TOPICS IN INEQUALITIES

Hojoo Lee

Version 0.5 [2005/10/30]

Introduction

Inequalities are useful in all fields of Mathematics. The purpose in this book is to present standard techniques
in the theory of inequalities. The readers will meet classical theorems including Schur’s inequality, Muirhead’s
theorem, the Cauchy-Schwartz inequality, AM-GM inequality, and Holder’s theorem, etc. There are many
problems from Mathematical olympiads and competitions. The book is available at

http://my.netian.com/~ideahitme/eng.html

I wish to express my appreciation to Stanley Rabinowitz who kindly sent me his paper On The Computer
Solution of Symmetric Homogeneous Triangle Inequalities. This is an unfinished manuscript. I would
greatly appreciate hearing about any errors in the book, even minor ones. You can send all comments to
the author at hojoolee@korea.com.

To Students

The given techniques in this book are just the tip of the inequalities iceberg. What young students read
this book should be aware of is that they should find their own creative methods to attack problems. It’s
impossible to present all techniques in a small book. I don’t even claim that the methods in this book are
mathematically beautiful. For instance, although Muirhead’s theorem and Schur’s theorem which can be
found at chapter 3 are extremely powerful to attack homogeneous symmetric polynomial inequalities, it’s
not a good idea for beginners to learn how to apply them to problems. (Why?) However, after mastering
homogenization method using Muirhead’s theorem and Schur’s theorem, you can have a more broad mind
in the theory of inequalities. That’s why I include the methods in this book. Have fun!
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Chapter 1

100 Problems

FEach problem that I solved became a rule, which served afterwards to solve other problems. Rene Descartes

I1. (Hungary 1996) (a+b=1, a,b>0)

a? b2
+

>
a+1 b+1—

Wl =

I 2. (Columbia 2001) (z,y € R)
3(x+y+1)2+1>3zy

I3. 0<z,y<1)
v +y" > 1

I 4. (APMC 1993) (a,b > 0)

2 ) . 3
<\/E+\/5> _a+ Va?bt Vab? +b _a+ab+b _ <W+\7b7>
2 = 1 = 3 = 2

I 5. (Czech and Slovakia 2000) (a,b > 0)
1 1 a b
3, /9 nl=+=)> 3\/7 3\/>
\/ (a+ D) il IRV Vi
16. (Die VIWURZEL, Heinz-Jiirgen Seiffert) (zy > 0,2,y € R)

2xy |22 + 92 T+y
> [
sc—l—yjL 2 = vyt 2

I 7. (Crux Mathematicorum, Problem 2645, Hojoo Lee) (a,b,c > 0)

2@+ +¢%)  9a+b+c)?

>33
abc (@ +b02+¢2) —
I18. (z,y,2>0)
S+ |m—y\+|y;z|+|z—x\ > a:+g;+z

19. (a,b,c,x,y,z>0)

Y (a+z)(b+y)(c+2) > Vabe + Yryz



I110. (z,y,z>0)
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Y
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I111. (z+y+2=1, z,y,2>0)

T Y z 3
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Vi—-z 11—y V1—=z 2

I12. (Iran 1998) (% + =+ % =2, x,y,2 > 1)

1
Yy

Vity+tz>Ve—1+y—1+vVz—1
I13. (KMO Winter Program Test 2001) (a,b,c > 0)

V(a2 + b2c + c2a) (ab? + be2 + ca?) > abe + /(a3 + abe) (b3 + abe) (c3 + abe)

I14. (KMO Summer Program Test 2001) (a,b,c > 0)

\/a4+b4+c4+\/a2l)2+b202+02a2 > \/a3b+b3c+c3a+\/ab3+bc3+ca3

I 15. (Gazeta Matematica, Hojoo Lee) (a,b,c > 0)

\/a4+a2b2+b4+\/b4+b2c2—|—c4+\/c4+62a2—|—a42a\/2a2+bc—|—b\/2b2+ca—|—cx/262+ab

I116. (a,b,ceR)
3v2

\/a2—|—(1—b)2—|—\/b2+(1—c)2+\/02+(1—a)2272

I117. (a,b,c>0)

Va2 —ab+ b2+ /b2 — be + 2 > /a2 + ac + 2
I 18. (Belarus 2002) (a,b,c,d > 0)

2|ad — be|
>Va2+ 02+ VE+d2>\(a+0)?+ (b+d)?
Vi(a+ )2+ (b+d)? Vi s )

I 19. (Hong Kong 1998) (a,b,c > 1)

Via+e)? +(b+d)? +

Va—1+Vb—1++vVe—1<+/clab+1)

I 20. (Carlson’s inequality) (a,b,c > 0)

i/(a—l—b)(b—&—c)(c—&—a) - \/ab+bc+ca
8 - 3

I21. (Korea 1998) (x +y + z = ayz, z,y,z > 0)

1 1 1
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Vita?  J1+y2 V1i+22
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I 22. (IMO 2001) (a,b,c > 0)

a . b L c 51
VaZz +8bc¢ Vb2 +8ca V2 + 8ab

I 23. (IMO Short List 2004) (ab+bc+ca =1, a,b,c > 0)

1 1 1 1
€/+6b+€/+66+€/+60§
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I24. (a,b,c>0)

Vab(a +b) + /be(b + ¢) + v/ca(c + a) > \/4abc + (a + b)(b+ ¢)(c + a)

I 25. (Macedonia 1995) (a,b,c > 0)

a b c
1/ +4/ +4/ >2
b+c c+a a+

I 26. (Nesbitt’s inequality) (a,b,c > 0)

a n b n c
b+c c+a a+bd

I27. (IMO 2000) (abc =1, a,b,c > 0)

I [C R

I 28. ([ONI], Vasile Cirtoaje) (a,b,c > 0)

ed )t o) o) o) o)

I 29. (IMO Short List 1998) (zyz =1, z,y,z > 0)

3
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— 4

I 30. (IMO Short List 1996) (abc =1, a,b,c > 0)

ab L be L ca <
ad+b+ab W5 +cP4be cPH4ad+ca T

I31. (IMO 1995) (abc =1, a,b,c > 0)

1 N 1 " 1 S 3
a3(b+c) b(c+a) Ala+d) 2
I 32. (IMO Short List 1993) (a,b,c,d > 0)

a b c d
b+ 2 +3d ct2dt3a  dt2a+3b  at2btie

I 33. (IMO Short List 1990) (ab+ bc+ cd+da =1, a,b,c,d > 0)

Y
wl N
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b+c+d+c+d+a+d+a+b+a+b+c

1
> -
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I 34. (IMO 1968) (1’1,5E2 > 0,y1, Y2, 21,22 € R,xlyl > 212,x2y2 > 222)

1 1 8
+ >
Ty — 212 Taye — 222 T (z1+ 22)(y1 + y2) — (21 + 22)2

I 35. (Romania 1997) (a,b,c > 0)

a? n b> L c? o1> be . ca n ab
a?24+2bc  b24+2ca  c2+2ab T T a?+2bc  b2+2ca 2+ 2ab

I 36. (Canada 2002) (a,b,c > 0)
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I37. (USA 1997) (a,b,c>0)

1 1 1 1
a3+b3+abc+b3+c3+abc+c3+a3+abc

I 38. (Japan 1997) (a,b,c > 0)
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(b+c—a)? (c+a—b)? (a+b—c)? >§
b+c)2+a? (c+a)2+b (a+b2+c2 75

I 39. (USA 2003) (a,b,c > 0)

(2a + b+ c)? (2b+c+a)? (2c+a+b)? <3
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I 40. (Crux Mathematicorum, Problem 2580, Hojoo Lee) (a,b,c > 0)

b+g_a2+bc b24+ca c2+ab

1 1 1> b+c c+a a+b

I 41. (Crux Mathematicorum, Problem 2581, Hojoo Lee) (a,b,c > 0)

a?+bc b2 +ca A+ab
b+c¢ c+a a+b

>a+b+c

I 42. (Crux Mathematicorum, Problem 2532, Hojoo Lee) (a® + b% + c¢? =1, a,b,c > 0)

1 1 1 2(a® + 0% + ¢3)
BT S Sl oL AL
a? * b * 2~ * abc
I 43. (Belarus 1999) (a® + b*> +¢® =3, a,b,c > 0)
1 1 1

3
>7
1+ab+1+bc+1+ca_2

I 44. (Crux Mathematicorum, Problem 3032, Vasile Cirtoaje) (a? + b +¢*> =1, a,b,c > 0)
1 1 1 9
<

1—ab+1—bc+1—ca*2

I 45. (Moldova 2005) (a* +b* +c¢* =3, a,b,c > 0)

1 . 1 . 1
4—ab 4—bc 4—ca

I 46. (Greece 2002) (a® +b%+c? =1, a,b,c > 0)

a n b n c
2+1 241 a?2+1
I47. (Iran 1996) (a,b,c > 0)

> % (a\/a+b\/l;+cﬁ)2

1 1 1 9
(ab+ be + ca) ((a+b)2 + b+ o7 + (c+a)2> > 1

I 48. (Albania 2002) (a,b,c > 0)

14+3
3V3

I 49. (Belarus 1997) (a,b,c > 0)

1
b

1 1
(a® + 0% + %) <a+ +C) >a+b+c+Va?+b?2+

b ¢ a+b b+c c+a
+ >
b ¢ a c¢c+a a+b b+c



I 50.

I 51.

I52.

I53.

I 54.

I55.

I 56.

I57.

I 58.

I 59.

I 60.

I61.

I 62.

(Belarus 1998, 1. Gorodnin) (a,b,c > 0)

(Poland 1996) (a+b+c=1, a,b,c > —3)

a n b + c_ < 9
a?+1 bvV+1 +1710
(Bulgaria 1997) (abc =1, a,b,c > 0)
1 1 1 1 1 1

<
1+a+b+ 1+b+c+1+c+a - 2+a+2+b+2+c
(Romania 1997) (zyz =1, z,y,z > 0)

¥ +y° y? + 2° Pra
336 +$3y3+y6 y6+y323+26 Z6+23$3+$6 -

(Vietnam 1991) (z >y > z > 0)

2y

> 2% + y? + 22

2 2
Yz z'w
+ —
T

+ _
Z Y
(Iran 1997) (z1xox31s = 1,21, %2, 23,24 > 0)
3 3 3 3 1 1 1 1
ri+xy+a3+xy > max | 21 +x0+r3+ 24, —+ —+ — + —
X To T3 T4
(Hong Kong 2000) (abc =1, a,b,c > 0)
1+ab2+1+b02+1+ca2 18
3 a3 SRy
(Hong Kong 1997) (z,y,z > 0)
3+V3 S ryz(z +y+ 2+ /2% +y? + 22)
9 T (22+y*+22)(xy +yz + 22)
(Czech-Slovak Match 1999) (a,b,c > 0)

a L b L c S 1
b+2c c¢c+2a a+2b—
(Moldova 1999) (a,b,c > 0)
ab be ca a b c
>

clc+a) Jra(a—&—b) er(b—i—c) - c+a+b—|—a+c+b
(Baltic Way 1995) (a,b,c,d > 0)

a+c b+d c+a d+b

a+b b+c c+d d+a

([ONT], Vasile Cirtoaje) (a,b,c,d > 0)

a—b+b—c+c—d+d—a>0
b+c c¢c+d d+a a+b—

(Poland 1993) (x,y,u,v > 0)

J:y+a:v—|—uy+uv> Yy n uv
r+y+u-+tov T r+y u+t+wv




I 63. (Belarus 1997) (a,z,y,z > 0)

a—l—ym a—+z a+x a—+z +a+gc +a+yz

Y+ z>2r+y+z2> x Y
a+x a+x a+y a+z a+y a+z

I 64. (Lithuania 1987) (z,y,z > 0)

a® y® 23 LTyt

x2+xy+y2+y2—|—yz+z2+22—|—zx+x2_ 3

I 65. (Klamkin’s inequality) (-1 < z,y,2z < 1)

1 1
- 00-91-2  (r00+niis >

166. (zy+yz+zx=1, x,y,2>0)

L LI 20(1—22)  2y(1—9?)  2z(1-2?%)
1+.’I32 1_|_y2 1+Z2 — (1+$2)2 (1+y2)2 (1_|_Z2)2

I67. (Russia 2002) (z+y+2=3, z,y,2 > 0)

VT A+ G+ VE > ey e+

I 68. (APMO 1998) (a,b,c > 0)

(1+%) <1+i> (1+2)22<1+ai§/%;c)

I 69. (Elemente der Mathematik, Problem 1207, Sefket Arslanagié) (z,y,z > 0)

r+y+z

r y
+ 3./Tyz

z
+-==>
Yy oz T
170. (Die VWURZEL, Walther Janous) (z+y+z2=1, z,y,2 > 0)
L+ 2)A+y) (A +2) = (1 -2+ (1 -y + (1 - 2%)°
I 71. (United Kingdom 1999) (p+q+7r =1, p,q,7 > 0)
7(pq + qr +rp) < 2+ 9pgr

I172. (USA 1979) (z+y+2=1, ,y,2 > 0)

=

2342+ 22+ bryz >

I73. (IMO 1984) (z+y+z2=1, z,y,2 > 0)
7
0§xy+yz+zx—2xyz§ﬁ

I 74. (IMO Short List 1993) (a+b+c+d=1, a,b,c,d > 0)

1 176
< — -
abc + bed + cda + dab < o7 + o7 abed

I75. (Poland 1992) (a,b,c € R)

(a+b—c)*(b+c—a)* (c+a—0)*>(a* +b* - ) b* + 2 —a®)(* +a* — b?)



I76.

I77.

I78.

I79.

I 80.

I 81.

I 82.

I 83.

I 84.

I 85.

