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Abbreviations

• IMO International mathematical Olympiad

• TST Team Selection Test

• MO Mathematical Olympiad

• LHS Left hand side

• RHS Right hand side

• W.L.O.G Without loss of generality

•
∑

:
∑

cyclic
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Chapter 1

Problems

Pro 1. (Vietnamese National Olympiad 2008) Let x, y, z be distinct non-negative real
numbers. Prove that

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

≥ 4
xy + yz + zx

.

∇

Pro 2. (Iranian National Olympiad (3rd Round) 2008). Find the smallest real K
such that for each x, y, z ∈ R+:

x
√
y + y

√
z + z

√
x ≤ K

√
(x+ y)(y + z)(z + x)

∇

Pro 3. (Iranian National Olympiad (3rd Round) 2008). Let x, y, z ∈ R+ and
x+ y + z = 3. Prove that:

x3

y3 + 8
+

y3

z3 + 8
+

z3

x3 + 8
≥ 1

9
+

2
27

(xy + xz + yz)

∇

Pro 4. (Iran TST 2008.) Let a, b, c > 0 and ab+ ac+ bc = 1. Prove that:√
a3 + a+

√
b3 + b+

√
c3 + c ≥ 2

√
a+ b+ c

∇

Pro 5. (Macedonian Mathematical Olympiad 2008.) Positive numbers a, b, c are
such that (a+ b) (b+ c) (c+ a) = 8. Prove the inequality

a+ b+ c

3
≥ 27

√
a3 + b3 + c3

3

∇
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Pro 6. (Mongolian TST 2008) Find the maximum number C such that for any non-
negative x, y, z the inequality

x3 + y3 + z3 + C(xy2 + yz2 + zx2) ≥ (C + 1)(x2y + y2z + z2x).

holds.

∇

Pro 7. (Federation of Bosnia, 1. Grades 2008.) For arbitrary reals x, y and z prove
the following inequality:

x2 + y2 + z2 − xy − yz − zx ≥ max{3(x− y)2

4
,
3(y − z)2

4
,
3(y − z)2

4
}.

∇

Pro 8. (Federation of Bosnia, 1. Grades 2008.) If a, b and c are positive reals such
that a2 + b2 + c2 = 1 prove the inequality:

a5 + b5

ab(a+ b)
+

b5 + c5

bc(b+ c)
+

c5 + a5

ca(a+ b)
≥ 3(ab+ bc+ ca)− 2

∇

Pro 9. (Federation of Bosnia, 1. Grades 2008.) If a, b and c are positive reals prove
inequality:

(1 +
4a
b+ c

)(1 +
4b
a+ c

)(1 +
4c
a+ b

) > 25

∇

Pro 10. (Croatian Team Selection Test 2008) Let x, y, z be positive numbers. Find
the minimum value of:

(a)
x2 + y2 + z2

xy + yz

(b)
x2 + y2 + 2z2

xy + yz

∇

Pro 11. (Moldova 2008 IMO-BMO Second TST Problem 2) Let a1, . . . , an be pos-
itive reals so that a1 + a2 + . . .+ an ≤ n

2 . Find the minimal value of

A =

√
a2

1 +
1
a2

2

+

√
a2

2 +
1
a2

3

+ . . .+

√
a2

n +
1
a2

1

∇

Pro 12. (RMO 2008, Grade 8, Problem 3) Let a, b ∈ [0, 1]. Prove that

1
1 + a+ b

≤ 1− a+ b

2
+
ab

3
.
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∇

Pro 13. (Romanian TST 2 2008, Problem 1) Let n ≥ 3 be an odd integer. Determine
the maximum value of√

|x1 − x2|+
√
|x2 − x3|+ . . .+

√
|xn−1 − xn|+

√
|xn − x1|,

where xi are positive real numbers from the interval [0, 1]

∇

Pro 14. (Romania Junior TST Day 3 Problem 2 2008) Let a, b, c be positive reals
with ab+ bc+ ca = 3. Prove that:

1
1 + a2(b+ c)

+
1

1 + b2(a+ c)
+

1
1 + c2(b+ a)

≤ 1
abc

.

∇

Pro 15. (Romanian Junior TST Day 4 Problem 4 2008) Determine the maximum
possible real value of the number k, such that

(a+ b+ c)
(

1
a+ b

+
1

c+ b
+

1
a+ c

− k
)
≥ k

for all real numbers a, b, c ≥ 0 with a+ b+ c = ab+ bc+ ca.

∇

Pro 16. (2008 Romanian Clock-Tower School Junior Competition) For any real
numbers a, b, c > 0, with abc = 8, prove

a− 2
a+ 1

+
b− 2
b+ 1

+
c− 2
c+ 1

≤ 0

∇

Pro 17. (Serbian National Olympiad 2008) Let a, b, c be positive real numbers such
that x+ y + z = 1. Prove inequality:

1
yz + x+ 1

x

+
1

xz + y + 1
y

+
1

xy + z + 1
z

≤ 27
31
.

∇

Pro 18. (Canadian Mathematical Olympiad 2008) Let a, b, c be positive real numbers
for which a+ b+ c = 1. Prove that

a− bc
a+ bc

+
b− ca
b+ ca

+
c− ab
c+ ab

≤ 3
2
.

∇
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Pro 19. (German DEMO 2008) Find the smallest constant C such that for all real x, y

1 + (x+ y)2 ≤ C · (1 + x2) · (1 + y2)

holds.

∇

Pro 20. (Irish Mathematical Olympiad 2008) For positive real numbers a, b, c and d
such that a2 + b2 + c2 + d2 = 1 prove that

a2b2cd+ +ab2c2d+ abc2d2 + a2bcd2 + a2bc2d+ ab2cd2 ≤ 3/32,

and determine the cases of equality.

∇

Pro 21. (Greek national mathematical olympiad 2008, P1) For the positive integers
a1, a2, ..., an prove that (∑n

i=1 a
2
i∑n

i=1 ai

) kn
t

≥
n∏

i=1

ai

where k = max {a1, a2, ..., an} and t = min {a1, a2, ..., an}. When does the equality hold?

∇

Pro 22. (Greek national mathematical olympiad 2008, P2)
If x, y, z are positive real numbers with x, y, z < 2 and x2 + y2 + z2 = 3 prove that

3
2
<

1 + y2

x+ 2
+

1 + z2

y + 2
+

1 + x2

z + 2
< 3

∇

Pro 23. (Moldova National Olympiad 2008) Positive real numbers a, b, c satisfy in-
equality a+ b+ c ≤ 3

2 . Find the smallest possible value for:

S = abc+
1
abc

∇

Pro 24. (British MO 2008) Find the minimum of x2 + y2 + z2 where x, y, z ∈ R and
satisfy x3 + y3 + z3 − 3xyz = 1

∇

Pro 25. (Zhautykov Olympiad, Kazakhstan 2008, Question 6) Let a, b, c be positive
integers for which abc = 1. Prove that∑ 1

b(a+ b)
≥ 3

2
.

6



Inequalities from 2008 Mathematical Competition ? ? ? ? ?

∇

Pro 26. (Ukraine National Olympiad 2008, P1) Let x, y and z are non-negative
numbers such that x2 + y2 + z2 = 3. Prove that:

x√
x2 + y + z

+
y√

x+ y2 + z
+

z√
x+ y + z2

≤
√

3

∇

Pro 27. (Ukraine National Olympiad 2008, P2) For positive a, b, c, d prove that

(a+ b)(b+ c)(c+ d)(d+ a)(1 + 4
√
abcd)4 ≥ 16abcd(1 + a)(1 + b)(1 + c)(1 + d)

∇

Pro 28. (Polish MO 2008, Pro 5) Show that for all nonnegative real values an inequality
occurs:

4(
√
a3b3 +

√
b3c3 +

√
c3a3) ≤ 4c3 + (a+ b)3.

∇

Pro 29. (Brazilian Math Olympiad 2008, Problem 3). Let x, y, z real numbers such
that x+ y + z = xy + yz + zx. Find the minimum value of

x

x2 + 1
+

y

y2 + 1
+

z

z2 + 1

∇

Pro 30. (Kiev 2008, Problem 1). Let a, b, c ≥ 0. Prove that

a2 + b2 + c2

5
≥ min((a− b)2, (b− c)2, (c− a)2)

∇

Pro 31. (Kiev 2008, Problem 2). Let x1, x2, · · · , xn ≥ 0, n > 3 and x1+x2+· · ·+xn = 2
Find the minimum value of

x2

1 + x2
1

+
x3

1 + x2
2

+ ...+
x1

1 + x2
n

∇

Pro 32. (Hong Kong TST1 2009, Problem 1). Let θ1, θ2, . . . , θ2008 be real numbers.
Find the maximum value of

sin θ1 cos θ2 + sin θ2 cos θ3 + . . .+ sin θ2007 cos θ2008 + sin θ2008 cos θ1

∇
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Pro 33. (Hong Kong TST1 2009, Problem 5). Let a, b, c be the three sides of a
triangle. Determine all possible values of

a2 + b2 + c2

ab+ bc+ ca

∇

Pro 34. (Indonesia National Science Olympiad 2008). Prove that for x and y
positive reals,

1
(1 +

√
x)2

+
1

(1 +
√
y)2
≥ 2
x+ y + 2

.

∇

Pro 35. (Baltic Way 2008). Prove that if the real numbers a, b and c satisfy a2+b2+c2 =
3 then ∑ a2

2 + b+ c2
≥ (a+ b+ c)2

12
.

When does the inequality hold?

∇

Pro 36. (Turkey NMO 2008 Problem 3). Let a.b.c be positive reals such that their
sum is 1. Prove that

a2b2

c3(a2 − ab+ b2)
+

b2c2

a3(b2 − bc+ c2)
+

a2c2

b3(a2 − ac+ c2)
≥ 3
ab+ bc+ ac

∇

Pro 37. (China Western Mathematical Olympiad 2008). Given x, y, z ∈ (0, 1)
satisfying that √

1− x
yz

+

√
1− y
xz

+
√

1− z
xy

= 2.

