Problems in this Issue (Tap chi 3T)

translated by Pham Van Thuan

Problem 1. Find all postive integers n such that $1009<n<2009$ and n has exactly twelve factors one of which is 17 .

Problem 2. Let x, y be real numbers which satisfy

$$
x^{3}+y^{3}-6\left(x^{2}+y^{2}\right)+13(x+y)-20=0 .
$$

Find the numerical value of $A=x^{3}+y^{3}+12 x y$.
Problem 3. Let x, y be non-negative real numbers that satisfy $x^{2}-2 x y+x-2 y \geq 0$. Find the greatest value of $M=x^{2}-5 y^{2}+3 x$.

Problem 4. Let $A B C D$ be a parallelogram. M is a point on the side $A B$ such that $A M=\frac{1}{3} A B$, N is the mid-point of $C D, G$ is the centroid of $\triangle B M N, I$ is the intersection of $A G$ and $B C$. Compute $G A / G I$ and $I B / I C$.

Problem 5. Suppose that d is a factor of $n^{4}+2 n^{2}+2$ such that $d>n^{2}+1$, where n is some natural number $n>1$. Prove that $d>n^{2}+1+\sqrt{n^{2}+1}$.

Problem 6. Solve the simultaneous equations

$$
\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z}=2, \frac{2}{x y^{2} z}-\frac{1}{z^{2}}=4
$$

Problem 7. Let a, b, c be non-negative real numbers such that $a+b+c=1$. Prove that

$$
\frac{a b}{c+1}+\frac{b c}{a+1}+\frac{c a}{b+1} \leq \frac{1}{4}
$$

Problem 8. Given a triangle $A B C, d$ is a variable line that intersects $A B, A C$ at M, N respectively such that $A B / A M+A C / A N=2009$. Prove that d has a fixed point.

Problem 9. Find all three-digit natural numbers that possess the following property: sum of digits of each number is 9 , the right-most digit is 2 units less than its tens digit, and if the left-most digit and the right-most digit in each number are swapped, then the resulting number is 198 units greater than the original number.

Problem 10. Find the least value of the expression $f(x)=6|x-1|+|3 x-2|+2 x$.
Problem 11. Let a, b be positive real numbers. Prove that

$$
\left(1+\frac{1}{a}\right)^{4}+\left(1+\frac{1}{b}\right)^{4}+\left(1+\frac{1}{c}\right)^{4} \geq 3\left(1+\frac{3}{2+a b c}\right)^{4}
$$

Problem 12. Let $A B C D$ be a trapzium with parallel sides $A B, C D$. Suppose that M is a point on the side $A D$ and N is interior to the trapezium such that $\angle N B C=\angle M B A, \angle N C B=\angle M C D$. Let P be the fourth vertex of the parallelogram MANP. Prove that P is on the side $C D$.

Problem 13. Find all right-angled triangles that each have integral side lengths and the area is equal to the perimeter.

Problem 14. Find the least value of $A=x^{2}+y^{2}$, where x, y are positive integers such that A is divisible by 2010 .

Problem 15. Let x, y be positive real numbers such that $x^{3}+y^{3}=x-y$. Prove that $x^{2}+4 y^{2}<1$.
Problem 16. Pentagon $A B C D E$ is inscribed in a circle. Let a, b, c denote the perpendicular distance from E to the lines $A B, B C$ and $C D$. Compute the distance from E to the line $A D$ in terms of a, b, c.

Problem 17. Let $a=123456789$ and $b=987654321$.

1. Find the greatest common factor of a and b.
2. Find the remainder when the least common multiple of a, b is divided by 11 .

