.21) follows from (4.22): For 0 < r ≤ 1,
‖A‖ = ‖(Ar)1/r‖ ≤ ‖Ar‖1/r.

If 0 < p < q, then

‖Ap‖ = ‖(Aq)p/q‖ ≥ ‖Aq‖p/q

so that ‖Ap‖1/p ≥ ‖Aq‖1/q. Moreover,

‖A‖∞ = ‖Ap‖1/p
∞ ≤ ‖Ap‖1/p ≤ ‖Ap‖1/p

1 = ‖A‖p → ‖A‖∞

as p → ∞, where ‖·‖p is the Schatten p-norm. For the limit assertion when ‖·‖
is not normalized, we just apply the normalized case to ‖·‖/‖diag(1, 0, . . . , 0)‖.

��

Next we consider the monotonicity of the functions p �→ ‖(Ap + Bp)1/p‖
and p �→ ‖Ap + Bp‖1/p. We denote by A ∨ B the supremum of two positive
semidefinite matrices A, B in the sense of Kato [60] (see also [5, Lemma 6.15]);
it is the limit of an increasing sequence: A ∨ B = limp→∞{(Ap + Bp)/2}1/p.

Theorem 4.16 Let A, B ∈ Mn be positive semidefinite. For every unitarily
invariant norm, the function p �→ ‖(Ap + Bp)1/p‖ is decreasing on (0, 1]. For
every normalized unitarily invariant norm, the function p �→ ‖Ap + Bp‖1/p

is decreasing on (0,∞) and for every unitarily invariant norm

lim
p→∞ ‖Ap + Bp‖1/p = ‖A ∨ B‖∞.

Proof. Let 0 < p < q ≤ 1. Set r = q/p (> 1), X = Ap, Y = Bp in (4.12) to
get

‖(Ap + Bp)q/p‖ ≥ ‖Aq + Bq‖. (4.23)



4.1 Operator Monotone Functions 67

Using a majorization principle (Theorem 2.3) and Fan’s dominance principle
(Lemma 4.2), we can apply the increasing convex function t1/q on [0,∞) to
(4.23) and get

‖(Ap + Bp)1/p‖ ≥ ‖(Aq + Bq)1/q‖
which shows the first assertion.

To show the second assertion we must prove

‖Ap + Bp‖1/p ≥ ‖Aq + Bq‖1/q (4.24)

for 0 < p < q and every normalized unitarily invariant norm ‖ · ‖. It is easily
seen that (4.24) is equivalent to

‖A + B‖r ≥ ‖Ar + Br‖

for all r ≥ 1 and all positive semidefinite A, B ∈ Mn, which follows from
(4.22) and (4.12):

‖A + B‖r ≥ ‖(A + B)r‖ ≥ ‖Ar + Br‖.

Again, to show the limit assertion it suffices to consider the case when
‖ · ‖ is normalized. In this case for p ≥ 1,

‖(Ap + Bp)1/p‖∞ = ‖Ap + Bp‖1/p
∞

≤ ‖Ap + Bp‖1/p

≤ ‖Ap + Bp‖1/p
1

= ‖(Ap + Bp)1/p‖p

≤ ‖(Ap + Bp)1/p − (A ∨ B)‖p + ‖A ∨ B‖p

≤ ‖(Ap + Bp)1/p − (A ∨ B)‖1 + ‖A ∨ B‖p.

Since

lim
p→∞(Ap + Bp)1/p = lim

p→∞

(
Ap + Bp

2

)1/p

= A ∨ B

and
lim

p→∞ ‖A ∨ B‖p = ‖A ∨ B‖∞,

we obtain
lim

p→∞ ‖Ap + Bp‖1/p = ‖A ∨ B‖∞.

This completes the proof. ��

We remark that there are some unitarily invariant norms for which p �→
‖(Ap + Bp)1/p‖ is not decreasing on (1,∞). Consider the trace norm (here
it is just trace since the matrices involved are positive semidefinite). In fact,
for the 2 × 2 matrices
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A =
[

1 0
0 0

]
, Bt =

[
t2 t

√
1 − t2

t
√

1 − t2 1 − t2

]
(0 < t < 1),

it is proved in [10, Lemma 3.3] that for any p0 > 2 there exists a t ∈ (0, 1) such
that p �→ tr

{
(Ap + Bp

t )1/p
}

is strictly increasing on [p0,∞). Also consider
the example ψ(p) = tr

{
(Ap + Bp)1/p

}
with

A =
[

1 2
2 5

]
, B =

[
1 −6

−6 50

]
.

Then ψ(1.5) − ψ(8) ≈ −1.5719. Thus ψ(1.5) < ψ(8). Hence ψ(p) is not
decreasing on the interval [1.5, 8].

Notes and References Theorem 4.4 and its three corollaries are proved by
T. Ando and X. Zhan [11]. Part (I) of Theorem 4.4 is conjectured by F. Hiai
[46] as well as by R. Bhatia and F. Kittaneh [23]. The other results in this
section are proved by F. Hiai and X. Zhan [49].

4.2 Cartesian Decompositions Revisited

In Section 3.4 by establishing majorization relations for singular values we
have derived some Schatten p-norm inequalities associated with the matrix
Cartesian decomposition. Now let us prove an inequality for generic unitarily
invariant norms.

For x = (xj) ∈ R
n define

Φk(x) ≡ max{
k∑

m=1

|xjm
| : 1 ≤ j1 < j2 < · · · < jk ≤ n}.

Then Φ(k)(·) is the symmetric gauge function corresponding to the Fan k-
norm ‖ · ‖(k) :

‖A‖(k) = Φ(k)(s(A)).

We need the following useful fact.

Lemma 4.17 Let T ∈ Mn. Then for each k = 1, 2, . . . , n

‖T‖(k) = min{‖X‖1 + k‖Y ‖∞ : T = X + Y }.

Proof. If T = X + Y, then

‖T‖(k) ≤ ‖X‖(k) + ‖Y ‖(k) ≤ ‖X‖1 + k‖Y ‖∞.

Now let A = Udiag(s1, . . . , sn)V be the singular value decomposition with
U, V unitary and s1 ≥ · · · ≥ sn ≥ 0. Then
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X ≡ Udiag(s1 − sk, s2 − sk, . . . , sk − sk, 0, . . . , 0)V

and
Y ≡ Udiag(sk, . . . , sk, sk+1, . . . , sn)V

satisfy
T = X + Y

and
‖T‖(k) = ‖X‖1 + k‖Y ‖∞.

��
For x = (xj) ∈ C

n we denote |x| = (|x1|, . . . , |xn|). Note that the singular
values of a Hermitian matrix are just the absolute values of its eigenvalues.
In this section i =

√
−1.

Theorem 4.18 Let T = A + iB ∈ Mn with A, B Hermitian. Let αj and βj

be the eigenvalues of A and B respectively ordered so that |α1| ≥ · · · ≥ |αn|
and |β1| ≥ · · · ≥ |βn|. Then

‖diag(α1 + iβ1, . . . , αn + iβn)‖ ≤
√

2 ‖T‖ (4.25)

for every unitarily invariant norm.

Proof. Observe that

‖diag(α1 + iβ1, . . . , αn + iβn)‖ = ‖diag(|α1| + i|β1|, . . . , |αn| + i|βn|)‖

for every unitarily invariant norm.
By the Fan dominance principle (Lemma 4.2), it suffices to prove (4.25)

for all Fan k-norms, k = 1, 2, . . . , n. We first show that (4.25) is true for the
two special cases when ‖ · ‖ is the trace norm ‖ · ‖(n) (= ‖ · ‖1) or the spectral
norm ‖ · ‖(1) (= ‖ · ‖∞). The case p = 1 of the inequality (3.37) in Section 3.4
shows that (4.25) is true for the trace norm. From

A =
T + T ∗

2
, B =

T − T ∗

2i

we have |α1| = ‖A‖(1) ≤ ‖T‖(1), |β1| = ‖B‖(1) ≤ ‖T‖(1), and hence |α1 +
iβ1| ≤

√
2‖T‖(1). So (4.25) holds for the spectral norm.

Now let us fix k with 1 ≤ k ≤ n. By Lemma 4.17 there exist X, Y ∈ Mn

such that T = X + Y and

‖T‖(k) = ‖X‖(n) + k‖Y ‖(1). (4.26)

Let X = C + iD and Y = E + iF be the Cartesian decompositions of X and
Y , i.e., C, D, E, F are all Hermitian. Thus T = C + E + i(D + F ). Since the
Cartesian decomposition of a matrix is unique, we must have
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A = C + E and B = D + F. (4.27)

By the two already proved cases of (4.25) we get
√

2‖X‖(n) ≥ Φ(n)(|s(C) + is(D)|) (4.28)

and √
2‖Y ‖(1) ≥ Φ(1)(|s(E) + is(F )|). (4.29)

Combining (4.26), (4.28) and (4.29) we obtain
√

2‖T‖(k) ≥ Φ(n)(|s(C) + is(D)|) + kΦ(1)(|s(E) + is(F )|)

≥
k∑

j=1

|sj(C) + isj(D)| + k|s1(E) + is1(F )|.

Thus

√
2‖T‖(k) ≥

k∑
j=1

|sj(C) + isj(D)| + k|s1(E) + is1(F )|. (4.30)

A well-known fact [17, p.99] says that for any W, Z ∈ Mn,

max
j

|sj(W ) − sj(Z)| ≤ s1(W − Z).

So

sj(C + E) ≤ sj(C) + s1(E), sj(D + F ) ≤ sj(D) + s1(F ) (4.31)

for j = 1, 2, . . . , n.
Using (4.31) and (4.27) we compute

k∑
j=1

|sj(C) + isj(D)| + k|s1(E) + is1(F )|

=
k∑

j=1

{|sj(C) + isj(D)| + |s1(E) + is1(F )|}

≥
k∑

j=1

|[sj(C) + s1(E)] + i[sj(D) + s1(F )]|

≥
k∑

j=1

|sj(C + E) + isj(D + F )|

= Φ(k)(|s(A) + is(B)|).

Therefore
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k∑
j=1

|sj(C) + isj(D)| + k|s1(E) + is1(F )| ≥ Φ(k)(|s(A) + is(B)|). (4.32)

Combining (4.30) and (4.32) we obtain
√

2‖T‖(k) ≥ Φ(k)(|s(A) + is(B)|), k = 1, 2, . . . , n.

This proves (4.25). ��

We remark that the factor
√

2 in the inequality (4.25) is best possible. To
see this consider the trace norm ‖ · ‖(2) with the example

A =
[

0 1
1 0

]
and B =

[
0 i
−i 0

]
.

A matrix S is called skew-Hermitian if S∗ = −S. Let us arrange the
eigenvalues λj of G ∈ Mn in decreasing order of magnitude: |λ1| ≥ · · · ≥ |λn|
and denote Eig(G) ≡ diag(λ1, . . . , λn). We can also interpret the inequality
(4.25) as the following spectral variation (perturbation) theorem.

Theorem 4.18′ If H is Hermitian and S is skew-Hermitian, then

‖Eig(H) − Eig(S)‖ ≤
√

2‖H − S‖

for every unitarily invariant norm.

Notes and References. Theorem 4.18 is conjectured by T. Ando and R.
Bhatia [9, p.142]; it is proved by X. Zhan [88]. The equivalent form Theorem
4.18′ is a conjecture in R. Bhatia’s book [16, p.119]. Lemma 4.17 can be found
in [17, Proposition IV.2.3].

