
Trần Văn Lâm tổng hợp và chọn lọc các bài toán trong hai box ”High School Pre-Olympiad

(Ages 14+)” ”High School Intermediate Topics (Ages 13+)” sáng ngày 14/7/2013

Chú ý: Đa số các bài toán thuộc box ”High School Pre-Olympiad (Ages 14+)”

Let x,y be a real number amd x,y different from 0 satisfying that (x+y)xy = x2 +y2−xy.find
max of 1

x3 + 1
y3

Solution

x2 + y2 = r2 Then exists α ∈ [−π
2
, π

2
] such that x = rcos(α) and y = rsin(α)

(x+y)xy = x2+y2−xy ⇒ r3(cos(α)+sin(α))cos(α)sin(α) = r2(cos2(α)+sin2(α)−cos(α)sin(α))

r(cos(α) + sin(α))sin(2α) = 2(1− cos(α)sin(α))
2
r

= sin(2α)(cos(α)+sin(α))
(1−cos(α)sin(α))

; we see cos(α)sin(α) 6= 1 for all α

Now: 1
x3 + 1

y3 = (cos(α)+sin(α))(1−cos(α)sin(α))
r3cos3(α)sin3(α)

= (cos(α)+sin(α))2

r2cos2(α)sin2(α)

=
(

2
r

)2
(

1+sin(2α)
sin2(2α)

)
=
(
sin(2α)(cos(α)+sin(α))

(1−cos(α)sin(α))

)2 (
1+sin(2α)
sin2(2α)

)
= (1+sin(2α))2

1−sin(2α)+cos2(α)sin2(α)

=

(
1+sin(2α)

1− sin(2α)
2

)2

we see that max of 1
x3 + 1

y3 in α = π
4

1
x3 + 1

y3 = 16

x = 1
2
y = 1

2

let (un) = 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . . . . .. What is the value of uk

Solution

Easy to see that un = k when 1 + 2 + . . .+ (k−1) + 1 ≤ n ≤ 1 + 2 + . . .+k ⇔ (k−1)k
2

+ 1 ≤ n ≤ k(k+1)
2

⇔ 4k2−4k+8 ≤ 8n ≤ 4k2+4k ⇔ (2k−1)2 < 8n < (2k+1)2⇔ k <
√

2n+ 1
2
< k+1⇔ k = [

√
2n+ 1

2
]

Result un = [
√

2n+ 1
2
]

The function f : N → N is such that f(1) = 1, f(2n) = 2f(n), and nf(2n + 1) = (2n +

1)(f(n) + n) for all n ≥ 1.

Prove that f(n) is always an integer, and for how many positive integers less than 2007 is f(n) =

2n?

Solution

Call g(n) = f(n)
n

then g(1) = 1, g(2n) = g(n), g(2n+ 1) = g(n) + 1. Easy to check that g(n) ∈ Z+∀n
by induction! (Assume that g(n) ∈ Z+∀n ≤ k: if k + 1 = 2m then g(k + 1) = g(m) ∈ Z+; if

k+ 1 = 2m+ 1 then g(k+ 1) = g(m) + 1 ∈ Z+ (Because in all 2 case we have m ≤ k)) We must find

how many positive integers n less than 2007 so that g(n) = 2! With n = 2k.l : k ≥ 0, l odd we have

g(n) = g(l) then if g(n) = 1 it mean g(l) = 1⇔ l = 1 (If l = 2m+ 1 ≥ 3 then g(l) = g(m) + 1 ≥ 2)

Then g(n) = 1 ⇔ n = 2k! Now with n = 2k.(2m + 1), k ≥ 0,m ≥ 1 we have if g(n) = 2 it mean

g(2m + 1) = 2⇔ g(m) = 1⇔ m = 2h, h ≥ 0⇔ n = 2k+h+1 + 2k, k, h ≥ 0 ⇔ n = 2p + 2q, p > q ≥ 0

Finally, n ≤ 2007⇔ 0 ≤ q < p ≤ 10, it have C2
11 = 55 numbers n so that f(n) = 2n!

For a given a ∈ R : ∀x, y ∈ R f(x + y) = f(x) · f(a − y) + f(y) · f(a − x) assuming f is a

real-valued function and f(0) = 1
2
. f(2008) =?

Solution

-) x = y = 0 : f(0) = 2f(0)f(a) ⇔ f(a) = 1
2
-) y = 0 : f(x) = f(x)f(a) + f(0)f(a − x) ⇔ f(x) =

f(a−x)⇒ f(x+y) = 2f(x)f(y) -) y = a : f(x+a) = 2f(x)f(a) = f(x)⇒ f(a−x) = f(x) = f(x−a)
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⇒ f(x) = f(−x) Then f(x + y) = 2f(x)f(y) = 2f(x)f(−y) = f(x − y) for all x, y, it mean

f(x) = c = 1
2
∀x

Prove that the ortocentre of a triangle whose vertices are (a cosα, a sinα), (a cos β, a sin β),

(a cos γ, a sin γ) is (a cosα + a cos β + a cos γ, a sinα + a sin β + a sin γ)

Solution

Call A(a cosα, a sinα), B(a cos β, a sin β), C(a cos γ, a sin γ) and H(a cosα+a cos β+a cos γ, a sinα+

a sin β+ a sin γ) we have
−−→
AH(a cos β+ a cos γ, a sin β+ a sin γ) and

−−→
BC(−a cos β+ a cos γ,−a sin β+

a sin γ) then
−−→
AH.
−−→
BC = (a cos β + a cos γ)(−a cos β + a cos γ) +(a sin β + a sin γ)(−a sin β + a sin γ)

= −a2 cos2 β + a2 cos2 γ − a2 sin2 β + a2 sin2 γ = 0 Similarly then OK!

The number of factors of p in n! (p prime, n positive int) is (n− sn)/(p− 1) where sn is [i]the

sum of the digits of n when expressed in base p

Solution

This is due to Legendre. Let n = n0 + n1p+ · · ·+ nkp
k be the expansion of n in base p.

It is well-known that the valuation of n! modulo p, say νp(n!) (that is the exponent of p in the

prime decomposition of n!) is : νp(n!) =
∑+∞

i=1 [ n
pi

], where [.] denotes the integer part.

It easily follows that νp(n!) = (n1 +n2p · · ·+nkp
k−1)+(n2 · · ·+nkp

k−2)+ · · ·+(nk) = n1 +n2(1+

p) + n3(1 + p+ p2) + · · ·+ nk(1 + p+ · · · pk−1) =
∑k

i=1 ni
pi−1
p−1

=
∑k

i=0 ni
pi−1
p−1

= n−sp(n)

p−1
, as desired.

Prove that you can color positive rational numbers with two colors such that for each positive

rational number q is color of q same as color of 1
q
and different to color of q + 1.

Solution

Let a, b be two positive integers. Now, use the euclidean algorithm to define two sequences of integers,

namely (qi) and (ri) such that a = r0 b = q1a+ r1, (1) a = r0 = q2r1 + r2, . . . ri−1 = qi+1ri + ri+1 and

so on.

Since 0 ≤ ri < ri−1 the algorithm will stop, and since the only reason to stop is to reach ri = 0

for some i, we may consider the integer n such that rn = 0. Now let f(a
b
) = q1 + q2 + · · ·+ qn.

Now assume that b > a. Then a = 0 · b+a and then the algorithm associated to a
b
follows the one

associated to b
a
. Therefore f(a

b
) = f( b

a
). (2) In another hand b

a
+ 1 = a+b

a
, and (b+a) = (q1 + 1)a+ r1

where q1, r1 are the same as in (1). Thus, from that step, the algorithm associated to a+b
a

is the same

as the one associated to b
a
. Therefore f( b

a
+ 1) = 1 + f( b

a
). (3)

Thus, it suffices to define the coloring as follows : For each positive rational q let q = b
a
where

gcd(a, b) = 1. Then color q in red if f( b
a
) is even, and in blue otherwise. From (2) and (3), we deduce

that this coloring as the desired property.

Remark. We may slightly simplify the above solution by defining f( b
a
) to be the first non-zero

term of the sequence (qi)

Determine all f : R→ R for which

2 · f(x)− g(x) = f(y)− y and f(x) · g(x) ≥ x+ 1.

Solution

The LHS of the first condition is independant of y, so f(y) = y + c, where c is a constant. Clearly

c = f(0). Thus g(x) = 2x+c. The second condition may be rewritten as (x+c)(x+2c) ≥ x+1 for all

x. Expanding, we get a quadratic expression in x which has to be non-negative, and whose disriminant

is ∆ = (c−3)2. But, if ∆ > 0 then the quadratic takes positive and negative values... then c = 3, and

f(x) = x+ 3, which is a solution. Determine all polynomials satisfying xP (x− 1) = (x− 23)P (x)
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∀x.
Solution

Lemma : If P (x) is a polynomial such that P (x) = P (x−1) for all real number x, then P is constant.

Proof. Assume that such a polynomial P is nonconstant. Let α be one of its (complex) root. It is

easy to verify that α+1 is also a root of P . Thus, considering the sequence U0 = α and Un+1 = Un+1,

we deduce that P has an infinite number of root, that is P = 0, a contradiction.

Now, let P0 = P where P is a polynomial satisfying the statement of the problem. Clearly, P (0) =

P (22) = 0, which gives that P (x) = x(x−22)P1(x) where P1 satisfies (x−1)P1(x−1) = (x−22)P1(x)

for all x 6= 0 and x 6= 22 which means that this equality is in fact satisfied for all x.

As above P1(1) = P1(21) = 0 so that P1(x) = (x − 1)(x − 21)P2(x) and (x − 2)P2(x − 1) =

(x− 21)P2(x).

And so on until we reach (x − 11)P11(x − 1) = (x − 12)P11(x) for all x, from which we deduce

that P11(x) = (x− 11)P12(x) and P12(x− 1) = P12(x) for all x. From the lemma, we deduce that P12

is constant.

It follows that P (x) = kx(x− 1)(x− 2) . . . (x− 22), for some sonctant k.

Conversely, it is easy to verify that these polynomials are solutions of the problem.

Find all positive integer solutions x and n of the equation: x2 + 615 = 2n

Solution

Note that 615 is divisible by 3, so since 2n is not, x is not divisible by 3; It follows that x2 = 1 mod [3],

so that 2n = 1 mod [3]. Therefore n = 2k is even. The equation becomes 615 = (2k−x)(2k+x). with

2k+x > 2k−x. Since 2k+x > 0, we then have 2k−x. Then, 2k+x and 2k−x are two positive divisors

of 615 whose product is 615. The positive divisors of 615 = 3 · 5 · 41 are 1, 3, 5, 5, 41, 123, 205, 615.

Thus (2k + x, 2k − x) is one of the couples (615, 1), (205, 3), (123, 5), 41, 15). Direct checking shows

that the only solution is k = 6 and x = 59, which leads to the solution x = 59 and n = 12.

Prove that for every positive integer n , the difference sn = (
∑n

k=1[n
k
])− [
√
n] is an even integer

, where [x] denotes the integer part of x

Solution

Let A = {1, 2, · · · , n} and S =
∑n

k=1[n
k
].

For each k, the number [n
k
] denotes the number of multiples of k in A. Therefore, each element i

from A contributes for 1 in S exactly as many times as its number of positive divisors, say d(i). It

follows that S =
∑n

k=1 d(k). But, it is well known that d(k) is odd if and only if k is a perfect square.

Thus S has the same parity than the number of squares in A, which is [
√
n], and the desired result

now follows easily.

Denote by u(k) the greatest odd divisor of k ∈ N. Prove that ∀n ∈ N we have:

1

2n
·

2n∑
k=1

u(k)

k
>

2

3
.

Solution

Let Sn =
1

2n

2n∑
k=1

u(k)

k
. Then, 2n · Sn =

2n∑
k=1

u(k)

k
.

Now observe that u(2k)
2k

= 1
2
· u(k)

k
. Then : 2n · Sn =

∑
kodd

u(k)

k
+

2n−1∑
k=1

u(2k)

2k
= 2n−1 + 2n−2Sn−1 Thus

: Sn = 1
2

+ Sn−1

4
. (1)
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The desired result now follows easily by induction. But, we may go further : Let Sn = Un + 2
3
. It

is easy from (1) to see that the sequence (Un) is geometrical with ratio 1
4
. Since S0 = 1 and U0 = 1

3
,

it follws that Sn = 2
3

+ 1
3
· (1

4
)n.

A regular 1997-gon is decomposed into triangles using non-intersecting diagonals. How many

of these triangles are acute?

Solution

Inscribe the polygon into a circle, with center O. That a triangle T is acute is equivalent to the fact

that O is an interior point of T . Since we have a triangulation of the polygon, the interior of the

triangles are pairwise disjoints. Therefore, there is at most one acute triangle. In another hand, if

there is no acute triangle, it means that O belongs to the side of a triangle, so that there are two

vertices which form a diameter. But this is impossible since 1997 is odd. Thus, there is at least one

acute triangle.

Then, there is exactly one acute triangle.

This is clearly true for any odd n instead of 1997. The first part of the reasoning remains true

for even n. If I’ve no mistake, if n = 4, 6 there is no acute triangle. If n ≥ 8 there can be one acute

triangle or not, according to chosen triangulation of the polygon.

a, b, c ∈ N, show that a2 + b3 = bc has no solution.

Solution

bc − b3 = a2 so b3(bc−3 − 1) = a2. We can easily show that b3andbc−3 − 1 share no factors because

bc−3 − 1 has no factors of b in it. Therefore, this means both b3 and bc−3 − 1 must be squares. Since

b3 must be a square, b must be in the form x2. so that means that x2c−3 − 1 is a square. Which is

untrue, since that +1 is a square, and x isnt equal to 0 by the very nature of the problem. Therefore

a2 + b3 = bc has no solution in natural numbers.

Let A be a subset of R which staisfies the three following properties : 1) 1 ∈ A 2) If x ∈ A
then x2 ∈ A 3) If (x− 2)2 ∈ A then x ∈ A.

Prove that 2004 +
√

2005 ∈ A.
Solution

We have that x ∈ A⇒ x2 = (2 + x− 2)2 ∈ A⇒ 2 + x ∈ A Thus given that 1 ∈ A we know that all

odd numbers are also in A. So 2005 ∈ A.
Also we have that x > 0; x ∈ A ⇒ (2 +

√
x− 2)2 ∈ A ⇒ 2 +

√
x ∈ A But then 2 +

√
2005 ∈ A

and using the first result succesively proves 2004 +
√

2005 ∈ A
Determine the least natural number n for which the following holds: No matter how the

numbers 1 to n is divided into two disjoint sets, in at least one of the sets, there exist four (not

necessarily distinct) elements w, x, y, z st w + x+ z = y.

Solution

The minimal n is n = 11.

Assume that A,B form a partition of {1, · · · , 11} with no solution of the equation in one of the

sets. Wlog, we may assume that 1 ∈ A. Thus 3 ∈ B. It follows that 9 ∈ A so that 11 ∈ B. Now : - If

2 ∈ A then 4, 5, 6 ∈ B. In that case 11 = 3 + 3 + 4 gives a solution in B. A contradiction. - If 2 ∈ B
then 6, 7, 8 ∈ A, but 8 = 6 + 1 + 1 gives a solution in A. A contradiction. It follows that the minimal

n satisfies n ≤ 11.

In another hand, for n = 10 and if A = {1, 2, 9, 10} and B = {3, 4, 5, 6, 7, 8}, we have a partition

into two parts with no solution of the equation. Hence result.

Solve system:

4

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=24187
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=42185
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=23343
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=25275
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=198953


x+ y2 = z3

x2 + y3 = z4

x3 + y4 = z5

Solution

We have (x + y2)(x3 + y4) = z8 = (x2 + y3)2 ⇔ x3y2 + xy4 = 2x2y3 ⇔ xy2(x − y)2 = 0 -) x = 0 or

y = 0: Easy! -) x = y then x+ x2 = z3 and x2 + x3 = z4, it mean (x+ x2)4 = (x2 + x3)3. OK!

Let f be a function from the set Q of the rational numbers onto itself such that f(x + y) =

f(x) + f(y) + 2547 for all rational numbers x, y. Moreover f(2004) = 2547. Determine f(2547).

Solution

f(x+ y) = f(x) + f(y) + 2547

Put x = y = 0,we have 2547 = −f(0), so we obtain f(x+ y)− f(x) = f(y)− f(0).

limy→0
f(x+y)−f(x)

y
= limy→0

f(y)−f(0)
y

f ′(x) = f ′(0) ⇐⇒ f(x) = f ′(0)x + C.From f(2004) = 2547,we have C = 2547 − 2004f ′(0).

Therefore by f(2547) = 2547f ′(0) + C, the answer is f(2547) = 543f ′(0) + 2547.

Let P be an internal point of triangle ABC. The line through P parallel to AB meets BC at

L, the line through P parallel to BC meets CA at M , and the line through P parallel to CA meets

AB at N .

Prove that BL
LC
× CM

MA
× AN

NB
≤ 1

8

Solution

Denote AP ∩ BC = D,PN ∩ BC = L′ then LC
BL
· MA
CM
· NB
AN

= LC
BL
· PA
PD
· L′B
CL′

= LC
BL
· L′C
L′D
· L′B
CL′

=
LC
BL
· L′B
L′D

= (b+c+d)(a+b+c)
ac

(
BL = a, LD = b,DL′ = c, L′C = d : ac = bd because a

b
= AP

PD
= d

c

)
≥ (d+2

√
bc)(a+2

√
bc)√

abcd
≥ 2
√

2d
√
bc×2
√

2a
√
bc√

abcd
= 8 Equality when a = 2b = 2c = d, it mean P ≡ G!

What is triangle ABC if 2 sinA+ 3 sinB + 4 sinC = 5 cos A
2

+ 3 cos B
2

+ cos C
2

Solution

We have: sinA+ sinB = 2 sin A+B
2

cos A−B
2
≤ 2 cos C

2
Similarly: 5 sinB+ 5 sinC ≤ 10 cos A

2
; 3 sinC +

3 sinA ≤ 6 cos B
2
Add 3 equalities we have: 4 sinA + 6 sinB + 8 sinC ≤ 10 cos A

2
+ 6 cos B

2
+ 2 cos C

2

So triangle is an equilateral triangle .

Let X = {1; 2; 3; . . . ; 15}. How many subset A ⊂ X have 5 elements so that A have at least 2

consecutive numbers. Example: A = {1; 2; 4; 5; 7} have 2 pair consecutive numbers. B = {1; 3; 5; 7; 9}
isn’t satisfy!

Solution

A set A = {a; b; c; d; e} with a < b < c < d < e don’t satisfy condition is five number so that

1 ≤ a < b− 1 < c− 2 < d− 3 < e− 4 ≤ 11, then have C5
11 sets. Then we have C5

15 −C5
11 sets satisfy

our problem.

Let ABC be a triangle and let E,F be the projections of the its orthocenter to the side-lines

AC , AB respectively. Prove that A = 60◦ if and only if the middlepoint of the segment [EF ] is the

radical center for the circles C(B,BF ), C(C,CE), C
(
A, |b−c|

2

)
.

Solution

Let the midpoint of segment EF be D. Let BF = R1, CE = R2, EF = d. Then the Power of point

D to circle B is:

DB2 −R2
1 = 1

2
R2

1 + 1
2
BE2 − 1

4
d2 −R2

1 = 1
2

(BC2 −R2
2 −R2

1)− 1
4
d2.

Similarly we can get that the power of point D to circle C is also:

DB2 −R2
1 = 1

2
R2

1 + 1
2
BE2 − 1

4
d2 −R2

1 = 1
2

(BC2 −R2
1 −R2

2)− 1
4
d2.

Hence D lies on the radical axis of circle B and circle C.
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The power of point D to circle A is:

DA2 −
(
|b−c|

2

)2

= 1
2
AE2 + 1

2
AF 2 − 1

4
d2 − b2−2bc+c2

4
=

Since ∠A = 60o so a2 = b2 + c2 − bc and there is also AE = c
2
, AF = b

2
, so the above can be

written as:
1
2
· 1

4
c2 + 1

2
· 1

4
b2 − 2a2−b2−c2

4
− 1

4
d2 = 3

8
c2 + 3

8
b2 − 1

2
a2 − d2

4

Since c2

4
= AE2 = c2 − BE2 = c2 − a2 + R2

2, so
3
4
c2 = a2 − R2

2, similarly there is 3
4
b2 = a2 − R2

1,

Pluge them back, we get that the Power of point D to circle A is:
1
2

(BC2 −R2
2 −R2

1)− 1
4
d2

Therefore D is the radical centre of the three circles.

Let H an interior point of a triangle ABC. Lines AH,BH,CH meet the sides of the triangle at

points D,E, F respectively. If H is the incenter of the triangle DEF , prove that H is the orthocenter

of triangle ABC.

Solution

Here is an easy and well-known property : " AD ⊥ BC ⇐⇒ ÊDA ≡ F̂DA ". Proof. I"ll with

the orientate segments. Let d be the line for which A ∈ d and d ‖ BC. Denote the intersections

M ∈ d ∩ DE and N ∈ d ∩ DF . d ‖ BC =⇒ EC
EA

= DC
MA

, FA
FB

= DB
NA

. Apply the Ceva’s theorem to

the point H for the triangle ABC : DB
DC
· EC
EA
· FA
FB

= −1 =⇒ MA = AN . Therefore, AD ⊥ BC ⇐⇒
DA ⊥MN ⇐⇒ M̂DA ≡ N̂DA.

Remark. You prove immediately this problem with the harmonical division. Denote the intersec-

tions X ∈ AD∩EF and Y ∈ EF ∩BC. Thus, (B,C;D, Y )- h.d. =⇒ (E,F ;X, Y )- h.d. and d ‖ BC
=⇒ NA = AM . Therefore, AD ⊥ BC ⇐⇒ XD ⊥ BC ⇐⇒ ÊDX ≡ F̂DX ⇐⇒ M̂DA ≡ N̂DA.

Find the n th term of the positive sequence {an} such that a1 = 1, a2 = 10, a2
nan−2 =

a3
n−1 (n = 3, 4, · · · ).

Solution
an
an−1

=
√

an−1

an−2
=⇒ an

an−1
=
(
a2

a1

)1/2n−2

= 101/2n−2
, n > 2

an
a1

=
an
an−1

· an−1

an−2

. . .
a2

a1

= 101/2n−2+1/2n−3+···+1

= 102−(1/2n−2)

Since a1 = 1, we get an = 102−(1/2n−2)

Find the n th term of the sequence {an} such that a1 = a (6= −1), an+1 = 1
2

(
an + 1

an

)
(n ≥ 1).

Solution

Put an = pn
qn
, p1 = a, q1 = 1

Then pn+1

qn+1
= p2

n+q2
n

2pnqn
, hence we can putpn+1 = p2

n + q2
n

qn+1 = 2pnqn
From this we get

pn+1 + qn+1 = (pn + qn)2 ⇐⇒ pn + qn = (p1 + q1)2n−1
= (a+ 1)2n−1

pn+1− qn+1 = (pn− qn)2 ⇐⇒
pn − qn = (p1 − q1)2n−1

= (a− 1)2n−1

That yields

pn = 1
2

(
(a+ 1)2n−1

+ (a− 1)2n−1
)
qn = 1

2

(
(a+ 1)2n−1 − (a− 1)2n−1

)
giving
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an = (a+1)2n−1
+(a−1)2n−1

(a+1)2n−1−(a−1)2n−1

NOTE: The formula also works for both a = 1 and a = −1

Define the sequence {an} such that a1 = −4, an+1 = 2an+2n+3n−13 ·2n+1 (n = 1, 2, 3, · · · ).
Find the value of n for which an is minimized.

Solution

an+1 = 2an + 2n+3n− 13 · 2n+1

⇐⇒ an+1 − 2n+1[2(n+ 1)2 − 15(n+ 1)] = 2[an − 2n(2n2 − 15n)]

⇐⇒ an − 2n(2n2 − 15n) = 2n−1(a1 − 2(2− 15)) = 11 · 2n

⇐⇒ an = 2n(2n2 − 15n+ 11)

an is negative for 1 6 n 6 6 and the minimal value is a5 = a6 = −448

Find the n th term of the seuence {an} such that a1 = 1
2
, a2 = 1

3
, an+2 = anan+1

2an−an+1+2anan+1
.

Solution

1

an+2

=
2

an+1

− 1

an
+ 2

⇐⇒
(

1

an+2

− (n+ 2)2

)
−
(

1

an+1

− (n+ 1)2

)
=

(
1

an+1

− (n+ 1)2

)
−
(

1

an
− n2

)
⇐⇒ 1

an
− n2 =

1

a1

− 12 + (n− 1)

(
1

a2

− 22 − 1

a1

+ 12

)
= −2n+ 3

⇐⇒ an =
1

n2 − 2n+ 3

Solve for an:

a1 = 1, an+1 = an
1+an

+ 1, n > 1

Solution

Let α, β (α < β) be the roots of the quadratic equation x2−x− 1 = 0, we have an+1−β
an+1−α = 2−β

2−α ·
an−α
an−β ,

thus we obtain an−β
an−α = β

α

(
2−β
2−α

)n
, yielding an = (2−β)n−(2−α)n

α(2−α)n−β(2−β)n
.

Find the n th term of the sequence {an} such that
∑n

k=1 ak = 3n2 + 4n+ 2 (n = 1, 2, 3, · · · )
and calculate

∑n
k=1 a

2
k.

Solution

For n > 2:

an = (3n2 + 4n+ 2)− [3(n− 1)2 + 4(n− 1) + 2] = 3(2n− 1) + 4 = 6n+ 1

For n = 1:

a1 =
∑1

k=1 ak = 3 · 12 + 4 · 1 + 2 = 9

Hence a1 = 9, an = 6n+ 1, n > 2

Then for n > 2:
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n∑
k=1

a2
k = 81 +

n∑
k=2

(36k2 + 12k + 1)

= 81 + 36

(
n(n+ 1)(2n+ 1)

6
− 1

)
+ 12

(
n(n+ 1)

2
− 1

)
+ (n− 1)

= 81 + 6n(n+ 1)(2n+ 1)− 36 + 6n(n+ 1)− 12 + n− 1

= 6n(n+ 1)[(2n+ 1) + 1] + n+ 32

= 12n(n+ 1)2 + n+ 32

= 12n3 + 24n2 + 13n+ 32

and that also works for
∑1

k=1 a
2
k = 81.

Hence
∑n

k=1 a
2
k = 12n3 + 24n2 + 13n+ 32, n > 1

Find the n th term of the sequence {an} such that a1 = 0, a2 = 1, (n−1)2an =
∑n

k=1 ak (n ≥
1).

Solution

For n > 3

(n− 1)2an − (n− 2)2an−1 = an ⇐⇒ n(n− 2)an − (n− 2)2an−1 = 0

Since n− 2 6= 0, this gives

nan = (n− 2)an−1

Then

nan = (n− 2)an−1

(n− 1)an−1 = (n− 3)an−2

...

3a3 = 1 · a2

Multiply all the equations and denote P = a3a4 . . . an−1:
n!
2!
Pan = (n− 2)!Pa2 ⇐⇒ an = 2a2

n(n−1)
= 2

n(n−1)

which also works for n = 2, hence

Hence a1 = 0, an = 2
n(n−1)

, n > 2

Find the n th term of the sequence {xn} such that xn+1 = xn(2 − xn) (n = 1, 2, 3, · · · ) in

terms of x1.

Solution

xn+1 = 2xn − x2
n ⇐⇒ 1− xn+1 = 1− 2xn + x2

n = (1− xn)2

⇐⇒ 1− xn = (1− x1)2n−1

⇐⇒ xn = 1− (1− x1)2n−1

Find the n th term of the sequence {an} such that a1 = 1, an+1 = 1
2
an + n2−2n−1

n2(n+1)2 (n =

1, 2, 3, . . . .).

Solution
n2−2n−1
n2(n+1)2 = n2−[(n+1)2−n2]

n2(n+1)2 = 2
(n+1)2 − 1

n2

hence
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an+1 =
1

2
an +

n2 − 2n− 1

n2(n+ 1)2

⇐⇒ an+1 −
2

(n+ 1)2
=

1

2
an −

1

n2

⇐⇒ an+1 −
2

(n+ 1)2
=

1

2

(
an −

2

n2

)
⇐⇒ an −

2

n2
=

(
1

2

)n−1(
a1 −

2

12

)
= − 1

2n−1

⇐⇒ an =
2

n2
− 1

2n−1

Find the n th term of the sequence {an} such that a1 = 1
2
, (n− 1)an−1 = (n+ 1)an (n ≥ 2).

Solution

(n− 1)an−1 = (n+ 1)an

(n− 2)an−2 = (n)an−1

...

1 · a1 = 3 · a2

Multiply all the equations and denote P = a1a2 . . . an:

(n− 1)! P
an

= (n+1)!
2!
· P
a1
⇐⇒ an = 2a1

n(n+1)
= 1

n(n+1)

Find all positive real solutions to the equation:

x+
⌊
x
6

⌋
=
⌊
x
2

⌋
+
⌊

2x
3

⌋
where btc denotes the largest integer less than or equal to the real number t.

Solution

Put x = 6n+ %, where n ∈ Z and % is a real number satisfying 0 6 % < 6.

Then the equation becomes

6n+ %+ n = 3n+
[
%
2

]
+ 4n+

[
2%
3

]
or

% =
[
%
2

]
+
[

2%
3

]
Since RHS is integer, LHS must be too, therefore % ∈ {0, 1, 2, 3, 4, 5}. By checking we see that all

the values except 1 satisfy the equation. Therefore the initial equation’s solution set is

R = Z \ (6Z + 1)

Find the n th term of the sequence {an} which is defined by a1 = 0, an =
(
1− 1

n

)3
an−1 +

n−1
n2 (n = 2, 3, · · · ).

Solution

Multiply the expression by n3 and then substitute bn = n3an: bn = bn−1 + 2
(
n
2

)
= b1 + 2

∑n
i=2

(
i
2

)
=

0 + 0 + 2
(
n+1

3

)
(using the hockey-stick pattern in Pascal’s triangle). So an = 2(n+1)n(n−1)

6n3 = n2−1
3n2 for

n > 1. Another way Or to rearrange further thus:

n3an = (n− 1)3an−1 + n(n− 1)

⇐⇒ n3an −
(n− 1)n(n+ 1)

3
= (n− 1)3an−1 −

(n− 2)(n− 1)n

3
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hence

n3an − (n−1)n(n+1)
3

= const = 13a1 − 0·1·2
3

= 0 ⇐⇒ an = n2−1
3n2

Find the n th term of the sequence {an} such that a1 = 1, an+1 = 2an − n2 + 2n (n =

1, 2, 3, · · · ).
Solution

by rearranging:

an+1 = 2an − n2 + 2n ⇐⇒ an+1 − (n+ 1)2 − 1 = 2an − n2 + 2n− (n+ 1)2 − 1

which gives

an+1 − (n+ 1)2 − 1 = 2(an − n2 − 1)

hence an − n2 − 1 = 2n−1(a1 − 12 − 1) = −2n−1 ⇐⇒ an = n2 − 2n−1 + 1

Find the n th term of the sequence {an} such that a1 = 1, a2
n+1 = −1

4
a2
n + 4 (an > 0, n ≥ 1).

Solution

a2
n+1 = −1

4
a2
n + 4 ⇐⇒ a2

n+1 −
16

5
= −1

4
a2
n + 4− 16

5

⇐⇒ a2
n+1 −

16

5
= −1

4
a2
n +

4

5

⇐⇒ a2
n+1 −

16

5
= −1

4

(
a2
n −

16

5

)
⇐⇒ a2

n −
16

5
=

(
−1

4

)n−1(
a2

1 −
16

5

)
=

44

5

(
−1

4

)n
⇐⇒ an =

√
16

5
+

44

5

(
−1

4

)n
Find the n th term of the sequence {an} such that a1 = 1, a2 = 3, an+1 − 3an + 2an−1 =

2n (n ≥ 2).

Solution

Remark that an − an−1 = 2n−1 + 2(an−1 − an−2), so an−an−1

2n
= an−1−an−2

2n−1 + 1
2
. Therefore, an−an−1

2n
=

a2−a1

4
+ n−2

2
= n−1

2
, i.e. an − an−1 = (n − 1)2n−1. Also, (an − 2an−1) = 2n−1 + (an−1 − 2an−2), so

an− 2an−1 = 2n−1 + 2n−2 + . . .+ 4 + (a2− 2a1) = 2n− 3. And there we are, an = 2(an−an−1)− (an−
2an−1) = (n− 1)2n − (2n − 3) = (n− 2)2n + 3. Another approach, using characteristic equations:

Writing n+ 1 instead of n we get

an+2 − 3an+1 + 2an = 2n+1 = 2 · 2n (∗)
From the initial equation 2n = an+1 − 3an + 2an−1. Plugging that into (∗) and rearranging, we

get

an+2 − 5an+1 + 8an − 4an−1 = 0

Hence the characteristic equation is t3 − 5t2 + 8t− 4 = 0. Factorize the LHS:

t3 − 5t2 + 8t− 4 = t3 − t2 − 4t2 + 4t+ 4t− 4

= t2(t− 1)− 4t(t− 1) + 4(t− 1)

= (t− 2)2(t− 1)

So the roots are t1 = t2 = 2, t3 = 1, hence the general solution is an = (An+B)2n +C · 1n. Since
a3 = 11, we make the system

2(A+B) + C = 1 4(2A+B) + C = 3 8(3A+B) + C = 11
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Solving it we get A = 1, B = −2, C = 3, hence an = (n− 2)2n + 3.

Find the n th term of the sequence {an} such that a1 = 1, an+1 = an
2an+3

(n ≥ 1).

Solution

an+1 =
an

2an + 3
⇐⇒ 1

an+1

= 2 +
3

an

⇐⇒ 1 +
1

an+1

= 3 +
3

an

⇐⇒ 1 +
1

an+1

= 3

(
1 +

1

an

)
⇐⇒ 1 +

1

an
= 3n−1

(
1 +

1

a1

)
= 2 · 3n−1

⇐⇒ an =
1

2 · 3n−1 − 1

Find the n th term of the sequence {an} such that a1 = 1, an+1 = 2a2
n (n = 1, 2, 3, · · · ).

Solution

2an+1 = (2an)2 =⇒ 2an = (2a1)2n−1
= 22n−1

=⇒ an = 22n−1−1

For {m,n} ⊂ N∗ given are the polynomials F = Xm−1 and G = Xn−1 . Denote D = Xd−1,

where d = (m,n) . Then D = (F,G) .

Solution

The polynomials F,G have only simple roots (essentially !). There is {u, v} ⊂ Z∗ so that d = um+

vn . Therefore, F (α) = G(α) = 0 =⇒ αm = αn = 1 =⇒ αd = αum+vn = (αm)u · (αn)v = 1 =⇒
D(α) = 0 , i.e. the polynomial D has the all common (simple) roots of the polynomials F and G .

In conclusion, D = (F,G) .

Find the constant term of
(
1 + x+ 2

x3

)8
.

Solution

Solution 1: Use the Multinomial Series. What you are looking for is
∑
Can1

1 +
∑
Can1

1 a
3n3
2 an3

3 with

nk ≤ 8. This gives

n1 = 8 =⇒
∑

Can1
1 = 1

n1 + 4n3 = 8 =⇒
∑

Can1
1 a

3n3
2 an3

3 = 4 · 8!

6!2!
+ 2 · 8!

4!3!
= 672

Therefore our answer is 672 + 1 = 673 . Solution 2: We’ll use trinomial expansion

(p+ q + r)n =
∑

i+j+k=n
n!
i!j!k!

piqjrk

Hence we must find all pairs i, j such that
8!

i!j!(8−i−j)!1
ixj
(

2
x3

)8−i−j

doesn’t depend on x

The exponent of x is j − 3(8− i− j) = j − 24 + 3i+ 3j = 3i+ 4j − 24. Equating it with zero we

get 4j = 24 − 3i ⇐⇒ j = 6 − 3i
4
. Since both i, j are non-negative integers not greater than 8, i is

divisible by 4, hence can only be 0, 4, 8. For those values we get j = 6, 3, 0 respectively.

Therefore we have three constant terms:
8!

0!6!2!
10x6

(
2
x3

)2
= 8·7

2
· 22 = 112

8!
4!3!1!

14x3
(

2
x3

)1
= 8·7·6·5

6
· 21 = 560

8!
8!0!0!

18x0
(

2
x3

)0
= 1

and they add up to 112 + 560 + 1 = 673 Solution 3: There are three ways we can get a constant

term.
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Case 1. We take the 1 from each of the eight factors, resulting in 18 = 1.

Case 2. We take the x from three factors and the 2
x3 from one factor. This case results in

(
8
3

)(
5
1

)
x3 ·

2
x3 = 560.

Case 3. We take the x from six factors and the 2
x3 from two factors. This case results in(

8
6

)(
2
2

)
x6
(

2
x3

)2
= 112.

The constant term is 1 + 560 + 112 = 673.

In triangle ABC, M is the midpoint of BC. A line passing through M divides the perimeter of

triangle ABC into two equal parts. Show that this line is parallel to the internal bisector of ]A.

Solution

Standard markings a, b, c. WLOG assume b < c. Then the line in question will intersect AB and

not AC. (Assume the opposite and denote the intersection by N . Then CN = b+c
2
> b, hence N is

outside AC.) If AD is the bisector of ∠A, where D ∈ BC, then b < c implies that D is between C

and M . (By Angle Bisector Theorem, CD = ab
b+c

< ab
b+b

= a
2
.) By Angle Bisector Theorem BD = ac

b+c

and by construction BM = a
2
, BN = b+c

2
(since BM +BN = a+b+c

2
), hence

BD : BA = ac
b+c

: c = a
b+c

= a
2

: b+c
2

= BM : BN

which means that 4BMN ∼ 4BDA =⇒ MN ‖ AD.

If b = c, then the two lines coincide and represent the symmetrial axis of the given isosceles

triangle. Another way We assume AB > AC.

Construct a point F on the extension of BA such that AF = AC. Then triangle FAC is isoceles

with ∠AFC = ∠ACF = θ. Then ∠BAC = 2θ and the angle bisector of A makes an angle of θ with

the line BF . Hence it is parallel to CF .

Let the line from M intersect AB at D. Then D is the midpoint of BF . But since M is the

midpoint of BC, triangle DBM is similar to triangle FBC. Hence MD is parallel to CF .

So BF is parallel to MD.

Find the volume of the tetrahedon ABCD such that AB = 6, BC =
√

13, AD = BD =

CD = CA = 5.

Solution

If we take 4ABC as basis, then DA = DB = DC means that D projects into the circumcenter of

4ABC.

By Heron’s

[ABC]2 =
11 +

√
13

2
· 1 +

√
13

2
· −1 +

√
13

2
· 11−

√
13

2

=
(121− 13)(13− 1)

16

=
108 · 12

16
= 81

hence [ABC] = 9. Then R = 5·6·
√

13
4·9 = 5

√
13

6
, giving H2 = 52−R2 = 25

(
1− 13

36

)
= 25·23

36
=⇒ H =

5
√

23
6

Then V = 1
3
[ABC]H = 5

√
23

2

Prove that (a+ b)/(c+ d) is irreducible if ad− bc = 1.

Solution
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Assume a+ b and c+d have a common divisor m > 1. Then a+ b = mx, c+d = my for some integer

x, y. Therefore b = mx− a, d = my − c, giving
1 = ad− bc = a(my − c)− (mx− a)c = amy − ac− cmx + ac = m(ay − cx), which means that

m | 1, and that’s impossible.

Another way The quadrilateral formed by (0, 0), (a, c), (b, d), (a+b, c+d) has area 1, so it contains

no interior lattice points by Pick’s Theorem. Hence there exists no point (x, y) on the line between

(0, 0), (a+ b, c+ d). QED.

Given two circles of radius r1 and r2, with both external tanges drawn, and one internal tangent

drawn. The internal tangent intersects the external tangents at P and Q. What is the relationship

between the length of PQ and the lengths of the external tangents?

Solution

Thiếu hình vẽ Here’s a significantly simpler solution. See the attached diagram.

By the tangent property:

PA = PR QD = QR

Adding those two, we get

PA+QD = PQ (1)

Also

PB = PS QC = QS

Adding those two, we get

PB +QC = PQ (2)

Adding (1) and (2) we get

(PA+ PB) + (QC +QD) = 2PQ =⇒ AB + CD = 2PQ

But because of the symmetry, we have AB = CD, hence

2AB = 2PQ =⇒ PQ = AB

Another way let PR = x, RS = y, and SQ = z then AP = x, PB = x+ y, QC = z, QD = y+ z,

then AB = 2x+ y, and CD = 2z + y, but AB = CD, so x = z

then AB = x+ y + x = x+ y + z = PQ as desired

Prove that for every nonzero number n may be uniquely represented in the form

n =
∑s

j=0 cj3
j

where Yes cj is neither -1 or 0 or 1.

Solution

I’m just going to ignore the cj 6= 0. For uniqueness suppose we have∑
cj3

j =
∑
bj3

j

where there exists some j such that cj 6= bj. Then∑
(cj − bj)3j = 0.

Let s be the largest integer such that cj − bj 6= 0. Then |(cs − bs)3s| ≥ 3s. However,∣∣∣∑s−1
j=0(cj − bj)3j

∣∣∣ ≤∑s−1
j=0 |(cj − bj)3j| ≤ 2

∑s−1
j=0 3j = 3s − 1.

So

|
∑

(cj − bj)3j| ≥ |(cs − bs)3s| −
∣∣∣∑s−1

j=0(cj − bj)3j
∣∣∣ ≥ 3s − (3s − 1) = 1,

which means it cannot be zero and our assumption was false.

Edit’s grandmother’s great grandmother’s age was 1/31 of her own birth year when she died.

(Count her age in full years.) How old was she in 1900?

Solution
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Since she obviously lived before and after 1900, we can put 1900−x as the year of birth and 1900+y

as the year of death, giving

x+ y = 1
31

(1900− x) ⇐⇒ 32x+ 31y = 1900

By any of the known ways of solving linear diophantics in two variables, we get (x, y) = (−31n+

9, 32n + 52), n ∈ Z. Since both x and y must be non-negative, we get n ∈ {−1, 0}, yielding (x, y) ∈
{(9, 52), (40, 20)}. Therefore we have two possibilites:

1. She was born in 1891 and died in 1952, meaning that in 1900 she was 9 years old;

2. She was born in 1860 and died in 1920, meaning that in 1900 she was 40 years old.

(By an abundance of words "great" in the problem, I guess the creator opted for the second

solution.)

Show that tannθ =
(n1) tan θ−(n3) tan3 θ...

(n0)−(n2) tan2 θ...
.

Solution

tannθ =
sinnθ

cosnθ

=
={einθ}
<{einθ}

=
={(cos θ + i sin θ)n}
<{(cos θ + i sin θ)n}

=

(
n
1

)
cosn−1 θ sin θ −

(
n
3

)
cosn−3 θ sin3 θ + . . .(

n
0

)
cosn θ −

(
n
2

)
cosn−2 sin2 θ + . . .

=

(
n
1

)
tan θ −

(
n
3

)
tan3 θ + . . .(

n
0

)
−
(
n
2

)
tan2 θ + . . .

Find an if a1 = 4, a2 = 9, an+2 = 5an+1 − 6an − 2n2 + 6n+ 1, n > 1

Solution

We can rewrite the given recursion in two ways as follows.

an+2 + (n+ 2)2 − 2{an+1 + (n+ 1)2} = 3{an+1 + (n+ 1)2 − 2(an + n2)}

an+2 + (n+ 2)2 − 3{an+1 + (n+ 1)2} = 2{an+1 + (n+ 1)2 − 3(an + n2)}

Thus

an+1 + (n+ 1)2 − 2(an + n2) = 3n−1{a2 + (1 + 1)2 − 2(a1 + 12)} = 3n

an+1 + (n+ 1)2 − 3(an + n2) = 2n−1{a2 + (1 + 1)2 − 3(a1 + 12)} = −2n

Subtracting both sides, yielding an = 3n + 2n − n2 (n ≥ 1).

Let P (x) be a polynomail with integer coefficients that satisfies P (17) = 10 and P (24) = 17.

Given that P (n) = n+ 3 has two distinct integer solutions n1 and n2, find the product n1n2.

Solution

A way to simplify the divisibilities by the Euclidean Algorithm. . .

(m− 24)|(m− 14)⇒ (m− 24)|10

so m = 14, 19, 22, 23, 25, 26, 29, 34 and

(m− 17)|(m− 7)⇒ (m− 17)|10

so m = 7, 12, 15, 16, 18, 19, 22, 27.

Just match to get 19 · 22 = 418.

14

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=109624
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=109348
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=109524


Use AP (addition principle) and MP (multiplication principle) to slove the following problem:

Let x =1, 2, 3, . . . 100 and let S =(a, b, c)|a, b, c ∈ X, a < b, a < c. (1) Find |S|.
Solution

For every chosen a, we can pick b and c among 100− a numbers which are greater than a. Since the

ordered triples are asked for, and there’s no condition on b < c, b = c or b > c, we assume the most

general case where any of the 100−a numbers can be put instead of b and c, repeating allowed. That

gives (100− a)2 possibilities. Since a can’t exceed 99, we get

|S| =
∑99

a=1(100− a)2 =
∑99

n=1 n
2 = 99·100·199

6
= 328350

Can you solve in constants k,j,n,m?

(x− j2−k2

4x
)2 + (y − n2−k2

4y
)2 = k2

(x+ j2−k2

4x
)2 + (y − n2−k2

4y
)2 = j2

(x− j2−k2

4x
)2 + (y + n2−k2

4y
)2 = n2

(x+ j2−k2

4x
)2 + (y + n2−k2

4y
)2 = m2

Solution

After expanding the squares, we get

x2 − j2 − k2

2
+

(
j2 − k2

4x

)2

+ y2 − n2 − k2

2
+

(
n2 − k2

4y

)2

= k2

x2 +
j2 − k2

2
+

(
j2 − k2

4x

)2

+ y2 − n2 − k2

2
+

(
n2 − k2

4y

)2

= j2

x2 − j2 − k2

2
+

(
j2 − k2

4x

)2

+ y2 +
n2 − k2

2
+

(
n2 − k2

4y

)2

= n2

x2 +
j2 − k2

2
+

(
j2 − k2

4x

)2

+ y2 +
n2 − k2

2
+

(
n2 − k2

4y

)2

= m2

Subtracting the second, the third and the fourth equation from the first we get

x2 − j2 − k2

2
+

(
j2 − k2

4x

)2

+ y2 − n2 − k2

2
+

(
n2 − k2

4y

)2

= k2

−(j2 − k2) = k2 − j2

−(n2 − k2) = k2 − n2

−(j2 − k2)− (n2 − k2) = k2 −m2

Therefore, the second and the third equations are redundant, since they reduce to 0 = 0, and the

fourth equation can be valid if and only if −j2 + k2 − n2 + k2 = k2 −m2 ⇐⇒ k2 + m2 = j2 + n2.

In that case, the fourth equation also becomes redundant, and the system is reduced to the first

equation:

x2 +
(
j2−k2

4x

)2

+ y2 +
(
n2−k2

4y

)2

= n2+j2

2

which obviously has infinitely many solutions.

Let 4ABC be a triangle with unequal sides. Let D ∈ [AC] and E ∈ [AB] such that ÊDB =

B̂CD. If |BC| = |AD| = 2 and |AE| = |DC| = 1, then what is |EB|?
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Solution

Standard markings α, β, γ. Denote φ = ∠CBD. Then ∠ADE = φ

Sine Law for 4CBD: 2
sin(γ+φ)

= 1
sinφ

Sine Law for 4ADE: 2
sin(α+φ)

= 1
sinφ

Therefore sin(α + φ) = sin(γ + φ), which gives either α + φ = γ + φ or (α + φ) + (γ + φ) = π

The first possibility yields α = γ ⇐⇒ CB = AB and that’s extraneous since the given triangle

is scalene.

The second possibility yields 2φ = β ⇐⇒ CD : DA = CB : BA ⇐⇒ BA = 4 ⇐⇒ EB = 3

solve for x:

(5 + 2
√

6)sinx + (5− 2
√

6)sinx = 2
√

3

Solution

Put u = (
√

3 +
√

2)2 sinx, v = (
√

3−
√

2)2 sinx. Then

u+ v = 2
√

3, uv = 1

Hence u, v are the solutions of t2 − 2t
√

3 + 1 = 0, and those are t1,2 =
√

3±
√

2

For (
√

3 +
√

2)2 sinx =
√

3 +
√

2 we get sinx = 1
2

For (
√

3 +
√

2)2 sinx =
√

3−
√

2 we get sinx = −1
2

Therefore the solutions are x = ±π
6

+ 2kπ ∨ x = ±5π
6

+ 2kπ, k ∈ Z
What are both primes p > 0 for which 1

p
has a purely periodic decimal expansion with a period

5 digits long? [Note: 1
37

= 0.027 starts to repeat immediately, so it’s purely periodic. Its period is 3

digits long.]

Solution

Five-digit periodic numbers have the form k
99999

= k
32·41·271

, hence the desired numbers are 41 and

271: 1
41

= 0.02439, 1
271

= 0.00369

Let a, b, c, be random integers 1-9. What is the expected value of the zeros of the quadratic

f(x) with coefficients a, b, and c?

Solution

E =
∑
a,b,c

(x1(a, b, c)P (a, b, c) + x2(a, b, c)P (a, b, c))

=
∑
a,b,c

(
− b
a
· 1

93

)
= − 1

93

∑
a,b,c

b

a

= − 1

93

∑
a,b

(
9 · b

a

)

= − 1

92

∑
a

(∑
b

b

a

)

= − 1

92

∑
a

(
1

a
· 9 · 10

2

)
= −5

9

∑
a

1

a

= −5

9

(
1 +

1

2
+ · · ·+ 1

9

)
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The last expression can be reduced to a fraction, giving E = −7129
4536

If an = 2n+2(−1)n

2n−(−1)n
for n > 1, find the recursive equation an+1 = f(an).

Solution

an = pn
qn
pn = 2n + 2(−1)n qn = 2n − (−1)n

Solving the system to isolate the powers, pn − qn = 3(−1)n pn + 2qn = 3(2)n

Identifying the recursion, pn+1 − qn+1 = (−1)(pn − qn) pn+1 + 2qn+1 = (2)(pn + 2qn)

Solving the system, pn+1 = 2qn qn+1 = pn + qn

Finally, a1 = 0 an+1 = pn+1

qn+1
= 2qn

pn+qn
= 2

an+1
.

Determine the shape of triangle ABC such that sinC = sinA+sinB
cosA+cosB

.

Solution

sinC = sin(π − (A+B)) = sin(A+B) = sinA cosB + cosA sinB, which gives

sinA+ sinB = (cosA+ cosB)(sinA cosB + cosA sinB)

sinA+ sinB = sinA cosA cosB + sinB cos2A+ sinA cos2B + cosA cosB sinB

sinA− sinA cos2B + sinB − sinB cos2A = sinA cosA cosB + cosA cosB sinB

sinA sin2B + sinB sin2A = cosA cosB(sinA+ sinB)

(sinA+ sinB)(cosA cosB − sinA sinB) = 0

(sinA+ sinB) cos(A+B) = 0

Since sinA+sinB 6= 0 for the angles in a triangle (B 6= −A,B 6= A+π), it follows A+B = π
2

= C,

hence the triangle is right.

A hexagon is inscribed in a circle. Proceeding clockwise the lengths of its edges are 1, 1, 1, 2, 2, 2.

What is the area of this hexagon?

Solution

Let α be the central angle corresponding to the side of the length 1 and β the central angle cor-

responding to the side of the length 2. If we rearrange the sides thus: 1, 2, 1, 2, 1, 2, we see that

α + β = 120◦. Hence if the radius of the circle is r, then in the triangle 1, 2, r
√

3 there’s an angle
180◦−α

2
+ 180◦−β

2
= 120◦ between 1 and 2. Applying Cosine Law we find

3r2 = 12 + 22 − 2 · 1 · 2 cos 120◦ = 7 ⇐⇒ r =
√

7
3

Now S = 3 · 1
2

√
7
3
− 12

4
+ 3 · 2

2

√
7
3
− 22

4
= 3

2
· 5

2
√

3
+ 3 · 2√

3
= 13

4

√
3

The incircle of triangle ABC touched side BC at D. Let the midpoint of BC be M . Show

that MI bisects AD where I is the incentre of triangle ABC.

Solution

Proof 1. Suppose w.l.o.g. that b > c. Denote the intersections S ∈ BC∩AI, N ∈ AD∩MI. Show

easily that MD = b−c
2
, MS = a(b−c)

2(b+c)
, SD = (b−c)(p−a)

b+c
and IA

IS
= b+c

a
. Apply the Menelaus’ theorem

to the transversal MIN for the triangle ADS : MS
MD
· ND
NA
· IA
IS

= 1 =⇒ a(b−c)
2(b+c)

· 2
b−c ·

ND
NA
· b+c

a
= 1

=⇒ NA = ND . Apply the Menelaus’ theorem to the transversal AIS for the triangle NDM :

AN
AD
· SD
SM
· IM
IN

= 1 =⇒ 1
2
· (b−c)(p−a)

b+c
· 2(b+c)
a(b−c) ·

IM
IN

= 1 =⇒ IN

IM
=
p− a
a

.

Remark. Denote the projection P of the vertex A to the opposite sideline BC and the intersection

R ∈ AP ∩MI . Prove easily that NR = NI and AR = ID, i.e. AR = r . Example. The orthocenter

H ∈MI ⇐⇒ H ≡ R ⇐⇒ AH = ID ⇐⇒ 2R| cosA| = r ⇐⇒ | cosA| = r
2R

a.s.o.

Lemma (well-known). Given are two concurrent (in the point A) fixed lines d1, d2 and four

fixed points {A,B} ⊂ d1, {C,D} ⊂ d2 . Then the geometrical locus of the point L for which [LAB] =

[LCD] is a parallelogram. Particular case. Given is a quadrilateral ABCD which is circumscribed
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to the circle w = C(I, r) Denote the the middlepointsM,N of the diagonals AC, BD. Then I ∈MN

(the Newton’s line). Indeed, [IAB] + [ICD] = [MAB] + [MCD] = [NAB] + [NCD] = 1
2
· [ABCD] .

Proof 2.Consider ABDC as a degenerate tangential quadrilateral with diagonals AD, BC and

incircle (I). Newton line of any quadrilateral ABDC connecting midpoints M, N of its diagonals BC,

AD is the locus of points P such that area sums S4PAB + S4PDC = S4PBD + S4PCA are equal. If

ABDC is tangential with incircle (I, r), then S4IAB + S4IDC = r
2
(AB + DC) = r

2
(BD + CA) =

S4IBD + S4ICA, hence I ∈MN.

Proof 3. Let w = (I, r), w′ = (I ′, r′) be respectively the incircle and the A-excircle of 4ABC
Let DE be a diameter of w. The circle w′ touches the side BC at E ′. It’s known that the point

M is the midpoint of DE ′

A is the homothety center of the circles w,w′. The directed segments IE, I ′E ′ have the same

direction, so the points A,E,E ′ are collinear.

I is the midpoint of DE M is the midpoint of DE ′

So MI ‖ AE ′ ⇒MI bisects AD

Triangle ABC has BC = 1 and AC = 2. What is the maximum possible value of ∠A?

Solution

Proof 1 (synthetical). Suppose that the points B, C are fixed, the values CA = b, CB = a

are constantly and w.l.o.g. a < b. Particularly, A < 90. Denote the (fixed) circle w ≡ w(C, 2) and

the second intersections A′, B′ of the circle w with the rays [AC, [AB respectively. Therefore, A

is maximum ⇐⇒ A′ is minimum ⇐⇒ the length of the cord AB′ is minimum ⇐⇒ the distance

of the center C to the cord AB′ is maximum ⇐⇒ AB ⊥ BC ⇐⇒ sinA = a
b
. i.e. B = 90 ⇐⇒

A = arcsin
a

b
.

Proof 2 (metrical). A From the relation 4 cos2 A
2

= 4p(p−a)
bc

= (b+c)2−a2

bc
= 2 + 1

b
·
(
c+ b2−a2

c

)
obtain : A is maximum ⇐⇒ cos2 A

2
is minimum ⇐⇒ c + b2−a2

c
is minimum . But b2−a2

c
· c = b2 − a2

(constant). Therefore, A is maximum ⇐⇒ b2−a2

c
= c, i.e. b2 = a2 + c2 ⇐⇒ B = 90 ⇐⇒ sinA = a

b

⇐⇒ A = arcsin
a

b
.

Find an, bn if a1 = 3, b1 = −3 andan+1 = an − bn + n

bn+1 = bn − an + n2

for n > 1

Solution

Rewrite the given system of recursion in two ways as follows.

an+1 + bn+1 = n2 + n

an+1 − bn+1 − (n+ 1)2 − (n+ 1)− 2 = 2(an − bn − n2 − n− 2)

Thus

an + bn = n2 − n

an − bn − n2 − n− 2 = 2n−1(a1 − b1 − 12 − 1− 2) = 2n

Solve the system of recursion,yielding an = 2n−1 + n2 + 1, bn = −2n−1 − n− 1 (n ≥ 1).
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5 log x
9
x+ log 9

x
x3 + 8 log9x2 x2 = 2

Solution

5 log x
9
x+ log 9

x
x3 + 8 log9x2 x2 = =

5 log9 x

log9
x
9

+
3 log9 x

log9
9
x

+
16 log9 x

log9 9x2

=
5 log9 x

log9 x− 1
+

3 log9 x

1− log9 x
+

16 log9 x

1 + 2 log9 x

=
2 log9 x

log9 x− 1
+

16 log9 x

1 + 2 log9 x

Putting t = log9 x, we get the equation

2t

t− 1
+

16t

1 + 2t
= 2 ⇐⇒ 2t+ 4t2 + 16t2 − 16t = 2(t+ 2t2 − 1− 2t)

⇐⇒ 20t2 − 14t = 4t2 − 2t− 2

⇐⇒ 16t2 − 12t+ 2 = 0

⇐⇒ 8t2 − 6t+ 1 = 0

⇐⇒ t1,2 =
6±
√

36− 32

16

⇐⇒ t ∈ {1

2
,
1

4
}

Therefore x1 = 9t1 = 3, x2 = 9t2 =
√

3

Solve the equation⌊
3x+ 1

2

⌋
+
{

2x− 1
3

}
= 8x+ 5

in real numbers.

Solution

From the obvious A − 1 < bAc ≤ A and 0 ≤ {B} < 1 we have 3x − 1
2
< 8x + 5 < 3x + 3/2 or

−11
10
< x < − 7

10
. So −94

15
< 6x+ 1

3
< −58

15
. Since 6x+ 1

3
is integer we have 6x+ 1

3
= −6 or 6x+ 1

3
= −5

or 6x+ 1
3

= −4 giving x = −19
18
, x = −8

9
or x = −13

18
. Checking only x = −8

9
works.

ten cards 1-10 are arranged in a stack face down so that the first card is removed; the second

card is put at the bottom of the stack; the third card is recoved; the fourth card is put at the bottom

of the stack; and so on, until only one card remains. The removed cards, in order, are 1-9. The

remaining card is 10. In the original stack, wat was the sum of the cards adjacent to card 10?

Solution

It’s easiest to go backwards - adding a card at the time to the top and putting the bottom card over

it. That gives
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10→
9

10
→

10

9
→

8

10

9

→
9

8

10

→

7

9

8

10

→

10

7

9

8

→

6

10

7

9

8

→

8

6

10

7

9

→

5

8

6

10

7

9

→

9

5

8

6

10

7

→

4

9

5

8

6

10

7

→

7

4

9

5

8

6

10

→

3

7

4

9

5

8

6

10

→

10

3

7

4

9

5

8

6

→

2

10

3

7

4

9

5

8

6

→

6

2

10

3

7

4

9

5

8

→

1

6

2

10

3

7

4

9

5

8

Hence 2 + 3 = 5

A, B, C and D are four positive whole numbers with the following properties:

(i) each is less than the sum of the other three, and (ii) each is a factor of the sum of the other

three. Prove that at least two of the numbers must be equal. (An example of four such numbers:

A=4, B=4, C=2, D=2.)

Solution

By the second condition, there must exist positive integers x, y, z, t such that

b+ c+ d = xa

a+ c+ d = yb

a+ b+ d = zc

a+ b+ c = td

and also, all of them must be at least 2 (if, for example, x = 1, then b + c + d = a and we must

have b+ c+ d > a by the first condition).

Assume two of the numbers are equal - WLOG we’ll take a = b. Then a+ c+ d = b+ c+ d =⇒
xa = yb =⇒ x

y
= b

a
= 1 =⇒ x = y. Now assume that two of x, y, z, t are equal - WLOG we’ll

take x = y. Then a + b + c + d = xa + a = a(x + 1) and a + b + c + d = yb + b = b(y + 1), hence

a(x+ 1) = b(y + 1) =⇒ a
b

= y+1
x+1

= 1 =⇒ a = b.

Therefore, we’ve proven that a = b ⇐⇒ x = y, hence the problem is equivalent to proving that

two of x, y, z, t must be equal.

Take the initial four equations and add a to the first, b to the second, c to the third and d to the

fourth. If we denote s = a+ b+ c+ d, then we get

s = (x+ 1)a

s = (y + 1)b

s = (z + 1)c

s = (t+ 1)d

which gives

a = s
x+1

, b = s
y+1

, c = s
z+1

, d = s
t+1
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Therefore

s = a+ b+ c+ d = s
x+1

+ s
y+1

+ s
z+1

+ s
t+1

which gives
1

x+1
+ 1

y+1
+ 1

z+1
+ 1

t+1
= 1

Now assume all x, y, z, t are different. Since they are all at least 2, the RHS is at most 1
3
+ 1

4
+ 1

5
+ 1

6
=

19
20
< 1, hence can never be equal to 1. Therefore, at least two of x, y, z, t must be equal. QED

The Word Problem: A sporting goods manufacturer makes a 5.00 profit on soccer balls and

a 4.00 profit on volleyballs. Cutting requires 2 hours to make 75 soccer balls and 3 hours to make

60 volleyballs. Sewing needs 3 hours to make 75 soccer balls and 2 hours to make 60 volley balls.

Cutting has 500 hours available, and Sewing has 450 hours available. How many soccer balls and

volley balls should be made to maximize the profit?

Please explain this in detail as to how you get the answer. Thanks.

Solution

For easier calculation, we’ll express time in minutes:

Cutting:

For a soccer ball 2
75
· 60 min = 1.6 min For a volleyball 3

60
· 60 min = 3 min

Sowing:

For a soccer ball 3
75
· 60 min = 2.4 min For a volleyball 2

60
· 60 min = 2 min

Therefore, if we have s soccer balls and v volleyballs, then

1.6s + 3v 6 30000 (500 hours converted into minutes) 2.4s + 2v 6 27000 (450 hours converted

into minutes)

For the profit, we know that p = 5s+ 4v

From the first inequality we get v 6 30000−1.6s
3

= 10000 − 8
15
s, hence p 6 5s + 4

(
10000− 8

15
s
)

=
43
15
s+ 40000

From the second inequality we get v 6 27000−2.4s
2

= 13500− 6
5
s, hence p 6 5s+ 4

(
13500− 6

5
s
)

=
1
5
s+ 54000

Now, those conditions for p must be satisfied simultaneously, therefore it would be the best if

those expressions have the same value (if possible), because otherwise we’d be limited by the smaller

of the two (graphically, it means that we’re looking for the intersection of the two lines):
43
15
s+ 40000 = 1

5
s+ 54000 ⇐⇒ 8

3
s = 14000 ⇐⇒ s = 5250.

Now from v 6 10000− 8
15
s we get v 6 7200, and from v 6 13500− 6

5
s we get v 6 7200. Therefore,

we can produce v = 7200 volleyballs.

For those values, maximal profit will be pmax = $5 · 5250 + $4 · 7200 = $55050

Let x = cy + bz, y = az + cx, z = bx+ ay . Find (x−y)(y−x)(z−x)
xyz

in terms of a,b, c .

Solution
x−y
z

= cy+bz−az−cx
z

= −cx−y
z

+ b− a, hence (1 + c)x−y
z

= b− a ⇐⇒ x−y
z

= b−a
1+c

Similarly for y−z
x

and z−x
y
.

Thus E = (b−a)(c−b)(a−c)
(1+a)(1+b)(1+c)

Maximum value of f(x) = a sin2 x+ b sinx cosx+ c cos2 x− 1
2

(a− c)
Solution

Rewrite the function as

f(x) = a1−cos 2x
2

+ b sin 2x
2

+ c1+cos 2x
2
− a−c

2

f(x) = a+c
2
− a−c

2
+ c−a

2
cos 2x+ b

2
sin 2x

f(x) = c+ c−a
2

cos 2x+ b
2

sin 2x
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The maximum value of f(x) is obviously

max f(x) = c+ 1
2

√
(a− c)2 + b2

attained for x = 1
2

arctan b
c−a (where it is understood that the arctangent takes the value ±π

2
if

a = c, depending on the sign of b. If a = c and b = 0, the function is constant and equal to c, so

maximum is attained for any value of x.)

Solve the equation: max(x, y) +min(−x, y) = 0.

Solution

Let alone your using completely incorrect formulas, as max(a, b) = a+b+|a−b|
2

and min(a, b) = a+b−|a−b|
2

Using the correct formulas we get x+ y + |x− y| − x+ y − | − x− y| = 0

2y + |x− y| = |x+ y| (∗)
Squaring:

4y2 + 4y|x− y|+ x2 − 2xy + y2 = x2 + 2xy + y2

4y|x− y| = 4xy − 4y2 (∗∗)
If y = 0, then (∗) becomes |x| = |x|, which is satisfied for all real x. Thus one solution is

x ∈ R, y = 0.

If y 6= 0, then (∗∗) becomes |x − y| = x − y ⇐⇒ x − y > 0, turning (∗) into 2y + x − y =

|x+ y| ⇐⇒ |x+ y| = x+ y ⇐⇒ x+ y > 0.

Thus we get −x 6 y 6 x with x > 0 as another solution.

Expanding (1 + 0.2)1000 by the binomial theorem and doing no further manipulation gives(
1000

0

)
(0.2)0 +

(
1000

1

)
(0.2)1 +

(
1000

2

)
(0.2)2 + · · ·+

(
1000

1000

)
(0.2)1000

= A0 + A1 + A2 + · · ·+ A1000,

where Ak =
(

1000
k

)
(0.2)k for k = 0, 1, 2, . . . , 1000. For which k is Ak the largest?

Solution

For k > 0 we can write Ak as

Ak =
(

1000
k

)
1
5k

= 1000·999·998...(1001−k)
k!

1
5k

= 1000
5·1 ·

999
5·2 ·

998
5·3 . . .

1001−k
5k

.

It follows that Ak = Ak−1
1001−k

5k
. Hence, Ak will increase as long as 1001−k

5k
≥ 1. Solving the

inequality gives k ≤ 1665
6
. Therefore, the largest Ak is A166.

Another way Let n be the value of k such that Ak is the largest. Then An > An−1 and An > An+1.

In other words,

(
1000

n

)
(0.2)n >

(
1000

n− 1

)
(0.2)n−1(

1000

n

)
(0.2)n >

(
1000

n+ 1

)
(0.2)n+1

From (1), we get
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(
1000

n

)
(0.2)n >

(
1000

n− 1

)
(0.2)n−1

1000!

n!(1000− n)!
(0.2) >

1000!

(n− 1)!(1000− n+ 1)!
1

5n!(1000− n)!
>

1

(n− 1)!(1000− n+ 1)!

(n− 1)!(1000− n+ 1)! > 5n!(1000− n)!

1000− n+ 1 > 5n

1001 > 6n,

so n ≤ b1001/6c = 166.

To check, we can also solve (2), to get

(
1000

n

)
(0.2)n >

(
1000

n+ 1

)
(0.2)n+1

1000!

n!(1000− n)!
>

1000!

(n+ 1)!(1000− n− 1)!
(0.2)

1

n!(1000− n)!
>

1

5(n+ 1)!(1000− n− 1)!

5(n+ 1)!(1000− n− 1)! > n!(1000− n)!

5(n+ 1) > 1000− n
6n > 995,

so n ≥ d995/6e = 166.

If 166 ≤ n ≤ 166, then n = 166 .

The number of solution of the equation {x}+ {1
x
} = 1

where {x} denote fractional part of x

Solution

We aim to show that there are infinitely many solutions, and for that it will be sufficient to show

that there are infinitely many positive solutions. Put x = n + a where n = [x], a = {x} with n > 2

to get

a+ 1
n+a

= 1

(n+ a)(1− a) = 1

a2 + (n− 1)a+ 1− n = 0

a1,2 =
1−n±
√

(n−1)2+4(n−1)

2

Since we need 0 6 a < 1, we take only the plus sign:

a = 1−n+
√
n2+2n−3
2

⇐⇒ x = n + a = n+1+
√
n2+2n−3
2

for n > 2, which can be rewritten as

x = n+
√
n2−4
2

for n > 3.

Thus there are indeed infinitely many solutions to the initial equation. (Not all of them are

exhausted by the above formula, though.)

If a, b, c are rationals and a
√

2 + b
√

3 + c
√

5 = 0 then show that a = b = c = 0 a
√

2 + b
√

3 =

−c
√

5 =⇒ 2a2 + 3b2 + 2ab
√

6 = 5c2

Solution

Thus ab = 0, since otherwise
√

6 would be rational.
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(i) If a = 0 then b
√

3 = −c
√

5 =⇒ b
√

15 = −5c, hence b = 0 since otherwise
√

15 would be

rational. This in turn yields c = 0.

(ii) If b = 0, similar reasoning.

Given a sequence {ai}, where i is a positive integer. Given that a1 = a2 = 1 and an+2 =
2

an+1
+ an, for n ≥ 1. a. Find an explicit formula for finding the value of ak, k is a positive integer, if

there is. b. Determine the value of a2011.

Solution

an+2an+1 − an+1an = 2, thus an+1an is an arithmetic sequence. With a2a1 = 1, this yields an+1an =

2n− 1 ⇐⇒ anan−1 = 2n− 3

Thus an = 2n−3
an−1

= 2n−3
2n−5
an−2

= 2n−3
2n−5

an−2 = 2n−3
2n−5

· 2n−7
2n−9

an−4 = . . .

The product continues while the fractions remain positive.

Therefore ak =
∏[ k−3

2 ]
i=0

2k−3−4i
2k−5−4i

, k > 3

Hence a2011 = 4019
4017
· 4015

4013
· · · · · 3

1

Prove that if 13 divides 3a− 2b, then it also divides a2 + b2

Solution

We have 3a = 13k + 2b for some integer k.

Then 9a2 = 169k2 + 52kb+ 4b2 ⇐⇒ 9a2 + 9b2 = 169k2 + 52kb+ 13b2

Thus 13 | 9(a2 + b2), but as gcd(13, 9) = 1, this implies 13 | a2 + b2. QED

The angle bisectors of triangle ABC intersect its circumcircle at A′, B′, and C ′. Prove that

[A′B′C ′] = Rs
2
, where R denotes the circumradius and s denotes the semiperimeter of ABC.

Solution

If O is the circumcentre, then ∠A′OB′ = α + β, since ∠A′AC = α
2
∧ ∠B′BC = β

2
. Similarly for the

other two.

Therefore [A′B′C ′] = R2

2
(sin(α + β) + sin(β + γ) + sin(γ + α))

[A′B′C ′] = R2

2
(sinα + sin β + sin γ)

[A′B′C ′] = R2

2

(
a

2R
+ b

2R
+ c

2R

)
[A′B′C ′] = R2

2
· s
R

= Rs
2
. QED

Let x, y, z, w be different positive real numbers such that x+ 1
y

= y + 1
z

= z + 1
w

= w + 1
x

= t.

Find t.

Solution

x = t− 1

y
, y = t− 1

z
, z = t− 1

w
,w = t− 1

x

Let f(x) = w = t− 1
x
⇒ f−1(x) = 1

t−x
From the four equations above, we can get ffff(x) = x.

f−1(x) = fff(x)

1

t− x
= fff(x)

ff(x) = f−1(
1

t− x
)

xt2 − t− x
xt− 1

=
t− x

t2 − xt− 1
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After expanding and factorizing,

2(x2 − xt+ 1)− t2(x2 − xt+ 1) = 0⇒ t =
√

2

Another way

x+ 1
y

= t ⇐⇒ y = 1
t−x

y + 1
z

= t ⇐⇒ 1
t−x + 1

z
= t ⇐⇒ t− x+ z = tz(t− x) (1)

z + 1
w

= t ⇐⇒ w = 1
t−z

w + 1
x

= t ⇐⇒ 1
t−z + 1

x
= t ⇐⇒ t− z + x = tx(t− z) (2)

Subtracting (2) from (1) we get

2(z − x) = t2(z − x) ⇐⇒ t =
√

2 (since z 6= x)

ABCD is a trapeziod with AB//DC and AB > DC. E is a point on AB such that AE = DC.

AC meets DE and DB at F and G respectively. Find the value of AB
CD

for which [4DFG]
[ABCD]

is maximum.

([X1X2 . . . Xn]) denotes the area of the polygon.)

Solution

Thiếu hình vẽ See the attached diagram. First we’ll deduce an auxiliary result shown in the Figure

1.

To prove [APD] = [BPC], it’s enough to see that [ACD] = [BCD], since they share the base b

and the altitude h. And when we subtract [PCD] from both of them, we obtain the result.

As for S = abh
2(a+b)

, first we note that 4PAB ∼ 4PCD, thus PM
PN

= a
b
and PM + PN = h. These

two equations yield PM = ah
a+b
∧PN = bh

a+b
. Now S = [ACD]− [PCD] = bh

2
− b·PN

2
= b·PM

2
= abh

2(a+b)
.

Let’s now consider the given problem, shown on Figure 2. Since AE#CD, quadrilateral AECD is

a paralellogram, hence F is the midpoint of both of its diagonals. Draw FH ‖ AB such that H ∈ BD.

Since F is the midpoint of ED, then FH is the midline in 4EBD, hence FH = EB
2

= a−b
2
. Also,

FH being the midline means that the altitude of the trapezoid FHCD is h
2
.

Now we’re ready. To get S = [DFG], we apply the auxiliary result to the trapezoid FHCD and

obtain

S =
a−b

2
·b·h

2

2(a−b2
+b)

= (a−b)bh
4(a+b)

Since the area of [ABCD] is S0 = (a+b)h
2

, we get

r = S
S0

= (a−b)b
2(a+b)2 =

a
b
−1

2(ab+1)
2

Put x := a
b
. Then r(x) = x−1

2(x+1)2 must be maximized, which means that 1
r(x)

= 2(x+1)2

x−1
must be

minimized. Write it thus:
1

r(x)
= 2

(
x− 1 + 4

x−1
+ 4
)

By AM-GM, this is minimized when x− 1 = 4
x−1
⇐⇒ x = 3, and then rmax = r(3) = 1

16

Thus the required ratio is AB = 3CD.

Triangle ABC has sides AB = 13, BC = 14 and AC = 15. E and F are on AB and AC

respectively. Triangle AEF is folded along crease EF such that A lies on BC and EFCB is a cyclic

quadrilateral after the fold. What is the length of EF?

Solution

Thiếu hình vẽ See the attached diagram for additional notation.

As ∠BEF + ∠C = 180◦ =⇒ ∠AEF = ∠C and similarly ∠AFE = ∠B, we have that

4AFE ∼ 4ABC. Let the similarity factor be k. Then AE = 13k,AF = 15k.

Let AD be the altitude of 4ABC and AM the altitude of 4AEF . By Heron’s, [ABC] = 84 =⇒
AD = 12, hence AM = 12k. If N is the image of A on BC after the folding, then by the problem
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condition MN = AM = 12k. Also, DC =
√

132 − 122 = 5

Draw the bisector AS of ∠A. By the Angle Bisector Theorem, we have SC = 14 · 13
13+15

= 6.5,

thus SD = 1.5.

Note that ∠EAM = ∠DAC = 90◦ − γ, hence AS bisects ∠NAD as well. Apply the Angle

Bisector Theorem to 4NAD:

SD = ND · AD
AD+AN

3
2

=
√

(24k)2 − 122 · 12
12+24k

3
2

= 12
√

24k−12
24k+12√

2k−1
2k+1

= 1
8

2k+1
2k−1

= 64

2k + 1 = 128k − 64

126k = 65

k = 65
126

Now EF = kBC = 65
126
· 14 = 65

9

The sum of a number and its reciprocal is 1. Find the sum of the n-th power of the number

and the n-th power of its reciprocal.

Solution

Using complex numbers, we see that a = cos π
3
± i sin π

3
. Hence by De Moivre,

an + 1
an

= 2 cos nπ
3

=


1 n ≡ ±1 (mod 6)

−1 n ≡ ±2 (mod 6)

−2 n ≡ 3 (mod 6)

2 n ≡ 0 (mod 6)

There are p arithmetic progressions and each of the progressions has n members. Initial term of

each progression is 1,2,3,. . . ,p respectably and the common difference of each progression respectably

is 1,3,5. . . ,2p-1 . Prove that the sum of all progressions is equal to np(np+1)/2.

Solution

The sum of the first terms in all the sequences is 1 + 2 + · · ·+ p.

The sum of all the second terms is greater than this by 1 + 3 + · · ·+ (2p− 1) = p2, which is the

same as if all the first terms were increased by p, since p+ p+ · · ·+ p︸ ︷︷ ︸
p times

= p2 - hence it is as if the

second terms were p+ 1, p+ 2, . . . , 2p

With the similar reason, we find that it is as if all the third terms were 2p+ 1, 2p+ 2, . . . , 3p.

etc.

Therefore, it is as if we have all the numbers from 1 to np, and their sum is np(np+1)
2

.

Polygon A1A2 . . . An is a regular n-gon. For some integer k < n, quadrilateral A1A2AkAk+1 is

a rectangle of area 6. If the area of A1A2 . . . An is 60, compute n.

Solution

Since any regular polygon can admit a circumscribed circle, we have that A1Ak is a diameter, and so

is A2Ak+1. If the center of the circle is O, then [OA1A2] = [OAkAk+1] = 60
n
. But also 4OA2Ak has a

same base as 4OA1A2 - namely OA1 = OAk, and they share the altitude from the vertex A2. Thus

[OA2Ak] = [OA1Ak+1] = 60
n
.

Therefore 240
n

= 6 =⇒ n = 40.

Solve in R3 :
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{
4
√
x2+1
x

=
4
√
y2+1

y
= 4

√
z2+1
z

x+ y + z = xyz
Solution

√
x2+1
x

=

√
y2+1

y
=⇒ x2+1

x2 = y2+1
y2 =⇒ 1

x2 = 1
y2 =⇒ y = ±x

Plugging that into
√
x2+1
x

=

√
y2+1

y
, we get y = x. Similarly z = y, hence x = y = z. Thus

3x = x3 =⇒ x(x2 − 3). As x 6= 0, the solutions are x = y = z =
√

3 and x = y = z = −
√

3

For n ≥ 1, let an denote the number of n-digit strings consisting of the digits 0,1, and 2

respectively, such that no three consecutive terms in the sequence are all different. Find an in closed

form.

Solution

Let 00n denote the number of such strings ending in 00.

Let 01n denote the number of such strings ending in 01.

etc.

Let 22n denote the number of such strings ending in 22.

Then we have following equations:

an = 00n + 01n + 02n + 10n + 11n + 12n + 20n + 21n + 22n (∗) 00n = 00n−1 + 10n−1 + 20n−1 (1)

01n = 00n−1 + 10n−1 02n = 00n−1 + 20n−1 10n = 01n−1 + 11n−1 11n = 01n−1 + 11n−1 + 21n−1 (2)

12n = 11n−1 + 21n−1 20n = 02n−1 + 22n−1 21n = 12n−1 + 22n−1 22n = 02n−1 + 12n−1 + 22n−1 (3)

Summing up the last nine equations and using (∗), we get

an = 2an−1 + 00n−1 + 11n−1 + 22n−1 (∗∗)
Summing up (1), (2), (3) and using (∗), we get

00n + 11n + 22n = an−1

Thus (∗∗) becomes

an = 2an−1 + an−2.

The characteristic equation is t2 − 2t − 1 = 0 and the roots are t1,2 = 1 ±
√

2, hence an =

A(1 +
√

2)n +B(1−
√

2)n

Since a1 = 3 and a2 = 9, we get

A(1 +
√

2) +B(1−
√

2) = 3 A(3 + 2
√

2) +B(3− 2
√

2) = 9

The solution is A = B = 3
2
.

So finally an = 3
2

(
(1 +

√
2)n + (1−

√
2)n
)

Find value of x in 4x2 − 40[x] + 51 = 0

Solution

If n = [x], a = {x}, then 4(n+ a)2 − 40n+ 51 = 0 ⇐⇒ a =
√

40n−51
2
− n

Since we must have 0 6
√

40n−51
2
− n < 1, by solving the inequalities we get n ∈ {2, 6, 7, 8}.

Hence x = n+ a =
√

40n−51
2

∈
{√

29
2
,
√

189
2
,
√

229
2
,
√

269
2

}
An analog clock is manufactured with an hour hand and a minute hand that are indistin-

guishable from one another. (There is no second hand on the clock.) At some point in time between

noon and midnight, a photograph of the clock face is to be taken. At how many such times will it be

impossible to discern the time the photograph was taken from the image of the clock face? (Assume

that the position of the clock’s hands can be determined with complete accuracy.)

Solution

Let the radius corresponding to the number 12 on the dial be our reference point and let all the

angles be measured clockwise, in the interval (0, 2π)
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If at some point in time the hour leg takes an angle α, then the minute leg has traveled the angle

12α, since it moves 12 times faster. Therefore the actual angle it takes (against the reference radius)

is β = 12α − 2π
[

12α
2π

]
= 12α − 2π

[
6α
π

]
(we’re cutting all the full circles it may have traveled in the

meantime).

But if the positions of the legs are to be legitimately interchangeable, then the angles must satisfy

the above relation the other way round, i.e. α = 12β − 2π
[

6β
π

]
.

So we got ourselves a system:

β = 12α− 2π
[

6α
π

]
α = 12β − 2π

[
6β
π

]
Plugging the first equation into the second, we get

α = 12
(
12α− 2π

[
6α
π

])
− 2π

[
6(12α−2π[ 6α

π ])
π

]
α = 144α− 24π

[
6α
π

]
− 2π

[
72α
π
− 12

[
6α
π

]]
α = 144α− 24π

[
6α
π

]
− 2π

[
72α
π

]
+ 24π

[
6α
π

]
α = 144α− 2π

[
72α
π

]
143α = 2π

[
72α
π

]
Let’s put x = α

2π
. Then the equation becomes

143x = [144x]

Since [144x] is an integer, it follows that x = n
143

for some integer n. Then

n =
[

144n
143

]
= n+

[
n

143

]
⇐⇒

[
n

143

]
= 0

Since we’re not counting either midnight or midday, we have 0 < n
143

< 1 ⇐⇒ 1 6 n 6

142. Therefore there are 142 moments in half a day when the positions of the legs are legitimately

interchangeable. The actual times are easily calculated: αn = 2πxn = 2π n
143

, and since the hour leg

travels 2π in 12 hours, we have tn = 12n
143

o′clock where 1 6 n 6 142

ind value of x in the equation x2 + [x
2
] + [x

3
] = 10

Solution

Since x2 = 10−
[
x
2

]
−
[
x
3

]
, it follows that x2 is integer, hence x =

√
n or x = −

√
n for some natural

n.

Let’s try x =
√
n. Then f(n) = n+

[√
n

2

]
+
[√

n
3

]
. Plugging n = 8 we get f(8) = 9 and plugging

n = 9 we get f(9) = 11, hence the initial equation has no solution in this case.

If x = −
√
n, then f(n) = n+

[
−
√
n

2

]
+
[
−
√
n

3

]
. Plugging n = 13, 14, 15, we get f(13) = 9, f(14) =

10, f(15) = 11, hence the only solution is x = −
√

14.

Find all pairs of polynomials P (x) and Q(x) such that for all x that are not roots of Q(x) ,
P (x)
Q(x)
− P (x+1)

Q(x+1)
= 1

x(x+2)
.

Solution

Let f(x) = P (x)
Q(x)

. Then f(x)− f(x+ 1) = 1
2

(
1
x
− 1

x+2

)
= 1

2

(
1
x

+ 1
x+1
− 1

x+1
− 1

x+2

)
Hence P (x)

Q(x)
= 1

2

(
1
x

+ 1
x+1

)
= 2x+1

2x(x+1)
, so P (x) = (2x+ 1)R(x)∧Q(x) = 2x(x+ 1)R(x) where R(x)

is an arbitrary polynomial.

find value of x that satisfy xx = [x]

Solution

Let x = n + a where n = [x], a = {x}. By the given equation we have a · |x| = |n|. If a = 0 then

n = 0 =⇒ x = 0. If 0 < a < 1 then |n| < |x| ⇐⇒ x > 0 ⇐⇒ n > 0.

Now (n+a)a = n =⇒ a2 +na−n = 0 =⇒ a = −n+
√
n2+4n
2

(the negative solution is discarded).

If n = 0 then a = 0. If n > 1 then n2 + 4n > n2 =⇒ a > 0 and n2 + 4n < n2 + 4n+ 4 =⇒ a <
−n+n+2

2
= 1, hence for all n > 0 we have 0 6 a < 1.
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Therefore there are infinitely many solutions: xn = n+ a = n+
√
n2+4n
2

for integer n > 0.

Triangle ABC is drawn. Three parallels are drawn through each of the vertices. The line

through A meets BC (extended if necessary) at X. The lines through B, and C meet AC, and BC,

at Y and Z, respectively, all extended if necessary. Prove that the area of XYZ is twice the area of

triangle ABC.

Solution

Thiếu hình vẽ See the attached diagram.

Since XA ‖ CZ, points X and A are equidistant from the line CZ, hence [XCZ] = [ACZ].

Similarly, Y B ‖ CZ =⇒ [Y CZ] = [BCZ]

Therefore [XCZ] + [Y CZ] = [ACZ] + [BCZ] = [ABC]

Also, XA ‖ Y B =⇒ 4XCA ∼ 4BCY =⇒ CX
CA

= CB
CY
⇐⇒ CX · CY = CA · CB, and since

the vertical angles ACB and XCY are equal, we get [XCY ] = [ABC].

Therefore [XY Z] = [XCY ] + [XCZ] + [Y CZ] = 2[ABC]

For a triangle ABC, let tanA , tanB , tanC be natural numbers. Find tanA , tanB , tanC.

Solution

For a triangle it holds tanA+ tanB + tanC = tanA tanB tanC

Hence we must find natural m,n, p such that m + n + p = mnp. WLOG take m 6 n 6 p. Then

mnp = m + n + p 6 3p =⇒ mn 6 3. Therefore (m,n) ∈ {(1, 1), (1, 2), (1, 3)}. Solving these cases

for p, we find that the only solution satisfying m 6 n 6 p is (m,n, p) = (1, 2, 3).

Thus {tanA, tanB, tanC} = {1, 2, 3}.
The first 44 positive integers are appended in order to to form the largest number N =

123456789101112 . . . . . . 424344. What is the remainder when N is divided by 45?

Solution

The number is obviously ≡ 4 (mod 5). Let’s see about the sum of its digits modulo 9.

1 + 2 + · · ·+ 9 = 45

The sum of the digits of the numbers from 10 to 19 is 10 · 1 + 45 = 55

The sum of the digits of the numbers from 20 to 29 is 10 · 2 + 45 = 65

The sum of the digits of the numbers from 30 to 39 is 10 · 3 + 45 = 75

The sum of the digits of the numbers from 40 to 44 is 5 · 4 + 10 = 30

So the total sum of the digits is 45 + 55 + 65 + 75 + 30 = 270 ≡ 0 (mod 9)

Thus the number is ≡ 4 (mod 5) and ≡ 0 (mod 9), hence it’s ≡ 9 (mod 45).

If sinx+ sin y = a , cosx+ cos y = b, prove that sin(x+ y) =
2ab

a2 + b2
.

Solution

If u = cosx + i sinx, v = cos y + i sin y, then u + v = b + ai. Also |u| = 1 =⇒ uū = 1 =⇒ ū = 1
u

and similarly v̄ = 1
v
.

Now sin(x+ y) = ={cos(x+ y) + i sin(x+ y)} = ={uv}.
But uv = u+v

u+v
uv

= u+v
1
u

+ 1
v

= u+v
ū+v̄

= b+ai
b−ai

uv = (b+ai)2

a2+b2
= b2−a2

a2+b2
+ i 2ab

a2+b2

Hence sin(x+ y) = ={uv} = 2ab
a2+b2

Let points D, E, and F be on sides BC, AC, and AB, respectively. Let point D′ be on BC such

that D′ is on the line formed by reflecting line AD through the angle bisector of ∠A, and similarly

define BE ′ and CF ′. Prove that if AD, BE, and CF are concurrent, then so are the lines AD′, BE ′,

and CF ′.
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Solution

Observe that AD and AD′ are isogonal. So by Steiner’s theorem we have: BD
DC
· BD′
D′C

=
(
AB
AC

)2
(1) .

Analogous we obtain CE
EA
· CE′
E′A

=
(
BC
BA

)2
(2), AF

FB
· AF ′
F ′B

=
(
CA
CB

)2
(3)

So if AD,BE,CF are concurrent it means that BD
DC
· CE
EA
· AF
FB

= 1 (4) (Ceva’s theorem) .

Multiplying relations (1), (2), (3) =⇒ BD
DC
· CE
EA
· AF
FB
· BD′
D′C
· CE′
E′A
· AF ′
F ′B

= 1
(4)⇐⇒ BD′

D′C
· CE′
E′A
· AF ′
F ′B

= 1

and the conclusion follows.

Find the area of a triangle ABC with altitudes of lengths 10 , 15 and 20 .

Solution

Let ha, hb, hc be the altitudes to 4ABC. Then we have

24 = 2|ABC| = aha = bhb = chc,

and from Heron’s formula,

44 =
√

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c).

Solving the first set of equations for a, b, c and substituting the result into the second, we obtain

1642 = (24)4

(
1

ha
+

1

hb
+

1

hc

)(
− 1

ha
+

1

hb
+

1

hc

)(
1

ha
− 1

hb
+

1

hc

)(
1

ha
+

1

hb
− 1

hc

)
,

and assuming 4 > 0, we easily find

4−2 = (h−1
a + h−1

b + h−1
c )(−h−1

a + h−1
b + h−1

c )(h−1
a − h−1

b + h−1
c )(h−1

a + h−1
b − h

−1
c ).

This of course requires that the altitudes in fact form a constructible triangle–which is possible if

and only if the right-hand side product is nonnegative.

Substituting the given values for the altitudes in no particular order yields the result |ABC| =
602
√

455
.

Prove, without the use of a calculator, that : sin 40◦ <

√
5

12
. Proof. Note first that

: sin 40◦ <
√

5
12

is equivalent to : 1−cos 80◦

2
< 5

12
, or cos 80◦ > 1

6
which is the same

as : sin 10◦ > 1
6
. Let c = sin 10◦ . Then 0 < c < 1 . From 1

2
= sin 30◦ = 3 sin 10◦−4 sin3 10◦ =

3c− 4c3 ,

we obtain : 8c3 − 6c + 1 = 0 . Since 8c3 > 0 , we must have : −6c + 1 < 0 . Hence, c > 1
6
, and

we are done . Another solution It ist knows sinx > 3
π
x in this case (x = π

18
) sin π

18
> 3

π
π
18

sin π
18
> 1

6

Q.E.D

Compute the coefficient of x9 in the expansion of (x3 + x2 + 1)8

Solution

The idea is to observe that the coefficient of xk1
1 x

k2
2 · . . . · xkmm in the multinomial expansion of

(x1 + x2 + · · ·+ xm)n is given by(
n

k1, k2, . . . , km

)
=

n!

k1!k2! . . . km!
,

where k1 + k2 + · · · + km = n. For the case m = 3 and n = 8 (and for simplicity of notation, we let

x1 = a, x2 = b, x3 = c, k1 = p, k2 = q, k3 = r), we then find the coefficient of apbqcr is
(

8
p,q,r

)
. Now

since a = x3, b = x2, c = 1, we need to consider all integers 0 ≤ p, q, r ≤ 8 such that 3p+ 2q = 9 and
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r = 8− p− q. By inspection, the only such solutions are (p, q, r) ∈ {(3, 0, 5), (1, 3, 4)}. Therefore, the
coefficient of x9 is (

8

3, 0, 5

)
+

(
8

1, 3, 4

)
=

8!

3!0!5!
+

8!

1!3!4!
= 336.

Let M =
{

1
2
, 1, 3

2
, 2, 5

2
, 3, 7

2
, 4, 9

2

}
. Prove that any subset of M containing 6 elements has 4

distinct numbers so that the sum of two of them is equal with the sum of the other two .

Solution

Presumably M =
{

1
2
, 1, 3

2
, 2, 5

2
, 3, 7

2
, 4, 9

2

}
. Then 2M = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and the statement stays

the same. Let 1 ≤ x1 < x2 < x3 < x4 < x5 < x6 ≤ 9 be 6 elements. Then, by contradiction, assume

x2 − x1, x4 − x3 and x6 − x5 distinct (hence their sum at least 1 + 2 + 3 = 6), and x3 − x2, x5 − x4

distinct (hence their sum at least 1 + 2 = 3). It follows x6 − x1 ≥ 6 + 3 = 9, absurd. Notice that

this remains true no more for 5 elements - a model is {1, 2, 3, 5, 7}; and neither for 6 elements out of

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} - a model is {1, 2, 3, 5, 7, 10}.
How many number of possible pair(s) (x, y) of positive integers are there that satisfy this

equation:

x2˘y! = 2001

Solution

If y > 7, then y! + 2001 ≡ 6 (mod 7), but 6 is not a quadratic residue modulo 7, hence there’s no

solution.

Then we simply check y ∈ {1, 2, 3, 4, 5, 6} and find that the only solution is (x, y) = (45, 4)

let :

x1 = y1 =
√

3

xn+1 = xn +
√
x2
n + 1

&

yn+1 = yn

1+
√

1+y2
n

then prove that : 2 < (x20102010).(y20102010) < 3

Solution

We’ll use following substitutions: xn = cotαn, yn = tan βn where αn, βn are acute angles.

Then cotαn+1 = cosαn
sinαn

+ 1
sinαn

=
2 cos2 αn

2

2 sin αn
2

cos αn
2

= cot αn
2

Therefore xn = cot α1

2n−1 . Since cotα1 =
√

3 =⇒ α1 = π
6
, we get xn = cot π

6·2n−1

Similarly, tan βn+1 = tan βn
2
, and with tan β1 =

√
3 =⇒ β1 = π

3
, we have yn = tan π

3·2n−1

If we now put θ = π
6·2n−1 , then

1
xn

= tan θ and yn = tan 2θ. Using double-angle formulas, we have

yn =
2 1
xn

1− 1

x2
n

= 2xn
x2
n−1

Therefore xnyn = 2x2
n

x2
n−1

= 2 + 2
x2
n−1

Now we note that cotangent is a decreasing function, hence xn is an increasing sequence (because

the argument of the corresponding cotangent is decreasing). Therefore, for n > 1, we have xn > x1 =√
3. That yields x2

n − 1 > 2 =⇒ 0 < 2
x2
n−1

< 1 =⇒ 2 < 2 + 2
x2
n−1

< 3.

Therefore, for every n > 1, we have 2 < xnyn < 3, hence for n = 20102010 as well.

an is the integer nearest to
√
n Find the value of

∑1980
n=1

1
an

Solution

If k is the integer closest to
√
n, then

(
k − 1

2

)2
< n <

(
k + 1

2

)2
=⇒ k2 − k + 1 6 n 6 k2 + k

Thus we have (k2 + k)− (k2 − k + 1) + 1 = 2k numbers with the above property.

Since 1980 = 442 + 44, the desired sum can be split thus:

S =
∑44

k=1

∑k2+k
n=k2−k+1

1
an

=
∑44

k=1

∑k2+k
n=k2−k+1

1
k

=
∑44

k=1
2k
k

= 88
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Solve the following.
1

[x]
+ 1

[2x]
= x− [x] + 1

3

Solution

Let x = n+ a where n = [x], a = {x}.
Case 1. 0 6 a < 1

2
.

Then [2x] = 2n, hence 3
2n

= a+ 1
3
⇐⇒ a = 9−2n

6n

We must have 0 6 9−2n
6n

< 1
2

The LHS yields n ∈ {1, 2, 3, 4}, and the RHS yields n 6 −1 ∨ n > 2.

Hence the combined solution is n ∈ {2, 3, 4}
n = 2 =⇒ a = 9−2n

6n
= 5

12
=⇒ x = n+ a = 29

12

n = 3 =⇒ x = 19
6

n = 4 =⇒ x = 97
24

Case 2. 1
2
6 a < 1.

Then [2x] = 2n+ 1, hence 1
n

+ 1
2n+1

= a+ 1
3
.

By the constraint we have 5
6
6 1

n
+ 1

2n+1
< 4

3
, thus obviously n > 0.

For n = 1 the value of the expression is 4
3
, which doesn’t satisfy, and for n = 2 the value of the

expression is 7
10
< 5

6
. For n > 2 the value is decreasing, hence we have no solution in this case.

Conclusion. The solutions are x ∈
{

29
12
, 19

6
, 97

24

}
How many n-digit base-4 numbers are there that start with the digit 3 and in which each digit

is exactly one more or one less than the previous digit? (For example, 321010121 is such a 9-digit

number.)

Solution

Let an be the quantity of such numbers, and let 0n, 1n, 2n, 3n denote the respective quantities of such

numbers ending in 0, 1, 2, 3.

Then

an = 0n + 1n + 2n + 3n

0n+1 = 1n

1n+1 = 0n + 2n

2n+1 = 1n + 3n

3n+1 = 2n

Summing up (2) to (5) we get an+1 = an + 1n + 2n. Summing up (3) and (4) we get 1n+1 + 2n+1 =

an ⇐⇒ 1n + 2n = an−1, thus an+1 = an + an−1. Since a1 = 1 (number 3) and a2 = 1 (number 32),

we get simple Fibonacci sequence, hence an = Fn.

Given a triangle ABC which inscribed in a circle with radius
√

5
2
and let the area of the

triangle is 1. If 2 sin(A+B) sinC = 1, then find the side lengths of the triangle.

Solution

sin(A+B) = sinC =⇒ sinC = 1√
2

=⇒ C = π
4
.

Therefore the central angle corresponding to c is π
2
, which yields c = R

√
2 =
√

5

Now ab = 4[ABC]R
c

= 2
√

2

By Heron’s, 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4 = 16[ABC]2, hence

16 + 10a2 + 10b2 − a4 − b4 − 25 = 16

a4 + b4 − 10(a2 + b2) + 25 = 0
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a4 + b4 = (a2 + b2)2 − 2a2b2 = (a2 + b2)2 − 16, hence

(a2 + b2)2 − 10(a2 + b2) + 9 = 0 =⇒ a2 + b2 ∈ {1, 9}
Since a2 + b2 > 2ab, we take a2 + b2 = 9

Now a2 + b2 = 9 ∧ a2b2 = 8 =⇒ {a2, b2} = {1, 8} ⇐⇒ {a, b} = {1, 2
√

2}.
Let ABC be a right triangle with hypotenuse BC. Suppose that M is the midpoint of BC and

H is the feet of the perpendicular dropped from A onto BC. A point P, distinct from A, is chosen on

the opposite ray of ray AM. Let the line through H perpendicular to AB intersect PB at Q; and let

the line through H perpendicular to AC meet PC at R. Prove that A is the orthocenter of triangle

PQR.

Solution

Let us use barycentric coordinates with respect to 4ABC. Thus, the coordinates of P lying on the

A-median of 4ABC can be written as P ≡ (1 : k : k) for k ∈ R. then:
=⇒ CP ≡ kx− y = 0 , BP ≡ kx− z = 0.

Therefore, the infinity point of the line BP is B∞ ≡ (1 : −1− k : k)

Since H ≡ (0 : SC : SB), the parallel ` from H to AB has equation SBx+ SBy− SCz = 0. Hence

the coordinates of R ≡ CP ∩ ` are R ≡ (SC : kSC1 + k)SB) =⇒ AR ≡ SB(1 + k)y − kSCz = 0.

Keeping in mind that SA = 0 ⇐⇒ 90◦, infinite point T∞ of the orthogonal gradient to AR is

T∞ ≡ (−kSBSC + SCSB(1 + k) : −SBSC(1 + k) : SBSCk) ≡ (1 : −1− k : k)

T∞ ≡ B∞ =⇒ RA ⊥ PQ. Similarly, we’ll get QA ⊥ PR and the conclusion follows.

Another approach.

Consider the homothety ι with center H,ratio AB/AC and rotation angle 90◦. Hence ι(A) = C

and let ι(P ) = S. Let R′ be the intersection of PC with SA. We now show that R ≡ R′, which

implies ∠QAB = ∠SCA = ∠RCA, hence QA ⊥ PR and RA ⊥ PQ, hence A is the orthocenter of

4PQR.
Let T be the intersection of AP and SC. Since PA ⊥ SC and ∠CAT = ∠HCA, HT ‖ AC.

Moreover, AP/CS = AB/AC. Therefore, we can reformulate the problem as follows: [i]Let 4ABC
be a triangle with ∠BCA = 90◦. Consider points P and Q on the rays CA and CB, such that

AQ/BP = BC/CA. Let S be the intersection of AP and BQ. Then the foot T of the perpendicular

from S onto AB is the isometric conjugate of the foot D from C onto AB.[/i]

To prove this, it’s enough to show that

BT

TA
=
AC

2

BC
2 =

AD

DB
.

Let M and N be the feet of the perpendiculars from P and Q onto AB, respectively. We get

NA = MB and hence BN = AM as well. Since 4BTS ∼ 4BNQ and 4ATS ∼ 4AMP , we get

BT

TA
=
BS · AP
AS ·QB

=
[APB]

[AQB]
=
BP · AC
AQ ·BC

=
AC

2

BC
2 ,

which is what we had to prove. �

Solve the equation tan−1
√
x2 + x+ sin−1

√
x2 + x+ 1 = π

2

Solution

Since | sin θ| ≤ 1, we must have 0 ≤
√
x2 + x+ 1 ≤ 1, or −1 ≤ x ≤ 0. But then x2 + x ≤ 0 on this

interval, so the only permissible values of x for which the left-hand side is defined are x = −1 and

x = 0, yielding x2 + x = 0, and hence

tan−1
√
x2 + x+ sin−1

√
x2 + x+ 1 = tan−1 0 + sin−1 1 =

π

2
.
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Thus the only real-valued solutions are x = −1, 0.

Given Sn =

(
n

0

)(
n

1

)
+

(
n

1

)(
n

2

)
+ . . . . . . . . .+

(
n

n− 1

)(
n

n

)
, Sn+1

Sn
= 15

4
,find the sum of two

possible values of n.

Solution

The sum Sn is a special case of Vandermonde’s identity(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
,

for nonnegative integers m, n, r, for which there are a variety of proofs.* With the choice m = n and

r = n− 1, we immediately obtain

Sn =

(
2n

n− 1

)
.

Consequently,

15

4
=
Sn+1

Sn
=

(
2n+2
n

)(
2n
n−1

)
=

(2n+ 2)(2n+ 1)

n(n+ 2)

= 4 +
1

n
− 3

n+ 2
.

Simplifying and solving easily gives n = 2, n = 4 as solutions.

* For a combinatorial proof, count the number of ways to choose r objects from m + n distinct

objects which are grouped into two sets of m and n objects each. Clearly this is
(
m+n
r

)
, but it is also

the sum of the number of ways to select k objects from the group of m objects and r − k objects

from the group of n objects, for each k = 0, 1, 2, . . . , r, or
∑r

k=0

(
m
k

)(
n
r−k

)
.

In triangle ABC, AC = 13, AB = 14 and BC = 15. E is the foot of the angle bisector of

angle A on segment BC and F is the foot of the angle bisector of angle B on segment AC. If P is

the intersection of segments EA and FB, what is sin∠EPF?

Solution

The point P , being the intersection of the angle bisectors of4ABC, is the incenter. Consider4ABP ,
whose altitude from P to AB we call PH = r, where r is the inradius of 4ABC. We calculate s =

(13+14+15)/2 = 21, and by writing the area in two ways, |4ABC| = rs =
√
s(s− a)(s− b)(s− c),

or

r =

√
(s− a)(s− b)(s− c)

s
=

√
8 · 7 · 6

21
= 4.

Thus

AP =
√

(s− b)2 + r2 =
√

82 + 42 = 4
√

5,

BP =
√

(s− a)2 + r2 =
√

62 + 42 = 2
√

13.

Again considering the area in two ways,

|4ABP | = 1

2
(AP )(BP ) sin∠APB =

1

2
(AB)(PH),

or equivalently,

sin∠APB =
14 · 4

4
√

5 · 2
√

13
=

7√
65
.
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But ∠APB = ∠EPF , so sin∠EPF = 7/
√

65.

Calculate :
∑n

i=1
1

cos(i.α). cos((i+1).α)
for α ∈ (− π

2n
, π

2n
) .

Solution

We observe that

sinx

cos(k + 1)x cos kx
=

sin((k + 1)x− kx)

cos(k + 1)x cos kx

=
sin(k + 1)x cos kx− sin kx cos(k + 1)x

cos(k + 1)x cos kx

= tan(k + 1)x− tan kx.

Hence,

S =
n∑
k=1

1

cos kx cos(k + 1)x

=
tan(n+ 1)x− tanx

sinx
.

find the solutions to 1 + [x] = [nx] where n is a natural number and x is a real number.

Solution

First, we see that when n = 1, there is no solution, since the condition would imply 1 = 0. So suppose

n > 1. We then observe that for all x, x < 1 + bxc ≤ x + 1 and nx − 1 < bnxc ≤ nx. Therefore,

nx − 1 < x + 1 and x < nx from which it follows that 0 < x < 2
n−1

. For n > 2, the right-hand side

of this inequality is less than 1, so we then have 1 + bxc = 1, and therefore we require bnxc = 1, or

1/n ≤ x < 2/n, n > 2.

If n = 2, then there are two sub-cases. When 0 < x < 1, we have 1 = b2xc, or 1/2 ≤ x < 1; and

when 1 ≤ x < 2, we have 2 = b2xc, or 1 ≤ x < 3/2. So we can summarize the solution as follows:

n = 1: No solution.

n = 2: x ∈ [1/2, 3/2).

n > 2: x ∈ [1/n, 2/n).

For how many integers n is n2 + n+ 1 a divisor of n2010 + 20 ?

Solution

We first claim that n2010 ≡ 1 (mod n2 + n+ 1) for all positive integers n. To see why, note that

n2010 − 1 = (n3)670 − 1

= (n3 − 1)
669∑
k=0

n3k

= (n− 1)(n2 + n+ 1)
669∑
k=0

n3k.

Therefore, n2 + n+ 1|n2010 − 1, and the claim immediately follows.

Therefore, n2010 + 20 ≡ 21 (mod n2 + n + 1), and it is now easy to see that we need to check

only those integers for which n2 + n − 20 ≤ 0; i.e., −5 ≤ n ≤ 4. Substitution gives the solutions

n ∈ {−5,−3,−2,−1, 0, 1, 2, 4}.
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find value of x that satisfy [x]x = 1991x

Solution

Let [x] = n, {x} = a. Then na = 1991(n+ a) =⇒ a = 1991n
n−1991

= 1991 + 19912

n−1991
.

By definition we must have 0 6 a < 1, hence

−1991 6 19912

n−1991
< −1990

1990 < 19912

1991−n 6 1991
1

1991
6 1991−n

19912 < 1
1990

1991 6 1991− n < 19912

1990

0 6 −n < 19912

1990
− 1991 = 1991

1990

−1991
1990

< n 6 0

Therefore n ∈ {−1, 0}.
n = −1 =⇒ a = 1991·(−1)

−1−1991
= 1991

1992
=⇒ x = n+ a = − 1

1992

n = 0 =⇒ a = 0 =⇒ x = 0

Hence x ∈
{
− 1

1992
, 0
}

Two circles T1 and T2 are internally tangent at A and T1 is bigger than T2. A variable tangent

of T2 cuts T1 at B,C. Then the locus of the incenter of 4ABC is another circle tangent to T1, T2

through A.

Solution

Let V be the tangency point of T2 with BC. It is known that AV bisects ∠BAC. Then
AI
IV

= CA+AB
BC

If ray AV cuts T1 at P, by Ptolemy’s theorem for ABPC we have

BC · AP = CA · PB + AB · PC
Since PB = PC =⇒ AP

PB
= CA+AB

BC
=⇒ AI

IV
= AP

PB

Note that 4PAB ∼ 4PV B are similar because of ∠V BP = ∠BAP, thus we have PB2 =

AP · PV. Combining this one with the previous expression yields
IV 2

AI2 = PV
AP
. But PV = AP − AV and IV = AV − AI

=⇒
(
AW
AI
− 1
)2

= 1− AV
AP

Ratio AV
AP = const is the coefficient k of the direct homothecy taking T1 into T2. Therefore, locus

of the incenter I is the homothetic circumference of T2 under the homothety with center A and

coefficient 1√
1−k+1

.

Prove (or explain) why there are no polyhedra having exactly seven edges.

Solution

Denote by F, V,E the number of faces, vertices and edges of the polyhedron. Since each face contains

at least three edges, then the number of edges will be ≥ 3
2F, since each edge lies on two faces, in

other words, 3F ≤ 2E. Analogously, at each vertex, at least three edges come together and each of

them connects two vertices, then it follows that 3V ≤ 2E. By combining these two latter inequalities

with Euler’s formula F + V − E = 2, we obtain 3F + 3V = 3E + 6 ≤ 4E =⇒ E ≥ 6.

Furthermore, 3E+ 6 = 3F + 3V ≤ 2E+ 3V, from which E+ 6 ≤ 3V ≤ 2E and analogously, we’ll

have E + 6 ≤ 3F ≤ 2E. Combining both inequalities with E ≥ 6, we get F ≥ 4 and V ≥ 4. These

inequalities show the imposibility of a seven-edged Eulerian polyhedron, since between E + 6 = 13

and 2E = 14 there is no integer number. Obviously, equalities hold when each face is a triangle and

each vertex is a concurrency point of three edges, i.e. the tetrahedron.

Let triangle ABC, AB=AC. P ∈ triangle ABC prove that: PA2 + PB.PC ≤ AB2

Solution
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Let M be the midpoint of BC and WLOG assume that P lies inside 4ABM. Let Q ∈
−→
CP such

that PB = PQ. The circumcenter O′ of 4QBC lies on AM such that ∠BO′C = 2∠BQC = ∠BPC.

Thus the power of P WRT (O′) is PC · PQ = PC · PB = O′C2 −O′P 2.

S ≡ PC ∩AM and N is the midpoint of CP. For each P lying on AB, the midpoint of the cevian

CP lies on the C-midline. Therefore, for each P inside 4ABM, the midpoint N of CP lies inside

4AMC =⇒ S is between P,N.

On the other hand, since O′ is the midpoint of the arc BPC, the ray
−→
CP is internal to ∠O′CB

=⇒ O′ is between S and A. Then it follows that the orthogonal projection X of O′ onto CP lies

between C and the orthogonal projection Y of A onto CP. Thus

AC2 − AP 2 = Y C2 − Y P 2 = 2PC ·NY
O′C2 −O′P 2 = XC2 −XP 2 = 2PC ·NX
NY ≥ NX =⇒ AC2 − AP 2 ≥ O′C2 −O′P 2 =⇒ AB2 − PA2 ≥ PB · PC.

In a parallelogram ABCD with ∠A < 90, the circle with diameter AC meets the lines CB and

CD again at E and F, respectively, and the tangent to this circle at A meets BD at P. Show that P,

F, and E are collinear.

Solution

Let O be the center of the parallelogram and Q the orthogonal projection of A on the diagonal

DB. Since AF ⊥ DC and AE ⊥ CB, the quadrilaterals ABEQ and ADFQ are both cyclic =⇒
∠DQF = ∠DAF = ∠BAE = ∠BQE. Therefore, AQ and DB are the internal and external bisector

of ∠EQF, Thus, the perpendicular bisector of EF meets DB at the midpoint of the arc EFQ of

�(EFQ) =⇒ OEFQ is cyclic. EF is the radical axis of �(OEFQ) and �(O), DB is the radical

axis of �(OEFQ) and �(AQO), the tangent to �(O) at A is the radical axis of (O) and �(AQO)

=⇒ AP,DB,EF concur at the radical center P of (O), �(AQO), �(OEFQ). Hence, P, F,E are

collinear.

ABC triangle has sides a,b,c and P is a point in ABC triangle and m(ÂPB = m(ÂPC =

m(B̂PC = 120◦. If A(ABC)=S |AP |+ |BP |+ |CP | =
√

a2+b2+c2

2
+ 2S

√
3

Solution

Construct outwardly on the sidesBC,CA,AB of4ABC the equilateral trianglesBCA′, CAB′, ABC ′

whose centers are X, Y, Z. Then it’s well-known that P ≡ (X)∩ (Y )∩ (Z) and P ≡ AA′∩BB′∩CC ′.
The lines PA, PB, PC are pairwise radical axes of (X), (Y ), (Z). Thus, the sidelines of 4XY Z
are perpendicular to PA, PB, PC, respectively =⇒ 4XY Z is equilateral and A,B,C are the re-

flections of P across Y Z,ZX,XY. If X ′, Y ′Z ′ denote the projections of P onto Y Z,ZX,XY, then

PA+ PB + PC = 2(PX ′ + PY ′ + PZ ′).

Let L be the side-lenght of 4XY Z. By Viviani’s theorem, the sum (PX ′ + PY ′ + PZ ′) equals

the altitude of 4XY Z =⇒ PA + PB + PC =
√

3L. Thus, it remains to find the side-lenght L of

4XY Z in terms of AB,AC,BC

By cosine law in4AY Z, kepping in mind thatAY,AZ are circumradii of the equilateral4CAB′,4ABC ′,
we have

L2 = AY 2 + AZ2 − AY · AZ · 2 cos(A+ 60◦)

L2 = AB2+AC2

3
+ AB·AC·(

√
3 sinA−cosA)
3

Using the identities

AB · AC · sinA = 2S , BC2 = AB2 + AC2 − AB · AC · 2 cosA

=⇒ L2 = AB2+AC2+BC2

6
+ 2

√
3

3
S

L =
√

AB2+AC2+BC2

6
+ 2

√
3

3
S
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PA+ PB + PC =
√

3L =
√

AB2+AC2+BC2

2
+ 2
√

3S

In 4ABC, points H, I, and J lie on lines AB,BC, and CA respectively. BJ and CH intersect

at P , CH and AI intersect at Q, AI and BJ intersect at R, CH ⊥ AB, and 3BH
BA

= 3AJ
AC

= 3CI
CB

=
AR
AQ

= mHP
HC

= 1. Compute m.

Solution

Thiếu hình vẽ Here’s the solution using area ratios. See the attached diagram.

If [PHB] = x, then [PHA] = 2x, since HA = 2HB. Similarly, [RAJ ] = y =⇒ [RCJ ] = 2y

and [QCI] = z =⇒ [QBI] = 2z. Since AR = QR, we have [CQR] = [CAR] = 3y and also

[PAR] = [PQR] = u. Since BH = 1
2
AH, we have [BPQ] = 1

2
[APQ] = u.

Now

[BHC] =
1

3
[ABC] ⇐⇒ 2[BHC] = [AHC] ⇐⇒ 2(x+ u+ 3z) = 2x+ 2u+ 6y ⇐⇒ z = y

Similarly, 2[CAI] = [BAI] ⇐⇒ 2(6y + z) = 3x + 3u + 2y ⇐⇒ 3u = 10y + 2z − 3x, but as

z = y, we get 3u = 12y − 3x ⇐⇒ u = 4y − x
Also, 2[ABJ ] = [CBJ ] ⇐⇒ 2(3x+ u+ y) = 2u+ 5y + 3z ⇐⇒ 6x = 3y + 3z, but as z = y, we

get x = y , which in turn yields u = 3x and z = x

Now m = CH
PH

= [CHB]
[PHB]

= 3z+u+x
x

= 3x+3x+x
x

= 7

4ABC is a triangle with side lengths a, b, c. D,E, F denote the midpoints of BC,CA,AB.

EF = 1
2a = x, FD = 1

2 b = y and DE = 1
2 c = z. Triangles 4AFE, 4BFD, 4CDE are rotated

about EF,FD,DE in such a way that A,B,C coincide at P producing the tetrahedron PDEF with

edges PD = EF = x, FD = PE = y, DE = PF = z. Then prove that the volume V of PDEF is

given by

V 2 =
1

72
(x2 + y2 − z2)(x2 + z2 − y2)(y2 + z2 − x2)

Solution

It is clear that the projection of P on the face DEF is the orthocenter H of 4ABC. Hence, if the
A-altitude AHa meets EF at D′, the length of the altitude h on the face ABC is given by

h2 = (AD′)2 − (AD′ −HHa)
2 = (AH +HHa)HHa − (HHa)

2 = AH ·HHa

But AH · HHa is the power k2 of the negative inversion that takes the circumcircle of 4ABC
into its nine-point circle. Hence, h2 = k2 = 1

2 (a2 + b2 + c2)− 4R2.

V 2 = 1
9 [4DEF ]2

(
1
2 (a2 + b2 + c2)− 4R2

)
But, keeping in mind that 4R2 = a2b2c2

64[4DEF ]
, we have

V 2 = 16(x2+y2+z2)[4DEF ]2−8x2y2z2

72

Using Heron’s formula [4DEF ]2 = 1
16 (x+ y + z)(x+ y − z)(x+ z − y)(y + z − x)

=⇒ V 2 = 1
72 (x2 + y2 − z2)(x2 + z2 − y2)(y2 + z2 − x2)

Let be given triangle ABC with AB = AC. E is the midpoint of AB, and G is the centroid of

triangle ACE. If O is the circumcenter of triangle ABC, prove that GO⊥CE.

Solution

AO and CE are medians of 4ABC intersecting at its centroid M. F ≡ CG∩AB is the midpoint of

AE. Since GC : GF = EB : EF = −2 and GC : GF = MC : ME = −2, it follows that GE ‖ BC
and GM ‖ AB =⇒ OM and OE are perpendicular to BC ‖ GE and AB ‖ GM, respectively =⇒ O

becomes orthocenter of 4GEM =⇒ GO ⊥ME ≡ CE, as desired.

Let 4ABC be an isosceles triangle with AB = AC = L. D is a point on BC, such that the

radii of the incircle of 4ABD and the A-exincircle of 4ADC are equal to r. Show that the altitude
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h on the leg L is four times r.

Solution

Drop perpendiculars DP and DQ from D to AB and AC, respectively. Then, using the well-known

formulae of the inradii and exinradii in terms of altitudes, we get

DP = r(L+AD+BD)
L

, DQ = r(AD+L−DC)
L

DP +DQ = r(2L+2AD+BD−DC)
L

On the other hand, DP +DQ = h =⇒ h = r(2L+2AD+BD−DC)
L

(?)

Since these two circles are congruent, the tangent segments from D to both are equal.

L+DC − AD = AD +BD − L =⇒ 2L = 2AD +BD −DC
Combining with (?) yields h = r(2L+2L)

L
= 4r.

Let M be a point inside the equilateral triangle ABC with side lenght a.

Prove that MA+MB +MC < 2a .

Solution

We prove a more general result:

Lemma: M is a point inside 4ABC whose shortest side is BC. Then we have that b + c >

MA+MB +MC.

Draw the parallel to BC passing throughM that cuts AC and AB at X, Y, respectively. Draw the

altitude AH and WLOG assume thatM lies inside 4AHB.We have Y A > MA (1) and since AC >

CB =⇒ AX > XY, due to the similarity 4ABC ∼ 4AXY. Thus, AX +XC = b > XY +XC (2)

By triangle inequalityMX+XC > MC , MY +Y B > MB. Adding these two inequalities gives

CX +XY + Y B > MB +MC (3)

Adding (1), (2), (3) yields

b+ Y A+ Y B +XC +XY > MA+MB +MC +XY +XC

=⇒ b+ c > MA+MB +MC.

Prove that sin π
14

is a root of the polynomial equation

8x3 − 4x2 − 4x+ 1 = 0

Solution

The proposed problem is equilavent to show that: If a is the side-lenght of a regular 14-gon, then its

circumradius R is a real positive solution of R3 + a3 − a2R− 2aR2 = 0.

Let O be the center of the 14-gon and B,C two consecutive vertices. Thus ∠BOC = 180◦
7 . There

exists two points P,Q on OC,OB such that BP = PQ = QO = a. Draw parallels QT = x and

PS = y to BC. Then 4CBP and 4QOT are congruent =⇒ PC = QT = x, but 4BCP and

4OBC are similar

=⇒ PC
BC

= BC
R

=⇒ x = a2

R
(1)

QTPS is a trapezoid with PS = QS = y and since 4OSP ∼ 4OBC, we get:
SP
BC

= OS
OB

=⇒ y
a

= y+a
R

=⇒ y = a2

R−a (2)

QS = TP = y =⇒ TP + PC = OC −OT =⇒ y + x = R− a (3)

Combining (1), (2) and (3) yields:
a2

R−a + a2

R
= R− a =⇒ R3 + a3 = a2R + 2aR2.

In a triangle ABC prove that there is a point D on side AB such that CD is the geometric

mean of AD and DB if and only if sinA sinB ≤ sin2 C
2

Solution
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Let D′ be the second intersection of the ray CD with the circumcircle (O) of 4ABC. From the

power of D WRT (O), we have CD · DD′ = AD · BD = CD2 =⇒ CD = DD′. Hence, D′ lies on

the homologous line ` of AB under the homothety with center C and coefficient 2. Thus, there exist

such a D on BC if and only if ` cuts (O).

Let M,N be the midpoints of AB and the arc AB and H,H ′ the orthogonal projections of C,D′

on AB. Since 4CHD ∼= 4D′H ′D =⇒ CH = D′H ′. Thereby, there exists at most two points D if

and only if CH < MN, there exists one point D if and only if D′ ≡ N, i.e. ` is tangent to (O) and

there is no such a point D if CH > MN. Therefore, the necessary condition for the existence of at

least one solution is that CH ≤MN.

Since ∠NAM = ∠NCB = 1
2∠C, we have MN = 1

2
AB · tan C

2
=⇒

CH ≤ 1
2
AB · tan C

2
=⇒ 2CH

AB
· cos C

2
· sin C

2
≤ sin2 C

2
=⇒

CH
AB
· sinC ≤ sin2 C

2
=⇒ sinA · sinB ≤ sin2 C

2

Prove that for any complex number z,

|z + 1| ≥ 1√
2
or |z2 + 1| ≥ 1

Solution

Suppose there exists a complex number z such that |z+1| ≤ 1√
2
and |z2 + 1| ≤ 1. Write A := |z|2−1

and B := Re(z). We see that the two inequalities are equivalent to

A+ 2B +
3

2
≤ 0 and A2 + 4B2 ≤ 1 .

Thus, |A| ≤ 1, and therefore, 2B ≤ −3
2
− A ≤ −1

2
< 0. This means(

3

2
+ A

)2

≤ (2B)2 = 4B2 ≤ 1− A2 .

Consequently, (
A+

3

4

)2

+
1

16
= A2 +

3

2
A+

5

8
≤ 0 ,

which is absurd. Hence, for all z ∈ C, we must have |z + 1| > 1√
2
or |z2 + 1| > 1.

We can improve the original problem yet another way: for all z, either |z + 1| ≥
√

2−
√

2 or

|z2 + 1| ≥ 1.

Prove that the area of a right angled triangle which has integral lengths is even.

Solution

Let a, b, c be the sides of right-angled 4ABC (with hypotenuse AB), then

a2 + b2 = c2 .

Since the quadratic residues mod 4 are 0 and 1, we have two cases (all the terms are divisible

by 4, or one is divisible by 4 on the LHS and the rest are not):

Case 1: a2 ≡ b2 ≡ 0 mod 4

a ≡ b ≡ 0 mod 2 =⇒ a = 2a0 and b = 2b0

=⇒ [ABC] = ab
2

= 2a0b0,

which concludes this case.

Case 2: WLOG, a2 ≡ c2 ≡ 1 mod 4 and b2 ≡ 0 mod 4

=⇒ a ≡ c ≡ 1 mod 2 and b ≡ 0 mod 2 =⇒ a = 2a0 + 1, c = 2c0 + 1, and b = 2b0

=⇒ (2a0 + 1)2 + (2b0)2 = (2c0 + 1)2

=⇒ a2
0 + a0 + b2

0 = c2
0 + c0

We already know that a2
0 ≡ c2

0 ≡ 1 mod 4, so a0 and c0, may be 1 or −1 mod 4. Also, b2
0 may

be congruent to 0 or 1.
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Suppose that b2
0 ≡ 1 mod 4, then

a2
0 + a0 + b2

0 = c2
0 + c0 =⇒ 1 + a0 + 1 ≡ 1 + c0 mod 4

=⇒ 1 + a0 ≡ c0; contradiction.

So, b0 ≡ 0 mod 2 =⇒ b0 = 2k =⇒ b = 4k, and therefore,

[ABC] = ab
2

= (2a0+1)(4k)
2

= 2k(2a0 + 1),

which concludes our last case.

QED Another approach All the non-primitive Pythagorean triplets are given by

({a, b}, c) = ({2mnk, k(m2 − n2)}, k(m2 + n2)) for positive integers k,m, n with m > n

Thus the required area is k2mn(m2 − n2)

If k,m, n are all odd, then m2 − n2 is even. QED

For rational numbers a, b with 0 < a ≤ b ≤ 1, let f(n) = an3 + bn. Find all pairs of a, b such

that for all integers f(n) is integer and if n is even, then f(n) is even as well.

Solution

Let n = 1, then f(1) = a+ b ∈ Z =⇒ a+ b ∈ {1, 2}, since 0 ≤ a ≤ b ≤ 1.

Let’s take the easy case first: if a + b = 2, then a = b = 1. Hence, f(n) = n3 + n is always an

integer for integer n, and if 2|n i.e. n is even, obviously 2|n3 + n = f(n), so f(n) is even (actually,

f(n) is even for all integer n, in this case).

Now the other case: a+ b = 1, we may substitute this into f(n) to get

f(n) = an3 + (1− a)n = n+ a(n3 − n).

Now, since a is rational, we may express it as p
q
, where p and q are relatively prime positive

integers, and p < q; so

f(n) = n+ p(n3−n)
q

.

But since f(n) is an integer for all integer n, we must have that p(n3−n)
q
∈ Z =⇒ q | n3 − n =

n(n− 1)(n+ 1), for all integer n.

From here, it’s easy to see that for that to happen, we must have that q ∈ {2, 3, 6}, so we now

have three cases:

Case 1: q = 2 =⇒ p = 1 =⇒ f(n) = 1
2
(n3 + n). But if n is even, then f(n) is not necessarily

even, so we dismiss this case.

Case 2: q = 3 =⇒ p ∈ {1, 2} =⇒ f(n) ∈ {1
3
n3 + 2

3
n, 2

3
n3 + 1

3
n} . It’s easy to see that

2 | n =⇒ 2 | f(n), by plugging in n = 2k.

Case 3: q = 6 =⇒ p ∈ {1, 5} =⇒ f(n) ∈ {1
6
n3 + 5

6
n, 5

6
n3 + 1

6
n}, but as in case 1, if n is

even, then f(n) is not necessarily even ( a simple counterexample does the job, or just by plugging

in n = 2k), so we dismiss this case.

The only solutions from these cases are from case 2, where we have that a ∈ {1
3
, 2

3
}, but since

b = 1− a, we have the solutions (1
3
, 2

3
) and (2

3
, 1

3
).

Therefore, the only solutions for (a, b) are (1, 1), (
1

3
,
2

3
), (

2

3
,
1

3
) . Another solution By a given

condition, 8an3 + 2bn is an even number for all n, hence 4an3 + bn is an integer. Therefore (4an3 +

bn)− (an3 + bn) = 3an3 is an integer for all n, yielding a ∈
{

1
3
, 2

3
, 1
}
.

If a = 1
3
, then n3

3
+ bn = n3−n

3
+ n

(
b+ 1

3

)
must be an integer for all n. Since the first term is

always an integer, it follows that b+ 1
3
must be an integer (since the complete second term must be

an integer for all n), hence b = 2
3
.

If a = 2
3
, then 2n3

3
+ bn = 2(n3−n)

3
+ n

(
b+ 2

3

)
must be an integer for all n, and similarly as above

we get b = 1
3

If a = 1, then n3 + bn must be an integer, hence bn must be an integer (for all n), hence b = 1.
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In a triangle ABC it is ∠B = 75 and BC = 2AD , where AD is the altitude from A. Prove

tht ∠C = 30

Solution

Remark. It is well-known that bc = 2Rha and 1
tanB

+ 1
tanC

= a
ha
. Therefore, a = λ · ha ⇐⇒

1
tanB

+ 1
tanC

= λ.

]A metrical proof. It is well-known that tan 75◦ = 2 +
√

3 . For λ = 2 obtain : 1
tanB

+ 1
tanC

= 2

⇐⇒ 2−
√

3 + 1
tanC

= 2 ⇐⇒ tanC = 1√
3
⇐⇒ C = 30◦.

A synthetical proof.Denote the middlepoint M of the side [BC] and the interior point E

for which the triangle ABE is equilateral. AB = BE, AD = BM , B̂AD ≡ ÊBM =⇒ (s.a.s.)

4ABD ≡ 4BEM =⇒ EM ⊥ BC =⇒ The point E is the circumcenter of the triangle ABC =⇒
AB = R- the circumradius =⇒ C = 30◦.

Find all real values of x, y and z such that x−√yz = 42 y −
√
xz = 6 z −√xy = −30

Solution

Since xy, yz, zx must be non-negative, x, y, z are all of the same sign. From x = 42 +
√
yz it follows

x > 0, hence all of them are non-negative.

Put a =
√
x, b =

√
y, c =

√
z to get

a2 − bc = 42

b2 − ac = 6

c2 − ab = −30

Subtracting (2) from (1) and (3) from (2) we get

a2−b2 +ac−bc = 36 ⇐⇒ (a−b)(a+b+c) = 36 b2−c2 +ab−ac = 36 ⇐⇒ (b−c)(a+b+c) = 36

Hence a− b = b− c ⇐⇒ a = 2b− c. Plugging that into (2) and (3) we get

b2 − 2bc+ c2 = 6

−2b2 + bc+ c2 = −30

Multiplying (4) by 2 and adding to (5) we get

−3bc+ 3c2 = −18 ⇐⇒ c(b− c) = 6

Since a, b, c are non-negative, that gives b−c > 0, hence from (4) we get b−c =
√

6, and then from

(6) we get c =
√

6. Now b = c+
√

6 = 2
√

6 and a = 2b− c = 3
√

6, which gives (x, y, z) = (54, 24, 6)

a+ b+ c = 1 and a,b,c ∈ [0, 1] Find the maximum of (a− b)(b− c)(c− a)

Solution

Let c = max{a, b, c}. For a maximum, we need P = (a− b)(b− c)(c− a) = (c− a)(c− b)(b− a) to be

positive, so we take c ≥ b ≥ a. Substituting c = 1− b− a gives P = (1− b− 2a)(1− 2b− a)(b− a)

and so clearly for a maximum, a = 0 giving P = b(1 − b)(1 − 2b) This is easy to maximise using

calculus. Otherwise using AM-GM

P = 4

[
b√

3− 1
· 1− b√

3 + 1
· 1− 2b

2

]
≤ 4

27

[
b√

3− 1
+

1− b√
3 + 1

+
1− 2b

2

]3

=
1

6
√

3

with equality at
(

0, 1
2
− 1

2
√

3
, 1

2
+ 1

2
√

3

)
and cyclic permutations.
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Prove that sinx
cos 3x

+ sin 3x
cos 9x

+ sin 9x
cos 27x

= 1
2
(tan 27x− tanx) .

Solution

Observe that tan 3α− tanα = sin 3α
cos 3α

− sinα
cosα

= sin(3α−α)
cos 3α cosα

= 2 sinα cosα
cos 3α cosα

=

2 sinα
cos 3α

=⇒ tan 3α− tanα =
2 sinα

cos 3α
(∗) . Apply the relation (∗) for α ∈ {x, 3x, 9x} :

tan 27x− tan 9x = 2 sin 9x
cos 27x

tan 9x− tan 3x = 2 sin 3x
cos 9x

tan 3x− tanx = 2 sinx
cos 3x

∥∥∥∥∥∥∥∥∥∥∥∥
⊕

=⇒ sinx
cos 3x

+ sin 3x
cos 9x

+ sin 9x
cos 27x

= 1
2
(tan 27x− tanx) .

Remark. Prove similarly that cosx
sin 3x

+ cos 3x
sin 9x

+ cos 9x
sin 27x

= 1
2
(cotx − cot 27x) or by the substitution

x := π
2
− x .

Find the integer solutions for x2(y − 1) + y2(x− 1) = 1.

Solution

The method is classical; although a number theory problem, the answer comes from algebraic in-

equalities.

We cannot simultaneously have x, y < 1, so assume y ≥ 1. Write (y − 1)x2 + y2x− (y2 + 1) = 0

as quadratic in x, of discriminant ∆ = y4 + 4(y− 1)(y2 + 1) = y4 + 4y3 − 4y2 + 4y− 4 needing to be

a perfect square. But ∆− (y2 + 2y − 4)2 = 20(y − 1) ≥ 0. On the other hand ∆− (y2 + 2y − 3)2 =

−2y2 + 16y − 13 < 0 for y > 7, so we only have to check by hand y ∈ {1, 2, 3, 4, 5, 6, 7}. The only

ones that works are y = 1, with x = 2, and y = 2, with x = 1 or x = −5. So the complete set of

solutions is (x, y) ∈ {(1, 2), (2, 1), (2,−5), (−5, 2)}. Another way
Alternatively, we can write the equation as xy(x+ y)− (x2 + y2) = 1 ⇐⇒ xy(x+ y)− (x+ y)2 +

2xy = 1

Putting a := x+ y, b = xy we get ab− a2 + 2b = 1 ⇐⇒ b = a2+1
a+2

= a2−4+5
a+2

= a− 2 + 5
a+2

Hence a+2 ∈ {±1,±5} ⇐⇒ a ∈ {−7,−3,−1, 3}, yielding the pairs (a, b) ∈ {(−7,−10), (−3,−10), (−1, 2), (3, 2)}.
Now solving the system in each case (using Vieta and a quadratic) yields the solutions already

posted.

Let a, b, and c be three real numbers such that a(b−c)
b(c−a)

= b(c−a)
c(b−a)

= k > 0 for some constant k.

Find the greatest integer less than or equal to k.

Solution

Let x := ab, y := bc, z := ca. Then the equations rewrite as

(k + 1)x− ky − z = 0

−x+ (1− k)y + kz = 0

Since k > 0, we can multiply the first equation by k and add it to the second:

(k2 + k − 1)(x− y) = 0

Assume x = y ⇐⇒ ab = bc ⇐⇒ b(a− c) = 0, which is impossible due to the form of the first

fraction given.

Hence k2 + k − 1 = 0
k>0⇐⇒ k =

√
5−1
2

, and bkc = 0

Prove that if a
b

+ b
c

+ c
a
and a

c
+ b

a
+ c

b
are integers, then |a| = |b| = |c|.

Solution

Consider the cubic equation whose roots are a
b
, b
c
, c
a
. Then

K := a
b

+ b
c

+ c
a
is integer and L := a

b
· b
c

+ b
c
· c
a

+ c
a
· a
b
is also integer.
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Therefore by Vieta the equation is t3−Kt2 +Lt−1 = 0. Since all the coefficients are integer, and

the roots are rational by the initial assumption, it follows directly (by the Rational Root Theorem)

that only possible roots are ±1. The conclusion follows.

Solve the system: yz = 3y + 2z − 8, zx = 4z + 3x− 8, xy = 2x+ y − 1.

Solution

Rewrite the equations as 
(y − 2)(z − 3) = −2

(x− 4)(z − 3) = 4

(x− 1)(y − 2) = 1

Now (2)·(3)
(1)

⇐⇒ (x− 1)(x− 4) = −2 ⇐⇒ x2 − 5x+ 6 = 0 ⇐⇒ x ∈ {2, 3}
So x = 2 =⇒ y = 3 ∧ z = 1 and x = 3 =⇒ y = 5

2
∧ z = −1

Hence the solutions are (x, y, z) ∈
{

(2, 3, 1),
(
3, 5

2
,−1

)}
If p is prime and p = 1 (mod 4) such that p can be written as the sum of 4 numbers greater than

zero a, b, c, d,prove that a.d cannot equal bc.

Solution

Let p > 2 be a prime, p = a + b + c + d, with a, b, c, d positive integers. Assume ad = bc. We have

a+ d ≡ −(b+ c) (mod p), so a2 + 2ad+ d2 ≡ b2 + 2bc+ c2 (mod p), hence a2 + d2 ≡ b2 + c2 (mod p).

Then (a + b)(a− b) ≡ (c + d)(c− d) (mod p). But a + b ≡ −(c + d) (mod p) and a + c ≡ −(b + d)

(mod p). Thus (a + b)(a − b + c − d) ≡ 0 (mod p), or 2(a + b)(a + c) ≡ 0 (mod p), absurd. We do

not need p ≡ 1 (mod 4).

Let a, b, c ∈ Q such that a 3
√

3 + b 3
√

4 + c 3
√

5 = 0 . Prove that a = b = c = 0 .

Solution

There is an advanced theory (where this means that the three cubic roots are linearly independent

over Q) that gives immediate answer to such questions. Otherwise just separate into a 3
√

3 + b 3
√

4 =

−c 3
√

5, cube it, group again with all rationals on one side, cube it, . . . , until you get some linear

system of equations with rational coefficients in 3
√

6 and
3
√

62. Solve this, and use the fact that these

two cubic roots are irrational to get conditions on the (rational) coefficients, . . . , until you finally

should reach a = b = c = 0. Boooooring.

If x , y, z and are positive integers such that 6xyz+30xy+21xz+2yz+105x+10y+7z = 812,

find x+ y + z.

Solution

Factor x; this yields 3x(2y+7)(z+5). For the remaining terms, 2yz+10y+7z = (2y+7)(z+5)−35.

So (3x + 1)(2y + 7)(z + 5) = 812 + 35 = 847 = 7 · 112. Since x, y, z are positive integers, each of

the three factors in the LHS is larger than one, so one of them equals 7, and the other two equal 11.

Since 2y + 7 > 7, it follows 2y + 7 = 11, so y = 2. Since 3x+ 1 6= 11, it follows 3x+ 1 = 7, so x = 2.

It is left z + 5 = 11, so z = 6. Therefore x+ y + z = 10.

Find all primes p ≤ q ≤ r such that the numbers

pq + r, pq + r2, qr + p, qr + p2, rp+ q, rp+ q2

Are all primes.

If p is odd, than can we see that all the numbers are even and can’t be prime. So p = 2. pr + q

has also to be odd, so q > 2. If q > 3, qr + 2 or qr + 4 is a mulitple of 3, so we can conclude that
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q = 3. So, we have to find r such that 3r + 2, 2r + 3, 2r + 9, 3r + 4, 6 + r and 6 + r2 are prime, it is

simple to find r = 5 as an example (3 is false, because 9 isn’t prime). If r > 5 : r can be ≡ 1, 2, 3, 4

(mod 5) if r ≡ 1 (mod 5) is 5|3r + 2; if r ≡ 2 (mod 5) is 5|3r + 4; if r ≡ 3 (mod 5) is 5|2r + 9; if

r ≡ 4 (mod 5) is 5|6 + r;

So (2, 3, 5) is the only solution.

Another approach All three cannot be odd, so p = 2. Then q > 2, otherwise qr + p is even. Now

we must have q = 3, otherwise one of qr + 2, qr + 4 would be divisible by 3. Then r > 3, otherwise

pq+r is divisible by 3. Finally, r = 5, otherwise one of the expressions is divisible by 5 (easy to check

modulo 5).

The sequence 1, 3, 4, 9, 10, 12, 13, . . . is increasing and consists of all positive integers which are

either powers of 3 or sums of at most 3 distinct powers of 3. Find the 100th term.

Solution

Within the positive integers whose representation in ternary basis has at most n digits there are(
n
1

)
having one digit 1,

(
n
2

)
having two digits 1, and

(
n
3

)
having three digits 1, the rest of the digits

being zero. In order not to exceed 100 we therefore need n + n(n − 1)/2 + n(n − 1)(n − 2)/6 ≤
100, and the largest such n is 8, for which there are 92 such numbers. The 93rd one is therefore

100000000(3) = 38 = 6561. Now, small such numbers in ternary writing, having at most two digits

1 are succesively 1, 10 = 3, 11 = 4, 100 = 9, 101 = 10, 110 = 12, and finally 1000 = 27, so the 100th

number is 6561 + 27 = 6588

Let n ∈ N such as n ≥ 5 Prove that 2n - 3n − 1

Solution

If n is odd, then 3n−1 = (4−1)n−1 ≡ (−1)n−1 ≡ 2 (mod 4), so 2 | 3n−1 but 4 - 3n−1. If n is even,

let n = 2ab, with integers a ≥ 1 and b odd. Then 3n−1 = (3b)2a−1 = (3b−1)(3b+ 1)
∏a−1

k=1(32kb+ 1).

But 3b−1 ≡ 2 (mod 4), while 32 = 9 ≡ 1 (mod 8), so 32c+1 ≡ 2 (mod 8) and 32c+1+1 ≡ 4 (mod 8).

Summing up, the exponent α such that 2α | 3n − 1 but 2α+1 - 3n − 1 is α = 1 + 2 + (a− 1) = a+ 2.

But n = 2ab ≥ 2a > a+ 2 for a ≥ 3.

Find the maximum value and minimum value of function:

f(x) =
27∑
k=0

[(
27

k

)( x

100

)k (100− x
100

)27−k

. (80k − 23x)

]

in [0;100]

Solution

let us pursue further.
∑27

k=0

[
k
(

27
k

) (
x

100

)k (100−x
100

)27−k
]

=
27x

100

∑26
j=0

[(
26
j

) (
x

100

)j (100−x
100

)26−j
]

=
27x

100
.

Thus, f(x) =
80 · 27x

100
− 23x. Thus −140 = f(100) ≤ f(x) ≤ f(0) = 0 for x ∈ [0, 100].

Can someone please explain this principle to me and also how it can be used for counting how

many integers are relatively prime to another integer. For example, if I asked you: How many integers

are relatively prime to 800? How would you go about counting them using PIE?

Solution

Let A be the set of positive integers between 1 and 800 inclusive, each divisible by 2; then its

cardinality is |A| = b800/2c = 400. Let B be the set of positive integers between 1 and 800 inclusive,

each divisible by 5; then its cardinality is |B| = b800/5c = 160. The number of positive integers

between 1 and 800 inclusive, relatively prime with 800 = 25 · 5 is then 800− |A ∪B|.
By PIE we have |A ∪ B| = |A| + |B| − |A ∩ B|, and since |A ∩ B| = b800/10c = 80, we have

|A ∪ B| = 400 + 160 − 80 = 480, so the number we seek is 800 − 480 = 320. This checks with
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ϕ(800) = ϕ(25 · 5) = (2− 1) · 24 · (5− 1) · 5 = 26 · 5 = 320, the value of Euler’s totient, which yields

precisely what we seek. In fact, one proof for Euler’s totient formula goes precisely by PIE – Find

the nonzero digits a, b, c such that:
√
a+
√
ab+

√
abc+

√
a+ b+ c = cc− bb− aa

Let f(x) = 2x+1 Solve the equation: f(x)+f(f(x))+f(f(f(x)))+f(f(f(f(x)))) = N , where

N ∈ R is given.

Solution

f(x) = 2x+ 1 f(f(x)) = 2(2x+ 1) + 1 = 4x+ 3 f(f(f(x))) = 4(2x+ 1) + 3 = 8x+ 7 f(f(f(f(x)))) =

8(2x+ 1) + 7 = 16x+ 15

So,

f(x) + f(f(x)) + f(f(f(x))) + f(f(f(f(x)))) = (2x+ 1) + (4x+ 3) + (8x+ 7) + (16x+ 15)

= 30x+ 26

= N

Thus, x =
N − 26

30
Tìm mavropnevma 13+ và 14+

Leta, b, c > 0, a+ b+ c = 3. Prove that:
∑

1√
a2−3a+3

≤ 3

Solution

Put x = a− 1, y = b− 1, z = c− 1 so that x+ y + z = 0 and we need∑ 1√
x2 − x+ 1

≤ 3

Not all x, y, z are positive. Case 1: Suppose x, y ≥ 0. Since c ≥ 0, z ≥ −1, x+ y ≤ 1, so that at most

one of x, y ≥ 1/2 If x ≥ 1/2, since f(x) =
1√

x2 − x+ 1
is symmetrical about x = 1/2, we can replace

x with its reflection in x = 1/2 and use the surplus to increase z (still negative), so increasing the

overall sum since f(z) is strictly increasing for negative z. Hence we can assume that x, y ≤ 1/2

f(x) =
1√

x2 − x+ 1
=⇒ f ′(x) = − 2x− 1

2(x2 − x+ 1)3/2
and f ′′(x) =

8x2 − 8x− 1

4(x2 − x+ 1)5/2

f ′′(x) = 0 when x = 1/4(2±
√

6) and f ′′(0) = −1
4
, so f(x) is concave throughout 0 ≤ x ≤ 1/2.

By Jensen’s inequality, f(x)+f(y) ≤ 2f(
x+ y

2
). Putm = x+y

2
so that z = −2m, since x+y+z = 0.

We now have f(x) + f(y) + f(z) ≤ 2f(m) + f(−2m) = P (m), say, and 0 ≤ m ≤ 1/2

For turning points, P ′(m) = 0.

P ′(m) = 2f ′(m)− 2f ′(−2m) = 0 =⇒ f ′(m) = f ′(−2m)

But for 0 ≤ m ≤ 1/2, f ′(m) < 1/2 and f ′(−2m) ≥ 1/2 so this is only possible when m = 0.

P ′′(m) = 2f ′′(m) + 4f ′′(−2m) and so P ′′(0) = 6f ′′(0) < 0, giving a maximum value for P (m) in this

range of 3f(0) = 3

Case 2: Suppose x ≥ 0 and y, z ≤ 0. As before, we may suppose x ≥ 1/2 Let g(x) = 1/2x + 1−
1√

x2 − x+ 1
. Solving g(x) = 0,

(1/2x+ 1)2(x2 − x+ 1) = 1 =⇒ 1

4
x2(x2 + 3x+ 1) = 0

This gives solutions x = 0, (repeated, tangent), x = 1/2(−3+
√

5) = −θ, say, and x = 1/2(−3−
√

5),

(spurious, from squaring).
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We have g(x) ≥ 0 for x ≥ −θ and strictly increasing for x ≥ 0. g(x) is also strictly increasing for

x ≤ −θ and so for −1/2 ≤ x ≤ −θ, g(x) ≥ g(−1/2) = 3
4
− 2√

7

Suppose z =min{y, z}
If z ≥ −θ,both z and y are ≥ −θ and g(x) + g(y) + g(z) ≥ 0

If z ≤ −θ, then −1/2 + θ ≤ y ≤ 0, x ≥ θ and g(x) + g(y) + g(z) ≥ g(−1/2) + g(θ) ≥ 0, since

g(θ) > 0.04 > g(−1/2)

In either case, g(x) + g(y) + g(z) ≥ 0, i.e.

1

2
x+ 1− 1√

x2 − x+ 1
+

1

2
y + 1− 1√

y2 − y + 1
+

1

2
z + 1− 1√

z2 − z + 1
≥ 0

and summing with x+ y + z = 0 gives us the result we needed.

Alternatively, to prove the second case without using numbers, we can use the fact that f ′(x) is

concave to show that h(x) = x− f(x) + f(−x) = g(x)− g(−x) is non-decreasing which is equivalent

to the result above.

How many four digits numbers less than 5000 are possible with: a. no repeatation of digits in the

four digits b. digit 1 compulsorily appearing as one of the four digits c. the four digit number being

divisible by 11 d. All ten digits between 0 to 9 (both including) are qualified to appear

Solution

Remember from primary school that if a number is divisible by 11 then the alternating subtraction

and addition of the digits is also divisible by 11. In this case, if a four digit number in the form abcd

is divisible by 11 then a− b+ c− d is also divisible by 11, or a+ c ≡ b+ d mod 11

Now one digit has to be 1 so for now we let a = 1 and a + c = 1, 2 . . . 10 So we have to find the

partions of {1, 2 . . . 10} in the form b+ d so that a− b+ c− d is divisible by 11

To do this consider a function, f(x) = x0+x1+x2 . . . x9, the expansion of f(x)2 will show us all the

possible sums of two digits, but instead of actually expanding this we just realise that the exponents

will be 0, 1, 2, 3 . . . 18 and the respective coefficients are 1, 2, 3 . . . 9, 10, 9 . . . 3, 2, 1 Now since we are

only concerned with numbers that sum to 1, 2 . . . 10 we find that there are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9

such pair. (now it gets a little messy) From the first condition there can be no repeating digits so

we have to subtract 1 from every even sum to get 2, 2, 4, 4, 6, 6, 8, 8, 10, 8 Also, since we have counted

the each pair twice (e.g. 8=5+3 and 3+5) we divide by 2 and get 1, 1, 2, 2, 3, 3, 4, 4, 5, 4 And again;

one of each solution will be the form (1+c) so we must subtract because (a+c) is already in that

form. . . 0, 0, 1, 1, 2, 2, 3, 3, 4, 3

So the sum of these is 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 4 = 29 These groups of four can be

organised 8 ways and still be divisible by 11 but 8 will begin with 0

So the answer is 29× 8− 8 = 224

Consider the following expression: 4f 3 + 9f 2 − 4f where f is a reduced fraction. for which

value of f , the above expression is an integer ?

Solution

From the rational root theorem, if f = p
q
−→ q = {1, 2, 4} For now we let q = 4 because that covers

everything.

⇒ p3

16
+ p2

16
− p = k for some intiger k ⇒ p3 + 9p2 − 16p ≡ 0 mod 16

Since f is a reduced fraction gcd(p, q) = (p, 4) = (p, 16) = 1, so p2 +9p−16 ≡ 0 mod 16 p+9 ≡ 0

mod 16

p = 7 + 16k
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Checking we see that f
(

7
4

)
= 42 which is an intiger so

f =
7 + 16k

4
where k is a positive integer

Given any n + 2 integers, show that, for some pair of them, either their sum or their difference

is divisible by 2n.

Solution

Every term in a set S = a0, a1 . . . an+2 that is not dividisble by 2n can be expressed as bn mod 2n

where 0 < bn < 2n When adding or subracting two terms from the set, there equivalent values

mod 2n cannot equal 0 or 2n. Therefore no two terms have equivalent values mod 2n therefore the

largest possible set S contains terms with consecutive interget equivalents b mod 2n where 0 < b < n

or n < b < 2n− 1 Therefore the largest set contains n initgers

Due to the pigeonhole principal and set with n+ 1 intigers or indeed n+ 2 initgers must contain

a pair of terms whose sum or difference is divisible by 2n

a+ b+ c = 1 and a,b,c ∈ [0, 1] Find the maximum of (a− b)(b− c)(c− a)

Solution

Let c = max{a, b, c}. For a maximum, we need P = (a− b)(b− c)(c− a) = (c− a)(c− b)(b− a) to be

positive, so we take c ≥ b ≥ a. Substituting c = 1− b− a gives P = (1− b− 2a)(1− 2b− a)(b− a)

and so clearly for a maximum, a = 0 giving P = b(1 − b)(1 − 2b) This is easy to maximise using

calculus. Otherwise using AM-GM

P = 4

[
b√

3− 1
· 1− b√

3 + 1
· 1− 2b

2

]
≤ 4

27

[
b√

3− 1
+

1− b√
3 + 1

+
1− 2b

2

]3

=
1

6
√

3

with equality at
(

0, 1
2
− 1

2
√

3
, 1

2
+ 1

2
√

3

)
and cyclic permutations.

Let a and b be real numbers such that (a2 + b2)
2

+ 4a2b2 = 2a + 2b a) Find max (a+ b); b)

Find max (a− b); c) when these maximumes occur.

Solution

Multiplying out and collecting, we have

(a2 + b2)2 + 4a2b2 =
1

2
[(a+ b)4 + (a− b)4] = 2(a+ b)

This gives (a)

(a+ b)4 = 4(a+ b)− (a− b)4 ≤ 4(a+ b)⇒ a+ b ≤ 3
√

4

since for max, a+ b ≥ 0. Equality when a = b = 1
3√2

and (b)

(a− b)4 ≤ 4(a+ b)− (a+ b)4 = 4u− u4

where u = a+ b. From

4u− u4 ≤ 3 ⇐⇒ (u− 1)2(u2 + 2u+ 3) ≥ 0 =⇒ a− b ≤ 4
√

3

Equality when a+ b = u = 1 and a− b = 4
√

3, i.e. when a = 1+ 4√3
2
, b = 1− 4√3

2

If reals a, b, c ∈ [0, 1], show that

1

5− ab
+

1

5− bc
+

1

5− ca
≥
√
a+
√
b+
√
c

4

Solution
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Since a, b, c ∈ [0, 1], we have (1−a)(1− b) ≥ 0⇒ 1 +ab ≥ a+ b⇒ 1
5−ab ≥

1
6−(a+b)

and similars. After

this and then C-S

LHS ≥ 1

6− (a+ b)
+

1

6− (b+ c)
+

1

6− (c+ a)
≥ 9

18− 2(a+ b+ c)

and we need
9

18− 2(a+ b+ c)
≥
√
a+
√
b+
√
c

4

i.e.

36 + 2(a+ b+ c)(
√
a+
√
b+
√
c) ≥ 18(

√
a+
√
b+
√
c)

Putting p =
√
a+
√
b+
√
c and noting that a+ b+ c ≥ (

√
a+
√
b+
√
c)2

3
we need

36 + 2 · p
3

3
≥ 18p ⇐⇒ (p− 3)2(p+ 6) ≥ 0

which is obviously true.

Prove that:

2011

2
− 2010

3
+

2009

4
− . . .+ 1

2012
=

1

1007
+

3

1008
+

5

1009
+ . . .+

2011

2012

Solution

Proof by induction. Let

S(n) =
2n− 1

2
− 2n− 2

3
+ . . .− 2

2n− 1
+

1

2n
−
[

1

n+ 1
+

3

n+ 2
+ . . .+

2n− 1

2n

]
Then

S(n)− S(n− 1) = 2θ(n) + 2φ(n)− 2

2n− 1
+

1

2n
− 2n− 3

2n− 1
− 2n− 1

2n
+

1

n

= 2θ(n) + 2φ(n) +
2

n
− 2

where

θ(n) =
1

2
− 1

3
+

1

4
− . . .− 1

2n− 3
+

1

2n− 2
, φ(n) =

1

n+ 1
+

1

n+ 2
+ . . .+

1

2n− 2

Similarly

S(n− 1)− S(n− 2) = 2θ(n− 1) + 2φ(n− 1) +
2

n− 1
− 2

Then

S(n) + S(n− 2)− 2S(n− 1) = 2[θ(n)− θ(n− 1)] + 2[φ(n)− φ(n− 1)] +
2

n
− 2− 2

n− 1
+ 2

= 2

[
− 1

2n− 3
+

1

2n− 2

]
+ 2

[
− 1

n
+

1

2n− 3
+

1

2n− 2

]
+

2

n
− 2

n− 1

= 0

We claim that S(n) = 0 ∀n ∈ N We can easily show that this is true for n = 1 and n = 2 and from

the previous, if S(n − 2) = S(n − 1) = 0 then S(n) = 0. Hence proved by induction for all positive

integers and in particular, n = 1006.
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Solve the system of equation

x5 + y5 = 1

x6 + y6 = 1

Solution

If we consider only real solutions then from (2) we know that 0 ≤ x, y ≤ 1 Also if we subtract (1)

from (2) then x5(x− 1) = −y5(y − 1)

Let f(x) = x5(x − 1), we need to find x, y such that f(x) = −f(y) however f(x) has only two

real roots, x = 0, 1 and f(x) < 0, x ∈ (0, 1) therefore there can be no solutions

Except, of coarse when f(x) = 0 so (x, y) = (1, 0), (0, 1)

Let a0 = 1/2 and let an+1 = 1− (an)2. Find limn→∞a2n+1 .

Solution

a0 = 1
2
also if 0 < an < 1 then 0 < 1− a2

n < 1 =⇒ 0 < an+1 < 1 So all terms ai ∈ (0, 1)

we define a sequence b0 = a1 = 3
4
, bn+1 = b2

n(2− b2
n) We show that bn+1 > bn

b2
n(2 − b2

n) > bn =⇒ bn(2 − b2
n) > 1 (1 − bn)(b2

n + bn − 1) > 0 Which is true for bn >
−1+

√
5

2

(
3
4
> −1+

√
5

2

)
So we have a strictly increasing set of positive real numbers {bi}, bounded at 1

As n→∞, an = an+1 therefore an(1− an)(a2
n + an − 1) = 0

This gives roots an = 0, −1±
√

5
2

, 1 but all {bi} are greater that the first three roots so the least

upper bound is 1.

If an integer comes from four digits 0,6,8,9 , we call it Holi Numbers. The first 16 Holi Numbers

list in the ascending order as the following:

6 8 9 60 66 68 69 80 86 88 89 90 96 98 99 600

How about the 2008th Holi Number ?

Solution

Convert 2008 from base 10 to base 4 4n = 1, 4, 16, 64, 256, 1024 . . . So 2008 = 1.(45)+3.(44)+3.(43)+

1.(42) + 2.(41) + 0.(40) We have 2008 base 10 = 133120 base 4

now substistuting (0, 1, 2, 3) for (0, 6, 8, 9)

Holy number: 699680

Three numbers a, b and c are selected from the interval [0, 1], with a ≥ b ≥ c. Find the

probability that 4a+ 3b+ 2c ≥ 1.

Solution

Feasible region for a, b, c is a tetrahedron bounded by planes c = 0, a−b = 0, b−c = 0 and 4a+3b+2c =

1 This has vertices (0, 0, 0), (1
4
, 0, 0), (1

7
, 1

7
, 0), (1

9
, 1

9
, 1

9
) Area of base triangle is 1

2
× 1

4
× 1

7
= 1

56
Volume

is 1
3
× 1

56
× 1

9
= 1

1512
= V P (4a+ 3b+ 2a ≤ 1) = 3!× V = 1

252

In general, with the same condition, P (αa+ βb+ γc ≤ 1) = 1
α(α+β)(α+β+γ)

Find all polynomials p(x) with real coefficients such that

p(x)p(x+ 1) = p(x2 + x+ 1)

Solution

First we show that P (x) has no real roots Let a be a real root of P (x) 0 = P (a)P (a+1) = P (a2+a+1)

and 0 = P (a− 1)P (a) = P (a2 − a+ 1)

So if f(x) = x2 + x+ 1 and a is a root of P (x) then so is f(a), f 2(a) . . . fn(a)

Since a2 + a + 1 > 0 =⇒ fn+1(a) > fn(a) and there are infinitely many roots of P (x) - contra-

diction.

Therefore P (x) has no real roots

Let x = 0 =⇒ P (0)P (1) = P (1) =⇒ P (0) = 1(∵ P (1) 6= 0)

50

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=247639
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=291292
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=239561
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=480426
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=289461


P (0) = 1 implies that the product of all roots (complex of course) is 1 So if b is a complex root

then ‖b‖ = 1, ‖b2 + b+ 1‖ = 1, ‖b2 − b+ 1‖ = 1

However of one of b2 ± b+ 1 we will have 1 = ‖b2 ± b+ 1‖ = ‖b‖+ ‖b2 + 1‖
Therefore ‖b2 + 1‖ = 0 =⇒ b2 + 1 = 0

So we find the only polynomial P (x) = (x2 + 1)n

Also P (x2 + x+ 1) = ((x2 + x+ 1)2 + 1)n = ((x2 + 1)(x2 + 2x+ 2))n = (x2 + 1)n((x+ 1)2 + 1)n =

P (x)P (x+ 1) Another way

If P (x) = c is a constant polynomial, then c · c = c⇒ c = 0, 1. Thus, P (x) = 0 and P (x) = 1 are

the only constant solutions.

Now assume that P (x) is non-constant. Then P (x) has a complex zero: z.

x = z yields: P (z2 + z + 1) = P (z)P (z + 1) = 0, so z2 + z + 1 is also a zero.

x = z − 1 yields: P (z2 − z + 1) = P (z − 1)P (z) = 0, so z2 − z + 1 is also a zero.

Lemma: If Re(z) > 0, then |z2 + z + 1| > |z|. If Re(z) < 0, then |z2 − z + 1| > |z|. If Re(z) = 0,

then |z2 + z + 1|, |z2 − z + 1| ≥ |z| with equality iff z = ±i. Proof for Lemma Let z = a+ bi.

z2 +z+1 = (a2 +a+1−b2)+(2ab+b)i |z2 +z+1| > |z| ⇐⇒ (a2 +a+1−b2)2 +(2ab+b)2 > a2 +b2

⇐⇒ (a4 + 2a3 + 2a2 + 2a) + (2a2 + 2a)b2 + (b2 − 1)2 > 0 which is true for all Re(z) = a > 0.

z2−z+1 = (a2−a+1−b2)+(2ab−b)i |z2−z+1| > |z| ⇐⇒ (a2−a+1−b2)2 +(2ab−b)2 > a2 +b2

⇐⇒ (a4 − 2a3 + 2a2 − 2a) + (2a2 − 2a)b2 + (b2 − 1)2 > 0 which is true for all Re(z) = a < 0.

If Re(z) = a = 0 then z = bi, |z| = b and: z2 ± z + 1 = (1 − b2) ± (b)i. It is easy to see that

|z2 ± z + 1| ≥ |z| with equality when b = ±1⇒ z = ±i.
Thus, if we can find a zero z0, then we can construct an infinite sequence of roots: {zn} such that

zn+1 = z2
n ± zn + 1 and |zn| ≥ |zn−1| for all n ∈ N.

If zn 6= ±i for all n ∈ N0, then {zn} is an infinite sequence whose magnitude is strictly increasing,

and thus, P (x) will have an infinite number of distinct roots, a contradiction.

So, there exists n ∈ N0 such that zn = ±i.
Suppose that zn−1 6= ±i. Then we must have z2

n−1± zn−1 + 1 = ±i Solving yields zn−1 = ±(1 + i)

(Since z 6= ±i).
However, then |zn−1| > |zn| which is a contradiction.

Thus, the only possible sequence of roots with a finite number of distinct values is zn = ±i for
all n ∈ N0.

Therefore, the only possible roots are z = ±i.
So, P (x) = K(x− i)n1(x+ i)n2 for some n1, n2 ∈ N0 and K ∈ R is non-zero.

Since P (x) must be a real polynomial, n1 = n2 = n.

Therefore, P (x) = K(x2 + 1)n. Plugging this yields K = 1 as the only non-zero solution.

Thus, the solution is P (x) = (x2 + 1)n.

Find all triples (a, b, c) such that ,
a2 − 2b2 = 1

2b2 − 3c2 = 1

ab+ bc+ ca = 1

Solution

ab+ bc+ ca = 1 =⇒ (b+ c)(b+ a) = 1 + b2 (1)

a2 − 2b2 = 1 =⇒ (a− b)(a+ b) = 1 + b2 (2)
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a+ b 6= 0 otherwise c(a+ b) + ab = 1⇒ ab = 1 which is impossible

So from (1) and (2), a = 2b+ c(∗)
Similarly ab+ bc+ ca = 1 =⇒ (c+ b)(c+ a) = 1 + c2 (3)

2b2 − 3c2 = 1 =⇒ 2(b− c)(b+ c) = 1 + c2 (4)

Therefore a+ c = 2(b− c)⇒ a = 2b− 3c(∗∗)
From (∗) and (∗∗) clearly c = 0

Hence a = 2b =⇒ (2b)b+ 0(b+ c) = 1 =⇒ b = ± 1√
2

And a = ±
√

2

This gives (a, b, c) = (
√

2, 1√
2
, 0) or (−

√
2,− 1√

2
, 0) as the only solutions

Prove that :⌊∑n
k=1

2k+1

√
2k

2k−1

⌋
= n , (∀)n ∈ N∗ .

Solution

n <
∑n

k=1
2k+1

√
2k

2k−1
is true since each term is greater than 1

now by Bernoulli,(
1 + 1

2k−1

) 1
2k+1 < 1 + 1

(2k−1)(2k+1)

So it is left to show that
∑

1
(2k−1)(2k+1)

< 1

However this series telescopes;∑
1

(2k−1)(2k+1)
= 1

2

∑(
1

2k−1
− 1

(2k+1)

)
< 1

2

So n <
∑n

k=1
2k+1

√
2k

2k−1
< n+ 1

Find the positive numbers x, y, z such that

x+ y + z = 1 and
x

y
+
y

z
+
z

x
=
x+ y

y + z
+
y + z

x+ y
+ 1

Solution

Notice that the fractions on the RHS are the mediants of the fractions on the LHS, we write
x
y

+ y
z

+ z
x

= x+y
y+z

+ y+z
x+y

+ 1

=⇒
(
x
y

+ y
z
− x+y

y+z

)
+
(
z
x

+ y
y
− y+z

x+y

)
= 2

=⇒ z
y+z
·
(
x
y

)
+ y

y+z
·
(
y
z

)
+ y

y+x
·
(
z
x

)
+ x

y+x
= 2

Now we substitute a = x
y
, b = y

z
, c = z

x
and we have abc = 1

=⇒ a
b+1

+ b2

b+1
+ c

a+1
+ a

a+1
= 2

Sub in c = 1
ab

and then multiply though (a+ 1)(b+ 1)

(a+ b2)(a+ 1) + (a2b+1)(b+1)
ab

= 2(a+ 1)(b+ 1)

a2 + b2 + ab2 + a+ ab+ a+ 1
a

+ 1
ab

= 2(ab+ a+ b+ 1)

=⇒ (a− b)2 + (ab− 1
ab

)2 + 1
a
(ab− 1)2 = 0

Equality occurs when a = b and ab = 1 therefore a = b = 1 −→ c = 1

Therefore we have x = y = z, and from our condition x+ y+ z = 1 we get (x, y, z) =
(

1
3
, 1

3
, 1

3

)
as

the only solution.

Let P (x) be a polynomial with integer coefficients. It is known that P (a) = P (b) = P (c) = −1,

where a, b and c are different integers. Prove that P (x) does not have integer roots.

Solution

P (x) = q(x)(x− a)(x− b)(x− c)− 1 with a, b, c ∈ Z and q(x) has integer coefficients

Suppose there is an integer root x = x0

q(x0)(x0 − a)(x0 − b)(x0 − c) = 1

we have q(x0), (x0−a), (x0−b), (x0−c) ∈ Z and the values are distinct because a, b, c are distinct.

But there are no three distinct integers whose product is 1.
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Solve the following system of equations
√
x− 1

y
=
√
y − 1

z
=
√
z − 1

x
= 7

4

Solution

First note that x, y, z > 0 otherwise we have complex numbers etc.

Assume w.l.o.g. that x ≥ y ≥ z =⇒ 1
x
≤ 1

y
≤ 1

z

Then we have
√
x− 1

y
=
√
y − 1

z
=⇒
√
x−√y = 1

y
− 1

z

However
√
x−√y ≥ 0 and 1

y
− 1

z
≤ 0

Therefore x = y = z

=⇒
√
x− 1

x
= 7

4
=⇒ 4x3 − 7x2 − 14x+ 1 = 0 =⇒ (x− 4)(16x2 + 15x+ 4) = 0

Our only answer is x = y = z = 4

Another way:

Let f(x) =

(
7

4
+

1

x

)2

,

So that f(y) = x, f(z) = y, f(x) = z.

This comes from,
√
x− 1

y
= 7

4
=⇒ x =

(
7

4
+

1

y

)2

= f(y)

The same proccess for y and z.

Now we can use the fact that f(f(f(x))) = x, and since f(x) is an increasing function, f(x) = x

so

(
7

4
+

1

x

)2

= x which from the previous post we know that x = 4. Now we substitute 4 for x into

the original problem and the only solution is x = y = z = 4.

Let be a > 0 and b, c ∈ [1, 2) such that a+b
b(1+c)

+ a+c
c(1+b)

= 2 . Prove that a, b, c can be the side

lenghts of a triangle .

Solution
a+b
b(1+c)

+ a+c
c(1+b)

= 2
a−bc
b(1+c)

+ a−bc
c(1+b)

= 0

=⇒ a− bc = 0

=⇒ 4 > b+ c ≥ 2
√
bc = 2

√
a > a Where the last inequality comes from 4 > 2

√
a

Therefore b+ c > a

Also a = bc and b, c ≥ 1 implies that a+ b > bc ≥ c. The same applies for a+ c

So we have b+ c > a, a+ b > c and a+ c > b. Therefore they are sides of a trianlge .

Solve in R∗+ the following equation :√
x+ bxc+

√
x+ {x} =

√
x+ bxc · {x}+

√
x+ 1

Solution

By inspection notice that bxc = 0 yields no solutions. For bxc = 1 the equality holds.

So, to show there are no other solutions assume bxc > 1

For simplicity let bxc = a, {x} = b

squaring both sides gives

2x+ a+ b+ 2
√

(x+ a)(x+ b) = 2x+ ab+ 1 + 2
√

(x+ ab)(x+ 1)

2
√

(x+ a)(x+ b) = (a− 1)(b− 1) + 2
√

(x+ ab)(x+ 1)

From our conditions we have (a− 1)(b− 1) < 0

=⇒ 2
√

(x+ a)(x+ b) < 2
√

(x+ ab)(x+ 1)

=⇒ x2 + (a+ b)x+ ab < x2 + (ab+ 1)x+ ab

=⇒ 0 < (a− 1)(b− 1) contradiction.

Hence the only solutions are bxc = 1, with 0 ≤ {x} < 1
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Given a, b, c and ab+bc+ac√
abc

are all positive integers, does that imply that
√

ac
b
,
√

ab
c
,
√

bc
a
must

all be integers?

Solution

Clearly
√
abc ∈ N so abc = k2, k ∈ N

Write M = (a, b, c) = (α2xy, β2yz, γ2zx)

With gcd(α, β) = gcd(β, γ) = gcd(γ, α) = 1

Constructive proof Take M = (a, b, c) and let gcd(a, b) = y =⇒M = (a′y, b′y, c)

Let gcd(a′, c) = x =⇒M = (a′′yx, b′y, c′x)

Let gcd(b′, c′) = z =⇒M = (a′′xy, b′′yz, c′′zx)

Since gcd(a′′, b′′) = gcd(b′′, c′′) = gcd(c′′, a′′) = 1 it follows that a′′, b′′, c′′ are perfect squares.

=⇒ M = (α2xy, β2yz, γ2zx)

This gives
ab+bc+ca√

abc
=

∑
α2β2y
αβγ

Hence α|z, β|x and γ|y
Therefore√

ab
c

=
√

α2xyβ2yz
γ2zx

= αβy
γ
∈ N because γ|y

Find all pairs of integers (m,n) such that the numbers A = n2 + 2mn + 3m2 + 2, B =

2n2 + 3mn+m2 + 2, C = 3n2 +mn+ 2m2 + 1 have a common divisor greater than 1.

Solution

Suppose p is prime and p|A,B,C.

A−B = 2m2 −mn− n2 = (m− n)(2m+ n) (1)

C −B = m2 − 2mn+ n2 − 1 = (m− n)2 − 1 (2)

From (1), p|(m− n) or p|(2m+ n) but clearly p 6 |(m− n) because of (2)

replacing n ≡ −2m mod p in A and C gives 3m2 + 2 ≡ 12m2 + 1 mod p

but gcd(3m2 + 2, 12m2 + 1) = gcd(3m2 + 2, 7) so the greatest common denominator is at most 7

so 3m2 + 1 ≡ 0 mod 7 =⇒ m ≡ 2, 5 mod 7 =⇒ n ≡ 3, 4 mod 7

hence (m,n) = (7k1 + 2, 7k2 + 3)or(7k1 + 5, 7k2 + 4)

Prove that there is no natural n that satisfy 2n + 3n = a3 , where a is natural number.

Solution

we can consider integers modulo 3.

Let x ≡ 0 modulo 3. Obviously, x3 ≡ 0 modulo 27, so x3 ≡ 9.

Let x ≡ 1 modulo 3, so x = 3k+ 1, so x3 = 27k3 + 27k2 + 9k+ 1, which is equivalent to 1 modulo

9.

Let x ≡ 2 modulo 3, so x = 3k+2, so x3 = 27k3 +54k2 +18k+8, which is equivalent to 8 modulo

9.

Five different four-digit integers all have the same initial digit, and their sum is divisible by

four of them. Find all possible such sets of integers.

Solution

M = {k · 104 + x1, k · 104 + x2, . . . , k · 104 + x5} with k ∈ {1, 2, . . . , 9} and x1, x2, x3, x5, x5 being 5

distinct three digit numbers. Assume that the four elements that divide the sum are x1, x2, x3, x4

and for brevity write S = (k104 + x1) + (k104 + x2) + · · ·+ (k104 + x5)

First we show that k = 1

We will show that 5k+1
k+1

< S
k104+xi

< 5k+4
k

(∗) proof: 5·k104+x1+x2+x3+x4+x5

k104+x1
> 5·k104+x1

k104+x1

> 5·k104+1000
k104+1000
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= 5k+1
k+1

Also
5·k104+x1+x2+x3+x4+x5

k104+x1
< 5·k104+x1+4000

k104+x1

< 5k+4
k
�

Therefore, since all elements in M are distinct, the four terms S
k104+xi

. . . are distinct integers.