I 86.

I 87.

I 88.

I 89.

I 90.

(Canada 1999) (z +y+2=1, z,y,2 > 0)

4

2 2 2
< —
xy+yz+zx_27

(Hong Kong 1994) (zy +yz + zx =1, z,y,z > 0)

Iy
@S
w

z(1—y)(1 - 22) +y(1 —22)(1 —2?) + 2(1 —2H)(1 —9?) <
(Vietnam 1996) (2(ab + ac + ad + bc + bd + cd) + abe + bed 4 c¢da + dab = 16, a,b, ¢, d > 0)
a+b+c+d2%(ab—i—ac—i—ad—i—bc—&—bd—i—cd)
(Poland 1998) (a+b—|—c+d—|—e+f: 1, ace + bdf > W%s a,b,c,d, e, f> 0)

1
abc + bed + cde + def +efa+ fab < 36

(Italy 1993) (0 < a,b,c <1)
a?+ b2+ <a’b+bc+ca+1
(Czech Republic 2000) (m,n € N, z € [0,1])
(L= 2" 4+ (1= (1—2)™)" > 1
(Ireland 1997) (a+ b+ ¢ > abe, a,b,c > 0)
a? + b2+ 2 > abe
(BMO 2001) (a+b+ ¢ > abe, a,b,c > 0)
A+ 432> V3abe
(Bearus 1996) (z +y + z = /7yz, =,y,z > 0)
xy+yz+ze>9(x+y+2)
(Poland 1991) (22 + 4% + 22 =2, z,y,2 € R)
r+y+z2<2+zyz
(Mongolia 1991) (a? +b® +¢? =2, a,b,c € R)
la® + 0% + ¢ — abe| < 2V2
(Vietnam 2002, Dung Tran Nam) (a®> +b*> +c¢2 =9, a,b,c € R)
2(a+b+c)—abc <10

(Vietnam 1996) (a,b,c > 0)

(a+b)*+B+c) + (c+a)? > (a* +b* + )

=3 o~

(z,y,2>0)
ryz > (y+z—z)(z+tz—y)(x+y—2)

(Latvia 2002) (ﬁ + ﬁ + 1(;4 + ﬁ =1, a,b,c,d> 0)

1+

abed > 3



I91.

I92.

I 93.

I94.

I95.

I 96.

I97.

I 98.

199

110

(Proposed for 1999 USAMO, [AB, pp.25)) (z,y,z > 1)

2 2 2
7% +2yzyy +2zmzz +2zy Z ( )acy+yz+zx

xyz
(APMO 2004) (a,b,c > 0)
(a® +2)(b* + 2)(c® +2) > 9(ab + be + ca)
(USA 2004) (a,b,c > 0)
(a® —a* +3)(0° —b* +3)(c® = > +3) > (a+b+c)?
(USA 2001) (a* +b*+ ¢ + abc =4, a,b,c > 0)
0<ab+bc+ca—abc<2
(Turkey, 1999) (¢ >b>a > 0)
(a+ 3b)(b+ 4c)(c + 2a) > 60abe
(Macedonia 1999) (a? +b*> +c® =1, a,b,c > 0)
a+btot — >4V3
abc
(Poland 1999) (a+b+c=1, a,b,c>0)
a® + % + ¢ +2V3abe < 1
(Macedonia 2000) (z,y,z > 0)
2? +y* + 22 > V2 (vy + y2)
. (APMC 1995) (m,n € N, z,y > 0)
(n—1)(m —1)(z" ™™ 4+ 3" ™) + (n +m — 1)(z"y™ + 2™y") > nm(z"T™ Ly 4y T
0. ([ONI], Gabriel Dospinescu, Mircea Lascu, Marian Tetiva) (a,b,c > 0)

a® + b+ +2abc+3> (14a)(1+b)(14¢)
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Chapter 2

Substitutions

2.1 Euler’s Theorem and the Ravi Substitution

Many inequalities are simplified by some suitable substitutions. We begin with a classical inequality in
triangle geometry.

What is the first! nontrivial geometric inequality ?

In 1765, Euler showed that

Theorem 1. Let R and r denote the radii of the circumcircle and incircle of the triangle ABC. Then, we
have R > 2r and the equality holds if and only if ABC is equilateral.

Proof. Let BC = a, CA =b, AB = ¢, s = “t*¢ and S = [ABC].2 Recall the well-known identities :

S =gk §=rs S?=s(s—a)(s—b)(s—c). Hence, R > 2r is equivalent to 4% > 22 or abc > 8%2 or

abe > 8(s — a)(s — b)(s — ¢). We need to prove the following. O

Theorem 2. ([AP], A. Padoa) Let a, b, ¢ be the lengths of a triangle. Then, we have
abc > 8(s —a)(s—b)(s—¢) or abc > (b+c—a)(c+a—>b)(a+b—c)
and the equality holds if and only if a =b = c.

First Proof. We use the Ravi Substitution : Since a, b, ¢ are the lengths of a triangle, there are positive reals
x,y, zsuch that a = y+2,b=z+x, c=x+y. (Why?) Then, the inequality is (y +2)(z +z)(z +vy) > 8zyz
for z, y, 2 > 0. However, we get (y + 2)(z +2)(x +y) —8zyz = z(y — 2)> +y(z —2)2 + z(x —y)? > 0. O

Second Proof. ([RI]) We may assume that a > b > c¢. It’s equivalent to
a® +b% 4+ ¢ + 3abe > a*(b+¢) + b*(c + a) + (a +b).

Since c(a+b—c¢) > b(c+a—b) > cla+b—c)?, applying the Rearrangement inequality, we obtain
a-alb+c—a)+b-blcta—b+c-cla+tb—c)<a-alb+c—a)+c-blcta—b)+a-cla+b—c),
a-albt+c—a)+b-blc+a—b)+c-cla+tb—c)<c-alb+c—a)+a-blc+a—0b)+b-cla+b—rc).

Adding these two inequalities, we get the result. O

Exercise 1. Let ABC be a right triangle. Show that R > (1 ++/2)r. When does the equality hold ?

It’s natural to ask that the inequality in the theorem 2 holds for arbitrary positive reals a, b, ¢? Yes ! It’s
possible to prove the inequality without the additional condition that a, b, ¢ are the lengths of a triangle :

1The first geometric inequality is the Triangle Inequality : AB + BC > AC
2In this book, [P] stands for the area of the polygon P.
3For example, we have c(a+b—c) —b(c+a—b) = (b—c)(b+c—a) > 0.

11



Theorem 3. Let x, y, z > 0. Then, we have zyz > (y+z—x)(z +x —y)(x +y — z). The equality holds if
and only if t =y = 2.

Proof. Since the inequality is symmetric in the variables, without loss of generality, we may assume that

x >y > 2 Then, we have z +y > z and z +x > y. If y + 2z > z, then x, y, z are the lengths of the

sides of a triangle. And by the theorem 2, we get the result. Now, we may assume that y + z < . Then,

xyz>0> (y+z—z)z+z—y)(z+y—2). O
The inequality in the theorem 2 holds when some of x, y, z are zeros :

Theorem 4. Let x, y, z > 0. Then, we have xyz > (y+z—z)(z+x —y)(x+y— 2).

Proof. Since x,y,z > 0, we can find positive sequences {zn}, {yn}, {2} for which

lim z, =z, lim y, =y, lim 2z, = z.
n—oo n—oo n—oo

(For example, take x, = x + % (n=1,2,---), etc.) Applying the theorem 2 yields

Now, taking the limits to both sides, we get the result.
O

Clearly, the equality holds when x = y = 2. However, xyz = (y+z2—z)(z+x—y)(z+y—2) and x,y, 2 > 0
does not guarantee that x = y = z. In fact, for x,y, z > 0, the equality xyz = (y+z—2)(z+z—y)(z+y—2)
is equivalent to

r=y=zor x=y,2=0o0r y=2z,x=0 or z=x2,y=0.

It’s straightforward to verify the equality
wyz—(y+z—z)ztz—y)le+ty—z)=az@@—y)(@—-2)+yly—2)y —z) +2(z —2)(z — ).
Hence, the theorem 4 is a particular case of Schur’s inequality.*

Problem 1. (IMO 2000/2) Let a,b,c be positive numbers such that abc = 1. Prove that

ot ) e (e d) o

First Solution. Since abc = 1, we make the substitution a = b=

the given inequality in the terms of x, y, z :

N

%, ,e=Zformw, y, 2> 0.> We rewrite

x z z\ (2
<1+> (yfle—) (—fl+g) <l e ayz>y+z—x)(z+z—y)(r+y—=2).
y y) \z z/) \x x

O

The Rawvi Substitution is useful for inequalities for the lengths a, b, ¢ of a triangle. After the Ravi
Substitution, we can remove the condition that they are the lengths of the sides of a triangle.

Problem 2. (IMO 1983/6) Let a, b, ¢ be the lengths of the sides of a triangle. Prove that
a®b(a —b) + b%c(b — ¢) + c*a(c — a) > 0.

Solution. After settinga=y+ 2, b=z+x, c=x+y for z,y,z > 0, it becomes
) 2?2 22
x3z+y3x+23y 2m2yz+:z:y2z+zy22 oo —+—+—2>2z+y+z,
Y z x
which follows from the Cauchy-Schwartz inequality
2 2 2
x z
(y+ 2+ x) <+y+) > (r+y+2)>%
Y z x

4See the theorem 10 in the chapter 3. Take r = 1.
5For example, take . = 1, y = é, 7= ﬁ
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Problem 3. (IMO 1961/2, Weitzenbock’s inequality) Let a, b, ¢ be the lengths of a triangle with area
S. Show that
a? +b% 4 2 > 4V/38.

Solution. Write a =y + 2, b=z2+z,c=x+y for z,y,z > 0. It’s equivalent to
(W +2)" + (2 +2)" + (2 +1)")* 2 48(2 +y + 2)yz,
which can be obtained as following :
(y+2)°2 4+ z4+2)?+ (x+y)%)? > 16(yz + 2z +xy)*> > 16 - 3(zy - yz + yz - 22 + xy - y2).0
O

Exercise 2. (Hadwiger-Finsler inequality) Show that, for any triangle with sides a, b, ¢ and area S,
2ab + 2bc + 2ca — (a® + b% + ¢?) > 44/38.

Exercise 3. (Pedoe’s inequality) Let a1,by, ¢ denote the sides of the triangle Ay B1Cy with area Fy. Let
as, by, co denote the sides of the triangle Ao BoCo with area Fy. Show that

a12(a22 + b22 — 622) + b12(b22 + 622 — a22) + 612(022 + a22 — b22) > 16F1 F5.

6Here, we used the well-known inequalities p? + ¢ > 2pq and (p + q + )2 > 3(pq + qr + rp).

13



2.2 Trigonometric Substitutions
If you are faced with an integral that contains square root expressions such as
/ﬂdw, /\/Wdy, /\/ﬁdz
then trigonometric substitutions such as x = sint, y = tant, z = sect are very useful. When dealing with
square root expressions, making a suitable trigonometric substitution simplifies the given inequality.

Problem 4. (Latvia 2002) Let a, b, ¢, d be the positive real numbers such that

1 1 1 1

=1.
1+a4+1+b4+1+c4+1+d4

Prove that abed > 3.

Solution. We can write a®> = tan A, b> = tan B, ¢ = tanC, d®> = tan D, where A, B,C,D € (0, g) Then,
the algebraic identity becomes the following trigonometric identity :

cos? A+ cos®? B+ cos? C +cos? D = 1.

Applying the AM-GM inequality, we obtain

Wl

sin? A = 1 — cos? A = cos® B + cos? C' + cos®> D > 3 (cos B cos Ccos D)3 .
Similarly, we obtain
sin? B > 3 (cos C cos D cos A)% ,sin? C' > 3 (cos D cos A cos B)% , and sin? D > 3 (cos A cos B cos C)% .

Multiplying these inequalities, we get the result! O
Exercise 4. ([ONI], Titu Andreescu, Gabriel Dosinescu) Let a, b, ¢, d be the real numbers such that
(1+a®)(1+b*) 1+ (1 +d*) = 16.

Prove that —3 < ab+ ac + ad + be + bd + cd — abed < 5.
Problem 5. (Korea 1998) Let x, y, z be the positive reals with x +y + z = xyz. Show that
1 1 1 3
+ + <.
Vita?  J1+y2 V1+22 7 2

Since the function f is not concave down on R*, we cannot apply Jensen’s inequality to the function

flit)= ﬁ However, the function f(tan#6) is concave down on (0,%) !

Solution. We can write x = tan A, y = tan B, z = tanC, where A, B,C € (0, g) Using the fact that
1+tan%60 = ( L )2, where cosf # 0, we rewrite it in the terms of A, B, C :

cos 6

cos A+ cosB+cosC < g

1—x

It follows from tan(r — C) = —z = ”H'yy =tan(A+ B) and from 7 — C,A+ B € (0,7) that r—C = A+ B
or A+ B+ C = 7. Hence, it suffices to show the following. O
Theorem 5. In any acute triangle ABC', we have cos A + cos B 4+ cos C' < %

Proof. Since cosz is concave down on (O, g), it’s a direct consequence of Jensen’s inequality. O

We note that the function cosz is not concave down on (0,7). In fact, it’s concave up on (,7). One
may think that the inequality cos A + cos B + cos C' < % doesn’t hold for any triangles. However, it’s known
that it also holds for any triangles.
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Theorem 6. In any triangle ABC', we have cos A+ cos B + cosC' <

3
5
) = —cos Acos B + sin Asin B or

First Proof. It follows from m — C'= A + B that cosC = —cos(A + B
3 —2(cos A+ cos B + cos C) = (sin A — sin B)?* + (cos A + cos B —1)? > 0.
O

Second Proof. Let BC = a, CA = b, AB = c. Use the Cosine Law to rewrite the given inequality in the
terms of a, b, ¢ :
2+c2—a®> A4a®>-b0 a?+b2 -2
+ +
2bc 2ca 2ab
Clearing denominators, this becomes

3
< -
-2

3abc > a(b® + ¢* — a®) + b(c* + a® — b*) + c(a® + b* — 2),
which is equivalent to abc > (b+ ¢ — a)(c+ a —b)(a+ b — ¢) in the theorem 2. O

In case even when there is no condition such as z + y + z = xyz or xy + yz + zx = 1, the trigonometric
substitutions are useful.