4.3 Arithmetic-Geometric Mean Inequalities

The arithmetic-geometric mean inequality for complex numbers a, b is |ab| ≤
(|a|2 + |b|2)/2. One matrix version of this inequality is the following result.

Theorem 4.19 For any three matrices A, B, X we have

‖AXB∗‖ ≤ 1
2
‖A∗AX + XB∗B‖ (4.33)

for every unitarily invariant norm.

To give a proof we first make some preparations. For a matrix A we write
its real part as ReA = (A + A∗)/2, while for a vector x = (x1, . . . , xn) we
denote Rex = (Rex1, . . . ,Rexn) and |x| = (|x1|, . . . , |xn|).
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Lemma 4.20 (Ky Fan) For every matrix A

Reλ(A) ≺ λ(ReA).

Proof. Since any matrix is unitarily equivalent to an upper triangular matrix
[51, p.79], for our problem we may assume that A is upper triangular. Then
the components of Reλ(A) are the diagonal entries of ReA. Hence applying
Theorem 2.1 yields the conclusion. ��

Lemma 4.21 Let A, B be any two matrices such that the product AB is
Hermitian. Then

‖AB‖ ≤ ‖Re(BA)‖
for every unitarily invariant norm.

Proof. Since λ(BA) = λ(AB), the eigenvalues of BA are all real. By Lemma
4.20,

λ(BA) ≺ λ(Re(BA)). (4.34)

Applying Theorem 2.2 to the convex function f(t) = |t| on R, we know that
x ≺ y implies |x| ≺w |y|. Thus from (4.34) we get

|λ(AB)| = |λ(BA)| ≺w |λ[Re(BA)]|.

Since AB and Re(BA) are Hermitian, this is the same as

s(AB) ≺w s[Re(BA)].

Now Fan’s dominance principle gives

‖AB‖ ≤ ‖Re(BA)‖,

completing the proof. ��

First Proof of Theorem 4.19. By the polar decompositions A = U |A|, B =
V |B| with U, V unitary, it suffices to prove (4.33) for the case when A, B are
positive semidefinite. Now we make this assumption. First consider the case
when A = B and X∗ = X. Then Lemma 4.21 yields

‖AXA‖ ≤ ‖Re(XA2)‖ =
1
2
‖A2X + XA2‖. (4.35)

Next consider the general case. Let

T =
[

A 0
0 B

]
, Y =

[
0 X

X∗ 0

]
.

Replacing A and X in (4.35) by T and Y respectively, we get
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∥∥∥∥
[

0 AXB
(AXB)∗ 0

]∥∥∥∥ ≤ 1
2

∥∥∥∥
[

0 A2X + XB2

(A2X + XB2)∗ 0

]∥∥∥∥ .

Note that for C ∈ Mn,

s

([
0 C

C∗ 0

])
= (s1(C), s1(C), s2(C), s2(C), . . . , sn(C), sn(C)).

Using Fan’s dominance principle it is clear that the above inequality holds
for all unitarily invariant norms if and only if

‖AXB‖ ≤ 1
2
‖A2X + XB2‖

holds for all unitarily invariant norms. This completes the proof. ��

For 0 < θ < 1, we set dμθ(t) = aθ(t)dt and dνθ(t) = bθ(t)dt where

aθ(t) =
sin(πθ)

2(cosh(πt) − cos(πθ))
, bθ(t) =

sin(πθ)
2(cosh(πt) + cos(πθ))

.

For a bounded continuous function f(z) on the strip Ω = {z ∈ C : 0 ≤
Imz ≤ 1} which is analytic in the interior, we have the well-known Poisson
integral formula (see e.g. [81])

f(iθ) =
∫ ∞

−∞
f(t)dμθ(t) +

∫ ∞

−∞
f(i + t)dνθ(t), (4.36)

and the total masses of the measures dμθ(t), dνθ(t) are 1 − θ, θ respectively
[64, Appendix B]. In particular, dμ1/2(t) = dν1/2(t) = dt/2 cosh(πt) has the
total mass 1/2. Now we use this integral formula to give another proof of the
inequality (4.33).

Second Proof of Theorem 4.19. The inequality (4.33) is equivalent to

‖A1/2XB1/2‖ ≤ 1
2
‖AX + XB‖ (4.37)

for A, B ≥ 0. Further by continuity we may assume that A, B are positive
definite. Then the function

f(t) = A1+itXB−it (t ∈ R)

extends to a bounded continuous function on the strip Ω which is analytic in
the interior. Here the matrices Ait and B−it are unitary. By (4.36) we have

A1/2XB1/2 = f(
i

2
) =

∫ ∞

−∞
f(t)dμ1/2(t) +

∫ ∞

−∞
f(i + t)dν1/2(t)

=
∫ ∞

−∞
Ait(AX + XB)B−it dt

2 cosh(πt)
.
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The unitary invariance of ‖ · ‖ thus implies

‖A1/2XB1/2‖ ≤ ‖AX + XB‖
∫ ∞

−∞

dt

2 cosh(πt)

=
1
2
‖AX + XB‖.

This completes the proof. ��

Next we will give a generalization of the inequality (4.33). We need some
preliminary results.

If a matrix X = (xij) is positive semidefinite, then for any matrix Y we
have [52, p.343]

‖X ◦ Y ‖ ≤ max
i

xii ‖Y ‖ (4.38)

for every unitarily invariant norm.
A function f : R → C is said to be positive definite if the matrix [f(xi −

xj)] ∈ Mn is positive semidefinite for all choices of points {x1, x2, . . . , xn} ⊂ R

and all n = 1, 2, . . . .
An integral kernel K(x, y) is said to be positive definite on a real interval

Δ if ∫
Δ

∫
Δ

K(x, y)f̄(x)f(y)dxdy ≥ 0

for all continuous complex-valued functions f on Δ. It is known [51, p.462]
that a continuous kernel K(x, y) is positive definite on Δ if and only if the
matrix [K(xi, xj)] ∈ Mn is positive semidefinite for all choices of points
{x1, x2, . . . , xn} ⊂ Δ and all n = 1, 2, . . . .

Let f be a function in L1(R). The Fourier transform of f is the function
f̂ defined as

f̂(ξ) =
∫ ∞

−∞
f(x)e−iξxdx.

When writing Fourier transforms, we ignore constant factors, since the only
property of f we use is that of being nonnegative almost everywhere. A well-
known theorem of Bochner (see [45, p.70] or [31, p.184]) asserts that f̂(ξ) is
positive definite if and only if f(x) ≥ 0 for almost all x.

Our argument line is as follows: First use Bochner’s theorem to show the
positive semidefiniteness of a matrix with a special structure; then use the
fact (4.38) to obtain a norm inequality.

Lemma 4.22 Let σ1, . . . , σn be positive real numbers. Then for −1 ≤ r ≤ 1
the n × n matrix

Z =
(

σr
i + σr

j

σi + σj

)

is positive semidefinite.
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Proof. By continuity, it suffices to consider the case −1 < r < 1. Since
σi > 0, we can put σi = exi for some real xi. Thus to show that the matrix
Z is positive semidefinite it suffices to show that the kernel

K(x, y) =
erx + ery

ex + ey

is positive definite. Note that

K(x, y) =
erx/2

ex/2

(
er(x−y)/2 + er(y−x)/2

e(x−y)/2 + e(y−x)/2

)
ery/2

ey/2

=
erx/2

ex/2

(
cosh r(x − y)/2
cosh(x − y)/2

)
ery/2

ey/2 .

So K(x, y) is positive definite if and only if the kernel

L(x, y) =
cosh r(x − y)/2
cosh(x − y)/2

is positive definite, which will follow after we show that

f(x) =
cosh rx

cosh x

is a positive definite function on R. The function f is even. Its inverse Fourier
transform (see [41, p.1192]) is

f̌(w) =
cos(rπ/2) cosh(wπ/2)
cos(rπ) + cosh(wπ)

.

For −1 < r < 1, cos(rπ/2) is positive. For all w = 0, cosh(wπ) > 1. Thus
f̌(w) ≥ 0. By Bochner’s theorem, f(x) is positive definite. ��

Note that the special case r = 0 of Lemma 4.22 is the well-known fact
that the Cauchy matrix (

1
σi + σj

)
is positive semidefinite.

Recall that the Schur product theorem says that the Hadamard product
of two positive semidefinite matrices is positive semidefinite. Therefore, if
A = (aij) is positive semidefinite and x1, . . . , xn are real numbers, then the
matrices

(ak
ij) and (xixjaij) = diag(x1, . . . , xn)Adiag(x1, . . . , xn)

are positive semidefinite for any positive integer k.

Lemma 4.23 Let σ1, . . . , σn be positive numbers, −1 ≤ r ≤ 1, and −2 < t ≤
2. Then the n × n matrix



76 4. Norm Inequalities

W =

(
σr

i + σr
j

σ2
i + tσiσj + σ2

j

)

is positive semidefinite.

Proof. Let W = (wij). Applying Lemma 4.22 and the Schur product theorem
to the formula

wij =
1

σi + σj

σr
i + σr

j

σi + σj

∞∑
k=0

(2 − t)k

[
σiσj

(σi + σj)2

]k

completes the proof. ��

Theorem 4.24 Let A, B, X ∈ Mn with A, B positive semidefinite. Then

(2 + t)‖ArXB2−r + A2−rXBr‖ ≤ 2‖A2X + tAXB + XB2‖ (4.39)

for any real numbers r, t satisfying 1 ≤ 2r ≤ 3, −2 < t ≤ 2 and every
unitarily invariant norm.

Proof. We first prove the special case A = B, i.e.,

(2 + t)‖ArXA2−r + A2−rXAr‖ ≤ 2‖A2X + tAXA + XA2‖. (4.40)

By continuity, without loss of generality, assume that A is positive definite.
Let A = UΣU∗ be the spectral decomposition with U unitary and Σ =
diag(σ1, σ2, . . . , σn), each σj being positive. Since ‖ · ‖ is unitarily invariant,
(4.40) is equivalent to

(2 + t)‖ΣrQΣ2−r + Σ2−rQΣr‖ ≤ 2‖Σ2Q + tΣQΣ + QΣ2‖

where Q = U∗XU, which may be rewritten as

(2 + t)‖[(σr
i σ2−r

j + σ2−r
i σr

j )yij ]‖ ≤ 2‖[(σ2
i + tσiσj + σ2

j )yij ]‖

for all Y = (yij) ∈ Mn. This is the same as

‖G ◦ Z‖ ≤ ‖Z‖ for all Z ∈ Mn (4.41)

where

G =
2 + t

2

(
σr

i σ2−r
j + σ2−r

i σr
j

σ2
i + tσiσj + σ2

j

)
∈ Mn.

Since 1 ≤ 2r ≤ 3, −1 ≤ 2(1 − r) ≤ 1. By Lemma 4.23,

G =
2 + t

2
Σr

(
σ

2(1−r)
i + σ

2(1−r)
j

σ2
i + tσiσj + σ2

j

)
Σr
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is positive semidefinite. In fact, G is a correlation matrix; all its diagonal
entries are 1. Thus by (4.38), the inequality (4.41) is true, and hence its
equivalent form (4.40) is proved.

For the general case, applying (4.40) with A and X replaced by[
A 0
0 B

]
and

[
0 X
0 0

]

respectively completes the proof. ��

Note that the inequality (4.33) corresponds to the case r = 1, t = 0 of
the inequality (4.39).

Finally we give one more arithmetic-geometric mean inequality.