Find the maximum value of xyz.

∇

Pro 38. (Chinese TST 2008 P5). For two given positive integers m,n > 1, let aij(i =
1, 2, · · · , n, j = 1, 2, · · · ,m) be nonnegative real numbers, not all zero, find the maximum
and the minimum values of f , where

f =
n
∑n

i=1(
∑m

j=1 aij)2 +m
∑m

j=1(
∑n

i=1 aij)2

(
∑n

i=1

∑m
j=1 aij)2 +mn

∑n
i=1

∑m
i=j a

2
ij

∇

Pro 39. (Chinese TST 2008 P6) Find the maximal constant M , such that for arbi-
trary integer n ≥ 3, there exist two sequences of positive real number a1, a2, · · · , an, and
b1, b2, · · · , bn, satisfying
(1):

∑n
k=1 bk = 1, 2bk ≥ bk−1 + bk+1, k = 2, 3, · · · , n− 1;

(2):a2
k ≤ 1 +

∑k
i=1 aibi, k = 1, 2, 3, · · · , n, an ≡M .

∇
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Chapter 2

Solutions

Problem 1. (Vietnamese National Olympiad 2008) Let x, y, z be distinct non-negative
real numbers. Prove that

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

≥ 4
xy + yz + zx

.

Proof. (Posted by Vo Thanh Van). Assuming z = min{x, y, z}. We have

(x− z)2 + (y − z)2 = (x− y)2 + 2(x− z)(y − z)

So by the AM-GM inequality, we get

1
(x− y)2

+
1

(y − z)2
+

1
(z − x)2

=
1

(x− y)2
+

(x− y)2

(y − z)2(z − x)2
+

2
(x− z)(y − z)

≥ 2
(x− z)(y − z)

+
2

(x− z)(y − z)
=

4
(x− z)(y − z)

≥ 4
xy + yz + zx

Q.E.D.

Proof. (Posted by Altheman). Let f(x, y, z) denote the LHS minus the RHS. Then
f(x+ d, y + d, z + d) is increasing in d so we can set the least of x+ d, y + d, z + d equal to
zero (WLOG z = 0). Then we have

1
(x− y)2

+
1
x2

+
1
y2
− 4
xy

=
(x2 + y2 − 3xy)2

x2y2(x− y)2
≥ 0

∇

Problem 2. (Iranian National Olympiad (3rd Round) 2008). Find the smallest
real K such that for each x, y, z ∈ R+:

x
√
y + y

√
z + z

√
x ≤ K

√
(x+ y)(y + z)(z + x)

9
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Proof. (Posted by nayel). By the Cauchy-Schwarz inequality, we have

LHS =
√
x
√
xy +

√
y
√
yz +

√
z
√
zx ≤

√
(x+ y + z)(xy + yz + zx)

≤ 3
2
√

2

√
(x+ y)(y + z)(z + x)

where the last inequality follows from

8(x+ y + z)(xy + yz + zx) ≤ 9(x+ y)(y + z)(z + x)

which is well known.

Proof. (Posted by rofler). We want to find the smallest K. I claim

K =
3

2
√

2
. The inequality is equivalent to

8(x
√
y + y

√
z + z

√
x)2 ≤ 9(x+ y)(y + z)(z + x)

⇐⇒ 8x2y + 8y2z + 8z2x+ 16xy
√
yz + 16yz

√
zx+ 16xz

√
xy ≤ 9

∑
sym

x2y + 18xyz

⇐⇒ 16xy
√
yz + 16yz

√
zx+ 16xz

√
xy ≤ x2y + y2z + z2x+ 9y2x+ 9z2y + 9x2z + 18xyz

By the AM-GM inequality, we have

z2x+ 9y2x+ 6xyz ≥ 16 16
√
z2x · y18x9 · x6y6z6 = 16xy

√
xz

Sum up cyclically. We can get equality when x = y = z = 1, so we know that K cannot be
any smaller.

Proof. (Posted by FelixD). We want to find the smallest K such that

(x
√
y + y

√
z + z

√
x)2 ≤ K2(x+ y)(y + z)(z + x)

But

(x
√
y + y

√
z + z

√
x)2 =

∑
cyc

x2y + 2(
∑
cyc

xy
√
yz)

≤
∑
cyc

x2y + 2(
∑
cyc

xyz + xy2

2
)

= (x+ y)(y + z)(z + x) + xyz

≤ (x+ y)(y + z)(z + x) +
1
8

(x+ y)(y + z)(z + x)

=
9
8

(x+ y)(y + z)(z + x)

Therefore,

K2 ≥ 9
8
→ K ≥ 3

2
√

2
with equality holds if and only if x = y = z.

∇
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Problem 3. (Iranian National Olympiad (3rd Round) 2008). Let x, y, z ∈ R+ and
x+ y + z = 3. Prove that:

x3

y3 + 8
+

y3

z3 + 8
+

z3

x3 + 8
≥ 1

9
+

2
27

(xy + xz + yz)

Proof. (Posted by rofler). By the AM-GM inequality, we have

x3

(y + 2)(y2 − 2y + 4)
+
y + 2

27
+
y2 − 2y + 4

27
≥ x

3

Summing up cyclically, we have

x3

y3 + 8
+

y3

z3 + 8
+

z3

x3 + 8
+
x2 + y2 + z2 − (x+ y + z) + 6 ∗ 3

27

≥ 1 ≥ 1
3

+
1
9
− x2 + y2 + z2

27
Hence it suffices to show that

1
3
− x2 + y2 + z2

27
≥ 2

27
(xy + xz + yz)

⇐⇒ 9− (x2 + y2 + z2) ≥ 2(xy + xz + yz)

⇐⇒ 9 ≥ (x+ y + z)2 = 9

Q.E.D.

∇

Problem 4. (Iran TST 2008.) Let a, b, c > 0 and ab+ ac+ bc = 1. Prove that:√
a3 + a+

√
b3 + b+

√
c3 + c ≥ 2

√
a+ b+ c

Proof. (Posted by Albanian Eagle). It is equivalent to:

∑
cyc

a√
a(b+ c)

≥ 2

√
(a+ b+ c)(ab+ bc+ ca)

(a+ b)(b+ c)(c+ a)

Using the Jensen inequality, on f(x) =
1√
x

, we get

∑
cyc

a√
a(b+ c)

≥ a+ b+ c√∑
sym a2b

a+ b+ c

So we need to prove that

(a+ b+ c)2(
∑
sym

a2b+ 2abc) ≥ 4(ab+ bc+ ca)(
∑
sym

a2b)

Now let c be the smallest number among a, b, c and we see we can rewrite the above as

(a− b)2(a2b+ b2a+ a2c+ b2c− ac2 − bc2) + c2(a+ b)(c− a)(c− b) ≥ 0

11
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Proof. (Posted by Campos). The inequality is equivalent to∑√
a(a+ b)(a+ c) ≥ 2

√
(a+ b+ c)(ab+ bc+ ca)

After squaring both sides and canceling some terms we have that it is equivalent to∑
a3 + abc+ 2(b+ c)

√
bc(a+ b)(a+ c) ≥

∑
3a2b+ 3a2c+ 4abc

From the Schur’s inequality we have that it is enough to prove that∑
(b+ c)

√
(ab+ b2)(ac+ c2) ≥

∑
a2b+ a2c+ 2abc

From the Cauchy-Schwarz inequality we have√
(ab+ b2)(ac+ c2) ≥ a

√
bc+ bc

so ∑
(b+ c)

√
(ab+ b2)(ac+ c2) ≥

∑
a(b+ c)

√
bc+ bc(b+ c) ≥

∑
a2b+ a2c+ 2abc

as we wanted to prove.

Proof. (Posted by anas). Squaring the both sides , our inequality is equivalent to:∑
a3 − 3

∑
ab(a+ b)− 9abc+ 2

∑√
a(a+ b)(a+ c)

√
b(b+ c)(b+ a) ≥ 0

But, by the AM-GM inequality, we have:

a(a+ b)(a+ c) · b(b+ c)(b+ a)

= (a3 + a2c+ a2b+ abc)(ab2 + b2c+ b3 + abc)

≥ (a2b+ abc+ ab2 + abc)2

So we need to prove that:

a3 + b3 + c3 − ab(a+ b)− ac(a+ c)− bc(b+ c) + 3abc ≥ 0

which is clearly true by the Schur inequality

∇

Problem 5. Macedonian Mathematical Olympiad 2008. Positive numbers a, b, c
are such that (a+ b) (b+ c) (c+ a) = 8. Prove the inequality

a+ b+ c

3
≥ 27

√
a3 + b3 + c3

3

Proof. (Posted by argady). By the AM-GM inequality, we have

(a+ b+ c)3 = a3 + b3 + c3 + 24 = a3 + b3 + c3 + 3 + · · ·+ 3 ≥ 9 9
√

(a3 + b3 + c3) · 38

Q.E.D.

12
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Proof. (Posted by kunny). The inequality is equivalent to

(a+ b+ c)27 ≥ 326(a3 + b3 + c3) · · · [∗]

Let a+ b = 2x, b+ c = 2y, c+ a = 2z, we have that

(a+ b)(b+ c)(c+ a) = 8⇐⇒ xyz = 1

and
2(a+ b+ c) = 2(x+ y + z)⇐⇒ a+ b+ c = x+ y + z

(a+ b+ c)3 = a3 + b3 + c3 + 3(a+ b)(b+ c)(c+ a)⇐⇒ a3 + b3 + c3 = (x+ y + z)3 − 24

Therefore
[∗]⇐⇒ (x+ y + z)27 ≥ 326{(x+ y + z)3 − 24}.