Problem 6. (APMO 2004/5) Prove that, for all positive real numbers a,b, c,
(a® +2)(b* +2)(c* +2) > 9(ab + bc + ca).

Proof. Choose A,B,C € (0,%) with a = v2tan 4, b = v/2tan B, and ¢ = v2tan C. Using the well-known

trigonometric identity 1 + tan®6 = T}ﬂev one may rewrite it as

4
9 > cos A cos B cos C (cos Asin Bsin C' + sin A cos Bsin C' + sin Asin Bcos C) .

One may easily check the following trigonometric identity

cos(A+ B+ C) = cos A cos BcosC — cos Asin Bsin C — sin A cos Bsin C' — sin Asin B cos C.

Then, the above trigonometric inequality takes the form
4

3 > cos Acos B cosC (cos Acos BeosC — cos(A+ B+ C)).

Let 6 = %. Applying the AM-GM inequality and Jesen’s inequality, we have

cos A+ cos B +cosC\ >
FeosE ) < cos® 6.

cos AcosBceosC < ( 3

We now need to show that
> cos® f(cos® § — cos 36).

O

Using the trigonometric identity
cos30 = 4cos®0 —3cosf or cos36 — cos30 = 3cosf — 3cos’ b,

it becomes 4
4 2
77 > cos 9(1—cos 9),

which follows from the AM-GM inequality

1
20 29 31 20 20 1
((3052 . CO; - (1 = cos? 9)) < 3 (COSZ + COSQ + (1= cos® 9)) -3

One find that the equality holds if and only if tan A = tan B = tanC' = % ifand onlyifa=b=c=1. O
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Exercise 5. ([TZ], pp.127) Let x,y,z be real numbers such that 0 < z,y,z < 1 and zy + yz + zz = 1.
Prove that
x Y 2 3v3

1—x2+1—y2+1—z2_ 2

Exercise 6. ([TZ], pp.127) Let x,y, z be positive real numbers such that x + y + z = xyz. Prove that

3v3
x n Y L7 < f
A2 ity Ar2- 2

Exercise 7. ([ONI], Florina Carlan, Marian Tetiva) Prove that if x, y, z > 0 satisfy the condition
T+ y+z=u1xyz then

zy+yz+ze>3+V1+22+/1+92+ V1422

Exercise 8. ([ONI], Gabriel Dospinescu, Marian Tetiva) Let z, y, z be positive real numbers such
that x +y + z = xyz. Prove that

(x—1)(y—1)(z—1) <6v3—10.
Exercise 9. ([TZ], pp.113) Let a, b, ¢ be real numbers. Prove that
(a® 4+ 1)(0* + 1)(c* + 1) > (ab + bc + ca — 1)%.
Exercise 10. ([TZ], pp.149) Let a and b be positive real numbers. Prove that

1 + 1 > 2
Vi+a2 V1402~ V1+ab

if either (1) 0 < a,b<1 or (2) ab> 3.

In the theorem 1 and 2, we see that the geometric inequality R > 2r is equivalent to the algebraic
inequality abc > (b4 ¢ —a)(c+a — b)(a + b — ¢). We now find that, in the proof of the theorem 6,
abc > (b+c—a)(c+a—b)(a+b—c) is equivalent to the trigonometric inequality cos A+ cos B+ cos C < 3.
One may ask that

In any triangles ABC, is there a natural relation between cos A + cos B + cos C' and %, where R
and r are the radii of the circumcircle and incircle of ABC ?

Theorem 7. Let R and r denote the radii of the circumcircle and incircle of the triangle ABC. Then, we
have cos A+ cos B +cosC =1+ 5.

Proof. Use the identity a(b?+c? —a?) +b(c* +a? —b%) +c(a® +b? — c?) = 2abc+ (b+c—a)(c+a—b)(a+b—c).
We leave the details for the readers. O

Exercise 11. Let R and r be the radii of the circumcircle and incircle of the triangle ABC with BC = a,
CA=b, AB = c. Let s denote the semiperimeter of ABC. Verify the follwing identities 7 :

(1) ab+ bc+ ca = 8% + 4Rr + 12,
(2) abc = 4Rrs,
(8) cos Acos B + cos BcosC + cosC cos A = $®—4R’4r?

4R2 ’
o 82—(2R+’I‘)2
(4) cos Acos Bcos C = *— 27—

Exercise 12. (a) Let p,q,r be the positive real numbers such that p*> + ¢*> + r? + 2pqr = 1. Show that there
exists an acute triangle ABC such that p=cos A, ¢ = cos B, r = cos C.

(b) Let p,q,r > 0 with p*> + ¢*> + r*> + 2pqr = 1. Show that there are A,B,C € [O, %] with p = cos A,
g=cosB,r=cosC, and A+ B+ C = .

"For more identities, see the exercise 10.
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Exercise 13. ([ONI], Marian Tetiva) Let x, y, z be positive real numbers satisfying the condition
22+ y? 4 2% + 2zyz = 1.
Prove that

1
(2) vy +yz+22 < 3,
(8) x® +y*+ 22> 3, and
(4) xy + yz + 2z < 2zyz + 3.

Exercise 14. ([ONI], Marian Tetiva) Let x, y, z be positive real numbers satisfying the condition
%+ y2 +22= TYZ.
Prove that

(1) zyz > 27,

(2) zy + yz + zax > 27,
(3)z+y+2z2>9, and

(4) xy+yz+zx > 2(x+y+2)+9.

Problem 7. (USA 2001) Let a,b, and ¢ be nonnegative real numbers such that a® + b2 + ¢ + abc = 4.
Prove that 0 < ab + bc + ca — abe < 2.

Solution. Notice that a, b, c > 1 implies that a®+b%+c2+abc > 4. If a < 1, then we have ab+bc+ca—abe >
(1 —a)be > 0. We now prove that ab + bc + ca — abc < 2. Letting a = 2p, b = 2¢q, ¢ = 2r, we get
p? + ¢% + 12 + 2pgr = 1. By the exercise 12, we can write

a=2cosA, b=2cosB, c=2cosC for some A, B,C € [O,g] with A+ B+ C = .
We are required to prove

cos Acos B+ cosBcosC +cosCcosA—2cos AcosBeosC <

N~

One may assume that A > % or 1 —2cos A > 0. Note that
cos A cos B + cos B cos C' + cos C cos A — 2 cos A cos B cos C = cos A(cos B + cos C') + cos Bcos C(1 —2cos A).

We apply Jensen’s inequality to deduce cos B + cos C' < % — cos A. Note that 2cos BcosC = cos(B — C) +
cos(B+ C) <1—cosA. These imply that
1—cos A

cos A(cos B+ cosC') + cos Bcos C(1 — 2cos A) < cos A <2 - cosA> + < 3

>(12COSA).

However, it’s easy to verify that cos A (2 — cos A) + (#) (1—2cosA) =1. O

In the above solution, we showed that

cos Acos B+ cosBcosC +cosCcosA—2cos AcosBceosC <

N |

holds for all acute triangles. Using the results (c¢) and (d) in the exercise (4), we can rewrite it in the terms
of R, r, s:
2R* +8Rr + 3r% < %,

In 1965, W. J. Blundon found the best possible inequalities of the form A(R,r) < s? < B(R,r), where
A(z,y) and B(z,y) are real quadratic forms ax? 4 Bry +vy? : 8

Exercise 15. Let R and r denote the radii of the circumcircle and incircle of the triangle ABC'. Let s be
the semiperimeter of ABC'. Show that

16Rr — 5r? < s2 < 4R% + 4Ry + 3r2.

8For a proof, see [WJIB].
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2.3 Algebraic Substitutions

We know that some inequalities in triangle geometry can be treated by the Ravi substitution and trigonomet-
ric substitutions. We can also transform the given inequalities into easier ones through some clever algebraic
substitutions.

Problem 8. (IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a b c
+ + >1
Va2 +8bc Vb2 +8ca Ve +8ab

First Solution. To remove the square roots, we make the following substitution :

a b c

) )y = :
va? + 8be Y Vb2 + 8ca V2 4 8ab

Clearly, z,y, z € (0,1). Our aim is to show that z + y + z > 1. We notice that

a2 B 1.2 b2 7 y2 02 B 22 . 1 7 :E2 y2 22
8c 1—22" 8ac 1—9y2" 8ab 1-—22 512 \1—a2)\1—y2)\1—-22)"

Hence, we need to show that

r+y+2z>1, where 0 < z,y,2 < 1and (1 — 2%)(1 — y*)(1 — 2%) = 512(xyz)>.
However, 1 > x + y + z implies that, by the AM-GM inequality,

(1-2)(1-y)1 -2 > (z+y+2)?—2)((z+y+2)° -y ((z+y+2)>—22)=(@+z+y+2)(y+2)

N

(@ +y+y+2)=+a)ety+z+e)(@+y) >4’y 2y2)? -4y za)t - 2za)? -4 ay)t - 2ay)?
= 512(xyz)?. This is a contradiction ! O
Problem 9. (IMO 1995/2) Let a,b,c be positive numbers such that abc = 1. Prove that

1 1 1
a3(b+c) + b3(c+ a) + c3(a+b)

First Solution. After the substitution a = %, b= %, c= %, we get zyz = 1. The inequality takes the form

.I‘Q y2 22

+ +
y+z z+x T+Y

3
> —.
-2

It follows from the Cauchy-schwartz inequality that

22 e 22
+ +
y+z z+x TH+Y

[(y+z)+(z+x)+(x+y)]< >2(x+y+z)2

so that, by the AM-GM inequality,

x? y? 22 >x—|—y+z>3(xyz)%_3

y+z+z+x+x—|—y_ 2 - 2 2

We offer an alternative solution of the problem 5 :
(Korea 1998) Let x, y, z be the positive reals with x 4+ y + z = xyz. Show that

1 n 1 + 1 <3
Vita?  J1+y2 V14227 2
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Second Solution. The starting point is letting a = %, b= %, c= % We find that a 4+ b+ ¢ = abc is equivalent
to 1 = a2y + yz + zz. The inequality becomes ‘

v, 2 3
Vaz+1 2 +1 V22+1 7 2
or
T Y z 3
+ + <z
Veltay+tyzt+zr VR taytyztze 22 taytyztar o 2
or
T Y z 3
+ + <.
VE+y+z) Vy+2)y+a) VE+ra)(at+y) ~ 2
By the AM-GM inequality, we have
x oz (:c+y)(x+z)<1x[(w+y)+<x+z)}1( z = )
(z+y)(z+z) (@+yle+z) ~2 (z+y)lz+z) 2\z+z x+z)

In a like manner, we obtain

Y 1 Y Y z 1 z z
—_— < — and —————— < - + .
+2)y+z)  2\y+z y+w (+a)(z+y)  2\zt+z 24y
Adding these three yields the required result. O
We now prove a classical theorem in various ways.
Theorem 8. (Nesbitt, 1903) For all positive real numbers a,b, c, we have

a n b n c >§
b+c c+a a+b~ 2

Proof 1. After the substitution t =b+c, y=c+a, z=a+ b, it becomes

— 3
ny-ﬁ-z mzf or y+Z26
2x 2 T

cyclic cyclic

which follows from the AM-GM inequality as following:

+z z z x x z zZ T x 5

E Yy :y+++++y26(y. fffff y) = 6.
/< x r x Yy oy z =z

cyclic

Proof 2. We make the substitution

v a b L c
7b+c’yic+a’ Ca+b
It follows that
a t
= — =1 h t) = ——.
Zf(m) Za+b+c , where f(t) T+1
cyclic cyclic

Since f is concave down on (0,00), Jensen’s inequality shows that
1 2 1 Z r+y+z 1 r+y+z
— = - = — > B — — > B —— .

Since f is monotone decreasing, we have

1 x4+y+=z a
s<—5 o Zb+czx+y+z

cyclic

%
N w
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Proof 3. As in the previous proof, it suffices to show that

1
TZ§ whereT:# and Z m =1.

One can easily check that the condition

x
Z 1+:1::1

cyclic
becomes 1 = 2xyz + xy + yz + zx. By the AM-GM inequality, we have
) . 1
l=22yz+ay+yz+20 <2T° 4+ 37T% & 2T34+37*°-1>0 & 2T -1)(T+1)*>0 & T> 3

Proof 4. Since the inequality is symmetric in the three variables, we may assume that a > b > c. After the
substitution x = ¢,y = %, we have x >y > 1. It becomes

a N b L1 .3 Ty U3 1
— or - — .
b1 ¢+1 24072 y+1 2+1 -2 a4y
We apply the AM-GM inequality to obtain
1 1 1 1
SR Tk S A A S
y+1 x+1 y+1 z+41 y+1 z4+1

It suffices to show that

1 1>3 1

n 1 S 1 1 y—1 y—1
y+1 24172 x+y

1
2 - = - & > .
2 y+1 - z+1 z+y 21+y) ~ (z+1)(z+vy)

=

However, the last inequality clearly holds for x >y > 1.
Proof 5. As in the previous proof, we need to prove

T Y 1
+ +
y+1 z4+1 2x+y

v

3
3 where © >y > 1.