If k = 1, From (∗), we have 3 < S
k104+xi

< 9

implying that S
k104+xi

∈ {4, 5, 6, 7, 8}
if k > 1 however there aren’t enough integers to have 4 distinct terms. For example, if k = 2
11
2
< S

k104+xi
< 7

Wich would imply that S
k104+xi

= 6 for i = 1, 2, 3, 4, which is impossible if x1, x2, x3, x4 are distinct.

Hence k = 1

So we have that k = 1 and as a result of the proof above we have that S
1000+xi

∈ {4, 5, 6, 7, 8}
Clearly we cannot have two xi, xj such that S

1000+xi
= 4 and S

1000+xj
= 8

Otherwise 1000 + 2xj = xi which is impossible since xi < 1000

This leaves two systems

system 1

5000 + x1 + · · ·+ x5 = 4(1000 + x1) = 5(1000 + x2) = 6(1000 + x3) = 7(1000 + x4)

Letting yi = 1000 + xi and we get simply

y1 + y2 + . . . y5 = 4y1 = 5y2 = 6y3 = 7y4

Now S = y1 + 4y1

5
+ 4y1

6
+ 4y1

7
+ y5 = 4y4 ⇒ 101y1 = 105y5

Similarly 101y2 = 84y5, 101y3 = 70y5, 101y4 = 60y5

This gives (y1, y2, y3, y4, y5) = (105m, 84m, 70m, 60m, 101m) with m ∈ {17, 18, 19}
system 2

y1 + y2 + . . . y5 = 5y1 = 6y2 = 7y3 = 8y4

And by a similar method as above we find

(y1, y2, y3, y4, y5) = (168m, 140m, 120m, 105m, 307m) but there is no m such that 1000 ≤ 120m ≤
2000 and 1000 ≤ 307m ≤ 2000

So the only solutions are

(y1, y2, y3, y4, y5) = (105m, 84m, 70m, 60m, 101m) with m ∈ {17, 18, 19}
a, b, c ∈ Z+ and a

b
+ b

c
+ c

a
∈ Z+ .Prove that: abc is a perfect cube.

Solution

Let a
b

+ b
c

+ c
a

= k

The LHS is homogeneous so assume gcd(a, b, c) = 1

Assume there exists some prime p that divides a and b , but not c, (∵ (a, b, c) = 1)

Write a = xpn, b = ypm, c = z and (x, p) = (y, p) = (z, p) = 1

Therefore a
b

+ b
c

+ c
a

= x2p2nz+z2ypm+y2p2mxpn

xyzpm+n

Since the expression is an integer and pm+n|y2xp2m+n we know that

pm+n|x2zp2n + z2ypm

If 2n > m then pn+m|pm(x2zp2n−m + z2y), which is impossible as: pn+m 6 |pm because pm+n > pm

and p 6 |x2zp2n−m + z2y because (z, p) = (y, p) = 1.

If m > 2n then pm+n|p2n(x2z + y2pm−2n) which again is impossible.

Hence m = 2n and p2n|x2z + z2y

=⇒ m+ n = 2n+ n = 3n ≡ 0 mod 3
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So if a prime, p divides any number a, b, c then it divides the product abc a number of times that

is divisible by three. hence abc is a perfect cube.

There are 35 objects that need to be carried away which in total weigh 18 pounds. A spaceship

can carry away up to a total of three pounds per trip. Show that if the spaceship can carry away any

combination of 34 of the objects in 7 trips, then it can carry away all 35 of the objects in 7 trips.

Solution

Label the objects ai with a1 ≥ a2 ≥ . . . ≥ a35

If 34 objects can be moved in 7 trips, and each trip can take at most 3 pounds, then there is a

total of 3 · 7 = 21 pounds available among all 7 trips. Consider the first 34 objects, which we know

can be taken in 7 trips. We have a1 + . . .+ a34 = 18− a35

So by the box principle there is atleast one trip with 21−(18−a35)
7

pounds of free space. If 21−(18−a35)
7

≥
a35 ⇔ 1

2
≥ a35 then we are done.

So assume a35 >
1
2

Since 34 objects (all more than 1
2
) can be taken in 7 trips, we must have each trip taking exactly

5 objects except one trip which takes 4 objects.

Consider the trip which takes 4 objects, the worst case is that the four objects are the heaviest.

18 =
∑
ai ≥ (a1+a2+a3+a4+a35)+30a35 > (a1+a2+a3+a4+a35)+ 30

2
=⇒ a1+a2+a3+a4+a35 < 3

Since a1 + a2 + a3 + a4 + a35 < 3, we can send them together and we are done

Let f(x−1
x+1

) + f( 1
x
) + f(1+x

1−x) = x Find f(x)

Solution

f
(
x−1
x+1

)
+ f

(
1
x

)
+ f

(
1+x
1−x

)
= x (1)

let y = x−1
x+1

=⇒ x = y+1
1−y

=⇒ f(y)+f
(

1−y
y+1

)
+f
(
−1
y

)
= y+1

1−y Then set y = −x =⇒ f(−x)+f
(

1+x
1−x

)
+f
(

1
x

)
= 1−x

1+x
(2)

let y = 1+x
1−x =⇒ x = y−1

y+1

=⇒ f
(
−1
y

)
+f

(
1+y
y−1

)
+f(y) = y−1

1+y
then set y = −x =⇒ f

(
1
x

)
+f

(
x−1
x+1

)
+f(−x) = x+1

x−1
(3)

Now (2)− (1) gives f(−x)− f
(
x−1
x+1

)
= x−1

x+1
− x⇔ f(−x)− (−x) = f

(
x−1
x+1

)
−
(
x−1
x+1

)
(∗)

Similarly (3)− (2) gives f
(
x−1
x+1

)
−
(
x−1
x+1

)
= f

(
x+1
1−x

)
−
(
x+1
1−x

)
(∗∗)

From (*) and (**) we find

3
(
f
(

1
x

)
− 1

x

)
= x−

(
x−1
x+1

+ 1
x

+ 1+x
1−x

)
=⇒ f

(
1
x

)
= x4+5x2−2

3x(x2−1)

=⇒ f(x) = 2x4−5x2−1
3x(x2−1)

p > 3 p ∈ P P ∈ 5, 7, 11, 13, 17, 19, 23, 29, 31, .... a, b, c ∈ Z+ a+b+c = p+1 p|a3+b3+c3−1 =⇒
a3+b3+c3−1

p
∈ Z

Prove that a = 1 v b = 1 v c = 1

Solution

a+b+c = p+1. Hence 1 ≤ a < p, 1 ≤ b < p, 1 ≤ c < p. (a+b+c)3 = a3+b3+c3+3(a+b+c)(ab+ac+

bc)−3abc, a+b+c ≡ 1(modp), a3 +b3 +c3 ≡ 1(modp). Hence, 1 ≡ 1+3 ·1 ·(ab+ac+bc)−3abc(modp).

Hence, abc− (ab+ ac+ bc) ≡ 0(modp). Hence, abc− (ab+ ac+ bc) + a+ b+ c− 1 ≡ 0(modp). Hence,

(a − 1)(b − 1)(c − 1) ≡ 0(modp). Hence, a − 1 ≡ 0(modp) ∨ b − 1 ≡ 0(modp) ∨ c − 1 ≡ 0(modp).

Hence, a = 1 ∨ b = 1 ∨ c = 1.

Let a, b, c be real numbers satisifying a+ b+ c = 2 and abc = 4.

(1) Find the minimum of max{a, b, c}.
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(2) Find the minimum of |a|+ |b|+ |c|.
Solution

Let a ≤ b ≤ c. Then a+b = 2−c and ab = 4
c
. Hence, a and b is roots of equation z2 +(c−2)z+ 4

c
= 0.

Hence, (c− 2)2 − 16
c
≥ 0⇔ (c2+4)(c−4)

c
≥ 0. Hence, c ≥ 4 or c < 0. If c < 0 then ab < 0 and or a > 0

or b > 0. Contradiction(c = max{a, b, c}). Thence, c ≥ 4. Hence, minmax{a, b, c} = 4. Since c ≥ 4

then a + b < 0 and ab > 0. Hence a < 0, b < 0. Thence, |a| + |b| + |c| = −a − b + c = c − 2 + c =

2c− 2 ≥ 2 · 4− 2 = 6. Hence, min(|a|+ |b|+ |c|) = 6. (a = −1, b = −1, c = 4)

Problem: Solve the equation

x
√
x2 + x+ 1 +

√
x2 − x+ 1 = x+

√
x4 + x2 + 1

Solution

We notice that (x2 + x+ 1)(x2 − x+ 1) = x4 + x2 + 1 .

Rearranging a bit, x(
√
x2 + x+ 1− 1) =

√
x2 − x+ 1(

√
x2 + x+ 1− 1)

Putting all the terms on one side gives us (x−
√
x2 − x+ 1)(

√
x2 + x+ 1− 1) = 0

Thus, either x =
√
x2 − x+ 1 or

√
x2 + x+ 1 = 1.

x2 = x2 − x+ 1 =⇒ x = 1 Or x2 + x = 0 =⇒ x = 0,−1 .

Thus, we have three solutions x = −1, 0, 1 –(⌊
x+

7

3

⌋)2

−
⌊
x− 9

4

⌋
= 16

–

Let array an is defined by a1 = 27
10
, a3

n+1 − 3an+1(an+1 − 1) − an = 1∀n > 1 Prove that array

has a limit and find that limit

Solution

a3
n+1 − 3an+1(an+1 − 1)− an = 1⇔ (an+1 − 1)3 = an ⇔ ⇔ (an+1 − 1)3 − (A− 1)3 = an − (A− 1)3.

All this is ∀A ∈ R. Let A is root of equation (x− 1)3 = x. (x− 1)3 = x⇔ x3− 3x2 + 2x− 1 = 0. Let

f(x) = x3− 3x2 + 2x− 1. Hence f ′(x) = 3x2− 6x+ 2. f ′(x) = 0⇔ x = x1 = 3+
√

3
3

or x = x2 = 3−
√

3
3
.

Hence xmax = x2 and f(x2) < 0. Hence A is alone root of the equation and A > 2.3 since f(2.3) < 0.

a2 = 1 + 3
√

2.7 = 2.39... > 2.3. Hence ∀n ∈ N an+1 = 1 + 3
√
an > 1 + 3

√
2.3 = 2.32... > 2.3. Thence,

(xn+1−1)3−(A−1)3 = xn−(A−1)3 ⇔⇔ (xn+1−A)((xn+1−1)2+(xn+1−1)(A−1)+(A−1)2) = xn−A.
Hence, |xn+1 − A| = |xn−A|

(xn+1−1)2+(xn+1−1)(A−1)+(A−1)2 < < |xn−A|
1.32+1.3·1.3+1.32 < |xn−A|

2
. Id est, ∀n ∈ N

|an+1 − A| < 1
2
· |an − A|. Hence, |an − A| < 1

2
· |an−1 − A| < ... < 1

2n−1 · |a1 − A|. Hence, ∀n ∈ N
|an−A| ≤ 1

2n−1 · |a1−A|. lim |a1−A|
2n−1 = 0. Hence, liman = A, where A is root of equation (x− 1)3 = x.

:)

Let x and y are positive numbers such that x+y = 1. Find the minimum value of x+7y√
1−x + y+7x√

1−y .

Solution

Let x = cos2 θ, y = sin2 θ
(
θ 6= 0, π

2

)
, we have

P := x+7y√
1−x + y+7x√

1−y

= 1+6 sin2 θ
| sin θ| + 1+6 cos2 θ

| cos θ|
= 1
| sin θ| + 1

| cos θ| + 6(| sin θ|+ | cos θ|). Set | sin θ|+ | cos θ| = t, we have

P := f(t) = 2t
t2−1

+ 6t (0 < t ≤
√

2).

f ′(t) = 2
(t2−1)2 (t+

√
2)(
√

3t+ 1)(t−
√

2)(
√

3t− 1),

yielding the local minimum f(
√

2) = 8
√

2, which is the desired minimum value.
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Another approach:

Let
√

1− x = X,
√

1− y = Y , by x+ y = 1, we have X2 + Y 2 = 1 and
x+7y√

1−x + y+7x√
1−y

= 6(X + Y ) + X+Y
XY

where 1 < X + Y ≤
√

2.

Another way

Using the second form, WLOG let a ≥ b. Since a2 + b2 = 2, a+ b ≤ 2 by RMS-AM, so (a− 1)2 ≤
(b− 1)2. Also, 1− 1

a
≥ 1− 1

b
. Hence, by Chebyshev,

(a− 1)2

(
1− 1

a

)
+ (b− 1)2

(
1− 1

b

)
≤ (a− 1)2 + (b− 1)2

2

(
2− 1

a
− 1

b

)
(∗)

Also, we have 1
a

+ 1
b
≥ 2 which is evident from Holder:

(a2 + b2)

(
1

a
+

1

b

)2

≥ (1 + 1)3

So the right hand side of (∗) is nonpositive; the original expression is as well.

Solve the inequation
√
x+ 1 > 1 +

√
x−1
x

Solution

Obviously, x > −1. SImilarly, [0, 1) is undefined. However, values from [−1, 0) are clearly failures

since the left hand side has an unattainable maximum of 1 while the right hand side has a minimum

of 1 +
√

2. For [1,∞), we get (x2−x+1)2

4x2−4x
> 1. Subtracting one, we get x4−2x3−x2+2x+1

4x2−4x
> 0. Now, that

factors into (x2−x−1)2

4x2−4x
> 0 which is true for all values of x greater than 1 except x=1+

√
5

2
.

Prove that for all x, y and z the following inequality holds: |x − y| + |y − z| + |z − x| ≥
2
√
x2 + y2 + z2 − xy − xz − yz.

Solution

It is symmetric in x, y, z, since the modulus signs allow us to reverse the minus signs, creating symme-

try. Therefore we may assume x ≥ y ≥ z. It becomes 2(x−z) ≥
√

2(x− y)2 + 2(y − z)2 + 2(x− z)2,

but it is obvious that 2(x− y)2 + 2(y − z)2 ≤ 2(x− z)2, so we are done. :)

Another way There is a nice geometric-algebraic interpretation to this: Because |x−y|+ |y−z| ≥
|z − x| and symetrically, there exists a triangle with sides |x − y|, |y − z|, |z − x|.Let ABC be this

triangle and let AB = |x− y|, BC = |y − z|, CA = |z − x|. Then our inequality is rewritten as

AB +BC + CA ≥
√

2(AB2 +BC2 + CA2)

⇐⇒ 2(AB ·BC +BC · CA+ CA · AB) ≥ AB2 +BC2 + CA2.

Now substitute AB = a + b, BC = b + c, CA = c + a, with a, b, c ≥ 0, and you will get that the

inequality is equivalent to ab+ bc+ ca ≥ 0, which is obvious. :wink:

Let A1, A2, ..., A63 be the nonempty subsets of 1, 2, 3, 4, 5, 6. For each of these sets Ai, let π(Ai)

denote the product of all the elements in A1. Then what is the value of π(A1) +π(A2) + ...+π(A63)?

Solution

Let Sn be the set of all subsets of {1, 2, 3, 4, 5, 6} with exactly n elements.

The polynomial
∏6

r=1(rx + 1) = 1 +
∑6

n=1

(∑
Ak∈Sn π(Ak)

)
xn because the x term contains the

sum of 1 through 6, the x2 term is the sum of all possible products of two of these integers, etc.

Substitute x = 1 to get 1 +
∑63

k=1 π(Ak) =
∏6

r=1(r + 1) = 7! = 5040⇒ 5039 .

The following equation: x4 + 4x3 + 5x2 + 2x = 10 + 12
√

(x+ 1)2 + 4

Solution
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x4 +4x3 +5x2 +2x = 10+12
√

(x+ 1)2 + 4 Rewrite this as (x+1)4−(x+1)2 = 10+12
√

(x+ 1)2 + 4.

Let u = (x+ 1)2 ⇒ u ≥ 0 We get u2−u = 10 + 12
√
u+ 4. Let v =

√
u+ 4⇒ v ≥ 2. v4−9v2−12v+

10 = 0. We search for a, b, c such that v4 − 9v2 − 12v + 10 = (v2 − av + b)(v2 + av + c). It’s easy to

find that a = 4, b = 2, c = 5. v2 + 4v + 5 = 0 has no real roots, and the only root of v2 − 4v + 2 = 0

greater than 2 is v = 2 +
√

2. From this we obtain x1,2 = −1±
√

2 + 4
√

2.

Find the range of a for which the equation with respect to x, a cos2 x + 4 sinx − 3a + 2 = 0

has real roots.

Solution

Using cos2 x = 1 − sin2 x and substituting sinx = u we get a new problem find all a such that the

equation f(u) = au2 − 4u + 2(a − 1) = 0 has a root(s) in [−1; 1]. [color=darkred]Solution without

calculus[/color]: if a = 0, u = −1
2
so a = 0 works. When a 6= 0 the discriminant isD = −2(a+1)(a−2)

so for f(u) = 0 to have solutions a ∈ [−1; 2]. When a ∈ (0; 2] the vertex of this parabola lies on

u = 2
a
≥ 1. The bigger root is greater than 1, and for the smaller to be in [−1; 1] we need f(1) ≤ 0

and f(−1) ≥ 0. f(1) = 3a− 6, f(−1) = 3a + 2 so all a ∈ (0; 2] give solutions. When a ∈ [−1; 0] the

vertex is less than -2, and so is the smaller root, now for the bigger root to be in [−1; 1] we need

f(−1) ≥ 0 and f(1) ≤ 0 this gives a ≥ −2
3
. So a ∈ [−2

3
; 2]. [color=brown]Calculus solution:[/color]

From au2− 4u+ 2(a− 1) = 0 we get a = 4u+2
u2+2

= g(u) where u ∈ [−1; 1] calculating g′(u) we see that

on [−1; 1] g(u) is increasing. As g(−1) = −2
3
, and g(1) = 2 the same result follows.

Find the set of primes that satisfy: p+ 1 = 2a2, p2 + 1 = 2b2, where a and b are integers.

Solution

Subtract the first equation from the second to get 2(b+a)(b−a) = p(p−1). Since p must be equal to

exactly one of the factors on the left and bigger than the product of the other factors, p = b+ a, so

that 2(b− a) = p− 1. Substituting p for b+ a, 2(p− 2a) = 2p− 4a = p− 1⇒ p = 4a− 1. Substitute

2a2− 1 for p to get 2a2− 4a = 2a(a− 2) = 0. Because p > 0, a 6= 0. Then a = 2, so p = 7 is the only

possibility. Because 7 + 1 = 2 ∗ 22 and 72 + 1 = 2 ∗ 52, this checks. Then p = 7 is only solution.

Prove this ∀n ∈ N, n ≥ 1
∑
d|n

µ2(d)
φ(d)

= n
φ(n)

Solution

induction based on factorization:

Base case: n=1, which is simply 1=1.

Inductive step: Write n = mpa, where p prime, a ∈ N, and p 6 |m. Let f(d) = [µ(d)]2.

∑
d|n

f(d)

ϕ(d)
=

a∑
k=0

∑
d|m

f(dpk)

ϕ(dpk)

From f and ϕ multiplicative, this becomes

a∑
k=0

f(pk)

ϕ(pk)

∑
d|m

f(d)

ϕ(d)


From f(1) = f(p) = 1, f(pk) = 0 for k > 1, this simplifies to

(
1 + 1

p−1

)(
m

ϕ(m)

)
. The left fraction

is p
p−1

= pa

pa−1(p−1)
= pa

ϕ(m)
, so multiplying the terms gives n

ϕ(n)
.

Prove that
k∑
i=0

(−1)i
(
n

i

)
= (−1)k

(
n− 1

k

)
Solution
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For each subset S of {1, 2, 3, · · · , n − 1} with at most k − 1 elements, we can pair S with S ∪ {n}.
Here exactly one set in the pair has an even number of elements and the other has an odd number

of elements.

The binomial sum on the left hand side is the number of subsets of {1, 2, 3, · · · , n} with at most k

elements and of even parity minus those of odd parity. Of the subsets of {1, 2, 3, · · · , n} with at most

k elements, the only ones that do not fall into one of the pairs are those with exactly k elements, all

coming from {1, 2, 3, · · · , n − 1}. There are
(
n−1
k

)
of them, and they contribute to the even number

count (so added) if k even, or to the odd number count (so subtracted) if k odd. Therefore, the

binomial sum is equal to (−1)k
(
n−1
k

)
, as desired.

Find all real solution of: cos(x) + cos(x.
√

2) = 2

Solution

cosx ≤ 1 ⇒ cos(x) + cos(x
√

2) ≤ 2. Equality holds iff x and x
√

2 both have cosines of 1, so that

both are integral multiples of 2π. But if x = 2πn, then 2πn
√

2 is an integral multiple of 2π ⇒ n
√

2

is an integer. Since
√

2 irrational, n = 0 and so x = 0.

Suppose f(x) is a polynomial with integer coefficients such that f(0) = 11 and f(x1) = f(x2) =

... = f(xn) = 2002 for some distinct integers x1, x2, ..., xn. Find the largest possible value of n.

Solution

For each xk, an xk can be factored out of f(xk)− f(0) = 1991 = 11 · 181. So xk must be a divisor of

1991, and there exist 8 such divisors: ±1,±11,±181,±1991.

In addition, P (x) = 2002 +Q(x)
∏

k(x−xk) for some polynomial Q, and Q will also have integer

coefficients. Substituting 0 in for x gives

Q(0) = (−1)n+1 1991∏
k xk

which must be an integer. So only one xk can be divisible by 19 and only one can be divisible by

181. After using up 1 and -1 that means at most 4 for n.

The polynomial P (x) = 2002 + (x + 1)(x − 1)(x − 19)(x − 181) does satisfy the conditions for

n = 4, so the maximum is 4 .

Find all pairs of natural pairs of natural numbers (n, k) such that (n+ 1)k − 1 = n!

Solution

By inspection we find the solutions (1, 1), (2, 1), (4, 2) . To see that there are no more solutions, note

that k is uniquely determined by n and if n is odd and greater than 1, the left hand side is odd while

the right hand side is even, so no solution here. So suppose there is a solution with n = 2m, m ≥ 3.

Our equation is equivalent to

(2m− 1)! = 1 + (2m+ 1) + (2m+ 1)2 + · · ·+ (2m+ 1)k−1

Since m ≥ 3, 2 < m ≤ 2m − 1 so 2 and m appear as distinct factors in (2m − 1)!, making the

left hand side congruent to 0 (mod 2m). On the other hand, the right hand side is congruent to k

(mod 2m), so that k is divisible by 2m. In particular, k ≥ 2m = n. But this means

(n+ 1)k − 1 ≥ (n+ 1)n − 1 > (n+ 1)n−1 > 2 · 3 · · · · · n = n!

which is a contradiction, so there are no solutions other than the three given.

Calculate (tan(3π/11) + 4sin(2π/11))2 = 11

Solution
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The generalization is this: if p is an odd prime, S is the set of the p−1
2

nonzero squares modulo p,

and z is a primitive pth root of 1, then(
1 + 2

∑
k∈S

zk

)2

= p · (−1)
p−1

2

I forget the proof, but it goes something like this: define f so that f(0) = 0, f(a) = 1 if a is in S,

and f(a) = −1 otherwise. After multiplying out the left hand side, which is equal to(
p−1∑
k=0

zkf(k)

)2

=

p−1∑
k=0

(
zk

p−1∑
j=0

f(j)f(k − j)

)

(and the index of 0 in the right hand sum can be replaced by 1 since f(0)f(k) = 0), the expression

f(j)f(k− j) for j 6= 0, k 6= 0 is rewritten in some clever way [size=150](...)[/size] (using things such

as f(a)f(b) = f(ab) and a 6= 0⇒ f(a2) = 1) to make it clear that

p−1∑
j=1

f(j)f(k − j) = −f(−1) = −(−1)
p−1

2

for k 6= 0. For k = 0, j 6= 0, f(j)f(k − j) = f(−1) = (−1)
p−1

2 , which would make the sum equal to

(p− 1)(−1)p−12− (z + z2 + · · ·+ zp−1)(−1)
p−1

2 = p · (−1)
p−1

2

Now the fix the hole where the ... is ...

Let n be a natural number and f(n) = 2n− 1995b n
1000
c(b c denotes the floor function).

1. Show that if for some integer r: f(f(f...f(n)...)) = 1995 (where the function f is applied r

times), then n is multiple of 1995.

2. Show that if n is multiple of 1995, then there exists r such that:f(f(f...f(n)...)) = 1995 (where

the function f is applied r times). Determine r if n = 1995.500 = 997500

Solution

For 1)

Let f r denote f ◦ f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
r

. Since f(n) ≡ 2n (mod 1995), f r(n) ≡ 2rn (mod 1995). Then if

f r(n) is divisible by 1995, so is 2rn. But 1995 and 2 are relatively prime, so 1995 must divide n.

For 2)

If n is a multiple of 1995, then so is f r(n) for any r. Also, a
1000
− 1 <

⌊
a

1000

⌋
≤ a

1000
, so a

200
≤

f(a) < a
200

+ 1995 for any positive integer a.

Suppose there exists a positive integer n which is a multiple of 1995 but f r(n) 6= 1995 for any n.

Let m be the least positive value of f r(n). Then m ≥ 1995 · 2 since m is a multiple of 1995. But the

inequality gives

0 <
m

200
≤ f(m) <

m

200
+ 1995 ≤ 101m

200
< m

so 0 < f(m) < m which is a contradiction. Therefore the sequence must eventually reach 1995.

When n = 1997 · 500, 5
2
· 1995 ≤ f(n) < 7

2
· 1995 so f(n) must equal 3 · 1995. Since 3·1995

200
is clearly

less than 1995, f 2(n) = 1995, so r = 2 in this case.

find the greatest commond divisor of natural numbers a and b satisfying (1+
√

2)2007 = a+b
√

2

Solution

(1 +
√

2)2007 = a+ b
√

2⇒ (1−
√

2)2007 = a− b
√

2
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Multiplying the two,

a2 − 2b2 = −1

Suppose d is a (positive) common divisor of a and b, a = dx and b = dy where x and y are positive

integers. Then

d2(x2 − 2y2) = −1

In particular, d divides 1, so d must equal 1 and gcd(a, b) = 1.

Let a1, a2, ... be positive numbers such that an+1 = a2
n − 2(n = 1, 2, ...). Prove that an ≥ 2 for

all n ≥ 1.

Solution

If a1 ≥ 2, then an will always be ≥ 2 by induction (as ak ≥ 2⇒ ak+1 = a2
k − 2 ≥ 2).

Suppose that a1 < 2 but an is positive for all n. It follows by induction that an < 2 for all n, so

we can write

an = 2 cosαn

where 0 < αn <
π
2
. But we have

2 cosαn+1 = an+1 = a2
n − 2 = 4 cos2 αn − 2 = 2 cos 2αn

so αn+1 = 2αn. Let θ = α1; then it follows that

an = 2 cos 2n−1θ

for all n. Since θ > 0 and 2n−1 gets arbitrarily large for large enough n, there will be some M such

that 2M−1θ ≥ π
2
. Consider the least such M . Then because 2M−2θ < π

2
, 2M−1θ < π. It follows that

π

2
≤ 2M−1θ < π ⇒ aM ≤ 0

but this is a contradiction!

Let a, b are two positive integers such that a, bneq1. Find all integer values of a2+ab+b2

ab−1

Solution

Let n = a2+ab+b2

ab−1
. When a = b = 2 and a = 11, b = 2, we find n = 4, 7 . We now show that no other

n are possible. Suppose some a, b produced an integer n 6= 4, 7. Then consider such a solution with

least value of max{a, b}.
If a = b, then n = 3a2

a2−1
= 3+ 3

a2−1
. Then a2−1 divides 3, so a2−1 ≤ 3⇒ a ≤ 2. But a is positive

and not 1, so a must equal 2 and n = 4, a contradiction.

Otherwise, a 6= b. WLOG let a > b. Our expression for n can be written as

a2 − b(n− 1)a+ (b2 + n) = 0

a quadratic in a. Let c be the other root of the quadratic. Then from Vieta’s, c = b(n − 1) − a, an
integer, and c = b2+n

a
, which is positive. We now show c < a which is equivalent to b2 +n < a2. After

writing n in terms of a and b and multiplying by ab−1
a

, it’s equivalent to

b(a2 − b2) > 2a+ b

Now a > b, so b ≤ a− 1 and b(a2 − b2) ≥ b(a2 − (a− 1)2) = b(2a− 1). Finally, b(2a− 1) > 2a+ b is

equivalent to (a− 1)(b− 1) > 1. But as b ≥ 2 and a ≥ 3, this is clearly true.
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Now that c < a, consider the ordered pair (b, c). Since max{b, c} < a = max{a, b}, this ordered

pair cannot be one that satisfies b2+bc+c2

bc−1
6= 4, 7 if c 6= 1. In this case b2+bc+c2

bc−1
either equals 4 or 7.

But using the quadratic equation with a and c as roots, we find b2+bc+c2

bc−1
= n, so n = 4 or n = 7, a

contradiction.

Otherwise, c = 1 so that

n =
b2 + b+ 1

b− 1
= b+ 2 +

3

b− 1

Then b− 1 divides 3, so b = 2 or b = 4. Either way, n = 7, a contradiction.

So in any case, no n other than 4 or 7 are possible, as desired.

Let a, b, c, x, y, z be real numbers so that satifying the following system:


aa+ b+ c = 0

x+ y + z = 0

x
a

+ y
b

+ z
c

= 0

Calculate value of expression A = xa2 + yb2 + zc2

Solution

(x
a

+
y

b
+
z

c

)
(a3 + b3 + c3) = (xa2 + yb2 + zc2) +

∑
cyc

x(b3 + c3)

a

Since the above equals 0 and b3 + c3 = (b+ c)(b2 − bc+ c2) = −a(b2 − bc+ c2), we have

(xa2 + yb2 + zc2) =
∑
cyc

x(b2 − bc+ c2) =
∑
cyc

x(b2 + c2)

(from xbc+ yca+ zab = abc
(
x
a

+ y
b

+ z
c

)
= 0). In particular,

xa2 + yb2 + zc2 =
1

2
(x+ y + z)(a2 + b2 + c2) = 0 .

Show that there is a positive integer k such that, for every positive integer n, k2n + 1 is com-

posite.

Solution

By the Chinese Remainder Theorem, we can find a positive integer k such that k ≡ 2 (mod 641(232−
1)) and k ≡ 233 (mod 232+1

641
). (It is a fact that 232+1

641
is an integer not divisible by 641, and of course

it’s relatively prime with 232 − 1; also

232 − 1 = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

a product of pairwise relatively prime integers. Then we have

n ≡ 2j − 1 (mod 2j+1)⇒ k · 2n ≡ −1 (mod 22j + 1)

for each j between 0 and 4 inclusive,

n ≡ 31 (mod 64)⇒ k · 2n ≡ −1 (mod 641)

n ≡ 63 (mod 64)⇒ k · 2n ≡ −1 (mod
232 + 1

641
)

Since n must fall into one of the 7 cases above, k · 2n + 1 must always be divisible by at least one of

the 7 factors, and k ≥ 2 + 641(232 − 1) so k · 2n + 1 is always greater than each of the factors and is

therefore composite.
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Find a formula for ak if∑n
k=1

(
n
k

)
ak = n

n+1

Solution

ak =
(−1)k+1

k + 1

The base case k = 1 is clearly true. For the inductive step, if we can show

n∑
k=1

(−1)k+1 · n+ 1

k + 1
·
(
n

k

)
= n

then we will be done, because the right hand side is equal to

(n+ 1)
n∑
k=1

ak

(
n

k

)
= (n+ 1)an +

n−1∑
k=1

(−1)k+1 · n+ 1

k + 1
·
(
n

k

)
But we have n+1

k+1
·
(
n
k

)
=
(
n+1
k+1

)
, so that

n∑
k=1

(−1)k+1 · n+ 1

k + 1
·
(
n

k

)
=

n∑
k=1

(−1)k+1

(
n+ 1

k + 1

)
= −1 + (n+ 1) + (1− 1)n+1 = n

as desired.

Find all n ∈ N∗ satisfy 3n-1 is divisible by n3.

Solution

We claim 1, 2 are the only solutions (clearly they work). Suppose true for some n > 2. Then let p

be the least prime divisor of n. We have 3n ≡ 1 (mod p) and 3p−1 ≡ 1 (mod p). Let e be the order

of 3 modulo p, then e divides both p − 1 and n (which has no prime divisor less than or equal to

p− 1) so e = 1. But 3 ≡ 1 (mod p) implies p = 2.

Now write n = 2k ·m where k,m positive integers and m odd. Then 23k ·m3 divides 32k·m − 1.

First, 23k divides 32k·m − 1 which factors by difference of squares into

(3m − 1)
k−1∏
j=0

(32j ·m + 1)

3m − 1 is congruent to 2 mod 4, 3m + 1 is congruent to 4 mod 8, and 32j ·m + 1 is congruent to 2

mod 4 for positive j. That means the above product is divisible by 2k+2 but not 2k+3. This means

k + 2 ≥ 3k, so k must equal 1.

Now with k = 1, n = 2m so 8m3 divides 32m − 1. Now n > 2 means m > 1, and we do the same

thing as before: let q be the smallest prime divisor of m, so that 32m ≡ 1 (mod q) and 3q−1 ≡ 1

(mod q), from which we deduce 32 ≡ 1 (mod q). But this means q = 2 which contradicts m odd!

Therefore, no other solutions.

a 6= 0, b 6= 0 and c 6= 0 such that a2(b + c − a) = b2(c + a − b) = c2(a + b − c). Prove that

a = b = c.

Solution

Suppose a, b, c not all equal. At least one number is distinct from all others, so WLOG let a 6= b, a 6= c.

We have

0 = a2(b+ c− a)− b2(c+ a− b) = c(a2 − b2) + (a2b− ab2)− (a3 − b3)
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= (a− b)((a+ b)c+ ab− (a2 + ab+ b2)) = (a− b)((a+ b)c− a2 − b2)⇒ (a+ b)c = a2 + b2

Similarly, (a+ c)b = a2 + c2. In particular,

0 = (a+ c)b− (a2 + c2)− (a+ b)c+ (a2 + b2) = a(b− c) + (b2 − c2) = (b− c)(a+ b+ c)

But either case leads to a contradiction when plugging into (a+ b)c = a2 + b2:

b = c⇒ (a+ b)b = a2 + b2 ⇒ a(a− b) = 0

a+ b+ c = 0⇒ −(a+ b)2 = a2 + b2 ⇒ a2 + b2 + (a+ b)2 = 0

So a = b = c.

For |x| ≤ 1, |ax2 + bx+ c| ≤ 1. Prove

|cx2 + bx+ a| ≤ 2

for |x| ≤ 1

Solution

Let P (x) = ax2 + bx+ c,Q(x) = cx2 + bx+ a, j = P (−1), k = P (0), l = P (1). We must have

P (x) = j · x
2 − x

2
+ k · (1− x2) + l · x

2 + x

2

For |x| ≥ 1, we have

|P (x)| ≤ |j| · |x
2 − x|

2
+ |k| · |1− x2|+ |l| · |x

2 + x|
2

≤ |x
2 − x|

2
+ |1− x2|+ |x

2 + x|
2

=
x2 − x

2
+ (x2 − 1) +

x2 + x

2

= 2x2 − 1 < 2x2

so that |Q(1/x)| < 2. As a result, |Q(y)| < 2 if y ∈ [−1, 1] and y 6= 0.

Similarly, Q(0) = j
2
− k + l

2
so |Q(0)| ≤ 2 as well. Another way

For contradiction, assume there is a point in [−1, 1] such that |cx2 + bx+ a| > 2

Notice that at each of x = ±1, |cx2 + bx + a| = |ax2 + bx + a| = |a ± b + c| ≤ 1. Therefore

|cx2 + bx+ a| takes its maximum at its vertex, which must lie in (−1, 1).

Thus the x coordinate of the vertex must lie in (−1, 1) so |b| < 2|c|. The |y| value is > 2:∣∣∣ b2−4ac
4c

∣∣∣ > 2.

Going back to the original quadratic, f(x) = ax2 + bx+ c, we know that |f(−1)|, |f(0)|, |f(1)| ≤
1 =⇒ |c| ≤ 1, |a ± b + c| ≤ 1. By the triangle inequality, |a ± b| ≤ |a ± b + c| + |c| ≤ 2 thus

|a|+ |b| ≤ 2.

Hence

|b2|+ |4ac| ≥ |b2 − 4ac| > 8|c| ⇐⇒ ⇐⇒ b2 > 4(2− |a|)|c| ≥ 4|b ‖ c| ≥ 2b2 ⇐⇒ −b2 > 0

contradiction.

We conclude |cx2 + bx+ a| ≤ 2 in [−1, 1] �

Let a and b are positive numbers such that a9 + b9 = 2. Prove that

a2

b
+
b2

a
≥ 2
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Solution

The inequality (a3 + b3)9 ≥ 256a9b9(a9 + b9) is equivalent to

(a6 + 2a3b3 + b6)4 ≥ 256a9b9(a6 − a3b3 + b3)

If we let X = a3b3 and Y = a6 − a3b3 + b6, then AM-GM gives (3X + Y )4 ≥ 256X3Y .

Suppose (2 +
√

3)2r−1 = 1 + m + n
√

3, where m,n,r are positive integers. Then prove that m

has an odd number of divisors.

Solution

Let r = s+ 1. Conjugating with respect to
√

3, we get
(
2−
√

3
)2s+1

= 1 +m− n
√

3 so that

m =

(
2 +
√

3
)2s+1

+
(
2−
√

3
)2s+1 − 2

2

=

(
2 +
√

3
)2s (

1 +
√

3
)2

+
(
2−
√

3
)2s (

1−
√

3
)2 − 4

4

=

((
1 +
√

3
) (

2 +
√

3
)s

+
(
1−
√

3
) (

2−
√

3
)s

2

)2

The element under the square is of the form α+α
2

where α = a + b
√

3 for integers a, b. So m = a2.

It then follows easily that m has an odd number of divisors, since each divisor less than a can be

paired with m
a
.

Let sinx+sin y+sin z
sin(x+y+z)

= cosx+cos y+cos z
cos(x+y+z)

= 2
√

2. Find cosx cos y + cos y cos z + cos z cosx

Solution

Let a = cos x + i sinx, b = cos y + i sin y, c = cos z + i sin z. Then a, b, c have absolute value 1 and

satisfy the equation

a+ b+ c = 2
√

2abc

Conjugating both sides of the above (note that |a| = 1⇒ a = 1
a
, etc.),

1

a
+

1

b
+

1

c
=

2
√

2

abc
⇒ ab+ bc+ ca = 2

√
2

Now we compute: cosx cos y + cos y cos z + cos z cosx is half of
∑

cyc

(
a+ 1

a

) (
b+ 1

b

)
, which is

∑
cyc

c(a2 + 1)(b2 + 1)

abc

=
abc(ab+ bc+ ca) + (a+ b+ c) + (a2b+ a2c+ b2a+ b2c+ c2a+ c2b)

abc

=
abc(ab+ bc+ ca) + (a+ b+ c) + (a+ b+ c)(ab+ bc+ ca)− 3abc

abc

= 2
√

2 + 2
√

2 + 8− 3 = 4
√

2 + 5

⇒ cosx cos y + cos y cos z + cos z cosx =
4
√

2 + 5

2
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Of course, having the sum much greater than 3 is ridiculous, so either I messed up horribly or there’s

no solution.

Let k1, k2, .., kn, ki 6= kj∀i 6= j. Prove that: a1e
k1x +a2e

k2x + ...+ane
knx = 0,∀x ∈ R if and only

if a1 = a2 = ... = an = 0

Solution

First, analize the case maxi ki > 0 and ai = 0. WLOG k1 = maxi ki. Then a1e
k1x + · · · + ane

knx =

ek1x
(
a1 + a2e

(k2−k1)x + · · ·+ ane
(kn−k1)x

)
and if we take x → ∞ the function will diverge since the

2nd factor converges to a1. This clearly acontradiction.

I think we can extend the proof if we assume that |k1| = maxi |ki| and then multiply each k by ±1

so that the maximal k is positive. We can also just cut away every ai = 0 and analize the remaining

funtion, so ai = . . . = an = 0.

Another way If a function f is identically zero, f (m)(0) = 0 for all nonnegative integers m. So we

get
n∑
j=1

ajk
m
j = 0

By taking linear combinations,
n∑
j=1

ajP (kj) = 0

for every polynomial P . But for each j, we can choose the polynomial

Pj(t) =
∏
r 6=j

t− kr
kj − kr

Plugging in Pj into the above gives aj on the left hand side. So all aj are zero.

Let x, y, z ∈ R, x 6= y, y 6= z, z 6= x such that: x2 = 2 + y, y2 = 2 + z, z2 = 2 + x Find max and

min: P = x2 + y2 + z2

Solution

If x > 2, then x < y < z < x. If x < −2, then y > 2. Both lead to contradictions, so we must have

|x| ≤ 2.

Let x = 2 cos θ to get y = 2 cos 2θ, z = 2 cos 4θ, and

cos 8θ = cos θ ⇒ sin
9θ

2
sin

7θ

2
= 0

Now we cannot have θ ≡ 0 (mod 2π) because then x = y = 2. So if 7θ ≡ 0 (mod 2π), then the

unique solution up to cyclic permutation is(
2 cos

2π

7
, 2 cos

4π

7
, 2 cos

8π

7

)
(This is the only solution because cos 12π

7
= cos 2π

7
etc.). Now we have

z = e2πi7⇒ 0 = z3 + z−3 + z2 + z−2 + z + z−1 + 1 = x3 + x2 − 2x− 1

etc. giving x+ y + z = −1, xy + yz + zx = −2⇒ x2 + y2 + z2 = 5.

Otherwise, 9θ ≡ 0. But 3θ 6≡ 0 (otherwise we would get all variables equal to -1). Here the unique

solution is (
2 cos

2π

9
, 2 cos

4π

9
, 2 cos

8π

9

)
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up to cyclic permutation. In this case, x3 − 3x− 1 = 0 giving x + y + z = 0, xy + yz + zx = −3 ⇒
x2 + y2 + z2 = 6.

So the minimum and maximum values of P are 5 and 6, respectively (in fact, they’re the only

values).

Let a, b, c and d are non-negative numbers such that

a2 + b2 + c2 + d2 = ab+ ac+ ad+ bc+ bd+ cd

Prove that

(a+ b+ c+ d)3 ≥ 21.6(abc+ abd+ acd+ bcd)

When the equality holds?

Solution

Normalize to a + b + c + d = 6, ab + ac + ad + bc + bd + cd = 12, and WLOG let a ≤ b ≤ c ≤ d. So

the polynomial

t4 − 6t3 + 12t2 −mt+ n

(where m = abc+ abd+ acd+ bcd, n = abcd) has four nonnegative roots, and we must show m ≤ 10.

By Rolle’s Theorem (and the fact that roots of multiplicity have zero derivative at the root), the

derivative of the above,

4t3 − 18t2 + 24t−m

has three nonnegative real roots x, y, z with sum 9
2
and a ≤ x ≤ b ≤ y ≤ c ≤ z ≤ d. But this is equal

to

2(t− 1)2(2t− 5)− (m− 10)

so we indeed get m ≤ 10 (otherwise x, y, z > 5
2
).

In order to have equality, we have x = y = 1, that means b = 1. So our original polynomial is

2

∫ t

1

(u− 1)2(2(u− 1)− 3) du = (t− 1)4 − 2(t− 1)3 = (t− 1)3(t− 3)

making the only equality case (1,1,1,3) (up to permutations and scaling).

Let a, b and c are non-negative numbers such that a2 + b2 + c2 = 4(ab+ ac+ bc). Prove that

a3 + b3 + c3 ≥ 12abc

Solution

Normalize by letting x = 6a
a+b+c

etc. Because the condition and inequality are homogenous, the

inequality in a, b, c reduces to one in x, y, z where x, y, z nonnegative and x+y+z = xy+yz+zx = 6.

This also means x3 + y3 + z3 − 3xyz = 108.

Now the polynomial P (t) = (t − x)(t − y)(t − z) = t3 − 6t2 + 6t − p (for p = xyz) has x, y, z as

roots. But also,

t3 − 6t2 + 6t− 4
(√

2− 1
)

=
(
t−
(

2−
√

2
))2 (

t−
(

2 + 2
√

2
))

So we must have p ≤ 4
(√

2− 1
)
. Otherwise, the above expression is positive for x, y, z, which would

mean x, y, z > 2 + 2
√

2 and then x+ y + z would be much greater than 6.
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Now xyz ≤ 4
(√

2− 1
)
and x3 + y3 + z3 − 3xyz = 108 implies

x3 + y3 + z3

xyz
= 3 +

108

xyz
≥ 30 + 27

√
2

So the best constant is 30 + 27
√

2, with x = 2 + 2
√

2, y = z = 2−
√

2 producing equality.

Let b be an even positive integer. Assume that there exist integer n > 1 such that bn−1
b−1

is

perfect square. Prove that b is divisible by 8.

Solution

We have
bn − 1

b− 1
= bn−1 + . . .+ b+ 1 = k2, n, k ∈ N, n 6= 1,

from which we can get

k2 − 1 = b
n−2∑
i=0

bi.

Because b ≡ 0 (mod 2), from the left side follows k ≡ 1 (mod 2), so k = 2t−1, t ∈ N, t 6= 1 (because

b > 2).

Now we get

4t (t− 1) = b

n−2∑
i=0

bi.

Notice that 4t (t− 1) ≡ 0 (mod 8) and

n−2∑
i=0

bi ≡ 1 (mod 2),

from which directly follows b ≡ 0 (mod 8).

Q. E. D. Another way Let bn−1
b−1

= k2, so that 1 + b+ · · ·+ bn−1 = k2. The left side of this equation

is odd, so k must be odd also. Since squares are 0, 1, or 4 mod 8, we have k2 ≡ 1 (mod 8), so

b+ b2 + · · ·+ bn−1 ≡ 0 (mod 8) b(1 + b+ · · ·+ bn−2) ≡ 0 (mod 8)

Since 1 + b+ · · ·+ bn−2 is odd, 8|b.
A prime number p divides a2 + 2 for a natural number a. Prove that p or 2p is of the form

x2 + 2y2 for some natural numbers x, y.

Solution

Let S be the set of ordered pairs of integers (u, v) such that 0 ≤ u <
√
p 4
√

2, 0 ≤ v <
√
p

4√2
. The number

of elements in S is d√p 4
√

2ed
√
p

4√2
e > p, so by Pigeonhole, there exist u, u′, v, v′ such that (u, v), (u′, v′)

distinct elements in S and

u− av ≡ u′ − av′ (mod p)⇒ x ≡ ay (mod p)

where x = u− u′, y = v − v′. Then x, y not both 0, and

|x| < √p 4
√

2, |y| <
√
p

4
√

2
⇒ 0 < x2 + 2y2 < 2

√
2p

But x ≡ ay (mod p) implies x2 + 2y2 = (x+ ay)(x− ay) + (a2 + 2)y2 is divisible by p, so either p or

2p is of the form x2 + 2y2. Of course, as mentioned above, this means p must be of that form.

The equation

x10 + (13x− 1)10 = 0
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has 10 complex roots r1, r1, r2, r2, r3, r3, r4, r4, r5, r5, where the bar denotes complex conjugation. Find

the value of
1

r1r1

+
1

r2r2

+
1

r3r3

+
1

r4r4

+
1

r5r5

.

Solution

We get (13x− 1)10 = −x10 or 13x− 1 = θnx where θ0, θ1, · · · , θ9 are the tenth roots of −1. Solving

for x, we get the roots x =
1

13− θn
.

Lemma 1: If rk is the root corresponding to θk, then rk is the root corresponding to θk. Proof:

If rk =
1

13− θk
, then rk =

1

13− θk
=

1

13− θk
=

1

13− θk
. Let θk = a + bi. We get θk = a − bi. Now

notice
1

13− θk
=

1

13− a− bi
=

1

13− a+ bi
=

1

13− θk
. �

We desire
1

r1r1

+
1

r2r2

+
1

r3r3

+
1

r4r4

+
1

r5r5

. From Lemma 1, this is

4∑
i=0


1(

1

13− θi

)(
1

13− θi

)
 =

4∑
i=0

(13− θi)(13− θi =
4∑
i=0

(169− 13(θi + θi) + θiθi)

This is

169 · 5− 13(θ0 + θ1 + θ2 + · · ·+ θ9) +
4∑
i=0

θiθ1)

Since the θs are the roots of x10 − 1 = 0, their sum is, by Vietas, 0. Additionally, they are roots of

unity (solutions to x20 = 1, so they have magnitude 1. We therefore get θnθn = |θn|2 = 1 for all n.

This means we can simplify our answer to

169 · 5− 13 · 0 + 5 = 170 · 5 = 850

Another appraoch Let t = 1/x. After multiplying the equation by t10, 1 + (13 − t)10 = 0 ⇒
(13− t)10 = −1.

Using DeMoivre, 13− t = e
(2k+1)π

10 where k is an integer between 0 and 9.

t = 13− e
(2k+1)π

10 ⇒ t̄ = 13− e−
(2k+1)π

10 .

Since eiy + e−iy = 2 cos y, tt̄ = 170 − 2 cos (2k+1)π
10

after expanding. Here k ranges from 0 to 4

because two angles which sum to 2π are involved in the product..

The expression to find is
∑
tt̄ = 850− 2

∑4
k=0 cos (2k+1)π

10
.

But cos π
10

+ cos 9π
10

= cos 3π
10

+ cos 7π
10

= cos π
2

= 0 so the sum is 850 .

Let integer n ≥ 2. If for all integer k, satisfying 0 ≤ k ≤
√

n
3
. k, k2 + k + n are all prime

numbers. Prove that for all integer k, satifying 0 ≤ k ≤ n−2 then k, k2 +k+n are all prime numbers.

Solution

Suppose k2 + k + n is not prime for some 0 ≤ k ≤ n − 2. Then the least nonnegative j for which

j2 + j + n is not prime is at most n− 2.

j2 + j + n cannot equal 1 since j2 + j + n =
(
j + 1

2

)2
+ n− 1

4
≥ 7

4
, so j2 + j + n is composite. Let

p be the smallest prime divisor of j2 + j + n. Then j2 + j + n ≥ p2, but also

0 ≡ j2 + j + n ≡ j(j + 1) + n ≡ (p− j)(p− (j + 1)) + n
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≡ (p− 1− j)2 + (p− 1− j) + n (mod p)

So p divides (p − 1 − j)2 + (p − 1 − j) + n = (p − 1 − j)2 + (n − 1 − j) + p ≥ p + 1, so also

(p− 1− j)2 + (p− 1− j) + n is not prime.

Note also that the above expression is equal to (j − p)2 + (j − p) + n. As j − p < j, j − p must

be negative, so j ≤ p− 1 making p− 1− j nonnegative.

Therefore p− 1− j ≥ j ⇒ j ≤ p−1
2
, giving

p2 ≤ j2 + j + n ≤ p2 − 1

4
+ n⇒ p ≤

√
4n− 1

3

⇒ j ≤

√
4n−1

3
− 1

2
<

√
n

3

So 0 ≤ j ≤
√

n
3
and j2 + j + n is not prime. So if k2 + k + n are all prime for 0 ≤ k ≤

√
n
3
, then

they are all prime for 0 ≤ k ≤ n− 2, as desired.

Solve in the natural numbers

x2 + 615 = 2n

Solution

615 = 3 · 205 = 3 · 5 · 41. In particular, 615 is divisible by 3 so x cannot. Then 2n ≡ x2 ≡ 1 (mod 3)

so n is even. Let n = 2m so that

615 = (2m + x)(2m − x), 2m =
(2m + x) + (2m − x)

2
, x =

(2m + x)− (2m − x)

2

Now as 2m + x is the bigger factor, it must be divisible by 41 since 41 > 3 · 5. The possible cases for

the factors are

(41, 15), (123, 5), (205, 3), (615, 1)

of which only the second has arithmetic mean a power of 2. In this case, m = 6 making n = 12, and

x = 59. So the unique solution is x = 59, y = 12 .

Find the number of ways to tile a 5× 2 grid with blue 1× 1 tiles, red 2× 1 tiles and green 2× 2

tiles.

Solution

Let an be the number of ways to tile an n × 2 grid, and bn be the number of ways to tile an n × 2

grid with a corner removed.

For a recursion for bn, note that green tiles can’t fill in the corner adjacent to the removed one.

If it is filled blue, then an−1 ways to fill in the rest, and if filled red, bn−1 ways to fill in the rest. So

we get

bn = an−1 + bn−1

Now for a recursion for an, if we align the grid such that there are 2 rows, consider what space fills

in the upper right corner. If blue, there are bn ways. If green, there are an−2 ways. If red, either the

red tile is horizontal or vertical. If vertical, there are an−1 ways. If horizontal, the lower right corner

can be blue for bn−1 ways, or red for an−2 ways. This means

an = bn + an−1 + bn−1 + 2an−2 = 2an−1 + 2an−2 + 2bn−1
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Then bn−1 = an
2
− an−1 − an−2, so bn−2 = an−1

2
− an−2 − an−3. Subtracting,

an−2 =
an
2
− 3an−1

2
+ an−3

⇒ an = 3an−1 + 2an−2 − 2an−3

We find a1 = 2 and a2 = 8. Also, b1 = 1, so for purposes of applying the recursive formula, a0 = 1.

Now we just compute:

a3 = 26, a4 = 90, a5 = 306

Let F (x) represent the reciprocal of the cube root of x. Without using calculators or computers

find the integral part of F (4) + F (5) + F (6) + F (7) + . . .+ F (999999) + F (1000000)

Solution

We have the inequality

3

2
((n+ 1)2/3 − n2/3) <

1
3
√
n
<

3

2
(n2/3 − (n− 1)2/3)

This can be proven using difference of cubes; it is equivalent to

n+ (n+ 1)

n4/3 + n2/3(n+ 1)2/3 + (n+ 1)4/3
<

2

3
· 1

3
√
n
<

n+ (n− 1)

n4/3 + n2/3(n− 1)2/3 + (n− 1)4/3

or, after letting r = 3

√
n+1
n
> 1 and s = 3

√
n−1
n
< 1,

1 + r3

1 + r2 + r4
<

2

3
<

1 + s3

1 + s2 + s4

But 1+x3

1+x2+x4 = 1+x
1+x+x2 after factoring out x2 − x+ 1, and

1 + x

1 + x+ x2
=

2

3 + (x−1)(2x+1)
(x+1)

which is less than 2
3
when x > 1 and greater when x < 1. Summing from n = 4 to n = 106,

3

2
((106 + 1)2/3 − 42/3) < F (4) + F (5) + · · ·+ F (106) <

3

2
(1000− 32/3)

Clearly 32/3 = 3
√

9 > 2 and (106 + 1)2/3 > 1000. In addition, 42/3 = 3
√

16 < 8
3
, which is evident from

cubing both sides; it reduces to 27 < 32. So we end up with

1496 < F (4) + F (5) + · · ·+ F (106) < 1497

Let a; b; c be numbers,all greater than or equal −3
2
,such that abc+ ab+ bc+ ca+ a+ b+ c ≥ 0

Prove that a+ b+ c ≥ 0

Solution

Let x = a+1, y = b+1 and z = c+1. Hence, xyz ≥ 1, where x ≥ −1
2
, y ≥ −1

2
and z ≥ −1

2
.We must

to prove that x+ y+ z ≥ 3. If x, y and z are non-negative numbers then x+ y+ z ≥ 3 3
√
xyz ≥ 3. Let

x < 0, y < 0 and x+ y = p. Hence, z > 0, −1 ≤ p < 0 and x+ y + z ≥ x+ y + 1
xy
≥ x+ y + 4

(x+y)2 .

Thus, it remains to prove that p+ 4
p2 ≥ 3. But p+ 4

p2 ≥ 3⇔ (p+ 1)(p− 2)2 ≥ 0. :)

Given a positive integer a0, we construct a sequence as follows: If the unit digit of ai does

not exceed 5, then ai+1 is obtained by deleting this digit (If nothing remains upon this deletion, the

sequence ends). Otherwise, ai+1 = 9ai. Can the sequence be infinite?
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Solution

The sequence cannot be infinite. Suppose there exists such an infinite sequence. Let L be the least

positive integer such that a0 = L produces infinite sequence. The units digit of L must exceed 5,

since the sequence ends automatically if 1 ≤ L ≤ 5, and if L > 5 but has units digit at most 5, then

a1 =

⌊
L

10

⌋
≤ L

10
< L

This means the sequence an+1 for nonnegative integers n starts at a positive integer less than L and

is infinite, a contradiction.

Now that the units digit of L is at least 6, we have a1 = 9L. In particular, a1 ≡ −L (mod 10) so

the units digit of a1 is at most 4. Therefore, we get

a2 =
⌊a1

10

⌋
=

⌊
9L

10

⌋
and the sequence starting with a2 is infinite, again a contradiction. So no infinite sequence exists.

Find the number of ordered triples (x, y, z) of non-negative integers satisfying (i) x ≤ y ≤ z

(ii) x+ y + z ≤ 100.

Solution

Since 0 ≤ x ≤ y ≤ z , there are integer numbers a, b, c ≥ 0 such that :

x = a, y = a+ b, z = a+ b+ c

and the relation x+ y + z ≤ 100 becomes:

3a+ 2b+ c ≤ 100 with a, b, c ≥ 0 (*)

To find the number of solutions (a, b, c) of (*) we will use the following

Lemma.The number an of solutions (a, b, c) of the Diophantine equation 3a+ 2b+ c = n , with

a, b, c ≥ 0 is given by

a0 = 1

an = 1
72

[6n2 + 36n+ 47 + 9 (−1)n + 8θn] (1)

where θn = 2 if n ≡ 0 (mod3) and θn = −1 if n 6≡ 0 (mod3).

Proof.The generating function of the sequence an is

(1 + x3 + x6) (1 + x2 + x4) (1 + x+ x2) = 1
1−x3 · 1

1−x2 · 1
1−x (2)

The right side of (2) can be written as sum of partial fractions
17
72

1−x +
1
4

(1−x)2 +
1
6

(1−x)3 +
1
8

1+x
+

1
9

1−ωx +
1
9

1−ω2x

where ω = e2πi/3 is a complex cube root of 1 , satisfying ω + ω2 = −1 .

From the well known relations
1

1−x =
∞∑
n=0

xn

1
(1−x)2 =

∞∑
n=0

(n+ 1)xn

1
(1−x)3 =

∞∑
n=0

(n+1)(n+2)
2

xn

1
1+x

=
∞∑
n=0

(−1)n xn

1
1−ωx =

∞∑
n=0

ωnxn

1
1−ω2x

=
∞∑
n=0

ω2nxn

we have :
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∞∑
n=0

anx
n =

= 17
72

(
∞∑
n=0

xn
)

+ 1
4

(
∞∑
n=0

(n+ 1)xn
)

+ 1
6

(
∞∑
n=0

(n+1)(n+2)
2

xn
)

+ 1
8

(
∞∑
n=0

(−1)n xn
)

+ 1
9

(
∞∑
n=0

(ωn + ω2n)xn
)

Collecting all terms and equating the coefficients we get the formula (1). �

Corollary.The number S of solutions (a, b, c) of 3a+ 2b+ c ≤ n with a, b, c ≥ 0 is

S = 1 +
n∑
k=1

ak = 1 + 1
72

n∑
k=1

(
6k2 + 36k + 47 + 9 (−1)k + 8θk

)
=

= 1 + 1
72

n∑
k=1

[
6k(k+1)(2k+1)

6
+ 36k(k+1)

2
+ 47k

]
+ 1

72

n∑
k=1

[
9 (−1)k + 8θk

]
=

= 1 + 1
72

(2n3 + 21n2 + 66n) + 1
72

n∑
k=1

[
9 (−1)k + 8θk

]
For n = 100 we find the number of solution of (*) : S = 30787

Find all prime numbers p and q such that p divides q + 6 and q divides p+ 7

Solution

Clearly p 6= q (otherwise p divides both p+7 and p+6), so p and q are relatively prime. Now observe

that

p|(6p+ 7q + 42), q|(6p+ 7q + 42)⇒ pq|(6p+ 7q + 42)

Let 6p+ 7q+ 42 = kpq. If k is even, then q = 2. This means p|8 so p = 2, but this fails because 2 6 |9.
Similarly, if k is divisible by 3, then q = 3. This means p|9 so p = 3, but this fails because 3 6 |10.

Therefore either k = 1 or k ≥ 5.

If k = 1, then 6p+ 7q + 42 = pq implies

(p− 7)(q − 6) = 84

Both factors are positive (if both negative, product less than 84). Then q > 6 and p > 7, so q−6 can’t

be divisible by 2 or 3, p−7 can’t be divisible by 7. The only case that remains is p−7 = 12, q−6 = 7

which leads to (19, 13).

If k ≥ 5, then 6p+ 7q + 42 ≥ 5pq implies

(5p− 7)(5q − 6) ≤ 252

As shown before, q = 2 and q = 3 are bad, so q ≥ 5. This means p ≤ 252
19

< 18 ⇒ p ≤ 3. In either

case, p|6 so p = q, but this is a contradiction!

Therefore (19, 13) only solution.

Solve the system of the equations:

3(x2 + y2 + z2) = 1

x2y2 + y2z2 + z2x2 = xyz(x+ y + z)3

Solution

x2y2 + y2z2 + z2x2 = xyz(x + y + z)3 ⇔ ⇔ 3(x2 + y2 + z2)(x2y2 + y2z2 + z2x2) = xyz(x + y + z)3.

But xyz(x + y + z) ≥ 0, 3(x2 + y2 + z2) ≥ (x + y + z)2 and x2y2 + y2z2 + z2x2 ≥ xyz(x + y + z).

If 3(x2 + y2 + z2) > (x + y + z)2 then x2y2 + y2z2 + z2x2 = xyz(x + y + z) = 0. Hence, (x, y, z) ∈
{(± 1√

3
, 0, 0), (0,± 1√

3
, 0), (0, 0,± 1√

3
)}. If 3(x2 + y2 + z2) = (x+ y + z)2 then x = y = z = ±1

3
.

Let a, b, c ∈ R+ and abc = 1 Prove that∑
cyc

4

a5(b+ c)2
≥ 3

√
3√

a2 + b2 + c2
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Solution

This is my proof By Powermean ;
√
a2 + b2 + c2 ≥ a+b+c√

3
It’s remain to prove

∑
cyclic

4

a5(b+ c)2
≥ 9

a+ b+ c

↔ (a+ b+ c)(
∑
cyclic

1

a5(b+ c)2
) ≥ 9

4

By Cauchy-Schwarz ;

(a+ b+ c)(
∑
cyclic

1

a5(b+ c)2
) ≥ (

∑
cyclic

1

a2(b+ c)
)

It’s equivalent to prove that (
∑

cyclic
1

a2(b+c)
) ≥ 3

2
Substitute

a =
1

x
, b =

1

y
, c =

1

z

∵ abc = 1→ xyz = 1 It’s equivalent to prove x
y+z
≥ 3

2
which is nessbit

Let f : R → R be a function such that for all real numbers x and y, f(x3 + y3) = (x +

y)(f(x)2 − f(x)f(y) + f(y)2). Prove that for all real numbers x, f(1996x) = 1996f(x)

Solution

x = y = 0 → f(0) = 0 y = 0 → f(x3) = xf(x)2 ∴ f(x) = x
1
3f(x

1
3 )2 Therefore f(x) and x always

have the same sign ∴ f(x) ≥ 0∀x ≥ 0 Let S be the set S = { a > 0|f(ax) = af(x)∀x ∈ R } Clearly
1 ∈ S ∵ axf(x)2 = af(x3) = f(ax3) = f((a

1
3x)3) = a

1
3f(a

1
3x)2 since x and f(x) have the same sign

∴ f(a
1
3x) = a

1
3f(x) I will show that a, b ∈ S impiles a + b ∈ S f((a + b)x) = f((a

1
3x

1
3 ) + (b

1
3x

1
3 ))

= (a
1
3 + b

1
3 )[f(a

1
3x

1
3 )2 − f(a

1
3x

1
3 )f(b

1
3x

1
3 ) + f(b

1
3x

1
3 )2] = (a+ b)f(x) By induction,we have n ∈ S for

each positive integer n,so in particular,f(1996x) = 1996f(x) for all x ∈ R
Let a, b, c be nonzero real numbers such that a + b + c = 0 and a3 + b3 + c3 = a5 + b5 + c5.

Find the value of a2 + b2 + c2.

Solution

Let k = a2 + b2 + c2. Then

k(a5 + b5 + c5) = k(a3 + b3 + c3) = (a2 + b2 + c2)(a3 + b3 + c3)

Thus,

k(a5 + b5 + c5) = a5 + b5 + c5 + a2b2(a+ b) + b2c2(b+ c) + a2c2(a+ c)

and since a+ b+ c = 0, we have that a+ b = −c, b+ c = −a, and a+ c = −b. thus,

(k − 1)(a5 + b5 + c5) = −a2b2c− b2c2a− a2c2b = −abc(ab+ bc+ ac)

Also, since a+ b+ c = 0, we have that a5 + b5 + c5 = a3 + b3 + c3 = 3abc. Plugging this in, we have

that

3abc(k − 1) =
−abc[(a+ b+ c)2 − (a2 + b2 + c2)]

2

Hence, either abc = 0 (in which case a, b, or c must be 0, which contradicts the given) or 6(k− 1) =

−1(02 − k) = k =⇒ 5k = 6, which gives us that k =
6

5
.
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Show that gcd(2m − 1, 2n − 1) = 2d − 1, where d = gcd(m,n)

Solution

It’s old problem and very well-known

(na − 1, nb − 1) = ngcd(a,b) ,where n, a, b ∈ N
Proof

Let d = gcd(na − 1, nb − 1) and k = orddn

It’s easy to see that ngcd(a,b) − 1|d
since na ≡ nb ≡ 1(modd) ,Hence k|a, k|b
so k|gcd(a, b)

thus ngcd(a,b) ≡ 1(modd)→ d|ngcd(a,b) − 1

so d = ngcd(a,b) − 1

Solve the equation a3 + b3 + c3 = 2001 in positive integers.

Solution

∀t ∈ Nt3 ≡ 0,±1 (mod 9). 2001 ≡ 3 (mod 9). Hence, a = 3x + 1, b = 3y + 1, c = 3z + 1 for

{x, y, z} ⊂ N0. a
3 ≤ 2001. Hence, x ≤ 3 and y ≤ 3, z ≤ 3. Let x ≥ y ≥ z. Then 3a3 ≥ 2001⇒ x > 2.

Hence, x = 3. Hence, b3 + c3 = 1001. Hence, 2(3y + 1)3 ≥ 1001 ⇒ y > 2. Hence, 2 < y ≤ 3. Hence,

y = 3⇒ z = 0⇒ a = 10, b = 10, c = 1. Well {(10, 10, 1), (10, 1, 10), (1, 10, 10)}. :)
Let a, b, c ∈

[
1
3
, 3
]
.Prove that

a

a+ b
+

b

b+ c
+

c

c+ a
≥ 7

5

Solution

Let a = max{a, b, c}. We obtain: a
a+b

+ b
b+c

+ c
c+a
≥ 7

5
⇔ ⇔ (3a− 2b)c2 − (2a2 − ab− 3b2)c+ 3a2b−

2ab2 ≥ 0. Thus, it remains to prove that (2a2 − ab− 3b2)2 − 4ab(3a− 2b)2 ≤ 0, which equivalent to

(a− b)(a− 9b)(4a2 + b2) ≤ 0, which obviously true.

x, y, z, a, b, c number a = x+ y − z, b = −x+ y + z, c = x− y + z and
(a+b+c)5−a5−b5−c5

(a+b)(b+c)(c+a)
= (x+y+z)5−x5−y5−z5

(x+y)(y+z)(z+x)
.

Prove: a = b = c = x = y = z

Solution

(a+ b+ c)5− a5− b5− c5 = 5
∑

sym(a4b+ 2a3b2 + 2a3bc+ 3a2b2c) = = 5(a+ b)(a+ c)(b+ c)(a2 + b2 +

c2 + ab+ ac+ bc). Id est, (a+b+c)5−a5−b5−c5
(a+b)(b+c)(c+a)

= (x+y+z)5−x5−y5−z5

(x+y)(y+z)(z+x)
⇔ ⇔

∑
cyc(a

2 + ab− x2 − xy) = 0⇔
⇔
∑

cyc((x+y−z)2 +(x+y−z)(y+z−x)−x2−xy) = 0⇔⇔
∑

cyc(x
2−xy) = 0⇔

∑
cyc(x−y)2 =

0⇔ x = y = z. It gives also a = b = c = x

Let a, b, c, x and y are positive numbers such that ay + bx+
√

3(ab− xy) = 0 and a2 + x2 =

b2 + y2 = (x− y)2 + c2. Prove that c = a+ b.

Solution

Since a, b, x, y are positive,
√

3(xy − ab) = ay + bx > 0. So xy > ab...

We have

4(ab− xy)2 = (ay + bx)2 + (ab− xy)2 = (a2 + x2)(b2 + y2) = (a2 + x2)2

Since xy > ab,

2(xy − ab) = a2 + x2 = b2 + y2 = (x− y)2 + c2

So
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a2 + x2 − 2(xy − ab) + b2 + y2 = (x− y)2 + c2

Therefore (a+ b)2 + (x− y)2 = (x− y)2 + c2. c positive implies c = a+ b.

EDIT: It turns out that xy > ab must hold...

Let k ∈ Np ∈ N\{0, 1} and a, r ∈ (0,∞) Consider the sequence (an)n≥1 defined by an = a+ (n−
1) · r , ∀ n ∈ N. Then:
� 1◦ limn→∞

aqn+k+1·aqn+k+1+p·...·aqn+k+1+s(n−1)p

aqn+k·aqn+k+p·...·aqn+k+s(n−1)p
= p

√
ps+q
q

� 2◦ limn→∞ n

√
aqn+k·aqn+k+p·...·aqn+k+s(n−1)p

(n!)s
=

� 3◦ limn→∞
n
√
aqn+k·aqn+k+p·...·aqn+k+s(n−1)p

ns
=

Applycations: limn→∞

 4n

2n


4n·

 2n

n


=
√

2
2

; limn→∞

55n·

 2n

n


3

 10n

5n

·
 5n

n

·
 4n

2n


= 4

Let a, b, c > 0 so that a+ b+ c = 1. Prove that:
√
a2+abc
c+ab

+
√
b2+abc
a+bc

+
√
c2+abc
b+ca

≤ 1
2
√
abc

Solution

Note that
∑ √

a2+abc
c+ab

=
∑ √a(c+a)(a+b)

(b+c)(c+a)
.

Therefore our inequality is equivalent to

∑√
a(c+ a)(a+ b)

(b+ c)(c+ a)
≤ a+ b+ c

2
√
abc

⇐⇒
∑

a(a+ b)
√
bc(c+ a)(a+ b) ≤ 1

2
(a+ b+ c)(a+ b)(b+ c)(c+ a)

By AM-GM,

suma(a+ b) · 2
√
bc(c+ a)(a+ b) ≤

∑
a(a+ b)(b(c+ a) + c(a+ b))

=
∑

a(a+ b)(ab+ 2bc+ ca)

Now∑
a(a+ b)(ab+ 2bc+ ca) =

∑
a2(ab+ bc+ ca) +

∑
a2bc+

∑
ab(ab+ bc+ ca) +

∑
ab2c

= (a2 + b2 + c2 + ab+ bc+ ca)(ab+ bc+ ca) + 2abc(a+ b+ c)

= (a+ b+ c)2(ab+ bc+ ca)− (ab+ bc+ ca)2 + 2abc(a+ b+ c)

= (a+ b+ c)2(ab+ bc+ ca)− (a2b2 + b2c2 + c2a2)

≤ (a+ b+ c)2(ab+ bc+ ca)− abc(a+ b+ c)

= (a+ b+ c)(a+ b)(b+ c)(c+ a)

which was what we wanted.

Let a, b and c are non-negative numbers such that a2 + b2 + c2 = 3. Prove that:

(3− a)(3− b)(3− c) ≥ 8

Solution

Consider the function f(x) = (x − a)(x − b)(x − c) = x3 − (a + b + c)x2 + (ab + bc + ca)x − abc.
f(x) = x3 − px2 + qx − r where p = a + b + c, q = ab + bc + ca, and r = abc. p2 = (a + b + c)2 =
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a2 + b2 + c2 + 2ab+ 2bc+ 2ac and 2q = 2(ab+ bc+ ca) = 2ab+ 2bc+ 2ca so p2− 2q = a2 + b2 + c2 = 3.

Solving for q, we get q =
p2 − 3

2
. r = abc ≤

(√
a2 + b2 + c2

3

)3

=

(√
3

3

)3

= 1 by QM-GM.

f(3) = (3− a)(3− b)(3− c) = 27− 9p+ 3q− r = 27− 9p+ 3

(
p2 − 3

2

)
− r = 27− 9p+

3p2

2
− 9

2
− r

=
45

2
−9p+

3p2

2
− r = 9+

(
27

2
− 9p+

3p2

2

)
− r = 9+

3

2
(9−6p+p2)− r = 9+

3

2
(p−3)2− r We have

(3−a)(3−b)(3−c) = 9+
3

2
(p−3)2−r. Since 3

2
(p−3)2 ≥ 0 and −r ≥ −1, and adding these inequalities

together we have
3

2
(p−3)2−r ≥ −1, 9+

3

2
(p−3)2−r ≥ 8. (3−a)(3−b)(3−c) = 9+

3

2
(p−3)2−r ≥ 8,

with equality when a = b = c = 1, so we are done.

x, y ∈ R+ x3 + y3 = 4x2

Find the Max of x+ y

Solution

Let x+ y = k. Hence, the equation k(x2−x(k−x) + (k−x)2) = 4x2 has real root. But k(x2−x(k−
x) + (k − x)2) = 4x2 ⇔ (3k − 4)x2 − 3k2x+ k3 = 0. If k = 4

3
so x = 4

9
and y = 8

9
. Let k 6= 4

3
. Hence,

(3k2)2 − 4(3k − 4)k3 ≥ 0, which gives 0 ≤ k ≤ 16
3
. For k = 16

3
we obtain: x = 32

9
and y = 16

9
. Hence,

maxx3+y3=4x2(x+ y) = 16
3
. Since 32

9
> 0 and 16

9
> 0, the answer is 16

3
.

Prove that: cos(sin(x)) > sin(cos(x))

Solution

cos sinx > sin cosx⇔ sin
(
π
2
− sinx

)
−sin cosx > 0⇔⇔ 2 sin

π
2
−sinx−cosx

2
cos

π
2
−sinx+cosx

2
> 0, which

is true because | sinx+ cosx| ≤
√

2 and | sinx− cosx| ≤
√

2, which gives 0 <
π
2
−
√

2

2
≤

π
2
−sinx−cosx

2
≤

π
2

+
√

2

2
< π

2
and 0 <

π
2
−
√

2

2
≤

π
2
−sinx+cosx

2
≤

π
2

+
√

2

2
< π

2
.

Solve system of equation2
√

2x+ 3y +
√

5− x− y = 7

3
√

5− x− y −
√

2x+ y − 3 = 1

Solution

The answer is {(3, 1)}. Let 2x + 3y = a2, 5 − x − y = b2 and 2x + y − 3 = c2, where a, b and c

are non-negatives. Hence, 2a + b = 7, 3b − c = 1 and a2 + 4b2 + c2 = 17, which gives b = 7 − 2a,

c = 20− 6a and a2 + 4(7− 2a)2 + (20− 6a)2 = 17. From here we obtain a = 3 and x = 3, y = 1.

Find all pairs of positive integers (x, y) such that

xy = yx−y.

Solution

let y = m
n
· x, where (m,n) = 1, {m,n} ⊂ N. Hencexmn ·x = (m

n
· x)x−

m
n
·x. Hence x = (m

n
)
n−m
2m−n and

y = (m
n

)
m

2m−n . 1) n−m
2m−n > 0. Hence, n = 1 and 1−m

2m−1
> 0. Hence, 1

2
< m < 1. This is contradiction.

2) n−m
2m−n = 0. Hence m = n and x = y = 1 3) n−m

2m−n < 0. Hence,x = ( n
m

)
n−m
n−2m , y = ( n

m
)

m
n−2m , n > 2m.

Hence m = 1 and x = n
n−1
n−2 , y = n

1
n−2 , n ≥ 3. Let f(t) = t

1
t−2 , t > 2. Hence, f ′(t) = f(t) ·

t−2
t
−lnt

(t−2)2 < 0.

Hence, f(t) ≤ f(3) = 3 and y ≤ 3. Let n = 3. Hence y = 3 and x = 9. Let n = 4. Hence y = 2 and

x = 8. Let n > 4. Hence 1 < y < 2. This is contradiction. Well, {(1, 1), (9, 3), (8, 2)}.
If real numbers a, b, c ∈ [0, 2] and a+ b+ c = 3, show that

a2b+ b2c+ c2a ≥ 2
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Solution

Let a = 2y+2z−x
3

, b = 2x+2z−y
3

and c = 2x+2y−z
3

. Hence, x+y+z = 3 and x+a = 2, which gives that x,

y and z are non-negatives. Id est, we need to prove that
∑

cyc(2y+2z−x)2(2x+2z−y) ≥ 2(x+y+z)3.

Let x = min{x, y, z}, y = x+u and z = x+v. Hence,
∑

cyc(2y+2z−x)2(2x+2z−y)−2(x+y+z)3 =

= 27x3 + 27(u+ v)x2 + 9(u+ v)2x+ (4u+ v)(u− 2v)2 ≥ 0. – Solve the following equation:√
x2 − 3x+ 2

x2 + 2x
= 1 + x

Solution

Let x2 + 2x = a and x− 2 = b. Then we obtain b2 + b = a2 + a.

Solve the inequation
√
x2 − x− 6 + 7

√
x ≤

√
6(x2 + 5x− 2).

Solution

x2−x−6 ≥ 0 gives x ≥ 3. After squaring of the both sides we obtain 5x2−18x−6 ≥ 14
√
x(x2 − x− 6).

5x2−18x−6 ≥ 0 gives x ≥ 9+
√

111
5

. After squaring we need to solve (x2−12x−18)(25x2−76x−2) ≥ 0,

which with x ≥ 9+
√

111
5

gives x ≥ 6 + 3
√

6.

Let a,b,c be random real numbers and a+b+c=3 Prove that a2 .(b − c)2 +b2 .(a − c)2 + c2

.(a− b)2 ≥ 9
2
.abc(1− abc)

Solution

Let a+ b+ c = 3u, ab+ ac+ bc = 3v2 and abc = w3. If w3(1−w3) ≤ 0 then the inequality is obvious.

Thus, we can assume w3(1−w3) > 0, which is 0 < w3 < 1. We see that you inequality is equivalent to

f(w3) ≥ 0, where f(w3) = w6−5u3w3 + 4u2v4. But f ′(w3) = 2w3−5u3 < 0. Hence, f is a decreasing

function. Hence, by uvw it remains to check one case only: b = c, which after homogenization and

assuming b = c = 1 gives (a− 1)2(3a2 + 8a+ 16) ≥ 0, which is obvious.

Let a, b and c are non-negative numbers for which a2 + b2 + c2 = 2(ab+ ac+ bc). Prove that

a+ b+ c ≥ 3
3
√

2abc

Solution

Add 2(ab+ ac+ bc) to both sides of the condition. This gives (a+ b+ c)2 = 4(ab+ bc+ ca).

Consider the monic cubic polynomial with roots a, b, c. If this polynomial is x3 − px2 + qx − r,
then we know p2 = 4q and we want to prove that p3 ≥ 54r. Equivalently, we want to figure out how

high the constant term can be for the polynomial to still have 3 real roots.

Using the condition, we consider the polynomial x3 − px2 + p2x/4 − r. Take the derivative and

set it equal to 0. We get 3x2 − 2px + p2/4 = 0, which has solutions p/6 and p/2. Since we have a

positive leading coefficient, we get a local maximum at the lower critical point p/6. We need the

polynomial at this local maximum to be greater than or equal to 0 in order to have 3 real roots.

So (p/6)3 − p(p/6)2 + p2(p/6)/4 − r ≥ 0, or p3/216 − p3/36 + p3/24 ≥ r. When simplified, we have

p3/54 ≥ r as desired.

a, b and c are real numbers such that {a, b, c} = {a4−2b2, b4−2c2, c4−2a2} and a+b+c = −3.

Find the values of a, b and c.

Solution

we have {a, b, c} = {a4 − 2b2, b4 − 2c2, c4 − 2a2} so {a + 1, b + 1, c + 1} = {a4 − 2b2 + 1, b4 − 2c2 +

1, c4 − 2a2 + 1} so : 0 = (a+ 1) + (b+ 1) + (c+ 1) = (a4 − 2b2 + 1) + (b4 − 2c2 + 1) + (c4 − 2a2 + 1)
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= (a2 − 1)2 + (b2 − 1)2 + (c2 − 1)2 therefore a2 = b2 = c2 = 1 and since a + b + c = −3 we get

a = b = c = −1. We have a similary problem: a, b and c are real numbers such that {a, b, c} =

{a6 − 2b2, b6 − 2c2, c6 − 2a2} and a+ b+ c = −3. Find the values of a, b and c. ?

Let a, b, c > 0, a+ b+ c = 1. Prove that: aabbcc + abbcca + bacbac ≤ 1

Solution

From weighted AM-GM, we have

1) a2+b2+c2

a+b+c
≥ (aabbcc)

1
a+b+c =⇒ a2 + b2 + c2 ≥ aabbcc

2) ab+bc+ca
a+b+c

≥ (abbcca)
1

a+b+c =⇒ ab+ bc+ ca ≥ abbcca

3) ac+ba+cb
a+b+c

≥ (acbacb)
1

a+b+c =⇒ ab+ bc+ ca ≥ acbacb

Adding the three inequalities we get (a+ b+ c)2 = 1 ≥ aabbcc + abbcca + acbacb

Determine all pairs (a, b) in positive integers which satisfy next equation:

LCM(a, b) +GCD(a, b) + a+ b = ab, a ≥ b.

where LCM means the Least Common Multiple,and GCD does the Greatest Common Divisor

of a, b

Solution

Let (a, b) = g, a = gA, b = gB. Then [a, b] = gAB and our equation becomes

gAB + g + gA+ gB = g2AB

which is equivalent to

(A+ 1)(B + 1) = gAB

Hence AB | (A + 1)(B + 1). But since (A,A + 1) = 1 we conclude that A | B + 1 and B | A + 1.

Let B = kA − 1. Then kA − 1 | A + 1 implies kA − 1 ≤ A + 1 ⇔ (k − 1)A ≤ 2. Therefore

(k,A) = (3, 1), (2, 2), (2, 1), (1, 2). Hence (k,A,B) = (1, 2, 1), (3, 1, 2), (2, 2, 3), (2, 1, 1). Thus we get

the pairs (a, b) = (3, 6), (4, 6), (4, 4).

Remark: I worked with A | B+ 1 so I got the pairs where a ≤ b. For a ≥ b, we can simply reverse

each pair. –

Solution

phương trình

2(x2 − 2x+ 2) = 3
3
√
x2 − 2

By arqady

Show that a and b have the same parity if and only if there exist integer c and d such that

a2 + b2 + c2 + 1 = d2.

Solution

a2 + b2 + 1 can only have the form 4k + 3, 4k + 1, 4k + 2. The numbers d + c, d − c have the same

perity, so (d+ c)(d− c) = 4k + 3, 4k + 1, or 4k. This shows that a2 + b2 + 1 can’t be 4k + 2, so a, b

have the same parity.

On the other hand, if they do have the same parity, then let a2 + b2 + 1 = mn, where m,n must

be odd. Then the system of equations d− c = m, d+ c = n has a solution and we’re done.

The numbers p and q are primes and p2 + 1 ≡ 0 (mod q) and q2 − 1 ≡ 0 (mod p). Prove that

p+q+1 is a composite.

Solution

p|q2 − 1 ⇒ p|p2 + 2pq + q2 − 1 = (p + q + 1)(p + q − 1). Assume p + q + 1 is a prime. In this case,

p|p+ q− 1⇒ p|q− 1⇒ q = mp+ 1, m ≥ 1. q also divides p2 + 1, so p2+1
q

= np+ 1, n ≥ 0. If n > 0,
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then it’s clear that (mp+ 1)(np+ 1) > p2 + 1, which is false, so n = 0⇒ m = p, so q = p2 + 1, which

means that p+ q + 1 = p2 + p+ 2, which is even and > 2, and thus a composite.

Is it possible to partition a (1sqrt(2)) rectangle into a finite number of squares?

Solution

Let f : R → R be an additive function which takes the value 0 in x iff x is rational (such functions

can easily be constructed using the axiom of choice; see the last few lines). Assume a rectangle is

tiled with squares and one of its sides is 1. Define the function ϕ on the set of rectangles with sides

parallel to the ones of the initial rectangle by setting ϕ(R) = f(a)f(b), where a, b are the lengths of

the sides of the rectangle R.
It’s easy to see that ϕ is additive, in the sense that if a rectangle R is tiled with R1, . . . ,Rn, then

ϕ(R) = ϕ(R1) + . . . + ϕ(Rn). ϕ takes the value f(a)2 on all squares of side a, so if at least one of

the squares paving R had an irrational side, ϕ(R) would be > 0 (because it’s the sum of the squares

of f(a) for all sides a of the squares paving R). However, ϕ(R) = 0, because if its sides are 1 and t,

then ϕ(R) = f(1)f(t) = 0, since f(1) = 0.

The above means that all the squares have rational sides, so, in particular, t must also be rational.

However, note that a lot more has been proved, namely that all the squares tiling a rectangle with

a rational side have rational sides.

For the construction of f , consider a basis (ai)i∈I of R as a vector space over Q which contains

1 (assume ai0 = 1), and set f(
∑
αiai) =

∑
i 6=i0 αiai (for each real

∑
αiai, only finitely many of the

αi’s are non-null).

Let x1, . . . , xn and be positive numbers and n be a natural number. Prove that√√√√ n∑
k=1

xk +

√√√√ n∑
k=2

xk +

√√√√ n∑
k=3

xk + . . . ≥

√√√√ n∑
k=1

k2 · xk

Solution

The Minkowski inequality (which actually follows from multiple application of the triangle inequality

in Rn) says that if ai,j are real numbers, for all natural i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ n, then√
a2

1,1 + a2
1,2 + ...+ a2

1,n+
√
a2

2,1 + a2
2,2 + ...+ a2

2,n+...+
√
a2
k,1 + a2

k,2 + ...+ a2
k,n ≥

√
(a1,1 + a2,1 + ...+ ak,1)2 + (a1,2 + a2,2 + ...+ ak,2)2 + ...+ (a1,n + a2,n + ...+ ak,n)2.

Apply this inequality for n = k and the numbers ai,j defined as follows:

ai,j =
√
xj for i ≤ j and ai,j = 0 for i > j.

Then you get√(√
x1

)2
+
(√

x2

)2
+ ...+

(√
xn
)2

+
√(√

x2

)2
+
(√

x3

)2
+ ...+

(√
xn
)2

+...+
√(√

xn
)2 ≥

√(
1
√
x1

)2
+
(
2
√
x2

)2
+ ...+

(
n
√
xn
)2
,

so that
√
x1 + x2 + ...+ xn +

√
x2 + x3 + ...+ xn + ...+

√
xn ≥

√
1x1 + 22x2 + ...+ n2xn.

And this is enough.

Another approach:

Define xi = X2
i , ∀i ∈ {1, . . . , n}, and plug that all in the provided inequalities:√√√√ n∑

k=1

X2
k +

√√√√ n∑
k=2

X2
k +

√√√√ n∑
k=3

X2
k + . . . ≥

√√√√ n∑
k=1

(k ·Xk)2

This is the triangle inequality which states that the sum of the length of the vectors (X1, X2, X3, . . .), (0, X2, X3, X4, . . .), (0, 0, X3, X4, . . .), . . .

is at least the lenght of the sum of these vectors: (X1, 2X2, 3X3, 4X4, . . .).

81

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=45700
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=16300


Suppose x0, x1, . . . , xn and x0 > x1 > . . . > xn. Prove that at least one of the numbers

|F (x0)|, |F (x1)|, |F (x2)|, . . . , |F (xn), | where

F (x) = xn +
n∑
k=1

akx
n−k, ak ∈ R,

is greater than
n!

2n
.

Solution

It was in Crux proposed by Mohammed Aassila, with more conditions a0 = 1 and x0, x1, ..., xn are

integers Here a combination of solutions by M.Bataille, Kee-Wai Lau P (x) = (x−x0)(x−x1)...(x−xn)

by considering the decomposition F
P
into partial fractions we get F (x) =

∑n
k=0 F (xk)

∏
j 6=k

x−xj
xk−xj

The

leading of coefficient of F is a0 = 1 gives
∑
bk =

∑n
k=0

F (xk)∏
j 6=k(xk−xj)

= 1 |
∏

j 6=k(xk − xj)| ≥ n!
Ckn

|bk| ≤ |F (xk)|Ckn
n!

1 =≤
∑
bk ≤

∑
|bk| ≤ (max |F (xk)|)/n!.(

∑
Ck
n) = 2n/n!(max|F (xk)|)

Sequences {an} and {bn} satisfy
a0 = 1

an =
2an−1

1 + 2a2
n−1

bn =
1

1− 2a2
n

Prove that bn is the square of an integer for all n > 0.

Furthermore, find a closed expression for an and bn in terms of n.

Solution

2a2
n =

8a2
n−1

4a4
n−1 + 4a2

n−1 + 1

1− 2a2
n =

4a4
n−1 − 4a2

n−1 + 1

4a4
n−1 + 4a2

n−1 + 1
=

(2a2
n−1 − 1)2

(2a2
n−1 + 1)2

Therefore bn =
[2a2

n−1 + 1

2a2
n−1 − 1

]2

=
[
1 +

2

2a2
n−1 − 1

]2

= (1− 2bn−1)2.

So by induction, all of the bn are integers.

Evaluate

∞∑
n=1

φ(n)

2n − 1
.

Solution

Let Sd =
xd

1− xd
= xd+x2d+x3d+ . . .. Sd contains x

n iff d|n, and since the coefficient of xn in φ(d)Sd

is φ(d), it means that when we sum up all the coefficients of xn in all Sd, d|n we get
∑
d|n

φ(d).

Prove the product of five consecutive numbers cannot be a perfect square

Solution

(n − 2)(n + 2) = n2 − 4, (n − 1)(n + 1) = n2 − 1. we have gcd(n, n2 − 1) = 1, gcd(n, n2 − 4)|4,
gcd(n2− 1, n2− 4)|3. what do we make of this? first, n has to be either a k2 or 2k2. in the first case,

either n2 − 1 = l2, n2 − 4 = m2, contradiction, or n2 − 1 = 3l2, n2 − 4 = 3m2, contradiction(just

look at the differences of both equations in each case). thus n = 2k2. n2 − 1 is odd, thus either

n2 − 1 = 3l2, n2 − 4 = 6m2 or n2 − 1 = l2, n2 − 4 = 2m2. The second case is impossible, since

(n− l)(n+ l) = 1. thus n2 − 1 = 3l2, n2 − 4 = 6m2. the first equality gives (2k2 − 1)(2k2 + 1) = 3l2.

since gcd(2k2−1, 2k2+1) = 1, we have 2k2−1 = 3p2, 2k2+1 = q2, contradiction(look at the difference
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mod 8), or 2k2 − 1 = p2, 2k2 + 1 = 3q2. the second equality gives 2(k2 − 1)(k2 + 1) = 3m2, thus

m = 2r, consequently (k2− 1)(k2 + 1) = 6r2. gcd(k2− 1, k2 + 1) = 2. k2 + 1 is not divisible by 3 and

4, consequently k2 + 1 = 2a2 or k2 + 1 = a2. in the first case (2a)2 = 2k2 + 2 = 2k2 − 1 + 3 = p2 + 3,

contradiction. Thus k2 + 1 = a2, k2 − 1 = 6b2. then 3(2b)2 = 2k2 − 2 = 2k2 + 1 − 3 = 3q2 − 3,

contradiction.

Let a, b, c, d be the areas of the triangular faces of a tetrahedron, and let ha, hb, hc, hd be the

corresponding altitudes of the tetrahedron. If V denotes the volume of tetrahedron, prove that

(a+ b+ c+ d)(ha + hb + hc + hd) ≥ 48V

Solution

Since the volume of a tetrahedron equals 1
3
· face area · corresponding altitude, we have V = 1

3
· a ·ha,

so that ha = 3V
a
. Similarly, hb = 3V

b
, hc = 3V

c
and hd = 3V

d
. Thus,

(a+ b+ c+ d) (ha + hb + hc + hd) = (a+ b+ c+ d)
(

3V
a

+ 3V
b

+ 3V
c

+ 3V
d

)
= 3V ·(a+ b+ c+ d)

(
1
a

+ 1
b

+ 1
c

+ 1
d

)
.

But by the Cauchy-Schwarz inequality,

(a+ b+ c+ d)
(

1
a

+ 1
b

+ 1
c

+ 1
d

)
≥
(√

a ·
√

1
a

+
√
b ·
√

1
b

+
√
c ·
√

1
c

+
√
d ·
√

1
d

)2

= 42 = 16.

Thus,

(a+ b+ c+ d) (ha + hb + hc + hd) = 3V · (a+ b+ c+ d)
(

1
a

+ 1
b

+ 1
c

+ 1
d

)
≥ 3V · 16 = 48V ,

and we are done.

For positive integers, the sequence a1, a2, a3, ...an, ... is defined by

a1 = 1; an =
(
n+1
n−1

)
(a1 + a2 + a3 + · · ·+ an−1), n > 1.

Determine the value of a1997.

Solution

an = n+1
n−1
· (a1 + a2 + ...+ an−1).

There is no way to solve this equation without properly simplifying it. How to simplify it? Well,

try to define the auxiliary sequence sn = a1 + a2 + ... + an. Then, an = (a1 + a2 + ...+ an) −
(a1 + a2 + ...+ an−1) = sn − sn−1, so the equation above becomes

sn − sn−1 = n+1
n−1
· sn−1.

Hence, sn = n+1
n−1
·sn−1 +sn−1 = 2n

n−1
·sn−1 = 2 ·n · sn−1

n−1
. Division by n yields sn

n
= 2 · sn−1

n−1
. Hence, the

sequence sn
n

is a geometrical progression with quotient 2. Its first member is s1
1

= s1 = a1 = 1, and

thus we can find any member of this geometrical progression by the formula sn
n

= 2n−1 · s1
1

= 2n−1.

Hence, sn = n · 2n−1. Consequently,

an = sn− sn−1 = n · 2n−1− (n− 1) · 2n−2 = n · 2 · 2n−2− (n− 1) · 2n−2 = (n · 2− (n− 1)) · 2n−2 =

(n+ 1) · 2n−2.

Thus, for n = 1997, we get a1997 = 1998 · 21995.

If ∆ is the area and wa, wb, wc are the angle bisectors of a triangle ABC, then prove the

inequality

(w3
a + w3

b + w3
c ) ·
(

1
w2
a

+ 1
w2
b

+ 1
w2
c

)
≥ 12 ·∆ ·

(
1
b+c

+ 1
c+a

+ 1
a+b

)
.

Solution

The first thing to do is to tame the monstrous left hand side: By the Chebyshev inequality, applied

to the oppositely sorted number arrays (w3
a; w

3
b ; w

3
c ) and

(
1
w2
a
; 1
w2
b
; 1
w2
c

)
, we have

w3
a+w3

b+w3
c

3
·

1

w2
a

+ 1

w2
b

+ 1

w2
c

3
≥

w3
a· 1

w2
a

+w3
b ·

1

w2
b

+w3
c · 1

w2
c

3
= wa+wb+wc

3
,
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so that, after multiplication with 9, we have (w3
a + w3

b + w3
c ) ·
(

1
w2
a

+ 1
w2
b

+ 1
w2
c

)
≥ 3 (wa + wb + wc).

Thus, instead of proving the inequality

(w3
a + w3

b + w3
c ) ·
(

1
w2
a

+ 1
w2
b

+ 1
w2
c

)
≥ 12 ·∆ ·

(
1
b+c

+ 1
c+a

+ 1
a+b

)
,

it is enough to show

3 (wa + wb + wc) ≥ 12 ·∆ ·
(

1
b+c

+ 1
c+a

+ 1
a+b

)
.

This simplifies to

wa + wb + wc ≥ 4 ·∆ ·
(

1
b+c

+ 1
c+a

+ 1
a+b

)
.

But that’s not all, of course. Since the shortest segment joining a given point to a point on a

given line is the perpendicular from the point to the line, every cevian from the vertex A of triangle

ABC, in particular the angle bisector wa, is greater or equal to the altitude ha from the vertex A. So

we have wa ≥ ha. Since the area of triangle ABC can be found by the formula ∆ = 1
2
aha, we have

ha = 2∆
a
, so that we get wa ≥ 2∆

a
. Similarly, wb ≥ 2∆

b
and wc ≥ 2∆

c
. Thus,

wa + wb + wc ≥ 2∆
a

+ 2∆
b

+ 2∆
c

= 2 ·∆ ·
(

1
a

+ 1
b

+ 1
c

)
= 2∆ ·

(
1
b
+ 1
c

2
+

1
c
+ 1
a

2
+

1
a

+ 1
b

2

)
.

By the AM-HM inequality, applied to the positive numbers 1
b
and 1

c
, we have

1
b
+ 1
c

2
≥ 2

b+c
; similarly,

1
c
+ 1
a

2
≥ 2

c+a
and

1
a

+ 1
b

2
≥ 2

a+b
. Thus,

wa + wb + wc ≥ 2∆ ·
(

2
b+c

+ 2
c+a

+ 2
a+b

)
= 4 ·∆ ·

(
1
b+c

+ 1
c+a

+ 1
a+b

)
.

And it’s done. Needless to say that equality holds if and only if the triangle ABC is equilateral

(what else would you expect from such a dumb inequality).

— For every positive integer n and every integer k, show that(
2n−1
k

)
≡ (−1)dk/2e

(
2n−1−1
bk/2c

)
(mod 2n).

Given that 1002004008016032 has a prime factor p > 250000, find p.

Solution

Note that: x := 1000, y := 2 =⇒ N = x5 + x4y + x3y2 + x2y3 + xy4 + y5 = x6−y6

x−y

Hence, N = 10006−26

1000−2
= 25

(
5006−1
500−1

)
= 25

[
(500−1)(5002+500+1)(500+1)(5002−500+1)

(500−1)

]
= 25(5002 + 500 + 1)(501)(5002 − 500 + 1)

The only one of these greater than 5002 is 5002 + 500 + 1 = 250501, and hence p = 250501 .

– Suppose 0 < α < β < γ and let ak, bk, ck , k ∈ {1, 2, ..., n}, positive numbers such that

bγ−αk ≤ aγ−βk cβ−αk ∀k ∈ {1, 2, ..., n}.

Prove

(
n∑
k=1

bk

)γ−α

≤

(
n∑
k=1

ak

)γ−β ( n∑
k=1

ck

)β−α

. – For p > 0 suppose that equation x3−px+q =

0 has the roots −∞ < x1 < x2 < x3 < +∞ . Find
α =

11

21

√
3p− 9q

14p

β =
16

27

√
3p− q

3p

.

Prove that x3 ∈ (α, β) and x1, x2 6∈ (α, β) . – Consider that x0 and x1 are selected in R such that the

sequence (xn)∞n=0 generated by xn+1 = xn−1xn−1
xn−1+xn

, n ∈ {1, 2, ...} is well defined . Let (Fn)∞n=0 with

xn = cotFn , Fn ∈ (0, π) , n ∈ {0, 1, 2, ...}. Find the recurrence relation(s) satisfied by the

terms of (Fn)∞n=0 .
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If P(x) is a polynomial of degree 998 such that P(k)=1/k is true for k=1, 2, 3,...999 then find

the value of P(1001)

Solution

Try following generalization: suppose that x0, x1, ..., xn are mutual distinct real numbers, i.e. xα 6= xβ

for 0 ≤ α 6= β ≤ n. Let {y0, y1, ...., yn} ⊂ R and P (x) be (the) polynomial satisfying P (xj) = yj for

j ∈ {0, 1, . . . , n}. If w 6∈ {x0, x1, ...xn}, find P (w) [/color] Solution. P (x) is well-defined [ i.e.

exists and it’s unique] , more precisely P(x) is the so called Lagrange (interpolation) polynomial :

(∗) P (x) =
n∑
k=0

ω(x)

(x− xk)ω′(xk)
yk .

Further select x := w in (*) . I have used notation :


ω(x) :=

n∏
k=0

(x− xk)

ω′(xk) :=
n∏

j=0,j 6=k
(xk − xj)

.

Find an if: (1) an−1 = 2an − n− 2 , (2) a1 = 3

Solution

Let us try to solve a more general recurrence, namely

(∗) xn = Axn−1 + bn−1 , n ∈ {2, 3, ...} , A 6= 0 , x1 = α,

where (bn)∞n=1 is a given sequence. In your case x1 = 3 , A = 1
2
and bn = n+3

2
. From (*) one finds

the equalities
xk
Ak
− xk−1

Ak−1
=
bk−1

Ak
, k ∈ {2, 3, ..., n, ...} .

By summing , using the fact that [ telescoping-sum]
q∑

k=p

(Tk − Tk−1) = Tq − Tp−1 we give xn =

αAn−1 +
n∑
k=2

bk−1A
n−k , n ≥ 2. In your case an = n+ 1 +

1

2n−1
, n ∈ {1, 2, ...}.

For n = 2, 3, 4 . . ., prove n! <
(
n+1

2

)n
.

Solution

The function f : (0,∞)→ R , f(x) = ln x, is (strictly) concave on its domain. Therefore

(∗) f

(
n∑
k=1

wkxk

)
>

n∑
k=1

wk · lnxk

for any system {x1, x2, ..., xn} ⊂ (0,∞)n and any positive weights {w1, w2, · · · , wn} with
n∑
k=1

wk = 1 .

For k ∈ {1, 2, ..., n} consider wk = 1
n
, xk = k . Then from (∗)

(∗′) ln

(
1

n

n∑
k=1

k

)
>

1

n

n∑
k=1

ln k ,

or n · ln
(
n+1

2

)
> lnn!, that is

(
n+1

2

)n
> n! as desired.

If x+ 1
x

= −1 find x999 + 1
x999

Solution

Assume xn + 1
xn

= α. Denote by Tn(x) the Chebychev polynomial of degree n. We note that

(∗)


Tn(y) =

(
y+
√
y2−1

)n
+
(
y−
√
y2−1

)n
2

=

= cos (n · arccos y) , when |y| ≤ 1 .
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From (∗) we give

Tn

(
A+B

2
√
AB

)
=
An +Bn

2 (AB)
n
2

which imply ( A; x , B :; 1
x
)

An +Bn = xn + 1
xn

= 2 · Tn
(
α
2

)
.

For instance, when α = −1 , because Tn(−z) = (−1)nTn(z) , one finds

xn + 1
xn

= 2 · Tn
(
−1

2

)
= 2(−1)nTn

(
1
2

)
= 2(−1)n cos

(
nπ
3

)
,

or (e.g. using first equality from (∗) )

xn + 1
xn

= 2(−1)n · Tn
(

1
2

)
== (−1)n

(1+i
√

3)
n

+(1−i
√

3)
n

2n
.

Finally (n; 999)

x999 + 1
x999 = −2

(1+i
√

3)
999

+(1−i
√

3)
999

2999 = −2 · cos
(

999·π
3

)
=

= −2 · cos (333 · π) = 1
.

Let x1 be the smallest and xnthe largest of the n real numbers x1, x2, ..., xn. Prove that if

x1 + x2 + +xn=0 then x2
1 + x2

2 + x2
n + nx1xn is not positive.

Solution

For k ∈ {1, 2, ..., n} we have (xk − x1) ≥ 0 and (xk − xn) ≤ 0.Therefore (∗) (xk − x1)(xk − xn) ≤
0 , ∀k ∈ {1, 2, ..., n}. By summing inequalities (∗) one finds

n∑
k=1

x2
k − (x1 + xn)

n∑
k=1

xk︸ ︷︷ ︸
=0

+x1xn

n∑
k=1

1︸ ︷︷ ︸
=n

≤ 0 .

– For all real a, b, c prove the identity

(b− c)2 (b+ c− 2a)2+(c− a)2 (c+ a− 2b)2+(a− b)2 (a+ b− 2c)2 = 1
2

(
(b− c)2 + (c− a)2 + (a− b)2)2

.

Solution

Let x = b+ c− 2a, y = c+ a− 2b, z = a+ b− 2c.

If a, b, c are distinct positive numbers, prove

aabbcc >
(
apc+qbbpa+qccpb+qa

) 1
p+q

, ∀p, q ∈ (0,∞).

Solution

Note: All summations are cyclic.
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Take the log of both sides; it remains to show that

p
∑
a log a+ q

∑
a log a > p

∑
c log a+ q

∑
b log a.

But (a, b, c) and (log a, log b, log c) are similarly ordered, by rearrangement we have
∑
a log a >∑

c log a and
∑
a log a >

∑
b log a (strict because they are distinct) so we just add up p times the

first and q times the second to get the desired inequality.

tổ hợp

– Q.Find the number of possible real solutions to the following equation:

(9 + sin x)f(x) + (10 + sinx)f(x) = (11 + sinx)f(x) where f(x) = x
1−x

Find all functions f : Z→ Z satisfying : f(x+ f(y)) = f(x)− y
Solution

Taking y = a+ f(b),

f(x+ [f(a+ f(b))]) = f(x)− [a+ f(b)] (1)

But we know

f(a+ f(b)) = f(a)− b

so

f(x+ [f(a+ f(b))]) = f(x+ f(a)− b) = f([x− b] + f(a)) = f(x− b)− a

Equating with (1),

f(x− b) = f(x)− f(b)

which is just Cauchy’s functional equation. Over the integers, this has the unique solution f(x) =

xf(1); plugging this in and simplifying gives

[f(1)]2y = −y

for all y which is obviously false, so there is no solution .

Evaluate
1

2
cot−1 2 3

√
4 + 1√

3
+

1

3
tan−1

3
√

4 + 1√
3

.

Solution

Let P = 1
2

cot−1 2 3√4+1√
3

+1
3

tan−1
3√4+1√

3
6P = 3 tan−1

√
3

2 3√4+1
+2 tan−1

3√4+1√
3

= tan−1 3a−a3

1−3a2 +tan−1 2b
1−b2 (a =

√
3

2 3√4+1
, b =

3√4+1√
3

) = tan−1
√

3(1+ 3√4)
3√2+ 3√4−1

+ tan−1
√

3(1+ 3√4)

1− 3√2− 3√4
= π, P = π

6
.

a, b are positive and ab = 8 Find the range of
√
a2 + 64 +

√
b2 + 1 , without calculus.

Solution

Clearly if one of the variable is large enough the expression tends to infinity. So we looking for the

minimum. By AM-GM:
√
a2 + 64 =

√
a2 + 16 + 16 + 16 + 16 ≥

√
5

10
√

164a2 =
√

5 5
√

256a
√
b2 + 1 =

√
b2

4
+ b2

4
+ b2

4
+ b2

4
+ 1 ≥

√
5 5

√
b4

16

So,

√
a2 + 64 +

√
b2 + 1 ≥

√
5

(
4 5

√
a

4
+

5

√
b4

16

)
AM−GM
≥ 5

√
5

25

√
a4b4

212
= 5
√

5

Minimum occurs when a = 4, b = 2 Range: [5
√

5,∞)∑
n≥j≥i≥0

i
i+j

Solution∑
n≥j≥i≥0

i
i+j

=
∑

n≥j>i≥0
i
i+j

+
∑

n≥i>j≥0
i
i+j

+
∑

n≥i=j≥0
i
i+j

=
∑

n≥j>i≥0
i
i+j

+
∑

n≥i>j≥0
i
i+j

+ n
2
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Now for each pair (i, j) i
i+j

+ j
j+i

= 1. ∴
∑

n≥j>i≥0
i
i+j

+
∑

n≥i>j≥0
i
i+j

is equal to the number of

pairs (i, j) where i > j. Now there are (n + 1, 2) pairs of (i, j) where 0 ≤ i, j ≤ n with i, j distinct.

So there are (n+ 1, 2)/2 pairs of (i, j) where i > j.

So
∑

n≥j≥i≥0
i
i+j

= (n+1,2)
2

+ n
2

= n(n+1)
4

+ n
2

= n(n+3)
4

Prove that, for any prime p, it is possible to find integers x and y such that x2 + y2 + 1 is

divisible by p.

Solution

Firstly note for p = 2 setting x = 1, y = 0 suffices. Else p is an odd prime.

Define for the set Ap as the set of squares (including 0) modulo p: i.e. the integers n ∈ [0, p− 1]

such that there exists an integer a with a2 = n mod p.

It is well-know that |Ap| = p+1
2

since modulo p: a2 = b2 ⇔ a ∈ {−b, b} Define the set Bp as

follows: Bp = {−1− s|s ∈ Ap} so |Bp| = |Ap| = p+1
2
. We also know that |Ap ∪Bp| ≤ p

Now |Ap ∪Bp| = |Ap|+ |Bp| − |Ap ∩Bp| = p+ 1− |Ap ∩Bp| ≤ p so Ap ∩Bp is not empty.

∴ ∃x, y such that x2 + y2 = −1 mod p⇒ p|x2 + y2 + 1 as required.

Let a,b,c be any numbers. Show that if (a+b+c)3 = a3+b3+c3 then (a+b+c)17 = a17+b17+c17.

Solution

Define: s1 = a+ b+ c, s2 = ab+ bc+ ca, s3 = abc, Tk = ak + bk + ck

Then note Tk+3 = Tk+2s1 − Tk+1s2 + Tks3 (just multipy out) (*)

Now T0 = 3, T1 = s1, T2 = s2
1 − 2s2 so we have:

T3 = s3
1 − 3s1s2 + 3s3 but we know T3 = s3

1 so:

s3 = s1s2 subbing this into (*) gives:

Tk+3 = Tk+2s1 − Tk+1s2 + Tks1s2

Now it is fairly easy to prove by induction that T2k+1 = s2k+1
1 , T2k = s2k

1 + (−1)k2sk2
So in particular a17 + b17 + c17 = T17 = s17

1 = (a+ b+ c)17

Let 0 < b < a 6 2 and 2ab ≤ 2b+ a. Prove that: a2 + b2 ≤ 5

Solution

As a > b we note that for the intequality to be false we need a2 > 5
2
⇒ a > 1.5

Now 2ab ≤ 2b+ a⇒ 2b(a− 1) ≤ a⇒ b ≤ a
2(a−1)

as a > 1.5 a− 1 > 0

∴ a2 + b2 ≤ a2 + a2

4(a−1)2 = a2(4a2−8a+5)
4(a−1)2

We need this to be less than or equal to 5 i.e. we need a2(4a2 − 8a + 5) ≤ 20(a − 1)2 ⇒
4a4 − 8a3 − 15a2 + 40a− 20 ≤ 0

⇒ (a− 2)(4a3 − 15a+ 10) ≤ 0 but as a ≤ 2 a− 2 ≤ 0 so we need 4a3 − 15a+ 10 ≥ 0

Let f(a) = 4a3 − 15a + 10 then f ′(a) = 12a2 − 15 > 0 as a > 1.5. So f(a) is increasing in the

range (1.5, 2] and f(1.5) = 1 so f(a) ≥ 0 as required.

p is prime and n, m are natural number such that pn + 576 = m2 Find the maximum value of

m+ n+ p

Solution

Obviously pn = (m − 24)(m + 24) so gcd(m − 24,m + 24) = pk. So pk|48. So p = 2 or p = 3. If

2n + 576 = m2, then say m− 24 = 2l and m+ 24 = 2n−l. Then 2n−l− 2l = 48 so l = 4 and n− l = 6.

Hence n = 10 and m = 40. If instead 3n + 576 = m2, let m − 24 = 3l and m + 24 = 3n−l. Then

3n−l − 3l = 48 so l = 1 but 3x − 1 = 16 has no solution, so this case is impossible.

So m = 40, n = 10 and p = 2 so m+ n+ p = 52.
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Solve the following system


sinx+ 2 sin(x+ y + z) = 0

sin y + 3 sin(x+ y + z) = 0

sin z + 4 sin(x+ y + z) = 0

Solution
sinx+ 2 sin(x+ y + z) = 0

sin y + 3 sin(x+ y + z) = 0

sin z + 4 sin(x+ y + z) = 0

2 · I − III : 2 sinx− sin z = 0

2 · II − 3 · III : 4 sin y − 3 sin z = 0

let sin z = 4a, a ∈
[
−1

4
, 1

4

]
sinx = 2a⇒ x = (−1)m arcsin 2a+mπ,m ∈ Z
sin y = 3a⇒ y = (−1)n arcsin 3a+ nπ, n ∈ Z
So solutions are ((−1)m arcsin 2a+mπ, (−1)n arcsin 3a+ nπ, (−1)p arcsin 4a+ pπ)

m,n, p ∈ Z, a ∈
[
−1

4
, 1

4

]
f(x)=x13 + 2x12 + 3x11 + ...+ 13x+ 14 and w is 15th root of unity. Find f(w).f(w2)...f(w14)

Solution

f(x) = x13 +2x12 +3x11 + ...+13x+14 is a arithemtico geometric progression There exist a standard

method for simplifying this Multiply f(x) by 1
x
and subtracting( Diagonnaly ) will give you the

geometric progression And you will get f(x)
(
1− 1

x

)
= x−x14

1−x −
14
x

Since We find f(x) only for 15

th roots of unity Hence x15 = 1 And this substitution will yield x14 = 1
x
And applying it here

and a small simplification yeilds f(x)
(
1− 1

x

)
= −x+1

x
− 14

x
And Hence f(x) = −x+15

x−1
Now we have

reduced the given thing into another form where the calculation easy. Now the calculation depends

on x15 − 1 = (x− 1) (x− ω) · · · (x− ω14) Substitute x = −15 Similarly substitute x = 1 (please do

note that you should take the limit here i.e x → 1 ) Dividing the two will yeild our desired result

and final result is
1515 + 1

15 · 16
– Suppose that a, b, c are positive integers such that

a+ b+ c = 32

b+ c− a
bc

+
c+ a− b

ca
+
a+ b− c

ab
=

1

4

Is there exist a triangle with sidelengths
√
a,
√
b,
√
c? If there is, find its largest angle. –

Let x, y, z be real numbers such that x + y + z = 0, xyz = −1 . Find the minimum value of

|x|+ |y|+ |z|.
Solution

One may proceed as follows :

Let’s denote by (i) the condition x+ y + z = 0 and by (ii) the second one xyz = −1.

Due to (ii) , x 6= 0 , y 6= 0 and z 6= 0 which is equivalent to |x| > 0 , |y| > 0 and |z| > 0.

(ii) yields also that : |x|+ |y|+ |z| = |x|+ |y|+ 1

|x||y|
AM-GM applied to (|x|, |y|) gives :

1

|xy|
≥ 2

|x|+ |y|
Thus , combining previous facts , we get :

|x|+ |y|+ |z| > |x|+ |y|+ 2

|x|+ |y|
A quick study of the function t 7−→ t+

2

t
on I =]0,+∞[ shows that it has a
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minimum on I which is 2
√

2 reaching it at t =
√

2 .

So :

|x|+ |y|+ |z| > 2
√

2

It remains to verify that this minimum value is reached for some value of the triplet (x, y, z).

According to the previous function study , this minimum is reached when |x|+ |y| =
√

2

Let’s find the exact value of (a) z < 0 in the case.

z < 0 together with (ii) imply that xy > 0 which, in turn implies that |xy| = xy (iii)

Besides (i) =⇒ x2 + y2 = z2 − 2xy

and |x|+ |y| =
√

2 =⇒ x2 + y2 = 2− 2|xy| = 2− 2xy (due to (iii) )

identifying , we get : z2 = 2 implying (z < 0) that z = −
√

2 .

back to (i) and (ii) and solving the system :x+ y =
√

2

xy =
1√
2

we get :

x, y =

−
√

2±
√

2 +
4√
2

2
which completes the proof .

solve the system :


1
x

+ 1
y+z

= 1
2

1
y

+ 1
z+x

= 1
3

1
z

+ 1
x+y

= 1
4

Solution

First, clear the fractions, and let S = x+ y + z to get: 2S = xy + xz 3S = xy + yz 4S = xz + yz

We may now solve this as a linear system to get: xy = S
2
xz = 3S

2
yz = 5S

2

Multiplying these equations gives:

xyz =
√

15S3

8

...and after dividing by the above equations in turn we have:

x =
√

3S
10
y =

√
5S
6
z =

√
15S

2

Now as x + y + z = S, we have that either S = 0, an impossibility as then we would get

x = y = z = 0, or else
√
S =

√
3
10

+
√

5
6

+
√

15
2

= 23√
30

Plugging this back into our expressions gives the exceptionally nice answer of: x = 23
10
, y = 23

6
,

z = 23
2
, which works in the original equation.

If a and b re positive integers and a2 + b2 = c, prove trhat c does not end the digits 11.

Solution

First of all, we know that x2 ≡ 0, 1, 4, 5, 6, or 9 (mod 10) for all x ∈ N. According to the problem,

we see a2 + b2 ≡ 1 (mod 10). Checking the cases, we see that {a2, b2} ≡ {5, 6} (mod 10). Suppose,

WLOG, that a2 ≡ 5 (mod 10) and b2 ≡ 6 (mod 10). It is clear that we have a ≡ 5 (mod 10) and

b ≡ 6 (mod 10) (why?). So, there are non-negative integers a1, a2, . . . , an and b1, b2, . . . , bm such that

a = anan−1 . . . a2a15 and b = bmbm−1 . . . b2b16. Try to compute a2 and b2 modulo 100:

a2 ≡ (5 + 10a1 + 100a2 + · · ·+ 10nan)2

≡ (25 + 100a1 + Some stuff which is divisible by 100)

≡ 25 (mod 100)
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b2 ≡ (6 + 10b1 + 100b2 + · · ·+ 10mbm)2

≡ (36 + 120a1 + Some stuff which is divisible by 100)

≡ 36 + 20b1 (mod 100)

So, a2 + b2 ≡ 61 + 20b1 (mod 100), and the problem is equal to solving the equation 61 + 20b1 ≡ 11

(mod 100), and the conclusion follows.

solve in Z y!+z!
x!

= 3x

Solution

Obviously y, z ≥ x . Now assume z ≥ y If z ≥ y + 3 then z! would obviously have an additional

factor in 3 than y! and hence it’s impossible to have y!+z!
x!

only containing powers of 3 Therefore z

can take values y, y + 1, y + 2 We have reduced this to simple cases and now try out each. Take the

last We have y!1+(y+1)(y+2)
x!

= 3x And This is only possible if y = x or y = x + 1 = 3n And also if

y = 0 and x = 1 As 0! = 1! = 1 Take the first We have y2 + 3y + 3 = 3x And possible only if x = 1

and y = 0 z = 2 Next. y = x + 1 = 3n . Substitute and check it is not possible. Take second case.

z = y + 1 Proceed similarly To get y = x = 1 z = 2 Third case also impossible. For the case z ≤ y

Just flip the solutions of y and z we have got

So solutions. (x = 1, y = 0, z = 2), (x = 1, y = 1, z = 2)

, (x = 1, y = 2, z = 1), (x = 1, z = 2, y = 0).

Let P (x) = xn+an−1x
n−1+· · ·+a0 be a polynomial of degree n ≥ 3. Knowing that an−1 = −

(
n
1

)
and an−2 =

(
n
2

)
, and that all the roots of P are real, find the remaining coefficients. Note that(

n
r

)
= n!

(n−r)!r! .

Solution

Let the roots be r1, r2, . . . , rn. By Vieta’s formula,

r1 + r2 + . . . rn =

(
n

1

)
= n

r1r2 + r1r3 + . . . r1rn + r2r3 + r2r4 + . . . r2rn + . . . rn−1rn =

(
n

2

)
Squaring the first and subtracting twice the second,

r2
1 + r2

2 + . . . r2
n = n2 − 2

(
n

2

)
= n

But by Cauchy-Schwarz,

n = r2
1 + r2

2 + . . . r2
n ≥

1

n
(r1 + r2 + . . . rn)2 = n

so equality holds, meaning r1 = r2 = r3 = · · · = rn = 1 (since their sum is n), and

P (x) = (x− 1)n

It is easy to see that

[xr]P (x) = (−1)n−r
(
n

r

)
let f(x) = ax6 + bx5 + cx4 + dx3 + ex2 + fx+ g here all the coefficients are non zero integers.

f(n) is divisible by 11 whenever n is an integer. how many minimum values among a,b,c,d,e,f,g have

to divisible by 11?

Solution
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f(0) = g =⇒ g must be a multiple of 11. both f(1) and f(−1) are multiples of 11 =⇒ f(1)+f(−1)

is also a multiple of 11 =⇒ (a+b+c+d+e+f+g)+(a−b+c−d+e−f+g) = 2(a+c+e+g)must

be a multiple of 11 =⇒ a + c + e must be a multiple of 11 (since g is already a multiple of 11)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)

Similarly , f(2)+f(−2) is also a multiple of 11 =⇒ (64a+32b+16c+8d+4e+2f +g)+(64a−
32b+ 16c− 8d+ 4e− 2f + g) = 8(16a+ 4c+ e) + 2g must also be a multiple of 11 =⇒ 16a+ 4c+ e

is a multiple of 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

Similarly, f(3)+f(−3) is a multiple of 11 =⇒ (729a+243b+ . . . +g)+(729a−243b+ . . . +g) =

18(81a+9c+e)+2g must be a multiple of 11 =⇒ 81a+9c+e is a multiple of 11. . . . . . . . . . . . . . . . . . .(3)

Now, subtracting above equations: Equation (2)− (1): 15a + 3c should be a multiple of 11 =⇒
5a+ c should be a multiple of 11. . . . . . . . . . . . . . . . . . (4)

Equation (3) − (1): 80a + 8c must be a multiple of 11 =⇒ 10a + c must be a multiple of

11. . . . . . . . . . . . ..(5)

Equation (5) − (4) : 5a must be a multiple of 11 =⇒ a must be a multiple of 11 Substituting

back in equation (5) =⇒ c must be a multiple of 11 And thus using equation (1) =⇒ e must also

be a multiple of 11

Similarly, if we observe f(1) − f(−1) and f(2) − f(−2), we obtain that b, d and f must also be

multiples of 11 Thus, all the coefficients have to be multiples of 11, for the above polynomial

r, s, t are prime numbers, p and q are two numbers whose LCM is r2s4t2 then find the number

of possible pairs of (p, q)

Solution

Let the prime factorization of p, q be: p = ra1sb1tc1 , where 0 ≤ a1 ≤ 2, 0 ≤ b1 ≤ 4, 0 ≤ c1 ≤ 2

q = ra2sb2tc2 , where 0 ≤ a2 ≤ 2, 0 ≤ b2 ≤ 4, 0 ≤ c2 ≤ 2

Now lcm[p, q] = rmax(a1,a2)smax(b1,b2)tmax(c1,c2).

Thus (a1, a2) can have a total of 5 combinations: (0, 2), (1, 2), (2, 2), (2, 1), (2, 0). Similarly, (b1, b2)

can have a total of 9 combinations, and (c1, c2) can have a total of 5 combinations Thus we have

5 ·9 ·5 = 225 different combinations, and hence 225 possible pairs of (p, q), because each combination

represents a different prime factorization of (p, q). – find all (m,n) ∈ N2 which m2

2mn2−n3+1
∈ N –

a, b, c ∈ N , c2 + 1|a+ b , ab|c(c2 − c+ 1) prove that : {a, b } = {c, c2 − c+ 1 }
Find all function f : R→ R that are continuous in zero and satisfy

f (x+ y)− f (x)− f (y) = xy (x+ y)

Solution

Letting x = y = 0, we see that −f(0) = 0, or f(0) = 0. Choosing any x ∈ R and y = −x, we have

f(0)− f(x)− f(−x) = 0, or f(−x) = −f(x)–that is, f must be an [i]odd[/i] function.

The right-hand side of the given relation suggests a cubic polynomial that vanishes at the origin.

In fact, with a little experimentation, we find that f(x) = x3/3 satisfies the equation.

Now suppose that f is any solution of the functional equation and consider F (x) = f(x)− x3/3.

Then F (x + y) − F (x) − F (y) = f(x + y) − (x + y)3/3 − (f(x) − x3/3) − (f(y) − y3/3) = [f(x +

y) − f(x) − f(y)] − (x + y)3/3 + x3/3 + y3/3 = xy(x + y) − xy(x + y) = 0 for all x, y ∈ R, or
F (x+ y) = F (x) + F (y) for all x, y ∈ R.

Thus F satisfies Cauchy’s equation. The additivity of F plus the continuity at 0 implies that

F is continuous at [i]every[/i] x ∈ R. Under these conditions, the solution of Cauchy’s equation is

known to be F (x) = cx for an arbitrary constant c.
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Therefore, finally, we have f(x) = F (x) + x3

3
= cx+ x3

3
for any real number c.

Let x, y, z, k, l, h ∈ R+ such that xy + yz + zx = 1.Find the minimize value of the expression:

P = kx2 + ly2 + hz2

Solution

Suppose that there are positive real numbers a, b, c,m, n, p such that

P = kx2 + ly2 + hz2 = (a+m)x2 + (b+ n)y2 + (c+ p)z2

By AM-GM, we have ax2 +by2 ≥ 2
√
abxy,mx2 +cz2 ≥ 2

√
mczx, ny2 +pz2 ≥ 2

√
npyz. Equality holds

when ax = by for the first inequality, cz = mx for the second, ny = pz for the third. Multiplying, we

get acn = bmp.

For the condition xy + yz + zx = 1 to be used, we impose that ab = mc = np = t, so that

acn = bmp =
√
t3. Eventually, the minimum value is 2

√
ab = 2

√
t. Now, we are going to find the

exact value of t.

Multiplying these equations k = a+m, l = b+ n, h = c+ p, we get

klh = (a+m)(b+ n)(c+ p) = (ab+ an+mb+mn)(c+ p)

= abc+mbc+mnc+ abp+ anp+mnp+mbp+ anc = t(c+ b+ n+ p+ a+m) + 2
√
t3

= 2
√
t3 + t(k + l + h)

Letting q =
√
t, it turns out that q is the positive root of the cubic equation 2q3 + q2(k+ l+ h)−

klh = 0. Therefore, the minimum value of P is 2
√
t = 2q.

Solve that

{
(x− 1)(2y − 1) = x3 + 20y − 28

2(
√
x+ 2y + y) = x2 + x

Solution

Note that

2(
√
x+ 2y + y) = x2 + x ⇐⇒ x+ 2y + 2

√
x+ 2y = x2 + 2x

⇐⇒ x2 − (x+ 2y) + 2(x−
√
x+ 2y) = 0

⇐⇒ (x−
√
x+ 2y)(x+

√
x+ 2y + 2) = 0

Thus, x =
√
x+ 2y (x ≥ 0) and

√
x+ 2y = −x − 2 (x ≥ −2). When x =

√
x+ 2y, we have

2y = x2 − x, so the first equation becomes (x− 1)(x2 − x− 1) = x3 + 10(x2 − x)− 28, which gives

12x2 − 10x− 29 = 0. Since x ≥ 0, we get x = 5+
√

373
12

, which we get y = 169−
√

373
144

.

When −x− 2 =
√
x+ 2y, we have 2y = x2 + 3x+ 4, so the first equation becomes (x− 1)(x2 +

3x + 3) = x3 + 10(x2 + 3x + 4) − 28, which simplifies to 8x2 + 30x + 15 = 0. Since x ≥ −2, we get

x = −15+
√

105
8

, which we get y = 113+3
√

105
64

.

These solutions are the only real solutions.

Determine the value of the sum
∑∞

n=1 arctan 1
2n2 .

Solution

In the familiar trigonometric identity

tan(A−B) =
tanA− tanB

1 + tanA tanB
,
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we can replace A by arctanα and B by arctan β and take the inverse tangent of both sides to get

arctanα− arctan β = arctan

(
α− β
1 + αβ

)
if αβ < 1.

Letting α = 1
2n−1

and β = 1
2n+1

, we can write (after some simple algebra)

arctan

(
1

2n− 1

)
− arctan

(
1

2n+ 1

)
= arctan

(
1

2n−1
− 1

2n+1

1 + 1
2n−1

1
2n+1

)
= arctan

1

2n2
.

But

N∑
n=1

{
arctan

(
1

2n− 1

)
− arctan

(
1

2n+ 1

)}
= arctan 1− arctan

(
1

2N + 1

)
→ arctan 1 as N →∞.

Therefore,
∞∑
n=1

arctan
1

2n2
= arctan 1 =

π

4
.

GENERALIZATION: In general, using telescoping cancellation in the same way, we can show

that
∞∑
n=1

arctan
f(n)− f(n+ 1)

1 + f(n)f(n+ 1)
= arctan f(1).

For example, letting f(n) = 1/n, we find that
∑∞

n=1 arctan 1
n2+n+1

= π
4
.

Find all function f : R→ R which satisfy equation f(xf(y) +x) = xy+ f(x) for each x, y ∈ R
Solution

Set x = 1 and y = −1− f(1). The functional equation becomes

f (f(−1− f(1)) + 1) = −1− f(1) + f(1) = −1.

Letting f(−1− f(1)) + 1 = z, we can write the last equation as

f(z) = −1. (∗)

If we let y = z and w = f(0) in the original functional equation and use (∗), we get

w = f(

x(−1)+x︷ ︸︸ ︷
xf(z) + x) = zx+ f(x), or f(x) = w − zx.

Substituting this last relation in the original functional equation, we get

z2xy − zwx− zx+ w = xy − zx+ w.

Equating coefficients, we get z = ±1 and w = 0, so f(x) = x or f(x) = −x . We can see that both

functions are in fact solutions of our functional equation.

Consider

S =

√
2x+

√
2x+

√
2x+

√
2x+ · · ·

Given that x is nonnegative number. Describe the behaviour of S when x approaches 0. Determine

if S represents a convergent or divergent series.
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Solution

First we have to make sense of the expression S =

√
2x+

√
2x+

√
2x+

√
2x+ · · ·.

Take S1 =
√

2x, S2 =
√

2x+
√

2x, and Sn+1 =
√

2x+ Sn for n ≥ 2. Therefore S = limn→∞ Sn, if

this limit exists.

Since x > 0, it is easy to show by induction that Sn < Sn+1, so the sequence {Sn} is mono-

tonically increasing. Furthermore,we show that Sn < max{2x, 2} (so {Sn} is bounded) , also by

induction: S1 =
√

2x ≤ max{2x, 1} ≤ max{2x, 2}. Now if Sn ≤ 2, then Sn+1 ≤
√

2x+ 2 ≤
√

4 = 2.

Similarly, if 2 < Sn ≤ 2x, then Sn+1 =
√

2x+ Sn ≤
√

4x ≤ 2x.

Since {Sn} is a bounded monotonic sequence, the sequence converges. Thus we can write (since

the square root function is continuous)

S = lim
n→∞

Sn = lim
n→∞

Sn+1 = lim
n→∞

√
2x+ Sn =

√
2x+ lim

n→∞
Sn =

√
2x+ S.

Squaring the relation S =
√

2x+ S, we get S2 − S − 2x = 0. Solving for S, we find that

S =
1 +
√

1 + 8x

2
,

where we take the positive solution of the quadratic equation. We can see that S → 1 as x→ 0.

Find a closed form expression for :

n∑
k=0

(
n

k

)
cos(ak + b).

where a, b are real numbers.

Solution

Let z = eia, w = eib
∑n

k=0 C
n
k z

kw = w(1 + z)n = w(1 + cos a+ i sin a)n = w(2 cos2 a
2

+ i2 sin a
2

cos a
2
)n

= w(2 cos a
2
)n(cos a

2
+ i sin a

2
)n = w(2 cos a

2
)n(cos na

2
+ i sin na

2
) = (2 cos a

2
)n(cos(na

2
+ b) + i sin(na

2
+ b))

Required sum = (2 cos a
2
)n cos(na

2
+ b)

Find all solutions to 2b = c2 − b2 , where a, b, c ∈ N
Solution

Maybe you mean 2a = c2 − b2? If not, I am going to solve this and then consider yours as a special

case.

(c− b)(c+ b) = 2a =⇒ c− b = 2k, c+ b = 2m,m+ k = a.

We now have that 2b = 2m − 2k =⇒ b = 2m−1 − 2k−1 and c = 2m−1 + 2k−1.

Now, we have your equation, yielding b = 2m−1 − 2k−1 = m+ k.

In fact, 2k−1(2m−k − 1) = m + k. Suppose k > 2. We see that 2k−1 > k, and if m ≥ 6 then

2k−1(2m−k − 1) > m+ k.

Thus, we try k = 1, 2, 3, 4 (the limit because m ≥ 6 =⇒ k < 6).

Exhausting all cases, we find that k = 2 =⇒ 2(2m−2−1) = m+2 =⇒ m = 4 =⇒ b = 6, c = 10.

So, the only solution is (b, c) = (6, 10)

Hết 2010-2013
1
xy

= x
z

+ 1

1
yz

= y
x

+ 1

1
zx

= z
y

+ 1
Solution

We have,
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z = xy(x+ z) ; x = yz(y + x) ; y = zx(z + y)

⇒ z2 = xyz(x+ z)-(i) ; ⇒ x2 = xyz(y + x)-(ii) ; ⇒ y2 = xyz(z + y)-(iii)

Subtracting 2 equations at a time we get:- (z−x)(z+x) = xyz(z−y) ; (x+y)(x−y) = xyz(x−z)

; (y + z)(y − z) = (y − x)xyz

Multiplying these 3 equations we get (for x 6= y 6= z), x3y3z3 = −(x+ y)(y + z)(z + x)-(iv)

Multiplying (i), (ii) and (iii) we get,

1 = xyz(x+ y)(y + z)(z + x)-(v)

From (iv) and (v) we get, x4y4z4 = −1

Hence, no real solutions.

For x = y, 1
x2 = x

z
+ 1 ; 1

xz
= 2 ; 1

zx
= z

x
+ 1 z = x2(x+ z) ; xz = 1

2
; 1 = z(z + x)

We get z2 = x2 As x 6= −z x = z

Hence, we get x = y = z = ± 1√
2

Let f be a function satisfying the following: 1) f(ab) = f(a) + f(b), when (a, b) = 1 2)

f(p+ q) = f(p) + f(q), when p and q are primes

Find all values of f(2002)

Solution

We shall proof that f(p) = 0 for all prime p.

By Rule 2, f(6) = f(3) + (3). But by Rule 1, f(6) = f(2) + f(3). So f(2) = f(3). By Rule 2,

f(5) = f(2) + f(3) = 2f(2). By Rule 2, f(10) = f(5) + f(5) = 4f(2). But by Rule 1, f(10) =

f(2) + f(5) = 3f(2). So f(2) = 0.

For all prime p, by Rule 2, f(2p) = f(p) + f(p). But by Rule 1, f(2p) = f(2) + f(p). So

f(p) = f(2) = 0.

f(2002) = f(2× 7× 143) = f(2) + f(7) + f(143), by Rule 1. So the result is 0.

Find all positive integers n such thatbn2

5
c is a prime number

Solution

p ≤ n2

5
< p + 1, where p is prime. So 5p ≤ n2 < 5p + 5 =⇒ 0 ≤ n2 − 5p < 5. Solve all cases from

0 to 4. Eg, n2 − 5p = 1 =⇒ p = (n+1)(n−1)
5

. Since p is prime, either 5 = n + 1 or 5 = n − 1, which

yields n = 6, 4.

Final conclusion is n=4, 5, 6.

Or another way:

The quadratic residues of n2 are 0,±1.

Case one: n2 = 5a =⇒ bn2

5
c = a but 5|a. So only solution is n, a = 5

Case two: n2 = 5a+ 1 =⇒ bn2

5
c = a So a needs to be prime. Note that then (n+ 1)(n− 1) = 5a.

n+ 1 = 5 =⇒ n = 4, a = 3 so we are good.

If n− 1 = 5 =⇒ n = 6, a = 7 so we are good.

Case three: n2 = 5a+ 4 =⇒ bn2

5
c = a Again, a needs to be prime. (n+ 2)(n− 2) = 5a.

n + 2 = 5 =⇒ n = 3, a = 1 so we can throw it away. n − 2 = 5, n = 7, a = 9 which is again

incorrect.

Thus, n = 4, 5, 6

– find a and b such that this is an integer -
1
a

+ 1
b

+ a
b+1

. — For any positive integer n, prove that

{
√
n} = b

√
n+ b

√
ncc
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where bxc denotes the largest integer less than or equal to x, and {x} denotes the integer closest to

x.

[hide="my solution, is this correct? Is there a cleaner one?"] let a2 ≤ n < (a + 1)2 where

a = b
√
nc =⇒ a ≤

√
n < a+ 1. Also, (a+ 1

2
)2 − 1

4
= a2 + a ≤ n+ a < (a+ 1)2 + a = (a+ 3

2
)2 − 5

4

=⇒ a ≤ b
√
n+ ac ≤ a+ 1

Case 1: when a ≤
√
n < a+1

2
a ≤ b

√
n+ b

√
ncc = b

√
n+ ac < b

√
(a+ 1

2
)2 + ac = b

√
(a+ 1)2 − 3

4
c

=⇒ a ≤ b
√
n+ b

√
ncc < a+ 1 =⇒ b

√
n+ b

√
ncc = a = {

√
n}

Case 2: when a + 1 >
√
n > a + 1

2
, similarly we get a + 1 ≥ b

√
n+ ac = b

√
n+ b

√
ncc >

b
√

(a+ 1
2
)2 + ac = b

√
(a+ 1)2 − 3

4
c =⇒ a + 1 ≥ b

√
n+ b

√
nc ≥ a + 1 =⇒ b

√
n+ b

√
ncc =

a + 1 = {
√
n} Thus the result. – Find f : R → R satisfying : f(x+y

x−y ) = f(x)+f(y)
f(x)−f(y)

– Find f : R → R
satisfying : f(f(x) + y) = f(x2− y) + 4f(x)y – Find all the set of four (x,y,z,t) positive integers such

that 1 + 5x = 2y + 2z · 5t. –
1) Find f : N→ N satisfying: f(m2 + n2) = f 2(m) + f 2(n) and f(1) > 0

2) Find f : Z→ Z satisfying : f(0) = 1, f(f(n)) = f [f(n+ 2) + 2] = n, n ∈ Z
Solution

To the second one: From f(f(n))=n you have this: For distinct x,y integers f(x) 6= f(y). Suppose it’s

not true, so f(x)=f(y) for some x,y. Then x = f(f(x)) = f(f(y)) = y which is not true, contradiction

(from now we can use f(a) = f(b) =⇒ a = b). We also know that f(f(0)) = 0 so f(1)=0. We can

show by induction that f(2k+1) for k positive integer (also 0) is -2k. It’s true for k=0. Suppose it’s

true for some k. Then set n=2k+1: f(f(2k+1))=f(f(2k+3)+2) From this we have f(2k+3)=f(2k+1)-

2=-2(k+1) so we proved it. Very similary you can prove that f(2k) = −(2k − 1)fork ≥ 0. You

can do similar things with negative integers. Let’s prove that f(-(2k+1))=2k+2 Set n=-1. Then

f(f(−1)) = f(f(1) + 2) =⇒ f(−1) = 2 By setting n=-3,-5,... (induction) you can prove it for other

values. It’s similar also for even negative numbers. Sorry for writing so many times word similar, but

it’s similar and I am lazy to write it completely

P(x) is a polynomial with integer coefficients.

P(21) =17, P(32)= -247 and P(37) =33

Prove that if P(N) =N+51 for some integer N then N=26

Solution

Let N be such integer that P (N) = N+51. And let for another integer x be P (x) = y. Then we know

that (N − x)|(P (N)−P (x)). We can modify it to: (N − x)|(N + 51− y) =⇒ (N − x)|(51− y+ x).

Now set x = 21, 37. From this flows (N − 37)|55, (N − 21)|55. Divisors of 55 are -55,-11,-5,-

1,1,5,11,55. N − 37 and N − 21 are divisors of 55 with distance 16. We can see that there are only 2

possibilities: N − 37 = −11, N − 21 = 5 =⇒ N = 26 or N − 37 = −5, N − 21 = 11 =⇒ N = 32.

But second possibility can’t be true, because we know that P (32) = −247.

Find all natural numbers X such that the product of the digits of X equals X2 − 10X − 22.

Solution

Let X have n > 1 digits. Then X2 − 10X − 22 ≥ 102n−2 − 10n − 22. Maximum of product of digits

is 9n. But we can prove that for n ≥ 3 is X2 − 10X − 22 ≥ 102n−2 − 10n − 22 > 9n. So we have to

consider just 1-digit and 2-digits numbers.

1-digit numbers are easy, for them must x2 = x2 − 10x− 22 which is impossible

For 2-digit numbers is product of digits maximaly 81, but for X ≥ 17 is X2 − 10X − 22 > 81 so

it’s just about considering numbers from 10,11,...,16. You can find out, that it sits only for 12.

a1, a2, a3 are three different positive integer numbers, and such that a1|a2 + a3 + a2a3 a2|a3 +
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a1 + a3a1 a3|a1 + a2 + a1a2 prove that a1, a2, a3 can’t all be primes

Solution

(a2 +1)(a3 +1) = 1(moda1)→ (a1 +1)(a2 +1)(a3 +1) = 1(moda1) Similarly, (a1 +1)(a2 +1)(a3 +1) =

1(moda2) And, (a1 + 1)(a2 + 1)(a3 + 1) = 1(moda3)

If all primes: (a1 +1)(a2 +1)(a3 +1) = 1(moda1a2a3) Now, LHS ≥ 1, a1a2a3 +1 but, 2a1a2a3 +1 >

(a1 + 1)(a2 + 1)(a3 + 1) for a1 ≥ 7, a2 ≥ 5, a3 ≥ 3

Now if WLOG, a1 = 2, then (a2 + 1)(a3 + 1) = 1(moda1) would be false.

On the plane we have finite set of triangles. Figure F is sum of all this triangles. Pf = 16,

where P is an area. Prove, that we can choose triangles, which are separable and sum of their areas

is > 1.

Solution

Assume a1 is the largest side of the equilateral triangle. we consider the area where there have

equilateral triangles intersect with a1 let the area is S1,with not had work we can know(rememeber

a1 is the largest side): S1 ≤ (π+
√

3
4

+ 3)(a1)2 if S1 ≥ 16, we can know
√

3
4

(a1)2 > 1 if S1 < 16 we can

chose the largest whicn does not intersect with a1,assume its side is intersect with a2,so record S2

similar.we can get S2 ≤ (π+
√

3
4

+3)(a2)2,too.(if S2 intersect with S1,throw away these area) wo do this

again and again.finally we will get S1 +S2. . . . . . +Sn ≥ 16 so we can get
√

3
4

(a2
1 +a2

2 + . . . . . . +a2
n) > 1

we are done. the chart.doc.is why S1 ≤ (π +
√

3
4

+ 3)(a1)2

How many p prime numbers can be found that p2 + 23 has 14 positive divisor?

Solution

Firstly we look at number of divisors generally. Let p1, p2, . . . , pm be all distinct prime divisors of

n. Then we can write n as n = pa1
1 p

a2
2 . . . pamm where a1, a2, . . . , am are positive integers. Now consider

a divisor of n. We know that it don’t have other prime divisors than n has. So divisor of n is in form

pb11 p
b2
2 . . . pbmm where bi is nonegative integer such that bi ≤ ai for each i = 1, 2, . . .m. Now a little from

combinatoics. We can choose exponent bi as 0, 1, 2, . . . , ai so there’s exactly ai+1 ways how to choose

exponent bi. So to choose proper exponents b1, b2, . . . , bm we have exactly (a1 + 1)(a2 + 1) . . . (am + 1)

ways and it’s also number of divisors of n.

We know that p2 + 23 has 14 divisors. We can try p = 2, 3 and it fails. So suppose that p > 3 (we

will need it later). We know that 14 = (a1 + 1)(a2 + 1) . . . (am + 1) (it’s number of divisors). Because

14 = 2 ∗ 7 we know that there are only two ways:

1) m = 1; a1 + 1 = 14 =⇒ p2 + 23 has only one prime divisor and it’s exponent is 13, so there

exists such prime q such that q13 = p2 + 23.

2) m = 2; a1 + 1 = 7; a2 + 1 = 2 =⇒ p2 + 23 has two prime divisors with exponents 6, 1, so there

exists 2 prime q, r such that p2 + 23 = q6r.

Now let’s look at p2 + 23. We exclude p = 2, 3 so it’s known fact (and easy to prove) that p is in

form 6k + 1 or 6k − 1:

a) p2 + 23 = (6k+ 1)2 + 23 = 36k2 + 12k+ 1 + 24 = 12(3k2 + k+ 2) b) p2 + 23 = (6k− 1)2 + 23 =

36k2 − 12k + 1 + 23 = 12(3k2 − k + 2)

In both cases p2 + 23 is divisible by 12 = 22 ∗ 3 so it has at least two prime divisors so case 1)

cannot happen. Now we see that it must be case 2). We also see that primes q, r are 2, 3. Exponent of

2 is at least 2 so we know that p2 +23 = q6r = 26∗3. From this equality we get p =
√

26 · 3− 23 = 13.

Answer is: There’s only one such prime p = 13.

A is a positive integer B and C are integers The equation A(X2) +BX +C = 0 has 2 distinct
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roots in the interval (0, 1) Prove A ≥ 5 Find a quadratic polynomial satisfying these conditions when

A=5

Solution

Let f(x) = A(x2) + Bx + C and let x1, x2 be the roots of f(x). f(x) = a(x − x1)(x − x2) f(0) =

C = A.x1.x2 > 0 and f(1) = A + B + C = A(1 − x1)(1 − x2) > 0 f(0)f(1) > 0 so f(0)f(1) ≥ 1

,or A2.x1.(1 − x1).x2.(1 − x2) ≥ 1 (∗) we know that for 0 < x < 1, x(1 − x) ≤ 1
4
and equality

holds iff x = 1
2
since x1 and x2 are different we have x1.(1 − x1).x2.(1 − x2) < 1

16
from (*) ;

A2 > 16 =⇒ A > 4 =⇒ A ≥ 5 For a = 5, 5(x2)− 5x+ 1 satisfies the conditions.

Solve this system of equalities in integers: x(y + z + 1) = y2 + z2 − 5

y(z + x+ 1) = z2 + x2 − 5

z(x+ y + 1) = x2 + y2 − 5

Solution

Let’s call that equations (1),(2) and (3). Then: (1)− (2) is (x− y)(x+ y + z + 1) = 0

(2)− (3) is (y − z)(x+ y + z + 1) = 0

(3)− (1) is (z − x)(x+ y + z + 1) = 0

There are 2 cases:

first case: x + y + z + 1 is not 0. Then we easily see that there’s only one possibility: x=y=z.

Using this in (1) we will get x = y = z = −5

second case: x + y + z + 1 = 0. Now we will make small modification in (1): y2 + z2 − 5 =

x(y + z + 1) = x(x + y + z + 1 − x) = −x2 So: x2 + y2 + z2 = 5 Equations are symmetric, so

we can deduce that only possible solutions are: (2, 1, 0), (2,−1, 0), (−2, 1, 0), (−2,−1, 0) and their

permutations. But only for (−2, 1, 0) holds x + y + z + 1 = 0 This solution and permutations are

succesful.

Let 0 < a < b prove that

There exist c ∈ [a, b](∏n
k=1

ekb−eka
b−a

)
= n!e

n(n+1)c
2

Solution

Given that ex is differentiable we can apply the mean value theorem to get that e
bk−eak
b−a = k( 1

k
) e
bk−eak
b−a =

keck for some ck ∈ (ka, kb). Thus
∏n

k=1
ebk−eak
b−a = n!e

∑n
k=1 ck

But ck ∈ (ka, kb) ⇒ n(n+1)a
2

<
∑n

k=1 ck < n(n+1)b
2

⇒ a <
2
∑n
k=1 ck

n(n+1)
< b. Now clearly letting

c =
2
∑n
k=1 ck

n(n+1)
we get the desired result.

Here a generalisation of problem

1 ≤ k ≤ p ∈ N∗, a < b

fk : [a, b]→ R function class C1

suppose each f ′k is strictly increasing

Then there exist c ∈ [a, b] s.t.∏p
k=1

fk(b)−fk(a)
b−a =

∏p
k=1 f

′
k(c) – Prove that : with n ≥ 2 then : [

√
n] + [3

√
n] + ... + [n

√
n] =

[log2 n] + [log3 n] + ...+ [logn n]

The real numbers s, t varies being satisfied with s2 + t2 = 1, s = 0, t = 0. Find the range of the

value of the root for the following equation can be valued.

x4 − 2(s+ t)x2 + (s− t)2 = 0

Solution

s = 0, t = 0, s2 + t2 = 1⇐⇒ (s+ t)2 = 2(s2 + t2)− (s− t)2 5 2⇐⇒ 1 5 s+ t 5
√

2,
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equality occurs when (s, t) = (0, 1), (1, 0),
(

1√
2
, 1√

2

)
.

Solving for quadratic equation to x2, we have x2 = s+ t±
√

4st = s+ t±
√

(s+ t)2 − (s− t)2.

From A.M. = G.M. 0 5 s+ t−
√

4st, s+ t+
√

4st 5 2(s+ t) 5 2
√

2.

Therefore 0 5 x2 5 2
√

2, the desired answer is −2
3
4 5 x 5 2

3
4 .

A triangle is called Heronian if its sides and area are integers. Determine all five Heronian

triangles whose perimeter is numerically the same as its area.

Solution

Clearly, any triangle (with integer side lengths) with area equal to perimeter will be Heronian.

Now, with s, a, b, c standing for the semiperimeter and the three side lengths, make the following

substitutions: s−a = x, s−b = y, s−c = z. We know x, y, z are positive from the triangle inequality.

Now, the constraint that the area is equal to the perimeter can be written (through Hero’s formula)

as follows: 2s =
√
sxyz ⇒ 4s = xyz. Now, at the moment, we don’t know if s, x, y, z are integers. It

is possible that s is half an integer, in which case x, y, z would all be half-integers. However, in the

equation 4s = xyz we know the left-hand side must be an integer as 4s = 2(a + b + c), so if s were

not an integer, neither would x, y, z be, so the right-hand side could not be an integer. Thus s, x, y, z

are all integers. Now, note that s = x + y + z, so we substitute that in to find that we must have

4(x+y+z) = xyz, x, y, z ∈ Z+. This is symmetric in x, y, z so let us assume without loss of generality

that x ≥ y ≥ z. Then xyz = 4(x + y + z) ≤ 4(x + x + x) = 12x ⇒ yz ≤ 12. We could do some

further analysis, such as noting that at least one of x, y, z must be even, but at this point, it’s easy

enough just to try all possible pairs (y, z) and see which of them yield integral x = 4(y+z)
yz−4

. We find

the triples (x, y, z) = (24, 5, 1), (14, 6, 1), (9, 8, 1), (10, 3, 2), (6, 4, 2). Now, to find (a, b, c) from these,

we have the formulas a = y + z, b = x + z, c = x + y. Thus these five triples of (x, y, z) yield the

following triangles: (29, 25, 6), (20, 15, 7), (17, 10, 9), (13, 12, 5), (10, 8, 6). Incidentally, it appears that

only the last two are right triangles.

A function f : N → N satisfies the following:

(i) f(xy) = f(x)+f(y)−1 (ii) there exist a finite number of x, such that f(x) = 1 (iii) f(30) = 4

Determine f(14400).

Note: N = {1, 2, 3, ...}
Solution

Suppose k > 1 is such that f(k) = 1. Then

f(k2) = f(k) + f(k)− 1 = 1, and if f(kn) = f(k) = 1, then f(kn+1) = f(kn) + f(k)− 1 = 1, so

there are infinite k’s satisfying f(k) = 1. Then the only such k must be 1.

f(30) = 44 = f(2) + f(15)− 14 = f(2) + f(3) + f(5)− 2f(2) + f(3) + f(5) = 6

Then since they’re greater than 1, each of them is at least 2 so

f(2) = f(3) = f(5) = 2.

Then f(14400) = f(16) + 2f(30)− 2 = f(16) + 6 = 4f(2)− 3 + 6 = 8− 3 + 6 = 11.

The definition of a primitive root can be extended to composite numbers. Say w is a primitive

root modulo n if φ(n) is the smallest power of w which is congruent to 1 modulo n.

a.) Find any primitive roots of 10. b.) Show that 12 has no primitive roots

Solution
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φ(10) = φ(12) = 4 For a.) w4 ≡ 1 mod 10 and w3, w2, w 6= 1 mod 10. Only odds will work,

so, ±1,±3 work with ±1 being eliminated because (±1)2 ≡ 1 mod 10. So, 3 and 7 work. For b.)

w4 ≡ 1 mod 12 and w3, w2, w 6= 1 mod 12. Again only odds will work, so, ±1,±3,±5 may work.

±1,±5 are eliminated because (±1)2 ≡ 1 mod 12 and (±5)2 ≡ 1 mod 12. ±3 is eliminated because

gcd(3, 12) = 3 so any power of 3 will differ from 12 by a multiple of 3. So none can work.

In general: wφ(n) ≡ 1 mod n tells us that wφ(n) − nk = 1. If gcd(w, n) = m, m | wφ(n) − nk,

therefore wφ(n) ≡ 1 mod n can only happen if m = 1.

For each positive integer n ≤ 49 we define the numbers an = 3n +
√
n2 − 1 and bn =

2(
√
n2 + n+

√
n2 − n). Prove that there exist two integers A,B such that√

a1 − b1 +
√
a2 − b2 + · · ·+

√
a49 − b49 = A+B

√
2.

Solution

First I factored, bn = 2
√
n(
√
n+ 1 +

√
n− 1). Then I noticed that

√
n+ 1

√
n− 1 =

√
n2 − 1

which is part of an. So, I say r = (
√
n+ 1 +

√
n− 1) and square it to get r2 = 2n+ 2

√
n2 − 1. Then

I said an =
4n+ r2

2
and noticed 4n = (2

√
n)2 = s2. From these it immediately follows that an =

s2 + r2

2
, bn = rs, and an − bn =

s2 − 2rs+ r2

2
⇒
√
an − bn =

s− r√
2

=
2
√
n− (

√
n+ 1 +

√
n− 1)√

2
=

(
√
n−
√
n− 1)− (

√
n+ 1−

√
n)√

2
So,

49∑
n=1

√
an − bn =

49∑
n=1

(
√
n−
√
n− 1)− (

√
n+ 1−

√
n)√

2

=
1√
2

(
49∑
n=1

(
√
n−
√
n− 1)−

49∑
n=1

(
√
n+ 1−

√
n)

)

=
1√
2

((
49∑
n=1

√
n−

49∑
n=1

√
n− 1

)
−

(
49∑
n=1

√
n+ 1−

49∑
n=1

√
n

))

=
1√
2

((
49∑
n=1

√
n−

48∑
n=0

√
n

)
−

(
50∑
n=2

√
n−

49∑
n=1

√
n

))
=

1√
2

((√
49−

√
0
)
−
(√

50−
√

1
))

= −5 + 4
√

2

Let x, y, z be positive integers, and let h denote their greatest common divisor. If 1/x− 1/y =

1/z, prove that both hxyz and h(y − x) are perfect squares.

Solution

Let x = ha, y = hb, z = hc, so that (a, b, c) = 1. We have (y − x)z = xy, so dividing by h2,

(b − a)c = ab. hxyz = h4abc, h(y − x) = h2(b − a), so we want to show that abc, b − a are perfect

squares.

Suppose that some prime p divides c, and let d be such that pd‖c. Since (b − a)c = ab, we have

c | ab; but p can’t divide both a, b because (a, b, c) = 1. Then it divides just one of them, which means

it doesn’t divide b− a. So we have pd‖LHS, pd‖RHS, then pd‖ab. We can do this for all primes that

divide c. Then the highest power of p dividing abc is 2d, which is even, and the highest power of p

dividing b− a is 0, which is also even.

Now suppose some prime q divides a but not c. Then it must also divide b − a; so it divides

b. Similarly any prime which divides b but not c divides b − a and thus a. Let e, f be such that

qe‖a, qf‖b. If e 6= f , qe+f‖RHS whereas qmin(e,f)‖LHS, contradiction. So e = f . Then the highest
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power of q dividing abc is e+ f = 2e, which is even. We’ve characterized all prime divisors of abc as

having even exponents, so it is a perfect square. Then as ab = c(b− a), abc = c2(b− a). Thus as abc

is a square, c2(b− a) is a square and b− a is a square.

– Let n ≥ 2 be a positive integer. Suppose that a1, a2, ..., an and b1, b2, ..., bn are 2n positive

numbers such that
∑n

i=1 ai =
∑n

i=1 bi = 1 and

ai ≥ 0, 0 ≤ bi ≤
n− 1

n
, i = 1, 2, ..., n

Prove that

b1a2a3...an + a1b2a3...an + ...+ a1a2...ak−1bkak+1...an + ...+ a1a2...an−1bn ≤
1

n(n− 1)n−2

Let P be a point inside triangle ABC, and D,E, F be the feet of perpendiculars from P

to the lines BC,CA,AB respectively. Prove that : (i) EF = AP. sinA (ii) PA + PB + PC ≥
2(PE + PD + PF )

Solution

Denote ∠FAP = α and ∠EAP = β then α+β = A EF 2 = PF 2+PE2−2PE ·PF cosFPE = PF 2+

PE2 + 2PE · PF cosA And PF = AP sinα, PE = AP sin β Thus we obtain EF 2 = AP 2(sin2 α +

sin2 β + 2 sinα sin β cosA)

In fact, sin2 α+ sin2 β + 2 sinα sin β cosA = 1−cos 2α
2

+ 1−cos 2β
2

+ (cos(α− β)− cos(α+ β)) cosA =

1− cos(α− β) cos(α + β) + cos(α− β) cosA− cos2A = sin2A for (ii)

Let E ′ and F ′ be the projection of E and F on BC, respectively. We have EF ≥ E ′F ′, DE ′ =

PE cos(π
2
− C) = PE sinC and similarly DF ′ = PF sinB

hence AP sinA = EF ≥ DE ′ +DF ′ = PE sinC + PF sinB and AP ≥ PE sinC
sinA

+ PF sinB
sinA

Similarly, we have another two inequalities. Sum them up and we obtain that

PA+PB+PC ≥ PD
(

sinC
sinB

+ sinB
sinC

)
+PE

(
sinC
sinA

+ sinA
sinC

)
+PF

(
sinB
sinA

+ sinA
sinB

)
≥ 2(PD+PE+PF )

In the plane, Γ is a circle with centre O and radius r, P and Q are distinct points on Γ, A is

a point outside Γ, M and N are the midpoints of PQ and AO respectively. Suppose OA = 2a and

∠PAQ is a right angle. Find the length of MN in terms of r and a

Solution√
r2

2
− a2. Anyway, it is unnecessary for A to be outside the circle.

Here is an analytic solution (luckily, there is no complicated calculation). Let O be origin and

OM be x-axis. Suppose P (x0, y0), Q(x0,−y0) and N(x, y). Thus M(x0, 0) and A(2x, 2y). Since AP

is perpendicular to AQ,
−→
AP ·

−→
AQ = 0, which is (2x− x0)(2x− x0) + (2y − y0)(2y + y0) = 0 Expand

it and apply x2 + y2 = a2 we get 2x0x =
4a2+x2

0−y2
0

2
.

MN2 = (x−x0)2 +y2 = x2−2x0x+x2
0 +y2 = a2−2x0x+x2

0 = a2− 4a2+x2
0−y2

0

2
+x2

0 =
x2

0+y2
0

2
−a2 =

r2

2
− a2.

Is there any composite number such that when its prime factors are listed in increasing order

and viewed as one number, it’s the same number?

To show you what I mean, let’s say 123456789.

123456789 = 3*3*3607*3803 Which can be turned into the number 3336073803. So that doesn’t

work.

...or maybe you can take the prime factorization of THAT and it would equal the original number,

or if not then do it again...

102

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=33982
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=22961
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=33336
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=33577


Any thoughts on this?

Solution

No composite number exists which has the property that if its prime factors are listed in increasing

order, the original number is formed. This follows from the more general fact that I will prove: A

number n = N1N2, where N1 and N2 are consecutive blocks of digits, is greater than the product

N1 ·N2. Suppose that N2 has k digits. Then we need to have n = N1 ·N2. But n = 10k ·N1 +N2 >

10k · N1 > N1 · N2. The result regarding primes follows from the fact that we would have to write

n = pn1pn2 · · · pnk = pn1 · pn2 · · · pnk which is impossible.

Moreover, we see that the said transformation takes to number n = pn1 ·pn2 · · · pnk to the number

f(n) = pn1pn2 · · · pnk , with the property that n < f(n). It follows that n < f(n) < f(f(n)) < · · · so
that the procedure never returns to the original number.

Let n be a positive integer. Prove that there is no positive integer solution to the equation

(x+ 2)n − xn = 1 + 7n

Solution

if n = 1, then obviously there’s no solution. so assume n ≥ 2.

notice that if x is odd, then one of x, x + 2 is 1( mod 4) and the other is −1( mod 4). so then

if n is odd, the LHS is ±2( mod 4) while the RHS is 0( mod 4), and if n is even, the LHS is 0(

mod 4) while the RHS is 2( mod 4). in either case there’s obviously no solution.

now, if x is even, one of x, x+ 2 is 0( mod 4) and the other is 2( mod 4), which imply that the

LHS is 0( mod 2n), and in particular that it is divisible by 4 (because we assumed n ≥ 2). now, for

the RHS to also be divisible by 4, we need n to be odd. so n ≥ 3. for n odd, however, the RHS is

divisible by 8 but not by 16. in view of the fact that the LHS is 0( mod 2n), it follows that n can

only be 3. but for n = 3, the equation becomes (x+2)3−x3 = 344, and this can easily be seen to have

no solutions... – If a,b,c are sides of triangle ABC. Inscribed circle is tangent to sides BC,AC,AB at

points K,L,M and F is the intesection point of segments AK,BL,CM. Then prove that:

6 ≤ 4
∑ (a−b)2

(b+c−a)(a+c−b) + 6 ≤ AF
FK

+ CF
FM

+ BF
FL
≤ 6 +

(a+b+c)2((a−b)2+(b−c)2+(c−a)2)
8S2

find all pairs of (a, b) from positive integers, where a2b+a+ b would be divisible by ab2 + b+ 7.

Solution

Let ab2 + b+ 7 = x, a2b+a+ b = y. Suppose x | y. Then x | by−ax = b2− 7a, so ab2 + b+ 7 | b2− 7a.

Now if b2 − 7a is positive, ab2 + b + 7 > b2 + b > b2 > b2 − 7a, contradiction. If b2 − 7a is zero,

then b2 = 7a, so a is of the form 7k2, and b2 = 49k2, b = 7k, so we have the solution (7k2, 7k) which

we can see works as 73k4 + 7k + 7 | 73k5 + 7k2 + 7k = k(73k4 + 7k + 7).

Finally b2 − 7a may be negative. Then since ab2 + b + 7 | 7a − b2, we need ab2 < ab2 + b + 7 ≤
7a− b2 < 7a, so ab2 ≤ 7a, b2 ≤ 7. So b = 1 or b = 2. If b = 1, then we need a + 8 | a2 + a + 1; since

a+ 8 | (a+ 8)(a− 7) = a2 + a− 56, then a+ 8 | 57. Also a+ 8 is at least 9 so it is 19 or 57, giving

a = 11, a = 49, both of which work. If b = 2, then 4a+ 9 | 2a2 + a+ 2, 4a+ 9 | 4a2 + 2a+ 4, 4a+ 9 |
4a2 + 9a, 4a + 9 | 7a − 4, 4a + 9 | 3a − 13. So 3a − 13 can’t be positive, but it clearly can’t be zero

either because it’s not divisible by 3. Then it must be negative; but then 13− 3a is at most 10, while

4a+ 9 is at least 13. So there are no solutions in this case. – An integer sequence is related with the

formula (n − 1)an+1 = (n + 1)an − 2(n − 1) for n ≥ 1 If 2000|a1999, determine the least value of n,
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such that n ≥ 2 and 2000|an – Find all integer solutions of equation

(n+ 3)n =
n+2∑
k=3

kn

– Let n ≥ a1 > a2 > ... > ak be positive integers such that lcm(ai, aj) ≤ n for all i, j. Prove that

iai ≤ n for i = 1, 2, ..., k – Let f(x) = x3 + 17. Prove that for every natural number n, n ≥ 2, there

is natural number x such that f(x) is divisible by 3n but not by 3n+1 – Prove that if a and b are

positive integers, then

(a+
1

2
)n + (b+

1

2
)n

is an integer for only finitely many positive integers n – Let U = positive integer x such that x is

not more than 2500 An = nx with x in U and n is a positive integer. B = A8 union A9 union A16 =

b1, b2, ..., br with bi < bj for i < j (a) Find r when br is the biggest member of B (b) Find all primes

n such that b132− b97 is a member of An – Given a real number a and f1, f2, ..., fn additive functions

from reals to reals such that f1(x)f2(x)...fn(x) = axn for all real number x. Prove that there exists

b, which is a real number, and i, which is in the set 1, 2, .., n such that fi(x) = bx for all real number

x. – Solve the following system:
x+ 2log 1

3
y = −1

x3 + y3 = 28
.

Let a, b, c be positive integers such that 1 < a < b < c. Suppose that (ab− 1)(bc− 1)(ca− 1)

is divisible by abc. Find the values of a, b, c

Solution

By opening parenthises we obtain abc | ab+ bc+ ca−1. So if a ≥ 3 then abc ≥ 3bc > ab+ bc+ ca−1.

Contradiction. Therefore, a = 2. Then c | 2b− 1 (since we know c | ab− 1). It follows that c = 2b− 1

(since c > b). Then b | 2(2b − 1) − 1 (since b | ac − 1), i.e. b = 3. And finally c = 5. Answer:

a = 2, b = 3, c = 5.

Suppose f(x) is a polynomial with integral coefficients. If f(x) = 2 for three different integers

a, b, c, prove that f(x) can never be equal to 3 for any integer x

Solution

Since f(α) is the remainder that f(x) leaves when divided by (x − α), all (x − a), (x − b) and

(x− c) divide f(x)− 2, so we can write f(x)− 2 = (x− a)(x− b)(x− c)g(x) (where g(x) is another

polynomial). Then if f(x) = 3, we would have that 1 = (x − a)(x − b)(x − c)g(x), but 1 cannot be

written as a product of three different integers. Q.E.D.

Prove for any integer n > 1 that (n− 1)2|nn−1 − 1

Solution

It is equivalent to proving n− 1 | nn−2 + nn−3 + ...+ n+ 1. Now n ≡ 1 (mod n− 1) so all the terms

are nk ≡ 1k ≡ 1, and there are n− 1 terms. Then their sum is S ≡ n− 1 ≡ 0.

Evaluate

cot

[
n∑
k=1

cot−1(1 + k + k2)

]

Solution

Basically, I’ll try to motivate how I discovered that arccotn2 + n+ 1 = arccotn+ 1− arcotn. When-

ever you see a rather ugly sum, you should immediately be alert to the possibility of telescoping. But

how do we split up an inverse cotagent into parts that would telescope? Well, let’s try to use the
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addition formula. We know that cot(a+ b) = 1
tan(a+b)

= tanatanb−1
tan a+tan a

= 1−cot a cot b
cot a+cot b

. Right now, this isn’t

helpful. We want inverse cotagents. So let x = cot a, y = cot b s.t. a = arccotx, b = arccoty. Now we

have cot(arccotx+arccoty) = 1−xy
x+y

. If we take arccot of both sides, we now have arccotx+arccoty =

arccot(1−xy
x+y

). This is much more helpful. Now we try to get this arccot(k2 + k+ 1) as resembling the

RHS of that identity. Now, either you’re good at algebra and you can see that k2 +k+1 = 1−(−k)(k+1)
−k+k+1

,

or you’re not that good and you just guess that x = k + 1, y = −k, as you want this thing to tele-

scope and those choices work out well. (I did the latter). In any case, you can then find the identity

arccot(k2 + k + 1) = arccot(k + 1)− arccotk and finish the problem.

Hay

Prove that the first thousand digits after the decimal point in the value of (6 +
√

35)1980 are

all 9

Solution

A related well known result, from which the problem can be easily derived:

We show that for any natural m and any n ≥ 1, (m+
√
m2 − 1)n = k+

√
k2 − 1 for some natural

k.

For n = 1 it is obvious; now assume it true for n and look at (m +
√
m2 − 1)n+1 = (m +√

m2 − 1)n(m+
√
m2 − 1). It’s easy to see by expanding (m+

√
m2 − 1)n that we will get something

of the form a+ b
√
m2 − 1. By hypothesis, b2(m2 − 1) + 1 = a2. Now we have

(a+ b
√
m2 − 1)(m+

√
m2 − 1) = am+ (m2 − 1)b+ (a+ bm)

√
m2 − 1.

Here (am+ b(m2 − 1))2 − (m2 − 1)(a+ bm)2 = a2 − b2(m2 − 1) = 1 by hypothesis, so the induction

is done.

If ai ≥ 1, prove that

2n−1(a1a2 . . . an + 1) ≥ (1 + a1)(1 + a2) . . . (1 + an)

Solution

Induction on n.

Base case: the two sides are equal.

Assume 2n−1(a1a2 . . . an + 1) ≥ (1 + a1)(1 + a2) . . . (1 + an).

Now:

2n−1(a1a2 . . . an + 1) ≥ (1 + a1)(1 + a2) . . . (1 + an)

⇒ 2n−1(a1a2 . . . an + 1)(1 + an+1) ≥ (1 + a1)(1 + a2) . . . (1 + an)(1 + an+1)

from whence it remains to prove 2(a1a2 . . . anan+1 + 1) ≥ (a1a2 . . . an + 1)(1 + an+1).

Let r = a1a2 . . . an, and y = an+1 for convenience.

Then we are required to prove 2(ry+ 1) ≥ (r+ 1)(y+ 1). This is equivalent to (r− 1)(y− 1) ≥ 0.

Clearly, y = an+1 ≥ 1 as given. Also, any mean (such as r, the nth power of a geometric mean)

cannot be less than the minimum of the elements involved, whereby rn ≥ 1 so that r ≥ 1.

and the induction is complete.

Another way Write f(an) = 2n−1(a1a2 . . . an + 1)− (1 + a1)(1 + a2) . . . (1 + an)

We calculate f ′(an) = 2n−1a1a2 . . . an−1 − (1 + a1)(1 + a2) . . . (1 + an−1)

Clearly, this is ≥ 0, because

a1a2 . . . an−1 ≥
(

1+a1

2

)
. . .
(

1+an−1

2

)
since ai ≥ 1

2
+ ai

2
≥ 1
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So f(an) is strictly increasing in an. Thus it’s enough to show that the inequality holds for an = 1.

By induction, we see it’s enough to show that the inequality holds for all ai = 1

But then we just get 2n = 2n which establishes the result.

A and B are odd positive integers and A<B.

The sum of all the integers greater that A and less than B is 1000.

Find A and B.

Solution

The problem clearly implies 1000 =
∑B−1

i=1 i−
∑A−1

j=1 j.

Set A = 2x+ 1, B = 2y + 1 where x,y are natural. (because A,B odd this can be done)

Then we have

1000 =
∑2Y

i=1 i−
∑2X

j=1 j

implying

1000 = Y (2Y + 1)− (X)(2X + 1) = (Y −X)(2Y + 2X + 1)

The parity of the second factor is odd. This implies 8 divides y − x. So the second factor can

only be 125, 25, 5, 1. We rule out the last 3 because the second factor is bigger than the first. So

Y −X = 8, 2Y + 2X + 1 = 125, from whence Y = 35, X = 27.

Let a, b, c be roots of 12x3 − 985x− 1728 = 0 Find a3 + b3 + c3

Solution

Method 1) use the identity a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− ac− bc), abc = 1728
12

,

a+ b+ c = 0. so a3 + b3 + c3 = 3abc = 432.

Method 2) the given equation 12x3−985x−1728 = 0 is true for a, b, c. So solving for x3 = 985x+1728
12

.

then we plug in a, b, c to get 3 equations.

a3 = 985a+1728
12

b3 = 985b+1728
12

c3 = 985c+1728
12

we also know a+ b+ c = 0, so adding the 3 equations we get a3 + b3 + c3 = 3 · 1728
12

.

Note M = {x ∈ Q |x(x2 + 6) +
√

3(6x + 5)x3 =
√

3(11x2 + 10x + 2) + 6x4 − 10x2 − 1 and

S =
∑

x∈M x. Compute S.

Solution

group all the
√

3’s.√
3(6x4 + 5x3 − 11x2 − 10x− 2) + (−6x4 + x3 + 10x2 + 6x+ 1).

Factors into
√

3(x2 + 2)(2x+ 1)(3x+ 1)− (3x+ 1)(2x+ 1)(x2 − x− 1).

Factors into [(3x+ 1)(2x+ 1)][
√

3(x2 + 2)− (x2 − x− 1)].

rightmost factor does not have rational roots, so the only roots in S are −1
3
, −1

2
. so S is -5/6.

A non-negative integer f(n) is assigned to each positive integer n in such a way that the

following conditions are satisfied: (a) f(mn) = f(m)+f(n) for all positive integers m,n (b) f(n) = 0

whenever n ends in a 3 (in base 10) (c) f(10) = 0 Prove that f(n) = 0 for all positive integers n.

Solution

It is easy to see that if f(mn) is 0, then so are f(m) and f(n), because ie. f(m) ≥ 0. (*)

Now f(3) = 0 by (b), and f(2) = f(5) = 0 by (*) and (c).

It is enough to prove f(p) = 0 for all primes p > 5. We show that there exists some numbers

y [where y is 3 mod 10] for which p|y. In which case, 0 = f(y) = f(pk) = f(p) + f(k) implying

f(p) = 0.

It is enough to show that 10k+ 3 = 0 (mod p) for some k, and any prime p > 5. Clearly, 10 does

not divide p, in which case 10k cycles through the residues 1, 2, . . . , p. Thus it meets the residue −3.