Theorem 4.25 Let A, B ∈ Mn be positive semidefinite. Then

4‖AB‖ ≤ ‖(A + B)2‖ (4.42)

for every unitarily invariant norm.

Proof. By Theorem 4.19,

‖AB‖ = ‖A1/2(A1/2B1/2)B1/2‖ ≤ 1
2
‖A3/2B1/2 + A1/2B3/2‖.

So, for (4.42) it suffices to prove

2‖A3/2B1/2 + A1/2B3/2‖ ≤ ‖(A + B)2‖.

We will show more by proving the following singular value inequality for each
1 ≤ j ≤ n :

2sj(A3/2B1/2 + A1/2B3/2) ≤ sj(A + B)2. (4.43)

Let

X =
[

A1/2 0
B1/2 0

]
and T = XX∗ =

[
A A1/2B1/2

B1/2A1/2 B

]
.

Then T is unitarily equivalent to the matrix

G ≡ X∗X =
[

A + B 0
0 0

]

and further

T 2 =
[

� A3/2B1/2 + A1/2B3/2

B1/2A3/2 + B3/2A1/2 �

]

is unitarily equivalent to
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G2 =
[

(A + B)2 0
0 0

]
.

In particular, T 2 and G2 have the same eigenvalues.
Let U = I ⊕ −I. Using Theorem 3.14 we have

2sj

[
A3/2B1/2 + A1/2B3/2 0

0 A3/2B1/2 + A1/2B3/2

]

= 2sj

[
0 A3/2B1/2 + A1/2B3/2

B1/2A3/2 + B3/2A1/2 0

]
= sj(T 2 − UT 2U∗)

≤ sj

[
T 2 0
0 UT 2U∗

]

= sj

[
G2 0
0 G2

]

= sj

[
(A + B)2 ⊕ 0 0

0 (A + B)2 ⊕ 0

]
.

Thus

2sj

[
A3/2B1/2 + A1/2B3/2 0

0 A3/2B1/2 + A1/2B3/2

]

≤ sj

[
(A + B)2 ⊕ 0 0

0 (A + B)2 ⊕ 0

]

which is the same as (4.43). This completes the proof. ��

Notes and References. For Hilbert space operators, the operator norm
version of Theorem 4.19 was first noticed by A. McIntosh [74]. The unitarily
invariant norm version of this theorem is due to R. Bhatia and C. Davis [19];
its first proof given here is taken from Bhatia’s book [17] and the second
proof is due to H. Kosaki [64]. For other proofs of this result see R. A. Horn
[50], F. Kittaneh [61] and R. Mathias [73].

The key Lemma 4.23 can be deduced from M. K. Kwong’s result [66]
on matrix equations (see [87, Lemma 5]). The natural proof using Bochner’s
theorem given here is due to R. Bhatia and K. R. Parthasarathy [26]. Theorem
4.24 is proved in X. Zhan [87].

Theorem 4.25 is due to R. Bhatia and F. Kittaneh [24].
See F. Hiai and H. Kosaki’s two papers [47, 48] for more inequalities on

many other means of matrices and Hilbert space operators. See [26] and [64]
for more norm inequalities. All these four papers use analytic methods.
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4.4 Inequalities of Hölder and Minkowski Types

In this section we derive various matrix versions of the classical Hölder
(Cauchy-Schwarz) and Minkowski inequalities.

Lemma 4.26 Let X, Y, Z ∈ Mn. If[
X Z
Z∗ Y

]
≥ 0

then
‖ |Z|r ‖ ≤ ‖Xpr/2‖1/p‖Y qr/2‖1/q

for all positive numbers r, p, q with p−1 +q−1 = 1 and every unitarily invari-
ant norm.

Proof. By Lemma 1.21, there exists a contraction G such that Z =
X1/2GY 1/2. Let γ = (γ1, . . . , γn) with γ1 ≥ · · · ≥ γn ≥ 0. Using Theorem 2.5
we have

{γjs
r
j(Z)} ≺wlog {γ

1/p
j s

r/2
j (X) · γ

1/q
j s

r/2
j (Y )}.

Since weak log-majorization implies weak majorization (Theorem 2.7), we
get

{γjs
r
j(Z)} ≺w {γ

1/p
j s

r/2
j (X) · γ

1/q
j s

r/2
j (Y )}

from which follows via the classical Hölder inequality

n∑
j=1

γjs
r
j(Z) ≤

⎡
⎣ n∑

j=1

γjs
pr/2
j (X)

⎤
⎦

1/p ⎡
⎣ n∑

j=1

γjs
qr/2
j (Y )

⎤
⎦

1/q

,

i.e.,
‖ |Z|r ‖γ ≤ ‖Xpr/2‖1/p

γ ‖Y qr/2‖1/q
γ . (4.44)

See the paragraph preceding Lemma 4.1 for the notation ‖ · ‖γ . By Lemma
4.1, given any unitarily invariant norm ‖ · ‖ there exists a set K depending
only on ‖ · ‖ such that

‖A‖ = max
γ∈K

‖A‖γ for all A ∈ Mn.

Thus, taking maximum on both sides of (4.44) completes the proof. ��

Setting X = AA∗, Y = B∗B and Z = AB in Lemma 4.26 gives the
following

Corollary 4.27 For all A, B ∈ Mn and every unitarily invariant norm,

‖ |AB|r ‖ ≤ ‖|A|pr‖1/p‖|B|qr‖1/q (4.45)

where r, p, q are positive real numbers with p−1 + q−1 = 1.
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The next lemma is a consequence of Theorem 2.9.

Lemma 4.28 Let A, B be positive semidefinite matrices. Then for real num-
bers r > 0, 0 < s < t,

{λ
r/s
j (AsBs)} ≺w {λ

r/t
j (AtBt)}.

The following result is a matrix Hölder inequality

Theorem 4.29 Let A, B, X ∈ Mn with A, B positive semidefinite. Then

‖ |AXB|r ‖ ≤ ‖ |ApX|r ‖1/p‖ |XBq|r ‖1/q (4.46)

for all positive real numbers r, p, q with p−1 + q−1 = 1 and every unitarily
invariant norm.

Proof. Let X = UT be the polar decomposition with U unitary and T = |X|.
Write AXB = (AUT 1/p)(T 1/qB) and use (4.45) to obtain

‖|AXB|r‖ ≤ ‖(T 1/pU∗A2UT 1/p)pr/2‖1/p‖(BT 2/qB)qr/2‖1/q. (4.47)

Since Y Z and ZY have the same eigenvalues, Lemma 4.28 ensures that

{λ
pr/2
j (T 1/pU∗A2UT 1/p)} = {λ

pr/2
j [(A2p)1/p(UT 2U∗)1/p]}

≺w {λ
r/2
j (A2pUT 2U∗)} (since p−1 < 1)

= {λ
r/2
j (A2pXX∗)}

= {λ
r/2
j [(ApX)∗(ApX)]}

= {sr
j(A

pX)}

and

{λ
qr/2
j (BT 2/qB)} = {λ

qr/2
j [(T 2)1/q(B2q)1/q]}

≺w {λ
r/2
j (T 2B2q)} (since q−1 < 1)

= {λ
r/2
j (X∗XB2q)}

= {λ
r/2
j [(XBq)∗(XBq)]}

= {sr
j(XBq)}.

Thus
{λ

pr/2
j (T 1/pU∗A2UT 1/p)} ≺w {sr

j(A
pX)} (4.48)

and
{λ

qr/2
j (BT 2/qB)} ≺w {sr

j(XBq)}. (4.49)

By Fan’s dominance principle, the weak majorizations (4.48) and (4.49) imply
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‖(T 1/pU∗A2UT 1/p)pr/2‖ ≤ ‖|ApX|r‖

and
‖(BT 2/qB)qr/2‖ ≤ ‖|XBq|r‖

for every unitarily invariant norm. Combining these two inequalities and
(4.47) gives (4.46). ��

Now let us consider some special cases of Theorem 4.29.
The case p = q = 2 of (4.46) is the following matrix Cauchy-Schwarz

inequality:
‖ |A1/2XB1/2|r ‖2 ≤ ‖ |AX|r ‖ · ‖ |XB|r ‖ (4.50)

for A, B ≥ 0, any X and r > 0, which is equivalent to

‖ |AXB∗|r ‖2 ≤ ‖ |A∗AX|r ‖ · ‖ |XB∗B|r ‖ (4.51)

for all A, B, X and r > 0.
The special case X = I of (4.51) has the following simple form:

‖ |A∗B|r ‖2 ≤ ‖(A∗A)r ‖ · ‖(B∗B)r‖ (4.52)

The case r = 1 of (4.46) is the following inequality:

‖AXB‖ ≤ ‖ApX‖1/p‖XBq‖1/q. (4.53)

Again we can use the integral formula (4.36) with the same function f as
in the second proof of Theorem 4.19 and θ = 1/q to give a direct proof of
(4.53) as follows.

A1/pXB1/q = f(
i

q
) =

∫ ∞

−∞
f(t)dμ1/q(t) +

∫ ∞

−∞
f(i + t)dν1/q(t)

=
∫ ∞

−∞
Ait(AX)B−itdμ1/q(t) +

∫ ∞

−∞
Ait(XB)B−itdν1/q(t).

Hence

‖A1/pXB1/q‖ ≤ ‖AX‖
p

+
‖XB‖

q

for every unitarily invariant norm. Then for any real number α > 0, replacing
A, B by αpA, α−qB respectively we get

‖A1/pXB1/q‖ ≤ αp

p
‖AX‖ +

α−q

q
‖XB‖.

Since the minimum of the right-hand side over all α > 0 is ‖AX‖1/p‖XB‖1/q,
we obtain (4.53).

Now we refine the Cauchy-Schwarz inequality (4.50).
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Theorem 4.30 Let A, B, X ∈ Mn with A, B positive semidefinite and X
arbitrary. For any positive real number r and every unitarily invariant norm,
the function

φ(t) = ‖ |AtXB1−t|r ‖ · ‖ |A1−tXBt|r ‖
is convex on the interval [0, 1] and attains its minimum at t = 1/2. Conse-
quently, it is decreasing on [0, 1/2] and increasing on [1/2, 1].

Proof. Since φ(t) is continuous and symmetric with respect to t = 1/2, all
the conclusions will follow after we show that

φ(t) ≤ {φ(t + s) + φ(t − s)}/2 (4.54)

for t ± s ∈ [0, 1]. By (4.50) we have

‖ |AtXB1−t|r ‖ = ‖ |As(At−sXB1−t−s)Bs|r ‖
≤ {‖ |At+sXB1−(t+s)|r ‖ · ‖ |At−sXB1−(t−s)|r ‖}1/2

and

‖ |A1−tXBt|r ‖ = ‖ |As(A1−t−sXBt−s)Bs|r ‖
≤ {‖ |A1−(t−s)XBt−s|r ‖ · ‖ |A1−(t+s)XBt+s|r ‖}1/2.

Upon multiplication of the above two inequalities we obtain

‖ |AtXB1−t|r ‖ · ‖ |A1−tXBt|r ‖ ≤ {φ(t + s)φ(t − s)}1/2. (4.55)

Applying the arithmetic-geometric mean inequality to the right-hand side of
(4.55) yields (4.54). This completes the proof. ��

An immediate consequence of Theorem 4.30 interpolates the Cauchy-
Schwarz inequality (4.50) as follows.