Let A=x+y and B = xy. It becomes

P4y +rty 13 A2—2B+A+1
S LT A L 2
(z+D(y+1)  a+y 2 A+B+1 A

zg or 2A% — A — A4+ 2> B(TA-2).

Since TA—2>2(x+y—1) >0 and A? = (z + y)? > 4oy = 4B, it’s enough to show that
4(24% — A2 —A+2) > A*(TA-2) & A® 242 —4A+8>0.
However, it’s easy to check that A3 —2A? —4A+8 = (A —2)2(A+2)>0.
We now present alternative solutions of problem 1.

(IMO 2000/2) Let a,b, c be positive numbers such that abc = 1. Prove that

ot oo (e d) o

Second Solution. ([IV], Ilan Vardi) Since abc = 1, we may assume that a > 1 > b. ? It follows that

1_(@_1+[1)> (b—1+i) (c—1+i):<c+i—2> <a+2—1)+(a_12(1_b). 10

9Why? Note that the inequality is not symmetric in the three variables. Check it!
10For a verification of the identity, see [IV].
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Third Solution. As in the first solution, after the substitution a = %, b=2% c= 2 forx y z>0, we
can rewrite it as zyz > (y+ 2z —z)(2 +  — y)(x + y — z). Without loss of generality, we can assume that
z>y>x. Set y—x=pand z—x = q with p,q > 0. It’s straightforward to verify that

wyz 2 (y+z—a)(z+z—y)(r+y—2) =@ —pg+ )+ 0’ + ¢ —p’q—pg).
Since p?2 —pg+¢*> > (p—q)? > 0 and p® + ¢ — p?q — pg®> = (p — ¢)?(p + q) > 0, we get the result. O

Fourth Solution. (based on work by an IMO 2000 contestant from Japan) Putting ¢ = %, it becomes

ab’
1 1 1
— — — — — | <
<a 1+b>(b 1+ab)<ab 1+a)1

a®b® — a?® —ab® —a?b?> +3ab® —ab+ 02— b2 —b+1>0.
Setting x = ab, it becomes f(x) > 0, where

or

fo(t) =13+ 0% —b* — bt +3bt —t* — b —t — b+ 1.

Fix a positive number b > 1. We need to show that F(t) := f,(t) > 0 for all ¢ > 0. It’s easy to check that
the cubic polynomial F/(t) = 3t — 2(b+ 1)t — (b*> — 3b + 1) has two real roots

b+1— V42 —-Tb+4 b+1+V4b2 —-Tb+4
3 and A\ = 3 .

Since F' has a local minimum at t = A, we find that F'(t) > Min {F(0), F(X\)} for all ¢t > 0. We have to
prove that F(0) > 0 and F'(A) > 0. Since

FO)=b>—b*—b+1=(0b-1)7*0b+1) >0,
it remains to show that F(\) > 0. Notice that ) is a root of F/(t). After long division, we get

1 b+1) 1
F(t) = F/(t) <3t — ;) +3 ((=8b” + 14b — 8)t 4 8b° — Tb* — Tb + 8) .

Putting ¢t = X\, we have
1
F(A) =5 (=80 + 14b = §)A + 86" — 70" — Tb + 8).

Thus, our job is now to establish that, for all b > 0,

b+1++v4b2 —Tb+4
3

(—8b2+14b—8)< >+8b3—7b2—7b+820,

which is equivalent to

160> — 15b% — 15b + 16 > (8b* — 14b 4 8)\/4b2 — Th+ 4 .
Since both 1663 — 1562 — 15b + 16 and 8b*> — 14b + 8 are positive,'! it’s equivalent to
(16b® — 150 — 15b 4 16)% > (8b? — 14b + 8)%(4b* — b + 4)

or
864b° — 3375b* 4+ 502203 — 337502 + 864b > 0 or 864b* — 33755 + 502267 — 3375 + 864 > 0.

Let G(z) = 8642* — 337523 + 502222 — 3375z + 864. We prove that G(z) > 0 for all z € R. We find that
G/ (x) = 34562° — 1012522 4 10044z — 3375 = (= — 1)(34562% — 6669z + 3375).

Since 345622 — 6669x + 3375 > 0 for all z € R, we find that G(z) and z — 1 have the same sign. It follows
that G(x) is monotone decreasing on (—o0o, 1] and monotone increasing on [1,00). We conclude that G(z)
has the global minimum at # = 1. Hence, G(z) > G(1) =0 for all z € R. O

HT1t’s easy to check that 1663 — 1562 — 15b+ 16 = 16(b3 — b2 — b+ 1) + b2 +b > 16(b2 — 1)(b— 1) > 0 and 8b% — 14b+ 8 =
8(b—1)2 +2b> 0.
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Fifth Solution. (From the IMO 2000 Short List) Using the condition abe = 1, it’s straightforward to
verify the equalities

1 1 1
2:<a—1+>—|—c<b—1+>,

a b c
2_1<b—1+1)+a(c—1+1),

b c a

1 1 1
2:<c—1+>+b(a—l+>.

c a c

In particular, they show that at most one of the numbers u = a — 1+ %, v=b—1+ %, w=c—1+ % is
negative. If there is such a number, we have

1 1 1
(a—l—i—) (b—1—|—> (c—1+>:uvw<0<1.
b c a

And if u,v,w > 0, the AM-GM inequality yields

1 1 1 /b
2=—-u+cv>2 Euv, 2=-v+aw>2 ng, 2=—-w+aw > 21/ —wu.
a a b b c c

Thus, uv < 2, vw < 3, wu < §, 80 (uvw)? < 2. 5, 7 = 1. Since u, v, w > 0, this completes the proof. [

It turns out that the substitution p = x +y + z, ¢ = xy + yz + zx, r = xyz is powerful for the three
variables inequalities. We need the following lemma.

Lemma 1. Let x,y,z be non-negative real numbers numbers. Set p = x+y+ 2z, ¢ = zy + yz + zx, and
r = xyz. Then, we have '?

(1) p* —4pg+9r > 0,
(2) p* — 5p%q + 4¢* + 6pr > 0,
(3) pg —9r > 0.

Proof. They are equivalent to

(1) z(x —y)(x—2) +yly —2)(y —2) + 2(2 —2)(2 —y) = 0,
(2) 2*(z —y)(x — 2) +¥*(y — 2)(y —x) + 2*(z —2)(2 —y) > 0,"?
(3) z(y — 2)* +y(z —2)* + z(x — y)* > 0.
We leave the details for the readers. O

Problem 10. (Iran 1996) Let x,y, z be positive real numbers. Prove that

1 1 1 9
vz o) (G e T e ae) 2 1

First Solution. We make the substitution p = x +y+ z, ¢ = xy + yz + zx, r = xyz. Notice that (z +y)(y +
2)(z4+1z) = (x+y+ 2)(xy +yz + zz) — xyz = pg — r. One may easily rewrite the given inequality in the

terms of p, q, 7 :
((p2+(1)2 —4p(pq—7’)> S 9
4

(pg —17)?
or
aptq — 17p%¢% + 4¢® + 34pgr — 92 > 0
or
pa(p® — 4pg + 9r) + q(p* — 5p°q + 4¢* + 6pr) + r(pg — 9r) > 0.
We find that every term on the left hand side is nonnegative by the lemma. O

2When does equality hold in each inequality? For more p-g-r inequalities, visit the site [ESF].
13See the theorem 10.
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Problem 11. Let z,y, z be nonnegative real numbers with xy + yz + zx = 1. Prove that

1 1 1
+ +
r+y yY+z z+x

.2
First Solution. Rewrite the inequality in the terms of p =2 +y + 2, ¢ = zy + yz + zz, r = xyz:
Aptq + 4¢® — 17p%¢® — 251 + 50pgr > 0.
It can be rewritten as
3pq(p® — dpg + 9r) + q(p* — 5p2q + 4¢2 + 6pr) + 17r(pg — 9r) + 12872 > 0

However, the every term on the left hand side is nonnegative by the lemma. O

Exercise 16. (Carlson’s inequality) Prove that, for all positive real numbers a, b, c,

i/(a+b)(b+c)(c+a) - \/ab+bc+ca
8 - 3 '

Exercise 17. (Bulgaria 1997) Let a,b,c be positive real numbers such that abc = 1. Prove that

1 N 1 N 1 < 1 N 1 N 1
l4a+b 14b+c 14+c+a " 24+a 24b 2+4+c¢

We close this section by presenting a problem which can be solved by two algebraic substitutions and a
trigonometric substitution.

Problem 12. (Iran 1998) Prove that, for all x,y,z > 1 such that % + % + % =2,

\/WZ\/I—l—F\/y—l—l—\/Z—l.
First Solution. We begin with the algebraic substitution a = vx —1, b = /y — 1, ¢ = vz — 1. Then, the
condition becomes

1 N 1 N 1
1+a2 14062 1+¢2

=2 & a®? +b2P +Pd® +2d%0°FP =1
and the inequality is equivalent to
Va2t +b2+c2+3>a+b+c & ab+be+ca<

Let p = bc, ¢ = ca, r = ab. Our job is to prove that p+qg+1r < % where p? + ¢ + r? 4 2pqr = 1. By the
exercise 12, we can make the trigonometric substitution

N w

p=-cosA, g=cosB, r=cosC for some A, B,C € {0, g) with A+ B+ C =m.

What we need to show is now that cos A+cos B+cos C < % However, it follows from Jensen’s inequality! [
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2.4 Supplementary Problems for Chapter 2

Exercise 18. Let x,y, and z be positive numbers. Let p=x+y+z, ¢ =xy+yz+ zx, and r = zyz. Prove

the following inequalities :

(a) p*> > 3q

(b) p3 > 27r

(c) ¢* > 3pr

(d) 2p3 + 9r > Tpq
(e) p*q + 3pr > 4q¢>
(f) p*q > 3pr + 2¢
(9) p* + 3¢* > 4p*q
(h) pg* > 2p*r + 3qr
(i) 2¢% + 9r3 > Tpgr
(G) ¢® + 9r% > 4pqr
(k) pPr + ¢* > 6pqr

Exercise 19. ([ONI], Mircea Lascu, Marian Tetiva) Let x, y, z be positive real numbers satisfying the

condition
zy +yz + zx + 2xyz = 1.
Prove that
1
(1) zyz < 8,
() rty+z<y,
(3) %—I— +1>4(z+y+2), and

(4) %+§_~_l dx+y+z)> % where z > x,y.
Exercise 20. Let f(z,y) be a real polynomial such that, for all § € R3,
f(cosf,sinf) =0
Show that the polynomial f(x,y) is divisible by 2% + y? — 1.
Exercise 21. Let f(x,y,2) be a real polynomial. Suppose that
f(cosa, cos 3, cosy) = 0,

for all a, B3,y € R with a+ B+ = 7. Show that f(x,y,z) is divisible by x> + y* + 22 + 2xyz — 1. 14

Exercise 22. (IMO Unused 1986) Let a,b, ¢ be positive real numbers. Show that
(a+b—c)(a—b+c)* (—a+b+c)* > (a®> +0* — ) (a® = b* + ) (—a® +b* +2). 1°
Exercise 23. With the usual notation for a triangle, verify the following identities :
(1) sin A+sin B +sinC = %
(2) sin Asin B + sinBsinC’—F sinCsin A = %
(3) sin Asin Bsin C' = 575 ] )
(4) sin® A 4 sin® B 4 sin® C' = %

3
(5) cos® A + cos® B + cos® C' = (2B+7)° 47;3” —4R

(6) tan A + tan B + tan C' = tan A tan Btan C' = 52_(22++r)2

(7) tan Atan B + tan Btan C + tan C'tan A = %
2 2
(8) COtA+cotB+cotC’: s —4Rr—r?

B c 2sr
_ T
(9) s1n—:1nfslnic— 5
— _S
(10) cos 5 cos 5 cos 5 = 1

MFor a proof, see [JmhMh].

151f we assume that there is a triangle ABC with BC = a, CA = b, AB = ¢, then it’s equivalent to the inequality

s2 < 4R? + 4Rr + 3r2 in the exercise 6.
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Exercise 24. Let a,b, c be the lengths of the sides of a triangle. Let s be the semi-perimeter of the triangle.
Then, the following inequalities holds.

(a) 3(ab + bc + ca) < (a+ b+ c)? < 4(ab+ be + ca)
(b) [JfAWm] a® + b + ¢ > 38 (52 4 k<)
(c) [AP] 8(s —a)(s — b)(s — ¢) < abc

(d) [EC] 8abc > (a + b)(b+ ¢)(c + a)

(e) [AP] 3(a+b)(b+c)(c+a) < 8(a®+b® + c?)