QED.
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Let m,n ∈ N . Prove that |36m − 5n| > 11.

Solution

Let f(m,n) = |36m− 5n|. Note first that 36− 52 = 11, and second that since 36 is even and 5 is odd,

f(m,n) is always even-odd=odd. Therefore, if we can show that f(m,n) 6= 1, 3, 5, 7, 9 we’ll be done.

Observe that f(m,n) cannot be a multiple of 3 since that would mean that 36m − 5n ≡ −5n ≡ 0

(mod 3), contradiction. This rules out the possibilities of f(m,n) = 3, 9. Further, if f(m,n) is a

multiple of 5, we know that f(m,n) 6= 5, 7 since both yield a contradiction mod 5. We are left with

the possibility that f(m,n) = 1. However in this case, either 36m − 5n = 1 or 36m − 5n = −1. The

first one means that

36m − 1 = 5n ⇐⇒ (36− 1)(36m−1 + 36m−2 + · · ·+ 362 + 36 + 1) = 5n

⇐⇒ 35(36m−1 + 36m−2 + · · ·+ 362 + 36 + 1) = 5n

=⇒ contradiction.

(Since 7 - 5.)

Similarly, the second one (f(m,n) = −1) also yields a contradiction (take the resulting equation

mod 9).

Thus f(m,n) ≥ 11 , as desired. Another way Notice that 36m−5n ≡ 1 (mod 5), 3 (mod 4), 1,−1

(mod 6). Assume that |36m − 5n| < 11 From the first equation we arrive at 36m − 5n = −9,−4, 1, 6.

From the second equation we arrive at 36m − 5n = −9,−5,−1, 3, 7 and from the third we arrive at

36m − 5n = −7,−5,−1, 1, 5, 7.

It follows from the first two equations that the only place that satisfies both is 36m − 5n = −9

however this does not satisfy the third therefore |36m − 5n| < 11 is false and |36m − 5n| ≥ 11

Let a be an arbitrary constant number. Solve the following inequality.

a(x2 + 1) < x(a2 + 1)

Solution

For a < −1, we have x < a, 1
a
< x

For a = −1, we have x 6= −1

For −1 < a < 0, we have x < 1
a
, a < x

For a = 0, we have x > 0

For 0 < a < 1, we have a < x < 1
a

For a = 1, there don’t exist the set of roots.

For a > 1, we have 1
a
< x < a

hình học – Find the least n such that whenever the elements of set 1,2,...,n are coloured red or

blue, there always exist x, y, z, w (not necessarily distinct) of the same colour such that x+y+z = w

Find all integer solutions to m3 − n3 = 2mn+ 8.

Solution

Let m = n+p (with p ∈ Z)⇒ (n+p)3−n3 = 2(n+p)n+ 8⇒ (3p−2)n2 +p(3p−2)n+ (p3−8) = 0

This is a second-degree equation in n, so in order to have (any) solutions, D ≥ 0 ⇒ p2(3p −
2)2 − 4(3p − 2)(p3 − 8) ≥ 0 ⇒ ... ⇒ 0 < p < 3 p = 1 ⇒ n2 + n − 7 = 0 ⇒ no solutions...

p = 2 ⇒ 4n2 + 8n = 0 ⇒ (0, 2) and (−2, 0)
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Let a1 = 21 and a2 = 90, and for n ≥ 3, let an be the last two digits of an+1 + an+2. What is

the remainder of a2
1 + a2

2 + ...+ a2
2005 when it is divided by 8 ?

Solution

Notice that x2 ≡ (x− 4)2 mod 8. So if ak + ak+1 ≥ 100, the new ak+2 ≡ ak + ak+1 − 4 mod 8 and

thus the square is the same as if you just added and didn’t take the last two digits.

So then we have the sequence ( mod 8): 5, 2, 7, 1, 0, 1, 1, 2, 3, 5, 0, 5, 5, 2, ... which we find repeats

every 12 numbers with a sum of 0 mod 8. Thus we take 2005 ≡ 1 mod 12 so the sum is 52 ≡ 1

mod 8.

LetM be a set in the plane with area greater than 1. Show thatM contains two distinct points

(x1, y1) and (x2, y2) such that x2 − x1 and y2 − y1 are integers.

Solution

Obviously we can restrict our attention to [0, 1]2 because x− y ∈ Z ⇔ x− y ∈ Z.
Now if a point is "doubled" then clearly those 2 points can be used.

Else, no point is doubled and (1, 1), (0, 0) can be used. – Let x2 + xy + y2 = a, y2 + 2yz + z2 =

b, z2 + 2zx+x2 = a+ b, where x, y, z are positive and a, b are positive parameters. Find xy+yz+ zx.

– Find a simple form of sinA sin 2A + sin 2A sin 3A + ... + sin (n− 2)A sin (n− 1)A, where A = π
n
–

Let f : R → R be an injective function. If f−1(x) + f(x) = x∀x ∈ R then prove that f is an odd

function!

– Prove that the number of integral solutions (x, y) to x2 + y2 = n is equal to 4(d1 − d3), where

d1 is the number of divisors of n of the form 4k + 1 and d3 is the number of divisors of n of the

form 4k + 3. – Let f(x) be a cubic polynomial with roots r1, r2, r3 such that
f( 1

2
)+f(−1

2
)

f(0)
= 997, find

1
r1r2

+ 1
r2r3

+ 1
r3r1

– Let α be the root, one of the cubic equation x3 + 3x2 − 1 = 0.

(1) Express (2α2 + 5α− 1)2 in the form of aα2 + bα + c, where a, b, c are rational numbers.

(2) Express other two roots except α in the form of aα2 + bα + c. –

Let g(x) = 3x2 − 2x(a+ b+ c) + ab+ bc+ ac and −1 ≤ a, b, c ≤ 1 and y = a+b+c
3

.

Prove

(a) |g(y)|+min[g(1), g(−1)] ≤ 3 ≤ |g(y)|+max[g(1), g(−1)]

(b) |g(y)| ≤ 1
2
·max[(g(1), g(−1)]

(c) Find a, b, c if |g(y)| = 1
2
·max[g(1), g(−1)]

tổ hợp

số học

Let f be a convex function and x1, x2, x3 in its domain. Prove that f(x1) + f(x2) + f(x3) +
f(x1+x2+x3

3
≥ 4

3
[f((x1 + x2)/2) + f((x2 + x3)/2) + f(x3+x1)

2
.

Solution

Suppose, without loss of generality, that x1 < x2 < x3, and further that x2 <
x1+x2+x3

3
. Let

gl(t) =
1

4
(f(x1 + t) + f(x2) + f(x3 − t) + f(

x1 + x2 + x3

3
))

and

gr(t) =
1

3
(f(

(x1 + t) + x2

2
) + f(

x2 + (x3 − t)
2

) + f(
x3 − t+ x1 + t

2
))

for t ∈ [0, x2 − x1]. We take the derivatives, and find

g′l(t) =
1

4
(f ′(x1 + t)− f ′(x3 − t))

and

g′r(t) =
1

6
(f ′(

(x1 + t) + x2

2
)− f ′(x2 + (x3 − t)

2
)).
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By construction, x1 + t ≤ 1
2
(x1 + x2 + t) ≤ 1

2
(x2 + x3 − t) ≤ x3. But, by the convexity of f , f ′ is

monotone increasing. So g′l and g
′
r are negative, and

g′l(t) ≤
1

4
(f ′(

(x1 + t) + x2

2
)− f ′(x2 + (x3 − t)

2
)) ≤ g′r(t).

Thus, we push the extreme two points in until one of the hits the third point, and the desired

inequality (i.e gl ≥ gr) only gets less true. Now we may suppose that x1 = x2 ≤ x3. We do something

similar to the above. Let

hl(t) =
1

4
(f(x1 + t) + f(x2 + t) + f(x3 − 2t) + f(

x1 + x2 + x3

3
))

and

hr(t) =
1

3
(f(

(x1 + t) + (x2 + t)

2
) + f(

(x2 + t) + (x3 − 2t)

2
) + f(

(x3 − 2t) + x1 + t

2
))

for t ∈ [0, 1
3
(x3 − x1)]. As above, we can show that h′l(t) ≤ h′r(t). Then we are reduced to the case

when x1 = x2 = x3, and the desired inequality obviously holds then. Another approach f is convex

iff: given any a, b,(a ≤ b) in its domain, the graph of f([a, b]) lies completely under or touching the

line segment connecting the points (a, f(a)) and (b, f(b)).

Let f be convex.

Lemma: Let a, d(a ≤ d) be in the domain of f . Choose any b, c ∈ [a, d]. Then the slope of AB is

less than or equal to the slope of CD, where A = (a, f(a)), etc..

Proof: By convexity, B and C lie under AD. So slope AB ≤ slope AD ≤ slope CD. QED.

Now, suppose we wish to prove that

f(x1) + f(x2) + f(x3) + f((x1 + x2 + x3)/3) ≥ 4/3[f((x1 + x2)/2) + f((x2 + x3)/2) + f((x3 + x1)/2).

WLOG, let x1 < x2 < x3 and x2 <
x1 + x2 + x3

3
. Now we replace x1 by x2, and x3 by x3 − x2 + x1.

We wish to prove that this makes the inequality less true, so we want:

1

4
(f(x2)−f(x1)+f(x3−x2+x1)−f(x3)) ≤ 1

3
(f(x2)−f((x1+x2)/2)+f((x1+x3)/2)−f((x2+x3)/2)).

We divide both sides by x2 − x1, and this becomes

1

4
(slope X1X2 − slope X ′3X3) ≤ 1

6
(slope M1X2 − slope M3M2)

where X ′3,M1,M2, and M3 are the points on the graph of f at x3−x2 +x1, (x1 +x2)/2, (x2 +x3)/2),

and (x1 + x3)/2, respectively.

By the lemma, both sides of the inequality are negative, so it suffices to prove

slope X ′3X3 − slope X1X2 ≥ slope M3M2 − slope M1X2.

But, by the lemma, slope X ′3X3 ≥ slope M3M2 and slope M1X2 ≥ slope X1X2. The former is true

because (x1 + x3)/2 ≤ x3 − x2 + x1.

So we are reduced to the case where x1 = x2. The rest can be done in a similar manner.

We are given the graph of a polynomial with integer coefficients. We choose two points in the

graph with integer coordinates and such that their distance is an integer too. Prove that the segment

joining these to points is parallel to the x-axis.

Solution

Let the polynomial in question be P (x). If the two vertices are (x1, P (x1)) and (x2, P (x2)) then the
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integral distance d between these points satisfies (P (x1) − P (x2))2 + (x1 − x2)2 = d2 It is fairly

well known that for a polynomial P that x1 − x2 divides P (x1) − P (x2) which means there exists

an integer k such that P (x1) − P (x2) = k(x1 − x2). Substituting and factoring the LHS yields

(x1 − x2)2(k2 + 1) = d2. This also implies d is divisible by (x1 − x2) so there exists another integer

m such that d = m(x1 − x2). So either x1 = x2 (the degenerate case) or k2 + 1 = m2. However it

is an easy number theory practice to show that the only integral solutions to the above equation

are (k,m) = (0,−1) or (0,−1). In either case k = 0. Notice though that k = P (x1)−P (x2)
x1−x2

which is

numerically equal to the slope connecting these points. Since this slope is zero it is therefore parallel

to the x-axis.

số học

Solve 10(25cosπx − 4cosπx) = 7(5cosπx − 2cosπx) and find all solutions that satisfy the inequality

x4 − 6x2 − 1 ≤ 0

Solution

Making the substitution u = cos πx the equation becomes 10(52u − 22u) = 7(5u − 2u) which implies

either 5u = 2u or 5u + 2u = 7
10
. In the first case u = 0 and thus x = k

2
for k odd. In the second

case notice 7
10

= 1
5

+ 1
2
so u = −1 which means x is an odd integer. By the quadratic equation

−
√

3 +
√

10 ≤ x ≤
√

3 +
√

10 which yields the only valid values for x to be −3
2
,−1,−1

2
, 1

2
, 1, 3

2

Be a,b,c roots of P (x)x3 + px2 + qx+ r = 0 . If Sn = an + bn + cn, n is integer and n>3, being

K = Sn + pSn−1 + qSn−2 Find K

Solution

K in terms of S? if thats the case figure out S1, S2, S3 using relationships btwn roots and coefficients.

then write x3 = −px2 − qx− r so x4 = −px3 − qx2 − rx.
so then S4 = −pS3 − qS2 − rS1 and continue like this so you have

Sn = −pSn−1 − qSn−2 − rSn−3, so Sn + pSn−1 + qSn−2 = −rSn−3 = K.

Let n is nature and n>2. Prove that (nn
nn − nnn)

...9

Solution

clearly 2|nn − n
so nn

n−n = n2k = 1 (mod 6), or

nn
n−n − 1 = 0 (mod 6), and

[nn][nn
n−n − 1] = 0 (mod 6), thus

n[nn][n(nn−n)−1] = n6j = 1 (mod 9), by Euler’s Theorem, or

n[nn][n(nn−n)−1] − 1 = 0 (mod 9), hence

[n(nn)][n[nn][n(nn−n)−1] − 1] = 0 (mod 9), or

[n(nn)][n[n(nn)− nn]− 1] = 0 (mod 9), or

n(n(nn))− n(nn) = 0 (mod 9)

Find all primes p such that 2p−1−1
p

is a square.

Solution

Obviously p = 2 doesn’t work, so assume p > 2, then p = 2k + 1. We have 22k − 1 = n2p =

(2k + 1)(2k − 1). Then one of the factors is a perfect square, and the other p times a perfect square,

because they’re coprime. If 2k−1 is a perfect square we have k = 1, as for bigger k it’s a contradiction

mod 4. Also k = 1, p = 3 works. If 2k + 1 is a perfect square, 2k + 1 = a2 ⇒ 2k = (a+ 1)(a− 1), from

which a− 1 = 2, a+ 1 = 4, 2k = 8, k = 3, p = 7 as a− 1, a+ 1 are both powers of 2. p = 7 is the only

other solution.

ABC is an acute-angled triangle with ]A = 30. H is the orthocenter and M is the midpoint
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of BC. T is a point on HM such that HM = MT . Show that AT = 2BC.

Solution

Of course you mean that T is such that H 6= T .

We use the following lemma: let ABC be a triangle, H its orthocenter, O the circumcenter and

A′ the point on the circumcircle opposite A. Then HA′ and BC bisect each other, that is, HBA′C

is a parallelogram. To prove it, note that BH,CH are perpendicular to AC,AB respectively, and

A′C is perpendicular to AC because AA′ is a diameter; similarly A′B is perpendicular to AB. Then

BH,A′C and CH,A′B are parallel.

The converse is clearly true, because if we take M such that BM = MC,HM = MT , then T

coincides with A′. Then T is opposite A through O, that is, AT is a diameter. Also, since ]A = 30,

we have ]BOC = 60 and BO = OC, from which BOC is equilateral and BC is a radius. We’re

done. √
x− 1977

23
+

√
x− 1978

22
+

√
x− 1979

21
=

√
x− 23

1977
+

√
x− 22

1978
+

√
x− 21

1979
Solution

Set y = 2000 + x and g(y, t) =
√

1 + x/t. It’s clear that we need to show that x = 0 is the only

solution to

g(y, 21) + g(y, 22) + g(y, 23) = g(y, 1977) + g(y, 1978) + g(y, 1979)

It is not difficult to show that g(y, 21) > g(y, 1978) for x > 0 and the inequality is reversed for

x < 0. The answer follows easily from this.

Prove that the Generalized Binomial Coefficients defined as:(
n

k

)
C

=

∏n
i=1Ci(∏k

i=1Ci

)(∏n−k
i=1 Ci

) for 1 ≤ k ≤ n are all integers,

where {Cn}∞n=1 is a sequence of positive integers such that gcd(Cm, Cn) = Cgcd(m,n).

Solution

Let p be an arbitrary prime. for each i ≥ 1 let mi (if it exists) be the smallest positive integer such

that pi|Cmi . then if pi|Ck, where k = qmi + r, then pi|(Cmi , Cqmi+r) = C(mi,qmi+r) = C(mi,r), so r = 0

(else (mi, r) contradicts the minimality of mi. hence the only k for which pi|Ck are the multiples of

mi, and, in general, the number of Cj with j ≤ N for which pi|Cj is [ N
mi

].

this means that, in general, the highest power of p dividing
∏N

i=1 Ci is
∑∞

j=1[ N
mj

].

so we need to show
∑∞

j=1[ n
mj

] ≥
∑∞

j=1[ k
mj

] +
∑∞

j=1[n−k
mj

]

this is evident from the general fact that

[n
r
] ≥ [k

r
] + [n−k

r
]

What are the last three digits of 200320022001
?

Solution

The remainder of 200320022001
when divided by 1000 is the same as the remainder of 320022001

when

divided by 1000, since 2003 ≡ 3(mod1000). We will try to find positive integer n such that 3n ≡
1(mod1000) and then express 20022001 in the form of nk + r so that

200320022001 ≡ 3nk+r ≡ (3n)k.3r ≡ 3r(mod1000)

Now,

32m = (10− 1)m = (−1)m + 10m(−1)m−1 + 100
m(m− 1)

2
(−1)m−2 + ...+ 10m

After the first 3 terms of the expansion, all the remaining terms are divisible by 1000, so letting

m = 2q, we have

34q ≡ 1− 20q + 100q(2q − 1)(mod1000)
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Using this, we can check that 3100 ≡ 1(mod1000), now we want to find the remainder when 20022001

divided by 100. Now, 20022001 ≡ 22001(mod100) ≡ 4.21999(mod4.25), so we will investigate powers

of 2 modulo 25. Note that 210 ≡ −1(mod25), so we have

21999 ≡ (210)199.29 ≡ 13(mod25)

Thus,22001 = 4.13 ≡ 52(mod100). Therefore, 20022001 can be written as 100k + 52 for some integer

k, so

200320022001 ≡ 352(mod1000) ≡ 1− 20.13 + 1300.25 ≡ 241(mod1000)

using the equation above. Hence, the last 3 digits is 241

Evaluate limx→∞
1
n4

∏2n
j=1 (n2 + j2)

1
n

Solution

Let A = lim
n→∞

1

n4

2n∏
j=1

(n2 + j2)
1
n

Taking the factor in front and distributing it into the product we get,

A = lim
n→∞

2n∏
j=1

(
1 +

j2

n2

) 1
n

lnA = lim
n→∞

1

n

2n∑
j=1

ln

(
1 +

j2

n2

)
Interpreting this as a Riemann Sum we have

lnA =

∫ 2

0

ln(1 + x2)dx

Using integration by parts (details omitted) we find that lnA = 2 ln(5) + 2 tan−1(2)− 4

So A = 25e(2 tan−1(2)−4)

– Let a, b ∈ N∗ and n ∈ N with n ≥ 2. Prove that there exists n ∈ N∗ so that
ab+ xn

a+ b+ x
∈ N∗.

Let n, k be positive integers and let F (n, k) = 1 when n|k, n < k = 2 when k|n, k < n = 3,

otherwise

Let m be a positive integer, find
∑

1≤n,k≤m F (n, k)

Solution

All the values where the function equals 1 are

n = 1, k = 2 to m (bm
1
c − 1 times) n = 2, k = 4 to m or m - 1 (bm

2
c − 1 times)

...

All the values where the function equals 2 can be obtained by switching the values of n and k

when the function equals 1.

The total number of possibilities shown so far is 2(bm
1
c+ bm

2
c+ · · ·+ bm

m
c −m)

To get the number of values where the function equals 3, we subtract this from the total, which

is m2.

Adding all these values, we get

3(bm
1
c + bm

2
c + · · · + bm

m
c −m) + 3(m2 − 2(bm

1
c + bm

2
c + · · · + bm

m
c −m) = 3(m2 − (bm

1
c +

bm
2
c+ · · ·+ bm

m
c) +m)

Determine the prime numbers a, b, c so that the number A = a4 + b4 + c4 − 3 is also prime.

Solution

3|A if a 6= b 6= c 6= 3 so WLOG a = 3. 4|A if a 6= b 6= c 6= 2 so WLOG b = 2. A = 94 + c4 we know

that if c > 5 then c4 ≡ 1 mod 5 and 5|A, So c = 5 and A = 719. And I do’nt knwo wheter it is

prime or not ;)
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Let n be a natural number. Prove that neither 10n nor 10n + 3 can be written as a sum of the

squares of three prime numbers.

Solution

10n ≡ 0 mod 4 if n > 1 but p2 ≡ 1 mod 4 when it is odd and 0 for 2 so q1
2 + q2

2 + q3
2 ≡ 3, 2 mod 4

so 10nt can’t expressed as sum of squares of three prime nuber . for 10 is abvious . for 10n + 3 we

consider both side mod 3.10n + 3 ≡ 1 mod 3, but q1
2 + q2

2 + q3
2 ≡ 0, 2 mod 3 and so no. – Let

A0B0C0 be a triangle and P a point. Define a new triangle whose vertices A1B1C1 as the feet of the

perpendiculars from P to B0C0, C0A0, A0B0, respectively. Similarly, define the triangles A2B2C2 and

A3B3C3. Show that A3B3C3 is similar to A0B0C0.

And if we do the same for a n-gon, what do we obtain? – Prove that (p− 1)! + 1 is not power of

p where p is aprime number.(exept 2, 3, 5) – Determine all the couples of positive integers (a, b) such

that 2a + 3b is a perfect square. – We have a regular n-gon A1A2...An. At each vertex, we write one

of the numbers 1, 2, 3, ..., n and no two vertices have the same number. Let the number written at

An be called Bn. (a) Find the maximum of
∑n

i=1 |Bi − Bi+1| where Bn+1 = B1 (b) For how many

arrangements are the maximum in (a) attained? – Solve the ab+1 = ba in natural numbers. – Find all

functions f : N0 → N0, (where N0 is the set of all non-negative integers) such that f(f(n)) = f(n)+1

for all n ∈ N0 and the minimum of the set {f(0), f(1), f(2) · · · } is 1. – Let a real number x such that

−1 ≤ x ≤ 1 and a positive integer n. Show that the function fn(x) = cos(n. arccosx) can be written

as a polynomial P (x) such that degP (x) = n and the coefficient of highest degree monomial of P (x)

is equal to 2n−1. – a) For which nonnegative integers a, b, c is 4a + 4b + 4c a perfect square? b) For

which nonnegative integers n is n2n−1 + 1 a perfect square? — Let X = [1, 16]∩N . Please divide X

into 2 parts A,B such that |A| = |B| and
∑

i∈A i
2 =

∑
j∈B j

2.

Solve the equation x
√

1− x2 − y
√

1− y2 = 1

Solution

We have |x|, |y| ≤ 1.

Put x = cosX, y = cosY . Then
√

1− x2 = sinX.

It becomes cosXsinX − cosY sinY = 1.

or sin 2X − sin 2Y = 2.

Thus sin 2X = 1, sin 2Y = −1, where it is easy to find X,Y and thus x,y as 2−1/2,−2−1/2.

Let A be a set of 20 integers chosen from the set B = {1, 4, 7, ..., 100}. Prove that there must

be two distinct integers in A with sum 104.

Solution

We want to divide the set B of 34 elements into two distinct subset of 20 and 14 elements. Now

suppose to put numbers for which the sum is 104 into different subset. There are 16 couples. This

can be done for only 14 elements since in the subset A there will be at least 2 distinct integers for

which the sum is 104.

Let ∆ABC an equilateral triangle and P a point on the circumscribed circle of the triangle.

If the circle radius is r = 1 show that PA2 + PB2 + PC2 = 6.

Solution

Since P is on the circumcircle, say on minor arc AB, then PACB is a cyclic quadrilateral. Applying

Ptolemy’s theorem we have

PC = PA+ PB

Also because PACB is cyclic opposite angles are supplementary implying ∠APB = 2π
3
. From special
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right triangles or otherwise we know AB =
√

3. Using the law of cosines on triangle APB we have

3 = PA2 + PAPB + PB2

which implies

6 = 2PA2 + 2PAPB + 2PB2 = PA2 + PB2 + (PA+ PB)2 = PA2 + PB2 + PC2

as desired. – Let S be a set {1
2
, 1

3
, 1

4
, · · · , 1

50
} . Choose 7 distinct fraction in S such that the sum of

the 7 fraction is 1 . –

Find all integers n ≥ 2 and prime numbers p such that np
p

+ pp is prime. – We have n positive

real numbers where their sum is 1976. What is the largest product of these n positive real numbers.

– Let Cn = (n+ 4)Cn−1 − 4nCn−2 + (4n− 8)Cn−3 for n ≥ 3 and C0 = 2, C1 = 3, C2 = 6.

What is Cn? – let p(n) be defined by the function that maps the positive integers n to the product

of its digits (i.e p(1123) = 1 ∗ 1 ∗ 2 ∗ 3 = 6, p(31) = 3, p(2005) = 0). find all postive integers n so that

11p(n) = n2 − 2005

– Determine all functions f : R− [0, 1]→ R such that

f(x) + f

(
1

1− x

)
=

2(1− 2x)

x(1− x)
.

– Let n, k be positive integers such that nk > (k + 1)! and consider the set

M = {(x1, x2, . . . , xn), xi ∈ {1, 2, . . . , n}, i = 1, k}.

Prove that if A ⊂ M has (k + 1)! + 1 elements, then there are two elements {α, β} ⊂ A, α =

(α1, α2, . . . , αn), β = (β1, β2, . . . , βn) such that

(k + 1)! |(β1 − α1)(β2 − α2) · · · (βk − αk) .

—- Show that
n+1∑
i=1

2i

i
·
(

n

i− 1

)
=

3n+1 − 1

n+ 1
.

Solution∑n+1
i=1

2i

i nCi−1 =
∑n

r=0
2r+1

r+1 nCr where r = i− 1

=
∑n

r=0 2r+1
∫ 1

0
xrdx · nCr

= 2
∫ 1

0

∑n
r=0 nCr(2x)rdx

= 2
∫ 1

0
(1 + 2x)ndx

= 2
[

(1+2x)n+1

2(n+1)

]1

0
= 3n+1−1

n+1
Here is a standard solution.∑n+1

i=1
2i

i nCi−1

=
∑n+1

i=1
2i

i
n!

(i−1)!(n−i+1)!

=
∑n+1

i=1 2i · (n+1)!
i!(n−i+1)!

· 1
n+1

= 1
n+1

∑n+1
i=1 n+1Ci 2i

= 1
n+1

(∑n+1
i=0 n+1Ci 2i − n+1C0 20

)
= 1

n+1
{(1 + 2)n+1 − 1} = 3n+1−1

n+1

n is a positive integer and a1 + a2 + ...+ an = 1. (a1, a2, ..., an > 0)
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Let A be the minimum value of n numbers a1

1+a1
, a2

1+a1+a2
, ... an

1+a1+a2+...+an
.

When a1, a2, ... an vary, what is the largest possible value of A? – If p is a prime number , l, a

are natural numbers and the number mp is even prove

that (1+pal)mp = 1+mp ·pal+Mp2a whereM is sum of positive integers. – Let N0 = {0, 1, 2 · · · }.
Find all functions: N0 → N0 such that:

(1) f(n) < f(n+ 1), all n ∈ N0;

(2) f(2) = 2;

(3) f(mn) = f(m)f(n), all m,n ∈ N0. – Let f : Z → Z be a function such that: For all a and b

in Z− {0}, f(ab) ≥ f(a) + f(b). Show that for all a ∈ Z− {0} we have f(an) = nf(a) for all n ∈ N
if and only if f(a2) = 2f(a) – Find all function f : < → < such that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all x, y, z, t ∈ R – Let N0 = {0, 1, 2 · · · }. Does there exist a function f : N0 → N0 such that:

f 2003(n) = 5n,∀n ∈ N0

where we define: f 1(n) = f(n) and fk+1(n) = f(fk(n)), ∀k ∈ N0? – Let F be the set of all fractions
m
n
, where m and n are positive integers such that m+n ≤ 2005. Find the largest number f ∈ F such

that f < 16
23
. – Consider a real poylnomial p(x) = anx

n + ... + a1x + a0. (a) If deg(p(x)) > 2 prove

that deg(p(x)) = 2 + deg(p(x+ 1) + p(x− 1)− 2p(x)). (b) Let p(x) a polynomial for which there are

real constants r, s so that for all real x we have

p(x+ 1) + p(x− 1)− rp(x)− s = 0

Prove deg(p(x)) ≤ 2. (c) Show, in (b) that s = 0 implies a2 = 0. – If {an}n≥0 is an arithmetic

sequence where the first term ant it’s ratio are pozitive, then 1
a1a2

+ 1
a3a4

+ ... + 1
a2n−1a2n

< n
a0a2n

for

any n ∈ N∗. – Find all integers n ≥ 2 such that x1x2 + x2x3 + ...+ xn−1xn ≤ n−1
n

(x2
1 + x2

2 + ...+ x2
n)

for all x1, x2, ..., xn ∈ R+ – Consider the equation x3 = 3x+ p and define f(p) as follows:

*if the equation has 3 real roots, f(p) is the product of the greatest and smallest roots. *if the

equation has 1 real root, f(p) is the square of this root.

Determine the minimum of f(p) as p ranges over all real numbers. —- If a, b, c are positive integer

satisfying

2ab+ 2ac+ 2bc = abc

Find the ordered triples (a, b, c) – Let a ∈ R and f : R→ R s.t.

f(x)f(y) + f(x) + f(y) = f(xy) + a, ∀x, y ∈ R .

Determine all simultaneously continuous and bijective functions which satisfy the above condition.

—- Prove that 4x3 − 2x2 − 15x+ 9 and 12x3 + 6x2 − 7x+ 1 has three distinct real roots – Find the

real numbers p, q, and t satisfying the following equality.

{(p2 + 1)t2 − 4t+ p2 + 5}2 + {t2 − 2qt+ q2 +
√

3}2 = 4

— Let c ≥ 1 be an integer, and define the sequence a1, a2, ... by a1 = 2 and

an+1 = can +
√

(c2 − 1)(a2
n − 4)

for positive integer n. Prove that an is integer for all n – If xi > 0 and xiyi − z2
i > 0 for i ≤ n, then
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n3

(
∑n

i=1 xi)(
∑n

i=1 yi)− (
∑n

i=1 zi)
2
≤

n∑
i=1

1

xiyi − z2
i

Prove this inequality for n=2, and then also generally. —– Solve in R the following equation:(
2 cos2 π

24

)x
+
(
4 cos 5π

12

)2 ≤ 5
√

3−3
2
√

2
.

Solution

Remember 2 cos2 y − 1 = cos 2y

This lets us write pi/24 and 10pi/24 in terms of the cosines of pi/12 and 10pi/12, which we know

(30, 300 deg). Find all integers n ≥ 2 and prime numbers p such that np
p

+ pp is prime.

If n divides one Fibonacci number (the sequence 1, 1, 2, 3, 5, 8, 13, 21, ...), show that it will

divide infinitely many of them

Solution

We can prove that Fk|Flk where Fx denote xth Fibonacci number. As we know

Fk =
1√
5

((
1 +
√

5

2
)k − (

1−
√

5

2
)k)

and

Flk =
1√
5

((
1 +
√

5

2
)lk − (

1−
√

5

2
)lk)

in the futur we will use a = 1+
√

5
2

and b = 1−
√

5
2

so as we know number like ax + bx and axbx are

integers ....(∗). Now let’s divide Flk and Fk that is equal to

alk − blk

ak − bk

wich gives

akl−1 + akl−2bk + ...+ akbkl−2 + bkl−1

wich is integer because of (∗). So there you go... This is much stronger stuff :D

Find 22006 positive integers satisfying the following conditions. (i) Each positive integer has

22005 digits. (ii) Each positive integer only has 7 or 8 in its digits. (iii) Among any two chosen integers,

at most half of their corresponding digits are the same.

Solution

Define S1 = {77, 78} Define the inverse of an element to be 7 ->8, 8->7 Define the S ′i to be the inverse

of Si, e.g. S
′
1 = {88, 87} Define S2

i to be writing itself again, e.g. S2
1 = {7777, 7878} Define Si +S ′i to

be writing after corresponding element, e.g. S1 + S ′1 = {7788, 7887} Define Ti = {x|x ∈ Siorx ∈ S ′i}
Define Si+1 = {x|x ∈ S2

i orx ∈ Si + S ′i}
Now I claim that T2005 is the required set

First, each no. has 22005 digits, which is obvious. Having 7 or 8 as the only digits is trivial as well.

Now it suffices to prove that T2005 fulfills condition 3. We will proceed by induction.

in T1 obviously (iii) is fulfilled Assume when i =k, Ti is true for condition iii, then when i=k+1,

Tk+1 = S2
i ∪ Si + S ′i Since Ti = Si ∪ S ′i and it fulfills condition 3, it means that for elements in Tk+1,

The first half has at most half of the digits different , the second half has at most half of the digits

different. So any two elements of Ti has at most half of the digits different Induction done. Thus

T2005 fulfills the condition

Another way Construction: To find 2n+1 positive integers satisfying the following conditions: (i)

Each positive integer has 2n digits. (ii),(iii) Take the 2n numbers satisfying the conditions (i) Each

positive integer has 2n−1 digits. (ii),(iii)
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First get 2n numbers by replacing each "7" by "77" and each "8" by "88". Then get another 2n

numbers by replacing each "7" by "78" and each "8" by "87".

For the case where the numbers have only one digit, the numbers "7" and "8" satisfy the condi-

tions.

Proof: Suppose we have 2n-digit numbers A and B with exactly half their digits in common. If

we perform the same replacement on both of them (e.g. 7–>78 and 8–>87) clearly the new numbers

will share exactly half their digits. If we perform different replacements on each of them (e.g. 7-78,

8-87 on A; 7-77 and 8-88 on B), the previously agreeing digits will each contribute one agreement

and the previously disagreeing digits will each contribute one agreement to the new pair of numbers.

Thus the new numbers will share half their digits.

Suppose we have 2n-digit numbers with no digits in common. Clearly if we perform the same

replacement on both numbers the resulting numbers will share no digits, and if we perform different

replacements, the resulting numbers will share half their digits.

For our two numers for the case n=0, no digits are in common. It follows from induction that

when we carry out our construction, every pair of numbers will share exactly half their digits or none

of their digits, so we can perform the construction 2005 times to get the desired set of numbers.

Find the number of ways in which 5n could be expressed as a product of 3 factors.

Solution

It is not hard to prove that the number of solutions of x + y = n and x ≤ y is bn
2
c + 1 we will

going to need that.

We have to find number of triplets x, y, z of nonnegative integers such that x ≤ y ≤ z and

x + y + z = n, in that case (x, y, z) denote the powers of 5 in expression.Let S be set of all that

triples. We see that x ≤ bn
3
c. Now for k ∈ {0, 1, ..., bn

3
c} we make set Ak of all triples k = x ≤ y ≤ z

such that x + y + z = n. So S = A1 ∪ A2 ∪ ... ∪ Abn
3
c and for i 6= j stands Ai ∩ Aj = φ, so

|S| =
∑bn

3
c

k=0 |Ak|,and from that all we need is to compute |Ak|.
Let a = y− k and b = z− k then a+ b = n− 3k and 0 ≤ a ≤ b so as we said on the beginning we

have bn−3k
2
c+ 1 such pairs a, b and every pair define one pair y, z (and one solution k = x ≤ y ≤ z)

so |Ak| = bn−3k
2
c+ 1 and from that we have

|S| =
bn

3
c∑

k=0

|Ak| = b
n

3
c+

bn
3
c∑

i=0

bn− 3i

2
c

And that’s it, I just can’t calculate this last sum...

Given
∑n

i=1 xi = n for xi ∈ R and∑n
i=1 x

4
i =

∑n
i=1 x

3
i

Solve the system of equation for xi .

Solution

We have
4

√∑n
i=1 x

4
i

n
≥ 3

√∑n
i=1 x

3
i

n

by Power means, which gives

n ·

(
n∑
i=1

x4
i

)3

≥

(
n∑
i=1

x3
i

)4
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or

n ≥
n∑
i=1

x3
i .

So,

1 =

∑n
i=1 xi
n

≥ 3

√∑n
i=1 x

3
i

n

which is the power mean inequality "the wrong way around".

So, equality must hold, and all variables must be equal xi = 1.

Let F (x) ∈ Z[x], and F (1), F (2), ..., F (n) is all not divisible by n. Is it necessary that F (x)

has no integer roots?

Solution

Suppose x is an integer root of f . Then f(x) = 0 mod n. However, consider the function modulo n.

Then because xk mod n = rk mod n, where r is the residue of x, it follows that F(r) is not zero mod

n. Contradiction. So there are no integer roots of f.

Let p(x) be a polynomial with integer coefficients. If p(0) and p(1) are odd then show that

p(x) does not have any integer root.!

Solution

f(ax+b) ≡ f(b) (mod a) (basic properties of congruences) So f(2x) ≡ f(0) ≡ 1 (mod 2) f(2x+1) ≡
f(1) ≡ 1 (mod 2) So f(x) is odd for all integer x. But 0 is even. Contradiction. So there are no integer

solutions. Another way The sum of the coefficents as well as the constant coefficent is odd.

Suppose f(x) =
∑n

i=0 aix
i and that x is an integer root.

If x is even, then f(x) =
∑n

i=0 aix
i = (

∑n
i=1 aix

i) + a0 which is odd. (every term in the brackets

has a factor x which is even.)

If x is odd, then f(x) = (
∑n

i=1 aix
i) + a0 is odd, (because, if ai is odd, then aix

i is odd, and if

ai is even, then aix
i is even. So the parity of the stuff in the brackets is the same as the parity of∑n

i=1 ai, which is even. So an even + a0 is odd as required.)

Contradiction.

Let D be the set of positive reals different from 1 and let n be a positive integer. If for

f : D → R we have xnf(x) = f(x2), and if f(x) = xn for 0 < x < 1
1989

and for x > 1989, then prove

that f(x) = xn for all x ∈ D.

Solution

By induction we have f(x2n) = f(x) ∗ x(2n−1)n

if 1/1989 ≤ x < 1 there exists n x2n < 1/1989 and then f(x2n) = x2nn ∗ f(x) ∗ x2n−1 and then

f(x) = xn

The same way, if 1 < x < 1989 ther existe n such as 1989 < xn

(2 +
√

3)k = 1 +m+ n
√

3 with m and n integrers and k odd.

Prove that m is a perfect square

Solution

We have (2−
√

3)k(2 +
√

3)k = 1 = (1 +m+ n
√

3)(2−
√

3)k = (1 +m+ n
√

3)(1 +m− n
√

3)

⇒ (1 +m)2 − 3n2 = 1⇒ m2 + 2m = 3n2

Finally, observe (1 +m+ n
√

3)(2 +
√

3)2 = 1 + (6 + 7m+ 12n) + (7n+ 4 + 4m)
√

3.

So k -> k+2 makes (m,n) -> (6 + 7m + 12n , 7n + 4 + 4m)

Now we use induction.

We show that if m is a perfect square for k, the "new m" generated by k+2 will also be a perfect

square *
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Put x = 6 + 7m+ 4
√

3m2 + 6 (x is the "new m"). Then x is a root of the equation x2− x(14m+

12) + (m− 6)2 = 0.

Let x, y be the roots of the above equation. Then
√
x+
√
y =

√
(
√
x+
√
y)2 =

√
x+ y + 2

√
xy =

4
√
m which is an integer. But x is an integer root. Because the discriminant is an integer, so too

must y be an integer root. We have, for some integer z, y = (z −
√
x)2 so that x must be a perfect

square (otherwise, (z −
√
x)2 cannot be an integer)).

So x is a perfect square and the induction is complete.

Prove the following inequality.

2n <
(2n)!

(n!)2
< 22n (n = 2, 3, · · · )

Solution

The middle is 2n choose n.

We know
∑n

r=0

(
n
r

)
= 2n by Binomial theorem.

Now,
(

2n
n

)
<
∑2n

r=0

(
2n
r

)
= 22n

and
(

2n
n

)
=
(

2n−1
n

)
+
(

2n−1
n−1

)
>
(

2n−2
n

)
+
(

2n−2
n−1

)
+
(

2n−2
n−2

)
> . . .

· · · >
∑n

r=0

(
n
r

)
= 2n, as desired.

Let n be a prime number. Find all x ∈ N such that (1n+2n+...+xn)+(1n+2n+...+(n−1)n) =

1n + 2n + ...+ (2n− 1)n

Solution

Well i think is easy to see that (2n− 1)n is far much bigger than 1n + 2n + 3n + ...+ nn

lets do it by induction...for 2 it happens let say for n-1 happens

the 1(n− 1) + 2(n− 1) + ...+ (n− 1)(n− 1) < (2n− 3)(n− 1) lets multiply it by (n-1) and we get:

(n− 1)(2n− 3)(n− 1) > (n− 1)(1(n− 1) + 2(n− 1) + ...+ (n− 1)(n− 1))

(n− 1)(1(n− 1) + 2(n− 1) + ...+ (n− 1)(n− 1)) > 1n + 2n + 3n + ...+ (n− 1)n

then (n− 1)(2n− 1)(n− 1) > (n− 1)(2n− 3)(n− 1) > 1n + 2n + 3n + ...+ (n− 1)n

and (n− 1)(2n− 1)(n− 1) + nn > 1n + 2n + 3n + ...+ nn

but (n− 1)(2n− 1)(n− 1) < (2n− 1)n

so the problem reduces that :

1n + 2n + ...+ (2n− 2)n + (2n− 1)n > 1n + 2n + ...+ (2n− 2)n + 1n + 2n + 3n + ...+ nn

so 2n− 1 > k > 2n− 2 but it can’t be so for n>1 there’s no solution.

the only solution is n = 1, k = 0

Find all reals x satisfy [x2 − 2x] + 2[x] = [x]2

Solution

write x = k + y where k is the integer part and y is the mantissa

[x2 − 2x] + 2[x] = [x]2

[y2 + 2ky + k2 − 2y − 2k] = k2 − 2k

k2 − 2k + [y2 + 2ky − 2y] = k2 − 2k

[y2 + 2ky − 2y] = 0

Let f(y) = y2 + 2(k− 1)y. We need f(y) ≥ 0 and f(y) < 1, and we want to determine the values

of y that give this based on the parameter k.

The roots of f(y) are 0 and 2(k-1). So if k ≤ 0 the roots are to the left of the y axis and we

guarantee f(y) ≥ 0. If k = 1 then all values of y work. If k=2 or higher then the curve is completely

under the x axis. So k ≤ 1.
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For f(y) < 1, we require y2 + 2(k − 1)y − 1 < 0 in the interval y in[0, 1). The quadratic opens

up, and the roots of this quadratic are −(k − 1)±
√

(k − 1)2 + 1. We want the positive root, so we

see that y in [0,
√

(k − 1)2 + 1− (k − 1)) is where y should be.

We combine these two conditions, so that k ≤ 1 and y ∈ [0,
√

(k − 1)2 + 1 − (k − 1)) describes

the full nature of x.

Prove that, for m 6= n, (Fm, Fn) = 1, where Fk = 22k + 1.

Furthermore, using this result, prove that there exist an infinite number of primes.

Solution

Lemma If m > n, then 22n + 1 divides 22m − 1. Proof of lemma: We will use mathmatical induction

(by fixing n). For m = n + 1, 22m − 1 = 22n+1 − 1 = (22n)2 − 1 = (22n + 1)(22n − 1) is divisible by

22n +1. Assume the lemma is true for m = n+k, i.e. 22n +1 divides 22n+k−1. Now for m = n+k+1,

22m − 1 = 22n+k+1 − 1 = (22n+k
)2 − 1 = (22n+k

+ 1)(22n+k − 1) is divisble by 22n+k − 1⇒ divisible by

22n + 1. Thus the lemma is proved.

Now we go back to the original problem: If m 6= n, then (22m + 1, 22n + 1) = 1. Proof Without

loss of generality, let m > n. By Euclidean Algorithm, (qx+ r, x) = (r, x). By our lemma, we can let

x = 22n + 1 and qx = 22m − 1 for some q. Then (22m + 1, 22n + 1) = (qx + 2, x) = (2, x) = 1 as x is

an odd number. The conclusion follows.

Corollary There exists infinitely many primes. Proof of corollary Since (Fm, Fn) = 1 ∀m 6= n ∈
N, every Fm is either itself prime or has a prime factor other that the ones of other Fn. Therefore,

there exists infinitely many primes.

The non-negative real numbers a, b, c, d add up to 1. Prove the inequality

|ab− cd| ≤ 1
4
.

Solution

Assume the opposite. Let’s say ab− cd > 1
4
.

Clearly, ab > 1
4
, which implies

√
ab >

√
1
4
.

By AM-GM, a+b
2
≥
√
ab. The maximum of a+ b is 1.

So we have 1
2
≥
√
ab >

√
1
4
.

So, 1
2
> 1

2
. Contradiction.

If we remove the absolute value signs, we have also cd−ab > 1
4
, which leads back to the argument

above.

The case for equality is when a = .5, b = .5, c = 0, d = 0, or a = 0, b = 0, c = .5, d = .5.

How many five-element subsets S of set A = {0, 1, 2, ..., 9} are there which satisfy {r(x +

y)|x, y ∈ S, x 6= y} = A, where r(n) denotes the remainder when n is divided by 10?

Solution

Let B = {r(x+ y)|x, y ∈ S, x 6= y}. Suppose S contains 0. Then for x 6= 0, r(x+ y) = r(x+ 0) = x,

so x ∈ B. For x = 0, r(0 + y)|0 no matter what y we pick since anything divides 0. So any subset

containing 0 works. Now suppose S does not contain 0. Consider the case where x = 1. Then r(1+y)|1,
so r(1 + y) = 1 and r(y) = 0. But, given that y ≤ 9, this means y = 0, a contradiction. So, the

number of 5-element subsets S which work is the number of 5-element subsets containing 0, of which

there are
(

9
4

)
.

P is any point inside a triangle ABC. The perimeter of the triangle AB + BC + Ca = 2s.

Prove that s < AP +BP + CP < 2s.

Solution
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Triangle inequality tells us: AB < AP +BP , AC < AP + CP , BC < CP +BP So:

AB +BC + AC < 2AP + 2BP + 2CP ⇐⇒ s < AP +BP + CP (1)

Then, we extend CP , and call D the intersection of CP and AB. Again, we use the triangle

inequality: CP +DP < AC + AD, and BP − PD < BD So:

BP + CP < AC + AB

On exactly the same way, we prove that AP +CP < AB +CB and that AP +BP < AC +BC

So it follows that:

2AP + 2CP + 2BP < 2AB + 2BC + 2AC ⇐⇒ AP + CP +BP < 2s(2)

Putting (1) and (2) together, we get the following inequality:

s < AP +BP + CP < 2s

Given that P = {p1, p2, ..., pk} is a set of distinct, not necessarily consecutive primes, prove

that 1
p1

+ 1
p2

+ ... 1
pk

is never integer.

Solution

Take any prime from the list. Let that prime be x. Thn assume that the sum is an integer, and let

that integer be equal to y. If you remove x from the list, the sum is now yx−1
x

. Now take another prime

from the list, and let that be z. If we remove this from the list, the sum is now z(yx−1)−1
xz

. Continuing

in this manner, eventually we will have one term left. Its sum must then have a denominator of

p1p2p3 . . . pk, where one number is missing from the product. Let that term be called pi. Then since

this term is equal to the sum of the list, we have that pi = p1p2p3 . . . pk. But since all pk are prime,

this is impossible because it would mean that the product of multiple primes is anothe prime, which

cannot happen. Therefore our assumption was false and the prduct cannot be an integer.

Let f : Z→ {−1, 1} be a function such that

f(mn) = f(m)f(n), ∀m,n ∈ Z.

Show that there exists a positive integer a such that 1 ≤ a ≤ 12 and f(a) = f(a+ 1) = 1.

Solution

Note that f(1) = 1. If f(2) = 1, we are done. So let f(2) = −1. If f(3) = f(5) = 1, we are done

since f(4) = [f(2)]2 = 1. So let f(3) = f(5) = −1. But then f(9) = f(10) = 1.

If f(x) = x4 + 3x3 + 9x2 + 12x+ 20 and g(x) = x4 + 3x3 + 4x2 − 3x− 5,find the a(x), b(x) of

smallest degree such that a(x)f(x) + b(x)g(x) = 0

Solution

Firstly: g(x) = x4 +3x3 +4x2−3x−5 = x4 +3x3 +5x2−x2−3x−5 = x4−x2 +3x3−3x+5x2−5 =

x2(x2−1)+3x(x2−1)+5(x2−1) = (x2−1)(x2 +3x+5) g(1) = 0 g(−1) = 0 a(x)f(x)+b(x)g(x) = 0

a(1)f(1) + b(1)g(1) = 0 a(−1)f(−1) + b(−1)g(−1) = 0 a(1) = 0 a(−1) = 0, so a(x) = (x2 − 1)a1(x)

Next (x2−1)a1(x)f(x)+b(x)(x2−1)(x2 +3x+5) = 0 If x 6= 1 and x 6= −1 then a1(x)f(x)+b(x)(x2 +

3x+5) = 0 Notice, that f(x) = (x2 +3x+5)(x2 +4) a1(x)(x2 +3x+5)(x2 +4)+b(x)(x2 +3x+5) = 0

a1(x)(x2 + 4) + b(x) = 0 Polynomial a1(x) must have as little degree as it possible, so a1(x) = c,

c 6= 0 a(x) = c(x2 − 1) b(x) = −c(x2 + 4) and c 6= 0

ABCD is a quadrilateral and P,Q are the midpoints of CD,AB,AP,DQ meet at X and

BP,CQ meet at Y . Prove that A[ADX] + A[BCY ] = A[PXOY ].

121

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=56940
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=57326
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=56488
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=56244


Solution

First let find the area of BCY and AXD: doing:BY
BP

= m and DX
DQ

= n we have:
∆BCY
∆BCP

= ∆BCY
∆BCD

2

= m =⇒ ∆BCY = m.∆BCD
2

∆AXD
∆ADQ

= ∆AXD
∆ABD

2

= n =⇒ ∆AXD = n.∆ABD
2

thus:

∆AXD + ∆BCY = n.∆ABD
2

+m.∆BCD
2

and:

�QY PX = �ABCD −∆CBQ−∆ADP −∆CY P −∆AQX ⇒
�QY PX = �ABCD − ∆ABC

2
− ∆ACD

2
− (1−m).∆BCD

2
− (1− n).∆ABD

2

⇒ �QY PX = �ABCD − �ABCD
2
− �ABCD

2
+ n.∆ABD

2
+m.∆BCD

2

⇒ �QY PX = n.∆ABD
2

+m.∆BCD
2

in consequence:

�QY PX = ∆AXD + ∆BCY.

let A=(1,2,...,99) be a set.50 number are chosen from A,inwich the sum of each two number

isnt equal to 99 or 100.

prove that: the 50 chosen number should be : 50,51,...,99

Solution

Suppose we choose an element k (k 6= 99) from A. We know that 99−k and 100−k cannot be chosen

also. Therefore, the elements in A can be paired up as: (1, 98), (2, 97), . . . , (49, 50), (99). We can only

take one element from each set of parentheses. Thus, we must choose the element 99 in order to end

up with 50 numbers. But then we cannot choose 1 or else 99+1=100. Thus we have to choose 98.

Similarily, we can’t have 2. So we must take 97. This logic continues all the way down thus forcing

us to choose 50, 51, . . . 99.

assume: an = an−1 +
a2
n−2

an−1
and bn = an+1

an
. if bn is convergant to L, prove: 1 < L < 3

2

Solution

Dividing through by an−1, we get

bn−1 = 1 + 1
b2n−2

Taking limits, we get

L = 1 + 1
L2 or L3−L− 1 = 0. This is a cubic, and hence it has a real root. We want to show that

there’s only one, and that it lies in the desired interval.

Now, x3 − x = 0 has a maximum for x ≤ 0 of 2
√

3
9
< 1, so we must have L > 0

d
dL
L3 − L− 1 = 3L2 − 1, so that it is increasing for |L|2 > 1

3
.

Furthermore, L3 − L < 0 for 0 < L < 1. So L > 1. Setting L = 3
2
, we see that L3 − L − 1 =

27
8
− 3

2
− 1 > 0, so

1 < L < 3
2

as desired. The way to proceed is obvious here, there was just a bunch of boring grunt work to

be done.

Let P1P2P3 . . . P12 be a regular dodecagon. Show that

|P1P2|2 + |P1P4|2 + |P1P6|2 + |P1P8|2 + |P1P10|2 + |P1P12|2

is equal to

|P1P3|2 + |P1P5|2 + |P1P7|2 + |P1P9|2 + |P1P11|2 .

Solution

Place the 12 points of the regular dodecagon on a circle. Notice P1P7 is the diameter which means

triangle P1P7Pk for k ∈ {2, 3, 4, 5, 6, 8, 9, 10, 11, 12} is a right triangle all with P1P7 as the hypotenuse.
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So we have

|P1P2|2 + |P1P8|2 = |P1P3|2 + |P1P9|2

|P1P4|2 + |P1P10|2 = |P1P5|2 + |P1P11|2

After cancelling out the above terms we are left with showing

|P1P6|2 + |P1P12|2 = |P1P7|2

which is true by the pythagorean theorem.

In how many ways can one choose distinct numbers a and b from 1, 2, 3, ..., 2005 such that a

+ b is a multiple of 5?

Solution

Consider the set mod 5. First if a ≡ 0 mod 5 then b ≡ 0 mod 5. There are 401 multiples of 5 so

there are
(

401
2

)
ways to select a, b. If a ≡ −1 mod 5 then b ≡ 1 mod 5 however these two sets are

disjoint so there are 4012 more ways. Similarly there are 4012 ways if either a or b are equivalent to

±2 mod 5. This accounts for all possible residues so there is a total of 2 ·4012 +
(

401
2

)
= 401802 ways

to select a, b.

Consider an array of numbers of size 8 × 8. Each of the numbers in the array equals 1 or -1.

"Doing a move" means that you pick any number in the array and you change the sign of all numbers

which are in the same row or column as the number you picked. (This includes changing the sign of

the "chosen" number itself.) Prove that one can transform any given array into an array containing

numbers +1 only by performing this kind of moves repeatedly.

Solution

For each square X let the X-cross be the set of squares in the same row or column as X (including

X), so that a move changes the sign of the squares of the X-cross for the chosen square X.

We say that a square X is odd if the number of minus signs on its cross is odd, and even otherwise.

Now consider the following set of moves: for each square X, apply one move to X if it is odd, and

none if it is even. This solves the problem.

To prove this gives the result, do the following: for each square X with a −, place a coin with an

X written on it, on each square of the X-cross (so each square will, in the end, have as many coins as

the number of −s on its cross). When you’re done, for each square apply to it as many moves as the

number of coins on it (and note that the above set of moves is the same as this taken mod 2, so it’s

equivalent). The point is that the moves of the X-coins add up to changing just X, since each square

not on the X-cross has just 2 X-coins on its cross, each square on the X-cross but different from X

has 8 X-coins on its cross, and X has 15 X-coins on its cross. Then it is obvious that this gives the

required result.

Show that one can find 50 distinct positive integers such that the sum of each number and its

digits is the same.

Solution

we build a number a1 accordingly to a certain rule. It goes like this: its first digit to the right is 1.

Then goes 9 and 0, so that the ending is 091. The next digit is again 1 and then there have to be a

little more nines - exactly a thousand and finely again 0, so now we have a longer ending: 0 9...9︸︷︷︸
1000

1091.

Then the story goes from the begining, that means we add 1, an appropriate number of 9’s and finely

0. The question is: what is the "appropriate" number of 9’s? Well, that depends on what position is

the 1 before the 9’s. If it stands for 1 · 10k in a decimal system, then we add 10k nines. We perform
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this operation (at least) 49 times, so that the number has (at least) 49 one’s. Well, it’s a bit long

number to write... :oops: Now, let’s say this is a1 and let the sum of the digits of a1 will be S(a1).

Let’s also write: f(a1) = a1 +S(a1). Note that: f(a1) = f(a1 + 9), because the ending of a1 + 9 is 100

and that means that S(a1 + 9) = S(a1) − 9. Similarly, f(a1 + 9000) = f(a1), because the ending of

a1 + 9000 is 1 0...00︸ ︷︷ ︸
1000

0091 and so S(a1 + 9000) = S(a1)− 9000. Now its obvious how to continue this

argument. We see that f(a1 + 9 · 10k) = f(a1), where k + 1 is a number of a position for digit 1 in

a1. Of course, the solution above means that there are not only 50 numbers, but there are n distinct

numbers such that the sum of each number and its digits is the same, for n ∈ N.
Given 101 distinct non-negative integers less than 5050 show that one can choose four a, b, c, d

such that a+ b− c− d is a multiple of 5050

Solution

We have those integers in an increasing order: 0 6 a1 < a2 < ... < a101 < 5050. Let us look at the

differences between consequent terms of the sequence an. If we suppose all those differences to be

pairwise different, we have: a101 = a1 + (a2 − a1) + (a3 − a2) + ... + (a101 − a100) > 0 + 1 + 2 + 3 +

... + 100 = 5050 - a contradiction. So there have to be such i, j that: ai − ai+1 = ak − ak+1, whence

ai + ak+1 − ai+1 − ak = 0. And that’s it.

Find all f : R→ R
(1) there are only finitly many s ∈ R : f(s) = 0 (2) ∀x, y ∈ R : f(x4 + y) = x3f(x) + f(f(y))

Solution

Taking x = 0, we get f(f(y)) = f(y). Taking x = 1, y = 0 we get f(0) = 0. Taking y = 0,

we get f(x4) = x3f(x). Hence, if x is a zero of f , then x4 is a zero as well. Since there are only

finitely many zeroes, we must have f(x) = 0 ⇒ x ∈ {0, 1}. But we can’t have f(1) = 0 either

since then f(2) = f(1) + f(1) = 0, f(3) = f(1) + f(f(2)) = 0, ... contradiction. So if f(x) = 0,

then x = 0. Now take t = f(x4) − x4 (and keep x fixed). Then f(x4) = f(f(x4)) = f(x4 + t) =

x3f(x) + f(t) = f(x4) + f(t) and hence f(t) = 0, t = 0, f(x4) = x4. So for all positive x, we

have f(x) = x. It’s easy to see that we must have f(x) = x for all negative x as well, and we’re

done. – Given 4ABC, let D, E, F be the points on AB, BC, and CA, respectively, such that

AD : DB = BE : EC = CF : FA = 2 : 1. Next, take points X, Y , and Z on DE, EF , and FD,

respectively, such that DX : XE = EY : Y F = FZ : ZD = 2 : 1. Prove that 4ABC and 4XY Z
are similar. – Given n ≡ 3( mod 6) objects a1, a2, . . . , an, show one can find

(n2)
3

triples (ai, aj, ak)

such that every pair (ai, aj)(i 6= j) appears in exactly one triple. – Call a number a − b
√

2 with a

and b both positive integers tiny if it is closer to zero than any number c − d
√

2 such that c and d

are positive integers with c < a and d < b. Three numbers which are tiny are 1−
√

2, 3− 2
√

2, and

7− 5
√

2. Without using a calculator or computer, prove whether or not each of the following is tiny:

(a)58− 41
√

2, (b)99− 70
√

2.

can anyone find a relatively simple method (no calculus) to find the coordinates of a point Q

(x,y) which is the rotation of point P (a,b) through an angle of l about the origin? (x,y) in terms of

a,b,l

Solution

Let a = r cos θ, b = r sin θ (where r =
√
a2 + b2). Then:

x = r cos(θ + l) = r cos θ cos l − r sin θ sin l = a cos l − b sin l

y = r sin(θ + l) = r sin θ cos l + r cos θ sin l = b cos l + a sin l
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Prove that ∀a, b ∈ R;∃x, y ∈ [0, 1] :

|xy − ax− by| ≥ 1

3

If the right hand side 1
3
change to 0.33334, is the inequality also true?

Solution

If |a| ≥ 1/3 then we may take x = 1 and y = 0

So we may consider only |a|, |b| < 1/3

if a, b ≥ 0 take x = y = 1 : 1− a− b ≥ 1/3 if a < 0 or b < 0 take x = y = 1 also.

1/3 is sharp by looking at case a = b = 1/3

Find all the polynomials P (x) with real coificients, such that P (x3 + 1) = (P (x + 1))3, for

every real number x.

Solution

Looking for (eventually complex) roots : if x+ 1 is a root then x3 + 1 is also a root. x 6= −1, 0 would

give an infinite number of roots.

So P (x) = xn(x− 1)p

Plugging back only possibility is n = 0

P (x) = (x− 1)p works and is the only solution.

For certain ordered pairs (a, b) of real numbers, the system of equations

ax+ by = 1

x2 + y2 = 50

has at least one solution, and each solution is an ordered pair (x, y) of integers. How many such

ordered pairs (a, b) are there?

Solution

The equation x2 + y2 = 50 describes a circle centered around the origin with radius 5
√

2. There are

three points on the circle with integer coordinates in the first quadrant: (1,7), (5,5), (7,1), so there

are twelve total points on the circle with integer coordinates.

The equation ax+ by = 1 can describe any line on the plane. It can intersect the circle at one or

two points.

Intersects at one point with integer coordinates: There are 12 points, so there are 12 lines.

Intersects at two points with integer coordinates:

(
12

2

)
= 66 lines.

So total there are 78 ordered pairs.

Determine all triples of positive integers (x, y, z) with x ≤ y ≤ z satisfying xy+yz+zx−xyz =

2.

Solution

For x, y, z such that 1 ≤ x ≤ y ≤ z, xyz = xy + yz + zx − 2 ⇐⇒ x = x
z

+ 1 + x
y
≤ 1 + 1 + 1 = 3,

yielding x = 1, 2. Case 1. x = 1 Plugg this into the equation xyz = xy + yz + zx − 2, we have

y+ z = 2. ∴ (y, z) = (1, 1).Similarly Case 2. x = 2, we have yz = 2y+ 2z− 2⇐⇒ y = 2 · y
z

+ 2− 2
z
<

2 + 2 = 4, yielding y = 2, 3. Plugg these into the equation yz = 2y + 2z − 2,we have that for y = 2,

the equation 2z = 4+2z−2, which contradicts. Then for y = 3, the equation 3z = 2z+4⇐⇒ z = 4.

Therefore desired answer is (x, y, z) = (1, 1, 1), (2, 3, 4).

On sides AB,BC,CAof a triangle ABC we take pointsM,K,L withML//BC andMK//AC

. Segments AK,ML meet at Q and segments BL,MK meet at P . Prove that PQ//AB.
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Solution

Since AC ||MK then ∠PMQ = ∠MLA.

Since ML ||BC then ∠PMQ = ∠MKB.

Also ∠CAB = ∠KMB and so ∆AML ∼ ∆KMB ∼ ∆ABC.
AC
AB

= PM
MB

and BK
QM

= AB
AM

.

Multiply these we get AL
AM

= PM
MB
· BK
QM

.

Also AL
AM

= MK
MB

=⇒ MK
MB

= PM
MB
· BK
QM

.

Hence MK
BK

= PM
QM

and then we get ∆PQM ∼ ∆MBK ∼ ∆ALM .

So ∠QPM = ∠PMB and PQ ||AB.

Find all real solution of:
√

4x− 8 + 3
√

14x− 20 =
√

24− 4x+ 3
√

2092− 182x

Solution

Rearrange the given equation:

√
4x− 8−

√
24− 4x = 3

√
2092− 182x− 3

√
14x− 20

Let f(x) be the LHS and g(x) be the RHS above. We find that f is only real on [2, 6]. We can

also fairly simply show that f is strictly increasing and g is strictly decreasing on [2, 6]. Thus if

f(6) < g(6), then there are no real solutions.

Simple calculation gives:

f(6) =
√

24− 8−
√

24− 24 = 4

g(6) = 3
√

2092− 1092− 3
√

84− 20 = 6

Thus f(6) < g(6), so for any x in the domain of f , we must have f(x) < g(x).

Suppose that x is not in the domain of f , then we will have a complex number on the LHS above.

The cube root function, however, produces real values for all real numbers. Thus if x is real, the RHS

above will be real. Thus the two sides can never be equal, completing the proof that there are no

real solutions.

QED

In the Mathematical Competition of HMS (Hellenic Mathematical Society) take part boys and

girls who are divided into two groups : [i]Juniors[/i] and [i]seniors.[/i]The number of the boys taking

part of this year competition is 55

Solution

From the problem conditions we have b = 55
100

(b+ g) and jb
sb

= j
s
.

Hence b
g

= 11
9
.

So sb
jb

= sb+sg
jb+jg

=⇒ b−jb
jb

= 100−(jb+jg)
jb+jg

.
b
jb

= 100
jb+jg

=⇒ 1
b

= 1
100

+ jg
100jb

.
g

100b
= jg

100jb
=⇒ jb

jg
= b

g
= 11

9
.

Consider the following series:

Sn = 1 + 1
2

+ · · ·+ 1
n

Tn = S1 + S2 + · · ·+ Sn

Un = T1

2
+ T2

3
+ · · ·+ Tn

n+1
.

Prove that Tn + ln (n+ 1) > Un + n.

Solution

Let F : N→ N, the function F (n) = Tn + ln(n+ 1) > Un + n.
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Lemma 1. Tn = (n + 1)(Sn+1 − 1). Proof. In (n + 1)(1 + 1
2

+ 1
3

+ · · · + 1
n+1

) we overcount the

number of 1’s by 1, 1
2
’s by 2, and the number of 1

k
’s by k, so in total we overcounted by 1, n + 1

times. Result follows.

Lemma 2. F (n+ 1)− F (n) > 0. Its equivalent to

(Tn+1 − Tn) + (ln(n+ 2)− ln(n+ 1)) + (Un − Un+1) + (n− (n+ 1)) > 0.

⇔ Sn+1 + ln n+2
n+1

> Tn+1

n+2
+ 1

and using lemma 1, ⇔ ln n+2
n+1

> Sn+2 − Sn+1

or ⇔ ln(n+2
n+1

)n+2) > 1, but (n+2
n+1

)n+2 > e where the result follows. (e is the limit when n gets big,

and the function is trivially decreasing using calculus)

We can verify F (1) > 0. Then F (n+ 1) > F (n) > · · · > F (1) > 0, for all n. Result follows.

if the in circle of a quadrangle ABCD has radius r, then prove that:

AB + CD ≥ 4r

Solution

drawing the incircle and all the radii to the tangent points (call P the tangent point on AB, Q on

BC, R on CD and S on DA). O is the incenter.

Call ∠AOP = ∠AOS = α1, ∠BOQ = ∠BOP = α2, ∠COR = ∠COQ = α3, and ∠DOS =

∠DOR = α4. Note that α1 + α2 + α3 + α4 = 180 and 0 < αi < 90.

We find that AB = r(tanα1 + tanα2), BC = r(tanα2 + tanα3), CD = r(tanα3 + tanα4),

DA = r(tanα4 + tanα1). So it remains to show that

AB +BC + CD +DA = 2r
∑

tanαi ≥ 8r, or
∑

tanαi ≥ 4.

But since tanx is convex on (0, 90), by Jensen’s with equal weights wi = 1
4
we get

tanα1 + tanα2 + tanα2 + tanα2 ≥ 4 tan
(
α1+α2+α3+α4

4

)
= 4 tan 45 = 4 as desired.

tổ hợp

Evaluate ⌊
109∑
n=1

n−2/3

⌋

Solution

Note that∫ N
1
n−2/3 dn <

∑N
n=1 n

−2/3 < 1 +
∫ N

1
n−2/3 dn

⇒ 2997 <
∑109

n=1 n
−2/3 < 2998

so
⌊∑109

n=1 n
−2/3

⌋
= 2997.

Find all couples (p, q) of prime numbers for which p2 + q2 + p2q2 is a perfect square.

Solution

We have k2 = p2 + q2 + p2q2 = (p2 + 1)(q2 + 1) − 1. If p, q are odd, then looking mod 4, we see

that the LHS is 0 or 1 and the RHS is 3. Our other option is for either p or q to be 2. WLOG p = 2

giving k2 = 5q2 + 4⇒ (k − 2)(k + 2) = 5q2. The possible pairs for (k − 2, k + 2) are (1, 5q2), (5, q2),

and (q, 5q).

Solving these, we get (discarding values we don’t want) q = 3 as the only solution. Therefore,

(2, 3) is the only solution. (indeed 22 + 32 + 22 · 32 = 72). ANother way 2, 2 is not a solution. mod 4 :

p and q can’t be both odd, wlog, p = 2 Rewriting q(q + 4) = A2 − 4 = (A+ 2)(A− 2) quickly gives

q = 3

2, 3 only solution.
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Let a1 = 25, a2 = 48 and for all n ≥ 1, let an+2 be the remainder from dividing an + an+1 by

100. Find the remainder from dividing a2
1 + a2

2 + ...+ a2
2000 by 8.

Solution

We have an+2
2 = an+1

2 + an
2 + 2 · an+1 · an mod 8

period of an mod 8 is hopefully very short : 1, 0, 1, 1, 4, 1 and 1 + 0 + 1 + 1 + 4 + 1 = 8

2000 pmod6 = 2 so a2
1 + a2

2 + ...+ a2
2000 (mod 8) = 1 + 0 = 1

Let S be the set of polynomials anxn + an−1xn−1 + ... + a0 with non-negative real coefficients

such that a0 = an ≤ a1 = an−1 ≤ a2 = an−2 ≤ . . .

For example, x3 + 2.1x2 + 2.1x+ 1 or 0.1x2 + 15x+ 0.1. Show that the product of any

two members of S belongs to S.

Solution

Let the first generalized member of S be f(x) = anx
n+an−1x

n−1 + ...+an−1x+an, ak ≤ ak−1, k =

1, 2, 3...n, and let the second generalized member of S be g(x) = bmx
m + bm−1x

m−1 + ... + bm−1x +

bm, bk ≤ bk−1, k = 1, 2, 3...m.

We now consider the coefficients of f(x)g(x) = cn+mx
n+m+ cn+m−1x

n+m−1 + .... The coefficient of

the first term is anbm. The coefficient of the second term is given by all terms of f(x) and g(x) that

multiply out to give an exponent of n+m−1; there are two of these term pairs, an−1x
n−1 ∗bmxm and

anx
n∗bm−1x

m−1, which add up to an−1bm+bm−1an. Because an−1 ≥ an, it follows that an−1bm ≥ anbm.

Applying the same argument to bm−1an gives an−1bm + bm−1an ≥ 2anbm.

Repeating this analysis for the coefficient of the (k + 1)th term from the beginning up to the

center term of f(x)g(x) gives cn+m−kx
n+m−k =

k∑
i=0

an−ibm−k+ix
n+m−k. Each subsequent term of

cn+m−k contains one more an−pbm−k+p than the previous; additionally, every term in the addition

except the last satisfies this inequality: an−ibm−(k+1)+i ≥ an−ibm−k+i, and since there is even an extra

term, cn+m−k > cn+m−(k+1) is guaranteed, thus satisfying one requirement of belonging to S.

The second requirement, that cn+m−k = ck, requires repeating the analysis starting from the

constant term, c0. From the expansion of f(x)g(x), it is obvious that c0 = a0b0 = anbn. In order to

find c1, it is necessary to find all terms in f(x) and g(x) that contribute a term of x to f(x)g(x); this

gives, similar to the previous analysis, a sum of c1x
1 = a1b0x

1 + a0b1x
1 = (an−1bm + anbm−1)x.

Repeating this analysis for the coefficient of the (k + 1)th term from the end gives ckx
k =

k∑
i=0

aibk−ix
k =

k∑
i=0

an−ibm−k+ix
k; it is immediately obvious that ck = cn+m−k, satisfying the second

requirement of belonging to S. Therefore:

∀f(x), g(x) ∈ S : f(x)g(x) ∈ S
Q.E.D. – Prove or disprove: For any set of integers a1, a2, ..., an, there exists integers b1, b2, ..., bn

such that a1b1 + a2b2 + ...+ anbn = gcd(a1, a2, ..., an)

Prove if n, d, k ∈ N and d|n ϕ(ndk) = dkϕ(n)

Solution

Given that d|k, we have φ(ndk) = (ndk) ×
∏

p|ndk
p−1
p
, where p is prime. We have dkφ(n) = dk(n) ×∏

p|n
p−1
p
. Since the set of all p such that p|ndk is equal to the set of all p such that p|n, the

∑
in

both equations is equal, and the factor ndk is also equal, so we have equality and the desired result.

Let S be a set with 6 elements. How many pairs of subsets X and Y of S are there such that

X is a subset of Y and X 6= Y ?

Solution
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For each subset Y of size k, there are 2k − 1 proper subsets X (i.e. subsets with X 6= Y ).

So the total number of pairs of subsets is
∑6

k=0(2k − 1)
(

6
k

)
=
∑6

k=0 2k
(

6
k

)
−
∑6

k=0

(
6
k

)
Which by the binomial theorem is equal to (1+2)6− (1+1)6, or 36−26 = 665 ANother way Let’s

temporarily ignore the condition X 6= Y . Each of the 6 elements of S has 3 choices: that element is

either a member of both X and Y , or a member of Y only, or a member of neither. Thus we have 36

choices. We need to subtract out the case X = Y ; there are 26 subsets of S. Thus the final answer

is 36 − 26.

Find all positive primes p for which there exist integers m,n satisfying: 1. p = m2 + n2 2.

m3 + n3 − 4 is divisible by p

Solution

m2 + n2|m3 + n3 − 4 =⇒ m2 + n2|(m + n)(mn − m2 − n2) + 4 =⇒ m2 + n2|(m + n)mn + 4 =⇒
m2 + n2|m2n+ n2m+ 4 =⇒ k(m2 + n2) = m2n+ n2m+ 4

Suppose n > m ≥ 2, k ≥ 2 If k > n then (n + 1)(m2 + n2) ≤ k(m2 + n2) = m2n + n2m + 4 =⇒
nm2 + n3 +m2 + n2 ≤ m2n+ n2m+ 4 =⇒ n3 +m2 + n2 ≤ n2m+ 4 ≤ n3 +m2

If k = n then: n(m2 + n2) = m2n+ n2m+ 4 =⇒ n2(n−m) = 4 =⇒ 9 ≤ 4

Hence k < n:

k(m2 + n2) = m2n+ n2m+ 4 =⇒ m2(n− k) +m(n2) + (4− kn2)

Hence (n2)2−4(n−k)(4−kn2) sould be a perfect square. (n2)2−4(n−k)(4−kn2) = n4 +4kn3 +

4k2n2 − 16n+ 16k = A

But (n2 + 2kn− 1)2 < A < (n2 + 2kn)2

We can easily check if k = 1 or m = 1

Find all functions f : < → < satisfying: (x+ y)(f(x)− f(y)) = (x− y)f(x+ y)

Solution

If we tak x = −y and x 6= 0, then f(0) = 0. Now we can assume that f(1) = k and f(2) = a, where a

and k are reals. Taking y = 1 and x = n+2, where n is a natural, we have f(n+3) = n+3
n+1

(f(n+2)−k).

And now we can prove by induction that f(n + 3) = a−2k
2
n2 + 5a−8k

2
n + (3a − 3k), for all integer n

such tah n ≥ 0. We can extending this result for all integer n. It’s just obtain f(−1) and f(−2) in

function of a and k, and make a new induction. To obtain f(−1) we can take y = −1 and x = 3

and to obtain f(−2) we can take y = −2 and x = 3. And now we have to extend this result for all

racional n. We can take x = qy and y = p
q
and we’ll have (q+ 1)(f(p)− f(p

q
)) = (q− 1)f(p+ p

q
). And

taking now x = −p and y = p+ p
q
we can calculate f(p+ p

q
), and finally estend for all racional n. In

this point it’s just verify that f is a continuous function. And this is in fact a merely consequence of

it’s definition. We can prove that f is diferenciable just looking to this definition. And soon we can

extend that formula for all reals n.

Does there exist an integer k which can be expressed as the sum of two factorials k = m! + n!

(with m ≤ n) in two different ways?

Solution

2 = 1! + 1! = 0! + 0! = 0! + 1! 1! + n! = 0! + n! Proof

For m ≤ n and p ≤ q, with all of them > 1, let us denote k = m! + n! = p! + q!. WLOG, let

(n−m) < (q − p). Then p < m, q > n.

We know that m!|k. We therefore know that m!|(p! + q!), which can only be true if m!
p!
| q!
p!

+ 1. If

m > p + 1, then m!
p!

is even. Then the equation can only hold true if q!
p!

is odd, which only occurs

when q = p or q = p+ 1, both of which contradict our assumption that p < m, q > n.
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This means m ≤ p+ 1, and because p < m, we have m = p+ 1 and p+ 1| q!
p!

+ 1. Because we have

assumed p > 1 in order to prevent a trivial solution, p+ 1 ≥ 3.

For p + 1 ≥ 3, then, we write our original equation as k = (p + 1)p! + n! = p! + q!. Subtracting

yields p(p!) = q!− n! = n!( q!
n!
− 1). This requires that p(p!)

n!
be an integer because q > n, but because

we have p < m ≤ n, the fraction becomes p
(p+1)(p+2)...(n)

which is clearly never an integer.

Hence, only the trivial solutions work.

For p, q ∈ N where p > q prove that∑∞
k=1

(pq)k

(pk−qk)(pk+1−qk+1)
= q

(p−q)2

Solution

Let r = q
p

(0 < r < 1), since limn→∞ r
n = 0, we have∑n

k=1
(pq)k

(pk−qk)(pk+1−qk+1)
= 1

p(1−r)
∑n

k=1
rk

(1−rk)(1−rk+1)
= 1

p(1−r)
∑n

k=1

(
1

1−rk −
1

1−rk+1

)
= 1

p(1−r)

(
1

1−r −
1

1−rn+1

)
−→ 1

p(1−r)

(
1

1−r − 1
)

(n −→∞)

= r
p(1−r)2 = q

(p−q)2 . Q.E.D.

If
(a− b)(b− c)c− a)

(a+ b)(b+ c)(c+ a)
=

1

11
,

find
a

a+ b
+

b

b+ c
+

c

c+ a
.

Solution

Denote a
a+b

= x, b
b+c

= y, c
c+a

= z. We have to calculate s = x + y + z. From the statement we

have (2x − 1)(2y − 1)(2z − 1) = 1
11
, hence (1) 4(2xyz − (xy + xz + yz)) + 2(x + y + z) − 1 = 1

11
.

OTOH, 1
x
− 1 = b

a
, 1

y
− 1 = c

b
, 1

z
− 1 = a

c
. This yields to ( 1

x
− 1)( 1

y
− 1)(1

z
− 1) = 1. We obtain

1− (x+ y + z) + xy + xz + yz − xyz = xyz, hence 2xyz − (xy + xz + yz) = 1− (x+ y + z) = 1− s.
Replace in (1) and obtain a simple equation in s. – 2

√
x + 3
√
x2 − 1 + 4

√
x3 + 15 = x2 + 2 – Given

positive integer n and positive real number M . Among all arithmetic sequences a1, a2, a2 · · · which
satisfy a2

1 + a2
n+1 ≤ M , find the maximum of S = an+1 + an+2 + · · · + a2n+1. – Find the number of

positive integer solutions to the equation (xi and P are positive integers

x1x2...xk + xk+1xk+2....x2k + ....+ xnk+kxnk+k−1...xnk = P

For which c real numbers ,there can be found a line that intersects y = x4 + 9x3 + cx2 + 9x+ 4

curve at four distinct points?

Solution

If rk denote the roots of the polynomial x4 + 9x3 + cx2 + (9− a)x+ (4− b), then the rk are all real

and distinct. Then
∑

j<k(rj − rk)2 > 0.

Expanding each, this is 3
∑

k r
2
k > 2

∑
j<k rjrk = 2c.

Adding on 6c = 6
∑

j<k rjrk to both sides to complete the square, 3 (
∑

k rk)
2 > 8c. But

∑
k rk =

−9⇒ c < 243
8
.

So if c ≥ 243
8

it certainly won’t work. But if c < 243
8

then the sum
∑

j<k(rj − rk)2, or 243− 8c, is

positive.

Just suppose that r1 = r2+α = r3+2α = r4+3α. Then this sum is (3α)2+2(2α)2+3α2 = 243−8c.

Then 20α2 = 243− 8c, so α =
√

243−8c
20

.

Then from
∑

k rk = 4r4 + 6α = −9, r4 = −9+6α
4

. So a set of rk can be constructed, which then

determine the coefficients.

Therefore there is a line if and only if c <
243

8
.
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If A, B, C and D are consequent vertices of a regular (I don’t know if it’s the right word,

polygon with all sides equal, and all angles equal) polygon, find the number of vertices if

1

|AB|
=

1

|AC|
+

1

|AD|
.

Solution
1
AB

= 1
AC

+ 1
AD
⇐⇒ 1

AB
= AC+AD

AC·AD ⇐⇒ AC · AD = AB · AC + AB · AD
Denote V1 = A, V2 = B,... We have V1V3 · V1V4 = V1V2 · V1V3 + V1V2 · V1V4 Then we can rewrite

it as V1V3 · V2V5 = V1V2 · V3V5 + V2V3 · V5V8 (neglecting the number of vertices at this point).

However, since the polygon is regular, Ptolemy’s Theorem must hold for any quadrilateral whose

vertices are on this polygon. So we must have V1V3 · V2V5 = V1V2 · V3V5 + V2V3 · V5V1, which implies

that V1 ≡ V8.

Therefore, the number of vertices is 7.

From : a+ b+ c+ d = S and 1
a

+ 1
b

+ 1
c

+ 1
d

= S , we infer : 1
1−a + 1

1−b + 1
1−c + 1

1−d = S. Find S ?

Solution

If the result holds for the real numbers a, b, c, d, then it must also hold for the real numbers 1/a,

1/b, 1/c, 1/d, so ∑ 1

1− 1/a
=
∑ a

a− 1
= S,

which implies that ∑ a

1− a
= −S.

Then

S − (−S) =
∑ 1

1− a
−
∑ a

1− a
= 4,

so S = 2.

Now to prove that S = 2 works. From the given conditions,
∑
a = 2 and

∑
abc = 2abcd. Then∑ 1

1− a
=

4− 3
∑
a+ 2

∑
ab−

∑
abc

1−
∑
a+

∑
ab−

∑
abc+ abcd

=
4− 6 + 2

∑
ab− 2abcd

1− 2 +
∑
ab− 2abcd+ abcd

=
−2 + 2

∑
ab− 2abcd

−1 +
∑
ab− abcd

= 2.

Hence, S = 2 works.

hình

9 people hold 5119 shares in a company. In every decision voting, any subset or all of the 9

people can participate.If a person participates in voting, he/she can either vote FOR or AGAINST

the decision. The number of votes is equal to the number of shares a person holds. For every decision

there shouldn’t be a TIE between the two choices. In a decision, a group with smaller number of

people should never win over higher number of people. What is the least number of shares a person

can hold?

Solution

Let the number of shares for each person i be ai where 1 ≤ i ≤ 9 and i integral. WLOG assume that

a1 < a2... < a9
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We know that ai 6= aj otherwise there would be a tie. Since a smaller number of people should

never outvote a higher number of people, we say that

a9 < a1 + a2

But in order to minimise a1 we need to maximise a9 and this occurs when

a9 = a1 + a2 − 1

By a similar argument, a8 = a9 − 1 = a1 + a2 − 2

This shows that all of a2, a3...a9 are consecutive. With a little experimentation, one determines

that a9 = 642, a8 = 641, ..., and since the sum is 5119, we conclude that the smallest number of

shares is 11

is it possible to write the natrual numbers in a string such that after n numbers this string is

a palendrone? i.e. 123456 . . . n is a palendrone

Solution

First, definitions. For two strings of digits s1, s2 let us define app(s1, s2) to be the result when s2 is

appended to the end of s1 (ex.: app(123, 456) = 123456). For a string of digits s define inv(s) to be

the inversion of the string (ex.: inv(123) = 321). Finally, for a string of digits s define first(s, l) to

be the string that contains the first l digits of s.

Claim: n = 1.

Proof: Define the sequence a1 = 1, ak = app(ak−1, k), which is precisely the string in the problem.

If n > 1 then n must be of the form inv(ak) for some integer k > 1 in order that an = inv(an).

Now, consider the previous term to be appended to the string, n−1. Because n = inv(ak) = k...321

we know n−1 = k...320. The string ends with app(n−1, n) = k...320k...321 and because an = inv(an)

we require that inv(app(n − 1, n)) = first(an, 2k). This is impossible - we can write inv(app(n −
1, n)) = 123...k023...k, and because we append k + 1 immediately after k when constructing an a 0

cannot be present there.

Hence, for n > 1 no such n = ak exists. Q.E.D.

Let 2n > k natural numbers and a1, ..., an integers such that leaving different remainder when

they are divided by k . Prove that for all integers l there exist index i, j from the set {1, 2, ..., n} such
that

k|(ai + aj − l)
Solution

first i want to state that the last condition is equvilent to

ai + aj − l ≡ 0 (mod k) ⇐⇒ ai ≡ l − aj (mod k)

then considering how many ai can exist so no i, j satisfy the condition we get n < k−1
2

which is

contrary to 2n > k ... – The quadratic ineqaulity ax2 + bx+ c ≥ 0 is true for all x ∈ R. If b > a, then

find the minimum value of a+b+c
b−a .

Given

x3 − 3x = y

y3 − 3y = z

z3 − 3z = x

Find all sets of solutions [x, y, z]

Solution

Given: a = 2 cos x

Take a3 − 3a = b and we have
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b = 8 cos3 x− 6 cosx = 2(4 cos3 x− 3 cosx) = 2 cos 3x

Try |x| > 2 and see that the equation can’t work, so |x| ≤ 2 so we can make a substitution.

So, set x = 2 cos θ ⇒ y = 2 cos 3θ ⇒ z = 2 cos 9θ ⇒ x = 2 cos 27θ

So, solve 2 cos θ = 2 cos 27θ and plug in for the set of values (x, y, z) = (2 cos θ, 2 cos 3θ, 2 cos 9θ)

We get 27θ ≡ ±θ mod 2π

⇒ θ = nπ
13
, mπ

14
for any m,n integers. – Find, with proof, all triples of real numbers (a, b, c) such

that all four roots of the polynomial f(x) = x4 + ax3 + bx2 + cx+ b are positive integers. (The four

roots need not be distinct.) —- Find four distinct positive integers, a, b, c, and d, such that each of

the four sums a + b + c, a + b + d,a + c + d, and b + c + d is the square of an integer. Show that

infinitely many quadruples (a, b, c, d) with this property can be created. – Let {an} be a sequence

such that an+1 = a2
n − nan + 1 with n = 1, 2, 3 · · · . When a1 ≥ 3, prove that for all n ≥ 1:

(1): an ≥ n+ 2.

(2): 1
1+a1

+ 1
1+a2

+ · · ·+ 1
1+an

≤ 1
2
.

Find the positive integer solutions of the equation 3x + 29 = 2y.

Solution

See that x = 1, y = 5 gives the first solution. There are no solutions for x > 1, y > 5.

Take the equation mod9. Since x > 1, this gives 2 ≡ 2y mod 9 ⇒ 1 ≡ 2y−1 mod 9. Euler’s

Theorem gives 2φ(9) = 26 ≡ 1 mod 9, so y = 6n+ 1, n ≥ 1.

Take the equation mod32. Since y > 5, this gives 3x− 3 ≡ 0 mod 32⇒ 3x ≡ 3 mod 32⇒ 3x−1 ≡
1 mod 32. Euler’s Theorem gives 3φ(32) = 316 ≡ 1 mod 32, so x = 16m+ 1,m ≥ 1.

Finally, take the equation mod7. This gives 316m+1 + 1 ≡ 26n+1 mod 7. By Euler’s Theorem,

26 ≡ 1 mod 7, so 26n+1 ≡ 2 mod 7. This implies 316m+1 ≡ 1 mod 7, which cannot be true since, by

Euler’s Theorem, 36 ≡ 1 mod 7, and 16m+ 1 cannot be a multiple of 6.

Therefore, there are no solutions x > 1, y > 5.

The equation

x10 + (13x− 1)10 = 0

has 10 complex roots r1, r1, r2, r2, r3, r3, r4, r4, r5, r5, where the bar denotes complex conjugation. Find

the value of
1

r1r1

+
1

r2r2

+
1

r3r3

+
1

r4r4

+
1

r5r5

.

Solution

e devide both sides of the equation by x10 and we get (1) ( 1
x
− 13)10 = −1. Denote t = 1

x
− 13.

The equation becomes (2) t10 = −1. Let S be the sum in the original statement, x1, x2, ..., x10

the solutions of equation (1) and t1, ..., t10 the solutions of the equivalent equation (2). Then S =
1
2

∑10
k=1

1
xk

1
xk

= 1
2

∑10
k=1(13 + tk)13 + tk = 1

2
(
∑10

k=1 132 + 13
∑10

k=1 tk + 13
∑10

k=1 tk +
∑10

k=1 tktk). From

(2) we get | tk |= 1. Since in general | z |2= zz, we get tktk = 1. The first Viete relation for equation

(2) yields
∑10

k=1 tk = 0, so we have also
∑10

k=1 tk = 0. We obtain S = 1
2
(1690 + 0 + 0 + 10) = 850

Another way Dividing the equation by x10, we have 1 +
(

13x−1
x

)10
= 0, or

(
13− 1

x

)10
= −1.

Let y = 13− 1
x
. Then y10 = 1, so y = cos 18◦ + i sin 18◦, cos 54◦ + i sin 54◦, ... cos 342◦ + i sin 342◦

(In general, y = cos(36n− 18)◦ + i sin(36n− 18)◦, where n = 1, 2, ...10).∑(
1
aibi

)
=
∑

(13− ya)(13− yb)
Since (13 − ya)(13 − yb) = 169 − 13(ya + yb) + 1 = 170 − 13(ya + yb), the summation becomes

170 · 5− 13
∑10

k=1 (cos(36n− 18)◦ + i sin(36n− 18)◦) = 850
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– Find all solutions in integers m,n of the equation

(m− n)2 =
4mn

m+ n− 1
.

Define a sequence (ai) by a1 = 0; a2 = 2; a3 = 3 and an = max1<d<n {ad · an−d} for

n = 4, 5, 6, .... Find a1998.

Solution

Consider the sequence of sets Sn definied inductively by Sn = {sd · sn−d}, for all d and for all sd ∈ Sd.
We define S1 = , S2 = 2, S3 = 3 If we wanted, we could continue this sequence {4} , {6} , {8, 9} , {12} , {16, 18}
Clearly, any element of Sn must be of the form 2x3y Claim: if a ∈ Sn and a = 2x3y, then n = 2x+ 3y

Proof: strong induction. Suppose it holds for k < n. Suppose a ∈ Sn. Then a = sd · sn−d for some d

and sd, sn−d in Sd, Sn−d, respectively. Suppose sd = xeyf and sn−d = xgyh. Then a = xe+gyf+h. By

the induction hypothesis, 2e+3f = d and 2g+3h = n−3. Adding, we get 2(e+g)+3(f +h) = n. �

Claim: converse of previous claim: if 2x+ 3y = n, then 2x3y ∈ Sn. Proof: Induction. The claim holds

for n− 2 and n− 3, and the result follows. � From the last two claims, we see that Sn contains all

numbers 2x3y where 2x + 3y = n. It is clear that due to the construction of the sequence a1, a2, · · ·
an is the largest element of Sn. Since 23 < 32, 2x3y < 2x−33y+2, and 2x + 3y = 2(x − 3) + 3(x − 2).

It follows that an is the element of Sn that isn’t divisible by 23. 1998 = 3 · 666, so the answer is 3666

When a biased coin is tossed the probability of a head is p Two players A and B alternately

toss a coin until one of the sequences HHH, HTH occurs. A wins if HHH occurs first .B win s if HTH

occurs first. For what values of p is the game fair that is such that Probability A wins = probability

B wins

Solution

Lets forget p = 0, 1 - answer is obvious.

Obv. one of the two people win. So we just want chance of A winning to be 1/2. Say A wins a

dollar by winning the game. Then, we want the expected value of the game to be 1/2.

The four states W,X,Y,Z correspond to the last two flips being HH HT TH TT.

W = p + (1-p)X X = 0 + (1-p)Z Y = pW + (1-p)X Z = pY + (1-p)Z

Then, Z = Y from eqn 4, X = (1− p)Y from eqn 2, Y = pW + (1− p)2Y ⇒ Y (2− p) = W from

eqn 3, and Y (2− p) = p+ (1− p)2Y implying Y = p
1+p−p2

Finally, we want W+X+Y+Z
4

= 1
2
.

So 2 = W +X + Y + Z = Y ((2− p) + (1− p) + 1 + 1) = Y (5− 2p) = (5−2p)p
1+p−p2

It comes to −2p2 + 5p = −2p2 + 2p+ 2 implying p = 2/3.

tổ hợp

hình

Let a, b and c be real numbers such that a2 + b2 = c2, solve the system:

z2 = x2 + y2

(z + c)2 = (x+ a)2 + (y + b)2

in real numbers x, y and z.

Solution

The second equation is c2 + 2cz + z2 = x2 + 2ax+ a2 + y2 + 2by + b2.

After subtracting the given equalities, 2ax+ 2by = 2cz and ax+ by = cz.

Multiplying the two equalities, (a2 + b2)(x2 + y2) = c2z2.
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But by the Cauchy-Schwartz Inequality, (a2 + b2)(x2 + y2) ≥ (ax+ by)2 = c2z2.

We have equality here, so we must have y2 = b2

a2 ·x2, and z2 = x2 +y2. These are all the solutions.

find all sets of non-negative solution (m,n) such that 6m + 2n + 2 is a square.

Solution

If m,n ≥ 2 then 6m + 2n + 2 is divisible by 2 but not 4 and cannot be a square.

So let m = 1. We then have 2n+8. If n ≥ 4, then it is divisible by 8 but not 16 and isn’t a square.

So we check n < 4. n = 0 and n = 3 work because 20 + 8 = 9 and 23 + 8 = 16.

Let m = 0. That gives 2n + 3. If n ≥ 2, it is 3 (mod 4) and can’t be a square. Checking n = 0, 1

gives no solutions.

Now let n = 1. We have 6m + 4. If m ≥ 2, then 6m + 4 = 4(2m−2 · 3m + 1) so x2 = 2m−2 · 3m + 1⇒
(x + 1)(x − 1) = 2m−2 · 3m. Since x + 1 and x − 1 have the same parity, they must both be even.

But since they differ by 2, the gcd of them is at most 2. And only one can be divisible by 3. So we

must have one of them be 2 · 3m and the other 2m−3. But 2 · 3m is way bigger, so there can’t be any

solutions.

For n = 0, we have 6m + 3 which is divisible by 3 but not 9 if m ≥ 2. Checking m = 0, 1, we get

the same solution as above.

So our only solutions are (m,n) = (1, 0); (1, 3).

Every positive integer k has a unique factorial base expansion (f1, f2, f3, . . . , fm), meaning that

k = 1! · f1 + 2! · f2 + 3! · f3 + · · ·+m! · fm,

where each fi is an integer, 0 ≤ fi ≤ i, and 0 < fm. Given that (f1, f2, f3, . . . , fj) is the factorial base

expansion of 16!− 32! + 48!− 64! + · · ·+ 1968!− 1984! + 2000!, find the value of f1 − f2 + f3 − f4 +

· · ·+ (−1)j+1fj.

Solution

Note that

(n+ 16)!− n! = n!([n+ 16][n+ 15]...[n+ 1]− 1)

= n ∗ n! + (n+ 1) ∗ (n+ 1)! + ...+ (n+ 15)(n+ 15)!

Thus, 48!− 32! = 47!47 + 46!46 + 45!45 + ...+ 32!32. Thus, f16 = 1, and for all i, 32k ≤ i ≤ 32k+ 15,

fi = i and fi = 0 for all other i. This continues all the way up to k = 62. Thus, our answer is

(−1) + (−32 + 33− 34 + ...− 46 + 47) + (−64 + 65− 66 + ...) + .... There are 62 such sums (like that

in the parantheses), and each has value 8. Thus, the answer is 62 ∗ 8− 1 = 495

x1, x2, x3 roots of equation x3 + 3x2 − 24x+ 1 = 0. Prove that 3
√
x1 + 3

√
x2 + 3

√
x3 = 0.

Solution

We have: a3 + b3 + c3 − 3abc = 1
2

(a+ b+ c)
[
(a− b)2 + (b− c)2 + (c− a)2] ,∀a, b, c ∈ R

then, for: a = 3
√
x1, b = 3

√
x2, c = 3

√
x3

we have: x1 + x2 + x3 − 3 · 3
√
x1x2x3 = −3− 3 · (−1) = 0⇒

⇒ 3
√
x1 + 3

√
x2 + 3

√
x3 = 0

Problem Let x1, x2, x3 be the roots of equation x3 − px2 + qx − r = 0 using Viete’s relations,

from: (a+ b+ c)
[
(a+ b+ c)2 − 3 (ab+ bc+ ca)

]
= a3 + b3 + c3 − 3abc ∀a, b, c ∈ R for: A =

3
√
x1 + 3

√
x2 + 3

√
x3, B = 3

√
x1x2 + 3

√
x2x3 + 3

√
x3x1 we have:

{
A (A2 − 3B) = p− 3 3

√
r

B (B2 − 3 3
√
rA) = q − 3

3
√
r2

[/color]

For x3 − 4x2 − 11x+ 1 = 0 we have:

{
A (A2 − 3B) = 7

B (B2 + 3A) = −14
⇔

{
A3 − 3AB = 7

B3 + 3AB = −14
⇔
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⇔

{
A3 − 3AB = 7

A3 +B3 = −7
⇔

{
A3 − 3AB = 7

B = 3
√
−A3 − 7

⇔

⇔

{
A3 − 3A · 3

√
−A3 − 7 = 7

B = 3
√
−A3 − 7

⇔

{
A3 + 3 · 3

√
(A3)2 + 7A3 = 7

B = 3
√
−A3 − 7

For u = A3 we obtain equation: u+ 3 3
√
u2 + 7u = 7

It is easy to prove that: ∃!u ∈ R : u+ 3 3
√
u2 + 7u = 7 and u3 3

√
u2 + 7u = 7⇔ u = 1

then: A = 3
√
x1 + 3

√
x2 + 3

√
x3 = 1 and B = 3

√
x1x2 + 3

√
x2x3 + 3

√
x3x1 = −2

Suppose x,y,z are three integers which are in arithmetic progression. If x is of the form 8n +

4 where n is an integer and each of y,z is expressible as a sum of squares of two integers, show that

gcd (x,y,z) cannot be odd.

Solution

x = 8n+ 4 (*) y = 8n+ 4 + r = a2 + b2 (**) z = 8n+ 4 + 2r = c2 + d2 (***)

Now gcd is odd iff r is odd

c2 + d2 is even so mod 8 it must be 0 or 2 (looking quadratic residues mod 8). Only possibilty

with (***) is r = 1 mod 8

Now an odd sum of two square (**) must be 1 or 5 mod 8.

8n+ 4 = c2 + d2 − 2(a2 + b2) would give 4 = 0 mod 8 contradiction

hình

hình

Find the range of real number a, such that for all x and any θ ∈
[
0, π

2

]
, the inequality

(x+ 3 + 2 sin θ cos θ)2 + (x+ a sin θ + a cos θ)2 ≥ 1
8
is always true.

Solution

rewrite as

(x+ 3 + sin 2θ)2 + (x+ a
√

2 sin
(
θ + π

4

)
)2 ≥ 1

8

Since over θ ∈ [0, π
2
] , sin 2θ ≥ 0 ,

√
2 sin

(
θ + π

4

)
≥ 1

Hence we only need to find (x+ 3)2 + (x+ a)2 ≥ 1
8
. Expand and simplify we get

2x2 + 2(3 + a)x+ a2 + 71
8
≥ 0

So the discriminant of x must be negative or zero

δx = (a+ 3)2 − 2a2 − 71
4
≤ 0 =⇒ (2a− 5)(2a− 7) ≥ 0 =⇒ a ∈ (−∞, 5

2
] ∪ [7

2
,∞)

Let ABC be any triangle,P,Q,R points on [AB],[BC],[CA] sides respectively and these satisfy
AP
AB

= BQ
BC

= CR
CA

= k < 1/2 If G point is centroid of ABC triangle find ratio of Area(PQG)/Area(PQR)

Solution

Let AF ∩BC = M . So 4ABM = 1
2
4ABC. Now observe triangle ABM, we see that:

4ABM = 4APG+4QMG+4GPQ+4BPQ

Now it is just simple area ratios:

4BPQ
4BMA

=
BP ·BQ
BA ·BM

= 2k(1− k)

4QMG

4BMA
=
QM ·MG

BM ·MA
=

1− 2k

3

4APG
4ABM

=
AP · AG
AB · AM

=
2k

3
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Thus we can find the area ratio between 4GPQ and 4ABC. But the area ratio between 4PQR
and 4ABC is a famous and easy conclution, so now the problem is easy to solve.

Prove if n = pα1
1 ...p

αs
s and n > 1 τ(n)ϕ(n) ≥ n

Solution

I’ll use (which are in fact harder to prove than is result∑
d|n ϕ(d) = n d|n⇒ ϕ(d)|ϕ(n)

Then
∑

d|n ϕ(n) = τ(n)ϕ(n) ≥
∑

d|n ϕ(d) = n

This is exactly application of the famous inequality of Arhimedes which says that if

m,n are positive integers then

1m + 2m + .....+ (n− 1)m < nm+1

m+1
< 1m + 2m + ....+ nm.

But it would be great if we have a proof for this.

Solution

We can use induction on n to prove 1m+2m+.....+(n−1)m < nm+1

m+1
< 1m+2m+....+nm. When n = 2

the inequality is obviously true. Assume the inequality is true when n = k, i.e. 1m+2m+· · ·+(k−1)m <
km+1

m+1
< 1m + 2m + .... + km When n = k + 1, For the left side, 1m + 2m + · · · + (k − 1)m + km <

km+1

m+1
+ km = km+1+(m+1)km

m+1
< (k+1)m+1

m+1
with the last inequality by binomial theorem. For the right

side, 1m + 2m + · · · + km + (k + 1)m > km+1

m+1
+ (k + 1)m = km+1+(m+1)(k+1)m

m+1
So it suffices to prove

km+1 + (m+ 1)(k + 1)m > (k + 1)m+1

⇔ (m+ 1)(k + 1)m > (k + 1)m+1 − km+1

⇔
∑m

i=0(m+1)
(
m
i

)
km−i >

∑m
i=0

(
m+1
i+1

)
km−i This is true becasue (m+1)

(
m
i

)
= (m+1)m(m−1)···(m−i+1)

i!
>

(m+1)m(m−1)···(m−i+1)
(i+1)!

=
(
m+1
i+1

)
Solve the equation in integer numbers: x2 + 3y2 = 74x

Solution

Wlog y ≥ 0, we have x ≥ 0. Looking mod 2, x and y must be both even. Looking mod 4 again, y

must be 4Y

Equation to solve is the 12Y 2 = X(37 −X), which implies X ≤ 37 and Y ≤ 5. This gives only

6 cases to check manually. Or Since gcd(X, 37 − X) 6= 2, 3or4 we must have X = 0 mod 12 or

X = 0 mod 3 and 37−X = 0 mod 4, ...

Putting everything together : 0, 0; 24,±20; 50,±20; 74, 0

A set of numbers is called [i]sum-free set[/i] if no two of them add up to a member of the same

set and if no member of the set is double another member. How big could be a sum free subset of

1,2,3,...,2n+1)?

Solution

Taking 1, 3, ..., 2n+ 1 we see that the number is ≥ n+ 1

Let’s we take a subset with (strictly) more then n + 1 elements : a1 < ... < ak The difference

sequenc ak − ak−1, ..., ak − a1 takes at least n+ 1 different values, which, by pigeon-hole, can’t be all

different from the a1, .., ak−1.

So max is n+ 1.

Find the number of positive integers which divide 10999 but not 10998.

Solution

suppose d1|29995999 , d2|29985998 . We want to find the number of d1 such that d1 deosnt divide 29985998

. We see that when d1 has factor of 2999 then there are 1000 ways from 2999 × 5k for 0 ≤ k ≤ 999 .

Simialrly if d1 has the factor of 5999 then there are 999 ways since 2k × 5999 where 0 ≤ k ≤ 998 .

So total way is 1999
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Suppose that for any number a there is a point on the graph of y = f(x) closest to the point

(a, 0) (this is guaranteed when f is continuous, but that’s not important). Define g(a) as the distance

from (a, 0) to that point, and prove that for all c and d, g(c)− g(d) ≤ |c− d|.
Solution

We will call C and D the points of the graph of f achieving the required minimal distances. Assume

the result to be false. Then ∃c, d, g(c) > |c− d|+ g(d). That means C must lie outside the circle with

center (c, 0) and radius |c− d| + g(d). But every point D must lie inside this circle (by the triangle

inequality); in particular, d((c, 0), D) ≤ |c− d|+ g(d), which is absurd.

There are six points on the plane, and no three points are collinear. Let G1 be the centroid

of a triangle formed by three points that are randomly chosen from the six points, and let G2 be

the centroid of a triangle formed by the other points. Prove that a line connecting G1 and G2 goes

through a fix point regardless of how we choose the three points.

Solution

We can pick 2 different lines, so that there will be at-most one point.

Let the points be Pi = (xi, yi) for i ∈ {1, 2, 3, 4, 5, 6}. We guess the "fixed point" we want is

P = (
∑6
i=1 xi
6

,
∑6
i=1 yi
6

).

The easiest way is to look at the area G1G2P for any choice of triangle that will give G1, G2.

Wlog, P1, P2, P3 has centroid G1 = (x1, y1) and likewise, G2 = (x2, y2).

Then we only need to verify x1+x2

2
y1 + x1y2 + x2

y1+y2

2
= x1+x2

2
y2 + x1

y1+y2

2
+ x2y1. It works.

So we have found the unique point P. – The equation (1 + x3)4 + (1 + x2)4 = 2x4 has real roots ?

hình

hình

đa thức

Given B > 0 that x3

y
≥ A(x− y −B), x, y ∈ R+. Find maxA.

Solution

If x < y + B, then the RS is negative and the ineq must be true. This is the motivation for the

substitution x = y +B + k. Assuming that the RS is positive, then k is positive.

Then (y+B+k)3

yk
≥ A(*), so we want to find the minimum of the LS of (*). We have y,B,k positive.

Considering as a function in y, the derivative has a sign equal to the sign of 2y − B − k. Then
y = B+k

2
for the minimum.

Similarily, k = B+y
2

. Solving, y = k = B. So the minimum of the LS of (*) is 27B. This is the

maximum for A.

ps this might be bad, i didnt check it

During a certain lecture, the caterers didn’t bring enough coffee, so each of five mathematicians

fell asleep exactly twice. For each pair of these mathematicians, there was some moment when both

were sleeping simultaneously. Prove that at some moment, some three were sleeping simultaneously.

Solution

Suppose not, for a contradiction.

Let A and B "share" sleeps, if for the pair of people (A,B), there exists a moment where they

were both asleep. Let B "drop" A, if there is a time where A starts sleeping, then B starts and then

wakes up, then A wakes up.

Case 1: There exists A, B so that B drops A. Then B shares with one person during that sleep,

and on his other sleep must share with the other three people. It can only work if C drops B, for
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some C 6= A. Then C must share with the other 3 people on his other sleep, etc. so that we cannot

fuffill it. Contradiction.

Case 2: There doesn’t exist A, B so that B drops A. Then during one sleep, A needs to share

with 2 other people (only 2 sleeps, maximum 2 shares per sleep). Consider the person A that woke

up last. He can only share with one person. Contradiction.

Here’s a nice problem. There is an odd number of people in a plane. Their mutual distances

are different. Everyone shoots his nearest neighbour. Prove that a) at least one person survives; b)

No one is hit by more than 5 bullets; c) the path of the bullets do not cross; d) the set of segments

formed by the bullet paths does not contain a closed polygon.

Solution

By induction. Suppose its true for n people (n odd). Add two people. Now the two people with shortest

distance (say, A B) shoot each other. We revert to the "n" hypothesis, except that its possible for

some people to shoot A or B. These shots are essentially "wasted shots." Since in hypothesis atleast

one person survives, if we remove some guns, then atleast one person still survives.

Suppose ABCDEF shoot O. Consider angles AOB, BOC, ...., EOF, FOA. Atleast one is ≤ 60

deg. By "larger side larger angle" one of the AB’s are smaller than the OA’s. Contradiction.

Suppose A shoots B and C shoots D, with paths AB and CD crossing at O. We have a quad

ACBD, with B closest to A and D closest to C. This means the main diagonal AB is shorter than

AD or AC, and CD is shorter than AC or BC. So AC is longer than both of the main diagonals,

contradiction.

Suppose we have polygon A1, A2, . . . , An, with A1 shooting A2, ... until An shoots A1. Consider

circle with center A1 and radius A1A2. It cannot have any points Ai inside. But for An to shoot A1,

A1 must be closest to An, where the distance A1An must be less than An−1An, which must be less

than .... A2A1. It implies An is in the circle. Contradiction.

Prove: From the set {1, 2, ..., n}, one can choose a subset with at most 2 b
√
nc+1 elements such

that the set of the pairwise differences from this subset is {1, 2, ..., n − 1}. (bxc means the greatest

integer ≤ x)

Solution

Let k be the largest integer so that 2k < n. Then choose 2j for j = 0 ... k, and n. We have chosen at

most blog2nc+ 1 numbers.

To prove blog2nc ≤ 2b
√
nc; we prove log2n ≤ 2

√
n + 2, equiv. to n ≤ 4 ∗ 4

√
n. Wrt n, the deriv.

of the RS is 4 log(4)(
√
n+1)√

n
, of LS: 1. Then its clear the RS increases faster than the LS; also, RS > LS

for small cases. It is enough.

hình

Find the number of unordered pairs {A,B} of subsets of an n-element set X that satisfies the

following: (a) A 6= B (b) A ∪B = X

Solution

Little doubt this problem was posted before with so many problems in stock ..... But with so many

it may be quicker to solve it ourselve instead of using search feature ;)

So easy to get wrong with combinatorics but I propose 3n−1
2

The number of ordered parts such as A ∪ B = X is 3n =
∑(

n
k

)
· 2k (choose k elements for A,

elements for B − A are imposed and we can take any subset of A to complete B).

Now we eliminate case A = B (only one case!) and we divide by 2 to have ordered pairs.

Show that there exists an equiangular hexagon in the plane, whose sides measure 5,8,11,14,23,
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and 29 units in some order.

Solution

The hexagon with side lengths 8, 29, 5, 14, 23, 11, in this order, is an equiangular hexagon.

Proof:

Consider equilateral triangle XY Z with side length 42. Take points A and B on XZ and Y Z

respectively such that AB ‖ XY and ZA = ZB = 8. Take points C and D on Y Z and XY

respectively such that CD ‖ XZ and Y C = Y D = 5. Take points E and F on XY and XZ

respectively such that EF ‖ Y Z and XE = XF = 23.

Note that 4ZAB, 4Y CD, and 4XEF are equilateral triangles. By "cutting out" these three

small equilateral triangles, we obtain a hexagon with side lengths AB = 8, BC = 29, CD = 5,

DE = 14, EF = 23, and FA = 11. Since we have cut out small equilateral triangles from a large

equilateral trianlge, each interior angle of the resultant hexagon is 120◦, and thus hexagon ABCDEF

is an equiangular hexagon.

Let a, b, c be positive integers such that a divides b2, b divides c2 and c divides a2. Prove that

abc divides (a+ b+ c)7.

Solution

a =
∏
paii , b =

∏
pbii , c =

∏
pcii

With pi prime.

Condition is ai ≤ 2 ∗ bi ≤ 4 ∗ ci ≤ 8 ∗ ai
When expandind (a + b + c)7 we only have to consider monoms like a7,a6 ∗ b, ... If we take for

instance a6 ∗ b: 6ai + bi ≥ ai + bi + ci so abc|a6 ∗ b and so on.

What is the maximum area of a rectangle circumscribed about a fixed rectangle of length 8

and width 4?

Solution

Let ABCD and JKLM be the circumscribing rectangle and the fixed rectangle, respectively. J lies

on AB, K lies on BC, L lies on CD, and M lies on AD. AJ subtends ∠θ, and BK subtends another

angle which is also ∠θ. We know that |ML| = |JK| = 8 and |MJ | = |KL| = 4. We use trigonometry

and get, |AJ | = 4 sin θ, |BJ | = 8 cos θ, |AM | = 4 cos θ, and |MD| = |BK| = 8 sin θ.

It is now clear that the area of the circumscribing rectangle is A = (|AM |+ |MD|)(|AJ |+ |BJ |).
Let us define A as a function of theta.

A(θ) = (4 cos θ+8 sin θ)(4 sin θ+8 cos θ) = 16 sin θ cos θ+32 sin2 θ+32 cos2 θ+64 sin θ cos θ = 80 sin θ cos θ+32 = 40 sin 2θ+32 =⇒ 0 < θ <
π

2

A′(θ) = 80 cos 2θ0 = cos 2θ2θ =
π

2
θ =

π

4

|AJ | = 4 sin π
4

= 2
√

2

|BJ | = 8 cos π
4

= 4
√

2

|AM | = 4 cos π
4

= 2
√

2

|MD| = 8 sin π
4

= 4
√

2

We now determine the area of the circumscribing rectangle. A = (|AM |+ |MD|)(|AJ |+ |BJ |) =

(2
√

2 + 4
√

2)(2
√

2 + 4
√

2) = (6
√

2)2 = 72 . We see that our dimensions satisfy teh dimensions of a

square, which has the largest area. QED
Polynomial P(x)=x3+ax2+bx+c have three different real roots. Q(x)=x2+x+2001 Polynomial

P(Q(x)) have no real root. Prove P(2001)> 1
64
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Solution

The minimum of Q(x) is for x = −1
2
and it is Q(−1

2
) = 2001− 1

4

So Q(x) > 2001− 1
4
, ∀x ∈ R and Q(x) goes to infinity when x does.

Let x0 = 2001− 1
4

There is no root of P (x) greater than (or equal to) x0. If y ≥ x0 then from continuity of Q(x) we

get that there is a x such that Q(x) = y ⇒ P (y) = P (Q(x)) 6= 0.

Let x1 < x2 < x3 the three roots of P (x).

They are all less than x0

Now, we will find the sign for P (x0), P ′(x0), P ′′(x0), P ′′′(x0)

The coefficient of x3 in P (x) is 1 > 0, hence ∀x > x3, P (x) > 0⇒ P (x0) > 0

P ′(x) = 3x2 + 2ax+ b (3>0)

From Rolle Theorem we have that, P ′(x) has a root in (x1, x2) and a root in (x2, x3)

And after the second root (for greater values of x), P ′(x) > 0 (because 3>0). So, P ′(x0) > 0

P ′′(x) = 6x+ 2a

P ′′(x) is an increasing line, and it has a root at the midpoint of roots of P ′(x).

Since x0 is greater that all of them, we have P ′′(x0) > 0

Finally, P ′′′(x0) = 6

Now, we take Taylor around of x0 = 2001− 1
4

P (x0 + h) = P (x0) + P ′(x0)
1!

h+ P ′′(x0)
2!

h2 + P ′′′(x0)
3!

h3

If we set h = 1
4
we have

P (x0) > 0
P ′(x0)

1!
h > 0

P ′′(x0)
2!

h2 > 0
P ′′′(x0)

3!
h3 = 1

1
h3 = (1

4
)3 = 1

64

Finally P (x0 + h) = P (2001) > 1
64

Another way Since P(x) has three roots ,say p,q r ,then P (x) = (x− p)(x− r)(x− q) P (Q(x)) =

(Q(x)−p)(Q(x)−r)(Q(x)−q) Since Q(x) has no real roots so the discriminant of of Q(x)-p is negative

it means p+1/4 < 2001 Same for r and q. We have P (2001) = P (Q(0)) = (2001−p)(2001−r)(2001−q)
and using the inequalities above we get 1/64<P(2001)

find all pairs (p;q) of positive integers such that p+q and pq+1are both powers of 2

Solution

we have :

p+ q = 2a pq + 1 = 2b

So, (p+ 1)(q + 1) = 2a + 2b and (p− 1)(q − 1) = 2b − 2a. The last one implies that b > a.

Hence, 2a|(p+ 1)(q + 1) and thus : p+ 1 = 2ir1 and q + 1 = 2a−ir2 So p− 1 = 2(2i−1r1 − 1) and

q − 1 = 2(2a−i−1r2 − 1)

But 2a|(p−1)(q−1). Then, for a > 2, we have a = i+1 and p = 2a−1r1−1. Hence, q−1 = 2(r2−1).

But, 2a−1|q − 1. So r2 = 2a−2r3 + 1 and finally : q = 2a−1r3 + 1.

Finally, p = 2a−1r1 − 1 and q = 2a−1r3 + 1.

With the first relation, we obtain that r1 + r3 = 2 and then r1 = r3 = 1

Then, if a > 2, p = 2a−1 − 1 and q = 2a−1 + 1.

Now, if a < 3, we check that the solution are the same.

Now, if a = b, (p− 1)(q − 1) = 0, and thus p = 1 and q = 2a − 1 or q = 1 and p = 2a − 1.

The solution are then the following:
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p = 2a−1 − 1 and q = 2a−1 + 1. q = 2a−1 − 1 and p = 2a−1 + 1. p = 1 and q = 2a − 1 q = 1 and

p = 2a − 1

Let a right-angled parallelogram ABCD. Let K the midpoint of BC and L the midpoint of AD.

The perpendicular line from B to AK intersects the AK at E and the CL at Z. Prove that the AKZL

is an isosceles trapezoid. Prove that: (ABKZ) = 1
2
(ABCD) (We symbolize with (......) the area) If

the ABCD is a square with AB = BC = CD = AD = a find the area of isosceles trapezoid AKZL

as a function of a.

Solution

Let F be the point on AK such that AL ‖ FZ. Then AFZL is a parallelogram since AL ‖ FZ and

AF ‖ LZ. So AL = FZ(= BK).

Since FZ = BK and FZ ‖ BK, 4FEZ ∼= 4KEB. Thus FE = EK. In 4FKZ, the perpendic-
ular line from Z to FK (which is ZE) bisects FK, so FKZ is an isosceles triangle with FZ = FK,

which implies AKZL is an isosceles trapezoid with AL = KZ (∵ AL = FZ = KZ).

Note that BFZK is a parallelogram. Since BF = FZ and ∠AFB = ∠AFZ,4ABF ∼= 4AZF So

(ABF ) = (AZF ) = (AKZ) = (DLZ) (parenthesis means area.) Also, (BFZ) = (BKZ) = (CKZ)

Therefore, (ABKZ) = (ABF )+(AFZ)+(BFZ)+(BKZ) = (ALZ)+(DLZ)+(CKZ)+(BKZ)

= (ADZ) + (BCZ) = 1
2
(ABCD)

For the last problem:

To find the ratio AE : EK, look at 4ABK. Since AE
EK

= AB2

BK2 = 4, AE : EK = 4 : 1. So

AF : FE : EK = 3 : 1 : 1 (∵ FE = EK)

(AKZL) = (AFZL) + (FKZ) = 3
5
(AKCL) + 1

2
(FKCZ) = 4

5
(AKCL) = 4

5
· 1

2
a2 = 2

5
a2

bxc+ b2xc+ b4xc+ b8xc = 2005

Solution

we know

15k ≤ 2005 ≤ 15k + b2yc+ b4yc+ b8yc

This implies k=133. Our problem is then reduced to solving

b2yc+ b4yc+ b8yc = 10

Substitute y = 1− p, p > 0 and using the identity due = −b−uc, we now must solve

d2pe+ d4pe+ d8pe = 4

because p > 0 all terms on the LHS will be at least 1 implying that the LHS is at least 3. So we need

for d4pe = 1 and d8pe = 2. For all real u it is known u ≤ due < u+ 1. For our first equation we have

4p ≤ 1 < 4p+ 1 yielding 0 < p ≤ 1
4
. Similarly we have 8p ≤ 2 < 8p+ 1 which yields 1

8
< p ≤ 1

4
. This

last range is also the intersection of the two and thus gives all possible values for p. After substitution

we arrive at our solution set to the original problem: 1333
4
≤ x < 1337

8

Prove that gcd(m,n)
n

(
n
m

)
∈ Z+ for all n ≥ m ∈ Z+

Solution

gcd (m,n) is a linear combination of m and n, and m
n

(
n
m

)
=
(
n−1
m−1

)
I think, so the given number is

some linear combination of
(
n−1
m−1

)
and

(
n
m

)
and hence an integer.

Is there any formula for tan(x1 + x2 + ...+ xn)?

Solution

tan(x+ y) = tanx+tan y
1−tanx tan y

(*)

Let T (x) be the tangent function, and a′ = T (a) for all a.
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We have the familiar T (a+ b+ c) = a′+b′+c′−a′b′c′
1−a′b′−b′c′−c′a′ .

Using (*), we have T (a+ b+ c+ d) =
a′+b′+c′−a′b′c′
1−a′b′−b′c′−c′a′+d

′

1− a′+b′+c′−a′b′c′
1−a′b′−b′c′−c′a′ d

′

= a′+b′+c′−a′b′c′+d′−ab′d′−b′c′d′−a′c′d′
1−a′b′−b′c′−c′a′−a′d′−b′d′−c′d′+a′b′c′d′

This strongly suggests the following. Suppose a1, a2, . . . an have symmetric polynomials s1, s2, . . . sn

(in example, s1 =
∑
ai, s2 =

∑
i<j aiaj, ..., sn =

∏
ai). Define s0 = 1.

We claim T (a1, a2, . . . , an) = s1−s3+s5−...
s0−s2+s4−... . (�) We prove this by induction.

We use (*) to complete the induction step. Let s′k be the kth symmetric polynomial of the terms

a1 . . . an+1.

Then T (a1, . . . , an, an+1) = (s1−s3+s5−... )+an+1(s0−s2+s4−... )
(s0−s2+s4−... )−(s1−s3+s5−... )an+1

where it remains to verify (s′1 − s′3 + s′5 − . . . ) = (s1 − s3 + s5 − . . . ) + an+1(s0 − s2 + s4 − . . . )
(and (s′0 − s′2 + s′4 − . . . ) = (s0 − s2 + s4 − . . . ) + (s1 − s3 + s5 − . . . )an+1 (

We verify

We verify

Thus, (�) is proved.

The least common multiple of positive integers a, b, c and d is equal to a + b + c + d. Prove

that abcd is divisible by at least one of 3 and 5.

Solution

The main idea is to limit the least common multiple value.

Say a ≥ b ≥ c ≥ d. Then it is seen that lcm = a+ b+ c+ d ≤ 4a, but a must divide it, so it must

be a, 2a, 3a,or 4a.

The cases a, 3a and 4a can be dealt with easily. The case 2a, which gives a = b+ c+ d, remains.

Again, we limit the lcm value.

Hope you can continue from here

Find all m ∈ N such that (x+ y)(y + z)(z + x) divides xm + ym + zm − (x+ y + z)m

Solution

Not much to prove but if (x+ y)(y+ z)(z+ x) divides f(x, y, z) = xm + ym + zm− (x+ y+ z)m then

one of (x+ y), (y + z), (z + x) must be a zero of f(x, y, z). WLOG assume (x+ y) is a zero. That is

f(x,−x, z) = 0. So xm + (−x)m = 0 which is true only if m is odd.

Find all functions f which maps integer to integer such that 2000f(f(x))−3999f(x)+1999x = 0

for all integer x

Solution

It is 2000(f(f(x)− f(x)) = 1999(f(x)− x)

Fix x.

So the RHS has a factor 2000. Thus, f(x) = 2000kx + x for some kx.

Then, f(f(x))− f(x) = 2000(k2000kx+x − kx).
So the RHS has a factor 20002. Thus, f(x)− x = 20002kx + x, for some kx,

implying the LHS has a factor 20003.. etc.

Contradiction. So f(x)− x = 0.

Let an, an+1, which are two terms of the sequence a1, a2, · · · · · · an, · · · · · · , be the roots of the

quadratic equation x2 + 3nx+ Cn = 0.

If a1 = 1, find
∑2p

n=1 Cn

Solution

an + an+1 = −3n, where it is easy to get an+2 = an − 3.

Now
∑2p

k=1 anan+1 =
∑n−1

k=0 a2k+1a2k+2 + a2k+2a2k+3
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=
∑n−1

k=0(1− 3k)(−4− 3k) + (−4− 3k)(−2− 3k) =
∑n−1

k=0 18k2 + 27k + 4

= 4n+ 27(n)(n− 1)/2 + 3(n− 1)(n)(2n− 1)

The vertices of a convex pentagon have integer coordinates. Find the least possible area of the

pentagon.

Solution

Picks formula says A = I + B/2 − 1, where there are I lattice points inside the polygon and B on

the edges.

We cant get I = 0 because its convex(*). The minimum of B is 5. We can acheieve I = 1 and B

= 5 easily. Thus the area is 5/2.

(*): This requires some explanation: Basically, if there are no interior points, the polygon must

fit on a horizontal or vertical strip of length 1. (If it doesn’t, then it is atleast 2x2 which carries one

point) But then 3 points are collinear, contradiction.

Are there permutations a, b, c and d of {1, 2, . . . , 50} such that

50∑
i=1

aibi = 2
50∑
i=1

cidi ?

Solution

we make the LHS as large as possible and the RHS as small as possible and show they still dont

meet.

By rearrangement, ai and bi are samesorted and ci and di are oppositely sorted.

Thus we compare
∑
i2 to 2

∑
i(n+ 1− i)

The first is (1/6)(n)(n+ 1)(2n+ 1). The second is n2(n+ 1) + n(n+ 1)− n(n+ 1)(2n+ 1)/3

It is equivalent to compare (1/2)(2n + 1) to n + 1. Obviously, the second one is bigger. So they

never meet.

Solve in integers the equation (2x2 − 5x+ 2)3x = 1− 4x2

Solution

The equation factorises into (1 − 2x)((2 − x)3x − (1 + 2x)) = 0 Therefore, (1 − 2x) = 0, x = 1
2
, or

(2 − x)3x = 2x + 1 We see that x = 1 is a solution For x ≥ 2, (2 − x)3x ≤ 0, but 2x + 1 > 0 For

x ≤ −1
2
, 2x+ 1 ≤ 0, but (2− x)3x > 0, and 0 is not solution

Hence, the only solution in integer is x = 1

số học

Find primes p, q, r and positive integer a that satisfies 1
p

+ 1
q

+ 1
r

= 1
a

Solution

Suppose p,q,r are distinct. pq+pr+qr
pqr

= 1
a
Because the numerator is conguent to qr 6≡ 0 (mod p), the

numerator shares no factor of p with the denominator. Doing the same for q and r, we find that the

LHS is fully simplified. If p and q are the same but r is different, the denominator has a factor of r

but the numerator doesn’t, so we cannot possibly simplify (pq+pr+qr)/(pqr) so that the numerator

is 1. Thus p = q = r. 3p2/p3 = 3/p = 1/a. The only prime that is a multiple of 3 is p=3. So (3,3,3,1)

is our only solution.

Another way

we easily get a(pq + pr + qr) = pqr because p, q, r ∈ P there are WLOG 4 possible values for a:

1, p, pq, pqr

1. a = 1: pq + pr + qr = pqr r(p + q) = pq(r − 1) since gcd(r, r − 1) = 1 we get WLOG either

r = p or r = pq 1.1. r = p: r(r + q) = rq(r − 1) r + 2q = qr hence r be divisable by q, and since
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q, r ∈ P, r = q q+ 2q = q2 q(q− 3) = 0 hence p = q = r = 3 and a = 1, works out in the equation as

well. 1.2 r = pq: this is not possible since r is prime.

2. a = p: p(pq + pr+ qr) = pqr pq + pr = 0 is not possible since all terms of the sum are positive

3. a = pq: pq(pq + pr + qr) = pqr pq + r(p+ q − 1) = 0 all terms positiv again

4. a = pqr: pqr(pq + pr + qr) = pqr how should that be possible ??

so we get: only solution is (p, q, r, a) = (3, 3, 3, 1)

find all integral solutions a, b, c (that means a, b, c are integers):

a2 + b2 + c2 = a2b2

Solution

First case: a, b and c are even and abc 6= 0 Let k be the greatest integer such that 2k|a, 2k|b, 2k|c
(k ≥ 1 since abc 6= 0), we note a = 2ka′, b = 2kb′, c = 2kc′ a2 + b2 + c2 = (ab)2 ⇔ a′2 + b′2 + c′2 = a′2b2

22k divide b2 then a′2 + b′2 + c′2 ≡ 0(4) implies that a′, b′, c′ are even, absurd

Second case: a, b and c are even and abc = 0 If a or b equals 0 then a = b = c = 0 If c = 0 then

a2 + b2 = (ab)2, we set d = gcd(a, b) and a = da′, b = db′ then a′2 + b′2 = a′2b2 then a′ divide b′ thus

a′ = 1 (or −1), we have 1 + b′2 = d2b′2 ⇒ 1 = b′2(d− 1)(d+ 1) impossible

Third case: a, b, c are not all even (ab)2 ≡ 0(4) implies that a, b, c are even then (ab)2 ≡ 1(4).

Consequently a and b are odd then we have 1 + 1 + c2 ≡ 1(4)⇒ c2 ≡ 3(4) absurd

There is only the solution (0, 0, 0)

Find the pair of positive integer such that (1 + x+ y)2 = 1 + x3 + y3.

Solution

Put x+ y = a and xy = b then the given equality becomes (1 + a)2 = 1 + a3− 3ab doing calculations

one obtains a(a + 2) = a(a2 − 3b) so either a = 0 or a + 2 = a2 − 3b for a = 0 we have x + y = 0

which is impossible because x, y > 0

if a+ 2 = a2− 3b then replacing a and b we get x2 + y2− xy− x− y− 2 = 0 upon multiplication

with 2 and completing squares we get (x− y)2 + (x− 1)2 + (y − 1)2 = 6

obviously (x− 1)2 = 1 or 4 and then we easily find the pair..

Fix k, n. We have k = 0,1,2 is trivial so we dont consider.

Choose largest s so that k(2n−s) ≤ (4n−s). Then it is obvious s ≥ 2nk−4n
k−1

= 2n− 2n
k−1

= 2n(k−2
k−1

)

as well as 2(k − 2)(k) ≥ (k − 1)2. The result follows from (Ai ∩ Aj) ≥ s.

Solution

Set L has 4n elements. Sets A0, A1, ..., Ak each have 2n elements, and Ai ⊂ L, ∀i = 0, 1, ..., k. Prove

that ∃i, j ∈ {1, 2, ..., n}, n(Ai ∩ Aj) ≥ (1− 1
k
)n

Seven students in a class compare their marks in 12 subjects studied and observe that no two

of the students have identical marks in all 12 subjects. Prove that we can choose 6 subjects such that

any two of the students have different marks in at least one of these subjects.

Solution

Let {Xi}12
i=1 be the subjects, and (a, b, c, d, e, f, g) be the students.

If (in example) (a, b) ∈ X1, then one of (a, j), (b, j) is in X1, for j = c,d,e,f,g.

Our strategy is as follows. Pick a subject containing (a,b) [there is atleast one]. From our lemma

above, we guarantee 5 other unique pairs in that subject. Now pick a subject containing a pair we

havent got to yet. We guarantee 4 other unique pairs, because only one can repeat (it is easy to show

**) Continuing in this fashion, we guarantee 6+5+4+3+2+1 = 21 unique pairs, and we are done.
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A short proof with handwaving: if in example we used (a,b), then we have also used either (x,a)

or (x,b). So when we use (i, j), we use either (y,i) or (y,j). So if (x,a) = (y,i) in example, we have

a,b,i,j,x fixed, so that when y varies it can only match up with (x,a) at most once.

Let a, b, c ∈ Q such that 1
a

+ 1
b

= 1
c

Show that A =
√
a2 + b2 + c2 ∈ Q

Solution

Multiplying a2 + b2 + c2 with (a+ b)2 yields (a2 + b2)(a+ b)2 + c2(a+ b)2 = (a2 + b2)(a+ b)2 + (ab)2

= (a2 +b2)2 +2(ab)(a2 +b2)+(ab)2 = [(a2 +b2)2 +(ab)(a2 +b2)]+[(ab)(a2 +b2)+(ab)2] = (a2 +b2 +ab)2

since a,b is rational, we have a2 + b2 + c2 = (a2+b2+ab)2

(a+b)2 so
√
a2 + b2 + c2 = (a2+b2+ab)

(a+b)
ANother way

We have:

a2 + b2 + ( ab
a+b

)2

where it remains to prove
√

(a2 + b2)(a+ b)2 + (ab)2 ∈ Q
Put s = a+b, p = ab. It becomes

√
(s2 − p)2.

Prove that 1
la

+ 1
lb

+ 1
lc
≤ 1

r

Solution

I don’t know this inequality before, but after I saw your post, I found out that I’ve just proved it!

Let I be the incentre of the 4ABC and D be the intersection of the angle bisector of ∠A and

BC. Hence:
ID

AD
=
4BIC
4ABC

Let ∠A = 2x, ∠B = 2y, ∠C = 2z, we will have: ID = r
sin (x+2y)

. Sum up:

∑ ID

AD
=
4BIC +4BIA+4CIA

4ABC∑ r

la
· 1

sin (x+ 2y)
= 1

1

r
=
∑ 1

la
· 1

sin (x+ 2y)
≥
∑ 1

la

With equality holds if x+ 2y = y + 2z = z + 2x = 90o, which gives: x = y = z = 30o.

to hợp

For a, b, c ∈ Q, a 6= b 6= c 6= a show:
1

(a−b)2 + 1
(b−c)2 + 1

(c−a)2 = d2, d ∈ Q
Solution

set p = 1/(a− b); q = 1/(b− c); r = 1/(c− a). We know 1/p+ 1/q + 1/r = 0 =⇒ pq + qr + pr = 0

=⇒ p2 + q2 + r2 = p2 + q2 + r2 + 2pq + 2qr + 2pr = (p + q + r)2 so take d = p + q + r, and d is

obviously rational.

Solve in R the following equation x8y4 + 2y8 + 4x4 − 6x4y4 = 0

Solution

let a = x4 and b = y4 that a, b ∈ R+
0 then we know: 6ab = a2b + 2b2 + 4a ≥ 3 · 3

√
ab2 · 2b2 · 4a = 6ab

so 6ab ≥ 6ab with equality only if a2b = 2b2 = 4a one trival solution is (0, 0) and we see if a or b is

zero the othe is zero as well. otherwise we can conclude: a2b = 2b2 ⇔ a2 = 2b 2b2 = 4a ⇔ b2 = 2a

a2b = 4a⇔ ab = 4 and a2 · ab = 2b · 4⇔ a3 = 8 so a = 2 and b = 2

the solutions are {(x, y)|(0, 0), ( 4
√

2, 4
√

2), (− 4
√

2, 4
√

2), ( 4
√

2, 4
√

2), (− 4
√

2,− 4
√

2)} – f(x) ≥ 0 for all

x > 0 and y > 0 and f(x+ y) = f(x) + f(y) + 2
√
f(x)f(y) Solve for f(x). – Find n ∈ N such that

φ(n) divides n
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Find all positive integers n such that n(n+ 60) is a perfect square.

Solution

Let n(n+ 60) = (n+ k)2.

n2 + 60n = n2 + 2kn+ k2 60n− 2kn = k2

n = k2

60−2k

n > 0 and k2 > 0, so 60− 2k > 0 or k < 30.

Then, rewrite n = k2

60−2k
= −1

2
k − 15 + 900

60−2k
, we see that 60− 2k must divide 900.

From here, we can try some even numbers for k (k < 30).

When k = 12, 20, 24, 28, we obtain n = 4, 20, 48, 196 respectively, which are our desired answers.

Another way Suppose n(n+ 60) = k2 . Then we will have (n+ 30)2 = k2 + 302 . Now we see that

it is just like pytagoras theorem and we also have the pytagorean triplet satisfy (p2 + q2, 2pq, p2− q2)

for integer p ≥ q .

Firstly , if all the side of the right angle triangle a, b, c have gcd(a, b, c) = 1 . Then we can say

that 30 = 2pq which is equivalent to pq = 15. WLOG , we can say (p, q) = (15, 1) or (5, 3) which

gives us n+ 30 = 226 and 34 . Hence , n = 196, 4

Secondly , if gcd(a, b, c) > 1 : there are 3 such cases

(i) when gcd(a, b, c) = 3 , divide all the three side a, b, c by 3 then we know that one side of it is

10 . So from 2pq = 10 The only possible solution is (p, q) = (5, 1) . This gives us the hypotenus is

26× 3 = 78 = n+ 30 . Hence n = 48

(ii)When gcd(a, b, c) = 5 , divide the three side by 5 , one of the side is 6 . So pq = 3 and

(p, q) = (3, 1) which yields n = 20

(iii)When gcd(a, b, c) = 2 , one side is 15 . So (p+ q)(p− q) = 15 and gives us (p, q) = (4, 1), (8, 7)

. But both this value gives us n = 4, 196 which is same with above .

So all the posible solution is n = 4, 20, 48, 196

Prove that for every integer n > 0 there exists an integer k > 0 such that 2nk can be written in

decimal notation using only the digits 1 and 2. we can generalize the problem: Prove that for every

integer n > 0 there exists an integer k > 0 such that 2nk can be written in decimal notation using

only the digits 1 and 2,and it has just n digits.

Solution

Suppose that for some n there exists k such that 2n · k has only 1’s and 2’s in it’s decimal expansion.

Also assume that it’s decimal expansion has n digits. We know that 2n · k = 0 or 2n (mod 2)(n+ 1).

Also, 10n = 0 (mod 2)n, and thus we can find that 10n = 2n (mod 2)(n + 1). Suppose 2Pn · k = 2n

(mod 2)(n + 1). Then 10n + 2n · k ≡ 2 · 2n ≡ 0 (mod 2)(n + 1). Thus 10n + 2n · k is a n + 1- digit

number divisible by 2(n + 1) made up of only 1’s and 2’s. Now suppose 2n · k ≡ 0 (mod 2)(n + 1).

Then 2 · 10n ≡ 0 (mod 2)(n + 1). So 2 · 10n + 2n · k ≡ 0 (mod 2)(n + 1). 2 · 10n + 2n · k is an n+1

digit number divisible by 2(n + 1) made up of only 1’s and 2’s. However, 21 · 1 is a 1-digit number

with only 1’s and 2’s in it’s decimal expansion. So by induction, we are done.

Note how this gives us an algorithm to generate such numbers:

1. Start with an n-digit number 2n · k. 2. Find a = 2n · k (mod 2)(n + 1). 3. Ifa = 0, then 2

folllowed by 2n · k is the n+ 1-digit number we are looking for. If a = 2n, then 1 followed by 2n · k is

our n+ 1-digit number.

Example:

12 is a 2-digit number divisible by 22. 12 (mod 2)3 = 4 = 22, so 112 is divisible by 23.

Let S denote the set of all nonnegative integers whose base-10 representation contains no 1s.
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Compute ∏
k∈S

10k + 2

10k + 1

or show that it diverges.

Solution

Convergence Let f(x) = x
x−1

, so we are examining

P = [f(22)f(32)f(42)...f(92)][f(202)f(222)f(232)...f(992)][f(2002)f(2022)...]...

where there are 8 · 9k−2 arguments with k digits.

Because f(x) is decreasing, P < (f(22))8(f(202))72(f(2002))648...

Therefore logP < 8 log f(22) + 72 log f(202) + 648 log f(2002) + ...

Now log f(x) < 2
x
for x > 2, so 9

8
logP < 9 · 1

11
+ 92 · 1

101
+ 93 · 1

1001
+ ... < 9

10
+ 81

100
+ 729

1000
+ ... which

implies 9
8

logP <
∑∞

i=1( 9
10

)i = 9 =⇒ logP < 8 =⇒ P < e8. – The arithmetric progression series

{an} and {bn} has sum of first n term as Sn and Tn respectively. If Sn
Tn

= 2005n
2006n+1

, find an
bn

. — Let an

be an arithmetic progression containing only natural numbers. Prove that for any p in the sequence
1
a1
, 1
a2
, 1
a3
, .... there exist p terms in arithemtic progression. – n, a, b, c and d are non-negative integers

such that a2 +b2 +c2 +d2 = n2−6, a+b+c+d ≤ n, a ≥ b ≥ c ≥ d. Find all ordered pairs (n, a, b, c, d).

—— A triangle ABC has ∠ACB > ∠ABC. The internal bisector of ∠BAC meets BC at D. The

point E on AB is such that ∠EDB = 90◦. The point F on AC is such that ∠BED = ∠DEF . Show

that ∠BAD = ∠FDC. – An operation displaying either the sign + or x are made on a computer

display repeatedly. In each operation, assume that the probability displaying the same sign as the

eve of one succesively in regardless of the course until then is p. First the sign x is displayed on

the display. Let Pn be the probability such that n’s the sign + appears before the three sign X will

appear including the first. Note that the operation is over at the stage of appearing n’s the sign +.

(1) Express P2 in terms of p.

(2) For n ≥ 3, express Pn in terms of p and n.

Determine all triples of positive integers (a, b, c) such that a ≤ b ≤ c and a+b+c+ab+bc+ca =

abc+ 1.

Solution

Since 2 ≤ a ≤ b ≤ c, we have a
b
≤ 1, a

c
≤ 1 and 2

c
≤ 1.

Thus a+ b+ c+ ab+ bc+ ca = abc+ 1 · · · [∗]⇐⇒ abc = a+ b+ c+ ab+ bc+ ca− 1

⇐⇒ a = a
b
· 1
c

+ 1
c

+ 1
b

+ a
c

+ 1 + a
b
≤ 1

b
· 1 + 1

c
+ 1

b
+ 1 + 1 + 1

= 2
b

+ 1
c

+ 3 ≤ 1 + 1
2

+ 3 = 4.5, yielding a = 2, 3, 4.

Case 1: a = 2

From [∗], we have bc = 3b + 3c + 1 ⇐⇒ (b − 3)(c − 3) = 10. Since −1 ≤ b − 3 ≤ c − 3, we have

(b− 3, c− 3) = (1, 10), (2, 5), yielding (b, c) = (4, 13), (5, 8).

Similarly,

Case 2: a = 3 ; 2bc−4b−4c = 2⇐⇒ (b−2)(c−2) = 5, 0 ≤ b−2 ≤ c−2, yielding (b, c) = (3, 7).

Case 3: a = 4 ; 3bc − 5b − 5c = 3 ⇐⇒ (3b − 5)(3c − 5) = 34, 1 ≤ b − 2 ≤ c − 2, yielding

(b, c) = (2, 13), which isn’t suitable for a ≤ b ≤ c.

Therefore desired answer is (a, b, c) = (2, 4, 13), (2, 5, 8), (3, 3, 7).

Let ABCD be an orthodiagonal trapezoid such that ]A = 90◦ and AB is the larger base. The

diagonals intersect at O, (OE is the bisector of ]AOD, E ∈ (AD) and EF‖AB, F ∈ (BC). Let

P,Q the intersections of the segment EF with AC,BD. Prove that:
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(a) EP = QF ;

(b) EF = AD.

Solution

a) ∆AEP ∼ ∆ACD =⇒ EP
AE

= CD
AD

=⇒ CD = EP.AD
AE

∆BFQ ∼ ∆BCD =⇒ FQ
BF

= CD
BC

=⇒ CD = FQ.BC
BF

⇐⇒ EP.AD
AE

= QF.BC
BF

considering that EF‖AB by Thale’s theorem, BC
BF

= AD
AE

consequently:

EP = FQ.

b) ∆DEQ ∼ ABD =⇒ EQ
DE

= AB
AD

=⇒ EQ = DE.AB
AD

and we know that EP = FQ = AE.CD
AD

so

,

EF = DE.AB+AE.CD
AD

Since the trapezoid is orthodiagonal we have that, ∆ADE ∼ ∆ACD ∼ ∆ABD, simutaneously,with

the bisector theorem, we get:
AE
AO

= DE
DO

=⇒ AE
DE

= AO
DO

= AD
CD

=⇒ CD.AE = AD.AE analogously DE.AB = AD.DE thus:

EF = DE.AB+AE.CD
AD

= AE +DE = AD

The sidelengths of a triangle are a, b, c.

(a) Prove that there is a triangle which has the sidelengths
√
a,
√
b,
√
c.

(b) Prove that
√
ab+

√
bc+

√
ca ≤ a+ b+ c < 2

√
ab+ 2

√
bc+ 2

√
ca.

Solution

(a) a, b, c are sidelengths of a triangle iff a < b + c, b < a + c, c < a + b. So we are to prove that
√
a <
√
b+
√
c for all variables.

Because b, c are sidelengths, their value has to be positive. So I assume it will not shock you if I

say that 0 < 2
√
bc. Nor will the following statement be of any surprising content:

b+ c < b+ c+ 2
√
bc

Both sides are positive, so we can take the square root:

√
b+ c <

√
b+
√
c

Now using the fact that a, b, c are sidelengths:

√
a <
√
b+ c <

√
b+
√
c

Analogue for the other variables.

(b) The left inequality has no need of the fact that a, b, c are sidelengths. Just use AM-GM and

add up:
a+ b

2
+
c+ b

2
+
a+ c

2
≥
√
ab+

√
ac+

√
bc

The right inequality:

RHS =
√
a.
(√

b+
√
c
)

+
√
b.
(√

a+
√
c
)

+
√
c.
(√

a+
√
b
)
> a+ b+ c

The last inequality uses lemma (a). Done!

Solve the system:

max{x+ 2y, 2x− 3y} = 4

min{−2x+ 4y, 10y − 3x} = 4

Solution
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We can obtain four possible systems:x+ 2y = 4

−2x+ 4y = 4

Cramer gives

(x, y) =

(
1,

3

2

)
2x− 3y = 4

−2x+ 4y = 4

Giving

(x, y) = (14, 8)

But this can not be a solution because max{x+ 2y, 2x− 3y} = x+ 2y = 30x+ 2y = 4

10y − 3x = 4

Giving

(x, y) = (2, 1)

But this is not valid since min{−2x+ 4y, 10y − 3x} = −2x+ 4y = 02x− 3y = 4

10y − 3x = 4

Giving

(x, y) =

(
52

11
,
20

11

)
But this is not valid since min{−2x+ 4y, 10y − 3x} = −2x+ 4y < 0

So this gives us only one valid solution:

(x, y) =

(
1,

3

2

)
– Given one hundred positive real numbers such that:

∑100
i=1 ai = 300 and

∑100
i=1 a

2
i > 10000. Show

that there exist three numbers with sum more that 100.

Consider a standard twelve-hour clock whose hour and minute hands move continuously. Let

m be an integer, with 1 ≤ m ≤ 720. At precisely m minutes after 12:00, the angle made by the hour

hand and minute hand is exactly 1◦. Determine all possible values of m.

Solution

Consider the angles starting at 12:00, going clockwise, after m minutes, the minute hand will make

an angle of 6m, and the hour hand will make an angle of m
2
, we then have that |6m − m

2
| =

±1 + 360k,m, k ⊂ Z

11m = ±2 + 720k

11m = ±2 + 5k + 11 ∗ 65 ∗ k
11(m− 65k) = ±2 + 5k
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we get the solutions: k = 4, and m − 65k = 2 or m = 262 or k = 7, m − 65k = 3 then m = 458

by CRT these are the unique solutions mod 55 (the numbers being k and m-65k) if we add 55, the

minutes are not in the given range so that is all the solutions

For each permutation a1, a2, a3, . . . , a10 of the integers 1, 2, 3, . . . , 10, form the sum

|a1 − a2|+ |a3 − a4|+ |a5 − a6|+ |a7 − a8|+ |a9 − a10|.

The average value of all such sums can be written in the form p/q, where p and q are relatively prime

positive integers. Find p+ q.

Solution
55

3
- I checked it with the official solutions too -

Because of symmetry, we may find all the possible values for |an − an−1| and multiply by the

number of times it appears 5∗8! and take that over 10! since that’s the number of total permutations.

To find all possible values for |an − an−1| we have (1− 10) + (1 − 9) + . . . + (1 − 2) + (2 − 1) +

(2− 3) + . . .+ (2− 10) + . . . (10− 9)

This is equivalent to

2
k=9∑
k=1

k∑
j=1

j = 330

Now we multiply it by 5 ∗ 8! because if you fix an and an+1 there are still 8! spots for the others and

you do this 5 times because there are 5 places an and an+1 can be.

Therefore, the answer is 330∗8!∗5
10!

= 55
3

– Let ABC and A′B′C ′ are equilateral triangle inscribed

in a same circle (with a center O). Let X = AB ∩ A′C ′. Prove that ABC and A′B′C ′ are symetric

compared to OX.

Given x1, x2, x3..., xn are sets of random numbers selected from an interval with length of 1.

Let x = 1
n

n∑
j=1

xj, y =
1

n

n∑
j=1

x2
j . Find the maximum value of y − x2

Solution

First Case: when n is even we let n = 2k, thus from the question we get,
2k(x2

1+x2
2+x2

3+...+x2
2k)−(x1+x2....+x2k)2

(2k)2

we can easily see that it would be equal to
(2k−1)(x2

1+x2
2+x2

3+...+x2
2k)−2(x1x2+x1x3...+x2k−1x2k)

4k2 We can see

that (x1x2 + x1x3... + x2k−1x2k) contain each xn 2(2k − 1)times The top part of the fraction would

equal to (x1 − x2)2 + (x1 − x3)2 + ....+ (x1 − x2k)
2 + (x2 − x3)2 + ....(x2k−1 − x2k)

2 since we wanted

to find the maximum, we use the greatest difference between the numbers; thus we set first k terms

be the largest number in the interval and second k terms be the smallest number in the interval; In

(x1 − x2)2 + (x1 − x3)2 + ....+ (x1 − x2k)
2 + (x2 − x3)2 + ....(x2k−1 − x2k)

2

when xl is chosen from first k term, and xm is chosen from second k terms. the term (xl − xm)2

would be 1, otherwise it would be 0. Thus there is k choices for xl, and k choices for xm, so the sum

of th top will be k2 Therefore when n is an even number, the maximum will be k2

4k2=
1
4
Second Case:

When n is odd we let n = 2k + 1 we can let either (2k + 1)th term equal 1 or 0, if (2k + 1)th term

is 0 there is k choices for xl, and (k + 1) choices for xm, the sum would be k(k + 1). if (2k + 1)th

term is 1 there is (k+ 1) choices for xl, and k choices for xm, the sum would be (k+ 1)k, thus either

value of (2k + 1)th term would yield the same sum for the top. thus the value of the expression will

be (k+1)k
(2k+1)2 Since n = 2k+ 1,k=n−1

2
, subtitute into the expression thus we get the maximum value for

n when n is odd is n2−1
4n2

Prove that : nkn ≥ (nk + nk−1 + ...+ 1)n−1 k, n ∈ N
Solution
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Start with f(x) = lnx
x−1

. Easy to see that it is strictly decreasing for x > 0. (x = 1 is no irregularity).

So is ef(x) = x
1

x−1 .

=⇒ (n − 1)
1

n−2 > n
1

n−1 for n > 1. (forget n=1 ) =⇒ (n − 1)n−1 > nn−2 ≥ nn−k−1 as k ≥ 1.

=⇒ nkn(n − 1)n−1 > n(k+1)(n−1) =⇒ nkn >
(
nk+1

n−1

)n−1

>
(
nk+1−1
n−1

)n−1

= RHS – Let an be a

sequence, a1 = 1, for n ≥ 1 an+1 = an + (1/an) Find the [a1000] [ ] denotes greatest integer function

Given a sequence: 1, 0, 1, 0, 1, 0 · · · From the 7th term, each term equals to the last digit of

the sum of the 6 numbers before it. Show that there cannot be another series of 1, 0, 1, 0, 1, 0 in

that sequence.

Solution

Let the series described be series A. Let’s assume that a series of 1, 0, 1, 0, 1, 0 can be repeated. So

looking back at the 6 previous entries, we have: a, b, c, d, e, f, 1, 0, 1, 0, 1, 0. Let x and y be nonegative

arbitrary integers. Let y be the number that is excluded from consecutive series. Basically a+b+c+d+

e+f = 10x+1 (Because first term of series that’s present is 1). b+c+d+e+f+1 = 10x+2−y = 10z.

⇒ y = 2. c + d + e + f + 1 + 0 = 10x − y = 10z + 1. ⇒ y = 9. 10x − 9 + 1 − y = 10z ⇒ y = 2.

10x− 10− y = 10z + 1⇒ y = 9. 10x− 19 + 1− y = 10z ⇒ y = 2. 10x− 20− y = 10z + 1.

So 2, 9, 2, 9, 2, 9, 1, 0, 1, 0, 1, 0.

But 3(2) + 3(9) = 33. Contradition.

QED

prove that 1 + 1
2

+ 1
3

+ 1
4

+ · · ·+ 1
n
is never an integer for any n.

Solution

We’ll consider the number:1
2

+ 1
3

+ · · ·+ 1
n

The lemma: In the sequence of numbers: 1, 2, 3, · · · , n there exists a number k, which is divisible

by such power of 2, that does not divide any other element of the sequence.

Lemma 2lcp(a1, a2, · · · , an) =
∑

i p
max(e1,e2,··· ,et)
i , where ak = pe11 p

e2
2 · · ·

Now let
1
2

+ 1
3

+ · · · + 1
n

= k, k ∈ Z Write our number using the least common denominator=the least

common multiple. This multiple will look like this :2max(e1,e2,e3,...,en) · somethingodd If we multiply

both sides by this number, we will obtain even number on the right side and odd on the left side,

because of the first lemma Contradiction

Let A(x) and B(x) polynomials with degree greater than 1 and assume that exists polynomials

C(x) and D(x) such that:

A(x) · C(x) +B(x) ·D(x) = 1, ∀x ∈ R.

Prove that A(x) isn’t divisible by B(x).

Solution

Assume for the sake of contradiction that B(x)|A(x). Then A(x) = Q(x)B(x) so A(x)C(x) +

B(x)D(x) = B(x)[Q(x)C(x) + D(x)] = 1 ⇒ B(x)|1. But since B has degree greater than 1, it

obviously cannot divide something of degree 0. Contradiction.

Let 0 < a0 < a1 < ... < an and ai ∈ Z.(i=0,1,...,n). Prove that
∑

1
[ai,ai+1]

≤ 1− 1
2n

Solution

To maximize 1
[ai,ai+1]

, we must minimize [ai, ai+1]. Clearly, this is nai, where n is a natural number.
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Since ai < ai+1, n 6= 1, the minimum of n is n = 2, which gives us ai+1 = 2ai. Thus

n∑
i=0

1

[ai, ai+1]
≤

n∑
i=0

1

2 · 2i

=
1

2

(
1− 1

2n

1
2

)
= 1− 1

2n

as desired.

Let Fn be a Fibonacci sequence. If n|m, then Fn|Fm[/color] Gải n|m ⇐⇒ m = nk I will use

inducion on k For k = 1 it’s obvious. Fn|Fkn ⇒ Fn|Fkn+n

Formula: Fn+m = Fn−1Fm + FnFm+1 By the formula we have: Fkn+n = Fkn−1Fn + FknFn+1 ⇒
Fn|Fkn+n

Let a, b, c be three positive real numbers such that a+ b+ c = 1. Let λ = min{a3 + a2bc, b3 +

b2ac, c3 + abc2} Prove that the roots of x2 + x+ 4λ = 0 are real.

Solution

Real roots condition is 1
16
≥ λ

Notice that b3 + b2ac ≥ a3 + a2bc⇔ (b− a)(a2 + b2 + ab+ abc)⇔ b ≥ a.

Wlog, a is the smallest of (a, b, c). Fix a. It fixes b+ c, which fixes the maximum of bc as (1−a
2

)2.

So we just need a3 + a2(1−a
2

)2 ≤ 1
16

becoming a(a+ 1) ≤ 1/2, which is true in a ∈ [0, 1/3].

–

log4 (x2 + y2)− log4 (2x+ 1) = log4 (x+ y)

log4 (xy + 1)− log4 (4x2 + 2y − 2x+ 4) = log4
x
y
− 1

x, y ∈ R – Let a, b, c be positive num-

bers such that 3a = b3, 5a = c2. Assume that a positive integer is limited to d = 1 such that a is

divisible by d6.

(1) Prove that a is divisible by 3 and 5. (2) Prove that the prime factor of a are limited to 3 and

5. (3) Find a. –

Determin f : N→ R such that f(1) = 1 and

f(n) =

1 + f
(
n−1

2

)
, n odd,

1 + f
(
n
2

)
, n even

— For a natural number k, let p(k) denote the smallest prime number which does not divide k. If

p(k) > 2, define q(k) to be the product of all primes less than p(k), otherwise let q(k) = 1. Consider

the sequence

x0 = 1, xn+1 =
xnp(xn)

q(xn)
, n ∈ Z+ ∪ {0}

Determine all natural numbers n such that xn = 111111.

Find all pairs of positive integers (a, b) such that 5ab − b = 2004.

Solution

when b = 1 , a = 401

clearly a = 1 yields no solution . So when a, b ≥ 2 , by Bernoulli Ineq

2004 = 5ab − b ≥ 5 · 2b − b = 5 · (1 + 1)b − b ≥ 5(1 + b)− b = 5 + 4b
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⇐⇒ 499.75 ≥ b so 499 ≥ b ≥ 2

Hence this also gives us 5ab = 2004 + b ≤ 2004 + 499 = 2503 ⇐⇒ ab ≤ 500

So 500 ≥ ab ≥ 2b gives us b ≤ 8

Now taking mod 5 at the original equation , we see that b ≡ 1 mod 5 .So we only have b = 6

(since 2 ≤ b ≤ 8) . But checking this value yields no integer solution for a . Hence the only solution

are

(a, b) = (401, 1)

Find all functions f : R→ R satisfy the condition: f(x)+f(y)
2

≥ f(x+y
2

) + |x− y|
Solution

we’ll prove by induction that
f(x)+f(y)

2
− f(x+y

2
) ≥ 2n|x− y| for any n ∈ N (*)

from which it is obvious there can be no such function because if x 6= y are fixed then the RHS

can be as large as we want while the LHS is fixed.

the case n = 0 is the assumption of the problem. assume (*) holds for n ≥ 0. then
f(x)+f(x+y

2
)

2
− f(3x+y

4
) ≥ 2n|x−y

2
|

2[
f(x+3y

4
)+f( 3x+y

4
)

2
− f(x+y

2
)] ≥ 2 · 2n|x−y

2
|

f(x+y
2

)+f(y)

2
− f(x+3y

4
) ≥ 2n|x−y

2

adding gives precisely
f(x)+f(y)

2
− f(x+y

2
) ≥ 2n+1|x− y|

số học

Let a, b, c ∈ R, |a| ≥ |b+ c|, |b| ≥ |c+ a|, |c| ≥ |a+ b|. Prove: a+ b+ c = 0

Solution

WLOG, let |a| ≤ |b| ≤ |c|. We have |b + c| ≤ |a| ≤ |b|, so b, c have opposite sign (either can be zero

also). Similarly, |a + c| ≤ |b| ≤ |c| so a, c have opposite sign (or zero). WLOG, assume a, b ≤ 0 and

c ≥ 0 (multiplying each term by −1 does not change the problem).

CASE 1: a+ b+ c > 0

Then a+ c > −b and both sides are positive so |a+ c| > |b|, contradiction.
CASE 2: a+ b+ c < 0

Then a+ b < −c and both sides are negative so |a+ b| > |c|, contradiction.
Hence we must have a+ b+ c = 0.

Another way: Squaring |a| ≥ |b+ c|, we get a2 ≥ b2 + 2bc+ c2. Similarly, b2 ≥ a2 + 2ac+ c2 and

c2 ≥ a2 + 2ab + b2. Adding, we get 0 ≥ a2 + b2 + c2 + 2ab + 2ac + 2bc = (a + b + c)2. Therefore,

a+ b+ c = 0.

Using the area of a regular pentagon, prove that 4 sin 2π
5

+ tan 2π
5

= 5 cot π
5
.

Solution

Let the regular pentagon ABCDE have center O and sides length 2. Drop a perpendicular from O

to AB, with intersection H. It’s easy to calculate m∠HOB; it is π
5
. Since HB is half of AB = 2,

then the area of 4HOB is half the area of 4HOA. Since OH = cot
(
π
5

)
, then the area of 4BOA

is simply OH = cot
(
π
5

)
via one half times the product of base and height. Finally, the area of the

pentagon is 5 cot π
5
.

Now, triangulate the pentagon by drawing segments DA and DB to form 4DEA, 4DAB, and

4DBC. Again, it is easy to calculate m∠DAB = 2π
5
, so then DH has length tan 2π

5
. Thus, the area

of 4DAB is tan 2π
5

through

A =
1

2
(bh).
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Drop a perpendicular from E to DA to intersect at P . Then m∠EAP = π
5
. Hence,

AP = 2 cos
π

5

EP = 2 sin
π

5
.

The area of 4PEA is then
1

2

(
2 cos

π

5

)(
2 sin

π

5

)
= sin

2π

5
.

Thus, the area of 4DEA is 2 sin 2π
5
, as is the area of 4DBC. Then the area of the pentagon is

4 sin 2π
5

+ tan 2π
5
.

The pentagon never changed, so its area surely could not have. Thus,

4 sin
2π

5
+ tan

2π

5
= 5 cot

π

5
.

Given a, b, c are three real numbers such that : a < b < c ; a+ b+ c = 6;ab+ bc+ac = 9. Prove

that: 0 < a < 1 < b < 3 < c < 4

Solution

As a < b < c it is clear that c > 2 a + b = 6 − c ab + c(a + b) = 9 we see that a, b satisfy

a + b = 6− c and ab = (c− 3)2 so a and b are the roots of f(x) = x2 + (c − 6)x + (c− 3)2 = 0 the

discriminant is D = −3c(c − 4) D > 0 when c < 4 c is outside the roots of f(x) = 0 so f(c) > 0

but f(c) = 3(c − 1)(c − 3) so c > 3 As f(1) = (c − 1)(c − 4) we see that f(1) < 0 so a < 1 < b

ab = (c− 3)2 > 0 and b > 1 we conclude that a > 0 and as a+ c > 3 b < 3

– Let f : R → R satisfy: f(2x) = f(sin x+y
2
π) + f(sin x−y

2
π) Find f(2007 +

√
2007) – Let

A1, A2, . . . , An be finite sets. Prove that∣∣∣ n⋃
i=1

Ai

∣∣∣( n∑
i=1

|Ai|+ 2
∑

1≤i<j≤n

|Ai ∩ Aj|
)
≥
( n∑
i=1

|Ai|
)2

where |E| denotes the number of elements in set E. —— Let A1, A2, . . . , An be finite sets, and let k

be a positive integer. Prove that∣∣∣ n⋃
i=1

Ai

∣∣∣ ≥ 2

k + 1

n∑
i=1

|Ai| −
2

k(k + 1)

∑
1≤i<j≤n

|Ai ∩ Aj|

where |E| denotes the number of elements in set E.

Note that if k = 1, it can be easily deduced from PIE. – a, b, c are real numbers with ac < 0 and√
2a +

√
3b +

√
5c = 0. Prove that the second degree equation ax2 + bx + c = 0 has root(s) in the

interval of
(

3
4
, 1
)
. – Let f : R+ → R+ satisfy f ′(x) > f(x),∀x ∈ R+. Find all values of k such that

the inequation f(x) > ekx has root(s) for all x which is enough large —— Let f(m) = n + b
√
nc,

where b c denotes the greatest integer function. Prove that, for every positive integer m, the sequence

m, f(m), f(f(m)), f(f(f(m)))... contains the square of an integer. (Art and Craft of Problem Solving

2.2.5). – Let a, b, c positive integers such that the numbers

k = bc + a , l = ab + c , m = ca + b are primes.

Prove that at least two of the numbers k, l,m are equal – Let {xn} be a positive geometric

progression and x1 = 0.5. Let Sn =
∑n

k=1 xk, then

210S30 − (210 + 1)S20 + S10 = 0
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(1) Find general term of {xn}. (2) Determine the sum of {nSn} to n terms. – Solve:

(
1

2
)2 sin2 x +

1

2
= cos 2x+ log4(4 cos3 x− cos 6x− 1)

Prove that
1√
1

+ 1√
2

+ 1√
3

+ · · ·+ 1√
n2
≥ 2n+ 1

2n
− 3

2
, ∀n ∈ N
Solution

First we have this inequality, using Cauchy theorem: 1√
n2+a

+ 1√
n2+2n−a ≥

2
4
√

(n2+a)(n2+2n−a)
≥ 2√

n2+n

Using this inequality, we have: 1√
n2

+ 1√
n2+1

+ 1√
n2+2

+ · · ·+ 1√
n2+2n

= ( 1√
n2

+ 1√
n2+2n

) + ( 1√
n2+1

+
1√

n2+2n−1
) + · · ·+ 1√

n2+n
≥ 2√

n2+n
+ 2√

n2+n
+ · · ·+ 1√

n2+n
= 2n+1√

n2+n
≥ 2

Now we have: 1 ≥ 1 1√
1

+ 1√
2

+ 1√
3
≥ 2 1√

4
+ 1√

5
+ · · ·+ 1√

8
≥ 2

· · · · · ·
1√

(n−1)2
+ 1√

(n−1)2+1
+ · · ·+ 1√

(n−1)2+2(n−1)
≥ 2 1

n
+ 1

2
≥ 1

2n

We now just add them together to have "Square root inequality" Another way using the idea of

AM-HM and telescoping
1√
k

+ 1√
k+1
≥ 4√

k+1+
√
k

= 4
(√

k + 1−
√
k
)

số học

Let S be a finite set of points on a line, with the property: if P and Q are two points of S, then

exist a point R such that R is the midpoint of PQ, Q is the midpoint of PR, [size=150]OR[/size]

P is the midpoint of QR. Determine the greatest possible number of points of S.

Solution

Here is a simple proof for the fact that S cannot have more than 5 elements. We may assume, without

loss of generality, that 0 is the smallest element of S and that 1 is the greatest element of S. That

means that 1
2
∈ S. Since S has more than 5 elements (by assumption) there exists an x1 ∈ S such

that x1 6∈
{

0, 1
3
, 1

2
, 2

3
, 1
}
. Assume, for example, that 1

3
< x1 <

1
2
. (In the other cases, we can give a

similar proof.) There must exist an x2 ∈ S such that x2 is the midpoint of x1 and 1, and 2
3
< x2 < 1.

Now there must exist some number x3 ∈ S such that x3 is the midpoint of 0 and x2, and
1
3
< x3 <

1
2
.

It is easy to see that 1
3
< x3 < x1. Continuing this way, we get a decreasing sequence x1, x3, x5, · · ·

of real numbers which converges to 1
3
, all terms of which are greater than 1

3
. This means that S must

have infinitely many elements. Contradiction. So we’re done: S can have at most 5 elements.

We know that when we rationalize the denominator of 1√
a+
√
b
, we can do it like that

1
√
a+
√
b

=

√
a−
√
b

(
√
a+
√
b)(
√
a−
√
b)

=

√
a−
√
b

a− b

But how to rationalize the denominator of 1
3√a+

3√
b+ 3√c

?

Solution

Substitute 3
√
a = u, 3

√
b = v and 3

√
c = w. With the formulae a3 + b3 + c3 − 3abc = (a + b +

c) ((a− b)2 + (b− c)2 + (c− a)2) and a3 − b3 = (a− b)(a2 + ab+ b2), we get that
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1

u+ v + w
=

(u− v)2 + (v − w)2 + (w − u)2

u3 + v3 + w3 − 3uvw

=
((u− v)2 + (v − w)2 + (w − u)2) ((u3 + v3 + w3)2 + 3uvw(u3 + v3 + w3) + (3uvw)2)

(u3 + v3 + w3)3 − (3uvw)3

=

((
3
√
a− 3
√
b
)2

+
(

3
√
b− 3
√
c
)2

+ ( 3
√
c− 3
√
a)

2

)
·
(

(a+ b+ c)2 + 3 3
√
abc(a+ b+ c) + 9

3
√
a2b2c2

)
(a+ b+ c)3 − 27abc

,

and we’re done.

What number can be written in the form x+ y2, where x and y are positive integers no larger

than 100, in the largest number of ways?

Solution

Try replacing "100" with smaller numbers. You probably want to look at 100 replaced by 1, 4 or

9. [hide="Solution"]Following the hint, we get the idea that the answer is probably 101. We can

write 101 = 1 + 102 = 20 + 92 = 37 + 82 = 52 + 72 = 65 + 62 = 76 + 52 = 85 + 42 = 92 + 32 =

97 + 22 = 100 + 12 for a total of 10 different ways. Suppose there were some number n which

could be expressed in 11 different ways. Then n = xi + y2
i for i = 1, 2, . . . , 11. Now, without loss

of generality we have y1 > y2 > . . . > y11, and since each is a positive integer, y1 > y11 + 10. But

then x11 + y2
11 = x1 + y2

1 > x1 + y2
11 + 20y11 + 100 > x1 + y2

11 + 100 and so x11 > x1 + 100, clearly

a contradiction. So 101 is definitely [i]a[/i] mode of the set. Following the same argument through

with 11 replaced by 10 will leave us in the final stage not with a contradiction but with the unique

solution a1 = 10, a10 = 1 and so n = 101.

hình

For all positive integers n, define an = 0 if n has an even number of distinct prime divisors

and an = 1 otherwise. Is the number 0.a1a2a3 · · · rational or irrational?
Solution

Suppose that our number is rational and denote an = f(n). There exists a positive integer M

and a positive integer a (the period) such that for all x > M , we have f(x) = f(x + a). Choose

t > 0 such that at > M . We have f (at) = f (at + na) for all positive integers n. Now choose

n = (p − 1) · at−1 where p is a prime number which does not divide a. Then f (at) = f (p · at), and
that’s a contradiction. �

find all pairs of positive integers (n, k), which satisfies:
(
n
k

)
= k3 + 1

Solution

The only solutions are (n, k) = (n, 0), (2, 1), (9, 5) and (14, 10). For k = 0, it is clear any n suffices.

For k = 1 we have
(
n
1

)
= 2 so n = 2. For k = 2 we have

(
n
2

)
= 7 which is readily seen to have

no solutions. (k3 + 1) −
(
k+3
k

)
= 1

6
(5k3 − 6k2 − 11k) = 1

6
k(k + 1)(5k − 11), so k3 + 1 >

(
k+3
k

)
for

k ≥ 3. Thus, we must have n > k + 3 when k ≥ 3. Also note that
(
k+4
k

)
− (k3 + 1) = 1

24
(k + 1)((k +

4)(k + 3)(k + 2) − 24(k2 − k + 1)) = 1
24
k(k + 1)(k − 5)(k − 10) This final expression is positive

when k > 10, so in those cases we must have n < k + 4. Combining this result with that of the

previous line, there are no solutions for k > 10. We also note from this factorization that k = 5, 10

give us solutions. The only cases left to check are 5 < k < 10, and in these it suffices to note that(
11
6

)
> 63 + 1,

(
12
7

)
> 73 + 1,

(
13
8

)
> 83 + 1 and

(
14
9

)
> 93 + 1, so there are no solutions in these cases,
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either. – Find all continuous functions f : R→ R such that

f(x)3 = − x

12
·
(
x2 + 7x · f(x) + 16 · f(x)2

)
, ∀x ∈ R.

x1, x2, ..., x1993 are real numbers satisfying |x1 − x2| + |x2 − x3| + ... + |x1992 − x1993| = 1993,

yk = x1+x2+...+xk
k

for k = 1, 2, ..., 1993. What is the maximum possible value of |y1 − y2|+ |y2 − y3|+
...+ |y1992 − y1993| ?

Solution

For the solution, (with skimping on the details) set 1992 = n and let xi − xi+1 = di and then

|yi − yi+1| = 1
i(i+1)

|
∑i

j=1 j · dj| ≤
∑i

j=1
j

i(i+1)
|dj| where the first equality results from just writing

the thing out and appropriate adding/subtracting, while the inequality is the triangle inequality.

Summing this for i from 1 to n gives us |y1−y2|+|y2−y3|+. . .+|yn−yn+1| ≤ n
n+1
|d1|+b2|d2|+. . .+bn|dn|

where 0 < bi ≤ n
n+1

for each i > 1. But this expression is at most n
n+1

(|d1|+ . . . |dn|). But the second

part of this product is just n + 1, so this shows that the maximum is at most n. We can achieve n

by setting x1 = n, x2 = x3 = . . . = xn+1 = 0.

Suppose that the coefficients of the equation xn + an−1x
n−1 + . . .+ a1x+ a0 = 0 are real and

satisfy 0 < a0 ≤ a1 ≤ . . . ≤ an−1 ≤ 1. Let z be a complex root of the equation with |z| ≥ 1. Show

that zn+1 = 1.

Solution

Let’s construct a genuine argument. What follows still feels a little awkward, so I assume there is

room for improvement of this proof.

Let P (z) = zn + an−1z
n−1 + · · ·+ a1x+ a0, as above.

Define Q(z) = (z − 1)P (z) = zn+1 − bnz2 − bn−1b
n−1 − · · · − b1z − b0.

Here, b0 = a0, b1 = a1 − a0, . . . , bn−1 = an−1 − an−2, bn = 1− an.
We want to note that bk ≥ 0 for all k and that

∑n
k=0 bk = 1.

Now suppose |z| ≥ 1. Then

|Q(z)| ≥ |z|n+1 −
∑n

k=0 bk|z|k

≥ |z|n+1 −
∑n

k=0 bk|z|n ≥ |z|n (|z| −
∑n

k=0 bk) .

Since
∑n

k=0 bk = 1, this can only possibly be zero if |z| = 1. That means that Q(z) (hence also

P (z)) can have no roots with |z| > 1.

Now suppose that |z| = 1 and Q(z) = 0. Divide by zn+1.

1− bnz−1 − bn−1z
−2 − · · · − b1z

−n − b0z
−(n+1) = 0.

But |z−1| = |z−2| = · · · = |z−(n+1)| = 1.

We have that
∑n

k=0 bkz
k−n−1 =

∑n
k=0 bk|zk−n−1| = 1.