Corollary 4.31 Let A, B, X ∈ Mn with A, B positive semidefinite and X
arbitrary. For any r > 0 and every unitarily invariant norm,

‖ |A1/2XB1/2|r ‖2 ≤ ‖ |AtXB1−t|r ‖ · ‖ |A1−tXBt|r ‖
≤ ‖ |AX|r ‖ · ‖ |XB|r ‖

holds for 0 ≤ t ≤ 1.

Another consequence of Theorem 4.30 is the following corollary.

Corollary 4.32 Let A, B, X ∈ Mn with A, B positive definite and X arbi-
trary. For any r > 0 and every unitarily invariant norm, the function

ψ(s) = ‖ |AsXBs|r ‖ · ‖ |A−sXB−s|r ‖

is convex on (−∞,∞), attains its minimum at s = 0, and hence it is de-
creasing on (−∞, 0) and increasing on (0,∞).
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Proof. In Theorem 4.30, replacing A, B, X and t by A2, B−2, A−1XB and
(1 + s)/2 respectively, we see that ψ(s) is convex on (−1, 1), decreasing on
(−1, 0), increasing on (0, 1) and attains its minimum at s = 0 when −1 ≤ s ≤
1. Next replacing A, B by their appropriate powers it is easily seen that the
above convexity and monotonicity of ψ(s) on those intervals are equivalent
to the same properties on (−∞,∞), (−∞, 0) and (0,∞) respectively. ��

Given a norm ‖ · ‖ on Mn, the condition number of an invertible matrix
A is defined as

c(A) = ‖A‖ · ‖A−1‖.

This is one of the basic concepts in numerical analysis; it serves as measures
of the difficulty in solving a system of linear equations.

The special case r = 1, X = B = I of Corollary 4.32 gives the following
interesting result.

Corollary 4.33 Let A be positive definite. Then for every unitarily invariant
norm,

c(As) = ‖As‖ · ‖A−s‖
is increasing in s > 0.

Due to Theorems 4.15 and 4.16, ‖ |X|p ‖1/p for p = ∞ is understood as
‖X‖∞ and ‖ |A|p + |B|p ‖1/p for p = ∞ as ‖ |A| ∨ |B| ‖∞.

It is easy to see that the special case X = I of (4.53) can be written
equivalently as

‖Y ∗X‖ ≤ ‖ |X|p ‖1/p‖ |Y |q ‖1/q (4.56)

for all X and Y . Here note that ‖ |X∗|r ‖ = ‖ |X|r ‖ for any r > 0 and every
unitarily invariant norm.

We will use the following fact: Let A and B be positive semidefinite ma-
trices having the eigenvalues α1 ≥ · · · ≥ αn (≥ 0) and β1 ≥ · · · ≥ βn (≥ 0),
respectively. If αi ≤ βi (i = 1, . . . , n) (in particular, if A ≤ B), then there
exists a unitary U such that Ar ≤ UBrU∗ for all r > 0.

The next result is another matrix Hölder inequality.

Theorem 4.34 Let 1 ≤ p, q ≤ ∞ with p−1 + q−1 = 1. Then for all
A, B, C, D ∈ Mn and every unitarily invariant norm,

2−| 1
p − 1

2 |‖C∗A + D∗B‖ ≤ ‖ |A|p + |B|p ‖1/p‖ |C|q + |D|q ‖1/q. (4.57)

Moreover, the constant 2−| 1
p − 1

2 | is best possible.

Proof. Since | 1p − 1
2 | = | 1q − 1

2 | and the inequality is symmetric with respect
to p and q, we may assume 1 ≤ p ≤ 2 ≤ q ≤ ∞. Note that[

C 0
D 0

]∗ [
A 0
B 0

]
=
[

C∗A + D∗B 0
0 0

]
.
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From (4.56) it follows that

‖C∗A + D∗B‖ =
∥∥∥∥
[

C 0
D 0

]∗ [
A 0
B 0

] ∥∥∥∥
≤
∥∥∥∥
∣∣∣∣
[

A 0
B 0

]∣∣∣∣
p ∥∥∥∥

1/p

·
∥∥∥∥
∣∣∣∣
[

C 0
D 0

]∣∣∣∣
q ∥∥∥∥

1/q

= ‖(|A|2 + |B|2)p/2‖1/p‖(|C|2 + |D|2)q/2‖1/q.

Since 1 ≤ p ≤ 2, (4.11) implies

‖(|A|2 + |B|2)p/2‖ ≤ ‖ |A|p + |B|p‖.

Since the operator concavity of t2/q gives

|C|2 + |D|2
2

≤
( |C|q + |D|q

2

)2/q

,

by the remark preceding the theorem we get

( |C|2 + |D|2
2

)q/2

≤ U

( |C|q + |D|q
2

)
U∗

for some unitary U . Therefore we have

‖(|C|2 + |D|2)q/2‖1/q ≤ 2
1
2 − 1

q ‖ |C|q + |D|q ‖1/q

= 2
1
p − 1

2 ‖ |C|q + |D|q ‖1/q.

Thus the desired inequality (4.57) follows.
The best possibility of the constant is seen from the following example:

A = C = D =
[

1 0
0 0

]
, B =

[
0 1
0 0

]

with the operator norm ‖ · ‖∞. ��

In particular, the case p = q = 2 of (4.57) is

‖C∗A + D∗B‖2 ≤ ‖ |A|2 + |B|2‖ · ‖ |C|2 + |D|2‖.

The following result is a matrix Minkowski inequality.

Theorem 4.35 Let 1 ≤ p < ∞. For Ai, Bi ∈ Mn (i = 1, 2) and every
unitarily invariant norm,

2−| 1
p − 1

2 |‖ |A1 + A2|p + |B1 + B2|p ‖1/p

≤ ‖ |A1|p + |B1|p ‖1/p + ‖ |A2|p + |B2|p ‖1/p.
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Proof. Since

‖( |A|2 + |B|2)p/2‖1/p =
∥∥∥∥
∣∣∣∣
[

A 0
B 0

]∣∣∣∣
p ∥∥∥∥

1/p

is a norm in (A, B), we have

‖(|A1 + A2|2 + |B1 + B2|2)p/2‖1/p

≤ ‖(|A1|2 + |B1|2)p/2‖1/p + ‖(|A2|2 + |B2|2)p/2‖1/p. (4.58)

When 1 ≤ p ≤ 2, (4.11) implies

‖(|Ai|2 + |Bi|2)p/2‖ ≤ ‖ |Ai|p + |Bi|p‖ (i = 1, 2). (4.59)

By the operator concavity of t �→ tp/2 we get

|A1 + A2|p + |B1 + B2|p
2

≤
( |A1 + A2|2 + |B1 + B2|2

2

)p/2

,

so that

2
p
2 −1‖ |A1 + A2|p + |B1 + B2|p‖ ≤ ‖(|A1 + A2|2 + |B1 + B2|2)p/2‖. (4.60)

Combining (4.60), (4.58) and (4.59) we have

2
1
2 − 1

p ‖ |A1 + A2|p + |B1 + B2|p‖1/p

≤ ‖ |A1|p + |B1|p‖1/p + ‖ |A2|p + |B2|p‖1/p.

When p ≥ 2, (4.12) implies

‖ |A1 + A2|p + |B1 + B2|p‖ ≤ ‖(|A1 + A2|2 + |B1 + B2|2)p/2‖. (4.61)

Since, as in the proof of Theorem 4.34,

( |Ai|2 + |Bi|2
2

)p/2

≤ Ui

( |Ai|p + |Bi|p
2

)
U∗

i

for some unitary Ui, we have

21− p
2 ‖(|Ai|2 + |Bi|2)p/2‖ ≤ ‖ |Ai|p + |Bi|p‖ (i = 1, 2). (4.62)

Combining (4.61), (4.58) and (4.62) yields

2
1
p − 1

2 ‖ |A1 + A2|p + |B1 + B2|p ‖1/p

≤ ‖ |A1|p + |B1|p ‖1/p + ‖ |A2|p + |B2|p ‖1/p.

This completes the proof. ��
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The example

A1 =
[

1 0
0 0

]
, A2 =

[
0 1
0 0

]
, B1 =

[
0 0
0 1

]
, B2 =

[
0 0
1 0

]

with the spectral norm shows that when 1 ≤ p ≤ 2 is fixed and ‖ · ‖ is
arbitrary, the constant 2

1
2 − 1

p in Theorem 4.35 is best possible.
When Ai, Bi (i = 1, 2) are positive semidefinite matrices, there is a pos-

sibility to obtain a sharper inequality. When ‖ · ‖ = ‖ · ‖∞ and 1 ≤ p ≤ 2, it
is proved in [10, Proposition 3.7] that

‖(A1 + A2)p + (B1 + B2)p‖1/p
∞ ≤ ‖Ap

1 + Bp
1‖1/p

∞ + ‖Ap
2 + Bp

2‖1/p
∞ .

We also have

2
1
p −1‖(A1 + A2)p + (B1 + B2)p‖1/p ≤ ‖Ap

1 + Bp
1‖1/p + ‖Ap

2 + Bp
2‖1/p

for every unitarily invariant norm and 1 ≤ p ≤ 2. (The constant 2
1
p −1 is

better than 2−| 1
p − 1

2 | for 1 ≤ p < 4/3.) Indeed, since the operator convexity
of tp gives

21−p(A1 + A2)p ≤ Ap
1 + Ap

2 , 21−p(B1 + B2)p ≤ Bp
1 + Bp

2 ,

we get

2
1
p −1‖(A1 + A2)p + (B1 + B2)p‖1/p

≤ ‖Ap
1 + Ap

2 + Bp
1 + Bp

2‖1/p

≤ (‖Ap
1 + Bp

1‖ + ‖Ap
2 + Bp

2‖)1/p

≤ ‖Ap
1 + Bp

1‖1/p + ‖Ap
2 + Bp

2‖1/p.

Notes and References. Theorem 4.29 is proved in H. Kosaki [64, Theorem
3] and independently in R. A. Horn and X. Zhan [55, Theorem 3]; the proof
given here is taken from [55]. A similar result is proved in F. Hiai [46, p.174].

The inequality (4.51) is due to R. Bhatia and C. Davis [20]. The inequality
(4.52) is due to R. A. Horn and R. Mathias [53, 54]. The inequality (4.53) is
due to F. Kittaneh [62]; its proof using the integral formula given here is in
[64].

Theorem 4.30, Corollaries 4.31 and 4.32, Theorems 4.34 and 4.35 are
proved by F. Hiai and X. Zhan [49]. Corollary 4.33 is due to A. W. Marshall
and I. Olkin [71].

See [49] for more inequalities of Minkowski type.
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4.5 Permutations of Matrix Entries

In this section we study norm variations of matrices under permutations of
their entries.

A map Φ : Mn → Mn is called a permutation operator if for all A the
entries of Φ(A) are one fixed rearrangement of those of A. Familiar examples
of permutation operators are the transpose operation, permutations of rows
and columns. A basic observation is that every permutation operator is an
invertible linear map.

Let Mn be endowed with a norm ‖ · ‖ and Φ : Mn → Mn be a linear map.
We use the same notation for the operator norm of Φ :

‖Φ‖ ≡ sup{‖Φ(A)‖ : ‖A‖ ≤ 1, A ∈ Mn}.

The following result will simplify our investigations. It says that the maxi-
mum of operator norms of a linear map on matrix spaces induced by unitarily
invariant norms is attained at the norm induced by either the spectral norm
or the trace norm.