Let t = (x+ y + z)3, by AM-GM inequality, we have that

x+ y + z ≥ 3 3
√
xyz ⇐⇒ x+ y + z ≥ 3

yielding t ≥ 27.
Since y = t9 is an increasing and concave up function for t > 0, the tangent line of y = t9

at t = 3 is y = 326(t− 27) + 327.We can obtain

t9 ≥ 326(t− 27) + 327

yielding t9 ≥ 326(t− 24), which completes the proof.

Proof. (Posted by kunny). The inequality is equivalent to

(a+ b+ c)27

a3 + b3 + c3
≥ 326.

Let x = (a+ b+ c)3, by the AM-GM inequality, we have:

8 = (a+ b)(b+ c)(c+ a) ≤
(

2(a+ b+ c)
3

)3

so a+ b+ c ≥ 3 The left side of the above inequality

f(x) :=
x9

x− 24
=⇒ f ′(x) =

8x8(x− 27)
(x− 24)2

≥ 0

We have f(x) ≥ f(27) = 326.

∇

Problem 6. (Mongolian TST 2008) Find the maximum number C such that for any
nonnegative x, y, z the inequality

x3 + y3 + z3 + C(xy2 + yz2 + zx2) ≥ (C + 1)(x2y + y2z + z2x).

holds.

13
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Proof. (Posted by hungkhtn). Applying CID (Cyclic Inequality of Degree 3) 1 theorem,
we can let c = 0 in the inequality. It becomes

x3 + y3 + cx2y ≥ (c+ 1)xy2.

Thus, we have to find the minimal value of

f(y) =
y3 − y2 + 1
y2 − y

= y +
1

y(y − 1)

when y > 1. It is easy to find that

f ′(y) = 0⇔ 2y − 1 = (y(y − 1))2 ⇔ y4 − 2y3 + y2 − 2y + 1 = 0.

Solving this symmetric equation gives us:

y +
1
y

= 1 +
√

2⇒ y =
1 +
√

2 +
√

2
√

2− 1
2

Thus we found the best value of C is

y +
1

y(y − 1)
=

1 +
√

2 +
√

2
√

2− 1
2

+
1√√

2 +
√

2
√

2− 1
≈ 2.4844

∇

Problem 7. (Federation of Bosnia, 1. Grades 2008.) For arbitrary reals x, y and z
prove the following inequality:

x2 + y2 + z2 − xy − yz − zx ≥ max{3(x− y)2

4
,
3(y − z)2

4
,
3(y − z)2

4
}.

Proof. (Posted by delegat). Assume that
3(x− y)2

4
is max. The inequality is equivalent to

4x2 + 4y2 + 4z2 ≥ 4xy + 4yz + 4xz + 3x2 − 6xy + 3y2

⇔ x2 + 2xy + y2 + z2 ≥ 4yz + 4xz

⇔ (x+ y − 2z)2 ≥ 0

so we are done.

∇

Problem 8. (Federation of Bosnia, 1. Grades 2008.) If a, b and c are positive reals
such that a2 + b2 + c2 = 1 prove the inequality:

a5 + b5

ab(a+ b)
+

b5 + c5

bc(b+ c)
+

c5 + a5

ca(a+ b)
≥ 3(ab+ bc+ ca)− 2

1You can see here: http://www.mathlinks.ro/viewtopic.php?p=1130901

14
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Proof. (Posted by Athinaios). Firstly, we have

(a+ b)(a− b)2(a2 + ab+ b2) ≥ 0

so
a5 + b5 ≥ a2b2(a+ b).

Applying the above inequality, we have

LHS ≥ ab+ bc+ ca

So we need to prove that

ab+ bc+ ca+ 2 ≥ 3(ab+ bc+ ca)

or
2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca)

Which is clearly true.

Proof. (Posted by kunny). Since y = x5 is an increasing and downwards convex function
for x > 0, by the Jensen inequality we have

a5 + b5

2
≥
(
a+ b

2

)5

⇐⇒ a5 + b5

ab(a+ b)
≥ 1

16
· (a+ b)4

ab
=

1
16

(a+ b)2 · (a+ b)2

ab

≥ 1
16

(a+ b)2 · 4

(because (a+ b)2 ≥ 4ab for a > 0, b > 0)
Thus for a > 0, b > 0, c > 0,

a5 + b5

ab(a+ b)
+

b5 + c5

bc(b+ c)
+

c5 + a5

ca(c+ a)
≥ 1

4
{(a+ b)2 + (b+ c)2 + (c+ a)2}

=
1
2

(a2 + b2 + c2 + ab+ bc+ ca)

≥ ab+ bc+ ca

Then we are to prove
ab+ bc+ ca ≥ 3(ab+ bc+ ca)− 2

which can be proved by

ab+ bc+ ca ≥ 3(ab+ bc+ ca)− 2⇔ 1 ≥ ab+ bc+ ca⇔ a2 + b2 + c2 ≥ ab+ bc+ ca

Q.E.D.

Comment
We can prove the stronger inequality:

a5 + b5

ab(a+ b)
+

b5 + c5

bc(b+ c)
+

c5 + a5

ca(a+ c)
≥ 6− 5(ab+ bc+ ca).

15
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Proof. (Posted by HTA). It is equivalent to

∑ a5 + b5

ab(a+ b)
−
∑ 1

2
(a2 + b2) ≥ 5

2

(∑
(a− b)2

)
∑

(a− b)2(
2a2 + ab+ 2b2

2ab
− 5

2
) ≥ 0

∑ (a− b)4

ab
≥ 0

which is true.

∇

Problem 9. (Federation of Bosnia, 1. Grades 2008.) If a, b and c are positive reals
prove inequality:

(1 +
4a
b+ c

)(1 +
4b
a+ c

)(1 +
4c
a+ b

) > 25

Proof. (Posted by polskimisiek). After multiplying everything out, it is equivalent to:

4(
∑
cyc

a3) + 23abc > 4(
∑
cyc

a2(b+ c))

which is obvious, because by the Schur inequality, we have:

(
∑
cyc

a3) + 3abc ≥
∑
cyc

a2(b+ c)

So finally we have:

4(
∑
cyc

a3) + 23abc > 4(
∑
cyc

a3) + 12abc ≥ 4
∑
cyc

a2(b+ c)

Q.E.D

∇

Problem 10. (Croatian Team Selection Test 2008) Let x, y, z be positive numbers.
Find the minimum value of:

(a)
x2 + y2 + z2

xy + yz

(b)
x2 + y2 + 2z2

xy + yz

Proof. (Posted by nsato).
(a) The minimum value is

√
2. Expanding(
x−
√

2
2
y

)2

+

(√
2

2
y − z

)2

≥ 0,

16
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we get x2 + y2 + z2 −
√

2xy −
√

2yz ≥ 0, so

x2 + y2 + z2

xy + yz
≥
√

2.

Equality occurs, for example, if x = 1, y =
√

2, and z = 1.
(b) The minimum value is

√
8/3. Expanding(

x−
√

2
3
y

)2

+
1
3

(
y −
√

6z
)2
≥ 0,

we get x2 + y2 + 2z2 −
√

8/3xy −
√

8/3yz ≥ 0, so

x2 + y2 + z2

xy + yz
≥
√

8
3
.

Equality occurs, for example, if x = 2, y =
√

6, and z = 1.

∇

Problem 11. (Moldova 2008 IMO-BMO Second TST Problem 2) Let a1, . . . , an

be positive reals so that a1 + a2 + . . .+ an ≤ n
2 . Find the minimal value of

A =

√
a2

1 +
1
a2

2

+

√
a2

2 +
1
a2

3

+ . . .+

√
a2

n +
1
a2

1

Proof. (Posted by NguyenDungTN). Using Minkowski and Cauchy-Schwarz inequal-
ities we get

A ≥

√
(a1 + a2 + . . .+ an)2 +

(
1
a1

+
1
a2
. . .+

1
n

)2

≥

√
(a1 + a2 + . . .+ an)2 +

n4

(a1 + a2 + . . .+ an)2

By the AM-GM inequality:

(a1 + a2 + . . .+ an)2 +

(
n
2

)4
(a1 + a2 + . . .+ an)2

≥ n2

2

Because a1 + a2 + . . .+ an ≤ n
2 so

15n4

16

(a1 + a2 + . . .+ an)2
≥ 15n2

4

We obtain

A ≥
√
n2

2
+

15n2

4
=
√

17n
2

17
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Proof. (Posted by silouan). Using Minkowski and Cauchy-Schwarz inequalities we get

A ≥

√
(a1 + a2 + . . .+ an)2 +

(
1
a1

+
1
a2
. . .+

1
n

)2

≥

√
(a1 + a2 + . . .+ an)2 +

n4

(a1 + a2 + . . .+ an)2

Let a1 + ...+ an = s . Consider the function f(s) = s2 + n4

s2

This function is decreasing for s ∈
(
0, n

2

]
. So it attains its minimum at s = n

2 and we are
done .

Proof. (Posted by ddlam). By the AM-GM inequality, we have

a2
1 +

1
a2

2

= a2
1 +

1
16a2

2

+ ...+
1

16a2
2

≥ 17 17

√
a2

1

(16a2
2)16

so

A ≥
√

17
n∑

i=1

34

√
a2

i

1616a32
i+1

(ai+1 = a1)

By the AM-GM inequality again:

n∑
i=1

34

√
a2

i

1616a32
i+1

≥ n(∏n
i=1 1616nx30

i

)34n

But ∏
i = 1nxn

i ≤
(
x1 + x2 + . . .+ xn

n

)n

≤ 1
2n

So

A ≥
√

17n
2

∇

Problem 12. (RMO 2008, Grade 8, Problem 3) Let a, b ∈ [0, 1]. Prove that

1
1 + a+ b

≤ 1− a+ b

2
+
ab

3
.