By the equality case in the triangle inequality, the only way for this to happen would be for

bkz
k−n−1 to be a nonnegative real number for each k. There are two ways for this to happen: bk = 0

or zk−n−1 = 1.

But a0 > 0 and hence b0 > 0. So we must conclude that z−n−1 = 1 and hence zn+1 = 1.

số học

số học

tổ hợp

tooe hợp

to hợp khó

đại số, hình học

hình
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For a, b, c > 0 we have:

−1 <

(
a− b
a+ b

)1993

+

(
b− c
b+ c

)1993

+

(
c− a
c+ a

)1993

< 1

Solution

Without loss of generality, we can assume that a = max {a, b, c}. Define

f(a, b, c) =

(
a− b
a+ b

)1993

+

(
b− c
b+ c

)1993

+

(
c− a
c+ a

)1993

.

It is easy to check that f(a, b, c) = −f(a, c, b). Hence −1 < f(a, b, c) < 1⇔ −1 < f(a, c, b) < 1. This

allows us to assume that b ≥ c, so that a ≥ b ≥ c > 0. It is obvious that

0 ≤
(
a− b
a+ b

)1993

< 1

0 ≤
(
b− c
b+ c

)1993

< 1

−1 <

(
c− a
c+ a

)1993

≤ 0

and the only thing which we still need to show is(
b− c
b+ c

)1993

+

(
c− a
c+ a

)1993

≤ 0.

This reduces to

((b− c)(c+ a))1993 + ((c− a)(b+ c))1993 ≤ 0

or

(b− c)(c+ a) ≤ −(c− a)(b+ c)

or

bc+ ab− c2 − ac ≤ −bc− c2 + ab+ ac

or

2c(a− b) ≥ 0

which is obviously true. �

Prove that an infinite number of triangles each having a given interior point as centroid can

be inscribed in a given circle.

Solution

Method 1 (constructive) The naive approach is to guess that any point on the circle can be a

vertex of a triangle with its centroid at any given interior point. It turns out this doesn’t work (see

Method 2), but it comes suprisingly close: the second-most naive approach is to just take any chord

passing through the given internal point G. Say it has endpoints A and P on the circle, and without

loss of generality AG < GP . (If G happens to be the midpoint of segment AP , either G is the

center of the circle, for which the problem is trivial (all equilateral triangles work) or G is not the

center, in which case we happened to pick the one chord of which G is the midpoint, and we can
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pick any other chord instead.) Let M be the point on GP such that 2GM = AG, and let BC be

a chord(actually "the chord," unless M happens to be the center of the circle) passing through M

such that BM = MC. Then G is the centroid of triangle ABC, and since the original chord AP

was arbitrary, we can in fact repeat this infinitely many times to get infinitely many such triangles,

Q.E.D.

Method 2 (non-constructive) Take any point A on the circle. The set of points which are the

centroid of some triangle inscribed in the circle with a vertex at A is a disk whose boundary is

internally tangent to the given circle at A, with diameter two thirds that of the diameter of the given

circle. Any interior point of the given circle is covered by infinitely many of these disks. The fact that

each triangle is counted 3 times obviously doesn’t matter, and we’re done.

hình

Let f(t) be a real valued function satisfying the differential equation

f ‘
(
1− 1

t
= t2(λ− f ‘t

)
Where λ is any real number t 6= {0, 1} Find all values of t for which the

slope of the tangent line to the graph of f(t) is λ
2
.

Solution

Let g(t) = 1− 1
t
. Then g(g(t)) = 1− 1

1− 1
t

= 1− t
t−1

= 1
1−t and g(g(g(t))) = t.

Substitute x = t, x = 1 − 1
t
, and x = 1

1−t into the differential equation. Let a = f ′(x), b =

f ′
(
1− 1

x

)
, c = f ′

(
1

1−x

)
. You will have a system of three linear equations in a, b, and c.

Solve the system of equations for a (in terms of x and λ) to get an explicit formula for f ′(x).

Then just set it equal to λ
2
and solve for x.

Let n > 3 be a positive integer. Consider n sets, each having two elements, such that the

intersection of any two of them is a set with one element. Prove that the intersection of all sets is

non-empty.

Solution

Let the sets be A1, A2, . . . , An. Let A1 = {a, b} and suppose A2 = {a, c} where a, b, c are distinct

elements. Now, any other Ai must contain either a or b (and not both) or a or c (and not both).

Thus, Ai = {b, c} or {a, x} for some element x. Because n > 3, no Ai can be {b, c} or else some other

Aj = {a, x} with x 6= b, c and has no common element with Ai = {b, c}. Thus, all the sets contain

a... qed

In the acute-angle triangle ABC we have ∠ACB = 45◦. The points A1 and B1 are the feet of the

altitudes from A and B, and H is the orthocenter of the triangle. We consider the points D and E

on the segments AA1 and BC such that A1D = A1E = A1B1. Prove that

a) A1B1 =
√

A1B2+A1C2

2
;

b) CH = DE.

Solution

a) Considering that ∠A1CA = ∠A1AC = ∠AHB1 = ∠BHA1 = ∠B1BA1 = 45o the triangles

AA1C, AHB1, BA1H, BCB1 are all right isosceles.Defining K as the feet of the altitude that pass

thought A1 and intersect the side AC, we have that,

A1K = KC =
√

A1C2

2
=
√

2
2
.A1C and

B1K = AK − AB1 but we know that AB1 ≡ B1H, therefore, AH =
√

2AB2
1 =
√

2AB1 and,

A1B ≡ A1H therefore
√

2AB1 +A1B = AH +A1H = AA1 = A1C ⇐⇒ AB1 =
√

2
2

(A1C −A1B),

finally, we can note that ∠AA1K = ∠A1AK it implies AK = A1K consequently,

B1K =
√

2
2
.A1C −

√
2

2
(A1C − A1B) =

√
2

2
.A1B thus,
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A1B
2
1 = A1K

2 +B1K
2 = 2

4
(A1B

2 + A1C
2) =⇒ A1B1 =

√
A1B2+A1C2

2

b)DE2 = A1D
2 + A1E

2 = 2A1B
2
1 = A1B

2 + A1C
2 = A1H

2 + A1C
2 = CH2

Prove that 11 divides 102n+1 + 3 · 210n+2.

Solution

Proof using induction (i) When n = 1, 1000 + 3 · 4096 = 13288 = 11 · 1208

(ii) Assume true for n = k. We can let 102k+1 + 3 · 210k+2 = 11a for some integer a.

(iii) When n = k + 1,

102(k+1)+1 + 3 · 210(k+1)+2

= 102k+3 + 3 · 210k+12

= 100 · 102k+1 + 1024 · 3 · 210k+2

= 100 · 102k+1 + 1024(11a− 102k+1)

= 100 · 102k+1 + 1024 · 11a− 1024 · 102k+1

= 1024 · 11a− 924 · 102k+1

= 11(1024a− 84 · 102k+1)

Therefore, the expression is divisible by 11 for all natural numbers n. — Let ABCDA1B1C1D1

be a cube and P a variable point on the side [AB]. The perpendicular plane on AB which passes

through P intersects the line AC ′ in Q. Let M and N be the midpoints of the segments A′P and

BQ respectively.

a) Prove that the lines MN and BC ′ are perpendicular if and only if P is the midpoint of AB.

b) Find the minimal value of the angle between the lines MN and BC ′. – Solve the system in

positive integers x2 = 2(y + z) and x6 = y6 + z6 + 31(y2 + z2) – Let {xk}k≥1 be a sequence of reals

such that x1 = 1 and xkxk+1 = k for k ≥ 1. Prove that:

n∑
k=1

1

xk
≥ 2
√
n− 1.

–

số

xác xuất khó

số học

số học

Solve the system of equation for all a, b, c ∈ R+ satisfying

a+ b+ c = 1

a
√
bc+ b

√
ac+ c

√
ab = 1

Solution

There are no solutions for the system of equations: 1 = (a
√
bc+ b

√
ca+ c

√
ab)2 ≤ (a2 + b2 + c2)(ca+

ab + ca) = (1 − 2u)u if we denote u = ab + bc + ca = −2u2 + u = −2(u − 1
4
)2 + 1

8
≤ 1

8
, which is a

contradiction!

Problem ab+ bc+ ca = 1

a
√
bc+ b

√
ac+ c

√
ab = 1

Solution

Set x = bc etc.

we get
∑
x = 1 =

∑√
yz.

But x+ y ≥ 2sqrtxy whence 1 =
∑
x ≥

∑√
yz = 1 and x=y=z for equality
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Hence ab=bc=ca whence it is clear a=b=c

hence a =
√

3/3 – Prove that gcd(m,n)
n

C(n,m) is an integer.

For n ∈ Z+, n > 1, prove that
1
n

+ 1
n+1

+ ...+ 1
n2−1

+ 1
n2 > 1

Solution

For n > 1: Apply AM-HM inequality: n+(n+1)+...+n2

n2−n+1
> n2−n+1

1
n

+ 1
n+1

+...+ 1
n2

Re-arrange terms: 1
n

+ 1
n+1

+...+ 1
n2

> (n2−n+1)2

n+(n+1)+...+n2 = (n2−n+1)2

(n+n2)(n2−n+1)
2

= 2(n2−n+1)
n2+n

≥ 1 for n ≥ 2 because 2(n2 − n + 1) − (n2 + n) =

n2 − 3n+ 2 = (n− 1)(n− 2) ≥ 0 for n ≥ 2.

Therefore, 1
n

+ 1
n+1

+ ...+ 1
n2 > 1 for all natural numbers n > 1. Proof 2

With Cauchy’s:

let S = 1
n

+ 1
n+1

+ ...+ 1
n2−1

+ 1
n2

S(n+ n+ 1 + n+ 2 + ...+ n2 − 1 + n2) ≥ (n2 − n+ 1)2

But we know the sum of n to n2 is (n+ n2) · 1
2
(n2 − n+ 1)

S ≥ 2(n2−n+1)2

(n+n2)(n2−n+1)

= 2n2−2n+2
n2+n

2(n2−n+1)
n(n+1)

> 1

=⇒ 2n2 − 2n+ 2 > n2 + n =⇒ n2 − 3n+ 2 > 0

=⇒ (n− 1)(n− 2) > 0 which is clearly true for every postivie integer greater than 2, but easy

just to check n = 2 with the original conditions. S ≥ 2(n2−n+1)
n(n+1)

> 1

Proof 3

n > 1⇒ 1
n2 <

1
n2−1

< ... < 1
n+1

< 1
n

⇒ 1
n+1

+ 1
n+2

+ ...+ 1
n2−1

+ 1
n2 > (n2 − n) 1

n2

⇒ 1
n

+ 1
n+1

+ 1
n+2

+ ...+ 1
n2−1

+ 1
n2 >

1
n

+ (1− 1
n
) = 1

Suppose that a+ b+ c = 0. Prove that:

a3 + b3 + c3

3
· a

4 + b4 + c4

2
=
a7 + b7 + c7

7
=
a2 + b2 + c2

2
· a

5 + b5 + c5

5

Solution

Denote A = ab+ bc+ ca,B = abc. Then a, b, c are the roots of x3 + Ax−B = 0.

Define Sn = an+bn+cn for n = 0, 1, 2, 3, ...... Then S0 = 3, S1 = 0,S2 = (a+b+c)2−2(ab+bc+ca) =

−2A.

Note that Sn+3 = −ASn+1 +BSn for n = 0, 1, 2, ..... S3 = −AS1 +BS0 = 3B, S4 = −AS2 +BS1 =

2A2, S5 = −AS3 +BS2 = −5AB, and S7 = −AS5 +BS4 = 7A2B.

Direct verification shows that S3

3
· S4

2
= S7

7
= S2

2
· S5

5
, which is equivalent to what we need to show.

Prove that the product of 8 consecutive integers cannot be the square of a perfect square (a

perfect fourth power).

Solution

Let p(x) = x(x + 1)(x + 2)(x + +3)(x + 4)(x + 5)(x + 6)(x + 7) Then p(x) = (x2 + 7x)(x2 + 7x +

6)(x2 + 6x + 10)(x2 + 7x + 12) As stated by JBL, p(x) < (x2 + 7x + 7)4. If we write u = (x2 + 7x)

Then p(x) = u4 + 28u3 + 252u2 + 720u While (u + 6)4 = u4 + 24u3 + 216u2 + 864u p(x) > (u + 6)4

except for a finite number of values of u.....

In fact, p(x)− (u+ 6)4 = 4u3 + 36u2−144u = 4u(u+ 12)(u−3) Therefore, p(x) > (u+ 6)4 except

for u ≤ 3. That is, x2 + 7x ≤ 3, which is impossible for positive integer x.
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In conlusion, (x2 + 7x+ 6)4 < p(x) < (x2 + 7x+ 7)4 for positive integer x, and hence the problem

is solved.

Question Is there any generalization to this problem?

Let S =
∑777

k=1
1√

2k+
√

4k2−1
. S can be expressed as

√
p+ m

n
−
√
q

r
, where gcd(m,n) = 1. Find

p+m+ n+ q + r. p, q, r,m, n ∈ N,
√
q

r
is in its simplest form, and m

n
< 1.

Solution

1√
2k +

√
4k2 − 1

=

√
2k −

√
4k2 − 1

=

√
(2k + 1)− 2

√
(2k + 1)(2k − 1) + (2k − 1)
√

2

=

√
2k + 1−

√
2k − 1√

2

The sum telescopes. S =
√

1555−1√
2

=
√

777 + 1
2
−
√

2
2
.

p+ q + r +m+ n = 784 . I think. (You should probably specify p, q, r,m, n ∈ N instead of Z.)
0 < a < 1, x2 + y = 0,

Prove that loga(a
x + ay) ≤ loga2 + 1

8

Solution

from
(
x− 1

2

)2 ≥ 0 we have x2 − x+ 1
4
≥ 0 .

⇐⇒ x+ y ≤ 1
4
(∵ x2 = −y)

=⇒ ax+y ≥ a
1
4 (∵ 0 < a < 1)

By AM-GM , a
x+ay

2
≥
√
ax+y ≥

√
a

1
4 = a

1
8

⇐⇒ loga (ax + ay) ≤ loga 2 + 1
8

đại số – Given that S = {a, b, c, d, e, f, g, h, i} is a set of nine elememts. A1 = {a, b, c}, A2 =

{d, e, f} and A3 = {g, h, i} are subsets of S. And F : S × S → S is a function satisyfing

(1) F (Am × An) = S for all m,n ∈ {1, 2, 3}, (2) F ({r} × S) = F (S × {s}) = S for all r, s ∈ S,
(3) F (a, a) = F (b, h) = F (e, b) = F (g, c) = F (i, i) = a, F (c, e) = F (d, b) = F (i, d) = b, F (d, f) =

F (f, h) = c, F (a, b) = F (d, g) = F (i, h) = d, F (e, d) = F (h, b) = e, F (a, e) = F (e, f) = F (g, h) = f ,

F (e, h) = F (f, d) = F (i, e) = g, F (a, f) = F (c, g) = F (f, c) = h, and F (a, g) = F (c, b) = F (g, f) =

F (i, c) = i.

Find the value of F (F (g, i), F (i, g)).

If real numbers x and y satisfy the condition x2 +xy+y2 = 1, find the minimun and maximum

value of:

K = x3y + xy3

Solution

Use polar transform, let x = r cos θ and y = r sin θ. x2 + xy + y2 = 1⇔ r2 + r2 cos θ sin θ = 1 Then

sin θ cos θ = 1
r2 − 1 sin2θ = 2( 1

r2 − 1) =⇒ −1 ≤ 2( 1
r2 − 1) ≤ 1 =⇒ 2

3
≤ r2 ≤ 2 (∗)

K = (x2 + y2)(xy) = r2(r2 cos θ sin θ) = r4( 1
r2 − 1) = r2(1− r2).

Making use of (∗) and consider the graph of a part of parabola open downwards(or the function

f(t) = t(1− t) is strictly decreasing for t ≥ 1
2
):

Maximum value of K = (2
3
)(1 − 2

3
) = 2

9
, and mimimum value of K = 2(1− 2) = −2. – Let p(x)
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be a polynomial with real coefficients. Prove that if

p(x)− p′(x)− p′′(x) + p′′′(x) ≥ 0

for every real x, then p(x) ≥ 0 for every real x – Let a, b, c be the lengths of three sides of a triangle

and ∆ be the area of the triangle.

Prove that for any p > 0, ∆ ≤
√

3
4

(
ap+bp+cp

3

) 2
p ,

the equality sign holds if and only if a = b = c. – Let a trapez ABCD(AB//CD) and the midpoint

M of AB .Segment MD meets segment AC at point N .Let P the foot of the perpendicular of point

N on line BC . Prove that ∠MPN = ∠DPN — Let a, b, c, d be integers such that ad− bc = k > 0

and

gcd(a, b) = gcd(c, d) = 1

Prove that there are exactly k ordered pairs of real numbers (x1, x2) satisfying 0 ≤ x1, x2 < 1 and

both ax1 + bx2 and cx1 + dx2 are integers – Let ABC be a triangle inscribed in circle R .Also let

the angle bisector line of A,B,C intersect the circumference of circle R atA′, B,′C ′ respectively . Let

AA′∩BC = N , C ′A′∩BB′ = P . Also denote the orthocenter as I . Now , let O be the circumcenter

of triangle IPC ′ , and OP ∩ BC = M . If BM = MN , and ∠BAC = 2∠ABC , find all the angle

∠A,∠B,∠C in the triangle ABC .

The semicircle with centre O and the diameter AC is divided in two arcs AB and BC with

ratio 1 : 3. M is the midpoint of the radium OC. Let T be the point of arc BC such that the area

of the cuadrylateral OBTM is maximum. Find such area in fuction of the radium.

Solution

[OBTM ] = [OBM ] + [MBT ] [OBM ] is always fixed it is not dependent on point T . Draw altitude

TH of 4MBT [MBT ] =
1

2
(BM)(TH) If we choose T such that TH is a maximum, O, H, and

T are collinear, meaning that the tangent line containing T is perpendicular to TH and parallel to

BM . This is because if we extend BM past M to meet circle O at point D, the T that maximizes

the height of 4MBT bisects arc BD.

Now [OBTM ] can be expressed as [OBTM ] = 1
2
[BM ][OT ], since the diagonals are perpendicular.

Using Pythagoras, [OBTM ] = 1
2

(
r

√
5+2
√

2

2

)
(r) =

√
5+2
√

2

4
r2

For every triple of functions f, g, h : [0, 1] → R, prove that there are numbers x, y, z in [0, 1]

such that |f(x) + g(y) + h(z)− xyz| ≥ 1
3
.

Solution

Suppose a counter-example exists. Then: f(1) + g(1) + h(0) < 1
3
and 2

3
< f(1) + g(1) + h(1) so 1

3
<

h(1)−h(0) and similarly 1
3
< g(1)−g(0) but −1

3
< f(0)+g(0)+h(0) so adding 1

3
< f(0)+g(1)+h(1)

and we lose.

The functions f(t) = g(t) = h(t) = 3t−1
9

gives us an error never larger than 1
3
.

A fenced, rectangular field measures 24 meters by 52 meters. An agricultural researcher has

1994 meters of fence that can be used for internal fencing to partition the field into congruent,

square test plots. The entire field must be partitioned, and the sides of the squares must be parallel

to the edges of the field. What is the largest number of square test plots into which the field can be

partitioned using all or some of the 1994 meters of fence?

Solution

Call the side length of the squares a, we then have the inequality:(
52

a
− 1

)
× 24 +

(
24

a
− 1

)
× 52 ≤ 1994
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Simplifying the inequality, we have:

a ≥ 416
345

Because the resulting plots must all be identical, we have the restriction that 52
a

= n and 24
a

= m

for some integers n and m.

The ratio of n
m

must then equal 52
24

= 13
6
, so n = 13k and m = 6k for some integer k.

Putting 13k into the expression 52
n

(which equals a), we have 52
13k
≥ 416

345
. To minimize a, we want

to maximize k, so k = 3. The value of a is then equal to
4

3
.

The total number of square plots is equal to
24× 52

a2
=

24× 52× 9

16
= 702

Solve this equation with x,y are integer numbers: xx+y = y12(1) yx+y = x3(2)

Solution

taking the natural log of both sides we get:

(x+ y) lnx = 12 ln y

(x+ y) ln y = 3 ln x

multiplying these together we get:

(x+ y)2 = 62 =⇒ (x+ y) = 6 or (x+ y) = −6

the latter gives no integral solutions whereas the former gives:

(6− y + y) ln(6− y) = 12 ln y =⇒ 6− y = y2 which has roots y = 2 and y = −3

this then gives solutions (4, 2) and (9,−3)

now we just have incorporate the solutions where x and y equal ±1, and we get (1, 1) and (1,−1)

Find n belong to N satisfying n−37
n+43

is a squared of a rational number.

Solution

Let m = n+43, so that we have m−80
m

= p2

q2 for relatively prime positive integers p and q. Since n ≥ 1,

we have m ≥ 44. Multiplying the equation by mq2, we obtain mq2 − 80q2 = p2m. Therefore, m =
80q2

q2−p2 = 80q2

(q−p)(q+p) . By the Euclidean Algorithm, we have gcd(q, q− p) = gcd(p, q− p) = gcd(p, q) = 1

and gcd(q, q + p) = gcd(q, p) = 1. Therefore, (q − p)(q + p) divides 80. The possibilities are

(q − p, q + p) = (1, 1), (1, 5), (2, 2), (2, 4), (2, 8), (2, 10), (2, 20), (2, 40), (4, 4), (4, 10), (4, 20), (8, 10)

(q, p) = (1, 0), (3, 2), (3, 1), (2, 0), (5, 3), (6, 4), (11, 9), (21, 19), (4, 0), (7, 3), (12, 8), (9, 1)

Discarding all (q, p) such that q and p are not relatively prime, we have

(q, p) = (1, 0), (3, 2), (3, 1), (5, 3), (11, 9), (21, 19), (7, 3), (9, 1) m = 80, 144, 90, 125, 242, 441, 98, 81

n = 37, 101, 47, 82, 199, 398, 55, 38

ABC is a triangle such that:AB = 9, BC = 15, CA = 16. D is a point in AC such that

]ABD = 2]DBC. Find cos]ADB

Solution

Extend BA to E such that AE = 16 (BE = 25). AC = AE, so we can let ∠AEC = ∠ACE = α and

∠BAC = 2α. Note that 4ABC ∼ 4CBE by SAS. Hence ∠BAC = ∠BCE = 2α. But ∠ACE = α,

so ∠ACB = α. Therefore, ∠BAC = 2∠BCA.

Now let ∠ABD = 2β and ∠DBC = β. We have ∠BAC+∠ACB+∠ABC = 3α+3β = 180◦ ⇐⇒
α + β = 60◦. Then ∠ADB = ∠DCB + ∠DBC = α + β = 60◦.

Hence cos∠ADB =
1

2
Consider the following sequence: x1 = 1 and xn+1 = xn + 1

xn
.

Prove that x100 > 14

Solution
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We have (x1)2 = 1 (x2)2 = (x1)2 + 1
(x1)2 +2 (x3)2 = (x2)2 + 1

(x2)2 +2 ........ (x100)2 = (x99)2 + 1
(x99)2 +2

Shorten two sides we have (x100)2 = 1+2∗99+ 1
(x1)2 + 1

(x2)2 +.... 1
(x99)2 > 199 =⇒ x100 > 14( x100 > 0)

Find all positive integers x and y such that x2 + xy = y2 + 1

Solution

Let’s suppose that there are other solutions, and choose such (x, y) that x is minimal.

First we prove that y > x. If y ≤ x then y2 + 1 ≤ x2 + 1 < x2 + xy (unless xy = 1, giving as

solution (1, 1) which is of the form (F2n−1, F2n). Then we prove that 2x > y in a similar manner.

Now we observe that (2x − y, y − x) is also a solution of the original equation. Since x < y,

2x − y < x, hence 2x − y = F2n−1 and y − x = F2n for some positive integer n. But now x =

2x− y + y − x = F2n−1 + F2n = F2n+1 and y = y − x+ x = F2n + F2n+1 = F2n+2. Contradiction.

Find all four digit numbers of the form aabb such that they are squares.

Solution

11(100a+ b) = p2 =⇒ 100a+ b = 11 · x2

Now 100a+ b ≤ 909 otherwise, 11(100a+ b) > 9999

=⇒ x ≤ 9

check all possibilties =⇒ 100a+ b = 11 · 82 = 704

only soln is 11 · 704 = 7744

consider all natural numbers 1, 2, 3, ..., n. Now take all possible products of them by pairs, so

1 · 2, 1 · 3, ...1 · n, 2 · 3, 2 · 4, ...2 · n...(n− 1) · n.
Find an expression in function of n for the sum of all those products.

Solution

Consider a polynomial f(x) = (x − 1)(x − 2)(x − 3) · · · (x − n). Clearly this polynomial has roots

1, 2, 3 · · · , n. Consider the case where n is even. f(x) = (x − 1)(x − 2)(x − 3) · · · (x − n) =

xn + s1x
n−1 + s2x

n−2 · · · + sn−1x + sn Where each si represents the sum of the roots taken i at a

time. However, the si ’s signs will alternate from positive to negative, so the quantity we want is

−s1 + s2 − s3 + s4 · · · + sn which happens to be f(−1) = (n + 1)! but including the coefficient of

xn. Finally we must subtract one though due to the first coefficient, so our sum is (n + 1)! − 1. A

similar case work will yield the same answer for odd n.

Let be given two reals a, b such that a− 2b+ 2 = 0. Prove that:√
(a− 3)2 + (b− 5)2 +

√
(a− 5)2 + (b− 7)2 ≥ 6.

Solution

Note that if we change ≥ to =, we have an ellipse on the ab coordinate plane. If the line a−2b+2 = 0

intersects it at only one point, then it must be tangent. If so, all other points on a− 2b+ 2 = 0 are

outside the ellipse and consequently the LHS would be greater than 6.

a = 2b−2, so substiution yields
√

(2b− 5)2 + (b− 5)2+
√

(2b− 7)2 + (b− 7)2 = 6⇒
√

5b2 − 30b+ 50+
√

5b2 − 42b+ 98 = 6 Isolating the left radical and then squaring gives:
√

5b2 − 30b+ 50
2

=
(

6−
√

(5b2 − 42b+ 98
)2

5b2−30b+50 = 36−12
√

(5b2 − 42b+ 98+5b2−42b+98 0 = −12b+84−12
√

(5b2 − 42b+ 98 Isolating

the right radical and then squaring gives:
√

5b2 − 42b+ 98
2

= (−b+7)2 5b2−42b+98 = b2−14b+49

4b2− 28b+ 49 = 0 The discriminant (−28)2− 4(4)(49) = 784− 784 = 0, so there is only one solution

for b. Since the line is not orthogonal, there is only one intersection, proving the desired inequality.

Suppose that n people each know exactly one piece of information, and all n pieces are different.

Every time person A phones person B, A tells B everything that A knows, while B tells A nothing.
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What is the minimum number of phone calls between pairs of people needed for everyone to know

everything? Prove your answer is a minimum.

Solution

2n − 2. We can see that this can always be done by induction: with n = 1, we need zero calls.

WOLOG, let A be the first caller, and let B be the last reciever (A=B is possible). For each new

person added, we need only two additional calls: the new person calls A on the first call, and B calls

the new person as the last call.

To see that this is optimal: it is clear that with n > 1, each person needs to recieve a call at least

once. Thus a minimum of n calls is necessary. WOLOG, let A be the first reciever, B be the second,

and so on. It is clear that with n > 2, A must recieve at least one additional call. With n > 3, B

must recieve at least one additional call, etc. Therefore we have n original calls, plus n−2 additional

calls. n+n−2 = 2n−2 – During a certain election campaign, p different kinds of promises are made

by the different political parties (p > 0). While several political parties may make the same promise,

any two parties have at least one promise in common; no two parties have exactly the same set of

promises. Prove that there are no more than 2p−1 parties. – Let a1, a2, . . . , an be non-negative real

numbers. Define M to be the sum of all products of pairs aiaj (i < j), i.e.,

M = a1(a2 + a3 + · · ·+ an) + a2(a3 + a4 + · · ·+ an) + · · ·+ an−1an.

Prove that the square of at least one of the numbers a1, a2, . . . , an does not exceed 2M/n(n− 1).

Let a, b, c be nonzero real numbers such that a + b + c = 0 and a3 + b3 + c3 = a5 + b5 + c5.

Prove that a2 + b2 + c2 = 6
5
.

Solution

Use identity (m+ n)3 = m3 + n3 + 3mn(m+ n) to get(
3

√
45 + 29

√
2 +

3

√
45−

√
2

)3

= (45+29
√

2)+(45−
√

2)+3
3

√
(45 + 29

√
2)(45− 29

√
2)

(
3

√
45 + 29

√
2 +

3

√
45−

√
2

)
(to use less LaTeX, I’ll let t =

3
√

45 + 29
√

2 +
3
√

45−
√

2) or

t3 = 90 + 21t

By the rational roots theorem, any rational root of this equation must be± a factor of 90. 2
3
√

45 + 29
√

2 <

10 so we only need to look at factors <10, i.e. ±1,±2,±3,±5,±6,±9. t = 6 works. So the cubic

expression is actually 6, which is rational.

Find all real numbers x for which

10x + 11x + 12x = 13x + 14x.

Solution

The way I would do it is to show that 10x + 11x + 12x does not grow as fast as 13x + 14x because

10y + 11y + 12y < 12y−x(10x + 11x + 12x)

while

13y + 14y > 13y−x(13x + 14x)

and clearly 13y−x > 12y−x for y > x (both sides are also strictly positive). So once we have

equality (easily seen to be x = 2), the RHS will continue to grow faster than the LHS and we cannot
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have any more solutions. The same argument shows that if there existed a solution with x < 2 then

the solution x = 2 wouldn’t exist.

Let U = {(x, y) |x, y ∈ Z, 0 ≤ x, y < 4}.
(a) Prove that we can choose 6 points from U such that there are no isosceles triangles with the

vertices among the chosen points.

(b) Prove that no matter how we choose 7 points from U , there are always three which form an

isosceles triangle.

Solution

the solution to (a) is (0, 0), (0, 1), (2, 0), (3, 1), (2, 3), (3, 3)

To prove (b), we first need to note that the total number of different distances from one of the four

center points to any leagal point is only five: 1,
√

2,
√

5, 2, 2
√

2 By the pigeon hole theorem, no point

can be placed in the four center places. Notice that a maximum of two points can be placed in one of

the four corners. This leaves five points to be placed on edges, and these will always form an isosceles

triangle with the size
√

5 appearing twice. To see this, look at the two squares (0, 1), (1, 3), (2, 0), (3, 2)

and (0, 2), (1, 0), (2, 3), (3, 1). By the pigeon hole theorem, at least one of them will contain three or

more points, creating an isosceles triangle.

Find all natural numbers n such that the equation

an+1x
2 − 2x

√
a2

1 + a2
2 + ...+ a2

n+1 + a1 + a2 + ...+ an = 0

has real solutions for all real numbers a1, a2, ..., an+1.

Solution

There is no real solution if 4(a2
1 +a2

2 + ...+a2
n+1)−4(an+1)(a1 +a2 + ...+an) < 0 This can be expressed

as a2
1−an+1a1 +a2

2−an+1a2 + ...+a2
n−an+1an +a2

n+1 < 0 Each a2
i −an+1ai is lowest when ai = an+1

2
.

Then a2
i − an+1ai comes out to be −a2

n+1

4
. Now it’s clear that n=1, 2, 3, 4. – N is odd and N ≥ 15.

There are N cards such that on each card is written his index. Jack chooses any card from the N

cards. There are 3 magicians: The first and the second magicians get N−1
2

cards(Any of them). Any

of them is looking on his cards and gives 2 cards to the third magician that he decide. The third

magician is looking on his 4 cards now, and decides what card was chosen by Jack. Find a strategy

for the magicians to do this. — We have positive reals a0, a1, a2, a3, a4, a5 ∈ [0, 10].

Also,
∑
ai = 10,

∑
iai ≥ 25.

Prove
∑
i(i− 1)ai ≥ 40.

Let x, y, z be real numbers whose sum is 6= 0. Prove that

x(y − z)

y + z
+
y(z − x)

z + x
+
z(x− y)

x+ y
= 0

holds if and only if two of the numbers are equal.

Solution

The proof uses the following well known trick to simplify the expression on the left hand side (LHS)

of the given equation: x− y = (x− z) + (z − y)

LHS = x · y−z
y+z

+ y · z−x
z+x

+ z · (x−z)+(z−y)
x+y

= (y − z)( x
y+z
− z

x+y
) + (z − x)( y

z+x
− z

x+y
) = (y −

z) (x2+xy−yz−z2)
(x+y)(y+z)

+(z−x) (xy+y2−z2−zx)
(z+x)(x+y)

= (y−z)

(
(x−z)(x+z)+y(x−z)

(x+y)(y+z)

)
+(z−x)

(
(y−z)(y+z)+x(y−z)

(z+x)(x+y)

)
= (y−

z)(x−z) (x+y+z)
(x+y)(y+z)

+(z−x)(y−z) (x+y+z)
(z+x)(x+y)

= (y−z)(x−z)(x+y+z)
(x+y)

·
(

1
(y+z)
− 1

(z+x)

)
= − (x−y)(y−z)(z−x)(x+y+z)

(x+y)(y+z)(z+x)

Now, we know that x+y+z 6= 0. So, LHS = 0⇐⇒ (x−y)(y−z)(z−x)
(x+y)(y+z)(z+x)

= 0⇐⇒ (x−y)(y−z)(z−x) = 0

⇐⇒ if any two of x, y, z are equal. Another way f(x) = (x+y)(y+z)(z+x)
(
x(y−z)
y+z

+ y(z−x)
z+x

+ z(x−y)
x+y

)
say f(x) is a polynomial about x, where y, z are constants, then
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through substitution, f(y) = f(−x− y) = 0, then by factor theorem

f(x) = (x− y)(x+ y + z)q(x), (q(x) is a polynomial) we note that f(x) is 3rd degree, so q(x) is

degree 1, also by symmetry, we have the other variables as factors, so

f(x) = (x− y)(y − z)(z − x)(x+ y + z)q2(x)

then q2(x) is constant due to degrees

then we can plug in arbitrary values of x,y,z to find q2(x) = 1

the rest follows by zero product property

For a real parameter p 6= 0, let x1, x2 be the roots of the equation x2 + px − 1
2p2 = 0. Prove

that x4
1 + x4

2 ≥ 2 +
√

2.

Solution

Since p 6= 0, x4 =
(
x2 + px− 1

2p2

)(
x2 − px+ p2 + 1

2p2

)
−
(
p3 + 1

p

)
x+ 1

4p4 + 1
2
.

Since xi (i = 1, 2) is the solution of the given quadratic equation, we have x2
i + pxi − 1

2p2 = 0.

Thus x4
1 + x4

2 = −
(
p3 + 1

p

)
(x1 + x2) + 2

(
1

4p4+ 1
2

)
= −

(
p3 + 1

p

)
(−p) + 2

(
1

4p4 + 1
2

)
∵ x1 + x2 = −p

= p4 + 1
2p4 + 2. As sen pointed, we can use A.M.−G.M. inequality.

Let x, y, z be integers such that

(x− y)2 + (y − z)2 + (z − x)2 = xyz

Prove that x3 + y3 + z3 is divisible by x+ y + z + 6

Solution

We know that x3 + y3 + z3− 3xyz = (x+ y+ z)(x2 + y2 + z2−xy− yz− zx)⇒ x3 + y3 + z3− 3xyz =
12
(
x+y+z)[(x−y)2 +(y−z)2 +(z−x)2]⇒ x3 +y3 +z3 = 3xyz+ 1

2
(x+y+z)xyz ...(Using the given

information.)⇒ x3+y3+z3 = 12
(
x+y+z+6)xyz⇒ x3+y3+z3 = (x+y+z+6)(x2+y2+z2−xy−yz−zx)

Since x, y, z are all integers, we conclude x3 + y3 + z3 is divisible by x+ y + z + 6.

Anyone have solutions that don’t use

x3 +y3 +z3−3xyz = (x+y+z)(x2 +y2 +z2−xy−yz−zx) – Consider the tetrahedron ABCD of

volume 1 and the points M,N,P,Q,R, S on the edges AB,BC,CD,DA,AC,BD. If MP,NQ,RS

are concurrent, then prove that the volume of MNPQRS is ≤ 1
2
. — Find the integer numbers

x, y, z, t which satisfy x+ y + z = t2, x2 + y2 + z2 = t3.

The bisectors of the angles of 4ABC cut BC,CA,AB in D,E, F . Prove that

1

AB · CE
+

1

BC · AF
+

1

CA ·BD
=

1

r ·R
.

Solution

Let AB = c, BC = a,AC = b, then using the angle bisector theorem about the ratio of the segments

in a triangle whenan angle bisector intersects the side: CE = ab
a+c

AF = bc
a+b

BD = ac
b+c

Also:

Area = pr = abc
4R

So: Rr = abc
2(a+b+c)

Substituting the above identities in the expression, get: LS=
a+c
abc

+ a+b
abc

+ b+c
abc

= 2(a+b+c)
abc

=RS. QED – Let P (z) be a polynomial with complex coefficients which

is of degree 1992 and has distinct zeros. Prove that there exist complex numbers a1, a2, . . . , a1992

such that P (z) divides the polynomial(
· · ·
(
(z − a1)2 − a2

)2 · · · − a1991

)2

− a1992.

——- n is a given positive integer. For what m ∈ [0, n] ∩ Z does the identity∑n
k=m

(
n
k

)(
n

n+m−k

)
=
(

2n
n−m

)
hold?
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Define a sequence (an) by a1 = 1, a2 = 2 and an+2 = 2an+1− an + 2, n ≥ 1. Prove that for any

m, amam+1 is also a term of the sequence.

Solution

Now by inspection of the first couple of terms:

conjecture

ak = (k − 1)2 + 1

inductive proof

a1 = 02 + 1 = 1 yes.

a2 = 12 + 1 = 2 yes

assume true for n = k and n = k + 1

=⇒ ak = (k − 1)2 + 1 and ak+1 = k2 + 1

for n = k + 2

ak+2 = 2ak+1 − ak + 2

=⇒ ak+2 = 2(k2 + 1)− ((k − 1)2 + 1) + 2

=⇒ ak+2 = 2k2 + 2− k2 + 2k − 2 + 2 = k2 + 2k + 2 = (k + 1)2 + 1

completion of induction.

am · am+1 = ((m− 1)2 + 1)(m2 + 1)

= m4 − 2m3 + 3m2 − 2m+ 2 = (m2 −m+ 1)2 + 1 = am2−m+2

Find all pairs (x, y) of nonnegative integers such that x2 + 3y and y2 + 3x are simultaneously

perfect squares.

Solution

Since the expressions x2 +3y and y2 +3x are symmetric in x and y, we may without loss of generality

assume x ≥ y. Consider the Diophantine system of equations

(1) x2 + 3y = a2

(2) y2 + 3x = b2.

where a and b are natural numbers. For y = 0 we obtain the solutions (x, y) = (3t2, 0). Suppose

y > 0. Then

x2 < x2 + 3y < x2 + 3x < (x+ 2)2,

hence a = x+ 1 by (1). This implies that

x2 + 3y = (x+ 1)2,

i.e.

3y = 2x+ 1.

Consequently x = 3s+ 1 and y = 2s+ 1 for a non-negative integer s. So according to (2)

b2 = y2 + 3x = (2s+ 1)2 + 3(3s+ 1) = 4s2 + 13s+ 4,

which is equivalent to

(8s+ 13− 4b)(8s+ 13 + 4b) = 105.

Therefore

(3) 8s+ 13− 4b = d,

(4) 8s+ 13 + 4b = 105
d
,

where d ≤
√

105 is a positive divisor of 105 = 3 · 5 · 7, i.e. d ∈ {1, 3, 5, 7}. Adding (3) and (4), the

result is

2(8s+ 13) = d+ 105
d
,

thus

s =
d+

105
d
−26

16
.
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This formula gives (d, s) = (1, 5), (3, 3
4
), (5, 0), (7,−1

4
) as possible solutions. Seeing that s is an

integer, we are left with two solutions,

s = 0 ⇔ (x, y) = (1, 1),

s = 5 ⇔ (x, y) = (16, 11),

R is a solution to x+ 1
x

= sin 210◦

sin 285◦
. Suppose that 1

R2006 +R2006 = A find bA10c where bxc is the
greatest integer less than or equal to x.

Solution

= sin 210◦

sin 285◦
= − sin 150◦

− sin 75
= 2 sin 75◦ cos 75◦

sin 75
= 2 cos 75

Then using the quadratic formula, x = cis75◦. Now we can easily evaluate A using cis exponent

rules.

A = cis75 ∗ 2006 + cis− 75 ∗ 2006 = 2 cos 330 =
√

3

It follows that A10 = 243

4V A0A1 is isosceles with base A1A0. Construct A2 on segment A0V such that A0A1 = A1A2 =

b. Construct A3 on A1V such that b = A2A3. Contiue this pattern: construct A2nA2n+1 = b with

A2n+1 on segment V A1 and A2n+1A2n+2 = b with A2n+2 on segment V A0. The points An do not

coincide and ∠V A1A0 = 90− 1
2006

. Suppose Ak is the last point you can construct on the perimeter

of the triangle. Find the remainder when k is divided by 1000.

Solution

Let ∠V A1A0 = θ. After some initial plodding and (not-very-rigorous) inductive reasoning, we reach

the conclusion that we can construct An iff (2n− 1)θ − (n− 1)π > 0.

∴ If Ak is the last point we can construct on the perimeter of 4V A1A0, then the following two

conditions must be satisfied: (2k − 1)θ − (k − 1)π > 0, and (2k + 1)θ − kπ ≤ 0

After pluggin in θ = 90− 1
2006

(in degrees), we get the following two inequalities: k < (90)(1003)+ 1
2
,

and k ≥ (90)(2003)− 1
2

This implies k = (90)(1003), so when k is divided by 1000, the remainder is (90)(3) = 270. And,

we are done.

Find a way to generate all integral solutions to x2 + 2y2 = z2.

Solution

Use pythagorean triples. Transform your equation into u2 +y2 = z2, where u2 = x2 +y2. Pythagorean

triples are generated as follows:

gcd(u, y) = gcd(u, z) = gcd(y, z) = 1 =⇒ ∃a, b ∈ Z such that

u = 2ab, y = |a2 − b2|, z = a2 + b2. Substitution and Done! Another way We will proceed using

Algebraic Number Theory and Unique Factorization in Z[i]. Hence, x2+2y2 = (x+iy
√

2)(x−iy
√

2) =

z2. Thus, ∃a, b ∈ R such that x+ iy
√

2 = (a+ ib)2 = a2 − b2 + 2abi =⇒ x = a2 − b2 and y =
√

2ab.

From these, we have that z = a2 + b2. Now, if we find c ∈ Z such that a =
√

2c, then we have

y = 2cb, x = 2c2 − b2, y = 2c2 + b2. Thus, we have that (x, y, z) = (2u2 − v2, 2uv, 2u2 + v2), u, v ∈ Z.
Q.E.D

The sequence a0, a1, a2, ... satisfies am+n + am−n = 2(am + an) for all nonnegative integers m

and n with m ≥ n. If a1 = 1, determine a2006.

Solution

well to complete the inductive step.

a1 = 12, a2 = 22 true

assume true for ak and ak+1

ak = k2 and ak+1 = (k + 1)2
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now we have ak+2 + ak = 2(ak+1 + a1) from initial condition.

=⇒ ak+2 = 2(ak+1 + 1)− ak since a1 = 1

ak+2 = 2(k2 + 2k + 2)− k2

=⇒ ak+2 = k2 + 4k + 4 = (k + 2)2

hence by MI, am = m2 –

— Find all postive integer x and n ∈ N such that xn + 2n + 1 | xn+2 + 2n+2 + 1.

Let P0P1 . . . Pn−1 be a regular polygon inscribed in a unit circle. Prove that P0P1·P0P2 . . . P0Pn−1 =

n.

Solution

Work in the complex plane. WLOG Pk = ei
2πk
n .

Let P (x) = xn−1 be the polynomial with complex roots Pk. LetQ(x) = xn−1
x−1

= 1+x+x2+...+xn−1

be the polynomial with those roots Pk, k 6= 0.

Now P0Pk = (1− Pk). Our product is then
∏n−1

k=1(1− ei 2πk
n ) = Q(1) = n. QED.

Prove that for each prime p the equation 2p + 3p = an has no intger solutions (a, n) with

a, n > 1.

Solution

Equation obviously has no solutions with p = 2, so we can say that p is an odd number.

2p + 3p = (2 + 3) ·
p−1∑
i=0

2p−1−i(−3)i = an

Thus amust be divisible by 5, but since n > 1, LHS is divible by 25, and it means that
∑p−1

i=0 2p−1−i(−3)i

is a multiple of 5.
p−1∑
i=0

2p−1−i(−3)i

≡
p−1∑
i=0

2p−1−i(2)i mod 5

≡
p−1∑
i=0

2p−1 mod 5

≡ p · 2p−1 mod 5

≡ 0 mod 5 ⇐⇒ p = 5

But our initial equation doesn’t have solutions with p = 5.

Let z1, z2, z3 ∈ C such that |z1| = |z2| = |z3| = R and z2 6= z3. Prove that

min
a∈R
|az2 + (1− a)z3 − z1| =

1

2R
|z1 − z2| · |z1 − z3|.

Solution

Let z1, z2, z3 be three vectors in complex plane that start at the origin. Connect the three endpoints

we get a triangle with circumcenter at the origin. Let the end point of z1 be A, z2 be B, and z3 be C,

then by simple analytic geometry (and simple algebra arrangement) the given equation is the same

as:

min |k(z2 − z3) + z3 − z1| = bc
2R

172

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=100749
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=100919
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=100764


(for notation sake, I change the a in the original equation to k, because a will stand for a side of

my triangle).

Now look at the expression in the min. We see that z3 − z1 is a vector parallel to and the same

length as the side b, and z2− z3 is parallel and the same length as the side a. using tip to tail vector

addition, we see that the minimum expression becomes the minimum length from A to BC, which

is the length of the altitude from A to BC by simple geometry.

So, we wish to prove that hA = bc
2R

. Recall that ahA
2

= 4, and also 4 = abc
4R

, equate and solve we

see that the equation indeed is true.

If z1 equals to either z2 or z3, plug in k = 1 we get both sides to be zero, so the equation holds all

the time. – Let k◦m mean k ≥ m+2. Show that every positive integer n has a unique representation

of the form n = Fk1 + ... + Fkr , where Fki are Fibonacci numbers and k1 ◦ k2 ◦ . . . ◦ kr ◦ 0. – A

rectangular prism with dimensions ` × w × h has 2 planes connecting the opposite sides (forming

an X) from top. There is a sphere with radius x inside the figure. What is the probability that this

sphere neither touches the planes nor the sides of the rectangular prism?

Positive integers are written on all the faces of a cube, one on each. At each corner of the cube,

the product of the numbers on the faces that meet at the vertex is written. The sum of the numbers

written on the corners is 2004. If T denotes the sum of the numbers on all the faces, find the possible

values of T.

Solution

Let the numbers on the "walls" of the cube be a, b, c and d such that a is "opposite" c and b is

"opposite" d. Also, let the number on the "top" face be e and the number on the "bottom" face be

f (e and f are "opposite" each other.)

Then the products at the eight corners are abe, ade, bce, cde, abf, adf, bcf and cdf. We now have

abe+ade+bce+cde+abf+adf+bcf+cdf = 2004⇒ ab(e+f)+ad(e+f)+bc(e+f)+cd(e+f) = 2004

⇒ (e+ f)(ab+ ad+ bc+ cd) = 2004 ⇒ (a+ c)(b+ d)(e+ f) = 22 · 3 · 167

Now, note that each of the three terms on the LHS is greater than or equal to 2.

The rest is just a matter of evaluating individual cases, such as a + c = 22, b + d = 3 and

e + f = 167, in which case T = 4 + 3 + 167 = 174, and so on. – Let n ≥ 2 be a given integer. How

many solutions does the system of equations x1 + x2
n = 4xn, x2 + x2

1 = 4x1, · · ·, xn + x2
n−1 = 4xn−1

have in nonnegative real numbers x1, · · ·, xn? ——– Let n ≥ 3 be an integer. Prove that for positive

numbers x1 ≤ x2 ≤ · · · ≤ xn,
xnx1

x2
+ x1x2

x3
+ · · ·+ xn−1xn

x1
≥ x1 + x2 + · · ·+ xn.

Find minimum value of expression 1
r
(4p
u

+ q√
1−v2 ), where p, q, r, u, v - positive numbers satisfying

conditions: pv + q
√

1− u2 ≤ r,

p2 + 2qr
√

1− u2 ≥ q2 + r2,

2qr
√

1− u2 + q2 1−v2−u2

v2−1
≥ r2

Solution

First we try to simplify problem a bit. Make a new variables a = p
r
, b = q

r
. After this problem looks

easier: Find minimum value of function f = 4a
u

+ b√
1−v2 , where a, b, u, v - positive numbers satisfying

conditions: av + b
√

1− u2 ≤ 1,

a2 + 2b
√

1− u2 ≥ b2 + 1,

2b
√

1− u2 + b2 u2

1−v2 ≥ b2 + 1

After this lake a look at variables u and v: they satisfy inequalities 0 < u, v < 1, its possible

to make such angles 0 < α, β < π
2
, what u = cosα, v = sin β. After this problems looks like:
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f = 4a
cosα

+ b
cosβ

, where variables satisfy: a sin β + b sinα ≤ 1,

a2 + 2b sinα ≥ b2 + 1,

2b sinα + b2 cos2 α
cos2 β

≥ b2 + 1

Then notice what second condition allows to lower a until next equation will be satisfied: a2 +

2b sinα = b2 + 1 ⇔ a2 − b2 cos2 α = (1 − b sinα)2 Then lower b until: 2b sinα + b2 cos2 α
cos2 β

= b2 + 1 ⇔
b tan β cosα = 1 − b sinα ⇔ b sin(α + β) = cos β From last two conditions what became equations

we get what a2 − b2 cos2 α = b2 tan2 β cos2 α ⇔ a cos β = b cosα Then f = 4a cosβ+b cosα
cosβ cosα

= 5b
cosβ

=
5

sin(α+β)
≥ 5 So the answer is 5.

In acute triangle ABC, E, F are on side BC such that <BAE=<CAF. Construct FM ⊥ AB

and FN ⊥ AC, extend AE to meet the circumcircle of ABC at D. Show that the area of AMDN is

equal to the area of triangle ABC.

Solution

Let ∠BAC = α and ∠BAE = ∠CAF = x.

Then we have to prove that 1
2
AB · AC sinα = 1

2
AD(AN sin(α− x) + AM sinx) (1)

We have AM = AF cos(α− x) and AN = AF cosx.

So (1) becomes AB · AC sinα = AD · AF (cosx sin(α− x) + sin x cos(α− x)) = AD · AF sinα.

But ∠BAD = ∠FAC and ∠ACF = ∠ADB, from which ∆ABD ∼ ∆AFC and AB
AD

= AF
AC

.

Another way Let ∠BAE = ∠CAF = α, ∠EAF = β,then

S4ABC =
1

2
AB · AF · sin (α + β) +

1

2
AC · AF · sinα =

AF

4R
(AB · CD + AC ·BD)

Where R is the radius of the circumcircle. Since we also have:

SAMDN =
1

2
AM · AD · sinα +

1

2
AD · AN sin (α + β)

=
1

2
AD[AF · cos (α + β) sinα + AF cosα sin (α + β)]

=
1

2
AD · AF · sin (2α + β)

=
AF

4R
AD ·BC.

By Ptolemy theorem we know that AB · CD + AC ·BC = AD ·BC. Thus SAMDN = S4ABC .

What is the last non-zero digit in N! ?

Note that, N is big enough.

Solution

Let L(n) be the last nonzero digit in n!.

Suppose that n = 5q + r where q ≥ 1 and r is from 0 to 4. Then I believe we get the recurrence

L(n) = 2qL(q)L(r) mod 10 .

That recurrence comes pulling out the terms 5, 10, . . ., 5q from the product n! = 1 · 2 · . . . · n.
Using this recurrence, we can quickly calculate L(n) ANother way To check the mod 10 recurrence,

we need to check mod 2 and mod 5. Mod 2 is clear because both sides are even. To check mod 5, we

can use the identity

(5q)! = 10qq!

q−1∏
i=0

(5i+ 1)(5i+ 2)(5i+ 3)(5i+ 4)

2
.

The fraction (5i+1)(5i+2)(5i+3)(5i+4)
2

is 2 mod 5, so we get the recurrence

L(5q) ≡ 2qL(q) (mod 5) .
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Finally, it is easy to see that

L(n) ≡ L(5q)L(r) (mod 5) .

What is the rightmost nonzero digit of 2006!?

Solution

To calculate 2500 mod 10 is to observe that the powers of 2 mod 10 repeat in a cycle of 4. Thus

2500 ≡ 24 ≡ 6 (mod 10).

Note that the numbers in your calculation arise because 2006! has 500 terminating zeros, and

because the base 5 representation of 2006 is (31011)5.

In triangle ABC, ∠A = 60o, AB>AC. O is the circumcentre. Two altitudes BE and CF meet at

H. M and N are on BH and HF such that BM=CN, find the value of MH+NH
OH

. (2002 China League)

Solution

Construct M ‘ on BE such that BM ‘ = CH so MM ‘ = NH. It‘s easy to show that OM ‘B is

congruent to OCH proving that the angles ∠OBM ‘ = ∠OCH (it‘s appears after some operations

with the 60 degrees angle, isogonals,...), and more, exist a rotation of 120 degrees between, seeing

that ∠CHB = 120.

So, the triangle OHM ‘ is isosceles and ∠HOM ‘ = 120 ⇒ NH+HM
OH

= HM ′

OH
=
√

3

Prove 1 · 2 · 3 · · · (p− 2) ≡ 1 mod p where p is prime.

Solution

For each x ∈ T = [2; p − 2] there is only one σ(x) = x−1( mod p) (σ : T → T) (it follows from the

Bezout’s theorem for linear cominations and continue divisions); so let’s take two factors such that

their product is ≡ 1( mod p) and multiply by 1: it will give ≡ 1
p−3

2
+1 ≡ 1( mod p)

In triangle ABC, a,b,c be its sides. If the measure of angles A, B and C forms a geometrical

sequence, and b2 − a2 = ac, then find angle B. (1985 China League)

Solution

]A = a;]B = ar;]C = ar2. We have D in ray CB such that BD = DC. Then triangles ABC and

DAC are similars.

Hence:ar
2

= a =⇒ r = 2

ar2 + ar + a = π :arrow: 7a = π =⇒ ]B = 2π
7

Another solution: Through point C construct

CD ‖ AB to meet the circumcircle of4ABC atD. Connect AD, then ABCD is an isocelces trapzoid.

By Ptolemy, we have: b2 = a2 + c · CD. From b2 − a2 = ac, we get CD = a, thus: AD = DC = CB,

thus ∠B = 2∠ABC.

In triangle ABC, since the mearuse of angles A, B and C forms a geometrical sequence, so the

common ratio q is 2, thus ∠A + ∠B + ∠C = 7∠A = π, thus we get ∠A = π
7
, thus ∠B = 2π

7
.

– At each lattice point of a finite grid paper, we draw an arrow parallel to one of the sides of the

paper (no arrows on the boundary can point outwards.) Show that there exist two neighboring points

(horizontally, vertically, or diagonally) which the arrows point to opposite directions. – Find all n, a

positive integer such that (n− 1)50n < 51n

generalise this for (n − 1)xn < (x + 1)n – Suppose p is a prime greater than 3. Find all pairs of

integers (a, b) satisfying the equation

a2 + 3ab+ 2p(a+ b) + p2 = 0.

Let x1 = x2 = 1, x3 = 4, and xn+3 = 2xn+2 + 2xn+1 − xn for all n ≥ 1. Prove that xn is a

square for all n ≥ 1.

Solution
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Here is a more "natural" way of solving the problem. We first compute by hand the first few terms

of the sequence. We then note that x1 = 12, x2 = 12, x3 = 22, x4 = 32, x5 = 52, x6 = 82, x7 = 132, and

so on. We, now, suspect a surprising pattern here, and this should help us determine our next step.

Claim: xn = Fn
2, where (Fn) is the Fibonacci sequence, with F1 = F2 = 1. Proof: We use strong

induction on n to show our claim is true.

Base case: We have x1 = F1
2, x2 = F2

2, x3 = F3
2, as shown above.

Induction case: Let xm = Fm
2 be true for all m, 4 ≤ m ≤ n. Now, xn+1 = Fn+1

2 ⇔ 2xn +

2xn−1 − xn−2 = Fn+1
2 ⇔ 2Fn

2 + 2Fn−1
2 − Fn−2

2 = (Fn + Fn−1)2 ⇔ Fn
2 + Fn−1 − Fn−2

2 = 2FnFn−1

⇔ Fn
2 + Fn−1 − 2FnFn−1 = Fn−2

2 ⇔ (Fn − Fn−1)2 = Fn−2
2 ⇔ Fn−2

2 = Fn−2
2, which is true. Thus,

xn+1 = Fn+1
2 is true, and this completes our inductive proof.

Hence, xn = Fn
2, for all natural n ≥ 1, where (Fn) is the Fibonacci sequence (with F1 = F2 = 1).

And we are done. – Find all pairs (a; b) of positive integers for which the numbers a3 + 6ab + 1

and b3 + 6ab + 1 are cubes of positive integers. – If a square is partitioned into n convex polygons,

determine the maximum number of edges present in the resulting figure.

[You may find it helpful to use Euler’s theroem: If a polygon is partioned into n polygons, then

v− e+n = 1, where v is the number of vertices and e is the number of edges in the resulting figure.]

—– Given a graph with n vertices and q edges numbered 1, ..., q, show that there exists a chain of

m edges, m ≥ 2q
n
, each two consecutive edges having a common vertex, arranged monotically with

respect to the numbering. — A cyclic quadrilateral ABCD is given. The lines AD and BC intersect

at E, with C between B and E; the diagonals AC and BD intersect at F . Let M be the midpoint of

the side CD, and let N(different from M) be a point on the circuncircle of the triangle ABM such

that AN
BN

=AM
BM

. Prove that the points E, F , and N are collinear.

Show that no integer of the form xyxy in base 10 (where x and y are digits) can be the cube

of an integer. Find the smallest base b > 1 for which there is a perfect cube of the form xyxy in base

b.

Solution

xyxy = 101(10x+ y) = k3

=⇒ 10x+ y = 1012 ·m3 as 101 is prime

minimum is when m = 1 =⇒ 10x+ y = 10201 but 0 ≤ x, y ≤ 9

now let it be in base b

=⇒ x · b3 + y · b2 + x · b+ y = xb(b2 + 1) + y(b2 + 1) = (xb+ y)(b2 + 1)

from here, i just substituted in b = 2, 3, 4, 5, 6, and arrived at no solutions for x, y, where 0 ≤
x, y ≤ (b− 1)

b = 7

=⇒ (7x+ y)50 = k3 and a solution can be found x = 2, y = 6

hence base 7 is smallest.

Show that if x is a non-zero real number, then x8 − x5 − 1
x

+ 1
x4 ≥ 0.

Solution

x8 − x5 − 1
x

+ 1
x4 ≥ 0 ⇔ (x3 − 1)

(
x5 − 1

x4

)
≥ 0 ⇔ (x3−1)2(x6+x3+1)

x4 ≥ 0 Another way Multiply all by

x4, which is positive and won’t affect sign.

Factorizes as (x9 − 1)(x3 − 1), and both factors are the same sign.

Check:

x ≥ 1 implies both terms non negative. x < 1 implies both terms negative.

Thus product is always non-negative. – Let x, y be positive integers with y > 3 and x2 + y4 =
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2 [(x− 6)2 + (y + 1)2]. Prove that x2 + y4 = 1994.

P1, P2, and P3 are polynomials defined by: P1(x) = 1+x+x3 +x4 + ......+x96 +x97 +x99 +x100

P2(x) = 1− x+ x2 − ......− x99 + x100

P3(x) = 1 + x+ x2 + ......+ x66 + x67.

Find the number of distinct complex roots of P1 * P2 * P3.

Solution

well look at that, it is missing every third power. so factor out a 1 + x to get P1(x) = (x + 1)(1 +

x3 + x6...x99) = (x+ 1)
(
x102−1
x3−1

)
. so P1 has 100 roots, -1 and the 102nd roots of unity, not counting

the cube roots of unity. so -1 is a double root, so there are only 99 distinct ones.

now some of those will be the same as the 68th roots from that other polynomial. the roots of

P1 are in the form e
2kπ
102 (k is an integer, 1 ≤ k ≤ 101, k is not 34 or 68), the roots of P2 are in the

form e
2kπ
101 (k is an integer from 1 to 100), and the roots of P3 are e

2kπ
68 (k is an integer from 1 to 67).

since 101 is relatively prime to 102 and 68, none of the roots of P2 overlap the other ones. let

k1 be the k from a root of P1 and k3 be a k from P3. so the roots that aren’t distinct are the ones

where k1

102
= k3

68

mulitplying by 34, we get k1

3
= k3

2
, which means 2k1 = 3k3. so k3 is divisible by 2, and k1 is

divisible by 3. i think any even number from 2 to 66 works for k3, so there’s 33 of them.

so we have 99 + 100 + 67− 33 = 233. so hopefully 233 is the right answer

3 blue marbles and 4 red marbles are placed in an opaque bag. Bob takes one marble out at a

time until he has taken out an equal number of red and blue marbles, or has taken all the marbles.

Find the probability that Bob takes all of the marbles.

Solution

Note that Bob can take out equal number of both marbles only if he took out even number of marbles.

We’ll count the number of ways to take equal number of marbles and subtract.

case 1: n = 2 we have 2 ways, ab and ba, to take out the marbles

case 2: n = 4 we have 2 ways also, aabb and bbaa. (because if it starts with ab or ba, by case 2

it’ll end already).

case 3: n = 6 we need to start with aaba aaab, or the complement, then end with two of the same.

So we have 4 ways to do it.

So we get: 1−
(
2 ∗ 3∗4

7∗6 + 2 ∗ 3∗2∗4∗3
7∗6∗5∗4 + 4 ∗ 3∗2∗1∗4∗3∗2

7∗6∗5∗4∗3∗2

)
= 1

7

In a quadrilateral ABCD, it is given that AB is parallel to CD and the diagonals AC and

BD are perpendicular to each other. Show that (a) AD ·BC ≥ AB ·CD (b) AD+BC ≥ AB+CD.

Solution

(a) Let a = AP, b = BP, c = CP, d = DP . Assume WLOG that AB ≤ CD. Since AB‖CD,

4ABP ∼ 4CDP . So,
a

c
=
b

d
= k
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where k ∈ (0, 1]. Thus, with a = kc and b = kd,

(1− k2)2 ≥ 0

c2(1− k2)d2(1− k2) ≥ 0

(c2 − a2)(d2 − b2) ≥ 0

a2b2 + c2d2 ≥ a2d2 + b2c2

a2b2 + c2d2 + (a2c2 + b2d2) ≥ a2d2 + b2c2 + (a2c2 + b2d2)

(a2 + d2)(b2 + c2) ≥ (a2 + b2)(c2 + d2)

AD2 ·BC2 ≥ AB2 · CD2

AD ·BC ≥ AB · CD

(b) From part (a) we have

AD ·BC ≥ AB · CD
2AD ·BC ≥ 2AB · CD

(a2 + b2 + c2 + d2) + 2AD ·BC ≥ 2AB · CD + (a2 + b2 + c2 + d2)

(a2 + d2) + 2AD ·BC + (b2 + c2) ≥ (a2 + b2) + 2AB · CD + (c2 + d2)

AD2 + 2AD ·BC +BC2 ≥ AB2 + 2AB · CD + CD2

(AD +BC)2 ≥ (AB + CD)2

AD +BC ≥ AB + CD

Let a, b, c, d, r be natural numbers and we have ab = cd ,T = ar + br + cr + dr then prove that

2T − 1 is composite number.

Solution

we proceed as follows.

a = cd
b
. So, c = hm, d = kn, b = hk.

T = (mn)r + (hk)r + (hm)r + (kn)r ⇒ T = (mr + kr)(nr + hr)

Note that both the factors on the RHS above are greater than 2.

Now, we know that (aq − 1) = (a− 1)(aq−1 + aq−2 + ...+ 1) for any two naturals a and q.

Just put a = 2m
r+kr and q = nr + hr and the result follows.

Prove: 1989
2
− 1988

3
+ 1987

4
− ...+ 1

1990
= 1

996
+ 3

997
+ 5

998
+ ...+ 1989

1990

Solution

hn =
∑n

i=1
1
i

1
2
hn =

∑n
i=1

1
2i
h2n − 1

2
hn =

∑n
i=1

1
2i−1

h2n − hn = −
∑2n

i=1
(−1)n

i∑2n
i=2(−1)i 2n−i+1

i
= −1 +

∑2n
i=2(−1)i 2n+1

i
= −1 + (2n+ 1)(hn − h2n + 1)∑n

i=1
2i−1
n+i

=
∑n

i=1 2− 2n+1
n+i

= 2n− (2n+ 1)(h2n − hn)

Solve the equation sinx cos y + sin y cos z + sin z cosx = 3
2
.

Solution

Using AM-GM LHS ≥ 3. 3

√
sin(2x)sin(2y)sin(2z)

8
≥ 3

2
, equality holds only if the sines of double argument

are all 1 which means all x,y,z being of the form (2k+1)π
4

. However, for this estimate I need all the

terms on LHS to be positive. If one is negative (wlog the first one), we,ll have sinz + cosz ≥ 3/2,

contradiction.

Let d be a divisor of n. Let d(n) be the number of divisors of n. Prove that if n is not a product

of two primes then, for every d, the number of divisors that are not relatively prime to d is at least
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d(n)
2
.

Solution

Let n = pe11 p
e2
2 · · · penn where the pi are prime. It follows that d(n) = (e1 + 1)(e2 + 1) · · · (en + 1). Also

let d = pf1

1 p
f2

2 · · · pfnn .

The statement which we want to prove is equivalent to proving that the number of divisors

relatively prime to d is at most d(n)
2
.

A divisor of n can be relatively prime to d only if at least one of the fi are 0. So let fk1 , fk2 , . . . fkj
all be 0. (Note that not all of the fi can be zero since taht would make d = 1). Then the number of

divisors of n which are relatively prime to d is

j∏
i=1

(fki + 1).

However, the total number of divisors of n can be written as d(n) =
∏n

i=1(fki + 1). We then have

j∏
i=1

(fki + 1) ·
n∏
i=j

(fki + 1) = d(n)⇒
j∏
i=1

(fki + 1) =
d(n)∏n

i=j(fki + 1)
.

Since fi ≥ 1 we arrive at our desired result:

j∏
i=1

(fki + 1) ≤ d(n)

2
.

Show that every positive integer can be written as a sum of distinct Fibonacci numbers.

Solution

Consider a number n. Clearly, for some Fi, where Fn is the nth Fibonacci number, we will have

Fi ≤ n < Fi+1. Now we want that n − Fi is a Fibonacci number. Consider Fi+1 − Fi = Fi−1 This

number can be written as Fi−1 = Fi−2 +Fi−3. If one beween Fi−2 and Fi−3 is equal to n−Fi, we have
done. If it isn’t, we have 2 possible cases:Fi < n < Fi + Fi−2 or Fi + Fi−2 < n < Fn+1 If n is in the

first case, consider that Fi−2 = Fi−3 + Fi−4, if n is in the second, consider that Fi−3 = Fi−4 + Fi−5

and repeat the reasoning. Being our succession of Fn monotonic strict decreasing, it will have a lower

bound in a finite number of passages. Therefore n can be written as a finite sum of distinct Fn.

Let a, b ∈ R∗. Find all functions f : R→ R such that

f

(
x− b

a

)
+ 2x ≤ a

b
· x2 +

2b

a
≤ f

(
x+

b

a

)
− 2x, ∀x ∈ R.

Solution

Replacing x by x+ b
a
in the first inequality yields

f(x) + 2(x+ b
a
) ≤ a

b
(x+ b

a
)
2

+ 2b
a

⇒ f(x) ≤ a
b
x2 + b

a
... (I)

Again, replacing x by x− b
a
in the second inequality yields a

b
(x− b

a
)
2

+ 2b
a
≤ f(x)− 2(x− b

a
)

⇒ a
b
x2 + b

a
≤ f(x) ... (II)

Combining (I) and (II) gives f(x) = a
b
x2 + b

a
,∀x ∈ R – Let A,B,C,D be four points, not all

in the same plane. Let HA, HB be the orthocenters of BDC and ACD, respectively. Prove that

A,B,HA, HB are in the same plane if and only if they are concyclic. – Let p be a prime number such

that 2p− 1 is also prime. Find all pairs of natural numbers (x, y) such that

(xy − p)2 = x2 + y2.
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– Let ABC be a equilateral triangle. On the perpendiculars in A,C to the plane (ABC), we consider

the points M,N (on the same side of (ABC)), such that AM = AB = a and MN = BN .

(a) Find the distance from A to the plane (MNB);

(b) Determine sin∠ (MN,BC). – a2+b2+c2+1
abc

= k ∈ Z
if a, b, c > 0 ∈ Z find all values of k.

số học

số học

ABCD is a quadrilateral with AD = BC. If ∠ADC is greater than ∠BCD, prove that

AC > BD.

Solution

AC2 = AD2 + CD2 − 2AD · CD cos∠ADC

BD2 = BC2 + CD2 − 2AD ·BC cos∠BCD

Since f(x) = cos x is monotonically decreasing in [0, π], so AC > BD.

In the plane Oxy, two points A ∈ xOx′ and b ∈ yOy′ move and always satisfy the condition

AB = 3. Given J ∈ AB with ~AJ = 2 ~JB. Find locus of point J .

Solution

Let’s consider this locus only for the upperhalf plane.Then if A = (t, 0), we have

B = (0,
√

9− t2).

It means that
~OA = [t, 0]

and
~OB =

[
0,
√

9− t2
]
,

so

~OJ =
1

3
~OA+

2

3
~OB =

[
1

3
t,

2

3

√
9− t2

]
.

Substituting x = 1
3
t we get

~OJ =

[
x,

2

3

√
9− 9x2

]
⇐⇒ J =

(
x,

2

3

√
9− 9x2

)
.

It means that this locus in the upperhalf plane is graph of function

f(x) = 2
√

1− x2

(for lowerhalf it’s symmetric), so in fact this is an ellipse.

Let n ≥ 3 be a positive integer. Prove that the sum of the cubes of all natural numbers,

coprime and less than n, is divisible by n.

Solution

We wish to show that the sum of the cubes of the members of Un is zero.

This is rather simple. The additive inverse of the cube of a member of Un is the cube of its

additive inverse (edit: in other words, (a+ b)|(a3 + b3)), so we add each number to its additive inverse

(invariant under cubing) for a sum of zero.

For n ≥ 3 we must have 2|ϕ(n) and so such a pairing always exists. (Or to be more explicit: For

n ≥ 3 we have n
2
6∈ Un, so every member of Un has an additive inverse different from itself.)

hình học
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Let x, y, z > 0 such that xyz = 1. Prove that:

x+ y2 + z3 > 2.5.

Solution

x+ y2 + z3 = 1
6
x+ 1

6
x+ 1

6
x+ 1

6
x+ 1

6
x+ 1

6
x+ 1

3
y2 + 1

3
y2 + 1

3
y2 + 1

2
z3 + 1

2
z3≥ 11 11

√
x6y6z6

66·33·22 > 2.5

show that the system

xex
2

+ yey
2

= 3

x2 + y2 = 1

hasn’t solution

Solution

We will prove that if x2 + y2 = 1, then xex
2

+ yey
2
< 3. When x < 0 we have xex

2
+ yey

2
<

(−x)e(−x)2
+ yey

2
< (analogous for y), so we can assume that x, y ≥ 0. Applying Cauchy-Schwarz we

get xex
2

+ yey
2 ≤

√
x2 + y2

√
e2x2 + e2y2 =

√
e2x2 + e2y2 , so we have to prove that e2x2

+ e2y2
< 9. Let

a = x2. Then 0 ≤ a ≤ 1 and we have to prove that e2a + e2(1−a) < 9. Let t = e2a, 1 ≤ t ≤ e2. Then

the inequality simplifies to t+ e2

t
< 9 ⇐⇒ t2−9t+ e2 < 0. By the quadratic formula it is equivalent

to t ∈
(

9−
√

81−4e2

2
, 9+

√
81−4e2

2

)
. We have to prove that the interval < 1, e2 > enclosed in the interval(

9−
√

81−4e2

2
, 9+

√
81−4e2

2

)
. It is equivalent to two inequalities: 1. 9−

√
81−4e2

2
< 1 2. e2 < 9+

√
81−4e2

2
. Proof 1.

The inequality is equivalent to
√

81− 4e2 > 7 ⇐⇒ e2 < 8 which is obvious. Proof 2. It is equivalent

to
√

81− 4e2 > 2e2 − 9. Both sides are positive, so squaring we get 81− e2 > 4e4 − 36e2 + 81 ⇐⇒
4e4 − 35e2 < 0 ⇐⇒ 4e2 − 35 < 0 ⇐⇒ e2 < 35

4
which is obvious because e2 < 8 and 8 < 35

4
. The

proof of xex
2

+ yey
2
< 3 is ended. Of course xex

2
+ yey

2
< 3 implies xex

2
+ yey

2 6= 3 so we are done.

Show that the product of k consecutive positive integers can’t be the kth power of an integer

Solution

It’s clear that: n(n + 1)...(n + k − 1) > nk and n(n + 1)...(n + k − 1) < (n + k)k So we must have:

n(n + 1)...(n + k − 1) = (n + r)k where r ∈ 1, 2, ..., k − 1 But then: (n+r)k

n+r−1
= n(n+1)...(n+k−1)

n+r−1
is an

integer. It’s an obvious contradiction because (n+ r, n+ r − 1) = 1.

Solve the following trigonometric equation:

cos12x = 5sen3x+ 9(tanx)2 + (cotx)2

How many solutions does it have in [0; 2π]

Solution

We first rewrite our equation: cos 12x− 5 sin 3x = 9tan2x+ cot2x.

If tanx = 0 then cotx is undefined, and if cotx = 0 then tanx is undefined. So, we assume

tanx 6= 0 and cotx 6= 0. Applying AM −GM to the RHS, we get
9tan2x+cot2x

2
≥
√

9tan2x · cot2x ⇒ RHS ≥ 6, with equality occurring iff 9tan2x = cot2x.

Now, note that |LHS| ≤ 6. So, the only solution possible is when the following is satisfied:

LHS = RHS = 6. So, cos 12x − 5 sin 3x = 9 tan2 x + cot2 x = 6, in which case we must have

9 tan2 x = cot2 x.

Solving 9tan2x = cot2x, we obtain tanx = 1√
3
,− 1√

3
. This yields the following possible values for

x: π
6
, π + π

6
, π − π

6
, 2π − π

6
.

Out of the possible values for x above, only x = π + π
6
and x = 2π − π

6
satisfy the equation

cos 12x− 5 sin 3x = 6.

Answer: π + π
6
, 2π − π

6
.
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Bertrand’s Theorem states that for every x > 1, there exists a prime number between x and

2x. Use this fact to show that every positive integer can be written as the sum of distinct primes.

(For this result, assume that one is a prime.)

Solution

Let x = x0. If it is prime, we are done.

Suppose it is odd. Then r0 = bx0

2
c + 1 has the property 2r0 − x0 = 1, so there exists a prime

r0 < p0 < 2r0 such that 2p0 > x0. Let x1 = x0 − p0, which is less than half of x0, and repeat the

algorithm.

Suppose it is even. Then there exists a prime x0

2
< p0 < x0, and then let x1 = x0 − p0 as before.

Repeat the algorithm.

In each case we have 2xk+1 < xk, so every new prime pk generated is guaranteed to be distinct.

The algorithm is guaranteed to terminate because each successive term is at most half the previous.

Once it terminates,
∑
pk = x0. QED.

Another way The inductive hypothesis holds true for 1. Suppose it holds true for 1, 2, 3, 4, ...k.

Then there exists a prime p such that bk+1
2

+ 1c < p < 2bk+1
2
c + 2, and since the inductive

hypothesis is true for (k + 1) − p < p, which cannot have p in its unique prime representation, it

holds true for k + 1. Hence our inductive hypothesis is true. QED.

Prove that: sin θ + sin(θ + α) + sin(θ + 2α) + .......+ sin(θ + nα) =
sin

(n+1)α
2

sin(θ+nα
2

)

sin α
2

Solution

Below we use the identity 2 sinA sinB = cos (A−B)− cos (A+B)

sin θ + sin(θ + α) + sin(θ + 2α) + .......+ sin(θ + nα) =
sin

(n+1)α
2

sin(θ+nα
2

)

sin α
2

⇔ 2 sin α
2
[sin θ+sin(θ+α)+sin(θ+2α)+.......+sin(θ+nα)] = 2 sin (n+1)α

2
sin(θ+nα

2
⇔ [cos (θ − α

2
)−

cos (θ + α
2
)] + [cos (θ + α

2
) − cos (θ + 3α

2
)] + [cos (θ + 3α

2
) − cos (θ + 5α

2
)] + ... + [cos (θ + (n− 1

2
)α) −

cos (θ + (n+ 1
2
)α)] = cos (θ − α

2
)− cos (θ + (n+ 1

2
)α) ⇔ 0 = 0

Note that if α = 0, the identity is still true in the limit sense.

limα→0 LHS = (n+ 1) sin θ

limα→0RHS = (n+ 1) sin θ

Let P (x) be any polynomial with integer coefficients such that P (21) = 17, P (32) = −247,

P (37) = 33. Prove that if P (N) = N + 51, for some integer N , then N = 26.

Solution

since P (x) has integer coefficients, we know that (a − b)|(P (a) − P (b)) So, 21 − N | − 34 − N →
− 55

21−N + 1 = k, with k integer

Using those conditions we get

21−N |55 32−N |330 37−N |55

So just try possible values ofN – Let 0 ≤ a, b, c, d ≤ π such that 2 cos a+6 cos b+7 cos c+9 cos d = 0

and 2 sin a − 6 sin b + 7 sin c − 9 sin d = 0. Prove that 3 cos(a + d) = 7 cos(b + c). —- coinsider the

following system

ax+ by = e cx+ dy = f

where a, b, c, d, e, f ∈ Z. Suppose to choose a, b, c, d among all relative number whose absolute

value is ≤ n, with n ∈ N. Call p the probability that the system has exactly one solution (not

necessary integer). Prove that 1− 1
2n
≤ p ≤ 1− 1

3n2

Let T = 9k: k is an integer, 0 ≤ k ≤ 4000. Given that 94000 has 3817 digits and that its

first(leftmost) digit is 9, how many elements of T have 9 as their leftmost digit?

Solution
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Note that if 9n+1 begins with 9, necessarily 9n begins with 1, and these 2 numbers must have the

same length: it is impossible otherwise to have 2 successive powers of 9 the same length. Thus if 9n

has m digits and doesn’t start with 1, there must have been n − m + 1 pairs of successive powers

with the same length. Thus, for up to 94000, there are 4000-3817+1=184 powers of 9 less with 9 as

the first digit. :) –

– Let x and y be positive integers with x < y. Find all possible integer values of P = x3−y/1+xy

— For natural numbers n, sequence {an} is defined recursively as follows:

a1 + 2a2 + 3a3 + ...+ nan = an+1

(a1 = 1)

For natural numbers n, sequence {bn} is defined recursively as follows:

b1 +
b2

2
+
b3

3
+ ...+

bn
n

= bn+1

(b1 = 1)

Express
∑n

k=1 akbk in terms of n. Let x and y be positive integers with x < y. Find all possible

integer values of P = x3−y/1+xy ——– For natural numbers n, sequence {an} is defined recursively

as follows:

a1 + 2a2 + 3a3 + ...+ nan = an+1

(a1 = 1)

For natural numbers n, sequence {bn} is defined recursively as follows:

b1 +
b2

2
+
b3

3
+ ...+

bn
n

= bn+1

(b1 = 1)

Express
∑n

k=1 akbk in terms of n.

số học

số học

đại số

số học

số học

số

số

giới hạn

An ordinary deck of 52 cards with 4 aces is shuffled, and then the cards are drawn one by one

until the first ace appears. On the average, how many cards are drawn?

Solution

Consider the probability that n+1 cards are select until an ace appears. The first n cards must be non-

ace cards and the last must be an ace. The probablity of selecting n non-ace cards is 48
52

47
51

46
50
...48−n+1

52−n+1
=

48!(52−n)!
(48−n)!52!

The probgability that an ace is drawn after that is 4
52−n . Multiplying n+ 1 (the number of

cards drawn) by the two probabilities yields the expression which is summed from n = 0 to n = 48.

The sum can actually be simplified to:
∑48

n=0

(
(n+ 1) (51−n)(50−n)(49−n)

1624350

)
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Find an integer x such that
(
1 + 1

x

)x+1
=
(
1 + 1

2003

)2003
.

Solution

if x is positive, there are no solutions, as x = 2003 is too big, and x = 2002 is too small. x cannot be 0,

so it must be negative. Ignoring x = −1, we get
(
x+1
x

)x+1
=
(

2004
2003

)2003
let k = |x|

(
k
k−1

)k−1
=
(

2004
2003

)2003

which leads to k = 2004, so x = −2004

find the nth term for the sequence 1, 2, 10, 67, 467, 3268, 22876

Solution

Can you say it more strictly? Every sequnce {an} satisfying a1 = 1, a2 = 2, a3 = 10, a4 = 67, a5 =

467, a6 = 3268, a7 = 22876 is an answer for your question, for example {an} defined as a1 = 1, a2 =

2, a3 = 10, a4 = 67, a5 = 467, a6 = 3268, a7 = 22876 and an = πn

e
for n ≥ 8. I hope that you can write

version of your problem which doesn’t allow sequence defined above.

Let a, b ∈ N∗ = {1, 2, 3, . . .}, a < b, a does not divide b. Solve the equation

a bxc − b (x− bxc) = 0.

Solution

Since abxc ∈ Z, b{x} ∈ Z, so x = bxc+ y
b
, 0 ≤ y < b, y ∈ Z

So abxc = y, so a|y, so the solutions are x = t+ at
b
or x =

(a+ b)t

b
where t ∈ Z and 0 ≤ t ≤

⌊
b
a

⌋
(a does not divide b)

Show that

cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2

Solution

In 4ABC, let m∠A = π
7
and let m∠B = m∠C = 3π

7
. Let BC = x. Choose D on AC such that

BD = x, and E on AB such that DE = x. After some angle chasing, see that 4AED is isosceles,

with AE = DE(= x). Note AB = 2x cos 2π
7

+ x and AC = 2x(cos π
7

+ cos 3π
7

). Since AB = AC,

equate the two, divide by 2x, and rearrange to get the desired result.

Let a, b, c be distinct reals. Prove that the following cannot occur.

(a− b) 1
3 + (b− c) 1

3 + (c− a)
1
3 = 0

Solution

We prove the result by contradiction. Let x3 = a − b, y3 = b − c, and z3 = c − a. (This is possible

since the cube of a real can be positive, negative or zero.) Now, if (a− b) 1
3 + (b− c) 1

3 + (c− a)
1
3 = 0

is true, we have x+ y + z = 0 ⇒ x3 + y3 + z3 = 3xyz (This is a fairly elementary result, I believe.)

⇒ 3xyz = 0 ⇒ (a − b) 1
3 (b − c) 1

3 (c − a)
1
3 = 0 ⇒ (a − b)(b − c)(c − a) = 0 ⇒ At least two of the

numbers a, b, and c are equal, which leads to a contradiction since a, b, and c are distinct reals. And,

we are done.

Proove that for any positive integer, the sum of the reciprocals of all of the integer’s factors is

equal to:
the sum of all of the factors

the integer

Solution

Let N be the number with factors d1, d2, · · · , dk−1, dk. Note that di × dk−i+1 = N . The sum of the

reciprocals of the factors is 1
d1

+ 1
d2

+ · · ·+ 1
dk−1

+ 1
dk
, and we let our common denominator be N. So

multiply 1
di
× dk−i+1

dk−i+1
= dk−i+1

N
,and we obtain dk+dk−1+···+d2+d1

N
, as desired.
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Show that every power of
√

2− 1 can be written in the form
√
k + 1−

√
k.

Solution

Let sn be the nth power of
√

2−1. We will proceed by induction. For the base case,
√

2−1 =
√

2−
√

1

so that works. Suppose

sn = a+ b
√

2 =
√
k + 1−

√
k.

Then |a2 − 2b2| = 1. So

sn+1 = (
√

2− 1)(a+ b
√

2) = (2b− a) +
√

2(a− b).
But since |(2b− a)2 − 2(a− b)2| = |2b2 − a2| = |a2 − 2b2| = 1, we know

sn+1 = (2b − a) +
√

2(a − b) can be written as
√
k + 1 −

√
k for some k as well, completing the

induction.

EDIT: Boo, someone beat me to it again.

Solve for x ≥ 0: x = 1
x−1

+ 1
x−2

+ ...+ 1 =
∑x−1

k=1( 1
x−k )

Solution

note x ∈ Z+, and x > 1 for the summation to be possible

this is taking a partial sum of the harmonic series up to x− 1, that sum being equal to x

let Sn =
∑n

1
1
i
(this is your summation, just a bit clearer)

we want Sn−1 = n

it is pretty easy to show that Sn − 1 < log2 n, so we want n such that

n− 1 < log2(n− 1) 2n < 2(n− 1)

which is true for no positive integers > 1...(easily shown by induction)

thus there are no solutions

Prove that among any 39 consecutive natural numbers it’s always possible to find one whose

sum of digits is divisible by 11.

Solution

We will proceed by contradiction. Assume there exists a set of 39 natural numbers such that none

of the 39 numbers have a sum of digits divisible by 11. Let these numbers be a1, a2, a3 · · · a39.

If the last digit of an is 0, and n ≤ 30, then the sum of the digits of an must be equivalent to 1

(mod 11). Otherwise, the sum of the digits of one of the next nine numbers would be divisible by 11.

There are exactly three numbers with ones digit 0 among a1, a2, a3 · · · a30, and these three numbers

are consecutive multiples of 10. Let these numbers be 10n, 10(n+ 1), 10(n+ 2). The sum of digits of

these three numbers is the same as the sum of digits of n, n+ 1, n+ 2. Therefore, n, n+ 1, n+ 2 each

have a sum of digits equivalent to 1 (mod 11).

For either {n, n + 1} or {n + 1, n + 2}, the only digit that differs between the two numbers is

the ones digit. Therefore, it is impossible for the sum of digits of each of the three numbers to be

equivalent to 1 (mod 11). This is a contradiction, and our proof is complete. – Solve the inequation:

2x2 − 3xbx− 1c+ bx− 1c2 ≤ 0 —– Find all polynomials f satisfying f(x2) + f(x)f(x+ 1) = 0.

In 1593, the Belgian mathematician Adriaan van Roomen proposed the following problem:

Find the positive roots of the equation x45−45x43 +945x41−12300x39 +111150x37−740459x35 +

3746565x33−14945040x31+469557800x29−117679100x27+236030652x25−378658800x23+483841800x21−
488494125x19+384942375x17−232676280x15+105306075x13−34512074x11+7811375x9−1138500x7+

95634x5 − 3795x3 + 45x =

√
7
4
−
√

5
16
−
√

15
8
−
√

45
64
.

The French mathematician Viète was able to solve the equation. By hand. In just a few minutes,

too, supposedly (Anecdote! One of the Bernoullis claimed to have summed the first 1000 10th powers
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in half of 15 minutes. My analysis professor did it in just over 8, but he was explaining it to us as he

went).

Anyway, anyone here want to give it a try? Or is their 16th century intellect beyond us?

Solution

RHS is of course 2 sin 12o Left side is what you get if you expand 2 sin(45y) in terms of sin y and you

put 2 sin y = x

so you "easily" :) get all the roots (For example one such root is sin(12/45)o and rest you can

get by adding k · 8o (k = 0, 1, 2 · · · etc.( remember 360/45=8) .

(To be honest, RHS was not that difficult to guess for any one who worked in the old days as

us as I tell my kids .. in those days we have to do all calculations by hand, have to remember times

tables up to 100, know log tables by heart and walk 10 miles uphill both ways in 40oC (It looks even

more terrible in Fahrenheit :) = 104oF ) heat and 5 feet of snow ..:))

( and of course only thing to keep in mind for LHS was to do all middle steps of calculations on

slate so not to waste too much paper) :)

(Actually if you know sin3x = 3sinx− 4sin3x and sin 5x = 5 sinx− 20 sin3 x + 16 sin5 x all you

have to know and you apply first formula twice and second once.)

We consider the number A= 111...111222...222...999...999− 123456789, where the number of

digits of 1, 2, 9 are equal whith 2003.Prove that 2003 divides A.

Solution

Let A = a1 + a2 + ...+ a9 where

a1 = 111....000...− 100000000, a2 = 000...222...000...− 020000000,

etc. (That is, we divide out A into its digit components.) Now, there are 8 × 2003 zeroes in the

large part of a1, 7× 2003 in a2, etc. We can write 111... (with 2003 ones) as 102003−1
9

. Then

ak = k 102003−1
9
× 10(9−k)2003 − k × 109−k

Now, by Fermat’s Little Theorem, 102002 ≡ 1 mod 2003. We therefore write

ak ≡ k × 109−k − k × 109−k ≡ 0 mod 2003,

Thus completing the proof. QED.

Let P (x) be a polynomial of degree n, so that P (k) = k
k+1

for k = 0, 1, 2, ..., n. Find P (n+ 1).

Solution

Define the polynomial Q(x) by

Q(x) := (x+ 1)P (x)− x,

so that deg(Q(x)) = n+1. Furthermore, Q(x) has roots at x = 0, 1, . . . , n. Clearly, Q(x) cannot have

anymore roots, so then

Q(x) = C · (x− 0)(x− 1) · · · (x− n),

for some constant C. Consider Q(−1). By definition,

Q(−1) = C · (−1− 0)(−1− 1) · · · (−1− n),

but at the same time,

Q(−1) := (−1 + 1)P (−1)− (−1) = 1,

so

C =
(−1)n+1

(n+ 1)!
.

Therefore,
(−1)n+1

(n+ 1)!
· (x− 0)(x− 1) · · · (x− n) = (x+ 1)P (x)− x.
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Then plugging in n+ 1 for x yields

(−1)n+1

(n+ 1)!
· (n+ 1− 0)(n+ 1− 1) · · · (n+ 1− n) = ((n+ 1) + 1)P (n+ 1)− (n+ 1),

(−1)n+1 = (n+ 2)P (n+ 1)− (n+ 1).

If n is even, then

−1 = (n+ 2)P (n+ 1)− (n+ 1),

P (n+ 1) =
n

n+ 2
.

If n is odd, then

1 = (n+ 2)P (n+ 1)− (n+ 1),

P (n+ 1) =
n+ 2

n+ 2
= 1.

Hence,

P (n+ 1) =

1, 2 6 |n
n
n+2

, 2|n

Prove that there are no positive integers x and y such that x2 + y + 2 and y2 + 4x are perfect

squares

Solution

The next perfect square after y2 is (y + 1)2 = y2 + 2y + 1.

We are given that x and y are positive integers, so y + 2 > 0. Assuming (for the sake of reaching

a contradiction) that x2 + y + 2 was a perfect square, y + 2 ≥ 2x+ 1.

Similarly the next perfect square after x2 is (x + 1)2 = x2 + 2x + 1. Thus, (as 4x > 0) again

assuming that y2 + 4x is a perfect square 4x ≥ 2y + 1.

We have inequations y + 2 ≥ 2x+ 1 and 4x ≥ 2y + 1. Manipulating, 2y + 2 ≥ 4x ≥ 2y + 1. 4x is

obviously even, so 4x = 2y+ 2. But then y2 + 4x = y2 + 2y+ 2 = (y+ 1)2 + 1 is not a perfect square

for integer y. Contradiction. Initial assumption that both x2 + y + 2 and y2 + 4x could be perfect

squares for positive integer x and y is false.

The sequence a1, a2, ... of natural numbers satisfies gcd(ai, aj) = gcd(i, j) for all i not equal to

j. Prove that ai = i for all i

Solution

Put n =
∏k

i=1 p
ei
i , the prime factorization of n.

For any i, set r = peii . Then r = (r, n) = (ar, an) implying an has a factor r. Thus, an is a multiple

of n. So there exists a sequence (b1, b2, . . . ) with an = nbn for all natural n.

Now k = (k, kbk) = (ak, akbk) = (kbk, kbkbkbk) = kbk implying bk = 1 for all k. The result follows.

�

Find all functions f : R→ R where f(x+ y) = f(x).f(y).f(xy) for all real x, y

Solution

If there is any x such that f(x) = 0, then f(x + y) = 0 for all y so f ≡ 0. Assume f has no zeros.

Then setting x = y = 0 we have f(0) = f(0)3 so f(0) = ±1. Note that if f is a solution, so is −f , so
assume f(0) = 1. Then setting y = −x we have (1) 1 = f(x)f(−x)f(−x2) and setting y = x gives

us (2) f(2x) = f(x)2f(x2) Setting y = −2x gives f(−x) = f(x)f(−2x)f(−2x2) = f(x)f(−2x2) ·
(f(−x)2f(x2)) (by (2)) and so 1 = f(x)f(−2x2)f(−x)f(x2). Then by (1), f(x)f(−x)f(−x2) =

f(x)f(−2x2)f(−x)f(x2) so f(−x2) = f(−2x2)f(x2) or, for positive t, f(−t) = f(t)f(−2t). Then
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with (2) this gives us f(−t) = f(t)f(−t)2f(t2) or 1 = f(t)f(−t)f(t2) for any positive t. Thus by (1),

for any positive x we have f(x)f(−x)f(−x2) = f(x)f(−x)f(x2) so f(−x2) = f(x2) so in general

f(x) = f(−x).

But then f(x+y) = f(x)f(y)f(xy) = f(−x)f(y)f(−xy) = f(−x+y), and since x, y are arbitary

we have f ≡ c. Since f(0) = 1, this gives us the solution f ≡ 1, and we also have the negative of

this, f ≡ −1.

Let {3, 4, 12} be a set. In each step of conversion, you may choose two numbers a, b ∈ {3, 4, 12}
and convert them into 0.6a−0.8b and 0.8a+0.6b. Is it possible to acquire the set {4, 6, 12} through a

finite number of conversions? Is it possible to reach {x, y, z} such that |x−4|, |y−6|, |z−12| ∈
[
0, 1√

3

]
?

Solution

It is easy to see a2 + b2 + c2 is an invariant. {4, 6, 12} has a different value of the invariant, hence it

is not reachable.

The actual value of the invariant with our given problem condition is 132. Because {4, 6, 12} has
too large a value, we wish to determine whether {4− k, 6− k, 12− k} satisfies the condition where

k ∈
[
0, 1√

3

]
.

(4− k)2 + (6− k)2 + (12− k)2 = 142 − 44k + 3k2

Clearly a decreasing function in k for the relevant domain. For maximal k, it gives the value

142 − 44√
3

+ 1 > 132 (I can’t think of a neat way to show this but it’s true), so no such value is

possible.

Find all natural numbers n such that it is possible to construct a sequence in which each

number 1, 2, 3, . . . , n appears twice, the second of the appearances of each integer r being r places

beyond the first appearance. For instance, for n = 4,

4, 2, 3, 2, 4, 3, 1, 1.

Also, for n = 5,

3, 5, 2, 3, 2, 4, 5, 1, 1, 4.

Solution

Let ak be the place of the first appearance of k. Example: in 42324311, a4 = 1, a2 = 2, a3 = 3, a1 = 7.

Then
∑2n

j=1 =
∑n

j=1 2aj + j implying
∑n

j=1 aj = 3n2+n
4

.

If n is 2 or 3 mod 4, then
∑
aj is not an integer, contradiction.

Now we just need an example for n = 0, 1 mod 4.

Polynomial P is such that for all real x we have P (sinx) + P (cosx) = 1. What can the degree

of this polynomial be?

Solution

Lemma: P (x) is an even polynomial.

Proof: P (sinx)+P (cosx) = 1 P (sin(−x))+P (cos(−x)) = 1 P (− sinx)+P (cosx) = 1 P (sinx) =

P (− sinx), or, phrased in another way, P (y) = P (−y)∀y ∈ [−1, 1]

So P (x) must be an even function, and have no odd terms. :)

Let P (x) = Q(x2) for some polynomial Q(x). The problem condition becomes

Q(sin2 x) +Q(1− sin2 x) = 1∀x ∈ R
Let us substitute u = sin2 x− 1

2
, and we can write

Q(u+ 1
2
) +Q(−u+ 1

2
) = 1∀u ∈ [−1

2
, 1

2
]

Finally, let us substitute R(x) = Q(x+ 1
2
)− 1

2
. The problem becomes
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R(x) +R(−x) = 0

And so R(x) can be any odd polynomial or R(x) = 0. Plugging all the way back in, P (x) can

have degree 0, 2(2k − 1), k ∈ N.
Find every positive integer n such that n3 + n2 + n+ 1 is square

Solution

gcd(n + 1, n2 + 1) = gcd(n + 1, 1 − n) = gcd(2, 1 − n) Therefore, gcd(n + 1, n2 + 1) = 2 when n is

odd and gcd(n+ 1, n2 + 1) = 1 when n is even.

Case 1 when n is odd Let n = 2m -1, where m is a positive integer. (n + 1)(n2 + 1) =

2m(4m2 − 4m + 2) = (2)2 · m(2m2 − 2m + 1) Note that gcd(m, 2m2 − 2m + 1) = gcd(m, 1) = 1.

Therefore, both m and 2m2−2m+1 have to be perfect squares. Let m = k2 for some positive integer

k. Then 2m2 − 2m + 1 = 2k4 − 2k2 + 1 = (k2)2 + (k2 − 1)2 ...... and I don’t know how to proceed

here. In my knowlege, I only know that k2 = 1 and k2 = 4 are possible solutions. That is, k = 1 or

k = 2, showing n = 1 or n = 7. Someone please help to finish this part. :lol:

Edit:Further explanation for this part The general solution for x2 + y2 = z2 is of the form

x = 2tuv, y = 2t(u2 − v2), z = 2t(u2 + v2) where t, u and v are integers. Note that gcd(k2, k2 − 1) =

gcd(1, k2 − 1) = 1. Either (k2, k2 − 1) = (2uv, u2 − v2) or (k2, k2 − 1) = (u2 − v2, 2uv).

Case 2 when n is even Let n = 2m, where m is a positive integer (n + 1)(n2 + 1) with n + 1

and n2 + 1 being relatively prime. Then both n+ 1 and n2 + 1 should be perfect squares.( in view of

the unique factorization theorem) However, (2m)2 < 4m2 + 1 = n2 + 1 < 4m2 + 4m+ 1 < (2m+ 1)2,

which proves that n2 + 1 cannot be a perfect square. Therefore, n3 +n2 +n+ 1 cannont be a perfect

square in this case.

Prove that

(
n

r

)
is an integer (without stating that it’s a. the number of ways to choose, or b.

a binomial coefficient).

Hint: show that more or equal powers of any prime p < n divide the numerator (n!) than the

denominator (r!(n− r)!).
Solution

This can be considered as a number theory problem.

Let me quote the following useful theorem about n!:

Let p be a prime factor of n! and k be the power of p in the [i]prime factorization[/i] of n!, then

k =
∑∞

r=1[ n
pr

], where [x] denotes the floor function of x, and the sum is indeed a finite sum. For

example, take n = 10. The prime factors of 10! are 2, 3, 5 and 7. [10
2

] + [10
22 ] + [10

23 ] = 5 + 2 + 1 = 8,

[10
3

] + [10
32 ] = 3 + 1 = 4, [10

5
] = 2, and [10

7
] = 1. Therefore, 10! = 28 · 34 · 52 · 71

We can then solve the problem of this thread with this theorem.

Find all x, y ∈ R such that:√
2x(y + 1) +

√
(x+ 1)y +

√
(x− 1)(y − 2) =

√
4x(3y − 1)

Solution

By Cauchy

(2x+ (x+ 1) + (x− 1))((y + 1) + y + (y − 2)) ≥ (
√

2x(y + 1) +
√

(x+ 1)y +
√

(x− 1)(y − 2))2

⇐⇒
√

2x(y + 1) +
√

(x+ 1)y +
√

(x− 1)(y − 2) ≤
√

4x(3y − 1

Equality holds when 2x
y+1

= x+1
y

= x−1
y−2

Solve it to get (x, y) = (2, 3)

phuong rtrinhf
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If 0 < a < b < c < 1, how can i verify that (c− a)/(1− ca), (b− a)/(1− ab), (c− b)/(1− cb) are

the three sides of a triangle?

Solution

Letting c−a
1−ac = x , c−b

1−bc = y , b−a
1−ab = z

First we show that max{x, y, z} = x

or same as x− y = (b−a)(1−c2)
(1−ac)(1−bc) > 0 and x− z = (c−b)(1−a2)

(1−ac)(1−ab) > 0

so x > y , x > z

Then we will show y + z > x which is equivalent to

y + z − x = (c−b)(b−a)(c−a)
(1−ac)(1−ab)(1−bc) > 0 .

Hence x, y, z are three side of a triangle .

Find all real numbers x, y, z and w such that
√
x− y +

√
y − z +

√
z − w +

√
w + x = x+ 2.

Solution

√
x− y +

√
y − z +

√
z − w +

√
w + x = x+ 2

⇐⇒ (
√
x− y − 1)2 + (

√
y − z − 1)2 + (

√
z − w − 1)2 + (

√
w + x− 1)2 = 0

Or we can Cauchy it

(1+1+1+1)((x−y)+(y−z)+(z−w)+(w+x)) ≥ (
√
x− y+

√
y − z+

√
z − w+

√
w + x)2 = (x+2)2

⇐⇒ (x− 2)2 ≤ 0 =⇒ x = 2 . Equality holds when x− y = y − z = z − w = w + x = 1 .Hence

(x, y, z, w) = (2, 1, 0,−1)

Prove that the equation:

x(x+ 1)(x+ 2)...(x+ n) = 1 has a postive solution that is less then 1
n!

Solution

Let f(x) = x(x + 1)(x + 2) . . . (x + n)− 1. Clearly, f(x) is an increasing function for x ≥ 0, f(0) =

−1 < 0, and f(1) = (n+ 1)! > 0, so f(x) has exactly one positive root r.

Furthermore,

r =
1

(r + 1)(r + 2) . . . (r + n)
<

1

1 · 2 . . . n
=

1

n!
.

Let Qn = 12n + 43n + 1950n + 1981n.

Then Q1 = 12 + 43 + 1950 + 1981 = 1993 · 2,
Q2 = 144 + 1849 + 3802500 + 3924361 = 7728854 = 1993 · 3878,

Q3 = 1728 + 79507 + 714875000 + 7774159141 = 15189115376 = 1993 · 7621232.

Determine all the positive integers n for which Qn are divisible by 1993.

Solution

Qn ≡ 12n + 43n + (−43)n + (−12)n (mod 1993)

If n is odd, we clearly have 12n + (−12)n ≡ 0 (mod 1993) and 43n + (−43)n ≡ 0 (mod 1993) so

it is divisible by 1993.

If n = 2k with k odd, we have Qn ≡ 2 · 144k + 2 · 1849k ≡ 2(144k + (−144)k) ≡ 0 (mod 1993) so

it is also divisible by 1993.

If n = 2k with k even, we have Qn ≡ 4 · 144k (mod 1993), which is never 0, so it is not divisible

by 1993.

Hence Qn is divisible by 1993 iff n is odd or n = 2k for k odd.

Find all functions f : R→ R which satisfys:

f(x2 + y) + f(f(x)− y) = 2f(f(x)) + 2y2

Solution
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y = −x2 =⇒ f(0) + f(f(x) + x2) = 2f(f(x)) + 2x4 y = f(x) =⇒ f(0) + f(f(x) + x2) =

2f(f(x)) + 2f(x)2

Hence

f(x)2 = x4

Clearly then f(0) = 0, so setting x = 0, we have f(y) + f(−y) = 2y2.

Suppose f(c) = −c2. Then we have f(−c) = 2c2−f(c) = 3c2. But then we have f(−c)2 = 9c4 6= c4

unless c = 0. Hence f(x) = x2 for all x.

Solve the system of equations below for x1, x2, ...., xn:


x1 + x2 + ......+ xn = a

x2
1 + x2

2 + ......+ x2
n = a2

. . . . . . . . .

xn1 + xn2 + ....+ xnn = an

Solution

Note that this argument works for xi ∈ C as an added bonus!

Let Sk =
∑n

i=1 x
k
i . We are given ak = Sk. Let θk = 1

(n−k)!

∑
sym

∏k
i=1 xi, where by convention

θ0 = 1.

Consider f(y) =
∏n

i=1(y − xi). It expands to f(y) =
∑n

j=0(−1)jθjx
n−j.

Since f(y) is a polynomial with at most n roots (namely, {xi}ni=1), it follows we have

0 =
∑n

j=0(−1)jθjx
n−j
i for i = 1, 2, . . . , n (*)

⇒ 0 =
∑n

i=1

∑n
j=0(−1)jθjx

n−j
i

⇒ 0 =
∑n

j=0(−1)jθjSn−j

⇒ 0 =
∑n

j=0(−1)jθja
n−j

⇒ f(a) = 0

So a is a root. But x1, . . . , xn are the roots. Therefore, one of the xi’s equals a. Wlog, x1 = a.

From (*), we again have: 0 =
∑n

i=2

∑n
j=0(−1)jθjx

n−j
i ⇒ 0 = (−1)nθn +

∑n−1
j=0 (−1)jθj(0) ⇒ one

of the xi = 0, wlog x2

The same argument shows that x2 = x3 = x4 = · · · = xn = 0.

Hence, the solutions are (a, 0, 0, . . . , 0) and it’s permutations.

— Consider a non-empty set S = {1, 2, 3, ..., n}. Let us define a function f(A) on a non-empty set

A of S as follows: Arrange the elements of A in a decreasing order, say, ak, ak−1, ak−2, ak−3..., a2, a1

where 1 ≤ k ≤ n. Then, f(A) = ak
ak−1

ak−2

ak−3
... [For example, f({1, 2, 3}) = 3

2
1, and f({1, 2, 3, 4, 5, 6}) =

6
5

4
3

2
1
.] Find 1

n

∏
A∈S f(A) where A is a non-empty subset of S. – Prove that if 2p + 3p = an, with p a

prime and a and n positive integers, then n = 1. – Show that 23k + 1 is divisible by 3k for all positive

integers k.

Can anyone solve it without induction —- You have 2006 beads on a (closed) necklace in positions

0, 1, 2, 3, ...2005. You are attempting to color the beads such that they satisfy the following property:

If beads in position i and position j, i > j have the same color, then neither the bead in position

i+ (i− j) nor j − (i− j) (taken mod2006) can have that color.

What is the minimum number of colors needed?

Can you generalize? – Find all primes p > 0 and all integers q ≥ 0 such that p2 ≥ q ≥ p and(
p2

q

)
−
(
q
p

)
= 1. – The number 2000 = 24 · 53 is the product of seven not necessarily distinct prime

factors. Let x be the smallest integer greater than 2000 with this property and let y be the largest

integer less than 2000 with this property. Find x − y — Prove that among 39 consecutive natural

numbers, it is always possible to find a number such that the digits sum to a number divisible by 11.

— Let f : N→ N such that f(n + 1) > f(n) and f(f(n)) = 3n for all n ∈ N. Determine f(1992). –
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Prove that (
22n + 2n+m + 22m

)
!

is divisible by

(2n!)2n+2m−1

· (2m!)2m+2n−1

,

for all m,n ∈ N∗.
prove that if both p and p2 + 2 are primes, then p3 + 2 is also prime. If p = 2, then p2 + 2 = 6,

which is composite. So we exclude this case.

If p = 3, then p2 + 2 = 11 and p3 + 2 = 29. So the statement holds in this case.

If p > 3, then two cases are possible. Either p ≡ 1( mod 3) or p ≡ −1( mod 3), so that in either

case p2 + 2 ≡ 1 + 2 ≡ 0( mod 3). So, 3|(p2 + 2), and so there is nothing to consider here.

And, we are done. Another way well, p2 + 2 can never be a prime except for p = 1, 3. (but in this

case, we exclude p = 1, since 1 isn’t a prime number.) Since every prime numbers can be expressed

as 6a± 1 for a positive integer a, we have p2 + 2 = 36a2 ± 12a+ 3 which is divisible by 3.

số học – Prove that for n ≥ 1
1√
4n
≤
(

1
2

) (
3
4

)
. . .
(

2n−1
2n

)
< 1√

2n

Find all non-negative integral solutions (n1, n2, . . . , n14) to n4
1 + n4

2 + · · ·+ n4
14 = 1599

Solution

To avoid any checking approach give something general:

When a is even, then ak ≡ 0 mod 2k, but not necessary mod 2k+1. When a is odd, then a2k ≡ 1

mod 2k+2, but not necessary mod 2k+3 for k ≥ 1.

Setting k = 4 into the first and k = 2 into the second, the result follows.

If a1, a2, ..., an are n distinct odd natural numbers not divisible by any prime greater than 5,

show that 1
a1

+ 1
a2

+ 1
a3

+ ...+ 1
an
< 2.

Solution

let S be our subset of the inverses of odd natural numbers. Now consider

U =
{(

1 + 1
3

+ 1
32 + ...+ 1

3n
+ ...

) (
1 + 1

5
+ 1

52 + ...+ 1
5n

+ ...
)}

Clearly, S ⊃ U . But the sum of the element of U is equal to
( 1

3)
n+1
−1

1
3
−1

· ( 1
5)
n+1
−1

1
5
−1

but when n→ +∞, the sum of the elements of U → 15
8
< 2

dãy số

tổ hợp

số học A sequence (xn)n≥1 is defined by the rules x1 = 2 and nxn = 2(2n − 1)xn−1 for

n ≥ 2. Prove that xn is an integer for every positive integer n. – Show that the quadratic equation

x2 + 7x− 14(q2 + 1) = 0 , where q is an integer, has no integer root. – Find all real parameters p for

which the equation:

x3 − 2p(p+ 1)x2 + (p4 + 4p3 − 1)x− 3p3 = 0

has three distinct real roots which are sides of a right triangle.

a)There are more chess masters in New York City than in the rest of U.S. combined. A chess

tournament is planned to which all American masters are expected to come. It is agreed that the

tournament should be held at the site which minimizes the total intercity traveling done by the

contestants. The New York masters claim that, by this criterion, the site chosen should be their city.

The West Coast masters argue that a city at or near the center of gravity of the players would be

better. Where should the tournament be held?

Solution
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Both the West Coast and New York city are considered as points on a 2-D coordinate plane. Now,

draw a straight line between the two locations, and label the West Coast and New York by the

coordinates (0, 0) and (a, 0), where a > 0, a ∈ R. Also, let the number of chess players in West Coast

be n1 and that in New York be n2 (n2 > n1.)

In the solution below, we will use the fact that if k points have masses m1,m2, ...,mk and

coordinates (x1, y1), (x2, y2), ..., (xk, yk), respectively, then the center of mass of these k points is

(x1m1+x2m2+...+xkmk
m1+m2+...+mk

, y1m1+y2m2+...+ykmk
m1+m2+...+mk

).

Lastly, we assume that each chess master has the same mass m (a fair assumption for our pur-

poses.)

So, the center of mass (we only need calculate the x coordinate) of all the chess players from the

West Coast and New York = n1(m·0)+n2(m·a)
(n1+n2)m

= n2a
n1+n2

.

Now, if we heed the claim of the West Coast players, then the amount of intercity travel needed

to be done by the chess players will be D1 = n2a
n1+n2

· n1 + (a− n2a
n1+n2

) · n2 = 2n1n2a
n1+n2

.

And, if we heed the claim of the New York masters, then the amount of intercity travel needed

to be done by the chess players will be D2 = an1.

Therefore, D1 > D2

⇔ 2n1n2a
n1+n2

> an1 ⇔ 2n2 > n1 + n2 ⇔ n2 > n1, which is true from our assumptions.

Hence, the tournament should be held in New York.

Prove that a circle centered at point (
√

2,
√

3) in the cartesian plane passes through at most

one point with integer coordinates.

Solution

Let us assume, for the sake of contradiction, there is a circle with center O(
√

2,
√

3) such that it

passes through two points with integer coordinates. Let these two points be A(a, b) and B(c, d),

where a, b, c, d ∈ Z. Note that the line AB is a chord of the circle.

Let the midpoint of AB be C, where C ≡ (a+c
2
, b+d

2
). Let L denote the line passing through C

and perpendicular to AB. Now, slope of line AB equals b−d
a−c ⇒ Slope of the line L equals a−c

d−b .

So, the equation of line L is given by

y − b+d
2

= (a−c
d−b)(x−

a+c
2

)

Since L, passes through the point O, we must have
√

3−m = n(
√

2−p), where m = b+d
2
, n = a−c

d−b
and p = a+c

2
. Note that m,n and p are all rational.

So, we get
√

3− n
√

2 = m− np
⇒ 3 + 2n2 − 2n

√
6 = (m− np)2

⇒
√

6 is rational, which is clearly a contradiction.

Hence no such circle exists.

tập hợp

[Note: If you know the solution, please don’t write it. Just provide a hint or two to those who

wish to attempt to solve it.]

The numbers 1, 2, ..., 2002 are written in order on a blackboard. Then the 1st, 4th, 7th, ..., 3k +

1th, ... numbers in the list are erased. Then the 1st, 4th, 7th, ...3k+ 1th numbers in the remaining list

are erased (leaving 3, 5, 8, 9, 12, ...). This process is carried out repeatedly until there are no numbers

left. What is the last number to be erased? – Prove that the number of binary n-words with exactly

m 01-blocks is
(
n+1

2m+1

)
. ——- n is a positive integer, f(n) = 1 + 1

2
+ 1

3
+ · · ·+ 1

n
.

(1) When n > 1, show that f(2n) > 1
2
(n+ 2).

(2) When n > 1, define An = f(1) + f(2) + · · · + f(n) and Bn = n[f(n) − 1]. Find which one
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of An and Bn is larger. – Given a sequence {an} such that an+1 = p1an+p2

p3an+p4
and a1 = p0. Find the

general term of an. — assume a0 = 1, a1 = 2 and for each n ≥ 1 : an+1 = an + an−1

1+a2
n−1

then prove

this inequality for each n ≥ 0 :
√

2n+ 1 ≤ an <
√

3n+ 2 – The points z1, . . . , z5 form a convex

pentagon in the complex plane. The origin and the points αz1, . . . , αz5 all lie inside the pentagon.

Show that |α| ≤ 1 and R (α) + I (α) tan π
5
≤ 1. – Let f(x) = 3x4 + 4x3. Show that f(f(...(f(9)))),

(with f repeated 10 times), has more than one thousand 9′s when expressed in decimal notation. –

Let P (x) = x2n + c1x
2n−1 + c2x

2n−2 + ...+ c2n−1x+ c2n be a polynomial that can be expressed as the

product of n cuadratic polynomials x2 + a1x + b1, x
2 + a2x + b2, ..., x

2 + anx + bn. If c1, c2, ...c2n are

positives, prove that ak and bk are positives for some k(1 ≤ k ≤ n). – Let S(n) be the sum of the

digits of n. If for some integer n we have that:

S(n) = 50 and S(15n) = 300

Find S(4n) – Let S1 denote the sequence of positive integers 1, 2, 3, 4, 5, 6... and define the sequence

Sn+1 in terms of Sn by adding 1 to those integers in Sn which are divisible by n. Thus, for example,

S2 is 2, 3, 4, ... and S3 is 3, 3, 5, 5.... Determine those integers n with the property that the first n-1

integers in Sn are n. —- Supose you have two circles,A and B, with equal ray,and they both has 200

sectors that are painted with white and black.You now that the circle A has 100 sectors painted with

white and 100 painted with black.Now we put the circle A over the circle B. By turning the circle

A over the B is possible that there are at least 100 sectors in commom? – Find all positive integer

solutions x,y,z,p (p is a prime) to xp + yp = pz – Let a, b, c and d be a reels numbers wish satisfy

a =
√

4−
√

5− a
b =

√
4 +
√

5− b
c =

√
4−
√

5− c
d =

√
4 +
√

5− d
Find the value of abcd – Given {an}, a1 =

√
2, an+1 =

√
2 + an. If bn =

√
2− an, then find bn.

– Generalization. Let a1, a2, · · · , an be a sequence of positive real numbers such that their sum

equals A ∈ R+. If b1, b2, · · · , bn are positive integers with sum B, then

max

(
n∏
i=1

abii

)
=

(
A

B

)B ( n∏
i=1

bbii

)
.

Equality is achieved when ai
bi

is constant. – Prove that there exists a rational number c
d
with d < 100

such that⌊
k c
d

⌋
=
⌊
k 73

100

⌋
.

for for k = 1, 2, 3...100. —— A regular (n+2)-gon is inscribed in a circle. Let Tn denote the number

of ways it is possible to join its vertices in pairs so that the resulting segments do not intersect one

another. If we set T0 = 1, show that

Tn = T0Tn−1 + T1Tn−2 + ...Tn−1T0

. – Find, with proof, all natural numbers n such that n4 + 7n + 47 is a perfect square. – Find all

values of m,n, p such that m,n are positive integers and p is a prime number that satisfy:

pn + 144 = m2. — How many ways are there to place k marbles in any of the positions 1, 2, . . . , n

(which are evenly spaced around a circle) such that no two marbles are neighboring each other? (Of

course, k ≤
⌊
n
2

⌋
, and each position can have at most one marble.) – Determine all positive integers

whose squares end in 196. – Let a, n be positive integers such that (a, n) = 1.

194



Show that n|φ(an− 1). – Given that {an} is an arithmetic sequence ( Common difference d 6= 0).

The sequence ak1 , ak2 , · · · , akn formed by some terms of {an} is geometrical. If k1 = 1, k2 = 5 and

k3 = 17, then find the value of
∑n

i=1 ki.

– Given n a natural number greater than 1 and p a prime, where n|p− 1 and p|n3− 1, show that

4p − 3 is a square number. — Determine all positive integers whose squares end in 196. – – Prove

that

∀n ∈ N,∀p ∈ P : p ≡ 3 mod 4 =⇒ 6 ∃x ∈ Z : pn|(x2 + 1)

∀n ∈ N,∀p ∈ P : p ≡ 1 mod 4 =⇒ ∃x ∈ Z : pn|(x2 + 1) – In a country, there are 101 towns, and

to get from any town to any other town, there is no more than one one-way path. Each town has 40

paths entering it, and 40 paths going out. Prove that it’s possible to reach any town from any other

through no more than two other towns.

– prove that ,the number of the non-isomere triangles, such that its lenghts have an integer

mesures and primetre n , is [n
2+3n+21+(−1)n−1·3n

48
] :oops: such that [x] represente sa parie entiere..

tổ hợp

số học

số học

tổ hợp hay

số học

tổ hợp

số học

pt hàm

pt hàm

pt hàm

số học

số học

đa thức

đại số

xác suất khó

dãy số

tổ hợp

tổ hợp

dãy số

pt hàm

hình

hình

số học

đa thức

số học

tập hợp – LMN is an isosceles triangle in the complex plane

∠LMN =∠LNM =α

Complex numbers corresponding to the vertices L,M and N are Z1,Z2 and Z3 respectively

Prove that (Z3−Z2)2 =4(Z1−Z2)(Z3−Z1)(cosα)2 – Find the number of solutions for the equation

|2|2|2x− 1| − 1| − 1| = x2 (0 < x < 1).

tổ hợp
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hình học

đại số

số học

tổ hợp

tổ hợp

số học

đại số

dãy sô

tổ hợp

tổ hợp, lý thuyết số rất khó Prove that the equation

x4− 18x2 + 4dx+ 9 =0 has four real roots if d4 ≤ 1728 – Determine all functions f : N→ R such

that ∀m,n, k,
f(km) + f(kn)− f(k)f(mn) ≥ 1.

– Find all positive integers n such that

n = d2
6 + d2

7 − 1

where 1 = d1 < d2 < ... < dk = n are all positive divisors of the number n. – Let a1, a2, a3 be tree

different real numbers. Define numbers b1, b2, b3 as follwing: b1 =
(

1 + a1a2

a1−a2

)(
1 + a1a3

a1−a3

)
, and b2, b3

is defined assemble. Prove that: 1+|a1b1 +a2b2 +a3b3| ≤ (1+|a1|)(1+|a2|)(1+a3|) – Let f : Z+ → Z+

be a function such that f(n+ 1) > f(f(n)) ∀ n ∈ Z+. Prove that f(n) = n. – Consider an arbitrary

parallelogram ABCD with center O and let P be a point different from O. (PA)(PC) = (OA)(OC)

and (PB)(PD) = (OB)(OD). Show that the sum of lengths of two of the segments PA, PB, PC, PD

equals the sum of lengths of the other two. – Let A = 1!2!...1002! and B = 1004!1005!...2006!. Show

that 2AB is a square and A+B is not a square. – Let Fn represent any Fibonacci number.

Prove that:
3Fn±
√

5Fn2±4

2
provides two other Fibonacci numbers. – Find

lim
n−→∞

[
1

n5

n∑
h=1

n∑
k=1

(5h4 − 18h2k2 + 5k4)

]

Solution

the expression is the right hand approximation of
∫ 1

0

∫ 1

0
5x4 − 18x2y2 + 5y4 dx dy, this is easily de-

termined with basic integration rules... – If f(x) = x20 − 4x19 + 9x18 − 16x17 + ... + 441 = 0 and

z1, z2, ..., z20 are the roots of f(x) find the value of cot
(∑20

k=1 cot
−1zk

)
– Let ABC be a triangle with

orthocentre H. Prove that the Euler Lines of triangles ABC, ABH, BCH, ACH are concurrent. –

(a)1−
(
n
1

)
+
(
n
2

)
−
(
n
3

)
+ ...+ (−1)n

(
n
n

)
(b)1 · 2

(
n
2

)
+ 2 · 3

(
n
3

)
...+ (n− 1)n

(
n
n

)
(c)
(
n
1

)
+ 22

(
n
2

)
+ 32

(
n
3

)
...n2

(
n
n

)
(d)
(
n
1

)
− 22

(
n
2

)
+ 32

(
n
3

)
...+ (−1)n+1n2

(
n
n

)
(e)
(
n
0

)
− 1

2

(
n
1

)
+ 1

3

(
n
2

)
...+ (−1)n 1

n+1

(
n
n

)
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(f)
∑

j≥1(−1)j
( n
j−1)∑

1≤k≤j k
– Consider all of the permutations of {1, 2, . . . , n} (where n is a positive in-

teger). Let A be the set of those permutations such that each number in the permutation is either

greater than all the numbers to its left or less than all the numbers to its right. Let B denote the

set of those permutations a1, a2, . . . , an such that for 1 ≤ i ≤ n − 1, there is a j > i such that

|aj − ai| = 1. Show that |A| = |B|. – Find all strictly increasing functions f : Z → Z such that

f(2) = 2 and whenever gcd(m,n) = 1 then f(mn) = f(m)f(n).

hình – The altitudes of ∆ABC are extended externally to points A′, B′, and C ′ respectively,

where AA′ = k/ha, BB
′ = k/hB, and CC

′ = k/hc. Prove that the centroid of the triangle A′B′C ′

coincides with the centroid of ABC.

lý thuyết trò chơi – Let

1996∏
n=1

(1 + nx3n) = 1 + a1x
k1 + a2x

k2 + ...+ amx
km

where a1, a2, ...am are nonzero and k1 < k2 < .. < km. Find a1996. — Let t(n) be the maximum number

of different areas that you can divide a circle into when you place n points on the circumference and

draw all the possible line segments connecting the points. Find a formula for t(n). – Given a set of

lattice points, we can perform one of the following operations (note that we still keep the original

point in each case): 1. (x, y) → (x + 1, y + 1) (note that we still keep x, y 2. If x and y are both

even, (x, y)→ (x/2, y/2) 3. (x, y), (y, z)→ (x, z) If we start with 7, 29, can we get to 3, 1999? – Solve

the equation (x2 + y)(x + y2) = (x − y)3 on the set of integers. – Let k be a positive integer. find

all polynomials P (x) with real coefficients s.t. P (P (x)) = [P (x)]k – in a triangle ABC the following

relation is given: 2a4 + b4 + c4 + 18b2c2 = 2a2(4bc+ b2 + c2) . Find the measure of the triangle angles.

– Solve in rational numbers the equation : 4x2 − y2 = 36

Solution

If x and y are rational then so are 2x± y. Let 2x− y = 6p
q
for any coprime p and q. From the system

2x− y = 6p
q
, 2x+ y = 6q

p
all the solutions could be found.

tổ hợp

số học – Let p be any prime. Prove that(
2p

p

)
≡ 2 (mod p2).

— A harder problem: Prove that
(

2p
p

)
≡ 2 (mod p3) (without using Wolstenholme of course). — It is

given that x and y are positive integers and 3x2+x = 4y4+y. Show that: x−y, 3x+3y+1 and 4x+4y+1

are squares of integers. —– Using congruences: 100 ≡ 1(mod 11), 1000 ≡ −1(mod 13), 1000 ≡
1(mod 27) Derivation of a formula of attributes ( features) devisibility by 11, 13 and 27. – A collec-

tion of n planes is given in a space such that no four planes intersect at the same point and each

three planes intersect exactly at one point. What is the total number of points where three planes

intersect? To how many parts these planes divide the whole space? how many of these parts are

unbounded? – Calculation of real x in x =
[
x
2

]
+
[
x
3

]
+
[
x
5

]
Solution

Since x is obviously integer, put x = 30k + r where k, r ∈ Z and 0 6 r 6 29. Then

30k + r = 15k +
[
r
2

]
+ 10k +

[
r
3

]
+ 6k +

[
r
5

]
k = r −

[
r
2

]
−
[
r
3

]
−
[
r
5

]
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x = 30k + r = 31r − 30
([

r
2

]
+
[
r
3

]
+
[
r
5

])
Running r through the designated range, we get all the solutions:

x ∈ {0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 47, 49, 53, 59}[/hide][
1
3

]
+
[

2
3

]
+
[

22

3

]
+ ............+

[
22013

3

]
=

where [x] = Integer part of x

Solution

Note that 22n ≡ 1 (mod 3), 22n+1 ≡ 2 (mod 3). This directly translates to even powers of 2

ending in 1 base 3 and odd powers of 2 ending in 2. Finally, the last key observation we need is that

when taking the integer part, we drop the last digit in base 3.

Keeping this in mind, we can then proceed by adding all of the powers of 2

20 + · · ·+ 22013 = 22014 − 1

Now we subtract 1007 · 1 and 1007 · 2

22014 − 1007− 1007 · 2− 1

= 22014 − 3 · 1007− 1

Then our answer is 22014−1
3
− 1007.

Let i and j be positive integers with i ≥ 1 and 1 ≤ j ≤ i + 1. Define ai,j as follows:

a1,1 = a1,2 = a2,1 = a2,3 = 1 a2,2 = 2 ai,1 = ai,i+1 = ai−1,1 + ai−2,1 for i ≥ 3 ai,j = max(ai−1,j−1 +

ai−2,j−1, ai−1,j + ai−2,j−1) for all i ≥ 3 and 2 ≤ j ≤ i Find a closed closed form expression for ai,j.

Solution

From the symmetry of the initial coniditions and the rule for generating ai,j, it is clear that

ai,k = ai,i+1−k. Therefore, WLOG, we need only worry about the ai,j for which j ≤ b i+1
2
c. I have

listed the first values of this sequence below with i denoting the row number and j denoting the

column number.

1

1 2

2 3

3 4 5

5 6 8

8 9 12 13

13 14 18 21

21 22 27 33 34

34 35 41 51 55

55 56 63 78 88 89

89 90 98 119 139 144

Several patterns become apparent immediately. If Fn is the nth term of the fibonacci sequence, then

ai,1 = Fi and ai,b i+1
2
c = Fi+1. Also, max(ai−1,j−1 + ai−2,j−1, ai−1,j + ai−2,j−1) = ai−1,j + ai−2,j−1, so we

have ai,j = ai−1,j + ai−2,j−1 in this simplified case. All of these are easily proveable by induction, but
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I will leave this out. We consider a new sequence bi,j such that bi,j = ai,j+1− ai,j The first few values

of this sequence are listed below.

0

1

1

1 1

1 2

1 3 1

1 4 3

1 5 6 1

1 6 10 4

1 7 15 10 1

1 8 21 20 5

A simple formula for bi,j becomes apparent: bi,j =

(
i− j − 1

j − 1

)
We now have a formula for ai,j with

j ≤ b i+1
2
c which we will prove by induction. ai,j = Fi+

∑j−1
k=1

(
i− k − 1

k − 1

)
We can easily check that this

formula is satisfied for i ≤ 2. Now assume that for some i ≥ 3 and 1 < j < b i+1
2
c, the formula holds

true for ai−1,j and ai−2,j−1. Then we have ai,j = ai−1,j+ai−2,j−1 ai,j = Fi−1+Fi−2+
∑j−1

k=1

(
i− k − 2

k − 1

)
+∑j−2

k=1

(
i− k − 3

k − 1

)
By pascal’s identity and the definition of the fibonacci sequence, this reduces

to ai,j = Fi +
∑j−1

k=1

(
i− k − 2

k − 1

)
+
∑j−1

k=2

(
i− k − 2

k − 2

)
ai,j = Fi +

∑j−1
k=2

(
i− k − 1

k − 1

)
+ 1 ai,j =

Fi +
∑j−1

k=1

(
i− k − 1

k − 1

)
Now that we have proven the formula for j ≤ b i+1

2
c, it easy to find the

extension that for j ≥ b i+1
2
c, we have ai,j = Fi +

∑i−j
k=1

(
i− k − 1

k − 1

)
Solve this system of equations for positive real numbers. x4 +y4 +(2xy−1)(x2 +y2)+2x2y2 = 0

1
x

+ 1
y

= 4(x+ y)5

Solution

x4 +y4 +(2xy−1)(x2 +y2)+2x2y2 = (x2 +y2)2 +(2xy−1)(x2 +y2) = (x2 +y2)(x2 +2xy+y2−1) =

(x2 + y2)((x + y)2 − 1) = (x + y − 1)(x + y + 1)(x2 + y2) = 0. There are no real solutions when

x2 + y2 = 0 ⇐⇒ x2 = −y2 unless x = y = 0, but this would involve dividing by 0 [in the second

equation] which isn’t allowed. Thus, there are only two cases to consider.

Case 1: x + y = 1. In this case, the second equation is 1
x

+ 1
y

= 4 ⇐⇒ x+y
xy

= 4 ⇐⇒ xy = 1
4
.

By Vieta’s, x, y are the solutions to the quadratic a2−a+ 1
4

= a2 + 2(a)(−1
2
) + (−1

2
)2 = (a− 1

2
)2 = 0,

which yields x = y = 1
2
.

Case 2: x+y = −1. In this case, the second equation is 1
x

+ 1
y

= −4 ⇐⇒ x+y
xy

= −4 ⇐⇒ −xy =

−1
4
⇐⇒ xy = 1

4
. By Vieta’s, x, y are the solutions to the quadratic a2 +a+ 1

4
= a2 +2(a)(1

2
)+(1

2
)2 =

(a+ 1
2
)2 = 0, which yields x = y = −1

2
.

It follows that (x, y) = (±1
2
,±1

2
) .

Show that there is exactly one pair of positive integers m,n, with n < 200, such that

59

80
<
m

n
<

45

61
.
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Solution

Lemma: If fractions satisfy the inequality a
b
< m

n
< c

d
, then there exists a unique y such that

a+yc
b+yd

= m
n
. Proof: This is a matter of solving linear equations. Notice that no solution occurs if a/b

= c/d, which cannot happen. Notice that y is rational if the fractions are rational.

With this in mind, if we have the inequality 59
80
< m

n
< 45

61
, then we can write m = 59x+ 45y and

n = 80x+ 61y for some relatively prime positive integers x and y, by the lemma above. We wish to

find the conditions in which 59x+45y
80x+61y

simplifies. To do this, we use the Euclidean Algorithm:

(59x+ 45y, 80x+ 61y) = (59x+ 45y, 21x+ 16y)

= (17x+ 13y, 21x+ 16y)

= (17x+ 13y, 4x+ 3y)

= (x+ y, 4x+ 3y)

= (x+ y, x)

= (x, y)

By our choice to make x and y relatively prime, this fraction will not simplify, so we must

have that 80x + 61y = 200. There is clearly only one solution to this in the positive integers, so

(m,n) = (104, 141) is unique.

Let S denote the set of all nonnegative integers whose base-10 representation contains no 1s.

Compute ∏
k∈S

10k + 2

10k + 1

or show that it diverges.

Solution

Convergence Let f(x) = x
x−1

, so we are examining

P = [f(22)f(32)f(42)...f(92)][f(202)f(222)f(232)...f(992)][f(2002)f(2022)...]...

where there are 8 · 9k−2 arguments with k digits.

Because f(x) is decreasing, P < (f(22))8(f(202))72(f(2002))648...

Therefore logP < 8 log f(22) + 72 log f(202) + 648 log f(2002) + ...

Now log f(x) < 2
x
for x > 2, so 9

8
logP < 9 · 1

11
+ 92 · 1

101
+ 93 · 1

1001
+ ... < 9

10
+ 81

100
+ 729

1000
+ ...

which implies 9
8

logP <
∑∞

i=1( 9
10

)i = 9 =⇒ logP < 8 =⇒ P < e8.[/hide]

Find all positive integers n such thatbn2

5
c is a prime number p ≤ n2

5
< p+1, where p is prime. So

5p ≤ n2 < 5p+5 =⇒ 0 ≤ n2−5p < 5. Solve all cases from 0 to 4. Eg, n2−5p = 1 =⇒ p = (n+1)(n−1)
5

.

Since p is prime, either 5 = n+ 1 or 5 = n− 1, which yields n = 6, 4.

Final conclusion is n=4, 5, 6. Or another way:

The quadratic residues of n2 are 0,±1.

Case one: n2 = 5a =⇒ bn2

5
c = a but 5|a. So only solution is n, a = 5

Case two: n2 = 5a+ 1 =⇒ bn2

5
c = a So a needs to be prime. Note that then (n+ 1)(n− 1) = 5a.

n+ 1 = 5 =⇒ n = 4, a = 3 so we are good.
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If n− 1 = 5 =⇒ n = 6, a = 7 so we are good.

Case three: n2 = 5a+ 4 =⇒ bn2

5
c = a Again, a needs to be prime. (n+ 2)(n− 2) = 5a.

n + 2 = 5 =⇒ n = 3, a = 1 so we can throw it away. n − 2 = 5, n = 7, a = 9 which is again

incorrect.

Thus, n = 4, 5, 6

Let A be a set with at least two members. Show that there exists a bijective function f : A→ A

such that f(x) 6= x for all x ∈ A.
Solution

For finite A take a cyclic permutation. For infinite A, we may need the axiom of choice to prove

that A may be partitioned in disjoint pairs (x, y) of elements, and then define f(x) = y, f(y) = x on

each pair. A proof follows.

Consider the family P of all sets having as elements disjoint pairs from A, ordered by inclusion.

This is a poset, with the property that any chain C is has a majorant - we may take
⋃
C∈C C ∈ P ,

clearly a set having as elements disjoint pairs from A. By Zorn’s Lemma (equivalent of the Choice

Axiom), there exists a maximal element M ∈ P . If
⋃
P∈M = A, we are done. We cannot have

more than one element in A \
(⋃

P∈M
)
, since that will contradict the maximality of M . Finally, if

A \
(⋃

P∈M
)

= {a}, take out a countable subset of pairs from M , say (xn, yn), for n ≥ 1, rearrange

as (a, x1), (y1, x2), (y2, x3), . . ., and put them back, to obtain a set M ′ with
⋃
P∈M ′ = A.

Find x ∈ R satisfy
√
x2 + (1−

√
3)x+ 2 +

√
x2 + (1 +

√
3)x+ 2 ≤ 3

√
2−
√
x2 − 2x+ 2

Solution

Let T (x, 0), A
(√

3−1
2
, −
√

3−1
2

)
, B
(
−
√

3−1
2

,
√

3−1
2

)
and C(1, 1). Easy to show that ∆ABC is a regular

triangle with center O(0, 0), which is the Torricelli point of the triangle. Thus,
√
x2 + (1−

√
3)x+ 2+√

x2 + (1 +
√

3)x+ 2 +
√
x2 − 2x+ 2 = = TA+ TB + TC ≥ OA+OB +OC = 3

√
2. The equality

occurs, when T ≡ O, which happens for x = 0. Id est, the answer is {0}.[/hide]
Show that

(z − eiθ)(z − e−iθ) = z2 − 2z + 1.

Solution

(
z − eiθ

) (
z − e−iθ

)
= z2 − 2z

(
eiθ+e−iθ

2

)
+ 1 = z2 − 2z cos θ + 1

z2n + 1 = 0⇔ z = e(
(2k−1)π

2n )i = cos
(

(2k−1)π
2n

)
+ i sin

(
(2k−1)π

2n

)
z2n + 1 =

(
z − e−

(2n−1)πi
2n

)
...
(
z − e− 3πi

2n

)(
z − e− πi

2n

)(
z − e πi2n

)(
z − e 3πi

2n

)
...
(
z − e

(2n−1)πi
2n

)
=

n∏
k=−n

(
z − e(

(2k−1)π
2n )i

)
=

n∏
k=1

(
z − e−

(2k−1)πi
2n

)(
z − e

(2k−1)πi
2n

)
=

n∏
k=1

(
z2 − z

(
e

(2k−1)πi
2n + e−

(2k−1)πi
2n

)
+ 1
)

=
n∏
k=1

(
z2 − 2z cos

(
(2k−1)π

2n

)
+ 1
)

then z2n + 1 =
n∏
k=1

(
z2 − 2z cos

(
(2k−1)π

2n

)
+ 1
)

put z=i
n∏
k=1

(
i2 − 2i cos

(
(2k−1)π

2n

)
+ 1
)

=
n∏
k=1

(
−2i cos

(
(2k−1)π

2n

))
= (−1)n 2nin

n∏
k=1

cos
(

(2k−1)π
2n

)
= i2n + 1

now P =
n∏
k=1

cos
(

(2k−1)π
2n

)
= (−1)n in+i−n

2n
= (−1)n

2 cos(nπ2 )
2n

= (−1)n 21−n cos
(
nπ
2

)
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Pat leaves a small town A at 10:18am and walking at uniform speed arrives in town B at 1:30pm.

On the same day Chris leaves town B at 9:00am and walking along the same route at uniform speed

arrives at A at 11:40am. The road crosses a wide river and they both arrive at the bridge on their

respective sides at exactly the same momne t. Pat leaves the bridge one minute later than Chris.

When did they arrive at the bridge?

Solution

Let’s say that the distance from A to B is 1000 units. Pat travels this in 192 minutes and so he is

travelling at 125
24

units per minute. Similarly, Chris is travelling at 25
4
units per minute. So we see that

they are 512.5 units apart at 10:18.

Let’s say that the bridge is b units long, and we know that Chris traversed it 1 minute quicker.

Hence, 24b
125
− 4b

24
= 1. Therefore b = 31.25.

Finally, lets call t the time (in minutes) elapsed since 10:18. We know the combined distance

travelled is s = 512.5 − b = 481.25 units, and their combined speed is u = 25
4

+ 125
24

= 275
24

. As there

is no acceleration, we know that s = ut, hence t = 42 minutes. Hence, they arrived at the bridge at

10 : 18 + 42 = 11 am.

Find all ordered pairs of real numbers (x, y) for which:

(1 + x)(1 + x2)(1 + x4) = 1 + y7

and

(1 + y)(1 + y2)(1 + y4) = 1 + x7.

Solution

The equations are

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 = 1 + y7

1 + y + y2 + y3 + y4 + y5 + y6 + y7 = 1 + x7.

Substituting the first equation into the second,

y + y2 + . . .+ y5 + y6 + x+ x2 + . . .+ x5 + x6 = 0.

Suppose, by way of contradiction, that x = 1. Then

(1 + x)(1 + x2)(1 + x4) = 1 + y7

yields that y > 1 and

(1 + y)(1 + y2)(1 + y4) = 1 + x7

returns y < 1, a contradiction. Hence, x 6= 1. Similarly, y 6= 1. Since x = 1 or y = 1 can’t possibly be

solutions,

y

(
y6 − 1

y − 1

)
+ x

(
x6 − 1

x− 1

)
= 0.

Set

f(x) = x

(
x6 − 1

x− 1

)
.
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A sign analysis of f(x) gives

f(x)


> 0 if x > 0

< 0 if 0 > x > −1

> 0 if − 1 > x.

Becuase

f(y) + f(x) = 0,

then for x, y 6= 0,−1 exactly one of {x, y} must be between 0 and −1. Suppose, without loss of

generality,

0 > x > −1.

Hence,

y > 0 or − 1 > y .

Then

0 > x7 > −1,

so

1 > 1 + x7 > 0.

Thus,

1 > (1 + y)(1 + y2)(1 + y4) > 0

Since

y2 + 1 > 1 and y4 + 1 > 1,

then

0 < (1 + y) < 1,

so

−1 < y < 0,

a contradiction to the bounds on y.

Therefore, the only solutions are x = y = 0 and x = y = −1 .

Problem : If a and b are two roots of x4+x3−1 = 0, prove that ab is a root of x6+x4+x3−x2−1 = 0.

Solution

Let the roots be a, b, c, d. Then we have

(x− a) (x− b) (x− c) (x− d) = 0.

This means that

a+ b+ c+ d = −1

abcd = −1

abc+ abd+ acd+ bcd = 0

ab+ ac+ ad+ bc+ bd+ cd = 0

Due to (4), there is no x5 term in the 6th degree polynomial. Also, since abcd = −1, the constant

term is −1 as well because the product of the terms in (4) is (−1)3 = −1. We also find the x4, x3,
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and −x2 terms as well due to the same reasoning that gave equations (1) − (4) and the following

equation:

(x− ab) (x− ac) (x− ad) (x− bc) (x− bd) (x− cd) = 0.

Given and ellepse with focus F1 and F2. P is a mobile point on the ellipse. Through F1 construct

a perpendicular line to the exterior angle bisector of ∠F1PF2. Find the locus of the projection.

Solution

Let H be the projection of F1 onto the exterior angle bisector of ∠F1PF2 Let PD be the internal

angle bisector of ∠F1PF2.Then of course F1H ‖ PD
Let Z ∈ F1H ∩ F2P . Then it is known that the triangle PZF1 is isosceles (because ∠PF1Z =

∠PZF1 = ∠F1PD = ∠F2PD)

Hence PZ = PF1 ⇒ F2Z = F2P + F1P = 2a = constant

H is the midpoint of F1Z, so the parallel line to F2Z through H meets F1F2 on its midpoint O.

So OH = F2Z
2

= a⇒ H lies on the circle w = (O, a)

Inversely, for any point H ∈ w, we can see (using the same steps) that F1P + F2P = 2a

So, the locus of H is the circle w

Let ABCD be a quadrilateral with AB ‖ CD, AB > CD. Prove that the line passing through

AC ∩BD and AD ∩BC passes through the midpoints of AB and CD.

Solution

Consider a triangle ABC with X on CB and Y on CA so that XY is parallel to AB. (*)

CXY is similar to CBA, so that CX/CB = CY/CA. It follows BX/XC = AY/YC. (**)

Suppose AX and BY intersect in J. and CJ intersects AB at Z. From our result (**) + Ceva, it

follows AZ = ZB.

Finally, because our triangles are similar, the (collinear) line CJZ also hits the midpoint of XY.

So we have proved with the above configuration (*) that C, the midpoint of XY, the intersection

of AX and BY, and the midpoint of AB are collinear.

Now putting A′, B′, C ′, X ′, Y ′ = A,B,AD ∩ BC,C,D we can appeal to the result above. here is

another proof

Let P = AD ∩BC and O = AC ∩BD
From similar triangles PDC,PAB we have:
PD
PA

= DC
AB

Also, the triangles OAB,OCD are similar (∠OAB = ∠OCD,∠DOC = ∠AOB)

So, OC
OA

= DC
AB
⇒

OC
OA

= PD
PA

Take a point F ∈ OA, such that OF = OC (since CD < AB ⇒ OC < OA ⇒ F is inside the

segment OA)

Now, OF
OA

= OC
OA
⇒

OF
OA

= PD
PA

Hence DF ‖ PO
In the triangle CDF, O is the midpoint of CF and PO ‖ DF ⇒ PO intersects DC at its

midpoint H.
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Finally, from similar triangles PDC,PAB we find that the line PH is also median for 4PAB.

Another solution We will use a theorem (I don’t remember this theorem’s name):

Lemma Let A,B,E be three collinear points and a point P 6∈ AB. Let a line d ‖ AB. d intersects
the lines PA, PB, PE at the points A′, B′, E ′ respectively.

Then EA
EB

= E′A′

E′B′

Proof of Lemma 4PAE ∼ 4PA′E ′ ⇒ PA
PA′

= EA
E′A′

4PBE ∼ 4PB′E ′ ⇒ PB
PB′

= EB
E′B′

But PA
PA′

= PB
PB′
⇒ EA

E′A′
= EB

E′B′
⇒ EA

EB
= E′A′

E′B′

So, if E is the midpoint of AB then the line PE intersects the segment A′B′ on its midpoint E ′

This means that the line EE ′ passes through P = AA′ ∩BB′.
Let M,N be the midpoints of AB,CD respectively.

A′ = C,B′ = D ⇒MN passes through AC ∩BD
A′ = D,B′ = C ⇒MN passes through AD ∩BC

Define µ(k) as the following:

- µ(1) = 1 - µ(k) = (−1)n for k a product of n distinct primes - µ(k) = 0 otherwise

One.

Given an integer n, let D be the set of its positive integral divisors. Show that∑
d∈D µ(d) = 0

Two.

Show that∑
d∈D µ(d) · n

d
= ϕ(n)

Solution

For 1) Let f(n) =
∑

k|n µ(k). Note that f(pe) = µ(1) + µ(p) + µ(p2) + ...+ µ(pk−1 = 0. Since µ(k) is

multiplicative, also f(n) is. Hence
∑

k|n µ(k) = 0.

For 2)
∑

d∈D µ(d) · n
d

= n
∑

d∈D
µ(d)
d

= 1 − 1
p1
− ... − 1

pk
+ 1

p1p2
+ ... + 1

pk−1pk
+ ... ± 1

p1p2...pk
=(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
.

Show that if 3 ≤ d ≤ 2n+1, then d - (a2n + 1) for all positive integers a.

Solution

Suppose d divedes the expression (for contrary). Then a and d are obviously coprime. Order of a

mod d divides 2n+1 but doesn’t divide 2n, so the order is 2n+1 and it must divide the totient of d, so

2n+1 < d, contrary.

What’s the greatest integer and positive number such that it can’t be expressed as the sum of

two compossite odd numbers?

Solution

We know that 38 satisfies our conditions.

Suppose we have n > 38. Consider n− 3, n− 9, n− 21, n− 27, n− 33 mod 5. They are distinct,

so one is divisible by 5. For n > 38 we have n− 33 > 5 so if one is divisible by 5, it will be odd and

composite.

Equivalently, consider n− 5, n− 25, n− 35 mod 3.
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Let a > −1 and r ∈ (0, 1) be reals. Prove that:

(1 + a)r ≤ 1 + ra.

Solution

We’ll prove the equivalent statement (1 + a)r > 1 + ar for a > −1 and R 3 r > 1.

Put c = 1 + a and s = r − 1. Then the inequality becomes

cs+1 > 1 + (c− 1)(1 + s) ⇐⇒ cs+1 > c+ (c− 1)s

⇐⇒ c(cs − 1) > (c− 1)s

for c > 0, s > 0

For c = 1 (1) is trivially satisfied, hence we’ll deal with c 6= 1.

Part 1. s ∈ Q Put s = p
q
, p, q ∈ N

Case 1.1. c > 1. Then we can write

c(c
p
q − 1) > (c− 1)

p

q
⇐⇒ c(c

p
q − 1)

c− 1
>
p

q

⇐⇒ c(c
1
q − 1)(c

p−1
q + c

p−2
q + · · ·+ 1)

(c
1
q − 1)(c

q−1
q + c

q−2
q + · · ·+ 1)

>
p

q

⇐⇒ c(c
p−1
q + c

p−2
q + · · ·+ 1)

c
q−1
q + c

q−2
q + · · ·+ 1

>
p

q

The numerator on the LHS is not less than c(1 + 1 + · · ·+ 1︸ ︷︷ ︸
p

) = pc, and the denominator is not

greater than c
q−1
q + c

q−1
q + · · ·+ c

q−1
q︸ ︷︷ ︸

q

= qc
q−1
q , hence we have

c(c
p−1
q +c

p−2
q +···+1)

c
q−1
q +c

q−2
q +···+1

> pc

qc
q−1
q

= p
q
c

1
q > p

q

Case 1.2. c < 1. Then we can write

c(c
p
q − 1) > (c− 1)

p

q
⇐⇒ c(c

p
q − 1)

c− 1
6
p

q

⇐⇒ c(c
1
q − 1)(c

p−1
q + c

p−2
q + · · ·+ 1)

(c
1
q − 1)(c

q−1
q + c

q−2
q + · · ·+ 1)

6
p

q

⇐⇒ c(c
p−1
q + c

p−2
q + · · ·+ 1)

c
q−1
q + c

q−2
q + · · ·+ 1

6
p

q

The numerator on the LHS is not greater than c(1 + 1 + · · ·+ 1︸ ︷︷ ︸
p

) = pc, and the denominator is

not less than c
q−1
q + c

q−1
q + · · ·+ c

q−1
q︸ ︷︷ ︸

q

= qc
q−1
q , hence we have

c(c
p−1
q +c

p−2
q +···+1)

c
q−1
q +c

q−2
q +···+1

6 pc

qc
q−1
q

= p
q
c

1
q < p

q

Conclusion 1. (1 + a)r > 1 + ar is satisfied for a > −1 and Q 3 r > 1
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Part 2. s ∈ I. Then we can generalize Conclusion 1 by using Dedekind cuts.

Conclusion. (1 + a)r > 1 + ar is satisfied for a > −1 and R 3 r > 1

Let a Set X of 2003 points in the plane, and a unit circle be given. Prove that there is a point on

the unit circle such that the sum of the distances from it to the 2003 points is at least 2003.

Solution

With vectors. Let the 2003 points be A1, A2, . . . , A2003. Choose a point A on the circle at let B be

the antipodal point of the circle. Then: 4006 = 2003|AB| = |(AA1 + A1B) + (AA2 + A2B) + . . . +

(AA2003 +A2003B)| ≤ (|AA1|+ . . .+ |AA2003|)+(|BA1|+ . . .+ |BA2003|). Thus, the sum of (the sum

of the distances from A to the members of X) and (the sum of the distances from B to the members

of X) is 4006, so at least one summand is 2003, and we’re done. This in fact shows that "most

of" the circle must have the desired property. It also shows that the restriction to the plane was

arbitrary: this works for k points with an m-dimensional sphere in n-dimensional space for any k,

m ≤ n. Although generalizing the dimension of the sphere upwards isn’t very interesting (since the

proof relied only on a sphere in 1-D space, that is two points, and every lower-dimensional sphere is

contained in every higher-dimensional sphere).

Let x, y, z be positive integers that are coprime each other such that 1
x

+ 1
y

= 2
z
. If z is a odd

number, prove that xyz is a square number.

Solution

Are you sure that the numbers are "coprime each other" instead of "coprime"? The problem becomes

much easier.

The former case 1
x

+ 1
y

= 2
z
⇒ z(x+ y) = 2xy ⇒ z|2xy Since x, y, z are pairwise relatively prime,

it follows that z|2. So z = 1. Now x + y = 2xy ⇒ (2x − 1)(2y − 1)) = 1 So x = y = 1. Therefore

xyz = 1.

The latter case z(x + y) = 2xy Let x = dx0, y = dy0 where gcd(x0, y0) = 1. We also have

gcd(d, z) = 1. Substituting above, z(x0 + y0) = 2dx0y0 Since gcd(x0, y0) = 1, x0 and y0 cannot divide

x0 + y0, and so x0y0|z Let z = kx0y0, where k is odd. Substituting k(x0 + y0) = 2d ⇒ k|2d ⇒ k|d
But k|z, so k = 1. Therefore xyz = (dx0)(dy0)(x0y0) = (dx0y0)2.

Find all function in R wish satisfay yf(x)− xf(2y) = 8xy(x2 − y2).

Solution

yf(x)− xf(2y) = 8xy(x2 − y2) = −(8yx(y2 − x2)) = −(xf(y)− yf(2x))

= yf(2x)− xf(y).

Therefore, −y (f(2x)− f(x)) = x (f(2y)− f(y)). Let g(x) = f(2x) − f(x) for all real number x.

Then −yg(x) = xg(y). Letting x = y, we get 2xg(x) = 0, so g(x) = 0 (because equality holds for all

real numbers), i.e. f(2x) = f(x) for all reals.

Our initial equation becomes yf(x) − xf(y) = 8xy(x2 − y2). Now let y = 2x and get xf(x) =

2xf(x) − xf(2x) = 16x2(x2 − 4x2) = −48x4, i.e. f(x) = −48x3. Let y = 4x and get 3xf(x) =

4xf(x)− xf(4x) = 32x2(x2 − 16x2) = −15 · 32x4, so f(x) = −160x3. Contradiction.

Polyhedron ABCDEFG has six faces. Face ABCD is a square with AB = 12; face ABFG is a

trapezoid with AB parallel to GF, BF = AG = 8, and GF = 6; and face CDE has CE = DE = 14.
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The other three faces are ADEG,BCEF, and EFG. The distance from E to face ABCD is 12.

Given that EG2 = p−q
√
r, where p, q, and r are positive integers and r is not divisible by the square

of any prime, find p+ q + r.

Solution

Set up ABCDEFG in a 3-D coordinate system. Define A(0, 0, 0), B(12, 0, 0), C(12, 12, 0), and

D(0, 12, 0). Let H be the midpoint of CD, and let J be the point on plane ABCD such that

EJ = 12. H is therefore H(6, 12, 0). Because triangle CDE is isosceles, it can be determined that

EH =
√
EC2 − CH2 =

√
196− 36 =

√
160. Triangle EJH is a right triangle with hypotenuse EH;

therefore, JH =
√
EH2 − EJ2 =

√
160− 144 = 4. Because the figure is symmetric with respect to

the plane x = 6, we can assume that the x-coordinate of point E is 6. Furthermore, since the distance

from J to CD is 4, the distance from J to AB is 8, and the y-coordinate of point E is 8. Since EJ

is perpendicular to plane ABCD, the z-coordinate of point E is 12.

We have now determined that A = (0, 0, 0), D = (0, 12, 0), and E = (6, 8, 12). However, it is given

that ADEG is a plane. For A, D, E, and G to lie in the same plane, the triple product of vectors

AD, AE, and AG must be 0 (as in, the volume of the parallelopiped formed by those vectors is 0).

Let G = (a, b, c). Therefore,

AG · (AD × AE) = 0

< a, b, c > ·(< 0, 12, 0 > × < 6, 8, 12 >) = 0

< a, b, c > · < (12)(12)− (0)(8), (0)(6)− (0)(12), (0)(12)− (12)(6) > = 0

< a, b, c > · < 144, 0,−72 > = 0

144a− 72c = 0

144a = 72c

2a = c

Furthermore, since FG = 6 and the polyhedron is symmetrical with respect to the plane x = 6, the

x-coordinate of F must be 9 and the x-coordinate of G must be 3. Therefore, a = 3 and c = 2(3) = 6.

It is given that AG = 8, so, applying the distance formula: 32 + y2 + 62 = 82 ⇒ y =
√

19. Hence,

G = (3,
√

19, 6) and E = (6, 8, 12).

Applying the distance formula one last time,

EG2 = (6− 3)2 + (8−
√

19)2 + (12− 6)2

= 9 + 82 − 2(8)(
√

19) + (
√

19)2 + 36

= 128− 16
√

19

.

And so p+ q + r = 128 + 16 + 19 = 163

Let f be a function from the set of non-negative integers into itself such that for all n ≥ 0 we

have that

(f(2n+ 1))2 − (f(2n))2 = 6f(n) + 1 and f(2n) ≥ f(n).

How many numbers less than 2003 are there in the image of f?

Solution

By the functional equation
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(1) [f(2n+ 1)]2 − [f(2n)]2 = 6f(n) + 1

we have

(2) f(2n+ 1) > f(2n).

Furthermore

[f(2n+ 1)]2 = [f(2n)]2 + 6f(n) + 1 ≤ [f(2n)]2 + 6f(2n) + 1 < [f(2n) + 3]2

since f(2n) ≥ f(n). Combining (1) and (2) we obtain f(2n+ 1) = f(2n) + k where k ∈ {1, 2}. If
k = 2, then

4 [f(2n) + 1] = 6f(n) + 1,

hence 2|1. This contradiction gives k = 1. Thus f(2n+ 1) = f(2n) + 1, which implies that

(3) f(2n) = 3f(n)

according to (1). Next assume f(k) > f(k − 1)(·) for alle k ≤ m. We observe that by (2) the

induction hypothesis (·) is true for m = 1 and f(m + 1) > f(m) when m is even. When m is odd,

i.e. m = 2i− 1, then

f(m+ 1) − f(m) = f(2i) − f(2i− 1)

= 3f(i) − [3f(i− 1) + 1]

= 3[f(i)− f(i− 1)]− 1

≥ 3 − 1 = 2 > 0.

since i = m+1
2
≤ m for all m > 0. This induction step shows that f is a strictly increasing

function. The implication of this is that the number of non-negative integers less than 2003 which

are in the image of f , is given by the unique number N which satisfies the inequalities

(4) f(N − 1) < 2003 ≤ f(N).

By setting n = 0 in (3), we get f(0) = 0. Therefore f(1) = f(0) + 1 = 0 + 1 = 1. Using induction

on formula (3), we find that

f(2k) = 3kf(1) = 3k.

Setting k = 7, the result is

f(27) = 37 = 2187.

Moreover, setting m = 2k − 1 in the formula f(2m + 1) = f(2m) + 1 = 3f(m) + 1, the result is

f(2k − 1) = 3f(2k−1 − 1) + 1. Consequently
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f(27 − 1) = 3 f(26 − 1) + 1

= 3 [3f(25 − 1) + 1] + 1

= 32 f(25 − 1) + 4

= 3 [32f(24 − 1) + 4] + 1

= 33 f(24 − 1) + 13

= 3 [33f(23 − 1) + 13] + 1

= 34 f(23 − 1) + 40

= 3 [34f(22 − 1) + 40] + 1

= 35 f(22 − 1) + 121

= 3 [35 f(21 − 1) + 121] + 1

= 36 f(1) + 364

= 729 · 1 + 364

= 1093

Hence 1093 = f(27 − 1) < 2003 ≤ f(27) = 2187, thus by (4)

N = 27 = 128.

Let a,b,c,d is the reals number satisfying thata2+b2 = 1 and a4

b
+ c4

d
= 1

b+d
Prove that a2004

b1002 + c2004

d1002 =
2

(b+d)1002

Solution

Replace 2004 with 2k Prove: a2k

bk
+ c2k

dk
= 2

(b+d)k
Are you sure it’s not a2 + c2 = 1? Because then by

Cauchy we have: a
4

b
+ c4

d
≥ (a2+c2)2

b+d
But if a2 + c2 = 1 then we have equality; so b : a2 = c : d2 Notice

k

√(
a2

b

)k
+
(
c2

d

)k ≥ 2
1
k
−1
(
a2

b
+ c2

d

)
from AM-GM (actually powermean or generalization whatever its

called) but in fact, we have equality (we established b : a2 = c : d2 from Cauchy) and that is the

equality condition we need for powermean So LHS =
(

2
1
k
−1
(
a2

b
+ c2

d

))k
= 2

(
a2

b
+ c2

d

)k
2k

≥ 2

(
2a

2+c2

b+c

)k
2k

=
2

(b+d)k
and I’m pretty sure we have equality in the last inequality (i don’t know too much about the

last inequality but I’ve heard about it) so a2k

bk
+ c2k

dk
= 2

(b+d)k
as desired

Find the positive numbers n such that n4 is the multiple of 3n+ 7.

Solution

If 3n+ 7|n4, then 3n+ 7|(3n)4, so 0 ≡ (3n)4 ≡ (−7)4 (mod 3n+ 7). Thus we really should have that

3n + 7|74. Now, n is a positive integer, so 3n + 7 ≥ 3 · 1 + 7 = 10, so only 3n + 7 ∈ {72, 73, 74} is

possible, i.e. n ∈ {14, 112, 798}. For all those numbers, it is easily checked that 3n+ 7|n4.

Another way 3n+ 7|3n4 and 3n+ 7|3n4 + 7n3

=⇒ 3n+ 7|7n3 =⇒ 3n+ 7|21n3 but 3n+ 7|21n3 + 49n2

=⇒ 3n+ 7|49n2 =⇒ 3n+ 7|147n2 but 3n+ 7|147n2 + 343n

=⇒ 3n+ 7|343n =⇒ 3n+ 7|1029n but 3n+ 7|1029n+ 74

=⇒ 3n+ 7|74

If gcd(m,n) = 1, then by the Euclidean Algorithm we can find integers such that nx = my + 1.

So pick the least number, and choose the first n, then shift over one spot and do the same thing,
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etc. until you’ve done it x times, at which point you’ve increased that first number by 1 more than

everything else.

Solution

For the necessary part, suppose that gcd(m,n) > 1, and suppose one of our initial m integers is

one less than the rest. Assume for the sake of contradiction that there is a sequence of moves that

increases the smaller integer by k+ 1 and the rest of the integers by k. Then all the integers increase

by a total of k+1+k(m−1) = km+1. Since each move increases the sum by n, we have km+1 = jn,

and gcd(m,n) = 1, a contradiction.

Let A be a set. Prove that there is no onto function f : A→ P (A)

Solution

Consider AF = {x ∈ A | x 6∈ f (x)} ⊂ P (A). Assume that f : A → P (A) is onto. This means that

there exists y ∈ A such that f (y) = AF . If y ∈ AF , then y 6∈ f (y) = AF , so y 6∈ AF . But by the

definition of AF , y 6∈ AF =⇒ y ∈ f (y) = AF , which is a contradiction. Therefore there doesn’t

exist such a function.

Also, it should be clear that an onto function doesn’t exist when A is finite, as |A| = n and

|P (A)| = 2n. The proof above is needed when dealing with |A| = ∞. Since we have shown that

an infinite set has a smaller size than its power set, we have shown that there are different sizes of

infinity.

Let a1, a2, ...an be a permutation of the set Sn = 1, 2, 3...n. An element i in Sn is called a fixed

point of this permutation if ai = i. Let gn be the number of derangements of Sn. Let fn be the

number of permutations of Sn with exactly one fixed point. Show that |fn − gn| = 1.

Solution

fn=n(gn−1) This can be seen if one tries to visualize it. (There’s n ways to make one fixed point

and since everything else is different, it’s gn−1). gn=(n − 1)(gn−1 + gn−2). I will prove this later.

n(gn−1)− (n− 1)(gn−1 + gn−2) = gn−1− (n− 1)(gn−2) = gn−1− fn−1 Since these are in absolute value

signs, the multiplication by -1 won’t matter. |fn − gn| = |fn−1 − gn−1| = ... = |f1 − g1| = 1 Now, the

proof that I held off. Recall the other formula for derangement, n!/0!−n!/1!+n!/2!−...+ (−1)nn!
n!

. When

one applies this formula to the three gs and multiplies through, n!/0!− n!/1! + n!/2!− ...+ (−1)nn!
n!

=

(n − 1)(n − 1)!/0! − (n − 1)(n − 1)!/1! + (n − 1)(n − 1)!/2! − ... + (−1)n−1(n−1)(n−1)!
(n−1)!

+ (n − 1)!/0! −
(n− 1)!/1! + (n− 1)!/2!− ...+ (−1)n−2(n−1)!

(n−2)!
. When all the equal terms on the left and right sides are

subtracted off, (−1)n−1(n)!
(n−1)!

+ (−1)nn!
n!

= (−1)n−1(n−1)(n−1)!
(n−1)!

or n− 1 = n− 1 or 1− n = 1− n.

Find all integer values of a such that the quadratic expression (x+a)(x+1991)+1 can be factored

as a product (x+ b)(x+ c) where b, c are integers.

Solution

We have b+ c = a+ 1991 and bc = 1991a+ 1. Let b = a+k, where k is an integer. Then c = 1991−k
from the first equation. Also, we have (a + k)(1991 − k) = 1991a + 1 from the second equation.

Expanding and simplifying, we obtain (1991 − a)k − k2 = 1. Then k(1991 − a − k) = 1. Therefore,

k = ±1. From k = 1 we get a = 1989, and from k = −1, we get a = 1993. These are the only

solutions.

Twelve people are seated around a circular table. In how many ways can six pairs of people engage
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in handshakes so that no arms cross?

(Nobody is allowed to shake hands with more than one person at once.)

Solution

Clearly, there must be an even number of people around a table in order for each person to shake

hands with someone else. So let t(n) be a table with n pairs of people.

We can quickly write out the cases for smaller tables, and see that t(1) = 1, t(2) = 2.

To find the number of cases for larger tables, we can use recursion.

For a table with 6 people, label them in order A,B,C,D,E, F . We can’t have A shake hands

with a person an even number of seats away, or else the table would be divided into two sections

with an odd number of people in them. So A can only shake hands with B,D, F .

If A shakes hands with B or F , the case breaks down into the 4 person case; if A shakes hands

with D, it breaks down into two 2 two person cases.

The total number of possible arrangements is equal to

2t(2) + t(1)t(1)

So t(3) = 2× 2 + 1 = 5.

We can solve for t(4) and t(5) in the same way; t(4) = 14, t(5) = 42.

For 12 people

t(6) = t(5) + t(1)t(4) + t(2)t(3) + t(3)t(2) + t(4)t(1) + t(5)

Plugging in the corresponding values, we get t(6) = 132.

Let xi > 0 and
∑2007

i=1 xi = a,
∑2007

i=1 x
3
i = a2,

∑2007
i=1 x

5
i = a3. Find a.

Solution

Use
∑

=
∑2007

i=0 . By Cauchy

a4 =
(∑

xi

)(∑
x5
i

)
≥
(∑

x3
i

)2

= a4,

so equality occurs, so
√
ai√
a5
i

= 1
a2
i
is constant, i.e. all ai are equal.

For every positive integer k let a(k) be the largest integer such that 2a(k) divides k. For every

positive integer n, determine a(1) + a(2) + a(3) + ...+ a(2n).

Solution∑2n

i=1 a(i) is simply the sum of all the factors of 2 in all integers ≤ 2n. Thus
∑2n

i=1 a(i) =(number of

integers ≤ 2n which are divisable by 21) + (number of integers ≤ 2n which are divisable by 22) + ...

+ (number of integers ≤ 2n which are divisable by 2n) = 2n

21 + 2n

22 + ...+ 2n

2n
= 2n−1 + ...+ 20 = 2n−1

2−1

(because (a− 1)(an−1 + an−2 + ...+ a1 + 1) = an − 1)

= 2n − 1

Let S be a set of rational numbers with the following properties:
1
2
∈ S

If x ∈ S, then both 1
x
∈ S and x

x+1
∈ S

Prove that S contains all rational numbers in the interval 0 < x < 1

Solution

We will prove the result by strong induction on the denominator of the fractions. Assume p < q.
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Base case: p
q
with q = 2. 1

2
∈ S so we’re good.

Other useful case: We want to show all integers n ≥ 2 are also in S. We can simply do 1
m
→

1
m

1
m

+1
= 1

m+1
so 1

2
→ 1

3
→ · · · and 1

m
→ m so we have all the integers.

Induction step: Suppose we know that all fractions p
q
with 2 ≤ q ≤ k are in S as well as all

integers n ≥ 2. We want to show p′

q′
∈ S with q′ = k + 1 and any p′ < q′. But we see that we can get

p′

q′
as long as we have

p′

q′−p′ →
p′

q′−p′
p′

q′−p′+1
= p′

q′
.

But p′ ≥ 1 so q′ − p′ ≤ k, which means by our strong induction p′

q′−p′ ∈ S. Hence we have

shown that all p′

q′
∈ S, completing the induction. Another way Let Q(x) = x

x+1
Let P (x) + 1

x
Let

F n(x) refer to the function F (x) applied n times. We have that Q(P (x)) = 1
1+x

. By induction then

Qn(P (x)) = 1
n+x

.

Now we just need to show that it is possible to get 2 . . . n + x − 1 = k in the numerator where

x = 2. This is clearly possible as we just go back to 1/(n+ 2− k) and apply Q(x). Since k is at most

n+ 1 it is always possible to apply this operation and we’re done.

Find all triples of positive integers (p, q, n) with p and q primes satisfying:

p(p+ 3) + q(q + 3) = n(n+ 3).

Solution

Rearrange to get p2 + q2 − n2 = 3(n− p− q)
Some case checking.

1◦ : p, q > 3.

Then, p2 + q2 ≡ 2 (mod 3) and n2 ≡ 0, 1 (mod 3) ⇒ LHS ≡ 1, 2 (mod 3) whereas RHS ≡ 0

(mod 3). So no solutions.

2◦ : p = q = 2.

Then, n2 + 3n− 20 = 0⇒ discriminant is not a perfect square. So, no solutions again.

3◦ : p = q = 3.

Then, n2 + 3n− 36 = 0⇒ discriminant is not a perfect square. So, no solutions again.

4◦ : p = 2, q = 3.

Then, n2 + 3n− 28 = 0⇒ (n+ 7)(n− 4) = 0.

So all possible solutions are (2, 3, 4) and (3, 2, 4).

Is this equation where x,y are integers solvable: 8y2 − x2 = 7

Solution

Let z = 2y. We are trying to find solutions to

x2 − 2z2 = −7

Such that z is even (ignore this condition until the end). We can reconsider ∈ Z[
√

2]:

(x+ z
√

2)(x− z
√

2) = −7

We found a base solution and now we want to find the general one, which we do by finding a

small unit ∈ Z[
√

2].

As it so happens,

(3 + 2
√

2)(3− 2
√

2) = 1

So our solutions are given by the coefficients of

xk + zk
√

2 = (x+ z
√

2)(3 + 2
√

2)k, k ∈ Z
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Note that

(xk + 2yk
√

2)(3 + 2
√

2) = (3xk + 8yk) + (6yk + 2xk)
√

2

So zk will always be even; hence yk is an integer.

It says at a school 90%takemaths85%take Science 80%take English Then at least how many(

Solution

First, for the sake of clarity, draw a Venn diagram containing three intersecting circles and label

these Math, Science and English.

Now, let a = proportion of students taking all three subjects, b = proportion of students taking

exactly Math and English, c = proportion of students taking exactly Math and Science, and d =

proportion of students taking exactly Science and English.

So, proportion of students taking only Math = 0.9 − (a + b + c), proportion of students taking

only Science = 0.85− (a+ c+d), and, proportion of students taking only English = 0.8− (a+ b+d).

Now, we must have a+ b+ c+d+ (0.9− (a+ b+ c)) + (0.85− (a+ c+d)) + (0.8− (a+ b+d)) = 1

⇒ a = 1.55−(b+c+d)
2

But note that b+ c+ d ≤ 1. So, a ≥ 1.55−1
2

= 27.5%, which is our answer.

if ;a > b > 0:and A=1+a+···+a2005

1+a+···+a2006 B=1+b+···+b2005

1+b+···+b2006 campar,AandB.

Solution

Let p = 1 + a+ a2 + · · ·+ a2005 and q = 1 + b+ b2 + · · ·+ b2005.

Then, A = 1

1+a2006

p

and B = 1

1+ b2006

q

.

B > A ⇔ 1

1+ b2006

q

> 1

1+a2006

p

⇔ a2006

p
> b2006

q
⇔ a2006(1 + b + b2 + · · · + b2005) > b2006(1 + a + a2 +

· · ·+ a2005) ⇔
∑2005

i=0 (ab)i(a2006−i − b2006−i) > 0

The last inequality is true, and we are done.

x and y are nonnegative integers. Prove that the equation 14x2 + 15y2 = 71990 has no solutions.

Solution

assume on the contrary that there is a solution, and let it be (x1, y1). Then since 14x2
1 and 71990 are

both divisible by 7, 15y2
1 must also be divisible by 7. So y1 = 7y2. Substituting and dividing both

sides by 7 we obtain 2x2
1 + 105y2

2 = 71889. Similarly, x1 must be divisible by 7 so x1 = 7x2, and again

we get 14x2
2 +15y2

2 = 71888. Continuing we see we’ll arrive at 2x2
n+105y2

n = 7, which has no solutions,

contradiction. Another way this is easy with modulo 3 this is equal to 2x2 = 1 (mod 3) which has

no solution

Let a be a real number such that |a| > 1. Solve the system of equations:

x2
1 = ax2 + 1

x2
2 = ax3 + 1

. . .

x2
999 = ax1000 + 1

x2
1000 = ax1 + 1

Solution

Case 1: Suppose a > 1 and, by way of contradiction, not all the xi are equal. Then all xi must
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be positive since perfect squares are non-negative. Moreover, there exists an index i such that

xi > xi+1,

given x999+n = xn. Since a > 0,

axi + 1 > axi+1 + 1 ⇔ x2
i−1 > xi.

Recall that all xi are positive, so then

xi−1 > xi.

By induction, this relationship holds for all i. But then

x1 > x2 > . . . > x1000 > x1001 = x1,

which is a contradiction. Hence, all xi must be equal. From the quadratic formula,

x1 =
a±
√
a2 + 4

2
.