Lemma 4.36 Let Φ : Mn → Mn be a linear map. Then for every unitarily
invariant norm ‖ · ‖ on Mn

‖Φ‖ ≤ max{‖Φ‖∞, ‖Φ‖1}. (4.63)

Proof. Denote by Nui the set of unitarily invariant norms on Mn. By Fan’s
dominance principle (Lemma 4.2) we have

max{‖Φ‖ : ‖ · ‖ ∈ Nui} = max{‖Φ‖(k) : 1 ≤ k ≤ n}. (4.64)

On the other hand, Lemma 4.17 asserts that for any T ∈ Mn and each
1 ≤ k ≤ n

‖T‖(k) = min{k‖X‖∞ + ‖Y ‖1 : T = X + Y }. (4.65)

Suppose ‖Φ‖(k) = ‖Φ(A)‖(k) with ‖A‖(k) = 1. Then by (4.65) there exist
X, Y ∈ Mn such that

A = X + Y, 1 = ‖A‖(k) = k‖X‖∞ + ‖Y ‖1. (4.66)

Note that Φ is linear. Using (4.65) again and (4.66) we get

‖Φ‖(k) = ‖Φ(A)‖(k) = ‖Φ(X) + Φ(Y )‖(k)

≤ k‖Φ(X)‖∞ + ‖Φ(Y )‖1

= k‖X‖∞ · ‖Φ(X)‖∞
‖X‖∞

+ ‖Y ‖1 · ‖Φ(Y )‖1

‖Y ‖1

≤ max{‖Φ(X)‖∞
‖X‖∞

,
‖Φ(Y )‖1

‖Y ‖1
}

≤ max{‖Φ‖∞, ‖Φ‖1}.



88 4. Norm Inequalities

Thus
‖Φ‖(k) ≤ max{‖Φ‖∞, ‖Φ‖1}.

Combining the above inequality and (4.64) we obtain (4.63). ��

Given a fixed A ∈ Mn, let us consider the Hadamard multiplier TA :
Mn → Mn defined as TA(X) = A ◦ X. It is easily seen that the adjoint
operator of TA with respect to the Frobenius inner product 〈X, Y 〉 = trXY ∗

is T ∗
A = TĀ (Ā denotes the complex conjugate matrix of A). On the other

hand, the spectral norm and the trace norm are dual to each other in the
sense that

‖A‖∞ = sup
X 
=0

|〈A, X〉|
‖X‖1

and ‖A‖1 = sup
X 
=0

|〈A, X〉|
‖X‖∞

.

Note also that ‖TĀ‖∞ = ‖TA‖∞. Therefore the following corollary is a con-
sequence of Lemma 4.36.

Corollary 4.37 Given A ∈ Mn, let TA be the Hadamard multiplier induced
by A. Then for any unitarily invariant norm ‖ · ‖

‖TA‖ ≤ ‖TA‖∞.

This corollary indicates that for some unitarily invariant norm problems
involving Hadamard products, it suffices to consider the spectral norm case.

The Frobenius norm ‖(aij)‖2 = (
∑

i,j |aij |2)1/2 plays the role of a bridge
in our analysis. Recall that ‖A‖2 = (

∑
j sj(A)2)1/2.

Theorem 4.38 For every permutation operator Φ and all unitarily invariant
norms ‖ · ‖ on Mn,

1√
n

‖A‖ ≤ ‖Φ(A)‖ ≤
√

n‖A‖, A ∈ Mn (4.67)

and the constants
√

n and 1/
√

n are best possible.

Proof. The first inequality follows from the second. Since a permutation
operator is bijective, in the second inequality we may replace A by Φ−1(A)
and then replace Φ by Φ−1. Thus it suffices to prove the second inequality.
The conclusion is equivalent to ‖Φ‖ ≤ √

n. By Lemma 4.36 it suffices to show
‖Φ‖∞ ≤ √

n and ‖Φ‖1 ≤ √
n. But this follows from

‖Φ(A)‖∞ ≤ ‖Φ(A)‖2 = ‖A‖2 ≤
√

n‖A‖∞

and
‖Φ(A)‖1 ≤

√
n‖Φ(A)‖2 =

√
n‖A‖2 ≤

√
n‖A‖1.
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Now consider the permutation operator Ψ which interchanges the first column
and the diagonal of a matrix and keeps all other entries fixed. Let I ∈ Mn

be the identity matrix. Then ‖Ψ(I)‖∞ =
√

n‖I‖∞ =
√

n. Let e ∈ C
n be

the vector with each component 1 and B = (e, 0, . . . , 0). Then ‖Ψ(B)‖1 =√
n‖B‖1 = n. Thus we see that the constant

√
n in (4.67) is best possible for

the operator norm and the trace norm. ��

For real numbers x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 and integer 1 ≤ k ≤ n, we have

x1 + · · · + xk ≤
√

k(x2
1 + · · · + x2

n)1/2 ≤
√

n(x1 + · · · + xk).

We can use these two inequalities to give another proof of Theorem 4.38 as
follows.

‖Φ(A)‖(k) ≤
√

k‖Φ(A)‖2 =
√

k‖A‖2 ≤
√

n‖A‖(k).

Thus
‖Φ(A)‖(k) ≤

√
n‖A‖(k), k = 1, 2, . . . , n.

Finally applying the Fan dominance principle gives (4.67).
For general Schatten p-norms, the estimate (4.67) can be improved.

Theorem 4.39 For any permutation operator Φ on Mn and any A ∈ Mn,

n
1
p − 1

2 ‖A‖p ≤ ‖Φ(A)‖p ≤ n
1
2 − 1

p ‖A‖p, if 2 ≤ p ≤ ∞, (4.68)

n
1
2 − 1

p ‖A‖p ≤ ‖Φ(A)‖p ≤ n
1
p − 1

2 ‖A‖p, if 1 ≤ p ≤ 2 (4.69)

and all these inequalities are sharp.

Proof. Again the left-hand side inequalities follow from the corresponding
right-hand side inequalities. Using the fact that if p ≥ 2 then for any x ∈ C

n,

‖x‖2 ≤ n
1
2 − 1

p ‖x‖p we have

‖Φ(A)‖p ≤ ‖Φ(A)‖2 = ‖A‖2 ≤ n
1
2 − 1

p ‖A‖p.

This proves (4.68).
Now assume 1 ≤ p ≤ 2. Then for any x ∈ C

n, ‖x‖p ≤ n
1
p − 1

2 ‖x‖2. Conse-
quently

‖Φ(A)‖p ≤ n
1
p − 1

2 ‖Φ(A)‖2 = n
1
p − 1

2 ‖A‖2 ≤ n
1
p − 1

2 ‖A‖p.

This proves (4.69).
The examples with Ψ, I, B in the proof of Theorem 4.38 also show both

(4.68) and (4.69) are sharp. ��

The idea in the above proofs is simple: The Frobenius norm is invariant
under permutations of matrix entries. The next result shows that the converse
is also true.
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Theorem 4.40 Let ‖ · ‖ be a unitarily invariant norm on Mn. If ‖Φ(A)‖ =
‖A‖ holds for all permutation operators Φ and all A ∈ Mn, then ‖ · ‖ is a
constant multiple of ‖ · ‖2.

Proof. Let Ψ be as in the proof of Theorem 4.38 and A = diag(s1, s2, . . . , sn)
where (s1, s2, . . . , sn) ∈ R

n
+. Let ϕ be the symmetric gauge function corre-

sponding to ‖ · ‖. Then

ϕ(s1, s2, . . . , sn) = ‖A‖ = ‖Ψ(A)‖ = ϕ((
n∑
1

s2
j )

1/2, 0, . . . , 0)

= (
n∑
1

s2
j )

1/2ϕ(1, 0, . . . , 0)

= ϕ(1, 0, . . . , 0)‖A‖2.

Since s1, s2, . . . , sn are arbitrary, ‖ · ‖ = ϕ(1, 0, . . . , 0)‖ · ‖2. ��

A map Φ : Mn → Mn is called positive if it preserves the set Pn of positive
semidefinite matrices in Mn, i.e., Φ(Pn) ⊆ Pn. It is not hard to prove that
if Φ : Mn → Mn is a positive permutation operator, then there exists a
permutation matrix P such that

Φ(A) = PAP t for all A ∈ Mn

or
Φ(A) = PAtP t for all A ∈ Mn

where Xt denotes the transpose of X. This result shows that among the
permutation operators, only the transpose operation and simultaneous row
and column permutations can preserve positive semidefiniteness.

Notes and Reference. The results in this section seem new. See [91] for
the forms of those permutation operators that preserve eigenvalues, singular
values, etc.

4.6 The Numerical Radius

Let ‖ · ‖ be the usual Euclidean norm on C
n. The numerical range (or the

field of values) of a matrix A ∈ Mn is defined as

W (A) ≡ {〈Ax, x〉 : ‖x‖ = 1, x ∈ C
n}.

For any A ∈ Mn, W (A) is a convex compact subset of the complex plane
containing the eigenvalues of A. See [52, Chapter 1] for this topic.

The numerical radius of A ∈ Mn is by definition
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w(A) ≡ max{|z| : z ∈ W (A)}.

It is easy to see that w(·) is a norm on Mn and we have

1
2
‖A‖∞ ≤ w(A) ≤ ‖A‖∞.

The second inequality is obvious while the first inequality can be shown by
the Cartesian decomposition.

We call a norm ‖ · ‖ on Mn weakly unitarily invariant if

‖UAU∗‖ = ‖A‖

for all A and all unitary U. Evidently the numerical radius is such a norm.
Since

w

([
0 2
0 0

])
= 1,

the numerical radius is not unitarily invariant (this example in fact shows
that w(·) is even not permutation-invariant); it is not submultiplicative:

w(AB) ≤ w(A)w(B)

is in general false even for commuting A, B. Consider the nilpotent matrix

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

and set B = A2. Then w(A) < 1, w(A2) = 1/2 and w(A3) = 1/2. But the
next best thing is indeed true. We have the following

Theorem 4.41 (Power Inequality) For every matrix A and any positive
integer k,

w(Ak) ≤ w(A)k. (4.70)

Proof. Since w(·) is positively homogeneous, it suffices to prove w(Ak) ≤ 1
under the assumption w(A) ≤ 1.

Denote by ReA = (A + A∗)/2 the real part of a matrix A. Let a, z be
complex numbers. Then |a| ≤ 1 if and only if Re(1 − za) ≥ 0 for each z with
|z| < 1. Consequently

w(A) ≤ 1 if and only if Re(I − zA) ≥ 0 for |z| < 1. (4.71)

For a nonsingular matrix B, B+B∗ = B[B−1+(B−1)∗]B∗. Thus ReB ≥ 0
if and only if Re(B−1) ≥ 0. From (4.71) we get

w(A) ≤ 1 if and only if Re(I − zA)−1 ≥ 0 for |z| < 1. (4.72)
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Observe next that if ω = e2πi/k, a primitive kth root of unity, then

1
1 − zk

=
1
k

k−1∑
j=0

1
1 − ωjz

for all z other than the powers of ω. This identity can be verified as follows.
First we have the identity 1 − zk =

∏k−1
j=0 (1 − ωjz). Multiply both sides of

the identity in question by 1 − zk, observe that the right side becomes a
polynomial of degree at most k − 1 that is invariant under each of the k
substitutions

z �→ ωjz (j = 0, . . . , k − 1)

and is therefore constant, and then evaluate the constant by setting z equal
to zero.