Proof. (Posted by Dr Sonnhard Graubner). The given inequality is equivalent to

3(1− a)(1− b)(a+ b) + ab(1− a+ 1− b) ≥ 0

which is true because of 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

18



Inequalities from 2008 Mathematical Competition ? ? ? ? ?

Proof. (Posted by HTA). Let

f(a, b) = 1− a+ b

2
+
ab

3
− 1

1 + a+ b

Consider the difference between f(a, b) and f(1, b) we see that

f(a, b)− f(1, b) =
1
6

(b− 1)(a+ 2a(b+ 1) + 3b+ 2b(b+ 1))− 3a
(1 + a+ b)(2 + b)

≥ 0

it is left to prove that f(1, b) ≥ 0 which is equivalent to

−1
6
b(b− 1)

2 + b
≥ 0

Which is true .

∇

Problem 13. (Romanian TST 2 2008, Problem 1) Let n ≥ 3 be an odd integer.
Determine the maximum value of√

|x1 − x2|+
√
|x2 − x3|+ . . .+

√
|xn−1 − xn|+

√
|xn − x1|,

where xi are positive real numbers from the interval [0, 1]

Proof. (Posted by Myth). We have a continuous function on a compact set [0, 1]n, hence
there is an optimal point (x1, ..., xn). Note now that

1. impossible to have xi−1 = xi = xi+1;

2. if xi ≤ xi−1 and xi ≤ xi+1, then xi = 0;

3. if xi ≥ xi−1 and xi ≥ xi+1, then xi = 1;

4. if xi+1 ≤ xi ≤ xi−1 or xi−1 ≤ xi ≤ xi+1, then xi =
xi−1 + xi+1

2
.

It follows that (x1, ..., xn) looks like

(0,
1
k1
,

2
k1
, ..., 1,

k2 − 1
k2

, ...,
2
k2
,

1
k2
, 0,

1
k3
, ...,

1
kl

),

where k1, k2, ..., kl are natural numbers, k1 + k2 + ...+ kl = n, l is even clearly. Then the
function is this point equals

S =
√
k1 +

√
k2 + ...

√
kl.

Using the fact that l is even and
√
k <
√
k − 1 + 1 we conclude that maximal possible value

of S is n− 2 +
√

2 (l = n− 1, k1 = k2 = ... = kl−1 = 1, kl = 2 in this case).

19
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Proof. (Posted by Umut Varolgunes). Since n is odd, there must be an i such that both
xi and xi+1 are both belong to [0, 1

2 ] or [12 , 1]. without loss of generality let x1 ≤ x2 and x1,
x2 belong to [0, 1

2 ]. We can prove that

√
x2 − x1 +

√
Ix3 − x2I ≤

√
2

If x3 > x2,
√
x2 − x1 +

√
x3 − x2 ≤ 2 ·

√
x3−x1

2 ≤
√

2;

else x1, x2, x3 are all belong to [0, 1
2 ].

Hence,
√
x2 − x1 +

√
Ix3 − x2I ≤

√
1
2 +

√
1
2 . Also all of the other terms of the sum are less

then or equal to 1. summing them gives the desired result.

Example is (0,
1
2
, 1, 0, 1, . . . , 1)

Note: all the indices are considered in modulo n

∇

Problem 14. (Romania Junior TST Day 3 Problem 2 2008) Let a, b, c be positive
reals with ab+ bc+ ca = 3. Prove that:

1
1 + a2(b+ c)

+
1

1 + b2(a+ c)
+

1
1 + c2(b+ a)

≤ 1
abc

.

Proof. (Posted by silouan). Using the AM-GM inequality, we derive
ab+ bc+ ca

3
≥

3

√
(abc)2. Then abc ≤ 1. Now

∑ 1
1 + a2(b+ c)

≤
∑ 1

abc+ a2(b+ c)
=
∑ 1

3a
=

1
abc

∇

Problem 15. (Romanian Junior TST Day 4 Problem 4 2008) Determine the max-
imum possible real value of the number k, such that

(a+ b+ c)
(

1
a+ b

+
1

c+ b
+

1
a+ c

− k
)
≥ k

for all real numbers a, b, c ≥ 0 with a+ b+ c = ab+ bc+ ca.

Proof. (Original solution). Observe that the numbers a = b = 2, c = 0 fulfill the condition
a+b+c = ab+bc+ca. Plugging into the givent inequality, we derive that 4

(
1
4 + 1

2 + 1
2 − k

)
≥

k hence k ≤ 1.
We claim that the inequality hold for k = 1, proving that the maximum value of k is 1. To
this end, rewrite the inequality as follows

(ab+ bc+ ca)
(

1
a+ b

+
1

c+ b
+

1
a+ c

− 1
)
≥ 1

⇔
∑ ab+ bc+ ca

a+ b
≥ ab+ bc+ ca+ 1
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⇔
∑ ab

a+ b
+ c ≥ ab+ bc+ ca+ 1⇔

∑ ab

a+ b
≥ 1

Notice that ab
a+b ≥

ab
a+b+c , since a, b, c ≥ 0. Summing over a cyclic permutation of a, b, c we

get ∑ ab

a+ b
≥
∑ ab

a+ b+ c
=
ab+ bc+ ca

a+ b+ c
= 1

as needed.

Proof. (Alternative solution). The inequality is equivalent to the following

S =
a+ b+ c

a+ b+ c+ 1

(
1

a+ b
+

1
c+ b

+
1

a+ c

)
Using the given condition, we get

1
a+ b

+
1

c+ b
+

1
a+ c

=
a2 + b2 + c2 + 3(ab+ bc+ ca)

(a+ b)(b+ c)(c+ a)

=
a2 + b2 + c2 + 2(ab+ bc+ ca) + (a+ b+ c)

(a+ b)(b+ c)(c+ a)

=
(a+ b+ c)(a+ b+ c+ 1)

(a+ b+ c)2 − abc

hence

S =
(a+ b+ c)2

(a+ b+ c)2 − abc
It is now clear that S ≥ 1, and equality hold iff abc = 0. Consequently, k = 1 is the
maximum value.

∇

Problem 16. (2008 Romanian Clock-Tower School Junior Competition) For any
real numbers a, b, c > 0, with abc = 8, prove

a− 2
a+ 1

+
b− 2
b+ 1

+
c− 2
c+ 1

≤ 0

Proof. (Original solution). We have:

a− 2
a+ 1

+
b− 2
b+ 1

+
c− 2
c+ 1

≤ 0⇔ 3− 3
∑ 1

a+ 1
≤ 0⇔ 1 ≤

∑ 1
a+ 1

We can take a = 2
x

y
, b = 2

y

z
, c = 2

z

x
to have

∑ 1
a+ 1

=
∑ y2

2xy + y2
≥ (x+ y + z)2

x2 + y2 + z2 + 2(xy + yz + zx)
= 1

(by the Cauchy-Schwarz inequality) as needed.

∇
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Problem 17. (Serbian National Olympiad 2008) Let a, b, c be positive real numbers
such that x+ y + z = 1. Prove inequality:

1
yz + x+ 1

x

+
1

xz + y + 1
y

+
1

xy + z + 1
z

≤ 27
31
.

Proof. (Posted by canhang2007). Setting x = a
3 , y = b

3 , z = c
3 . The inequality is

equivalent to ∑
cyc

a

3a2 + abc+ 27
≤ 3

31

By the Schur Inequality, we get 3abc ≥ 4(ab+ bc+ ca)− 9. It suffices to prove that∑ 3a
9a2 + 4(ab+ bc+ ca) + 72

≤ 3
31

⇔
∑(

1− 31a(a+ b+ c)
9a2 + 4(ab+ bc+ ca) + 72

)
≥ 0

⇔
∑ (7a+ 8c+ 10b)(c− a)− (7a+ 8b+ 10c)(a− b)

a2 + s
≥ 0

(where s =
4(ab+ bc+ ca) + 72

9
.)

⇔
∑

(a− b)2 8a2 + 8b2 + 15ab+ 10c(a+ b) + s

(a2 + s)(b2 + s)
≥ 0

which is true.

∇

Problem 18. (Canadian Mathematical Olympiad 2008) Let a, b, c be positive real
numbers for which a+ b+ c = 1. Prove that

a− bc
a+ bc

+
b− ca
b+ ca

+
c− ab
c+ ab

≤ 3
2
.

Proof. (Posted by Altheman). We have a + bc = (a + b)(a + c), so apply that, etc. The
inequality is ∑

(b+ c)(a2 + ab+ ac− bc) ≤ 3
2

(a+ b)(b+ c)(c+ a)

⇐⇒
∑
cyc

a2b+ b2a ≥ 6abc

which is obvious by the AM-GM inequality.

∇
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Problem 19. (German DEMO 2008) Find the smallest constant C such that for all
real x, y

1 + (x+ y)2 ≤ C · (1 + x2) · (1 + y2)

holds.

Proof. (Posted by JBL). The inequality is equivalent to

x2 + y2 + 2xy + 1
x2 + y2 + x2y2 + 1

≤ C

The greatest value of LHS helps us find C in which all real numbers x, y satisfies the
inequality.
Let A = x2 + y2, so

A+ 2xy + 1
A+ x2y2 + 1

≤ C

To maximize the LHS, A needs to be minimized, but note that

x2 + y2 ≥ 2xy.

So let us set x2 + y2 = 2xy = a⇒ x2y2 =
a2

4
So the inequality becomes

L =
8a+ 4

(a+ 2)2
≤ C

dL

dx
=
−8a+ 8
(a+ 2)3

= 0⇒ a = 1

It follows that max(L) = C =
4
3

∇

Problem 20. (Irish Mathematical Olympiad 2008) For positive real numbers a, b, c
and d such that a2 + b2 + c2 + d2 = 1 prove that

a2b2cd+ +ab2c2d+ abc2d2 + a2bcd2 + a2bc2d+ ab2cd2 ≤ 3/32,

and determine the cases of equality.