(f) [MC] 2(a+ b+ c)(a® +b* + c®) > 3(a® + b3 + ¢ + 3abe)
(9) abc < a*(s — a) + b*(s — b) + ¢*(s — ¢) < 2abc

(h) be(b+ ¢) + ca(c + a) + ab(a + b) > 48(s — a)(s — b)(s — ¢)
() ghat oty + ot 2 °

sS—a s§—Cc — 8§

(j) [AMN], [MP] § < 3% 4+ 2= 4 -5 <2
15 E s+b E c 9

(k) R < e+ e+ <5

(1) [SR2] (a + b+ ¢)® < 5[ab(a + b) + be(b + ¢) + calc + a)] — 3abe

Exercise 25. ([RS], R. Sondat) Let R, r, s be positive real numbers. Show that a necessary and sufficient
condition for the existence of a triangle with circumradius R, inradius v, and semiperimeter s is

s* —2(2R? + 10Rr — r?)s®> + r(4R +1)% < 0.
Exercise 26. With the usual notation for a triangle, show that 4R +r > V3s. 16

Exercise 27. ((WJB2],[RAS], W. J. Blundon) Let R and r denote the radii of the circumcircle and
incircle of the triangle ABC. Let s be the semiperimeter of ABC. Show that

s> 2R+ (3V3 — 4)r.
Exercise 28. Let G and I be the centroid and incenter of the triangle ABC with inradius v, semiperimeter

s, circumradius R. Show that

GI* = % (s> +5r° — 16Rr) .17

Exercise 29. Show that, for any triangle with sides a, b, c,

a b c

2> .
b—|—c+c—|—a+a+b

161t’s equivalent to the Hadwiger-Finsler inequality.
17See the exercise 6. For a solution, see [KWL].
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Chapter 3

Homogenizations

3.1 Homogeneous Polynomial Inequalities

Many inequality problems come with constraints such as ab =1, xyz = 1, t+y+2z = 1. A non-homogeneous
symmetric inequality can be transformed into a homogeneous one. Then we apply two powerful theorems :
Shur’s inequality and Muirhead’s theorem. We begin with a simple example.

Problem 13. (Hungary 1996) Let a and b be positive real numbers with a +b = 1. Prove that
a? b? 1

_—t—— >,

a+1 b+173
Solution. Using the condition a + b = 1, we can reduce the given inequality to homogeneous one, i. e.,
1 a2 N b2
37 (a+b)at(a+b) (a+b)(b+(a+D))
which follows from (a®+b%) — (a*b+ab?) = (a—b)?(a+b) > 0. The equality holds if and only ifa =b = 1. O

or a’b+ab®<a’®+ b3,

IN

The above inequality a?b + ab? < a® 4+ b> can be generalized as following :

Theorem 9. Let aq,az2,b1,be be positive real numbers such that a1 + aa = by + b and maz(ay,as) >
max(by,by). Let x and y be nonnegative real numbers. Then, we have x%1y%2 + x%2y® > pbrybz 4 pbaybs,

Proof. Without loss of generality, we can assume that a; > ao,b; > bo,a1 > by. If z or y is zero, then it
clearly holds. So, we also assume that both z and y are nonzero. It’s easy to check
2™y 4 gty — xlnybz _ xbzyb1 — 0202 (xal—az 4y xbl_a2yb2_a2 _ xb2_02yb1_a2>

Yy
_ xGQyU«Q (xblfaz _ yb1*a2) (xb270«2 _ yb2*az)
1

- 2992 (xbl - ybl) (xb2 - be) = 0.

Remark 1. When does the equality hold in the theorem 87

We now introduce two summation notations > ;. and 3 . Let P(z,y, 2) be a three variables function
of x, y, z. Let us define :

> P(z,y,2) = P(x,y,2) + Py, z,2) + P(z,2,y),

cyclic

> P(z,y,2) = P(z,y,2) + P(x,2,y) + P(y, 2,2) + P(y,2,2) + P(z,2,y) + P(2,y,2)

sym
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For example, we know that

Z 2y = 23y + iz + Ba, Zx?’ =2(23 49> + 2%)

cyclic sym

2 _ .2 2 2 2 2 2 _
Zm y=x"y+rztyz+yr+zr+z%, Zwyz—ﬁxyz.
sym Sym

Problem 14. (IMO 1984/1) Let x,y, z be nonnegative real numbers such that x + y + z = 1. Prove that
0<zxzy+yz+zr—2ryz < 2—77 .

Solution. Using the condition x + y + z = 1, we reduce the given inequality to homogeneous one, i. e.,

7 .
O§(zy+yz+zx)(x+y+z)—2xyz§E(x—i—y—kz)d.

The left hand side inequality is trivial because it’s equivalent to 0 < zyz + Y. 2%y. The right hand side

23 + 152y2z — 6 > sym 2%y > 0. In the view of

sym

inequality simplifies to 75"

cyclic

7Zx3+15xyz—62:c2y: 22:103—2:16234 +5 3xyz+Zx3—Zx2y ,

cyclic sym cyclic sym cyclic sym

it’s enough to show that 2> ;. x3 > > sym z2y and 3zyz + D eyelic 3 >3 x%y. Note that

sym

2Y 2P =Y 2y=) @+ - ) @ytad) =) @+ 2Py —ay) 0.

cyclic sym cyclic cyclic cyclic

The second inequality can be rewritten as

Z z(x—y)(xr—2) >0,

cyclic

which is a particular case of the theorem 10 in the next section. O
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3.2 Schur’s Theorem

Theorem 10. (Schur) Let x,y, z be nonnegative real numbers. For any r > 0, we have
Z 2" (x —y)(x—z) > 0.
cyclic

Proof. Since the inequality is symmetric in the three variables, we may assume without loss of generality
that x > y > z. Then the given inequality may be rewritten as

(@ —y)la"(z—2) =y (y—2)]+2"(x-2)(y—2) =0,
and every term on the left-hand side is clearly nonnegative. O
Remark 2. When does the equality hold in Theorem 107

The following special case of Schur’s inequality is useful :

Z zx—y)(x—2) >0 & 3ayz+ Z xSEZny & nyerZmBZQszy.

cyclic cyclic sym sym sym sym
Exercise 30. ([TZ], pp.142) Prove that for any acute triangle ABC,
cot® A + cot® B + cot® C + 6 cot A cot B ot C > cot A + cot B + cot C.
Exercise 31. (Korea 1998) Let I be the incenter of a triangle ABC'. Prove that

BC? + CA? + AB?
3 .
Exercise 32. ([IN], pp.103) Let a,b,c be the lengths of a triangle. Prove that

TIA2+IB?4+1C?% >

a’b+a’c+b?c+ ba+ a+ b > a® + b3 + ¢ + 2abe.
We present another solution of the problem 1 :

(IMO 2000/2) Let a,b, c be positive numbers such that abc = 1. Prove that

ot e (e d) o

Second Solution. It is equivalent to the following homogeneous inequality® :

(a — (abe)'/? + (abcb)m> (b — (abe)Y? + (abc)m) (c — (abe)'? + W) < abe.

Cc a

After the substitution a = 23,b = 33, ¢ = 23 with z,y, 2z > 0, it becomes

2 2 2
(a:3 —xyz + Ly;) ) (y3 —zyz + (ij) ) <23 —ryz + (xyg) > < 2%y?2?,
Yy z x

which simplifies to

(2%y — y°2 + 2°2) (P2 — 2Px + 2%y) (P2 — 2%y + y°2) < 2Py°2°

or
3a3y32°% + Z 26y3 > Z ahyis 4 Z 20y?22
cyclic cyclic cyclic
or
3(2%y)(¥%2)(2%2) + > (2%y)® = (2y)*(v%2)
cyclic sym
which is a special case of Schur’s inequality. O

1For an alternative homogenization, see the problem 1 in the chapter 2.
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Here is another inequality problem with the constraint abc = 1.
Problem 15. (Tournament of Towns 1997) Let a,b, ¢ be positive numbers such that abc = 1. Prove that

1 1 1
<
a+b+1+b+c+1+c+a+1 -

Solution. We can rewrite the given inequality as following :

1 1 1 1
< .
a+ b+ (abc)l/3 * b+ c+ (abc)'/3 * ¢+ a+ (abc)l/3 — (abc)l/3

We make the substitution a = 23,b = 33, ¢ = 22 with z,y, z > 0. Then, it becomes

1 1 1
x3+y3+xyz+y3+z3+xyz+z3+x3+xyz

1
< —
T oryz
which is equivalent to

zyz Y (2 + P+ ay2) (Y + 2+ ayz) < (0 + 07+ ay2) (VP + 2+ ayz) (2P + 2P+ ayz)

cyclic

and hence to a8y > 2%y?22, which is a special case of theorem 11 in the next section. O
sym y sym y
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3.3 Muirhead’s Theorem

Theorem 11. (Muirhead) Let ay,as,as, by, be, b3 be real numbers such that
ar > as >ag > 0,by > by > by >0,a1 > by a1 +as > by + ba, a1 + az + a3 = by + by + b3.?
Let x,y, z be positive real numbers. Then, we have Zsym rMyt223 > Zsym abryb2zbs,

Proof. Case 1. by > a9 : It follows from a1 > a1+ as —b; and from ay > by that a; > max(ay +ag —b1,b1) so
that max(ai,as) = a1 > maxz(ay1+az—b1,b1). From a1+as—by > by+as—b; = as and a3 +as—by > by > bs,
we have max(a; + as — b1, as) > max(be, bs). Apply the theorem 8 twice to obtain

Z mal ya2 Zag — Z Zag (xal yag _|_ maz yal)

sym cyclic

E 203 (za1+a2*blyb1 + zblyal+a2*bl)

cyclic

— E 201 (yal +az—b1 a3 4yt +a2*bl)

cyclic

> Z xbl (ybz st + yb3 2172)

cyclic

= E zh be 2P,

Sym

Y]

Case 2. by < asg : It follows from 3by > by + by + b3 = a1 + as + az > by + as + a3 that by > as + a3 — by
and that a; > a2 > by > ag + ag — b;. Therefore, we have maz(az,as) > max(by,as + az — b1) and
max(ay,as + a3 — by) > max(be, bs). Apply the theorem 8 twice to obtain

Z xal ya2 Zag — Z Ial (ya2 Za3 _|_ ya3 Z(ZQ)

sym cyclic

E 7 (ybl Za2+a3*b1 4 ya2+a3*b1 Zbl)

cyclic

— E yb1 (l,al yo2tas—byr 4 jastaz—by Zal)

cyclic

> Z yb1 ($b2 Zba + 203 2172)

cyclic

= E zh yl72 A

Sym

v

O

Remark 3. The equality holds if and only if x = y = z. However, if we allow x =0 ory =0 orz =0, 3
then one may easily check that the equality holds if and only if

r=y=zorx=y,2=0o0r y=z, =0 or z=xz, y=0.
We can use Muirhead’s theorem to prove Nesbitt’s inequality.

(Nesbitt) For all positive real numbers a, b, ¢, we have

> 2
b—l—c+c+a+a+b_

a b c 3
5"

2Note the equality in the final equation.
3However, in this case, we assume that 0° = 1 in the sense that lim,_ o+ 29 = 1. In general, 00 is not defined. Note also
that lim_ o+ 0% = 0.
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Proof 6. Clearing the denominators of the inequality, it becomes
22 (a+b)(a+c)>3(a+b)(b+c)(c+a) or Za?’ZZaQb.
cyclic sym sym
Problem 16. ((IMO 1995) Let a,b,c be positive numbers such that abc = 1. Prove that

1 1 1
> —.
a?(b+c) * b3(c+a) * Ala+b) ~ 2

w

Solution. It’s equivalent to

1 1 1 3
> .
ad(b+c) * b3(c+a) + c3(a+b) ~ 2(abc)*/3

1 > 3
cyclic z9(y3+23) = 2ziytzt’

Set a = x3,b = y3, ¢ = 2% with 2,9,z > 0. Then, it becomes .
denominators, this becomes

lez 12+2Z$12y923+2$9y9262329611?/ 25 4 6a8y828

sym sym sym sym

Clearing

or
(me 12 ZI1185>+2<ZZ'1293 anss) (Zx996 Zx888>_ :
sym sym sym sym sym sym
and every term on the left hand side is nonnegative by Muirhead’s theorem. O

We can also attack problem 10 and problem 11 with Schur’s inequality and Muirhead’s theorem.

(Iran 1996) Let z,y, z be positive real numbers. Prove that

1 1 1 9
(zy +yz + 22) (<x+y>2 Throe T <z+x>2> =

Second Solution. It’s equivalent to

4Zmy+22myz+6m222 Zm —62x3y3—22x3y2z20.

sym cyclic sym cyclic sym
We rewrite this as following
<Z oy — Z x4y2> +3 (Z oy — Zm3y3> + 2zyz Z x(zx—y)(x—2)| >0.
sym sym sym sym cyclic
By Muirhead’s theorem and Schur’s inequality, it’s a sum of three terms which are nonnegative. O

Let z,y, z be nonnegative real numbers with zy + yz + zz = 1. Prove that

>

1 1 1 )
+ + > .
z+y y+z z+xz 2

Second Solution. Using xy + yz + zx = 1, we homogenize the given inequality as following :

U (I SRS S S e A
T z 4 zz —
¥y z+y y+z z4+x) T \2

4Zx y+2x yz“‘lzx y*z + 382%y%2° sz4y2+3zx‘gyd

sym sym sym sym sym

or
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or
(Z oy — Zx4y2) +3 (Z oy — Z x3y3> + xyz (Z z3 4 142 2y + 38myz> > 0.
sym sym sym sym sym sym

By Muirhead’s theorem, we get the result. In the above inequality, without the condition zy + yz + zx = 1,
the equality holds if and only if t =y,2=0 or y=2z,2=0 or z=x,y =0. Since zy + yz + zx = 1, the
equality occurs when (z,y,2) = (1,1,0),(1,0,1),(0,1,1). O

Now, we apply Muirhead’s theorem to obtain a geometric inequality [ZsJc] :

Problem 17. If my,my,m. are medians and rq,rp,7. the exradii of a triangle, prove that

TaTh TpTe Tcla >3

Mgy mpme mcMmg,
An Impossible Verification. Let 2s = a 4+ b+ c¢. Using the well-known identities
—b)(s— 1
re = —s(s (s C), Mg = =/ 202 4+ 2¢2 — a2, etc.
s—a 2

we have

Z e z 4s(s — a)
MpMe V(2¢% + 242 — b2)(2a2 4 202 — %)

cyclic cyclic

Applying the AM-GM inequality, we obtain

TpTe 8s(s —a) 2(a+b+c)(b+c—a)
> = .
Z myme Z (2¢2 + 242 — b?) + (2a? + 2b% — ¢?) Z 4a? + b2 + 2

cyclic cyclic cyclic
We now give a moonshine proof of the inequality
Z?(a+b+c)(b+c—a)>3