Case 2: Suppose a < 1 and again, by way of contradiction, that not all xi are equal. Then each xi

must be negative since perfect squares are non-negative. Again, there exists an index i such that

xi > xi+1.

Since a is negative, then

axi + 1 < axi+1 + 1 ⇔ x2
i−1 < x2

i .

Because all xi are negative, then

xi−1 > xi,

a relationship that holds for all i, through induction. Again,

x1 > x2 > . . . > x1000 > x1001 = x1,

which is a contradiction, so the initial assumption must have been false. Therefore, all xi must be

equal and from the quadratic formula,

x1 =
a±
√
a2 + 4

2
.

Overview Thus, regardless of a, the solution to the system of equations is

x1 =
a±
√
a2 + 4

2

x1 = x2 = . . . = xi = . . . = x999 = x1000

Let
1996∏
n=1

(
1 + nx3n

)
= 1 + a1x

k1 + a2x
k2 + ...+ amx

km ,
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where a1, a2, ..., am are nonzero and k1 < k2 < ... < km Find a1996

Solution

First, let’s examine what the product looks like:

(1 + x3)(1 + 2x9)(1 + 3x27)(1 + 4x81) . . . = 1 + x3 + 2x9 + 2x12 + 3x27 + . . .

Then

k1 = 3

k2 = 9

k3 = 12

k4 = 27

k5 = 30
...

...
...

Let (s1s2 . . . sn)2 be the binary representation of n. Then

kn = (s1s2 . . . sn0)3,

through a simple induction argument. Since

1996 = (1111001100)2

then

k1996 = (11110011000)3,

k1996 = 311 + 310 + 39 + 38 + 37 + 34 + 33.

Therefore,

a1996x
k1996 = (11x311

)(10x310

)(9x39

)(8x38

)(7x37

)(4x34

)(3x33

),

so then

a1996 = (11)(10)(9)(8)(7)(4)(3) = 665280.

if eachx1, x2, ...., xn = +1 ∨ −1and we have this:x1x2x3x4 + x2x3x4x5 + ....... + xn−1xnx1x2 +

xnx1x2x3 = 0then prove it 4 | n
Solution

Let P = x1x2x3x4 + x2x3x4x5 + ...+ xnx1x2x3 = 0. Denote a replacement of p→ q by p ◦ q.
xi◦−xi does not change P mod 4 since 4 terms in P change their sign. If three of the four selected

terms have the same sign, then a replacement xi ◦−xi changes P by ±4. If two of these four selected

terms are >0 and the other two <0, then a replacement does not change P . If all four have the same

sign, then P changes by ±8. Initially, P ≡ 0 (mod 4), thus P ≡ ±4 ≡ ±8 ≡ 0 (mod 4) remains

invaraint. Since a move does not change the congruency modulo 4, after a finite number of steps,

P = n ≡ 0 (mod 4).

Find all positive integer solutions to abc− 2 = a+ b+ c

Solution

WOLOG a ≥ b ≥ c

first observe that if we increase a variable (let’s say a) by 1, then we increase the left by a value

of bc and increase the right by 1. Since all variables are positive integers, bc ≥ 1 with equality iff
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b = c = 1. Therefore, in general, increasing a variable affects the left more than the right, so There’s

an upperbound for a (and therefore an upperbound for b and c).

Lemma: c ≤ 2.

If c = 3, then a ≥ b ≥ 3. The minimal solution (here minimal means the minimal value of the

left subtract the right) we can have is a = b = c = 3 (because from above increasing a or b increase

the gap between the left and the right). So plug in this minimal solution we have 25 > 9, so c = 3 or

above have no solutions.

case 1:c = 2. plug in the minimal solution in this case (which is a = b = c = 2), we have 6 = 6,

a solution. Since increasing any variable increase the gap between the left and the right, this is the

only solution in this case.

finally, c = 1. we have ab− 2 = a + b, using Simon’s favorite trick we obtain (a− 1)(b− 1) = 3,

so another solution is (4, 2, 1).

Now, removing the ordering imposed upon the variables, we have solutions (2, 2, 2) and all cyclic

permutations of (4, 2, 1). QED.

Show (and if you can, find) that there exists exactly one positive integer n such that 28 +211+2n

is a perfect square.

Solution

We have that 2n = p2−28−211 =⇒ 2n = (p−48)(p+48). Let n = u+v. Then By unique factorization,

2u = p−48 and 2v = p+ 48. Subtracting the first from the second, we have 2u−2v = 96 = 25 ·3 =⇒
2v(2u−v − 1) = 25 · 3. By unique factorization, 2v = 25 =⇒ v = 5 and 2u−5 − 1 = 3 =⇒ u = 7.

Thus n = 7 + 5 = 12. Q.E.D.

Points M and N are given on sides AD and BC of a rhombus ABCD. Line MC meets the segment

BD at T and line MN meets the segment BD at U. Line CU intersects the side AB at Q and the line

QT intersects the side CD at P.

Show that 4QCP and 4MCN have equal area.

Solution
4POC
4TQC = PQ

TQ
=⇒4PQC = PQ

TQ
4TQC

Since AD is parallel to BC, so PQ
TQ

= BD
BT

, thus we must have:4PQC = BD
BT
4TQC.

Similarly we have:
4TQC
4TUC = QC

UC
=⇒4TQC = BD

UD
4TUC

4TUC
4MUC

= TC
MC

=⇒4TUC = BT
BD
4MUC

4MUC
4MNC

= MU
MN

=⇒4MUC = DU
DB
4MNC

Pluge all the thing into our original equality, we shall have:

4PQC = BD
BT
· BD
DU
· BT
BD
· DU
BD
· 4MNC = 4MNC

Let ABC be an equilateral triangle, and P be an arbitrary point within the triangle. Perpendic-

ulars PD,PE, PF are drawn to the three sides of the triangle. Show that, no matter where P is

chosen,
PD + PE + PF

AB +BC + CA
=

1

2
√

3
.

Solution

Draw ∆ABC with point P in the centre. Draw perpendiculars to each of the three sides with D on
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AB, E on BC, and F on AC. Draw AP , BP , CP . We find the area of ABC in terms of the three

triangles ABP , BPC, APC. We have:

[ABC] = 1
2
(AB ·DP + AC · PF +BC · EP )

But [ABC] = AB · AB · sin 60. So, we have:

AB ·DP + AC · PF +BC · EP = AB · AB · sin 60

Let AB = AC = BC = s.

DP + PF +DE = s ·
√

3
2

Dividing by 3s,
DP+PF+DE
AB+BC+CA

=
√

3
6

= 1
2
√

3

Let a and b be positive integers such that a|b2, b2|a3, a3|b4, b4|a5, . . .. Prove that a = b.

Solution

Clearly, a and b have the same prime divisors, say p1, p2, · · · pn. Let a =
∏n

i=1 p
αi
i and b =

∏n
i=1 p

βi
i . It’s

given that a2k−1|b2k and b2k|a2k+1 for all positive integers k, which is equivalent with (2k−1)αi ≤ 2kβi

and 2kβi ≤ (2k + 1)αi for all i ∈ {1, 2, · · · , n}. Therefore, 1 − 1
2k
≤ βi

αi
≤ 1 + 1

2k
. Let k → ∞ to get

that 1 ≤ βi
αi
≤ 1, so αi = βi, which proves the statement.

Another approach:Without UPF

n|m =⇒ n ≤ m

So we have

b2k < a2k−1 a2k < b2k+1

Let r = a
b
. Then

r2k < a∀k r2k > 1
b
∀k

limk→∞ r
2k = 0, 1,∞. Clearly only 1 works, which implies r = 1. QED.

Medians divide a triangle into 6 smaller ones. 6 circles are inscribed in the smaller triangles, 4 of

which are equal. Prove that the triangle is equilateral.

Solution

Let the triangle be 4ABC with medians AR,CQ,BS which are concurrent at P . We start by

examining 4APQ and 4PBQ which have equal areas since their bases are equal (AQ = QB) and

they share the same altitude. We are given that atleast four circles are equal, so we choose two of

them by letting the incircles of 4APQ and 4BPQ be equal. Using the formula rs = A, because the

radii of the incircles are the same and the two triangles have the same area, their perimeters must

be the same, implying that AP = PB. This implies that PQ is the altitude of both triangles, and

thus CQ is the altitude of 4ABC, making 4ABC iscoceles with CB = CA. Thus the medians AR

and BS are equal. We now use the two "remaining" circles on 4PCS and 4PSA and find that PS

is the altitude of 4CPA and thus BS is the altitude of 4ABC as well. Thus, BS,CQ,AR are all

three altitudes and medians to 4ABC implying that 4ABC is equilateral. QED.

A bus ticket has six digits on it. It’s considered to be lucky if the sum of the first three digits

equals to the sum of the last three. Prove that the sum of all the lucky numbers is divisible by 13.

Solution

Let Rk be the set of all 3 digit numbers (include leading 0) that sum to k. Essentially, we require

that∑
k

∑
x∈Rk,y∈Rk 1000x+ y ≡ 0 mod 13

⇔
∑

k

∑
x∈Rk 1001|Rk|x ≡ 0 mod 13
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⇔ 13 ·

(
77 ·

∑
k

∑
x∈Rk |Rk|x

)
≡ 0 mod 13

where the result follows.

Of the first 100 natural numbers, ’k’ numbers are randomly chosen, if the sum of the ’k’ numbers

is even A wins, if it is odd ’B’ wins, find the values of ’k’ for which the game is fair.

Solution

The game is always fair when k is odd.

Pair the number x with 100 − x. If we chose the k numbers x1, . . . xk, then modulo 2,
∑

k xi ≡
−
∑

k 100− xi , so by changing each number with it’s pair, the player that wins changes.

However, this is not exactly correct: some choices of k numbers do not change when you change

each number with it’s pair. This occurs only when k is divisible by 2. When k is 0 mod 4, then we

have extra (unpaired) "even" wins, and the game is biased for A. When k is 2 mod 4, we have extra

(unpaired) "odd" wins, and the game is biased for B.

In total, the game is fair when k is odd.

Without calculator, prove that

cos
2π

5
+ cos

4π

5
=
−1

2

Let ω = exp
(

2iπ
5

)
. Then,

∑5
k=1 ω

k = ω · ω5−1
ω−1

= 0, so Re
(∑5

k=1 ω
k
)

= 0, i.e.
∑5

k=1 cos
(

2kπ
5

)
= 0.

That means

cos

(
2π

5

)
+ cos

(
4π

5

)
+ cos

(
6π

5

)
+ cos

(
8π

5

)
+ cos

(
10π

5

)
= 0,

i.e.

cos

(
2π

5

)
+ cos

(
4π

5

)
+ cos

(
6π

5

)
+ cos

(
8π

5

)
= −1.

Since cosx = cos (2π − x), that can be rewritten as

2 cos

(
2π

5

)
+ 2 cos

(
4π

5

)
= −1,

which yields

cos

(
2π

5

)
+ cos

(
4π

5

)
= −1

2
.

Suppose not all four integers, a, b, c, d, are equal. Start with (a, b, c, d) and repeatedly replace

(a, b, c, d) by (a−b, b−c, c−d, d−a). Prove that at least one number of the quadruple will eventually

become arbitrarily large.

Solution

We obviously have 2(a2
n + b2

n + c2
n + d2

n) + (an + cn)2 + (bn + dn)2 ≥ 2(a2
n + b2

n + c2
n + d2

n).

Now since (an + bn + cn + dn)2 = 0, the equality marked (1) in the book subtracted from the

above inequality gives

2(a2
n + b2

n + c2
n + d2

n)− 2anbn − 2bncn − 2cndn − 2dnan ≥ 2(a2
n + b2

n + c2
n + d2

n)

Finally, the first equality in the book gives

a2
n+1 + b2

n+1 + c2
n+1 + d2

n+1 ≥ 2(a2
n + b2

n + c2
n + d2

n).

Now, by induction we get the last inequality.
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Let q, r, p be three prime numbers.If p
q

+ q
r

+ r
p
is a natural number prove that p = q = r

Solution

p2r+pq2+qr2

pqr
is an integer. p2r ≡ qr2 ≡ 0 mod r =⇒ r|pq2 =⇒ r = p ∨ (q2 = r2 =⇒ q = r)

case 1) r = p→ r2+q2+qr
pq

is integer. qr ≡ q2 ≡ 0 mod q =⇒ q|r2 =⇒ q = r =⇒ q = p = r

case 2) q = r → p2+pr+qr
pq

is an integer. p2 ≡ pr ≡ 0 mod p =⇒ p|qr =⇒ (p = q ∨ p = r) =⇒
p = q = r

ANother way Assume, without loss of generality, that p 6= q and p 6= r. Since p, q, and r are

prime, (p, q) = 1 and (p, r) = 1 Let p
q

+ q
r

+ r
p

= x Multiplying by a common denominator, we get

p2r + r2q + q2p = xpqr Taking this mod p, we have that r2q ≡ 0 mod p Since r and q share no

common factors with p, this is impossible because the left side cannot be divisible by p. Thus either

q or r is equal to p, a contradiction. WLOG, assume q = p By using this same argument on r, we

find that either q or p is equal to r, which means that all three must be equal.

Let the incircle (with center I) of triangle ABC touch the side BC at X, and let A′ be the

midpoint of this side. Prove the line A′I (extended) bisects AX.

Solution

It’s very easy with barycentric coordinates.

Let W be the midpoint of AX and p = BC+CA+AB
2

= a+b+c
2

. The homogenous barycentric co-

ordinates are as follows: A′(0, 1, 1), I(a, b, c), A(1, 0, 0), X(0, p − c, p − b). The normalized barycen-

tric coordinates of X are
(
0, p−c

a
, p−b

a

)
, so the normalized coordinates of W are

(
1
2
, p−c

2a
, p−b

2a

)
. Thus,

W has homogenous barycentric coordinates (a, p− c, p− b). We want to prove that A′, I and W

are collinear. That’s equivalent to

∣∣∣∣∣∣∣
0 1 1

a b c

a p− c p− b

∣∣∣∣∣∣∣ = 0 ⇐⇒

∣∣∣∣∣∣∣
0 0 1

a b− c c

a (p− c)− (p− b) p− b

∣∣∣∣∣∣∣ = 0

⇐⇒

∣∣∣∣∣∣∣
0 0 1

a b− c c

a b− c p− b

∣∣∣∣∣∣∣ = 0 ⇐⇒

∣∣∣∣∣a b− c
a b− c

∣∣∣∣∣ = 0 ⇐⇒ a(b− c)− a(b− c) = 0, which is obviously true.

Another approach Draw B′, C ′ on AB,AC such that B′C ′//BC and tangent to Incircle (I, r) at K ′,

if K is the touch point of the excircle (Ia, ra) at BC. So K ′ is the image by homothety h = − r
ra

with

center A besides K ′X is the diameter of (I) and A,K ′, K are collinears. Then if A′ is the midpoint

of BC also A′ is midpoint of XK, hence A′I is the midline in the triangle K ′XK, now A′I passes

through the midpoint of AX too.

Prove that for any non-negative integer n then numbers

2n − Fn+3 + 1 =
m+1∑
k=3

(Fk − 1)2n−k

Where Fx is the x-th Fibonacci number.

Solution

I’m going to define the Fibonnaci sequence by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0 since

that seems to fit the identity. We will proceed by induction.

Base case: n = 0, 1, 2 - the RHS is zero, so we verify that 20−F3+1 = 0 since F3 = 2, 21−F4+1 = 0

since F4 = 3, and 22 − F5 + 1 = 0 since F5 = 5.

Before we move on to the induction step, notice the identity:

Fa+3 + Fa+3 = Fa+1 + Fa+2 + Fa+3 = Fa+1 + Fa+4
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Induction step:

Suppose 2m − Fm+3 + 1 =
∑m

k=3(Fk − 1)2m−k for some m ≥ 2. Then

2m+1 − Fm+4 + 1 = 2(2m − Fm+3 + 1) + (Fm+1 − 1)

by the identity, so

2m+1 − Fm+4 + 1 = 2 ·
m∑
k=3

(Fk − 1)2m−k + (Fm+1 − 1)

=
m∑
k=3

(Fk − 1)2(m+1)−k + (Fm+1 − 1) · 2(m+1)−(m+1)

=
m+1∑
k=3

(Fk − 1)2(m+1)−k,

completing the induction.

Prove that
n∑
k=0

[(n− 2k)

(
n

k

)
]2 = 2n

n−1∑
k=0

(
n− 1

k

)2

Solution

Divide by 2n and expand. Notice that if n is even, there exists some 2k where n-2k=0. If n is odd, the

sum can be split into 2 equal halves since
∑n−1

2
k=0 [(n− 2k)

(
n
k

)
]2 =

∑n
k=n−1

2
[(n− 2k)

(
n
k

)
]2. This means

that bn−1
2
c will cover both of these cases. This means that n + (n − 2)2n + (n − 4)2 n(n−1)2

2!2
+ ... +

(n− 2bn−1
2
c)2 n(n−1)2(n−2)2...(n−bn−1

2
c+1)2

(bn−1
2
c!)2 = 1 + (n− 1)2 + (n−1)2(n−2)2

(2!)2 + ...+ 1 Now, subtract everything

from the right hand side to the left, a pair at a time until all the pairs are removed, or there’s only

one number left on the right hand side. Notice that n − 2 + (n − 2)2n = (n − 2)(n − 1)2 and that

(n − 2)(n − 1)2 + (n − 4)2 n(n−1)2

(2!)2 − 2(n − 1)2 = (n−1)2(n−2)2(n−4)
(2!)2 It seems that if n=c, then n-c is

always a factor in the numerator of the fraction that equals 0 and everything else are squared factors

with the subtracted constants ranging from 1 to dn−1
2
e which is all divided by (dn−1

2
e!)2. Now, let’s

show this pattern by induction. The base n=1 is already known. Assume it true for a given n. Let’s

show it true for n+1. There’s 2 cases; n is even or n is odd. Case 1: Even Since it is true for n,

one must realize that replacing n with n+1 is equally valid provided that one includes the parts not

included in that sum as well. Another thing to remember is that both the denominator and the terms

being subtracted do not change. (Think of the parts being subtracted in terms of k as it was done

originally in the problem.) Hence, (n)2(n−1)2...(n/2+2)2

((n
2
−1)!)2 + (n+1)(n2)(n−1)2...(n/2+2)2

(n
2

!)2 = (n)2(n−1)2...(n/2+1)2

(n
2

!)2 If

one subtracts this and puts it under one denominator, (n2)(n−1)2...(n/2+2)2

((n
2

)!)2 ((n/2)2 +n+1− (n/2+ 1)2).

Obviously, the terms in the parenthesis equal 0. Case 2: Odd
(n)2(n−1)2...(n+1

2
+1)2

(n−1
2

!)2 =
n2(n−1)2...(n+1

2
+1)2

(n−1
2

!)2

It’s trivial because when odd advances to even, the change in the left hand side of the equation is

nothing because one moves from n to 12 to n+1 to 22. That can be accounted for just by shifting

the already known equation up 1. The only factor not accounted for is the right hand side’s extra

factor due to the fact that the n+1th row of the Pascal triangle has 1 more number than the nth

row and that the numbers accounted for in the upwards shift are numbers that can be paired up.

For example,
(

5−1
0

)
,
(

5−1
1

)
,
(

5−1
2

)
,
(

5−1
3

)
,
(

5−1
4

)
. To pair this up, we put the equal pairs together and

find their counterparts on the fifth row. This means
(

5
n

)
if n is less than 2 and

(
5−1
4−n

)
corresponds to(

5
5−n

)
. By doing so, we see that

(
5
3

)
is not represented and is the number that’s put on the left hand

side.
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Let x, y be real numbers such that sinx cos y = sin y + cosx = k. Find the maximum and

minimum value of k.

Solution

sinx cos y = sin y + cosx (1)

Set a = sin y and b = cosx. Of course a, b ∈ [−1, 1]

Then cos y = A
√

1− a2 and sinx = B
√

1− b2, where A,B = ±1

(1)⇒
B
√

1− b2 · A
√

1− a2 = a+ b⇒
B2(1− b2)A2(1− a2) = (a+ b)2 ⇒
1− a2 − b2 + a2b2 = a2 + b2 + 2ab⇒
2a2 + 2b2 − a2b2 + 2ab− 1 = 0⇒
(2− a2)b2 + (2a) · b+ (2a2 − 1) = 0

D = (2a)2 − 4(2a2 − 1)(2− a2) = 8(a2 − 1)2

b = −a±
√

2(a2−1)
2−a2

f(a) = a+ b = a+ −a±
√

2(a2−1)
2−a2

Using the (+) or (-) sign we will get two functions, f1 and f2

Taking the (+) sign f1(a) = a+
√

2a2−a−
√

2
2−a2 = a+ (a−

√
2)(
√

2a+1)

(
√

2−a)(
√

2+a)
= = a−

√
2a+1
a+
√

2
=

a2 − 1

a+
√

2
f1(−1) = f1(1) = 0 and f1(a) < 0, ∀a ∈ (−1, 1)

We have f ′1(a) = a2+2
√

2a+1
(a+
√

2)2

This gives roots −
√

2 ± 1 for f ′1, the only acceptable is −
√

2 + 1, and if we check the signs left

and right we’ll see that this is a local minimum f1(−
√

2 + 1) = 2(−
√

2 + 1) ⇒ a+ b = 2a⇒ a = b

Taking the (-) sign f2(a) = a+ −
√

2a2−a+
√

2
2−a2 = a− (a+

√
2)(
√

2a−1)

(
√

2+a)(
√

2−a)
= = a+

√
2a−1
a−
√

2
=

a2 − 1

a−
√

2
f2(−1) = f2(1) = 0 and f2(a) > 0, ∀a ∈ (−1, 1)

f ′2(a) = a2−2
√

2a+1
(a+
√

2)2

So the roots are
√

2 ± 1 for f ′2, the only acceptable is
√

2 − 1, and this is a local maximum

f2(
√

2− 1) = 2(
√

2− 1) ⇒ a+ b = 2a⇒ a = b

Summary:

Maximum 2(
√

2− 1)

Minimum −2(
√

2− 1)

Notice that the min-max occurs when a = b

Solve the equation in Z xy = yx
2

Solution

xy = yx if p|x with p prime so p|y and we have xVp(y) = yVp(x) =⇒ Vp(x) = k x
GCD(x,y)

et

Vp(y) = k y
GCD(x,y)

So exist N, x = N
x

GCD(x,y) et y = N
y

GCD(x,y) =⇒ PGCD(x, y) = N
min(x,y)
GCD(x,y) if x > y

=> y|x => x = ny (n > 1) (ny)y = yny ny = y(n−1)y n = yn−1 => x = yn yny = yy
n
ny = yn

yn−1 = n if y>1 and n>2, yn−1 ≥ 2n−1 > n only possibilities i n = 2 give y = 2 and x = 4 if x = y,

the equation is checked

S =(2, 4), (4, 2), (x, x), x ∈ R
A sequence an of positive integers is given by a0 = m and an+1 = a5

n + 487.

Find all values of m for which this sequence contains the maximum possible number of squares.

Solution

a0 = 32 produces a1 = 2442 a square, whereupon no other values are square.
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We investigate the sequence mod 16. Recall that 0, 1, 4, 9 are the possible quadratic residues mod

16. The possible values of the RHS mod16 are

7, 8, 10, 12, 14, 0, 2

Of which the RHS is 0 precisely when an ≡ 9 mod 16. There are two very simple cases.

Case: m ≡ 9 mod 16. Then a1 might be a square, but no subsequent terms are ≡ 0, 1, 4, 9 mod 16

or can be (since that would require that the previous term be ≡ 9 mod 16.)

Case: m 6≡ 9 mod 16. Then a1 6≡ 0, 1, 4, 9 mod 16 =⇒ an 6≡ 0, 1, 4, 9 mod 16.

Hence we desire m a square such that

m5 + 487

Is a square. Let m = p2. We want to solve

(p5)2 + 487 = q2

The LHS is a square plus 487; the RHS is a square. Hence no solutions can have q > 244 (since

2442 − 2432 = 487). We already discovered that solution, so our unique solution is m = 9 .

Let H be a heptagon in the plane centered at the origin such that (1, 0) is a vertex. Calculate

the product of the distances from (1, 1) to each vertex of H.

Solution

Since the heptagon is centred at the origin and a vertex is on (1, 0), you could easily consider the

seventh root of unity, in other words, the polynomial f(z) = z7−1 = (z−1)(z−ζ)(z−ζ2) . . . (z−ζ6),

where ζ = ei
2π
7 . We are to find the product of the distances between (1, 1) = 1 + i and 1, ζ, ζ2, ..., ζ6,

i.e. |f(1 + i)| = |(1 + i)7 − 1|.

|(1 + i)7 − 1| =
∣∣∣∣(√2

(
cos

π

4
+ i sin

π

4

))7

− 1

∣∣∣∣ = |7− i8| =
√

113

Prove that the equation

x2 + x+ 1 = py has integer solutions (x, y) for infinitely many primes p.

Solution

Suppose there are only finite p such that p|(x2 + x+ 1) for some integer x. Let the set of all such p

be S = {p1, p2, . . . , pk}. Then take

x = p1p2 · · · pk ⇒ x2 + x+ 1 = p1p2 · · · pk(p1p2 · · · pk + 1) + 1.

This, however, means that x2 + x + 1 is not divisible by p1, p2, . . . , pk which implies that it is

divisible by some other prime pk+1, contradicting the fact that S was the set of all primes dividing

x2 + x+ 1 for any integer x. Hence S is infinite.

Let x, y be reals satisfying:

sinx+ cos y = 1 sin y + cosx = −1 Prove cos 2x = cos 2y

Solution

Let z = π
2
− y. Then

sinx+ sin z = 1 cosx+ cos z = −1

And we want to prove

cos 2x = cos(π − 2z) = − cos(2z)

Well, let u = eix, v = eiz. Then

u+ v = i− 1

Of course, geometrically, we can only have two cases (there are only two right triangles with side

lengths 1, 1,
√

2 such that the hypotenuse is the line from (0, 0) to (−1, 1)):

u = i, v = −1

Or
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u = −1, v = i

Both of which satisfy our condition. QED.

Let p be positive. Let C be the curve y = 2x3 and P (p, 2p3) a point on C. Let l1 be the tangent

line at P and l2 be another tangent line of C which passes through P .

(1) Express the slope of l2 in term of p.

(2) Find tanx, where x is the angle formed between l1 and l2 and not more than 90 degrees.

(3) Find the maximum value of tanx

Solution

For 1) f(x) = 2x3 ⇒ f ′(x) = 6x2

Let Q(q, 2q3) be a point on C. The tangent at Q has equation y − f(q) = f ′(q)(x− q)⇔
y − 2q3 = 6q2(x− q)
This tangent line intersects C at the point Q and (possibly) at the point P

In order to find the coordinates of P , we set y = 2x3 in the above equation and we get:

2x3 − 2q3 = 6q2(x− q)⇔
x3 − q3 = 3q2(x− q)⇔
(x− q)(x2 + qx+ q2) = 3q2(x− q)⇔
(x− q)(x2 + qx+ q2 − 3q2) = 0⇔
(x− q)(x2 + qx− 2q2) = 0⇔
(x− q)(x− q)(x+ 2q) = 0⇔
(x− q)2(x+ 2q) = 0

The last equation has two roots, one is q (double) and the other is −2q (if q = 0 then it is a triple

root)

So the other intersecting point P exist always and we can find it from p = −2q. Solving for q we

get unique solution q = −p
2
. Notice that q < 0

The tangent at Q has slope 6q2 = 6
(
−p

2

)2
= 6

4
· p2

For 2) If s1, s2 is the slope of l1, l2 respectively then s1 = 6p2, s2 = 6
4
· p2

The angle between the line li and the x-axis is θi. Then si = tan θi. Since tan θi are positive, we

can suppose that θi ∈ (0, π
2
). Notice that s1 > s2 ⇒ θ1 > θ2

The angle between the two lines is x, where tanx = tan (θ1 − θ2) = tan θ1−tan θ2
1+tan θ1 tan θ2

=
6p2− 6

4
p2

1+6p2· 6
4
p2 =

= 24p2−6p2

4+36p4 = 18p2

4(1+9p4)
= 3

2
· 3p2

1+9p4 For 3) If my calculations are correct, then tanx ≥ 0 with equality

only when p = 0. But we have p > 0, so there is not a minimum.

I suppose that the problem is asking for the maximum of tanx

At this point, I won’t use derivatives

(3p2 − 1) ≥ 0, with equality only for p2 = 1
3
⇔ p =

√
3

3

(3p2 − 1) ≥ 0⇔
(3p)2 − 2(3p) + 1 ≥ 0⇔
(3p)2 + 1 ≥ 2(3p)⇔
1
2
≥ 3p

1+9p4

3p
1+9p4 ≤ 1

2
⇒ tanx = 3

2
· 3p

1+9p4 ≤ 9
4
, with equality when p =

√
3

3

Let a, b, c be positive numbers with
√
a +
√
b +
√
c =

√
3

2
Prove that the system of equations

√
y − a+

√
z − a = 1

√
z − b+

√
x− b = 1

√
x− c+

√
y − c = 1

has exactly one solution (x, y, z) in real numbers.
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Solution

We make the following substitutions, since all the numbers involved are positive. Let

p =
√
a, q =

√
b, r =

√
c

And

u =
√
x, v =

√
y, w =

√
z

Then our condition becomes p+ q + r =
√

3
2
, and our equations become√

v2 − p2 +
√
w2 − p2 = 1, etc.

Notice that if we let p, q, r be the altitudes to some triangles and let v, w, etc. be their side lengths,

then by Pythagorean Theorem we have produced the following triangles:

(v, w, 1) (w, u, 1) (u, v, 1)

And now the real geometric meaning behind the problem is apparent!

Let there be a point P inside an equilateral triangle of side length 1. Let p, q, r be the length of

the perpendiculars from P to each side. It’s well-known that p + q + r =
√

3
2

(we can sum up some

areas).

This tells us that u, v, w are simply the distances from P to the vertices, and then the proof is

obvious:

Consider the locus of points that are a distance p away from one of the given sides. They form a

line within the triangle parallel to that side. Consider the intersection of that locus and the locus of

points a distance q away from another side. There is precisely one point which satisfies our conditions

(P ), which, by the above argument, must be a distance r from the third side. Then u, v, w exist and

are unique.

QED.

Prove that any prime number 22n−1 cannot be represented as the difference of two 5th powers

of integers. n is a positive integers.

Solution

Let 22n − 1 = a5 − b5 = p. Now, because (a− b)|(a5 − b5), if a− b > 1, then (a− b)|p, so p won’t be

a prime. So we should have a − b = 1. Then: a5 − b5 = (b + 1)5 − b5 = 5b4 + 10b3 + 10b2 + 5b + 1.

So: 22n − 1 = 5b4 + 10b3 + 10b2 + 5b + 1 (1)22n = 5b4 + 10b3 + 10b2 + 5b + 2 Consider the general

equation: 2w = 5k4 + 10k3 + 10k2 + 5k + 2 We must have: (2)2w ≡ 2( mod 5) 20 ≡ 1( mod 5)

21 ≡ 2( mod 5) 22 ≡ 4( mod 5) 23 ≡ 3( mod 5) 24 ≡ 1( mod 5) 25 ≡ 2( mod 5) ... So (2) is true

only when w = 4q + 1 for q ≥ 0

Now, because 2n is not of the form 4q + 1, (1) has no solutions.

N dwarfs of heights 1, 2, ..., N are arranged in a circle. For each pair of neighbouring dwarfs

the positive difference between the heights is calculated: the sum of these N differences is called

the "total variance" V of the arrangement. Find (with proof) the maximum and minimum possible

values of V .

Solution

Let Vm be the minimum V when N = m. Clearly V2 = 2. Now, let’s examine what happens if we have

N dwarves in optimal order and add another: Let’s say we add the new dwarf in between dwarves of

heights a and a+ b. Let the new dwarf have height a+ b+ c. Vn+1 = Vn + (a+ b+ c− a) + (a+ b+

c− a+ b)− b = Vn + 2c. So we need to minimize c, which is the difference between the new dwarf’s

height and that of his greatest neighbour. If we put the new dwarf beside the second tallest dwarf,

this will be 1. Hence, Vn+1 = Vn + 2. From here we can see that Vn = 2(n− 1).
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For x, y, u, v > 0 prove that

xy + xv + uy + uv

x+ y + u+ v
≥ xy

x+ y
+

uv

u+ v

Solution

f(a, b) = af
(
1, b

a

)
, so put g(r) := f(1, r) = r

1+r
, and that function is definitely concave. Then, if

y = px, v = qu, we have

f(x+ u, y + v) = f(x+ u, px+ qu)

= (x+ u)g

(
px+ qu

x+ u

)
> (x+ u)

[
x

x+ u
g(p) +

u

x+ u
g(q)

]
= xg(p) + ug(q)

= xf
(

1,
y

x

)
+ uf

(
1,
v

u

)
= f(x, y) + f(u, v)

Find all pairs (k,m) of positive integers such that k2 + 4m and m2 + 5k are both perfect

squares.

Solution

Let’s put k2 + 4m = (k + p)2, m2 + 5k = (m + q)2. Then p, q ∈ N+. Transforming these equations

we get: 4m = 2kp + p2 5k = 2mq + q2. Plugging the first into the second and then the second into

the first gives 5k = 2q · 2kp+p2

4
+ q2 4m = 2p · 2mq+q2

5
+ p2 which is equivalent to (5− pq)k = p2q

2
+ q2.(

4− 4
5
pq
)
m = 2pq2

5
+ p2 Since k and p2q

2
+ q2 are positive numbers, also 5 − pq is positive, i.e.

pq 6 4. Thus pq ∈ {1, 2, 3, 4}. From the second equation: m = 2pq2+5p2

20−4pq
, so 2|5p2. Hence 2|p. The only

possible pairs (p, q) are {2, 1}, {2, 2}, {4, 1}. After evaluating (k,m) for each pair we see that the pairs

(k,m) we got satisfy the given conditions. Therefore the final result is (k,m) ∈ {(1, 2), (8, 9), (9, 22)}.
Another way 1. k ≥ m

k2 < k2 + 4m ≤ k2 + 4k < k2 + 4k + 4 = (k + 2)2

⇒ k2 < k2 + 4m < (k + 2)2 ⇒ k2 + 4m = (k + 1)2

⇒ k = 4m−1
2

= 2m− 1
2
, so k can’t be intger.

2. k < m

m2 < m2 + 5k < m2 + 5m < m2 + 5m+ 6.25 = (m+ 2.5)2

⇒ m2 + 5k = (m+ 1)2 or m2 + 5k = (m+ 2)2. ⇒ 5k = 2m+ 1 or 5k = 4m+ 4.

2.1. 5k = 2m+ 1

So k2 + 4m = k2 + 10k − 2 and

k2 < k2 + 10k − 2 < k2 + 10k + 25 = (k + 5)2 ⇒ k2 < k2 + 10k − 2 < (k + 5) and we have to

consider 4 cases, but only two of them gives us a solution: for k2 + 10k − 2 = (k + 2)2 k = 1;m = 2

and for k2 + 10k − 2 = (k + 4)2 k = 9;m = 22

2.2. 5k = 4m+ 4

So k2 + 4m = k2 + 5k − 4 and

k2 < k2 + 5k − 4 < k2 + 5k + 6.25 = (k + 2.5) ⇒ k2 < k2 + 5k − 4 < (k + 2.5)2 and we have to

consider 2 cases, but only one of them gives us a solution: for k2 + 5k − 4 = (k + 2)2 k = 8;m = 9.
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Let p(n) be the number of partitions of n, and let p(n,m) be the number of partitions of n

containing m terms. Show that

p(n) = p(2n, n).

Solution

Let n = a1 + a2 + · · · + ak be any partition of n (by the definition of a partition, we have ai ≥ 1).

Rewrite this as

n = a1 + a2 + · · ·+ ak + ak+1 + · · ·+ an

where ai = 0 for i > k. Then

2n = (a1 + 1) + (a2 + 1) + · · ·+ (ak + 1) + (ak+1 + 1) + · · ·+ (an + 1)

is a valid partition for 2n with exactly n terms. Clearly, the reverse works as well, giving us a

one-to-one correspondence.

Prove that the only solution (>1) to the following equation is: (a,b,c)=(2,2,3)

3a − bc = 1

Solution

Lemma: Only (m,n) (>1) satisfying 3m − 2n = 1 is (2,3)

Proof: if m>2 then n>3 ⇒ 3m ≡ 1 (mod 8) ⇒ m = 2k then 2n = (3k − 1)(3k + 1) by unique

factorization: 3k + 1 = 2r but this is impossible since, then 3k − 2r = −1 ⇒ 3k ≡ −1 (mod 8)

contradiction, since 3k ≡ 1, 3 (mod 8) depending if k is even or odd. � ANother approach bc =

3a − 1 ∼= −1mod(3), so b ∼= −1mod(3) and c is odd. Then, b + 1|bc + 1 = 3a and there exists a

positive integer n such that b = 3n − 1. Because the post of amirhtlusa, we can suppose n ≥ 2.

3a = (3n − 1)c + 1 > (2.3n−1)c > 3(n−1)c+1 Let d, k nonnegative integers such that c = d.3k and

(d, 3) = 1. We can prove: (by induction over k) (3n− 1)c ∼= d.3n+k − 1mod(32n+k) Then, n+ k ≥ a >

(n− 1)c+ 1 ≥ (n− 1)(k + 1) + 1 = n+ (n− 1)k ≥ n+ k wich is absurd.

Find all positive integers n and d such that both of the following are true: i) d divides 2n2. ii)

n2 + d is a perfect square.

Solution

If p > 2 is a prime divisor of d and e, α positive integers such that d = e.pα , (p, e) = 1; we

have p|n and n = m.pβ for some positive integers m ,β with (m, p) = 1, α ≤ 2β; Now, because

n2 +d = pα(m.p2β−α+ e) is a perfect square, α is even. Then d = 2ra2 with a odd, and n = 2sab with

b odd and r ≤ 2s+1. We have two situations: If r is odd, we have n2 +d = 2r−1a2(22s−r+1b2 +2), and,

because there are not two perfect squares with diference 2, there are not such n, d. If r is even, we

have n2 +d = 2ra2(22s−rb2 +1), and because there are not two positive perfect squares with diference

1, there are not such n, d.

an is a sequence such that 4 · an = a2n and a2n = 2 · a2n−1 + 1
4
for all n ∈ N. Find the sum

S = a1 + a2 + ...+ a31

Solution

We know that 4 · an = a2n = 2 · a2n−1 + 1/4. Letting n = 1, 4a1 = 2a1 + 1/4 =⇒ a1 = 1
8
.

We solve 2 · a2n−1 + 1/4 = 4 · an =⇒ a2n−1 = 2 · an −
1

8
. And it is given that a2n = 4 · an .

Consider
∑2n

k=1 ak. This is the same as taking the sum of the individual sums of the odd k and

the even k, so is the same as =
∑2n−1

k=1 (a2k−1 + a2k) =
∑2n−1

k=1 (6ak − 1
8
).

Repeating this over and over
∑32

k=1 ak =
∑16

k=1(6ak − 1
8
) = 6

∑8
k=1(6ak − 1

8
)− 2 = 36

∑4
k=1(6ak −

1
8
)− 6− 2 = 216

∑2
k=1(6ak− 1

8
)− 18− 6− 2 = 1296

∑1
k=1(6ak− 1

8
)− 54− 18− 6− 2. The summation
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part now has only one term, a1 = 1
8
. = 1296(6(1/8)− 1/8)− 62 = 730.

We need to get rid of a32 from that sum. a1 = 1
8

=⇒ a2 = 1/2 =⇒ ... =⇒ a32 = 128.

So the sum is 730− 128 = 602 .

Let n and k be positive integers, and let set S = {1, 2, . . . , n}. A subset of S is called ’skipping’

if it doesn’t contain consecutive integers. How many k − element subsets of S are there? Also, how

many skipping subsets of S are there total?

Solution

The amount of total skipping subsets is equal to
∑n

i=0 Fn where Fn are the Fibonacci numbers. This

is easy to prove by induction. Show the base case. THe skipping subsets of 1=1 which is equal to the

number we got in our sum. Assume it true for all Fn up to n. To prove it true for Fn+1, let’s analyze

our subsets. On top of our subsets for that doesn’t include n+1, we have (
∑n−1

i=0 Fn) + 1 that does

include n+1. Listing out the sums, 1,1,2,3,...,Fn 1,1,2,3,...,Fn−1,1. By adding diagonally and putting

the end one at the beginning, one gets 1,1,2,3,...,Fn+1=
∑n+1

i=0 Fn

Let p be a prime = 1( mod 3) and q be the integer part of 2p
3
. If

1
(1)(2)

+ 1
(3)(4)

+ ...+ 1
(q−1)(q)

= m
n
, for integers m,n, show that m is divisible by p.

Solution

if p = 1 + 3a, q = 2a we take Hn =
∑n

k=1
1
k
S =

∑q/2
k=1

1
(2k−1)2k

=
∑q/2

k=1
1

2k−1
− 1

2k
= Hq − 1

2
Hq/2 −

1
2
Hq/2 =

∑q
k=q/2+1

1
k

= m
n

q = 2a and p = 3a + 1 2S = 2
∑q

k=q/2+1
1
k

=
∑2a

k=a+1
1
k

+
∑2a

k=a+1
1

p−k =
∑2a

k=a+1
p

k(p−k)
so, there

exist (c, d) ∈ N2/; gcd(pc, d) = 1 ; 2S = p c
d

=⇒ p c
d

= 2m
n

=⇒ 2md = pnc =⇒ p|m (because

p > 2 , gcd(p, d) = 1)

Find all positive integers that can be written as 1/a1 + 2/a2 + ...+ 9/a9, where ai are positive

integers.

Solution

All the integers from 1 to 45 are attainable. For any n, all the integers from 1 to n(n + 1)/2 are

attainable. Let’s prove the general case by induction. Base case, n=1. 1/1=1 is the only possible case.

Similarly, n=2 works. 1/3+2/3=1, 1/1+2/2=2, and 1/1+2/1=3. Assume this true for all positive

integers up to n. Let’s prove this n+1. 1/a1 + 2/a2 + ... + n/an + n+1
an+1

. Now, the sum of the first n

terms can be anything from 1 to n(n+ 1)/2. Since one can always get a total sum of 1 and n+1 by

setting all the denominators equal to (n+ 1)(n+ 2)/2 and the last one to n+1 while everything else

to 1, respectively, all the integers from 1 to (n)(n + 1)/2 + 1 are attainable. Now, one can also add

n+1 to the sum of the previous n by setting the denominator an+1 as 1. This will yield all integers

from n+2 to (n + 1)(n + 2)/2. Now, we need to show that for all positive n, the union of these two

sets will be all integers from 1 to (n + 1)(n + 2)/2. n(n + 1)/2 + 1 ≥ n + 2 or n2 − n − 2 ≥ 0 or

(n− 2)(n + 1) ≥ 0 which is only "false" for n+1 case where n is 1 or n=2, which we already shown

is true.

Let a1, ...an be n > 1 distinct real numbers. Set

S = a2
1 + ...+ a2

n,M = min1≤i≤j≤n(ai − aj)2

Prove that
S
M
≥ n(n−1)(n+1)

12

Hint If we let r =
√
M and assume WLOG that a1 ≤ a2 ≤ ... ≤ an, then

a1+k ≥ a1 + kr

Evaluate
∑

k≡1( mod 3)

(
n
k

)
and if k ≡ 2( mod 3)

Solution
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Let ω = e
2πi
3 . It is easy to see that for any integer l the value of expression 1+ωl+ω2l

3
is 1 when n | l

and 0 when n - l. Thus∑
k≡j (mod 3)

(
n

k

)
=

∑
n|k−j

(
n

k

)

=
1

3
·
∑
n|k−j

(
n

k

)
·
(
1 + ωk−j + ω2(k−j))

=
1

3
·
∑
k

(
n

k

)
·
(
1 + ωk−j + ω2(k−j))

=
1

3
·

(∑
k

(
n

k

))
+

1

3
·

(
ω−j ·

∑
k

(
n

k

)
ωk

)
+

1

3
·

(
ω−2j ·

∑
k

(
n

k

)
ω2k

)
=

1

3
·
(
2n + ω−j · (1 + ω)n + ω−2j ·

(
1 + ω2

)n)
=

1

3
·
(
2n + ω−j ·

(
−ω2

)n
+ ω−2j · (−ω)n

)
=

1

3
·
(
2n + (−1)n ·

(
ω2n−j + ωn−2j

))
=

1

3
·
(
2n + (−1)n ·

(
ω−(j+n) + ωj+n

))
=

1

3
·
(
2n + (−1)n · 2Re

(
ωj+n

))
=

1

3
·
(

2n + (−1)n · 2 cos

(
2π

3
· (j + n)

))
.

The last expressions allows us to evaluate the desired sum if we know residues of n and j modulo 3:{ ∑
k≡j (mod 3)

(
n
k

)
= 1

3
· (2n + 2 · (−1)n) for 3 | n+ j∑

k≡j (mod 3)

(
n
k

)
= 1

3
· (2n − (−1)n) for 3 - n+ j.

show that any number of the form n4 + 4n are not prime for n >2.

2. for a, b integers suh that a+ b = 1, show that [a+ (a/1)]2 + [b+ (1/b)]2 ≥ 25/2.

3.let a,b any two positive integers, show that 21/2 is alwayys lies between a/b and (a+2b)/(a+b).

4. prove that the equations x2 − 2y2 + 8z = 3 has no solutions for any positive integers x,y,z.

5. let a,b,c be integers such that a+ b+ c = 0, prove that 2a2 + 2b4 + 2c4 is a perfect square.

5. let x,y be two positive odd integers. show that it is imposibble that teh value of x2 + y2 to be

a perfect integer.

7. without calcuylator, prove that cos(2.pi/5) + cos(4pi/5) = −1/2.

8.prove that (a+ b)n ≤ 2n − 1(an + bn) for positive integer n.

9. prove that n2 + 11n+ 2 is not divisible by 12769 for all integers n.

Solution

For 1) n must be odd, so n = 2k + 1, k ∈ N
(2k+ 1)4 + 42k+1 = (2k+ 1)4 + 22 · (4k)2 = (2k+ 1)4 + 22 · (4k)2 + 4 · 4k(2k+ 1)2− 4 · 4k(2k+ 1)2 =

((2k+1)2 +2 ·4k)2−4 ·4k(2k+1)2 = ((2k+1)2 +2 ·4k+2 ·2k(2k+1))((2k+1)2 +2 ·4k−2 ·2k(2k+1))

if this product is equal to a prime p, then one of the 2 factor is 1 and the other is p, or one is -1

and the other −p. This last possibility is not possible, because (2k + 1)2 + 2 · 4k + 2 · 2k(2k + 1) is

always positive and greater than 1. So the only possibility is that

(2k + 1)2 + 2 · 4k + 2 · 2k(2k + 1) = p (2k + 1)2 + 2 · 4k − 2 · 2k(2k + 1) = 1

Let’s show that the second one is not possible:
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(2k+ 1)2 + 2 · 4k− 2 · 2k(2k+ 1) = 1⇐⇒ 2 · 2k(2k− 2k− 1) = −2k(2k+ 2)⇐⇒ 2k(2k− 2k− 1) =

−k(k + 1)

since (k, k + 1) = 1, and if k ≥ 2, 2k contains at least two factors 2, it must be or 2k = k, that is

impossible, or 2k = k + 1, that is also impossible

Prove that if (N, 10) = 1 then N101 ends with three digits, which are also the last thee three

digits of N.

Solution

We wish to show that N101 ≡ N mod 1000 for gcd(N, 10) = 1. Of course, this suggests the Totient

Theorem. However, ϕ(1000) = 400.

Note that ϕ(125) = 100, however. We therefore know that N100 ≡ 1 mod 125. Moreover, ϕ(8) = 4.

It follows that N100 ≡ 1 mod 8.

By CRT we know that N100 ≡ 1 mod 1000. QED.

Prove that each two numbers in the sequence 2+1, 22 +1, ...., 22n+1 are relative prime numbers

Solution

Let Fn = 22n + 1, then for m<n we have Fn − 2 = Fn−1Fn−2...F0. It mean Fm|Fn − 2, therefore

(Fm, Fn) = (Fm, 2) = 1.

Given x, y, z ≥ 0, prove:

xy√
xy + 2z2

+
yz√

yz + 2x2
+

zx√
zx+ 2y2

≥
√
xy + yz + zx.

Solution

Because f(x) = 1√
x
is a convex function on (0,+∞) (because f ′′(x) = 3

4
√
x5
) we can apply the

Weighted Jensen’s inequality:

xy√
xy+2z2

+ xz√
xz+2y2

+ yz√
zy+2x2

xy + yz + xz
=
xy.f(xy + 2z2) + xz.f(xz + 2y2) + yz.f(zy + 2x2)

xy + yz + xz

≥ f(
xy2 + 2xyz2 + y2z2 + 2x2yz + x2z2 + 2xy2z

xy + yz + xz
) = f(

(xy + yz + xz)2

xy + xz + yz
)

=
1√

xy + xz + yz

For which real numbers a does the sequence defined by the initial condition u0 = a and the

recursion un+1 = 2un − n2 have un > 0 for all n ≥ 0?

Solution

un+1 = 2un − n2 ⇐⇒ un+1 − (n + 1)2 − 2(n + 1) − 3 = 2(un − n2 − 2n − 3), yielding un =

(a− 3)2n + n2 + 2n+ 3. Since n2 + 2n+ 3 = (n+ 1)2 + 2 > 0, thus the answer is a ≥ 3.

Prove that: ∀n ∈ Z, n > 0, we have: 1
n+1

(
1 + 1

3
+ 1

5
+ · · ·+ 1

2n−1

)
≥ 1

n

(
1
2

+ 1
4

+ · · ·+ 1
2n

)
Solution

Adding 1
n+1

(
1
2

+ 1
4

+ . . .+ 1
2n

)
to both sides, and letting Hk be the kth harmonic sum or w/e, it

would suffice to prove that
H2n

n+1
≥ (2n+1)Hn

2n(n+1)

or

2nH2n ≥ (2n+ 1)Hn

This is true since for 1 ≤ k ≤ n,
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2n(n+ 2k) = 2n2 + 4nk ≥ 2n2 + 2nk + n+ k = (n+ k)(2n+ 1)

2n
(

1
k

+ 1
n+k

)
= 2n(n+2k)

k(n+k)
≥ 2n+1

k

Probably there’s an easier way but this was the first thing I thought of and it seems to have

worked.

Prove that

Pn,r(x) = (1−xn+1)(1−xn+2)...(1−xn+r)
(1−x)(1−x2)...(1−xr)

Is a polynomial in x of degree nr, where n and r are nonnegative integers. (When r = 0 the

empty product is understood to be 1 and we have Pn,0 = 1 for all n ≥ 0. )

Solution

We will show that the roots of the denominator are a subset of the roots of the numerator. Now, the

roots of the denominator are simply the kth roots of unity, k = 1, 2, 3, ...r. With what multiplicity do

they occur?

A particular (primitive) kth root of unity occurs as a root of (1 − xm) if and only if k|m. Hence

each kth root occurs b r
k
c times.

Applying the same logic to the numerator, each kth root occurs b (n+r)−(n+1)+1
k

c times, which is,

of course, the same number. QED.

Let z be a real number greater than 1 and let z1, z2, ...zn be the n roots of unity (zk =

re2π(k−1)i/n). Show that
n∏
k=1

|z − zk| = zn − 1

Solution

We have
∏n

k=1 |z − zk| Using the identity |a ‖ b| = |ab| this becomes |
∏n

k=1(z − zk)| And since zk is

the kth root of unity this simplifies to |zn − 1| Since z > 1 we know zn > 1 for all natural n and so

we have zn − 1 and we’re done.

Let S be a set of real numbers which is closed under multiplication. Let T and U be disjoint

subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements

of T is in T and the product of any three elements of U is in U , show that at least one of the two

subsets T , U is closed under multiplication.

Solution

Suppose that neither T nor U is closed under multiplication. Then there exists a, b ∈ T and c, d ∈ U
such that ab /∈ T and cd /∈ U . Since a, b, c, d ∈ S and S is still closed under multiplation, ab ∈ U and

cd ∈ T .
Consider abcd. If it is in U , then {a, b, cd} are three numbers in T whose product is not in T ,

contradicting a given condition, so abcd /∈ U . Since abcd ∈ S it thus must be in T ; yet by similar

argument to the above it cannot be in T .

Therefore we have a contradiction, and at least one of T and U is closed under multiplication.

Let {x} denote the closest integer to x (using the standard rounding conventions). Define

f(n) := n+ {
√
n}. Prove that, for every positive integer m, the sequence

f(m), f(f(m)), f(f(f(m)))

never contains the square of an integer.

Solution

It is sufficient to show that f(k) can’t be a square for any integer k.

n2 ≤ k ≤ n2 + 2n+ 1
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n2 + n ≤ f(k) ≤ n2 + 3n+ 2 the only perfect square in that range is n2 + 2n+ 1 = (n+ 1)2

now if k ≥ n+ 1/2 we round up and if its less we round down, however: (n+ 1/2)2 = n2 +n+ 1/4

so f(n2 + n) = n2 + 2n and f(n2 + n+ 1) = n2 + 2n+ 2

so the perfect square is skipped, and thus f(k) can never be a perfect square

Prove that: x+ 4x3

(x−1)(x+1)3 > 3 ∀x > 1

Solution

By AM-GM we have:

x+
4x3

(x− 1)(x+ 1)3
≥ 2

√
4x4

(x− 1)(x+ 1)3
.

Therefore, it suffices to prove that 4
√

x4

(x−1)(x+1)3 > 3, i.e.

16x4 > 9(x− 1)(x+ 1)3 = 9(x4 + 2x3 − 2x− 1) ⇐⇒ 7x4 + 18x+ 9 > 18x3

But according to AM-GM:

7x4 + 18x+ 9 = x4 + x4 + x4 + x4 + x4 + x4 + x4 + 9x+ 9x+ 9

≥ 10
10
√

93x30 = 10x3 5
√

27.

But 10 5
√

27 ≈ 19.33, so 7x4 + 18x + 9 ≥ 10x3 5
√

27 > 18x3, and we’re done. Another approach

x+ 4x3

(x−1)(x+1)3 + 1 = x2−1
x

+ x+1
2x

+ x+1
2x

+ 4x3

(x−1)(x+1)3 ≥ 4

In a triangle ABC, AB is smaller then BC and BC is smaller than AC. The points A′, B′, C ′

are such that AA′ is perpendicular to BC and AA′ = BC, BB′ is perpendicular to AC and BB′ =

AC,CC ′ perpendicular to AB and CC ′ = AB . If < AC ′B = 90 degrees, prove that A′, B′ and C ′

are colinear. (lies on a straight line)

Solution

Angle-Chasing Method

If we draw out , we can see that C ′ lies in ABC while A′, B′ lie outside ABC . Let the orthocenter

be H and let BB′ and AC ′ intersect at M ; AA′ and BC ′ intersect at N . Also let ∠BC ′A′ = x

,∠AC ′B′ = y ,∠C ′AH = a ,∠C ′BH = b ,then

∠AA′C ′ = 180◦ − ∠C ′AH − ∠AC ′A′

= 180◦ − a− (∠AC ′B + ∠BC ′A′)

= 180◦ − a− (90◦ + x)

= 90◦ − a− x .....(i)

∠BB′C ′ = 180◦ − ∠C ′BH − ∠B′C ′B
= 180− b− (∠B′C ′A+ ∠AC ′B)

= 180◦ − b− (y + 90◦)

= 90◦ − b− y.....(ii)
∠C ′MB = 90◦ − ∠C ′BM = 90◦ − b ∠C ′NA = 90◦ − ∠C ′AN = 90◦ − a

=⇒ ∠B′HA′ = 360− ∠C ′MB − ∠C ′NA− ∠AC ′B
= 360− (90◦ − b)− (90◦ − a)− 90◦

= 90◦ + a+ b .....(iii)

Also ∠AA′C ′ + ∠BB′C ′ + ∠B′HA′ = 180◦ so from (i),(ii),(iii) (90◦ − a − x) + (90◦ − b − y) +

(90◦ + a+ b) = 180 ⇐⇒ x+ y = 90◦ =⇒ ∠BC ′A′ + ∠B′C ′A+ ∠AC ′B = x+ y + 90◦ = 180◦ .

Hence A′, B′, C ′ collinear .
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Prove that there are no pairs of positive integers a, b that solve the equation 4a(a+1) = b(b+3).

Solution

(2a + 1)2 = 4a(a + 1) + 1 = b(b + 3) + 1, so b(b + 3) + 1 must be a perfect square. But clearly,

(b+ 1)2 < b(b+ 3) + 1 < (b+ 2)2. No solutions. ANother way Expand to get 4a2 + 4a = b2 + 3b which

is equivalent to 4a2 + 4a − (b2 + 3b) = 0. Solving for a we get a =
−4±
√

16+4(b2+3b)

8
which simplifies

to −1
2
±
√
b2+3b+4

4
. For a to be an integer we must have

√
b2 + 3b+ 4 be an integer. But, (b + 3

2
)2 <

b2 +3b+4. And, since b > 0 we have b2 +3b+4 < (b+2)2 implying that b+ 3
2
<
√
b2 + 3b+ 4 < b+2.

So we have it that
√
b2 + 3b+ 4 is not an integer for integer b implying that a is not an integer

implying that there are no solutions.

Let n be a natural number. Define t(n) as the number of positive divisors of n (including 1

and n) en define σ(n) as the sum of these numbers. Show that

σ(n) ≥
√
n.t(n)

Solution

Let the divisors be 1 = d0 < d1 < · · · < dk = n. Clearly d0dk = n and in general didk−i = n. Then

we clearly have

d0d1 · · · dk = n
k+1

2 .

By AM-GM, we know
d0+d1+···+dk

k+1
≥ k+1
√
d0d1 · · · dk =

k+1
√
n
k+1

2 =
√
n.

But σ(n) = d0 + d1 + · · ·+ dk and τ(n) = k + 1 so
σ(n)
τ(n)
≥
√
n⇒ σ(n) ≥ τ(n)

√
n.

Consider 8 integers x1, x2, ...x1 around a circle. An operation consists of replacing them x1

with |x1−x2|, x2 with |x2−x3|, ...x8 with |x8−x1|. For what starting sequences will all the numbers

eventually become 0 after a finite number of operations? Generalize.

Solution

Consider the following sequence 00000001 → 00000011 → 00000101 → 00001111 → 00010001 →
00110011→ 01010101→ 11111111→ 00000000, 11111110→ 00000011;

It takes at most 8 steps for all numbers to become divisible by 2. In other words, it takes at most

8k steps for all numbers in the 8-tuple to be divisible by 2k. As soon as the maximum number in the

initial 8-tuple S follows maxS < 2k =⇒ k ≥ dlog2(maxS)e, the 8-tuple has all entries as zero. The

condition holds for all 2m-tuples.∏21999

k=0 (4sin2 kπ
22000 − 3)

Solution

sin(x) = cos(π/2− x) so every possible x from the original equation are used for (4 sin2(π/2− x)−
3)(4 cos2(π/2−x)−3). Multiplying through, we get 16 sin2(π/2−x) cos2(π/2−x)−3. SEt this equal

to 4 sin2 z−3. One gets 2 sin(π/2−x) cos(π/2−x) = sin(z). This looks like the double angle formula,

so z = π − 2x = 2x since taking the sine of either will have the same value. The only factor that

isn’t paired is the median, which then becomes the maximum in the new group of factors. However,

the signs keep alternating because cos(π − 2x) = − cos(2x). Noting that if this entire equation was

reduced down to k=2 and the denominator being 4, the product is 3, so it should similarly follow

that for k=21999, the product is also 3.

Suppose (ai)i≥1 is a sequence of positive integers satisfying gcd(ai, aj) = gcd(i, j) for i 6= j.

Show that ai = i for each i.
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Solution

Assume to the contrary, so let’s say am 6= m. Note that m | am as gcd(am, a2m) = m. So, am = km for

some k. Note thatmk | amk (for the same reason as above). gcd(m,mk) = m. But gcd(am, amk) = mk.

Contradiction.

Find positive integers such that: (m/n)m = (mn)n

Solution

Evidently n|m. Let m = dn. Then we have dd−1 = n2. If d is odd then n = d
d−1

2 , m = d
d+1

2 If d is

even then also n = d
d−1

2 , m = d
d+1

2 but d perfect square.

Show that the probability of two randomly chosen positive integers are relatively prime is 6
π2 .

Solution

The probability that 2 does not divide both of them is 1− 1
22 . In fact, the probability that any prime

p does not divide both of them is 1− 1
p2 . So the desired probability is∏∞

i=1

(
1− 1

p2
i

)
= 1∏∞

i=1
1(

1− 1
p2
i

) = 1∏∞
i=1(1+p2

i+p
4
i+··· )

= 1
1+ 1

22 + 1
32 +··· = 6

π2 .

Let p(x) be a 1999-degree polynomial with integer coeffficients that is equal to ±1 for 1999

different integer values of x. Show that p(x) cannot be factored into the product of two plynomials

with integer coefficients.

Solution

suppose the polynomial can be factored into a product of polynomials with integer coefficients,

A(x)B(x) wolog, let A(x) have the lower degree. Then the degree of A(x) is at most 999. For each

of the 1999 values, A(x) and B(x) both give integer results, and the product of these results is 1 or

−1. This means that for each of the 1999 values, A(x) gives 1 or −1. Then A(x) gives 1 at least 1000

times, or A(x) gives −1 at least 1000 times, which is impossible for a polynomial of degree 999.

Given the numbers 1, 2, 22, . . . , 2n−1, for a specific permutation σ = x1, x2, . . . , xn of these numbers

we define S1(σ) = x1, S2(σ) = x1 + x2, . . . and Q(σ) = S1(σ)S2(σ) · · ·Sn(σ). Evaluate
∑

1
Q(σ)

, where

the sum is taken over all possible permutations.

Solution

Claim:
∑

1
Q(σ)

=
∏n

i=1
1
xi
.

Proof, by induction: Base Case: n = 1. Then S1(σ) = 1 and
∑

1
Q(σ)

= 1
1

=
∏1

i=1
1
xi
. Inductive

Step: Take an n for which
∑

1
Q(σ)

=
∏n

i=1
1
xi
. We want to show this relationship is satisfed for n+ 1

as well.

Suppose we take the sum over all permutations of σ = x1, . . . , xn, xn+1. Set S =
∑n+1

i=1 xi, P =∏n+1
i=1 xi and define ψ(k) =

∑
1

Q(σ)
, where the sum is taken over all permutations of {x1, . . . , xn, xn+1}\

{xk}. Thus, ∑ 1

Q(σ)
=

(
1

S

)
·

(
n+1∑
i=1

ψ(i)

)
.

From the inductive hypothesis, the sum taken over all permutations of a set of n elements is just the

reciprocal of the product of the elements. That is,

ψ(k) =
xk

x1 · x2 · · ·xn · xn+1

=
xk
P
.

Hence, ∑ 1

Q(σ)
=

(
1

S

)
·

(
n+1∑
i=1

xi
P

)
.
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∑ 1

Q(σ)
=

(
1

S · P

)
·

(
n+1∑
i=1

xi

)
.

∑ 1

Q(σ)
=

(
1

S · P

)
· (S) =

1

P

n+1∏
i=1

1

xi
,

and the prove is completed through induction. Therefore,∑ 1

Q(σ)
=

n∏
i=0

1

2i−1
.

If in a triangle ABC 2m(B) = m(A) +m(C) then 2b ≥ a+ c.

Solution

By the Law of Sines, we have a =
(
sin(A)
sin(B)

)
b and c =

(
sin(C)
sin(B)

)
b. Plugging these into the inequality

yields

sin(A) + sin(C) ≤ 2sin(B).

Since 2m∠B = m∠A+m∠C, we have m∠B = 60. Thus the above inequality turns into

sin(A) + sin(C) ≤
√

3.

Now sincem∠A+m∠C = 120, let A = 60−θ and C = 60+θ. Then after the use of the sin(α+β)

identity, we have√
3cos(θ) ≤

√
3

which is definitely true.

Let Pn be the set of subsets of {1, 2, ..., n}. Let c(n,m) be the number of functions f : Pn →
{1, 2, ...,m} such that f(A ∩B) = min{f(A), f(B)}. Prove that

c(n,m) =
m∑
j=1

jn

Solution

Let S = {1, 2, ...n}. Let si = {i}, i = 1, 2, ...n. For a set a ∈ Pn, let a−1 denote the complement of a

with respect to S.

Consider f(S). For any A ∈ Pn we have

f(S ∩ A) = f(A) = min{f(S), f(A)}
So that we have f(S) ≥ f(A)∀A ∈ Pn. In other words, if f(S) = j then there are only j

possibilities 1, 2, ...j for any other f(A). This suggests that we group our functions f according to

their value of f(S), which sets a maximum.

Given a value of f(S) = j, I claim that the values of f(a−1
i ), i = 1, 2, ...n uniquely determine f .

There are n values and they can take on j different values for a total of jn possibilities as j ranges

from 1 to m - precisely our desired summation.

We have defined f for subsets missing no members (S) and for subsets missing one member (a−1
i ).

The values of f at subsets missing two members can be defined in terms of the subsets missing each

of the two members; in other words,

f({x, y}−1) = min{f(a−1
x ), f(a−1

y )}
Similarly, it’s obvious from induction that for any A ∈ Pn we have

f(A−1) = min{f(a−1
x ) |x ∈ A}

Because A ranges across all of Pn, so does A−1, and so every value in the domain of f is uniquely

defined.
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Hence for a given value of f(S) = j we have jn possible functions, so that we can conclude that

across all possible values of j there are

c(n,m) =
∑m

j=1 j
n

Possible functions f : Pn → {1, 2, ...m}. QED.

Let Sn =
∑n

k=1
Fk
2k
. Where F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3.

Find a formula for Sn without using induction.

Solution

n∑
k=1

Fk
2k

=
n∑
k=1

φk − (1− φ)k

2k
√

5
=

1√
5

[
n∑
k=1

(
φ

2

)k
−

n∑
k=1

(
1− φ

2

)k]
=

1√
5

[(
φ

2

)((φ
2

)n − 1(
φ
2

)
− 1

)
−
(

1− φ
2

)((1−φ
2

)n − 1(
1−φ

2

)
− 1

)]
where φ = 1+

√
5

2
. You can prove the substitution for Fk using either induction or the characteristic

equation of the fibonacci sequence. The rest requires some simplification which is left to the reader.

Another way

Sn =
n∑
k=1

Fk
2k

Sn+2Sn =
n∑
k=1

Fk
2k

+
n−1∑
k=0

Fk+1

2k
= 1+

n−1∑
k=1

Fk+2

2k
+
Fn
2n

= 1+
Fn
2n

+(4Sn+
Fn+1

2n−1
− F1

2−1
−F2

20
) = 4Sn+

Fn
2n

+
2Fn+1

2n
−2 = 4Sn+

Fn+3

2n
−2

Therefore Sn = 2− Fn+3

2n

Let a,b,c be positive real numbers with a2 + b2 + c2 = 3.Prove that the following inequality

occurs:

4(a3 + b3 + c3) ≥ 3(a+ b+ c+ abc)

Solution

Let the power mean of order t of numbers a, b, c be µt, i.e. µt =
(
at+bt+ct

3

) 1
t
for t 6= 0 and µ0 = 3

√
abc.

Then the ineqality rewrites as

4 · 3µ3
3 > 3 ·

(
3µ1 + µ3

0

)
for µ2 = 1. Then cancelling 3 at both sides and homogenising, we get

4µ3
3 > 3µ1 · µ2

2 + µ3
0.

But from the power mean inequality we have 3µ3
3 > 3µ1µ

2
2 and µ3

3 > µ3
0 which ends the proof.

Prove that the equation m4 +n4 = a2 is not possible in integers m,n, a all of which are different

from zero.

Solution

Assume to the contrary that there exists a solution to the equation m4 + n4 = a2, and that there

exists a minimal a. Using Gaussian integers Z[i], or simply by knowing Pythagorean triples,

m2 = 2uvn2 = |u2 − v2|a = u2 + v2.

Since gcd(u, v) = 1, one of u, v must be odd, but if v is even, we get that n2 ≡ 3 (mod 4). Contra-

diction. So u is even, that is, u = 2w. As a result, m2 = 4vw =⇒ v = x2, w = y2, (v, w) = 1. So,

n2 = x4 − 4y4 =⇒ 2y2 = 2αβ, n = |α2 − β2|, x2 = α2 + β2. From y2 = αβ, (α, β) = 1, we have

that α = γ2, β = δ2 =⇒ x2 = δ4 + γ4, contradicting the minimality of a.�

236

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=116229
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=114508
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=150&t=129263


Remark. This also leads to Fermat’s Last Theorem xn + yn = zn for n = 4.

If n > 1, find the two smallest integral values of n for which x2 + x + 1 is a factor of

(x+ 1)n − xn − 1, over the set of polynomials with integer coefficients.

Solution

Solution. If x2 + x+ 1|(x+ 1)n− xn− 1, then (ω+ 1)n−ωn− 1 = 0, where ω = ei
2π
3 is the third

root of unity. Since ω2 + ω + 1 = 0, we have (−1)nω2n − ωn − 1 = 0 =⇒ (−1)n+1ω2n + ωn + 1 = 0.

Lemma. Let ζ be the n-th root of unity. Then
∑n−1

j=0 ζ
jk = n if n|k, and equal to 0 otherwise.

Proof. A direct application of geometric summation. The proof is left as an exercise.

Ipso facto of the above [i]lemma[/i], n must be odd and 3 6 |n. The two smallest such n are 5 and

7. �

Remark. The method above can easily be generalized.

Find the biggest n that divides a25 − a for all a.

Solution

We consider the set of primes p such that ϕ(p)|24. (We do not consider the prime powers because

p25 − p cannot be divisible by any powers of p.)

Firstly, the divisors of 24:

1, 2, 3, 4, 6, 8, 12, 24

This means we have

p = 2, 3, 5, 7, 13

Our maximal n is therefore

2 · 3 · 5 · 7 · 13 = 2730 .

The graph of f(x) = x4 + 4x3− 16x2 + 6x− 5 has a common tangent line at x = p and x = q.

Compute the product pq.

Solution

Say the tangent line has equation y = Ax+B. Then the polynomial f(x)−Ax−B would have the

x-axis as its common tangent, so then p, q would both be double roots.

Ergo,

x4 + 4x3 − 16x2 + (6− A)x− (5 +B) = (x− p)(x− p)(x− q)(x− q)
Vieta’s sums give

4 = −2p− 2q ⇔ p+ q = −2 =⇒ p2 + 2pq + q2 = 4 −16 = p2 + q2 + 4pq =⇒ −16 = 4 + 2pq ⇔
pq = −10 .

Remark: The statement to find the product pq should scream Vieta’s to a seasoned problem-

solver. The problem is to figure out what kind of polynomial would have roots p, q.

Another approach x4 + 4x3− 16x2 + 6x− 5 = (x2 + 2x− 10)2 + 24x− 105 ⇐⇒ x4 + 4x3− 16x2 +

6x− 5− (24x− 105) = (x2 + 2x− 10)2.

For a positive integer n, let r(n) denote the sum of the remainders when n is divided by

1, 2, ..., n respectively. Prove that r(k) = r(k − 1) for infinitely many integers.

Solution

Solution sketch"]For any p ≤ 2n − 1 which is not a power of 2, the remainder when p divides 2n is

exactly one more than the remainder when p divides 2n − 1.

For p = 2m ≤ 2n − 1, the remainder when p divides 2n is 0 and the remainder when p divides

2n − 1 is 2m − 1.

Thus r(2n)− r(2n − 1) = 1 · (2n − n− 1)−
∑n−1

m=0 2m − 1 = 0, so we’re done.
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At least up to n = 4096 the powers of 2 are the only numbers with this property.

Prove that for every natural number n ≥ 4, there exists at least one natural number m, such

that

n! < m < (n+ 1)!

and n3|m.

Solution

A non-constructive proof is much simpler. Consider the set A = {n! + 1, n! + 2, . . . , (n+ 1)!− 1}. If
the size of A is at least n3, then since all the integers in A are consecutive, some multiple of n3 must

belong to A. This means that

n · n!− 1 ≥ n3

for all integers n ≥ 4. This is obvious, but if necessary, this inequality can be rigorously proved

by a few cases of induction.

Find all integers n for which 21994 + 21998 + 21999 + 22000 + 22002 + 2n is a perfect square.

Solution

21994+21998+21999+22000+22002+2n = x2 1+24+25+26+28+2(n−1994) = x2

21994 369+2(n−1994) =
(

x
2997

)2

a = n − 1994 b2 =
(

x
2997

)2
369 + 2a = b2 0 + 1, 2 = 0, 1 (mod 3), so looking at the multiplicative

group mod 2, we see that 2 | a and that 3 6 | b a = 2c 369 + 22c = b2 (b+ 2c)(b− 2c) = 41 · 32 41− 9

is the only set of factors that will form a power of 2, so:

b+ 2c = 41 b− 2c = 9 2c+1 = 32 c = 4 2c = a = n− 1994, so:

n = 2002 x = 25 · 2997

Let O be a given point, let P1, P2, ...Pn be vertices of a regular n-gon, and let Q1, Q2, ...Qn be

given by
⇀

OQi=
⇀

OPi +
⇀

Pi+1Pi+2

where we interpret Pn+1 = P1, etc. Prove that Q1, Q2, ...Qn are vertices of a regular n-gon.

Solution

We can use complex numbers. Let O be 0, P1 be 1. Then by putting ω := e
2πi
n we get that the vector

~OPk correspons with ωk. Thus vector ~OQk is represented by ωk + ωk+2 − ωk+1 = ωk (1− ω + ω2),

but it is just ωk, i.e. ~OPk after roation and scaling equivalent to multiplying by 1 − ω + ω2. Hence

the polygon Q1 . . . Qn is similar to the polygon P1 . . . Pn, so it is regular.

Prove that R
r
> b

a
+ a

b
, where a, b are different sides of a triangle.

Solution

we will use the fact that : la ≥ ha, so : l2a = 4pbc(p−a)
(b+c)2 but (b+ c)2 ≥ 4bc, therefore: l2a ≤ p(p− a)

but from la ≥ ha we have : 2
b + h2

c ≤ l2b + l2c ≤ ap, but hb = 2S
b

and hc = 2S
c

⇒ 4S2( 1
b2

+ 1
c2

) ≤ ap, and multypling by bc
4S
⇐⇒ b

c
+ c

b
≤ R

r

A finite sequence a1, a2, . . . , an is called p-balanced if any sum of the form ak+ak+p+ak+2p+· · ·
is the same for k = 1, 2, . . . , p. Prove that if a sequence with 50 members is p-balanced for p =

3, 5, 7, 11, 13, 17, then all its members are equal to zero. Hint Denote P (x) = a50x
49 + a49x

48 + · · ·+
a2x+ a1. Let ωp = e

2πi
p . We know that

1
p

∑p−1
i=0 P (ωip) = a1 + a1+p + a1+2p + · · · .

Prove
n
√
n! ≤

∏
p|n!

p
1
p−1

Solution

Lemma 1: bn
p
c+ b n

p2 c+ ... ≤ n
p−1
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Proof: remove the floor functions to get

n

p
+
n

p2
+ ... =

n

p− 1

Now, we note that ∏
p|n

p
n
p−1 ≥

∏
p|n

p
bn
p
c+b n

p2
c+...

= n!

Simply take the nth root and we are done. Make the solution as simple as possible

Find all primes a, b, c, d, e, not necessarily distinct, such that: a2 + b2 = c2 + d2 + e2

Solution

If p is an odd prime, p ∈ {1, 3, 5, 7} =⇒ p2 ≡ 1 (mod 8). If p is an even prime, p = 2 =⇒ p2 ≡ 4

(mod 8). Therefore all primes p are 1, 4 (mod 8). Our equation becomes

{1, 4}+ {1, 4} ≡ {1, 4}+ {1, 4}+ {1, 4}

where {a, b} denote exactly one of a and b. The left hand side is either 2, 5, or 8 ≡ 0 in modulo 8.

The right hand side is either 3, 6, 9 ≡ 1, or 12 ≡ 4 in modulo 8. Therefore, there are no possible

solutions. �

Let (m,n) = p, where p is a prime. Prove ϕ(mn) = p
p−1
· ϕ(m) · ϕ(n).

Solution

Let m = pa, n = pb; gcd(a, b) = 1; a =
∏
qaii , r =

∏
rbii ; pi, ri are primes.

Then:

φ(mn) = φ(p2ab) = p(p− 1) · a
∏ qi − 1

qi
· b
∏ ri − 1

ri

=
p3

(p− 1)
· a
∏ qi − 1

qi
· p− 1

p
· b
∏ ri − 1

ri
· p− 1

p

=
p

(p− 1)
· ap

∏ qi − 1

qi
· p− 1

p
· bp
∏ ri − 1

ri
· p− 1

p

=
p

φp
φ(m) · φ(n)

Calculation of positive integer ordered pairs (x, y, z) in 3x − 5y = z2

Solution

Since y is positive integer number then 5y ≡ 1 (mod 4). If x odd then 3x ≡ 3 (mod 4). Therefore

3x − 5y ≡ 2 (mod 4), a contradiction because z2 ≡ 0, 1 (mod 4). Thus, x is even. Let x = 2m with

m ∈ N∗. Since x is even then 3x ≡ 1 (mod 8). We also have z2 ≡ 0, 1, 4 (mod 8). It follows that y

is even. Let y = 2n with n ∈ N∗. From the equation we have (3m − 5n) (3m + 5n) = z2 (1). Let

gcd(3m− 5n, 3m + 5n) = d with d ∈ N∗. Therefore d|(3m + 5n)− (3m− 5n) or d|2 · 5n. But 5 - 3m− 5n

so d|2. We have d ∈ {1; 2}.
If d = 1 then we have 3m − 5n = p2, 3m + 5n = q2 implies (q − p)(q + p) = 2 · 5n. Since

p + q − (p− q) = 2q is even then we implies p + q and p− q are both even, thus 4|(p− q)(p + q), a

contradiction.

If d = 2 then 2|z. Let z = 2z1, 3
m − 5n = 2r, 3m + 5n = 2h with (r, h) = 1, r, h, z1 ∈ N. From (1)

we have rh = z2
1 . Since (r, h) = 1 then r = a2, h = b2 with a, b ∈ N∗. Therefore 2b2 − 2a2 = 2 · 5n. It

follows that (b− a)(b+ a) = 5n.

Calculate (tanπ
7
)2 + (tan2π

7
)2 + (tan4π

7
)2

Solution
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We have, by the [b]de Moivre [/b]formula,

(
cos

kπ

7
+ i sin

kπ

7

)7

= cos kπ + i sin kπ = (−1)k, for all

1 ≤ k ≤ 6. Denoting s = sin
kπ

7
and c = cos

kπ

7
, and expanding by the [b]Newton[/b]’s binomial

formula, and equalling the imaginary parts we get s7 −
(

7
5

)
s5c2 +

(
7
3

)
s3c4 −

(
7
1

)
sc6 = 0. Now divide

by sc6 to get the equation t6 − 21t4 + 35t2 − 7 = 0, of roots t = tan
kπ

7
, for all 1 ≤ k ≤ 6. By

[b]Viète[/b]’s relations,
∑6

k=1 tan2 kπ

7
=

(∑6
k=1 tan

kπ

7

)2

−2
∑

1≤p<q≤6 tan
pπ

7
tan

qπ

7
= 0+42 = 42.

But tan2 3π

7
= tan2 4π

7
, tan2 5π

7
= tan2 2π

7
, and tan2 6π

7
= tan2 π

7
, therefore tan2 π

7
+ tan2 2π

7
+

tan2 4π

7
=

1

2

∑6
k=1 tan2 kπ

7
= 21.

– Solve the equation x2 + 2 =
√

2x + 4 log2 x – x, y, z ∈ Z Solve the equation x2 + 3y2 = z2?

Solution

Rearranging yields 3y2 = (z−x)(z+x). There exist integers n and q such that z−x = n, z+x = 3q

and y2 = qn. There also exist integers such that y = rs = tu, q = tu and n = us. Again, there exist

integers such that r = ab, s = cd, t = ac and u = db. Combining the equations, it follows that

x =
3a2bc− bcd2

2
,

y = abcd

and

z =
3a2bc+ bcd2

2
.

to hợp số học tổ hợp hay số học tổ hợp

Determine the real values of the parameter m so that inequality mx2 + (m+ 1)x+m− 1 > 0

hasn’t real solutions.

Solution

Observe that mx2 + (m+ 1)x+m− 1 > 0 ⇐⇒ f(x) < m , where f(x) = 1−x
x2+x+1

. Prove easily that

the range of f is =(f) =
[
1− 2√

3
, 1 + 2√

3

]
. Therefore, the inequality mx2 + (m+ 1)x+m− 1 > 0

hasn’t real

solutions ⇐⇒ the inequality f(x) < m hasn’t real solutions ⇐⇒ =(f) ⊂ (m,∞) , i.e.

m < 1− 2√
3

.

Find all the prime numbers p1, p2, p3, ..., pn such that p1p2p3.....pn = 10(p1 + p2 + p3 + ....+ pn)

Solution

Since 10 | RHS we must have WLOG (p1, p2) = (2, 5). Plugging in and dividing by 10 yields∏n
i=1 qi = 7 +

∑n
i=1 qi for qi ∈ P. Clearly n = 1 cannot work, so we try n = 2 to get q1q2 =

7+q1+q2 ⇐⇒ q1q2−q2−q2 = 7 ⇐⇒ (q1−1)(q2−1) = 8 = 23, and trying possible factors of 8 we find

the unique solution (q1, q2) = (3, 5), or (p1, p2, p3, p4) = (2, 3, 5, 5). Now let q1 ≤ q2 ≤ · · · ≤ qn. Note

that
∏n

i=1 xi ≥
∑n

i=1 xi for any sequence of {xi}ni=1 such that each xi ≥ 2. This follows from the fact

that x1x2 ≥ x1 +x2 ⇐⇒ (x2−1)(x2−1)−1 ≥ 0, and applying this fact repeatedly easily yields the

result for higher n. Applying this to our qi equation, we see that 7+
∑n

i=1 qi =
∏n

i=1 qi ≥
(∑n−1

i=1 qi
)
qn.

Letting P =
∏n−1

i=1 qi and S =
∑n−1

i=1 qi we get 7 + S + qn ≥ Sqn ⇐⇒ (qn − 1)(S − 1) ≤ 8. Testing

the (highly limited) possible values of qn while keeping in mind that n ≥ 3 ⇐⇒ S ≥ 2 + 2 + 2 = 8

(since we already did the case n = 2 above), we see that (qn− 1)(S − 1) ≥ 7(qn− 1) ≥ 7(1) = 7 < 8,

however this assumes that q1 = · · · = q4 = 2 which (checking by hand) cannot happen, so qn ≥ 3
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and 7(qn− 1) ≥ 7(3− 2) = 7(2) = 14 > 8, contradiction. Thus, the only solution is the one we found

above, namely (p1, p2, p3, p4) = (2, 3, 5, 5) .

Solve for x in terms of c, c < 1,
1 + ln x

x
= c

Solution

1 + ln x = cx

e−1−lnx = e−cx

1
ex

= e−cx

− c
e

= −cxe−cx

W(− c
e
) = −cx

∴ −1
c

W(− c
e
) = x

Be aware that W(z) may take zero, one, or two real values. The condition 0 < c < 1 ensures there

will be two solutions. For c ≤ 0, there will be one.

Determine all integers x, y that satisfy the equation

x3 = y2 + 2.

Solution

Consider the UFD Z[
√
−2]. We get x3 = (y+ i

√
2)(y− i

√
2). Let d = (y+ i

√
2, y− i

√
2). This means

d|2i
√

2. Let ζ(a+ bi
√

2) = a2 + 2b2. It is easy to check that ζ is multiplicative.

Lemma 1: i
√

2 is irreducible. Proof: Let i
√

2 = cd for c ∈ Z[
√
−2]. We know ζ(i

√
2) = ζ(c)ζ(d) =

02 + 2 · 12 = 2. Therefore, one of ζ(c), ζ(d) is one, meaning one of c, d is a unit.

This means d is either 1, 2, i
√

2, or 2i
√

2. Clearly 2 6 |(y + i
√

2) so we can narrow d down to 1 or

i
√

2.

If i
√

2|(y+i
√

2), then i
√

2|y, meaning y is even, so x3 ≡ 2 (mod 4), which is impossible. Therefore,

d must equal 1.

Now we know y + i
√

2 = u(p+ iq
√

2)3, y − i
√

2 = v(r + is
√

2)3 for p, q, r, s ∈ Z and u, v = ±1

Comparing the imaginary parts of the first equation, we get ±1 = 3p2q − 2q3 = q(3p2 − 2q2). It

is clear that this means p, q = ±1 so y + i
√

2 = (1 + i
√

2)3 = −5 + i
√

2 or y + i
√

2 = (−1 + i
√

2)3 =

−5 + i
√

2 (their negatives would have a negative i
√

2 term). Therefore, y = ±5 and x = 3. �

Suppose that f is bounded and for a ≤ x ≤ b and, for every pair of values x1, x2, with

a ≤ x1 ≤ x2 ≤ b,

f(
1

2
(x1 + x2)) ≤ 1

2
(f(x1) + f(x2)).

Prove that

f(x+ δ)− f(x) ≤ 1

2
(f(x+ 2δ)− f(x)) ≤ · · · ≤ 1

2n
(f(x+ 2nδ)− f(x))

, a ≤ x+ 2nδ ≤ b.

Solution
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To prove
1

2n−1
(f(x+2n−1δ)−f(x)) ≤ 1

2n
(f(x+2nδ)−f(x)), note it is equivalent to

f(x) + f(x+ 2nδ)

2
≥

f(x+ 2n−1δ). And this is true by what we are given, x1 = x, x2 = x+ 2nδ. Now we’re done.

Find all the integers written as abcd in decimal representation and dcba in base 7.

Solution

First of all a, b, c, d ∈ {0, 1, 2, 3, 4, 5, 6}, a, d 6= 0.

1000a+ 100b+ 10c+ d = a+ 7b+ 49c+ 343d =⇒ 333a+ 31b = 13c+ 114d. The maximum for

the right-hand side is 6(13 + 114) = 762, so 0 < a < 3.

If a = 2 then 666 + 31b = 13c+ 114d. (Notice that b ≡ c (mod 6).) The minimum d is found by

minimizing b and maximizing c: 666 = 78 + 114d =⇒ d > 5. So d = 6 =⇒ 31b = 13c + 18 =⇒
13(b− c) = 18(1− b) =⇒ b = c = 1, giving the solution 211610 = 61127.

If a = 1 then 333 + 31b = 13c + 114d, so b + 3 ≡ c (mod 6) and c = b ± 3. If c = b + 3, then

333 + 31b = 13b + 39 + 114d =⇒ 148 = 3(19d − 3b), no solution. Otherwise say c = b − 3 and

333+31b = 13b−39+114d =⇒ 62 = 19d−3b. Then d > 3, 2 ≡ d (mod 3) =⇒ d = 5, no solution.

Let ABC be a triangle with the incircle C(I, r) . Prove that (∀) E ∈ (AB) and (∀) F ∈ (AC) so

that I ∈ EF

there are the inequalities


1 I AE + AF ≥ 4r

2 I 1
AE

+ 1
AF
≤ 1

r

∥∥∥∥∥∥∥ . When each from these inequalities comes

an equality ?

Solution

Let D be the intersection of lines AI and BC. Then, DI
IA
·BC = BE

EA
·DC + CF

FA
·DB. If AE = x and

AF = y, since DI
IA

= BC
AB+AC

= a
b+c

, DB = ac
b+c

and DC = ab
b+c

, we have a
b+c
·a = c−x

x
· ab
b+c

+ b−y
y
· ac
b+c
⇒

a = bc
x
− b + bc

y
− c ⇒ bc( 1

x
+ 1

y
) = a + b + c ⇒ 1

x
+ 1

y
= a+b+c

bc
. (Alternatively, we could have used

vectors) By applying Cauchy’s inequality, we obtain a+b+c
bc

= 1
x

+ 1
y
≥ 4

x+y
⇒ x+y ≥ 4bc

a+b+c
=

4· 2pr
sinA

2p
=

4r
sinA
≥ 4r, since sinA ∈ (0, 1], so the first inequality is proven. Similarly, for the second inequality,

1
x

+ 1
y

= a+b+c
bc

= 2p
2pr

sinA

= sinA
r
≤ 1

r
. For both inequalities, equality holds if and only if sinA = 1, so

when triangle ABC is right-angled.

For a triangle ABC let its circumcircle be (O) and a point P be on the small arc AB .

A line passing through P and perpendicular to OA meets AB , CA at D , E respectively .

A line passing through P and perpendicular to OB meets AB , BC at F , G respectively.

Prove that DP = DE ⇐⇒ FP = FG⇐⇒ the line AP is the C-symmedian in4ABC . Lemma.

In 4 ABC consider a point M ∈ [BC] and denote δd(X) - the distance from X to the line d .

Then MB = MC ⇐⇒
δAM(B) = δAM(C) ⇐⇒ AB · sin M̂AB = AC · sin M̂AC ⇐⇒ sinC · sin M̂AB = sinB · sin M̂AC

.

Proof of the proposed problem.

Denote the midpointM of the side [AB] , the intersections

∥∥∥∥∥∥∥
X ∈ PE ∩OA
Y ∈ PG ∩OB
S ∈ CP ∩ AB

∥∥∥∥∥∥∥ and
∥∥∥∥∥ m(∠PAB) = x

m(∠PBA) = y

∥∥∥∥∥
.Observe that x+ y = C

and the quadrilateralsOXDM ,OY FM are cyclically, i.e.m(∠ADE) = m(∠PDF ) = m(∠PFD) =

m(∠BFG) = C . Therefore,

PD = PF ,

∥∥∥∥∥ m(∠APE) = C − x = y

m(∠BPG) = C − y = x

∥∥∥∥∥ and

∥∥∥∥∥ m(∠AEP ) = B

m(∠BGP ) = A

∥∥∥∥∥ (lines DE , FG are an-
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tiparallels to BC , AC in 4 ABC ).

Apply the upper lemma in the triangles PAE and PBG to the cevians AD , BF respectively :∥∥∥∥∥∥∥
DE = DP ⇐⇒ sin ÂPE · sin D̂AE = sin ÂEP · sin D̂AP ⇐⇒ sin y · sinA = sinB · sinx

FG = FP ⇐⇒ sin B̂PG · sin F̂BG = sin B̂GP · sin F̂BP ⇐⇒ sinx · sinB = sinA · sin y

∥∥∥∥∥∥∥
.

In conclusion, DE = DP ⇐⇒ b · sinx = a · sin y ⇐⇒ FG = FP . Observe that in this

case
SA
SB

= CA
CB
· sin ŜCA

sin ŜCB
= b

a
· sin y

sinx
= b2

a2 , i.e. in this case the point S is the foot of the C-symmedian

in the triangle ABC .

Solve the equation 3
√

1− x+ 3
√

1 + x = x2+2√
x2+1

(without derivatives).

Solution

Denote the set S of the zeroes for our equation. Thus, 0 ∈ S and x ∈ S ⇐⇒ −x ∈ S . We can

suppose w.l.o.g. that x > 0 . Observe that x2+2√
x2+1

=
√
x2 + 1 + 1√

x2+1
≥ 2 , (∀)x ∈ R , particularly

and for x > 0 , with equality iff x = 0 .

Since for x ∈ (−1, 1) , 3
√

1− x+ 3
√

1 + x < 2 , obtain that our equation hasn’t zeroes in (−1, 1)∗

. For x ≥ 1 have x2+2√
x2+1

=√
x2 + 1 + 1√

x2+1
>
√
x2 + 1 > 3

√
x2 + 1 ≥ 3

√
x+ 1 ≥ 3

√
1− x+ 3

√
1 + x =⇒ 3

√
1− x+ 3

√
1 + x <

x2+2√
x2+1

=⇒ x 6∈ S . In conclusion our equation has an unique zero, x = 0 , i.e. 3
√

1− x+ 3
√

1 + x =
x2 + 2√
x2 + 1

⇐⇒ x = 0

.

Another way Perhaps it would be easier if you do this:
3
√

1− x ≤ 1+1+1−x
3

and
3
√

1 + x ≤ 1+1+1+x
3

so left side is at most 2 and this is exactly when x = 0.

On the other side you have:
x2+1√
x2+1

+ 1√
x2+1

≥ 2
√

x2+1√
x2+1
· 1√

x2+1
= 2

so right side is at least 2 and this is exactly when x = 0.

Thus only solution is x = 0

A equation f(x) ≡ ax3 + bx2 + cx+ d = 0 , a 6= 0 has three real roots xk , k1, 3 . Prove that

the tangent TT to Gf at the point T ∈ Gf with xT = x1+x2

2
cut the X-axis in the point R(x3, 0) .

Lemma. Let f(x) = ax3 + bx2 + cx+ d , x ∈ R be a real polynomial function, where a 6= 0 .

and the points Pk (xk, f (xk)) , k ∈ 1, 3 . Then P3 ∈ P1P2 ⇐⇒ x1 + x2 + x3 = − b
a
.

Proof

P3 ∈ P1P2 ⇐⇒

∣∣∣∣∣∣∣
x1 ax3

1 + bx2
1 + cx1 + d 1

x2 ax3
2 + bx2

2 + cx2 + d 1

x3 ax3
3 + bx2

3 + cx3 + d 1

∣∣∣∣∣∣∣ = 0 ⇐⇒

(x1 − x2)(x2 − x3)(x3 − x1) [a(x1 + x2 + x3) + b] = 0 ⇐⇒ x1 + x2 + x3 = − b
a
.

Particular case. Using the above lemma in the proposed problem, R ∈ TT ⇐⇒ 2 · x1+x2

2
+x3 =

− b
a
, what is truly.

An easy extension. Let f(x) = ax3 + bx2 + cx+d , x ∈ R be a real polynomial function, where

a 6= 0 .

Let d be a line which cut the graph Gf of the function f in the points Pk , k ∈ 1, 3 . For any

k ∈ 1, 3 the tangent
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in the point Pk ∈ Gf cut again Gf in the point Qk . Prove that the points Qk , k ∈ 1, 3 are

collinearly.

Proof. Denote Pk (xk, f(xk)) ∈ Gf and Qk (yk, f(yk)) ∈ Gf , k ∈ 1, 3 . Thus, from the upper

lemma,

P3 ∈ P1P2 ⇐⇒ x1 + x2 + x3 = − b
a
and for any k ∈ 1, 3 we have Qk ∈ PkPk ⇐⇒ 2xk + yk = − b

a
.

Observe that
∑3

k=1(2xk + yk) = −3b
a
, i.e. y1 + y2 + y3 = − b

a
what means from the same lemma

that Q3 ∈ Q1Q2 .

Particular case. The extremum points, if they exist ( f ′(x) = 0 ) and the inflexion point of

Gf ( f ′′(x) = 0 ) are collinearly.

Let ABC be a triangle with the incircle w = C(I, r) which touches 4ABC in Y ∈ CA ,

Z ∈ AB .

Denote the midpoint M of [BC] and P ∈ Y Z ∩ AM . Prove that m(∠BPC) > 90◦ .

Solution

Denote X ∈ w ∩BC , the orthocenter H of 4ABC , L ∈ AH ∩MI and D ∈ AH ∩BC .

I"ll use two well-known properties (we can show easily them !) : P ∈ IX and AL = r . Therefore,

PX
IX

= AD
LD
⇐⇒ PX = rha

ha−r = r·aha
aha−ar = r·2pr

2pr−ar =⇒ PX =
2S

b+ c
(nice !). Otherwise

(without the second mentioned properties), PX
AD

= MX
MD

=
|b−c|

2

|b2−c2|
2a

= a
b+c

=⇒ PX = 2S
b+c

.

Thus, m(∠BPC) > 90◦ ⇐⇒ IX2 < XB ·XC =⇒ 4S2

(b+c)2 < (p− b)(p− c) ⇐⇒
4p(p− a) < (b+ c)2 ⇐⇒ (b+ c)2 − a2 < (b+ c)2 ⇐⇒ 0 < a2 , what is truly.

Remark. PZ
PY

= AZ
AY
· MB
MC
· AC
AB

=⇒ PZ
b

= PY
c

= Y Z
b+c

. From another well-known relation

[ZBC] ·PY +[Y BC] ·PZ = [PBC] ·Y Z =⇒ [ZBC] · c+[Y BC] · b = [PBC] · (b+ c) . Therefore,

a(p− b) sinB · c+a(p− c) sinC · b = a ·PX · (b+ c) =⇒ PX = 2S
b+c

because ha = b sinC = c sinB

.

Let be G = {(x, y) ∈ R2 | x2 − y2 = 3x − 4y} and H = {(x, y) ∈ R2 | 2xy = 4x + 3y} .

Determine :

M = {z = x2 + y2 | (x, y) ∈ G ∩H}.
Solution

If y = 0 , then (0, 0) ∈ G∩H . Suppose y 6= 0 . Thus, (x, y) ∈ G∩H ⇐⇒

∥∥∥∥∥ x2 − y2 = 3x− 4y

2xy = 4x+ 3y

∥∥∥∥∥ =⇒

x2−y2

2xy
= 3x−4y

4x+3y
(∗) .

Denote t = x
y
. The relation (∗) becomes t2−1

2t
= 3t−4

4t+3
⇐⇒ 4t3 − 3t2 + 4t − 3 = 0 ⇐⇒ (4t −

3) (t2 + 1) = 0⇐⇒ t = 3
4
.

Therefore,

∥∥∥∥∥ x = 3λ

y = 4λ

∥∥∥∥∥ =⇒ 24λ2 = 24λ , λ 6= 0 =⇒ λ = 1 =⇒

∥∥∥∥∥ x = 3

y = 4

∥∥∥∥∥ . In conclusion,

G ∩H = {(0, 0) ; (3, 4)} and M = {0, 25} .
Solve the trigonometrical equation 32 cos6 x− cos 6x = 1 .

Solution

Method 1. 32 cos6 x−cos 6x = 1⇐⇒ 16 cos6 x = cos2 3x⇐⇒ 4 cos3 x = cos 3x ∨ 4 cos3 x+cos 3x = 0

⇐⇒

cosx = 0 ∨ 8 cos2 x = 3⇐⇒ cosx = 0 ∨ cos 2x = −1
4
a.s.o. I used the relations

∣∣∣∣∣∣∣
2 cos2 φ

2
= 1 + cosφ

cos 3φ = cosφ · (4 cos2 φ− 3)

∣∣∣∣∣∣∣
.
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Method 2. Denote z = cosx+ i · sinx . Prove easily that for any n ∈ N we have cosnx = z2n+1
2zn

. Therefore,

32 cos6 x− cos 6x = 1⇐⇒ (z2 + 1)
6

= (z6 + 1)
2 ⇐⇒ (z2 + 1)

6
= (z2 + 1)

2
(z4 − z2 + 1)

2 ⇐⇒
(z2 + 1)

2
[
(z2 + 1)

4 − (z4 − z2 + 1)
2
]

= 0⇐⇒ (z2 + 1)
[
(z2 + 1)

2
+ (z4 − z2 + 1)

] [
(z2 + 1)

2 − (z4 − z2 + 1)
]

=

0 ⇐⇒
z2 (z2 + 1) (2z4 + z2 + 2) = 0 ⇐⇒ z (z2 + 1)

[
2 (z2 + 1)

2 − 3z2
]

= 0 ⇐⇒

z (z2 + 1)
(
z2
√

2− z
√

3 +
√

2
) (
z2
√

2 + z
√

3 +
√

2
)

= 0 ⇐⇒ z ∈
{

0 ; ±i ; ±
√

3±i
√

5
2
√

2

}
a.s.o.

ABCD is a parallelogram. Consider the points X ∈ (BC) and Y ∈ (CD) . The areas of

triangles

ADY , XY C and ABX are 6 , 17 and 29 respectively. What is the area of the parallelogram ?

Solution

Denote S = [ABCD] , AD = BC = a , AB = CD = b and BX = x , DY = y , i.e. CX = a − x ,

CY = b− y . Therefore,∥∥∥∥∥∥∥∥∥∥∥∥

[ABX]
[ABC]

= BX
BC

=⇒ 58
S

= x
a

[ADY ]
[ADC]

= DY
DC

=⇒ 12
S

= y
b

[XCY ]
[BCD]

= CX·CY
CB·CD =⇒ 34

S
= (a−x)(b−y)

ab

∥∥∥∥∥∥∥∥∥∥∥∥
=⇒ 34

S
= (a−x)(b−y)

ab
=
(
1− x

a

) (
1− y

b

)
=
(
1− 58

S

) (
1− 12

S

)

=⇒
34 · S = (S − 58)(S − 12) =⇒ f(S) ≡ S2 − 104 · S + 12 · 58 = 0 . Since f(29) < 0 and 29 < S

obtain S = 52 + 2
√

502 .

Remark. Observe that [AXY ] = 2
√

502 .

If [ABX] = m , [ADY ] = n , [XCY ] = p then S2 − 2(m + n + p) · S + 4mn = 0 , i.e.

S = m+ n+ p+
√

(m+ n+ p)2 − 4mn .

For example, m = 8 , n = 2 , p = 7 =⇒ S = 32 and [XAY ] = 15 . Thus the solution of our

problem is a integer number.

Consider two squares ABCD , CEFG , where E ∈ (BC) and the line BC separates the

points A , F . Denote AB = a ≥ b = CE and H ∈ BG ∩DF . Ascertain the area [BDH] .

Solution

Method I. Denote I ∈ BC∩DF . Observe that I ∈ AG . In the trapezoid ADFG exists the relation
1
IC

= 1
AD

+ 1
FG

,

i.e. IC = ab
a+b

and IB =
a2

a+ b
. Thus, [BDH]

[BDG]
= BH

BG
= BI

BI+FG
=⇒ =⇒ [BDH] =

a3(a+ b)

2(a2 + ab+ b2)
.

Remark. Denote P ∈ AB ∩ FG . Thus,
IC

b
= DC

DG
= AI

AG
= IB

PG
=

IB

a
= IB+IC

b+a
=

a

a+ b
.

In conclusion, IC
b

= IB
a

= a
a+b

. Show easily that [BDF ] = a2

2
and [BDH] ≥ a2

3
for any 0 < b ≤ a

.

Method II. I’ll use same notations from first method. Denote S ∈ AG ∩ BD . Observe

that [DBG] = a(a+b)
2

and I ∈ AG . Apply the Ceva’s theorem to the point I and the triangle BDG : SB
SD
· CD
CG
· HG
HB

=

1 =⇒
a
a+b
· a
b
· HG
HB

= 1 =⇒ HG
b(a+b)

= HB
a2 = BG

a2+ab+b2
. Thus, [BDH]

[DBG]
= BH

BG
= a2

a2+ab+b2
=⇒

[BDH] = a2

a2+ab+b2
· [DBG] =⇒ [BDH] =

a3(a+ b)

2(a2 + ab+ b2)
.
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Remark. You can solve similarly this problem if ABCD , CEFG are two rhombus.

Appears only the factor sinφ, where φ = m
(
ÂBC

)
, i.e. [BDH] = a3(a+b)

2(a2+ab+b2)
· sinφ .

Let ABCD be a convex quadrilateral . Denote O ∈ AC ∩BD . Prove that if the

perimeters of AOB , BOC , COD , AOD are equally, then ABCD is a rhombus.

Solution∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

AB + AO = CB + CO (1)

BC +BO = DC +DO (2)

CD + CO = AD + AO (3)

DA+DO = BA+BO (4)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. Adding the relations (1) , (3) obtain AB + CD = AD + CB ,

i.e. ABCD is a tangential quadrilateral. Denote the tangent points M ∈ (AB) , N ∈ (BC) ,

P ∈ (CD) ,

R ∈ (DA) of the incircle of ABCD with the its sides. It is well-known O ∈ MP ∩ NR . Since

BM = BN ,

the relation (1) becomes AM +AO = CN +CO . But AM = AR and for 4AOR si 4CON we

have

ÂOR ≡ ĈON and m
(
ÂRO

)
+m

(
ĈNO

)
= 180◦ . Hence AO

CO
= AR

CN
= AM

CN
= AM+AO

CN+CO
= 1 .

In conclusion, OA = OC . Prove analogously that OB = OD , i.e. ABCD is a parallelogram.

An easy extension. Prove that for any x ∈
(
0, π

2

)
, sinp+2 x

cosp x
+ cosp+2 x

sinp x
≥ 1 , where p ∈ N∗ .

Solution

I"ll apply the well-known Chebyshev’s inequality for n = 2 :

a ≤ b ∧ x ≤ y =⇒ (a+ b)(x+ y) ≤ 2(ax+ by) . Indeed,

(∀) x ∈
(
0, π

2

)
, tanp x ≤ cotp x ⇐⇒ tanx ≤ cotx ⇐⇒ sin2 x ≤ cos2 x . Therefore,

tanp x+ cotp x =
(
sin2 x+ cos2 x

)
(tanp x+ cotp x) ≤ 2

(
sin2 x tanp x+ cos2 x cotp x

)
=⇒

sinp+2 x
cosp x

+ cosp+2 x
sinp x

= sin2 x tanp x+ cos2 x cotp x ≥ 1
2
· (tanp x+ cotp x) ≥ 1 .

Remark. sinp+2 x
cosp x

+ cosp+2 x
sinp x

≥ tanp x+cotp x
2

≥
(

tanx+cotx
2

)p ≥ 1 . .

ABC is a triangle, O is the midpoint of its side [BC] and A = 4π
7
, C = 2π

7
. Calculate m(∠AOC)

.

Solution

Denotem(∠AOC) = x . From the well-known property 1 = OB
OC

= AB
AC
· sin ÔAB

sin ÔAC
= sinC

sinB
· sin(x−B)

sin(A+B−x)
⇐⇒

sinB sin(C + x) = sinC sin(x − B) ⇐⇒ cos(C − B + x) − cos(B + C + x) = cos(B + C − x)−
cos(C + x−B) ⇐⇒ 2 cos(C −B + x) = cos(B +C + x) + cos(B +C − x) ⇐⇒ cos(C −B + x) =

cos(B + C) cosx ⇐⇒ cos(C − B + x) = − cosA cosx ⇐⇒ cos(C − B) − sin(C − B) tanx =

− cosA ⇐⇒ tanx = cos(C−B)−cos(B+C)
sin(C−B)

⇐⇒ tanx =
2 sinB sinC

sin(C −B)
=

2 tanB tanC

tanC − tanB
. Our case :

tan B̂OC = 2 sin 2π
7

.

Prove that 1
2
√
n
<

1

2
· 3

4
· · · 2n− 1

2n
<

1√
2n+ 1

. In fact the stronger inequality
1

2
· 3

4
· · · 2n− 1

2n
<

1√
3n+ 1

holds for n > 1 .
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Solution

Denote an = 1·3·5· ... ·(2n−1)
2·4·6· ... ·2n and bn = 2·4·6· ... ·2n

3·5·7· ... ·(2n+1)
, where n ∈ N∗ . Observe that an < bn

because k
k+1

< k+1
k+2

for any k ∈ 1, 2n− 1 and anbn = 1
2n+1

. Hence a2
n < anbn = 1

2n+1
from where

obtain that

an <
1√

2n+ 1
. From the relation (2k + 1)2 > 4k(k + 1) obtain that 2k+1

2
√
k(k+1)

> 1 , (∀) k ∈

1, n− 1 =⇒
3·5· ... ·(2n−1)

2n−1·2·3·4· ... ·(n−1)·
√
n
> 1 , i.e. 1·3·5· ... ·(2n−1)

4·6·8· ... ·(2n−2)·
√
n
> 1 ⇐⇒ 2n√

n
· an > 1 ⇐⇒ an >

1

2
√
n

.

Observe that an <
1√

3n+1
=⇒ an+1 = 2n+1

2n+2
· an < 2n+1

2n+2
· 1√

3n+1
and 2n+1

2n+2
· 1√

3n+1
< 1√

3n+4
⇐⇒

(2n+ 1)2(3n+ 4) < (2n+ 2)2(3n+ 1) ⇐⇒ 12n3 + 28n2 + 19n+ 4 < 12n3 + 28n2 + 20n+ 4 ⇐⇒
0 < n .

In conclusion, a2 <
1√
7
and an <

1√
3n+1

=⇒ an+1 <
1√

3n+4
for any n ≥ 2 , i.e. an <

1√
3n+1

for

any n ∈ N , n ≥ 2 .

Similar proposed problems. Prove that :

I 2 ·
(√

n+ 1− 1
)
<
∑n

k=1
1√
k
< 2
√
n , (∀) n ∈ N , n ≥ 2 .

I
∑n

k=0
1
k!
< 3− n+2

(n+1)!(n+1)
, (∀) n ∈ N∗ .

Let ABD be a triangle with AB = 1 . Suppose that K ∈ AD such

that KD = 1 , BK ⊥ BA and m(< DBK) = 30◦ . Determine AD .

Solution

I Case K ∈ (AD) . Denote AK = x and BD = y =⇒ KA
KD

= BA
BD
· sin K̂BA

sin K̂BD
⇐⇒ x

1
= 1

y
· sin 90◦

sin 30◦
⇐⇒

xy = 2 (∗) .

Apply the generalized Pytagoras’ theorem in 4ABD : AD2 = BA2 +BD2 +BD ·BA ⇐⇒
(x+ 1)2 = y2 + y + 1 ⇐⇒

x2 + 2x = y2 + y
(∗)⇐⇒ x2 + x2y = y2 + y ⇐⇒ x2(y + 1) = y(y + 1) ⇐⇒ x2 = y

(∗)⇐⇒
x = 3
√

2 ⇐⇒ AD = 1 + 3
√

2 .

I Case D ∈ (AK) . Denote AD = x and BK = y =⇒ DA
DK

= BA
BK
· sin D̂BA

sin D̂BK
⇐⇒ x

1
= 1

y
·
√

3 ⇐⇒

xy =
√

3 (∗) .

Apply the Pytagoras’ theorem in 4ABK : AK2 = BA2 +BK2 ⇐⇒ (x+1)2 = y2 +1 ⇐⇒
x2 + 2x = y2 (∗)⇐⇒

x2 + 2x = 3
x2 ⇐⇒ x4 + 2x2 − 3 = 0 ⇐⇒ (x − 1) (x3 + 3x2 + 3x+ 3) = 0 ⇐⇒ x = 1 ⇐⇒

AD = 1 .

Let ABC be the C-right-angled isosceles triangle whose equal sides have length 1 . For P ∈ [AB]

denote the feet of the

perpendiculars from P to the other sides are Q ∈ CA and R ∈ CB . Consider the areas of the

triangles APQ and PBR

and the area of the rectangle QCRP . Prove that regardless of how P is chosen, the largest of

these three areas is at least 2
9

Solution
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Denote


QA = QP = CR = x

RB = RP = CQ = 1− x

∥∥∥∥∥∥∥ and


m = [AQP ] = x2

2

n = [BRP ] = (1−x)2

2

p = [CQPR] = x(1− x)

∥∥∥∥∥∥∥∥∥∥∥∥
. Prove easily that max{m,n, p} =



n if 0 ≤ x ≤ 1
3

p if 1
3
≤ x ≤ 2

3

m if 2
3
≤ x ≤ 1

∥∥∥∥∥∥∥∥∥∥∥∥
and



n ≥ 2
9
⇐⇒ 9x2 − 18x+ 5 ≥ 0 ⇐⇒ x ≤ 1

3

p ≥ 2
9
⇐⇒ 9x2 − 9x+ 2 ≤ 0 ⇐⇒ 1

3
≤ x ≤ 2

3

m ≥ 2
9
⇐⇒ 9x2 − 4 ≥ 0 ⇐⇒ 2

3
≤ x

∥∥∥∥∥∥∥∥∥∥∥∥
. Thus,

max{m,n, p} ≥ 2
9
.

Prove or disprove that [ABC] = R
2
·
∑
a · cosA .

Solution

Proof 1 (metric). Denote the distance δXY (P ) of the point P to the line XY and the circumcenter

O of 4ABC . Prove easily that
A ≤ 90◦ =⇒ m

(
B̂OC

)
= 2A =⇒ δBC(O) = R · cosA =⇒ [BOC] = 1

2
· aR · cosA .

A > 90◦ =⇒ m
(
B̂OC

)
= 360− 2A =⇒ δBC(O) = R · cos (180◦ − A) =⇒ [BOC] = −1

2
· aR · cosA .

∥∥∥∥∥∥∥∥
In conclusion: if ABC is acute or right, then [ABC] =

∑
[BOC] = R

2
·
∑
a · cosA ; if ABC is

obtuse in A , then

[ABC] = [AOB] + [AOC]− [BOC] = R
2
· c · cosC+ R

2
· b · cosB−

(
−R

2
· a · cosA

)
= R

2
·
∑
a · cosA

.

Proof 2 (trig). R
2

∑
a ·cosA = R

2

∑
2R sinA ·cosA = R2

2

∑
sin 2A = 2R2

∏
sinA = 2R2

∏
a

2R
=

abc
4R

= [ABC] .

I used the well-known identity
∑

sin 2A = 4
∏

sinA .

Let 4ABC be an C-isosceles and P ∈ (AB) be a point so that m
(
P̂CB

)
= φ . Express AP in

terms of C , c and tanφ .

Solution

Apply an well-known relation PA
PB

= CA
CB
· sin(P̂CA)

sin(P̂CB)
= sin(C−φ)

sinφ
= sinC−cosC·tanφ

tanφ
=⇒

PA
sinC−cosC·tanφ

= PB
tanφ

= c
sinC+(1−cosC)·tanφ

=⇒ PA = c · sinC − cosC · tanφ

sinC + (1− cosC) tanφ
.

Particular case. C = 90◦ =⇒ PA = c
1+tanφ

.

Find the smallest natural n > 11 such that exists a polynomial p(x) with degree n that verifies:

i) p(k) = kn, for k = 1, 2, . . . , n. ii) p(0) ∈ Z. iii) p(−1) = 2003.

Solution

P (x) = λ
∏n

r=1(x− r) + xn

=⇒ P (0) = λ(−1)nn! =⇒ λ ∈ Q
And P (−1) = λ(−1)n(n+ 1)! + (−1)n = 2003

For n ∈ even

λ(n+ 1)! = 2002 = 2× 7× 11× 13

=⇒ minn = 12, λ = 2002
13!

For n ∈ odd
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−λ(n+ 1)! = 2004 = 4× 3× 167

=⇒ minn = 333, λ = −2004
334!

Hence smallest n = 12 and P (x) = 2002
13!

∏12
r=1(x− r) + x12

Prove that

n∑
i=1

(−1)n+i

(
n

i

)(
ni

n

)
= nn

I’ve been thinking that the (−1)n+i comes from a use of the Principle of Inclusion and Exclusion,

but I have no idea how to actually come up with that particular solution.

Solution

∑n
i=1(−1)n+i

(
n
i

)(
ni
n

)
= (−1)n

∑n
i=0(−1)i

(
n
i

)(
ni
n

)
= (−1)ncoefficient of xn in

∑n
i=0(−1)i

(
n
i

)
(1 + x)ni

= (−1)ncoefficient of xn in (1− (1 + x)n)n

= (−1)ncoefficient of xn in
(
−nx−

(
n
2

)
x2 −

(
n
3

)
x3 − · · ·

)n
= (−1)n (−n)n

= nn

0 ≤ c ≤ b ≤ a

Show that a2−b2
c

+ c2−b2
a

+ a2−c2
b
≥ 3a− 4b+ c

Solution

The inequality can be written as

(a− b)
(
a+ b

c
− 2

)
+ (a− c)

(
a+ c− b

b

)
+ (b− c)

(
2a− b− c

a

)
≥ 0

Having checked all the single expressions non-negative, we can confirm ourselves that the inequal-

ity holds and hence, the proof is completed.

Let M ⊂ N( set of natural number) . Assume that for x ∈ M we have 4x, [
√
x] ∈ M Prove

that M = N

Solution

By well-ordering property of N, M should have the smallest element k ≥ 1 and since
√
k < k when

k > 1 then we must have k = [
√
k] hence k = 1 ∈ M → 4 ∈ M . Therefore, {4t = 22t; t ∈ N} ⊂ M ,

and then {[
√

22t] = 2t; t ∈ N} ⊂ M . If we prove that M contains the square of any odd number

then since any natural number can be written 2ts where s is an odd number, we reach the assertion

simply because we will have {[
√

4ts2] = 2ts : t ∈ N, s is an odd number } = N.
As above, {4n | n = 0, 1, 2, . . .} ⊂ M . For a fixed x ∈ N, x > 1, consider the interval[

2k
lnx

ln 4
, 2k

ln(x+ 1)

ln 4

)
, of length 2k

ln(1 + 1/x)

ln 4
> 1 for large enough k. That means there exists

a positive integer n in that interval, so x2k ≤ 4n < (x+ 1)2k .

Then x =
⌊
4n/2

k
⌋
, so x ∈M , by repeated application of the m→ b

√
mc rule.

If n> is a composite number with r distinct prime factors, then φ(n) ≥ n
2r

Solution

Let n = pk1
1 p

k2
2 ...p

kr
r be the factorization of n into distinct prime numbers pi, then φ(n) = n(1 −

1
p1

)(1− 1
p2

)...(1− 1
pr

). Since pi ≥ 2→ 1− 1
pi
≥ 1

2
, therefore, φ(n) ≥ n

2r
.
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Determine x, y, z ∈ R such that 2x2 + y2 + 2z2 − 8x+ 2y − 2xy + 2xz − 16z + 35 = 0

Solution

2x2 + y2 + 2z2 − 8x+ 2y − 2xy + 2xz − 16z + 35 = y2 + 2y(1− x) + (x2 − 2x+ 1) + x2 + 2x(z −
3) + (z2 − 6z + 9) + z2 − 10z + 25 = (y + 1− x)2 + (x+ z − 3)2 + (z − 5)2 = 0

z = 5; y = −3;x = −2

2 < P prime number . Prove : [(2 +
√

5)]p − 2p+1...p

Solution

Somehow I believe it is not as written: b2 +
√

5cp − 2p+1, for this is trivially 4p − 2p+1 ≡ 4− 22 = 0

(mod p).

Rather, I think it is meant to be: b(2 +
√

5)pc − 2p+1. But 0 <
√

5 − 2 < 1, and (
√

5 + 2)p −
(
√

5 − 2)p is a positive integer, thus it is precisely b(2 +
√

5)pc. Expanding, it is readily seen that

(
√

5 + 2)p − (
√

5− 2)p ≡ 2 · 2p (mod p) (since all
(
p
k

)
≡ 0 (mod p) for 0 < k < p), thus the thesis.

If f a continuous function in R such that ∀x ∈ R and ∀c ∈ (0, 1) holds: f(x)f(cx) = ex then

find f .

Solution

Should that ∀c ∈ (0, 1) be just c ∈ (0, 1) (a constant, not a variable)?

If so, define g(x) = (ln f(x))− x
1+c

.

f cannot have a zero, for if f(z) = 0, f(z)f(cz) = 0 = ez is contradictory. Thus, since f is

continuous, f must always be positive. Therefore, g is also continuous.

From the equation, we have g(x) + g(cx) = 0, and g(0) = 0. Therefore, if g(x) = m, g(c2x) =

g(c4x) = g(c6x) = · · · = m as well, and g(cx) = g(c3x) = g(c5x) = · · · = −m. This establishes

limx→0 g(x) = m = −m since g is continuous. So, m = 0. Thus g must be always zero.

Plugging back and solving, f(x) = e
x

1+c .

a, b, c are positive integers. Find (a, b, c) satisfying abc+ ab+ c = a3

Solution

From abc + ab + c = a3 follows a | c, hence c = ad. Now the relation writes abd + b + d = a2, so it

follows a | b + d, hence b + d = ae ≥ a. Finally, the relation now writes bd + e = a ≤ b + d, thus

(b− 1)(d− 1) + e ≤ 1. This is only possible if e = 1 and b = 1 or d = 1 (or both).

If e = b = 1, it follows d = a − 1, so c = a(a − 1). If e = d = 1, it follows b = a − 1 and c = a.

Both coincide on e = b = d = 1, for (a, b, c) = (2, 1, 2).

Solve the functional equation f : R→ R such that f(n+ 1) = f(n) + 1

Solution

Let us define a function from reals to reals such that

q(n) = f(n)− n =⇒ f(n) = q(n) + n

We have

f(n+ 1) = f(n) + 1 =⇒ q(n+ 1) + n+ 1 = q(n) + n+ 1

=⇒ q(n+ 1) = q(n)∀n ∈ R

So, q is a constant function. Let

q(n) = k∀n ∈ R =⇒ f(n) = n+ k

Find the constant term of the expression: (x2 + 1
x2 + y + 1

y
)8

Solution
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Any element, after the expansion, is in the form 8!
t1!t2!t3!t4!

(x2)t1( 1
x2 )t2yt3( 1

y
)t4 where t1 + t2 + t3 +

t4 = 8 and ti ≥ 0. The constant terms occur when t1 = t2 = a and t3 = t4 = b. Therefore,

2a + 2b = 8 → a + b = 4. Then, (a, b) = (0, 4), (1, 3), (2, 2), (3, 1), (4, 0). Hence the constant term is
8!

0!0!4!4!
+ 8!

1!1!3!3!
+ 8!

2!2!2!2!
+ 8!

3!3!1!1!
+ 8!

4!4!0!0!
.

Solve the following inequation, for 0 ≤ x < 2π:

3 sin2 x+ 2 cos2 x+ 4 sinx− (1 + 4
√

2) sinx cosx+ 4 cosx− (2 + 2
√

2)

2 sinx− 2
√

2 sinx cosx+ 2 cosx−
√

2
> 2

Solution

if you let sinx = a and cosx = b, then the denominator can be factored as (2a−
√

2)(1− b
√

2) Also,

subtracting 2 from each side and giving a common denominator cancels a lot of things quite nicely.

the numerator is originally 3a2 + 2b2 + 4a− (1 + 4
√

2)ab + 4b− (2 + 2
√

2) but once you subtract 2

from each side, it becomes 3a2 + 2b2 + 4a− (1 + 4
√

2)ab+ 4b− (2 + 2
√

2)− 2(2a− 2
√

2ab+ 2b−
√

2)

cancelling lots of things, we get 3a2 + 2b2 − ab − 2 Now, a2 + b2 = 1 (you see why?) so we write

a2 − ab = a(a − b) Therefore the whole inequality we wish to solve becomes sinx(sinx−cosx)

(2sinx−
√

2)(1−
√

2cosx)
> 0

To do this, we consider the signs of each part of the numerator and the denominator sinx > 0 on

the interval (0, π) sinx > cosx on the interval (π/4, 5π/4) sinx >
√

2/2 on the interval (π/4, 3π/4)

cosx <
√

2/2 on the interval (π/4, 7π/4) So we must find the intervals such that each point is in all

of the above sets, none of the above sets, or exactly 2 of the above sets. for none: (7π/4, 2π) for all:

(π/4, 3π/4) for exactly 2: (π, 5π/4) That’s hopefully right Edit: Just to clarify, those are intervals,

so π/4 < x < 3π/4 or π < x < 5π/4 or 7π/4 < x < 2π

Is cos π
2010

rational?

Solution

Denote by Tn(x) the Chebyshev polynomial of the first kind. We use the known fact that these

polynomials have integer coefficients.

Assume that cos π
2010
∈ Q

=⇒ T67(cos π
2010

) = cos π
30
∈ Q

=⇒ T5(cos π
30

) = cos π
6
∈ Q

=⇒
√

3
2
∈ Q

Which is clearly false, so our intial assumption was also false.

Let d(n) be the number of divisors of n. Show that:∑n+1
k=1b

n+1
k
c −

∑n
k=1b

n
k
c = d(n+ 1)

Solution

Dunno if it’s right: bn+1
k
c = bn

k
c when n 6≡ −1 (mod k). And, if n ≡ −1 (mod k) then bn+1

k
c =

bn
k
c+1. So, when k | n+1 we have that bn+1

k
c−bn

k
c = 1. When k - n+1 we have that bn+1

k
c−bn

k
c = 0.

Thus, the sum is equal to the number of divisors of n+ 1.

Find all integers (m,n) such that m2 + n2 and m2 + (n− 2)2 are both perfect squares.

Solution

if m = 0 then all n works

if m 6= 0, WLOG we just need to consider m > 0 , n > 2.

Let ABC be a right angle triangle at B, AB = m, BC = n. Let D be a point on BC such that BD

= n-2. Observe that the length of AC is the solution for m2 + n2 = k2, while AD is the solution for

m2 + (n− 2)2 = j2
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By triangle inequality, AD + DC > AC . So j + 2 > k. Since k is integer, we have k ≤ j + 1. But

k > j so we must have k = j + 1.

However, note that k and j have the same odd even parity, so k 6= j + 1. There is no solution for

m 6= 0

Solve the equation 4[x] = 25{x} − 4, 5

Solution

4[x] = 25{x} − 4, 5 =⇒ 8[x] = 50{x} − 9 =⇒ 8[x] = 50(x− [x])− 9 =⇒ x = 58[x]+9
50

=⇒ [x] =

t ∈ Z =⇒ t ≤ x < t + 1 =⇒ t ≤ 58t+9
50

< t + 1 =⇒ 50t ≤ 58t + 9 < 50t + 50 =⇒ 0 ≤ 8t + 9 <

50 =⇒ −9
8
≤ t < 41

8
=⇒ t = −1; 0; 1; 2; 3; 4; 5 =⇒

x = −49
50

; 9
50

; 67
50

; 5
2
; 183

50
; 241

50
; 299

50

Let ω(n) denote the number of distinct prime divisors of n > 1 , with ω(1) = 0 For example,

ω(360) = ω(23 · 32 · 5) = 3

For n ∈ Z+ prove that : τ(n2) =
∑

d|n 2ω(d)

;where τ(n) denote the number of divisors of n

Solution

We can prove it by induction on n ≥ 1.

The assertion is obviously true for n = 1 (τ(12) = 1 = 20).

Suppose the assertion is valid for all n ≤ n0. If n0 + 1 is a prime number, thus the result is true

(τ(p2) = 3, and the divisors of p are 1 and p, with ω(1) = 0 and ω(p) = 1. We have 20 + 21 = 3.)

If n0 + 1 isn’t a prime number, we will write it n0 + 1 = pk × q with gcd(p, q) = 1. So we have

q ≤ n0, and by induction hypothesis : τ(q2) =
∑

d|q 2ω(d) (1). We also have τ((n0+1)2) = τ(q2)τ(p2k) =

(2k + 1)τ(q2) (2) because of gcd(p, q) = 1. (1) and (2) imply that (k + 1)τ(q2) = (2k + 1)
∑

d|q 2ω(d).

Now among the divisors of n0 + 1, we can partition them into k+1 groups Gi (0 ≤ i ≤ k) : the first

one G0 with divisors d with p - d, and the k groups with in the i-1-th group all the divisors d so

as pi|d and pi+1 - d for 1 ≤ i ≤ k. We deduce from that :
∑

d|n0+1 2ω(d) =
∑k

i=0

∑
d∈Gi 2ω(d). But∑

d∈G0
2ω(d) =

∑
d|q 2ω(d), and

∑
d∈Gi 2ω(d) =

∑
d∈G0

2× 2ω(d) = 2
∑

d|q 2ω(d) for 1 ≤ i ≤ k. So we also

find
∑

d|n0+1 2ω(d) = (2k + 1)
∑

d|q 2ω(d).

So the result is valid for all n ∈ Z+

Prove if 1,
√

2, 2
√

2 can be members of an arithmetic progression.

Solution

I will use proof by contradiction to show that they cannot be members of an A.P. Suppose on

the contrary that they can be members of an A.P. Then there exists non-zero integers m and n

and a real number d (the common difference between consecutive terms of the A.P.) such that√
2 = 1 +md and 2

√
2 = 1 + nd Then nd = 2

√
2− 1 and md =

√
2− 1 Then n

m
= nd

md
= 2

√
2−1√
2−1

Then
n
m

= 2
√

2−1√
2−1
·
√

2+1√
2+1

= 3 +
√

2 Then
√

2 = n
m
− 3 = n−3m

m
m and n are non-zero integers so n − 3m

is an integer and m is a non-zero integer. Then n−3m
m

is a rational number. Then
√

2 is a rational

number, so we arrive to a contradiction. Thus 1,
√

2 and 2
√

2 cannot be members of an arithmetic

progression.

Find the value of c, where c > 0, such that sinx = cx has exactly 5 solutions. If X is the

largest of the five solutions of the equation, explain why tanX = X.

Solution

Prove easily that X ∈
(
2π, 2π + π

2

)
and

∥∥∥∥∥ sinX = cX

(sinx)′‖X = (cx)′‖X

∥∥∥∥∥ , i.e.

∥∥∥∥∥ sinX = cX

cosX = c

∥∥∥∥∥ .

252

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=381128
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=381830
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=382900
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=382620


In conclusion X ∈
(
2π, 2π + π

2

)
and

∥∥∥∥∥∥∥∥∥
tanX = X =⇒ sinX = X√

1+X2

c = sinX
X

=⇒ c =
1√

1 +X2

∥∥∥∥∥∥∥∥∥ .

Prove: if gcd(a,b)=1 ,then gcd(a3 + b3, a2 + b2)|(a− b).
Solution

If d = (a3 + b3, a2 + b2), we have −b3 ≡ a3 ≡ a(−b2) (mod d) and hence a ≡ 1 (mod d). Symmetry

gives b ≡ 1 (mod d) and so, d|a2 + b2 ≡ 2. If one of a, b is even and the other is odd, we have

d = 1|a− b. If both are odd, we have d = 2|a− b as required.
Prove that if a1, a2, a3, b1, b2, b3 are positive real number such that a1 + a2 + a3 = 3 and

b1 + b2 + b3 = 1 then
a2

1

b1
+

a2
2

b2
+

a2
3

b3
≥ 5.

Solution

Well, from AM − GM we have
a2

1

b1
+ b1 > 2a1 ;

a2
2

b2
+ b2 > 2a2 ;

a2
3

b3
+ b3 > 2a3 Summing these

inequalities side by side we get

a2
1

b1

+
a2

2

b2

+
a2

3

b3

+ (b1 + b2 + b3) > 2(a1 + a2 + a3)

Using b1 + b2 + b3 = 1 and a1 + a2 + a3 = 3, we get

a2
1

b1

+
a2

2

b2

+
a2

3

b3

> 5

However, the equality in the above inequalities holds for
a2
i

bi
= bi or ai = bi. But in that case

we would have a1 + a2 + a3 = b1 + b2 + b3 = 1, which contradicts a1 + a2 + a3 = 3. The proposed

inequality is still true, but there’s no equality. Given n numbers a1, a2, . . . , an.The supersum of

these numbers S is defined as

S = s1+s2+...+sn
n

where

sk = a1 + a2 + . . .+ ak, (k = 1, 2, . . . , n)

If the supersum of a1, a2, . . . , a99 is equal to 1000,find the supersum of 1, a1, a2, . . . , a99.

Solution

According to the question we get: (a1)+(a1+a2)+···+(a1+a2+···+a99)
99

= 1000

=⇒ (a1) + (a1 + a2) + · · ·+ (a1 + a2 + · · ·+ a99) = 99 · 1000

We want to find: 1+(1+a1)+(1+a2+a3)+···+(1+a1+a2+···+a99)
100

⇐⇒ 100+(a1)+(a1+a2)+···+(a1+a2+···+a99)
100

⇐⇒ 1 + (a1)+(a1+a2)+···+(a1+a2+···+a99)
100

= 1 + 99·1000
100

= 991

Prove that n > n2

σ(n)
> φ(n)

Solution

Let n = p1
k1 · p2

k2 · · · prkr n > n2

σ(n)
> φ(n)⇐⇒ 1 > n

σ(n)
>
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pr

)
Twenty points, which form a regular 20-gon, are chosen on a circle. Then they are split into

ten pairs, and the points in each pair are connected by a chord. Prove that some pair of these chords

have the same length.

Solution

Name the points P1 . . . P20.

Suppose we have an arrangement in which there are 10 pairs (Pi, Pj). There are 10 possible

distances between Pi and Pj, so each pair must have a different distance.
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We know that if Pi and Pj are d points apart (counting in the shortest direction), then j − i =

±d ≡ d (mod 2). Note now that j − i = j + i − (2i) ≡ j + i (mod 2), thus transitively, j + i ≡ d

(mod 2).

Thus,
∑

pairs j + i ≡
∑

pairs d ≡ 1 + . . .+ 10 ≡ 55 ≡ 1 (mod 2).

However, we know that
∑

textpairs j + i = 1 + . . .+ 20 = 210 ≡ 0 (mod 2), a contradiction.

Thus, there can be no such arrangement.

prove that inequality holds for for any real x,in 1x + 2x + 6x + 12x ≥ 4x + 8x + 9x find x when

equality holds.

Solution

1x+2x+6x+12x ≥ 4x+8x+9x ⇔ 1x+2x+6x+12x−4x−8x−9x ≥ 0⇔ (4x−3x−1)(3x−2x−1) ≥ 0.

The final statement is true since for x > 1, both factors on the LHS are positive, while for x < 1,

both are negative otherwise. At x = 1, equality holds.

Given that
∑∞

r=1
1
r2 = π2

6
, prove that 1 + 1

32 + 1
52 + 1

72 + ... = π2

8
and find the value of

1− 1
22 + 1

32 − 1
42 + ....

Solution

Given that 1 + 1
22 + 1

32 + 1
42 + .... = π2

6
then (1 + 1

32 + 1
52 + 1

72 + ....) + 1
22 (1 + 1

22 + 1
32 + 1

42 + ....) = π2

6

=⇒ (1 + 1
32 + 1

52 + 1
72 + ....) = π2

6
− π2

24
= π2

8

for 1− 1
22 + 1

32 − 1
42 + ... = (1 + 1

32 + 1
52 + 1

72 + ....)− 1
22 (1 + 1

22 + 1
32 + 1

42 + ....) = π2

8
− π2

24
= π2

12

Let m be a natural number, and let q = 2m + 1. Then prove that
∑m

k=1

(
tan kπ

q

)2n

, n =

1, 2, 3, . . . are natural mumbers.

Solution

tan qθ =
Cq1 t−C

q
3 t

3+...

1−Cq2 t2+...
(t = tan θ, θ = π

q
) Hence Cq

1 − C
q
3t

2 + ... = 0

This is an equation in t2 with integral coefficients and the last term’s coefficient is either +1 or

-1. So the sum of roots and the sum of product of roots are all integers.

The sum of the n-th power of roots can be an integral combinations of the sum of product of

roots.

Since tan2 θ = tan2(π − θ),
∑m

k=1

(
tan kπ

q

)2n

is half the sum which is even, so the above term is

an integer.

Show that there is no term independent of x in the expansion of (x6 + 3x5)
1
2 in powers of x

for | x |< 3.

Solution

For x ∈ (0, 3) =⇒ (x6 + 3x5)
1
2 =
√

3x
5
2

(
1 + x

3

) 1
2 Clearly there is no term independent of x

For x ∈ (−3, 0)

x6 + 3x5 = x5(x+ 3) < 0 =⇒ (x6 + 3x5)
1
2 is not defined.

If a function f is such that:

f(x, y) =
√
x2 + y2 +

√
x2 + y2 − 2x+ 1 +

√
x2 + y2 − 2y + 1 +

√
x2 + y2 − 6x− 8y + 25. Then,

find the minimum value of the function.

Solution

f(x, y) =
√
x2 + y2 +

√
(x− 1)2 + y2 +

√
x2 + (y − 1)2 +

√
(x− 3)2 + (y − 4)2

now let P (x, y), A(0, 0), B(1, 0), C(3, 4), D(0, 1)

YOU have to find minimum of PA+ PB + PC + PD

For any point P , by triangle inequality

PA+ PC ≥ AC, PB + PD ≥ BD

Where equality holds ,when P is intersection of diagonals
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hence PA+ PB + PC + PD ≥ AC +BD = 5 +
√

2

a and b are naturals such as b2 + ab+ 1 divide a2 + ab+ 1 .Proof that a = b

Solution

we have that: b2 + ab+ 1 | a2 + ab+ 1 Obviously: b2 + ab+ 1 | b2 + ab+ 1

Subtracting gives: b2 + ab+ 1 | a2 − b2

Since we have that b2 + ab+ 1 = b(a+ b) + 1, so gcd(a+ b, b2 + ab+ 1) = 1.

So by Euclid’s lemma we have that: b2 + ab+ 1 | a− b
So we have two cases: Case 1: a − b = 0; which gives a = b Case 2: |b2 + ab + 1| ≤ |a − b| Or

equivalently: b2 + (a− 1)(b− 1) ≤ −2b < 0 which is Obviously a contradiction.

Suppose that we have 27 odd numbers less than 100. Prove that there is at least one pair of

these numbers such that their sum is 102.

Solution

Let A = {1, 3, 5, ..., 99} be the set of odd numbers from 1 to 100, then |A| = 50. Excluding 1 and 51,

we can partition the remaining elements into pairs such that the sum of the numbers in each pair is

102, so there are 50−2
2

= 24 of these pairs. In other words,

A = {1} ∪ {51} ∪ {3, 99} ∪ {5, 97} ∪ ... ∪ {49, 53}︸ ︷︷ ︸
24 pairs

By Pigeonhole Principle, 2 of the 27 numbers we choose will fall in the same set, e.i. form a pair,

so we’re done.

x, y ∈ R , where x2 + y2 = 1 Find the Max (Min) of (x+ 2y)2 + (3x+ 2y)2 No Calculus. Do

there exist solving ways of generalized patterns for this kind of problems?

Solution

(x+ 2y)2 + (3x+ 2y)2 = 10x2 + 16xy + 8y2, set a p > 0, then from Am-Gm ineq, we have

10x2 + 16xy + 8y2 = 10x2 + 16px
y

p
+ 8y2

6 10x2 + 8

(
p2x2 +

y2

p2

)
+ 8y2

= (10 + 8p2)x2 +

(
8

p2
+ 8

)
y2.

we need 10 + 8p2 = 8
p2 + 8 = k, get p2 =

√
65−1
8

and k = 9 +
√

65, so we have

10x2 + 16xy + 8y2 6 (9 +
√

65)(x2 + y2) = 9 +
√

65.

equality holds when x =
√

1
2

+ 1
2
√

65
, y =

√
1
2
− 1

2
√

65
or x = −

√
1
2

+ 1
2
√

65
, y = −

√
1
2
− 1

2
√

65
, so the

max is 9 +
√

65.

the min is similar, using 2pxy
p
> −

(
p2x2 + y2

p2

)
can solve it, the answer is 9−

√
65.

Prove that if integers a, b and c satisfy a2 + b2 = c2, then a and b cannot both be odd.

Solution

let’s prove by contradiction. We have a2 = c2 − b2 = (c + b)(c − b). Since a is odd, a2 is odd and

therefore (c+ b)(c− b) must be odd, so c+ b and c− b are both odd and c is even.

If a ≡ 1 mod 4, then we have a2 ≡ 1 mod 4. If b ≡ 1 mod 4, then we have b2 ≡ 1 mod 4, so

c2 ≡ 2 mod 4 but c must be even, and c2 is therefore 0 mod 4 and we have a contradiction.

If a ≡ 1 mod 4, then we have a2 ≡ 1 mod 4. If b ≡ 3 mod 4, then we have b2 ≡ 1 mod 4, so

c2 ≡ 2 mod 4 but c must be even, and c2 is therefore 0 mod 4 and we have another conradiction.

This is symmetric with the case a ≡ 3 mod 4 and b ≡ 1 mod 4.
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If a ≡ 3 mod 4, then we have a2 ≡ 1 mod 4. If b ≡ 3 mod 4, then we have b2 ≡ 1 mod 4, so

c2 ≡ 2 mod 4 but c must be even, and c2 is therefore 0 mod 4 and we have another contradiction.

So a and b cannot both be odd.

Find three real numbers x, y, z, such that x < y < z and they form a geometric sequence

satisfying

x+ y + z = 19
18

x2 + y2 + z2 = 133
324

Solution

We have

(x+ y + z)2 − (x2 + y2 + z2) = 2(xy + yz + zx).

With the choice x = y/r, z = yr, we immediately find

xy + yz + zx = y
(y
r

+ y + yr
)

= y(x+ y + z),

from which we obtain (
19

18

)2

− 133

324
= 2 · 19

18
y,

or y = 1/3. Then 1/r + 1 + r = 19
6
, which easily gives us r = 3/2 (since x < y < z implies r > 1).

Therefore, x = 2/9, y = 1/3, and z = 1/2.

Find all functions f : R→ R with the property: f(x+ y) = f(x)ef(y)−1 for all x, y ∈ R
Solution

Let P (x, y) be the assertion that f(x + y) = f(x)ef(y)−1 for all x, y ∈ R P (0, 0) =⇒ f(0) =

f(0)ef(0)−1 =⇒ f(0) = 0 or 1

Suppose that f(0) = 0 P (x, 0) =⇒ f(x) = f(x)
e

=⇒ f(x) = 0, ∀x ∈ R
If f(0) 6= 0 then f(0) = 1. P (0, x) =⇒ f(x) = ef(x)−1, ∀x ∈ R Then f(x + y) = f(x)ef(y)−1 =

f(x)f(y), ∀x, y ∈ R Then ef(x+y)−1 = f(x + y) = f(x)f(y) = ef(x)−1ef(y)−1 =⇒ f(x + y) =

f(x)+f(y)−1, ∀x, y ∈ R Then f(x)f(y) = f(x+y) = f(x)+f(y)−1, ∀x, y ∈ R By letting y = x in

this new equation: f(x)2 = 2f(x)− 1, ∀x ∈ R Then [f(x)− 1]2 = 0, ∀x ∈ R Then f(x) = 1, ∀x ∈ R
Therefore f(x) = 0,∀x ∈ R or f(x) = 1,∀x ∈ R

Find x, y, z ∈ R satisfying 4
√
x2+1
x

=
4
√
y2+1

y
= 4

√
z2+1
z

, and xyz = x+ y + z, where x, y, z > 0.

Solution

4
√
x2+1
x

=
4
√
y2+1

y
= 4

√
z2+1
z

16x2+16
x2 = 16y2+16

y2 = 16z2+16
z2

16 + 16
x2 = 16 + 16

y2 = 16 + 16
z2

16
x2 = 16

y2 = 16
z2

x2 = y2 = z2

x = y = z = a (Because all three values are positive)

xyz = x+ y + z a× a× a = a+ a+ a

a3 = 3a

a isn’t zero, so we can divide both sides by it.

a2 = 3
√

3 = a = x = y = z

Let [
√
x] = 10 and [

√
y] = 14.F ind[ 4

√
x+ y] where [ x]is the floor part.

Solution
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b
√
xc = 10 =⇒ 10 ≤

√
x < 11 =⇒ 100 ≤ x < 121 b√yc = 14 =⇒ 14 ≤ √y < 15 =⇒ 196 ≤

y < 225 So 44 < 296 ≤ x+ y < 346 < 54 So 4 < 4
√
x+ y < 5 So b 4

√
x+ yc = 4

Given the equation: sin (kx) = sin (x) Find the value of k for which this equation and the

equation cos (3x) = cos (2x) have, within the range (0, 360] (degrees), one and only one common

solution

Solution

Angles will be in degrees.

When is sin a = sin b? When either a ≡ b (mod 360) or a ≡ 180− b (mod 360).

When is cos a = cos b? When either a ≡ b (mod 360) or a ≡ −b (mod 360).

So the equation sin kx = sinx can be written as kx ≡ x (mod 360) or kx ≡ 180− x (mod 360).

That gets us two families of solutions:

x = 360j
k−1

or x = 180+360j
k+1

for j ∈ Z.
The equation cos 3x = cos 2x can be solved as follows:

3x ≡ 2x (mod 360) which implies x ≡ 0 (mod 360) or x = 360n.

or

3x ≡ −2x (mod 360), which implies 5x ≡ 0 (mod 360) or x = 360n
5
.

That second equation includes the first.

So, when do solutions coincide?

Either 360n
5

= 360j
k−1

or 360n
5

= 180+360j
k+1

.

Take the first equation, divide by 360 and multiply by 5(k − 1) to get (k − 1)n = 5j.

This always has n = 0, j = 0 as a solution. We also have solutions whenever 5 |n (but that’s the

same place on the circle). If 5 doesn’t divide n, then we would need 5 | (k−1) or k ≡ 1 (mod 5). Then

j = (k−1)n
5

, and as n ranges over all integers not equivalent to 5, then j will always be an integer.

Now let’s look at the other equation. This time, divide by 180 and multiply by 5(k + 1). That

leaves 2(k + 1)n = 5 + 10j.

If 5 divides k + 1, we get no solution, as one side is divisible by 10 and the other side is ≡ 5

(mod 10). But if 5 doesn’t divide k + 1, then we would have 5 |n, which gets us back to x ≡ 0

(mod 360).

So:

If k 6≡ 1 (mod 5), then the only solution in the circle is x ≡ 0 (mod 360). However, if k ≡ 1

(mod 5), then {0, 72, 144, 216, 288} and their equivalents mod 360 are all solutions.

The question asked for the k that produce a unique solution in the circle; that would be {k : k 6≡ 1

(mod 5)}.
(x) is a polynomial of degree 998.p(k)=1/k for K is integral varying from 1 to 999. Find the

value of P (1001).

Solution

a. 1 b. 1001 c. 1/1001 d.1/(1001!)

Your definition is equivalent to kP (k) = 1 for all the integers between 1 and 999. So, kP (k)−1 =

A(k−1)(k−2)...(k−999), whereA is some unknown constant. For k = 0, we have that−1 = −A(999!),

so A = 1
999!

. Now, 1001P (1001)− 1 = 1000!
999!

. 1001P (1001) = 1001, so P (1001) = 1 . The answer: A .

Given a, b, c and ab+bc+ac√
abc

are all positive integers, does that imply that
√

ac
b
,
√

ab
c
,
√

bc
a
must

all be integers?
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Solution

Clearly
√
abc ∈ N so abc = k2, k ∈ N

Write M = (a, b, c) = (α2xy, β2yz, γ2zx)

With gcd(α, β) = gcd(β, γ) = gcd(γ, α) = 1

[hide="constructive proof"] Take M = (a, b, c) and let gcd(a, b) = y =⇒M = (a′y, b′y, c)

Let gcd(a′, c) = x =⇒M = (a′′yx, b′y, c′x)

Let gcd(b′, c′) = z =⇒M = (a′′xy, b′′yz, c′′zx)

Since gcd(a′′, b′′) = gcd(b′′, c′′) = gcd(c′′, a′′) = 1 it follows that a′′, b′′, c′′ are perfect squares.

∴M = (α2xy, β2yz, γ2zx)

This gives
ab+bc+ca√

abc
=

∑
α2β2y
αβγ

Hence α|z, β|x and γ|y
Therefore√

ab
c

=
√

α2xyβ2yz
γ2zx

= αβy
γ
∈ N because γ|y

Prove that every f : N→ N which is a bijection can be written as the sum of two involutions.

Solution

I assume that should read "composition of two involutions".

Let X1 = N. We define Xn iteratively as follows: let Sn = {x : ∃n ∈ Z, fn(x) = min(Xn)}, and
set Xn+1 = Xn \ Sn; thus,

⋃
Sn = N. (here fn refers to the composition of f , n times)

Suppose |Sn| = k ∈ N. If k = 1, then define gn(x) = hn(x) = x where x ∈ Sn. Other-

wise, Sn = {x1, . . . , xk} where f(xi) = xi+1, xk+1 := x1, define the involutions gn, hn : Sn → Sn

as follows: gn(xi) = xk+2−i, hn(xi) = xk+3−i (they are involutions due to the definition of xk+1,

though this is shown in more detail in the hidden tag); obviously fn(xi) = hn(gn(xi)). [hide="More

specifically,"]gn(x1) = x1, gn(xi) = xk+2−i for 2 ≤ i ≤ k; and hn(x1) = x2, hn(x2) = x1, and

hn(xi) = xk+3−i for 3 ≤ i ≤ k. Observe that

hn(gn(xi)) =


xk+3−(k+2−i) = xi+1, 2 ≤ i ≤ k − 1

x2, i = 1

x1, i = k

= fn(xi).

Here’s an example, for k = 5 and Sn = {1, 2, 3, 4, 5}:

x g(x) h(g(x))

1 1 2

2 5 3

3 4 4

4 3 5

5 2 1

where g(1) = 1, and the remaining elements are ’reflected’ by g; and all the elements are ’reflected’ by

h. If Sn is countably infinite, select an arbitrary element x1 ∈ Sn, and let Sn = {x1, . . .} where x2k+1 =

fk(x1) and fk(x2k) = x1, k ∈ N. Then define the involutions gn, hn : Sn → Sn as follows: gn(x1) =

x1, gn(x2k) = x2k+1, gn(x2k+1) = x2k; and hn(x1) = x3, hn(x3) = x1, hn(x2k) = x2k+3, hn(x2k+3) = x2k.

Verify, much like above, that fn(xi) = hn(gn(xi)).

Then, naturally, we have f = h(g(x)), where g(x) = gn(x) if x ∈ Sn and h(x) = hn(x) if x ∈ Sn.
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Note in essence that the involutions defined are similar to slightly shifted reflections; will post a

more informal explanation.

Let p is a prime. Prove p2 ≡ 1 (mod 30) or p2 ≡ 19 (mod 30)

Solution

It’s only true for p > 5. We have to show that either p2 − 1 is divisible by 30 or p2 − 19 is. Both are

even for p > 5. Since p is either 1 or 2 mod 3 for p >5, both are divisible by 3. So we have to show 5

divides one of the two. If p > 5 then it is either 1,2,3, or 4 mod 5. If it is 1 or 4 mod 5, then 5 divides

p2 − 1. If it is 2 or 3 mod 5, then 5 divides p2 − 19. So since 2,3, and 5 all divide one of p2 − 1 or

p2 − 19, one of them must be divisible by 30.

Find the smallest natural number n,such that there exist positive integrs x1, x2, ..., xn, such

that x3
1 + x3

2 + ...+ x3
n = 2008

Solution

assume there are two positive integers a, b such that a3 + b3 = 2008

Then 2008 = a3 + b3 ≥ (a+b)3

4
=⇒ a+ b < 2 3

√
1004 < 2 · 11 = 22

Since 2008 = 23 · 251 we have a+ b = 1, 2, 4 or 8

But a3 + b3 = (a+ b)(a2−ab+ b2) so a2−ab+ b2 ≥ 251 but a2−ab+ b2 = (a+ b)2−3ab < 82 = 64

contradiction

prove: lcm(1, 2, ..., 2n) = lcm(n+ 1, n+ 2, ..., n+ n)

Solution

This is obvious, since for every number a ∈ {1, 2, 3, . . . , n} there exist a number b ∈ {n + 1, n +

2, . . . , 2n} such that a | b. The claim easily follows.

Prove that: in eight integers have three digits,∃ a1a2a3 and b1b2b3 satisfy a1a2a3b1b2b3 ≡ 0

(mod 7)

Solution

just note that 103 ≡ −1 mod 7, By the box principle there are two integers ai, aj with the same

residue mod 7 so 103aj + ai ≡ ai − aj ≡ 0 mod 7

a1, a2, ..., an are positive numbers such that their sum is one. Find the minimum of: a1/(1 +

a2 + ...+ n) + a2/(1 + a1 + a3 + ...+ an) + ...+ an/(1 + a1 + ...+ an−1)(and please prove it!).

Solution

Assuming you meant to have 1 + a2 + · · · + an in the denominator of the first term, Let S =
a1

1 + a2 + · · ·+ an
+

a2

1 + a1 + · · ·+ an
+ · · ·+ an

1 + a1 + · · ·+ an−1

. We have that a1 +a2 + · · ·+an = 1,

Thus we can rewrite the original expression as,

S =
n∑
i=1

ai
2− ai

We can then add one to each term then subtract n to get,

S = −n+
n∑
i=1

2

2− a1

Take out a factor of 2 from the sum,

S = −n+ 2

(
n∑
i=1

1

2− a1

)
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Use Cauchy-Schwarz to show that,

(2n− 1)

(
n∑
i=1

1

2− a1

)
≥ n2 =⇒

n∑
i=1

1

2− a1

≥ n2

2n− 1

Hence,

S = −n+ 2

(
n∑
i=1

1

2− a1

)
≥ −n+ 2

(
n2

2n− 1

)
=

2n2

2n− 1
− n =

n

2n− 1

And that’s our answer. Equality occurs when a1 = a2 = · · · = an = 1
n

Find all x such that:√
cos2x− sin4x = sinx− cosx

Solution√
cos2x− sin4x = sinx− cosx

⇔

{
sinx− cosx ≥ 0

cos 2x− sin 4x = 1− sin 2x

⇔

{
sin(x− π

4
) ≥ 0

(cos 2x+ sin 2x)(cos 2x+ sin 2x− 1) = 0

⇔


k2π ≤ x− π

4
≤ π + k2π (k ∈ Z) (∗)[

sin(2x+ π
4
) = 0 (1)

sin(2x+ π
4
) =

√
2

2
= sin π

4
(2)

We have

(1) : sin(2x+ π
4
) = 0

⇔ x = −π
8

+ lπ
2

(l ∈ Z)

Because the condition (*) must be satisfied by x, therefore :

k2π ≤ −π
8

+ lπ
2
− π

4
≤ π + k2π (l, k ∈ Z)

⇒ 3π
8
≤ lπ

2
− k2π ≤ 11π

8

⇒ 3
8
≤ l

2
− 2k ≤ 11

8

⇒ l = 2(2k + 1) = 2a(a ∈ Z)

⇒ x = −π
8

+ aπ(a ∈ Z)

We have

(2) : sin(2x+ π
4
) = sinπ

4

⇔

[
x = mπ

x = π
4

+mπ
(m ∈ Z)

Similarly, we obtain x = π
4

+mπ and x = (2k + 1)π where k,m ∈ Z
Conclusion, the solutions for the given equation are: x = −π

8
+ aπ, x = π

4
+ mπ, x = (2k + 1)π

where a,m, k ∈ Z.
I mean that the number of digits of a, plus the number of digits of an equals 361

Solution

blog10 ac+ bn log10 ac = 359 (1)

so (n+ 1)blog10 ac ≤ blog10 ac+ bn log10 ac ≤ b(n+ 1) log10 ac
let log10 a = p+ r with p ∈ N and 0 < r < 1 then

(n+ 1)p ≤ 359 ≤ (n+ 1)p+ (n+ 1)r < (n+ 1)(p+ 1) =⇒ p ≤ 359
n+1

< p+ 1

so p =
⌊

356
n+1

⌋
from (1): p+ np+ bnrc = 359 but since 0 ≤ bnrc < n we have

359 < (n+ 1)
⌊

356
n+1

⌋
+ n (2)
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but the only value of n ∈ {1, 2, . . . , 9} for which (2) is true is n = 6

Solve the equation xx + yy = xy + 3 where xy = 10x+ y

Solution

xy + 3 ≤ 99 + 3 ≤ 102 =⇒ xx + yy ≤ 102 =⇒ x, y ≤ 3.

Furthermore, 00 is undefined so neither digit can be 0.

Case x = 1: 1 + yy = 13 + y =⇒ yy − y = 12 =⇒ y /∈ N.
Case x = 2: 4 + yy = 23 + y =⇒ yy − y = 19 =⇒ y /∈ N.
Case x = 3: 27 + yy = 33 + y =⇒ yy − y = 6 =⇒ y /∈ N.
So, there are no solutions in N.

Find all integer solutions (n,m) to - n4 + 2n3 + 2n2 + 2n+ 1 = m2

Solution

we factor the left side of the equation, we obtain

(n+ 1)2(n2 + 1) = m2

Now n2 + 1 needs to be perfect square, because (n+ 1)2 and m2 are perfect squares.

From n2 + 1 = x2 we get n = 0 and x = +− 1, from there m = +− 1

And second solution would be for m = 0, then we have n = −1.

For a math contest there is a shortlist with 46 problems, of which 10 are geometry problems. The

difficulty of every two problems is different (so there are no two problems with the same difficulty).

Let N be the number of ways the selection committee can select 3 problems, such that - Problem

1 is easier than problem 2, - Problem 2 is easier than problem 3, - There is at least one geometry

problem in the test. Calculate N
4
.

Solution

Given an arbitrary selection of three problems, there is only one way to order them such that they are

in ascending order of difficulty. Therefore, there are
(

46
3

)
= 15180 possible tests. However, we must

compute the number of tests with no geometry problems. This is
(

36
3

)
= 7140.N = 15180−7140

4
= 2010 .

Show, using the binomial expansion, that (1 +
√

2)5 < 99. Show also that
√

2 > 1.4. Deduce

that 2
√

2 > 1 +
√

2.

Solution

first we will prove that
√

2 > 1.4. Squaring that we get that 2 > 1.96 which is true and we ’ll prove

that 1.5 >
√

2, which is also trivial when we square it.

Now (1 +
√

2)5 < 99. –> (1 +
√

2)5 < (1 + 1.5)5 = 97.65625 < 99

2
√

2 > 1 +
√

2 is trivial by Bernoulli’s inequality...Rewrite number 2 from left side of inequality

in form (1 + 1)

Prove that: p is prime, p ≥ 3, the equation x2 + 1 ≡ (mod p) have solution if p = 4k + 1

Solution

Assume p = 4k + 3, then obviously p does not divide x so

x2 ≡ −1 =⇒ 1 ≡ xp−1 ≡ x2· p−1
2 = (−1)

p−1
2 = −1 (mod p).

Σxi ≤ Σx2
i for xi > 0 prove that

Solution

Σxpi ≤ Σxp+1
i for p > 1, p ∈ R

Σxi ≤ Σx2
i =⇒ Σx2

i − xi ≥ 0 =⇒ Σxi(xi − 1) ≥ 0

So it is only natural to divide the terms depending on whether or not they are positive or negative,

i.e.:
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∑
i:xi>1 xi(xi − 1) +

∑
i:xi<1 xi(xi − 1) ≥ 0

Clearly all the terms in the first summand on LHS are positive, whereas all the terms in the

second one are negative.

Since xi > 1 =⇒ xp−1
i > 1 we have,

∑
i:xi>1 x

p
i (xi − 1) ≥

∑
i:xi>1 xi(xi − 1)

Similarly, xi < 1 =⇒ xp−1
i < 1 =⇒

∑
i:xi<1 x

p
i (xi − 1) ≥

∑
i:xi<1 xi(xi − 1) (recall that both

sides are negative)

Adding the two inequalities, we get:
∑

i:xi>1 x
p
i (xi− 1) +

∑
i:xi<1 x

p
i (xi− 1) ≥

∑
i:xi>1 xi(xi− 1) +∑

i:xi<1 xi(xi − 1) ≥ 0 =⇒
∑

i:xi>1 x
p
i (xi − 1) +

∑
i:xi<1 x

p
i (xi − 1) =

∑
xpi (xi − 1) ≥ 0 =⇒

∑
xpi ≤∑

xp+1
i as desired

Let a1, a2, ..., an be postive real numbers. Prove: (a1 + ...+ an)2 ≤ π2

6
(12a2

1 + 22a2
2 + ...+ n2a2

n)

Solution

From Cauchy-Schwarz inequality,

π2

6

(
n∑
i=1

i2a2
i

)
=

(
∞∑
i=1

1

i2

)(
n∑
i=1

i2a2
i

)
≥

(
n∑
i=1

1

i2

)(
n∑
i=1

i2a2
i

)
≥

(
n∑
i=1

ai

)2

.

Find all pairs of integers (m,n) such that the numbers A = n2 + 2mn + 3m2 + 2, B =

2n2 + 3mn+m2 + 2, C = 3n2 +mn+ 2m2 + 1 have a common divisor greater than 1.

Solution

suppose p is prime and p|A,B,C.

A−B = 2m2 −mn− n2 = (m− n)(2m+ n) (1)

C −B = m2 − 2mn+ n2 − 1 = (m− n)2 − 1 (2)

From (1), p|(m− n) or p|(2m+ n) but clearly p 6 |(m− n) because of (2)

replacing n ≡ −2m mod p in A and C gives 3m2 + 2 ≡ 12m2 + 1 mod p

but gcd(3m2 + 2, 12m2 + 1) = gcd(3m2 + 2, 7) so the greatest common denominator is at most 7

so 3m2 + 1 ≡ 0 mod 7 =⇒ m ≡ 2, 5 mod 7 =⇒ n ≡ 3, 4 mod 7

hence (m,n) = (7k1 + 2, 7k2 + 3)or(7k1 + 5, 7k2 + 4)

100 lines lie in the plane. Is it possible for them to have exactly 2010 points of intersection?

Solution

Let (a, b, c, d, e..) be the parallel line sets and numbers of lines parallel. (suppose there are 7 line,

Parallel sets are (1,2,3) (4,5) (6) (7), then the code will be (3,2,1,1)) It is easy to see that the

intersections are in form a(100−a)+b(100−b)+c(100−c)...
2

= 2010 where a+ b+ c+ ... = 100

100(a+ b+ c+ ...)− a2 + b2 + c2... = 4020 5980 = a2 + b2 + c2...

Then using trial and error, I obtained a set (77,4,2,2,2,2,2,2,2,2,1,1,1) so it is possible

Let f,g: R >R be functions like that so f(g(x))=g(f(x))=-x for any x is element of R a) prove

that f and g are odd functions b) Make an example of these two functions f isn’t equal to g

Solution

a) : g(f(g(x))) = g(u) where u = f(g(x)) = −x and so g(f(g(x))) = g(−x) g(f(g(x))) =

g(f(v)) = −v where v = g(x) and so g(f(g(x))) = −g(x) So g(−x) = −g(x) and g(x) is an odd

function.

Same computation with f(g(f(x))) shows that f(x) is an odd function.

b) Choose f(x) = 2x and g(x) = −x
2

If a+b+c=1, a,b,c>0, prove that
ab+
√
a3c+

√
b3c

a+b
+ bc+

√
b3a+

√
c3a

b+c
+ ca+

√
a3b+

√
c3b

c+a
≤ 3

2

Solution
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By AM-GM ,
√
a3c ≤ a2+ac

2
and,

√
b3c ≤ b2+bc

2
, therefore -

∑
cyclic

ab+
√
a3c+

√
b3c

a+b
≤
∑

cyclic
2ab+a2+b2+c(a+b)

2(a+b)
=∑

cyclic
(a+b)(a+b+c)

2(a+b)
=
∑

cyclic
a+b+c

2
= 3

2
equality for a = b = c = 1

3
Q.E.D

Solve for x, y such that 2x > y > x ,if 2(2x− y)2 = (y − x)

Solution

Let z = y − x, so 0 < z < x and 2(x− z)2 = z. Solving for z using the quadratic formula gives:

z =
4x+ 1±

√
8x+ 1

4

The positive sign gives z > x, so take the negative sign. For z to be an integer, 8x + 1 = (4k + 1)2

for some k. Solving for x gives x = 2k2 + k for some k, so z = 2k2, so (x, y) = (2k2 + k, 4k2 + k) for

k ∈ N
Find the sum

∑89
k=1 tan2 k

Solution

Let’s find a polynomial such that this 89 numbers are the roots of it, then the coefficients will give

the sum. We have (cos(x)+i·sin(x))n = cos(nx)+i·sin(nx) =⇒ (1+i·tan(x))n = 1
cos(x)n

(cos(nx)+

i · sin(nx)). Write z := tan(x). Thus,
∑n

k=0

(
n
k

)
ikzk = 1

cos(x)n
(cos(nx) + i · sin(nx)). Now let n = 180

and let x having ’integer-valued degree’, so
∑180

k=0

(
180
k

)
ikzk = 1

cos(x)n
(cos(nx) + i · sin(nx)) = (−1)x

cos(x)n
.

Now look at the imaginary part, giving: z
∑89

k=0

(
180

2k+1

)
(−1)k(z2)k = 0. But this is the polynomial

we wanted, since its roots are tan(k◦)2 (we also counted tan(0) = 0, which can be neglected). So∑89
k=1 tan(k◦)2 =

(180
177)

(180
179)

= 15931
3

.

Find positive integers a, b, c, d such that a+ b+ c+ d− 3 = ab = cd .

Solution

Without loss of generality, 1 ≤ a ≤ b ≤ c ≤ d so we have a + b + c + d − 3 ≤ 4d − 3. We also have

a + b + c + d − 3 = cd ≤ 4d − 3 =⇒ 3 ≤ (4 − c)d. The product on the RHS must be positive and

it follows that each factor must be positive because d must be a positive integer. Therefore, we have

1 ≤ c ≤ 3. From here, we have 3 cases.

Case 1: c = 1 If c = 1, we must have a = b = 1 from our inequality chain. The equality chain

becomes d = 1 = d so the solution for this case is a = b = c = d = 1. Substituting values, we find

that this solution works.

Case 2: c = 2 If c = 2, we have a+ b+ d− 1 = 2d =⇒ a+ b− 1 = d. Note that a+ b ≤ 4 =⇒
a + b − 1 = d ≤ 3. Now suppose that d = 3. Then we have a + b = 4 which is only satisfied by

a = b = 2. Quickly checking, we find that this does not work. If d = 2, then we have ab = 4, which

again is satisfied by a = b = 2, so there are no solutions for this case.

Case 3: c = 3 If c = 3, we have a + b + d = 3d =⇒ a + b = 2d. Note that a + b ≤ 6 so that

d ≤ 3. Using the equation ab = cd and checking d = 3, we find that no a, b exist. Thus, there are no

solutions for this case.

The only solution is (a, b, c, d) = (1, 1, 1, 1) .

The age of the father is 5.5 times as that of the second daughter. Mom got married at 20;

at that time grandfather was 57. The first son was born when mom was 22. At present, the first

daughter is 19; her age differs from the second son by 5 and from the second daughter by 9. The last

year, age of the third son was half of the first son. The sum of the age of the second daughetr and

th ethird son equal the age of the second son. What is the the age of the first son?

Solution

Let the first son be x years old.

We know that the second daughter must be 10 years old and the third son’s is x+1
2

years old.
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Also, 10 + x+1
2

= 14 or 24 since the second son is 5 years older or younger than the first daughter.

If x+1
2

= 14, x = 27 and if x+1
2

= 4, x = 7. Since the first son must be older than the second, then

27 .

Solve the following inequality:

yzt
√
x− 4 + xzt

√
y − 4 + xyt

√
z − 4 + xyz

√
t− 4 ≥ xyzt

Solution

Because of the surds, we have x, y, z, t > 4, hence∑
cyc

√
x−4
x
> 1

By the trivial inequality, (
√
x− 4 − 2)2 > 0 ⇐⇒ x − 4

√
x− 4 > 0 ⇐⇒

√
x−4
x
6 1

4
, hence we

must have
√
ξ−4
ξ

= 1
4
⇐⇒ ξ = 8, where ξ is an arbitrary member of the set {x, y, z, t}

Therefore the only solution is x = y = z = t = 8.

The cells of a n×m array are filled with real numbers of absolute value at most 1, in such a

way that the sum of the entries of any 2× 2 square subarray is zero. Find the maximum value of the

sum of all entries of the array.

Solution

Let those entries be |ai,j| ≤ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m. If any of n,m is equal to 1, clearly

max
∑
i,j

ai,j = nm, by taking all entries equal to 1, since the condition on the 2× 2 squares is empty

of content.

If both n,m are even, the array partitions in nm/4 2 × 2 squares, so
∑
i,j

ai,j = 0 for any such

array, therefore the maximum is also 0.

If only one of n,m is even, say n, the array partitions in n(m− 1)/4 2× 2 squares, plus a column

of n entries, therefore the maximum is at most n. On the other hand, a model made by having

alternating columns of all 1, then all −1 entries, clearly yields the value n for the sum of all entries.

We are left with the case of both n,m odd. We claim that max
∑
i,j

ai,j = max{n,m}. The proof

goes by induction on n+m, the case of any of n,m being equal to 1 having been proved in the above.

We cover the n × m array with a (n − 2) × (m − 2) array in the top left corner (of maximal sum

max{n− 2,m− 2}, by the induction hypothesis), one horizontal 2× (m− 1) array in the bottom left

corner (of sum 0), one vertical (n − 1) × 2 array in the top right corner (of sum 0), and the entry

an,m. Then
∑
i,j

ai,j ≤ max{n − 2,m − 2} + 0 + 0 − an−1,m−1 + an,m ≤ max{n,m}, since the entry

an−1,m−1 is present in both strips of height/width 2, and all entries are of absolute value at most

1. A model for this maximum value is made by alternating columns of all 1, then all −1 entries if

n > m, or alternating rows of all 1, then all −1 entries if n ≤ m. Therefore, in the case of a square

1987× 1987 array, the maximal value for the sum is 1987.

Prove that if x is real, the minimum value of
(a+ x)(b+ x)

(c+ x)
(x > −c), for a > c, b > c is

(
√

(a− c) +
√

(b− c))2.

Solution

The function can be written as

f(x) = x+ a+ b− c+ (a−c)(b−c)
x+c

= x+ c+ (a−c)(b−c)
x+c

+ a+ b− 2c

Applying AM-GM on the first two terms, we get
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f(x) > 2
√

(a− c)(b− c) + (a− c) + (b− c) and the result follows.

The equality is attained for x+ c = (a−c)(b−c)
x+c

⇐⇒ x = −c+
√

(a− c)(b− c)
Solve the following inequation 1

1−x2 + 1 > 3x√
1−x2

Solution

Since |x| < 1, we can substitute x = sinφ where −π
2
< φ < π

2
, hence cosφ > 0. The inequality

becomes:
1

cos2 φ
+ 1 > 3 sinφ

cosφ
⇐⇒ tan2 φ− 3 tanφ+ 2 > 0 ⇐⇒ (tanφ− 1)(tanφ− 2) > 0

Hence tanφ < 1 or tanφ > 2, which yields sinφ < 1√
1+12 = 1√

2
or sinφ > 2√

1+22 = 2√
5

Thus the solution is x ∈
(
−1, 1√

2

)
∪
(

2√
5
, 1
)

x, y ∈ R x+ y = 3(
√
x− 2 +

√
y + 1− 1) Find maximum of xy

Solution

By Schwarz inequality,
√
x− 2 +

√
y + 1 ≤

√
2
√
x+ y − 1 (x ≥ 2, y ≥ −1)

3(
√
x− 2 +

√
y + 1− 1) ≤ 3(

√
2
√
x+ y − 1− 1)

⇐⇒ x+ y ≤ 3(
√

2
√
x+ y − 1− 1), let t =

√
x+ y − 1 (x+ y ≥ 1), from x+ y = t2 + 1,

we have t2 + 1 ≤ 3(
√

2t− 1), yielding
√

2 ≤ t ≤ 2
√

2, which satisfies t ≥ 0.

∴ 4xy ≤ (x+ y)2 = (t2 + 1)2 ≤ 92, yielding xy ≤ 81
4
.

The equality holds when t2 = 8⇐⇒ t = 2
√

2 (
√

2 ≤ t ≤ 2
√

2)⇐⇒ x+ y = 9 and xy = 81
4

⇐⇒ x = y = 9
2
, which satisfies x ≥ 2, y ≥ −1.

The desired maximum value is 81
4
.

Let A be a given positive number and a be the largest integer that is less than or equal to A.

Show that the minimum value of non negative integer n such that n + (−1)n > A is given by

a+ 1− 1
2
{1 + (−1)a}.

Solution

Let n(a) denote the smallest n such that n+ (−1)n > A for a given a.

If 2 | a, then a+ (−1)a = a+ 1 > A and (a− 1) + (−1)a−1 = a− 2 < A, hence n(a) = a

If 2 - a, then a+ (−1)a = a− 1 < A and (a+ 1) + (−1)a+1 = a+ 2 > A, hence n(a) = a+ 1

Thus n(a) =

a 2 | a

a+ 1 2 - a

On the other hand, a+ 1− 1+(−1)a

2
=

a 2 | a

a+ 1 2 - a
Therefore the claim stands.

A set of positive integers has the properties that Every number in the set, apart from 1, is

divisible by at least one of 2, 3 or 5 If the set contains 2n 3n or 5n for some integer n, then it contains

all three and n as well. The set contains between 300 and 400 integers. How many does it contain?

Solution

All the members of the set are of the form 2p3q5r where p, q, r are non-negative integers.

If 2p3q5r where p, q, r > 0 is an element of the set, then the set also contains the following numbers:

2p−13q+15r

2p−13q5r+1

2p+13q−15r

2p+13q5r−1

2p3q−15r+1
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2p3q+15r−1

2p−13q5r

2p3q−15r

2p3q5r−1

Hence inductively we conclude that:

(i) If some number 2p3q5r such that p+ q + r = k is contained in the set, then ALL the numbers

2p3q5r such that p+ q + r = k are contained in the set;

(ii) If the numbers 2p3q5r such that p+ q+ r = k > 0 are contained in the set, then the numbers

2p3q5r such that p+ q + r = k − 1 are contained in the set.

By balls and urns, we get that there are
(
k+2

2

)
= (k+1)(k+2)

2
ordered solutions to p + q + r = k if

p, q, r > 0. Hence we must find n such that

300 6
∑n

k=0
k2+3k+2

2
6 400

Using known formulas for the sum of the first and second powers of the first few natural numbers,

we have

300 6 n(n2+6n+11)
6

6 400

With some trial and error, we get n = 11, yielding 363 elements in the set.

Find a six-digit number whose product by 2, 3, 4, 5, and 6 contains the same digits as did the

original number (in different order, of course).

Solution

Let n = abcdef be the desired number.

Since 6n must be a six-digit number, we have n 6 166666. Therefore a = 1.

We also note that the digit 0 can’t appear in the number.

Since the units digit of 5n can’t be zero, the units digit of n must be odd, and it can’t be 1, as

1 is already taken as the rightmost digit. It also can’t be 5, since that would yield a zero units digit

for 2n, 4n, 6n. Therefore n = 1pqrs3 ∨ n = 1pqrs7 ∨ n = 1pqrs9, where p, q, r, s are some digits.