Proof. (Posted by argady). We have

a2b2cd+ ab2c2d+ abc2d2 + a2bcd2 + a2bc2d+ ab2cd2 = abcd(ab+ ac+ ad+ bc+ bd+ cd)

By the AM-GM inequality,

a2 + b2 + c2 + d2 ≥ 4
√
abcd

and

a2 + b2 + a2 + c2 + a2 + d2 + b2 + c2 + b2 + d2 + c2 + d2

2
≥ (ab+ ac+ ad+ bc+ bd+ cd)
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so abcd ≤ 1
16

and ab+ ac+ ad+ bc+ bd+ cd ≤ 3
2

Multiplying we get

a2b2cd+ ab2c2d+ abc2d2 + a2bcd2 + a2bc2d+ ab2cd2 ≤ 1
16
· 3

2
=

3
32
.

The equality occurs when a = b = c = d =
1
2
.

∇

Problem 21. (Greek national mathematical olympiad 2008, P1) For the positive
integers a1, a2, ..., an prove that (∑n

i=1 a
2
i∑n

i=1 ai

) kn
t

≥
n∏

i=1

ai

where k = max {a1, a2, ..., an} and t = min {a1, a2, ..., an}. When does the equality hold?

Proof. (Posted by rofler). By the AM-GM and Cauchy-Schwarz inequalities, we easily
get that

2

√∑
a2

i

n
≥
∑
ai

n∑
a2

i ≥
(
∑
ai)2

n∑
a2

i∑
ai
≥
∑
ai

n
≥ n

√√√√ n∏
i=1

ai

(
∑
a2

i∑
ai

)n ≥
n∏

i=1

ai

Now,
∑
a2

i∑
ai
≥ 1

So therefore since k
t ≥ 1

(
∑
a2

i∑
ai

)
kn
t ≥ (

∑
a2

i∑
ai

)n

Now, the direct application of AM-GM required that all terms are equal for equality to
occur, and indeed, equality holds when all ai are equal.

∇

Problem 22. (Greek national mathematical olympiad 2008, P2)
If x, y, z are positive real numbers with x, y, z < 2 and x2 + y2 + z2 = 3 prove that

3
2
<

1 + y2

x+ 2
+

1 + z2

y + 2
+

1 + x2

z + 2
< 3
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Proof. (Posted by tchebytchev). From x < 2, y < 2 and z < 2 we find

1 + y2

x+ 2
+

1 + z2

y + 2
+

1 + x2

z + 2
>

1 + y2

4
+

1 + z2

4
+

1 + x2

4
=

3
2

and from x > 0, y > 0 and z > 0 we have

1 + y2

x+ 2
+

1 + z2

y + 2
+

1 + x2

z + 2
<

1 + y2

2
+

1 + z2

2
+

1 + x2

2
= 3.

Proof. (Posted by canhang2007). Since with x2 + y2 + z2 = 3, then we can easily get that
x, y, z ≤

√
3 < 2. Also, we can even prove that∑ x2 + 1

z + 2
≥ 2

Indeed, by the AM-GM and Cauchy Schwarz inequalities, we have∑ x2 + 1
z + 2

≥ x2 + 1
z2+1

2 + 2
= 2

∑ x2 + 1
z2 + 5

≥ 2(x2 + y2 + z2 + 3)2∑
(x2 + 1)(z2 + 5)

=
72∑

x2y2 + 33

≥ 72
1
3(x2 + y2 + z2)2 + 33

=
72

3 + 33
= 2

∇

Problem 23. (Moldova National Olympiad 2008) Positive real numbers a, b, c satisfy
inequality a+ b+ c ≤ 3

2 . Find the smallest possible value for:

S = abc+
1
abc

Proof. (Posted by NguyenDungTN). By the AM-GM inequality, we have

3
2
≥ a+ b+ c ≥ 3 3

√
abc

so abc ≤ 1
8 . By the AM-GM inequality again,

S = abc+
1
abc

= abc+
1

64abc
+

63
64abc

≥ 2

√
abc.

1
64abc

+
63

64abc
≥ 1

4
+

63
8

=
65
8

∇

Problem 24. (British MO 2008) Find the minimum of x2 + y2 + z2 where x, y, z ∈ R
and satisfy x3 + y3 + z3 − 3xyz = 1
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Proof. (Posted by delegat). Condition of problem may be rewritten as:

(x+ y + z)(x2 + y2 + z2 − xy − yz − zx) = 1

and since second bracket on LHS is nonnegative we have x+ y + z > 0.
Notice that from last equation we have:

x2 + y2 + z2 =
1 + (xy + yz + zx)(x+ y + z)

x+ y + z
=

1
x+ y + z

+ xy + yz + zx

and since

xy + yz + zx =
(x+ y + z)2 − x2 − y2 − z2

2
The last equation implies:

3(x2 + y2 + z2)
2

=
1

x+ y + z
+

(x+ y + z)2

2

=
1

2(x+ y + z)
+

1
2(x+ y + z)

+
(x+ y + z)2

2

≥ 3
2

This inequality follows from AM ≥ GM so x2 + y2 + z2 ≥ 1 so minimum of x2 + y2 + z2 is
1 and triple (1, 0, 0) shows that this value can be achieved.

Proof. (Original solution). Let x2 + y2 + z2 = r2. The volume of the parallelpiped in R3

with one vertex at (0, 0, 0) and adjacent vertices at (x, y, z), (y, z, x), (z, x, y) is |x3 + y3 +
z3− 3xyz| = 1 by expanding a determinant. But the volume of a parallelpiped all of whose
edges have length r is clearly at most r3 (actually the volume is r3 cos θ sinϕ where θ and
ϕ are geometrically significant angles). So 1 ≤ r3 with equality if, and only if, the edges of
the parallepiped are perpendicular, where r = 1.

Proof. (Original solution). Here is an algebraic version of the above solution.

1 = (x3 + y3 + z3 − 3xyz)2 =
(
x(x2 − yz) + y(y2 − zx) + z(z2 − xy)

)2
≤ (x2 + y2 + z2)

(
(x2 − yz)2 + (y2 − zx)2 + (z2 − xy)2

)
= (x2 + y2 + z2)

(
x4 + y4 + z4 + x2y2 + y2z2 + z2x2 − 2xyz(x+ y + z)

)
= (x2 + y2 + z2)

((
x2 + y2 + z2

)2 − (xy + yz + zx)2
)

≤
(
x2 + y2 + z2

)3

∇

Problem 25. (Zhautykov Olympiad, Kazakhstan 2008, Question 6) Let a, b, c be
positive integers for which abc = 1. Prove that∑ 1

b(a+ b)
≥ 3

2
.
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Proof. (Posted by nayel). Letting a =
x

y
, b =

y

z
, c =

z

x
implies

LHS =
∑
cyc

x2

z2 + xy
≥ (x2 + y2 + z2)2

x2y2 + y2z2 + z2x2 + x3y + y3z + z3x

Now it remains to prove that

2(x2 + y2 + z2)2 ≥ 3
∑
cyc

x2y2 + 3
∑
cyc

x3y

Which follows by adding the two inequalities

x4 + y4 + z4 ≥ x3y + y3z + z3x∑
cyc

(x4 + x2y2) ≥
∑
cyc

2x3y

∇

Problem 26. (Ukraine National Olympiad 2008, P1) Let x, y and z are non-negative
numbers such that x2 + y2 + z2 = 3. Prove that:

x√
x2 + y + z

+
y√

x+ y2 + z
+

z√
x+ y + z2

≤
√

3

Proof. (Posted by nayel). By Cauchy Schwarz we have

(x2 + y + z)(1 + y + z) ≥ (x+ y + z)2

so we have to prove that

x
√

1 + y + z + y
√

1 + x+ z + z
√

1 + x+ y

x+ y + z
≤
√

3

But again by the Cauchy Schwarz inequality we have

x
√

1 + y + z + y
√

1 + x+ z + z
√

1 + x+ y =
∑√

x
√
x+ xy + xz

≤
√

(x+ y + z)(x+ y + z + 2(xy + yz + zx)

and also √
(x+ y + z)(x+ y + z + 2(xy + yz + zx)

≤
√

(x+ y + z)(x2 + y2 + z2 + 2xy + 2yz + 2zx) = s
√
s

where s = x+ y + z so we have to prove that
√
s ≤
√

3 which is trivially true so QED

27



Inequalities from 2008 Mathematical Competition ? ? ? ? ?

Proof. (Posted by argady). We have∑
cyc

x√
x2 + y + z

=
∑
cyc

x√
x2 + (y + z)

√
x2+y2+z2

3

≤
∑
cyc

x√
x2 + (y + z)x+y+z

3

Thus, it remains to prove that∑
cyc

x√
x2 + (y + z)x+y+z

3

≤
√

3.

Let x+ y + z = 3. Hence,∑
cyc

x√
x2 + (y + z)x+y+z

3

≤
√

3⇔
∑
cyc

(
1√
3
− x√

x2 − x+ 3

)
≥ 0⇔

⇔
∑
cyc

(
1√
3
− x√

x2 − x+ 3
+

5(x− 1)
6
√

3

)
≥ 0⇔

⇔
∑
cyc

(x− 1)2(25x2 + 35x+ 3)
((5x+ 1)

√
x2 − x+ 3 + 6

√
3x)
√
x2 − x+ 3

≥ 0.