The above identity implies that if w(A) ≤ 1 then

(I − zkAk)−1 =
1
k

k−1∑
j=0

(I − ωjzA)−1

whenever |z| < 1. Since w(ωjA) ≤ 1, by (4.72) each summand on the
right side has positive semidefinite real part. Hence the left side has pos-
itive semidefinite real part. Applying (4.72) again gives w(Ak) ≤ 1. This
completes the proof. ��

The above proof is, of course, very ingenious, but we can understand this
result in another way. Next we will establish a theorem characterizing the
unit ball of Mn with the numerical radius as the norm, so that the power
inequality becomes completely obvious.

Let M be a subspace of Mm which contains the identity matrix and is
self-adjoint, that is, A ∈ M implies A∗ ∈ M. A linear map Φ : M → Mn is
said to be completely positive if for any block matrix [Xij ] of any order with
Xij ∈ M,

[Xij ] ≥ 0 implies [Φ(Xij)] ≥ 0.

The following lemma is a special case of Arveson’s extension theorem on
C∗-algebras [30, p.287].

Lemma 4.42 Let M be a self-adjoint subspace of Mm containing the identity
matrix. If Φ : M → Mn is a completely positive linear map, then Φ can be
extended to a completely positive linear map from the whole space Mm into
Mn.

Theorem 4.43 (T. Ando) Let A ∈ Mn. Then w(A) ≤ 1 if and only if there
are contractions W, Z ∈ Mn with Z Hermitian such that

A = (I + Z)1/2W (I − Z)1/2. (4.73)
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Proof. Suppose A has the expression (4.73). Then for any u ∈ C
n, by the

Cauchy-Schwarz inequality

|〈Au, u〉| ≤ 1
2
{‖(I + Z)1/2u‖2 + ‖(I − Z)1/2u‖2}

= ‖u‖2.

Conversely suppose w(A) ≤ 1. By Lemma 1.21 the existence of contrac-
tions W, Z with Z Hermitian satisfying the condition (4.73) is equivalent to
that of a Hermitian contraction Z such that[

I + Z A
A∗ I − Z

]
≥ 0.

Let M be the complex subspace of M2 spanned by[
1 0
0 1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
.

Then M is a self-adjoint subspace of M2, containing the identity matrix. Its
generic element is of the form[

x y
z x

]
(x, y, z ∈ C).

Define a linear map Φ from M to Mn by

Φ :
[

x y
z x

]
�→ xI +

1
2
(yA + zA∗).

Let us show that Φ is completely positive. Let N be an arbitrary positive
integer. Suppose that a matrix in MN ⊗ M is positive semidefinite:([

xij yij

zij xij

])N

i,j=1
≥ 0.

We have to show that[
xijI +

1
2
(yijA + zijA

∗)
]N

i,j=1
≥ 0.

In other words, we have to prove that for X, Y ∈ MN ,[
X Y
Y ∗ X

]
≥ 0 implies X ⊗ In +

1
2
(Y ⊗ A + Y ∗ ⊗ A∗) ≥ 0.

We may assume X > 0. Applying the congruence transforms with diag(X−1/2, X−1/2)
and X−1/2 ⊗ In to the above two inequalities respectively, we see that the
problem is reduced to showing
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[
I Y

Y ∗ I

]
≥ 0 implies IN ⊗ In +

1
2
(Y ⊗ A + Y ∗ ⊗ A∗) ≥ 0,

which is equivalent to the statement that for A ∈ Mn, Y ∈ MN ,

w(A) ≤ 1 and ‖Y ‖∞ ≤ 1 imply w(Y ⊗ A) ≤ 1.

Since every contraction is a convex combination of unitary matrices (in fact,
by the singular value decomposition it is easy to see that every contraction
Y can be written as Y = (U1 + U2)/2 with U1, U2 unitary), it suffices to
show that if w(A) ≤ 1 then w(U ⊗ A) ≤ 1 for unitary U ∈ MN . To see this,
consider the spectral decomposition

U = V diag(λ1, . . . , λN )V ∗

with V unitary and |λj | = 1, j = 1, . . . , N. Then since w(·) is weakly unitarily
invariant we have

w(U ⊗ A) = w[(V ⊗ In)(diag(λ1, . . . , λN ) ⊗ A)(V ⊗ In)∗]
= w(diag(λ1, . . . , λN ) ⊗ A)
= max

1≤j≤N
w(λjA) = w(A) ≤ 1.

Thus we have proved that Φ is completely positive.
Now by Lemma 4.42, Φ can be extended to a completely positive map

from M2 to Mn, which we denote by the same notation Φ. Hence⎡
⎢⎢⎣

Φ

([
1 0
0 0

])
Φ

([
0 1
0 0

])

Φ

([
0 0
1 0

])
Φ

([
0 0
0 1

])
⎤
⎥⎥⎦ ≥ 0. (4.74)

Since

Φ

([
1 0
0 0

])
+ Φ

([
0 0
0 1

])
= Φ

([
1 0
0 1

])
= In,

there is a Hermitian matrix Z such that

Φ

([
1 0
0 0

])
=

1
2
(I + Z) and Φ

([
0 0
0 1

])
=

1
2
(I − Z).

On the other hand, by definition,

Φ

([
0 1
0 0

])
=

1
2
A, Φ

([
0 0
1 0

])
=

1
2
A∗.

Thus (4.74) has the form [
I + Z A
A∗ I − Z

]
≥ 0.
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This completes the proof. ��

Second Proof of Theorem 4.41. Suppose w(A) ≤ 1. By Theorem 4.43 A
has the representation

A = (I + Z)1/2W (I − Z)1/2

where W, Z are contractions and Z is Hermitian. Then

Ak = (I + Z)1/2C(I − Z)1/2

where C = [W (I−Z2)1/2]k−1W. Obviously C is a contraction. So Ak is of the
same form as A in (4.73). Applying Theorem 4.43 again in another direction
yields w(Ak) ≤ 1. ��

Notes and References. Theorem 4.41 is a conjecture of P. R. Halmos for
Hilbert space operators and it was first proved by C. A. Berger [13]. Later
C. Pearcy [78] gave an elementary proof. The proof given here, which is due
to P. R. Halmos [42, p.320], combines the ideas of Berger and Pearcy. For
generalizations of the power inequality see [59], [76], [14] and [15].

Theorem 4.43 is proved by T. Ando [2] for Hilbert space operators using
an analytic method. The interesting proof using the extension theorem given
here is also due to T. Ando [8].

4.7 Norm Estimates of Banded Matrices

Consider

A =
[

1 1
−1 1

]
and B =

[
1 1
0 1

]
.

It is easy to see that ‖A‖∞ =
√

2, ‖B‖∞ = (1 +
√

5)/2. Thus replacing an
entry of a matrix by zero can increase its operator norm. On the other hand,
The Frobenius norm of a matrix is diminished if any of its entries is replaced
by one with smaller absolute value. It is an interesting fact that among all
unitarily invariant norms, the Frobenius norm (and its constant multiples, of
course) is the only one that has this property; see [21].

In this section we study the norm variations of a matrix when some of its
diagonals are replaced by zeros.

A matrix A = (aij) is said to have upper bandwidth q if aij = 0 whenever
j − i > q; it has lower bandwidth p if aij = 0 whenever i − j > p. For
example, tridiagonal matrices have both upper and lower bandwidths 1; upper
triangular matrices have lower bandwidth 0.

For A ∈ Mn, let D0(A) be the diagonal part of A, i.e., the matrix obtained
from A by replacing all its off-diagonal entries by zeros. For 1 ≤ j ≤ n − 1,
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let Dj(A) be the matrix obtained from A by replacing all its entries except
those on the jth superdiagonal by zeros. Likewise, let D−j(A) be the matrix
obtained by retaining only the jth subdiagonal of A.

Let ω = e2πi/n, i =
√

−1 and let U be the diagonal matrix with entries
1, ω, ω2, . . . , ωn−1 down its diagonal. Then we have

D0(A) =
1
n

n−1∑
j=0

U jAU∗j . (4.75)

From this expression it follows immediately that for any weakly unitarily
invariant norm

‖D0(A)‖ ≤ ‖A‖. (4.76)

Next comes the key idea. The formula (4.75) represents the main diagonal
as an average over unitary conjugates of A. It turns out that this idea can be
generalized by considering a continuous version, i.e., using integrals, so that
every diagonal has a similar expression. For each real number θ, let Uθ be
the diagonal matrix with entries eirθ, 1 ≤ r ≤ n, down its diagonal. Then the
(r, s) entry of the matrix UθAU∗

θ is ei(r−s)θars. Hence we have

Dk(A) =
1
2π

∫ π

−π

eikθUθAU∗
θ dθ. (4.77)

Note that when k = 0, this gives another representation of D0(A). From
(4.77) we get

‖Dk(A)‖ ≤ ‖A‖, 1 − n ≤ k ≤ n − 1 (4.78)

for any weakly unitarily invariant norm. In the sequel all norms are weakly
unitarily invariant unless otherwise stated.

We can also use (4.77) to write

Dk(A) + D−k(A) =
1
2π

∫ π

−π

(2 cos kθ)UθAU∗
θ dθ.

Hence
‖Dk(A) + D−k(A)‖ ≤ 1

2π

∫ π

−π

|2 cos kθ|dθ‖A‖.

It is easy to evaluate this integral. We get

‖Dk(A) + D−k(A)‖ ≤ 4
π

‖A‖. (4.79)

Let T3(A) = D−1(A)+D0(A)+D1(A) be the tridiagonal part of A. Using
the same argument we see that

‖T3(A)‖ ≤ 1
2π

∫ π

−π

|1 + 2 cos θ|dθ‖A‖.
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Once again, it is easy to evaluate the integral. We now get

‖T3(A)‖ ≤
(

1
3

+
2
√

3
π

)
‖A‖. (4.80)

The constant factor in the inequality (4.80) is smaller than 1.436, and that
in (4.79) is smaller than 1.274.

More generally, consider the trimming of A obtained by replacing all its
diagonals outside the band −k ≤ j ≤ k by zeros; i.e., consider the matrices

T2k+1(A) ≡
k∑

j=−k

Dj(A), 1 ≤ k ≤ n − 1.

In a similar way we can derive

‖T2k+1(A)‖ ≤ Lk‖A‖ (4.81)

where the number Lk is the Lebesgue constant:

Lk =
1
2π

∫ π

−π

|
k∑

j=−k

eijθ|dθ.

It is known that

Lk ≤ log k + log π +
2
π

(
1 +

1
2k

)
,

and that
Lk =

4
π2 log k + O(1).

Let Δ be the linear map on the space of matrices of a fixed size that takes
a matrix B to its upper triangular part; i.e., Δ acts by replacing all entries of
a matrix below the main diagonal by zeros. Given a k ×k matrix B, consider

the matrix A =
[

0 B∗

B 0

]
. Then

T2k+1(A) =
[

0 Δ(B)∗

Δ(B) 0

]
.