4a? + b2 + ¢2 -

cyclic
After expanding the above inequality, it becomes
2 Z ab +4 Z a*be + QOZ a’b’c + 68 Z a®b® + 16 Z a’b > 276a%b%c? + 27 Z a*b?.
cyclic cyclic sym cyclic cyclic cyclic

We see that this cannot be directly proven by applying Muirhead’s theorem. Since a, b, ¢ are the sides of a
triangle, we can make the Ravi Substitution a =y + 2, b=z +x, ¢ = + y, where x,y,z > 0. After some
brute-force algebra, we can rewrite the above inequality as

25 284230 aPy+1153 a'y? +10) 2%y’ +80) atyz

sym sym sym sym sym
>336 ) a'y’z+124) 2Py’
sym sym
Now, by Muirhead’s theorem, we get the result ! O
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3.4 Polynomial Inequalities with Degree 3

The solution of problem 13 shows us difficulties in applying Muirhead’s theorem. Furthermore, there ex-
ist homogeneous symmetric polynomial inequalities which cannot be verified by just applying Muirhead’s
theorem. See the following inequality :

) Z 2% +15 23742/2 + 22m3y2z + 322y2%22% > 82x5y + 8 Z zlyz 4+ 16 Z 33
cyclic sym sym sym cyclic cyclic

This holds for all positive real numbers x, y, and z. However, it is not a direct consequence of Muirhead’s
theorem because the coefficients of Zsym z®y and chdic 23y3 are too big. In fact, it is equivalent to

1
g Z (y — 2)*(2® 4+ 159 4 1522 + 8xy + 4yz + 8zx) > 0.4
cyclic

Another example is

% Z x4—|—% Z x2y2 Engy.

cyclic cyclic sym

We realized that the above inequality is stronger than

Z 2*(x —y)(x —2) >0 or Z xt + Z 2% > Zx?’y.

cyclic cyclic cyclic sym

It can be proved by the identities

T ED DD DR Dr ) I Gy LR R R CO s

cyclic cyclic sym
or
1 3
2 3 Z x4—|—§ Z x2y2—2x3y = (2?2 +? + 2% —xy —yz — 2x)%
cyclic cyclic Sym

As T know, there is no general criterion to attack the symmetric polynomial inequalities. However, there
is a result for the homogeneous symmetric polynomial inequalities with degree 3. It’s a direct consequence
of Muirhead’s theorem and Schur’s inequality.

Theorem 12. Let P(u,v,w) € Rlu,v,w] be a homogeneous symmetric polynomial with degree 3. Then the
following two statements are equivalent.

(a) P(1,1,1), P(1,1,0), P(1,0,0) > 0.
(b) P(z,y,2z) >0 for all z,y,z > 0.

Proof. (See [SR].) We only prove that (a) implies (b). Let
Pu,v,w) = A Z ud + BZU2U + Cuvw.
cyclic sym
Let p=P(1,1,1)=3A46B+C,q= P(1,1,0) = A+ B, and r = P(1,0,0) = A. Wehave A=r, B=q—r,
C=p—06qg+3r,and p,q,r > 0. Let z,y,z > 0. It follows that
P(z,y,z)=r Z a4+ (g —) Zny + (p — 6q + 3r)zyz.
cyclic sym

However, we see that

P(z,y,z)=r Z @3 + 3zyz — Zny +q (Z 2y — 6xyz> + pxyz > 0.

cyclic sym sym

4See [JC].
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Here is an alternative way to prove of the fact that P(z,y,z) > 0.
Case 1. ¢ > r : We find that
P(z,y,z) = g (Z x — Z xyz) +(g—r1) (Z iy — Z xyz) + pzyz.
sym Sym sym sym
and that the every term on the right hand side is nonnegative.

Case 2. ¢ <r : We find that

P(z,y,z) = g (ng — nyz) + (r—29q) Z 3 + 3zyz — Zny + pryz.

sym sym cyclic sym
and that the every term on the right hand side is nonnegative.

For example, we can apply the theorem 11 to check the inequality in the problem 14.

(IMO 1984/1) Let z,y, z be nonnegative real numbers such that  +y + z = 1. Prove that
0<zy+yz+zx —2zyz < 2—77

Solution. Using x + y + 2z = 1, we homogenize the given inequality as following :

7
0§(xy+yz+zx)(x+y+z)—2xyz§2—7(m+y+z)3

Let us define L(u,v,w), R(u,v,w) € Rlu, v, w] by

L(u,v,w) = (uwv + vw + wu)(u + v + w) — 2uvw,

7
R(u,v,w) = E(u—i—v—i—w)?’ — (uv + vw 4+ wu)(u + v+ w) + 2uvw.

However, one may easily check that L(1,1,1) =7, L(1,1,0) = 2, L(1,0,0) = 0, R(1,1,1) = 0, R(1,1,0) = %7
and R(1,0,0) = . O

Exercise 33. (M. S. Klamkin [MEKZ2]) Determine the mazimum and minimum values of
22 +y? 4+ 2% + dayz
where x+y+2 =1, x,y,2 > 0, and X\ is a given constant.

Exercise 34. (Walter Janous [MC]) let z,y,z > 0 with x + y + z = 1. For fized real numbers a > 0 and
b, determine the mazimum c = c(a,b) such that

a+bryz > c(xvy +yz + 2x).
Here is the criterion for homogeneous symmetric polynomial inequalities for the triangles :
Theorem 13. (K. B. Stolarsky) Let P(u,v,w) be a real symmetric form of degree 3.° If
P(1,1,1),P(1,1,0), P(2,1,1) > 0,
then we have P(a,b,c) > 0, where a,b,c are the lengths of the sides of a triangle.

Proof. Make the Ravi substitution a =y + 2, b = z + x, ¢ = = + y and apply the above theorem. We leave
the details for the readers. For an alternative proof, see [KBS]. O

As noted in [KBS], we can apply Stolarsky’s theorem to prove cubic inequalities in triangle geometry. We
recall the exercise 11.

SP(@,9,2) = Yoy (p2° + q2%y +r2yz) (pq,7 € R.)
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Let a, b, c be the lengths of the sides of a triangle. Let s be the semi-perimeter of the triangle.

Then, the following inequalities holds.

Proof. For example, we show the right hand side inequality in (j).

T(a,b,c) > 0, where

T(a,b,c) =2(a+b)(b+c)(c+a)—(a+Db)(b+c)(c+ a) (

(a) 3(ab+bc+ ca) < (a+b+c)? < 4(ab+ be + ca)

(b) [JEdWm] a® + b 4 ¢* > 38 (52 4 2L¢)

(c) [AP] 8(s — a)(s — b)(s — &) < abe

(d) [EC] 8abc > (a+b)(b+c)(c+a)

(e) [AP] 3(a +b)(b+c)(c+a) < 8(a® +b® + ¢?)

(f) [MC] 2(a+ b+ c)(a® + b* + ¢?) > 3(a® + b + ¢ + 3abc)
(g) abc < a®(s — a) + b*(s — b) + c*(s — ¢) < 3abe

(h) bc(b+ )+ca(c+a)+ab( +b) >48(s—a)(s—b)(s—c)
Oimtm T2

()[ }[MP]%S ac+c+a+a+b<2
()4—Ziz+;jr_a+aib<%

(1) [SR] (a+ b+ ¢)® < 5lab(a + b) + be(b + ¢) + ca(c + a)] — 3abe

It’s equivalent to the cubic inequality

a

b

c

b+c+

+
c+a

a+b

).

Since T'(1,1,1) = 4, T(1,1,0) = 0, and T'(2,1,1) = 6, the result follows from Stolarsky’s theorem. For

alternative proofs of the above 12 inequalities, see [GI].
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3.5 Supplementary Problems for Chapter 3
Exercise 35. Let x,y, z be positive real numbers. Prove that
(@ty—2)@—y)*+y+z-2)y—2)"+(E+z-y)z-2)* 20
Exercise 36. Let xz,y, z be positive real numbers. Prove that
(@ +y* = 2%) (@ —y)* + (P +2° =2y — 2)* + (2P + 2% =) (2 —2)* 2 0.

Exercise 37. (APMO 1998) Let a,b,c be positive real numbers. Prove that

(1+%) <1+i> (1+2)>2<1+“f2\/%c>.

Exercise 38. (Ireland 2000) Let x,y > 0 with x +y = 2. Prove that
x2y2(x2 +y2) S 2.
Exercise 39. (IMO Short-listed 1998) Let x,y, z be positive real numbers such that xyz = 1. Prove that

$3 y3 23

I19)+2 (+20+2) (+0l+y)

3
> —.
!

Exercise 40. (United Kingdom 1999) Some three nonnegative real numbers p,q,r satisfy p+q+r = 1.
Prove that 7(pq + qr + rp) < 2+ 9pgr.
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Chapter 4

Normalizations

4.1 Normalizations

In the previous chapter, we transformed non-homogeneous inequalities into homogeneous ones. On the other
hand, homogeneous inequalities also can be normalized in various ways. We offer two alternative solutions
of the problem 8 by normalizations :

(IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a b c

+ + >1
Va2 +8bc Vb2 +8ca V2 + 8ab

a _ b _ c 1 ta
e Y= arere £ = ariTe The problem is

Second Solution. We make the substitution z =
of(2? + 8yz) + yf(y? + 8zx) + zf(2* + 8xy) > 1,

where f(t) = % Since the function f is convex down on RT and z + y + z = 1, we apply (the weighted)
Jensen’s inequality to have

of(2® + 8yz) +yf(y° + 82x) + 2f (2% + 8wy) > f(a(x® + 8y2) + y(y® + 82x) + 2(z* + 8xy)).
Note that f(1) = 1. Since the function f is strictly decreasing, it suffices to show that
1> (2 + 8yz) + y(y* + 8zx) + 2(2% + 8xy).

Using = +y + 2 = 1, we homogenize it as (z +y + 2)% > x(2? + 8y2) + y(y® + 82x) + 2(2% + 8zy). However,
this is easily seen from

(z 4y +2)° —x(2” + 8yz) — y(y® + 8zx) — 2(2* + 8xy) = 3[z(y — 2)* + y(z —2)* + 2(x — y)*] > 0.

In the above solution, we normalized to z + y + 2z = 1. We now prove it by normalizing to zyz = 1.

Third Solution. We make the substitution x = %, y=1,2= ‘;—f. Then, we get xyz = 1 and the inequality

becomes
1 1 1

+ + > 1
V1+8x V1+8y V1+82z

which is equivalent to

> VI +8x)(1+8y) = v/(1+8x)(1+8y)(1 +82)

cyclic

IDividing by a + b + ¢ gives the equivalent inequality > atbte > 1.

cyclic 2 I Sbe
(atb+e)? " (atbre)?
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hence, after squaring both sides, equivalent to

8(z+y+2)+2y/(1+82)(1+8y)(1+82) > VI+8ax=>510.

cyclic

Recall that xyz = 1. The AM-GM inequality gives us x +y + 2z > 3,

(1+82)(1+8y)(1+82) > 925 - 9y5 - 925 =729 and Y VI+8z> Y V925 >9(ayz)? =0.

cyclic cyclic
Using these three inequalities, we get the result.
We now present another proofs of Nesbitt’s inequality.
(Nesbitt) For all positive real numbers a, b, ¢, we have

a n b n c
b+c c+a a+b

3
> —.
-2

Proof 7. We may normalize to a + b+ ¢ = 1. Note that 0 < a,b,c < 1. The problem is now to prove

Z b—(il—c: Z f(a)Z; where f(x) =

cyclic cyclic
Since f is concave down on (0,1), Jensen’s inequality shows that
1 a+b+c 1 1 3
3Zf(a)2f(3 )Zf(3>=2 or Zf(a)2§.
cyclic cyclic

Proof 8. As in the previous proof, we need to prove

3
Z a4 > —, where a+b+c=1.
cyclicl_a 2

It follows from 4x — (1 — z)(92 — 1) = (32 — 1)? or 4z > (1 — z)(92 — 1) that

a 9a — 1 9 3 3
21,2 T C12% i %

cyclic cyclic cyclic
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4.2 Classical Theorems : Cauchy-Schwartz, (Weighted) AM-GM,
and Holder

We now illustrate the normalization technique to establish classical theorems.

Theorem 14. (The Cauchy-Schwartz inequality) Let ay,- -+ ,an, b1, , by be real numbers. Then, we have
(a12 4t an2)(b12 S bn2) > (@b 4 - + anbn)2~

Proof. Let A = Va2 + -+ an2 and B = \/b1? +--- 4+ b,%. In the case when A = 0, we get a3 = -+ =

an, = 0. Thus, the given inequality clearly holds. So, we now may assume that A, B > 0. Now, we make the

substitution x; = % (i =1,--- ,n). Then, it’s equivalent to

(24 +xn2)(b12 S bn2) > (x1b1 + - + xpby)2
However, we have 1% + -+ + ,2 = 1. (Why?). Hence, it’s equivalent to
bi2 4+ by% > (@b -+ aabn)?