Let’s examine n = 1pqrs3. Multiplying it 2, 3, 4, 5, 6, we obtain the following string of units digits:

6, 9, 2, 5, 8. Therefore, with the addition of 1 and 3 already there, we would require a total of 7 digits,

and that’s impossible.

Let’s examine n = 1pqrs9. Multiplication by 2, 3, 4, 5, 6 yields the string of units digits 8, 7, 6, 5, 4,

hence the argument is the same as in the previous case.

So we’re left with n = 1pqrs7. The string of the units digits is 4, 1, 8, 5, 2, hence the complete set

is {1, 2, 4, 5, 7, 8}
Assume p = 2. Then 3n would start with 3, which is impossible. If p = 5, then 2n would start

with 3. If p = 8, then n > 166666. Therefore p = 4

So n = 14qrs7. If 2n would require a carryover from 2q to the next digit to the right, we would

get either 9 or 0, and that’s impossible. Hence q < 5 =⇒ q = 2.

So n = 142rs7. If s = 8, then 3n ends in 61, which is impossible. Hence s = 5 =⇒ r = 8.

Finally we get n = 142857 . It’s easy to check that the number fits all the requirements.

find all polynominal P with integer coefficients such that for all integers a ,b and n with

a > n ≥ 1 and b > 0 ,we have : P (a) + P (b) = P (a− n) + P (b+ n)

Solution

So since P is a polynomial, let it have a constant term c. Then, let Q(x) = P (x)− c.
We still have
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Q(a) +Q(b) = Q(a− n) +Q(b+ n)

Consider limn→aRHS = Q(0) +Q(a+ b)

As Q(0) = 0, we have Q(a) +Q(b) = Q(a+ b) =⇒ Q(x) = nx for some constant n.

Thus, P (x) = nx+c, i.e. all polynomials of degree 0 or 1. It can easily be checked that this works.

A broken line inside a cube of side length 1 has a total length of 300. Prove that there exists

a plane parallel to one of the faces of the cube that intersects the set of lines at least 100 times.

(A broken line just means a bunch of line segments connected together to form a longer curve

that does not intersect itself)

Solution

Suppose the broken line is made up of N − 1 line segments between N vertecies, v1, v2, ...vN inside

a unit cube in the cartesian plane, for convenience let the verticies be (0, 0, 0), (0, 0, 1), ...(1, 1, 1). In

general vn = (in, jn, kn), and we are given that
∑N−1

n=1 |vnvn+1| = 300.

Consider a segment v`v`+1. We can project that line onto the x, y and z axis, and from the triangle

inequality we have

|i` − i`+1|+ |j` − j`+1|+ |k` − k`+1| ≥ |v`v`+1|

Hence
∑N−1

n=1 |in − in+1|+ |jn − jn+1|+ |kn − kn+1| ≥ 300

So there must be one axis, on which lies a projected line of length at least 100. Now since the

line lies on an interval [0, 1], by the box principle there is some point on that interval that is crossed

100 times by the projected line, call that point P . Now if we take the plane that passes through P

and is perpendicular to the axis on which P lies, then that plane will intersect the line in the cube

at least 100 times as well.

Find all n for which there are n consecutive integers whose sum of squares is a prime.

Solution

Let the numbers be k + 1, k + 2, . . . , k + n. Then the sum of their squares is

S = (k+n)(k+n+1)(2k+2n+1)−k(k+1)(2k+1)
6

which after simplification yields

S = kn(k + n+ 1) + n(n+1)(2n+1)
6

If n had a prime factor other than 2 and 3 - i.e. a prime factor which couldn’t be canceled with

the denominator of the fractional term - then the two n’s existing in the two terms would allow us

to extract a common factor and S couldn’t be prime.

Hence n = 2p3q, yielding

S = 2p3qk(2p3q + k + 1) + 2p−13q−1(2p3q + 1)(2p+13q + 1)

Similarly, if p > 1 or q > 1, then S couldn’t be prime.

Therefore we need to check n = 2, 3, 6. All of them work as

22 + 32 = 13

22 + 32 + 42 = 29

22 + 32 + 42 + 52 + 62 + 72 = 139

So our answer is n ∈ {2, 3, 6}.
The diagonal of a convex quadrilateral ABCD intersect at O. Let M1 and M2 be the centroids

of ∆AOB and ∆COD respectively. Let H1 and H2 be the orthocenters of ∆BOC and ∆DOA

respectively. Prove that M1M2⊥H1H2.

Solution

Denote M,N the midpoints of AB,CD. Let U, V be the orthogonal projections of A,C on DB

and E,F the orthogonal projections of B,D on AC. Then H1 ≡ CV ∩ BE and H2 ≡ AU ∩ DF.
Moreover, U,E lie on the circumference (M) with diameter AB and F, V lie on the circumference
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(N) with diameter CD. Obviously, the right triangles 4BVH1 and 4CEH1 are similar, then it

follows that H1B · H1E = H1C · H1V. Analogously, we have H2A · H2U = H2D · H2F =⇒ H1, H2

have equal powers with respect to the circles (M), (N). Thus, H1H2 is the radical axis of (M), (N)

=⇒ H1H2 ⊥ MN (?). On the other hand, we have OM1 = 2MM1 and OM2 = 2NM2. By Thales

theorem we get M1M2 ‖MN. Together with (?), we conclude that H1H2 ⊥M1M2.

Find all positive integers a, b such that a
b

+ 21b
25a

is an integer.

Solution
25a2+21b2

25ab
= n =⇒ 5 | b. Put b = 5k to get a2+21k2

5ak
= n ⇐⇒ a2 − 5ank + 21k2 = 0, hence

a = k(5n±
√

25n2−84)
2

.

Solving 25n2 − 84 = m2 we get n = 2 =⇒ a = (5± 2)k.

Hence (a, b) = (7k, 5k) or (a, b) = (3k, 5k) where k ∈ N
N is a natural number greater than 1. Prove the implication: nk + 1|nl + 1→ k|l

Solution

Clearly we need ` ≥ k. Write ` = qk+r, with 0 ≤ r < k. Now n`+1 = (nk)qnr+1 ≡ (−1)qnr+1 ≡ 0

(mod nk + 1) is only possible if q is odd and r = 0, hence k | `.
Prove that 2

201
< log 101

100

Solution

Note that ln(1 + x) > 2x
x+2

(x > 0) So we are done Another way: Let l is a tangent line to f(x) = 1
x

for x = 100.5. Let A(100, 0), B is a intersection point of l and x = 100, C is a intersection point

of l and x = 101 and D(101, 0). Hence, SABCD =
2

201
+t+ 2

201
−t

2
· 1 = 2

201
, where t = 0.5

100.52 . Thus,

ln 101
100

=
101∫
100

1
x
dx > SABCD = 2

201
.

Solve bx+ b2xcc < 3

Solution

If x = n+ a where n = [x] and a = {x}, then
[n+ a+ 2n+ [2a]] < 3

3n+ [2a] + [a] < 3

As [a] = 0, we get

3n+ [2a] < 3

Case 1. 0 6 a < 1
2

Then 3n < 3 ⇐⇒ n < 1 =⇒ n 6 0, hence the solution set is S1 =
⋃0
n=−∞

[
n, n+ 1

2

)
Case 2. 1

2
6 a < 1

Then 3n+ 1 < 3 ⇐⇒ n < 2
3

=⇒ n 6 0, hence the solution set is S2 =
⋃0
n=−∞

[
n+ 1

2
, n+ 1

)
The union of the two sets yields x < 1.

Prove b
√
n+ 1

2
c = b

√
n+ b

√
ncc

Solution

Letbncbep, and we would divided it into 2 case, case I ,p+ 1
2
≤
√
n < p+1 since (p+ 1

2
)2 = p2 +p+ 1

2
,

so the least integer is p2 + p + 1, and , L.H.S. = b
√
n + 1

2
c = p + 1 p + 1 ≤

√
(p2 + p+ 1) + p ≤

R.H.S. = b
√
n+ b

√
ncc ≤

√
(p+ 1)2 + p < p+ 2

case II, p ≤
√
n < p + 1

2
since (p + 1

2
)2 = p2 + p + 1

2
, so the greatest integer is p2 + p, and ,

L.H.S. = b
√
n+ 1

2
c = p p ≤

√
(p2 + p) + p ≤ R.H.S. = b

√
n+ b

√
ncc ≤

√
(p)2 + 2p < p+ 1

Arrange numbers 1, 2, 3, 4, 5 in a line. Any arrangements are equiprobable. Find the prob-

ability such that the sum of the numbers for the first, second and third equal to the sum of that of

the third, fourth and fifth. Note that in each arrangement each number are used one time without

overlapping.
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Solution

Total number of ways of keeping = 5! Let the order be a, b, c, d, e We need a+ b+ c = c+ d+ e = x,

say. So, 2x = 15 + c =⇒ c = 1, 3, 5 Case 1: c = 1 a, b, 1, d, e and a+ b = c+ d = 7 =⇒ (a, b), (c, d) =

(2, 5), (3, 4) and its seven more permutations So, number of sequences = 8 Case 2: c = 3 a, b, 3, d, e

and a+ b = c+ d = 6 There are 8 sequences similarly Case 3: c = 5 a, b, 5, d, e and a+ b = c+ d = 5

There are 8 sequences. So, probability is 3×8
5!

= 1
5

a and d are non-negative. b and c are positive. Let b+ c ≥ a+ d Find the Min value

of b
c+d

+ c
a+b

Solution

First of all, if a and d are both 0, then the least it can be is 2 because it is reduced to b
c

+ c
b
. Dr.

Graubner’s solution is less than this, so we assume that a+ d > 0.

First of all, if b + c 6= a + d, then replacing a with a ·
(
b+c
a+d

)
and d with d ·

(
b+c
a+d

)
decreases each

of the fractions, and decreases the sum. Thus we can assume that b+ c = a+ d.

We can assume that c ≥ d, because if not, we can switch a and b with d and c, respectively. Since

their sum is the same, c is now greater than d. Also, this means that b ≤ a. We can let a = e + k,

b = e− k, c = f + k, meaning that d = f − k. Also, we know that k ≥ 0, k < e, k ≤ f , and e, f > 0.

We now know that the sum we’re looking for is equal to
e−k
2f

+ f+k
2e

= e2−ek+f2+fk
2ef

= e2−2ef+f2−ek+fk
2ef

+ 1 = (f−e+k)(f−e)
2ef

+ 1

We need to minimize this. Note that it is a linear function in k if e and f are kept constant, and

hence takes its min and max at the endpoints, which are 0 and min(e, f). First, suppose f > e. Then

both terms of the product are positive, meaning that the sum is greater than 1, and Dr. Graubner’s

solution again is less than 1. So we assume that min(e, f) = f . Then the slope of the linear function,

f − e, is nonpositive so it is least at the upper endpoint, when k = f . We now assume k = f .

We are trying to minimize

1 + (2f−e)(f−e)
2ef

= 1− (2f−e)(e−f)
2ef

= 1−
(

1− e
2f

) (
1− f

e

)
= 1 + f

e
− 1

2
− 1 + e

2f
= −1

2
+

e√
2f

+

√
2f

e
√

2

≥ 2√
2
− 1

2
=
√

2− 1
2
.

Equality if e√
2f

= 1, and e =
√

2f , and k = f , and a = (
√

2 + 1)f , b = (
√

2− 1)f , c = 2f , d = 0.

In Dr. Graubner’s case, f = 1
2
.

let: a, b, c ≥ 1 , x, y, z ≥ 0 such that ax + by + cz = 4

xax + yby + zcz = 6

x2ax + y2by + z2cz = 9 Find the hightest value of C

Solution

From the Cauchy-Schwarz inequality we have

(x2ax + y2by + z2cz)(ax + bx + cx) ≥ (xax + yby + zcz)2,

But if we put the values of the given expressions, 4 · 9 = 62; so that equality must occur in our

application. So x = y = z is forced, leading to

ax + bx + cx = 4;x[ax + bx + cx] = 6; x2[ax + bx + cx] = 9.

So we have x = 3
2

=⇒ a
3
2 + b

3
2 + c

3
2 = 4 Therefore c

3
2 ≤ 4 =⇒ c3 ≤ 16 =⇒ c ≤ 2 3

√
2. A possible

solution set is (a, b, c) =
(
0, 0, 2 3

√
2
)

; and (x, y, z) =
(

3
2
, 3

2
, 3

2

)
. Hence we are done.
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Prove that: 1
1005

+ 3
1006

+ 5
1007

+ . . .+ 2007
2008

= 2007
2
− 2006

3
+ 2005

4
. . .− 2

2007
+ 1

2008

Solution

Adding −2 · 2007
2
− 2 · 2005

4
− 2 · 2003

6
− · · · − 2 · 1

2008
to the both sides, and adding the term 2008− 2008

1

at the beginning of the RHS, we get∑2008
k=1

2k−2009
k

= 2008 +
∑2008

k=1
k−2009

k

This is equivalent to
∑2008

k=1 2 = 2008 +
∑2008

k=1 1, and that’s obviously true.

Let define a number sequence an
∞
n=0 as follows : a0 = 13, an+1 = 4(a0a1a2 · · · an)2+6a0a1a2 · · · an+

3 . Find general term an

Solution

Define bn := a0a1 · · · an. Then b0 = 13 and bn+1 = 4b3
n + 6b2

n + 3bn ⇐⇒ 2bn+1 + 1 = 8b3
n + 12b2

n +

6bn + 1 = (2bn + 1)3

Hence 2bn + 1 = (2b0 + 1)3n = 273n = 33n+1
, thus bn = 33n+1−1

2

So an = bn
bn−1

= 33n+1−1
33n−1

= 32·3n + 33n + 1, n > 0

Coefficient x4 of (1 + x+ x2 + x3)11 is ... .

Solution

(1 + x+ x2 + x3)11 =
∑

α+β+γ+δ=11

11!

α!β!γ!δ!
· xβ+2γ+3δ

i) α = 9, β = 0, γ = 2 ∧ δ = 0 :
11!

9! · 2! · 0! · 0!
= 55

ii) α = 9, β = 1, γ = 0 ∧ δ = 1 :
11!

9! · 1! · 1! · 0!
= 110

iii) α = 8, β = 2, γ = 1 ∧ δ = 0 :
11!

8! · 2! · 1! · 0!
= 495

iv) α = 7, β = 4, γ = 0 ∧ δ = 0 :
11!

7! · 4! · 0! · 0!
= 330

Hence, our result is: 55 + 110 + 495 + 330 = 990 .

Let f be a real function such that ∀x; a∈R; f(x + a) = 1
2

+
√
f(x)− [f(x)]2. Show that f is

periodic.

Solution

f(x+ 2a) = 1
2

+
√
f(x+ a)− f 2(x+ a)

f(x+ 2a) = 1
2

+
√

1
2

+
√
f(x)− f 2(x)− 1

4
−
√
f(x)− f 2(x)− f(x) + f 2(x)

f(x+ 2a) = 1
2

+
∣∣1

2
− f(x)

∣∣
f(x+ 4a) = 1

2
+
∣∣1

2
− f(x+ 2a)

∣∣ = 1
2

+
∣∣(− ∣∣1

2
− f(x)

∣∣)∣∣
f(x+ 4a) = 1

2
+
∣∣1

2
− f(x)

∣∣ = f(x+ 2a). QED

Let a , b , c be the affixes of an acute-angled triangle having its circumcenter in the origin of

complex plane .

Prove that :
∣∣a−b
a+b

∣∣+
∣∣ b−c
b+c

∣∣+
∣∣ c−a
c+a

∣∣ =
∣∣a−b
a+b

+ b−c
b+c

+ c−a
c+a

∣∣ .
Solution

Let |a| = |b| = R. Then, if a = Reiφ, b = Reiθ

a−b
a+b

= (cosφ−cos θ)+i(sinφ−sin θ)
(cosφ+cos θ)+i(sinφ+sin θ)

a−b
a+b

=
−2 sin φ+θ

2
sin φ−θ

2
+2i cos φ+θ

2
sin φ−θ

2

2 cos φ+θ
2

cos φ−θ
2

+2i sin φ+θ
2

cos φ−θ
2

a−b
a+b

=
2i sin φ−θ

2 (cos φ+θ
2

+i sin φ+θ
2 )

2 cos φ−θ
2 (cos φ+θ

2
+i sin φ+θ

2 )
a−b
a+b

= i tan φ−θ
2

But φ− θ = −2γ, hence a−b
a+b

= −i tan γ

Since 0 < α, β, γ < π
2
, the equality reduces to

tanα + tan β + tan γ = tanα + tan β + tan γ
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which is obviously true.

In any triangle ABC there is an interesting and useful identity

(b+ c)2 cosA+ a2 cosB cosC = bc(1 + cosA)2 .

Solution

(b+ c)2 cosA+ a2 cosB cosC = bc(1 + cosA)2 ⇐⇒

⇐⇒ (b+ c)2 · b2+c2−a2

2bc
+ a2 · c2+a2−b2

2ca
· a2+b2−c2

2ab
= bc

[
1 + b2+c2−a2

2bc

]2

⇐⇒
⇐⇒ 2(b+ c)2(b2 + c2 − a2) + (c2 + a2 − b2)(a2 + b2 − c2) = [(b+ c)2 − a2]

2 ⇐⇒
⇐⇒ 2(b+ c)2(b2 + c2 − a2) + a4 − (b2 − c2)2 = (b+ c)4 + a4 − 2a2(b+ c)2 ⇐⇒
⇐⇒ 2(b+ c)2(b2 + c2) = (b+ c)4 + (b2 − c2)2 ⇐⇒
⇐⇒ (b+ c)2 · [2b2 + 2c2 − (b+ c)2] = (b2 − c2)2 ⇐⇒
⇐⇒ (b+ c)2 · (b− c)2 = (b2 − c2)2 O.K. A nice identity ! .

Another way: I’ll use the well-known identity a = b · cosC + c · cosB a.s.o. Proof. (b+ c)2 cosA+

a2 cosB cosC = bc(1 + cosA)2 ⇐⇒
(b2 + c2) cosA+ (a · cosB)(a · cosC) = bc (1 + cos2A) ⇐⇒
(b2 + c2) cosA+ (c− b · cosA)(b− c · cosA) = bc (1 + cos2A) O.K.

Prove that

4 ABC =⇒ ra
ha

+
rb
hb

+
rc
hc

+
1

2r

(
a2

ra
+

b2

rb
+

c2

rc

)
≥ 9

Solution

Since

I ra = S
s−a

I ha = 2S
a

we have :
ra
ha

=
a

2(s− a)
a.s.o. Thereby,

∑
ra
ha

= 1
2
·
∑

a
s−a = 1

2
·
∑
a(s−b)(s−c)

(s−a)(s−b)(s−c)

Using the well-known identities :

I
∏

(s− a) = sr2 ; abc = 4Rrs

I ab+ bc+ ca = s2 + r2 + 4Rr

I a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2)

, the last sum be-

comes, after some computations :
∑ ra

ha
=

2R− r
r

.

But
∑

a2

ra
=
∑ a2(s−a)

rs
= s

∑
a2−

∑
a3

rs
=⇒

∑ a2

ra
= 4(R + r) , where I also used the

relation
∑

a2 = 2(s2 − 4Rr − r2) .

Therefore, the proposed inequality is equivalent to : 2R−r
r

+ 2(R+r)
r

≥ 9 ⇐⇒ R ≥ 2r ⇐⇒
Euler’s inequality , so we are done .

x ∈ N Find x such that
[
x
99

]
=
[
x

101

]
Solution

n 6 x
99
< n+ 1 ∧ n 6 x

101
< n+ 1

Hence 99n 6 x < 99n+ 99 ∧ 101n 6 x < 101n+ 101

For there to be a common solution, the intervals must be either interlocked or enclosed.

1. 99n 6 101n+ 101 6 99n+ 99 =⇒ −101 6 2n 6 −2 =⇒ −50 6 n 6 −1
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In this case x ∈ [99n, 101n+ 101)

2. 99n 6 101n 6 99n+ 99 =⇒ 0 6 2n 6 99 =⇒ 0 6 n 6 49

In this case x ∈ [101n, 99n+ 99)

3. Because the interval lengths are 99 and 101 respectively, enclosing is possible only thus: 101n 6

99n < 99n + 99 6 101n + 101 =⇒ n 6 0 ∧ n > −1 =⇒ n ∈ {−1, 0}. The interval [−99, 0) is

already covered in Case 1, and the interval [0, 99) is already covered in Case 2.

Hence x ∈
⋃−1
n=−50[99n, 101n+ 101) ∪

⋃49
n=0[101n, 99n+ 99)

x, y ∈ R+ x3 + y3 = 4x2 Find the Max of x+ y

Solution

Let x+ y = k. Hence, the equation k(x2−x(k−x) + (k−x)2) = 4x2 has real root. But k(x2−x(k−
x) + (k − x)2) = 4x2 ⇔ (3k − 4)x2 − 3k2x+ k3 = 0. If k = 4

3
so x = 4

9
and y = 8

9
. Let k 6= 4

3
. Hence,

(3k2)2 − 4(3k − 4)k3 ≥ 0, which gives 0 ≤ k ≤ 16
3
. For k = 16

3
we obtain: x = 32

9
and y = 16

9
. Hence,

maxx3+y3=4x2(x+ y) = 16
3
. Since 32

9
> 0 and 16

9
> 0, the answer is 16

3
. For x, y, p > 1, prove that

p

√
xp+yp

2
≤ x+y

2
+ p−1

8
(x− y)2,

the inequality sign is reversed for 0 6= p < 1.

Solution

I just prove when p>1,wlog y ≥ x,let y = kx, k ≥ 1 p

√
xp+yp

2
≤ x+y

2
+ p−1

8
(x − y)2, ⇐⇒ p

√
1+kp

2
x ≤

1+k
2
x + p−1

8
(k − 1)2 x2 we only need to prove p

√
1+kp

2
≤ 1+k

2
+ p−1

8
(k − 1)2 let f (x) = p

√
1+kp

2
Hance

f (x) = f (1) + f
′
(1) (k − 1) + f ” (1) (k − 1)2 + f 3 (ξ) (k − 1)3

=
1 + k

2
+
p− 1

8
(k − 1)2−(1/2 ξp + 1/2)p

−1

ξp (p− 1) (ξpp− p+ 2 + ξp)

ξ3 (ξp + 1)3 (k − 1)3 ≤ 1 + k

2
+
p− 1

8
(k − 1)2

where 1 < ξ < k it’s easy to know the inequality sign is reversed for 0 6= p < 1.

Let three functions f, u, v: R–>R such that f(x + 1
x
) = f(x) + 1

f(x)
for all non-zero x and

[u(x)]2 + [v(x)]2 = 1 for all x. We know that x0∈R such that u(x0).v(x0) 6= 0 and f( 1
u(x0)

. 1
v(x0)

) = 2;

find f(u(x0)
v(x0)

).

Solution

f(u(x0)
v(x0)

) + 1

f(
u(x0)
v(x0)

)
= f(u(x0)

v(x0)
+ v(x0)

u(x0)
) = f( 1

u(x0)∗v(x0)
) = 2.

Then, let f(u(x0)
v(x0)

) = x⇔ x+ 1
x

= 2⇔ x = 1.

x1 = 1 xn+1 = x2
n√

3x4
n+6x2

n+2

Find xn

Solution

Substitute x2
n = 1

an
to get

an+1 = 2a2
n + 6an + 3 with a1 = 1

The above equation yields 2an+1 + 3 = 4a2
n + 12an + 9 = (2an + 3)2

Thus 2an + 3 = (2a1 + 3)2n−1
= 52n−1 ⇐⇒ an = 52n−1−3

2

So finally xn = 1√
an

=
√

2

52n−1−3

Let s be the perimeter of an acute triangle ABC (not equilateral) with its circumcenter O,

incenter I. P is a variable point inside 4ABC. D,E,F are projections of P on BC,CA,AB. Prove

that 2(AF +BD + CE) = s if and only if P is on OI.

Solution

Let (x : y : z) be the barycentric coordinates of P with respect to 4ABC. Therefore, coordinates of
its projections D,E, F onto BC,CA,AB, in Conway’s notation, are D(0 : a2y + xSC : a2z + xSB),

E(b2x+ ySC : 0 : b2z + ySA) and F (c2x+ zSB : c2y + zSA : 0). From these, we deduce that
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AF = c2y+zSA
c(x+y+z)

, BD = a2z+xSB
a(x+y+z)

, CE = b2x+ySC
b(x+y+z)

For any fixed k such that AF +BD + CE = k, locus f(x, y, z) = 0 is linear. Indeed

k(x+ y + z) = c2y+zSA
c

+ a2z+xSB
a

+ b2x+ySC
b

Therefore, locus of points P is a single line f with the above barycentric equation.

Particularly, the locus f for k = 1
2 (a+ b+ c) contains the circumcenter O and incenter I. Indeed,

if M,N,L are the midpoints of BC,CA,AB and X, Y, Z the tangency points of the incircle (I) with

BC,CA,AB, we have

AL+BM + CN = 1
2 (a+ b+ c) =⇒ O ∈ f

AZ +BX + CY = (s− a) + (s− b) + (s− c) = 1
2 (a+ b+ c) =⇒ I ∈ f.

p1 = 2, p2 = 3, p3 = 5, . . . pn nth prime.sn =
∑n

i=1 pi. Prove that there exists perfect square in

[sn, sn+1] interval.

Solution

It is true for n = 1, 2, 3, 4 [4,9,16,25]

For n > 4,

oh yes, just a litle easy thing/claim:

If a ∈ R+, there is a perfect square in [a2, (a+ 1)2] proof: assume I don’t say the true: there exist

n ∈ N so that n2 < a2 < (a+1)2 < (n+1)2, but then we see that n < a, but 2a+1 < 2n+1⇒ a < n,

contradiction.

We say now that
√
sn <

pn+1
2

Proof: 2 + 3 + 5 + 7 + 11 = 28 < 5.52

For further primes, pn+1 > pn + 2 ( the further primes are odd and ∈ N)

So sn ≤ pn+(pn−2)+ ...+11+7+5+3+2 < pn+(pn−2)+ ...+11+9+7+5+3+1 = (pn+1)2

4
.

sn+1 − sn ≥ pn + 2 = 2pn+1
2

+ 1, so [sn, sn + 2
√
sn + 1] ⊂ [sn, sn+1] and with the claim we know

there is a perfect square in that interval.

A,B,C are 3 collinear points and let P be a point not on the line joining them. Prove that the

circumcentres of triangles - ABP,BCP,ACP and the point P lie on a circle.

Solution

Let O1, O2, O3 be the circumcenters of 4PAC, 4PAB, 4PBC. We use oriented angles (mod 180).

Since ∠PO2A = 2∠PBC = ∠PO3C, then the isosceles 4PO2A and 4PO3C are similar =⇒
∠APO2 = ∠CPO3, which implies that ∠O2PO3 = ∠APC. Since O1O2 ⊥ PA and O1O3 ⊥ PC,

it follows that ∠APC = ∠O2O1O3. Hence, ∠O2O1O3 = ∠O2PO3 =⇒ P ∈ �(O1O2O3).

Show that (1 +x)n ≥ (1−x)n + 2nx(1−x2)(n−1)/2 for all 0 ≤ x ≤ 1 and all positive integers n.

Solution

Let a = 1 + x, b = 1− x so that a, b > 0 and we have to prove

an ≥ bn + n(a− b)(ab)
n−1

2 ;

Which can be rewritten as (since a > b; this is obvious for a = b =⇒ x = 0)

an − bn

a− b
= an−1 + an−2b+ · · ·+ bn−1 ≥ n(ab)

n−1
2 ;

Which is perfectly true on using the AM-GM inequality:

an−1 + an−2b+ · · ·+ bn−1 ≥ n · n

√
(ab)(n−1)+···+1

= n · (ab)
1
n
·n(n−1)

2 = n(ab)
n−1

2 .
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Solve it: x! = xy + x+ y and x, y ∈ N.
Solution

Using Simon’s Favorite Factoring Trick, add 1 to both sides and factor:

x! + 1 = (x+ 1)(y + 1)

First let’s get the trivial cases out of the way. If x = 1, y = 0. If x = 0, y = 1. If x = 2, y = 0 as

well. (These work only if you consider N to contain 0.)

Now we may assume x ≥ 3. Obviously, if x + 1 is composite, we can factor it into p, q ≤ x, so

that x+ 1 = pq | x!. So the original equation cannot hold. Otherwise, if x+ 1 is prime, by Wilson’s

Theorem, x! ≡ −1 mod x+ 1, so x + 1 | x! + 1. Also, obviously x! > x, so that x!+1
x+1

> 1. Therefore,

y = x!+1
x+1
− 1 is a positive integer.

We now have our solutions: for any prime p > 2, x = p− 1, y = (p−1)!+1
p
− 1, plus the three special

cases above if you consider N to contain 0.

Find the value
∑n

k=1

(
sin kπ

n

)4
.

Solution

let Sn =
∑n

k=1(sin kπ
n

)4

for n = 1, S1 = 0 n = 2, S2 = 1

we suppose that n > 2

We have sin4(x) = 1
8
(3− 4cos(2x) + cos(4x))

then
∑n

k=1(sin kπ
n

)4 =
∑n

k=1
1
8
(3− 4cos(2kπ

n
) + cos(4kπ

n
))

= 3
8
n− 1

2

∑n
k=1 Re(e

i2kπ
n ) + 1

8

∑n
k=1Re(e

i4kπ
n )

= 3
8
n− 1

2
Re(

∑n
k=1(e

i2kπ
n )) + 1

8
Re(

∑n
k=1(e

i4kπ
n ))

= 3n
8

Let m,n be positive integers, m > n. Prove that

lcm(m,n) + lcm(m+ 1, n+ 1) >
2mn√
m− n

Solution

Let gcd(m−n, n) = gcd(m,n) = a and gcd(m−n, n+1) = gcd(m+1, n+1) = b a and b are coprime

and divide m− n so ab ≤ m− n so 1√
ab
≥ 1√

m−n lcm(m,n) + lcm(m+ 1, n+ 1) = mn
a

+ (m+1)(m+1)
b

>

mn
(

1
a

+ 1
b

)
So lcm(m,n) + lcm(m+ 1, n+ 1) ≥ 2mn√

ab
≥ 2mn√

m−n
r and s are distinct, nonreal complex numbers such that r + 1

s
∈ R and s+ 1

r
∈ R.

Evaluate |r · s|.
Solution

Let r = a+ bi and s = m+ ni. We have a+ bi+ 1
m+ni

, or a+ bi+ m
m2+n2 − ni

m2+n2 , belongs to reals.

Thus, the coefficient of the i terms must be 0, so bi − ni
m2+n2 = 0 =⇒ b = n

m2+n2 . This becomes

m2 + n2 = n
b
.

We are also given that s+ 1
r
, or m+ ni+ a−bi

a2+b2
, is real. Hence, ni− bi

a2+b2
= 0, so n = b

a2+b2
. This

becomes a2 + b2 = b
n
.

What we wish to find is |rs|, or |(a+bi)(m+ni)|, or |am−bn+ani+bmi|. This is
√

(am− bn)2 + (an+ bm)2 =√
a2m2 − 2abmn+ b2n2 + a2n2 + b2m2 + 2abmn =

√
(a2 + b2)(m2 + n2).

HEY! a2 + b2 = n
b
from earlier and m2 + n2 = b

n
from earlier. Thus, multiplying them will yield

1, and
√

1 = 1 .

Determine all the natural numbers x ,y ≥ 1, such that 2x − 3y = 7

Solution

Looking mod 3, we must have 2x ≡ 1 mod 3 which implies x = 2a
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Now we have:

22a − 3y = 7⇒ 4a − 3y = 7

Now looking mod 4, we must have 3y ≡ 1 mod 4 which implies y = 2b

So:

22a − 32b = 7⇒ (2a + 3b)(2a − 3b) = 7

But this means 2a − 3b = 1 and 2a + 3b = 7

Adding the two equations gives 2a+1 = 8 so a = 2 and x = 2a = 4

And then this means that 3b = 3 so b = 1 and y = 2b = 2

So the only solution is (x, y) = (4, 2) and this does satisfy the equation.

Prove that
∑n

k=0
(−1)k

k+1

(
n
k

)
= 1

n+1

Solution

It is equivalent to∑n
k=0(−1)k

(
n+1
k+1

)
= 1

We know that 0 = (1 − 1)n+1 =
∑n+1

k=0 1n+1−k(−1)k
(
n+1
k

)
= 1n+1

(
n+1

0

)
+
∑n

k=0(−1)k+1
(
n+1
k+1

)
=

1−
∑n

k=0(−1)k
(
n+1
k+1

)
by the binomium of Newton.

So, we can conclude that
∑n

k=0(−1)k
(
n+1
k+1

)
= 1.

Another way:

Note that 1
k+1

(
n
k

)
=

n!

(k + 1)!(n− k)!
= 1

n+1

(
n+1
k+1

)
So LHS =

(
n
0

)
− 1

2

(
n
1

)
+ 1

3

(
n
2

)
− · · ·

= 1
n+1

((
n+1

1

)
−
(
n+1

2

)
+
(
n+1

3

)
−
(
n+1

4

)
+ · · ·

)
= 1

n+1
· −
(
(1− 1)n+1 −

(
n+1

0

))
= 1

n+1

Let a, b, c ≥ 0 be reals such that a+ b+ c = 1. Prove that

(ab+ bc+ ca)

(
a

b2 + b
+

b

c2 + c
+

c

a2 + a

)
≥ 3

4

Solution

Let f(x) = 1
x(x+1)

, then we get f ′′(x) > 0. Let ab+ bc+ ca = p, we have

af(b) + bf(c) + cf(a) ≥ f

(
ab+ bc+ ca

a+ b+ c

)
=

1

p(p+ 1)

It’s enough to prove that 1
p+1
≥ 3

4
. That’s true ⇐⇒ 1 ≥ 3(ab+bc+ca). This follows from (a+b+c)2 ≥

3(ab+ bc+ ca) Let f(m,n) = 3m+ n+ (m+ n)2. Calculate the value of
∑∞

n=0

∑∞
m=0 2−f(m,n).

Solution

We need to prove that f(m,n) : N0×N0 → 2N0 is bijective. In other words, a distinct m and n map

to a distinct even number, and every even number is mapped to.

Suppose we write f(m,n) as (m + n)(m + n + 1) + 2m = 2
((
m+n+1

2

)
+m

)
. Then obviously it’s

even. To show it’s surjective, suppose we want f(m,n) = 2k. Then there is some number l so that(
l+1
2

)
≤ k <

(
l+2
2

)
. Then k −

(
l+1
2

)
= m and l −m = n. We now need to show that neither m nor n

is negative. Obviously m is nonnegative by construction. We need to show that l ≥ m, which is true

because

m = k −
(
l+1
2

)
≤
((
l+2
2

)
− 1
)
−
(
l+1
2

)
= l + 1− 1 = l.

So f(m,n) is surjective to the even numbers. Now suppose f(m,n) = f(p, q) with (m,n) 6= (p, q).

Then
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(
m+n+1

2

)
+m =

(
p+q+1

2

)
+ p

Either m+ n = p+ q, in which case m = p and thus n = q, or WLOG m+ n ≥ p+ q + 1. Then

we have(
m+n+1

2

)
=
(
p+q+1

2

)
+ p−m ≤

(
m+n

2

)
+ p−m

=
(
m+n+1

2

)
− (m+ n) + p−m

0 ≤ p− (m+ n)−m ≤ p+ q −m− n
or p+ q ≥ m+ n, impossible. Hence it is injective as well.

So the image of f(m,n) is every even number, exactly once. So
∑∞

n=0

∑∞
m=0 2−f(m,n) =

∑∞
k=0 2−2k =∑∞

k=0
1
4k

= 4
3
.

Find a formula for
∏N

k=1

(
xe

i2πk
N + y

)
in terms of x, y, and N .

Solution

Consider the polynomial P (ξ) = (ξ− y)N − xN . Its roots are ξk = xωk + y, k = 1, N where ωk are all

Nth roots of unity - which is obvious as (ξ − y)N − xN = 0 ⇐⇒
(
ξ−y
x

)N
= 1.

The required product is the product of all ξk, which is obtained by Vieta:∏N
k=1 ξk = (−1)NP (0) = (−1)N [(−y)N − xN ] = yN − (−x)N

Let a0, a1, . . . , a2n real numbers such that ∀k ∈ {1, 2 . . . , 2n − 1} : ak ≥ ak−1+ak+1

2
. Prove that

a1+a3+···+a2n−1

n
≥ a0+a2+···+a2n

n+1
and find equality condition.

Solution

Let us working out:

(n+ 1)(a1 + a3 + · · ·+ a2n−1) ≥ n(a0 + a2 + · · ·+ a2n)

and we know that (a1 + a3 + · · ·+ a2n−1) ≥ a0+a2n

2
+ (a2 + a4 + · · ·+ a2n−2) by ak ≥ ak−1+ak+1

2
.

So we have to prove a2 + a4 + · · ·+ a2n−2 ≥ (n− 1)a0+a2n

2

and this follows by an−x + an+x ≥ a0 + a2n for 0 ≤ x ≤ n

This thing can we prove by induction:

2an ≥ an−1 + an+1 is already known,

IH:2an ≥ an−1 + an+1 ≥ · · · ≥ an−k + an+k for 0 < k < n

We know also that 2an−k ≥ an−k+1 + an−k−1 and similar 2an+k ≥ an+k+1 + an+k−1 add this gives

2(an − k + an+k) ≥ an−k+1 + an−k−1 + an+k+1 + an+k−1 and by (IH) we know an−k−1 + an+k+1 ≤
2(an − k + an+k)− an+k−1 − an−k+1 ≤ an−k + an+k

There holds only equality if a0, a1, . . . , a2n is an arithmetic sequence.

Let a,b be positive rational numbers such that a 6= b and a(1/3) + b(1/3) is a rational number.

Show that a(1/3) is a rational number.

Solution

By the identity ( 3
√
a+ 3
√
b)3 = a+ b+ 3 3

√
ab( 3
√
a+ 3
√
b), we can see that 3

√
ab is also rational. WLOG

a > b. Then by the quadratic formula, 3
√
a = r +

√
s and 3

√
b = r −

√
s, where r and s are rational.

Then a = (r+
√
s)3 = r3 + 3rs+

√
s(3r2 + s). In order for this to be rational, either s is a perfect

square, or s = −3r2 ≤ 0, impossible. Thus s is a perfect rational square, say q2, and 3
√
a = r+ q ∈ Q.

Find all primes of the form an + 1 where a and n are natural numbers and n is not a power of

2.

Solution

Clearly n should be even. Suppose n isn’t a power of 2. We can write n as 2mt where t is an odd

positive integer. Let t = 2k + 1, we have

an + 1 = a2m(2k+1) = (a2m)2k+1 = x2k+1 + 1.
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But then

x2k+1 + 1 = (x+ 1)(x2k − x2k−1 + · · · − a+ 1)

Which can’t be a prime. Contradiction, so n is a perfect power of 2.

Sum to n terms:

1

4
+

1× 3

4× 6
+

1× 3× 5

4× 6× 8
+

1× 3× 5× 7

4× 6× 8× 10
+ · · ·

Solution

For the limit, you can also use the generalized binomial formula (generally useful when double

factorials are involved).

S =
∑∞

n=2
2(2n−3)!!

(2n)!!
=
∑∞

n=2
2(2n−3)!!

2nn!

S =
∑∞

n=2
(−1)n−1(−1)(−3)···[−2(n−1)+1]

2n−1n!

S = −2
∑∞

n=2
(1)(−1)(−3)···[−2(n−1)+1]

2nn!
(−1)n

S = −2
∑∞

n=2

( 1
2)(− 1

2)(− 3
2)···( 1

2
−(n−1))

n!
(−1)n

S = −2
∑∞

n=2

(
1/2
n

)
(−1)n

S = −2
(
(1− 1)1/2 −

(
1− 1

2

))
= 1

Find all positive integers n such that 17|3n − n.
Solution

3n is periodic of period 16 modulo 17; n is periodic of period 17 modulo 17. Thus we only need

consider the remainders modulo 16 · 17 to find those that check. The first one is 5.

For given a > 0 , b > 0 find minimum value of y > a so that is truly the implication

|x− y| ≤ a , x 6= 0 =⇒
∣∣∣ 1
x
− 1

y

∣∣∣ ≤ 1
b
.

Solution

From the given condition , we deduce

1

y + a
≤ 1

x
≤ 1

y − a

Thus, it is enough to solve for the following quadratic inequation

y2 − ay − ab ≥ 0

This yields

y ≥ a+
√
a2 + 4ab

2

Therefore, ymin = a+
√
a2+4ab
2

For a tetrahedron ABCD, let O be on the inside. AO ∩4BCD = A1 , BO ∩4CDA = B1

CO ∩4DAB = C1 , DO ∩4ABC = D1

What is the Min of
∑

cyclic
AA1

A1O
?

Solution

Let S, SA, SB, SC , SD be the volume of the tetrahedra ABCD,OBCD,OACD,OADB,OABC.
AA1

OA1
+ BB1

OB1
+ CC1

OC1
+ DD1

OD1
= S

SA
+ S

SB
+ S

SC
+ S

SD
AA1

OA1
+ BB1

OB1
+ CC1

OC1
+ DD1

OD1
= S

(
1
SA

+ 1
SB

+ 1
SC

+ 1
SD

)
By AM-HM on the positive numbers SA, SB, SC , SD, we get

4
1
SA

+ 1
SB

+ 1
SC

+ 1
SD

≤ SA+SB+SC+SD
4

= S
4
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=⇒ AA1

OA1
+ BB1

OB1
+ CC1

OC1
+ DD1

OD1
≥ 16

Therefore, minimum value occurs when O coincides with the centroid of ABCD.

Let P and Q be points on the side AB of the triangle 4ABC (with P between A and Q) such

that ∠ACP = ∠PCQ = ∠QCB,and let AD be the angle bisector of ∠BAC. Line AD meets lines

CP and CQ at M and N respectively. Given that PN = CD and 3∠BAC = 2∠BCA, prove that

triangles 4CQD and 4QNB have the same area.

Solution

First of all, let us denote ∠BAD = ∠DAC = ∠ACP = ∠PCQ = ∠QCB = x for the sake of

convenience.

By simple angle chasing, we have that the area of 4CQD is QC·CD sinx
2

and that of 4QNB is
QN ·QB sin 4x

2
.

Consider 4AQC; as ∠QAC = ∠QCA, it is isosceles. Hence, PN ‖ AC and we conclude that

4QPN ∼ 4QAC. This gives QN
PN

= QC
AC
⇐⇒ QN · AC = CD ·QC.

Hence, it suffices to prove that AC sinx = QB sin 4x ⇐⇒ AC
sin 4x

= QB
sinx

= BC
sin 4x

; that is,

AC = BC.

In 4PNC, as PN ‖ AC, we have ∠NPC = ∠NCP = x ⇐⇒ NP = NC = CD, so

∠CND = ∠CDN ⇐⇒ 7x = 180.

However, since ∠CAB = 2x and ∠CBA = 180−5x, we indeed have AC = BC, and we are done.

�

Calculate
∑16

k=0 cos2
(

2kπ
17

)
Solution

Denote by ζ = cos
2π

17
+ i sin

2π

17
the principal primitive root of order 17 of the unity. Then ζk =

cos
2kπ

17
+ i sin

2kπ

17
. On the other hand (ζk)2 = 2 cos2 2kπ

17
− 1 + 2i sin

2kπ

17
cos

2kπ

17
.

Now,
∑16

k=0(ζk)2 =
∑16

k=0(ζ2)k =
1− (ζ2)17

1− ζ2
= 0, so looking at its real part,

∑16
k=0

(
2 cos2 2kπ

17
− 1

)
=

0, whence
∑16

k=0 cos2 2kπ

17
=

17

2
.

Another approach: if you combine a geometric argument:

cos2 2kπ
17

=
1+cos 4kπ

17

2
, so the sum is 17

2
+ 1

2

∑16
k=0 cos 4kπ

17
. The last sum is 17 times the x-coordinate

of the centroid of the regular 17-gon inscribed in the unit circle centered at the origin, thus equals

to zero and the result follows.

N = 1 + 10 + 102 + · · ·+ 101997. Determine the 1000th digit after the decimal point of
√
N in base

10.

Solution

N = 1 + 10 + 102 + · · ·+ 102n−1 = 102n−1
9

.
√
N =

√
102n−1

3

Let
√

102n − 1 = 10n − x, then we can calculate that 5
10n+1 < x < 6

10n+1 .

So we see that
√
N = 333 · · · 33, 333...331..., where there are n 3’s for the decimal point, n 3’s

after the decimal point and then a 1 (= the n+ 1-digit).

So here, were n = 999, the 1000th digit after the point is a 1.

Prove that (mn!)2 is divisible by (m!)n+1(n!)m+1 for all positive integers m,n

Solution
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The product of K consecutive natural numbers is divisible by K!, which follows from
(
M+K−1

K

)
=

M(M+1)(M+2)···(M+K−1)
K!

being an integer.

Thus km(km − 1)(km − 2) · · · (km −m + 1) is divisible by m!, and moreover, we can write the

quotient as km(km−1)(km−2)···(km−m+1)
m!

= k (km−1)(km−2)···(km−m+1)
(m−1)!

. Since the product of m− 1 consecu-

tive numbers is divisible by (m−1)!, we conclude that the quotient is the product of k and an integer

number.

For shortness, denote (K)M = K(K − 1)(K − 2) · · · (K −M + 1). Then
(mn)!
(m!)n

= (m)m
m!

(2m)m
m!

(3m)m
m!
· · · (mn)m

m!
.

By the previous argument, we can write this as (1 ·Q1)(2Q2)(3Q3) · · · (nQn), where Qi are some

integers. Therefore the expression is divisible by n!.

Thus (m!)nn! | (mn)!. Similarly, (n!)mm! | (mn)! and the claim follows.

Another way:

Suppose we have mn people we wish to divide into m teams of n. We do this by lining them up

in a row, and let the first n people form a team, the second n people form a team, etc.

We can line them up in (mn)! ways, we divide by (n!)m to account for re-arrangements of people

within their teams and we divide by m! to account for re-arrangements of the teams within the row.

Therefore there are
(mn)!

(n!)m(m!)
ways of dividing the people into teams, and because of our inter-

pretation this must be an integer.

Similarly,
(mn)!

(m!)n(n!)
is an integer, and the result follows by multiplying the two together.

If f(x) is a real valued polynomial and f(x) = 0 has real and distinct roots, show that the

equation (f ′(x))2 − f(x)f ′′(x) = 0 cannot have real roots.

Solution

Let f(x) = (x − a)(x − b)... Then we have f ′(x)
f(x)

= 1
x−a + 1

x−b + ... and differentiate both side,
−f ′′(x)f(x)+f ′(x)2

f(x)2 = 1
(x−a)2 + 1

(x−b)2 + ... so f ′′(x)f(x)−f ′(x)2 = (x−b)2(x−c)2...+(x−a)2(x−c)2...+ ...

which is greater than zero for all real x.

Given that n is a natural number (positive integer) prove that 1 + n19 + n47 is prime if and

only if 1 + n17 + n76 is prime.

Solution

Let ω 6= 1, such that ω3 = 1. Note that P (ω) = Q(ω) = 0, and P (ω2) = Q(ω2) = 0, hence P (x)

and Q(x) are both divisible by (x − ω)(x − ω2) = x2 + x + 1. This implies that n2 + n + 1 divides

n47 + n19 + 1 and n76 + n17 + 1 for all n ∈ N. If n = 1, then P (1) and Q(1) are both primes and the

statement is true. For the other hand, if n > 1, then n2 + n+ 1 > 1 and P (n), Q(n) are both greater

than n2 + n+ 1. Hence P (n) and Q(n) are both composite numbers when n > 1, and the statement

is valid.

Find the value of x such that
(x+α)n−(x+β)n

(α−β)
= sinnθ

sinnθ

where α and β are the roots of t2 − 2t+ 2 = 0 and n is a natural number.

Solution

Just put n = 2 to get x = cot θ − 1.

As α, β = 1± i, it’s easy to check (cot θ+i)n−(cot θ−i)n
2i

= sinnθ
sinn θ

⇐⇒ einθ−e−inθ
2i

= sinnθ

a, b, c, d ∈ N a+ b = c2d a+ b+ c = 42

Find all the possible values of c

Solution
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We substitute a+ b with c2d into the second equation. So we have c2d+ c = 42. Factoring this yields

c(cd+ 1) = 42.

We’ll now list out the ordered pairs of numbers that multiply to 42. These are (1, 42), (2, 21), (3, 14), (6, 7), (7, 6), (14, 3), (21, 2),

and (42, 1).

When c = 1 and cd+ 1 = 42, we have d = 41. Evidently this works. When c = 2 and cd+ 1 = 21,

we have cd = 20 and d = 10. This works too. When c = 3 and cd+1 = 14, we have cd = 13. However,

if c = 3, then d won’t be natural. When c = 6 and cd+ 1 = 7, we have cd = 6 and d = 1. This works.

None of the others will work since cd+ 1 > c for c, d natural. So there are three values of c that

work: 1, 2, and 6 .

Let a1, a2, . . . , an be positive integers such that

a1 + 1

a2

+
a2 + 1

a3

+ · · ·+ an + 1

a1

is also an integer. Show that

gcd(a1, a2, . . . , an) ≤ n

√
a1a2 · · · an

(
1

a1

+
1

a2

+ · · ·+ 1

an

)
.

Solution

Let d = gcd(a1, a2, . . . , an), and write ai = d · xi where xi ∈ Z+. If we put an+1 = a1, we obtain that:∑n
i=1

ai+1
ai+1

=
∑n

i=1
dxi+1
dxi+1

= dS1+S2

dx1x2···xn
Where S1 = x2

1x3...xn + x1x
2
2x4...xn + .... + x1x2...x

2
n−1 + x2x3...x

2
n and S2 = x1x2...xn

∑n
i=1

1
xi
.

Clearly d|dS1 + S2 (because by assumption dS1+S2

dx1x2···xn is an integer), an this implies that d|S2, further

d ≤ x1x2...xn
∑n

i=1
1
xi
. Hence dn ≤ a1a2...an

∑n
i=1

1
ai
, as desired.

Solve in natural the system{
x2 + 7x = y3

x2 + 3 = 2y

Solution

Subtracting, we get 7x − 3 = y3 − 2y. Since x ∈ N, we have 7x ≥ 7

=⇒ y3 − 2y = 7x − 3 ≥ 4 > 0 =⇒ y3 > 2y

But for y > 10 we have y3 < 2y. This means y ≤ 10.

[list] [*]y = 1 no solution.

[*] y = 2 =⇒ x = 1

[*]y = 3 no solution.

[*]y = 4 no solution.

[*]y = 5 no solution.

[*]y = 6 no solution.

[*]y = 7 no solution.

[*]y = 8 no solution.

[*]y = 9 no solution.

[*]y = 10 no solution.[/list]

Hence the unique solution (x, y) = (1, 2) .

Another way : We find (1, 2) as only solution:

For Y ≥ 3 :
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x2 ≡ 5 (mod 8) and this hasn’t solutions, y = 1 can’t (x2 = −1 isn’t solvable in N) y = 2 had

only x = 1 as solution (7x = 23 + 3− 4 = 7)

Let a, b, c be compleks numbers for which a + b + c = 0 Prove that max(|a|, |b|, |c|) ≤
√

3
2

√
|a|2 + |b|2 + |c|2

Solution

Let be max(|a|, |b|, |c|) = |a| So we get to show that

|a| ≤
√

3
2

√
|a|2 + |b|2 + |c|2 when we have

|a|2 ≤ 3(|b|2 + |c|2)

from a+ b+ c = 0 we have

|a|2 = | − b− c|2 = |b+ c|2 = ||b|+ |c||2 so we have

|b|2 + 2|b||c|+ |c|2 ≤ 3|b|2 + 3|c|2

2(|b|2 + |c|2) + (|b| − |c|)2 ≥ 0

so we are done

You have an even number of N players. You want to form N/2 matches. How many different

matches are possible ?

Solution

There are (N − 1)(N − 3)(N − 5) . . . (3)(1) possible matchings. If we consider one person at a time,

then the first person has (N − 1) possible different people to choose from. There are two less people,

so the next person then has (N − 2− 1) people to choose from. We continue until we get to 1.

Solve x2
1 + x2

2 + ..+ x2
2010 = 2010x1x2..x2010 in N

Solution

If you have a solution (x1, x2, . . . x2010), so that x2
2 +x2

3 + . . .+x2
2010 = b and 2010x2x3 · · ·x2010 = a, the

equation reduces to x2
1− ax1 + b = 0. That means the two roots of the quadratic x2− ax+ b = 0 are

x1 and a− x1. Using this idea you can generate infinite families of solutions looking like (1, 1, . . . 1)

(2009, 1, . . . 1) (2010 · 2009− 1, 2009, 1, . . . 1) (20102 · 2009− 2011, 2010 · 2009− 1, 2009, 1, . . . 1)
...

Because there’s multiple variables that can be root flipped in this way (I was just doing it to 1s

above), it seems unlikely that there will be any concise way to describe all solutions.

Find all pairwise distinct primes a, b, c such that a+ 5b+ 10c = abc.

Solution

If either a or b is even, then the other has to be even also and both need to be 2, contradiction. So

both a and b are odd primes. But then the LHS is even, so the RHS needs to be even. Thus c = 2.

The equation becomes a+5b+20 = 2ab. Transform this into 4ab−10b−2a+5 = (2a−5)(2b−1) =

45. The factors of 45 are (1, 45), (3, 15), (5, 9), (9, 5), (15, 3), (45, 1), leading to

(a, b) = (3, 23), (4, 8), (5, 5), (7, 3), (10, 2), (25, 1), of which the only 2 pairs that work are (a, b, c) =

(3, 23, 2) and (a, b, c) = (7, 3, 2). Find the coefficient of 1
n+i

when 1
(n−k)(n−k+1)...(n−1)(n)(n+1)...(n+k−1)(n+k)

is expressed as a linear combination of 1
n+i

, i ∈ {−k,−k + 1, ...,−1, 0, 1, ..., k − 1, k}.
For example, 1

(n−1)n(n+1)
= (1/2) 1

n−1
+ (−1) 1

n
+ (1/2) 1

n+1
.

Solution

Call the fraction α, and let the coefficient of 1
n+i

be ci for all i ∈ {−k,−k + 1, · · · , k − 1, k}.
Therefore α = 1

(n−k)(n−k+1)···(n+k−1)(n+k)
=
∑k

a=−k
ca
n+a

. Multiplying both sides by the denominator

of α gives 1 =
∑k

a=−k capa(n), where pa(n) is the polynomial
∏
−k≤b≤k,b6=a(n + b). Note that if

i ∈ {−k,−k + 1, · · · , k − 1, k}, then pa(i) = 0 if a 6= i, so 1 = cipi(i) for all i in the relevant range.

Therefore ci = 1
pi(i)

=
∏
−k≤b≤k,b6=i(i+ b).
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Anumber of schools took part in a tennis tournament. No two players from the same school

played against each other. Every two players from different schools played exactly one match against

each other. A match between two boys or between two girls was called a single and that between a

boy and a girl was called a mixed single. The total number of boys differed from the total number

of girls by at most 1. The total number of singles differed from the total number of mixed singles by

at most 1. At most how many schools were represented by an odd number of players?

Solution

Let there be n schools. Suppose the ith school sends Bi boys and Gi girls. Let B =
∑
Bi and

G =
∑
Gi. We are given that |B −G| = 1.

The number of same sex matches is 1/2
∑
Bi(B−Bi) + 1/2

∑
Gi(G−Gi) = (B2−

∑
B2
i +G2−∑

G2
i ). The number of opposite sex matches is

∑
Bi(G − Gi) = BG −

∑
BiGi. Thus we are given

that B2 −
∑
B2
i + G2 −

∑
G2
i − 2BG + 2

∑
BiGi = 0 or ±2. Hence (B − G)2 −

∑
(Bi − Gi)

2 = 0

or ±2. But (B −G)2 = 1, so
∑

(Bi −Gi)
2 = −1, 1 or 3. It cannot be negative, so it must be 1 or 3.

Hence Bi = Gi except for 1 or 3 values of i, where |Bi−Gi| = 1. Thus the largest number of schools

that can have Bi +Gi odd is 3.

This solution uses a slightly differently worded problem, one that says the number of boys and

girls differed by 1 (not at most 1). But it doesn’t make a difference (for difference 0, the largest value

is 2).

Let x > 0 be a real number. Prove that

x(x+ 1)(x+ 2) · · · (x+m− 1)

m!
≥ x1+ 1

2
+ 1

3
+···+ 1

m ∀m ∈ N

Solution

Induction works. For m = 1 the inequality is an equality. Suppose that the inequality is true for

m = n. Then, for m = n+ 1

1

(n+ 1)!

n+1∏
k=1

(x+ k − 1) =
x+ n

n+ 1
· 1

n!

n∏
k=1

(x+ k − 1) ≥ x+ n

n+ 1
· xHn

Where Hn =
∑n

k=1
1
k
. But

x+ n

n+ 1
xHn =

x1+Hn + xHn + ...+ xHn

n+ 1
≥ n+1
√
x1+(n+1)Hn = xHn+1

And we are done

Another way:

Weighted AM-GM has x+(i−1)
i
≥ x

1
i we take product LHS =

∏m
i=1

x+(i−1)
i
≥
∏m

i=1 x
1
i = RHS

which we wanted to proof

Determine all real-valued functions f that satisfy

2f(xy + xz) + 2f(xy − xz) ≥ 4f(x)f(y2 − z2) + 1 for all real numbers x,y,z

We fill in: (x, y, z) = (0, 0, 0) and (1, 1, 0) : 0 ≥ (2f(0) − 1)2 and 0 ≥ (2f(1) − 1)2, so we find

f(0) = f(1) = 0.5

Now we do y = 1, z = 0 : 4f(x) ≥ 4f(x)f(1) + 1 = 2f(x) + 1→ f(x) ≥ 0.5forallx ∈ R. [1]

When we fill y = z in;

2f(2xy) + 2f(0) ≥ 4f(0)f(x) + 1 or f(2xy) ≥ f(x), now we choose y = 1
2x
, so we get 0.5 ≥ f(x)

for all x ∈ R\0 . [2]
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With [1] and [2] we know that f(x) = 0.5 for all x ∈ R

Prove that
∑n

k=m

(
n
k

)(
k
m

)
= 2n−m

(
n
m

)
, m ≤ n

Solution

We need to prove:∑n
k=m

(
n
k

)(
k
m

)(
n
m

) = 2n−m

Expanding the binomial coefficients we must show:∑n
k=m

(n−m)!

(n− k)!(k −m)!
= 2n−m

But this sum expands as:

1 + (n−m) + (n−m)(n−m−1)
2!

+ · · ·+ (n−m)···(n−m−(n−m−1))
(n−m)!

But this is the expansion for (1 + 1)n−m

So LHS = 2n−m as required.

Another way:

Combinatorial argument: There are n objects, and we choose k objects out of the n objects, and

then choose another m objects out of the k objects. This is accounted by the LHS. To accomplish

the same task, we can choose the m objects out of the n objects straightaway (which is
(
n
m

)
). But

there are 2n−m subsets of the objects left when m objects are taken from the n objects.

a, b, c, d ∈ N a ≤ b ≤ c ≤ d

Find (a,b,c,d) such that ab+ cd = a+ b+ c+ d+ 3

Solution

ab+ cd− a− b− c− d = 3 ⇐⇒ (a− 1)(b− 1) + (c− 1)(d− 1) = 5

Due to the given condition, we have ((a − 1)(b − 1), (c − 1)(d − 1)) ∈ {(0, 5), (1, 4), (2, 3)}, and
now the casework is easy.

Let P be an interior point of 4 ABC . Denote Ra , Rb , Rc the circumradii of the triangles

PBC , PCA and PAB respectively. Prove that : Ra +Rb +Rc ≥ PA+ PB + PC .

Solution

Let M,N,L be the midpoints of PA, PB, PC. Perpendicular lines to PA, PB, PC through M,N,L

pairwise meet at the circumcenters X, Y, Z of 4PBC, 4PCA and 4PAB. By Erdős-Mordell in-

equality for 4XY Z ∪ P we get

PX + PY + PZ = Ra +Rb +Rc ≥ 2(PM + PN + PL) = PA+ PB + PC

Let m, n ∈ N∗, m ≤ 2n and a, b, c > 0. Prove that the following inequality holds:

am

bn + cn
+

bm

cn + an
+

cm

an + bn
≥ 3

2

√
am + bm + cm

a2n−m + b2n−m + c2n−m .

Solution

I LHS
CEB

≥ 1
3
· (am + bm + cm)

(
1

an+bn
+ 1

bn+cn
+ 1

cn+an

) C.S.

≥ 3
2
· am+bm+cm

an+bn+cn
.

I Thus, it remains to prove that : a
m+bm+cm

an+bn+cn
≥
√

am+bm+cm

a2n−m+b2n−m+c2n−m
which rewrites as :

(am + bm + cm)(a2n−m + b2n−m + c2n−m)
C.S.

≥ (an + bn + cn)2 =
(∑

a
2n−m

2 · am2
)2
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Find all possible digits x, y, z such that the number 13xy45z is divisible by 792.

Solution

There are forty weights: 1, 2, · · · , 40 grams. Ten weights with even masses were put on the left

pan of a balance. Ten weights with odd masses were put on the right pan of the balance. The left

and the right pans are balanced. Prove that one pan contains two weights whose masses di ffer by

exactly 20 grams.

Solution

Assume for contradiction that neither pan contains two weights whose masses differ by exactly 20

grams. Split up the even weights into the sets {2, 22}, {4, 24}, · · · , {20, 40}. There are ten sets, and

at most one weight from each set may be picked, so we must pick exactly one weight from each set.

Similarly, we must also pick exactly one weight from each of {1, 21}, {3, 23}, · · · , {19, 39}.
Now, consider the sum of each side mod 20. The left side has sum 2(2 + 4 + 6 + 8 + 10) ≡ 0

(mod 20). The right side has sum 2(1 + 3 + 5 + 7 + 9) = 10 (mod 20). As 0 and 10 are not equal, we

have reached a contradiction and we are done.

4DEF is the tangential triangle of 4ABC. On the sides of 4DEF , take two equal segments

AG, BH (A-G-E,B-H-F ) Circle(4ACG) meet Circle(4ABH) at Q. Circle mean circumcircle. Show

that A,Q,D are collinear.

Solution

LetM be the second intersection of �(ACG) with line DE. Since 4EAC is isosceles with apex E, it

follows that AGMC is an isosceles trapezoid with GM ‖ AC =⇒ AG = CM. Since DC = DB, then

we deduce that DM = DH. Therefore, DC ·DM = DB ·DH =⇒ D has equal power with respect

to circles �(ACG) and �(ABH) =⇒ D lies on the radical axis AQ of �(ACG) and �(ABH).

The function f has the property that, for each real number x,

f(x) + f(x− 1) = x2.

If f(19) = 94, what is the remainder when f(94) is divided by 1000?

Solution

There must be a pattern with f(94). f(94) + f(93) = 942, f(93) + f(92) = 932 f(92) + f(91) = 922,

and so on. Hence, f(94) = 942− (932− (922− ...)))..) so this is 942− 932 + 922− 912 + ...+ 202− 94.

We see that this is a sum of arithmetic series. Simplifying gives us 187+183+179+...+43+202−94.

We take out 187+183+...+43. This is 43·37+144+140+...+0 (we have 37 terms in the sequence and

we take 43 away from all 37), which is 43·37+4·(36+35+...+1) = 43·37+2·36·37 = 115·37 = 4255.

Adding 400 and subtracting 94 gives us 4561. Hence the remainder is 561 .

Calculate:
∞∑
n=0

⌊
10000 + 2n

2n+1

⌋

Solution

First of all, notice that the smallest k such that 2k > 10000 is k = 14, since 214 = 16384. Also, since

bx+ 1
2
c =< x >, where < x > is the closest integer to x, we can rewrite the sum as the following:∑13
n=0

⌊
10000+2n

2n+1

⌋
=
∑13

n=0

⌊
10000
2n+1 + 1

2

⌋
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=
∑13

n=0 <
10000
2n+1 >

=< 5000 > + < 2500 > + < 1250 > + < 625 > + < 312.5 > + < 156.25 > + < 78.125 > + <

39.0625 > + < 19.53.. > + < 9.76.. > + < 4.88.. > + < 2.44 > + < 1.22.. > + < 0.61.. >

= 5000 + 2500 + 1250 + 625 + 313 + 156 + 78 + 39 + 20 + 10 + 5 + 2 + 1 + 1

= 10000 .

Let x, y, x ∈ (0, π) and x + y + z = π . Prove that (without Jensen’s inequality) sinx + sin y +

sin z ≤ 3
√

3
2

. Proof 1 (geometric). Let ABC be a triangle. Apply A.M. ≥ G.M. : 1
3
·
∑

(s −
a) ≥ 3

√
(s− a)(a− b)(a− c) ⇐⇒ s3 ≥ 27

∏
(s − a) ⇐⇒ s3 ≥ 27sr2 ⇐⇒ s ≥ 3r

√
3 (1) . From

well-known inequality 3 ·
∑
rbrc ≤ (

∑
ra)

2 obtain 3s2 ≤ (4R + r)2 ⇐⇒ s
√

3 ≤ 4R + r (2) .

I used the well-known relations rarb + rbrc + rcra = s2 and ra + rb + rc = 4R + r . Using (1) ,

(2) obtain

∥∥∥∥∥ s
√

3 ≤ 4R + r

r ≤ s
3
√

3

∥∥∥∥∥⊕ =⇒ s
√

3 − s
3
√

3
≤ 4R ⇐⇒ s ≤ 3R

√
3

2
. In conclusion,

3r
√

3 ≤ s ≤ 3R
√

3

2
(3) =⇒

∑
sinA = a+b+c

2R
= s

R
≤ 3

√
3

2
⇐⇒ sinA+ sinB + sinC ≤ 3

√
3

2
.

Proof 2 (trigonometric). Observe that sin y+sin z = 2 sin y+z
2

cos y−z
2
≤ 2 cos x

2
because y+z

2
= 90◦−

x
2
and cos y−z

2
≤ 1 . Therefore,

∑
sinx ≤ sinx+2 cos x

2
= 2 cos x

2

(
1 + sin x

2

)
, i.e.

∑
sinx ≤ 2 cos

x

2

(
1 + sin

x

2

)
(4).

NowWe’llprove that u > 0 , v > 0 , u2 + v2 = 1 =⇒ u(1 + v) ≤ 3
√

3
4

. Indeed, observe

that {u, v} ⊂ (0, 1) and u(1 + v) − max ⇐⇒ u2(1 + v)2 − max ⇐⇒ (1 − v)(1 + v)3 − max ⇐⇒
E(u, v) ≡ (1− v)

(
1+v

3

)3 −max . Observe that (1− v) + 3 · 1+v
3

= 2 (constant). Therefore E(u, v) is

maximum iff 1− v = 1+v
3

= 2
4
, i.e. v = 1

2
. Thus u =

√
3

2
and u(1 + v) ≤ 3

√
3

4
. For u := cos x

2
and

v = sin x
2
and the relation (4) obtain

∑
sinx ≤ 2u(1 + v) ≤ 3

√
3

2
.

Eliminate θ from the following.

x2 + y2 = x cos 3θ+y sin 3θ
cos3 θ

= y cos 3θ−x sin 3θ
sin3 θ

Solution

(x2 + y2)2 cos6 θ = (x cos 3θ + y sin 3θ)2 = x2 cos2 3θ + 2xy sin 3θ cos 3θ + y2 sin2 3θ (x2 + y2)2 sin6 θ =

(y cos 3θ − x sin 3θ)2 = y2 cos2 3θ − 2xy sin 3θ cos 3θ + x2 sin2 3θ

so by summing (x2 + y2)2(cos6 θ+ sin6 θ) = x2 + y2. But cos6 θ+ sin6 θ = (cos2 θ+ sin2 θ)(cos4 θ−

cos2 θ sin2 θ + sin4 θ) = 1− 3 cos2 θ sin2 θ = 1− 3

4
sin2 2θ, so sin2 2θ =

4(x2 + y2 − 1)

3(x2 + y2)
.

For a parallelogram ABCD, a line through A meet BC,CD at X,Y . Let K,L be the excenters

of 4ABX, 4AYD. Show that ∠KCL is constant.

Solution

Let us consider the configuration where X lies on
−−→
BC and Y ∈ CD, the remaining cases are treated

analogously. Let I be incenter of 4ABX. Since B, I,X,K are concyclic and XI ‖ AL, it follows that
∠AKB = ∠IXB = ∠DAL. But since ∠ADL = ∠KBA, then 4ADL ∼ 4KBA. Hence DL

AB = AD
BK

=⇒ DL
BC = BC

BK .

Since ∠LDC = ∠CBK = 90◦ − 1
2∠ADC, we deduce that 4DLC ∼ 4BCK. Then ∠BCK =

∠DLC implies

∠KCL = 360◦ − ∠BCK − ∠LCD − ∠DCB = ∠LDC + ∠ADC = ∠ADL

=⇒ ∠KCL = 90◦ + 1
2∠ADC = const.

For which integers, n, is n2−71
7n+55

a positive integer?
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Solution
n2−71
7n+55

∈ Z =⇒ 7n+ 55|n2 − 71 (1).

7n+ 55 = 7(n+ 8)− 1 =⇒ 7n+ 55|7(n− 8)(n+ 8)− 7(n− 8)

=⇒ 7n+ 55|7(n2 − 64)− (n− 8) (2).

(1), (2) =⇒ 7n+ 55|7(n2 − 64)− (n− 8)− 7(n2 − 71)

=⇒ 7n+ 55|7(71− 64)− (n− 8) =⇒ 7n+ 55|57− n
=⇒ 7n+ 55|7(57− n) =⇒ 7n+ 55|399− 7n (4)

=⇒ 7n+ 55|(399− 7n) + (7n+ 55) =⇒ 7n+ 55|454

Note that divisors of 454 are 1, 2, 227, 454 and their negatives.

So the solutions :

7n+ 55 = 1 =⇒ impossible

7n+ 55 = 2 =⇒ impossible

7n+ 55 = 227 =⇒ impossible

7n+ 55 = 454 =⇒ n = 57

7n+ 55 = −1 =⇒ n = −8

7n+ 55 = −2 =⇒ impossible

7n+ 55 = −227 =⇒ impossible

7n+ 55 = −454 =⇒ impossible

Hence the solutions are n ∈ {−8, 57} .
Let {a1, a2, · · · } be a sequence of non-negative numbers such that an+m ≤ an + am for all n

and m Show that for all n ≥ m, an ≤ ma1 +
(
n
m
− 1
)
am

Solution

It’s a direct consequence of the condition. (m−k)·m·a1 ≥ (m−k)·am ⇔ m2·a1+k·am ≥ m·am+km·am
dividing through m gives m · a1 + k

m
am ≥ am + k · am ≥ ak+m. let n = m+ k and we’re done.

The line l is tangent to the circle S at the point A. B and C are two points on l on opposite

sides of A. The other tangents from B, C to S intersect at a point P . B, C move along l in such a

way that |AB| · |AC| is constant. Find the locus of P .

Solution

Let us rename the point A ≡ P and vice-versa, in order to use the common ABC-triangle notation.

Thus PB · PC = (s− a)(s− b) = k2. Let r be the radius of S. Then

r =
√

(s−a)(s−b)(s−c)
s

=⇒ r2 = (s−a)k2

s
=⇒ s

a
= k2

k2−r2

Let ha be the length of the altitude issuing from vertex A. Then we have

a · ha = 2r · s =⇒ ha = 2r·s
a

= 2r·k2

k2−r2 = const.

Locus of A is a parallel line `′ to ` in the half-plane of S such that dist(`, `′) = 2r·k2

k2−r2

Consider the polynomial P (x) from the seventh grade. Knowing that P (x) + 1 is divisible by

(x− 1)4 and P (x)− 1 is divisible by (x+ 1)4, determine P (x).

Solution

Let P (x) = (ax3 + bx2 + cx+ d)(x− 1)4 − 1 and P (x) = (Ax3 +Bx2 + Cx+D)(x+ 1)4 + 1

Then P (x) = ax7+(b−4a)x6+(6a−4b+c)x5+(d−4c+6b−4a)x4+ (a−4b+6c−4d)x3+(6d−4c+

b)x2 +(c−4d)x+(d−1) Also P (x) = Ax7 +(4A+B)x6 +(6A+4B+C)x5 +(4A+6B+4C+D)x4+

(A+ 4B + 6C + 4D)x3 + (B + 4C + 6D)x2 + (C + 4D)x+ (D + 1)

Then A = a B = (b − 4a) − 4A = b − 8a C = (6a − 4b + c) − (6A + 4B) = c − 8b + 32a

D = (d− 4c+ 6b− 4a)− (4A+ 6B + 4C) = d− 8c+ 32b− 88a
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Then 4d− 26c+ 84b− 191a = A+ 4B+ 6C+ 4D = a− 4b+ 6c− 4d =⇒ 24a+ 4c = 11b+ d Also

6d−44c+161b−408a = B+4C+6D = 6d−4c+b =⇒ 51a+5c = 20b Also 4d−31c+120b−320a = C+

4D = c−4d =⇒ 40a+4c = 15b+d Also d−8c+32b−88a+1 = D+1 = d−1 =⇒ 44a+4c = 16b+1

Solving: a = 5
16
, b = 5

4
, c = 29

16
and d = 1

So P (x) =
(

5
16
x3 + 5

4
x2 + 29

16
x+ 1

)
(x− 1)4 − 1 = 5

16
x7 − 21

16
x5 + 35

16
x3 − 35

16
x

Find the rest of the division x1959 − 1 by (x2 + 1) · (x2 + x+ 1)

Solution

x12−1 = (x6+1)(x6−1) = (x2+1)(x4−x2+1)(x2+x+1)(x−1)(x3+1) So (x2+1)(x2+x+1)|x12n−1

x1956 − 1 = x12·163 − 1 ≡ 0 mod (x2 + 1)(x2 + x + 1) So x1956 ≡ 1 mod (x2 + 1)(x2 + x + 1) So

x1959 ≡ x3 mod (x2 + 1)(x2 + x+ 1) So x1959 − 1 ≡ x3 − 1 mod (x2 + 1)(x2 + x+ 1)

Consider the polynominal p = X4 +X3 − 1 with the roots {a, b, c, d} . Ascertain the monic

polynominal with the roots {ab, ac, ad, bc, bd, cd} .
Solution

Denote

ab+ cd = m

ac+ bd = n

ad+ bc = p

. Observe that
∑
a2 = 1 and m+ n+ p = 0 .

Prove easily that mn+ np+ pm =
∑
abc(a+ b+ c) =

∑
abc(−1− d) =

−
∑
abc− 4abcd =⇒ mn+ np+ pm = 4 . Remain to ascertain mnp . Therefore,

mnp =
∑
a2b2c2 + abcd ·

∑
a2 =

∑
1
a2 −

∑
a2 . The polynominal which has the

roots
{

1
a
, 1
b
, 1
c
, 1
d

}
is X4 −X − 1 from where obtain

∑
1
a2 = 0 . Thus,

mnp = −1 . Therefore, the required polynominal is q =
∏

[(X2 − 1)−mX] =

(X2 − 1)
3 −X (X2 − 1)

2 ·
∑
m+X2 (X2 − 1) ·

∑
mn−X3 ·mnp =

(X2 − 1)
3

+ 4X2 (X2 − 1) +X3 . In conclusion, q = X6 +X4 +X3 −X2 − 1 .

For the system ¡n R: {
(x2 − x+ 1)(48y2 − 24y + 67) = 48

x+ y + z = 1

If you consider x0, y0, z0 as the solution of the system, find the value of E = 2x0 + 3y0 + z0

Solution

x2 − x+ 1 =
(
x− 1

2

)2
+ 3

4
≥ 3

4

and 48y2 − 24y + 67 ≥ 48.4
3

⇒ (x2 − x+ 1)(48y2 − 24y + 67) ≥ 48 for all x, y ∈ R Hence x = 1
2
and y = 1

4
.

Find the largest n with no zeroes in its representation such that 2s(n) = s(n2). Here, s(n) is

the sum of the digits of n.

Solution

Let n have k digits. Then s(n) ≥ k; on the other hand, n2 has at most 2k digits, so s(n2) ≤ 18k.

But then 18k ≥ s(n2) = 2s(n) ≥ 2k, whence k ≤ 6. Thus s(n2) ≤ 108, so we need s(n) ≤ 6. Now,

it is known (and easy to prove) that s(N) ≡ N (mod 9). For s(n) = 6 it follows n ≡ 6 (mod 9),

so s(n2) ≡ n2 ≡ 36 ≡ 0 (mod 9), but then 9 | s(n2) = 26, absurd. For s(n) = 5 it follows n ≡ 5

(mod 9), so s(n2) ≡ n2 ≡ 25 ≡ 7 (mod 9), but 25 = 32 ≡ 5 (mod 9). For s(n) = 4 the largest is

n = 1111, with n2 = 1234321, s(n) = 4, s(n2) = 16 = 24 = 2s(n).

If three distinct integers are chosen at random show that there will exist two among them, say

a and b such that 30 divides (a3b− b3a).

Solution

No matter whatever a, b you choose ab(a2 − b2) is divisible by 6(Indeed by 2 and if both of a, b
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are not divisible by 3, then 3|a2 − b2). Now, among the three distinct integers, if one of them is

divisible by 5, we have 5|ab(a2 − b2). If none of them are divisibly by 5, then since there are two

non quadratic non zero residues modulo 5, by pigeonhole principle, we have 5|ab(a2− b2) and hence,

[6, 5] = 30|ab(a2 − b2) = a3b− ab3 as required.

Let ABCDEFG be a regular heptagon and let lengths AB = a,AC = b, AD = c . Then find
b2

a2 + c2

b2
+ a2

c2
.

Solution
b2

a2 + c2

b2
+ a2

c2
= 4 cos2 π

7
+ 4 cos2 2π

7
+

cos2 π
7

cos2 4π
7

= 4 cos2 π
7

+ 4 cos2 2π
7

+ 4 cos2 3π
7

We calculate this sum by noting that cos π
7
, cos 3π

7
,and cos 5π

7

satisfy the polynomial 8x4 + 4x3 − 8x2 − 3x+ 1. From here we find that the sum is just 5

Another way: By Ptolemy’s theorem for quadrilaterals ABDC,ABDE,ABDF,ABCE we have

a2 + a · c = b2 =⇒ b2

a2 = 1 + c
a

(1)

b · c+ a2 = c2 =⇒ a2

c2
= 1− b

c
(2)

a · b+ b2 = c2 =⇒ c2

b2
= a

b
+ 1 (3)

a · b+ a · c = b · c =⇒ a = b·c
b+c

(4)

Adding the expressions (1), (2), (3) together and then combining with (4) yields
b2

a2 + c2

b2
+ a2

c2
= 3 + c

a
+ a

b
− b

c
= 4 + c

b
+ c

b+c
− b

c

But (3) ∩ (4) yields : c
b
− b

c
= 1− c

b+c
=⇒ b2

a2 + c2

b2
+ a2

c2
= 5.

For a, b, c > 0 Prove that
a√
a+b

+ b√
b+c

+ c√
c+a

>
√
a+ b+ c

Solution

Let f(x) = 1√
x
then f ′′(x) > 0.

Hence

a · 1√
a+ b

+ b · 1√
b+ c

+ c · 1√
c+ a

≥ (a+ b+ c)

√
a+ b+ c√

a2 + b2 + c2 + ab+ bc+ ca

>
√
a+ b+ c

Done !

Another apprôach: It might be helpful to mention that Jensen’s inequality

λ1φ(x1) + λ2φ(x2) + ...+ λnφ(xn) ≥ φ(λ1x1 + λ2x2 + ...+ λnxn)

is being used here with

λ1 = a
a+b+c

, λ2 = b
a+b+c

, λ3 = c
a+b+c

;x1 = a+ b, x2 = b+ c, x3 = c+ a and φ(x) = 1√
x
.

Prove that in any triangle the following equality holds: ab+bc+ca = p2 +r2 +4Rr where a, b, c

are the sides of the triangle ,p is half of the perimeter, r is the inradius and R is the circumradius.

Solution

From the area formulae we obtain

abc

4R
= ∆ = rs =

√
s(s− a)(s− b)(s− c); ∴ (s− a)(s− b)(s− c) = r2s.

Expanding our last inequality and applying abc = 4Rrs we get,

s3 − s2(a+ b+ c) + s(ab+ bc+ ca)− 4Rrs = r2s;

Which, on applying a+ b+ c = 2s, leads to

ab+ bc+ ca =
1

s

(
r2s+ 4Rrs+ s3

)
= s2 + r2 + 4Rr.

288

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=371285
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=372335
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=371232


Find all polynomials satisfying f(x2) = {f(x)}2 for all real numbers x

Solution

Notice that f(x) = {f(
√
x)}2 ∈ [0, 1) for all nonnegative real x. However, if f(x) is a non-constant

polynomial, then limx→+∞ |f(x)| =∞, but here f(x) is bounded as x→∞, so f(x) is constant.

Hence, f(x) = c for all real x and f(x2) = {f(x)}2 =⇒ c = {c}2 which has c = 0 as its only real

solution. Therefore, f(x) = 0,∀x ∈ R .

Solve equation

(2 +
√

2)sin2 x − (2 +
√

2)cos2 x + (2−
√

2)cos 2x = (1 +

√
2

2
)cos 2x

Solution

We can rewrite the equation as

(2 +
√

2)sin2 x + (2−
√

2)cos 2x = (2 +
√

2)cos2 x + (2−
√

2)− cos 2x

So if f(x) = (2 +
√

2)sin2 x + (2−
√

2)cos 2x we are looking for the solutions to f(x) = f(π
2
− x).

Now f(x) is strictly increasing on intervals (nπ, (n+ 1
2
)π) and strictly decreasing on the intervals

((n+ 1
2
)π, (n+ 1)π), n ∈ Z Explain

1) sin2(x) increases on (nπ, (n+ 1
2
)π) and decreases on ((n+ 1

2
)π, (n+ 1)π). Since 2 +

√
2 > 1 we

have (2 +
√

2)sin2 x increasing and decreasing on the same domains.

2) cos(2x) decreases on (nπ, (n + 1
2
)π) and increases on ((n + 1

2
)π, (n + 1)π). Since 2 −

√
2 < 1

we have (2−
√

2)cos 2x increasing and decreasing on the respective domains.

3) f is the sum of those two increasing/decreasing functions and is therefore also increasing/decreasing

on the respective domains

Now we have that f(x) and f(π
2
− x) are increasing/decreasing in different domains so they can

meet only once in the domain (nπ, (n+ 1
2
)π) for all n ∈ 1

2
Z

Since we can see the obvious solutions x = (2k+1)π
4

, k ∈ Z and one of these fall in each of the

domains specified above these are the only solutions.

For a parallelogram ABCD, a line through A meet BC,CD at X,Y . Let K,L be the excenters

of 4ABX, 4AYD. Show that ∠KCL is constant.

Solution

Let us consider the configuration where X lies on
−−→
BC and Y ∈ CD, the remaining cases are treated

analogously. Let I be incenter of 4ABX. Since B, I,X,K are concyclic and XI ‖ AL, it follows that
∠AKB = ∠IXB = ∠DAL. But since ∠ADL = ∠KBA, then 4ADL ∼ 4KBA. Hence DL

AB = AD
BK

=⇒ DL
BC = BC

BK .

Since ∠LDC = ∠CBK = 90◦ − 1
2∠ADC, we deduce that 4DLC ∼ 4BCK. Then ∠BCK =

∠DLC implies

∠KCL = 360◦ − ∠BCK − ∠LCD − ∠DCB = ∠LDC + ∠ADC = ∠ADL

=⇒ ∠KCL = 90◦ + 1
2∠ADC = const.

Prove that there aren’t any positive odd numbers a and b satisfying the equation x2 = y3 + 4

Solution

Since x, y are odd numbers, then gcd(x, y) = d → d|4 → d = 1. So x2 − 4 = (x − 2)(x + 2) = y3

and again d = gcd(x − 2, x + 2) → d|4, since both x − 2 and x + 2 are odd numbers, hence d = 1.

Therefore, the product of two relatively prime numbers is a cube of an odd number, so x − 2 = z3

and x + 2 = t3 where zt = y and t3 − z3 = 4 → (t − z)(t2 + tz + z2) = 4. Now, we are left to

examine that whether it holds for two odd numbers or not. Since t, z ≥ 1 → t2 + tz + z2 ≥ 3,
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and hence we should have t − z = 1 and t2 + tz + z2 = 4. Put t = z + 1 in the second equation

then we get (z + 1)2 + (z + 1)z + z2 = 3z2 + 3z + 1 = 4 → 3z2 + 3z − 3 = 0 and the roots are
1
2
(−3 + 3

√
5), 1

2
(−3− 3

√
5) which are not integers. Hence, contradiction.

F is defined on R, where F (x+ F (y)) = F (x) + 2xy2 + y2F (y) Find F (x)

Solution

Let P (x, y) be the assertion that F (x + F (y)) = F (x) + 2xy2 + y2F (y) Then P (x, 0) =⇒ F (x +

F (0)) = F (x) Then P (x+ F (0), 1) =⇒ F (x+ F (1)) = F (x+ F (0) + F (1)) = F (x+ F (0)) + 2(x+

F (0)) +F (1) = F (x) + 2(x+F (0)) +F (1) But P (x, 1) =⇒ F (x+F (1)) = F (x) + 2x+F (1) Then

F (x) + 2(x + F (0)) + F (1) = F (x + F (1)) = F (x) + 2x + F (1) =⇒ 2F (0) = 0 =⇒ F (0) = 0

P (0, y) =⇒ F (F (y)) = y2F (y) Then P (F (x), y) =⇒ F (F (x) + F (y)) = F (F (x)) + 2F (x)y2 +

y2F (y) = x2F (x) + 2F (x)y2 + y2F (y)

Let Q(x, y) be the assertion that F (F (x)+F (y)) = x2F (x)+2F (x)y2 +y2F (y) Then Q(x, 1) =⇒
F (F (x)+F (1) = x2F (x)+2F (x)+F (1) AlsoQ(1, x) =⇒ F (F (1)+F (x)) = F (1)+2F (1)x2+x2F (x)

Then x2F (x) + 2F (x) + F (1) = F (1) + 2F (1)x2 + x2F (x) =⇒ F (x) = F (1)x2

P (0, 1) =⇒ F (1)3 = F (0 + F (1)) = F (0) + F (1) = F (1) =⇒ F (1) = -1 or 0 or 1 P (1, 1) =⇒
F (1)(1 + F (1))2 = F (1 + F (1)) = F (1) + 2 + F (1) =⇒ (F (1) − 1)(F (1) + 1)(F (1) + 2) = 0 =⇒
F (1) = -2 or -1 or 1 Hence F (1) = -1 or 1 So F (x) = −x2,∀x ∈ R or F (x) = x2,∀x ∈ R

Prove that,for real x1, x2, ............xn (sinx1 + sinx2 + ......... + sinxn)2 + (cosx1 + cosx2 +

.............+ cosxn)2 ≤ n2 for n ≥ 1

Solution

Let zi = cosxi + ι sinxi for i = 1, 2, 3, · · · , n

Now as we now that

∣∣∣∣∑n
i=1 zi

∣∣∣∣ ≤∑n
i=1 |zi|

=⇒ (sinx1 + sinx2 + · · ·+ sinxn)2 + (cosx1 + cosx2 + · · ·+ cosxn)2 ≤ n2

A set S0 containing subsets of {1, 2, . . . , n} has the property that for all 1 ≤ a, b ≤ n, a 6= b,

there is some set A ∈ S0 with a ∈ A and b 6∈ A. A series of sets is defined recursively with Si+1

consisting of all sets in Si, plus all pairwise intersections and unions of sets in Si. Prove that for some

k, Sk contains all subsets of {1, 2, . . . , n}.
Solution

There is a set containing a but not b, call it Pb. Similarly, there is a set containing a but not c, which

is Pc.

We have Pb ∩ Pc ∩ Pd ∩ · · · ∩ Pn = {a}. Therefore, after n− 1 iterations, we will have all unitary

subsets of {1, 2, . . . , n}. From there, it’s easy to see that any other subset with elements a1, a2, . . .

will be formed by the union of the sets containing the individual elements of the subset.

Given a convex hexagon ABCDEF . The point Y lies inside the hexagon. Points K,L,M,N, P,Q

are the midpoints of sides AB,BC,CD,DE,EF, FA . Prove that the sum of the squares of fields

QAKY,LCMY,NEPY does not depend on the choice point Y .

Solution

Lemma. If P is an arbitrary point on the plane of 4ABC, whose centroid is G, then one of the

triangles 4PAG, 4PBG, 4PCG is equivalent to the sum of the other two.

WLOG assume that line PG separates segment BC from vertex A. Let M be the midpoint of

BC and let X, Y, Z, U be the orthogonal projections of A,B,C,M onto PG. Then UM is the median

of the right trapezoid BY ZC and 4MUG ∼ 4AZG are similar with similarity coefficient GM
AG = 1

2 .

Therefore
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BY + CZ = 2 ·MU = AX =⇒ PG ·BY + PG · CZ = PG · AX
=⇒ [4PBG] + [4PCG] = [4PAG]

• By similar reasoning, it’s easy to show that the distance from G to an abitrary line ` in the

plane ABC equals the arithmetic mean of the directed distances from A,B,C to `.

Back to the problem, since [4AQK] = 1
4 [4AFB], [4CLM ] = 1

4 [4CBD] and [4ENP ] =
1
4 [4EDF ] are constant, then it’s enough to show that the sum of areas [4Y LM ] + [4Y NP ] +

[4Y QK] is constant. Let G,G′ be the centroids of 4KMP and 4LNQ. Notation δ(P ) stands for

the distance from a point P to the line AF. Then we have

3 · δ(G) = δ(K) + δ(M) + δ(P ) = 1
2 [δ(B) + δ(C) + δ(D) + δ(E)]

=⇒ 3 · δ(G) = δ(L) + δ(N) = 3 · δ(G′)
Since, the same relation occurs with respect to the remaining sides of the hexagon, then we

deduce that G and G′ coincide. In other words, 4KMP and 4LNQ share the same centroid G.

Now, WLOG assume that G lies inside 4MYN and that line Y G separates K,L,M from N,P,Q.

Using the previous lemma in 4KMP and LNQ, we get

[4Y QG] + [4Y NG] = [4Y LG] (1) , [4YMG] + [4Y KG] = [4Y PG] (2)

On the other hand, by adding areas we obtain

[4Y LM ] = [4Y LG] + [4LGM ]− [4YMG] (3)

[4Y NP ] = [4Y PG] + [4NGP ]− [4Y NG] (4)

[4Y QK] = [4QGK]− [4Y QG]− [4Y KG] (5)

Adding the expressions (1), (2), (3), (4), (5) properly gives

[4Y LM ] + [4Y NP ] + [4Y QK] = [4LGM ] + [4NGP ] + [4QGK] = const.

Solve x =
√

3− x
√

4− x+
√

5− x
√

4− x+
√

5− x
√

3− x
Solution

Let a = 4− x, we get √
a2 − a+

√
a2 + a+

√
a2 − 1 = 4− a

Now, play with this equation :√
a2 − a+

√
a2 + a+

√
a2 − 1 = 4− a

=⇒
√
a2 − a+

√
a2 + a = 4− a−

√
a2 − 1

square sides
=⇒ a2 − a+ a2 + a+ 2

√
a4 − a2 = (4− a)2 + (a2 − 1)− 2(4− a)

√
a2 − 1

=⇒ 2a2 + 2
√
a4 − a2 = 2a2 − 8a+ 15− 2(4− a)

√
a2 − 1

=⇒ 2
√
a2(a2 − 1) = 2

√
a2 − 1(a− 4)− 8a+ 15

=⇒ 8
(√

a2 − 1 + a
)

= 15

=⇒
√
a2 − 1 = 15

8
− a

=⇒ a2 − 1 = a2 − 15a
4

+ 225
64

=⇒ −1 = −15a
4

+ 225
64

=⇒ a = 289
240

And so x = 4− a =
671

240
.

Can you explain it a bit better? I am not sure of what the question is asking for, better yet,

can you give an example?

Solution

PLUS the very important piece of information that the 25 guests have each a DIFFERENT number

of acquaintances. Without that, the trivial answer would be that nobody may know A (for example

when the guests each know each other).
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With that, it is an easy play on the easy to prove, classical result that in a finite graph all vertex

degrees cannot be all distinct (I will leave you to find the proof). Assume then there are n guests at

A’s party, each knowing at least a person at the party, all having distinct number of acquaintances.

The only possibility is they know respectively n, n− 1, . . . , 2, 1 people. Denote them respectively by

An, An−1, . . . , A2, A1. Therefore An must know A, and all the other guests Ak, 1 ≤ k ≤ n− 1

Assume An leaves the party. Now each Ak, 1 ≤ k ≤ n − 1, knows k − 1 people at the party.

Since An−1 does not know A1, it follows he knows A, and all the other guests Ak, 2 ≤ k ≤ n − 2.

Continue this reasoning, with An−1, . . . , Am+1 leaving the party, each having known A. Now each

Ak, 1 ≤ k ≤ m, knows max{0, k − n+m} people at the party. But then Am knows max{0, 2m− n}
people. If 2m − n > 0, since Am does not know A1, A2, . . . , An−m, it follows he knows A, and all

the other guests Ak, n−m + 1 ≤ k ≤ m− 1, and we may still continue. The reasoning stops when

2m − n ≤ 0, when all guests still at the party know no more people. It means A was known by

An, An−1, . . . , Am+1, i.e. by n − m people, where m is the largest value such that 2m − n ≤ 0, i.e.

m = bn/2c.
It means the number of guests that know A is exactly n−bn/2c, no more, no less, if the conditions

of the problem are to be obeyed. For n = 25 this gives that 13 guests were acquainted with A.

Note. I think in the original post, there was no condition of each guest to know at least one

other person (but still that they know different number of people). This relaxes the condition on the

degrees of the vertices of this graph. Can you find the answer under these more relaxed conditions?

Let a, b, c, d, e, f > 0. Prove that
ab

(a+b)2 + cd
(c+d)2 + ef

(e+f)2 ≤ 5
8

+ 8abcdef
(a+b)2(c+d)2(e+f)2

Solution

let x = ab
(a+b)2 , y = cd

(c+d)2 , z = ef

(e+f)2 , then x, y, z ∈
(
0, 1

4

]
, and inequality becomes

f (x, y, z) = 5
8

+ 8xyz − (x+ y + z) ≥ 0

but f(x, y, z) is a linear function for each variable, and it’s symmetric, so we get

f (x, y, z) ≥ min
{
f (0, 0, 0) , f

(
0, 0, 1

4

)
, f
(
0, 1

4
, 1

4

)
, f
(

1
4
, 1

4
, 1

4

)}
= 0.

Let a0 be a positive integer and a1, a2, · · · , an distinct integers. Then prove the polynomial

f(x) = a0(x− a1)(x− a2) · · · (x− an)− 1 is irreducible in Q .

Solution

By Gauss’ lemma, it is enough to prove f(x) irreducible over Z. Assume then f(x) = g(x)h(x),

with g(x), h(x) ∈ Z[x] and 0 < min{deg g, deg h} ≤ max{deg g, deg h} < deg f = n (and of course

deg g+deg h = n). Then for any 1 ≤ i ≤ n we have g(ai)h(ai) = f(ai) = −1, therefore {g(ai), h(ai)} =

{−1, 1}, and so (g+h)(ai) = 0. Since deg(g+h) ≤ max{deg g, deg h} < n, it follows g+h is identically

null (having n distinct roots), hence h(x) = −g(x), and f(x) = −g(x)2. But this is a contradiction,

since a0 > 0, while the leading coefficient of −g(x)2 is negative. Notice that the condition a0 > 0 is

necessary; a simple example is enough: f(x) = −(x− 1)(x+ 1)− 1 = −x2.

IF x = 2π
7
,then find tanx.tan2x+ tan2x.tan4x+ tan4x.tanx

Solution

tan kπ
7

; 1 ≤ k ≤ 6 are roots of tan 7θ = 0 which gives the polynomial y6 −
(

7
2

)
y4 +

(
7
4

)
y2 − 7 = 0 with

the substitution y = tan θ

This also yields that tan2 kπ
7

; k = 2, 4, 8 are roots to the polynomial y3 −
(

7
2

)
y2 +

(
7
4

)
y − 7 = so

that from Vieta’s formula tan2 2π
7

+ tan2 4π
7

+ tan2 8π
7

= 21

Further we have tan 2π
7

+ tan 4π
7

+ tan 8π
7

= tan 2π
7

tan 4π
7

tan 8π
7

292

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=370756
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=371553
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=373649


But from Vieta, tan2 2π
7

tan2 4π
7

tan2 8π
7

= 7 and hence tan 2π
7

tan 4π
7

tan 8π
7

= −
√

7

Using the identity 2
∑
ab = (a+ b+ c)2 − (a2 + b2 + c2) we obtain the required sum as −7

If a, b, c ∈ [1, 2] and a+ b+ c = 4 , then :

a
√
b+ c+ b

√
c+ a+ c

√
a+ b ≤ 4

√
3

Solution

Dividing by 4 ,we have that a
4

+ b
4

+ c
4

= 1

Define f(x) =
√
x ,which is concave since f ′′(x) < 0

By Jensen’s inequality we obtain

LHS ≤ f
(
a
4

(b+c)+ b
4

(c+a)+ c
4

(a+b)
a
4

+ b
4

+ c
4

)
≤
√

3 ⇐⇒ a(b+ c) + b(c+ a) + c(a+ b) ≤ 12 ⇐⇒ a(4− a) +

b(4− b) + c(4− c) ≤ 12 ⇐⇒ a2 + b2 + c2 ≥ 4

Since 2(a2 + b2 + c2) ≥ 2(ab+ bc+ ca) =⇒ a2 + b2 + c2 ≥ 16
3
> 4

If a, b, c are positive real numbers and a+ b+ c = 1 prove that

a√
b+ c

+
b√
c+ a

+
c√
a+ b

≥

√
1

2 (ab+ bc+ ca)

Solution

Let b + c = x, c + a = y, b + c = z, and f(t) = 1√
t
. Observe that f ′′(t) > 0. Hence we have

af(x) + bf(y) + cf(z) ≥ f
(
ax+by+cz
a+b+c

)
. The last one equal to f(2(ab+ bc+ ca)) = 1√

2(ab+bc+ca)
.

Find all triples (x, y, z) of real numbers which satisfy the simultaneous equations

x = y3 + y − 8

y = z3 + z − 8

z = x3 + x− 8.

Solution

Let f(t) = t3 + t− 8, then f ′(t) = 3t2 + 1 > 0 for all real t, so f(t) is strictly increasing for all real t.

Notice that f(f(f(x))) = x, but since f(t) is strictly increasing, this implies that f(x) = x (*).

So x3 +x−8 = x =⇒ x3 = 8 =⇒ x = 2. Similarly, for y and z, we have that y = z = 2. Therefore,

(x, y, z) = (2, 2, 2) is the only real solution to the system.

Lemma: If g(t) is a strictly increasing function then g(g(t)) = t ⇐⇒ g(t) = t. Proof: If g(g(t)) = t

then we have that 3 cases:

Case 1: g(t) = t This case is trivial.

Case 2: g(t) > t Since g is increasing, we have that

t = g(g(t)) > g(t) > t;

contradiction.

Case 3: g(t) < t

Since g is increasing, we have that

t > g(t) > g(g(t)) = t;

contradiction.

Hence, g(g(t)) = t ⇐⇒ g(t) = t.

The lemma can then be extended by induction to gk(t) = t ⇐⇒ g(t) = t, when g is strictly

increasing.

Remark: Lemma. If f , g are strict increasing ↗ dynamic function, i.e. f, g : I → I ,
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where I is an interval, then



f(x) = g(y)

f(y) = g(z)

f(z) = g(x)

∥∥∥∥∥∥∥∥∥∥∥∥
=⇒ x = y = z . Indeed,

I x < y ⇐⇒ f(x) < f(y)⇐⇒ g(y) < g(z)⇐⇒ y < z ⇐⇒

f(y) < f(z)⇐⇒ g(z) < g(x)⇐⇒ z < x⇐⇒ absurd .

I x > y ⇐⇒ f(x) > f(y)⇐⇒ g(y) > g(z)⇐⇒ y > z ⇐⇒

f(y) > f(z)⇐⇒ g(z) > g(x)⇐⇒ z > x⇐⇒ absurd .

For f, g : R→ R , where


f(x) = x ↗

g(x) = x3 + x− 8 ↗

∥∥∥∥∥∥∥ obtain the proposed problem.

Let a, b, c such that:

a2 + c2 = 1

b2 + 2b(a+ c) = 6

Prove that: b(c− a) ≤ 4

Solution{
a2 + c2 = 1

b2 + 2b (a+ c) = 6
let t = ac ∈

[
−a2+c2

2
, a

2+c2

2

]
=
[
−1

2
, 1

2

]
, then 1 + 2t = (a+ c)2 =

(
6−b2

2b

)2

=⇒

t =
(b2−6)

2
−4b2

8b2
∈
[
−1

2
, 1

2

]
=⇒ 2 ≤ b2 ≤ 18 so we have

b2 (c− a)2 = b2 (1− 2t) = b2

(
1− (b2 − 6)

2 − 4b2

4b2

)
=

1

4

(
18− b2

) (
b2 − 2

)
≤ 1

4

(
(18− b2) + (b2 − 2)

2

)2

= 16

=⇒ b (c− a) ≤ 4

Solve the equation 13x4 − 19x2 − 21 + (6x2 + 28)
√
x2 − 1 = 0

Solution

let x2 = t2 + 1, t ≥ 0

=⇒ 13(t2 + 1)2 − 19(t2 + 1)− 21 + (6t2 + 34)t = 0

=⇒ 13t4 + 6t3 + 7t2 + 34t− 27 = 0

=⇒ (t2 + t− 1)(13t2 − 7t+ 27) = 0 =⇒ t2 + t− 1 = 0 =⇒ t = −1±
√

5
2

=⇒ t = −1+
√

5
2

=⇒ x2 = 5−
√

5
2

=⇒ x = ±
√

5−
√

5
2

Find x arcsin(1− x)− 2 arcsinx = π
2

Solution

arcsin(1− x) = π
2

+ 2 arcsinx

=⇒ 1− x = sin
(
π
2

+ 2 arcsinx
)

=⇒ 1− x = cos (2 arcsinx) = 1− 2 sin2(arcsinx) = 1− 2x2

=⇒ x = 0, 1
2

For x = 0, LHS=arcsin(1− 0)− 2 arcsin 0 = arcsin 1 = π
2

=⇒ x = 0 is a solution.

For x = 1
2
, LHS=arcsin

(
1− 1

2

)
− 2 arcsin

(
1
2

)
= π

6
− π

3
6= π

2
=⇒ x 6= 1

2
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Let ABCD be a trapezoid, where AD ‖ BC and BC < AD . For a point M ∈ (AB) denote

N ∈ (CD) for which MN ‖ AD , I ∈ MC ∩ NB and F ∈ AB for which FI ‖ AD . Prove that

MF = MA ⇐⇒ BN ‖ FD
Solution

Let G ≡ FI ∩ DC. From 4MIF ∼ 4MCB and 4NIG ∼ 4NBC, we obtain FI
BC = MI

MC and
GI
BC = NI

NB . But MI
MC = NI

NB , due to 4MIN ∼ 4CIB. Therefore, FI = GI, i.e. I is the midpoint of

FG. Assume that M is the midpoint of AF. Then L ≡ FD ∩MN is the midpoint of FD =⇒ IL is

the F-midline of 4DFG =⇒ IL ‖ CN and since IF is parallel to CB, it follows that 4LIF and

4NCB are homothetic through M =⇒ FLD is parallel to BN. The converse is proved analogously.

p is prime. Find p such that p4 − 5p2 + 9 is prime.

Solution

Looking mod 3 tells us that if p ≡ 0 mod 3, then p4 − 5p2 + 9 is divisible by 9, and hence is not

prime. If p 6≡ 0 mod 3, then p4 − 5p2 + 9 ≡ p4 + p2 ≡ 1 + 1 ≡ 2 mod 3, which tells us nothing about

the primality of the expression since numbers equivalent to 2 mod 3 may be prime or not prime.

But checking mod 5 tells us that p4 − 5p2 + 9 ≡ p4 + 4 mod 5. And by Fermat’s Little Theorem

we know that p4 ≡ 1 mod 5 for any p relatively prime to 5. Therefore, p4 − 5p2 + 9 ≡ 0 mod 5 for

any prime p not equal to 5.

So the only way that p4− 5p2 + 9 could be prime is if it equals 5 or if p=5. p4− 5p2 + 9 = 5 =⇒
(p2 − 1)(p2 − 4) = 0 =⇒ p = ±1 or p = ±2. So the prime p = 2 makes the expression prime.

And if p = 5, then p4− 5p2 + 9 = 509, which is prime. So p = 5 also makes the expression prime.

Prove that

n∑
i=1

(−1)n+i

(
n

i

)(
ni

n

)
= nn

Solution∑n
i=1(−1)n+i

(
n
i

)(
ni
n

)
= (−1)n

∑n
i=0(−1)i

(
n
i

)(
ni
n

)
= (−1)ncoefficient of xn in

∑n
i=0(−1)i

(
n
i

)
(1 + x)ni

= (−1)ncoefficient of xn in (1− (1 + x)n)n

= (−1)ncoefficient of xn in
(
−nx−

(
n
2

)
x2 −

(
n
3

)
x3 − · · ·

)n
= (−1)n (−n)n

= nn

Find the smallest natural n > 11 such that exists a polynomial p(x) with degree n that verifies:

i) p(k) = kn, for k = 1, 2, . . . , n.

ii) p(0) ∈ Z.
iii) p(−1) = 2003.

Solution

P (x) = λ
∏n

r=1(x− r) + xn

=⇒ P (0) = λ(−1)nn! =⇒ λ ∈ Q
And P (−1) = λ(−1)n(n+ 1)! + (−1)n = 2003

For n ∈ even

λ(n+ 1)! = 2002 = 2× 7× 11× 13

=⇒ minn = 12, λ = 2002
13!

For n ∈ odd
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−λ(n+ 1)! = 2004 = 4× 3× 167

=⇒ minn = 333, λ = −2004
334!

Hence smallest n = 12 and P (x) = 2002
13!

∏12
r=1(x− r) + x12

If Sn =
∑n

i=1
1
i
; n ≥ 3. Then prove that:

n(n+ 1)
1
n − n < Sn < n− (n− 1)n−

1
(n−1)

Solution

Sn = 1 + 1
2

+ 1
3

+ ...+ 1
n

= (1 + 1) + (1
2

+ 1) + (1
3

+ 1) + ...+ ( 1
n

+ 1)−n = 2 + 3
2

+ 4
3

+ ...+ n+1
n
−n ≥

n n

√
2 · 3

2
· 4

3
· ... · n+1

n
−n = n n

√
n+ 1−n Sn = 1+ 1

2
+ 1

3
+ ...+ 1

n
= n+(1

2
−1)+(1

3
−1)+ ...+( 1

n
−1) =

n− (1
2

+ 2
3

+ ...+ n−1
n

) ≤ n− (n− 1) n−1

√
2 · 1

2
· 2

3
· ... · n−1

n
= n− (n− 1) n−1

√
1
n

1 I For any n ∈ N∗ , an > 0 and limn→∞
an
n

=∞ , prove that limn→∞
∑n

k=1
1

n+ak
= 0.

2 I It is well-known that for the sequence an =
n√
n!
n

, limn→∞ an = 1
e
. Prove that : limn→∞

n
lnn
·(

an − 1
e

)
= 1

2e
.

Solution to problem (1) Using the simple inequality x + y ≥ 2
√
xy , x, y > 0 we obtain :∑n

k=1
1

n+ak
< 1

2
√
n
·
∑n

k=1
1√
ak

. On the other hand,

we have : limn→∞

∑n+1
k=1

1√
ak
−
∑n
k=1

1√
ak√

n+1−
√
n

= limn→∞
√
n+1+

√
n√

an+1
= limn→∞

[√
n+1
an+1
·
(

1 +
√

n
n+1

)]
= 0

.

Thus, by the Cesaro-Stolz theorem we get : limn→∞
1√
n
·
∑n

k=1
1√
ak

= 0 . Then we also have :

lim
n→∞

n∑
k=1

1

n+ ak
= 0 .

Solution to problem (2) n
lnn
·
(
an − 1

e

)
= 1

e
· n

lnn
· (e · an − 1) = 1

e
· n

lnn
· bn · ebn−1

bn
, where bn =

ln(e · an) = 1 + ln an → 0 .

Therefore, limn→∞
n

lnn
·
(
an − 1

e

)
= 1

e
· limn→∞

n·bn
lnn

. On the other hand, limn→∞
(n+1)·bn+1−n·bn

ln(n+1)−lnn
=

= limn→∞
1−n·ln n+1

n

ln(n+1)−lnn
= limn→∞

n·(1−n ln n+1
n )

ln(1+ 1
n)

n = 1
2
, because limn→∞ n ·

(
1− n ln n+1

n

)
= 1

2

(one can easily prove it by l’Hospital’s rule) . Consequently, limn→∞
n·bn
lnn

= 1
2
(Stolz-Cesaro) and

our conclusion follows.

Solve in natural the equation 55 − 54 + 5n = m2

Solution

Suppose n ≥ 4. Then, 54(5 − 1 + 5n−4) = m2 =⇒ 4 + 5n−4 = k2, for some k ∈ Z. Thus,

5n−4 = k2 − 4 = (k − 2)(k + 2) =⇒ k = 3 =⇒ n = 5,m = 75.

For n ∈ {1, 2, 3} it is easy to check that no solution exists.

Hence, the only solution is (m,n) ∈ {(75, 5)}.
Prove that for positive integer n,(

n∑
k=1

√
k −
√
k2 − 1√

k(k + 1)

)2

≤ n

√
n

n+ 1
.

Solution

Use Cauchy-Schawz’s ineq ,we have:

(∑n
k=1

√
k−
√
k2−1√

k(k+1)

)2

≤
(∑n

k=1(k −
√
k2 − 1)

)(∑n
k=1

1√
k(k+1)

)
Because

(∑n
k=1

1√
k(k+1)

)
≤
√
n
(∑n

k=1
1

k(k+1)

)
= n√

n(n+1)

(∑n
k=1(k −

√
k2 − 1)

)
≤
√
n We have

done.
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Find all functions f : Q+ −→ Q+ such that for all x ∈ Q+, (i) f(x + 1) = f(x) + 1; and (ii)

f(x3) = [f(x)]3.

Solution

By mathematical induction we have :

f(x+ n) = n+ f(x) with ∀n ∈ N+

so if m,n ∈ N+ then we have :(
m
n

+ n2

)3

=

(
m
n

)3

+ 3m2 + 3mn3 + n6

so :

f

[(
m
n

+ n2

)3]
= f

[(
m
n

)3]
+ 3m2 + 3mn3 + n6 = f 3

(
m
n

)
+ 3m2 + 3mn3 + n6

But

f

[(
m
n

+ n2

)3]
=

[
f

(
m
n

+ n2

)]3

=

[
f

(
m
n

)
+ n2

]3

Hence:[
f

(
m
n

)
+ n2

]3

= f 3

(
m
n

)
+ 3m2 + 3mn3 + n6

Solve this quadratic equation with f

(
m
n

)
is variable we have root :

f

(
m
n

)
= m

n

Thus :m,n ∈ N+ so m
n
∈ Q+ and we have f(x) = x

Determine the smallest integer which is half of a perfect square, one-third full cube and fifth

complete fifth grade.

Solution

Answer: 215320524

Let this smallest integer be x. Observe that 2, 3 and 5 are all primes. Then the smallest x possible

must only have 2, 3 and 5 as its only prime factors. We let x = 2a3b5c. Condition 1. x is half of a

perfect square. 2x = 2a+13b5c. This requires 2|a+1, b, c. Condition 2. x is one-third of a perfect cube.

3x = 2a3b+15c. This requires 3|a, b + 1, c. Condition 3. x is one-fifth of a fifth power. 5x = 2a3b5c+1.

This requires 5|a, b, c+1. We will examine each variable (a, b and c) one by one. For a, we have 2|a+1

which implies a is odd. Then 3, 5|a implies that 15|a. It follows that min(a) = 15. For b, we have

2, 5|b implies that 10|b. 3|b + 1 means b = 2(mod3). The minimum b that fulfills this requirement is

20. For c, we have 2, 3|c implies that 6|c. 5|b + 1 means c = 4(mod5). The minimum c that fulfills

this requirement is 24. Hence the desired integer is 215320524. QED.

Find the minimum value of

(u− v)2 +
(√

2− u2 − 9
v

)2

for 0 < u <
√

2 and v > 0

Solution

We can rearrange the thing to be minimized as follows:

(u− v)2 +
(√

2− u2 − 9
v

)2
Line 1

=
((

u+
√

2−u2

2
+ u−

√
2−u2

2

)
−
(
v+ 9

v

2
+

v− 9
v

2

))2

+
((

u+
√

2−u2

2
− u−

√
2−u2

2

)
−
(
v+ 9

v

2
− v− 9

v

2

))2

Line 2

=
((

u+
√

2−u2

2
− v+ 9

v

2

)
+
(
u−
√

2−u2

2
− v− 9

v

2

))2

+
((

u+
√

2−u2

2
− v+ 9

v

2

)
−
(
u−
√

2−u2

2
− v− 9

v

2

))2

Line 3

= 2
(
u+
√

2−u2

2
− v+ 9

v

2

)2

+ 2
(
u−
√

2−u2

2
− v− 9

v

2

)2

Line 4

≥ 2
(
u+
√

2−u2

2
− v+ 9

v

2

)2

Line 5
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= 2
(
v+ 9

v

2
− u+

√
2−u2

2

)2

Line 6

≥ 2

(
v−6+ 9

v
+6

2
− u+

√
2−u2+2(u−1)2

2

)2

Line 7

= 2
(
v2−6v+9

2v
+ 3− u+

√
4−4u+u2

2

)2

Line 8

= 2
(

(v−3)2

2v
+ 3− u+2−u

2

)2

Line 9

= 2
(

(v−3)2

2v
+ 3− 1

)2

Line 10

≥ 8 Line 11

Equality happens if u = 1 and v = 3.

In going from line 3 to line 4, we use the fact that (x+ y)2 + (x− y)2 = 2x2 + 2y2.

In going from line 8 to line 9 we use the fact that u ≤
√

2 so 2− u > 0.

In going from line 10 to line 11, we use the fact that v > 0 because that means that (v−3)2

2v
≥ 0

and (v−3)2

2v
+ 2 ≥ 2.

Find all the triples of positeve integers (a, b, c) such as (a+ 1)(b+ 1)(c+ 1) = 2abc

Solution

The equation is equivalent to abc = ab+ bc+ ca+ a+ b+ c+ 1 ⇔ 1 = 1
c

+ 1
a

+ 1
b

+ 1
bc

+ 1
ca

+ 1
ab

+ 1
abc

Now, if a, b, c are all greater or equal than 4, then we get that: 1 = 1
c

+ 1
a

+ 1
b

+ 1
bc

+ 1
ca

+ 1
ab

+ 1
abc

≤ 3
4

+ 3
16

+ 1
64

= 61
64
< 1 Contradiction, therefore at least one of them must be less than 4.

If at least one of them equals 1(WLOG a) then: (b+ 1)(c+ 1) = bc, an absurd.

If at least one of them equals 2(WLOG a) then: 3b+3c+3 = bc⇔ c = 3b+3
b−3
⇔ b−3|3b+3−3(b−3)

⇔ b−3|12 which leads to b = {2, 4, 5, 6, 7, 9, 15} which leads to the triples {(2, 4, 15), (2, 6, 7), (2, 5, 9)}
up to permutations. (They must be checked)

If at least one of them equals 3(WLOG a) then: 2b+2c+2 = bc⇔ 2b+2
b−2

= c⇔ b−2|2b+2−2(b−2)

⇔ b− 2|6 ⇔ b = {3, 4, 5, 8} leading to the triples {(3, 3, 8), (3, 4, 5)} up to permutations.

Checking out all the possible triples we get that they are {(2, 4, 15), (2, 6, 7), (2, 5, 9), (3, 3, 8), (3, 4, 5)}
up to permutations of course.

QED.

Consider addition ⊕ and multiplication ⊗ modulo 7 of the numbers in S = {0, 1, 2, 3, 4, 5, 6}.
This means that

m⊕ n = remainder when m+ n is divided by 7

m⊗ n = remainder when m× n is divided by 7

Then 1 is the multiplicative identity and each element a ∈ S has a multiplicative inverse 1/a. Find

the value of 1
4
⊕
(
2⊗ 1

3

)
.

Solution

1 ≡ 8mod7⇒ 1
4
≡ 8

4
≡ 2mod7 1 ≡ 15mod7⇒ 1

3
≡ 15

3
≡ 5mod7

Thus we have:
1
4
⊕
(
2⊗ 1

3

)
≡ 2⊕ 2⊗ 5 ≡ 2⊕ 10 ≡ 5mod7

a = log150 72,b = log45 180. Find log200 75 in terms of a,b.

Solution

Let log 2 = x, log 3 = y, log 5 = z. Then

a = log200 75 =
log 75

log 200
=

log 3 · 52

log 23 · 52
=

y + 2z

3x+ 2z
,

b = log150 72 =
log 72

log 150
=

log 23 · 32

log 2 · 3 · 52
=

3x+ 2y

x+ y + 2z
,
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and

c = log45 180 =
log 180

log 45
=

log 22 · 32 · 5
log 32 · 5

=
2x+ 2y + z

2y + z
.

Solving for y, z in terms of x, a, b, we find

y =
(2ab+ 3a+ b− 3)x

ab− 2a+ 2
, z =

(−3ab+ 6a− b+ 3)x

2(ab− 2a+ 2)
.

Substituting the result gives

c =
2x

2y + z
+ 1 =

9ab+ 10a+ 3b− 1

5ab+ 18a+ 3b− 9
.

Show that tan π
7

tan 2π
7

tan 3π
7

=
√

7.

Solution

The equation tan 7θ = 0 has roots θ = π
7
, 2π

7
, 3π

7
, ....

sin 7θ
cos 7θ

= 0
=(cos 7θ+i sin 7θ)
<(cos 7θ+i sin 7θ)

= 0
7c6s−35c4s3+21c2s5−s7
c7−21c5s2+35c3s4−7cs6

= 0 ,

using De Moivre’s theorem, (cos θ+i sin θ)7 = (cos 7θ+i sin 7θ), and expanding using the binomial

theorem, where c = cos θ and s = sin θ.
7t−35t3+21t5−t7
1−21t2+35t4−7t6

= 0, on dividing top and bottom by cos7 θ.

t6 − 21t4 + 35t2 − 7 = 0

with t2 = x, this is x3 − 21x2 + 35x− 7 = 0, with roots x = tan2(π
7
), tan2(2π

7
) and x = tan2(3π

7
).

Then by Viete’s formulas, the product of the roots is 7 and so

tan(π
7
) tan(2π

7
) tan(3π

7
) =
√

7.

Let4ABC with orthocenterH and circumcircle C(O,R) . Show |OH| = R
√

1− 8 cosA · cosB · cosC

.

Solution

OH = 3·OG andR2−OG2 = 1
9
·(a2 + b2 + c2) =⇒ OH2 = 9R2−

∑
a2 = 9R2−4R2·

∑
sin2A = 9R2−

2R2·
∑

(1−cos 2A) = R2 (3 + 2 ·
∑

cos 2A) =⇒ OH2 = R2
(

3 + 2 ·
∑

cos 2A
)

(1) . Observe that∑
cos 2A = cos 2A+2 cos(B+C) cos(B−C) = 2 cos2A−1−2 cosA cos(B−C) =−1−2 cosA[(cos(B+

C) + cos(B − C)] = −1− 4 cosA cosB cosC , i.e.
∑

cos 2A = −1− 4 ·
∏

cosA . In conclusion,

the relation (1) becomes OH2 = R2 · (1− 8 · cosA cosB cosC) , i.e. OH = R ·
√

1− 8
∏

cosA . On

other hand, 1−8 ·
∏

cosA = 1−4 cosA[cos(B+C)+cos(B−C)] = 1−4 cosA cos(B−C)+4 cos2A =

[2 cosA− cos(B − C)]2 + sin2(B − C) . Thus, 1 − 8 ·
∏

cosA ≥ 0 , i.e. cosA cosB cosC ≤ 1
8
. We

have the equality ⇐⇒ A = B = C ⇐⇒ O ≡ H .

Solve |x2 − 12|x|+ 20| ≤ 9 .

Solution

x2 = |x|2 =⇒ x2−12|x|+20 = (|x|−2)(|x|−10) .We’lluse the substitution |x| − 2 = t ≥ −2 (∗)
. Therefore, our

inequality becomes |t(t − 8)| ≤ 9 ⇐⇒ (t2 − 8t− 9) (t2 − 8t+ 9) ≤ 0 ⇐⇒ t ∈
[
−1, 4−

√
7
]
∪[

4 +
√

7, 9
] (∗)⇐⇒

|x| ∈
[
1, 6−

√
7
]
∪
[
6 +
√

7, 11
]
⇐⇒ x ∈

[
−11,−6−

√
7
]
∪
[
−6 +

√
7,−1

]
∪
[
1, 6−

√
7
]
∪
[
6 +
√

7, 11
]
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The last digit of the number x2 + xy+ y2 is zero (where x, y are positive integers). Prove that

two last digits of this number are zeros.

Solution

This means x3 ≡ y3 (mod 10). Let us show then x ≡ y (mod 10); it will follow 3x2 ≡ 0 (mod 10),

hence x ≡ 0 (mod 10), therefore x2 + xy + y2 ≡ 0 (mod 100).

But x3 ≡ y3 (mod 10) implies x3 ≡ y3 (mod 2), and so x ≡ y (mod 2). Also x3 ≡ y3 (mod 10)

implies x3 ≡ y3 (mod 5), and so x ≡ y (mod 5). Together, they yield x ≡ y (mod 10), as claimed.

Find all a such that {
|x+ 1|a = y + cosx

sin2 x+ y2 = 1

have only real solution

Solution

Rearranging the second equation, we have

y2 = 1− sin2 x = cos2 x =⇒ y = cosx, y = − cosx.

For every value of x that solves the system, there will be two corresponding values of y, which

means there will be multiple solutions. The only case in which there will be one corresponding value

of y is when cosx = 0 (consequence of y = cosx = − cosx) or x = π(2k+1)
2

for some k ∈ Z. Thus,
we have |x + 1|a = y + cosx = 2 cos x = 0. So we must have a = 0. Or x = −1 =⇒ −1 = π(2k+1)

2
.

Solving, we obtain a non-integer value of k so we know that |x+1| 6= 0. Thus, a = 0 is the only value

that will yield the desired condition.

A caravan of 7 horse-pulled wagons travels across the country. The journey lasts several days,

and the horse riders are getting are getting tired of looking at the wagon ahead of him. In how many

ways is it possible to permute the wagons so that each wagon is preceded by wagon different from

the original one?

Solution

Call Ti is the number of permutations in which seven cars have i cars do not change position. We have

|Ti| = (7− i)! And |Tj1
⋂
...
⋂
Tjk | = (7−k)! (j1, j2, .., jk ∈ (1, 2, ..., 7) (1 ≤ k ≤ 7)⇒ Inverted several

ways to satisfy the assignment is: 7! − |T1

⋃
T2

⋃
...
⋃
T7| = 7! −

∑7
k=1(−1)k+1

(
7
k

)
|Tj1

⋂
...
⋂
Tjk | =

7!−
∑7

k=1(−1)k+1
(

7
k

)
(7− k)!

Prove that N =

√
1 +

√
3 +

√
5 +

√
· · ·+

√
2n− 1 < 2 for all n > 1

Solution

We use the inequality (2(n−k)−1)+(n−k+2) < (n−k+1)2, equivalent to (n−k)(n−k−1) > 0

for 0 ≤ k ≤ n−2. Start, for k = 0, with 2n−1 < (2n−1)+(n+2) < (n+1)2, hence 2n−3+
√

2n− 1 <

(2(n−1)−1) + (n+ 1) < n2 (for k = 1). Then 2n−5 +
√

2n− 3 +
√

2n− 1 < (2(n−2)−1) + (n) <

(n − 1)2 (for k = 2). And so on, until 1 +
√

3 + · · ·+
√

2n− 1 < 1 + 3 = 4. A different approach.

First look at an =

√
1 +

√
1 + · · ·+

√
1, with n nested radical signs. The sequence (an)n≥1 is clearly

increasing, starting with a1 = 1. For n > 1 we have a2
n = 1 + an−1 < 1 + an, thus an must be less

than the positive root of λ2 − λ − 1, which is φ =
1 +
√

5

2
<
√

3. (In fact it is easy to see that

limn→∞ an = φ.)

Now define xn =

√
1 +

√
3 + · · ·+

√
2n− 1. Then

√
3 +

√
5 + · · ·+

√
2n− 1 =

√
3

√
1 +

√
5/9 + · · ·+

√
(2n− 1)/3n−1 <

√
3an−1 <

√
3φ < 3, since all fractions appearing are subunitary. This yields xn <

√
1 + 3 =
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2 ( in fact a stronger bound is found, and if we start later, e.g.

√
5 +

√
7 + · · ·+

√
2n− 1 =

√
5

√
1 +

√
7/25 + · · ·+

√
(2n− 1)/5n−2 <

√
5an−2 <

√
15, we will get better and better bounds).

(1), (4, 7, 10), (13, 16, 19, 22, 25), (28, 31, 34, 37, 40, 43, 46)....... in the above sequence of brackets

2nd, 4th, 6th brackets are removed. in the new sequence of brackets formed (a) does 2011 appear in

some bracket? if so in which bracket it appears. (b) Find the sum of the numbers in n th bracket.

Solution

The general term for all nos. appearing is 3k+ 1. So 2011 appears in some bracket. The first term in

the kth bracket is 3(k−1)2 +1 So let 3(k−1)2 +1 ≤ 2011 < 3k2 +1⇒ (k−1)2 ≤ 670 < k2 ⇒ k = 26

So 2011 appears in the 26th bracket.

Also kth bracket has 2k − 1 numbers. So nos. in kth bracket form an A.P. with a = 3(k − 1)2 + 1

and d = 3 and n = 2k−1 so l = a+(n−1)d = 3k2−6k+3+1+6k−3 = 3k2 +1 a+ l = 6k2−6k+5

So sum = n
2
[a+ l] = 2k−1

6k2−6k+5
= 12k3−18k2+16k−5

2

Find the value of Sn = arctan 1
2

+ arctan 1
8

+ arctan 1
18

+ · · ·+ arctan 1
2n2 . Also find limn→∞ Sn.

Solution

here Tr = tan−1 1
2r2 = tan−1(2r + 1)− tan−1(2r − 1)

so telescopic series

Sn = tan−1(2n+ 1)− tan−1(1)

limn→∞ Sn = π
2
− π

4
= π

4

What is n that makes the following numbers integers: n+1
5
, n+2

7
, n+3

9

Solution

Answer = n = 159 + 315t, t ∈ N ∪ t = 0

Condition 1. n+1
5

being an integer implies that n ≡ 4 (mod 5). Condition 2. n+2
7

being an integer

implies that n ≡ 5 (mod 7). Condition 3. n+3
9

being an integer implies that n ≡ 6 (mod 9).

Let us combine the first 2 conditions. Since n ≡ 5 (mod 7), write n = 5 + 7k for some integer

k. Then: 5 + 7k ≡ 4 (mod 5) 2k ≡ 4 (mod 5) k ≡ 2 (mod 5) gcd(5, 7) = 1. By Chinese Remainder

Theorem, we should have solution in mod 35. 7(2) + 5 = 19. The solution is hence ≡ 19 (mod 35).

Now let us combine this with the last condition. In a similar manner, we have n = 19 + 35m for

some integer m. Then: 19 + 35k ≡ 6 (mod 9) 8k ≡ −13 (mod 9) 8k ≡ 32 (mod 9) k ≡ 4 (mod 9)

gcd(35, 9) = 1. Again, by Chinese Remainder Theorem, we should have solution in mod 315. 35(4)+

19 = 159. The solution is hence ≡ 159 (mod 315).

Hence the solution is n = 159 + 315t, t ∈ N ∪ t = 0. QED.

If f a two times differentiable function and f(0) = f(2) = 0 then prove that there is at least

one x0 ∈ (0, 2) such as |f ′′(x0)| ≥ |f(1)|
Solution

By mean value theorem, there exists c ∈ (0, 1) such that f ′(c) = f(1). Similarly there exists d ∈ (1, 2)

such that f ′(d) = −f(1). Then there exists x0 ∈ (c, d) such that f ′′(x0) = −2f(1)
d−c . d − c < 2, so the

result follows.

Let m and n be positive integers. Suppose that gcd(11k− 1,m) = gcd(11k− 1, n) holds for all

k ∈ N. Assume that m > n. Prove that m
n
is a power of 11.

Solution

Let p 6= 11 be a prime. Then pα | n if and only if pα | m. This follows because one can find k such

that pα | 11k − 1 (since 11 is inversible modulo pα). Therefore n = 11νz and m = 11µz for some

positive integer z with 11 - z. Since m > n, it follows µ > ν, and so
m

n
= 11µ−ν .
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Show that
1
2
· 3

4
· 5

6
· · · 2n−1

2n
≤ 1√

3n

without induction.

Solution

It is elementary to prove that
2k − 1

2k
≤
√

3(k − 1) + 1√
3k + 1

for k ≥ 1 (in fact with strict inequality for

k > 1), since indeed, by squaring, it is equivalent to 1 ≤ k.

Then by telescoping
∏n

k=1

2k − 1

2k
≤
∏n

k=1

√
3(k − 1) + 1√

3k + 1
=

1√
3n+ 1

<
1√
3n

.

Show that the only solution to 5x − 3y = 2 where x, y ∈ N is x = y = 1

Solution

5x − 3y = 2 = 5 − 3, so 5(5x−1 − 1) = 3(3y−1 − 1). Assume x, y > 1. So 5 | 3y−1 − 1, implying

y − 1 = 4b. Then 3 · 80 = 3(34 − 1) | 3(34b − 1), therefore 48 | 5x−1 − 1, implying x − 1 = 4a.

Then 13 · 48 = 624 = 54 − 1 | 54a − 1, therefore 13 | 34b − 1. This in turn implies b = 3c, so

24 · 5 · 7 · 13 · 73 = 813 − 1 | 34b − 1, hence 5 | 54a − 1, absurd, since x > 1 implies 4a > 0.

Pairwise distinct real numbers a, b, c satisfies the equality

a+
1

b
= b+

1

c
= c+

1

a
.

Find all possible values of abc.

Solution

We have a − b = 1
c
− 1

b
= b−c

bc
, b − c = 1

a
− 1

c
= c−a

ac
, and c − a = 1

b
− 1

a
= a−b

ab
. Multiplying these

equations together yields (a − b)(b − c)(c − a) = (b−c)(c−a)(a−b)
(abc)2 . Since a, b, c are pairwise distinct,

(a− b)(b− c)(c− a) 6= 0, so (abc)2 = 1, so abc = ±1. (a, b, c) = (1,−1
2
,−2) and (a, b, c) = (−1, 1

2
, 2)

yield solutions to the given equations satisfying abc = 1 and abc = −1, respectively, so the set of all

possible values of abc is {−1, 1}.
Let MN not perpendicular d, M lie on d. The circle ω variable touching d at M. NH, NK

touches ω at H,K. Prove HK passes through a fixed point

Solution

Let (U) be the fixed circle centered at d and passing through M,N. Perpendicular d′ to NM at M

cuts (U) again at the fixedD. Variable circle ω cuts linesNM and d′ again at P,R. LetQ ≡ RP∩DN.
Then the circles ω, (U) and �(PNQ) concur at the Miquel point E of 4DMN ∪ PQR. But P is

ortocenter of 4DNR, due to ∠PRD = ∠PND =⇒ N,E,R are collinear. Let F ≡ EM ∩PR. Since
line pencil N(M,R, F,D) is harmonic, it follows that NF is the polar of D WRT ω. Therefore, the

polar HK of N WRT ω pass through the fixed point D. ( thiếu hình vẽ đi kèm)

In the triangle ABC given that ∠ABC = 120◦. The bisector of ∠B meet AC at M and

external bisector of ∠BCA meet AB at P. Segments MP and BC intersects at K. Prove that

∠AKM = ∠KPC.

Solution

Lemma. In 4ABC, internal angle bisector of ∠ABC and external angle bisectors of ∠BCA and

∠CAB are concurrent. Proof. It suffices to prove that B-excenter IB lies on the angle bisector of

∠B. Let X and Y be the projections of IB onto BA and BC, respectively. In 4BXIB and 4BY IB,
BX = BY and IBX = IBY , implying that 4BXIB ∼= 4BY IB. Hence, IB lies on the angle bisector

of ∠B, and the lemma is proven. �

According to above lemma, P is the M -excenter of 4MBC, and therefore K lies on the angle

bisector of ∠BMC.
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By the lemma again, since K is A-excenter of 4ABM , we have that K lies on the angle bisector

of ∠BAC.

From here on, easy angle chasing shows that ∠AKM = ∠KPC = 30◦. We are done. �

The base of pyramid is an equilateral triangle of side ‘a’. The lateral sides are ‘b’ each. Find

the largest volume of the sphere that can be inscribed in this pyramid.

Solution

Let I be the incenter of the inscribed sphere, 4ABC be equilateral with side length a, and D be

the apex of the pyramid such that AD = BD = CD = b. Then by symmetry, the sphere’s point of

tangency D′ in plane ABC is the center of the equilateral triangle, and D, I,D′ are collinear.

Now consider the plane DD′A, which intersects BC at M . Then again by symmetry, we must

have the sphere’s point of tangency A′ be in this plane, and furthermore, D,A′,M are collinear.

Thus it suffices to consider right 4DMD′, in which a semicircle with center I is inscribed. We now

proceed to find the side lengths of this triangle.

First, it is easy to see that D′M = a
2
√

3
, since 4D′MB is 30-60-90 with right angle at M . Next,

by the Pythagorean theorem, DM2 = DB2 −MB2 = b2 − (a/2)2, so DM =
√
b2 − (a/2)2. Hence

(DD′)2 = DM2 − (D′M)2 = b2 −
(
a
2

)2 −
(

a
2
√

3

)2

= b2 − a2

3
.

Now we observe that ID′ = IA′ = r, and so ID = DD′ − ID′ =
√
b2 − a2/3 − r. Since

4IA′D ∼ 4MD′D, it follows that MD
MD′

= ID
IA′

, or√
b2 − a2/4

a/
√

12
=

√
b2 − a2/3− r

r
.

Solving this equation for r yields

r =

√
3(4k − 1)− 1

4
√

3(3k − 1)
a,

where k = (b/a)2 > 1/3, since a > b
√

3 > 0 for the pyramid to be non-degenerate.

n (≥ 2) is a natural number. Show that
∏n−1

k=1 sin kπ
n

= n
2n−1

Solution

let ω = cos 2π
n

+ i sin 2π
n
, then ω, ω2, · · · , ωn−1 are the roots of xn−1 + xn−2 + · · ·+ x+ 1 = 0

xn−1 + xn−2 + · · ·+ x+ 1 = (x− ω)(x− ω2) · · · (x− ωn−1)

Plugging x = 1

n = (1− ω)(1− ω2) · · · (1− ωn−1)⇒ n = |1− ω||1− ω2| · · · |1− ωn−1|

and we have

|1− ωk| = |1− cos
2kπ

n
− i sin

2kπ

n
| = 2 sin

kπ

n
(0 ≤ k ≤ n− 1)

so

2n−1

n−1∏
k=1

sin
kπ

n
= n⇒

n−1∏
k=1

sin
kπ

n
=

n

2n−1

In a triangle ABC, bisector of ∠BAC, AU is drawn. From B and C perpendiculars BE and

CF on AU are drawn. If AD is the altitude of 4ABC , then prove that AE · AF ≥ AD2

Solution

Thiếu hình vẽ [hide="Diagram"](http://oi51.tinypic.com/21dk7zl.jpg )[img]http://oi51.tinypic.com/21dk7zl.jpg[/img]

Let M be the midpoint of EF and G be the point such that EBFG is a parallelogram.
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If AB = AC then U,E, F,D coincide and equality occurs. Now suppose AB > AC, as in the

diagram. Then ∠C > ∠B.

Suppose for a contradiction that 90◦ − A
2
≥ C.

Then 90◦ + C
2
> 90◦ + B

2
≥
(
C + A

2

)
+ B

2
= 90◦ + C

2
, contradiction.

Then 90◦ − A
2
≤ C which means ∠ACE < C =⇒ E ∈ (AU). In a similar fashion we can prove

that F lies on AU extended beyond U .

Now by the angle bisector theorem and similar triangles,

AF − AU
AU − AE

=
BU

CU
=
AB

AC
=
AF

AE

So AE(AF −AU) = AF (AU −AE) =⇒ AE ·AF = AU · AE+AF
2

. So the inequality is equivalent

to proving AU · AE+AF
2
≥ AD2.

In fact we of course have AU ≥ AD so it suffices to prove 1
2
(
−→
AE +

−→
AF ) ≥

−→
AU ⇐⇒

−−→
AM ≥

−→
AU ⇐⇒ M ∈ (UF ).

Since M is the midpoint of the diagonal EF of the parallelogram BG, it is also the midpoint of

diagonal BG. It is easy to prove CE > BF , since for example CE = AC sin A
2
< AB sin A

2
= BF .

Then EG = BF > EC, so G lies on EC extended beyond C which means that the intersection of

BG with the line AU is further down that the intersection with BC. The inequality follows.

x, y, z ≥ 0; x+ y + z = 4 Find the minimum value of P =
√

2x+ 1 +
√

3y + 1 +
√

4z + 1

Solution

Use this lemma:
a ≥ 0, b ≥ 0√
a+ 1 +

√
b+ 1 ≥

√
a+ b+ 1 + 1

The proof of this is easy Then we have

√
2x+ 1 +

√
3y + 1 +

√
4z + 1 ≥

√
2x+ 3y + 1 + 1 +

√
4z + 1

≥
√

2x+ 3y + 4z + 1 + 2 ≥
√

2(x+ y + z) + 1 + 2 = 5

equality is held when x = 4, y = z = 0

For the 3 positive real numbers a, b, c satisfy (a+ b+ c)
(

1
a

+ 1
b

+ 1
c

)
= 16 , find the maximum

and minimum value of a2+2b2

ab

Solution

By AM-GM,a
2+2b2

ab
≥ 2
√

2 Equality is held when a =
√

2, b = 1, c =
29−16

√
2+
√

1353−932
√

2

2
On the other

hand,By Cauchy,16 = (a+ b+ c)( 1
a

+ 1
b

+ 1
c
) ≥ [

√
(a+ b)( 1

a
+ 1

b
) + 1]2 So (a+ b)( 1

a
+ 1

b
) ≤ 9 Let, b

a
=

x,x>=1,or we can change a and b x + 1
x
≤ 7x ≤ 7+3

√
5

2
f(x) = 2x + 1

x
≤ max

{
f(1), f(7+3

√
5

2
)
}

=

21+3
√

5
2

Equality is held when a = 1, b = 7+3
√

5
2

, c = 3+
√

5
2

Find all positive integer solutions of equation n3 − 2 = k!.

Solution

For k > 3 we have 4 | k!, so 4 | n3 − 2, hence 2 | n3, therefore 8 | n3, leading to 4 | n3 − k! = 2,

absurd. Thus the only solution is 23 − 2 = 3!.

Given 4ABC, find the location of P such that its pedal triangle is an isosceles right-angled

triangle.

Solution

Let P1, P2, P3 be the orthogonal projections of P on the sidelines BC,CA,AB. Assume that4P1P2P3

is isosceles right with apex P1. By generalized Simson theorem, 4P1P2P3 is similar to the triangle

304

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=389500
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=389487
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=387468
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=389492


4A′B′C ′ formed by the inverses A′, B′, C ′ of A,B,C under any inversion with center P and arbitrary

power k2. Thus, P1P2 = P1P3 ⇐⇒ A′B′ = A′C ′. By inversion properties, we get
A′B′

AB
= k2

PA·PB , A′C′

AC
= k2

PA·PC =⇒ AB
AC

= PB
PC

Hence, P lies on the A-Apollonian circle of 4ABC. On the other hand, we have that ∠P2P1P3 =

90◦. Thus, from the cyclic quadrilaterals PP1BP3 and PP1CP2 we deduce that ∠PBA+∠PCA = 90◦

=⇒ ∠BPC = 90◦ + ∠BAC (mod π). In other words, if the perpendicular to AC through C cuts

AB at D, then P lies on the circle �(BCD). Therefore, A-Apollonian circle of 4ABC and �(BCD)

intersect at two points whose pedal triangles are isosceles right with apex on BC. Repeating the

same construction for CA,AB yields at most 6 distinct points whose pedal triangles with respect to

4ABC are isosceles right.

Proof (without the use of pigeonhole principle) that a simple graph has at least two vertices

of the same degree. Is this possible?

Give a counter example to show that the result is not true for a graph which is not a simple

graph.

Solution

The pigeonhole principle is such a basic one, that it is likely that any proof will contain a hidden

equivalent of it. Typically, if all degrees are distinct, and since any degree d obeys 0 ≤ d ≤ |G| − 1

in a simple graph, it means the set of the values of the degrees is {0, 1, . . . , |G| − 1}. But the vertex

having degree |G|−1 is therefore connected to all other, in contradiction with the fact that one of the

vertices had degree 0, unless |G| = 1, where the only vertex has degree 0, and there are not enough

vertices to have a degree equality.

The minimal counterexample for a not-simple graph is |G| = 2, with the only edge a loop.

m

1 +m+mn
+

n

1 + n+ np
+

p

1 + p+ pm
+

(mnp− 1)2

(1 +m+mn)(1 + n+ np)(1 + p+ pm)
= 1 .

Remark. {m,n, p} ⊂ R∗+ =⇒ m

1 +m+mn
+

n

1 + n+ np
+

p

1 + p+ pm
≤ 1 with equality iff

mnp = 1 .

A geometrical interpretation. Let4ABC with the area S = [ABC] = 1 . For the pointsM ∈ (BC)

, N ∈ (CA) , P ∈ (AB)

define X ∈ BN ∩ CP , Y ∈ CP ∩ AM , Z ∈ AM ∩ BN . Denote MB
MC

= m , NC
NA

= n , PA
PB

= p .

Observe that

[ABZ]+[BCX]+[CAY ]+[XY Z] = 1 and prove easily that [ABZ] = m
1+m+mn

, [BCX] = n
1+n+np

,

[CAY ] = p
1+p+pm

. Then the area of the triangle XY Z is [XY Z] = (1−mnp)2

(1+m+mn)(1+n+np)(1+p+pm)
.

Particular case. m = n = p =⇒ [XY Z] = (m−1)2

m2+m+1
· [ABC] .

A 3-digit number is divisible by 11 , and the quotient is the sum of all digits’ square . Find

the 3-digit number.

Solution

Let the number be 100a+ 10b+ c

Now a+c-b=0 ,11

Let 100a+ 10b+ c = 11(a2 + b2 + c2)

Case 1: b = a+ c =⇒ 10a+ c = 2(a2 + ac+ c2) =⇒ c = 2c1

=⇒ 5a+ c1 = a2 + 2ac1 + 4c2
1 =⇒ c1 = Even

c1 = 0 =⇒ a = 5, b = 5; c1 = 2, 4 =⇒ No solution
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=⇒ required number is 550

550 = 11× 50 = 11× (52 + 52 + 02)

Case 2: b = a+ c− 11 =⇒ c ≥ 2 and 10a+ c− 10 = (2a2 + 2ac+ 2c2 + 121− 22a− 22c)

=⇒ 2a2 + 2ac+ 2c2 + 131− 32a− 23c = 0

=⇒ c = odd

c = 3 =⇒ a2 − 13a+ 40 = 0 =⇒ a = 8, 5

=⇒ a = 8, b = 0

=⇒ required number is 803

803 = 11× 73 = 11× (82 + 02 + 32)

c = 5, 7, 9 =⇒ No solution

Hence Required Number is 550, 803

Let p is a prime number. Prove that pp+1 + (p+ 1)p is not a perfect square.

Solution

Of-course p > 2,so odd,let p = 2k + 1 and then p 6 |a (p + 1)p = a2 − pp+1 = (a + pk+1)(a − pk+1)

gcd(a+pk+1, a−pk+1) = gcd(a−pk+1, 2a) = gcd(a−pk+1, 2) = 2 So let a−pk+1 = 2xm, a+pk+1 = 2ym

with gcd(x, y) = 1 Then ym − xm = pk+1 But from Tricky lemma,m = p and k = 1.Which gives us

p = 3 yielding y3 − x3 = 9 which has no solution.

0 ≤ α < β < γ ≤ 2π sinα+ sin β+ sin γ = 0 cosα+ cos β+ cos γ = 0 Find the value of β−α
Solution

We have:

sinα + sin β = − sin γ and cosα + cos β = − cos γ . This implies that:

sin2 α + 2 sinα sin β + sin2 β + cos2 α + 2 cosα cos β + cos2 β = 1

cos (β − α) = −1
2

Since α and β lie in [0,2pi] and β > α, β − α must also be on [0,2pi]. We have two possibilities:

β − α = 2π
3

and β − α = 4π
3

Substituting the first solution in the sine equation, we get sin (α + π
3
) = sin−γ, which implies

that γ = −α− π
3
(absurd, since for positive alpha, gamma would be negative) and γ = α− 2π

3
(also

absurd, because gamma is larger than alpha).

Thus, the only solution is 4π
3

n is a natural number, where n > 1 Find the value of n satisfying 3n+1
n2 ∈ N

Solution

Lemma: If n > 1 odd,n 6 |3n + 1 Proof: Let p be the smallest prime factor of n Then 32n ≡ 1

mod p, 3p−1 ≡ 1 =⇒ 3gcd(p−1,2n) ≡ 1 mod p Since p − 1 < p and even,gcd(p − 1, 2n) = 2 and

therefore p|32 − 1,contradiction. So n = 1

Now back to original problem,n even so 2||3n + 1 ≡ 2 mod 2 but 4|n2|3n + 1,contradiction. Thus

n = 1 is the only solution.

n is a natural number. Show that 1 · 3 · 5 · · · (2n− 1) < 2nn−1 with no use of induction.

Solution

By AM ≥ GM =⇒ 2r+1+(2n−(2r+1))
2

≥
√

(2r + 1)(2n− (2r + 1))

=⇒ (2r + 1)(2n− (2r + 1)) ≤ n2

=⇒
∏n−2

r=1 (2r + 1)(2n− (2r + 1)) ≤
∏n−2

r=1 n
2

=⇒
∏n−2

r=1 (2r + 1)
∏n−2

r=1 (2n− (2r + 1)) ≤ (n2)n−2

=⇒
∏n−2

r=1 (2r + 1)
∏n−2

r=1 (2r + 1) ≤ n2n−4
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=⇒
∏n−2

r=1 (2r + 1) ≤ nn−2

Now 2n− 1 < 2n =⇒ 1 · 3 · 5 · · · (2n− 1) < 2nn−1

Let l be a line bisecting both of perimeter, area of triangle ABC Let O, H, I, G be its

circumcenter, orthocenter, incenter, centroid. Does l pass through one of O, H, I, G certainly ?

Solution

If ` cuts AB,AC atM,N, then AM+AN = BM+CN+BC (1). Let (I, r) be the incircle of4ABC
and without loss of generality assume that I is inside 4AMN. From [4AMN ] = [�BMNC], we

get

[4IAM ] + [4IAN ] + [4MIN ] = [4IBM ] + [4ICN ] + [4IBC]− [4MIN ]

2[4MIN ] + 1
2 r(AM + AN) = 1

2 r(BM + CN +BC) (2)

From (1) and (2), it follows that [4MIN ] = 0 =⇒ I ∈ `.

a, b, c, d are natural numbers, where a < b < c < d Show that there don’t exist a, b, c, d between

two consecutive perfect square numbers such that ad = bc

Solution

Let (a, b) = x and a
x

= y and b
x

= w, so that (w, y) = 1. The equation becomes yd = wc. So w

must be a factor of the left hand side but it is relatively prime with y. Thus d = zw for some z,

and the equation finally becomes yzw = wc or c = yz. Thus we can find integers w, x, y, z so that

a = xy, b = wx, c = yz, d = zw.

Now because d > b, c we know that z > x and w > y. Because they’re integers, we know that

z ≥ x+ 1 and w ≥ y + 1.

Let a = k2 +m where 0 ≥ m < 2k + 1. Then k2 ≤ xy
(
x−y

2

)2
+ xy =

(
x+y

2

)2
whence x+ y ≥ 2k.

Adding this to xy+1 ≥ k2 +1, we get (x+1)(y+1) ≥ (k+1)2. But d = zw ≥ (x+1)(y+1) ≥ (k+1)2,

so d ≥ (k + 1)2 > a which is a contradiction.

Prove that : tanα + tan β ≥ 2tan
√
αβ for each α, β ∈ [0, π

2
]

Solution

It is noticed that f(x) = tan(x) is convex on x ∈
[
0, π

2

]
. Hence, by Jensen inequality, we have

tanα + tan β ≥ 2 tan

(
α + β

2

)
The last line is just an observation that tan(x) is increasing and α + β ≥ 2

√
αβ So we are done

for now.

Let n is a positive integer. Prove that:
⌊√

n− 3
4

+ 1
2

⌋
+
⌊√

n− 1
⌋

=
⌊√

4n− 3
⌋

Solution

Let x be the unique integer such that x2 − x + 1 ≤ n < x2 + x + 1 [
√
n− 3

4
+ 1

2
] + [
√
n− 1] =

[
√

4x2−4x+1
2

+ 1
2
] + [
√
x2 − x] = x+ x− 1 = 2x− 1 And [

√
4n− 3] = [

√
4x2 − 4x+ 1] = 2x− 1

Let n ∈ N. Prove 1
n+1

+ 1
n+2

+ · · ·+ 1
2n
< 3

4
.

Solution

Denote An = 1
n+1

+ 1
n+2

+ · · ·+ 1
2n

and apply the Chebyshev’s inequality for two decreasing sentencies

:

An ·
(
An + 1

2n

)
= An ·

(
An + 1

n
− 1

2n

)
=
(

1
n+1

+ 1
n+2

+ · · ·+ 1
2n

)
·
(

1
n

+ 1
n+1

+ · · ·+ 1
2n−1

)
<

n ·
[

1
n·(n+1)

+ 1
(n+1)·(n+2)

+ . . . 1
(2n−1)·2n

]
= n ·

∑n−1
k=0

(
1

n+k
− 1

n+k+1

)
= 1

2
.

In conclusion, An ·
(
An + 1

2n

)
< 1

2
=⇒ 2n · A2

n + An − n < 0 ⇐⇒ An <
−1 +

√
8n2 + 1

4n
.
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Remark. An = 1
n+1

+ 1
n+2

+ · · ·+ 1
2n

< −1+
√

8n2+1
4n

< 3
4
− 1

4n
< 3

4
.

Given an A- right triangle ABC with b ≤ c , where ha , wa , ma are its altitude, bisector and

median from vertex A respectively. Calculate limb→c
ma−ha
wa−ha .

Solution

From the relations 2ma = a , aha = bc and wa =
2bc·cos A

2

b+c
= bc

√
2

b+c
obtain that ma−ha

wa−ha = 2ama−2aha
2awa−2aha

=
a2−2bc

2abc
√

2
b+c

−2bc
=

(b2+c2−2bc)(b+c)

2bc·
[√

2(b2+c2)−(b+c)
] =

(b−c)2(b+c)
[√

2(b2+c2)+(b+c)
]

2bc(b−c)2

(b 6=c)
=

(b+c)
[√

2(b2+c2)+(b+c)
]

2bc
=⇒

limb→c
ma−ha
wa−ha

(t= b
c
)

= limt↗1

(t+1)
[√

2(t2+1)+(t+1)
]

2t
= 4 .

Given a natural number n, such that 2n + 1 and 3n + 1 are both squares. Can 5n + 3 be a

prime?

Solution

Take 2n+1 = a2, 3n+1 = b2. Then 1 = 3a2−2b2, so 5n+3 = 1+a2 +b2 = 4a2−b2 = (2a−b)(2a+b).

So we need 2a−b = 1, but then 4(a−1)2 +(2b−1)2 = 1. However, this has as only solution a = b = 1,

and so n = 0, with 5n + 3 = 3 a prime. In most countries, 0 is a natural number, so it is the only

solution.

Let ABC be a triangle with semiperimeter s , circumradius R and inradius r for

which denote Q =
∑

cyc cos A
2
. Prove that : s = 2Q ·

(√
(RQ)2 −Rr − 2R

)
.

Solution

Using the identities :
∏

cyc cos
Â
2

= s
4R

∏
cyc sin

Â
2

= r
4R

It is equivalent to show that: 2
∏

cyc cos
Â
2

=

(
∑

cyc cos
Â
2
)(
√

(
∑

cyc cos
Â
2
)2 − 4

∏
cyc sin

Â
2
−2) We use the substitution :


X̂ = π−Â

2

Ŷ = π−B̂
2

Ẑ = π−Ĉ
2

So it is equiv-

alent to show that : 2
∏

cyc sinX̂ = (
∑

cyc sinX̂)(
√

(
∑

cyc sinX̂)2 − 4
∏

cyc cosX̂ − 2) Which is true

because :
∏

cyc sinX̂ = s′r′

2R′2

∑
cyc sinX̂ = s′

R′

∏
cyc cosX̂ = s′2−(2R′+r′)2

4R′2
where s′ , R′ , r′ are the

semi-perimeter, the circumradius and the inradius of 4XY Z respectively.

For any non - empty set X of numbers, denote by aX the sum of the largest and the small-

est elements in X. What is the average value of aX if X ranges over all non - empty subsets of

{1, 2, ....................1000} ?
Solution

Let Pn = {1, 2, 3, · · · , n}
Let an be the required average over all non empty subsets of Pn

We can easily derive that (2n+1 − 1)an+1 = (2n − 1)an + 2n(n+ 3)− 1

Now by telescopic sum from (2n+1 − 1)an+1 − (2n − 1)an = 2n(n + 3) − 1 =⇒ (2n − 1)an =

(n+ 1)(2n − 1)

=⇒ an = n+ 1

For the given problem n = 1000 gives average value 1001

Show that for every positive integer n ≥ 4:

lcm(1, 3, . . . , 2n− 1) > (2n+ 1)2
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Solution

We have

[1, 3, · · · , 2n− 1] > [2n− 1, 2n− 3, 2n− 5] = (2n− 1)(2n− 3)(2n− 5) > (2n+ 1)2

as 2n− 1, 2n− 3, 2n− 5 are pairwise coprime.

Find all functions, f(x), if they exist (f : R → R), such that f(f(x)) + xf(x) = 1∀x that is

an element of R.
Solution

Let P (x) denote the statement f(f(x)) + xf(x) = 1.

By P (0) we have f(f(0)) = 1. By P (f(0)) we have f(1) + f(0) = 1.

By P (1) we have f(f(1)) = 1−f(1). By P (f(1)) we have f(f(f(1)))+f(1)f(f(1)) = 1. Plugging

in the above we have f(1−f(1))+f(1)−f(1)2 = 1. Since f(1)+f(0) = 1, f(1−f(1)) = f(f(0)) = 1,

so f(1) = f(1)2. Thus f(1) must be either 0 or 1.

If f(1) = 0 then f(0) = 1, but then f(f(0)) = f(1) = 0. If f(1) = 1 then f(0) = 0, but then

f(f(0)) = f(0) = 0.

Thus no such functions exist.

For all natural numbers n (> 1) , show that
(

1+(n+1)n+1

n+2

)n−1

>
(

1+nn

n+1

)n
Solution

It can probably be done by induction, but I’ll leave that to more pro inductors.(
1+(n+1)n+1

n+2

)n−1

>
(

1+nn

n+1

)n ⇐⇒ (
1+(n+1)n+1

(n+1)+1

) 1
(n+1)−1

>
(

1+nn

n+1

) 1
n−1 .

Let f(x) =
(

1+xx

x+1

) 1
x−1 . Then f ′(x) =

(
1

x−1

) (
1+xx

x+1

) 2−x
x−1

(
(x+1)(lnx+1)xx−(1+xx)

(x+1)2

)
. The only factor that

is not immediately obviously positive for ∀x > 1 is (x+ 1)(ln x+ 1)xx − (1 + xx). It must be shown

that (x− 1)(lnx+ 1)xx > 1 + xx for ∀x > 1 ⇐⇒ ((x+ 1) lnx+ x)xx > 1, which is obvious.

Since f ′(x) > 0 for ∀x > 1, f(x) is increasing in that domain, which implies the given result from

the stronger result: For ∀x, y ∈ R such that x > y > 1, it is true that f(x) > f(y).

x ≥ 1 Which of
√

[
√
x] and [

√√
x] is greater ?

Solution

Let x = (a2 + b + c)2 for natural a, whole b and real c such that 0 ≤ b ≤ 2a, 0 ≤ c < 1. Then,√
[
√
x] ≥

[√√
x
]
with equality only if b = 0.

Prove that for each n ∈ N, (n!)! is multiple of n!(n−1)!

Solution

Remember that
(a1 + a2 + · · ·+ ak)!

a1!a2! · · · ak!
, a multinomial coefficient, is a positive integer. So

(ka)!

(a!)k
is a

positive integer. In our case, k = (n − 1)!, and a = n, so (ka)! = ((n − 1)!n)! = (n!)!, and all falls

into place.

Let F (x), P (x), Q(x), R(x), S(x) are polynomial,with

F (x) = x4 + x3 + x2 + x+ 1

and

P (x5) + xQ(x5) + x2R(x5) = F (x)S(x)

prove that: (x− 1) is a common factor of P (x), Q(x), R(x), S(x)

Solution

Let ω = e2πi/5. Then, plugging in x = 1 we have P (1) +Q(1) +R(1) = 5S(1). In addition, plugging
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in x = ωk for k = 1, 2, 3, 4 yields P (1) + ωkQ(1) + ω2kR(1) = 0. Therefore,

4∑
k=0

(
P (1) + ωkQ(1) + ω2kR(1)

)
= 5P (1) = 5S(1),

so P (1) = S(1). Similarly,

4∑
k=0

ω−k
(
P (1) + ωkQ(1) + ω2kR(1)

)
= 5Q(1) = 5S(1),

so Q(1) = S(1). Finally,

4∑
k=0

ω−2k
(
P (1) + ωkQ(1) + ω2kR(1)

)
= 5R(1) = 5S(1),

so R(1) = S(1). Therefore,

P (1) +Q(1) +R(1) = 3S(1) = 5S(1),

so S(1) = P (1) = Q(1) = R(1) = 0, so x− 1 is a common factor of P,Q,R, S.

Show that if the equation x4 + ax3 + 2x2 + bx+ 1 = 0 has at least a real root, then a2 + b2 ≥ 8

.

Solution

Consider the equation x3 · a+ x · b+ (x2 + 1)
2

= 0 of the line d in the analytical coordinate system

aOb , where x ∈ R . The distance
√
a2 + b2 from the origin O toM(a, b) ∈ d is equally to the distance

δ =
(x2+1)

2

√
x2(x4+1)

from the origin to the line d . Thus,
√
a2 + b2 = δ ≥ 2

√
2 . In conclusion, a2 + b2 ≥ 8

Another way: Let u be a root to the equation. Clearly u 6= 0. Then u2 + au+ 2 + b
u

+ 1
u2 = 0. Rewrite

this as (u+ a
2
)2 + ( 1

u
+ b

2
)2 + 2 = a2+b2

4
and we are done.

A soccer ball is tiled of hexagons (6-gons) and pentagons (5-gons). Each pentagon is surrounded

by 5 hexagons, i.e., each edge of a pentagon is an edge of an hexagon. Each hexagon is surrounded by

3 hexagons and 3 pentagons (alternating), i.e., for any pair of edges of an hexagon with a common

vertex one edge is also an edge of another hexagon and the other edge is also an edge of a pentagon.

How many pentagons and hexagons are there on the soccer ball?

Solution

Denote by f5 the number of pentagons and by f6 the number of hexagons. From the givens, by a

little bit of double counting, we get 5f5 = 3f6. Denote by v3 the total number of vertices (we used

v3 since at each vertex meet three polygons), and denote by e the total number of edges (sides of

the polygons). By double counting, 3v3 = 2e and 5f5 + 6f6 = 2e. Finally, use Euler’s formula for a

map on the sphere v + f = e + 2, where in our case v = v3 and f = f5 + f6. Solving this system of

equations yields 2e = 5f5 + 6f6 = 3f6 + 6f6 = 9f6 = 3v3, so v3 = 3f6. Plugging in Euler’s formula,

we get 3f6 + (3/5)f6 + f6 = (9/2)f6 + 2, whence f6 = 20 and f5 = 12.

How many subsets {a1, a2, a3} of {1, 2, ........14} satisfy a2 − a1 ≥ 3 and a3 − a2 ≥ 3 ?

Solution

x1 → a1 ← x2 → a2 ← x2 → a3 ← x2

Now x1 + x2 + x3 + x4 = n− 3, x1 ≥ 0, x2 ≥ 2, x3 ≥ 2, x4 ≥ 0

Number of solution =
(
n−4

3

)
for n = 14, Answer=

(
10
3

)
= 120
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Prove that there can not exist an odd number of different integers ki such that |k1 − k2| =

|k2 − k3| = · · · = |kp − k1|, where k is an odd integer.

Solution

Except for p = 2, when |k1 − k2| = |k2 − k1|, such numbers ki (being integer is irrelevant) do not

exist (p ≥ 3 being odd is irrelevant).

Assume k1 < k2; then we need k2 < k3, otherwise k1 = k3, and of course k2− k1 = k3− k2. Then,

similarly, k3 < k4 < · · · < kp, but then kp − k1 > kp − kp−1.

Assume k1 > k2; then we need k2 > k3, otherwise k1 = k3, and of course k1− k2 = k2− k3. Then,

similarly, k3 > k4 > · · · > kp, but then k1 − kp > kp−1 − kp.
For two real numbers x and y, a function f(x) satisfy that f(xf(x) + f(y)) = x2 + y Find

f(x)

Solution

Let P (x, y) denote the statement f(xf(x) + f(y)) = x2 + y

From P (0, y) we have f(f(y)) = y. f is therefore bijective and its own inverse.

Now, xf(x) = f(x)f(f(x)) so comparing P (x, y) and P (f(x), y) we find f(x)2 +y = x2 +y. Thus

|f(x)| = |x| for all x, and particularly f(0) = 0. Since f has to be bijective we have f(−x) = −f(x),

and f is odd.

From P (x, 0) we have f(xf(x)) = x2, so xf(x) = f(x2).

Applying f to both sides of P (x, y) we find xf(x)+f(y) = f(x2 +y), or f(x2)+f(y) = f(x2 +y).

Since x2 can be made to take any nonnegative value and f is odd, this is effectively Cauchy’s

functional equation.

Now f(x) = x and f(x) = −x are both solutions. If there are other solutions, that is f(a) = a

and f(b) = −b for some a, b 6= 0, then f(a+ b) = a− b, which can’t be true from |f(x)| = |x|.
Prove that in any triangle ABC exists the identity cos A

2
+ cos B

2
+ cos C

2
= 4 · sin π+A

4
· sin π+B

4
·

sin π+C
4

.

Solution

We can obtain the proposed identity by the substitutions



x := π−A
2

y := π−B
2

z := π−C
2

∥∥∥∥∥∥∥∥∥∥∥∥
in the well-known condi-

tioned

trigonometrical identity x+ y + z = π =⇒
∑

sinx = 4 ·
∏

cos
x

2
. Indeed, x + y + z =∑

π−A
2

= π

and cos A
2

+ cos B
2

+ cos C
2

=
∑

sin π−A
2

= 4 ·
∏

cos π−A
4

= 4 · sin π+A
4
· sin π+B

4
· sin π+C

4
.

Let a, b, c be positive real numbers such that abc = 1. Prove that
√

a11

b+c
+
√

b11

c+a
+
√

c11

a+b
≥ 3

√
2

2

Solution

Rephrase this problem as ∑
cyc

a6√
2a(b+ c)

≥ 3

2
.

Note that using the AM-GM inequality, we have 2
√

2a(b+ c) ≤ 2a+ b+ c; so that it is sufficient to

check that ∑
cyc

a6

2a+ b+ c
≥ 3

4
.
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Using the Cauchy-Schwarz inequality, we have∑
cyc

a6

2a+ b+ c
≥ (a3 + b3 + c3)2

4(a+ b+ c)
;

So that it will suffice to check that

(a3 + b3 + c3)2 ≥ 3(a+ b+ c);

Which is obvious from the AM-GM inequality in accordance with the Power-mean inequality, or

maybe, CS alone: (a3 + b3 + c3)(a+ b+ c) ≥ (a2 + b2 + c2)2 ≥ 1
9
(a+ b+ c)4; So that (a3 + b3 + c3)2 ≥

1
81

(a+ b+ c)6 ≥ 3(a+ b+ c).2

Prove the identity

(z + a)n = zn + a
n∑
k=1

(
n

k

)
(a− kb)k−1(z + kb)n−k

Solution

Let’s prove it by induction on n. It is clearly true for n=0. Suppose it is true for 0 ≤ m ≤ n− 1.

zn + a
∑n

k=1

(
n
k

)
(a− kb)k−1(z + kb)n−k

= zn + a
∑n

k=1

((
n
k

)
(a− kb)k−1

∑n−k
i=0

(
n−k
i

)
zi(kb)n−k−i

)
= zn +

∑n
k=1

∑n−k
i=0 a

(
n
k

)
(a− kb)k−1

(
n−k
i

)
zi(kb)n−k−i

= zn +
∑n−1

i=0

∑n−i
k=1 a

(
n
k

)
(a− kb)k−1

(
n−k
i

)
zi(kb)n−k−i

= zn +
∑n−1

i=0

∑n−i
k=1 az

i
(

n
n−k

)(
n−k
i

)
(a− kb)k−1(kb)n−i−k

= zn +
∑n−1

i=0

∑n−i
k=1 az

i
(
n
i

)(
n−i
k

)
(a− kb)k−1(kb)n−i−k

= zn +
∑n−1

i=0

(
n
i

)
zia
∑n−i

k=1

(
n−i
k

)
(a− kb)k−1(kb)n−i−k

= zn +
∑n−1

i=0

(
n
i

)
zia(0 + a)n−i by the induction hypotesis

= zn +
∑n−1

i=0

(
n
i

)
zian−i

= (z + a)n

Therefore, it is true for every n ≥ 0 by induction.

During June (30 days), Anton play chess at least once a day. During that month, the game is

not more than 45 times. Show that there are periods where Anton do the game exactly 14 times.

Solution

let sn be the number of games that played from the first day until n-th day

therefor we have :

1 ≤ s1 < s2 < ... < s30 ≤ 45

15 ≤ s1 + 14 < s2 + 14 < ... < s30 + 14 ≤ 59

now we have 60 numbers between 1 and 59 therefor we have at least two number with same value

and we now that for any two numbers i, j we have si 6= sj ... therefor we have two numbers i, j such

that si = sj + 14⇒ si − sj = 14

Solve the following simultaneous equations:

2− bc = 2ad

2− ac = 2bd

2− ab = 2cd

Solution

(assuming a, b, c, d are reals)
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Clearly a, b, c are symmetric.

First, check the case where one of a, b, c is zero. It’s straightforward to see the only solutions are

of the form (0,±
√

2,±
√

2,± 1√
2
). Now we assume a, b, c are nonzero.

Set p = abcd. Then ab, ac, bc are all roots of the equation 2 − x = 2p/x (and we know that x is

nonzero). This is the quadratic x2 − 2x+ 2p = 0, except when p = 0 when it becomes linear. Either

way it has at most two roots, so ab, ac, bc are not all distinct, that is a, b, c are not all distinct. WLOG

set a = b.

If a = b = c we have 2− a2 = 2ad, yielding the solutions (a, a, a, 2−a2

2a
) for a ∈ R \ {0}.

Otherwise a2 and ac are different two roots of the quadratic. Vieta’s tells us a2 + ac = 2, so

c = 2−a2

a
, and a3c = 2p = a2cd or a = 2d. This yields the solutions (a, a, 2−a2

a
, a

2
) for a ∈ R \ {0},

which are all indeed solutions of the original equation. (Also we get our case where one of a, b, c is

zero back by setting a = ±
√

2.)

n is a natural number. Show that the number of the divisors of n can’t exceed 2
√
n

Solution

For each divisor d | n, there is an associated divisor n/d | n. Consider the pairs {d, n/d} (when n is

a perfect square, one of these pairs is a singleton - that containing twice
√
n).

But (min{d, n/d})2 ≤ d(n/d) = n, so there are at most b
√
nc such pairs, thus at most 2b

√
nc ≤

2
√
n divisors. Notice that the maximum 2b

√
nc for the number of divisors may be reached, for

example for n = 2, 3, 6, 12, 24. For this to happen we need lcm(1, 2, 3, . . . , b
√
nc) | n; it seems that

there are only finitely many such cases.

Proof. Already lcm(1, 2, 3, 4, 5, 6, 7) = 420 > 196 = (2 · 7)2. Assume that for a prime p ≤ b
√
nc

for which lcm(1, 2, . . . , p) | n we have lcm(1, 2, . . . , p) ≥ (2p)2; that implies n ≥ (2p)2. But then

b
√
nc ≥ 2p, so there exists another prime p < q < 2p ≤ b

√
nc (by Bertrand’s postulate, now

Tchebysheff’s theorem). Since we now need lcm(1, 2, . . . , p)q | lcm(1, 2, . . . , p, . . . , q) | n, it follows

n ≥ lcm(1, 2, . . . , p)q ≥ (2p)2q > (2q)2, since p2 > 2p > q. This process continues ad nauseam, so

there exists no more eligible n.

For the small cases, lcm(1, 2, 3, 4, 5) = 60 > 49 = 72 leads to the above proof. Finally, the only

values are those listed above.

Prove that If ai ∈ {1,−1} , i = 1, 2, 3, · · · , n such that
∑n

i=1 aiai+1 = 0, an+1 = a1 , than 4|n.
Solution

Clearly n is even. Now we divide all the numbers ai into groups of two such that in no group there

exist two adjacent numbers, i.e. no group contains numbers with cyclically consecutive indexes. If

we change the sign of any two numbers in a group, then four numbers in the sum
∑
aiai+1 change

their sign. However, there is no change modulo 4; the sum remains invariant modulo 4. We keep

performing this step till every number ai becomes 1. In that case the sum has not changed modulo 4,

and it actually is
∑
aiai+1 = 1 + 1 + ...+ 1 = n. Since in the beginning the sum was 0, i.e. divisible

by 4, and through this process it has not changed modulo 4, then n must be divisible by 4.

Given that x, y, z, a, b, c > 0, prove that (x+y+z)a+b+c

xaybzc
≥ (a+b+c)a+b+c

aabbcc
.

Solution

Rewrite this into the following form:

x+ y + z

a+ b+ c
≥ a+b+c

√(x
a

)a (y
b

)b (z
c

)c
;
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Which follows from the weighted AM-GM inequality as follows:

a · x
a

+ b · y
b

+ c · z
c
≥ (a+ b+ c)

a+b+c

√(x
a

)a (y
b

)b (z
c

)c
.

We are done. 2

Let a, b be two positive integers satisfying 0 < b ≤ a. Let p be any prime number. Show that(
pa

pb

)
≡
(
a

b

)
mod p3.

Solution

Lemma 1: For any two positive integers satisfying 0 < b ≤ a, we have that(
pa

pb

)
=

(
a

b

)∏a−1
k=a−b+1(kp+ 1)(kp+ 2) · · · (kp+ p− 1)∏b−1
k=0(kp+ 1)(kp+ 2) · · · (kp+ p− 1)

Proof is easy, and is omitted.

Lemma 2: Let p be any prime number. Then,

p−1∑
i=1

1

i
= 0,

∑
1≤i<j≤p−1

1

ij
= 0

when viewed in Z/p2Z. Proof: Well, for the first one, just note that 1
i

+ 1
p−i = p

i(p−1)
. Therefore, it

suffices to prove that
∑(p−1)/2

i=1
1

i(p−i) = 0 in Z/pZ. But in Z/pZ, 1
i(p−1)

= 1
i2

, and since the inverses of

the set of quadratic residues (mod p) is the same as the set of quadratic residues (mod p), therefore,

our required sum is nothing but
∑(p−1)/2

i=1 i2 = p(p− 1)(p+ 1)/24 and which is 0 in Z/pZ.
For the second one, we have 1

ij
+ 1

(p−i)j + 1
i(p−j) + 1

(p−i)(p−j) = p2

ij(p−i)(p−j) which is 0 in Z/p2Z.
Lemma 3: Let p be a prime, k be any non-negative integer. Then,

(kp+ 1)(kp+ 2) · · · (kp+ p− 1) ≡ (p− 1)! (mod p3)

Proof: Well, expanding the LHS, and taking only the powers of kp which are less than 3, as the

others are cancelled out, we have that,

(kp+ 1)(kp+ 2) · · · (kp+ p− 1) ≡ (p− 1)! + (kp)(p− 1)!

p−1∑
i=1

1

i
+ (kp)2(p− 1)!

∑
1≤i<j≤p−1

1

ij
(mod p3)

And this is easily seen to be congruent to (p− 1)! as the second and third terms are 0 due to Lemma

2.