∇

Problem 27. (Ukraine National Olympiad 2008, P2) For positive a, b, c, d prove that

(a+ b)(b+ c)(c+ d)(d+ a)(1 + 4
√
abcd)4 ≥ 16abcd(1 + a)(1 + b)(1 + c)(1 + d)

Proof. (Posted by Yulia). Let’s rewrite our inequality in the form

(a+ b)(b+ c)(c+ d)(d+ a)
(1 + a)(1 + b)(1 + c)(1 + d)

≥ 16abcd
(1 + 4

√
abcd)4

We will use the following obvious lemma

x+ y

(1 + x)(1 + y)
≥

2
√
xy

(1 +
√
xy)2

By lemma and Cauchy-Schwarz

a+ b

(1 + a)(1 + b)
c+ d

(1 + c)(1 + d)
(b+ c)(a+ d) ≥ 4

√
abcd(

√
ab+

√
cd)2

(1 +
√
ab)2(1 +

√
cd)2

≥ 16abcd
(1 + 4

√
abcd)4

Last one also by lemma for x =
√
ab, y =

√
cd

Proof. (Posted by argady). The inequality equivalent to
(a+ b)(b+ c)(c+ d)(d+ a)− 16abcd+
+4 4
√
abcd

(
(a+ b)(b+ c)(c+ d)(d+ a)− 4 4

√
a3b3c3d3(a+ b+ c+ d)

)
+

+2
√
abcd

(
3(a+ b)(b+ c)(c+ d)(d+ a)− 8

√
abcd(ab+ ac+ ad+ bc+ bd+ cd)

)
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+4 4
√
a3b3c3d3((a+ b)(b+ c)(c+ d)(d+ a)− 4 4

√
abcd(abc+ abd+ acd+ bcd)) ≥ 0,

which obvious because

(a+ b)(b+ c)(c+ d)(d+ a)− 16abcd ≥ 0

is true by AM-GM;

(a+ b)(b+ c)(c+ d)(d+ a)− 4 4
√
a3b3c3d3(a+ b+ c+ d) ≥ 0

is true since,

(a+ b)(b+ c)(c+ d)(d+ a) ≥ (abc+ abd+ acd+ bcd)(a+ b+ c+ d)⇔ (ac− bd)2 ≥ 0

and
abc+ abd+ acd+ bcd ≥ 4 4

√
a3b3c3d3

is true by AM-GM;

(a+ b)(b+ c)(c+ d)(d+ a) ≥ 4 4
√
abcd(abc+ abd+ acd+ bcd)

is true because
a+ b+ c+ d ≥ 4 4

√
abcd

is true by AM-GM;

3(a+ b)(b+ c)(c+ d)(d+ a) ≥ 8
√
abcd(ab+ ac+ ad+ bc+ bd+ cd)

follows from three inequalities:

(a+ b)(b+ c)(c+ d)(d+ a) ≥ (abc+ abd+ acd+ bcd)(a+ b+ c+ d);

by Maclaren we obtain:

a+ b+ c+ d

4
≥
√
ab+ ac+ bc+ ad+ bd+ cd

6

and
1
a + 1

b + 1
c + 1

d

4
≥

√
1
ab + 1

ac + 1
ad + 1

bc + 1
bd + 1

cd

6
,

which equivalent to

abc+ abd+ acd+ bcd ≥
√

8
3

(ab+ ac+ bc+ ad+ bd+ cd)abcd.

∇

Problem 28. (Polish MO 2008, Pro 5) Show that for all nonnegative real values an
inequality occurs:

4(
√
a3b3 +

√
b3c3 +

√
c3a3) ≤ 4c3 + (a+ b)3.
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Proof. (Posted by NguyenDungTN). We have:

RHS − LHS =
(√

a3 +
√
b3 − 2

√
c3)2 + 3ab(

√
a−
√
b
)2
≥ 0

Thus we are done. Equality occurs for a = b = c or a = 0, b = 3
√

4c or a = 3
√

4c, b = 0

∇

Problem 29. (Brazilian Math Olympiad 2008, Problem 3). Let x, y, z real numbers
such that x+ y + z = xy + yz + zx. Find the minimum value of

x

x2 + 1
+

y

y2 + 1
+

z

z2 + 1

Proof. (Posted by crazyfehmy). We will prove that this minimum value is −1
2

. If we take

x = y = −1 , z = 1 , the value is −1
2

.
Let’s prove that

x

1 + x2
+

y

1 + y2
+

z

1 + z2
+

1
2
≥ 0

We have

x

1 + x2
+

y

1 + y2
+

z

1 + z2
+

1
2

=
(1 + x)2

2 + 2x2
+

y

1 + y2
+

z

1 + z2
≥ y

1 + y2
+

z

1 + z2

y

1 + y2
+

z

1 + z2
< 0

then (y + z)(yz + 1) < 0 and by similar way (x+ z)(xz + 1) < 0 and (y + z)(yz + 1) < 0 .
Let all of x , y , z are different from 0.

• All of x + y , y + z , x + z is ≥ 0 Then x + y + z ≥ 0 and xy + yz + xz ≤ −3.It’s a
contradiction.

• Exactly one of the (x+ y) , y + z , x+ z is < 0.
W.L.O.G, Assuming y + z < 0.
Because x+ z > 0 and x+ y > 0 so x > 0.
xz + 1 < 0 and xy + 1 < 0 hence y and z are < 0.

Let y = −a and z = −b. x =
ab+ a+ b

a+ b+ 1
and x > a >

1
x

and x > b >
1
x

.

So x > 1 and ab > 1.
Otherwise because of x > a and x > b hence ab+a+b

a+b+1 > a and ab+a+b
a+b+1 > b.

So b > a2 and a > b2. So ab < 1. It’s a contradiction.

• Exactly two of them (x+ y),(y + z),(x+ z) are < 0.
W.L.O.G, Assuming y + z and x+ z are < 0.
Because x+ y > 0 so z < 0. Because xy < 0 we can assume x < 0 and y > 0.
Let x = −a and z = −c and because xz + 1 > 0 and xy + 1 < 0 so c < 1

y and a > 1
y .

Because y + z < 0 and x + y > 0 hence a < y < c and so 1
y < a < y < c < 1

y . It’s a
contradiction.
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• All of them are < 0 .So x+ y + z < 0 and xy + yz + xz > 0 . It’s a contradiction.

• Some of x , y , z are = 0
W.L.O.G, Assuming x = 0. So y + z = yz = K and

y

1 + y2
+

z

1 + z2
=

K2 +K

2K2 − 2K + 1
≥ −1

2
⇐⇒ 4K2 + 1 ≥ 0

which is obviously true.

The proof is ended.

∇

Problem 30. (Kiev 2008, Problem 1). Let a, b, c ≥ 0. Prove that

a2 + b2 + c2

5
≥ min((a− b)2, (b− c)2, (c− a)2)

Proof. (Posted by canhang2007). Assume that a ≥ b ≥ c, then

min
{

(a− b)2, (b− c)2, (c− a)2
}

= min{(a− b)2, (b− c)2}

If a+ c ≥ 2b, then (b− c)2 = min{(a− b)2, (b− c)2}, we have to prove

a2 + b2 + c2 ≥ 5(b− c)2

which is true because

a2 + b2 + c2 − 5(b− c)2 ≥ (2b− c)2 + b2 + c2 − 5(b− c)2 = 3c(2b− c) ≥ 0

If a+ c ≤ 2b, then (a− b)2 = min{(a− b)2, (b− c)2}, we have to prove

a2 + b2 + c2 ≥ 5(a− b)2

which is true because

a2 + b2 − 5(a− b)2 = 2(2a− b)(2b− a) ≥ 0

This ends the proof.

∇

Problem 31. (Kiev 2008, Problem 2). Let x1, x2, · · · , xn ≥ 0, n > 3 and x1 + x2 +
· · ·+ xn = 2 Find the minimum value of

x2

1 + x2
1

+
x3

1 + x2
2

+ ...+
x1

1 + x2
n

Proof. (Posted by canhang2007). By AM-GM Inequality, we have that

x2

x2
1 + 1

= x2 −
x2

1x2

x2
1 + 1

≥ x2 −
1
2
x1x2
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Apply this for the similar terms and adding them up to obtain

LHS ≥ 2− 1
2

(x1x2 + x2x3 + · · ·+ xnx1)

Moreover, we can easily show that

x1x2 + x2x3 + · · ·+ xnx1 ≤ xk(x1 + · · ·+ xk−1 + xk+1 + · · ·+ xn) ≤ 1

for k is a number such that xk = max{x1, x2, . . . , xn}. Hence

LHS ≥ 2− 1
2

=
3
2

∇

Problem 32. (Hong Kong TST1 2009, Problem 1)Let θ1, θ2, . . . , θ2008 be real num-
bers. Find the maximum value of

sin θ1 cos θ2 + sin θ2 cos θ3 + . . .+ sin θ2007 cos θ2008 + sin θ2008 cos θ1

Proof. (Posted by brianchung11). By the AM-GM Inequality, we have

sin θ1 cos θ2+sin θ2 cos θ3+. . .+sin θ2007 cos θ2008+sin θ2008 cos θ1 ≤
1
2

∑
(sin2 θi+cos2 θi+1) = 1004

Equality holds when θi is constant.

∇

Problem 33. (Hong Kong TST1 2009, Problem 5). Let a, b, c be the three sides of
a triangle. Determine all possible values of

a2 + b2 + c2

ab+ bc+ ca

Proof. (Posted by Hong Quy). We have

a2 + b2 + c2 ≥ ab+ bc+ ca

and |a− b| < c then a2 + b2 − c2 < 2ab.
Thus,

a2 + b2 + c2 < 2(ab+ bc+ ca)

1 ≤ F =
a2 + b2 + c2

ab+ bc+ ca
< 2

∇

Problem 34. (Indonesia National Science Olympiad 2008) Prove that for x and y
positive reals,

1
(1 +

√
x)2

+
1

(1 +
√
y)2
≥ 2
x+ y + 2

.
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Proof. (Posted by Dr Sonnhard Graubner). This inequality is equivalent to

2 + 2x+ 2y + x2 + y2 − 2
√
xy − 2x

√
y + 2x

3
2 + 2y

3
2 − 8

√
x
√
y ≥ 0

We observe that the following inequalities hold

1. x+ y ≥ 2
√
xy

2. x+ y2 ≥ 2y
√
x

3. y + x2 ≥ 2x
√
y

4. 2 + 2y
3
2 + 2x

3
2 ≥ 6

√
xy.