Problem 18. Solve the simultaneous equations

$$
\frac{x y}{2}+\frac{5}{2 x+y-x y}=5,2 x+y+\frac{10}{x y}=4+x y
$$

Problem 19. Let x, y be real numbers such that $x \geq 2, x+y \geq 3$. Find the least value of the expression

$$
P=x^{2}+y^{2}+\frac{1}{x}+\frac{1}{x+y}
$$

Problem 20. Triangle $A B C$ is right isosceles with $A B=A C . M$ is a point on the side $A C$ such that $M C=2 M A$. The line through M that is perpendicular to $B C$ meets $A B$ at D. Compute the distance from point B to the line $C D$ in terms of $A B=a$.

Problem 21. Let n be a positive integer and $x_{1}, x_{2}, \ldots, x_{n-1}$ and x_{n} be integers such that $x_{1}+x_{2}+$ $\cdots+x_{n}=0$ and $x_{1} x_{2} \cdots x_{n}=n$. Prove that n is a multiple of 4 .

Problem 22. Find all natural numbers a, b, n such that $a+b=2^{2007}$ and $a b=2^{n}-1$, where a, b are odd numbers and $b>a>1$.

Problem 23. Solve the equation

$$
x+2=3 \sqrt{1-x^{2}}+\sqrt{1+x}
$$

Problem 24. Let a, b, c be positive real numbers whose sum is 2 . Find the greatest value of

$$
\frac{a}{a b+2 c}+\frac{b}{b c+2 a}+\frac{c}{c a+2 b}
$$

Problem 25. Let $A B C$ be a right-angled triangle with hypotenuse $B C$ and altitude $A H$. I is the midpoint of $B H, K$ is a point on the opposite ray of $A B$ such that $A K=B I$. Draw a circle with center O circumscribing the triangle $I K C$. A tangent of O, touching O at I, intersects $K C$ at P. Another tangent $P M$ of the circle is drawn. Compute the ratio $\frac{M I}{M K}$.

Problem 26. Evaluate the sum

$$
S=\frac{4+\sqrt{3}}{\sqrt{1}+\sqrt{3}}+\frac{6+\sqrt{8}}{\sqrt{3}+\sqrt{5}}+\cdots+\frac{2 n+\sqrt{n^{2}-1}}{\sqrt{n-1}+\sqrt{n+1}}+\cdots+\frac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}} .
$$

Problem 27. Solve the equation

$$
\sqrt{6 x+10 x}=x^{2}-13 x+12 .
$$

Problem 28. Let x, y, z be real numbers $(x+1)^{2}+(y+2)^{2}+(z+3)^{2} \leq 2010$. Find the least value of

$$
A=x y+y(z-1)+z(x-2) .
$$

Problem 29. A triangle $A B C$ has $A C=3 A B$ and the size of $\angle A$ is 60°. On the side $B C, D$ is chosen such that $\angle A D B=30^{\circ}$. The line through D that is perpendicular to $A D$ intersects $A B$ at E. Prove that triangle $A C E$ is equilateral.

Problem 30. Compare the algebraic value of

$$
\begin{aligned}
& \frac{\sqrt{2}}{2 \sqrt[3]{1}+\sqrt[3]{2^{2} \cdot 1^{2}}+1 \sqrt[3]{2}}+\frac{\sqrt{2}}{3 \sqrt[3]{2}+\sqrt[3]{3^{2} \cdot 2^{2}}+2 \sqrt[3]{3}}+\cdots+\frac{\sqrt{2}}{1728 \sqrt[3]{1727}+\sqrt[3]{1728^{2} \cdot 1727^{2}}+1727 \sqrt[3]{1728}} \\
& \text { and } \frac{11}{7}
\end{aligned}
$$

Problem 31. Find all possible values of m, n such that the simultaneous equations have a unique solution

$$
\begin{aligned}
x y z+z & =m, \\
x y z^{2}+z & =n, \\
x^{2}+y^{2}+z^{2} & =4 .
\end{aligned}
$$

Problem 32. Let x be a positive real number. Find the minimum value of

$$
P=\left(x+\frac{1}{x}\right)^{3}-3\left(x+\frac{1}{x}\right)^{2}+1 .
$$

Problem 33. A quadrilateral $A B C D$ has $\angle B C D=\angle B D C=50^{\circ}, \angle A C D=\angle A D B=30^{\circ}$. Let $A C$ intersect $B D$ at I. Prove that $A B I$ is an isosceles triangle.