Next, we make the substitution y; = % (i=1,---,n). Then, it’s equivalent to

L=y’ 4+ = (g + -+ 2ayn)? or 12 |z1y1 + - + Tnynl.
Hence, we need to to show that

lz1yr + - + Tpyn| <1, where 212 4+ 42,2 =y 2+ + 3,2 =1
However, it’s very easy. We apply the AM-GM inequality to deduce

2 2 2 2
x1°+y Tn® +y A+ B

1.
2 2 2

Exercise 41. Prove the Lagrange’s identity :

n n n 2
Zaﬂ Zbﬂ _ <Z albl> = Z (aibj _ ajbi)Q )
i=1 i=1 i=1

1<i<j<n
Exercise 42. Let ay,--- ,a,,b1, -, b, be positive real numbers. Show that
Vi -+ an) b+ +b,) = Vaiby + - + Vanbn.
Exercise 43. Let aj, -+ ,a,,b1, - , by be positive real numbers. Show that
2 2 2
£+...+GLZ(G1+ +a”)
Exercise 44. Let ay, - ,ay,,b1, -+ , b, be positive real numbers. Show that
a a 1 a an\’
712+...+7"2 > - <1+...+") )
by by a1+ tan \ b bn
Exercise 45. Let ay, -+ ,a,,b1, - , by be positive real numbers. Show that

2
a n ... n
@, (@ ta)?
bl bn albl +- anbn

We now apply the Cauchy-Schwartz inequality to prove Nesbitt’s inequality.
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(Nesbitt) For all positive real numbers a, b, ¢, we have

a L b n c o 3
b+c c+a a+b 2
Proof 9. Applying the Cauchy-Schwartz inequality, we have

((b+0)+(c+a)+(a+b))< ! + 1 + 1 >>32

b+c c+a a+b

It follows that

a+b+c a+b+c a+b+c_ 9 9
> — > 2
b+c ct+a a+b T2 or +Cyzd:m c 2
Proof 10. The Cauchy-Schwartz inequality yields
? 2
(a+b+c) 3
(b > —.
Z Z to)z Za Zb—i—c_ 2(ab+bc+ca) ~ 2

cycllc cychc cyclic cyclic
Here is an extremely short proof of the problem 12 :

(Iran 1998) Prove that, for all z,y,z > 1 such that % + i + % =2,

\/J;—l—y—l—zzx/m—l—l—\/y—l—i—\/z—l.

Second Solution. We notice that
1 1 1 rz—1 -1 z-1
Sh-=2 o i
r Yy =z xr Y Z

We now apply the Cauchy-Schwartz inequality to deduce

rz—1 -1 z-1
\/m:\/(a:—&-y—kz)( - +yy +— )>\/x—1+\/y—1+\/z—1.
Problem 18. (Gazeta Matematica, Hojoo Lee) Prove that, for all a,b,c > 0,

\/a4+a2b2+b4—|—\/b4+b2c2+c4+\/c4+02a2+a42a\/2a2+bc+b\/2b2+ca+cx/2c2—|—ab.

Solution. We obtain the chain of equalities and inequalities

a?b? a?b?
v/ ad 202 1 — 4 Bt
Z a*+a + Z (a + 5 > ( + )

2

cyclic cyclic
b2 22
> Z \/ T \/b4 + & (Cauchy — Schwartz)
\[ cyclic 2
= > \/ + —b + \/ s
\[ cyclic 2
\/, 4 2b2 A Cl2C2
> —_— J—
> V2 )y ! (+ )<a+2> (AM — GM)
cyclic
> V2 Z at + —_— (Cauchy — Schwartz)
cyclic
= Z v 2a* + a2be .
cyclic
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Using the same idea in the proof of the Cauchy-Schwartz inequality, we find a natural generalization :

Theorem 15. Let a;;(i,j = 1,--- ,n) be positive real numbers. Then, we have
(a1 + -+ ain") - (an" + -+ ann") = (11021 An1 + - Q1plon  Ann)"

Proof. Since the inequality is homogeneous, as in the proof of the theorem 11, we can normalize to
1
(ailn+"'+ainn); =1 or ai1n+"'+ainn =1 (Z: 1a 7”)'

Then, the inequality takes the form aj1a21 - ap1 4+ +a1n0on -+ Gpp < 1 or Z?:l a1 - a; < 1. Hence,
it suffices to show that, for alli =1,--- | n,

1
a1 Gin < —, where a;; + -+ ajp = 1.
n

To finish the proof, it remains to show the following homogeneous inequality : O

Theorem 16. (AM-GM inequality) Let a1, - ,a, be positive real numbers. Then, we have

wz(al...an)%.

Proof. Since it’s homogeneous, we may rescale aj,--- ,a, so that aj---a, = 1. 2 Hence, we want to show
that
ar-ap=1 = a1+---+a, >n.

The proof is by induction on n. If n = 1, it’s trivial. If n = 2, then we get a1 + a2 —2 = a1 + as — 2\/a1a2 =
(yai — \/az)*> > 0. Now, we assume that it holds for some positive integer n > 2. And let aq, ---,
apn+1 be positive numbers such that a1 ---apa,+1=1. We may assume that a; > 1 > ay. (Why?) Since
(ar1a2)as -+ -a, = 1, by the induction hypothesis, we have ajas + ag + -+ + apy1 > n. Thus, it suffices to
show that ajas + 1 < a; 4+ ag. However, we have ajas +1 — a3 —az = (a3 — 1)(az — 1) <0. O

The following simple observation is not tricky :

Let a,b >0 and m,n € N. Take 2y = --- =z, = a and Xy, 41 = - = Ty,,,, = b. Applying the
AM-GM inequality to x1,- -+, Tmin > 0, we obtain
ma + nb 1 m m
maznd > (amb”)m#" or a+ b > aqminbmin .
m+mn m-+mn m-+n

Hence, for all positive rationals wy and we with wy +wy = 1, we get

w1 a+wsb>a“rtbe2.

We immediately have
Theorem 17. Let w1, we > 0 with wy +ws = 1. Then, for all x, y > 0, we have
w1 Fwey > x iy v,

Proof. We can choose a positive rational sequence aq,as,as,--- such that

lim a, = w;.
n—oo

And letting b; = 1 — a;, we get

lim bn = W3.
n—00

From the previous observation, we have

an T+ by y > aybn

Now, taking the limits to both sides, we get the result. O

2Set x; = (ailﬁ (i=1,---,n). Then, we get 1 ---xn = 1 and it becomes 1 + -+ + T > n.
a1-an)m
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Modifying slightly the above arguments, we obtain

Theorem 18. (Weighted AM-GM inequality) Let wy,--- ,w, be positive real numbers satisfying wi +
-+ +wy, =1. Then, for all x1, -+ ,z, >0, we have

Wi Xyt wn Ty 22y O

Recall that the AM-GM inequality is used to deduce the theorem 12, which is a generalization of the
Cauchy-Schwartz inequality. Since we now get the weighted version of the AM-GM inequality, we establish
weighted version of the Cauchy-Schwartz inequality. It’s called Holder’s Inequality :

Theorem 19. (Holder) Let z;; (i = 1,--- ,m,j = 1,---n) be positive real numbers. Suppose that wy,--- ,wy
are positive real numbers satisfying wi + - - - + wy, = 1. Then, we have

Proof. Since the inequality is homogeneous, as in the proof of the theorem 12, we may rescale x1;,- - , Zm;
so that x1; + -+ 4+ 2,; = 1 for each j € {1,--- ,n}. Then, we need to show that

n m n m n
[ > 3 TTo o 123 T
j=1 i=1j=1 i=1j=1
The weighted AM-GM inequality provides that
n n m n m n
ijxij 2 Hil?ijwj (Z c {1, ,m}) —— ZZWJ'{EZ']' Z ZHxij“’f.
j=1 j=1 i=1 j=1 i=1j=1
However, we immediately have

m

m n n n m n
E E W;iZq; = E E Wjili; = E Wi E Tij = E Wi = 1.
j=1 =1 j=1

i=1j=1 j=1i=1
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4.3 Homogenizations and Normalizations

Here, we present an inequality problem which is solved by the techniques we studied : normalization and
homogenization.

Problem 19. (IMO 1999/2) Let n be an integer with n > 2.
(a) Determine the least constant C' such that the inequality

4
Z zixi(x? + :c?) <C Z x5
1<i<j<n 1<i<n
holds for all real numbers x1,--- ,x, > 0.
(b) For this constant C, determine when equality holds.
Solution. (Marcin E. Kuczma?®) For x; = --- = x,, = 0, it holds for any C' > 0. Hence, we consider the

case when z1 + -+ - + x,, > 0. Since the inequality is homogeneous, we may normalize to 1 + - -+ + z,, = 1.

We denote
F(zy, o) = Z ziwj(x] + 7).
1<i<j<n

From the assumption xy + --- + x,, = 1, we have

F($1, - 7;(;n) — Z xi3xj -+ Z xil‘j?’ = Z CEZ‘B Zl‘i

1<i<j<n 1<i<j<n 1<i<n VED)
— E 3 _ § 2 3
1<i<n 1<i<n

We claim that C = %. It suffices to show that
F(l‘1,--' axn) <

11
=F(=,2,0,---,0]).
(2’2’) ’)

—at <yt -y

ool =

2

Lemma 2. 0 <z <y< % implies x

Y
Proof. Since z +y < 1, we get * +y > (v +y)? > 22 + 2y + y*>. Since y — x > 0, this implies that
2 3or y? —y? > x? — 23, as desired. O

Y —x22y3—x
N\ /1\° 1 1
(2 13 < . - I i R
nlet—al) < 2 x((Z) <2>> 5 2 W=y

1<i<n 1<i<n 1<i<n
Case 2. 11 2%2x22-~-2xn Letxy=xandy=1—xz=29+ -+ xp.
Flay,oom) =2’y + Y wile® =) <a®y+ D0 wiy —v') =2y + (s’ — o).
2<i<n 2<i<n

Since 23y +y(y? —v?) = 22y + 3 (1 — y) = 2y(2® + y?), it remains to show that
1
zy(2® +4°) < 3
Using © +y = 1, we homogenize the above inequality as following.
1
wy(a® +y°) < S+ )"
However, we immediately find that (z + y)* — 8zy(z? + y?) = (z — y)* > 0.

31 slightly modified his solution in [Au99)].
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4.4 Supplementary Problems for Chapter 4

Exercise 46. (IMO unused 1991) Let n be a given integer with n > 2. Find the maximum value of

Y wi(a ),

1<i<j<n
where x1,-++ ,xp >0 and x1 +--- +x, = 1.

Exercise 47. ([PF], S. S. Wagner ) Let a1, - ,an,b1, -+ , b, be positive real numbers. Suppose that
x €10,1]. Show that

i:af +2xZaiaj i:biz +2$Zbibj > zn:(libi —i—xZaibj
=1 =1 i=1

i#j i#j i#]

Exercise 48. Prove the Cauchy-Schwartz inequality for complex numbers *:

n n n
Z |ax|? Z |be|* > Zakbk
1 k=1 k=1

k=
Exercise 49. Prove the complex version of the Lagrange’s identity °:

n n n
D ol 3 [kl =13 axby
k=1 k=1 k=1

2

2

= Z Icstt—atE\Q.

1<s<t<n

4la+bi| = Va2 + b2 (a,b € R)
5a+bi=a-—bi(a,beR)
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Chapter 5

Multivariable Inequalities

M 1. (IMO short-listed 2003) Let (z1,22, - ,&n), (Y1,Y2,-"+ ,Yn) be two sequences of positive real
numbers. Suppose that (z1,za2, - ,zn) 18 a sequence of positive real numbers such that

2
ZitjT 2 XY

forall1 <i,5 <n. Let M = max{zq, - ,z2n}. Prove that
Mzt tzn\* o (mtta [yt tun
2n - n n '
M 2. (Bosnia and Herzegovina 2002) Let ai,- - ,an,b1, - ,bn,c1, - ,cn be positive real numbers.

Prove the following inequality :

(£ () () ()

M 3. (C2113, Marcin E. Kuczma) Prove that inequality

" a;b;
1alzb >Zal+b Zaﬁb

1= =1
for any positive real numbers ai, -« ,an, b1, , by
M 4. (Yogoslavia 1998) Let n > 1 be a positive integer and a1, -+ ,an, by, - , by be positive real numbers.

Prove the following inequality.
2
Zaibj 2 Zaiaj Zblb]
i#] i#] i#]
5. (C2176, Sefket Arslanagic) Prove that

3=
—~
>
=
=~
3
S—
3l

(a1 + 1)+ (an +ba))™ 2 (a1~ an)
where ay, -+ ,ap,b1, - by >0
M 6. (Korea 2001) Let z1,- - ,x, and y1,- -+ ,Yn be real numbers satisfying
24t mi =yt Fynl=1
Show that

(l“lyz - m2y1)2

n
21— Ziﬁz‘yi >
i=1

and determine when equality holds.
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M 7. (Singapore 2001) Letay,- - ,an,b1,- -+ , by be real numbers between 1001 and 2002 inclusive. Suppose

that
n n
Z ai2 = Z biQ.
i=1 i=1

Prove that

= b 1045
Determine when equality holds.
M 8. ([EWW-AI], Abel’s inequality) Let a1, -+ ,an,z1, -+ ,xn be real numbers with x, > x,11 > 0
for all n. Show that
larzy + - +ayen| < Az

where
A =maz{|a1],|a; +as|,- - ,|ay + -+ +anl}.