Adding (1), (2), (3) and (4) we get the desired result.

Proof. (Posted by limes123). We have

(1 + xy)(1 +
x

y
) ≥ (1 + x)2 ⇐⇒ 1

(1 + x)2
≥ 1

1 + xy
· y

x+ y

and analogously
1

(1 + y)2
≥ 1

1 + xy
· x

x+ y

as desired.

∇

Problem 35. (Baltic Way 2008). Prove that if the real numbers a, b and c satisfy
a2 + b2 + c2 = 3 then ∑ a2

2 + b+ c2
≥ (a+ b+ c)2

12
.

When does the inequality hold?

Proof. (Posted by Raja Oktovin). By the Cauchy-Schwarz Inequality, we have

a2

2 + b+ c2
+

b2

2 + c+ a2
+

c2

2 + a+ b2
≥ (a+ b+ c)2

6 + a+ b+ c+ a2 + b2 + c2
.

So it suffices to prove that

6 + a+ b+ c+ a2 + b2 + c2 ≤ 12.

Note that a2 + b2 + c2 = 3, then we only need to prove that

a+ b+ c ≤ 3

But

(a+b+c)2 = a2 +b2 +c2 +2(ab+bc+ca) ≤ a2 +b2 +c2 +2(a2 +b2 +c2) = 3(a2 +b2 +c2) = 9.

Hence a+ b+ c ≤ 3 which completes the proof.

∇
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Problem 36. (Turkey NMO 2008 Problem 3). Let a.b.c be positive reals such that
their sum is 1. Prove that

a2b2

c3(a2 − ab+ b2)
+

b2c2

a3(b2 − bc+ c2)
+

a2c2

b3(a2 − ac+ c2)
≥ 3
ab+ bc+ ac

Proof. (Posted by canhang2007). The inequality is equivalent to∑ a2b2

c3(a2 − ab+ b2)
≥ 3(a+ b+ c)
ab+ bc+ ca

Put x =
1
a
, y =

1
b
, z =

1
c

, then the above inequality becomes

∑ z3

x2 − xy + y2
≥ 3(xy + yz + zx)

x+ y + z

This is a very known inequality.

Proof. (Posted by mehdi cherif). The inequality is equivalent to :∑ (ab)2

c3(a2 − ab+ b2)
≥ 3(a+ b+ c)
ab+ ac+ bc

⇐⇒
∑ (ab)5

a2 − ab+ b2
≥ 3(abc)3(a+ b+ c)

ab+ ac+ bc

But
3(abc)3(a+ b+ c) = 3abc(

∑
a)(abc)2 ≤ (

∑
ab)2(abc)2(AM −GM)

Hence it suffices to prove that :∑ (ab)5

a2 − ab+ b2
≥ (abc)2(

∑
ab)

⇐⇒
∑ (ab)3

c2(a2 − ab+ b2)
≥
∑

ab

⇐⇒
∑ (ab)3

c2(a2 − ab+ b2)
+
∑

c(a+ b) ≥ 3
∑

ab

⇐⇒
∑ (ab)3 + (bc)3 + (ca)3

c2(a2 − ab+ b2)
≥ 3

∑
ab

On the other hands,∑ (ab)3 + (bc)3 + (ca)3

c2(a2 − ab+ b2)
≥ 9

(ab)3 + (ac)3 + (bc)3

2
∑

(ab)2 − abc(
∑
a)

It suffices to prove that :

9
(ab)3 + (ac)3 + (bc)3

2
∑

(ab)2 − abc(
∑
a)
≥ 3

∑
ab

Denote that x = ab, y = ac and z = bc

3
x3 + y3 + z3

2(x2 + y2 + z2)− xy + yz + zx
≥ x+ y + z

⇐⇒
∑

x3 + 3xyz ≥
∑

xy(x+ y)

which is Schur inequality ,and we have done.
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∇

Problem 37. (China Western Mathematical Olympiad 2008). Given x, y, z ∈ (0, 1)
satisfying that √

1− x
yz

+

√
1− y
xz

+
√

1− z
xy

= 2.

Find the maximum value of xyz.

Proof. (Posted by Erken). Let’s make the following substitution: x = sin2 α and so on...
It follows that

2 sinα sinβ sin γ =
∑

cosα sinα

But it means that α+ β + γ = π, then obviously

(sinα sinβ sin γ)2 ≤ 27
64

Proof. (Posted by turcasc). We have that

2
√
xyz =

1√
3

∑√
x(3− 3x) ≤ 1√

3

∑ x+ 3(1− x)
2

=

=
3
√

3
2
− 1√

3

∑
x.

So 2
√
xyz ≤ 3

√
3

2 −
1√
3

∑
x ≤ 3

√
3

2 −
√

3 · 3
√
xyz.

If we denote p = 6
√
xyz we get that 2p3 ≤ 3

√
3

2 −
√

3p2. This is equivalent to

4p3 + 2
√

3p2 − 3
√

3 ≤ 0⇒ (2p−
√

3)(2p2 + 2
√

3p+ 3) ≤ 0,

then p ≤
√

3
2 . So xyz ≤ 27

64 . The equality holds for x = y = z = 3
4 .

∇

Problem 38. (Chinese TST 2008 P5) For two given positive integers m,n > 1, let
aij(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) be nonnegative real numbers, not all zero, find the
maximum and the minimum values of f , where

f =
n
∑n

i=1(
∑m

j=1 aij)2 +m
∑m

j=1(
∑n

i=1 aij)2

(
∑n

i=1

∑m
j=1 aij)2 +mn

∑n
i=1

∑m
i=j a

2
ij

Proof. (Posted by tanpham). We will prove that the maximum value of f is 1.

• For n = m = 2. Setting a11 = a, a21 = b, a12 = x, a21 = y. We have

f =
2
(
(a+ b)2 + (x+ y)2 + (a+ x)2 + (b+ y)2

)
(a+ b+ x+ y)2 + 4 (a2 + b2 + x2 + y2)

≤ 1

⇔= (x+ b− a− y)2 ≥ 0

as needed.
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• For n = 2,m = 3. Using the similar substitution:

(x, y, z), (a, b, c)

We have

f =
2 (a+ b+ c)2 + 2 (x+ y + z)2 + 3 (a+ x)2 + 3 (b+ y)2 + 3 (c+ z)2

6 (a2 + b2 + c2 + x2 + y2 + z2) + (a+ b+ c+ x+ y + z)2
≤ 1

⇔ (x+ b− y − a)2 + (x+ c− z − a)2 + (y + c− b− z)2 ≥ 0

as needed.

• For n = 3,m = 4. With

(x, y, z, t), (a, b, c, d), (k, l,m, n)

The inequality becomes

(x+ b− a− y)2 + (x+ c− a− z)2 + (x+ d− a− t)2 + (x+ l − k − y)2 +

+ (x+m− k − z)2 + (x+ n− k − t)2 + (y + c− b− z)2 + (y + d− b− t)2 +

+ (y +m− l − z)2 + (y + n− l − t)2 + · · · ≥ 0

as needed.
By induction, the inequality is true for every integer numbers m,n > 1

∇
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Chapter 3

The inequality from IMO 2008

In this chapter, we will introduce 11 solutions for the inequality from IMO 2008.
Problem.
(i). If x, y and z are three real numbers, all different from 1 , such that xyz = 1, then
prove that

x2

(x− 1)2 +
y2

(y − 1)2 +
z2

(z − 1)2 ≥ 1

With the sign
∑

for cyclic summation, this inequality could be rewritten as∑ x2

(x− 1)2 ≥ 1

(ii). Prove that equality is achieved for infinitely many triples of rational numbers
x, y and z.
Solution.

Proof. (Posted by vothanhvan). We have

∑
cyc

(
1− 1

y

)2(
1− 1

z

)2

≥
(

1− 1

x

)2(
1− 1

y

)2(
1− 1

z

)2

⇔
(

1

x
+

1

y
+

1

z
− 3

)2

≥ 0

We conclude that∑
cyc

x2 (y − 1)2 (z − 1)2 ≥ (x− 1)2 (y − 1)2 (z − 1)2 ⇔ x2

(x− 1)2 +
y2

(y − 1)2 +
z2

(z − 1)2 ≥ 1

Q.E.D

∇

Proof. (Posted by TTsphn). Let

a =
x

1− x
, b =

y

1− y
, c =

z

1− z
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Then we have :

bc = (a+ 1)(b+ 1)(c+ 1) =
1

(x− 1)(y − 1)(z − 1)
⇔ ab+ ac+ bc+ a+ b+ c+ 1 = 0

Therefore :

a2+b2+c2 = a2+b2+c2+2(ab+ac+bc)+2(a+b+c)+2⇔ a2+b2+c2 = (a+b+c+1)2+1 ≥ 1

So problem a claim .
The equality hold if and only if a+ b+ c+ 1 = 0.
This is equivalent to

xy + zx+ zx = 3

From x = 1
yz

we have

1

z
+

1

y
+ yz = 3⇔ z2y2 − y(3z − 1) + z = 0

∆ = (3z − 1)2 − 4z3 = (z − 1)2(1− 4z)

We only chose z =
1−m2

4
, |m| > 0 then the equation has rational solution y. Because

x =
1

yz
so it also a rational .

Problem claim .