Since the singular values of A are the singular values of B counted twice as
often, from (4.81) via the Fan dominance principle we obtain

‖Δ(B)‖ ≤ Lk‖B‖

for every unitarily invariant norm.
Now let us show that the bounds (4.79) and (4.80) are sharp for the trace

norm in an asymptotic sense and therefore, by a duality argument they are
sharp for the operator norm.
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Let A = E, the n × n matrix with all entries equal to 1. Then

D1(A) + D−1(A) = B

where B is the tridiagonal matrix with each entry on its first superdiagonal
and the first subdiagonal equal to 1, and all other entries equal to 0. The
eigenvalues of B are 2 cos(jπ/n + 1), j = 1, . . . , n [17, p.60]. Here

‖B‖1

‖A‖1
=

1
n

n∑
j=1

∣∣∣∣2 cos
jπ

n + 1

∣∣∣∣ . (4.82)

Let f(θ) = |2 cos θ|. The sum

1
n + 1

n+1∑
j=1

∣∣∣∣2 cos
jπ

n + 1

∣∣∣∣
is a Riemann sum for the function π−1f(θ) over a subdivision of the interval
[0, π] into n + 1 equal parts. As n → ∞, this sum and the one in (4.82) tend
to the same limit

1
π

∫ π

0
|2 cos θ|dθ =

1
2π

∫ π

−π

|2 cos θ|dθ =
4
π

.

This shows that the inequality (4.79) can not be improved if it has to be valid
for all dimensions n and for all unitarily invariant norms.

The same example shows that the inequality (4.80) is also sharp.

Notes and References. This section is taken from R. Bhatia [18]. S.
Kwapien and A. Pelczynski proved in [65] that the norm of the triangular
truncation operator Δ on (Mn, ‖ · ‖∞) grows like log n and they gave some
applications of this estimate.



5. Solution of the van der Waerden Conjecture

Let A = (aij) be an n × n matrix. The permanent of A is defined by

perA =
∑

σ∈Sn

n∏
i=1

aiσ(i)

where Sn denotes the symmetric group of degree n, i.e., the group of all
permutations of N ≡ {1, 2, . . . , n}. We will consider the columns a1, . . . , an

of A as vectors in C
n and write

perA = per(a1, a2, . . . , an).

It is clear that perA is a linear function of aj for each j and we have the
following expansion formulae according to columns or rows:

perA =
n∑

i=1

aijperA(i|j) =
n∑

j=1

aijperA(i|j) (5.1)

for all i and j, where A(i|j) denotes the matrix obtained from A by deleting
the ith row and jth column. The permanent function is permutation-invariant
in the sense that

perA = per(PAQ)

for all permutation matrices P and Q.
Recall that a square entrywise nonnegative matrix is called doubly stochas-

tic if all its row and column sums are one. Let Jn be the n × n matrix whose
all entries are 1/n.

The purpose of this chapter is to prove the following theorem.

Theorem 5.1 If A is an n × n doubly stochastic matrix, then

perA ≥ n!/nn, (5.2)

with equality if and only if A = Jn.

The assertion in Theorem 5.1 is known as the van der Waerden conjecture
posed in 1926 [83]. It had been a long-standing open problem which, according

X. Zhan: LNM 1790, pp. 99–109, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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to D. E. Knuth [63], had resisted the attacks of many strong mathematicians.
Around 1980 this famous beautiful conjecture was proved independently by
G. P. Egorychev [33] and D. I. Falikman [35]. Their proofs are different but
both use a special case of the Alexandroff-Fenchel inequality on the geometry
of convex sets [1, 36]. Falikman’s method proves the inequality (5.2) without
showing that Jn is the unique minimizing matrix.

In the course of looking for a proof of the van der Waerden conjecture, M.
Marcus, M. Newman, and D. London made key contributions. Let Ωn be the
set of all n × n doubly stochastic matrices. Call a matrix A ∈ Ωn satisfying

perA = min
X∈Ωn

perX

a minimizing matrix. Marcus and Newman hoped to prove the van der Waer-
den conjecture by establishing properties of minimizing matrices and then
showing that only the matrix Jn satisfies these properties. This attacking
strategy turns out to be correct.

Now we give a self-contained proof of Theorem 5.1 following Egorychev’s
argument.

Lemma 5.2 (Frobenius-König) Let A be an n×n nonnegative matrix. Then
perA = 0 if and only if A contains an s × t zero submatrix such that s + t =
n + 1.

Proof. For nonempty α, β ⊆ N we denote by A[α|β] the submatrix of A
with rows indexed by α and columns by β, and denote αc = N\α. Obviously
for any n × n matrix A, if A[α|αc] = 0, then

perA = perA[α|α] perA[αc|αc]. (5.3)

If A is nonnegative then for any α, β ⊂ N with |α| + |β| = n (|α| means the
cardinality of α),

perA ≥ perA[α|βc] perA[αc|β]. (5.4)

Now suppose A[α|β] = 0 with |α| + |β| = n + 1. Since the permanent
is permutation-invariant, we may assume α = {1, . . . , k}, β = {k, . . . , n}
for some k. Then A[α|αc] = 0 and since the last column of A[α|α] is 0,
perA[α|α] = 0. By (5.3) we get perA = 0.

Conversely suppose perA = 0. We use induction on n. The cases n = 1, 2
are trivially true. Assume that the assertion is true for all orders less
than n. We may assume the (n, n) entry of A, ann > 0. Then (5.4) im-
plies perA[N\{n}|N\{n}] = 0. By the induction assumption, there exist
α1, β1 ⊂ {1, . . . , n − 1} with |α1| + |β1| = n such that A[α1|β1] = 0. Since
perA = 0, (5.4) implies that one of perA[α1|βc

1] and perA[αc
1|β1] vanishes. We

may assume perA[α1|βc
1] = 0 (the other case is similar). Using the induction

assumption again, there exist α2 ⊆ α1, β2 ⊆ βc
1 with |α2| + |β2| = |α1| + 1

such that A[α2|β2] = 0. Now
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|α2| + |β1 ∪ β2| = |α2| + |β1| + |β2| = n + 1

and
A[α2|β1 ∪ β2] = 0.

This completes the proof. ��

Lemma 5.2 is equivalent to the following: A necessary and sufficient con-
dition for every generalized diagonal of an n × n arbitrary matrix A, i.e.,
(a1σ(1), . . . , anσ(n)) for some σ ∈ Sn, to contain a zero entry is that A have
an s × t zero submatrix such that s + t = n + 1.

Corollary 5.3 The permanent of a doubly stochastic matrix is positive.

Proof. Let A be an n × n doubly stochastic matrix. If perA = 0, then, by
Lemma 5.2, there exist permutation matrices P and Q such that

PAQ =
[

B C
0 D

]

where the zero submatrix in the bottom left corner is s× t with s+ t = n+1.
Denote by γ(X) the sum of all the entries of a matrix X. Since A ∈ Ωn

implies PAQ ∈ Ωn,

n = γ(PAQ) ≥ γ(B) + γ(D).

Now all the nonzero entries in the first t columns are contained in B, and
thus γ(B) = t. Similarly γ(D) = s. Hence

n ≥ γ(B) + γ(D) = s + t

which is impossible, since s + t = n + 1. ��

An n × n matrix is said to be partly decomposable if it contains a k ×
(n − k) zero submatrix for some 1 ≤ k ≤ n − 1. In other words, there exist
permutation matrices P and Q such that

PAQ =
[

B C
0 D

]

where B and D are square. If A is not partly decomposable, it is called fully
indecomposable.

Corollary 5.4 A nonnegative n-square (n ≥ 2) matrix A is fully indecom-
posable if and only if

perA(i|j) > 0 for all i and j.
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Proof. By Lemma 5.2, perA(i|j) = 0 for some i, j if and only if the submatrix
A(i|j) and hence A contains an s × t zero submatrix with s + t = n. In other
words, perA(i|j) = 0 for some pair i, j if and only if A is partly decomposable.

��

Lemma 5.5 If A is a partly decomposable doubly stochastic matrix, then there
exist permutation matrices P, Q such that PAQ is a direct sum of doubly
stochastic matrices.

Proof. Since A is partly decomposable, there exist permutation matrices P
and Q such that

PAQ =
[

B C
0 D

]
where B and D are square. Using the same argument as in the proof of
Corollary 5.3 it is easy to show C = 0. ��

Denote by e ∈ R
n the vector with all components equal to 1. Then the

condition that all the row and column sums of an n-square matrix A be 1
can be expressed as Ae = e and AT e = e. From this it is obvious that if A is
doubly stochastic then so are AT A and AAT .

Lemma 5.6 If A is a fully indecomposable doubly stochastic matrix, then so
are AT A and AAT .

Proof. We have already remarked that both AT A and AAT are doubly
stochastic. Suppose AT A is partly decomposable and A is n × n, i.e., there
exist nonempty α, β ⊂ N such that

|α| + |β| = n and AT A[α|β] = 0.

The latter condition is equivalent to

(A[N|α])T A[N|β] = 0,

which implies that the sum of the numbers of zero rows of A[N|α] and of
A[N|β] is at least n.

Let t be the number of zero rows of A[N|α]. If t ≥ n − |α|, then A[N|α]
and hence A has an |α| × (n − |α|) zero submatrix, which contradicts the
assumption that A is fully indecomposable. But if t < n − |α| (= |β|), the
number s of zero rows of A[N|β] satisfies s ≥ n − t > n − |β|, so that A is
partly decomposable, which again contradicts the assumption.

In the same way we can show that AAT is fully indecomposable. ��

Lemma 5.7 If A is a fully indecomposable doubly stochastic matrix and
Ax = x for some real vector x, then x is a constant multiple of e.



5. The van der Waerden Conjecture 103

Proof. Suppose, to the contrary, that x has some components unequal. Since
A is doubly stochastic, Ax = x implies A(x+ξe) = x+ξe for any real number
ξ. Thus we may assume that all components of x are nonnegative and some
are zero. Let x = (xi), A = (aij) and α = {i : xi = 0}, β = {j : xj > 0}.
Then ∑

j

aijxj = xi implies aij = 0

whenever i ∈ α and j ∈ β. Hence A is partly decomposable, contradicting
the assumption. ��

Lemma 5.8 (M. Marcus and M. Newman [70]) A minimizing matrix is fully
indecomposable.

Proof. Let A ∈ Ωn be a minimizing matrix. Suppose that A is partly de-
composable. Then by Lemma 5.5 there exist permutation matrices P and Q
such that PAQ = B ⊕ C where B = (bij) ∈ Ωk and C = (cij) ∈ Ωn−k. We
will show that there exists a doubly stochastic matrix whose permanent is
less than perA.

Denote Ã ≡ PAQ. Since perA = perÃ > 0 by Corollary 5.3, using the
expansion formula (5.1) and the permutation-invariance of the permanent
function we can assume without loss of generality that

bkkperÃ(k|k) > 0 and c11perÃ(k + 1|k + 1) > 0.

Let ε be any positive number smaller than min(bkk, c11) and define

G(ε) ≡ Ã − ε(Ekk + Ek+1,k+1) + ε(Ek,k+1 + Ek+1,k)

where Eij is the matrix whose only nonzero entry is 1 in (i, j). Then G(ε) ∈
Ωn and

perG(ε) = perÃ − εperÃ(k|k) + εperÃ(k|k + 1)
−εperÃ(k + 1|k + 1) + εperÃ(k + 1|k) + O(ε2)

= perA − ε[perÃ(k|k) + perÃ(k + 1|k + 1)] + O(ε2),

since perÃ(k|k + 1) = perÃ(k + 1|k) = 0 by Lemma 5.2. Also,

perÃ(k|k) + perÃ(k + 1|k + 1) > 0

and therefore for sufficiently small positive ε

perG(ε) < perA,

contradicting the assumption that A is a minimizing matrix. ��

Lemma 5.9 (M. Marcus and M. Newman [70]) If A = (aij) is a minimizing
matrix and ahk > 0, then
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perA(h|k) = perA.