Problem 34. Solve the equation in the set of integers

$$
x^{3}-(x+y+z)^{2}=(y+z)^{2}+34 .
$$

Problem 35. Solve the equation

$$
x^{2}-3 x+9=9 \sqrt[3]{x-2}
$$

Problem 36. Solve the system of equations

$$
\begin{array}{r}
\sqrt{2 x+3}+\sqrt{2 y+3}+\sqrt{2 z+3}=9 \\
\sqrt{x-2}+\sqrt{y-2}+\sqrt{z-2}=3 .
\end{array}
$$

Problem 37. Given that $a, b, c \geq 1$, prove that

$$
a b c+6029 \geq 2010(\sqrt[2010]{a}+\sqrt[2010]{b}+\sqrt[2010]{c})
$$

Problem 38. $A B C$ is an isosceles triangle with $A B=A C$. Let D, E be the midpoints of $A B$ and $A C . M$ is a variable point on the line $D E$. A circle with center O touches $A B, A C$ at B and C respectively. A circle with diameter $O M$ cuts (O) at N, K. Find the location of M such that the radius of the circumcircle of triangle $A N K$ is a minimum.

Problem 39. A circle with center I is inscribed in triangle $A B C$, touching the sides $B C, C A$, and $A B$ at A_{1}, B_{1}, and C_{1} respectively. $C_{1} K$ is the diameter of $(I) . A_{1} K$ cuts $B_{1} C_{1}$ at $D, C D$ meets $C_{1} A_{1}$ at P. Prove that
a) $C D \| A B$
b) P, K, B_{1} are collinear.

Problem 40. For each positive integer n, let

$$
S_{n}=\frac{1}{5}+\frac{3}{85}+\frac{5}{629}+\cdots+\frac{2 n-1}{16 n^{4}-32 n^{3}+24 n^{2}-8 n+5}
$$

Compute the value of S_{100}.
Problem 41. Find the value of

$$
\frac{\left(x y+2 z^{2}\right)\left(y z+2 x^{2}\right)\left(z x+2 y^{2}\right)}{\left(2 x y^{2}+2 y z^{2}+2 z x^{2}+3 x y z\right)^{2}}
$$

if x, y, z are real numbers satisfying $x+y+z=0$.
Problem 42. Solve the equation

$$
2 x^{2}+3 \sqrt[3]{x^{3}-9}=\frac{10}{x}
$$

Problem 43. Let m, n be constants and a, b be real numbers such that

$$
m \leq n \leq 2 m, 0<a \leq b \leq m, a+b \leq n
$$

Find the greatest value of $S=a^{2}+b^{2}$.
Problem 44. Let $A B C$ be a right triangle with hypotenuse $B C$. A square $M N P Q$ is inscribed in the triangle such that M is on the side $A B, N$ is on the side $A C$ and P, Q are on the side $B C$. Let $B N$ meet $M Q$ at $E, C M$ intersect $N P$ at F. Prove that $A E=A F$ and $\angle E A B=\angle F A C$.

Problem 45. Let $B C$ be a fixed chord of a circle with center O and radius $R(B C \neq 2 R)$. A is a variable point on the major arc $B C$. The bisector of $\angle B A C$ meets $B C$ at D. Let r_{1} and r_{2} be the radius of the incircles of triangles $A D B$ and $D A C$, respectively. Determine the location of A such that $r_{1}+r_{2}$ is a maximum.

Problem 46. A natural number is said to be intriguing if it is a multiple of 11111 and all of its digits are distinct. Find the number of intriguing numbers that have ten digits each.