Coming to the main proof, we have,(
pa

pb

)
=

(
a

b

)∏a−1
k=a−b+1(kp+ 1)(kp+ 2) · · · (kp+ p− 1)∏b−1
k=0(kp+ 1)(kp+ 2) · · · (kp+ p− 1)

by lemma 1. But, (kp + 1)(kp + 2) · · · (kp + p − 1) ≡ (p − 1)! (mod p3) for every k, and therefore,

since the numerator and denominator in our fraction both become (p− 1)!b, so, we can cancel it out,

and finish the question.

a, b, c > 0 a+ b+ c = 1 a > bc, b > ac, c > ab

Prove:
√
a− bc+

√
b− ca+

√
c− ab ≤

√
2

Solution
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By C-S:
(∑

cyc

√
a− bc

)2

≤
∑

cyc
a−bc

2a+b+c
·
∑

cyc(2a+b+c). Thus, it remains to prove that:
∑

cyc
a−bc

2a+b+c
·∑

cyc(2a + b + c) ≤ 2. But
∑

cyc
a−bc

2a+b+c
·
∑

cyc(2a + b + c) ≤ 2 ⇔ ⇔ 2
∑

cyc
a−bc
a+1

≤ 1. We ob-

tain: 1 − 2
∑

cyc
a−bc
a+1

=
∑

cyc

(
a− 2a2+2ab+2ac−2bc

2a+b+c

)
= =

∑
cyc

2bc−ab−ac
2a+b+c

=
∑

cyc
b(c−a)−c(a−b)

2a+b+c
= =∑

cyc(a − b)
(

c
2b+a+c

− c
2a+b+c

)
=
∑

cyc
c(a−b)2

(2a+b+c)(2b+a+c)
≥ 0 More way (by Sasha2):

∑
cyc

√
a− bc =

1
2

∑
cyc

(√
a− bc+

√
b− ac

)
≤≤ 1

2

∑
cyc

√
2(a− bc+ b− ac) = 1

2

∑
cyc

√
2(a+ b)(1− c) =

√
2

2

∑
cyc(a+

b) =
√

2

Let ABC be an equilateral triangle. Let M ∈ (BC) , N ∈ (CA) , P ∈ (AB) so that MB
MC

=
NC
NA

= PA
PB

= x .

Prove that the area of the triangle formed by the lines AM , BN , CP is equally to (x−1)2

x2+x+1
· S ,

where S = [ABC] .

Solution

Denote X ∈ BN ∩ CP , Y ∈ CP ∩ AM , Z ∈ AM ∩BN . Observe that 4XY Z is equilateral.

Suppose w.l.o.g. AB = 1 and using the generalized Pythagoras’ theorem in 4ABM obtain easily

that AM =
√
x2+x+1
x+1

(∗) .

Apply the Menelaus’s theorem to the transversals :


BZN/4AMC : =⇒ ZA

x+1
= ZM

x2 = AM
x2+x+1

CY P/4ABM : =⇒ Y A
x2+x

= YM
1

= AM
x2+x+1

∥∥∥∥∥∥∥
. In conclusion,

Y Z
x2−1

= ZA
x+1

= YM
1

= AM
x2+x+1

and Y Z
(∗)
= x−1√

x2+x+1
, [XY Z]

[ABC]
= Y Z2 =⇒ [XY Z] = (x−1)2

x2+x+1
· S .

Prove that
∑∞

k=1
k2005

2005k
is rational

Solution

Denote Sn =
∑∞

k=1
kn

2005k
. For n = 0 we have S0 =

2005

2004
∈ Q. Assume, by induction hypothesis, that

Sj ∈ Q for all 0 ≤ j ≤ n.

But 2004Sn+1 = 2005Sn+1 − Sn+1 = 1 +
∑∞

k=1
(k+1)n+1−kn+1

2005k
= 1 +

∑∞
k=1

∑n
j=0

(
n+1
j

)
kj

2005k
=

1 +
∑n

j=0

(
n+1
j

)∑∞
k=1

kj

2005k
= 1 +

∑n
j=0

(
n+1
j

)
Sj, and by the induction hypothesis all elements are

rational, hence Sn+1 will also be rational.

Find a closed-form expression equivalent to
n∑
j=0

(
n
j

)
nj(j + 1)

Solution

S =
∑n

j=0

(nj)
nj(j+1)

= 1
n+1

∑n
j=0

(n+1
j+1)
nj

Then, S
n

= 1
n+1

∑n
j=0

(n+1
j+1)
nj+1 = 1

n+1

∑n+1
j=1

(n+1
j )
nj

= 1
n+1

((
1 + 1

n

)n+1 − 1
)

And we have S = n
n+1

((
1 + 1

n

)n+1 − 1
)

Let sequence {xk} is defined by: xk = 1
2!

+ 2
3!

+ ...+ k
(k+1)!

Calculate limn→+∞
n
√
xn1 + xn2 + ...+ xn1999

Solution

xk =
∑k

r=1
r

(r+1)!
=
∑k

r=1( 1
r!
− 1

(r+1)!
) = 1− 1

(k+1)!

from that x1 < x2 < x3 < ..... < x1999

limn→+∞
n
√
xn1 + xn2 + ...+ xn1999

= limn→+∞ x1999(1 + (x1998

x1999
)n + (x1997

x1999
)n + ....+ ( x1

x1999
)n)

1
n

= x1999 = 1− 1
2000!

Let ∆ABC is isosceles triangle in A, Â = π
7
, AB = b, BC = a. Prove: a5−4a3b2 +3ab4−b5 = 0

Solution

( Hình vẽ đi kèm) Locate the points P,Q on AC,AB such that CB = BP = PQ. By easy angle
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chase we get that ∠PQB = 2π
7 =⇒ 4QPA is Q-isosceles. Thus, BP = PQ = QA = a. Parallels

from P,Q to BC cut AB,AC at S, T, respectively. Then 4CBP and 4QAT are congruent =⇒
PC = QT = x, but 4BCP and 4ABC are similar

=⇒ PC
BC

= BC
b

=⇒ x = a2

b
(1)

It’s easy to see that QTPS is an isosceles trapezoid with PS = QS = y. Then
SP
BC

= AS
AB

=⇒ y
a

= y+a
b

=⇒ y = a2

b−a (2)

QS = TP = y =⇒ TP + PC = AC − AT =⇒ y + x = b− a (3)

Combining (1), (2), (3) =⇒ a2

b−a + a2

b
= b− a =⇒ b3 + a3 − a2b− 2ab2 = 0

=⇒ (b3 + a3 − a2b− 2ab2)(a2 + ab− b2) = 0 =⇒ a5 − b5 + 3ab4 − 4a3b2 = 0

Let ABC be a triangle with circumradius R , inradius r and semiperimeter s .

Denote K ≡
∑

sin A
2
. Prove that : s2 = 4R · (K − 1)2 ·

[
R (K + 1)2 + r

]
.

Solution

It’s easy to prove this identity, but it’s much more difficult to find it. Notice that :
∑

cyc sinÂ = s
R∏

cyc sin
Â
2

= r
4R

So the identity is equivalent to : (
∑

cyc sinÂ)2 = 4(
∑

cyc sin
Â
2
− 1)2((

∑
cyc sin

Â
2

+

1)2 + 4
∏

cyc sin
Â
2
) Use the following substitution :


X̂ = π−Â

2

Ŷ = π−B̂
2

Ẑ = π−Ĉ
2

Let s′ , R′ , r′ be the semi-

perimeter, the circumradius and the inradius of 4XY Z respectively. So the identity is equivalent

to : (
∑

cyc sin2X̂)2 = 4(
∑

cyc cosX̂ − 1)2((
∑

cyc cosX̂ + 1)2 + 4
∏

cyc cosX̂) Which is true since :∑
cyc sin2X̂ = 2s′r′

R′2

∑
cyc cosX̂ = 1 + r′

R′

∏
cyc cosX̂ = s′2−(2R′+r′)2

4R′2

Find the number of ordered triples of sets (A,B,C) such that A∪B ∪C = {1, 2, ..., 2003} and
A ∩B ∩ C = φ

Solution

Find the number of ordered triples of sets (A,B,C) such that A ∪ B ∪ C = {1, 2, . . . , n} and

A ∩B ∩ C = ∅.
The six sets A \ (B ∪ C), B \ (C ∪ A), C \ (A ∪ B), A ∩ B,B ∩ C,C ∩ A will therefore make up

a partition of the set {1, 2, . . . , n} (a Venn diagram makes things obvious). Since any element can

equally belong to any of these six sets, the required number is 6n.

Let a, b and c be real numbers such that a ≥ b ≥ c > 0 and a+ b+ c = 1 .

Show that a
√

b
c

+ b
√

c
a

+ c
√

a
b
is in [1,+∞) .

Solution

We need a
√

b
c

+ b
√

c
a

+ c
√

a
b
≥ 1 = a + b + c. Put a = x2, b = y2, c = z2 so that x ≥ y ≥ z > 0 and

the inequality becomes
x2y

z
+
y2z

x
+
z2x

y
≥ x2 + y2 + z2

(
x2y

z
+
y2z

x
+
z2x

y

)
−
(
xy2

z
+
yz2

x
+
zx2

y

)
=

1

xyz
(x− y)(x− z)(y − z)(xy + yz + zx) ≥ 0

and so we have
x2y

z
+
y2z

x
+
z2x

y
≥ xy2

z
+
yz2

x
+
zx2

y

and

(
x2y

z
+
y2z

x
+
z2x

y
)2 ≥

(
x2y

z
+
y2z

x
+
z2x

y

)(
zx2

y
+
xy2

z
+
yz2

x

)
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≥ (x2 + y2 + z2)2

by C-S - taking the square root gives the result.

ABC is a triangle, O is the midpoint of its side [BC] and A = 4π
7

, C = 2π
7

. Calculate

m(∠AOC) .

Solution

Denotem(∠AOC) = x . From the well-known property 1 = OB
OC

= AB
AC
· sin ÔAB

sin ÔAC
= sinC

sinB
· sin(x−B)

sin(A+B−x)
⇐⇒

sinB sin(C + x) = sinC sin(x − B) ⇐⇒ cos(C − B + x) − cos(B + C + x) = cos(B + C − x)−
cos(C + x−B) ⇐⇒ 2 cos(C −B + x) = cos(B +C + x) + cos(B +C − x) ⇐⇒ cos(C −B + x) =

cos(B + C) cosx ⇐⇒ cos(C − B + x) = − cosA cosx ⇐⇒ cos(C − B) − sin(C − B) tanx =

− cosA ⇐⇒ tanx = cos(C−B)−cos(B+C)
sin(C−B)

⇐⇒ tanx =
2 sinB sinC

sin(C −B)
=

2 tanB tanC

tanC − tanB
. Our case :

tan B̂OC = 2 sin 2π
7

.

Suppose p is an odd prime and 4p+ 1 is also prime. Prove that 4p ≡ −1mod(4p+ 1).

Solution

Let 4p ≡ k (mod 4p+ 1) where 0 < k < 4p+ 1

Since 44p ≡ 1 (mod 4p+ 1), we have k4 ≡ 1 (mod 4p+ 1)

Now, (2p)2 ≡ k (mod 4p+1) =⇒ k is a quadratic residue of 4p+1 =⇒ k
4p+1−1

2 ≡ 1 (mod 4p+1)

=⇒ k2p ≡ 1 (mod 4p + 1) Let m be the smallest positive integer such that km ≡ 1 (mod 4p + 1)

=⇒ m|gcd(2p, 4) = 2 =⇒ k2 ≡ 1 (mod 4p+1) =⇒ 4p+1|(k+1)(k−1) So 4p+1 must divide one

of k+ 1, k− 1 Since k < 4p+ 1 We must have 4p+ 1|k+ 1 =⇒ k = 4p =⇒ 4p ≡ −1 (mod 4p+ 1)

Find all primes m and n such that 2(m+ n) is the difference of two integer squares.

Solution

If m = n = 2, then 2(m + n) = 32 − 12 If m = 2, n 6= 2, then we need 2n + 4 = x2 − y2 Note that

(a− k)2 − a2 is odd if k is odd and is divisible by 4 when k is even So there is no solution

Now if m,n > 2 we need 2(m+ n) = x2 − y2 Consider (k + 2)2 − k2 = 4k + 4 = 2(2k + 2) As we

vary k throughout the integers, we get every even number Since m,n > 2, m + n is even So we can

find k such that (k + 2)2 − k2 = 2(2k + 2) = 2(m + n) So the only primes which does not work is

m = 2, n 6= 2 and vice versa.

Prove that if p|m2 + 9 then there exists a x such that p|x2 + 1, where p is a prime number

Solution

Let a−1 be the multiplicative inverse of a in modulo p

By Fermat’s Little Theorem, we have ap−1 ≡ 1 (mod p) => ap−2 ≡ a−1 (mod p)

Since p|m2 + 9 we have m2 ≡ −9 (mod p) => 9−1m2 ≡ (−9)9−1 ≡ (−1)(9)(9−1) ≡ −1 (mod p)

And 9−1 ≡ 9p−2 ≡ (3p−2)2 (mod p) => (3p−2m)2 ≡ −1 (mod p) => p|(3p−2m)2 + 1

Show that
(− 1

2
k

)
= (−1)k

(
2k
k

)
1

22k .

Solution(
−1

2

k

)
=

(−1
2
)(−3

2
)(−5

2
)...(− (2k−1))

2
)

k!
=

(−1)k(1.3.5...(2k − 1))

2k.k!

1.3.5...(2k − 1) =
1.2.3.4.5.6...(2k − 2)(2k − 1)

2.4.6...(2k − 2)
=

(2k − 1)!

2k−1(k − 1)!(
−1

2

k

)
=

(−1)k(2k − 1)!

2k.2k−1(k)!(k − 1)!
.
2k

2k

=
(−1)k(2k)!

22k(k)!(k)!
= (−1)k

(
2k

k

)
1

22k
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What is the coefficient of x2 from :

((((...((((x− 2)2 − 2)2 − 2)2 − 2)2 − ........2)2

Solution

(x− 2)2 = x2 − 4x+ 4, coefficients are 1,-4 and 4

((x− 2)2 − 2)2 = ...+ 20x2 − 16x+ 4, coefficients are 20,-16 and 4

(((x− 2)2 − 2)2 − 2)2 = ...+ 336x2 − 64x+ 4, coefficients are 336,-64 and 4

It’s easy to see that if for n brackets coefficients are (a,b,4), then for n+1 brackets coefficients

are (4a+ b2, 4b, 4). Indeed,

((x3P (x) + ax2 + bx+ 4)− 2)2 = (x3P (x) + ax2 + bx+ 2)2 =

x3 [x3P (x)2 + 2ax2P (x) + x(a2 + 2bP (x)) + 4P (x) + 2ab] +

+x2(4a+ b2) + 4bx+ 4 =

= x3R(x) + x2(4a+ b2) + 4bx+ 4.

Now we just continue a sequence: (1,−4, 4) → (4 + 42,−42, 4) → (42 + 43 + 44,−43, 4) →
(43 + 44 + 45 + 46,−44, 4)→ ...→ (4n−1 + 4n + ...+ 42n−2,−4n, 4)

So the coefficient of x2 is equal to 4n−1 + 4n + ...+ 42n−2 =
42n−1 − 4n−1

3
Find the sum where

n is positive integer:
∑∞

k=0

[
n+2k

2k+1

]
[x] means floor of x

Solution

Firstly we will prove that [a+ 1
2
] = [2a]− [a] for any a.

1) If a = k + r (k- integer , 0 ≤ r < 1/2) then

[a+ 1
2
] = [k + r + 1

2
] = k

[2a] = [2k + 2r] = 2k

[a] = k and we have identity k = 2k − k
2) If a = k + r (k - integer, 1/2 ≤ r < 1) then

[a+ 1
2
] = [k + r + 1

2
] = k + 1

[2a] = [2k + 2r] = 2k + 1

[a] = k and we have identity k + 1 = 2k + 1− k
[n

2
+ 1

2
] + [n

4
+ 1

2
] + ... = ([n]− [n

2
]) + ([n

2
]− [n

4
]) + ... = [n] = n

Hence the answer is n

Prove that n
√
an + bn ≥ n+1

√
an+1 + bn+1 for n ∈ N∗ and a, b ∈ R∗+ with a 6= b ?

Solution

Suppose w.l.o.g. that 0 < a < b and denote c = a
b
< 1 . Observe that


1
n
> 1

n+1
> 0

ln (1 + cn) > ln (1 + cn+1) > 0

∥∥∥∥∥∥∥
⊙

=⇒

1
n
· ln (1 + cn) > 1

n+1
· ln (1 + cn+1) ⇐⇒ n

√
1 + cn > n+1

√
1 + cn+1 ⇐⇒ b · n

√
1 + cn > b ·

n+1
√

1 + cn+1 ⇐⇒
n
√
an + bn ≥ n+1

√
an+1 + bn+1

Find all solutions to 7x − 3y = 4

Solution

Modulo 4 we must have 7x ≡ 3y (mod 4), i.e. (−1)x ≡ (−1)y (mod 4), hence x ≡ y (mod 2).

1. If both x, y are even, say x = 2a, y = 2b, then (7a − 2)(7a + 2) = 32b, thus 7a − 2 = 3u and

7a + 2 = 3v, therefore 4 = 3v − 3u = 3u(3v−u − 1). This implies u = 0 and 3v − 1 = 4, impossible.
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2. If both x, y are odd, say x = 2a + 1, y = 2b + 1, clearly a = b = 0 is a solution: 7 − 3 = 4.

Otherwise we will have 7 · 49a− 3 · 9b = 4, thus 7(49a− 1) = 3(9b− 1). We need 7 | 9b− 1, thus 3 | b.
But then 7 · 8 · 13 = 93 − 1 | 9b − 1, so we need 13 | 49a − 1. This in turn requires 6 | a, but then

9 | 49a − 1, and so 3 | 9b − 1, absurd for b ≥ 1.

Therefore the only solution is x = y = 1.

Let n be an integer such that 2n2 has exactly 28 distinct positive divisors and 3n2 has exactly

24 distinct positive divisors. How many distinct positive divisors does 6n2 have?

Solution

If p1, p2, p3, ... are distinct primes then the number of divisors of an integer x = pk1
1 p

k2
2 p

k3
3 ... is (k1 +

1)(k2 + 1)(k3 + 1)... Suppose n2 = 22a.32b.p2u.q2v..., where p, q, ... are further distinct primes and

a, b, u, v, ... are non-negative integers.. Then the number of divisors of 2n2 is 28 = (2a + 2)(2b +

1)(2u + 1)(2v + 1)... and the number of divisors of 3n2 is 24 = (2a + 1)(2b + 2)(2u + 1)(2v + 1)...

Dividing these gives
(2a+ 2)(2b+ 1)

(2a+ 1)(2b+ 2)
=

28

24
=

7

6
⇒ b =

8a+ 1

5− 2a

The only solution of this in non-negative integers which satisfies the original equations is a = 1, b = 3

(with u, v, ... = 0), i.e. n2 = 22.36 6n2 = 23.37 and this has (3 + 1)(7 + 1) = 32 divisors.

For even n, prove that
∑n

i=1

(
(−1)i+1 · 1

i

)
= 2

∑n/2
i=1

1
n+2i

.

Solution

Induction on n works. Easy to verify the base cases. Assume the result for some natural n.
∑n+2

i=1

(
(−1)i+1 · 1

i

)
=

1
n+1
− 1

n+2
+
∑n

i=1

(
(−1)i+1 · 1

i

)
and by the assumption, this will be equal to 1

n+1
− 1

n+2
+ 2

n+2
+

2
(

1
n+4

+ · · ·+ 1
n+n

)
and since 1

n+1
+ 1
n+2

= 2
(

1
(n+2)+n

+ 1
(n+2)+(n+2)

)
and the sum becomes 2

∑n+2
2

i=1
1

n+2i

which proves the problem.

Let α + β + γ = π. Prove that
∑

cyc sin 2α = 2 ·
(∑

cyc sinα
)
·
(∑

cyc cosα
)
− 2

∑
cyc sinα.

Solution∑
cyc sin 2α = 4 sinα sin β sin γ and 2 ·

(∑
cyc sinα

)
·
(∑

cyc cosα
)
−2
∑

cyc sinα = 8(
∑

sinα)
∏

sin α
2

as
∑

cosα = 1 + 4
∏

sin α
2
and it becomes 32

∏
(sin α

2
cos α

2
) = 4 sinα sin β sin γ by using

∑
sinα =

4
∏

cos α
2
and so, they are equal.

Ascertain l(x) = limn→∞ an(x) for x > 0 , where an =

√
x+ 2

√
x+ 2

√
x+ ...+ 2

√
x+ 2

√
3x

(n radicals).

Solution

The expression 3x of the innermost radical is a red herring. Replace it with some positive constant

A. Then

• for x+ 2
√
A = A, the sequence (an)n≥1 is seen to be constant equal to

√
A; • for x+ 2

√
A < A,

the sequence (an)n≥1 is seen to be decreasing, and since being lower bounded by 0, convergent; •
for x + 2

√
A > A, the sequence (an)n≥1 is seen to be increasing. But take some value B > A such

that x + 2
√
B ≤ B; then an < bn, where the sequence (bn)n≥1 is obtained by replacing A with B,

and then by the previous remark an < bn ≤ b1. Thus the sequence (an)n≥1 is upper bounded, hence

convergent.

Now that we have established the existence of a finite limit `(x), we can pass to the limit in the

relation a2
n+1 = x + 2an, so as to get `(x)2 = x + 2`(x), whence `(x) = 1 +

√
x+ 1. Notice how this

checks with the original problem where A = 3x and x = 3, for which `(3) = 1 +
√

3 + 1 = 3.

Solve the following inequality in real numbers x+ x√
x2−1

> 35
12

.

Solution
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Observe that x < −1 =⇒ x ∈ ∅ . Therefore, x > 1 and (∀) x > 1 there is uniquely φ ∈
(
0, π

2

)
so that

x =
1

sinφ
> 1 . Our inequation becomes 1

sinφ
+ 1

cosφ
> 35

12
(∗) . Denote sinφ+ cosφ = t ∈

(
1,
√

2
]

.

The equation (∗) becomes 2t
t2−1

> 35
12

, i.e. t ∈
(
−5

7
, 7

5

)
∩
(
1,
√

2
]

=⇒ t ∈
(
1, 7

5

)
. Now you can

return

easily to the initial variable x , i.e. exists θ ∈
(
0, π

4

)
, where sin θ + cos θ = 7

5
and φ ∈ (0, θ) ∪(

π
2
− θ, π

2

)
.

In conclusion, sin θ ∈
{

3
5
, 4

5

}
and sinφ ∈

(
0, 3

5

)
∪
(

4
5
, 1
)

=⇒ x ∈
(

1,
5

4

)
∪
(

5

3
,∞
)

.

Remark. Prove analogously that (∀) x > 1 , x+ x√
x2−1

≥ 2
√

2 ⇐⇒
(∀) φ ∈

(
0, π

2

)
, 1

sinφ
+ 1

cosφ
≥ 2
√

2 ⇐⇒ (∀) t ∈
(
1,
√

2
]
, t
t2−1
≥
√

2 .

Let a, b, c, d be the complex numbers satisfying a+ b+ c+ d = a3 + b3 + c3 + d3 = 0 Prove that

a pair of the a, b, c, d must add up to 0.

Solution

Assume a + b = −(c + d) 6= 0. Then a3 + b3 = −(c3 + d3) writes as (a + b)(a2 − ab + b2) =

−(c+ d)(c2 − cd+ d2). We can cancel a+ b = −(c+ d), to obtain a2 − ab+ b2 = c2 − cd+ d2.

But we then also have a2 + 2ab+ b2 = c2 + 2cd+ d2, so ab = cd. It follows (a, b) and (−c,−d) are

roots of the same quadratic polynomial, hence a = −c or a = −d.
Let N be the set of positive integers. Define a1 = 2 and for n = 2, 3, ..., an+1 = min{λ| 1

a1
+ 1

a2
+ ...+ 1

an
+ 1

λ
< 1, λ ∈ N.

Show that an+1 = a2
n − an + 1 for n = 1, 2, ....

Solution

Since an+1 = 1
1− 1

a1
− 1
a2
−···− 1

an

+ 1, we have

an+1 = 1
1

an−1
− 1
an

+ 1 = an(an − 1) + 1 = a2
n − an + 1. QED

Solve the equation√
x− 1 +

√
3− x+ 4x

√
2x ≤ x3 + 10

Solution

From AM-QM, we have
√
x− 1 +

√
3− x ≤ 2

√
x−1+3−x

2
= 2.

From the Trivial Inequality, we have (x
√
x− 2

√
2)2 ≥ 0→ x3 − 4x

√
2x+ 8 ≥ 0.

Thus, x3 + 10 ≥ 4x
√

2x+ 2 ≥ 4x
√

2x+
√
x− 1 +

√
3− x as desired. 2 n is a natural number,

where n ≥ 50 Show that there is no n such that is divided by all the natural numbers m, where

m ≤
√
n

Solution

Let 2 = p1 < p2 < · · · < pk < · · · be the sequence of the prime numbers. We have 112 = 121 < 210 =

2 · 3 · 5 · 7, hence p2
m <

∏m−1
k=1 pk for m = 5. But pm+1 < 2pm by Tchebyshev’s theorem (Bertrand’s

postulate), so p2
m+1 < 4p2

m < 4
∏m−1

k=1 pk <
∏m

k=1 pk, thus the inequality holds for all m ≥ 5, by simple

induction.

Now (for m ≥ 5), if
∏m−1

k=1 pk | n, it means n ≥
∏m−1

k=1 pk > p2
m, hence

√
n > pm, and, in order to

have such an n as required, we will need also pm | n, and the process continues indefinitely, so no

such n exists.

Since
√

50 > 7 = p4, it follows that for n ≥ 50 we need have
∏m−1

k=1 pk | n for m = 5, so no such

required n does exist. In fact, the largest n with that property is n = 24.

1 ≤ x ≤ y ≤ z ≤ 4 Find the Min of (x− 1)2 +
(
y
x
− 1
)2

+
(
z
y
− 1
)2

+
(

4
z
− 1
)2
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Solution

By QM-AM, we have that

√
(x− 1)2 +

(
y
x
− 1
)2

+
(
z
y
− 1
)2

+
(

4
z
− 1
)2 ≥ x+ y

x
+ z
y

+ 4
z
−4

2
.

By AM-GM, we have that
x+ y

x
+ z
y

+ 4
z

4
≥
√

2, so
x+ y

x
+ z
y

+ 4
z
−4

2
≥ 2
√

2− 2.

So our minimum occurs at (2
√

2− 2)2 = 12− 8
√

2. Equality occurs when x = y
z

= z
y

= 4
z
⇒ x =√

2, y = 2, z = 2
√

2.

Prove if r ≥ s ≥ t ≥ u ≥ v then r2 − s2 + t2 − u2 + v2 ≥ (r − s+ t− u+ v)2

Solution

Note that (a) if x ≥ y ≥ 0, then 2xy ≥ 2y2, x2 − y2 ≥ x2 − 2xy + y2 ⇒
√
x2 − y2 ≥ x − y (b)

if z ≤ y ≤ 0 then −z ≥ −y ≥ 0, z2 − y2 ≥ 0 and the positive
√
z2 − y2 ≥ z − y (≤ 0). (c) if

y ≤ 0⇒
√
y2 ≥ y

If there are no positive pairs of the numbers, (i.e. s ≤ 0) , then by C-S,

r2 + (t2 − s2) + (v2 − u2) ≥ (
√
r2 +

√
t2 − s2 +

√
v2 − u2)2 ≥ (r − s+ t− u+ v)2

If exactly one positive pair, (i.e. v ≤ u ≤ 0), then

(r2 − s2) + t2 + (v2 − u2) ≥ (
√
r2 − s2 +

√
t2 +
√
v2 − u2)2 ≥ (r − s+ t− u+ v)2

If two positive pairs

(r2 − s2) + (t2 − u2) + v2 ≥ (
√
r2 − s2 +

√
t2 − u2 +

√
v2)2 ≥ (r − s+ t− u+ v)2

Find all functions f : R\{0, 1} → R such that

f(x) + f

(
1

1− x

)
= 1 +

1

x(1− x)
.

Solution

Define the set D ≡ R − {0.1}. Then the function φ : D → D , φ(x) = 1
1−x is a bijection

and φ ◦ φ ◦ φ = 1D . We observe that φ−1 = φ ◦ φ . Denote the function ψ : D → D, where

ψ(x) = 1 + 1
x(1−x)

. Therefore, functional equation becomes the following system :

f + f ◦ φ = ψ ; f ◦ φ+ f ◦ φ ◦ φ = ψ ◦ φ ; f ◦ φ ◦ φ+ f = ψ ◦ φ ◦ φ .
The its solution is f = 1

2
(ψ − ψ ◦ φ+ ψ ◦ φ ◦ φ) =⇒ f(x) = x+ 1

x
.

Another examples :

1. I 2f(x) − f
(

1−x
1+x

)
= x − 1 , x 6∈ {−1, 0, 1} ; Indication. φ(x) = 1−x

1+x
; φ ◦ φ = 1D . 2. I

f(x) + f
(
− 1
x

)
+ f

(
x−1
x+1

)
= x , x 6∈ {−1, 0, 1} ; [hide="Indication."]φ(x) = x−1

x+1
; φ ◦ φ ◦ φ ◦ φ = 1D .

3. I f(x) + f
(
x−1
x

)
= 1

x
− x+ 1 , x 6∈ {0, 1} . Indication.

φ(x) = x−1
x

; φ ◦ φ ◦ φ = 1D .

Let A1A2 . . . A7 be a regular heptagon, and let A1A3 and A2A5 intersect at X. Compute

∠A1XA7.

Solution

See the attached diagram (Thiếu Hình vẽ )

∠A1A2A3 = 5π
7

=⇒ ∠A3A1A2 = ∠A1A3A2 = π
7

=⇒ ∠A7A1X = 4π
7

From the trapezoid A2A3A4A5 we have ∠A3A2A5 = 2π
7

=⇒ ∠XA2A1 = 3π
7
. Thus from the

4XA1A2 we get ∠A1XA2 = 3π
7
. Hence it’s isosceles, therefore XA1 = A1A2 = A1A7, thus 4XA1A7

is also isosceles.

So finally ∠A1XA7 =
π− 4π

7

2
= 3π

14
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If AD,BE,CF are the bisectors of a triangle ABC of semiperimetre s prove that DE2 +EF 2 +

FD2 ≤ s2

3

Solution

The points D , E , F are not the tangent points of the incircle with the sides of 4ABC . Therefore,

EF 6= 2r · cos A
2
a.s.o. and AE = bc

a+c
, AF = bc

a+b
a.s.o.

If the incircle of 4ABC touches its sides in the points X ∈ (BC) , Y ∈ (CA) and Z ∈ (AB) ,

then

XY 2 + Y Z2 + ZX2 ≡
∑
Y Z2 =

∑(
2r · cos A

2

)2
=
∑

4r2 · s(s−a)
bc

=
4r2s
abc
·
∑
a(s− a) = 2r2

R
· (4R + r) ≤ 2

R
· s2

27
· (4R + r) = s2

3
· 2(4R+r)

9R
≤ s2

3
.

I used the well-known relations
∑
a(s− a) = 2r(4R + r) and 3r

√
3 ≤ s , 2r ≤ R .

Find all functions f : R− (0, 1)→ R such that :

(∀x ∈ R− (0, 1))f(x−1
x

) + f(x) = 1
x
− x+ 1

Note: R− (0, 1) = (−∞, 0] ∪ [0, 1] ∪ [1,+∞]

Solution

The key observation here is that (τ ◦ τ ◦ τ)(x) = x, where τ(x) = x−1
x
. Iterating this function, we

have

f(τ(x)) + f(x) =
1

x
− x+ 1,

f((τ ◦ τ)(x)) + f(τ(x)) =
1

τ(x)
− τ(x) + 1,

f(x) + f((τ ◦ τ)(x)) =
1

(τ ◦ τ)(x)
− (τ ◦ τ)(x) + 1.

(We also note that τ(x) 6= 0, 1 when x 6= 0, 1.) Now we just have a linear system of equations. The

unique solution is

f(x) =
3

2
− x− 1 + x

2(1− x)
.

�

If sin α + sin β + sin γ = cos α + cos β + cos γ = 0

Then prove that cos (α + β) + cos (β + γ) + cos (γ + α) = 0

Solution
u = cosα + i · sinα

v = cos β + i · sin β

w = cos γ + i · sin γ

=⇒ |u| = |v| = |w| = 1 and u+ v + w = u+ v + w = 1
u

+ 1
v

+ 1
w

=

uv+vw+wu
uvw

(∗) . Therefore,

{
cosα + cosβ + cosγ = 0

sinα + sinβ + sinγ = 0

∥∥∥∥∥ ⇐⇒ u+ v + w = 0 ⇐⇒

u+ v + w = 0
(∗)⇐⇒ uv+ vw+wu = 0 ⇐⇒

{
cos (α + β) + cos (β + γ) + cos (γ + α) = 0

sin (α + β) + sin (β + γ) + sin (γ + α) = 0

∥∥∥∥∥
.

Let n be a positive integer. If 4n + 2n + 1 is a prime, prove that n is a power of three.

Solution

I will use the known and easy to establish fact that 2M − 1 | 2N − 1 if and only if M | N . Let

n = 3am, with gcd(3,m) = 1. Since 23n − 1 = (2n − 1)(4n + 2n + 1), and also 23a+1 − 1 | 23n − 1

(according with the above), but 23a+1 − 1 - 2n − 1 (again according with the above), it follows that
23n − 1

23a+1 − 1
| 23n − 1

2n − 1
= 4n + 2n + 1. If m 6= 1, this will be a proper divisor, so in order for 4n + 2n + 1

to be a prime we need m = 1, and so n = 3a.
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Let ABCDEF be a convex hexagon in which diagonals AD,BE,CF are concurrent at O.

Suppose [OAF ] is geometric mean of [OAB] and [OEF ] and [OBC] is geometric mean of [OAB]

and [OCD]. Prove that [OED] is the geometric mean of [OCD] and [OEF ]. (Here [XY Z] denotes

are of 4XY Z)
Solution

Let OA = a,OB = b, OC = c, OD = d,OE = e, OF = f and ∠AOB = ∠EOD = α , ∠BOC =

∠FOE = β and ∠COD = ∠AOF = 180− α− β
Note that [OAB][OCD][OEF ] = [OBC][ODE][OAF ]

iff ab sinα · cd sin(α + β) · ef sinB = bc sin β · de sinα · af sin(α + β) which is obviously true.

Hence

[ODE] = [OAB][OCD][OEF ]
[OBC][OAF ]

= [OAB][OCD][OEF ]√
[OAB][OCD][OAB][OEF ]

=
√

[OCD][OEF ]

Prove that among numbers b2 1
2

+kc, (k is natural number) there are infinity even numbers.

Solution

Consider the binary representation
√

2 = 1.01 . . .(2). Since
√

2 is irrational, the sequence is not

ultimately periodic, hence there are infinitely many 0’s in it, and infinitely many 1’s. Then for√
2 = 1.01 . . . 0 . . .(2), where the 0 after the . . . is on k-th position, we have b2k

√
2c even (since

multiplying with 2k is tantamount to shifting the . with k positions to the right, thus the integer

part ends in 0).

We can use instead of
√

2 any other irrational number, but also any rational
p

q
with q different

from a power of 2, since it also generates a representation with infinitely many 0’s in it, and infinitely

many 1’s.

Find the coefficient of x48 in the product of (x− 1)(x− 2)(x− 3)............(x− 49)(x− 50)

Solution

By Vieta

a48 =
∑49

k=1

(
k
∑50

j=k+1 j
)

a48 =
∑49

k=1 k
51+k

2
(50− k)

a48 = 1
2

∑49
k=1 2550k − k2 − k3

a48 = 1
2

(
2550 · 49·50

2
− 49·50·99

6
−
(

49·50
2

)2
)

a48 = 49·50
4

(2550− 33− 49 · 25)

a48 = 49·25
2
· 1292

a48 = 791350

Let b and c be two elements from [−1, 1] . And consider the equation x2 + bx+ c = 0

Determin the set of values of the solutions for the given equation .

Solution

We know that −1 ≤ b, c ≤ 1, so

−1 ≤ −b ≤ 1b2 − 4c ≤ 1− 4(−1) = 5 =⇒
√
b2 − 4c ≤

√
5 and −

√
b2 − 4c ≥ −

√
5

.

Using this, we can find bounds on the two solutions x1 = −b+
√
b2−4c

2
and x2 = −b−

√
b2−4c

2
.

x1 = −b+
√
b2−4c

2
≤ 1+

√
5

2

x2 = −b−
√
b2−4c

2
≥ −1−

√
5

2

x2 ≤ x1
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∴ −1−
√

5
2
≤ x2 ≤ x1 ≤ 1+

√
5

2

Hence, the solutions to x2 + bx+ c = 0 must be in the interval [
−1−

√
5

2
,
1 +
√

5

2
] .

Note: φ = 1+
√

5
2

is known as the golden ratio, so the interval may be written as [−φ, φ].

Solve the following system of equations:


ab(a+ b) = 6

bc(b+ c) = 30

ac(a+ c) = 12
Solution

Obviously none of the variables can be zero. Put S = a+ b+ c, P = abc. Then the equations become
P
c
(S − c) = 6 ⇐⇒ c = PS

P+6
P
a

(S − a) = 30 ⇐⇒ a = PS
P+30

P
b
(S − b) = 12 ⇐⇒ b = PS

P+12

Thus
(

P
P+6

+ P
P+12

+ P
P+30

)
S = S

If S = 0, then a + b = −c, hence the first equation becomes abc = −6, but then the other two

become abc = −30 ∧ abc = −12 which can’t hold.

Therefore P
P+6

+ P
P+12

+ P
P+30

= 1

After clearing the denominators and simplifying, we get

P 3 + 24P 2 − 1080 = 0 ⇐⇒ (P − 6)(P 2 + 30P + 180) = 0

For P = 6 we get a = S
6
∧ b = S

3
∧ c = S

2
=⇒ ab(a + b) = S3

36
= 6 =⇒ S = 6, hence

(a, b, c) = (1, 2, 3)

Then P 2 + 30P + 180 = 0 =⇒ P1,2 = −15± 3
√

5

For P = −15 + 3
√

5 we get

a = −15+3
√

5
15+3

√
5
S =

√
5−3
2
S

b = −15+3
√

5
−3+3

√
5
S = −

√
5S

c = −15+3
√

5
−9+3

√
5
S = 5+

√
5

2
S

Thus ab(a+ b) = 6 ⇐⇒
√

5−3
2
· (−
√

5) · −
√

5−3
2

S3 = 6

−
√

5S3 = 6 ⇐⇒ S = − 6

√
36
5

Hence

(a, b, c) =

(
3−
√

5

2
6

√
36

5
,
√

5
6

√
36

5
,−5 +

√
5

2
6

√
36

5

)
For P = −15− 3

√
5, by using similar technique, we find

(a, b, c) =

(
−3 +

√
5

2
6

√
36

5
,
√

5
6

√
36

5
,
5−
√

5

2
6

√
36

5

)
Simplify

√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a , 0 < c < a .

Solution
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√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a

[√
(x+ c)2 + y2 +

√
(x− c)2 + y2

] [√
(x+ c)2 + y2 −

√
(x− c)2 + y2

]
= 2a

[√
(x+ c)2 + y2 −

√
(x− c)2 + y2

]
(x+ c)2 − (x− c)2 = 2a

[√
(x+ c)2 + y2 −

√
(x− c)2 + y2

]

√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2cx
a√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a

∥∥∥∥∥∥∥
⊕

√
(x+ c)2 + y2 = cx

a
+ a

(x+ c)2 + y2 =
(
cx
a

)2
+ 2cx+ a2

x2 + c2 + y2 = c2x2

a2 + a2

(a2 − c2)x2 + a2y2 = a2 (a2 − c2)

a2 − c2 = b2 =⇒ b2x2 + a2y2 = a2b2

x2

a2 + y2

b2
= 1

.

If there are 8 teams that play in a tournament, 2 teams per game, in how many ways can the

tournament be organized if each team is to participate in exactly 2 games against different opponents?

(Two tournaments that have the same teams playing in each game, but have the games ordered

differently, are considered to be organized the same way. Also, individual games are symmetrical and

there is no home-field advantage.)

Solution

In theoretical terms, you ask for the maximal number of 2-regular (undirected) simple labeled graphs.

However, it is well-known that such graphs may be described as disjoint unions of cycles spanning

the whole graph; this way, since the smallest cycle is a triangle, by counting vertices we see that all

the possible configurations are (C5, C3), (C4, C4) and (C8). In the first case, there are
(

8
3

)
= 56 ways

to choose vertices for the C3; in the second, 1
2

(
8
4

)
= 35 ways (two 4-subsets whose union is the whole

set of vertices lead to the same partition); in the third, the C8 spans the whole graph.

This generates 56 × 12 = 672 tournaments for the first case, 35 × 32 = 315 for the second

and 2520 for the last one, for a total of 3507. I used the well-known fact that k vertices may be

arranged in a k-cycle in (k−1)!
2

ways - to see that, just consider the k! strings a1a2 · · · ak indicating that

(a1, a2), . . . , (ak−1, ak), (ak, a1) are edges and note that the 2k different cyclings aj . . . aka1 · · · aj−1,

aj . . . a1ak . . . aj+1 for all j yield the same configuration.

The answer is thus 3507.

Define in R the following equivalence relation : for any {x, y} ⊂ R we"ll mean

x .s.s. y ⇐⇒ x = y = 0 ∨ xy > 0 , i.e. x and y have "same sign".

Some examples. Consider 0 < a, b 6= 1 , {x, y} ⊂ R .

I x
y
.s.s. xy , where y 6= 0 ; |x| .s.s. x2 ; |x|− |y| .s.s. x2 − y2 .
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I (ax − ay) .s.s. (a− 1)(x− y) ; ax − bx .s.s. x(a− b) .

I loga x− loga y .s.s. (a− 1)(x− y) ; loga x .s.s. (a− 1)(x− 1) , where x > 0 and y > 0 .

I loga x− logb x .s.s. (a− 1)(b− 1)(x− 1)(b− a) , where x > 0 .

Exercises.

1.� Prove that for any 0 < a 6= 1 , 0 < b 6= 1 have the relation
(
ab − a

)
(ba − b) > 0 .

2.� Solve the following inequations :

2.1 (2x− 1) (|x− 2| − |x|) lg |x− 1| ≥ 0 .

2.2 max {ax, a−x} ≥ amax{x, 1x} , where 0 < a 6= 1 .

Problem: Show that log 1
2
x > log 1

3
x only when 0 < x < 1 .

Solution

E ≡ log 1
2
x− log 1

3
x .s.s.

(
1
2
− 1
) (

1
3
− 1
)

(x− 1)
(

1
3
− 1

2

)
.s.s. − (x− 1) .

Therefore, log 1
2
x > log 1

3
x ⇐⇒ E > 0 ⇐⇒ x− 1 < 0 ⇐⇒ 0 < x < 1 .

Find all positive integers x, y, z satisfying the equation 3x + 4y = 5z

Solution

Taking the original equation mod4, we find that (−1)x ≡ 1 (mod 4), so x is even. Let x = 2x1. By

similar reasoning, taking the original equation mod5 gives that z is even, allowing us to let z = 2z1.

Therefore, we have

4y = 22y = (5z1 − 3x1)(5z1 + 3x1)

implying that we can let 5z1 − 3x1 = 2a and 5z1 + 3x1 = 2b, where a+ b = 2y. Adding the resulting

system gives

2a + 2b = 2(5z1) =⇒ 5z1 = 2a−1 + 2b−1.

Therefore, since 5z1 is odd and a < b, we have that a− 1 = 0 =⇒ a = 1.

Subtracting the first equation from the second equation in the new system therefore gives

3x1 = 2b−1 − 1

Taking this equation mod3, we find that (−1)b−1 ≡ 1 (mod 3), implying that b − 1 is even. Let

b− 1 = 2c. Therefore,

3x1 = (2c − 1)(2c + 1), so let 2c − 1 = 3u and 2c + 1 = 3v, where u + v = x1. Then, 3v − 3u =

2 =⇒ u = 0 =⇒ v = 1 =⇒ x1 = z1 = 1 =⇒ x = y = z = 2.

Therefore, all solutions are given by (x, y, z) ∈ {(2, 2, 2)}.
Let there be a system of 2n− 1 equations, where n ∈ N. The ith equation is xi · xi+1 = ai, for

real variables xi and real constants ai for which
∏2n−1

i=1 ai > 0. Note that in the (2n− 1)th equation,

x(2n−1)+1 = x2n = x1.

Solution

By multiplying all odd numbered equations and dividing by all even numbered equations, we get∏n
i=1 (x2i−1·x2i)∏n−1
i=1 (x2i·x2i+1)

=
∏n
i=1 a2i−1∏n−1
i=1 a2i

=⇒ x2
1 =

∏n
i=1 a2i−1∏n−1
i=1 a2i

=⇒ x1 = ±

√∏n
i=1 a2i−1∏n−1
i=1 a2i

Since xi · xi+1 = ai ∀i ∈ N, 1 ≤ i ≤ 2n − 1, all xi with 2 ≤ i can be recursively defined as

xi =
ai
xi−1

.

Prove that amongst six people in a room there are at least three who know one another or at

least three who do not know one another.

Solution
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Treat the six people as six vertices in a graph and name the vertices A,B,C,D,E, F . Pick a random

vertex, say A. Color an edge black if the people represented by the vertices joined know each other

and white if otherwise. The problem is solved when we obtain either a black triangle or a white

triangle. By pigeonhole principle, A will be joined by at least 3 edges of the same color, let’s say

black. WLOG, assume that edges AB,AC,AD are black. If any of the edges BC,BD,CD is colored

black, a black triangle is formed. If none, a white triangle BCD is formed. QED.

In triangle 4ABC, ∠A > ∠B. Prove that BC > AC.

Solution

∠A > ∠B implies sinA > sinB. From the sine formula BC
sinA

= AC
sinB

, we get BC > AC. Even if

∠A > π
2
, it won’t reach the case when sinA < sinB because for this case to occur, ∠A + ∠B > π

which is impossible.

Let A =1, 2, 3, 4, ..., n, n > 4. Prove that we always can divide A into the two disjoint sets, S

and P , such that the sum of elements of S is equal to the product of elements of P .

Solution

When n is even, choose P = {1, n, n−2
2
} and S the rest. When n is odd, choose P = {1, n− 1, n+1

2
}.

It is easy to check that they work.

Following equation:

21x− 25 + 2
√
x− 2 = 19

√
x2 − x+ 2 +

√
x+ 1

Solution

Condition: x ≥ 2 We have 21x− 25 + 2
√
x− 2 = 19

√
x2 − x− 2 +

√
x+ 1

⇔ 21(x− 2) + 2
√
x− 2 + 17 = 19

√
(x+ 1)(x− 2) +

√
x+ 1 (1)

We put:

U =
√
x− 2 ≥ 0

V =
√
x+ 1 ≥

√
3

⇒ U2 − V 2 + 3 = 0 (∗)

Then: (1)⇔ 21U2 + 2U + 17 = 19UV + V ⇒ V =
21U2 + 2U + 17

19U + 1
Instead (∗) we obtain: 40U4 + 23U3 − 183U2 − 23U + 143 = 0

⇔ (U − 1)(U + 1)(5U + 11)(8U − 13) = 0 By itself it is then.OK But the original problem solution

like? anyone know?

Let mn+ 1 different real numbers be given. Prove that there is either an increasing sequence

with at least n+ 1 members or a decreasing sequence with at least m+ 1 members.

Solution

The precise result is that if we are given a mn+ 1-length sequence of distinct elements of a linearly

ordered set we can find either a m+ 1-length increasing or n+ 1-length decreasing subsequence. As

you state it (choose "members"...) we can simply re-order the numbers as we want!

This has been posted a lot of times before; just consider for the number in the k-th position the

longest increasing subsequence starting with it, of length α(k). If there is some α(k) ≥ m+ 1, we are

done. Otherwise, all α(k) ∈ {1, . . . ,m}, so, by pigeonhole principle, there are n + 1 indices k with

the same α(k)-value, which must necessarily be in decreasing order.

Prove that there is no function f : Z→ Z that satisfy

f(x+ f(y)) = f(x)− y
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for all x, y ∈ Z.
Solution

We have f 4(x+ f(y)) = f 3(−y + f(x)) = f 2(−x+ f(−y)) = f(y + f(−x)) = x+ f(y), so f 4 = idZ,

since any integer z can be written as z = x+ f(y) (just take x = z − f(0) and y = 0).

Therefore f is injective, so for y = 0, from f(x+ f(0)) = f(x)− 0 = f(x) follows x+ f(0) = x, so

f(0) = 0. Now, for x = 0, from f(f(y)) = f(0 + f(y)) = f(0)− y = −y follows f 2 = −idZ. Therefore

from −x − f(y) = f 2(x + f(y)) = −x + f(−y) follows f(−y) = −f(y). Take now y = f(−z), so

f(x + z) = f(x + f(f(−z))) = f(x)− f(−z) = f(x) + f(z). This is the Cauchy equation, which on

Z has as only solution f(t) = f(1)t. But then −1 = f 2(1) = f(1)2, absurd.

Another way: f(x+ f(y)) = f(x)− y
f(f(x+ f(y)) + z) = f(f(x)− y + z)

f(z)− x− f(y) = f(z − y)− x
f(z)− f(y) = f(z − y)

By putting z = x+ y we get

f(x+ y) = f(x) + f(y), which is Cauchy equation with solution f(x) = cx.

But now we have c(x+ cy) = cx− y =⇒ c2y = −y which is a contradiction.

Let ABC be a triangle. Prove that ∠A = 60◦ ⇐⇒ s =
√

3(R + r) (s-semiperimeter, R-radius

of the circumcircle, r-radius of the incircle).

Remarks.

I The equivalence A = 60◦ ⇐⇒ s = (R + r)
√

3 is false because the implication

A = 60◦ =⇒ s = (R + r)
√

3 is true and s = (R + r)
√

3 =⇒ A = 60◦ is false.

I This equivalence 60◦ ∈ {A,B,C} ⇐⇒ s = (R + r)
√

3 is true. Indeed, prove easily that

tan A
2

+ tan B
2

+ tan C
2

= 4R+r
s

tan A
2

tan B
2

+ tan A
2

tan B
2

+ tan A
2

tan B
2

= 1

tan A
2

tan B
2

tan C
2

= r
s

∥∥∥∥∥∥∥∥∥∥∥∥
=⇒ s·

∏(
1−
√

3 · tan A
2

)
= 4

[
s− (R + r)

√
3
]

.

Other method. Prove easily that x+ y + z = 0 =⇒
∑

sinx = −4
∏

sin
x

2
(∗) . Therefore,

s = (R + r)
√

3 ⇐⇒

s
R

=
√

3·
(
1 + r

R

)
⇐⇒

∑
sinA =

√
3·
∑

cosA ⇐⇒
∑

sin (A− 60◦) = 0 . For


x := A− 60◦

y := B − 60◦

z := C − 60◦

∥∥∥∥∥∥∥
, where

x+y+z = 0 apply the identity (∗) . In conclusion, s = (R+r)
√

3 ⇐⇒
∏

sin
(
A
2
− 30◦

)
= 0 ⇐⇒

60◦ ∈ {A,B,C} .
Let x, y ≥ 0, x+ y = 1. Find min,max A =

√
1 + x2009 +

√
1 + y2009

Solution

Lets find extrema of the function f =
√

1 + x2009 +
√

1 + (1− x)2009.

f ′(x) = 2009x2008

2
√

1+x2009 −
2009(1−x)2008

2
√

1+(1−x)2009
= 0 =⇒

=⇒
√

1+x2009

x2008 =

√
1+y2009

y2008 =⇒ 1
x4016 + 1

x2007 = 1
y4016 + 1

y2007 .

Let g(x) = x−4016 + x−2007.

g′(x) = −4016x−4017 − 2007x−2008 < 0 (remind that x > 0), so if a > b we get g(a) < g(b).
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Hence x−4016 + x−2007 = y−4016 + y−2007 only if x = y.

We have found the only extremum x = 1− x =⇒ x = 1
2
.

Now it’s easy to see that in x = y = 1
2
function f has minimum and in x = 0, y = 1 it has

maximum.

Answer: fmin = 2
√

1 + 2−2009, fmax = 1 +
√

2.

Solve the equation

x+ sinx = π

Solution

x+ sinx = π ⇔ sin(π− x) = π− x (π−x)=t∈[−1;1]→ ⇒ sin t = t⇒ sin t− t = 0; Let: f(t) = sin t− t,∀t ∈
[−1; 1]; f ′(t) = cos t− 1 ≤ 0,∀t ∈ [−1; 1] ⇒ only : t = 0⇒ x = π

Find all positive integers c such that a3 + b3 = c! + 4 has solutions in integers.

Solution

Note that if gcd(n, 9) = 1, n6 ≡ 1 mod 9 =⇒ n3 ≡ ±1 mod 9 So if c > 5, c! + 4 ≡ 4 mod 9.But

a3 + b3 ≡ 0 + 0, 0 + 1, 1 + 1,−1 − 1,−1 + 1 mod 9 So try with c = 1, 2, 3, 4, 5 c = 1, c! + 4 = 5

mod 9,impossible. c = 2, c! + 4 = 6 ≡ −3 mod 9,impossible. c = 3, c! + 4 = 10,no solution. c =

4, c! + 4 = 28 = 33 + 13 c = 5, c! + 4 = 124 = 53 − 13 Hence c ∈ {4, 5}
Show that if the points of the plane are coloured with three colours, there will always exist

two points of the same colour which are one unit apart.

Solution

Assume that we had a map c : R2 → {1, 2, 3} such that for any segment AB of length 1, c(A) 6= c(B).

Pick some point A at random and consider a point B such that AB =
√

3. Then there are

points C,D such that ACD and BCD are equilateral, of side 1. Thus, c(A), c(C) and c(D) are all

distinct, as are c(B), c(C) and c(D). We conclude that c(A) = c(B), whence the circle C(A,
√

3) is

monochromatic - a contradiction since we can then choose a chord of C of length 1 whose endpoints

will be of the same color.

Solve the following equation : xx = x such that x is an integer

Solution

If x > 0 then x lnx = lnx ⇐⇒ (x− 1) lnx = 0 ⇐⇒ x = 1

If x < 0 then x = −m =⇒ 1
(−m)m

= −m =⇒ m = 2k + 1, k > 0 (both sides must have the

same sign)

−(2k + 1) ln(2k + 1) = ln(2k + 1) ⇐⇒ 2(k + 1) ln(2k + 1) = 0, thus k = 0 ⇐⇒ x = −1

Therefore the solutions are x ∈ {−1, 1}

Calculate

3(x+ 1
x
) = 4(y + 1

y
) = 5(z + 1

z
)

xy + yz + zx = 1

Solution

Substituting x = tan α
2
, y = tan β

2
, z = tan γ

2
we get α + β + γ = ±π and 6

sinα
= 8

sinβ
= 10

sin γ
,

thus α, β, γ are the angles of an 6 − 8 − 10 triangle (OR their negative counterparts), yielding

cosα = 4
5

=⇒ x = tan α
2

= ±
√

1−cosα
1+cosα

= ±1
3
, y = ±1

2
, z = ±1

As all the variables must obviously have the same sign, the solutions are (x, y, z) ∈
{(

1
3
, 1

2
, 1
)
,
(
−1

3
,−1

2
,−1

)}
Let a2 + b2 < 1 and c2 + d2 < 1. Prove that: (a− c)2 + (b− d)2 ≥ (ad− bc)2

Solution

However, initial statement is true as well.

Let a = c+ ψ1, b = d+ ψ2, and we don’t mind whether ψ1, ψ2 > 0 or not.

Our statement rewrites as follows:
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ψ2
1 + ψ2

2 ≥ (dψ1 − cψ2)2

ψ2
1 + ψ2

2 ≥ d2ψ2
1 + c2ψ2

2 − 2cdψ1ψ2

ψ2
1(1− d2) + ψ2

2(1− c2) ≥ −2cdψ1ψ2

ψ2
1c

2 + ψ2
2d

2 ≥ −2cdψ1ψ2

(ψ1c+ ψ2d)2 ≥ 0

When
∑x

i=1(2i − 1) = n prove or disprove that
∑n

i=1b
√
ic =

∑x
i=1(2i − 1)i assuming i is a

variable.

Solution

We know that :∑x
i=1(2i− 1) = n

And we know that :
∑x

i=1(2i− 1) =
∑x

i=1(2i)−
∑x

i=1(1) = 2(x(x+1)
2

)− x = x2 + x− x = x2. Such

that n = x2

Afterthat :
∑n

i=1b
√
ic =

∑x2

i=1b
√
ic = b

√
1c+ b

√
2c+ . . .+ b

√
x2c

It is equivalent, with your problem on Knockout Tournament. So we obtain :

b
√

1c+ b
√

2c+ . . .+ b
√
x2c

= 1(3) + 2(5) + . . .+ (x− 1)(2x− 1) + x =
∑x−1

i=1 i(2i+ 1) + x

=
∑x−1

i=1 (2i2) +
∑x−1

i=1 (i) + x

= (x−1)(x)(2x−3)
3

+ (x−1)(x)
2

+ x

In the other hand, we obtain :∑x
i=1(2i− 1)i =

∑x
i=1(2i2)−

∑x
i=1(i)

(x)(x+1)(2x−1)
3

− (x)(x+1)
2

And, we can solve the rest.

Prove that in 4ABC there is the identity a · tan
A

2
+ b · tan

B

2
+ c · tan

C

2
= 4R− 2r .

Solution

Method 1.

∥∥∥∥∥∥∥∥∥∥∥∥

ra = s · tan A
2

(1)

ara = s (ra − r) (2)

ra + rb + rc = 4R + r (3)

∥∥∥∥∥∥∥∥∥∥∥∥
=⇒

∑
a · tan A

2

(1)
=
∑

ara
s

(2)
=
∑

(ra − r)
(3)
= 2(2R− r)

.

Method 2.

∥∥∥∥∥∥∥
S = s(s− a) tan A

2
(4)

S = sr = (s− a)ra (5)

∥∥∥∥∥∥∥ =⇒
∑
a · tan A

2

(4)
= S ·

∑
a

s(s−a)
=
∑(

S
s−a −

S
s

) (5)
=

∑
(ra − r) = 2(2R− r) .

Applications.
∑

a
ra
≥ 2s

2R−r . Define Sn =
∑
an·tan A

2
, n ∈ N . Then Sn+1 = s · Sn − r ·

∑
an , n ∈ N

.

{
x− 2

√
y + 1 = 3

x3 − 4x2
√
y + 1− 9x− 8y = −52− 4xy

Solution

The second equation can be rewritten thus:

x
(
x2 − 4x

√
y + 1 + 4(y + 1)

)
− 13x− 8y = −52

Hence by using the first equation we get

9x− 13x− 8y = −52 ⇐⇒ x+ 2y = 13
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So

13− 2y = 2
√
y + 1 + 3 =⇒

√
y + 1 = 5− y

Squaring, we get y2 − 11y + 24 = 0 =⇒ y ∈ {3, 8}.
However y = 8 doesn’t work, hence the only solution is y = 3 =⇒ x = 7, ie. (x, y) = (7, 3)

Find the minimum value of the expression

P =
√

2x2 + 2y2 − 2x+ 2y + 1 +
√

2x2 + 2y2 + 2x− 2y + 1 +
√

2x2 + 2y2 + 4x+ 4y + 4

Solution

The expression rewrites as

P =
√

2

(√(
x− 1

2

)2
+
(
y + 1

2

)2
+
√(

x+ 1
2

)2
+
(
y − 1

2

)2
+
√

(x+ 1)2 + (y + 1)2

)
Thus the sum in the outermost parentheses will be minimized if (x, y) is the Fermat point of the

triangle
(

1
2
,−1

2

)
,
(
−1

2
, 1

2

)
, (−1,−1)

Since the triangle is isosceles, the Fermat point F lies on its symmetrial axis y = x, and since it

makes the angle of 120◦ with the triangle basis, it’s easy to calculate its position.

If I’m not mistaken, its coordinates are F
(
−
√

3
6
,−
√

3
6

)
, and Pmin = 2 +

√
3

The equation fa(x) ≡ x2 + (a + 2)x + a2 − a + 2 = 0 (∗) has real roots, where a ∈ R∗ . Find
the range of these roots.

Solution

r is a root of (∗) ⇐⇒ fa(r) = r2 + (a+ 2)r+a2−a+ 2 = 0 , i.e. a2 + (r− 1) ·a+ (r2 + 2r + 2) = 0 .

I r ∈ R ⇐⇒ ∆′r(a) ≡ (a+ 2)2 − 4 (a2 − a+ 2) ≥ 0 ⇐⇒ 3a2 − 8a+ 4 ≤ 0 ⇐⇒ a ∈
[

2
3
, 2
]
.

I a ∈ R∗ ⇐⇒ ∆′a(r) ≡ (r − 1)2 − 4 (r2 + 2r + 2) ≥ 0 ⇐⇒ 3r2 + 10r + 7 ≤ 0 ⇐⇒

r ∈
[
−7

3
,−1

]
.

Let P be an interior point of the square ABCD so that PA = 1 , PB = 2 , PC = 3 . Find

the length of [AB] .

Solution

Proof 1. Let l = AB and φ = m
(
ÂBP

)
. Thus, m

(
ĈBP

)
= 90◦ − φ and l

√
2 > 3 , l < 1 + 2 ,

i.e. l ∈
(

3
√

2
2
, 3
)

(∗) .

Apply the generalized Pytagoras’ theorem to :

{
PA/4ABP =⇒ 4l · cosφ = l2 + 3

PC/4CPB =⇒ 4l · sinφ = l2 − 5

∥∥∥∥∥ =⇒

(l2 + 3)
2

+ (l2 − 5)
2

= 16l2 ⇐⇒ l4− 10l2 + 17 = 0 ⇐⇒ l2 ∈ {5± 2
√

2} (∗)
=⇒ l =

√
5 ∗ 2
√

2 .

Prove that for any natural number n, an = 240·(4n+3)!
n!·(n+1)!·(n+3)!·(n+5)!

is an integer.

Solution

Consider the multinomial coefficient C =
(

N
a1,...,ak

)
(so a1 + · · · + ak = N); take d = gcd(a1, . . . , ak);

then
d

N
C ∈ N.

Proof. There exist integers u1, . . . , uk such that d =
∑k

j=1 ujaj (by Bézout’s relation). Then
d

N
C =

∑k
j=1 uj

aj
N
C =

∑k
j=1 uj

(
N−1

a1,...,aj−1,aj−1,aj+1,...,ak

)
.

By repeatedly applying this to 240
(

4n+9
n,n+1,n+3,n+5

)
, having 240 = 24 · 3 · 5, and analyzing what

greatest common divisor may the four elements at the denominators have, the thesis follows.
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Prove that, if n ≥ 2, for all natural n, (n+ 1) cos
(

π
n+1

)
− n cos

(
π
n

)
≥ 1

Solution

Your relation holds for n = 1 as well; anyway, assume now that n ≥ 2.

Consider the Taylor series
∑

k≥0(−1)k x2k

(2k)!
of the cosine function. Trivial computations reduce

your relation to
∑
fk(y) ≥

∑
fk(x) where y = π/n > x = π/(n+ 1) and

fk(t) = t2k−1

(2k)!
− t2k+1

(2k+2)!
,

and all we need to see is that the derivatives of all fk are non-negative on the interval [0, 2].

Find all x, y such that:

 x2 + y2 − xy + 4y + 1 = 0

y[7− (x− y)2] = 2(x2 + 1)

Solution

From the first equation, x2 + 1 = xy − y2 − 4y

Plugging that into the second equation, we get

y[7− (x− y)2] = 2y(x− y − 4)

If y = 0, then the first equation becomes x2 + 1 = 0, which has no solution.

Thus y 6= 0 =⇒ 7− (x− y)2 = 2(x− y)− 8 ⇐⇒ (x− y)2 + 2(x− y)− 15 = 0

Hence x− y ∈ {−5, 3}
1. Plugging y = x+ 5 into the second equation we get −9(x+ 5) = x2 + 1 ⇐⇒ x2 + 9x+ 46 = 0,

which has no real solutions.

2. Plugging y = x− 3 into the second equation we get −2(x− 3) = 2(x2 + 1) ⇐⇒ x2 + x− 2 =

0 ⇐⇒ x ∈ {−2, 1}
Hence the solutions are (x, y) ∈ {(−2,−5), (1,−2)}

a1, a2, . . . , an ∈ (0, +∞)

S =
∑n

k=1 ak

an+1 = a1

∣∣∣∣∣∣∣ =⇒
∑n

k=1

√
ak+ak+1

2S−ak−ak+1
≥ 2.

Solution√
2S−ak−ak+1

ak+ak+1
· 1 ≤

2S−ak−ak+1
ak+ak+1

+1

2
= S

ak+ak+1

⇒
∑√

ak+ak+1

2S−ak−ak+1
≥
∑ ak+ak+1

S
= 2

If (1 + x + x2)n = k0 + k1.x + k2.x
2 + k3.x

3 + ....... + k2n.x
2n, what is the value of : k0.k1 −

k1.k2 + k2.k3 − ......... ???
Solution

The coefficients ki are symmetric, ie. ki = k2n−i, which is obvious from(
1
x

+ 1 + x
)n

= k0

xn
+ k1

xn−1 + · · ·+ k2n−1x
n−1 + k2nx

n

Now just substitute 1
x
for x to obtain the claim.

Therefore

S =
∑2n−1

i=0 (−1)ikiki+1 =
∑2n−1

i=0 (−1)ik2n−ii2n−1−i

Put j := 2n− 1− i ⇐⇒ i = 2n− 1− j to get

S =
∑2n−1

j=0 (−1)2n−1(−1)−jkjkj+1 = −
∑2n−1

j=0 (−1)jkjkj+1 = −S
Hence S = 0

Let S1, S2, ...S2011 be nonempty sets of consecutive integers such that any 2 of them have a

common element. Prove that there is a positive integer that belongs to every Si, i = 1, ..., 2011 (For

example, 2, 3, 4, 5 is a set of consecutive integers while 2, 3, 5 is not.)

Solution

Let M be the minimum attained by max(Sk), m the maximum attained by min(Sk). Then m ≤M ,

so any a ∈ [m,M ] belongs to all Sk.
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Find the real values of m such that the following system of equations have solution:x2 + 4x2

(x+2)2 ≥ 5

x4 + 8x2 + 16mx+ 16m2 + 32m+ 16 = 0

Solution

Simplifying the first inequality we get

x4 + 4x3 + 3x2 − 20x− 20 > 0 ⇐⇒ (x+ 1)(x− 2)(x2 + 5x+ 10) > 0

Hence x 6 −1 ∨ x > 2

Regarding the second equation as a quadratic in m, we must have a non-negative discriminant:

−x4 − 4x2 + 16x > 0 ⇐⇒ x(x− 2)(x2 + 2x+ 8) 6 0

Hence 0 6 x 6 2

Therefore the only possible common solution is x = 2. Then the second equation becomes (m +

2)2 = 0 ⇐⇒ m = −2

In the triangle ABC prove that the perpendiculars from the Gergonne’s point N to the interior

bisectors are intersecting the sides of the triangle in 6 points that are situated on the same circle,

concentric with C(ABC).

Solution

Incircle (I) of 4ABC touches BC,CA,AB at D,E, F . N is symmedian point of 4DEF . Perpen-
diculars to AI through N cut AB,AC at Za, Ya, perpendiculars to BI through N cut BC,BA at

Xb, Zb, perpendiculars to CI through N cut CA,CB at Yc, Xc =⇒ EYa = FZa, FZb = DXb, DXc =

EYc. BC is antiparallel of EF WRT ∠FDE =⇒ 4NXbXc ∼ 4DEF . DN is symmedian of

4DEF =⇒ ND is median of 4NXbXc. Similarly, NE,NF are medians of 4NYcYa,4NZaZb
=⇒ Xb, Xc, Yc, Ya, Za, Zb are on circle concentric with (I).

Proof. 1.000 . . . 00110m =
[(

1 + 1
10p+1

)10p+1
]10m−p−1 (Bernoulli)

≥
(
1 + 10p+1 · 1

10p+1

)10m−p−1

=

210m−p−1
= (210)

10m−p−2

= 102410m−p−2
> 100010m−p−2

.

Solution

Let {p,m} ⊂ N so that m ≥ p+ 2 . Prove that 1.000 . . . 00110m > 100010m−p−2
,

where the base from the left side has p zeroes after point, i.e. 1.000 . . . 001 = 1 + 1
10p+1 .

Particular case. p = 1 and m = 3 =⇒ 1.011000 > 1000 or more generally
(
1 + 1

10p

)10p+1

> 1000

for any p ∈ N . Another way: Use the known inequality

(
1 +

1

n

)n+1

> e for all integer n ≥ 1. Then,

since
(
1 + 1

10p+1

)10m
> e10m/(10p+1+1), it is enough to prove e10m > 103·10m−1+3·10m−p−2

.

We will first prove by induction on p that e10p+2
> 103·10p+1+3. For p = 0 it’s e100 > 1033, which is

true. And e10p+3
>
(

103·10p+1+3
)10

= 103·10p+2+30 > 103·10(p+1)+1+3.

But this is the base case for m = p + 2 for the main inequality. We will prove that by induction

on m now. e10m+1
>
(

103·10m−1+3·10m−p−2
)10

= 103·10(m+1)−1+3·10(m+1)−p−2
.

Find x, y ∈ R such that:

 6x2y + 2y3 + 35 = 0

5(x2 + y2 + x) + 2xy + 13y = 0

Solution

Substitute x = a+b
2
, y = a−b

2
. Then the equations, after simplification, becomea3 − b3 = −35

3a2 + 9a+ 2b2 − 4b = 0

The second equation yields 9a2 + 27a = −6b2 + 12b, hence
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(a+ 3)3 − (b− 2)3 = (a3 − b3) + [(9a2 + 27a)− (−6b2 + 12b)] + 27 + 8 = −35 + 0 + 35 = 0

Therefore a = b− 5. Plugging that into the first equation we get

b2 − 5b+ 6 = 0 ⇐⇒ b ∈ {3, 2}
Hence

b = 3 =⇒ a = −2 =⇒ (x, y) =
(

1
2
,−5

2

)
b = 2 =⇒ a = −3 =⇒ (x, y) =

(
−1

2
,−5

2

)
Both solutions satisfy the given system.

Find the value of:

cos
(

2π
13

)
+ cos

(
6π
13

)
+ cos

(
8π
13

)
Solution

Let zk, k = 0, ..., 12 be complex roots of z13 − 1 = (z − 1)(z12 + z11 + ... + 1) = 0 =⇒ z0 = 1 and

zk = cos 2πk
13

+ i · sin 2πk
13

= z13−k =⇒
∑12

k=1 zk =
∑6

k=1(zk + zk) = 2
∑6

k=1 cos 2πk
13

= −1.

Let X = (z1 + z1) + (z3 + z3) + (z4 + z4) = 2
(
cos 1·2π

13
+ cos 3·2π

13
+ cos 4·2π

13

)
and Y = (z2 + z2) +

(z5 + z5) + (z6 + z6) = 2
(
cos 2·2π

13
+ cos 5·2π

13
+ cos 6·2π

13

)
=⇒ Y < 0 < X and X + Y = −1.

X · Y =

= (z1 + z1)(z2 + z2) + (z1 + z1)(z5 + z5) + (z1 + z1)(z6 + z6)+

+(z3 + z3)(z2 + z2) + (z3 + z3)(z5 + z5) + (z3 + z3)(z6 + z6)+

+(z4 + z4)(z2 + z2) + (z4 + z4)(z5 + z5) + (z4 + z4)(z6 + z6) =

= (z1 + z1) + (z3 + z3) + (z4 + z4) + (z6 + z6) + (z5 + z5) + (z7 + z7)+

+(z1 + z1) + (z5 + z5) + (z2 + z2) + (z8 + z8) + (z3 + z3) + (z9 + z9)+

+(z2 + z2) + (z6 + z6) + (z1 + z1) + (z9 + z9) + (z2 + z2) + (z10 + z10) =

= (z1 + z1) + (z3 + z3) + (z4 + z4) + (z6 + z6) + (z5 + z5) + (z6 + z6)+

+(z1 + z1) + (z5 + z5) + (z2 + z2) + (z5 + z5) + (z3 + z3) + (z4 + z4)+

+(z2 + z2) + (z6 + z6) + (z1 + z1) + (z4 + z4) + (z2 + z2) + (z3 + z3) =

= 3
∑6

k=1(zk + zk) = −3

As a result, X, Y are roots of ξ2 + ξ − 3 = 0 =⇒ X = −1+
√

13
2

> Y = −1−
√

13
2

.

Let a ≤ b ≤ c be real numbers such that :

a+ b+ c = 2, And

ab+ bc+ ca = 1.

Prove that 0 ≤ a ≤ 1
3
≤ b ≤ 1 ≤ c ≤ 4

3

Solution

From b + c = 2− a ∧ bc = 1− a(b + c) = 1− a(2− a) = (a− 1)2, we get that b, c are the solutions

to the equation t2 + (a − 2)t + (a − 1)2 = 0, whose discriminant must be non-negative. Hence

(a− 2)2 − 4(a− 1)2 > 0 ⇐⇒ a(3a− 4) 6 0 ⇐⇒ 0 6 a 6 4
3
.

Thus a, b, c are all non-negative, so is their product.

From a+ b+ c = 2 ∧ a 6 b 6 c we get 3a 6 2 ⇐⇒ a 6 2
3
, therefore 1− a is non-negative:

p := abc = a(bc) = a(1 − a)2 = 4a
(

1−a
2

)2 AM-GM

6 4
(
a+ 1−a

2
+ 1−a

2

3

)3

= 4
27
, with the equality for

a = 1−a
2
⇐⇒ a = 1

3
=⇒ (b, c) =

(
1
3
, 4

3

)
Consider the polynomial Q(x) = x3− 2x2 + x− p. We’ve already established 0 6 p 6 4

27
. Now we

have

Q(0) = −p 6 0, Q
(

1
3

)
= 4

27
− p > 0, Q(1) = −p 6 0, Q

(
4
3

)
= 4

27
− p > 0

Therefore a, b, c, which are real roots of Q(x), lie in the segments
[
0, 1

3

]
,
[

1
3
, 1
]
,
[
1, 4

3

]
respectively

and the claim is thus proven.
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Find the point P on BC , side of the 4ABC such that AB
PD

+ AC
PE

is minimum where PD and

PE are perpendiculars on AB and AC.

Solution

By Cauchy,

(AB · PD + AC · PE)
(
AB
PD

+ AC
PE

)
> (AB + AC)2

but AB · PD + AC · PE = 2[ABC], hence
AB
PD

+ AC
PE
> (AB+AC)2

2[ABC]

The equality is attained iff AB·PD
AB
PD

= AB·PE
AB
PE

⇐⇒ PD = PE, ie. iff AP is the bisector of ∠A.

Show that the cube root of 3 cannot be the root of a quadratic equation with integer coefficients.

Solution

If ax2 + bx+c = 0 is a quadratic with integer coefficients, then its roots are of the form x1,2 = p±√q
where p, q are rational numbers.

Thus p±√q = 3
√

3 ⇐⇒ p3 + 3pq ± (3p2 + q)
√
q = 3

Therefore either (i)
√
q must be rational, but then p±√q is rational too, which is impossible as

it’s equal to 3
√

3 by the assumption, or (ii) 3p2 + q = 0 which (having in mind that q is radicand) can

hold iff p = q = 0, which doesn’t satisfy the assumption. QED

It seems that for all natural n,
∏n

k=1 cos kπ
2n+1

= 1
2n
.

Solution

The identity is indeed true. Below is a fairly simple proof that does not require complex numbers or

roots of unity.

Let cos
π

2n+ 1
cos

2π

2n+ 1
... cos

nπ

2n+ 1
= x. Then,

x = cos
π

2n+ 1
cos

2π

2n+ 1
... cos

nπ

2n+ 1

x sin
π

2n+ 1
sin

2π

2n+ 1
... sin

nπ

2n+ 1
=

1

2n
sin

2π

2n+ 1
sin

4π

2n+ 1
... sin

2nπ

2n+ 1

where we have multiplied both sides of the equation by sin
π

2n+ 1
sin

2π

2n+ 1
... sin

nπ

2n+ 1
and then

used the fact that sinx cosx =
1

2
sin 2x. We now apply sinx = sin(π − x):

sin
2nπ

2n+ 1
= sin

(2n+ 1)π − 2nπ

2n+ 1
= sin

π

2n+ 1

sin
2(n− 1)π

2n+ 1
= sin

(2n+ 1)π − 2(n− 1)π

2n+ 1
= sin

3π

2n+ 1

This will repeat for all terms above
nπ

2n+ 1
, and all the sine functions on both sides of the equation

will cancel, leaving

x =
1

2n

. Therefore,
n∏
k=1

cos
kπ

2n+ 1
=

1

2n
QED

Find all positive n such that n5 + n4 + n3 + n2 + n+ 1 is a perfect square.

Solution

n5+n4+...+1 = (n3+1)(n2+n+1), by eulidean algorithm, (n3+1, n2+n+1) = (n2+n−1, n2+n+1) =
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1, since n(n+1) is always even. Thus, both of these term are squares. Since n2 < n2 +n+1 < (n+1)2

there are no solutions. 2{
(x+

√
x2 + 1)(y +

√
y2 + 1) = 1

y + y√
x2−1

+ 35
12

= 0

Solution

For f(y) = y +
√

1 + y2 is monotone increasing , f(y) = 1
x+
√

1+x2 = −x +
√

1 + x2 = f(−x) So

y = −x then y + y√
y2−1

+ 35
12

= 0 Let y = sec x and the equation turns to secx + cscx = −35
12

Let

sinx+ cos x = t and the equation turn to be 24t = −35(t2−1)→ t = 5
7
,−7

5
Note that sinx cosx > 0

because y2√
y2−1

> 0 So t = −7/5 and that turns to be sinx = −0.6,−0.8 y = −5
3
,−5

4

Simplify this expression

S = n+
√
n2−1

√
n+
√
n+
√
n2−1

+ n−
√
n2−1

√
n−
√
n−
√
n2−1

.

Solution

S =
2n
√
n+n

(√
n+
√
n2−1−

√
n−
√
n2−1

)
−
√
n2−1

(√
n−
√
n2−1+

√
n+
√
n2−1

)
n−1

=
2n
√
n+n

(√
n+1

2
+
√

n−1
2
−
√

n+1
2

+
√

n−1
2

)
−
√
n2−1

(√
n+1

2
+
√

n−1
2

+
√

n+1
2
−
√

n−1
2

)
n−1

=
2n
√
n+2n
√

n−1
2
−2(n+1)

√
n−1

2

n−1
= 2n

√
n−
√

2
√
n−1

n−1

Calculate
∞∑
i=1

∞∑
j=1

i2j

5i(j5i + i5j)

Solution

Rewrite the sum as

S =
∑

i

∑
j

1
5i

i

(
5i

i
+ 5i

j

)
By exchanging the indices, we get that S =

∑
i

∑
j

1
5j

j

(
5i

i
+ 5i

j

) , hence
2S =

∑
i

∑
j

(
1

5i

i

(
5i

i
+ 5i

j

) + 1
5j

j

(
5i

i
+ 5i

j

)
)

=
∑

i

∑
j

ij
5i5j

=
(∑

j
j
5j

)2

Let T =
∑∞

j=1
j
5j
. Then T = 1

5
+
∑∞

j=2
j
5j

= 1
5

+
∑∞

j=1
j+1
5j+1

T = 1
5

+ 1
5

∑∞
j=1

(
j
5j

+ 1
5j

)
T = 1

5
+ 1

5

(
T +

1
5

1− 1
5

)
4T
5

= 1
4

T = 5
16

Now S = T 2

2
= 25

512[
8x+1

6

]
+
[

4x−1
3

]
= 16x−7

9

Solution

Since 16x−7
9

is an integer, put 16x−7
9

= k, k ∈ Z. Then x = 9k+7
16

, hence the equation becomes[
3k+3

4

]
+
[

3k+1
4

]
= k

Using
[
t+ 1

2

]
= [2t]− [t] on

[
3k+1

4
+ 1

2

]
, this becomes[

3k+1
2

]
= k

k 6 3k+1
2

< k + 1

−1 6 k < 1

Hence k ∈ {−1, 0} ⇐⇒ x ∈
{
−1

8
, 7

16

}
Let ABC be a nonisosceles and acute triangle with a ≤ b ≤ c . Denote its circumcirle C(O,R)

and its orthocenter H .

Prove easily that this hexagon is inscribed in the Euler’s circle w = C
(
E, R

2

)
, where E is the

midpoint of [OH] .
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If X , Y , Z are the midpoints of [HA] , [HB] , [HC] respectively, then {X, Y, Z} ⊂ w ,

E ∈MaX ∩OH , i.e.

XOMaH is parallelogram and OA ⊥ FbFc , where FbFc = a · cosA . For a ≤ b ≤ c the hexagon

MaFaFbMbMcFc

is convex and



MaFa = c2−b2
2a

; FaFb = c · cosC

FbMb = c2−a2

2b
; MbMc = a

2

McFc = b2−a2

2c
; FcMa = a

2

∥∥∥∥∥∥∥∥∥∥∥∥
. From here show that this hexagon isn’t

regularly. 2 I


Method 1 : MaFa =

∣∣a
2
− c · cosB

∣∣ =
|a2−2ac·cosB|

2a
=
|a2−(a2+c2−b2)|

2a

Method 2 : MaFa = 1
2
· |FaB − FaC| =

|FaB2−FaC2|
2a

=
|(c2−h2

a)−(b2−h2
a)|

2a

∥∥∥∥∥∥∥∥ =⇒

MaFa =
|b2 − c2|

2a
. Proposed problem. Prove that φ = m

(
ÂMaFa

)
=⇒ 4S = |b2 − c2|·tanφ

.

Observe that FaFb = MbMc ⇐⇒ A = 2C or B = C and MaFa = FbMb ⇐⇒ A = 120◦ or

A = B .

Let ABCD be a cyclic quadrilateral inscribed in a circle O with diagonals AC and BD per-

pendicular at X. Denote P,Q,R,S as the projections of X onto the sides of the quadrilateral. Denote

J,K,L,M as the midpoints of the sides of the quadrilateral.

Show that P,Q,R,S,J,K,L, and M lie on a circle with the center as the midpoint of OX.

Solution

Prove easily that JKLM is a rectangle inscribed in the circle with diameters JL and MK . Since

P̂XA ≡ ÂBD ≡ ÂCD ≡ ĈXL obtain that P̂XA ≡ ĈXL , i.e. X ∈ PL . Show analogously

X ∈ JR ∩QM ∩KS , i.e. the points {P,Q,R, S} belong to the circle with diameters JL and MK

.Since OJXL , OKXM are two parallelograms with common diagonal [OX] obtain easily required

conclusion.

Let us agree to say that a non-negative integer is “scattered” if its binary expansion has no

occurence of two ones in a row. For example, 37 is scattered but 43 is not, since the binary expansion

of 37 is 100101 in which the ones are all separated by at least one zero, while the binary expansion

of 43 is 101101 which has two ones in successive places. For an integer n ≥ 0, how many scattered

non-negative integers are there less than 2n?

Solution

Let an be the number of such binary strings with n digits. Among them, let 0n be the number of

those which end in 0 and 1n the number of those which end in 1. Then

an = 0n + 1n 0n+1 = 1n + 0n [zero can appear after any digit] 1n+1 = 0n [one can appear only

after zero]

Thus 0n+1 = an =⇒ 0n = an−1 =⇒ 1n+1 = an−1

an+1 = 0n+1 + 1n+1 = an + an−1, and with a1 = 2, a2 = 3, we see that an = Fn+2, where Fn is

Fibonacci sequence (F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn).

Find all the natural numbers N such that N is one unit greater than the sum of squares of its

Solution

Let k be the number of digits of the desired number N = a1a2 . . . ak. Then 10k−1 6 N = a2
1 + · · · +

a2
k + 1 6 81k + 1. It is easily shown that this can’t be satisfied for k > 4.
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Thus k = 1, 2, 3

(i) k = 1. The equation a = a2 + 1 has no integer solution.

(ii) k = 2. If a2 + b2 + 1 = 10a+ b, then (2a− 10)2 + (2b− 1)2 = 97. Checking all the even squares

(because of (2a− 10)2) less than 100, we find that only 16 works. Thus 2b− 1 = 9 ⇐⇒ b = 5 and

|2a− 10| = 4 ⇐⇒ a = 5± 2. Therefore the solutions are N = 35 and N = 75.

(iii) k = 3. If a2 + b2 + c2 + 1 = 100a+ 10b+ c, then (100− 2a)2 + (2b− 10)2 + (2c− 1)2 = 10097.

Assume a > 1. Then (100 − 2a)2 6 982 = 9604 =⇒ (2b − 10)2 + (2c − 1)2 > 493, but that can’t

be achieved as (2b − 10)2 + (2c − 1)2 6 102 + 172 = 389. Thus a = 0 and there are no three-digit

solutions.

Therefore all the solutions are N = 35 and N = 75.

Prove that 3
√
a+ 3
√
b+ 3
√
c = 0, where a, b, c are the roots to x3 − 3x2 − 5x− 1 = 0

Solution

x3−3x2−5x−1 = 0 x3−3x2−5x−1+(8x) = 8x x3−3x2 +3x−1 = 8x (x−1)3 = 8x (x−1) = 2 3
√
x

If a,b,c are the roots of the equation:

(a− 1) = 2 3
√
a (b− 1) = 2 3

√
b (c− 1) = 2 3

√
c

(a− 1) + (b− 1) + (c− 1) = 2( 3
√
a+ 3
√
b+ 3
√
c)

(a+ b+ c)− 3 = 2( 3
√
a+ 3
√
b+ 3
√
c) 3− 3 = 2( 3

√
a+ 3
√
b+ 3
√
c)

Then,
3
√
a + 3
√
b + 3
√
c = 0 Another way: We apply the identity mentioned by mavroperevna. It states

for x, y, z, we have the following relation:

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − yz − xz).

Hence if x + y + z = 0, then x3 + y3 + z3 − 3xyz is zero, and the converse is also true. Let

x = 3
√
a, y = 3

√
b, z = 3

√
c. By Vieta’s, x3 + y3 + z3 = a+ b+ c = 3 and xyz = 3

√
abc = 3

√
1 = 1. Thus

x3 + y3 + z3 − 3xyz = 3− 3(1) = 0. Hence x+ y + z = 3
√
a+ 3
√
b+ 3
√
c = 0.

Find all polynomials in complex coefficients, such that P (x2) = P (x)2.

Solution

We will first prove that such a polynomial, if it is not constant, must be monic. Proof: Let P (x) =

anx
n + an−1x

n−1 + ...a1x + a0 P (x2) = anx
2n + stuff and P (x)2 = (an)2x2n + stuff For this to

be an identity; to work for all x in the domain of P, the coefficients must match so an = (an)2

The only two solutions are an = 0, 1, but an 6= 0 because then the degree of P would be n − 1.

Thus, an = 1 and P is monic. Now look at P (x2). There is no term of degree 2n − 1, but in

P (x)2, there is, and it is given by 2(1)(an−1)x2n−1. For the condition to be an identity, the co-

efficient of this term must be 0 to match the other side, so an−1 = 0. In this manner, we can

easily use strong induction to prove that an−1, an−3, an−5... are all 0. Proof: From the coefficient

of x2n−1 = 0 in P (x)2, we have that an−1 = 0, because an = 1. This is the base case. Since

an−1 = 0, we have that an−3=0 from the coefficient of x2n−3 in P (x)2, once again, because an

cannot be 0. Suppose we have proven that an−1, an−3, ...an−(2k−1) are all 0. Now, the coefficient of

x2n−(2k+1)=2(an)(an−(2k+1))+2(an−1)(an−2k)+2(an−2)(an−(2k−1))+...+2(an−k)(an−k−1)=0, because the

coefficient of this term on the other side is 0. By parity, one of the terms in each product is of the

form a2k−(2m−1), where m is an integer at least 1. Thus, all terms but the first are obviously 0 by the

inductive hypothesis.

Then, since an = 1, (an−(2k+1))=0. Thus, we are done, and an−1, an−3, ...a1 = 0.

We can do a similar thing for the evens. We claim that an−2, an−4, ...a2 = 0 Proof: We use strong

induction. Base case: an−1x
2n−2 = [(a2

n−1 + 2(an)(an−2)]x2n−2. Since an−1 = 0 and an cannot be 0,
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an−2 = 0.

Assume that we have proved that an−2, an−4, ...an−2k = 0. Then, an−(2k−1)x
2n−4k+2=[a2

n−(2k−1)+2(an)(an−(2k+2))+2(an−1)(an−(2k+1))+...2(an−k)(an−(k+2)]x
2n−4k+2

Then, all the terms an−(2m−1) disappear since they are 0, as above. By the inductive hypothesis,

all we have left is that 2(an)(an−(2k+2)) = 0, or an−(2k+2)=0 since an cannot be 0, as desired. Thus,

P (x), if not constant, is of the form xn + c for some constant c. One can easily verify that this type

of form can not satisfy the equation unless c = 0.

Proof: Assume this works and c is not 0. Then, we have x2n + c = x2n + 2cxn + c2. Comparing

coefficients, c = c2, and 2c = 0, and c must be 0, which is a contradiction. Thus, polynomials xn for

any positive integers n, work. For constant functions, plugging in x = 0, P (0) = P (0)2, so P (0) = 0, 1.

Therefore, our only options for a constant P are 0 and 1, which both work. P = 0, 1, xn Q.E.D

Given a positive integer n, and the setM = {1, 2, 3, ...50}, we choose 35 elements ofM . Among

these 35 elements of M , there always exists 2 distinct numbers a, b such that a+ b = n or a− b = n.

Find all possible values of n.

Solution

Take 1, 2, ..., 35 to see we can’t reach 69.

Now we prove 1 tot 69 is possible.

a− b = x

x ∈ {1, ..., 15} is possible by looking to subsets {(1, 1 +x), · · · , (x− 1, 2x− 1), (2x, 3x), · · · , (3x−
1, 4x− 1) · · · } with x ∈ {16, .., 34} is possible by looking to subsets {(1, 1 + x), · · · , (16, x+ 16)}

It is easy to find we have in each time constructed at least 16 distint subsets with each numbers

less than 51 and hence because we have only 15 numbers we don’t take, there are two of that set.

At the same way: a + b = x take {(1, x − 1) · · · , (17, x − 17)} for 35 ≤ x ≤ 51 and {50, x −
50, · · · , 35, x− 35} for x ∈ [52, 69]

and use again PHP to see the result.

prove that the expression

n+

[
3

√
n− 1

27
+

1

3

]2

is not the cube of any integer with n is an integer

Solution

Supposing that If n > 0 t ≤ 3

√
n− 1

27
+ 1

3
< t + 1 → t3 − t2 + t

3
< n < t3 + 2t2 + 4t

3
+ 1

3

→ t3 + t
3
< n + t2 < t3 + 3t2 + 4t

3
+ 1

3
If n + t2 is a cube then n + t2 ≥ t3 + t

3
> t3 n + t2 <

t3 + 3t2 + 4t
3

+ 1
3
< t3 + 3t2 + 3t + 1 = (t + 1)3 So t3 < n + t2 < (t + 1)3 cannot be a cube. If n ≤ 0

the statement is not true because when n = t3 − t2(t < 0)→ LHS = t3 Q.E.D

Solve the system equations :
a
x

+ b
y

= (3x2 + y2)(x2 + 3y2)
a
x
− b

y
= 2(y4 − x4)

Solutiona
x

+ b
y

= 3x4 + 10x2y2 + 3y4

a
x
− b

y
= −2x4 + 2y4

Adding the equations up and multiplying by x we get

2a = x5 + 10x3y2 + 5xy4 (1)

Subtracting the second equation from the first and multiplying by y we get

2b = 5x4y + 10x2y3 + y5 (2)

Adding (1) and (2) we get
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2(a+ b) = (x+ y)5 ⇐⇒ x+ y = 5
√

2(a+ b)

Subtracting (2) from (1) we get

2(a− b) = (x− y)5 ⇐⇒ x− y = 5
√

2(a− b)

Therefore (x, y) =

(
5
√

2(a+b)+ 5
√

2(a−b)
2

,
5
√

2(a+b)− 5
√

2(a−b)
2

)
Since x, y can’t be zero, the necessary condition is ab 6= 0.

x2 + y2 =
1

5
(1)

4x2 + 3x− 57

25
= −y (3x+ 1) (2)

Solution

Multiply the second equation by 2 and rearrange:

8x2 + 6xy + 6x+ 2y = 114
25

(3x+ y)2 − x2 − y2 + 2(3x+ y) = 114
25

Now use the first equation:

(3x+ y)2 + 2(3x+ y) = 114
25

+ 1
5

Put t = 3x+ y to get

t2 + 2t− 119
25

= 0

t1,2 =
−2±
√

576
25

2
=
−2± 24

5

2

t1 = 7
5
, t2 = −17

5

(i) 3x+ y = 7
5

=⇒ y = 7
5
− 3x =⇒ x2 + 49

25
− 42

5
x+ 9x2 = 1

5

5x2 − 21
5
x+ 22

25
= 0

x1 = 11
25

=⇒ y1 = 2
25

x2 = 2
5

=⇒ y2 = 1
5

(ii) 3x+ y = −17
5

=⇒ y = −17
5
− 3x =⇒ x2 + 289

25
+ 102

5
x+ 9x2 = 1

5

5x2 + 51
5
x+ 142

25
= 0

The discriminant of this equation is negative, hence the solutions are complex.

Thus all the real solutions are (x, y) =
(

11
25
, 2

25

)
and (x, y) =

(
2
5
, 1

5

)
(Though for the sake of completeness, the complex solutions are (x, y)1,2 =

(
−51±i

√
239

50
, −17∓3i

√
239

50

)
)

Find all polynomials that satisfy the equation (x+ 1)P (x) = (x− 10)P (x+ 1)

Solution

If this is for all x ∈ R then you can put x = 10 to obtain 11P (10) = 0 so 10 is a root;

Set x = -1 to get −11P (0) = 0 so 0 is also a root;

Set x = 0 to get −10P (1) = P (0) = 0, so 1 is also a root;

Set x = 1 to get that 2 is also a root, and so on, so all integers between 0 and 10 inclusive are

roots.

So you can let P (x) = x(x− 1)(x− 2)...(x− 10) ·Q(x) for some polynomial Q(x).

Substitute in the original equation to get that Q(x) = Q(x+ 1) so Q(x) is a constant, let it be c.

Therefore the solutions are P (x) = c · x(x− 1)(x− 2)...(x− 10) for some real costant c.

If gcd(a, b) = 1, prove that:

(a) gcd(a− b, a+ b) ≤ 2, (b) gcd(a− b, a+ b, ab) = 1, (c) gcd(a2 − ab+ b2, a+ b) ≤ 3.

Solution

(a) gcd(a − b, a + b) = gcd(2a, a + b) ≤ gcd(2a, 2(a + b)) = gcd(2a, 2b) = 2 (b)A = gcd(a − b, a +

b, ab) ≤ gcd(a + b, a − b) ≤ 2 since (a ) is true.If A = 2 , 2 | a, b which contradicts a and b are

relatively prime. (c) If A = gcd(a2 − ab + b2, a + b) > 3 a = −b( mod A) =⇒ a3 = −b3( mod A)
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0 = a2 − ab + b2 = (a + b)(a2 − ab + b2) = a3 − b3( mod A) =⇒ a3 = b3( mod A). So 2a3, 2b3

numbers are divisible by A . So we can say that 1 = gcd(a, b) > 1 since A > 3 . Done!

Demonstrate the inequality:
2
2!

+ 7
3!

+ 14
4!

+ .....+ k2−2
k!

+ ....+ 9998
100!

< 3

Solution
k2

k!
= k

(k−1)!
= k−1+1

(k−1)!
= 1

(k−2)!
+ 1

(k−1)!
and so k2−2

k!
= 1

(k−2)!
+ 1

(k−1)!
− 2

k!
.

Let S be the infinite series 2
2!

+ 7
3!

+ 14
4!

+ .....+ k2−2
k!

+ .... Then

S =
2

2!
+

(
1

1!
+

1

2!
− 2

3!

)
+

(
1

2!
+

1

3!
− 2

4!

)
+

(
1

3!
+

1

4!
− 2

5!

)
+ ... =

=
2

2!
+

1

1!
+

1

2!
+

1

2!
= 3

with the rest of the terms cancelling. Since all the terms are positive, the given series

2

2!
+

7

3!
+

14

4!
+ .....+

k2 − 2

k!
+ ....+

9998

100!
< S = 3

as required.

When xn + xn−1 + ... + x + 1 is divided by x2 + x + 1, find the quotient and remainder with

proof.

Solution

If Pn(x) = xn + xn−1 + · · ·+ 1 and Rn(x) is the desired remainder, then Pn+1(x) = xPn(x) + 1 =⇒
Rn+1(x) ≡ xRn(x) + 1 (mod x2 + x+ 1)

Hence R0(x) = 1, R1(x) = x+ 1, R2(x) = 0, R3(x) = 1 = R0(x) etc. with period 3.

Thus if k is a non-negative integer, then Rn(x) =


1 n = 3k

x+ 1 n = 3k + 1

0 n = 3k + 2

Therefore the quotient Qn(x) is Qn(x) =


xn−2 + xn−5 + · · ·+ x n = 3k

xn−2 + xn−5 + · · ·+ x2 n = 3k + 1

xn−2 + xn−5 + · · ·+ 1 n = 3k + 2

In a quadrilateralABCD letK be a point inside the triangleABD such that4ABD ∼ 4KCD
. Prove that 4BCD ∼ 4AKD as well.

Solution

4ABD ∼ 4KCD (S.A.S)⇐⇒

∣∣∣∣∣∣∣
BD
CD

= DA
DK

ÂDB ≡ K̂DC

∣∣∣∣∣∣∣ ⇐⇒
∣∣∣∣∣∣∣

BD
AD

= CD
KD

B̂DC ≡ ÂDK

∣∣∣∣∣∣∣
(S.A.S)⇐⇒ 4BCD ∼ 4AKD .

Example. The proof of the Ptolemy’s theorem : ef = ac+ bd ⇐⇒ ABCD is cyclically.

Proof. Let ABCD be a convex quadrilateral. Denote

∣∣∣∣∣ AB = a BC = b CD = c

DA = d AC = e BD = f

∣∣∣∣∣ . Construct
4DEC ∼ 4ABC

so that the line CD doesn’t separate E and A . Thus, AB
DE

= CA
CD

=⇒ DE =
ac

e
. Observe that

B̂CE ≡ ÂCD

Suppose
(
n1

3

)
+
(
n2

3

)
+
(
n3

3

)
= 2012. What is the maximum value of n1 + n2 + n3?

Solution(
n
3

)
= 0 mod 5 if n = 0, 1, 2 mod 5

(
n
3

)
= 1 mod 5 if n = 3 mod 5

(
n
3

)
= −1 mod 5 if n = 4
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mod 5. 2012 = 2 mod 5, therefore 2 of ni = 3 mod 5.
(

3
3

)
= 1,

(
8
3

)
= 56,

(
13
3

)
= 286,

(
18
3

)
=

816,
(

23
3

)
= 1771. Let n1 ≤ n2, n1 ≡ n2 = 3 mod 5. It is easy to chek, that n3 ≤ 22 and n3 = 22, 21

are not solution. If n3 = 20 we get solution n1 = 8, n2 = 18, n3 = 20. n3 = 15, 16, 17 are not solution.

If n3 ≤ 12, then n2 = 23 and
(
n1

3

)
+
(
n3

3

)
= 241. Therefore n1 = 8,

(
n3

3

)
= 185 - not solution.

(n1 = 8, n2 = 18, n3 = 20 is unique solution.

Prove that if n | 111...1︸ ︷︷ ︸
n ori

then 3 | n

Solution

Clearly n > 1 with that property must be odd (the OP forgot to restrict to n > 1). Let p be the least

prime dividing n (so p ≥ 3). Now, the repunit divided by n is equal to 10n−1
10−1

, hence 9n | 10n− 1, and

so a fortiori p | n | 10n − 1. Let ν be the order of 10 modulo p; then we must have both ν | n and

ν | p − 1 (by Fermat’s little). However, any prime in the factorization of p − 1 must be less than p,

and so cannot divide n, hence gcd(n, p− 1) = 1, and so ν = 1. This means 101− 1 = 9 ≡ 0 (mod p),

forcing p = 3, and so 3 | n.

Solve the system of equations


x3 = 6z2 − 12z + 8

y3 = 6x2 − 12x+ 8

z3 = 6y2 − 12y + 8

.

Solution

Observe that x3 = 2 (3z2 − 6z + 4) ≥ 2 =⇒ x ≥ 3
√

2 . Prove analogously that {x, y, z} ⊂ I =[
3
√

2,∞
)
.

Consider the functions f(x) = x3 (↗) and g(x) = 6x2 − 12x + 8 (↗) , where x ∈ I . Observe

that these functions

are strict increasing and our system becomes


f(x) = g(z)

f(y) = g(x)

f(z) = g(y)

. Thus, x ≤ y ⇐⇒ f(x) ≤

f(y) ⇐⇒ g(z) ≤ g(x) ⇐⇒
z ≤ x ⇐⇒ f(z) ≤ f(x) ⇐⇒ g(y) ≤ g(z) ⇐⇒ y ≤ z . In conclusion, z ≤ x ≤ y ≤ z , i.e.

x = y = z = 2 ≥ 3
√

2 .

and BC
CE

= AC
CD

, what means 4BCE ∼ 4ACD =⇒ BC
AC

= BE
AD

=⇒ BE =
bd

e
. In conclusion,

ABCD is

cyclically ⇐⇒ B + D = 180◦ ⇐⇒ E ∈ BD ⇐⇒ BD = BE + ED ⇐⇒ f = bd
e

+ ac
e
⇐⇒

ef = ac+ bd .

Remark. We can construct the point E outside of quadrilateral ABCD and the proof in this case

is likewise.

Prove that

C ≡
∑n

k=0 C
k
n cos(k+1)x = C0

n cosx+C1
n cos 2x+C2

n cos 3x+ . . . + Cn
n cos(n+1)x = 2n cosn x

2
cos (n+2)x

2

Solution

C+i·S ≡
∑n

k=0C
k
n cos(k+1)x+ i·

∑n
k=0C

k
n sin(k+1)x =

∑n
k=0 C

k
n [cos(k + 1)x+ i · sin(k + 1)x] =∑

Ck
nz

k+1 =

z ·
∑n

k=0 C
k
nz

k = z(z + 1)n , where z = cosx + i · sinx and z + 1 = (1 + cos x) + i · sinx =

2 cos x
2
·
(
cos x

2
+ i · sin x

2

)
.
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Therefore, C ≡
n∑
k=0

Ck
n cos(k + 1)x = 2n cosn

x

2
cos

(n+ 2)x

2
∧ S ≡

n∑
k=0

Ck
n sin(k + 1)x = 2n cosn

x

2
sin

(n+ 2)x

2

. x2 − 2bxc+ {x} = 0

Solution

i set x = n + r with n ∈ Z and 0 ≤ r < 1 now, we have x2 − 2bxc + {x} = (n + r)2 − 2n + r =

r2 + (2n+ 1)r+n2− 2n = 0 we have a polynomial degree 2 with variable is r equation want solution

must satisfying δ = (2n + 1)2 − 4(n2 − 2n) = 12n + 1 ≥ 0 → n ≥ 0 and r1 = −(2n+1)+
√

12n+1
2

r2 = −(2n+1)−
√

12n+1
2

we can see r2 < 0 with n ≥ 0 now, r1 ≥ 0 ↔ 0 ≤ n ≤ 2 and r1 < 1 with all

n ≥ 0 let n = 0→ r = 0 therefor x = 0 let n = 1→ r =
√

13−3
2

therefor x =
√

13−1
2

let n = 2→ r = 0

therefor x = 2

In 4ABC, cevians AA′, BB′, CC ′ concur at P . Prove that

PA · PB · PC
PA′ · PB′ · PC ′

≥ 8.

Solution

For any interior point P w.r.t. 4ABC exist {x, y, z} ⊂ (0,∞) so that



A′B
A′C

= z
y

B′C
B′A

= x
z

C′A
C′B

= y
x

∣∣∣∣∣∣∣∣∣∣∣∣
. Using the van

Aubel’s relation

obtain that



PA
PA′

= B′A
B′C

+ C′A
C′B

= y+z
x

PB
PB′

= C′B
C′A

+ A′B
A′C

= z+x
y

PC
PC′

= A′C
A′B

+ B′C
B′A

= x+y
z

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ PA

PA′
· PA
PA′
· PC
PC′

= (y+z)(z+x)(x+y)
xyz

≥ 8 .

Remark. For example, can choose x
[BPC]

= y
[CPA]

= z
[APB]

= 1
[ABC]

(normalized barycentrical coordinates w.r.t. 4ABC). Prove that :

(p− 1)(p− 2) . . . (p− k) ≡ (−1)k.k! (mod p). Where, p is prime number and 1 ≤ k ≤ p− 1, k is

integer

Solution

First note that, (p−m) ≡ −m (mod p) for any positive integer m. Applying this fact, we have

(p− 1)...(p− k) ≡ (−1)...(−k) ≡ k!(−1)k (mod p)

as desired.

Remark: The requirement that p is prime, and k ≤ p− 1, just makes it impossible for the RHS of

the expression to be ≡ 0 (mod p). Otherwise, we can still have the same equivilance, but one has to

be careful whether the RHS is ≡ 0 (mod p). In the convex pentagon ABCDE, the sides BC, CD

and DE are equal and each diagonal is parallel to a side. Prove that ABCDE is a regular pentagon.

Solution

Consider side AB of pentagon ABCDE. Diagonal CE is the only diagonal that does not contain

either A or B. Thus, for any side, only one diagonal could possibly be parallel to it.

Now, consider the three given sides, BC = CD = DE. Without loss of generality, let them all

be 1. Since BE‖CD, let ∠BCD = ∠EDC = α. Let k be the line through D such that k‖BC. Let `
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be the line through C such that `‖DE. Let m be the line through E such that m‖BD. Let n be the

line through B such that n‖CE. We must prove that k ∩ ` = m ∩ n.
Since BCDE is an isosceles trapezoid, we have that BE = 2 sin

(
α− π

2

)
+1 and that the distance

between BE and CD (let this value be x) is cos
(
α− π

2

)
. Look at the altitude from A to CD, we

have the equation

1

2
BE · tan

(
π − α

2

)
+ x =

1

2
· tan(π − α)

Plugging in the values of BE and x, we find that x = 108◦, which implies that the given pentagon

is regular.

In a meeting, there are 2011 scientists attending. We know that, every scientist know at least

1509 other ones. Prove that a group of five scientists can be formed so that each one in this group

knows 4 people in his group.

Solution

From Caro-Wei theorem.

Consider the graph G = (V,E), with |V | = 2011 being the scientists, and E being the acquain-

tance relationships, thus degG v ≥ 1509 for all v ∈ V . The complementar graph G will thus have

degG v ≤ 501 for all v ∈ V . Then, by the Caro-Wei theorem,

ω(G) = α(G) ≥
∑
v∈V

1

degG v + 1
≥
∑
v∈V

1

501 + 1
=

2011

502
= 4 +

3

502
,

therefore ω(G) ≥ 5, where ω(G) is the cliquomatic number of G, thus G contains a K5.

Let p(x) = x2 + x+ 1. Find the fourth smallest prime q such that p(x) has a root mod q.

Solution

If q | x2 + x+ 1 then x3 ≡ 1 (mod q). If the order of x modulo q is 1, then x2 + x+ 1 ≡ 3 (mod q),

so this happens only for q = 3. Otherwise the order of x modulo q is 3, so we need 3 | ϕ(q) = q − 1.

Then, using the fact that
(
Z∗q, ·

)
is cyclic, using a generator g of it we obtain

(
g(q−1)/3

)3 − 1 ≡ 0

(mod q), and since g(q−1)/3 6≡ 1 (mod q), it means all is well. Thus, in the sequence 3, 7, 13, 19, 31, . . .

of such primes, the fourth term is q = 19.

Find the limit of the sequence (xn)n given by

xn = ac+ (a+ ab)c2 + (a+ ab+ ab2)c3 + · · ·+ (a+ ab+ · · ·+ abn)cn+1,

where a, b, c are real numbers with −1 < c, bc < 1 and b 6= 1.

Solution

We have xn =
∑n

k=0

(
ack+1

∑k
j=0 b

j
)

= a
b−1

∑n
k=0

(
(bc)k+1 − ck+1

)
= a

b−1

(
(bc)n+2−1
bc−1

− cn+2−1
c−1

)
.

According to the givens, we thus have limn→∞ xn = a
b−1

( −1
bc−1
− −1

c−1

)
= ac

(c−1)(bc−1)
.

cos A−B
2

cos B−C
2

cos C−A
2
≥ 8 sin A

2
sin B

2
sin C

2
, where A,B,C are the angles of the the triangle

ABC .

Solution∣∣∏ cos B−C
2
≥ 8

∏
sin A

2

∣∣ � ∏(
2 cos A

2

)
> 0 ⇐⇒

∏(
2 cos B−C

2
sin B+C

2

)
≥

8
∏(

2 sin A
2

cos A
2

)
⇐⇒

∏
(sinB + sinC) ≥ 8

∏
sinA ⇐⇒

∏
(b+ c) ≥ 8abc ,

what is well-known. I used the simple relation cos A
2

= sin B+C
2

.

For all odd number u ,Prove that there exist n that u | 10n − 1

Solution

If gcd(u, 10) = 1, then there exists a repunit
10n − 1

9
= 11 . . . 1 divisible by u. Consider the numbers
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ak = 11 . . . 1 with k digits 1, for 1 ≤ k ≤ u. If there exists such a k so that u | ak, we are done.

Otherwise, there must exist 1 ≤ i < j ≤ u so that u | aj − ai = 10iaj−i; but gcd(u, 10i) = 1, thus

u | aj−i (so in fact this latter case cannot occur).

Prove that the prime divisors of x7−1
x−1

are always in the form 7k, 7k + 1.

Solution

Generalization

We claim that all prime divisors of

xp−1 + xp−2 + · · ·+ x2 + x+ 1

are either p or congruent to 1 modulo p.

Let q be a prime divisors of the expression.

xp−1 + · · ·+ x2 + x+ 1 ≡ 0 (mod q) =⇒ (x− 1)(xp−1 + · · ·+ x2 + x+ 1) ≡ 0 (mod q)

Then xp ≡ 1 (mod q) =⇒ ordq(x)|p.
Thus ordq(x) is 1 or p.

Case 1: ordq(x) = 1

This means that x ≡ 1 (mod q). Then

xp−1 + xp−2 + · · ·+ x2 + x+ 1 ≡ 1 + 1 + 1 + · · ·+ 1 ≡ p ≡ 0 (mod q)

Since p, q are both primes, this implies that p = q.

Case 2: ordq(x) = p

This implies that by Fermat’s little theorem, that p|q−1, as p is the order and xq−1 ≡ 1 (mod q).

Then q − 1 ≡ 0 (mod p) =⇒ q ≡ 1 (mod p).

Therefore all prime divisors are in the form p or pk + 1.

Solve equation in integer numbers x2 + y2 + z2 = y2.x2

Solution

Notice that quadratic residues are 0, 1 mod 4. Trying all 8 possible cases for x,y, and z, only x2 ≡
y2 ≡ z2 ≡ 0 mod 4. Thus, we can let x = 2a, y = 2b,z = 2c. Substituting this back into the original

equation, we have

4(a2 + b2 + c2) = 16a2b2

a2 + b2 + c2 = 4a2b2.

From this, we know that a2 ≡ b2 ≡ c2 ≡ 0 mod 4. Then, let a = 2x1, b = 2y1,c = 2z1

16(x2
1 + y2

1 + z2
1) = 256x2

1y
2
1

x2
1 + y2

1 + z2
1 = 16x2

1y
2
1

By these methods, the equation will eventually become

x2
∞ + y2

∞ + z2
∞ = 2∞x2

∞y
2
∞.

By infinite descent, the only solution is x = y = z = 0.

Prove that a > 0 , b > 0 =⇒ 1
a2 + 1

b2
+ 4

a2+b2
≥ 32(a2+b2)

(a+b)4 (in my opinion, the level of this

problem is "easier").

Proof. On the one hand 1
a2 + 1

b2
+ 4

a2+b2
= a2+b2

a2b2
+ 4

a2+b2
≥ 2 ·

√
a2+b2

a2b2
· 4
a2+b2

=⇒

1

a2
+

1

b2
+

4

a2 + b2
≥ 4

ab
(1) and on the other hands

4

ab
≥ 32(a2 + b2)

(a+ b)4
(2) ⇐⇒ (a+ b)4 ≥

8ab (a2 + b2) ⇐⇒
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(a2 + 2ab+ b2)
2 ≥ 8ab (a2 + b2) ⇐⇒

(
a
b

+ b
a

+ 2
)2 ≥ 8

(
a
b

+ b
a

)
⇐⇒ (y + 2)2 ≥ 8y , where

y = a
b

+ b
a
⇐⇒

(y − 2)2 ≥ 0 , what is truly. In conclusion, the inequality (2) is truly and so from the relations

(1) and (2) obtain the required inequality.

Remark.


(a+ b)2 ≥ 4ab

(a+ b)2 ≤ 2 (a2 + b2)

∣∣∣∣∣∣∣ . But (a+b)4 ≥ 8ab (a2 + b2) . Indeed, (a+b)4 = [(a2 + b2) + 2ab]
2

=

[
(a2 + b2)

2
+ 4a2b2

]
+ 4ab (a2 + b2) ≥ 2

√
(a2 + b2)2 · 4a2b2 + 4ab (a2 + b2) = 8ab (a2 + b2) .

Let ABC be a triangle. The its angled bisectors meet again its circumcircle C(O,R) in the

points A′ , B′ , C ′

respectively, i.e. its incenter I ∈ AA′ ∩BB′ ∩CC ′ . Prove that 1
[BA′C]

+ 1
[CB′A]

+ 1
[AC′B]

≥ 9
[ABC]

.

Solution

We”ll use the well-known (or you prove easily them) relations



[BA′C] = ra2

4(s−a)
(1)

∑
a2(s− a) = 4sr(R + r) (2)

s2

r
≥ 16R− 5r ≥ 9(R + r) (3)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Therefore,∑
1

[BA′C]

(1)
= 4

r
·
∑

s−a
a2 = 4

r
·
∑ (s−a)2

a2(s−a)

(C.B.S)

≥ 4
r
· s2∑

a2(s−a)

(2)
= 4

r
· s2

4sr(R+r)
=

s
r2(R+r)

= s2

9r(R+r)
· 9
S

(3)

≥ 16R−5r
9(R+r)

· 9
S

=
(
1 + 7

9
· R−2r
R+r

)
· 9
S
≥ 9

S
, where S is the area

[ABC] of 4ABC . In conclusion,
∑ 1

[BA′C]
≥

(
1 +

7

9
· R− 2r

R + r

)
· 9

[ABC]
≥ 9

[ABC]
.

Let {
0 ≤ a ≤ 1; 0 ≤ b ≤ 1; 0 ≤ c ≤ 1

a+ b+ c = 3
2

Prove the inequality:

a10 + b10 + c10 ≤ 1025

1024

Solution

Let a ≥ b ≥ c a + b = m ≥ 1 we can easily get a = 1, b = u − 1 is the greatest because f(x) =

x10+(u−x)10 f ′(x) = 10x9−10(u−x)9 where x ≥ u
2
,the function is increasing so a10+b10 ≤ 1+(u−1)10

Let b + c = 0.5 similarly we can have b = 0.5, c = 0 is the greatest So a10 + b10 + c10 ≤ 1025
1024

the

quation holds where a = 1, b = 0.5, c = 0

Let ABC be a triangle, a line d so that d ‖ BC , A 6∈ d and a mobile point M ∈ d . Denote

N ∈ AC for which NB ‖MA . Prove that the area of the triangle CMN is constant.

Solution

Let P ≡ d ∩ AB, Q ≡ d ∩ AC and D ≡ AM ∩BC. Then we have
[CMN ]
[CMA]

= CN
CA

, [CMA]
[CPA]

= QM
QP

=⇒ [CMN ] = [CPA] · QM
QP
· CN
CA

But d ‖ BC,DA ‖ NB yield QM
QP

= CD
CB

= CA
CN

=⇒ [CMN ] = [CPA] = const

Evaluate: 4 cos 18◦ − 3 sec 18◦ − 2 tan 18◦

Solution

4 cos 18◦ − 3 sec 18◦ − 2 tan 18◦ = 4 cos2 18◦−3−2 sin 18◦

cos 18◦
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= 4 cos3 18◦−3 cos 18◦−2 sin 18◦ cos 18◦

cos2 18◦

= cos 3(18◦)−sin 2(18◦)
cos2 18◦

= cos 54◦−sin 36◦

cos2 18◦

= sin 36◦−sin 36◦

cos2 18◦

= 0

Find all integers, with proof, n ≥ 2 that satisfies n
√

3n + 4n + 5n + 8n + 10n and that the

expression is an integer.

Solution

The expression is equivalent to kn = 3n+4n+5n+8n+10n. By trying, we get 123 = 33+43+53+83+103.

If we divide by 10n, we get ( k
10

)n = ( 3
10

)n + ( 4
10

)n + ( 5
10

)n + ( 8
10

)n + 1n. It’s obvious that k > 10, so

as the LHS increases, the RHS tends to decrease, this means, when n is bigger than 3, we get

kn > 3n + 4n + 5n + 8n + 10n. So, n = 3.

Each member of the sequence 112002, 11210, 1121, 117, 46, 34, . . . is obtained by adding five

times the rightmost digit to the number formed by omitting that digit. Determine the billionth

(109th) member of this sequence.

Solution

Elementary solution: the sequence goes 112002,11210,1121, 117, 46, 34, 23, 17, 36, 33, 18, 41, 9, 45,

29, 47, 39, 48, 44,24, 22, 12, 11, 6, 30, 3, 15, 26, 32, 13, 16, 31, 8, 40, 4, 20, 2, 10, 1, 5, 25, 27, 37,

38, 43, 19, 46, and hence repeats per 42 and we only need to investigate the 109 mod 42th element.

Since there are 42 integers appearing in the sequence, and the relation is recursive with 1 parent, we

can take the index mod 42.

More interesting solution: Consider the set A = {i ∈ N|i > 0, i < 50, 7 6 |i} and denote f(x) the

number after x in the sequence. We can check that f(x) ∈ A⇔ ∀x ∈ A, thus f is bijective. We now

know that if G = {fk, k ∈ N}, then (G, ◦) is a group. As the relation was bijective, and our group

is cyclic, |G| divides 42, thus f 42 = e, thus we can take the index mod 42.

Prove that

(∀) k ∈ 1, n , xk ∈ (0, 1] =⇒
∑n

k=1 xk+
1

x1x2...xn−1xn
≥
∑n

k=1
1
xk

+ x1x2 . . . xn−1xn .

Solution

Denote f(x) = 1
x
− x , where x ∈ (0, 1] . Prove easily that f(ab) ≥ f(a) + f(b) ⇐⇒ (1 − a)(1 −

b)(1− ab) ≥ 0 .

In conclusion,



f(x1x2) ≥ f(x1) + f(x2)

f(x1x2x3) ≥ f(x1x2) + f(x3)

f(x1x2x3x4) ≥ f(x1x2x3) + f(x4)

...............................................................

f(x1x2 . . . xn−1xn) ≥ f(x1x2 . . . xn−1) + f(xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⊕
=⇒ f(x1 x2 . . . xn−1xn) ≥

∑n
k=1 f(xk) ⇐⇒

1
x1x2...xn

− x1x2 . . . xn ≥
∑

k=1

(
1
xk
− xk

)
⇐⇒

∑
xk + 1

x1x2...xn
≥
∑

1
xk

+ x1x2 . . . xn .

(a) Find all primes p such that p−1
2

and p2−1
2

are perfect squares. (b) Find all primes p such

that p+1
2

and p2+1
2

are perfect squares.

Solution
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Letting x2 = p2+1
2

and y2 = p+1
2

we subtract to get

(x+ y)(x− y) = p · p− 1

2

since p and p−1
2

are relatively prime we have the following system of equations
x+ y = p (1)

x− y = p−1
2

(2)

Adding (1) and (2) we get x = 3p−1
4

and therefore y = p+1
4

therefore we have the following

equation: (
p+ 1

4

)2

=
p+ 1

2

solving the only solution is p = 7

Let p be a prime. If p 6= 3, then show that there exists an integer r such that 3r ≡ 1 (mod p).

Solution

Since p 6= 3 and obviously p - r, then we have that the set {1 · 3, 2 · 3, · · · , p · 3} is a complete set of

residue classes. Therefore there must exist some r, 1 ≤ r ≤ p− 1 such that 3r ≡ 1 mod p, as there

must be some element in this set where its congruence is 1 (otherwise it contradicts the fact that the

set is a complete residue set).

I used the fact that if positive integer m and integer a satisfy gcd(a,m) = 1, then the set

{1 · a, 2 · a, · · · ,m · a} is a complete set of residue classes (in fact, it’s not too difficult to prove).

�

Prove that there exists a function f : N→ N such that:

f(f(n)) = 3n

Solution

Denote X by the set of the numbers which are not divisible by 3. The numbers in X is put increased,

so: X = x1, x2, ..., xk, ... which satisfies xi < xi+1(xiεX) Every number n which is not in X can be

illustrated by this expression: n = xk.3
i which n is not zero. Let ai,k = xk.3

i f is determined by this

rule: f(0) = 0 , f(ai,k) = ai,k+1 (if k is odd) and f(ai,k) = ai+1,k−1 (if k is even) We can easily prove

that if k is even or k is odd, f(ai,k) = ai+1,k = 3.ai,k satisfying the condition of the problem.

Let p(x) be a polynomial of degree n not necessarily with integer coefficients. For how many

consecutive integer values of x must p(x) be an integer in order to guarantee that P(x) is an integer

for all integers x?

Solution

Take P (x) = anx
n + an−1x

n−1 + · · · + a0. Write the given n + 1 consecutive integers as s, s + 1, s +

2, . . . , s+ n.

Now, let P (x+ 1)− P (x) = P1(x). Note that P1(x) has degree n− 1, and P1(x) is an integer for

x = s, s+ 1, s+ 2, . . . , s+ (n− 1).

We can repeat this process until we reach Pn(x) with degree 0, which is an integer for x = s.

But Pn(x) = c for some c, and then using the relation Pn−1(s + n + 1) − Pn−1(s + n) = c we can

recursively solve for the value of P (s+ n+ 1), which will be an integer since all of the values we are
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dealing with are integers. If we repeat this process we can show that P (s+ n+ 2), P (s+ n+ 3), . . .

are all integers. Similarly, we can also solve for P (s− 1), P (s− 2), . . . .

Find the real-numbered solution to the equation below and demonstrate that it is unique.

36√
x

+
9
√
y

= 42− 9
√
x−√y

Solution

We rearrange to
36√
x

+
9
√
y

+ 9
√
x +
√
y = 42. By AM-GM,

36√
x

+ 9
√
x ≥ 36 and

9
√
y

+
√
y ≥ 6, so

36√
x

+
9
√
y

+ 9
√
x+
√
y ≥ 42, with equality if and only if

36√
x

= 9
√
x and

9
√
y

=
√
y. This gives the

solution x = 4, y = 9. We can check that this works easily.

Prove that for all g, function f(m) = m is the solution of f(g(m)) = g(f(m)).

Solution

Say f : M → M (for M 6= ∅) is such that, for all g : M → M and for all m ∈ M , we have

f(g(m)) = g(f(m)). For any particular c ∈ M , consider gc : M → M defined by gc(m) = c for all

m ∈M . Then c = gc(f(c)) = f(gc(c)) = f(c). Thus the only such f is f(m) = m for all m ∈M , i.e.

f = idM , which clearly satisfies.

If S is the sum of positive real numbers x1, x2, ...xn, prove that: (1 + x1)(1 + x2)...(1 + xn) ≤
1 + S + S2

2!
+ ...+ Sn

n!

Solution

By the Lagrange multipliers’ method, the system of equations ∂L
∂xi

= 1+S+· · ·+ Sn−1

(n−1)!
− 1

xi+1

∏n
j=1(1+

xj) = 0 yields as unique critical points (interior to the domain) those with x1 = · · · = xn = S
n
. Any

critical points on the border of the domain (where some of the xi’s are 0) correspond in fact to lower

values of n.

Now, the function φn : [0,∞)→ R given by φn(x) = 1 + x+ · · ·+ xn

n!
−
(
1 + x

n

)n
has as derivative

φ′n(x) = 1+x+· · ·+ xn−1

(n−1)!
−
(
1 + x

n

)n−1
= φn−1(x)+

(
1 + x

n−1

)n−1−
(
1 + x

n

)n−1
. Assuming by induction

that φn−1(x) ≥ 0, this yields φ′n(x) ≥
(
1 + x

n−1

)n−1 −
(
1 + x

n

)n−1 ≥ 0, so φn(x) is increasing, and

since φn(0) = 0, the claim follows.

Solve equation in integer numbers with n ≥ 2. [
√
n] + [ 3

√
n] + [ 4

√
n] + ... + [ n

√
n] = [log2 n] +

[log3 n] + ...+ [logn n]

Solution

LHS and RHS are the number of lattice points satisfying xy ≤ n (2 ≤ x, y ≤ n) fix y and count we

get LHS,fix x we get RHS so the equality holds for every positive integer n which is greater than 2

Show that the GCD of three consecutive triangular numbers is 1.

Solution

Let the three triangular numbers be (n−1)n
2

, n(n+1)
2

, (n+1)(n+2)
2

.

gcd
(

(n−1)n
2

, n(n+1)
2

)
= n

2
or n. gcd

(
n(n+1)

2
, (n+1)(n+2)

2

)
= n+1

2
or n + 1. Exactly one of n and

n + 1 is even so therefore the gcd must be n
2

and n + 1 or n and n+1
2
. Then seeing if any of

those two pairs of gcds have any common factors, we can determine if all three triangular numbers

have any common factors. Since gcd(n, n + 1) = 1, none of those have common factors. Therefore,

gcd
(

(n−1)n
2

, n(n+1)
2

, (n+1)(n+2)
2

)
= 1 . �

Find, with proof, a positive integer n such that

(n+ 1)(n+ 2) · · · (n+ 500)

500!
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is an integer with no prime factors less than 500.

Solution

Thinking that the 500! will take out all the prime factors less than 500, let us find an integer that

when added to any number, still has the divisor of all the integers less than or equal to 500. 500! is

such an integer. Thus, we have such an expression:

(500! + 1)(500! + 2) · · · (500! + 500)

500!
=

(
500!

1
+ 1

)(
500!

2
+ 1

)
· · ·
(

500!

500
+ 1

)
I’ve taken out all the prime factors less than 500 in the factors in the numerator. Also, adding 1

to a number n ensures that the new number has no factors in common with n. However, that still

doesn’t account for larger primes. So squaring 500! works because all the primes are still present in

the factors and the addition of 1 makes it have no prime factor less than 500. Therefore, n = (500!)2 .

Prove that if 0 < x < π/2, then sec6 x+ csc6 x+ sec6 x csc6 x ≥ 80.

Solution

sec6 x+ csc6 x+ sec6 x csc6 x ≥ 80 ⇐⇒ 1 + sin6 x+ cos6 x ≥ 80 sin6 x cos6 x ⇐⇒
1 + sin4 x− sin2 x cos2 x+ cos4 x ≥ 80 sin6 x cos6 x ⇐⇒ 2− 3 sin2 x cos2 x ≥ 80 sin6 x cos6 x ⇐⇒
80 sin6 x cos6 x+ 3 sin2 x cos2 x− 2 ≤ 0 . Denote sin2 x cos2 x = t , where 0 ≤ t ≤ 1

4
.

In conclusion, our inequality is equivalently with 80t3 + 3t − 2 ≤ 0 for any t ∈
[
0, 1

4

]
, what is

truly

because 0 ≤ t ≤ 1
4

=⇒


80t3 ≤ 5

4

3t− 2 ≤ −5
4

∣∣∣∣∣∣∣
⊕

=⇒ 80t3 + 3t− 2 ≤ 0 .

Let ABC be a triangle with the circumcircle w . The A-symmedian of 4ABC meet

again the circle w at D . Denote the midpoint E of [AD] . Prove that m
(
B̂EC

)
= 2A .

Solution

Denote the midpointsM , N , P of [BC] , [CA] , [AB] respectively and the intersection S ∈ AD∩BC
.

Thus,


4ABD ∼ 4AMC =⇒ m(∠BED) = m(∠MNC) = A

4ACD ∼ 4AMB =⇒ m(∠CED) = m(∠MPB) = A

∣∣∣∣∣∣∣ =⇒ m(∠BEC) = 2A .

An easy extension. Let ABC be a triangle with the circumcircle w . Consider two points {M,S} ⊂
(BC)

so that S ∈ (BM) and ŜAB ≡ M̂AC . Denote AS ∩w = {A,D} and the points {E,F} ⊂ (AS)

so that EA
ED

= MB
MC

= FD
FA

. Denote K ∈ BE ∩CF . Prove that KE = KF and m(∠BKC) = 2A .

Prove that

(1 + 1
n−1

)n−1 < e < (1 + 1
n
)n+1.

Solution

Apply AM-GM for n ∈ N∗ to xk := 1 + 1
n
, k ∈ 1, n and xn+1 := 1 . Thus,

n·(1+ 1
n)+1

n+1
> n+1

√(
1 + 1

n

)n ⇐⇒ (
1 + 1

n+1

)n+1
>
(
1 + 1

n

)n
.

Apply again AM-GM for n ∈ N , n ≥ 2 to xk := 1− 1
n
, k ∈ 1, n and xn+1 := 1 . Thus,

n·(1− 1
n)+1

n+1
> n+1

√(
1− 1

n

)n ⇐⇒ (
1 + 1

n

)n+1
>
(
1 + 1

n−1

)n
. In conclusion,

2 < . . . <
(
1 + 1

n−1

)n−1
<
(
1 + 1

n

)n
< . . . <

(
1 + 1

n

)n+1
<
(
1 + 1

n+1

)n+2
< . . . < 3 , (∀) n ≥ 5

.

350

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=427795
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=429015
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=428204
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=427160


Prove that m!n!(m+ n)! divides (2m)!(2n)!

Solution

It is enough to prove that, for any positive integer N , we have
⌊

2m
N

⌋
+
⌊

2n
N

⌋
≥
⌊
m
N

⌋
+
⌊
n
N

⌋
+
⌊
m+n
N

⌋
,

which is true since equivalent to
⌊
2
{
m
N

}⌋
+
⌊
2
{
n
N

}⌋
≥
⌊{

m
N

}
+
{
n
N

}⌋
, which is trivial.

Now Legendre’s formula
∑∞

j=1

⌊
k
pj

⌋
for the exponent of a prime p dividing the factorial k!, applied

to 2m, 2n,m, n and m+ n, yields the claim.

Prove that there aren’t exist integer a,b bot not zero such that for any prime p, q > 1000, p

difference q , ap+bq is a prime, too.

Solution

Dirichlet’s theorem kills this. Fix a prime p, and consider a prime r > p, not dividing a nor b.

Then there exists an integer c such that bc ≡ −1 (mod r). The arithmetic progression cap + mr,

for m = 1, 2, . . . contains infinitely many primes; take one such q = cap + mr. We have ap + bq =

ap + bcap + bmr ≡ ap − ap = 0 (mod r), i.e. r | ap + bq, and r 6= ap + bq, q 6= p, for q taken large

enough.

Solve arctan 1
7

+ 2 arctan 1
3
.

Solution

Denote


arctan 1

7
= x ⇐⇒ x ∈

(
0, π

2

)
, tanx = 1

7

arctan 1
3

= y ⇐⇒ x ∈
(
0, π

2

)
, tan y = 1

3

∣∣∣∣∣∣∣ . Prove easily that


tan π

12
= 2−

√
3

tan π
8

=
√

2− 1

∣∣∣∣∣∣∣
. Observe that

0 < 1
7
< 2−

√
3 < 1

3
<
√

2−1 =⇒ 0 < arctan 1
7
< π

12
< arctan 1

3
< π

8
< π

6
. Since (x+y) ∈

(
0, 5π

24

)
and

tan(x+y) = tanx+tan y
1−tanx tan y

=
1
7

+ 1
3

1− 1
7
· 1
3

= 1
2

=⇒ x+y = arctan 1
2
. Denote x+y = z . Since y+z ∈

(
0, π

3

)
and tan(y+ z) = tan y+tan z

1−tan y tan z
=

1
3

+ 1
2

1− 1
3
· 1
2

= 1 =⇒ x+ 2y = y+ z = π
4
⇐⇒ arctan 1

7
+ 2 arctan 1

3
= π

4

.

The incircle of triangle ABC is tangent to BC, CA, AB at D, E, F , respectively. Let IA, IB, IC

be the incenters of triangles AEF , BDF , CDE, respectively. Prove that IAD, IBE, ICF are concur-

rent.

Solution

Let ω be the incircle of 4ABC and let X = AI ∩ ω. Then arc EX =arc XF since AI is the per-

pendicular bisetor of EF . Therefore ∠AFX = ∠XEF = ∠XFE, i.e. FX is the bisector of ∠AFE.

So IA = AI ∩ EF , IB = BI ∩DF , IC = CI ∩ ED. So, IAD, IBE, ICF , are the bisectors of 4DEF ,
so they are concurrent.

Let S be a set of 10 distinct positive real numbers. Show that there exist x, y ∈ S such that

0 < x− y < (1 + x)(1 + y)

9
.

Solution

Divide the set of positive reals into the 9 sets of the form
[
k−1
10−k ,

k
9−k

)
for k = 1, 2, . . . 9. If k = 9,

then the right side should just be∞, and if k = 1, then the left boundary should be open. Note that

all sets are disjoint and all positive reals are covered. By the pigeonhole principle, one of these sets

contains 2 or more numbers from set S. Let x be the greater and y be the smaller. Then x− y > 0.

Now we need to show that (x+1)(y+1)
9

> x− y.

351

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=429740
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=429896
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=429584
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=427098


Transform the inequality into

(x+ 1)(y + 1)

9
> (x+ 1)− (y + 1)⇒ 1

9
>

1

y + 1
− 1

x+ 1
.

We know that x < k
9−k and y ≥ k−1

10−k for the same k. Then x + 1 < 9
9−k and y + 1 ≥ 9

10−k , so
1

x+1
> 9−k

9
and 1

y+1
≤ 10−k

9
. Hence

1

y + 1
− 1

x+ 1
<

10− k
9
− 9− k

9
=

1

9

and it is proven.

Find all pairs of positive integers (a, b) such that b−1
a
, a+4

b
are positive integers. Let b−1

a
=

k1,
a+4
b

= k2. Then, b = ak1 + 1. Therefore, a + 4 = k2b = k2(ak1 + 1) = ak1k2 + k2. So a = k2−4
1−k1k2

.

Since a is positive and 1−k1k2 < 0, then, 0 < k2 < 4. So k2 = 1, 2, 3. Next we need to check the cases

k2 = 1, 2, 3. For k2 = 1, we have b+4
a

= 1. Then, a = b + 4. So b−1
a

= 1 + 3
a

(a, b) = (1, 5), (3, 7) are

satisfyed. For the case k2 = 2, (a, b) = (2, 3) For the case k2 = 3, there are no solutions. Therefore,

(a, b) = (2, 3), (3, 7), (1, 5) are three groups of pairs of positive integers.

Let 4ABC be a triangle with incenter I such that ∠A = 120, consider the points D,E and

F such that :

D = (AI) ∩ (BC) and E = (BI) ∩ (AC) and F = (CI) ∩ (AB)

Show that D lies on the circle with diameter [EF ] .

Solution
DA
DB

= sin ÂBD

sin B̂AD
= sin B̂

sin 60
= sin B̂

sin 120
= sin B̂

sin Â
= AC

BC
= AF

FB
. So, DF is the bisector of ÂDB and similarly DE

is the bisector of ÂDC. Therefore F̂DE = 90 and the result follows

Find all integers n for which both n+27 and 8n+27 are perfect cubes.

Solution

If n+27 is perfect cube, then 8(n+27) is also perfect cube. Then difference between two cubes((8n+

8 · 27) and (8n+ 27)) is equal to 7 · 27 = 189. Then we write first some cubes: 1, 8, 27, 64, 125, 216,

343, 512, 729, . . . We see that differnce between adjacent cubes(after 512) is greater than 189, that’s

why both cubes are least or equal to 512. Searching in first 8 cubes pairs with such difference, we

find pairs (27, 216). So n = 0

Let ABC be a non-obtuse triangle and let ma be the length of the median issued from vertex

A .

Prove that the following inequality holds: ma ≤
√
b2 + c2

2
· cos

A

2
.

Consequence. In any non-obtuse 4ABC the following inequality holds:(
ma

cos A
2

)2

+

(
mb

cos B
2

)2

+

(
mc

cos C
2

)2

≤ a2 + b2 + c2 .

Solution

ma ≤
√

b2+c2

2
· cos A

2
⇐⇒ 4m2

a ≤ 2(b2 + c2) · cos2 A
2
⇐⇒ 2(b2 + c2)− a2 ≤ 2(b2 + c2) · cos2 A

2
⇐⇒

b2 + c2− a2 ≤ (b2 + c2) ·
(
2 cos2 A

2
− 1
)
⇐⇒ 2bc · cosA ≤ (b2 + c2) cosA ⇐⇒ (b− c)2 cosA ≥ 0 .

In conclusion,
b+ c

2
· cos

A

2
≤ ma ≤

√
b2 + c2

2
· cos

A

2
in any non-obtuse triangle ABC .

Let ax2 + bx + c = 0 be a equation with the roots x1 , x2 . Find the relation f(a, b, c) = 0 so

that x2
1 = x2 ∨ x2

2 = x1 .

Solution
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Denote


x1 + x2 = S = − b

a

x1x2 = P = c
a

∥∥∥∥∥∥∥ . Therefore, x2
1 = x2 ∨ x2

2 = x1 ⇐⇒ (x2
1 − x2) (x2

2 − x1) =

0 ⇐⇒
P 2 − (S3 − 3PS) + P = 0 ⇐⇒ S3 = P (3S + P + 1) ⇐⇒ b3 + ac(a+ c) = 3abc .

Find the values of x that satisfy the equation:
√
π2 − 4x2 = arcsin(cosx)

Solution

By trig identity arcsin(cosx) = arcsin(sin(π
2
− x)) = π

2
− x, so

(π + 2x)(π − 2x) =
(π

2
− x
)2

and by cancellation we get 2(π + 2x) = π
2
− x, so x = −3π

10
and x = π

2
)

Let n > 2 be a composite number. Prove that not all of the terms in the sequence(
n

1

)
,

(
n

2

)
,

(
n

2

)
, . . . ,

(
n

n− 1

)

Solution

When n is composite, there exists a prime p | n, p < n. Then in
(
n
p

)
= n(n−1)···(n−(p−1))

p!
the factors

n − j, 1 ≤ j ≤ p − 1, are co-prime with p, hence the power of p dividing
(
n
p

)
is one less than that

dividing n, therefore n -
(
n
p

)
.

prove that cos( 2π
2n+1

) + cos( 4π
2n+1

) +−−−cos( 2nπ
2n+1

)=−1
2

n is natural number

Solution

One has cos 2kπ
2n+1

= cos 2(2n−k+1)π
2n+1

for all 1 ≤ k ≤ n, since cos θ = cos(2π − θ). On the other hand,

0 =
∑2n

k=0 cos 2kπ
2n+1

= 1+
∑n

k=1 cos 2kπ
2n+1

+
∑2n

k=n+1 cos 2kπ
2n+1

= 1+
∑n

k=1 cos 2kπ
2n+1

+
∑n

k=1 cos 2(2n−k+1)π
2n+1

=

1 + 2
∑n

k=1 cos 2kπ
2n+1

, since these are the real parts of the roots of z2n+1 − 1 = 0.

Find the largest positive integer k such that φ(σ(2k)) = 2k. (φ(n) denotes the number of

positive integers that are smaller than n and relatively prime to n, and σ(n) denotes the sum of

divisors of n). As a hint, you are given that 641|232 + 1.

Solution

The hint makes it fairly obvious that the correct answer is k = 31.

σ(2k) =
∑k

i=0 2i = 2k+1 − 1, so φ(2k+1 − 1) = 2k. Suppose 2k+1 − 1 =
∏m

i=1 p
ei
i ; then 2k =

φ(2k+1− 1) = (2k+1− 1)
∏m

i=1

(
pi−1
pi

)
. Since 2k has no odd factors, it follows that

∏m
i=1 pi ≥ 2k+1− 1,

but by definition,
∏m

i=1 pi ≤ 2k+1 − 1; so
∏m

i=1 pi = 2k+1 − 1. Then 2k =
∏m

i=1(pi − 1), so it follows

that pi = 2ji + 1 for integers ji, and

m∏
i=1

(2ji + 1) = 2k+1 − 1.

Because 2ji+1 is prime, ji cannot have any odd factors, so ji = 2li for integers li. Multiplying both

sides by
∏m

i=1(22li − 1) gives

m∏
i=1

(22li+1 − 1) = (2k+1 − 1)
m∏
i=1

(22li − 1).

Thus gcd
(

22li − 1, 2k+1 − 1
)
6= 1 for some i. By the Euclidean Algorithm, this is true iff k is a

multiple of 2li or vice versa, and k + 1 has no odd prime factors (otherwise it divides out; if l is odd
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and l|k + 1 then 2l − 1|2k+1 − 1, but by Euclidean Algorithm gcd
(

22li − 1, 2l − 1
)

= 1 for all i,

giving us an extraneous prime factor), so k = 2r − 1 for some r.

If k + 1 = 2r, then 22i + 1|2k+1 − 1 and gcd
(

22i + 1, 22j + 1
)

= 1 for 0 ≤ i, j ≤ r − 1, and

expanding the last expression and using a telescoping difference of squares product gives[
1

21 − 1

]
· (2k+1 − 1)

r−1∏
i=0

(
22i

22i + 1

)
= 22r−1 = 2k,

which holds true iff 22i + 1 is prime for all 1 ≤ i ≤ r − 1, so r ≤ 5 and k ≤ 31 , which works.

Prove that the equation x = 1
x+1

+ 1
x+2

+ ...+ 1
x+2010

has exactly 2011 solutions.

Solution

Let f(x) = 1
x+1

+ 1
x+2

+ ... + 1
x+2010

and g(x) = x. Since f ′(x) < 0 and for all i ∈ {1, 2, ..., 2010}:
limx→−i+ f(x) = +∞, limx→−i− f(x) = −∞, limx→±∞ f(x) = 0 and g is increasing function, we see

that the equation has exactly one real root on all following interval: (−∞,−2010), (−2010,−2009),...,

(−1,+∞). Done!

Let {u, v} ⊂ C∗ and Lu,v = { z ∈ C | z + uz + v = 0 } . What are the necessary and sufficient

conditions for Lu,v is a line ?

Proof. z + uz + v = 0 ⇐⇒ z + uz + v = 0 . Eliminate z between the equivalent equations{
z + u · z + v = 0

u · z + z + v = 0

∣∣∣∣∣ =⇒

(1− |u|2) · z + (v − uv) = 0 , a relation what is verified by an infinitude of points z ∈ Lu,v . In

conclusion, |u| = 1 ∧ uv = v .

Otherwise. The equivalent equations

{
z + u · z + v = 0

u · z + z + v = 0

∣∣∣∣∣ ⇐⇒ 1
u

= u
1

= v
v
⇐⇒ |u| =

1 ∧ uv = v ⇐⇒ uv = v

because |uv| = |v| and v 6= 0 =⇒ |u| = 1 .

Another way: The general form of a line is: Ax+By+C = 0 (A,B,C are real; A,B are not both

zero) Let z = x + iy, then x = z+z̄
2
, y = z−z̄

2i
, so A z+z̄

2
+ B z−z̄

2i
+ C = 0, z + a2

|a|2 z̄ + ba
|a|2 = 0 (a =

A+ iB 6= 0, b = 2C is real) Compare coefficients of Lu,v, u = a2

|a|2 , v = ba
|a|2 ; |u| = 1, uv̄ = v �

f(x) = xx
xx

. Example: f(2) = 2222

= 224
= 216. Find the last 2 digits of: f(17) + f(18) +

f(19) + f(20).

Solution

172 = 289 = −11 mod 100

174 = (−11)2 = 121 = 21 mod 100

178 = 212 = 441 = 41 mod 100

1716 = 412 = 1681 = 81 mod 100

1720 = 1716174 = 81× 21 = 1701 = 1 mod 100

174 = (−3)4 = 81 = 1 mod 20

17 = 1 mod 4

1717 = 1 mod 4

171717
= 17 mod 20

17171717

= 1717 = 171617 = 81× 17 = 1377 = 77 mod 100

182 = 324 = 24 mod 100

184 = 242 = 576 = 76 mod 100

188 = 762 = 5776 = 76 mod 100
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184n = 76 mod 100 for all n ≥ 1

18 = 2 mod 4

1818 = 218 = 49 = 0 mod 4

181818
= 21818

= 0 mod 4

18181818

= 76 mod 100

192 = 361 = 61 mod 100

194 = 612 = 3721 = 21 mod 100

195 = 19419 = 21× 19 = 399 = −1 mod 100

1910 = (−1)2 = 1 mod 100 192 = 1 mod 10 191919
= 19 = 9 mod 10 19191919

= 199 = 195194 =

−1× 21 = −21 = 79 mod 100

20202020

= 0 mod 100

Last 2 digits of f(17) + f(18) + f(19) + f(20) = 32

Prove that if x, y are integers such that x2 + y2 + 3 ≥ 6xy, then x2 + y2 ≥ 6xy

Solution

Suppose that x2 + y2 < 6xy. We have 3 ≥ 6xy − x2 − y2 and 0 < 6xy − x2 − y2. So, ∃ x, y ∈ Z
such that 6xy − x2 − y2 ∈ {1, 2, 3}. But ∀ k ∈ {1, 2, 3}, k = 6xy − x2 − y2 ⇔ (x+ y)2 + k = 8xy ⇒
(x+ y)2 ≡ 5, 6, 7 (mod 8), contradiction because ∀a ∈ Z a2 ≡ 0, 1, 4 (mod 8).

Let ABC be a triangle with the centroid G and let M be an arbitrary interior point. The line

MG cut AB , BC , CA in Z , X , Y . Prove that XM
XG

+ YM
Y G

+ ZM
ZG

= 3 .

Solution

Denote the midpoints D , E , F of the sides [BC] , [CA] , [AB] respectively and U ∈ AM ∩BC
, V ∈ BM ∩ CA ,

W ∈ CM ∩ AB . Prove easily that UM
UA

+ VM
V B

+ WM
WC

=
∑ [BMC]

[BAC]
= 1 (∗) . Apply the Menelaus’

theorem to

transversals :



XDU/4AGM : XM
XG
· DG
DA
· UA
UM

= 1 =⇒ XM
XG

= 3 · UM
UA

Y EV /4BGM : YM
Y G
· EG
EB
· V B
VM

= 1 =⇒ YM
Y G

= 3 · VM
V B

ZFW/4CGM : ZM
ZG
· FG
FC
· WC
WM

= 1 =⇒ ZM
ZG

= 3 · WM
WC

∣∣∣∣∣∣∣∣∣∣∣∣
(∗)

=⇒
∑

XM
XG

= 3

.

25 points are given on the plane. Among any three of them, one can choose two less than one

inch apart. Prove that there are 13 points among them which lie in a circle of radius 1

Solution

Consider the graph G whose vertices are the 25 points, with edges between points no less than 1 inch

apart. The given condition means G contains no triangle K3, therefore its number of edges is at most

that of a complete bipartite K12,13 graph, by Turán’s theorem. Thus the number of pairs of points

at pairwise distance less than 1 inch is at least
(

12
2

)
+
(

13
2

)
= 144, and these are the edges E(G) of

the complementary graph G.

But then
∑

v∈V (G) deg v = 2E(G) ≥ 288, hence for at least one vertex v we have deg v ≥
d288/25e = 12. Acircle of radius 1 drawn having v as its center thus contains at least 12 other

points, so at least 13 in all.

Alternatively, considering the graph G whose edges are between points less than 1 inch apart, the

given condition means the independence number α(G) is at most 2. By the Caro-Wei theorem we

have 2 ≥ α(G) ≥
∑

v∈V (G)
1

deg v+1
, so for at least one vertex v we have 1

deg v+1
≤ 2

25
, i.e. deg v+1 ≥ 25

2
,
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so deg v ≥ 12.

find the sum to n terms of the series, 1
1.3

+ 2
1.3.5

+ 3
(1.3.5.7

+ ................

Solution

Denote an = 1
1·3 + 2

1·3·5 + · · · + n
1·3·5···(2n+1)

= bn
1·3·5···(2n+1)

. Then an = bn−1

1·3·5···(2n−1)
+ n

1·3·5···(2n+1)
=

(2n+1)bn−1+n
1·3·5···(2n+1)

, leading to bn = (2n+ 1)bn−1 + n.

This also writes 2bn + 1 = 2(2n+ 1)bn−1 + 2n+ 1 = (2n+ 1)(2bn−1 + 1). By iterating, 2bn + 1 =

(2n+ 1)(2n− 1) · · · 3 · 1 = (2n+ 1)!!, so bn = 1
2
((2n+ 1)!!− 1), thus an = (2n+1)!!−1

2·(2n+1)!!
= 1

2
− 1

2·(2n+1)!!
.

This also suggests an alternative solution. Compute an+ 1
2·(2n+1)!!

; the sum of its last two terms is
n

(2n+1)!!
+ 1

2·(2n+1)!!
= 2n+1

2·(2n+1)!!
= 1

2·(2n−1)!!
, and it all telescopes to 1

1·3 + 1
2·3!!

= 1
2
. The cubic equation

x3 + 2x− 1 = 0 has exactly one real root r. Note that 0.4 < r < 0.5.

(a) Find, with proof, an increasing sequence of positive integers a1 < a2 < a3 < · · · such that

1

2
= ra1 + ra2 + ra3 + · · · .

(b) Prove that the sequence that you found in part (a) is the unique increasing sequence with the

above property.

Solution

a)Since r3 + 2r − 1 = 0, we have 1− r3 = 2r or 1
2

= r
1−r3 . Writing this as a geometric series, we get

1
2

= r
1−r3 = r1+r4+r7+· · · . So ak = 3k−2 for positive integers k suffices. b) If 1 ≤ b1 < b2 < b3 < · · ·

would be another such sequence, then there will exist a first index k such that 3k − 2 = ak 6= bk.

1. If bk < ak, thus bk ∈ {3k− 3, 3k− 4}, then, from the index k on, the sum for the "b"-sequence

is larger than rbk , while the sum for the "a"-sequence is equal to r3k−2

1−r3 = r3k−3

2
< rbk , contradiction.

1. If bk > ak, thus bk ≥ 3k − 1, then, from the index k on, the sum for the "b"-sequence is at

most r3k−1

1−r , while the sum for the "a"-sequence is still equal to r3k−3

2
. We thus need r3k−1

1−r ≥
r3k−3

2
,

that is 2r2 ≥ 1 − r, or (2r − 1)(r + 1) ≥ 0, impossible, since 0.4 < r < 0.5, thus 0 < 2r < 1.∑1998
k=0

k+3
(k+1)!+(k+2)!+(k+3)!

+ 1
2001!

Find the value 2008.k

Solution

We rewrite the expression inside the summation as 1
(k+1)!

· k+3
1+(k+2)+(k+2)(k+3)

= 1
(k+3)(k+1)!

= k+2
(k+3)!

.

After experimenting a little, we find

n∑
k=0

k + 2

(k + 3)!
=

1

2
− 1

(n+ 3)!

which we prove by induction. The base case is trivial. For the induction step, assume the result for

some n = t to find
∑t+1

k=0
k+2

(k+3)!
= 1

2
− 1

(n+3)!
+ t+3

(t+4)!
= 1

2
− 1

(t+4)!
as desired. Now we just use n = 1998

to find
∑1998

k=0
k+3

(k+1)!+(k+2)!+(k+3)!
=
∑1998

k=0
k+2

(k+3)!
= 1

2
− 1

2001!
. Adding this to 1

2001!
conveniently leaves

1

2
.

Let m,n ∈ N− {0, 1} such that
√

6− m
n
> 0. Prove that

√
6− m

n
> 1

2mn
.

Solution

Otherwise
√

6n < 1
2m

+m =⇒ 6n2 < 1
4m2 + 1 +m2

Combining this with the given condition 0 < (6n2 −m2) < 1 + 1
4m2

So, 6n2 −m2 = 1 =⇒ m2 ≡ −1 (mod 6)

But this is impossible. So we arrive at a contradiction.

So
√

6− m
n
> 1

2mn
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If a 6= b and a, b ∈ R+, then find biggest k that (
√
a−
√
b)2 ≥ k

√
ab is true for all a, b.

Solution

(
√
a−
√
b)2 ≥ k

√
ab ⇔ a + b ≥ k

√
ab + 2

√
ab. By AM −GM we have a + b ≥ 2

√
ab. For k = 0

the inequality is true. Suppose that k > 0. a+ b ≥ k
√
ab+ 2

√
ab ⇔

√
a√
b

+
√
b√
a
≥ k + 2. Denote a = x

and let b = 1. The inequality becomes x + 1
x
≥ k + 2. But k > 0, then ∃ y > 0 such that k + y > 2

and y < 2. If we find x > 0 (x 6= 1) such that x + 1
x

= k + y, we’ll obtain a contradiction. We have

x2 − x(k + y) + 1 = 0. Then, we obtain x =
k+y+
√

(k+y)2−4

2
> 0. So, for (a, b) = (

√
k+y+
√

(k+y)2−4

2
, 1)

we have a contradiction! Then k = 0 .

Let ABC be a triangle with the incenter I. Denote D ∈ AI∩BC , E ∈ BI∩CA , F ∈ CI∩AB
and M ∈ BE ∩DF , N ∈ CN ∩DE . Prove that ÎAM ≡ ÎAN .

Solution

Using an well-known relation obtain that


MF
MD

= EA
EC
· BF
BD
· BC
BA

=⇒ MF
MD

= b+c
a+b

NE
ND

= FA
FB
· CE
CD
· CB
CA

=⇒ NE
ND

= b+c
a+c

∣∣∣∣∣∣∣ .
Denote X ∈ AM ∩BC and Y ∈ AN ∩BC . Using Menelaus’ theorem for the transversals in the

mentioned

triangles


AMX/4BDF : XB = ac

2b+c
=⇒ XB

XC
= c

2b

ANY /4CDE : Y C = ab
b+2c

=⇒ Y B
Y C

= 2c
b

∣∣∣∣∣∣∣ =⇒ XB
XC
· Y B
Y C

=
(
AB
AC

)2
.

From the Steiner’s theorem obtain that D̂AX ≡ D̂AY , i.e. ÎAM ≡ ÎAN .

I n = 10⇒ 210 = 1024 > 1000 = 103 . So the given claim is true for n := 10 . I Suppose that

for some m ≥ 10 , 2m > m3 (∗) . Then 2m+1 = 2 · 2m > 2m3 = m3 +m ·m2 > m3 + (3 + 3 + 1) ·m2 =

m3 + 3m2 + 3m+ 1 = (m+ 1)3 . Now we proved that 2n > n3,∀ n > 9 .

Remark. Suppose that for a given p ∈ N∗ exists s ∈ N∗ so that s ≥ 2p − 1 and 2s > sp .

Then (∀) n ∈ N∗ , n ≥ s we have 2n > np . Indeed :

I n = s⇒ 2s > sp . So the given claim is true for n := s.

I Suppose that for some m ≥ s > 2p − 1 , 2m > mp (∗) . Then 2m+1 = 2 · 2m > 2 ·mp =

mp +m ·mp−1 > mp + (2p − 1) ·mp−1 = mp +
(∑p

k=1C
k
p

)
·mp−1 > mp +

∑p
k=1C

k
pm

p−k =∑p
k=0C

k
pm

p−k = (m+ 1)p . Now we proved that 2n > np , ∀ n > s .

Particular case. For p = 3 exists s = 10 ≥ 23 − 1 = 7 so that 210 > 103 . Then 2n > n3 for any

n ≥ 10 .

Lemma. Consider the real numbers r 6= 0 , x1 and xk+1 = xk + r , where k ∈ N∗ .

Then C ≡
n∑
k=1

cosxk =
cos x1+xn

2
sin nr

2

sin r
2

and S ≡
n∑
k=1

sinxk =
sin x1+xn

2
sin nr

2

sin r
2

.

Proof. 2 sin r
2
· C =

∑n
k=1 2 sin r

2
cosxk =

∑n
k=1

[
sin
(
xk + r

2

)
− sin

(
xk − r

2

)]
=

sin
(
xn + r

2

)
− sin

(
x1 − r

2

)
, because xk+1 − r

2
= xk + r

2
. In conclusion, 2 sin r

2
· C =

2 sin xn−x1+r
2

cos x1+xn
2

= 2 sin (n−1)r+r
2

cos x1+xn
2

=⇒ C =
cos x1+xn

2
sin nr

2

sin r
2

.

2 sin
r

2
· S =

∑n
k=1 2 sin r

2
sinxk =

∑n
k=1

[
cos
(
xk − r

2

)
− cos

(
xk + r

2

)]
=

cos
(
x1 − r

2

)
− cos

(
xn + r

2

)
, because xk+1 − r

2
= xk + r

2
. In conclusion, 2 sin r

2
· S =

357

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=431815 
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=432396 
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=431936
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=433016 


2 sin xn−x1+r
2

sin x1+xn
2

= 2 sin (n−1)r+r
2

sin x1+xn
2

=⇒ S =
sin x1+xn

2
sin nr

2

sin r
2

.

Problem: Denote E ≡
∑n

k=1 sin2 kπm
n

, where m,n ∈ Z and 0 < m < n . Find E as a function of

n .

Solution

2E =
∑n

k=1

(
1− cos 2kπm

n

)
= n−F , where F ≡

∑n
k=1 cos 2kπm

n
. Apply upper lemma for x1 = r = 2mπ

n

and

obtain that F =
cos

x1+xn
2

sin nr
2

sin r
2

=
cos

x1+xn
2

sin(n2 ·
2mπ
n )

sin r
2

= 0 =⇒ F = 0 . In conclusion, 2E = n =⇒
E = n

2
.

Prove that sinx = k · sin(a− x) ⇐⇒ tan
(
x− a

2

)
= k−1

k+1
· tan a

2
.

Solution

sinx = k · sin(a− x) ⇐⇒ k
1

= sinx
sin(a−x)

⇐⇒ k−1
k+1

= sinx−sin(a−x)
sinx+sin(a−x)

⇐⇒
k−1
k+1

=
2·sin(x−a2 ) cos a

2

2·sin a
2

cos(x−a2 )
⇐⇒ k−1

k+1
=

tan(x−a2 )
tan a

2
⇐⇒ tan

(
x− a

2

)
= k−1

k+1
· tan a

2
.

Remark. For x := B , a := −A , k := −k obtain the Mollweide’s identity in 4ABC : sinB =

k · sinC ⇐⇒
tan B−C

2
= k−1

k+1
· cot A

2
⇐⇒ tan B−C

2
= b−c

b+c
· cot A

2
because k = sinB

sinC
= b

c
.

Let z = cos(1)+i sin(1),
∑∞

n=0

(
z
2

)n
= 1

1− z
2

= 4−2 cos(1)+2i sin(1)
5−4 cos(1)

Compare real parts,
∑∞

n=0
cos(n)

2n
=

4−2 cos(1)
5−4 cos(1)

� – You can find those general results

∞∑
k=0

xkcos(ak + b) =
cos(b)− xcos(b− a)

x2 − 2xcosa+ 1

∞∑
k=0

xksen(ak + b) =
sen(b)− xsen(b− a)

x2 − 2xcosa+ 1

or the indefinite summations

∑
k

xkcos(ak + b) =
xk+1cos[a(k − 1) + b]− xkcos[ak + b]

x2 − 2xcosa+ 1

∑
k

xksen(ak + b) =
xk+1sen[a(k − 1) + b]− xksen[ak + b]

x2 − 2xcosa+ 1

If tanx = ntany, then the maximum value of sec2(x− y) is ???

Solution

tan(x− y) =
tanx− tany

1 + tanxtany
=

(n− 1)tany

1 + ntan2y

. Using 1 + tan2A = sec2A this gives

sec2(x− y) = 1 +

(
(n− 1)Y

1 + nY 2

)2

where Y = tany

Differentiating this expression with respect to Y gives

d[sec2(x− y)]

dY
=

2Y (n− 1)2(1− nY 2)

(1 + nY 2)3

For turning points, the numerator is zero, i.e. 2Y (n− 1)2(1− nY 2) = 0.
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For either n = 1 or Y = 0 we have sec2(x − y) = 1, a minimum point. If 1 − nY 2 = 0 we have

sec2(x− y) = 1 +
(
n−1
2
√
n

)2

= (n+1)2

4n

Examining the sign of the derivative, we see that at just less the turning points when Y 2 = 1
n
, it

is positive for both positive and negative Y and at just more than it is negative. We conclude that

the maximum value of sec2(x− y) is (n+1)2

4n

Show that P (z) = 0 ⇒ |z| ≤ 2 if P (z) = z7 + 7z4 + 4z + 1

Solution

Clearly |z7 +7z4 +4z+1| ≥ |z7|− |7z4|− |4z|− |1|, which can be proved by showing |a+b| ≥ |a|− |b|.
Then if |z| > 2, P (z) ≥ |z7| − |7z4| − |4z| − |1| ≥ | z7

8
| − |4z| − |1| ≥ | z7

16
| − |1| ≥ 8 − 1 = 7 > 0,

therefore it cannot be that |z| > 2, and therefore |z| ≤ 2.

Let ABCD be a rhombus. Let P ∈ (BC) and Q ∈ (CD) such

that BP = CQ . Prove that the centroid of 4APQ lies on (BD) .

Solution

Proof 1 (synthetic). Denote R ∈ (AD) so that AR = BP = CQ , S ∈ QR∩BD , the midpoint T

of [AQ] and G ∈ BD ∩ PT . Observe that ACQR is an isosceles trapezoid, TS is the Q-middle

line

in 4AQR and TS ‖ BP with GP
GT

= BP
TS

= AR
TS

= 2 , i.e. G is the centroid of the triangle APQ .

Proof 2 (with vectors). Denote M ∈ (BD) so that CPMQ is a parallelogram. Observe that

BP = PM = CQ . Thus,
−→
AP−

−−→
AM =

−−→
MP =

−→
QC =

−→
AC−

−→
AQ , i.e. the triangles APQ and AMC have a common A-median

AS , where

S ∈ PQ ∩ CM . Hence these triangles have and a common centroid G , where G ∈ AS ∩MD ,

i.e. G ∈ BD .

Proof 3 (analytic). Suppose w.l.o.g. AB = 1 , m
(
B̂AD

)
= φ < 90◦ and A(0, 0) , B(cosφ, sinφ)

, C(1 + cosφ, sinφ)

and D(1, 0) . For BP = CQ = r < 1 obtain easily that P (1 − r + cosφ, sinφ) and Q(1 +

r cosφ, r sinφ) .Therefore,

the centroidGAPQ

(
2−r+(1+r) cosφ

3
, (1+r) sinφ

3

)
∈ (BD) ⇐⇒

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1

cosφ sinφ 1

2− r + (1 + r) cosφ (1 + r) sinφ 3

∣∣∣∣∣∣∣∣∣∣∣∣
=

0

⇐⇒

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1

cosφ 1 1

2− r + (1 + r) cosφ (1 + r) 3

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 ⇐⇒

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1

0 1 1

2− r 1 + r 3

∣∣∣∣∣∣∣∣∣∣∣∣
+cosφ·

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1

1 1 1

1 + r 1 + r 3

∣∣∣∣∣∣∣∣∣∣∣∣
=

0 ,

what is truly because we have in the first determinant C3 = C1+C2 and in the second determinant

C1 = C2 .

Otherwise, prove easily that G ∈ BD ⇐⇒ yG = sinφ
cosφ−1

· (xG − 1) , i.e. (1 + r) sinφ = sinφ
cosφ−1

·
(cosφ− 1)(1 + r)

Prove that an < (1+
√

5
2

)n, ∀ n ≥ 2, an nth term of Fibonacci.
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Solution

We use induction. Check the base case for n = 2 and n = 3 Now let the statement be true for n = k

and n = k − 1 ak+1 = ak + ak−1 < (1+
√

5
2

)k + (1+
√

5
2

)k−1 = (1+
√

5
2

)k−1 · (1 + 1+
√

5
2

) =

(1+
√

5
2

)k−1 · (5+1+2
√

5
4

) = (1+
√

5
2

)k−1 · (1+
√

5
2

)2 = (1+
√

5
2

)k+1 So this statement is true for n = k + 1 too.

this completes our induction step. So this statement is true for all n ≥ 2

Let ABCD be a trapezoid with AB ‖ CD and AC ⊥ BD . Denote O ∈ AC ∩ BD . Prove

that AB · CD = AO ·OC +BO ·OD .

Solution

Method 1 (trigonometric). Denote


m(∠OAB) = m(∠OCD) = x

m(∠OBA) = m(∠ODC) = y

∣∣∣∣∣∣∣ . Thus, x+ y = 90◦

and AB · CD = AO ·OC +BO ·OD ⇐⇒ 1 = AO
AB
· OC
CD

+ BO
AB
· OD
CD
⇐⇒

1 = sin y cosx+ sinx cos y ⇐⇒ 1 = sin(y + x) ⇐⇒ x+ y = 90◦ , what is truly.

Method 2 (sax - metric). Denote


OA = x ; OB = y

OC = z ; OD = t

∣∣∣∣∣∣∣ . Thus, AB · CD = AO · OC + BO ·

OD ⇐⇒
AB2 ·CD2 = (AO ·OC +BO ·OD)2 ⇐⇒ (x2 + y2) · (z2 + t2) = (xz + yt)2 ⇐⇒ x2t2 + y2z2 =

(xz + yt)2 ⇐⇒ x2t2 + y2z2 = 2xyzt ⇐⇒ (xt − yz)2 = 0 ⇐⇒ xt = yz , what is truly

(well-known) because

[ACD] = [BCD] ⇐⇒ [ACD] − [COD] = [BCD] − [COD] ⇐⇒ [AOD] = [BOC] ⇐⇒
xt = yz .

An easy extension. Let ABCD be a convex quadrilateral. Denote O ∈ AC ∩ BD and the area

[AOD] = S ,

m(∠AOD) = φ . Prove that AB2 · CD2 = [(xz + yt) + (xt+ yz) · cosφ]2 + (xt− yz)2 · sin2 φ .

Therefore, AB · CD ≥ |(xz + yt) + (xt+ yz) · cosφ| , with equality where φ = 90◦ .

Let a, b, c ∈ Z such that a
b

+ b
c

+ c
a
and b

a
+ c

b
+ a

c
are integers. Prove that |a| = |b| = |c|.

Solution

Note x =
a

b
; y =

b

c
; z =

c

a
;m =

∑ a

b
and n =

∑ b

a
. We have

∑
x = m;

∑ 1

x
= n and xyz = 1, so

x3 −mx2 + nx− 1 = 0. Be x =
p

q
, with p, q ∈ N; (p; q) = 1 => q|p => a = ±b and analogues.

Find the value m
∑m

p=0

(
m
p

)
2p = 729

Solution

We can see from the binomial expansion of (1 + 2)m that
∑m

p=0

(
m
p

)
2p = 3m.

Thus, 3m = 729 = 36, and m = 6.

Doing the math to be sure, we have on the left side when m = 6:∑6
p=0

(
6
p

)
2p(

6
0

)
20 +

(
6
1

)
21 +

(
6
2

)
22 +

(
6
3

)
23 +

(
6
4

)
24 +

(
6
5

)
25 +

(
6
6

)
26

1 + 12 + 60 + 160 + 240 + 192 + 64

729

A walk consists of a sequence of steps of length 1 taken in the directions north, south, east, or

west. A walk is self-avoiding if it never passes through the same point twice. Let f(n) be the number

of n-step self-avoiding walks which begin at the origin. Compute f(1), f(2), f(3), f(4), and show
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that

2n < f(n) ≤ 4 · 3n−1.

Solution

We have f(1) = 4, obviously, f(2) = 12 (4 ways for the first, 3 for the second), f(3) = 36 (12 ways,

and then 3 ways for the 3rd step).

For f(4), we should have 108 ways; the only way this fails is if we make a square. For each first

step, there are obviously two ways to make a square, so f(4) = 108− 8 = 100

For the upper bound of our bounds, this is because at best, we can have 4 choices for our first

move, and 3 for each one after (as we can’t double back on the prior move), so f(n) ≤ 4 · 3n−1

As for the lower bound: If all we do is go up or right at each turn, the path will clearly never

intersect itself. This gives 2n possibilities. Also, we can just go straight left n times in a row, so

f(n) ≥ 2n + 1 > 2n

Given: (i) a, b > 0; (ii) a, A1, A2, b is an arithmetic progression; (iii) a, G1, G2, b is a geometric

progression. Show that

A1A2 ≥ G1G2.

Solution

Because a, h, k, d are in GP, we know that ad = hk. Also, since a, b, c, d are in arithmetic progression,

we know a+ d = b+ c. Hence

(b+ c)2 = 4bc+ (b− c)2 = 4ad+ (a− d)2

and thus 0 < (a− d)2 − (b− c)2 = 4(bc− ad) and finally bc > ad = hk.

If x is a root of the equation x2 +px+q = 0, p, q ∈ C then show that: if |p|+ |q| < 1, then |x| < 1.

Solution

We have |p|+ |q| < 1. Assume |x| ≥ 1. Then we see that:

|x2 +px+q| ≥ |x2|−|px|−|q| ≥ |x2|−|px|−(1−|p|) = |x|2−|p| · |x|−1+ |p| = |x|2−|p|(|x|−1)−1

As |x| ≥ 1, this equation is decreasing as p increases. As |p| < 1, we set |p| = 1. > |x|2−|x| ≥ 0 since

|x| ≥ 1. Thus |x2 + px + q| > 0 for |x| ≥ 1, and thus x2 + px + q 6= 0 whenever |x| ≥ 1, therefore if

x2 + px+ q = 0 then |x| < 1.

Let a, b, c the roots of x3 − 9x2 + 11x − 1 = 0 and s =
√
a +
√
b +
√
c.Find numeric value of

s4 − 18s2 − 8s.

Solution

From the equation, a+ b+ c = 9, ab+ bc+ ca = 11, abc = 1

11 = ab+ bc+ ca = (
√
ab+

√
bc+

√
ca)2 − 2

√
abc(
√
a+
√
b+
√
c) =

= (
√
ab+

√
bc+

√
ca)2 − 2s⇒ (

√
ab+

√
bc+

√
ca)2 = 11 + 2s

s2 = (
√
a+
√
b+
√
c)2 = a+ b+ c+ 2(

√
ab+

√
bc+

√
ca) = 9 + 2(

√
ab+

√
bc+

√
ca)

⇒ s2 − 9 = 2(
√
ab+

√
bc+

√
ca)

Squaring both sides of this,

(s2 − 9)2 = s4 − 18s2 + 81 = 4(
√
ab+

√
bc+

√
ca)2 = 44 + 8s
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Rearranging,

s4 − 18s2 − 8s = 44− 81 = −37

If S is a sequence of positive integers let p(S) be the product of the members of S. Let m(S) be

the arithmetic mean of p(T ) for all non-empty subsets T of S. Suppose that S ′ is formed from S by

appending an additional positive integer. If m(S) = 13 and m(S ′) = 49, find S ′.

Solution

Let S = {a1, a2, ..., an}. Then clearly m(S) =
∏n
i=1(1+ai)−1

2n−1
Thus if an+1 is appended to form S ′, then:

13 · (2n− 1) =
∏n

i=1(1 + ai)− 1 49 · (2n+1− 1) =
∏n+1

i=1 (1 + ai)− 1 = (13 · (2n− 1) + 1)(1 + an+1)− 1

= 13 · (2n− 1) + 13 · (2n− 1) · an+1 + an+1 Expanding, 98 · 2n− 49 = 13 · 2n− 13 + 13an+12n− 12an+1

=⇒ 85 · 2n− 36 = 13an+12n− 12an+1 By plugging in various values of an+1 and solving for n, we find

n = 3, an+1 = 7 is a solution. Thus we must find a1, a2, a3 ∈ Z such that 92 = (1+a1)(1+a2)(1+a3).

We easily see a1 = 1, a2 = 1, a3 = 22 is a solution and indeedm({1, 1, 22}) = 13 andm({1, 1, 22, 7}) =

15, thus a possible solution of S ′ = {1, 1, 7, 22} (Note there are multiple solutions, but they can

easily be found by application of 92 = (1 + a1)(1 + a2)(1 + a3) giving all the solutions. You can show

it is impossible for a solution to have n = 1, thus n ≥ 2. This would show a solution for an+1 only

exists for an+1 ≤ 7, and then we can easily verify it must be n = 3 and a4 = 7.)

For every positive integer n show that

[
√

4n+ 1] = [
√

4n+ 2] = [
√

4n+ 3] = [
√
n+
√
n+ 1]

where [x] is the greatest integer less than or equal to x (for example [2.3] = 2, [π] = 3, [5] = 5).

Solution

Trivially [
√

4n+ 1] = [
√

4n+ 2] = [
√

4n+ 3] as there are no perfect squares 2, 3 (mod 4). Thus

we need to show [
√
n +
√
n+ 1] = [

√
4n+ 1]. Let k ≤ [

√
n +
√
n+ 1] < k + 1. Then: k2 ≤ 2n +

1 + 2
√
n
√
n+ 1 < (k + 1)2 Then clearly: 2n + 1 + 2

√
n
√
n+ 1 > 2n + 1 + 2

√
n
√
n > 4n + 1,

2n+1+2
√
n
√
n+ 1 < 2n+1+2

√
n+ 1

√
n+ 1 < 4n+3 Thus 4n+1 < 2n+1+2

√
n
√
n+ 1 < 4n+3.