∇

Proof. (Posted by Darij Grinberg). We have

x2

(x− 1)2 +
y2

(y − 1)2 +
z2

(z − 1)2 − 1 =
(yz + zx+ xy − 3)2

(x− 1)2 (y − 1)2 (z − 1)2

For part (ii) you are looking for rational x, y, z with xyz = 1 and x+ y + z = 3.
In other words, you are looking for rational x and y with x + y + 1

xy
= 3. This

rewrites as y2 + (x− 3) y + 1
x

= 0, what is a quadratic equation in y. So for a given

x, it has a rational solution y if and only if its determinant (x− 3)2 − 4 · 1
x

is a

square. But (x− 3)2−4 · 1
x

= x−4
x

(x− 1)2, so this is equivalent to x−4
x

being a square.
Parametrize...

∇

Proof. (Posted by Erken). Let a = 1− 1
x

and so on... Then our inequality becomes:

a2b2 + b2c2 + c2a2 ≥ a2b2c2

while (1− a)(1− b)(1− c) = 1.
Second condition gives us that:

a2b2 + b2c2 + c2a2 = a2b2c2 + (a+ b+ c)2 ≥ a2b2c2
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∇

Proof. (Posted by Sung-yoon Kim). First letting x =
q

p
, y =

r

q
, z =

p

r
,. We have

to show that ∑ q2

(p− q)2
≥ 1

Define f(t) to be∑ (t+ q)2

(p− q)2
= (
∑ 1

(p− q)2
)t2 + 2(

∑ q

(p− q)2
)t+

∑ q2

(p− q)2
= At2 + 2Bt+ C

This is a quadratic function of t and we know that this has minimum at t0 such that
At0 +B = 0.
Hence,

f(t) ≥ f(t0) = At20 + 2Bt0 + C = Bt0 + C =
AC −B2

A

Since

AC −B2 = (
∑ 1

(p− q)2
)(
∑ q2

(p− q)2
)− (

∑ q

(p− q)2
)2

and we have

(a2 + b2 + c2)(d2 + e2 + f 2)− (ad+ be+ cf)2 =
∑

(ae− bd)2,

We obtain

AC −B2 =
∑

(
r − q

(p− q)(q − r)
)2 =

∑ 1

(p− q)2
= A

This makes f(t) ≥ 1, as desired.
The second part is trivial, since we can find (p, q, r) with fixed p− q and any various
q − r, which would give different (x, y, z) satisfying the equality.

∇

Proof. (Posted by Ji Chen). We have

x2

(x− 1)2 +
y2

(y − 1)2 +
z2

(z − 1)2 − 1

≡ a6

(a3 − abc)2 +
b6

(b3 − abc)2 +
c6

(c3 − abc)2 − 1

=
(bc+ ca+ ab)2 (b2c2 + c2a2 + a2b2 − a2bc− b2ca− c2ab)2

(a2 − bc)2 (b2 − ca)2 (c2 − ab)2 ≥ 0

∇
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Proof. (Posted by kunny). By xyz = 1, we have

x

x− 1
+

y

y − 1
+

z

z − 1
−
{

xy

(x− 1)(y1)
+

yz

(y − 1)(z − 1)
+

zx

(z − 1)(x− 1)

}
=
x(y − 1)(z − 1) + y(z − 1)(x− 1) + z(x− 1)(y − 1)− xy(z − 1)− yz(x− 1)− zx(y − 1)

(x− 1)(y − 1)(z − 1)

=
x(y − 1)(z − 1− z) + y(z − 1)(x− 1− x) + zx(y − 1− y)

(x− 1)(y − 1)(z − 1)

=
x+ y + z − (xy + yz + zx)

(x− 1)(y − 1)(z − 1)

=
x+ y + z − (xy + yz + zx) + xyz − 1

(x− 1)(y − 1)(z − 1)

=
(x− 1)(y − 1)(z − 1)

(x− 1)(y − 1)(z − 1)
= 1

(Because x 6= 1, y 6= 1, z 6= 1).)
Therefore

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2

=

(
x

x− 1
+

y

y − 1
+

z

z − 1

)2

− 2

{
xy

(x− 1)(y − 1)
+

yz

(y − 1)(z − 1)
+

zx

(z − 1)(x− 1)

}
=

(
x

x− 1
+

y

y − 1
+

z

z − 1

)2

− 2

(
x

x− 1
+

y

y − 1
+

z

z − 1
− 1

)
=

(
x

x− 1
+

y

y − 1
+

z

z − 1
− 1

)2

+ 1 ≥ 1

The equality holds when

x

x− 1
+

y

y − 1
+

z

z − 1
= 1⇐⇒ 1

x
+

1

y
+

1

z
= 3

∇

Proof. (Posted by kunny). Let x + y + z = a, xy + yz + zx = b, xyz = 1, x, y, z
are the roots of the cubic equation :

t3 − at2 + bt− 1 = 0

If t = 1 is the roots of the equation, then we have

13 − a · 12 + b · 1− 1 = 0⇐⇒ a− b = 0
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Therefore t 6= 1⇐⇒ a− b 6= 0.
Thus the cubic equation with the roots α = x

x−1
, β = y

y−1
, γ = z

z−1
is(

t

t− 1

)3

− a
(

t

t− 1

)
+ b · t

t− 1
− 1 = 0

⇐⇒ (a− b)t3 − (a− 2b+ 3)t2 − (b− 3)t− 1 = 0 · · · [∗]

Let a− b = p 6= 0, b− 3 = q, we can rerwite the equation as

pt3 − (p− q)t2 − qt− 1 = 0

By Vieta’s formula, we have

α + β + γ =
p− q
p

= 1− q

p
, αβ + βγ + γα = −q

p

Therefore

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
= α2 + β2 + γ2

= (α + β + γ)2 − 2(αβ + βγ + γα)

=

(
1− q

p

)2

− 2

(
−q
p

)
=

(
q

p

)2

+ 1 ≥ 1,

The equality holds when q
p

= 0⇐⇒ q = 0⇐⇒ b = 3, which completes the proof.

∇

Proof. (Posted by kunny). Since x, y, z aren’t equal to 1, we can set x = a+ 1, y =
b+ 1, z = c+ 1 (abc 6= 0).

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
=

(a+ 1)2

a2
+

(b+ 1)2

b2
+

(c+ 1)2

c2

= 3 + 2

(
1

a
+

1

b
+

1

c

)
+

1

a2
+

1

b2
+

1

c2

= 3 +
2(ab+ bc+ ca)

abc
+

(ab+ bc+ ca)2 − 2abc(a+ b+ c)

(abc)2
· · · [∗]

Let
a+ b+ c = p, ab+ bc+ ca = q, abc = r 6= 0

we have xyz = 1⇐⇒ p+ q + r = 0, since r 6= 0, we have

[∗] = 3 +
2q

r
+
q2 − 2rp

r2
= 3 +

2q

r
+
(q
r

)2

− 2
p

r

= 3 +
2q

r
+
(q
r

)2

+ 2
q + r

r
=
(q
r

)2

+ 4
q

r
+ 5

=
(q
r

+ 2
)2

+ 1 ≥ 1.
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The equality holds when q = −2r and p+q+r = 0 (r > 0)⇐⇒ p : q : r = 1 : (−2) : 1.
Q.E.D.

∇

Proof. (Posted by Allnames). The inequality can be rewritten in this form∑ 1

(1− a)2
≥ 1

or ∑
(1− a)2(1− b)2 ≥ ((1− a)(1− b)(1− c))2

where x =
1

a
and abc = 1.

We set a + b + c = p, ab + bc + ca = q, abc = r = 1. So the above inequality is
equivalent to

(p− 3)2 ≥ 0

which is clearly true.

∇

Proof. (Posted by tchebytchev). Let x = 1
a
, y = 1

b
and z = 1

c
. We have

x2

(x− 1)2 +
y2

(y − 1)2 +
z2

(z − 1)2

=
1

(1− a)2
+

1

(1− b)2
+

1

(1− c)2

=

[
1

(1− a)
+

1

(1− b)
+

1

(1− c)

]2

− 2

[
1

(1− a)(1− b)
+

1

(1− b)(1− c)
+

1

(1− c)(1− a)

]
=

[
3− 2(a+ b+ c) + ab+ bc+ ca

ab+ bc+ ca− (a+ b+ c)

]2

− 2

[
3− (a+ b+ c)

ab+ bc+ ca− (a+ b+ c)

]
=

[
1 +

3− (a+ b+ c)

ab+ bc+ ca− (a+ b+ c)

]2

− 2

[
3− (a+ b+ c)

ab+ bc+ ca− (a+ b+ c)

]
= 1 +

[
3− (a+ b+ c)

ab+ bc+ ca− (a+ b+ c)

]2

≥ 1

∇

FFFFF
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Glossary

1. AM-GM inequality
For all non-negative real number a1, a2, · · · , an then

a1 + a2 + · · ·+ an ≥ n n
√
a1a2 · · · an

2. Cauchy-Schwarz inequality
For all real numbers a1, a2, · · · , an and b1, b2, · · · , bn then(

a2
1 + a2

2 + · · ·+ a2
n

) (
b21 + b22 + · · ·+ n2

n

)
≥ (a1b1 + a2b2 + · · ·+ anbn)

3. Jensen Inequality
If f is convex on I then for all a1, a2, · · · , an ∈ I we have

f(x1) + f(x2) + · · ·+ f(xn) ≥ nf

(
x1 + x2 + · · ·+ xn

n

)
4. Schur Inequality

For all non-negative real numbers a, b, c and positive real number numbers r

ar (a− b) (a− c) + br (b− a) (b− c) + cr (c− a) (c− b) ≥ 0

Moreover, if a, b, c are positive real numbers then the above results still holds
for all real number r

5. The extension of Schur Inequality (We often call ’Vornicu-Schur in-
equality’)
For x ≥ y ≥ z and a ≥ b ≥ c then

a (x− y) (x− z) + b (y − z) (y − x) + c (z − x) (z − y) ≥ 0
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