Problem 47. Find all the digits a, b, c such that $\sqrt{\overline{a b c}}-\sqrt{\overline{a c b}}=1$.
Problem 48. Find the greatest and the least value of $y=\sqrt{x+1}+\sqrt{5-4 x}$.
Problem 49. Let a, b, c be positive real numbers such that $a \neq c$ and $a+\sqrt{b+\sqrt{c}}=c+\sqrt{b+\sqrt{a}}$. Prove that $a c<\frac{1}{40}$.

Problem 50. $A B C$ is an isosceles triangle with $A B=A C$. Let M, D be the midpoints of $B C$ and $A M$. Let H be the perpendicular projection of M onto $C D$. $A H$ meets $B C$ at $N, B H$ intersects $A M$ at E. Prove that E is the orthocenter of triangle $A B N$.

Problem 51. Let $A B C D E$ be a convex pentagon. Triangles $A B C, B C D, C D E$ and $D E A$ each have area $\sqrt{2010}$. Find the area of the pentagon.

Problem 52. Without the aid of a calculator, compare the value of

$$
A=\sqrt{2008}+\sqrt{2009}+\sqrt{2010}, B=\sqrt{2005}+\sqrt{2007}+\sqrt{2015} .
$$

Problem 53. Solve the equation

$$
x^{3}-2012 x^{2}+1012037 x-\sqrt{2 x-2011}-1005=0 .
$$

Problem 54. Solve the system of equations

$$
\begin{cases}\sqrt{335 x-2010} & =12-y^{2} \\ x y & =x^{2}+3\end{cases}
$$

Problem 55. Let a, b, c be non-negative real numbers that adds up to 1 . Find the minimum value of

$$
P=a^{2}+b^{2}+c^{2}+\frac{a b c}{2} .
$$

Problem 56. Triangle $A B C$ is right at A and $A B=3 A C . M$ is a point in the interior of the triangle such that $M A: M B: M C=1: 4: \sqrt{2}$. Find the measure of angle $B M C$.

Problem 57. $A B C$ is a triangle. Points K, N and M are the midpoints of $A B, B C$ and $A K$. Prove that the perimeter of triangle $A K C$ is greater than that of triangle $C M N$.

Problem 58. A natural number is said to be intriguing if it is a multiple of 11111 and all of its digits are distinct. Find the number of intriguing numbers that have ten digits each.

Problem 59. Find all the digits a, b, c such that $\sqrt{\overline{a b c}}-\sqrt{\overline{a c b}}=1$.
Problem 60. Find the greatest and the least value of $y=\sqrt{x+1}+\sqrt{5-4 x}$.
Problem 61. Let a, b, c be positive real numbers such that $a \neq c$ and $a+\sqrt{b+\sqrt{c}}=c+\sqrt{b+\sqrt{a}}$. Prove that $a c<\frac{1}{40}$.

Problem 62. $A B C$ is an isosceles triangle with $A B=A C$. Let M, D be the midpoints of $B C$ and $A M$. Let H be the perpendicular projection of M onto $C D$. $A H$ meets $B C$ at $N, B H$ intersects $A M$ at E. Prove that E is the orthocenter of triangle $A B N$.

Problem 63. Let $A B C D E$ be a convex pentagon. Triangles $A B C, B C D, C D E$ and $D E A$ each have area $\sqrt{2010}$. Find the area of the pentagon.

Problem 64. Solve for integers x, y

$$
2008 x^{2}-199 y^{2}=2008.2009 .2010
$$

Problem 65. For each real number x, we denote by $[x]$ the greatest integer not exceeding x. Prove that

$$
\left[\sqrt{n}+\frac{1}{2}\right]=\left[\sqrt{n-\frac{3}{4}}+\frac{1}{2}\right]
$$

Problem 66. Solve the system of equations

$$
\left\{\begin{array}{l}
8 x^{2}+\frac{1}{\sqrt{y}}=\frac{5}{2} \\
8 y^{2}+\frac{1}{\sqrt{x}}=\frac{5}{2}
\end{array}\right.
$$

Problem 67. Positive real numbers satisfy the relation $\sqrt{a^{2}+b^{2}}+\sqrt{b^{2}+c^{2}}+\sqrt{a^{2}+c^{2}}=3 \sqrt{2}$. Find the minimum value of the expression

$$
\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b}
$$

Problem 68. $A B C$ is an equilateral triangle. M is a point inside the triangle such that $M A^{2}=$ $M B^{2}+M C^{2}$. Compute the area of triangle $A B C$ in terms of the length of $M B$ and $M C$.