M 9. (China 1992) For every integer n > 2 find the smallest positive number X = A(n) such that if

1
Oéalv"' y An S 57 bla"' 7bn >07 a1++an:b1++bn:1
then
b1 N bn S )\(albl + -+ anbn)
M 10. (C2551, Panos E. Tsaoussoglou) Suppose that ai,--- ,a, are positive real numbers. Let e; ), =

n—1ifj=k ande; =n — 2 otherwise. Let d; =0 if j =k and dj, = 1 otherwise. Prove that

n n n n 2
S Teseas? = I (z d)
j=1k=1 =1 \k=1

M 11. (C2627, Walther Janous) Let x1, - ,z,(n > 2) be positive real numbers and let x1 + -+ + x,.
Let ay,- - ,a, be non-negative real numbers. Determine the optimum constant C(n) such that

S 9 S oy (e |
j=1 i j=1

M 12. (Hungary-Israel Binational Mathematical Competition 2000) Suppose that k and l are two
given positive integers and a;;(1 < i < k,1 < j <) are given positive numbers. Prove that if ¢ > p > 0,
then

p

B
Q3

S ($0r) ) <[5 (Lo

j=1 \i=1 i=1 \j=1

M 13. ([EWW-KI] Kantorovich inequality) Suppose ©1 < --- < x,, are given positive numbers. Let
Ay oo An >0 and A\ + -+ -+ A\, = 1. Prove that

n n >\1 A2
i — | < =5
(B) (55) <5
i=1 i=1
where A = % and G = \/T1%,,.
M 14. (Czech-Slovak-Polish Match 2001) Let n > 2 be an integer. Show that

(a1® +1D)(ag® +1) - (a,® + 1) > (a1%az + 1)(az?az + 1) - - (an?a; + 1)

for all nonnegative reals a1, -+ , ay.
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M 15. (C1868, De-jun Zhao) Letn >3, a; > as > -+ > a, >0, and p > q¢ > 0. Show that
arPaz? + aPaz? + -+ an1an? + anfar? 2 ar%ar” + azxas? + -+ an—1%an’ + anfar”

M 16. (Baltic Way 1996) For which positive real numbers a,b does the inequality

bx4a N +Ina171b1’2a

T1Tg + ToT3 + T 1Ty + @1 > 2122 3% + 2 3
holds for all integers n > 2 and positive real numbers x1,- - , xy,.
M 17. (IMO short List 2000) Let x1, 29, ,x, be arbitrary real numbers. Prove the inequality

< +/n.

Z1 + €2 + + LT
T4+z2 1422 4 252 L m2 4 a2

M 18. (MM1479, Donald E. Knuth) Let M, be the maximum value of the quantity

Tn T2 x1

+ +ot
Atz +-4x,)?  (I4az2+---+2,)? (14 x,)?

over all nonnegative real numbers (x1,- -+ ,x,). At what point(s) does the maximum occur ? Express M, in
terms of My_1, and find lim,,_. oo M,.

M 19. (IMO 1971) Prove the following assertion is true for n = 3 and n = 5 and false for every other

natural number n > 2 : if ay,--- ,a, are arbitrary real numbers, then
n
ZH(CM — aj) Z 0.
i=1i#j

M 20. (IMO 2003) Let z1 < x9 < -+ < x, be real numbers.

(a) Prove that
2

Z |zs — x5 SLng_l) Z (z; — x4)%

1<i,j<n 1<i,j<n
(b) Show that the equality holds if and only if 1,22, ,x, is an arithmetic sequence.

M 21. (Bulgaria 1995) Letn > 2 and 0 < z1,--- ,x, < 1. Show that

n
(1 + 22+ +2,) — (172 + 2223 + - + Tp01) < {5}

and determine when there is equality.
M 22. (MM1407, Murry S. Klamkin) Determine the mazimum value of the sum
1P +aP 4+ -+ xnf — w2y — wolas” — w927
where p,q,r are given numbers withp > q>r >0 and 0 < x; <1 for all .
M 23. (IMO Short List 1998) Let aq,as,- - ,a, be positive real numbers such that
ar+az+---+a, <l
Prove that

a1ag - an(l — (a1 +az+ -+ ay)) < 1
(e +az+-+a)(l—a)(l—az) - (1—a,) ~ ntl’

M 24. (IMO Short List 1998) Let r1,72, - , 7, be real numbers greater than or equal to 1. Prove that

1 4ot 1 S n
r+1 rn—i—l_(rl..,rn)%_i_l.
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M 25. (Baltic Way 1991) Prove that, for any real numbers ay,--- ,ay,
Yy Y >,
1<ij<n +i-1
M 26. (India 1995) Let x1,x2,- - ,x, be positive real numbers whose sum is 1. Prove that

T Tp n

1—m1+'“+1—xn n—1"

M 27. (Turkey 1997) Given an integer n > 2, Find the minimal value of
215 . 297 L z,?
Tyt aztot T, Tzt T+ T+ a3+ T

for positive real numbers xq,--- ,x, subject to the condition x12 + --- + x,%2 = 1.

M 28. (China 1996) Suppose n € N, g =0, x1,--+ ,xn >0, and x1 + - -+ + x, = 1. Prove that

- T; T
1< < =
_;\/1+$0+"'+$i71\/1'i+"'+$n 2

M 29. (Vietnam 1998) Let x4, - ,x, be positive real numbers satisfying

1 1 1
2 41098 T 2 11998~ 1998°
Prove that )
M > 1998
-

M 30. (C2768 Mohammed Aassila) Let x1,--- ,x, be n positive real numbers. Prove that

1 €2

T n
+ fot > —
Voims + 322 Vasxs + x32 Vaper + 212 7 V2
M 31. (C2842, George Tsintsifas) Let x1,--- ,x, be positive real numbers. Prove that

TR SR o +n(x1---xn)%

(a) > 2,
Nry-- Ty ml_f__’_xn

o) T @)
Ty Tp T+t T, ’

M 32. (C2423, Walther Janous) Let z1,-- - ,z,(n > 2) be positive real numbers such that x1+- - -+x, = 1.

Prove that
1+i 1_|_i > (22T (R
T Tn 1—a 1—x,

Determine the cases of equality.

M 33. (C1851, Walther Janous) Let z1,- - ,x,(n > 2) be positive real numbers such that
244, =1

Prove that

2/n—1 _ 22+xi§2\/ﬁ+1.
5n — 1 5+a; ~ byn+1

i=1
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M 34. (C1429, D. S. Mitirinovic, J. E. Pecaric) Show that

E 2—’ <n-1
T + X 12542

where x1,--- ,x, are n > 3 positive real numbers. Of course, xp41 = T1,Tpta = Ta. 1

M 35. (Belarus 1998 S. Sobolevski) Let a1 < as < --- < a, be positive real numbers. Prove the
inequalities

n ar a1 +---+ay
S St St S e 12
(a) ?11_1_'”4_%7@” n )
n 2k ai+---+ay
(b) 1 T2 2’ )
TR sl S n

an
ay ’

M 36. (Hong Kong 2000) Let aq < as < --- < a, be n real numbers such that

where k =

a; +agx+---+a, =0.

Show that
a12 + a22 +-+ an2 + naia, <0.

M 37. (Poland 2001) Let n > 2 be an integer. Show that

i:xii + (Z) > zn:ml
i=1 i=1

for all nonnegative reals x1, -+ ,xy.
M 38. (Korea 1997) Let ay,--- ,a, be positive numbers, and define
A= H O o ) H = "

1 1
n H_f__’_i

<—1+2 A\
— G .

A n—2 2(n-1)[A\"
< + =] .
H~ n n G

M 39. (Romania 1996) Let xq, - , Ty, Tnt1 be positive reals such that

(a) If n is even, show that

S

(b) If n is odd, show that

xn+1:x1+...+xn_

Prove that

n
Z Vi@ — 1) < VEn1 (T — i)
=1

M 40. (C2730, Peter Y. Woo) Let AM(xy,--- ,2z,) and GM (x1,- - ,x,) denote the arithmetic mean
and the geometric mean of the positive real numbers x1,--- ,x, respectively. Given positive real numbers
ai, -+ ,Qn, b1, -+ by, (a) prove that

GM (a1 +by, - yan+by) > GM(ay, -+ ,a,) + GM(by,--- ,by).
For each real number t > 0, define
f@)=GM{t+b,t+bg,---,t+by) —1t
(b) Prove that f is a monotonic increasing function, and that

lim f(t) = AM(by, -+ ,by)

z

L =n-1
i+1Ti42

! Original version is to show that sup > % | oy B
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M 41. (C1578, O. Johnson, C. S. Goodlad) For each fized positive real number a,,, mazimize

a1ag - Ay
(1+a1)(ar +az)(ag +az) - (an-1+an)

over all positive real numbers ay, -+ ,anp_1.
M 42. (C1630, Isao Ashiba) Mazimize
ai1az + asaq + -+ azp—102,

over all permutations ay,--- ,as, of the set {1,2,---,2n}
M 43. (C1662, Murray S. Klamkin) Prove that

x12r+1 x22r+1 l.n2r+1 qr

+ 4o > T1%o + Tog + -+ + )
$—T1 §—Io s—avn_(n—l)nQ’"—l(l2 23 nt1)

wheren > 3, r > %, x; >0 foralli, and s =21+ -+ x,. Also, Find some values of n and r such that the
inequality is sharp.

M 44. (C1674, Murray S. Klamkin) Given positive real numbers r,s and an integer n > %, find positive
real numbers x1,--- ,x, So as to minimize

1 1 1 . . .
(x1r+x2r+'”+xnr> (I +21)* (1 +22)* -+ (1 + 2,)°.

M 45. (C1691, Walther Janous) Let n > 2. Determine the best upper bound of

T L2 Ln

+ + -+
Toxz - Tp+1 x123 -2, +1 T1To - Tp_1 +1
over all 1, -+ ,x, € [0,1].

M 46. (C1892, Marcin E. Kuczma) Let n > 4 be an integer. Find the exact upper and lower bounds for
the cyclic sum

S Ti-1t Tt Tip

over all n-tuples of nonnegative numbers x1,--- ,xy, such that x;—1 + x; + x;41 > 0 for all i. Of course,
Tpt1 = X1, Tg = Tn. Characterize all cases in which either one of these bounds is attained.

M 47. (C1953, Murray S. Klamkin) Determine a necessary and sucient condition on real constants
1, ,Tn Such that
w1 +wo® -+ wn? > (rwy +rame - A @)

holds for all real numbers x1,--+ , Xy

M 48. (C2018, Marcin E. Kuczma) How many permutations (x1,- -+ ,2n) of {1,2,--+ ,n} are there such
that the cyclic sum
|21 — @2 + |22 — 23| + -+ + [Tn—1 — Tn| + T4 — 21

is (a) a minimum, (b) a mazimum ¢

M 49. (C2214, Walther Janous) Let n > 2 be a natural number. Show that there exists a constant
C = C(n) such that for all x1,--- ;x, > 0 we have

I

i=1

Determine the minimum C(n) for some values of n. (For example, C(2) =1.)
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M 50. (C2615, Murray S. Klamkin) Suppose that x1,--- ,x, are non-negative numbers such that

Yoy (wimin)? = w

where e the sums here and subsequently are symmetric over the subscripts {1,--- ,n}. (a) Determine the
mazimum of Y, x;. (b) Prove or disprove that the minimum of > x; is w .

M 51. (Turkey 1996) Given real numbers 0 = x1 < Ty < +-+ < Taop, Toptr1 = 1 with x;41 — x; < h for
1 <i < n, show that

n

1—h 1+h
— < T2 (Toiq1 — T2im1) < ——.
2 ; 2
i=1
M 52. (Poland 2002) Prove that for every integer n > 3 and every sequence of positive numbers x1,- - ,Tp

at least one of the two inequalities is satsified :

n
L4

n
n xZ; n
>5, Yy ——— 2>
2 P Ti—1 +JCZ‘_2 2

Here, Tpy1 = X1, Tppo = T2, 00 = Ty, T1 = Tp—1.

5 Tit1 T Tigo

M 53. (China 1997) Let x1,- - , 21997 be real numbers satisfying the following conditions:

1
—ﬁ < @1, ,Ti097 < V3, @1 4 - 4 T1997 = —318V/3

Determine the mazimum value of 12 + - - - + T1997'2.

M 54. (C2673, George Baloglou) Let n > 1 be an integer. (a) Show that

(1 + ai - .an)n Z aj -- .an(l -+ aln_g) e (1 -+ aln_Q)

forallay,--- ,a, € [1,00) if and only if n > 4.
(b) Show that
1 n 1 I 1 S n
a1(1 + a2”*2) a2(1 + a3"*2) an(l + a1n72) “1l+4+ay---a,
forallay,--- ,a, >0 if and only if n < 3.
(¢) Show that
1 n 1 " n 1 S n
a1(l4+a1"72)  az(l+ax"2) an(l4+a,"2) ~ 14a1---a,
forallay,--- ,an, >0 if and only if n < 8.

M 55. (C2557, Gord Sinnamon,Hans Heinig) (a) Show that for all positive sequences {z;}
2

k 7 n k
k=1 j=

Sm<ey (Yu] =
k=1 \j=1 Tk

11¢=1 =

(b) Does the above inequality remain true without the factor 279 (c) What is the minimum constant c¢ that
can replace the factor 2 in the above inequality?

M 56. (C1472, Walther Janous) For each integer n > 2, Find the largest constant C,, such that

n
Cod lail < > lai—ajl
i=1

1<i<j<n

for all real numbers ay,--- ,a, satisfying Z?Zl a; =0.
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M 57. (China 2002) Given c € (%, 1). Find the smallest constant M such that, for any integer n > 2 and
real numbers 1 < a; < as < -+ < ap, if

1 n n
— kay <
L SRS oS
k=1 k=1
then
n m
T S
k=1 k=1
where m 1is the largest integer not greater than cn.
M 58. (Serbia 1998) Let x1,x2, - ,x, be positive numbers such that

1+ a2+ +x, =1

Prove the inequality
q¥1—T2 q¥2—3 q¥n =1 S n2
... >,
1+ T T+ T3 T, + T 2

holds true for every positive real number a. Determine also when the equality holds.

M 59. (MM1488, Heinz-Jurgen Seiffert) Let n be a positive integer. Show that if 0 < x1 < x9 < Xy,
then

with equality if and only if v1 =+ =x, = 1.
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