Proof. Let C(A) be the face of the convex set Ωn of least dimension con-
taining A in its interior, i.e.,

C(A) ≡ {X = (xij) ∈ Ωn : xij = 0 if (i, j) ∈ Δ}

where Δ ≡ {(i, j) : aij = 0}. Then C(A) is defined by the following condi-
tions:

xij ≥ 0, i, j = 1, . . . , n; xij = 0, (i, j) ∈ Δ;
n∑

j=1

xij = 1, i = 1, . . . , n;
n∑

i=1

xij = 1, j = 1, . . . , n.

According to the Lagrange multiplier method, there exist λ = (λ1, . . . , λn)T , μ =
(μ1, . . . , μn)T ∈ R

n such that the real function f defined on C(A) by

f(X) = perX −
n∑

i=1

λi

(
n∑

k=1

xik − 1

)
−

n∑
j=1

μj

(
n∑

k=1

xkj − 1

)

attains its local minimum at A. Therefore for (i, j) ∈ Δ

0 =
∂f(X)
∂xij

∣∣∣∣
X=A

= perA(i|j) − λi − μj . (5.5)

In view of (5.1), (5.5) implies

perA = λi +
n∑

j=1

aijμj for all i,

perA =
n∑

i=1

λiaij + μj for all j

which can be written equivalently as

(perA)e = λ + Aμ,

(perA)e = AT λ + μ.

These two relations, together with AT e = e and Ae = e, yield

AT Aμ = μ, AAT λ = λ. (5.6)

By Lemma 5.8, A is fully indecomposable. Therefore both AT A and AAT are
fully indecomposable and doubly stochastic by Lemma 5.6. Then applying
Lemma 5.7 to (5.6) we deduce that both λ and μ are constant multiples of
e, say, λ = ce and μ = de. It follows from (5.5) that
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perA(i|j) = c + d for all (i, j) ∈ Δ.

Hence

perA =
n∑

j=1

aijperA(i|j)

=
n∑

j=1

aij(c + d)

= c + d

= perA(i|j)

for all (i, j) ∈ Δ. ��

Lemma 5.10 (D. London [69]) If A is a minimizing matrix then

perA(i|j) ≥ perA for all i and j.

Proof. Let P = (p1, . . . , pn) be the permutation matrix corresponding to a
permutation σ ∈ Sn, i.e., pj = eσ(j) where e1, . . . , en are the standard basis
for R

n. For 0 ≤ θ ≤ 1 define

ψP (θ) = per((1 − θ)A + θP ).

Since perA is a linear function of each column of A = (a1, . . . , an),

ψP (θ) = per((1 − θ)A + θP )
= (1 − θ)nperA + θ2ϕ(θ)

+(1 − θ)n−1θ
n∑

t=1

per(a1, . . . , at−1, pt, at+1, . . . , an)

where ϕ(θ) is a polynomial in θ. Thus

ψ′
P (0) =

n∑
t=1

perA(σ(t)|t) − nperA. (5.7)

Since ψP (0) = perA is the minimum value and (1−θ)A+θP ∈ Ωn, ψ′
P (0) ≥ 0.

From (5.7) we get
n∑

t=1

perA(σ(t)|t) ≥ nperA (5.8)

for all σ ∈ Sn.
Lemma 5.8 asserts that A is fully indecomposable. Then it follows from

Corollary 5.4 that for every pair i, j, perA(i|j) > 0. Hence there is a permu-
tation σ such that i = σ(j) and aσ(t),t > 0 for 1 ≤ t ≤ n, t = j. By Lemma
5.9 we have
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perA(σ(t)|t) = perA, 1 ≤ t ≤ n, t = j. (5.9)

Combining (5.8) and (5.9) yields perA(i|j) ≥ perA for all i, j. ��

Next we derive another key ingredient of the proof of van der Waerden’s
conjecture: the Alexandroff-Fenchel inequality. A real n×n symmetric matrix
Q defines a symmetric inner product 〈x, y〉Q ≡ xT Qy on R

n. If Q has one
positive eigenvalue and n−1 negative eigenvalues, then the space R

n equipped
with the inner product defined by Q is called a Lorentz space. We call a vector
x ∈ R

n positive if 〈x, x〉Q > 0.

Lemma 5.11 Let a be a positive vector in a Lorentz space with a symmetric
inner product 〈·, ·〉Q. Then for any b ∈ R

n

〈a, b〉2Q ≥ 〈a, a〉Q〈b, b〉Q

and equality holds if and only if b = λa for some constant λ.

Proof. Consider the quadratic polynomial

f(λ) ≡ 〈λa + b, λa + b〉Q = 〈a, a〉Qλ2 + 2〈a, b〉Qλ + 〈b, b〉Q.

We have assumed that the inner product is defined by Q, i.e.,

〈x, y〉Q = xT Qy.

By the minimax principle for eigenvalues of Hermitian matrices, for any sub-
space S ⊂ R

n with dimS = 2,

0 > λ2(Q) ≥ min
x∈S, ‖x‖=1

〈x, x〉Q. (5.10)

Assume b = λa for all λ ∈ R. Then a and b spans a 2-dimensional subspace
of R

n. It follows from (5.10) that there are α, β ∈ R such that

〈αa + βb, αa + βb〉Q < 0.

But since 〈a, a〉Q > 0, β = 0. Thus f(α/β) < 0. Therefore f(λ) has a positive
discriminant, i.e., 〈a, b〉2Q ≥ 〈a, a〉Q〈b, b〉Q. ��

Given vectors a1, a2, . . . , an−2 in R
n with positive components, we define

an inner product on R
n by

〈x, y〉Q ≡ per(a1, a2, . . . , an−2, x, y), (5.11)

that is, 〈x, y〉Q = xT Qy where Q = (qij) is given by

qij = per(a1, a2, . . . , an−2, ei, ej). (5.12)

Lemma 5.12 R
n with the inner product (5.11) is a Lorentz space.



5. The van der Waerden Conjecture 107

Proof. We need to show that the symmetric matrix Q defined in (5.12) has
one positive eigenvalue and n−1 negative eigenvalue. Use induction on n. For

n = 2, Q =
[

0 1
1 0

]
and the assertion is true. Now assume that the assertion

is true for R
n−1 (n ≥ 3) and consider the case n.

We first show that 0 is not an eigenvalue of Q. Suppose Qc = 0 for some
c ∈ R

n. Then eT
i Qc = 0, which means

per(a1, . . . , an−2, c, ei) = 0, 1 ≤ i ≤ n. (5.13)

For a fixed i, by the induction hypothesis,

per[(a1, . . . , an−3, x, y, ei)(i|n)]

defines an inner product with which R
n−1 is a Lorentz space. Applying

Lemma 5.11 with the assumption that a1, . . . , an−2 have positive components
and (5.13) we obtain

per(a1, . . . , an−3, c, c, ei) ≤ 0 (5.14)

for i = 1, . . . , n. On the other hand, from

0 = cT Qc = 〈c, c〉Q =
n∑

i=1

an−2(i)per(a1, . . . , an−3, c, c, ei),

each an−2(i) > 0 and (5.14) we have

per(a1, . . . , an−3, c, c, ei) = 0 1 ≤ i ≤ n. (5.15)

Therefore the equality case in (5.14) holds. By Lemma 5.11, for each i there
is a number λi such that c = λian−2 except the ith component. Since n ≥ 3,
this is possible only when all λi, i = 1, . . . , n are equal. So, in fact, c = λan−2.
In view of (5.15) we must have λ = 0, that is, c = 0. This proves that Q is
nonsingular,or equivalently, 0 is not an eigenvalue.

Next consider the matrix Qθ whose (i, j) entry is given by

per(θa1 + (1 − θ)e, . . . , θan−2 + (1 − θ)e, ei, ej)

where e = (1, 1, . . . , 1)T . Then for each θ ∈ [0, 1], by what we have just
proved, 0 is not an eigenvalue of Qθ. Since eigenvalues are continuous func-
tions of matrix entries, Q = Q1 and Q0 have the same number of positive
eigenvalues. It is easy to see that Q0 has exactly one positive eigenvalue. This
completes the proof. ��

Lemma 5.13 (Alexandroff-Fenchel) Let a1, a2, . . . , an−1 be vectors in R
n

with positive components. Then for any b ∈ R
n
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(per(a1, . . . , an−1, b))2

≥ per(a1, . . . , an−1, an−1)per(a1, . . . , an−2, b, b), (5.16)

with equality if and only if b = λan−1 for some constant λ. The inequality
(5.16) itself also holds when a1, a2, . . . , an−1 have nonnegative components.

Proof. This is a consequence of Lemmas 5.12 and 5.11. ��

Lemma 5.14 If A is a minimizing matrix, then

perA(i|j) = perA for all i and j.

Proof. Let A = (aij) = (a1, . . . , an). Suppose the assertion is false. Then by
Lemma 5.10, there is a pair r, s such that perA(r|s) > perA (> 0). Since A is
fully indecomposable by Lemma 5.8, every row of A has at least two positive
entries. Hence there is a t = s such that art > 0.

Now apply Lemma 5.13 to get

(perA)2 = [per(a1, . . . , as, . . . , at, . . . , an)]2

≥ per(a1, . . . , as, . . . , as, . . . , an)per(a1, . . . , at, . . . , at, . . . , an)

=

(
n∑

k=1

aksperA(k|t)
)(

n∑
k=1

aktperA(k|s)
)

. (5.17)

Every subpermanent above is at least perA by Lemma 5.10 and perA(r|s) >
perA. Since perA(r|s) is multiplied by art, which is positive, the last product
in (5.17) is greater than (perA)2, contradicting the inequality (5.17). ��

Lemma 5.15 If A = (a1, . . . , an) is a minimizing matrix and A′ is the matrix
obtained from A by replacing both ai and aj by (ai + aj)/2 for any pair i, j,
then A′ is again a minimizing matrix.

Proof. Obviously A′ is doubly stochastic. By (5.1) and Lemma 5.14 we have

perA′ =
1
2
perA +

1
4
per(a1, . . . , ai, . . . , ai, . . . , an)

+
1
4
per(a1, . . . , aj , . . . , aj , . . . , an)

=
1
2
perA +

1
4

n∑
k=1

akiperA(k|j) +
1
4

n∑
k=1

akjperA(k|i)

= perA.

��
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Proof of Theorem 5.1. Let A = (a1, . . . , an) be a minimizing matrix. We
consider an arbitrary column of A, say, an. Since A is fully indecomposable
by Lemma 5.8, every row of A has at least two positive entries. Hence a finite
number of applications of Lemma 5.15 to the columns a1, . . . , an−1 yields a
minimizing matrix A′ which also has an as its last column and whose other
columns a′

1, . . . , a
′
n−1 all have positive components.

Now apply Lemma 5.13 to per(a′
1, . . . , a

′
n−1, an). By expanding the perma-

nents on both sides of the inequality using Lemma 5.14, we see that equality
holds. It follows that an is a multiple of a′

n−1 and similarly we find that an

is a multiple of a′
i for all 1 ≤ i ≤ n − 1. But since the sum of the components

of each of a′
1, . . . , a

′
n−1, an is 1, we obtain an = a′

i, i = 1, . . . , n − 1. Thus
e =

∑n−1
i=1 a′

i + an = nan and hence an = n−1e.
In the same way we can show that each column of A is n−1e, that is,

A = Jn. This completes the proof. ��

Notes and References. The presentation of the proofs given here follows
the expositions by H. Minc [75], J. H. van Lint [67] and T. Ando [5]. For the
history of the van der Waerden conjecture see [75] and [68].
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