Problem 69. $A B C$ is a triangle. The angle bisectors $B E$ and $C F$ meet each other at $I . A I$ meets $E F$ at M. A line through M, parallel to $B C$, intersects $A B$ and $A C$ at N, P. Prove that $3 N P>$ $M B+M C$.

Problem 70. For a positive integer k, denote by $k!=1 \times 2 \times \cdots \times k$. Given an integer $n>3$, prove that

$$
A_{n}=1!+2!+\cdots+n!
$$

can not be written in the form a^{b}, where a, b are integers and $b>1$.
Problem 71. Solve the integer equation

$$
\frac{x+y}{x^{2}-x y+y^{2}}=\frac{3}{7} .
$$

Problem 72. Solve the equation

$$
x^{4}+4 x^{3}+5 x^{2}+2 x-10=12 \sqrt{x^{2}+2 x+5} .
$$

Problem 73. Let a, b, c be positive real numbers such that $a \geq b \geq c$ and $3 a-4 b+c=0$. Find the minimum value of

$$
M=\frac{a^{2}-b^{2}}{c}-\frac{b^{2}-c^{2}}{a}-\frac{c^{2}-a^{2}}{b} .
$$

Problem 74. Triangle $A B C$ is isosceles at A and $\angle B A C=40^{\circ}$. Point M is inside the triangle such that $\angle M B C=40^{\circ}, \angle M C B=20^{\circ}$. Find the measure of $\angle M A B$.

Problem 75. Let O be a center with two mutually perpendicular diameters $A B$ and $C D . E$ is a point on the minor arc $B D, E$ is distinct from B and D). $A E$ meets $C D$ at $M, C E$ meets $A B$ at N. Prove that

$$
\frac{M D}{M O}+\frac{N B}{N O} \geq 2 \sqrt{2} .
$$

Problem 76. Solve the integer equation

$$
(|x-y|+|x+y|)^{3}=x^{3}+|y|^{3}+6 .
$$

Problem 77. Let a, b, c be real numbers distinct from 0 . Find all real numbers x, y, z such that

$$
\frac{x y}{a y+b x}=\frac{y z}{b z+c y}=\frac{z x}{c x+a z}=\frac{x^{2}+y^{2}+z^{2}}{a^{2}+b^{2}+c^{2}} .
$$

Problem 78. Solve the system of equations

$$
\frac{2 x^{2}}{x^{2}+1}=y, \frac{3 y^{2}}{y^{4}+y^{2}+1}=z, \frac{4 z^{2}}{z^{6}+z^{4}+z^{2}+1}=x
$$

Problem 79. Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{2}+b^{2}}{(a+b)^{2}}+\frac{b^{2}+c^{2}}{(b+c)^{2}}+\frac{c^{2}+a^{2}}{(c+a)^{2}}+\frac{8 a b c}{(a+b)(b+c)(c+a)} \geq \frac{5}{2} .
$$

Problem 80. Given two equilateral triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ overlapping each other in such a way that the intersections of the sides form a regular hexagon, find the minimum value of the perimeter of the hexagon if the side-lengths of the two triangles are x, y.

Problem 81. Let $B C$ be a fixed chord of a circle with center $O ; B C$ is not a diameter. M is the midpoint of the chord $B C, A$ is a point that varies on the major arc $B C, D$ is the intersection of $A M$ and the minor arc $B C, N$ is the intersection of $A B$ and $C D$. Prove that N is on a fixed line when A moves on the major arc $B C$.