This would mean [
√

4n+ 1] ≤ [
√
n+
√
n+ 1] ≤ [

√
4n+ 3]. But [

√
4n+ 1] = [

√
4n+ 3], thus we have

universal equality and we are done.

Suppose that 0 ≤ xi ≤ 1 for 1 ≤ i ≤ n. Prove that 2n−1 (1 +
∏n

k=1 xk) ≥
∏n

k=1 (1 + xk)

with equality iff at least n− 1 of the x′is are equal to 1 .

Solution

Extension. Let A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn


∈Mmn be a matrix so that for any i ∈ 1,m

have 0 ≤ ai1 ≤ ai2 ≤ . . . ≤ ain . Then exists the inequality
∏m

i=1

∑n
j=1 aij ≤ nm−1 ·

∑n
j=1

∏m
i=1 aij

.
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Proof.Here is a generalization of the Cebasev-inequality"] I note X.s.s.Y ⇐⇒ XY > 0 ∨ X =

Y = 0, i.t. the real numbers X, Y have same sign. Prove that exists the following inequality (a

generalization over R∗+ of the Cebasev-s inequality):

For the matrix A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

am1 am2 . . . amn

, where {m,n} ⊂ N∗ and

(∀) {i, l} ⊂ 1,m, (∀) {j, k} ⊂ 1, n, aij > 0, (aij − aik).s.s.(alj − alk) =⇒

m∏
i=1

n∑
j=1

aij ≤ nm−1

n∑
j=1

m∏
i=1

aij.

A particular case: A =


a1 a2 . . . an

a1 a2 . . . an

. . . . . . . . . . . .

a1 a2 . . . an

 ∈Mmn

(
R∗+
)
, i.e.

(∀) i ∈ 1,m, (∀) j ∈ 1, n, aij = aj > 0 =⇒

(
1
n
·
n∑
j=1

aj

)m

≤ 1
n
·
n∑
j=1

amj .

Particular case. A =



x1 1

x2 1

. . . . . .

xn 1


∈Mn2 =⇒

∏n
k=1 (1 + xk) ≤ 2n−1 · (1 +

∏n
k=1 xk) .

Let S =
∑1998

k=0
k+3

(k+1)!+(k+2)!+(k+3)!
+ 1

2001!
. Find the numeric value of 2008S

Solution

We have (k + 1)! + (k + 2)! + (k + 3)! = (k + 1)!(1 + (k + 2) + (k + 2)(k + 3)) = (k + 1)!(k + 3)2. So
k+3

(k+1)!+(k+2)!+(k+3)!
= 1

(k+1)!(k+3)
= k+2

(k+3)!
= 1

(k+2)!
− 1

(k+3)!
. Therefore the sum

∑m
k=0

k+3
(k+1)!+(k+2)!+(k+3)!

telescopes to 1
2!
− 1

(m+3)!
. So the answer is 2008 · 1

2
= 1004.

Solve the system , x, y, z ∈
[
0, π

2

)

tgx+ siny + sinz = 3x

sinx+ tgy + sinz = 3y

sinx+ siny + tgz = 3z

Solution

The function f : [0, π/2) → [0,∞) given by f(x) = tan t + 2 sin t − 3t is increasing, since f ′(t) =
1

cos2 t
+ 2 cos t− 3 = (1−cos t)2(2 cos t+1)

cos2 t
≥ 0. Thus f(t) ≥ f(0) = 0, with equality for t = 0 only.

Adding the three equations yields f(x) + f(y) + f(z) = 0, therefore the only solution is x = y =

z = 0.

Let P1 and P2 be regular polygons of 1985 sides and perimeters x and y respectively. Each side

of P1 is tangent to a given circle of circumference c and this circle passes through each vertex of P2.

Prove x+ y ≥ 2c. (You may assume that tan θ ≥ θ for 0 ≤ θ < π
2
.)

Solution

For inscribed and circumscribed regular n-gons (n ≥ 3), the inequality boils down to proving sin π
n

+
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tan π
n
> 2π

n
. Denote α = π

2n
, and t = tanα. By known formulae sin 2α = 2t

1+t2
and tan 2α = 2t

1−t2 .

Thus we need prove t
1+t2

+ t
1−t2 > 2α. But t

1+t2
+ t

1−t2 = 2t
1−t4 > 2t > 2α, since 0 < α ≤ π

6
< π

4
, hence

0 < t < 1, while t = tanα > α, and so we are done.

Given numbers a1, a2, ...an, find the number x which the sum

(x− a1)2 + (x− a2)2 + ...+ (x− an)2

is a minimum and compute this minimum.

Solution

For a random variable A defined on a finite probability field Ω = {1, 2, . . . , n} with probability

P (k) = 1
n
for all 1 ≤ k ≤ n, and taking values A(k) = ak, we have µ(A) =

∫
Ω
AdP = 1

n

∑n
k=1 ak, and

σ2(A) =
∫

Ω
(A− µ)2dP = µ(A2)− µ(A)2.

Now compute µ((A−x)2) =
∫

Ω
(A−x)2dP = µ(A2)−2xµ(A)+x2 = σ2(A)+µ(A)2−2xµ(A)+x2 =

σ2(A) + (µ(A)− x)2 ≥ σ2(A), with equality for x = µ(A). Therefore
∑n

k=1(ak − x)2 ≥ nσ2(A), with

equality for x = 1
n

∑n
k=1 ak. Factorize over Z: x2n + xn + 1

Solution

x2n+xn+1 = x3n−1
xn−1

=
∏
d|3n Φd(x)∏
d|n Φd(x)

, where Φn(x) is the nth cyclotomic polynomial. Let k be the maximum

integer k such that 3k|n. Then:
∏
d|3n Φd(x)∏
d|n Φd(x)

=
∏

d| n
3k

Φd·3k+1(x) As the nth cyclotomic polynomial is

irreducible in Z[x], and Z[x] is a UFD this is the fully factorized form and we are done.

Find the last non-zero digit in the number 2011!.

Solution

Clearly there are [2011
5

] + [2011
52 ] + [2011

53 ] + [2011
54 ] = 501 zeroes, so we need to find what 2011!

10501 is modulo

10. As clearly 2| 2011!
10501 , we need only find this modulo 5. Expanded, we see: 2011!

10501 ≡ (1 · 2 · 3 · 4)402 ·
1 · (1 · 2 · 3 · 4)80 · (1 · 2 · 3 · 4)20 · (1 · 2 · 3 · 4)3 · (1 · 2 · 3) (mod 5) (We get this from considering

the maximal power of 5 which divides each term, and then splitting into cases) But by Wilson’s

Theorem, 4! ≡ −1 (mod 5), thus: 2011!
10501 ≡ (−1)80 · (−1)20 · (−1)3 · 1 ≡ 4 (mod 5). Thus as 2011!

10501 ≡ 4

(mod 5) and 2011!
10501 ≡ 0 (mod 2), 2011!

10501 ≡ 4 (mod 10), and thus the last non-zero digit is 4 .

The number 1987 can be written as a three digit number xyz in some base b. If x + y + z =

1 + 9 + 8 + 7, determine all possible values of x, y, z, b.

Solution

Let p(x) = ax2 +cx+d where a, c, d are the digits of 1987 in base b. Then p(b) = 1987, and p(1) = 25.

Thus (b − 1)|p(b) − p(1) = 1987 − 25 = 1962 = 2 · 32 · 109 because it’s an integer coefficient

polynomial.

We know that b2 ≤ 1987 and b3 > 1987 because it’s a 3 digit number. Therefore, by taking

square/cube roots, we get 12 < b < 45, so 11 < b− 1 < 44.

The only number in those bounds that divides 1962 is 18. Thus b−1 = 18 and b = 19. Then 1987

is written as 5 · 192 + 9 · 19 + 11 so its base 19 expansion is 59b where b is the numeral in base 19 for

11 in base 10. The sum of these digits is b+ 9 + 5 = 11 + 9 + 5 = 25. Thus base 19 works, and it is

the only base that works.

Show that: (∀n ∈ N∪0) :

[
n+2−[ n25 ]

3

]
=
[

8n+24
25

]
Solution

Let n = 25q + r, then:
[
n+2−[ n

25
]

3

]
=
[

25q+r+2−q
3

]
=
[

24q+r+2
3

]
= 8q +

[
r+2

3

]
Similarly,

[
8n+24

25

]
=[

200q+8r+24
25

]
= 8q +

[
8r+24

25

]
By looking at the 25 cases, it can be shown that

[
r+2

3

]
=
[

8r+24
25

]
, and

thus we are done. Note: We can save analyzing that many cases by using the property
⌊
bxc
m

⌋
=
⌊
x
m

⌋
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for all x ∈ R and m ∈ N∗

Show that :

1)− (∀n ∈ N0) (∃! (pn, qn) ∈ N× N∪0) :


(2 +

√
3)n = pn + qn

√
3

3q2
n = p2

n − 1

2)− Show that (∀n ∈ N∪0) :
[
pn + qn

√
3
]
is an odd number .

Solution

For 1, let (2 +
√

3)n = pn + qn
√

3. Then we use norms in the ring Z[
√

3] (N(a+ b
√

3) = a2 − 3b2) to

know that N(ab) = N(a)N(b) for any a, b ∈ Z[
√

3]. Clearly then N(pn + qn
√

3) = (22 − 3 · 12)n = 1.

Thus p2
n − 3q2

n = 1 =⇒ p2
n − 1 = 3q2

n.

For part 2, we know for sufficiently large n, pn + qn
√

3 ≈ (2 +
√

3)n + (2−
√

3)n. It can then be

easily shown [pn + qn
√

3] = (2 +
√

3)n + (2−
√

3)n − 1. Expanding using the binomial theorem, it is

clear this must always be odd.

A competition involving n ≥ 2 players was held over k days. In each day, the players received

scores of 1, 2, 3, . . . , n points with no players receiving the same score. At the end of the k days, it

was found that each player had exactly 26 points in total. Determine all pairs (n, k) for which this

is possible.

Solution

Clearly n(n+1)
2

points are handed out each day, therefore after k days there are k n(n+1)
2

= 26n points

handed out. Then clearly k(n + 1) = 52, so k = 1, 2, 4, 13, 26, 52. Clearly we can throw out k = 52

immediately. But k = 26 results in n = 1, which clearly violates n ≥ 2. The k = 1 case has n = 51,

does not work. For the case k = 2, we have n = 25, and this works out because if a player receives x

points on the first day, give them 26− x points on the second. The case k = 4 and n = 12 works out

in the same way. For k = 13, n = 3, we find some difficulty in constructing a strategy to attain 26.

However, after some guesswork we find the strategy: 1. On the first four days give the first player 2

points, the second 1 point and the third 3 points. 2. For the next three days give the first player 2

points, the second 3 points and the third 1 point. 3. On the eight day give the first player 1 points,

the second player 3 points and the third player 2 points. 4. For the next two days give the first player

1 point, the second player 2 points and the third 3 points. 5. On the last three days give the first

player 3 points, the second player 2 points and the third 1 points. (This strategy can be derived as

well as many others by letting Player 1 get a 1′s and a 3′s, Player 2 b 1′s and b 3′s, etc.) Thus the

possible pairs are (25, 2), (12, 4), (3, 13)

Prove that for any real x the following inequality holds: 1x + 2x + 6x + 12x ≥ 4x + 8x + 9x Find

all x for which an equality holds.

Solution

Let 2x = m, 3x = n. Then we seek to show for all x ∈ R: 1 + m + mn + m2n ≥ m2 + m3 + n2

=⇒ m2(n − 1 −m) + mn + m + 1 − n2 ≥ 0 =⇒ m2(n − 1 −m) − n(n − 1 −m) + m + 1 − n ≥ 0

=⇒ (m2 − n− 1)(n− 1−m) ≥ 0.

Thus we must show (m2−n−1)(n−1−m) ≥ 0 for all x. We see this is true when (m2−n−1) ≥ 0

and (n− 1−m) ≥ 0 or (m2 − n− 1) ≤ 0 and (n− 1−m) ≤ 0.

Case 1: x ≥ 1 Then clearly 4x − 3x − 1 ≥ 0 because this is an increasing function, and equality

holds for x = 1, thus for all x ≥ 1 this will hold as well. But also 3x − 2x − 1 ≥ 0 by the same

reasoning above; this is increasing and equality holds for x = 1.
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Case 2: x < 1 As 4x − 3x − 1 is increasing and it equals 0 at x = 1, we find 4x − 3x − 1 ≤ 0 for

all x < 1. Similarly 3x − 2x − 1 ≤ 0 by the same logic of increasing and equality.

Thus in all cases we find (m2 − n− 1)(n− 1−m) ≥ 0, and therefore we are done.

For five integers a, b, c, d, e we lnow that the sums a+ b+ c+ d+ e and a2 + b2 + c2 + d2 + e2

are divisible by an odd number n. Prove that the expression a5 + b5 + c5 + d5 + e5 − 5abcde is also

divisible by n.

Solution

Let a, b, c, d, e be the roots of the monic quintic polynomial x5−σ1x
4 +σ2x

3−σ3x
2 +σ4x−σ5, where

σi is the i-th symmetric sum.

Then by Newton’s sums we get that

s5 − σ1s4 + σ2s3 − σ3s2 + σ4s1 − 5σ5 = 0

Note that we want to show s5−5σ5 ≡ 0 mod n. Therefore it suffices to show σ1s4−σ2s4 +σ3s2−
σ4s1 ≡ 0 mod n. Note that σ1 ≡ s1 ≡ s2 ≡ 0 mod n.

So we get σ1s4 + σ2s4 − σ3s2 + σ4s1 ≡ σ2s4 mod n. It suffices to show that σ2s4 ≡ 0 mod n.

Note that we have σ2
1 = s2 + 2σ2. Note that 0 ≡ σ2

1 ≡ s2 + 2σ2 mod n =⇒ 2σ2 ≡ 0 mod n.

Since n is odd we have that σ2 ≡ 0 mod n, and we are done.

LEt a1, a2, a3, a4, a5, a6 and a7 be positive real numbers such thata1 = a7 = 0

Show that : (∃i ∈ {2, 3, 4, 5, 6}) : ai+1 + ai−1 ≤
√

3ai

Solution

Assume all inequalities are reversed.

Then 2
√

3a4 > (3a3−
√

3a2)+(3a5−
√

3a6) = 2(a3 +a5)+(a3−
√

3a2)+(a5−
√

3a6) > 2(a3 +a5),

absurd, since we assumed a3 + a5 >
√

3a4.

Alternatively, square those (reversed) inequalities and add them up; then conveniently group the

terms, in order to get (a3−a5)2 +((a2 +a6)−a4)2 +(a2−a6)2 < 0, impossible. However, the equality

to 0 case occurs if and only if a3 = a5, a2 = a6 = a4/2, and further on a3 =
√

3a2, hence for the

unique type of sequence 0, x, x
√

3, 2x, x
√

3, x, 0, when all inequalities mentioned in the statement of

the problem turn into equalities.

Let a, b, and c denote three distinct integers, and let P denote a polynomial having integer

coefficients. Show that it is impossible that P (a) = b, P (b) = c, and P (c) = a.

Solution

Suppose for the sake of contradiction that all of a, b, and c are distinct. P (a) − P (b) = b − c,

P (b) − P (c) = c − a, and P (c) − P (a) = a − b. Multiplying these all together yields (P (a) −
P (b))(P (b)− P (c))(P (c)− P (a)) = (b− c)(c− a)(a− b).

Rearrange to get
(
P (a)−P (b)

a−b

)(
P (b)−P (c)

b−c

)(
P (c)−P (a)

c−a

)
= 1 (the division is valid as none of a − b,

b− c, or c− a are zero.) Since P is a polynomial with integer coefficients, each of P (a)−P (b)
a−b , P (b)−P (c)

b−c ,

and P (c)−P (a)
c−a are integers. But since they are integers that multiply to one, they must all have absolute

value one.

If some one of P (a)−P (b)
a−b , P (b)−P (c)

b−c , and P (c)−P (a)
c−a is -1 (without loss of generality, let us suppose

that P (a)−P (b)
a−b = −1), then P (a)−P (b) = b−a. But P (a) = b and P (c) = c, so b− c = b−a, yielding

a = c, contradicting our assumption that all the variables were distinct.

It follows that each of P (a)−P (b)
a−b , P (b)−P (c)

b−c , and P (c)−P (a)
c−a is equal to 1, so we have P (a)−P (b) = a−b,

P (b)−P (c) = b−c, and P (c)−P (a) = c−a. Substituting, b−c = a−b, c−a = b−c, and a−b = c−a.
Rearrange to get 2b = a + c, 2a = b + c, and 2c = a + b. This equation quickly yields a = b = c,

which again contradicts our assumption that all of a, b, and c are distinct.
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Hence, we may conclude that not all of a, b, and c are distinct, which completes our proof. Another

way

Suppose that a < b < c. Then |P (a) − P (c)| = |b − a| < |a − c|, a contradiction. Next, suppose

that b < a < c. Then |P (b)− P (c)| = |c− a| < |c− b|, also a contradiction.

Note that these are both contradictions because |a− c| divides |P (a)− P (c)| and |c− b| divides
|P (b)− P (c)|.

Let S(n, n− 1) = 1 and we also know that (n− 1) · (k − 1) · S(n, k) = (n− k) · S(n, k − 1) .

Show that S(n, k) =

(
n− 2

k − 1

)
(n− 1)n−k−1.

Solution

Obviously you use induction here. Note that here you induct on n−k rather than k or induction fails.

Base case of k = n − 1 is trivial, S(n, n − 1) =

(
n− 2

n− 2

)
(n − 1)n−n+1−1 obviously. Now we proceed

to the inductive step. Let this be true for all values of n − k ≤ m. Consider m + 1, or S(n, k − 1).

S(n, k − 1) = (n−1)(k−1)S(n,k)
n−k Now by the inductive hypothesis:

S(n, k − 1) =

(n−1)(k−1)

(
n− 2

k − 1

)
(n−1)n−k−1

n−k =
(k−1)

(n−2)!
(k−1)!(n−k−1)!

(n−1)n−k

n−k = (n−2)!
(k−2)!(n−k)!

(n − 1)n−k =(
n− 2

(k − 1)− 1

)
(n− 1)n−(k−1) And thus we are done.

Find x in Z
[
x
1!

]
+
[
x
2!

]
+ . . . +

[
x

10!

]
= 1001 .

Solution

Well clearly we can drop out all the terms such with factorials greater than 5!, because if x ≥ 720

it clearly doesn’t equal 1001. Thus we must find x ∈ Z, such that:
[
x
1

]
+
[
x
2

]
+
[
x
6

]
+
[
x
24

]
+
[
x

120

]
=

1001 Let x = 120q + r. Then: 120q + r + 60q + [r/2] + 20q + [r/6] + 5q + [r/24] + q = 1001

206q+ r+ [r/2] + [r/6] + [r/24] = 1001 From this we see q = 4. Then: r+ [r/2] + [r/6] + [r/24] = 177

We estimate if we drop the floors that r ≈ 104. Plugging in 104, we find it equals 177. Thus

x = 120 · 4 + 104 = 584 .

find all functions f(x):R->R such that f(kx) = f(lx) where k, l are constant and k 6= l

Solution

If k or ` is null, the only possibility is f(x) = f(0), an arbitrary constant. If both k and ` are not

null, define x ∼ y if there exists n ∈ Z such that y = (k/`)nx. This is clearly an equivalence relation;

the class 0̂ of 0 is {0}, and the other classes x̂ of x 6= 0 are countable. Clearly if x ∼ y we have

f(x) = f(y). conversely, for f(x) = Cx̂, with Cx̂ arbitrary constants, f fulfills (the functions are

given by arbitrary projections f̂ : R/∼ → R.
Find the solution of the equation√

x− 7

3
+

√
x− 6

4
+

√
x− 8

2
=

√
x− 3

7
+

√
x− 4

6
+

√
x− 2

8

.

Solution√
x−7

3
+
√

x−6
4

+
√

x−8
2

=
√

x−3
7

+
√

x−4
6

+
√

x−2
8
⇔⇔ (x−10)

(
4
21√

x−7
3

+
√

x−3
7

+
1
12√

x−6
4

+
√

x−4
6

+
3
8√

x−8
2

+
√

x−2
8

)
=

0⇔ ⇔ x = 10.

For positive reals a, b, c with a+ b+ c = 1, show that

(a+
c

2
)n(b+

c

2
) ≤ nn

(n+ 1)n+1
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Solution

Let a+ c
2

= r, b+ c
2

= s, then r + s = 1. From weighted AM-GM, we get

1 = n(
r

n
) + s ≥ (n+ 1) n+1

√
rns

nn

Which is equivalent to the desired rns ≤ nn

(n+1)n+1 .

Suppose that n is the smallest number satisfying

am = 1(modb) where a, b are given number (a, b) = 1

Prove that n|φ(m)

Solution

Let φ(m) = nq + r, where n, r ∈ Z and 0 ≤ r < n. Then: aφ(m) ≡ 1 (mod b) by Euler’s Theorem.

However, we also have aφ(m) ≡ anq+r ≡ (an)q ·ar ≡ 1q ·ar ≡ ar (mod b) Now if then clearly ar ≡ 1

(mod b). But as n is the least such positive number that this is satisfied, we have either r ≥ n or

r 6∈ Z+. Clearly the first is false, so r is not positive and thus r = 0. Then φ(m) = nq, and thus

n|φ(m).

Give triangle ABC inscribed a circle (O) with center O, AJ is the angle bisector of ∠BAC.

JE, JF is perpendicular with CA, BA, at E,F. AO cut JE at Q,AO cut JF at N. CF cut BE at M,

FN cut BQ at P, CN cut EQ at S. Prove that M,S,P are collinear

Solution

Let D be the foot of the A-altitude of 4ABC. AQJB is cyclic, due to ∠BAO = ∠CJE = 90◦ −
∠ACB. Thus, ∠JBQ = ∠JAQ = ∠JAD =⇒ BQ is B-altitude of 4BAJ =⇒ P is orthocenter of

4BAJ, i.e. P ∈ AD. By similar reasoning, S ∈ AD. AEJDF is clearly cyclic and A is the midpoint

of the arc EF of its circumcircle =⇒ DA,BC bisect ∠EDF =⇒ Pencil D(E,F,A,B) is harmonic

=⇒ M ≡ BE ∩ CF ∩ AD. So, M,S, P lie on AD.

Solve equation 5
√
x3 − 6x2 + 9x = 3

√
x5 + 6x2 − 9x.

Solution

If we have y5 = x3 − 6x2 + 9x and y3 = x5 + 6x2 − 9x then y5 + y3 = x5 + x3 hence y = x. ( If

y > x then LHS > RHS and vice versa. ) Now we have x5 − x3 + 6x2 − 9x = 0 and observe that

x5 − x3 + 6x2 − 9x = x(x4 − (x− 3)2). We are done. All real solutions are 0, −1+
√

13
2

, −1−
√

13
2

.

The real numbers x, y satisfy x3 − 3x2 + 5x− 17 = 0 , y3 − 3y2 + 5y + 11 = 0. Find x+ y.

Solution

Let x−1 = a and y−1 = b. Hence, a3+2a−14 = 0 and b3+2b+14 = 0, which gives a3+2a+b3+2b = 0,

which is (a+ b)(a2 − ab+ b2 + 2) = 0. Id est, a+ b = 0 and x+ y = 2.

The diagonals of a convex quadrilateral ABCD are mutually perpendicular. Perpendicular lines

from the midpoints of sides AB and AD are dropped to their opposite sides CD and CB, respectively.

Prove that these two lines and line AC have a common point.

Solution

Let M,N be the midpoints of AB,AD, respectively. Let K ≡ AC ∩BD
Let S and T be the feet of the perpendiculars from M and N to CD and CB, respectively.

Let E ≡MS ∩BD and F ≡ NT ∩BC.

Let P ≡MS ∩ AC and P ′ ≡ NT ∩ AC.

Using menelaus theorem on triangle AKB with line MPE we get

AP

PK
· KE
BE
· BM
AM

= 1 =>
AP

PK
=
BE

KE
(∗)
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Similarly, in triangle ADK with line NP ′F we have

AP ′

P ′K
· KF
DF
· DN
AN

= 1 =>
AP ′

PK ′
=
DF

KF
(∗∗)

So by (∗), (∗∗) we have P ≡ P ′ iff BE
KE

= DF
KF
↔ BK

KE
= DK

KF
(∗ ∗ ∗)

Now since PKTB is cyclic we have ∠KPF = ∠KBC so we have PKF ∼ BKC and we get

PK

BK
=
KF

KC
=> BK ·KF = PK · CK

Similarly, we see that KPE ∼ KDC and therefore

PK · CK = DK ·KE

hence we get BK ·KF = PK · CK = DK ·KE which implies (∗ ∗ ∗) and we are done.

Show that
∑n

k=0

(
n+ k

n

)
1
2k

= 2n.

Solution

Indeed, denote f(n) =
∑n

k=0

(
n+ k

n

)
1
2k
. Notice that

(
n+ 1 + n+ 1

n+ 1

)
1

2n+1 =

(
n+ 1 + n

n+ 1

)
1

2n
. Then

f(n+1)−f(n) = 1−1+
∑n

k=1

((
n+ 1 + k

n+ 1

)
−
(
n+ k

n

))
1
2k

+

(
n+ 1 + n+ 1

n+ 1

)
1

2n+1 = 1
2

(∑n
k=1

(
n+ 1 + (k − 1)

n+ 1

)
1

2k−1 +

(
n+ 1 + n

n+ 1

)
1

2n
+

(
n+ 1 + (n+ 1)

n+ 1

)
1

2n+1

)
=

1
2
f(n+1). Once we have f(n+1) = 2f(n), and clearly f(1) = 2, the claim is immediate by iteration.

ABC is acute-angled. What point P on the segment BC gives the minimal area for the inter-

section of the circumcircles of ABP and ACP?

Solution

The point P that satisfies is the foot of the altitude from A to BC. Let R1 and R2 be the circumradii

of the circumcircles of ABP and ACP respectively.

We can express the area of the intersection of the circumcircles as

∠B
360
·R2

1 · π − (ABP ) +
∠C
360
·R2

2 · π − (ACP ) =
π

360
(∠B ·R2

1 + ∠C ·R2
2)− (ABC)

Since (ABC) is constant it is enough to find the minimum value of ∠B ·R2
1 + ∠C ·R2

2

From law of sines in ABP and ACP we have R2
1 = AB2

4 sin2 ∠BPA
and R2

2 = AC2

4 sin2 ∠CPA
= AC2

4 sin2 ∠BPA

Hence we have to minimize

AB2 · ∠B
4 sin2∠BPA

+
AC2 · ∠C

4 sin2∠BPA
=

1

sin2∠BPA
(
AB2 · ∠B + AC2 · ∠C

4
)

But AB2·∠B+AC2·∠C
4

is constant and therefore it is enough to find the minimum of 1
sin2 ∠BPA

which

is obviously 1 when ∠BPA = 90 and we are done.

Solve for x:

bx+ bx+ bx+ 1c+ 1c+ 1c = 117

Solution

Let n = bxc ∈ Z. Then bx+ 1c = n+ 1, and bx+ bx+ 1c+ 1c = bx+ n+ 2c = bxc+ n+ 2 = 2n+ 2.

Continuing, we have bx+ bx+ bx+ 1c+ 1c+ 1c = bx+ 2n+ 3c = 3n+ 3. Since this equals 117, we

solve to obtain bxc = n = 38, from which it follows x ∈ [38, 39).

Calculate the value of:

100∑
k=0

5k

k + 1

(
100

k

)
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Solution

S(n, z) =
n∑
k=0

zk

k + 1

(
n

k

)
=

n∑
k=0

n!

(k + 1)!(n− k)!
zk

=
1

n+ 1

n∑
k=0

(n+ 1)!

(k + 1)!(n− k)!
zk

=
1

(n+ 1)z

n∑
k=0

(
n+ 1

k + 1

)
zk+1

=
1

(n+ 1)z

n+1∑
k=1

(
n+ 1

k

)
zk

=
1

(n+ 1)z

(
−1 +

n+1∑
k=0

(
n+ 1

k

)
zk

)

=
(1 + z)n+1 − 1

(n+ 1)z
.

Therefore, S(100, 5) = 6101−1
505

.

Solve the equation: 2x−1 + 2−x−1 = cos(x3 + x)

Solution

Multiplying by 2: 2x + 2−x = 2 cos(x3 + x) Note that there is a solution at x = 0. Note that

f(x) = 2x + 2−x is increasing for all x > 0, much faster than 2 cos(x3 + x) ever increases, thus there

are no solutions for x > 0. However, both sides of this equation are symmetric in that x is a solution

iff −x is a solution. Thus x = 0 is the only solution.

Solve the equation

3
2
x + (11 · 3x − 1)

1
x · 3x+1 = 11 · 3x+ 2

x

Solution

Do the obvious manipulations to reduce it to (11 · 3x − 1)x−1 = 3(x−1)(x+2).

Solve the equation

(1 + x2)(y2 + 2y 4
√

2 + 2
√

2) = 1 + 2x− x2

Solution

The original equation equivalents to (y2 + 2y 4
√

2 +
√

2) + x2−2x−1
1+x2 +

√
2 = 0 ⇔ (y + 4

√
2)2 +

(
√

2+1)x2−2x+
√

2−1
1+x2 = 0 ⇔ (y + 4

√
2)2 + (

√
2+1)(x−(

√
2−1))2

1+x2 = 0

Now the correct answer is x =
√

2− 1, y = − 4
√

2

Solve the system equation

max(x+ 2y, 2x− 3y) = 4,min(−2x+ 4y, 10y − 3x) = 4

Solution

Just solve 4 systems of equations

(1)

x+ 2y = 4

−3x+ 10y = 4
⇔ (x, y) = (2, 1)

(2)

x+ 2y = 4

−2x+ 4y = 4
⇔ (x, y) = (1, 3

2
)
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(3)

2x− 3y = 4

−2x+ 4y = 4
⇔ (x, y) = (14, 8)

(4)

2x− 3y = 4

−3x+ 10y = 4
⇔ (x, y) = (52

11
, 20

11
)

Now it is easy to check that the answer that we need to find is

(x, y) ∈ {(2, 1), (1,
3

2
)}

A magician and his assistant appeared to the public with lots of people. In the scenary, there

is a board 4 x 4. The magician close his eyes, and then, the assistant invites people of the public

to write the numbers 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 on the squares of the board to complete

the 16 numbers. After that, the assistant covers two adjacent houses, which he chooses, with a black

patch and leaves the scene. In the end, the magician open his eyes and has to guess the number in

each house that the assistant hid. Explain how the trick works.

Solution

The assistant (either in his head or on paper) creates a 4 x 4 box with 1 through 16 in their respective

boxes, ordered from left to right, then from top to bottom. In this way, for example, 4 is in the upper

right corner, and 10 is in the third row, second box from the left. He then (again, either in his head

or on paper) starts with 1 and sees what number is in the box on the public board that is the same

as the box on his new board that 1 is in, suppose it’s a. He then writes a after 1. He then checks to

see which number is in the box in the public square that corresponds to the box that a is in on his

new square, call it b. Then he writes b after a. He continues this way until he reaches 1. If there are

other numbers that have not been written down, he picks one and starts over. He repeats this until

all numbers are used.

For example: if we created this square,

11 7 2 13

6 15 4 14

5 1 12 8

10 9 3 16
then the assistant would mentally create this square,

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
and create the sequence 1, 11, 12, 8, 14, 9, 5, 6, 15, 3, 2, 7, 4, 13, 10 and the sequence 16. The

assistant counts the total number of sequences he has written down, and if it’s even he blacks out

boxes 1 and 2, and if it’s odd he blacks out boxes 1 and 3.

The magician knows which two numbers are blacked out trivially, but not which number is in

which box. He knows what parity the number of sequences are, however. So the magician takes one

of the numbers that is blacked out and starts a chain as above with it. He stops the chain either

when he gets to 1 or he gets to the other box that is blacked out. At this point, he starts with the

other number that is blacked out and creates a second chain with it, again stopping at either 1 or

(2 or 3). Now if any number is not part of either of these chains, he creates a sequence starting with

this number. It’s obvious that this sequence repeats itself. He does the same thing again, and again,
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until he’s used all numbers.

So the magician has two chains and a number of cycles. He knows the parity of the total number

of cycles, and he knows that in each chain, the blacked out box that the chain stopped on can either

contain the starting number for that chain or the other chain. If it’s the first one, then the two chains

are each their own separate cycles, and if it’s the second case, the two chains form one long sequence.

So the magician picks whichever choice gives the correct parity of the number of cycles. In this way

he discovers which box contains which number.

In our case, here’s what the magician would see:

X X 2 13

6 15 4 14

5 1 12 8

10 9 3 16
and he realizes that 7 and 11 are the crossed out ones. He then creates the chains 7, 4, 13, 10, 1

and 11, 12, 8, 14, 9, 5, 6, 15, 3, 2 and the sequence 16. Then he sees that the crossed out numbers

are in spaces 1 and 2, so there are an even number of cycles. This leads to the knowledge that the

two chains must combine to create one long cycle, so in box 1 must be 11 and in box 2 must be 7.

This completes the solution.

Sidenote: There are
(

16
2

)
= 120 ways for the assistant to pick which two squares are marked off,

but for every position the magician gets there are only two different scenarios that he must choose

between, so there is lots of room for improvement on this scheme. If the assistant marks off k squares,

then the number of ways he can do this is
(

16
k

)
. The number of scenarios that the magician must

guess between is k! so in order for the trick to still work we need
(

16
k

)
> k! which happens for all

k ≤ 7. If k > 7 then there are too many possibilities for the assistant to be able to encode each one

for the magician. However, with k ≤ 7, theoretically the magician and assistant could come up with

a code that works for all arrangements.

Fin n ∈ N such that: cosϕ <
1

8
√

1 + nsin4ϕ
;∀ϕ ∈ (0 ,π

2
]

Solution

solve for n < (1+cos2 x)(1+cos4 x)
(1−cos2 x) cos8 x

∀ x ∈
(
0, π

2

]
let u = cos2 x to get n < f(u) = (1+u)(1+u2)

u4(1−u)
∀ u ∈ [0, 1)

but it’s easy to see that f(u) > 1 in that interval, so n = 1 works.

Wich function is periodic, and determin their periods:

f(x) = 3x−b3xc f(x) = bxc2−2(x−1) bxc+(x−1)2 f(x) = bxc+bx+ 0.5c−b2xc f(x) = x−b3xc
Solution

A function on the real line f is periodic with period p if p > 0 is the smallest value such that

f(x+ p) = f(x)

for all x. Thus, we compute

0 = f1(x+ p)− f1(x) = 3(x+ p)− b3(x+ p)c − 3x+ b3xc
= 3p− b3x+ 3pc+ b3xc.

Since this must equal 0 for all x, we choose x = 0 and observe this implies 3p = b3pc, or 3p ∈ Z. The
smallest positive p for which this is true is p = 1/3, and a quick substitution shows that this indeed

372

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=449996
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=449418


gives us f1(x+ 1/3) = f1(x) for all x. The subsequent examples are treated similarly:

0 = f2(x+ p)− f2(x) = (bx+ pc − x− p+ 1)2 − (bxc − x+ 1)2

= (bx+ pc − bxc − p)(bx+ pc+ bxc − 2x− p+ 2),

and with x = 0, this gives 0 = (bpc − p)(bpc − p + 2). The second factor obviously can never be

zero, so the first factor gives us p ∈ Z, of which the smallest positive value is p = 1. Again, it is easy

to check that f2(x + 1) = f2(x). For the third example, we can actually prove that the function is

identically zero. Note that since

f3(x+ 1/2) = bx+ 1/2c+ bx+ 1c − b2(x+ 1/2)c
= bx+ 1/2c+ bxc+ 1− b2xc − 1

= f3(x),

we need only consider 0 ≤ x < 1/2. But in this case f3(x) = 0 + 0− 0 = 0, so f3(x) = 0 everywhere.

Thus f3(x) is periodic with any period p, but there is no least period as defined above. Finally, in

the last example,

0 = f4(x+ p)− f4(x) = x+ p− b3(x+ p)c − x+ b3xc
= p− b3x+ 3pc+ b3xc,

and with the choice x = 0 we have p = b3pc, which is true only if p = 0; hence f4 is not periodic.

Given the quadrilateral ABCD, the inscribed circle (I), A = 900. BI intersects AD at M , DI

intersects AB at N . Prove that : AC is perpendicular to MN

Solution

(I, r) is the quadrilateral incircle, x-y coordinate origin is at I and right angle vertex A is at (−r,−r).
Let P = (r cosψ, r sinψ), Q = (r cosϑ, r sinϑ) be tangency points of BC,CD with (I). Equations of

AB ‖ x and DA ‖ y are y = −r and x = −r, respectively. Equations of BC ⊥ PI and CD ⊥ QI

are y− r sinψ = − cosψ
sinψ

(x− r cosψ) and y− r sinϑ = − cosϑ
sinϑ

(x− r cosϑ), respectively. Solving proper

equation pairs yields coordinates of B ≡ AB ∩BC, C ≡ BC ∩ CD and D ≡ CD ∩DA:
B =

(
r 1+sinψ

cosψ
,−r

)
, C =

(
r sinψ−sinϑ

sin(ψ−ϑ)
, r cosϑ−cosψ

sin(ψ−ϑ)

)
, D =

(
−r, r 1+cosϑ

sinϑ

)
.

Bisectors BI,DI of ∠B,∠C have equations y = − cosψ
1+sinψ

x, y = −1+cosϑ
sinϑ

x, respectively. Solving

proper equation pairs yields coordinates of M ≡ BI ∩DA and N ≡ DI ∩ AB:

M =
(
−r, r cosψ

1+sinψ

)
, N =

(
r sinϑ

1+cosϑ
,−r

)
.

Using formulas sinφ =
2 tan φ

2

1+tan2 φ
2

, cosφ =
1−tan2 φ

2

1+tan2 φ
2

, slopes a,m of AC,MN are equal to

a = cosϑ−cosψ+sin(ψ−ϑ)
sinψ−sinϑ+sin(ψ−ϑ)

= cosϑ(1+sinψ)−cosψ(1+sinϑ)
sinψ(1+cosϑ)−sinϑ(1+cosψ)

=
(1−tan2 ϑ

2
)(1+tan ψ

2
)2−(1−tan2 ψ

2
)(1+tan ϑ

2
)2

4(tan ψ
2
−tan ϑ

2
)

=

=
2(tan ψ

2
−tan ϑ

2
)(1+tan ψ

2
)(1+tan ϑ

2
)

4(tan ψ
2
−tan ϑ

2
)

=
(1+tan ψ

2
)(1+tan ϑ

2
)

2

m = −1+cosϑ
1+sinψ

· 1+sinψ+cosψ
1+sinϑ+cosϑ

= − 2

(1+tan ψ
2

)2
· 2(1+tan ψ

2
)

2(1+tan ϑ
2

)
= − 2

(1+tan ψ
2

)(1+tan ϑ
2

)

Since am = −1 =⇒ AC ⊥MN .

Prove that integers n ≥ 2 ∧ k ≥ 0 satisfy inequality 1
nn
>
∑k

i=0

(∑n+i
j=1 j

j
)−1

.

Solution

Let S =
∑n

j=1 j
j.

Then the RHS equivalent to

1

S
+

1

S + (n+ 1)n+1
+ · · ·+ 1

S + (n+ k)n+k
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Since all of the terms are positive, it suffices only to prove that 1
nn
> 1

S
=⇒ 11 +22 + · · ·nn > nn,

which is obviously true when n ≥ 2, so we’re done.

Consider the small sets S of the set 1, 2, 3, ..., 15, which has the property: the product of any three

elements of S is not a square number. k is the greatest number so that set S has k elements satisfying

the conditions above. Find k

Solution

Consider one subset of the given set:

S0 = {1, 3, 5, 6, 7, 9, 10, 11, 13, 14}

It’s obvious that the mentioned set is satisfied our condition. In this case, k = 10.

Assume there exist a set S such that |S| > 10 also satisfy our condition (which means at most 4

numbers of 1, 2, 3, ..., 15 don’t belong to S).

If 1 belongs to S, consider 3 following pairs:

(2, 8) , (3, 12) , (4, 9)

The product of each pair is a square, if we multiply it with 1 then we also have a square. Hence, at

least 3 numbers of 3 pairs above mustn’t belong to S.

If 2 or 8 belongs to S, then in 2 pairs (5, 10) , (7, 14), there’s at least 2 numbers mustn’t belong

to S. Sum up with the 3 numbers which don’t belong to S above, there’re a least 5 numbers don’t

belong to S (contradiction).

So, 1 /∈ S.
If 2 belongs to S, then in 4 pairs which each product is a square: (4, 8) , (3, 6) , (5, 10) , (7, 14).

Hence, at least 4 mentioned numbers don’t belong to S. Sum up with number 1, there’s at least 5

numbers don’t belong to S (contradiction).

So, 2 /∈ S.
Similarly, if 8 belongs to S, then after considering 3 pairs (3, 6) , (5, 10) , (7, 14), we can conclude

at least 3 mentioned numbers don’t belong to S. Sum up with number 1 and number 2, there’s at

least 5 numbers don’t belong to S (contradiction).

So, 8 /∈ S.
If 15 belongs to S, then at least 2 numbers of 2 pairs (3, 5) , (6, 10) don’t belong to S. Sum up

with 1, 2, 8, there’s at least 5 numbers don’t belong to S (contradiction).

So, 15 /∈.
If 3 belongs to S, then at least 1 numbers of the pair (4, 12) doesn’t belong to S. Sum up with

1, 2, 8, 15, there’s at least 5 numbers don’t belong to S (contradiction).

So, 3 /∈.
But in this case, then at least 5 numbers 1, 2, 3, 8, 15 don’t belong to S, contradiction.

Hence, no existence of a set S such that |S| > 10 also satisfy our condition. Which means

kmax = 10.

Solve in N2 equation : n(n+1)
2

+ n! = 2.6m

Solution

Multiplying both sides by 2, we get n(n + 1) + 2n! = 4 · 6m Case 1: n + 1 is composite. Then for

n > 3 we know (n+ 1)|n!. It follows that n+ 1’s only prime factors are 2, 3. However, n divides both

sides as well. Thus n’s only prime factors are 2, 3. But this is a contradiction as gcd(n, n + 1) = 1.

For n ≤ 3, we find the solution of (n,m) = (3, 1)
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Case 2: n + 1 is prime. Notice that for all p > 3, we need n(n + 1) + 2n! 6≡ 0 (mod p). Notice

however we need for n > 3 that 6 divides the LHS. This would imply n is multiple of 6. Let 6a be

the highest power of 6 dividing n, so let n = 6ak. Now observe that 6ka(6ka + 1) + 2(6ka)! = 2 · 6m

Observe that then m ≥ k. If m > k, then the powers of 3 dividing each side won’t match up. Thus

m = k. However, then 2(6ka)! > 2 · 6k, a contradiction. Thus the unique solution of (n,m) = (3, 1) .

Find x, y ∈ Q, if
x2 − y2

(x2 + y2)2
= −11x+ 2y and

2xy

(x2 + y2)2
= 2x+ 11y.

Solution

According to the second equation: x = 0 ⇔ y = 0 but this is not a solution. So we can divide the

first equation by second one. Introduce substitution x
y

= a. Then: x
2−y2

2xy
= −11x+2y

2x+11y
⇔ a− 1

a

2
= −11a+2

2a+11
⇔

(a2 − 1)(2a + 11) = 2a(2 − 11a) ⇔ 2a3 + 33a2 − 6a − 11 = 0 ⇔ (2a + 1)(a2 + 16a − 11) = 0 Since

a ∈ Q the only solution is a = −1
2
⇔ y = −2x Using this result in the second equation we get:

−4x2

25x4 = −20x⇔ 125x3 = 1 and (x, y) = (
1

5
,−2

5
)

Let (x1, y1) , (x2, y2) and (x3, y3) be three different real solutions to the system of equations

x3 − 5xy2 = 21 and y3 − 5x2y = 28. Find the value of

(11− x1

y1

)(11− x2

y2

)(11− x3

y3

).

Solution

Observe that y 6= 0. Let z = x/y. Then

21 = y3(z3 − 5z),

28 = y3(1− 5z2).

It follows that
28

21
=

4

3
=

1− 5z2

z3 − 5z
,

or equivalently,

0 = 4z3 + 15z2 − 20z − 3 = f(z).

Note f has three real roots, since f(z) < 0 for sufficiently small z, f(−1) = 28, f(0) = −3 and

f(z) > 0 for sufficiently large z. Hence(
11− x1

y1

)(
11− x2

y2

)(
11− x3

y3

)
=
f(11)

4
= 1729.

Consider the following sequence:

u0 = 2009 and un+1 = u2
n

un+1
. Show that for all n ∈ (0, 1, 2, ....1005) : [un] = 2009− n .

Solution

un − un+1 = un − u2
n

un+1
= un

un+1
> 0 (1) Easily to see that un > 0 for every n then un > un+1. i.e. un

is decreasing.

un = u0 + (u1−u0) + (u2−u1) + ...+ (un−un−1) (2) From (1) and (2) we get un = 2009− u0

u0+1
−

u1

u1+1
− ...− un−1

un−1+1

= 2009− n+ 1
u0+1

+ 1
u1+1

+ ...+ 1
un−1+1

(3)

Since uk > 0 for k = 1, 2, ..., n− 1 then (3) =⇒ un > 2009− n (4)

On the other hand, (un) is decreasing then
1

u0+1
+ 1

u1+1
+ ...+ 1

un−1+1
< n

un−1+1
(5)
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From (1) has un+1 = un − un
un+1

> un − 1 (6)

Apply (6) again and again we get un+1 > u0 − (n+ 1) (7)

So that from (5) gives
1

u0+1
+ 1

u1+1
+ ...+ 1

un−1+1
< n

un−1+1
< n

1+u0−(n−1)

Substituting u0 = 2009 yields
1

u0+1
+ 1

u1+1
+ ...+ 1

un−1+1
< n

2011−n < 1 (8) Because n = 1, 2, 3, ..., 1005

Plugging (8) into (3) gives

un < (2019− n) + 1 (9)

Combinating (4) and (9) we obtain

2009− n < un < (2019− n) + 1

Now

[un] = 2009− n

How many positive integers x which satisfies x < 102012 and x2 − x is divisible by 102012?

Solution

We need x(x − 1) ≡ 0 (mod 22012) and x(x − 1) ≡ 0 (mod 52012). Obviously gcd(x, x − 1) = 1.

Thus 22012|x or x − 1 and similarly for 52012. Therefore we get x ≡ 0, 1 (mod 22012) and x ≡ 0, 1

(mod 52012). We can always combine the solutions using CRT, so there are 2 · 2 − 1 = 3 solutions

(the −1 because x < 102012).

Solve equation √
x+ 7

x+ 1
+ 8 = 2x2 +

√
2x− 1

Solution√
x+ 7

x+ 1
+8 = 2x2+

√
2x− 1⇔⇔ 2x2−8+

√
2x2+x−1−

√
x+7√

x+1
= 0⇔⇔ (2x2−8)

(
1 + 1

(
√

2x2+x−1+
√
x+7)

√
x+1

)
=

0⇔ x = 2.

In A-isosceles 4ABC denote the midpoint D of [BC] , the projection E of D on AC and the

midpoint F of DE . Prove that BE ⊥ AF .

Solution

Proof 1 (synthetic). Denote L ∈ AC for whichBL ‖ DE . Show easily4ADE ∼ 4BCL . The median

[AF of 4ADE and the median of 4BCL are omologously. In conclusion, ĈBE ≡ D̂AF ⇐⇒
ABDX is cyclically ⇐⇒ ÂDB ≡ ÂXB ⇐⇒ BE ⊥ AX .

Proof 2 (metric). Denote AB = AC = b , DB = DC = a and AD = h , where a2 + h2 = b2

. Denote m(∠DAF ) = x , m(∠EBD) = y , U ∈ AF ∩ BC and V ∈ BC for which EV ⊥ BC .

Observe that AE = h2

b
and CE = a2

b
. Apply the Menelaus’ theorem to the transversal AFU and

4CDE : AE
AC
· UC
UD
· FD
FE

= 1 ⇐⇒ h2

b2
· UC
UD

= 1 ⇐⇒ UC
b2

= UD
h2 = a

b2+h2 from where UD = ah2

b2+h2

and tanx = UD
AD

, i.e. tanx =
ah

b2 + h2
(1) . Since EV ‖ AD obtain that CV

CD
= EV

AD
= CE

CA
=

a2

b

b

=⇒ EV = a2h
b2

and CV = a3

b2
. Therefore, BV = 2a − a3

b2
=⇒ BV =

a(b2+h2)
b2

and tan y = EV
BV

=
ha2

b2

a(b2+h2)
b2

⇐⇒ tan y =
ah

b2 + h2
(2) . From the relations (1) and (2) obtain that tanx = tan y , i.e.

x = y ⇐⇒ ABDX is cyclically ⇐⇒ AF ⊥ BE .
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a.s.o.

Solve the equation 2
√

3x+ 4 + 3
√

5x+ 9 = x2 + 6x+ 13

Solution

2
√

3x+ 4 + 3
√

5x+ 9 = x2 + 6x+ 13⇔ ⇔ 2
√

3x+ 4− 4 + 3
√

5x+ 9− 9 = x2 + 6x⇔ ⇔ 6x√
3x+4+2

+
15x√

5x+9+3
= x2 + 6x ⇔ xf(x) = 0, where f(x) = x + 6 − 6√

3x+4+2
− 15√

5x+9+3
. But f is an increasing

function. Hence, the equation f(x) = 0 has maximum one real root. f(−1) = 0. Thus, we get the

answer: {0,−1}.
Prove that 1− 2.3 + 4.5− 6.7 + 8.9...+ (n− 1)n = 1 + 2 + 3 + 4 + 5...+ (n− 1) + n provided

that n is the second digit of the added multiplication part, i.e. 5 or 9 or 13.

Solution

For the equality to be true, n = 4k + 1 for some positive integer k.

The left side can be expressed like 1 + (4 ∗ 5 − 2 ∗ 3) + (9 ∗ 8 − 7 ∗ 6) + ... + (4k)(4k + 1) =

1+
∑k

x=1 4(4x− 2) + 6 = 1+
∑k

x=1 16x− 2 = 1+
(

16k(k+1)
2

)
−2k = 1+8k2 +8k−2k = 8k2 +6k+1

The right side is
∑4k+1

x=1 x = (4k+1)(4k+2)
2

= (4k + 1)(2k + 1) = 8k2 + 6k + 1

Therefore, the original equality is true for n = 4k + 1.

Show that the equation
√

2− x2 + 3
√

3− x3 = 0 has no real roots.

Solution

9 > 8 =⇒ 3
√

3 >
√

2 by taking 6th roots both sides. Now, given that
√

2− x2 = 3
√
x3 − 3. Now,

2− x2 ≥ 0 =⇒ x ≤
√

2. But x3 − 3 ≥ 0 due to LHS being non negative implies that x ≥ 3
√

3 >
√

2

which is a contradiction.

Another way

2 − x2 ≥ 0 implies that 3 − x3 ≥ 0 else we would have a contradiction in the domain(Check by

assuming 3− x2 < 0). From here we see that the only way for two non-negative numbers to add up

to zero is if both numbers are zero but that is also impossible. Therefore
√

2− x2 + 3
√

3− x3 = 0 has

no real roots.

We prove the generalization

S(m,n) =
n∑
k=1

(
k +m− 1

m

)
=

n

m+ 1

(
n+m

m

)
.

Solution

We proceed by induction on n. The case n = 1 is easily verified. So there exists a positive integer ν

such that S(m, ν) = ν
m+1

(
ν+m
m

)
. We then note

S(m, ν + 1) = S(m, ν) +

(
ν +m

m

)
=

ν

m+ 1

(
ν +m

m

)
+

(
ν +m

m

)
=

(
ν

m+ 1
+ 1

)(
ν +m

m

)
=
ν +m+ 1

m+ 1
· (ν +m)!

ν!m!

=
ν + 1

m+ 1
· (ν +m+ 1)!

(ν + 1)!m!

=
ν + 1

m+ 1

(
(ν + 1) +m

m

)
,
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thus proving that the claim is true for n = ν + 1 if it is true for n = ν.

Next, we simply observe that

m!S(m,n) =
n∑
k=1

(k +m− 1)!

(k − 1)!
=

n∑
k=1

m−1∏
j=0

(k + j),

so with the choice m = 3, we immediately obtain

n∑
k=1

k(k + 1)(k + 2) = 3!S(3, n) =
1

4
n(n+ 1)(n+ 2)(n+ 3).

Well, if you’re going to change the question entirely, there’s not much point in answering.

If f(x) is a polynomial satisfying f(x)f(y) = f(x) + f(y) + f(xy) − 2 for all real x, y and

f(3) = 10, find f(4).

Solution

This can be written (f(x)−1)(f(y)−1) = f(xy)−1. If f is a constant c, then we have c2−3c+2 = 0,

so c = 1 or c = 2. If not, let f(y) = any
n + · · ·+a1y+a0, for some n ≥ 1. It follows (f(x)− 1)any

n =

anx
nyn, thus f(x) = xn+1, which indeed verifies. Asking for f(3) = 10 forces n = 2, hence f(4) = 17.

Find floor of the function
√

2 + (
3

2
)

1

3 + ...+ (n+1
n

)

1

n+ 1

Solution

S =
√

2 + (3
2
)

1
3 + ...+ (n+1

n
)

1
n+1 Obviously , n < S. On the other hand applying Bernoulli’s inequality

we’ve for any 0 < k < 1 (1 + 1
k
)

1
k+1 ≥ 1 + 1

k(k+1)
= 1 + 1

k
− 1

k+1
. So S <

√
2 +

∑n
k=2 1 + 1

k
− 1

k+1
=

n− 1
2
− 1

n+1
+
√

2 < n+ 1. bSc = n.

Given is a convex quadrilateral ABCD and its diagonals intersecting at O with the angle

m
(
ÂOB

)
= 90o . Let K,L,M,N be orthogonal projections of O on AB,BC,CD,DA respectively.

Prove that KLMN is cyclic.

Solution

An easy extension. Given is a convex quadrilateral ABCD and its diagonals intersecting at O with

the angle φ = m
(
ÂOB

)
. Let K , L , M , N be orthogonal projections of O on AB , BC , CD ,

DA respectively. Prove that m
(
L̂KN

)
+m

(
L̂MN

)
= 2φ . Particular case. OA ⊥ OB =⇒ φ =

90◦ =⇒ m
(
L̂KN

)
+ m

(
L̂MN

)
= 180◦ =⇒ KLMN is cyclically.

Proof. Observe that the quadrilaterals OKAN , OLBK , OMCL , ONDM are cyclically. There-

fore,
m
(
ÔKL

)
= m

(
ÔBL

)
= m

(
ÔBC

)
; m

(
ÔKN

)
= m

(
ÔAN

)
= m

(
ÔAD

)
m
(
ÔML

)
= m

(
ÔCL

)
= m

(
ÔCB

)
; m

(
ÔMN

)
= m

(
ÔDN

)
= m

(
ÔDA

)
∥∥∥∥∥∥∥∥ =⇒

m
(
L̂KN

)
+m

(
L̂MN

)
=
[
m
(
ÔKL

)
+m

(
ÔKN

)]
+
[
m
(
ÔML

)
+m

(
ÔMN

)]
=[

m
(
ÔBC

)
+m

(
ÔAD

)]
+
[
m
(
ÔCB

)
+m

(
ÔDA

)]
=[

m
(
ÔBC

)
+m

(
ÔCB

)]
+
[
m
(
ÔAD

)
+m

(
ÔDA

)]
=

2 ·m
(
ÂOB

)
= 2φ . Lemma 1. Denote in 4ABC the points


D ∈ BC ; AD ⊥ BC

E ∈ AC ; DE ⊥ AC

F ∈ AB ; DF ⊥ AB

∥∥∥∥∥∥∥ and

{
X ∈ BE ∩DF
Y ∈ CF ∩DE

∥∥∥∥∥ . Then XY ‖ BC .
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Lemma 2. Denote in4ABC the orthocenterH and the points



E ∈ AC ; BE ⊥ AC

F ∈ AB ; CF ⊥ AB

U ∈ AB , V ∈ AC ; H ∈ UV
M ∈ BE ; UM ⊥ UV

N ∈ CF ; V N ⊥ V U

∥∥∥∥∥∥∥∥∥∥∥∥
. Then MN ‖ BC .

Solution

Proof of Lemma 1:

Let P,Q be second intersections of BE,CF respectively with the circle �AFDE. From AF ·AB =

AD2 = AE ·AC we get BCEF cyclic, i.e. F̂EB = F̂CB, or arcPD = arcDQ, so ∠Y FX = ∠QFD =

∠PED = ∠XEY , or FXY E is cyclic, done.

Proof of Lemma 2:

4HUM ∼ 4HEV,4HUF ∼ 4HNV =⇒ HM
HN

= FH
HE

= HB
HC

, done.

Let ABCD be a cyclic quadrilateral. (I1) and (I2) are the incircles of two triangles ADC and

BCD. Prove that the common external tangent of (I1), (I2), different from CD, is parallel to AB.

Solution

Let M,N be midpoints of the arcs CD,AB of the circle �(ABCD), arcs which do not contain other

vertex of the quad, and I, J the incenters of the two triangles. Well known:MI = MJ = MC = MD,

so IJ⊥MN (MN is the angle bisector of ∠AMB). The other common tangent will be, as reflection

of CD about IJ , perpendicular to ON , i.e. parallel to AB, done (both tangents are perpendicular to

two lines, symmetrical about IJ ; as AB⊥OM , logically, the other one to be perpendicular to ON).

We are given a convex quadrilateral ABCD. Each of its sides is divided into N line segments

of equal length. The corresponding division points of opposite sides are conected. This forms N2

smaller quadrilaterals. Choose N of such that any two are in different "rows" and "columns". Prove

that the sum of the areas of these chosen quadrilaterals is equal to the area of ABCD divided by N .

Solution

For N = 2, E, F,G,H are mid-points of AB,BC,CD,DA respectively, I is the mid-point of EG.

SIHAE + SIFCG = SIHA + SIAE + SICG + SIFC = SIDH + SIEB + SIGD + SIBF = SIEBF + SIGDH . For

N = 3, suppose ABCD is divided into Aij(i, j = 1 to 3). 3(A12 +A23 +A31) = 2A12 + 2A23 +A13 +

A22 +3A31 = 2A12 +2A23 +A13 +A21 +A32 +2A31 = A11 +A22 +A12 +2A23 +A13 +A21 +A32 +2A31

= A11+A12+2A23+A13+A21+2A32+A21+A31 = A11+A22+A12+A33+A23+A13+A21+A32+A21+A31

Similarly for any N. �

Find the remainder when tan6 20◦ + tan6 40◦ + tan6 80◦ is divided by 1000.

Solution

tan 9θ = (9t− 84t3 + 126t5 − 36t7 + t9)/(...) (t = tan θ) x4 − 36x3 + 126x2 − 84x+ 9 = 0 has roots

tan2 20◦, tan2 40◦, tan2 60◦ = 3, tan2 80◦ (x = t2) Using Newton’s identities and Vieta’s formulas, p1 =

e1 = 36 p2 = e1p1−2e2 = 362−2∗126 = 1044 p3 = e1p2−e2p1+3e3 = 36∗1044−126∗36+3∗84 = 33300

tan6 20◦ + tan6 40◦ + tan6 80◦ = 33273 = 273 mod 1000 �

Find the length of internal and external bisector of angle A in triangle ABC in terms of the

sides of the triangle. Let AD be the internal angle bisector of ∠BAC and {A,E} ∈ AD ∩�(ABC).

from 4ABD ∼ 4AEC we get AD · AE = AB · AC =⇒ AD(AD + DE) = AB · AC =⇒
AD2 + BD · DC = AB · AC, but from power of D =⇒ AD · DE = BD · DC. Next, calculate

BD,CD from angle bisector theorem and, if a, b, c are the side lengths, we get AD2 = b·c·[a2−(b+c)2]
(b+c)2 .

For the external angle bisector, a similar process.
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Find x, y, z(x, y, z ∈ Z) 1
x2 + 1

y2 = 1
z2

Solution

The equation writes z2(x2 + y2) = x2y2. Take d = gcd(x, y), x = da, y = db, with gcd(a, b) = 1. So

z2(a2 + b2) = d2a2b2. It follows a2b2 | z2 (since gcd(a2 + b2, a2b2) = 1). Therefore z = abc, and so

c2(a2 + b2) = d2. This means d = ce, and so a2 + b2 = e2.

Now use the parametrization of the primitive Pythagorean triples: a = m2 − n2, b = 2mn,

e = m2 +n2, with gcd(m,n) = 1, |m| 6= |n|. It follows x = c(m2 +n2)(m2−n2), y = 2cmn(m2 +n2),

z = 2cmn(m2−n2), with arbitrary integer not-null c (and, of course, also with reversed formulae for

x, y, due to symmetry).

Let I be the incenter and AD be a diameter of the circumcircle of a triangle ABC. If the point

E on the ray BA and the point F on the ray CA satisfy the condition

BE = CF = AB+BC+CA
2

,

show that the lines EF and DI are perpendicular.

Solution

Let IA, IB, IC be the excenters opposite to A,B,C, respectively.

Let X and Y be the feet of the perpendiculars from IC and IB to AB and AC, respectively.

From the problem conditions we have that AF = s − b = AX. Also, ∠ICAX = 90 − ∠A
2

and

∠ICAF = 180 − ∠A − (90 − ∠A
2

) = 90 − ∠A
2

= ∠ICAX and therefore we obtain that AIC is the

perpendicular bisector of FX or equivalently, F is the reflection of X in side IBIC .

Similarly, E is the reflection of Y in side IBIC .

Let N be the circumcenter of ABC and O be the circumcenter of IAIBIC .

Clearly N is midpoint of AD. Also, note that I and N are the orthocenter and nine-point center

of IAIBIC and therefore N is midpoint of OI.

From this we obtain that AIDO is a parallelogram and therefore DI ‖ AO. So it is enough to

show that AO ⊥ EF .

This is basically just angle chase.

Note that ABC is the orthic triangle of IAIBIC and therefore, since ICO ⊥ AB and IBO ⊥ AC

(this is well known) we have IC −X −O and IB − Y −O.

Since ∠FAX = ∠EAY and both AFX and AEY are A-isosceles we have that ∠AXF = ∠AY E

and therefore FEY X is cyclic.

Let S ≡ AO ∩ EF . We have

∠SAF + ∠AFS = ∠Y AO + ∠AFE = ∠Y XO + ∠Y XA = 90

and therefore AO ⊥ EF and we are done.

Consider the progression u0 = 1
2
un+1 = un

3−2un

we will put ∀n ∈ N : wn = un
un+a

, a ∈ R
1.Find the value of a such that {wn} is a geometric progression

Solution

We can prove the following through induction: un = 1
3n+1

.

First we see that it’s true for n = 0: u0 = 1
2

= 1
1+30 . Now assume uk = 1

3k+1
for some integer

k ≥ 0. We prove that uk+1 = 1
3k+1+1

, just using the definition of uk. We get:

uk+1 = uk
3−2uk

=
1

3k+1

3−2· 1

3k+1

=
1

3k+1
·(3k+1)

(3−2· 1

3k+1
)·(3k+1)

= 1
3(3k+1)−2

= 1
3k+1+1

.

Therefore we know that uk+1 = 1
3k+1+1

if uk = 1
3k+1

, so since it’s true for 0 it’s true for 1, 2, 3 . . .

and for all integers k.
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Thus wn = un
un+a

=
1

3n+1
1

3n+1
+a

=
1

3n+1
·(3n+1)

( 1
3n+1

+a)(3n+1)
= 1

(1+a)+a3n
. So we calculate w2

n and wn−1wn+1, and

see what values of a make these equal for all values of n.

w2
n = 1

((1+a)+a3n)2 = wn−1wn+1 = 1
(1+a)+a3n−1

1
(1+a)+a3n+1 and taking reciprocals gives

((1 + a) + a3n)2 = (1 + a)2 + 2(1 + a)a3n + a232n = ((1 + a) + a3n−1)((1 + a) + a3n+1) =

(1 + a)2 + (1 + a)a(3n−1 + 3n+1) + a232n

0 = (1 + a)a(3n+1 − 2 · 3n + 3n−1) = (1 + a)a3n−1(9− 6 + 1) = 4a(1 + a)3n−1 = 0 and so a = 0 or

a = −1. These both work: if a = 0 then wn = un
un

= 1, and if a = −1 then wn = 1
−3n

= −
(

1
3

)n
both

of which are geometric sequences. So the answers are a = 0 and a = −1 .

A much simpler solution is as follows:

If {wn} is geometric, then there exists a constant r such that

r =
wn+1

wn
=
un+1(un + a)

(un+1 + a)un

=
un(un + a)

(3− 2un)( un
3−2un

+ a)un

=
un + a

un + a(3− 2un)

=
un + a

(1− 2a)un + 3a
.

Consequently, r(1− 2a)un + 3ar = un + a for all un, which implies

r(1− 2a) = 1,

3ar = a.

This system yields two solutions: (a, r) ∈ {(0, 1), (−1, 1
3
)}. Since a = 0 yields the trivial geometric

sequence wn = 1 which is satisfied regardless of un, this solution is valid. The second solution gives

wn = −3−n. To find un, we let vn = 1/un and easily observe that the given recursion relation is

equivalent to

vn+1 =
1

un+1

=
3− 2un
un

=
3

un
− 2 = 3vn − 2 = 3(vn − 1) + 1.

Therefore, vn+1 − 1 = 3(vn − 1), and since v0 − 1 = 1, we have vn − 1 = 3n. Thus un = 1
3n+1

, which

confirms our earlier result for wn.

ABC is a triangle. BK is median, CL is bisector. If (BK) ∩ (CL) = P then prove this
PC
PL
− AC

BC
= 1.

Solution

Areas Method

Denote x := PC
PL

and S := [PCK], alongside with the usual a = BC, b = CA, c = AB. Then

[PAK] = S, and [APL] : [APC] = 1 : x =⇒ [APL] = 2S
x

Since AL = bc
a+b

, we get [ALC] : [ABC] = AL : c = b
a+b
⇐⇒ 2S

(
1 + 1

x

)
= b[ABC]

a+b
(∗)

On the other hand, [KPC] + [BPC] = [ABC]
2

and [KPC] : [BPC] = KP : BP = KC : BC,

hence [KPC] : [BPC] = b2a)

Therefore [KPC] = S = b[ABC]
2(2a+b)

Plugging that into (∗) we get
1

2a+b

(
1 + 1

x

)
= 1

a+b
⇐⇒ 1

x
= a

a+b
⇐⇒ x = 1 + b

a
. QED

Mass points Method

Assign mass µ to A. Then AL : LB = b : a =⇒ m(B) = b
a
µ =⇒ m(L) = a+b

a
µ. On the other

hand, AK = KC =⇒ m(C) = µ. Thus PL ·m(L) = PC ·m(C) =⇒ PC
PL

= 1 + b
a
. QED
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Another ways: Method 1. Denote M ∈ (BK) so that LM ‖ AC . Thus,
PC
PL

= CK
ML

= AK
ML

= AB
BL

= 1 + LA
LB

= 1 + CA
CB

.

Methos 2. Denote S ∈ (BC) so that LS ‖ AC . Thus, S ∈ AP and in the trapezoid

ACSL have PC
PL

= AC
LS

= BA
BL

= BL+LA
BL

= 1 + LA
LB

= 1 + CA
CB

.

Solve the equation

2012x−2 + 2012
4
x
−2 = 2

Solution

From the way that the equation is defined, we conclude that x 6= 0. If x < 0, we can easily see that

2012x−2 < 2012−2 < 1

and

2012
4
x
−2 < 2012−2 < 1

This shows that LHS < RHS hence a contradiction is reached.

If x > 0, we proceed the problem as in previous post’s.

Find all positive integers n such that for all odd integers a, if a2 ≤ n then a|n.
Solution

12 = 1 ≤ n = 1, 2, 3, 4, 5, 6, 7, 8 < 9 = 32 are all good; 32 = 9 ≤ n = 9, 12, 15, 18, 21, 24 < 25 = 52 are

all good; 52 = 25 ≤ n = 30, 45 < 49 = 72 are all good; 72 = 49 ≤ n = 105 < 121 = 112 seems good,

but is not, since 92 = 81 < 105, while 9 - 105.

Others there are not. When pk ≤ n < p2
k+1, where (pk)k≥1 is the prime numbers sequence, we

need p2p3 · · · pk | n. But 3 · 5 · 7 > 4 · 11, and when p2p3 · · · pk−1 > 4pk it follows, by Bertrand’s

postulate (Chebyshev’s theorem) p2p3 · · · pk > 4p2
k = (2pk)

2 > p2
k+1 > 4pk+1, by induction. But then

p2p3 · · · pk > p2
k+1 > n, so it is not possible to have p2p3 · · · pk | n. Surely there may be simpler results

one could use (instead of Bertrand’s), for example a variant of Bonse’s theorem.

Solve the equation 9(cosx+3 sinx)2

(cos 2x+3 sin 2x)2 = 3 + cotx .

Solution
9(cosx+3 sinx)2

(cos 2x+3 sin 2x)2 = 3 + cotx ⇐⇒ 9(cosx+ 3 sinx)2 =
(
3 + cosx

sinx

)
(cos 2x+ 3 sin 2x)2 ⇐⇒

9 sinx(cosx+ 3 sinx)2
(
sin2 x+ cos2 x

)
= (3 sinx+ cosx)(cos2 x− sin2 x+ +6 sinx cosx)2 , what

is an

homogeneous equation. We’lluse the standard substitution tanx = t , i.e.
sinx

t
=

cosx

1
.

Our equation becomes:

9t(3t+ 1)2 (t2 + 1) = (3t+ 1)(1− t2 + 6t)2
t6=− 1

3⇐⇒ 9t(3t+ 1) (t2 + 1) = (t2 − 6t− 1)2 ⇐⇒

26t4 + 21t3− 7t2− 3t− 1 = 0 ⇐⇒ (t+ 1)(2t− 1) (13t2 + 4t+ 1) = 0 . Thus, t ∈
{
−1

3
,−1,

1

2

}
a.s.o.

Let ABCD be a convex quadrilateral. Prove that for any X ∈ (AB) , XA · [BCD] + XB ·
[ACD] = AB · [XCD] .

Proof. Denote {U, V, Y } ⊂ CD so that


AU ⊥ CD

BV ⊥ CD

XY ⊥ CD

∣∣∣∣∣∣∣ and


K ∈ XY ; L ∈ BV

A ∈ KL ‖ CD

∣∣∣∣∣∣∣ . Thus,
KX
LB

= AX
AB
⇐⇒

XY−AU
BV−AU = AX

AB
⇐⇒ AX(BV − AU) = AB(XY − AU) = ⇐⇒ XA · BV + XB · AU =

AB ·XY ⇐⇒
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XA·(BV ·CD)+XB ·(AU ·CD) = AB ·(XY ·CD) ⇐⇒ XA·[BCD]+XB ·[ACD] = AB ·[XCD]

.

Problem: Let M , N be the midpoints of [AB] , CD] respectively in the convex quadrilateral

ABCD . Prove that there is the equivalence [CMD] = [ANB] ⇐⇒ AD ‖ BC .

Solution

We”ll use the upper lema. Denote I ∈ AC ∩ BD and [IAB] = x , [IBC] = y , [ICD] = z and

[IDA] = t .

Thus, [CMD] = [ANB] ⇐⇒ MA
AB
· [BCD]+ MB

AB
· [ACD] = ND

CD
· [CAB]+ NC

CD
· [DAB] ⇐⇒

[BCD] + [ACD] = [CAB] + [DAB] ⇐⇒ (y+z)+(z+ t) = (x+y)+(x+ t) ⇐⇒ z = x ⇐⇒
AD ‖ BC .

An easy extension. Let ABCD be a convex quadrilateral and let M ∈ (AB) ,

N ∈ (CD) so that MB
AB

+ NC
CD

= 1 . Prove that [MCD] + [NAB] = [ABCD] .

Solve the exponential equation f(x) ≡ 2x + 2
√

1−x2
= 3 .

Solution

Observe that {0, 1} ⊂ S - the set of the zeroes for given equation and x ∈ S =⇒ x ≥ 0 . Suppose

x ∈ (0, 1) .

I 2x+2
√

1−x2
= 2x−1 +2x−1 +2

√
1−x2

> 3
3
√

22(x−1)+
√

1−x2 ≥ 3 ⇐⇒ 2(x−1)+
√

1− x2 ≥ 0 ⇐⇒√
1 + x ≥ 2

√
1− x ⇐⇒ 1 + x ≥ 4(1 − x) ⇐⇒ 5x ≥ 3 ⇐⇒ x ∈

[
3
5
, 1
)
. Thus, f(x) >

3 , (∀) x ∈
[

3
5
, 1
)
.

I 2x+2
√

1−x2
= 2x+2

√
1−x2−1+2

√
1−x2−1 > 3

3
√

2x−2+2
√

1−x2 ≥ 3 ⇐⇒ (x−2)+2
√

1− x2 ≥ 0 ⇐⇒
2
√

1− x2 ≥ 2 − x ⇐⇒ 4 (1− x2) ≥ 4 − 4x + x2 ⇐⇒ 5x2 ≤ 4x ⇐⇒ x ∈
(
0, 4

5

]
. Thus,

f(x) > 3 , (∀) x ∈
(
0, 4

5

]
.

Therefore, f(x) > 3 , (∀) x ∈
(
0, 4

5

]
∪
[

3
5
, 1
)

= (0, 1) . In conclusion, S = {0, 1} .

Let ABC be an A-isosceles triangle with the incenter I such that IA = 2
√

3 and IB = 3 .

Find the length c of the side [AB] .

Solution

Proof 1 (trigonometric). Let m
(
ÎBA

)
= B

2
= φ , i.e. m

(
ÎAB

)
= A

2
= 90◦ − 2φ . Apply the

theorem of Sines in 4AIB :

IA

sin ÎBA
= IB

sin ÎAB
= AB

sin ÂIB
⇐⇒ 2

√
3

sinφ
= 3

cos 2φ
= c

cosφ
=
√
c2 + 12 . Since tanφ =

2
√

3

c
obtain that

cos 2φ =
3√

c2 + 12
= 1−tan2 φ

1+tan2 φ
= c2−12

c2+12
=⇒ c2 − 12 = 3

√
c2 + 12 (∗) . Denote c2 + 12 = y2 ,

where y > 0 , i.e. c2 = y2 − 12 =⇒ y2 − 24 = 3y =⇒ y2 − 3y − 24 = 0 =⇒ y = 3+
√

105
2

=⇒
c2 = y2 − 12 = 3y + 24− 12 =

3(y+4) = 3
2
·
(
11 +

√
105
)

=⇒ c2 = 3
2
·
(
11 +

√
105
) (112−105=42)

=⇒ c =
√

3
2
·
(√

11+4
2

+
√

11−4
2

)
=⇒

c =
√

3(
√

7+
√

15)
2

=⇒ b = c =
3
√

5 +
√

21

2
. Prove easily tanφ =

√
15−
√

7
2

and tanB =
3
√

7 +
√

15

6
.

Proof 2 (metric).


IA2 = bc(s−a)

s
=⇒ b2(2b−a)

2b+a
= 12

IB2 = ca(s−b)
s

=⇒ a2b
2b+a

= 9

∣∣∣∣∣∣∣ =⇒ b(2b−a)
a2 = 4

3
=⇒ 4a2 + 3ab −

6b2 = 0 =⇒
a
b

= −3+
√

105
8

b2 = 12 · 2b+a
2b−a

∣∣∣∣∣∣∣ . Therefore, a
−3+

√
105

= b
8

= 2b+a
13+
√

105
= 2b−a

19−
√

105
=⇒ 2b+a

2b−a = 13+
√

105
19−
√

105
=⇒
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b2 = 12 · 13+
√

105
19−
√

105
= 12 · (13+

√
105)(19+

√
105)

256
=⇒ b2 = 3

2
·
(
11 +

√
105
)

=⇒

b =
√

3
2
·
(√

11+4
2

+
√

11−4
2

)
=
√

3(
√

15+
√

7)
2

=⇒ b = c =
3
√

5 +
√

21

2
.

Let ABC be a triangle. Find the points D ∈ (BC) , E ∈ (CA) and F ∈ (AB) so that :

1 I DF ‖ AC , DE ‖ AB and EF is antiparallel to BC .

2 I DF is antiparallel to AC , DE is antiparallel to AB and EF ‖ BC .

3 I DF is parallel to AC , DE is parallel to AB and EF ‖ BC .

4 I DF is antiparallel to AC , DE is antiparallel to AB and EF is antiparallel to BC

Solution

Denote DB
DC

= m , i.e. DB
m

= DC
1

= a
m+1

. Therefore:

1 I


DF ‖ AC =⇒ FB

FA
= DB

DC
= m =⇒ FB

m
= FA

1
= c

m+1

DE ‖ AB =⇒ EA
EC

= DB
DC

= m =⇒ EA
m

= EC
1

= b
m+1

∣∣∣∣∣∣∣ .
In conclusion, EF is antiparallel to BC ⇐⇒ AF · c = AE · b ⇐⇒ c2

m+1
= mb2

m+1
⇐⇒

m = c2

b2
⇐⇒ DB

DC
=
(
c
b

)2
, i.e. the ray [AD is the A-symmedian of 4ABC .

2 I


DF is antiparallel to AC =⇒ 4BDF ∼ 4BAC =⇒ BD

c
= BF

a
=⇒ BF = a2m

c(m+1)

DE is antiparallel to AB =⇒ 4CDE ∼ 4CAB =⇒ CD
b

= CE
a

=⇒ CE = a2

b(m+1)

∣∣∣∣∣∣∣
.

In conclusion, EF ‖ BC ⇐⇒ BF
BA

= CE
CA
⇐⇒ a2m

c2(m+1)
= a2

b2(m+1)
⇐⇒

m = c2

b2
⇐⇒ DB

DC
=
(
c
b

)2
, i.e. the ray [AD is the A-symmedian of 4ABC .

3 I


DF ‖ AC =⇒ FB

FA
= DB

DC
= m =⇒ FB

m
= FA

1
= c

m+1

DE ‖ AB =⇒ EA
EC

= DB
DC

= m =⇒ EA
m

= EC
1

= b
m+1

∣∣∣∣∣∣∣ .
In conclusion, EF is parallel to BC ⇐⇒ AF

c
= AE

b
⇐⇒ 1

m+1
= m

m+1
⇐⇒

m = 1 ⇐⇒ DB = DC , i.e. the ray [AD is the A-median of 4ABC .

4 I


DF is antiparallel to AC =⇒ 4BDF ∼ 4BAC =⇒ BD

c
= BF

a
=⇒ BF = a2m

c(m+1)

DE is antiparallel to AB =⇒ 4CDE ∼ 4CAB =⇒ CD
b

= CE
a

=⇒ CE = a2

b(m+1)

∣∣∣∣∣∣∣
.

In conclusion, EF is antiparallel to BC ⇐⇒ c · AF = b · AE ⇐⇒ c2 − a2m
m+1

= b2 − a2

m+1
⇐⇒

m = a2+c2−b2
a2+b2−c2 ⇐⇒

DB
DC

= a2+c2−b2
a2+b2−c2 ⇐⇒

DB
DC

= c cosB
b cosC

=⇒ the ray [AD is the A-altitude of

4ABC .

Let ABC be a triangle with the incircle w = C(I, r) . Denote {D,E, F} = ABC ∩ w . Prove

that:

1 I A = 45◦ ∧ AC
AB

= 2
√

2
3

=⇒ tanB = 2 .

2 I [DEF ] = r
2R
· [ABC] .

3 I cos2 B−C
2
≥ 2r

R
.

4.1 I a cotA+ b cotB + c cotC = 2(R + r) .

4.2 I sinA+sinB+sinC
cosA+cosB+cosC

= s
R+r

.
Solution

1 I b
c

= 2
√

2
3
⇐⇒ ⇐⇒ 3 sinB = 2

√
2 cos (B − 45◦) ⇐⇒ 3 tanB = 2

√
2
(√

2
2

+
√

2
2

tanB
)

⇐⇒ tanB = 2 .
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2 I Suppose that D ∈ BC , E ∈ CA and F ∈ AB . Thus,



EF = 2(s− a) sin A
2

FD = 2(s− b) sin B
2

DE = 2(s− c) sin C
2

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒

[DEF ] = EF ·FD·DE
4r

=
2(s−a)(s−b)(s−c)

r
·
∏

sin A
2

= 2sr · (s−a)(s−b)(s−c)
abc

= 2rS2

4RS
=⇒ [DEF ] = r

2R
· [ABC] .

3 I Method 1. Prove easily that (b+ c)2 ≥ 4a(b+ c− a) (∗) and cos B−C
2

= b+c
4R cos A

2

(1) .

Therefore,

cos B−C
2

= b+c
4R
·
√

bc
s(s−a)

=⇒ cos2 B−C
2

= (b+c)2bc
16R2s(s−a)

= (b+c)24Rsr
16R2s(s−a)a

=

(b+c)2r
4R(s−a)a

= (b+c)2

a(b+c−a)
· r

2R

(∗)
≥ 4 · r

2R
= 2r

R
=⇒ cos2 B−C

2
≥ 2r

R
.

Method 2. Let {A, S} = AI ∩ w and diameter [SN ] of the circumcircle C(O,R) of 4ABC .

Thus, m
(
ÂSN

)
= B−C

2

and cos ÂSN = SA
SN
⇐⇒ cos B−C

2
= IA+IS

2R
≥
√
IA·IS
R

= 1
R
·
√

2Rr =
√

2r
R

=⇒ cos2 B−C
2
≥ 2r

R
.

Remark. cos2 B − C
2

=
2r

R
⇐⇒ b+ c = 2a ⇐⇒ IA = IS ⇐⇒ IO ⊥ IA ⇐⇒ IG ‖ BC .

4 I Is well-known the remarkable identity cosA+ cosB + cosC = 1 +
r

R
(∗) .

� 4.1 I
∑
a cotA =

∑
a cosA
sinA

= 2R
∑

cosA
(∗)
= 2R

(
1 + r

R

)
= 2R + r .

� 4.2 I sinA+sinB+sinC
cosA+cosB+cosC

= 1
2R
· a+b+c∑

cosA

(∗)
= s

R
· 1

1+ r
R

= s
R+r

.

Let ∈
(
0, π

2

)
. Prove that 3

√
3

sinx
+ 1

cosx
≥ 8 .

Solution

Proof 1. Observe that 2
(

3
√

3
sinx

+ 1
cosx

)
≥
(√

3 sinx+ cosx
) (

3
√

3
sinx

+ 1
cosx

)
=( √

3
sinx

+
√

3
sinx

+
√

3
sinx

+ 1
cosx

)(
sinx√

3
+ sinx√

3
+ sinx√

3
+ cosx

)
≥ 42 = 16 =⇒ 3

√
3

sinx
+ 1

cosx
≥ 8 .

Proof 2 (ugly). Observe that 3
√

3
sinx

+ 1
cosx

≥ 8 ⇐⇒
(
sin2 x+ cos2 x

) (
3
√

3 cosx+ sinx
)2 ≥

64 sin2 x cos2 x
tanx=t⇐⇒

(t2 + 1)
(
t+ 3

√
3
)2 ≥ 64t2 ⇐⇒ t4+6

√
3t3−36t2+6

√
3t+27 ≥ 0 ⇐⇒

(
t−
√

3
)2 (

t2 + 8
√

3t+ 9
)
≥

0 ,

what is truly. We have the equality if and only if t =
√

3 , i.e. tanx =
√

3 ⇐⇒ x =
π
3

. An easy extension (sqing). Prove that for any {a, b, u, v} ∈ R∗+ there is the inequality

a

u
+
b

v
≥ (a+ b)2√

(a2 + b2) (u2 + v2)
.

Proof. a
u

+ b
v

= a2

au
+ b2

bv

C.B.S

≥ (a+b)2

au+bv

C.B.S

≥ (a+b)2√
(a2+b2)(u2+v2)

.

Particular case. If {a, b, u, v} ∈ R∗+ and x ∈
(
0, π

2

)
, then a2

u sinx
+ b2

v cosx
≥ (a+b)2
√
u2+v2 .

(hình học) Let ABC be a triangle. Denote the midpoint M of [BC] , the B-bisector [BD] ,

where D ∈ (AC)

and the projection P of A on [BC] . Prove that BD = 2 · AM ⇐⇒ m
(
M̂AP

)
= |A−3C|

2
. –

Let 4ABC with b ≥ c . Denote the midpoint D of [BC] and m
(
ÂDB

)
= φ . Prove that tan φ

2
≤

b
c
≤ cot φ

2
. – For 4ABC denote the semiperimeter p and lengths R, r, ha, ra of circumradius,

inradius, A- altitude, A- exinradius. Prove that :

1 I OA ⊥ OI ⇐⇒ ha = R + r ⇐⇒ (b+ c)r = aR ⇐⇒ cos(B − C) = cosB + cosC.
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2 I IO ⊥ IA ⇐⇒ b + c = 2a ⇐⇒ ra = ha ⇐⇒ sin A
2

=
√

r
2R
⇐⇒ cos B−C

2
=
√

2r
R
⇐⇒

p2 + 9r2 = 18Rr.

3 I ra = R + r ⇐⇒ ar = (p− a)R. Find another nice equivalencies and a geometrical interpre-

tation of this relation.

Find for each case partly a nonisosceles (therefore and nonequilateral) 4ABC which verifies

the respective relation.

Prove that for {a, b, c} ⊂ (0,∞) ,


ax+ by = (x− y)2

by + cz = (y − z)2

cz + ax = (z − x)2

∥∥∥∥∥∥∥ =⇒ x = y = z = 0.

Solution

We have ax+ by+ cz =
∑
x2−

∑
yz ⇒ ax+(y−z)2 =

∑
x2−

∑
yz ⇒ ax = x2−xy−xz Similarly,

by = y2 − yz − yx Thus, ax+ by = x2 − xy − xz + y2 − yz − yx ⇒ (x− y)2 = (x− y)2 − z(x+ y)⇒
z(x+ y) = 0

Similarly, we also have x(y + z) = 0 and y(z + x) = 0 And now we can easily to show that

x = y = z = 0

The lines AD , BE , CF are altitudes in 4ABC. For a mobile point K ∈ [BC] define the

point

{
L ∈ EF
KL ‖ CF

. Prove that the circumcenter of 4LDK belongs always to the line AC.

Solution

Denote the intersection S ∈ EF ∩ BC. Observe that KL ‖ CF =⇒ LF
KC

= SF
SC

= sin ŜCF

sin ŜFC
= sin B̂CF

sin ĈFE

=⇒ LF

KC
=

cosB

cosC
(1).

Denote the point

{
N ∈ AD
LN ⊥ LK

. Observe that the quadrilateral NLDK is inscribed in the circle

with the dianeter [KN ].

Thus, L̂ND ≡ L̂KD ≡ F̂CB ≡ B̂AD =⇒ L̂ND ≡ B̂AD =⇒ LN ‖ AB =⇒ AN
FL

= TA
TF

=

sin ÂFT

sin F̂AT
=⇒ AN

FL
=

sinC

cosB
(2).

(1) ∧ (2) =⇒ AN
KC

= tanC =⇒ AN
KC

= DA
DC

. Denote M ∈ NK ∩ AC. Apply the Menelaus’

theorem to the transversal AMC for 4DNK :
CK
CD
· AD
AN
· MN
MK

= 1 =⇒ MN
MK

= DC
DA
· AN
KC

=⇒ MN = MK, i.e. the point M is the circumcenter

of the triangle LDK and M ∈ AC.

Let ABC be a triangle with the circumradius R, the inradius r and the A- exinradius ra. Prove

that R2 + a2 ≥ 5rra . Establish when is equality.

Solution

The relations abc = 4RS and rra = (p−b)(p−c) are well-known. Therefore,


1 I a2 ≥ a2 − (b− c)2 =⇒ a2 ≥ 4(p− b)(p− c) =⇒ a2 ≥ 4rra

2 I

∥∥∥∥∥ bc ≥ 2S

a ≥ 2
√
rra

∥∥∥∥∥ =⇒ abc ≥ 4S
√
rra =⇒ R2 ≥ rra

∥∥∥∥∥∥∥∥∥∥
⊕

=⇒ R2 + a2 ≥ 5rra .

We’ll have equality if and only if

∥∥∥∥∥ bc = 2S

a2 = 4(p− b)(p− c)

∥∥∥∥∥ ⇐⇒ A = 90◦ and b = c.

Remark.


a = (p− b) + (p− c) =⇒ a ≥ 2

√
(p− b)(p− c) = 2

√
rra

bc = p(p− a) + (p− b)(p− c) =⇒ bc ≥ 2
√
p(p− a)(p− b)(p− c) = 2S

∥∥∥∥∥∥∥ a.s.o.
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More precisely, for any positive numbers x, y, k we have (x+ y)(k2 + xy) ≥ 4kxy.

Let ABC be a triangle with B = 30◦.Take the point D ∈ [BC] such that CD = AB and

m(B̂AD) = 15◦. Ascertain m(ÂCB).

Solution

Generally,We’llsuppose that m(B̂AD) = α is known. Apply the Mr. Sinus’ theorem :
4ABD : AB

sin(B+α)
= AD

sinB

4ACD : CD
sin(B+α+C)

= AD
sinC

∥∥∥∥∥∥∥ =⇒ sinB · sin(B + α + C) = sinC · sin(B + α) =⇒

sinB·[sin(B+α)+cos(B+α)·tanC] = tanC·sin(B+α) =⇒ tanC =
sinB · sin(B + α)

sin(B + α)− sinB · cos(B + α)
.

Remark. C = 45◦ ⇐⇒ tan(B+α) = sinB
1−sinB

. In the particular case

{
B = 30◦

α = 15◦

∥∥∥∥∥ =⇒ tanC = 1

=⇒ C = 45◦ .

In this case A = 105◦, B = 30◦, C = 45◦ and AB
2

= BC
1+
√

3
= CA√

2
. hình học hình

x > y > 0

a > b > 0

=⇒
(
xb − yb

)a
< (xa − ya)b .

Solution

Consider the function f : (0,∞)→ R , where f(t) = (pt − 1)
1
t and p > 1 .

Define x .s.s. y ⇐⇒ x = y = 0 or xy > 0 . Prove easily that the function f is increasing.

Indeed, f ′(x) .s.s.
[
tpt ln p
pt−1

− ln (pt − 1)
]
.s.s. [pt ln pt − (pt − 1) ln (pt − 1)] > 0 .

Therefore, for p := x
y
> 1 obtain f(b) < f(a) =⇒

[(
x
y

)b
− 1

] 1
b

<
[(

x
y

)a
− 1
] 1
a

=⇒(
xb − yb

) 1
b < (xa − ya)

1
a =⇒

(
xb − yb

)a
< (xa − ya)b . Another way (xk − yk)n < (xn − yn)k

⇐⇒ n ln(xk − yk) < k ln(xn − yn)

⇐⇒ n lnxk + n ln(1− (y/x)k) < k lnxn + k ln(1− (y/x)n)

⇐⇒ n ln(1− (y/x)k) < k ln(1− (y/x)n)

⇐⇒ (n− k) ln(1− (y/x)k) < k[ln(1− (y/x)n)− ln(1− (y/x)k)]

Now LHS<0 because n− k > 0 and the thing inside Ln is less than 1.

Also 0<RHS since 1− (y/x)n > 1− (y/x)k and Ln is an increasing function. So the last inequality

holds hence so is the first.

Circles k1 and k2 intersect in the points A and B . Let C ∈ k1 and

D ∈ k2 be two points for which the line CB intersects again the circle k2 at E and

the line DB intersects again the circle k1 at F . Prove that CE
DF

= sin ÂBC

sin ÂBD
.

Solution

Denote the distance δXY (A) of the point A to the line XY . Observe that

4ACF ∼ 4AED =⇒ 4ACE ∼ 4AFD =⇒ CE
FD

= δBC(A)
δBD(A)

=⇒ CE
DF

= sin ÂBC

sin ÂBD
.

Remark. Denote the point G ∈ BF ∩ ED . Then G ∈ AB ⇐⇒ The quadrilateral CDFE is

cyclically.

Ascertain as more simply as possible
∫

sin 2x
sinx+cosx

dx .

Solution

A proof for fun.We’lluse the easy identities

(sinx+ cosx)2 = 1 + sin 2x

(sinx+ cosx)2 + (sinx− cosx)2 = 2
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and the well-known formula

∫
1

x2 − a2
dx =

1

2a
· ln
∣∣∣∣x− ax+ a

∣∣∣∣+ C , a > 0 . Thus,

sin 2x
sinx+cosx

= (sinx+cosx)2−1
sinx+cosx

= sin x+ cosx− 1
sinx+cosx

=

sinx+ cosx− sinx+cosx
(sinx+cosx)2 = sinx+ cosx+ (sinx−cosx)′

(sinx−cosx)2−2
.

Therefore,
∫

sin 2x
sinx+cosx

dx =
∫ [

sinx+ cosx+ (sinx−cosx)′

(sinx−cosx)2−2

]
dx .∫

sin 2x

sinx+ cosx
dx = sin x− cosx+

1

2
√

2
· ln
√

2 + cos x− sinx√
2 + sin x− cosx

+ C

without | • | because ±(sinx− cosx) ≤ | sinx− cosx| ≤
√

2 .

For example,

∫ π
2

0

sin 2x

sinx+ cosx
dx = 2 +

√
2

2
· ln
(

3− 2
√

2
)

.

Does (∃) f : R → R so that f(1) = 2 and (∀) x ∈ R , f(f(x)) = x2 − 2x+ 2 ?

Solution

No. Put x=1 in the equation given to get f(2) = 1. Since f(1) = 2, by continuity there exists

1 < y < 2 with f(y) = y. So f(f(y)) = y2 − 2y + 2 implying (y − 1)(y − 2) = 0. Contradiction.

Ascertain
∫ nπ

4

0
| sin 2x|

| sinx|+| cosx| dx , where n ∈ N∗ .
Solution

Let In =
∫ nπ

4

0
| sin 2x|

| sinx|+| cosx|dx,

I4(k+1) − I4k =
∫ (k+1)π

kπ
| sin 2x|

| sinx|+| cosx| dx

=
∫ π

0

(
| sinx|+ | cosx| − 1

| sinx|+| cosx|

)
dx

= 4−
∫ π

0
1

| sinx|+| cosx| dx

= 4− 2
∫ π

2

0
1

sinx+cosx
dx

= 4− 2
√

2 ln(1 +
√

2).

∴ I4k = I0 + k(4− 2
√

2 ln(1 +
√

2)), I0 = 0, yielding In =
1

4
n(4− 2

√
2 ln(1 +

√
2))

hình hình Let ABC be a triangle with the circumcircle w = C(O,R) . The A-symmedian

cut BC in D and meet again w in E. Denote the midpointM of [BC] , T ∈ AA∩BC , L ∈ BB∩CC
and AM = ma , AD = sa . Prove that the following relations:

1 I sa = 2bc
b2+c2

·ma

2 I AE ·ma = bc and TA2 = abc
b2+c2

, T ∈ EE .

3 I EB
c

= EC
b

= a
2ma

(the quadrilateral ABEC is harmonically) and L ∈ ADE .

4 I ha +
(
ma +

a

2

)
sinB ≤ 3

√
3

2
ma . Particular case. If A = 90◦ , then ha + max{b, c} ≤

3
√

3
4
a .

Remark. I used the notation XX - the tangent line to the circle w at the point X . hình

Let a B-rightangled 4ABC with AB = 3 and BC = 4 . For a mobile point M ∈ [AC]

define the point P ∈ [BC] so that m
(
B̂MP

)
= 120◦ . Finf the range of BP .

Proof. Denote BM = r and m
(
M̂BP

)
= x . Prove easily that r cosx

4
+ r sinx

3
= 1 ⇐⇒

r =
12

3 cosx+ 4 sinx
(∗) .

Apply the theorem of sines in 4BMP : BP
sin 120◦

= BM
sin(120◦+x)

⇐⇒ BP = r
√

3
2 cos(30◦+x)

(∗)⇐⇒

BP =
6
√

3

cos (30◦ + x) (3 cosx+ 4 sinx)
(1) . Thus, cos (30◦ + x) (3 cosx+4 sinx) = 3

2
[cos (2x+ 30◦) + cos 30◦] +
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2 [sin (2x+ 30◦)− sin 30◦] =
(

3
√

3
4
− 1
)

+ 1
2

[3 cos (2x+ 30◦) + 4 sin (2x+ 30◦)] ≤
(

3
√

3
4
− 1
)

+
5
2

=⇒

cos (30◦ + x) (3 cosx+ 4 sinx) ≤ 3
√

3 + 6

4
. Therefore,BP

(1)

≥ 6
√

3
3
√

3+6
4

= 8
(
2
√

3− 3
)

=⇒ 8
(
2
√

3− 3
)
≤

BP

with equality iff tan (2x+ 30◦) = 4
3
⇐⇒ xm = 1

2

(
arctan 4

3
− 30◦

)
. In conclusion, 8

(
2
√

3− 3
)
≤ BP ≤ 4

.

Remark. I used only the well-known inequality |a sinx + b cosx| ≤
√
a2 + b2 with equality iff

tanx = a
b
.

An easy extension. Let a B-rightangled 4ABC with AB = a and BC = b . For a mobile point

M ∈ [AC] define the point P ∈ [BC] so that m
(
B̂MP

)
= φ , so that

π

2
≤ φ ≤ π − A (∗) . Find

the range of BP .

Proof. Denotem
(
M̂BC

)
= x and AC = c

√
a2 + b2 . Apply an well-known relation for4PMC :

BP
BC

= MP
MC
· sin B̂MP

sin B̂MC
⇐⇒ BP

b
= sin M̂CP

sin M̂PC
· sinφ

sin(C+x)
⇐⇒ BP = b ·

a
c

sin(φ+x)
· sinφ
a
c

cosx+ b
c

sinx
=

ab sinφ
(a cosx+b sinx) sin(φ+x)

= 2ab sinφ
b[cosφ−cos(2x+φ)]+a[sin(2x+φ)+sinφ]

=⇒

BP =
2ab sinφ

(b cosφ+ a sinφ) + [a sin(2x+ φ)− b cos(2x+ φ)]
. In conclusion,

2ab sinφ

(b cosφ+ a sinφ) + c
≤ BP ≤ b

because |a sin(2x+ φ)− b cos(2x+ φ)| ≤
√
a2 + b2 = c .

An interesting particular case. If φ = π
2
, then BP ≥ 2ab

a+c
. If and a+ c = 2b , then BP ≥ a .

Remark. See now why must the condition (∗) . Indeed, a sinφ+ b cosφ ≥ 0 ⇐⇒ a tanφ+ b ≤ 0

⇐⇒ tanφ ≤ − b
a
⇐⇒ tan(π − φ) ≥ b

a
= tanA ⇐⇒ π − φ ≥ A ⇐⇒ φ ≤ π − A .

Lemma.Let A(a) , X(x) , Y (y) be three points so that A 6∈ XY .

Choose φ ∈ [0, π) . Then m(X̂AY ) = φ⇐⇒ x− a
y − a

∈
{
ρω ,

ρ

ω

}
,

where ρ = |x−a|
|y−a| and ω = cosφ + i · sinφ . Example. The triangle ABC is equilateral ⇐⇒∥∥∥∥∥∥∥

AB = AC

m(B̂AC) = π
3

∥∥∥∥∥∥∥ ⇐⇒

b−a
c−a ∈

{
ω , 1

ω

}
, where

∥∥∥∥∥∥∥∥∥∥∥∥

ω3 = −1

w2 + 1 = ω

ω = 1
ω

= −ω2

∥∥∥∥∥∥∥∥∥∥∥∥
⇐⇒

[(b− a)− ω(c− a)][(c− a)− ω(b− a)] = 0 ⇐⇒
(b− a)(c− a) (ω2 + 1) = ω · [(b− a)2 + (c− a)2] ⇐⇒
a2 + b2 + c2 = ab+ bc+ ca because ω2 + 1 = ω 6= 0 .

Remark. We can choose A as the origin of the complex plane, i.e. a = 0 . In this case

b2 + c2 = bc ⇐⇒ ω · (b2 + c2) = (ω2 + 1) · bc ⇐⇒ (b − ω · c)(c − ω · b) = 0 . Let ABC be

an equilateral triangle, and let P and Q be the midpoints of sides AB and AC respectively. Let

D be a mobile point on PQ. Extend the lines CD and BD so that they meet AB and AC at E

and F respectively. Ascertain the position of the point D so that the product EB · FC is

minimum.

Solution
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Denote

{
X ∈ CE , AX ‖ BC
Y ∈ BF , AY ‖ BC

. Observe that EA
EB

+ FA
FC

= XY
BC

and XY
BC

= PQ
BC−PQ .

Thus, EA
EB

+ FA
FC

= 1 , i.e. AB
EB

+ AC
FC

= 3 . In conclusion, 1
BE

+ 1
CF

= 3
BC

.

Proof II (of my student). Denote AB = a . Apply the Menelaus’ theorem to the transver-

sals :

I AFC in 4BDE : AE
AB
· FB
FD
· CD
CE

= 1 =⇒ AE
AB
· BC
DQ
· BP
BE

= 1 =⇒

AE
BE

= 2·DQ
a

=⇒ a−BE
BE

= 2·DQ
a

=⇒ 1

BE
=

1

a
+

2 ·DQ
a2

.

I AEB in 4CDF : AF
AC
· EC
ED
· BD
BF

= 1 =⇒ AF
AC
· BC
DP
· CQ
CF

= 1 =⇒
AF
CF

= 2·DP
a

=⇒ a−CF
CF

= 2·DP
a

=⇒ 1

CF
=

1

a
+

2 ·DP
a2

.

In conclusion, 1
BE

+ 1
CF

= 2
a

+ 2·PQ
a2 , i.e.

1

BE
+

1

CF
=

3

a
(constant).

Thus, the product BE · CF is minimum ⇐⇒ the product 1
BE
· 1
CF

is maximum ⇐⇒
1
BE

= 1
CF

, i.e. BE = CF = 2a
3
, what means the point D is the middle of the segment [PQ] .

Let ABC be a triangle and let P ∈ (AB) , Q ∈ (AC) be two points so that PQ ‖ BC .

For a mobile pointD ∈ (PQ) denote

{
E ∈ CD ∩ AB
F ∈ BD ∩ AC

. Prove that the sum AC
CF

+ AB
BE

is constant

and ascertain the position of the point D for which the area [AEF ] is maximum. hình Let

ABC be a nonisosceles triangle with centroid G and incircle C(I, r) . Denote the midpoint M of the

side [BC]

and the point P ∈ (AB) which has the distance 2r to the line BC . The A - exincircle touches

the side [BC]

in the point D and the sideline AB in the point T . Prove that IG ⊥ AB ⇐⇒ DA ⊥ DT ⇐⇒
P ∈MI .

Solution

Denote the diameter XY of the incircle, where X ∈ (BC) . The relations Y ∈ (AD) , MX = MD =
1
2
· |b− c|

andMI ‖ AYD are well-known. Observe that PY
BD

= ha−2r
ha

= aha−2ar
aha

= 2pr−2ar
2pr

=⇒ PY =
(p− a)(p− c)

p
.

I IG ⊥ AB ⇐⇒ IA2 − IB2 = GA2 −GB2 ⇐⇒ bc(p−a)
p
− ac(p−b)

p
= 4

9
· (m2

a −m2
b) ⇐⇒

9c(b− a) = [2 (b2 + c2)− a2]− [2 (a2 + c2)− b2] ⇐⇒ 9c(b− a) = 3 (b2 − a2) ⇐⇒ a+ b = 3c .

I P ∈MI ⇐⇒ PY = MD ⇐⇒ 2(p − a)(p − c) = p(b − c) ⇐⇒ a+ b = 3c . Othewise

(without calculus PY ) .

P ∈MI ⇐⇒ BP
BA

= BM
BD
⇐⇒ 2r

ha
= a

2(p−c) ⇐⇒
a
p

= a
2(p−c) ⇐⇒ p = 2c ⇐⇒ a+ b = 3c .

I Since BD = BT obtain DA ⊥ DT ⇐⇒ BD = BA ⇐⇒ p− c = c ⇐⇒ a+ b = 3c .

Remark. In the right trapezoid BPY X , Y X ⊥ BX the incircle with the diameter [XY ] is

tangent to the side [BP ] . Thus,

IB ⊥ IP ⇐⇒ IC2 = CP ·CB ⇐⇒ IC2 = PY ·BX ⇐⇒ PY = r2

p−b ⇐⇒ PY =
(p− a)(p− c)

p
.

Let ABCD be a parallelogram. Construct the isosceles triangles ABE , CBF , where AB = AE

, CB = CF so that

B̂AE ≡ B̂CF , the line AB doesn’t separate the points E , C and the line BC separates the

points F , A . Prove that :
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1 I EF = 2 · AC · sin α
2
and the value of the acute angle between the lines EF , AC is π−α

2
.

2 I The points E , F , D are collinearly if and only if the quadrilateral ABCD is a rhombus.

Solution

Here is a proof with the complex numbers. Proof. Denote X(x) - the point X with the affix x and

ω = cosα + i · sinα , where m(B̂AE) = m(B̂CF ) = α .

Observe that ω · ω = 1 , a+ c = b+ d , i.e. d = a+ c− b and

{
e = a+ ω(b− a)

f = c+ ω(b− c)
.

1 I Thus, e− f = (a− c)(1− ω) and 1− ω = 2 · sin α
2

[
cos π+α

2
+ i · sin π+α

2

]
, i.e.

EF = 2 ·AC · sin α
2
and he value of the acute angle between the lines EF , AC is π− π+α

2
= π−α

2

.

2 ID ∈ EF ⇐⇒ r ≡ e−d
f−d ∈ R⇐⇒ (b−c)+ω·(b−a)

(b−a)+ω·(b−c) ∈ R⇐⇒ [(b− c) + ω · (b− a)]·
[
b− a+ ω · b− c

]
∈

R .

Observe that (b− c) · b− a+ (b−a) · b− c ∈ R . Therefore, r ∈ R⇐⇒ |b−a|2 ·ω+ |b− c|2 ·ω ∈ R
⇐⇒
|b− a| = |b− c| ⇐⇒ AB = BC , i.e. ABCD is rhombus.[/hide]

4ABC , L ∈ (BC)

B ∈ (AM) , m(ÂLC) = 2 ·m(ÂMC)

C ∈ (AN) , m(ÂLB) = 2 ·m(ÂNB)

∥∥∥∥∥∥∥∥∥∥∥∥
=⇒ OL ⊥ BC, where the point O is the circum-

center of 4MAN .

Solution

Denote the second intersections E , F of the line BC with the circumcircle C(O) of 4MAN and

the its diameter AA′.

Therefore,


ÊAA′ ≡ ÂMF =⇒ AE ‖ FA′

F̂AA′ ≡ ÂNE =⇒ AF ‖ EA′

∥∥∥∥∥∥∥ =⇒ the quadrilateral AEA′F is a rectangle

=⇒


O ∈ (EF ) , OE = OF

ÂOE ≡ ÂLB

.

Apply the Pascal’s theorem to the cyclic hexagon AAMFEN :



X ∈ AA ∩ FE

B ∈ AM ∩ EN

C ∈MF ∩NA

∥∥∥∥∥∥∥∥∥∥∥∥
=⇒

X ∈ BC =⇒
O ∈ XEF

L ∈ XBC

∥∥∥∥∥∥∥ =⇒ ÂOX ≡ ÂLX =⇒ the quadrilateral AOLX is cyclically =⇒ OL ⊥ BC.

Let ABCD be a parallelogram with the area [ABCD] = 1 . Denote

the midpoint M of [BC] and Q ∈ AM ∩BD . Find the area [QMCD] .

Solution

Proof 1. [QMCD] = [QMCD]
[ABCD]

= [BCD]−[MBQ]
[BCD]

· [BCD]
[ABCD]

=
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(
1− BM

BC
· BQ
BD

)
· 1

2
= 1

2
·
(
1− 1

2
· 1

3

)
=⇒ [QMCD] =

5

12
.

Proof 2. Denote [BQM ] = a , [AQD] = b , [ABQ] = [DMQ] = x , Observe that [MCD] = 1
4
,

x2 = ab , b = 4a =⇒ x = 2a , b = 4a . Thus, a+ b+ 2x = 3
4

=⇒ a+ 4a+ 4a = 3
4

=⇒

a = 1
12

=⇒ [QMCD] = x+ 1
4

= 2a+ 1
4

= 1
6

+ 1
4

=⇒ [QMCD] =
5

12
Hoàn chỉnh

In a triangle ABC prove that a3

cos(B − C) + b3

cos(C − A) + c3

cos(A−B) = 3abc – Show that 72010 − 22010 is a multiple of 33 · 52 · 11 · 13 · 31 · 61 · 67. – Given that

f(x) = cosxandg(x) = sinx. Find the value of x if f [f [f [f(x)]]] = g[g[g[g(x)]]] – Solve the equation
11
5
x−
√

2x+ 1 = 3y −
√

4y − 1 + 2, (x ≥ 0; y ≥ 1;x = 5k;x, y, k ∈ Z) – Hoàn chỉnh

Let s1 be any positive integer.Define sn to be so that
∑n

k=1 sk ≡ 0( mod n) with 0 ≤ sn ≤ n−1.

Show ∃N ∈ N so that ∀p, q ≥ N we have sp = sq.

Solution

We have, for n ≥ 2,
∑n

k=1 sk ≤ s1 +
∑n

k=2(k− 1) = s1 + n(n−1)
2

So, whatever could be s1, it exists

m ∈ N such that s1 + m(m−1)
2

< m2 and then
∑m

k=1 sk ≤ m2 Let then u = 1
m

∑m
k=1 sk. u is an integer

(since
∑m

k=1 sk = 0 (mod m)) and u < m

Then sm+1 = −
∑m

k=1 sk =m u = u (mod m+1) and, since 0 ≤ u < m < m+1, we have sm+1 = u

And
∑m+1

k=1 sk = mu+ u = (m+ 1)u

And it is obvious (by induction for example) that sp = u ∀p ≥ m (and
∑p

k=1 sk =
∑m

k=1 sk +∑p
k=m+1 sk = mu+ (p−m)u = pu = 0 (mod p)

If a+ b+ c = 1, a, b, c > 0, prove that 1+c(27ab−1)
a+b

≤ 1 + (a+ b)2 + 3c+ c3

a+b

Solution

Since a + b = 1 − c, that inequality is equivalent to
(1− c) + 27abc

1− c
≤ 1 + (1 − c)2 + 3c +

c3

1− c
.

Multiplying by (1− c), we get (1− c) + 27abc ≤ (1− c) + (1− c)3 + 3c(1− c) + c3, and combining like

terms, we get 27abc ≤ 1. We homogenize this equation to 27abc ≤ (a + b + c)3, which is equivalent

to 3
√
abc ≤ a+ b+ c

3
, AM-GM.

For a, b, c are all positive real,a2 + b2 + c2 = 3, prove that

a+ b+ c2 ≤ 7
2

Solution

Rewrite it as:

a2 + b2 +
1

2
≥ a+ b

AM-GM gives:

a2 + b2 +
1

2
≥
√

2(a2 + b2) ≥ a+ b

so it’s done. Equality occurs only when a = b = 1
2
and c =

√
5
2
.

392

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=163451&p=911089#p911089
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=324848
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=325940
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=166827&p=927626#p927626


Let a = e(i2π)/n Evaluate
∑

k=0,n−1(1 + ak)n

Solution∑n−1
k=0(1 + ak)n =

∑n−1
k=0

∑n
i=0

(
n
i

)
aki =

∑n
i=0

(
n
i

)∑n−1
k=0 a

ki = 2n+
∑n−1

i=1

(
n
i

)
ani−1
ai−1

= 2n since an = 1

What is the exact value of cos 1o+cos 2o+...+cos 43o+cos 44o

sin 1o+sin 2o+...+sin 43o+sin 44o ?

Solution

We have to compute A =
∑44
k=1 cos(k π

180
)∑44

k=1 sin(k π
180

)
= N

D

N =
∑44

k=1 cos(k π
180

) =
∑22

k=1(cos(k π
180

)+cos(π
4
−k π

180
)) =

∑22
k=1 2 cos(π

8
) cos(k π

180
−π

8
) = 2 cos(π

8
)
∑22

k=1 cos(k π
180
−

π
8
)

D =
∑44

k=1 sin(k π
180

) =
∑22

k=1(sin(k π
180

)+sin(π
4
−k π

180
)) =

∑22
k=1 2 sin(π

8
) cos(k π

180
−π

8
) = 2 sin(π

8
)
∑22

k=1 cos(k π
180
−

π
8
)

And so S = N
D

= cot(π
8
) =
√

2 + 1

Let f(x) = xn + ... + x + 1 and let g(x) = f(xn+1). Find the remainder when g(x) is divided by

f(x).

Solution

Let zk = e
2kiπ
n+1 for k ∈ {1, 2, . . . , n}. We have zn+1

k = 1 and f(zk) = 0 ∀k ∈ {1, 2, . . . , n}
We have g(x) = f(x)q(x)+r(x) with degree of r(x)< n. So g(zk) = f(zn+1

k ) = f(1) = n+1 = r(zk)

So r(x) is a polynomial of degree ≤ n − 1 and taking the same value for n different values. So

r(x) is a constant.

And r(x) = n+ 1

f(xy) = f(x)f(y) has f(x) = x for x in Q, can we easy conclude that in R without give more

info in question? Let P (x, y) be the assertion f(xy) = f(x)f(y)

If f(0) 6= 0 : P (x, 0) =⇒ f(x) = 1 ∀x which indeed is a solution. So let us consider from now

that f(0) = 0

If ∃u 6= 0 such that f(u) = 0, then P (x
u
, u) =⇒ f(x) = 0 ∀x which indeed is a solution So let us

consider from now that f(x) = 0 ⇐⇒ x = 0

Let x > 0 : P (x, x) =⇒ f(x2) = f(x)2 > 0. Let us then consider g(x) from R → R defined as

g(x) = ln(f(ex)). The functional equation becomes g(x+ y) = g(x) + g(y)

So it is easy to show that, for any x > 0 : f(x) = eg(lnx) where g(x) is any solution of Cauchy’s

equation.

Then P (1, 1) implies f(1) = 1 and P (−1,−1) implies f(−1) = ±1 and P (x,−1) implies f(−x) =

f(−1)f(x)

Hence the solutions :

S1 : f(x) = 0 ∀x
S2 : f(x) = 1 ∀x
S3 : Let g(x) any solution of additive Cauchy equation

f(0) = 0

∀x > 0 : f(x) = eg(lnx)

∀x < 0 : f(x) = eg(ln−x)

S4 : Let g(x) any solution of additive Cauchy equation

f(0) = 0

∀x > 0 : f(x) = eg(lnx)
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∀x < 0 : f(x) = −eg(ln−x)

Some remarks : 1) So f(x) = x for x ∈ Q is not enough to conclude f(x) = x ∀x ∈ R
2) The general non constant continuous solutions are |x|c and sign(x)|x|c with c > 0

Solve the equation x3 − [x] = 3,where x ∈ R
Solution

So x = 3
√
n+ 3 for any integer n such that n+ 1 > 3

√
n+ 3 ≥ n

⇐⇒ (n+ 1)3 > n+ 3 ≥ n3

n+ 3 ≥ n3 =⇒ n ≤ 1 (n+ 1)3 − n− 3 > 0 =⇒ n ≥ 1

So the unique solution n = 1 and x = 3
√

4

Let a0, a1, a2, ..........., an be a sequence of numbers such that (3− an+1) ∗ (6− an) =18 and a0 =

3 then FIND:∑n
i=0 1/ai

Solution

From the induction formula, we get 1
an+1
− 1

9
= −2( 1

an
− 1

9
) and so 1

an
= 1

9
+ 2

9
(−2)n =⇒

∑n
i=0

1
ai

=
n+1

9
+ 2

9
(−2)n+1−1
−3

Hence the result :
n∑
i=0

1

ai
=

3n+ 5 + (−2)n+2

27

Prove that cos(n arctan 2
√

2) ∈ Q, n ∈ N
Solution

cos(n arctan 2
√

2) = Re[(cos arctan 2
√

2 + i sin arctan 2
√

2)n] by DeMoivre.

Drawing a right triangle with legs 4 and
√

2, we find the hypotenuse to be 3
√

2, and therefore

cos θ = 1
3
and sin θ = 4

3
√

2

So we have Re
[(

1
3

+ 4i
3
√

2

)n]
= Re

[(√
2+4i
3
√

2

)n]
= 1

3n
· Re

[
(1 + 2

√
2i)n

]
.

(1 + 2
√

2i)n =
∑n

k=0

(
n
k

)
(2
√

2i)n. These terms are only real when n ≡ 0, 2 mod 4. In both cases, n

is even, which makes the square root integral, so the real part of this whole thing is some integer j.

Therefore, the answer is j
3n

for some integer j, which is a rational number. 2 Another way Let

an = cosnθ where θ = tan−1 2
√

2

We have the recurrence an+2 = 2an+1a1 − an
a1 = cos θ = 1

3
∈ Q and a2 = cos 2θ = 2 cos2 θ − 1 = −7

9
∈ Q

The above recurrence tells us that whenever an and an+1 are rational so is an+2

Since a1 and a2 are rational, this result is true for all an

Let f,g: R >R be functions like that so f(g(x))=g(f(x))=-x for any x is element of R a) prove

that f and g are odd functions b) Make an example of these two functions f isn’t equal to g Please

solve it

Solution

a) : g(f(g(x))) = g(u) where u = f(g(x)) = −x and so g(f(g(x))) = g(−x) g(f(g(x))) = g(f(v)) =

−v where v = g(x) and so g(f(g(x))) = −g(x) So g(−x) = −g(x) and g(x) is an odd function.

Same computation with f(g(f(x))) shows that f(x) is an odd function.

b) Choose f(x) = 2x and g(x) = −x
2
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Prove that the equation x2 − 16nx+ 75 = 0 equation n ∈ N has no integer solutions.

Solution

So 75 = x(16n− x) and so 12 possibilities :

x = 1 and 16n− x = 75 and so n = 75+1
16

/∈ N
x = 7 and 16n− x = 74 and so n = 74+7

16
/∈ N

x = 72 and 16n− x = 73 and so n = 73+72

16
/∈ N

x = 73 and 16n− x = 72 and so n = 72+73

16
/∈ N

x = 74 and 16n− x = 71 and so n = 7+74

16
/∈ N

x = 75 and 16n− x = 1 and so n = 1+75

16
/∈ N

x = −1 and 16n− x = −75 and so n = −75+1
16

/∈ N
x = −7 and 16n− x = −74 and so n = −74+7

16
/∈ N

x = −72 and 16n− x = −73 and so n = −73+72

16
/∈ N

x = −73 and 16n− x = −72 and so n = −72+73

16
/∈ N

x = 74 and 16n− x = −71 and so n = −7+74

16
/∈ N

x = −75 and 16n− x = −1 and so n = −1+75

16
/∈ N

Hence the result

Let a, b, c ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} such that abc+ bca = 10abc (and not abc), find a+ b+ c.

Solution

100a+ 10b+ c+ 100b+ 10c+ a = 10abc ⇐⇒ 101a+ 110b+ 11c = 10abc

So a+ c = 0 (mod 10) Hence a first solution a = c = 0 and so b = 0

If a 6= 0, we get c = 10 − a and the equation becomes 9a + 11b + 11 = ab(10 − a) or again

b = 9a+11
−a2+10a−11

In order to have −a2 + 10a − 11 > 0, we need to have a ∈ {2, 3, 4, 5, 6, 7, 8}, so just 7 tests in

order to find either a = 5, either a = 6. So three solutions :

a = 0, b = 0, c = 0 =⇒ 000 + 000 = 10× 0× 0× 0 and a+ b+ c = 0

a = 5, b = 4, c = 5 =⇒ 545 + 455 = 1000 = 10× 5× 4× 5 and a+ b+ c = 14

a = 6, b = 5, c = 4 =⇒ 654 + 546 = 1200 = 10× 6× 5× 4 and a+ b+ c = 15

After how many terms of the summation 4
∑

n=0
(−1)n

2n+1
will the sum be within .01 of pi?

Solution

We have π = 4
∑+∞

n=0
(−1)n

2n+1
= 4

∑+∞
p=0( 1

4p+1
− 1

4p+3
) = 8

∑+∞
p=0

1
(4p+1)(4p+3)

.

Then we have
∫ +∞
k+1

8dx
(4x+1)(4x+3)

< 8
∑+∞

p=k+1
1

(4p+1)(4p+3)
<
∫ +∞
k

8dx
(4x+1)(4x+3)

So ln(4k+7
4k+5

) < 8
∑+∞

p=k+1
1

(4p+1)(4p+3)
< ln(4k+3

4k+1
)

We want to have 8
∑+∞

p=k+1
1

(4p+1)(4p+3)
about 1

100
, so ln(4k+3

4k+1
) about 1

100
.

So 1 + 2
4k+1

about e
1

100 , which is about 1 + 1
100

. So k is about 50

More precisely : 0.0097 < ln(4×50+7
4×50+5

) =< 8
∑+∞

p=51
1

(4p+1)(4p+3)
< ln(4×50+3

4×50+1
) < 0.00991

And so π − 0.00991 < 8
∑50

p=0
1

(4p+1)(4p+3)
< π − 0.0097

And so π − 0.00991 < 4
∑50

p=0( 1
4p+1
− 1

4p+3
) < π − 0.0097

And so π − 0.00991 < 4
∑101

n=0
(−1)n

2n+1
< π − 0.0097

And also obviously π − 0.00991 < 4
∑N

n=0
(−1)n

2n+1
< π ∀N > 100
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Let 0 < p < 1. Prove that: 2
e
≤ p

p
1−p + p

1
1−p

Solution

f(x) = x
x

1−x + x
1

1−x is a strictly decreasing function for x ∈ [0, 1)

Since limx→1−
1

1−x ln(x) = −1, we have limx→1− x
1

1−x = limx→1− x
x

1−x = e−1

So limx→1− f(x) = 2
e
and so the result.

Let x and y be positive real numbers such that x + 2y = 8. Determine the minimum value of x

+ y + (3/x) + (9/2y)

Solution

Setting x = 8− 2y, we are looking for the minimum value of f(y) = 8− y+ 3
8−2y

+ 9
2y

when y ∈ (0, 4)

Just write then f(y) = 8 + (y−3)2(y+2)
y(4−y)

and you get f(y) ≥ f(3) = 8 ∀y ∈ (0, 4)

Hence the answer : 8 reached when (x, y) = (2, 3)

Find all integers n such that (7n− 12)/2n + (2n− 14)/3n + (24n)/6n = 1

Solution

If n < 0 implies LHS < 0 < RHS and so no solution n = 0 is not a solution

If n > 0 : (7n− 12)3n + (2n− 14)2n + 24n = 6n implies 7n− 12 ≡ 0 (mod 2) and (3n− 14 ≡ 0

(mod 3) and so n = 6p+ 4

For n ≥ 9 : 21n− 36 ≤ 2n−1 and so (7n− 12)3n ≤ 6n−1

For n ≥ 1 : 4n− 28 ≤ 3n−1 and so (2n− 14)2n ≤ 6n−1

For n ≥ 4 : 24n ≤ 6n−1

So (7n− 12)3n + (2n− 14)2n + 24n ≤ 3× 6n−1 < 6n ∀n ≥ 9

And the only value possible for 0 < n = 6p+ 4 < 9 is n = 4 which indeed is a solution

Hence the answer : n = 4

Solve the equation: [x−3
2

] = [x−2
3

].

Solution

Let n ∈ Z be the common value. We get : n ≤ x−3
2
< n+ 1 and n ≤ x−2

3
< n+ 1

⇐⇒ 2n+ 3 ≤ x < 2n+ 5 and 3n+ 2 ≤ x < 3n+ 5

This implies 3n+ 2 < 2n+ 5 and 2n+ 3 < 3n+ 5 and so −2 < n < 3 and so n ∈ {−1, 0, 1, 2}
1) If n = −1 then the solution is 1 ≤ x < 3 and −1 ≤ x < 2 and so x ∈ [1, 2)

2) If n = 0 then the solution is 3 ≤ x < 5 and 2 ≤ x < 5 and so x ∈ [3, 5)

3) If n = 1 then the solution is 5 ≤ x < 7 and 5 ≤ x < 8 and so x ∈ [5, 7)

4) If n = 2 then the solution is 7 ≤ x < 9 and 8 ≤ x < 11 and so x ∈ [8, 9)

Hence the answer : x ∈ [1, 2) ∪ [3, 7) ∪ [8, 9)

Let : x1, x2, ....., x2011 are positive integer. such that x1 + x2 + ....+ x2011 = 20112011 How many

integer solution.

Solution

Let S(m,n) (where m ≥ n are two natural numbers) be the number of ordered n-tuples of natural

numbers whose sum is m,.

Then obviously S(n,m) =

(
m− 1

n− 1

)
(just place n−1 integer distinct dots in the segment (0,m))
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From the digits 1, 2, ..., 9, we write all the numbers formed by these nine digits (the nine

digits are all distinct), and we order them in increasing order as follows : 123456789, 123456798, ...,

987654321. What is the 100000th number ?

Solution

The first 8! = 40320 such numbers are all these numbers beginning with 1 The next 8! = 40320 such

numbers are all these numbers beginning with 2

So the 100000th such number is the 100000− 2× 40320 = 19360th such number beginning by 3

The first 7! = 5040 such new numbers are all these numbers beginning with 31 The next 7! = 5040

such new numbers are all these numbers beginning with 32 The next 7! = 5040 such new numbers

are all these numbers beginning with 34

So the 19360th such new number is the 19360− 3× 5040 = 4240th such number beginning by 35

The first 6! = 720 such new numbers are all these numbers beginning with 351 The next 6! = 720

such new numbers are all these numbers beginning with 352 The next 6! = 720 such new numbers

are all these numbers beginning with 354 The next 6! = 720 such new numbers are all these numbers

beginning with 356 The next 6! = 720 such new numbers are all these numbers beginning with 357

So the 4240th such new number is the 4240− 5× 720 = 640th such number beginning by 358

The first 5! = 120 such new numbers are all these numbers beginning with 3581 The next 5! = 120

such new numbers are all these numbers beginning with 3582 The next 5! = 120 such new numbers

are all these numbers beginning with 3584 The next 5! = 120 such new numbers are all these numbers

beginning with 3586 The next 5! = 120 such new numbers are all these numbers beginning with 3587

So the 640th such new number is the 640− 5× 120 = 40th such number beginning by 3589

The first 4! = 24 such new numbers are all these numbers beginning with 35891

So the 40th such new number is the 40− 1× 24 = 16th such number beginning by 35892

The first 3! = 6 such new numbers are all these numbers beginning with 358921 The next 3! = 6

such new numbers are all these numbers beginning with 358924

So the 16th such new number is the 16− 2× 6 = 4th such number beginning by 358926

And so 358926− 147, 358926− 174, 358926− 417, 358926− 471

Hence the answer : 358926471

Let f(n) denotes the number of positive integral solutions of the equation 4x + 3y + 2z = n.

Find f(2009)− f(2000) (x, y, z) solution of 4x + 3y + 2z = 2000 =⇒ (x + 1, y + 1, z + 1) solution

of 4x+ 3y + 2z = 2009

So f(2009) − f(2000) is the number of solutions of 4x + 3y + 2z = 2009 where at least one of

x, y, z is 1

1) x = 1 : looking for number of solutions of 3y + 2z = 2005 y must be odd = 2p + 1 and so

z = 1001− 3p and so p ∈ [0, 333] and so 334 such solutions

2) x > 1 and y = 1 : looking for number of solutions of 4x+ 2z = 2006 ⇐⇒ z = 1003− 2x And

so x ∈ [2, 501] and so 500 such solutions

3) x > 1 and y > 1 and z = 1 : looking for number of solutions of 4x+ 3y = 2007 SO y = 4p+ 1

and x = 501− 3p and so p ∈ [1, 166] and so 166 such solutions.

334 + 500 + 166 = 1000

Hence the result f(2009)− f(2000) = 1000 Another solution :

(x, y, z) solution of 4x+ 3y + 2z = n =⇒ (x, y + 1, z) solution of 4x+ 3y + 2z = n+ 3

So f(n + 3) − f(n) is the number of solutions of 4x + 3y + 2z = n + 3 where y = 1 and so the

number of solutions of 4x+ 2z = n and so :
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If n is odd : f(n+ 3)− f(n) = 0 If n is even : f(n+ 3)− f(n) =
⌊
n−2

4

⌋
f(2009)− f(2006) =

⌊
2004

4

⌋
= 501 f(2006)− f(2003) = 0 f(2003)− f(2000) =

⌊
1998

4

⌋
= 499

And so f(2009)− f(2000) = 1000√
222222

≥ 1 + 22 + 33 + ...+ 20042004 or 1 + 22 + 33 + ...+ 20042004 ≥
√

222222

Solution√
222222

=
√

2265536 = 2265535
> 10

3
10

10
3
10 65535

> 101010000

1 + 22 + 33 + ...+ 20042004 < 2004× 20042004 = 20042005 < 108010

Hence the result

√
222222

> 1 + 22 + 33 + ...+ 20042004

Find f : (1,+∞)→ R satisfy f(x)− f(y) = (y − x)f(xy) for all x, y > 1

Solution

Let P (x, y) be the assertion f(x)− f(y) = (y − x)f(xy) Let a > 2 and x ∈ (a
2

4
, 4a2)

P ( 2
a

√
x, a

2

√
x) =⇒ f( 2

a

√
x)− f(a

2

√
x) = (a

2
− 2

a
)
√
xf(x)

P (a
2

√
x, 2a√

x
) =⇒ f(a

2

√
x)− f( 2a√

x
) = (2a

x
− a

2
)
√
xf(a2)

P ( 2a√
x
, 2
a

√
x) =⇒ f( 2a√

x
)− f( 2

a

√
x) = ( 2

a
− 2a

x
)
√
xf(4)

Adding these three lines, we get (a
2
− 2

a
)f(x) + (2a

x
− a

2
)f(a2) + ( 2

a
− 2a

x
)f(4) = 0

And so f(x) = α(a)
x

+ β(a) ∀x ∈ (a
2

4
, 4a2)

So α(a) and β(a) are constant and f(x) = α
x

+ β

Plugging this in original equation, we get β = 0 and so f(x) =
α

x
A sequence is defined by u1 = 8 and un+1 = un + 3.

Find the value of N such that
∑2N

n=1 un −
∑N

n=1 un = 1256.

Solution

From the recursive equation un = un−1 + 3, we can find the closed equation un = 8 + 3(n− 1). So,∑2N
n=1 un −

∑N
n=1 un = (8 + 11 + ...+ u2N)− (8 + 11 + ...+ uN)

= uN+1 + uN+2 + ...+ u2N

= (8 + 3N) + (8 + 3(N + 1)) + ...+ (8 + 3(2N − 1))

= 8N + 3N(3N−1)
2

= 1256

16N + 9N2 − 3N = 2512

9N2 + 13N − 2512 = 0

(N − 16)(9N + 157) = 0

∴ N = 16

Find a formula counting the number of all 2013-digits natural numbers which are multiple of

3 and all digits are taken from the se X = 3; 5; 7; 9

Solution

So we have exactly 3n digits (n ∈ [0, 671]) in {5, 7} and so
∑671

n=0

(
2013
3n

)
23n22013−3n = 22013

∑671
n=0

(
2013
3n

)
= 22013 22013+(1+j)2013+(1+j2)2013

3
where j = e

2iπ
3

Hence the result :
22013 (22013 − 2)

3
Solve the recurrence relation an − 2an−1 + an−2 =

(
n+4

4

)
for n ≥ 2, a0 = 0 and a1 = 5.

Solution

Let bn = an+1 − an and the relation is bn+1 − bn =
(
n+6

4

)
with b0 = 5

So bn = 5 +
∑n−1

k=0

(
k+6

4

)
= 5 +

∑n
k=1

(
k+5

4

)
= 5 +

∑n
k=1

k4+14k3+71k2+154k+120
24

bn = 5 + 1
24

∑n
k=1 k

4 + 7
12

∑n
k=1 k

3 +71
24

∑n
k=1 k

2 +77
12

∑n
k=1 k +5

∑n
k=1 1
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bn = 1
24
n(n+1)(6n3+9n2+n−1)

30
+ 7

12
n2(n+1)2

4
+71

24
n(n+1)(2n+1)

6
+77

12
n(n+1)

2
+5n+ 5

bn = n5+20n4+155n3+580n2+1044n+600
120

Then an = a0 +
∑n−1

k=0 bk =
∑n−1

k=0
k5+20k4+155k3+580k2+1044k+600

120

an = 1
120

n2(n−1)2(2n2−2n−1)
12

+1
6
n(n−1)(6n3−9n2+n+1)

30
+31

24
n2(n−1)2

4
+29

6
n(n−1)(2n−1)

6
+87

10
n(n−1)

2
+5n

an =
n6 + 21n5 + 175n4 + 735n3 + 1624n2 + 1044n

720
Show that if there is no positive integers n such that n2 + n + 2010 is a perfect square and n

does not equal to 2009

Solution

n2 + n + 2010 = u2 with u > n ≥ 0 ⇐⇒ (2u + 2n + 1)(2u − 2n − 1) = 8039 with 2u + 2n + 1 >

2u− 2n− 1 ≥ 1

So, since 8039 is prime, 2u + 2n + 1 = 8039 and 2u − 2n − 1 = 1 and so the unique solution

(n, u) = (2009, 2010)

Q.E.D.

Solve equation [x2 + 1] = [2x].

Solution

Let x2 = m+ y with m ≥ 0 integer and y ∈ [0, 1)

Obviously, x > 0 and the equation becomes m + 1 = b2
√
m+ yc and so m + 2 > b2

√
m+ yc ≥

m + 1 ≥ 1 ⇐⇒ (squaring) m2 + 4 > 4y ≥ m2 − 2m + 1 So we need m2 − 2m + 1 < 4 and so

m ∈ {0, 1, 2} m = 0 gives the solutions x2 ∈ [1
4
, 1) and so x ∈ [1

2
, 1) m = 1 gives the solutions

x2 ∈ [1, 2) and so x ∈ [1,
√

2) m = 2 gives the solutions x2 ∈ [9
4
, 3) and so x ∈ [3

2
,
√

3)

Hence the answer : x ∈ [
1

2
,
√

2) ∪ [
3

2
,
√

3)

Another appraoch: The solution lies in the range x ∈ [0, 2] since x2 + 1 > 2x+ 1 when x < 0 or

x > 2. We split x into sections:

[list][*]0 6 x < 1
2

: bx2 + 1c = 1, b2xc = 0 [*]1
2
6 x < 1 : bx2 + 1c = 1, b2xc = 1

[*]1 6 x <
√

2 : bx2 + 1c = 2, b2xc = 2 [*]
√

2 6 x < 3
2

: bx2 + 1c = 3, b2xc = 2 [*]3
2
6 x <

√
3 :

bx2 + 1c = 3, b2xc = 3 [*]
√

3 6 x < 2 : bx2 + 1c = 4, b2xc = 3 [*]x = 2 : bx2 + 1c = 5, b2xc =

4[/list]

Hence the solution is 1
2
6 x <

√
2 or 3

2
6 x <

√
3.

Another way: bx2 + 1c = b2xc = z ∈ Z ⇐⇒ 0 ≤ z ≤ 2x ≤ x2 + 1 < z + 1 and (x2 + 1)− 2x ≤ 1

, i.e. x ∈ [0, 2] .

Thus, max
{

(z−1)+1
2

,
√
z − 1

}
=

z

2
≤ x <

√
z = min

{
z+1

2
,
√
z
}
, where z

2
<
√
z ⇐⇒ z ∈ 1, 3 .

In conclusion, x ∈
⋃
z∈1,3

[
z
2
,
√
z
)

=
[

1
2
, 1
)
∪
[
1,
√

2
)
∪
[

3
2
,
√

3
)

=
[

1
2
,
√

2
)
∪
[

3
2
,
√

3
)
.

For a given positive integer n, how many n-digit natural numbers can be formed from five

possible digits 1, 2, 3, 4, and 5 so that an odd numbers of 1 and even numbers of 2 are used?

Solution

Let an be the number of n-digits strings of {1, 2, 3, 4, 5} with an even number of 1 and an even number

of 2 Let bn be the number of n-digits strings of {1, 2, 3, 4, 5} with an even number of 1 and an odd

number of 2 Let cn be the number of n-digits strings of {1, 2, 3, 4, 5} with an odd number of 1 and

an even number of 2 Let dn be the number of n-digits strings of {1, 2, 3, 4, 5} with an odd number of

1 and an odd number of 2 :

a0 = 1 and b0 = c0 = d0 = 0 an+1 = 3an + bn + cn bn+1 = an + 3bn + dn cn+1 = an + 3cn + dn

dn+1 = bn + cn + 3dn

399

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=481617&p=2697848#p2697848
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=480208&p=2688859#p2688859
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=445177


We obviously have an + bn + cn + dn = 5n and bn = cn and we quickly get then cn+1 = 5n + cn

and so cn =
5n − 1

4
Solve the equation:[x]2 + 1 = |2x|

Solution

The equation shows that 2x ∈ Z and so four cases :

x = n ≥ 0 : the equation becomes n2 + 1 = 2n and so n = 1 and the solution x = 1

x = n < 0 : the equation becomes n2 + 1 = −2n and so n = −1 and the solution x = −1

x = n+ 1
2
≥ 0 : the equation becomes n2 + 1 = 2n+ 1 and so n = 0, 2 and the solutions x = 1

2
, 5

2

x = n+ 1
2
< 0 : the equation becomes n2 + 1 = −2n− 1 and so no solution

Hence the answer : x ∈
{
−1,

1

2
, 1,

5

2

}
Solve for x:

6
2x+1

> 1
x

(1 + log2 (2 + x))

Solution

Equation is equivalent to 0 > A
x
where A = 3

2x+1
− log2( 4

x+2
)

For x ≤ −2, expression is not defined

For −2 < x < −1
2
, we have A < 0 and so A

x
> 0 and so no solution

For x = −1
2
, expression is not defined

For x > −1
2
: Let A = 3

2x+1
− log2( 4

x+2
)

∀x > 0, we have lnx ≤ x− 1

So log2( 4
x+2

) = 1
ln 2

ln( 4
x+2

) ≤ 1
ln 2

( 4
x+2
− 1) and so A ≥ 3

2x+1
− 1

ln 2
( 4
x+2
− 1) = 2x2+3x(ln 2−1)+6 ln 2−2

(x+2)(2x+1) ln 2

It’s easy to see that the quadratic (numerator) has no real root and so A > 0 ∀x > −1
2

And so 0 > A
x
and x > −1

2
⇐⇒ x ∈

(
−1

2
, 0

)
A positive integer n is called “FLIPPANT” if n does not end in 0 (when writtenFLIPPANT

easy question..indecimal notation) and, moreover, n and the number obtained by reversing thedigits

of n are both divisible by 7. How manyintegers are there between10 and 1000 ?

Solution

Writing the number abc with c 6= 0 and a, b not both zero, the problem is 2a+3b+c ≡ 2c+3b+a ≡ 0

(mod 7)

And so a ≡ −b ≡ c (mod 7)

a ≡ 0 (mod 7) gives a ∈ {0, 7} and b ∈ {0, 7} and c ∈ {7} and so 4 numbers less the one where

a = b = 0 and so 3 solutions a ≡ 1 (mod 7) gives a ∈ {1, 8} and b ∈ {6} and c ∈ {1, 8} and so

4 solutions a ≡ 2 (mod 7) gives a ∈ {2, 9} and b ∈ {5} and c ∈ {2, 9} and so 4 solutions a ≡ 3

(mod 7) gives a ∈ {3} and b ∈ {4} and c ∈ {3} and so 1 solution a ≡ 4 (mod 7) gives a ∈ {4} and
b ∈ {3} and c ∈ {4} and so 1 solution a ≡ 5 (mod 7) gives a ∈ {5} and b ∈ {2, 9} and c ∈ {5} and
so 2 solutions a ≡ 6 (mod 7) gives a ∈ {6} and b ∈ {1, 8} and c ∈ {6} and so 2 solutions

And so 3 + 4 + 4 + 1 + 1 + 2 + 2 = 17 such numbers

You are at a carnival and decide to play a game that can win you a beautiful stuffed teddy

bear. For one dollar, you get to randomly pick two numbered balls out of a jar without replacement

and without looking. The jar contains 50 numbered balls from 1 to 50. To win the bear, you must

pick two numbered balls whose difference is ten or less. What is the probability that the difference

between the two balls you select is 10 or less?

Solution
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If the first ball is n ∈ [1, 11], you get n+ 9 possibilities for the second If the first ball is n ∈ [12, 39],

you get 20 possibilities for the second If the first ball is n ∈ [40, 50], you get 60− n possibilities for

the second

So the required probability is
∑11

n=1
n+9

49×50
+
∑39

n=12
20

49×50
+
∑50

n=40
60−n
49×50

So 2
∑11

n=1
n+9

49×50
+
∑39

n=12
20

49×50

So 11×30+28×20
49×50

So
89

245
∼ 36.33%

Let be the points A(1, 2) and B(4, 4) in the cartesian system xOy. Find C on Ox for the max

angle BCA.

Solution

We get the max when the circle ABC is tangent to Ox

The center of this circle is then on the parabola y2 = (x − 1)2 + (y − 2)2 of the points at same

distance from A and 0x The center of this circle is also on the parabola y2 = (x− 4)2 + (y − 4)2 of

the points at same distance from B and 0x

Eliminating y between these two equations gives the required result : C
(√

26− 2, 0
)

Another

solution: Alternatively, the line extension of AB meets the x-axis at P (−2, 0). Since PC must be

tangent to the circumcircle of ABC, the power of point P is

PC2 = PA · PB =
√

13 · 2
√

13 = 26 ,

or PC =
√

26. Hence,

C ∈
{

(−2−
√

26, 0), (−2 +
√

26, 0)
}
.

It should be easy to you to verify which of them gives a bigger value of ∠BCA. (In fact, if angles

are measured with direction, then ∠BCA is smallest at C = (−2 −
√

26, 0) and is largest at C =

(−2 +
√

26, 0).)

Several pairs of positive integers (m,n) satisfy the equation 19m+90+8n = 1998. Of these,

(100,1) is the pair with the smallest value for n. Find the pair with the smallest value for m

Solution

Since 19× 100 + 8× 1 = 1908, all solutions are 19(100− 8k) + 8(1 + 19k) and the required value is

obtained with k =
⌊

100
8

⌋
= 12

Hence the answer : (m,n) = (4, 229)

Another solution It’s a linear Diophantine equation, hence the solution is : (m,n) = (8k +

100,−19k + 1).

(m,n) are positive imply that : −12 ≥ k ≥ 0, obviously m take it smallest value when k = −12,

just plug it to get : (m,n) = (4, 229).

Let n be positive integer and equation : x+ 2y + 5z = n. (1) Sn is number of positive integer

roots of (1) Prove that Sn = (n− 4)
⌊
n
10

⌋
+
⌊
n+2
10

⌋
−
⌊
n−1
10

⌋
− 5

⌊
n
10

⌋2

Solution

Let f(n) = (n− 4)
⌊
n
10

⌋
+
⌊
n+2
10

⌋
−
⌊
n−1
10

⌋
−5
⌊
n
10

⌋2

The positive integer solutions of x+ 2y = m are (m− 2, 1), (m− 4, 2), ..., (m− 2
⌊
m−1

2

⌋
,
⌊
m−1

2

⌋
)

And so the number of positive integer solutions of x+ 2y = m is Tm =
⌊
m−1

2

⌋
for any m > 0 and

Tm = 0 ∀m ≤ 0

Sn = Tn−5 + Tn−10 + Tn−15 + ... =
∑

n−1
5
≥k>0

⌊
n−5k−1

2

⌋
Writing n− 1 = 5u+ r, with r ∈ {0, 1, 2, 3, 4}, we get Sn =

∑u
k=1

⌊
5u−5k+r

2

⌋
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And so Sn =
∑u−1

k=0

⌊
5k+r

2

⌋
with the convention Sn = 0 if u < 1

From there, finding directly the expression f(n) from the sum Sn is possible but rather ugly and

I suggest a shorter path :

It’s immediate to check that f(n) = Sn ∀n ∈ [0, 9] It’s immediate to check that f(n+10)−f(n) =

n+ 1 It remains to check that Sn+10 − Sn = n+ 1 in order to conclude the proof :

Let n− 1 = 5u+ r and so n+ 10− 1 = 5(u+ 2) + r : Sn+10 =
∑u+1

k=0

⌊
5k+r

2

⌋
Sn+10 − Sn =

∑u+1
k=u

⌊
5k+r

2

⌋
=
⌊

5u+r
2

⌋
+
⌊

5u+5+r
2

⌋
Sn+10 − Sn = 5u+r

2
+ 5u+5+r

2
− 1

2
(exactly one of the two summands numerator is odd)

Sn+10 − Sn = 5u+ r + 2 = n+ 1 And this concludes the proof.

Which of the two numbers is greater: 100! or 10150?

Solution

So let’s take this: (1 · 20)(21 · 40)(41 · 60)(61 · 80)(81 · 100)

and that is definitely greater than (1 · 20)(20 · 40)(40 · 60)(60 · 80)(80 · 100) = 147456 · 1010 > 1015

Now take these nine values...

(2 · 19)(22 · 39)(42 · 59)(62 · 79)(82 · 99) · · · (10 · 11)(30 · 31)(50 · 51)(70 · 71)(90 · 91)

..all of which are greater than (1 · 20)(21 · 40)(41 · 60)(61 · 80)(81 · 100).

Now notice that when you multiply these ten ugly expressions together, you get (whoa) 100!.

Since each of these are greater than 1015, it follows that 100! > 10150.

Hand-made solution :

100! = 297348524716119137 175195234293313372 412432472531591611 671711731791831891971

348 = 924 > 824 = 272 716 = 24014 > 20004 = 216512 119 > 109 = 2959 137 > 107 = 2757

175195 = 3235 > 3205 = 23055 234 > 204 = 2854 293313 = 8993 > 8003 = 21556 372472 = 17392 >

16002 = 21254 412432 > 16002 = 21254 531971 = 51411 > 5000 = 2354 591891 = 52511 > 5000 = 2354

611831 = 50631 > 5000 = 2354 671791 = 52931 > 5000 = 2354 711731 = 51831 > 5000 = 2354

And so 100! > 297+72+16+9+7+30+8+15+12+12+3+3+3+3+3 524+12+9+7+5+4+6+4+4+4+4+4+4+4 = 2293595

Then we have 27 > 53 and so 100! > 2293595 > 2150(27)20595 > 2150(53)20595 = 21505155 > 21505150

= 10150

The variable x varies directly as the cube of y, and y varies directly as the square root of z. If

x equals 1 when z equals 4, what is the value of z when x equals 27?

Solution

So x = ay3 and y = b
√
z and so x = ab3z

√
z

z = 4 and x = 1 =⇒ ab3 = 1
8
and so x = z

√
z

8
and z = 4x

2
3 And so x = 27 =⇒ z = 36

Find all continuous function f(x) that f : R+ → R+ that:

f(2x) = f(x)∀x ∈ R+

Solution

One general solution is h
({

ln(x)
ln(2)

})
for any fonction h(x) : [0, 1) → R+ (h(x) continuous on [0, 1)

and limx→1 h(x) = h(0)) and where {u} is the fractional part of u.

It’s a general solution because : 1) All functions in this form are solutions 2) All solutions may

be written in this form.

If you transform the problem in f(x) : R+
0 → anything, then the unique family of solutions is

f(x) = c (the key difference is "0 is in domain of f(x) or not")

Prove that for some natural number n, n! begins with the digit sequence 2007.

Solution
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Let S the beginning sequence and k its length (number of digits). Here S = 2007 and k = 4.

Let p > k + 3, N = 102p − 1, m =the number of decimal digits of N ! and n = 3× 10p. Let then

the sequence ai = (N + i)!10−(m−k+2ip) for i ∈ {0, ..., n} ba0c has exactly k digits.
an
a0

= (N+n)!
N !

10−2np =
∏n−1

k=0(1 + k10−2p) Using inequality x− x2

2
< ln(1 + x) < x, it’s rather easy

to show that 10 < an
a0
< 100

Then, ∀i ∈ {1, ..., n}, ai−ai−1 = ai−1(i−1)10−2p < ann10−2p < 100a03×10p10−2p < 300×10k−p <

1 and so the baic = bai−1c or baic = bai−1c+ 1.

So the sequence baic is a sequence of integers, each equal to the previous or to the previous+1,

beginning with a number of k digits and ending with a number greater than 10 times the first one.

Then one of these numbers, say baqc must be S or 10S.

Then the k first digits of (N + q)! are the required sequence S.

Find the maximum value of k such that
(

2008
1000

)
is divisible by 21k, where k is a natural number.

Solution

We have ordp(
(

2008
1000

)
) = ordp(2008!) − ordp(1000!) − ordp(1008!) =

∑+∞
k=1b

2008
pk
c −

∑+∞
k=1b

1000
pk
c

−
∑+∞

k=1b
1008
pk
c

So ord3(
(

2008
1000

)
) = b2008

3
c + b2008

9
c + b2008

27
c +b2008

81
c + b2008

243
c +b2008

729
c −b1008

3
c − b1008

9
c − b1008

27
c

−b1008
81
c − b1008

243
c −b1008

729
c −b1000

3
c − b1000

9
c − b1000

27
c −b1000

81
c − b1000

243
c −b1000

729
c

And ord3(
(

2008
1000

)
) = 669 + 223 + 74 +24 + 8 + 2 −336 − 112 − 37 −12 − 4 − 1 −333 − 111 − 37

−12− 4− 1 = 0

And so k = 0

Suppose p is a prime gretaer than 3. Find all pairs (a, b) of integers satisfying the equation

a2 + 3ab+ 2p(a+ b) + p2 = 0

Solution

The equation may be written (a+ b+ p)2 = b(b− a)

So b(b− a) is a perfect square and we have b = ku2 and a = ku2 − kv2 fore some k, u, v.

Then a+ b+ p = ε0kuv, which may be written 2ku2 − kv2 + p = ε0kuv (where ε0 is −1 or +1)

So p = kv2 − 2ku2 + ε0kuv = k(v − ε0u)(v + 2ε0u)

Since p is prime, we have three cases : 1) k = ε1 v − ε0u = ε2 p = ε0ε1ε2(3u + ε0ε2) This is

equivalent to : k = ε1 v − ε0u = ε0ε1 p = 3u+ ε1 And so : p = 3u+ ε1 a = −2u− ε1 b = ε1u
2

2) k = ε1 v + 2ε0u = ε2 p = −ε0ε1ε2(3u − ε0ε2) This is equivalent to : k = ε1 v = 2ε1ε2u + ε2

p = 3u+ ε1

And so : p = 3u+ ε1 a = −ε1(3u2 + 1)− 4u b = ε1u
2

3) v − ε0u = ε1 v + 2ε0u = ε2 p = ε1ε2k

Which gives : p = k a = −k b = 0

*******************************

As a conclusion

For any prime p we have the solution (−p, 0)

For any prime p = 1 (mod 3), we also have the two solutions :

(−2p+1
3
, (p−1)2

9
)

(−p(p+2)
3

, (p−1)2

9
)

For any prime p = 2 (mod 3), we also have the two solutions :

(−2p−1
3
,− (p+1)2

9
)
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(p(p−2)
3

,− (p+1)2

9
)

In any triangle ABC, if BC + AC = 2AB, show that cot(A/2) + cot(B/2) = 2 cot(C/2)

Solution

a+ b = 2c⇐⇒ 2s− (a+ b) = 2s− 2c⇐⇒ s− a+ s− b = 2(s− c)
⇐⇒ s(s−a)

[ABC]
+ s(s−b)

[ABC]
= 2s(s−c)

[ABC]

Now using Heron’s formula =⇒
√

s2(s−a)2

s(s−a)(s−b)(s−c) +
√

s2(s−b)2

s(s−a)(s−b)(s−c) = 2
√

s2(s−c)2

s(s−a)(s−b)(s−c)

⇐⇒
√

s(s−a)
(s−b)(s−c) +

√
s(s−b)

(s−a)(s−c) = 2
√

s(s−c)
(s−a)(s−b) ⇐⇒ cot A

2
+ cot B

2
= 2 cot C

2
.

Other relations in triangles having sides in aritmethic progression:

∥∥∥∥∥∥∥∥∥∥∥∥

2
ha

= 1
hb

+ 1
hc

4 cosA+ cos (B − C) = 3

sin A
2

= 1
2

cos B−C
2

∥∥∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥∥∥

3 tan B
2

tan C
2

= 1

3 sin2 A
2

= sinB sinC

2 cosA+ cosB + cosC = 2

∥∥∥∥∥∥∥∥∥∥∥∥
.

Find x ∈ R such: [x+ 1
2
]+[x− 1

2
] = [2x] Let y = x− 1

2
and the equation is by+1c+byc = b2y+1c

⇐⇒ 2byc = b2yc ⇐⇒ y ∈ [n, n+ 1
2
)

Hence the answer : x ∈
⋃
n∈Z

[n+
1

2
, n+ 1)

Another way: Using the well-known identity [x] +
[
x+ 1

2

]
= [2x] obtain that

[
x+ 1

2

]
+
[
x− 1

2

]
=

[2x] ⇐⇒ [x] =
[
x− 1

2

]
= z ∈ Z ⇐⇒

{
z ≤ x < z + 1

z ≤ x− 1
2
< z + 1

∥∥∥∥∥ ⇐⇒
{

z ≤ x < z + 1

z + 1
2
≤ x < z + 3

2

∥∥∥∥∥ ⇐⇒
z + 1

2
≤ x < z + 1 , z ∈ Z . In conclusion, x ∈

⋃
z∈Z
[
z + 1

2
, z + 1

)
.

Remark.
[
x+ 1

2

]
+
[
x− 1

2

]
= [2x] ⇐⇒ x ∈

⋃
z∈Z
[
z + 1

2
, z + 1

)
⇐⇒ [2 · {x}] = 1 .

Note: We could apply Hermite’s identity one more time as

⌊
x− 1

2

⌋
+

⌊
x− 1

2
+

1

2

⌋
= b2x− 1c,

in order to obtain 2bxc = b2x − 1c = b2bxc + 2{x} − 1c = 2bxc − 1 + b2{x}c, whence b2{x}c = 1,

and then the conclusion.

Let n be a positive integer. Find the number of 2n-digit positive integers a1a2 . . . a2n such that

(i) none of the digits ai is equal to 0, and (ii) the sum a1a2 + a3a4 + . . .+ a2n−1a2n is even.

Followup: What if we mandate that a1a2 + a2a3 + a3a4 + . . .+ a2n−1a2n be even instead?

Solution

For a number x = a1a2 . . . a2n, let us call p(x) = a1a2 + a3a4 + . . .+ a2n−1a2n.

If we call Sn the required number (count of numbers x without 0, with length 2n and such that

p(x) is even), we can say that S2(n+1) is : The count of numbers with length 2n and p(x) even (Sn)

multiplied by 56 (the number of possibilities for a2n+1a2n+2 even). Plus the count of numbers with

length 2n and p(x) odd (92n − Sn) multiplied by 25 (the number of possibilities for a2n+1a2n+2 odd).

And so Sn+1 = 56Sn + 25(81n − Sn) and S1 = 56

This formula is quite easy to solve (compute first Tn = Sn
81n

) and gives :

Sn =
31n + 81n

2
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Find all pairs of integers (x, y) satisfying

1 + x2y = x2 + 2xy + 2x+ y.

Solution

Writing this as y = −x2+2x−1
x2−2x−1

= −1− 4x
x2−2x−1

, we must find all integer x such as the last fraction is

integer.

First let’s check the domain where the denominator is negative. Since the roots of x2 − 2x − 1

are 1±
√

2, those values of x are x ∈ {0, 1, 2}. For all of them we get an integer y, so the first three

pairs are (0, 1), (1,−1), (2,−7)

Now we check x > 3 ∨ x 6 −1. We have two inequalities:

1. 4x
x2−2x−1

> 1 ⇐⇒ 4x > x2−2x−1 (note: the denominator is positive in the examined domain),

and that yields x2 − 6x− 1 6 0. The corresponding values for x are x ∈ {3, 4, 5, 6}. Checking shows

that only x = 3 yields an integer y, so another solution is (3, 7)

2. 4x
x2−2x−1

6 −1 ⇐⇒ 4x 6 −x2 + 2x+ 1 ⇐⇒ x2 + 2x− 1 6 0. The corresponding values for x

are x ∈ {−2,−1}, but only x = −1 yields an integer y, hence another solution is (−1,−1)

Therefore the complete set of solutions is {(−1,−1), (0, 1), (1,−1), (2,−7), (3, 7)}
Let ABCD is a prallelogram.Choose 2 point E and F on the side AB.(E ∈ [AF ] )DF and CE

meet at P.2 circumcircles of triangles PAE and PFB meet at Q(Q 6= F ).Prove that PQ is parallel to

AD

Solution

Let the radical axis PQ of �(PAE) and �(PFB) cut AB and DC at R and R′, respectively. Thus,

RE · RA = RF · RB. On the other hand, from the similar triangles 4PEF ∼ 4PCD, we have
RE
RF = R′C

R′D =⇒ R′C
R′D = RB

RA . Since AB = DC, we conclude that RA = R′D and RB = R′C =⇒
PQ ‖ AD ‖ BC.

Let f(x) = anx
n + . . .+ a1x+ a0 have n solutions x1, x2, ..., xn Prove:

1

f ′(x1)
+ . . .+

1

f ′(xn)
= 0

Solution

For the problem to make sense, n > 1. If f(x) = an
∏n

k=1(x − xk), by the chain rule we obtain

f ′(xi) = an
∏n

k=1,k 6=i(xi − xk). Then

n∑
i=1

1

f ′(xi)
=

n∑
i=1

(
1

an
·

n∏
k=1,k 6=i

1

(xi − xk)

)
.

This is the coefficient of the xn−1 term of the Lagrange interpolation polynomial L(x) through the

n points (xi, 1/an), but clearly L(x) = 1/an so it follows that the desired sum is equal to 0.

Let P be the Fermat Point of ∆ABC. Prove that the Euler lines of ∆s PAB,PBC,PCA are

concurrent and the point of concurrence is G, the centroid of ∆ABC?

Solution

Let 4A′BC,4B′CA and 4C ′AB be three equilateral triangles erected outside 4ABC. Let X, Y, Z
denote their circumcenters. Thus, P ≡ (X) ∩ (Y ) ∩ (Z) and P ≡ AA′ ∩ BB′ ∩ CC ′. Let G1, G2, G3

denote the centroids of 4PBC, 4PCA, 4PAB =⇒ XG1, Y G2 and ZG3 are the Euler lines of

4PBC,4PCA,4PAB. If M is the midpoint of BC and G is the centroid of 4ABC, we get
MX
MA′

= MG1

MP
= MG

MA
= 1

3
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Therefore, X,G1, G are collinear on a parallel line to AA′. Hence, Euler lines of 4PBC, 4PCA,
4PAB concur at the centroid G of 4ABC.

Find al positive integers m,n, where n is odd, that satisfy
1
m

+ 4
n

= 1
12
.

Solution

Put n = 2k − 1. Then
1
m

= 1
12
− 4

2k−1
= 2k−49

24k−12
⇐⇒ m = 24k−12

2k−49

Write this as m = 12(2k−49)+576
2k−49

= 12 + 576
2k−49

Since 576 = 26 · 32 and 2k − 49 is odd, we get 2k − 49 ∈ {1, 3, 9}. Computing k,m, n in those

cases, we get

(m,n) ∈ {(588, 49), (204, 51), (76, 57)}
Determine a, b ∈ R such that the function f : [0, 2]→ [−1, 3] , f(x) = ax+ b is bijective.

Solution

If f(x) = ax+ b is bijective, then all the real numbers in the interval [0, 2] must map to all the real

numbers in the interval [−1, 3]. Note that the length of the first interval is 2 and that the length of

the second interval is 4. Therefore, we let a = 2 so we have [0, 2] 7→ [0, 4]. Now we let b = −1 so that

we have [0, 4] 7→ [−1, 3]. Thus, f(x) = 2x− 1 .

How many real solutions does the equation x331/x3
+ 1

x3 3x
3

= 6 have?

(A) 0 (B) 2 (C) 3 (D) Infinitely many (E) None

Solution

x must be positive, since otherwise LHS would be negative.

LHS > 2
√

3x3+x−3 > 2
√

32 = 6

Hence x3 = x−3 ⇐⇒ x = 1. That’s the unique solution, so the answer is E.

1. For how many nonnegative integers n does x3 + (n− 1)x2 + (n− n2)x− n3 have all integer

roots?

2. Consider the set of all equations x3 + a2x
2 + a1x + a0 = 0, where a2, a1, a0 are real constants

and |ai| ≤ 2 for i = 0, 1, 2. Let r be the largest positive real number which satisfies at least one of

these equations. Find r.

Solution

Problem 1) We expand and factor: x3 + (n− 1)x2 + (n− n2)x− n3 = x3 + nx2 − x2 + nx− n2x− n3

= (x− n)(x2 + 2xn+ n2 − x) = (x− n)(x2 + (2n− 1)x+ n2).

For this to factor, the discriminant of the quadratic must be a perfect square. Then since the

coefficient of x2 is 1 and the other coefficients are integers, the roots will be integers.

The discriminant is (2n− 1)2 − 4(n2)(1) = 4n2 − 4n+ 1− 4n2 = 1− 4n. This is negative unless

n = 0, and in this case it is in fact a square. Thus there is 1 nonnegative integer n so that that

equation has all integer roots.

Problem 2) The greatest r is the root of x3− 2x2− 2x− 2. I couldn’t find any useful closed form

of it, and now we show that this is the greatest.

Let s > r be the root of x3 + ax2 + bx + c where |a|, |b|, |c| ≤ 2. Then 0 = s3 + as2 + bs + c =

s3 − 2s2 − 2s− 2 + (2 + a)s2 + (2 + b)s+ (2 + c) > (2 + a)s2 + (2 + b)s+ (2 + c) > 0, impossible.

We know that s3 − 2s2 − 2s − 2 is positive, because after the root, it only increases. (shown by

taking derivatives...) and we know that (2+a)s2 +(2+b)s+(2+c) > 0 because s and s2 are positive,

and so are all of 2 + a, 2 + b, 2 + c. Hence the root of x3 − 2x2 − 2x− 2 is the greatest r possible.

i) Solve in R the equation : 3
√
x+ 6 +

√
x− 1 = x2 − 1
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ii) Solve in R the equation : 2003x = 2004.2003logx 2004

Solution

Problem 1) x = 2 is a solution. We will show that it is the only solution. Moving everything to

the LHS, 1 − x2 + 3
√
x+ 6 +

√
x− 1 = 0 and let f(x) = 1 − x2 + 3

√
x+ 6 +

√
x− 1. Since 1 − x2,

3
√
x+ 6, and

√
x− 1 are all concave functions, their sum f(x) is concave throughout its domain.

f ′(x) is decreasing. Assume for the sake of contradiction that the original equation has two or more

solutions. Then, in [1,∞), the domain of f , there are two or more zeroes. Call the first two zeroes a

and b, where a < b. Since f(1) = 3
√

7 > f(a) = 0 and 1 < a, f(x) must be decreasing at some value

c ∈ (1, a). Thus f ′(c) < 0. Since f ′(x) is decreasing, for all x > c, f ′(x) < 0, and f(x) is decreasing.

Since b > a > c, f(b) < f(a) = 0, contradiction

Another way: (no derivatives necessary)

First of all, x > 1 because of the second term.

Write the equation as
3
√
x+ 6− 2 +

√
x− 1− 1 = x2 − 4

x−2
3
√

(x+6)2+2 3√x+6+4
+ x−2√

x−1+1
= (x− 2)(x+ 2)

Obviously, x = 2 is a solution. Assume x 6= 2. Then
1

3
√

(x+6)2+2 3√x+6+4
+ 1√

x−1+1
= x+ 2

The LHS is 6 1
4

+ 1
1
, and the RHS is > 3, so there can be no solution.

Therefore x = 2 is the only solution.

Find all positive integers n for which cos(π
√
n2 + n) ≥ 0

Solution

Put
√
n2 + n = 2k+δ where k ∈ N, δ ∈ R, 0 6 δ < 2. Then by the given condition, δ ∈

[
0, 1

2

]
∪
[

3
2
, 2
)
.

That also can be written as{√
n2+n

2

}
∈
[
0, 1

4

]
∪
[

3
4
, 1
)

(∗)
It is easily shown that n− 1

2
<
√
n2 + n < n+ 1

2
for natural n. Hence

n
2
− 1

4
<
√
n2+n

2
< n

2
+ 1

4

Case 1. n = 2M,M ∈ N. Then we get M − 1
4
<
√
n2+n

2
< M + 1

4
. Obviously, the fractional part

of the middle expression satisfies the condition (∗)
Case 2. n = 2M − 1,M ∈ N. Then we get M − 3

4
<
√
n2+n

2
< M − 1

4
. Obviously, the fractional

part of the middle expression does not satisfy the condition (∗).
Hence we conclude that all even n satisfy the initial condition.

Solve in R the equation : log2(sinx) + log3(tanx) = log4(cos2 x) + log5(cotx) .

Solution
log sinx

log 2
+ log tanx

log 3
− log cosx

log 2
+ log tanx

log 5
= 0

log tanx
log 2

+ log tanx
log 3

+ log tanx
log 5

= log tanx
(

1
log 2

+ 1
log 3

+ 1
log 5

)
= 0

tanx = 1⇒ x = π
4

+ kπ

Solve in R 1
5

(x+1)(x−3)
(x+2)(x−4)

+ 1
9

(x+3)
(x+4)

(x−5)
(x−6)

− 2
13

(x+5)
(x+6)

(x−7)
(x−8)

= 92
585

Solution

Write this as
1
5
x2−2x−3
x2−2x−8

+ 1
9
x2−2x−15
x2−2x−24

− 2
13
x2−2x−35
x2−2x−48

= 92
585

1
5

(
1 + 5

x2−2x−8

)
+ 1

9

(
1 + 9

x2−2x−24

)
− 2

13

(
1 + 13

x2−2x−48

)
= 92

585
1

x2−2x−8
+ 1

x2−2x−24
− 2

x2−2x−48
= 0

Put u := x2 − 2x− 8. Then
1
u

+ 1
u−16
− 2

u−40
= 0
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u2 − 56u+ 640 + u2 − 40u− 2u2 + 32u = 0

−64u+ 640 = 0

u = 10

x2 − 2x− 18 = 0

x1,2 = 1±
√

19

Solve the equation: x2
√
x+2

+ 1 = 2x2

Solve the system of equations: x2(x4 + 2) + y3 =
√
xy(1− xy)

2y3(4x+ 1) + 1 ≥ 4x2 + 2
√

1 + (2x− y)2

Solution

Problem 1) We can rewrite this as

x2 +
√
x+ 2 = 2x2

√
x+ 2

=⇒ x2 =
√
x+ 2(2x2 − 1)

=⇒
√
x+ 2 = x2

2x2−1

=⇒ x+ 2 = x4

4x4−4x2+1

=⇒ 4x5 + 8x4 − 4x3 − 9x2 + x+ 2 = 0

By the Rational Root Theorem, x = −1 is a root of the equation. Thus, we may write

4x5 + 8x4 − 4x3 − 9x2 + x+ 2 = (x+ 1)(4x4 + 4x3 − 8x2 − x+ 2) = 0.

However, by the Rational Root Theorem, 4x4 +4x3−8x2−x+2 does not have any rational roots

(it has more real roots, but not rational ones).

Thus, x = −1 is the only rational solution.

Let a,b,c are positive number sastify that

a2 + b2 + c2 = 12

Prove that:
1√

(1 + ab2)3
+

1√
(1 + bc2)3

+
1√

(1 + ca2)3
≥ 1

9

Solution

Using Jensen for f(x) = 1√
x3

we come to the obvious by CS result 24 ≥ ab2 + bc2 + ca2

Let ABC be a triangle , R the radius of circumcircle and S its area .

If a2 + b2 + c2 = 4 then prove that 6R2 + S2 ≥ 3 .

Solution

If you put x = a2 + b2 − c2 and the similars it becomes:

xy + yz + zx

4
≥ 3xyz

xy + yz + zx

which is trivial.

Let xi be a set of reals such that
∑n xi = n. Prove that∑n(n+ xi + 1

xi
)(n+ xi + x2

i ) ≥ n3 + 4n2 + 4n

Solution

The LHS is equivalent to n3 + 2n2 + 2n+
∑
x3
i + (n+ 1)

∑
x2
i +

∑
xi
∑

1
xi
≥ n3 + 4n2 + 4n.

so, it suffices to prove that
∑
x3
i + (n+ 1)

∑
x2
i +

∑
xi
∑

1
xi
≥ 2n2 + 2n.

But from Chebychev’s inequality we get that
∑
x3
i ≥

∑
x2
i . So, we need to prove that (n +

2)
∑
x2
i +

∑
xi
∑

1
xi
≥ n2 + n2 + 2n which is obviously true from CS and AM-GM
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Let d > c > b > a. Prove that abbccdda ≥ bacbdcad

Solution

It is equivalent to ( c
a
)d−b ≥ (d

b
)c−a Taking the ln of both sides, ln c−ln a

c−a ≥ ln d−ln b
d−b But note that these

are the slopes of the lines on f(x) = lnx between (a, ln a) and (c, ln c) and the line between (b, ln b)

and (d, ln d). As f(x) = ln x is a concave function and a < b < c < d, this inequality must be true.

Let xn be a sequence. It is known that (n + 2)xn+2 − 6(n + 1)xn+1 + 8nxn = 0 and x1 = 1
6

,x2 = 1
20

.Find xn.

Solution

Let yn = nxn then we have yn+2 − 6yn+1 + 8yn = 0 and y1 = 1
6
, y2 = 1

10
.It is well known that yn can

be written with constants a, b as yn = a2n−1 + b4n−1.By the case of n = 1, 2, we have a+ b = 1
6
and

2a+ 4b = 1
10
,or a = 17

60
, b = − 7

60
,hence yn = 1

60
(17 · 2n−1 − 7 · 4n−1).

Eventually we have xn = 1
60n

(17 · 2n−1 − 7 · 4n−1).

Given any three non-collinear points in a plane, two of which are fixed and one variable, what

is the locus of the center of the circle through these points?

Solution

By definition, the center of the circle must be equidistant (the distance is all the same) from all three

points, and therefore from the two fixed points.

It is also well known that the locus of all points equidistant from two points is the points’ segment’s

perpendicular bisector.

Finally, to generate a specific point on the perpendicular bisector, just draw the circle and pick

a random point on it.

Let a,b,c >0 and a+b+c=1, prove that
1+a2

2bc+a
+ 1+b2

2ca+b
+ 1+c2

2ab+c
≥ 6

Solution∑
1

2bc+a
+
∑

a2

2bc+a
≥ 9

1+2(ab+bc+ca)
+ 1

1+2(ab+bc+ca)
= 10

1+2(ab+bc+ca)
.

So we have to prove that:
10

1+2(ab+bc+ca)
≥ 6⇐⇒ 1 ≥ 3(ab+ bc+ ca) which is true.

If (a+ b+ c)2 = a2 + b2 + c2, prove that:

∑
cyc

a2

a2 + 2bc
= 1

Solution

Since the condition ab+ bc+ ca = 0. Hence:

∑
cyc

a2

a2 + 2bc
= 1⇔

∑
cyc

a

a− 2(b+ c)
= 1⇔

⇔ 4(a3 + b3 + c3) + 15abc = 4(a3 + b3 + c3)− 6(ab(a+ b) + bc(b+ c) + ca(c+ a))− 3abc

which is true because

ab(a+ b) + bc(b+ c) + ca(c+ a) = (a+ b+ c)(ab+ bc+ ca)− 3abc = −3abc

Prove that of all triangles inscribed in a given triangle, the one with least perimeter connects

the feet of the given triangle.
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Solution

Let 4ABC be an acute triangle with orthocenter H and circumcenter O. X, Y, Z are the feet of the

altitudes on BC,CA,AB. 4DEF is an arbitrary triangle such that D,E, F lie on BC,CA,AB. So

we have to prove

DE + EF + FD ≥ XY + Y Z + ZX.

In the quadrangles AEOF,BFOD and CDOE we have the following inequalities:

[AEOF ] ≤ R·EF
2

, [BFOD] ≤ R·FD
2

, [CDOE] ≤ R·DE
2

=⇒ [4ABC] ≤ R·(DE+EF+FD)
2

Since O,H are isogonal conjugates, we get OA ⊥ Y Z, OB ⊥ ZX, OC ⊥ XY

[AYHZ] = R·Y Z
2

, [BZHX] = R·ZX
2

, [CXHY ] = R·XY
2

=⇒ [4ABC] = R·(XY+Y Z+ZX)
2

Therefore, DE + EF + FD ≥ XY + Y Z + ZX and the proof is completed.

Prove that in a convex cyclic quadrilateral AB ·AD ·EC = CB ·CD ·EA (where A, B, C, D

are the vertices, E is the intersection of the diagonals). Is the converse true?

Solution

We have 4AEB ∼ 4DEC and 4AED ∼ 4BEC (since all the angles are equal, this is how you

prove power of a point). Thus, AB
AE

= CD
ED

and BC
CE

= AD
ED

Dividing them, we get the desired result.

If there exists a regular n-gon with its vertices at lattice points in a cartesian plane, prove that

n=4

Solution

Suppose we had regular polygon with latice point vertices.

The area of a regular n-gon with side length s is given by A = n
4
· s2 · cot

(
180
n

)
Note that the side length squared, s2, is an integer because s =

√
(x1 − x2)2 + (y1 − y2)2 where

(x1, y1), (x2, y2) are two adjacent vertices

Also cot
(

180
n

)
is irrational when n 6= 4

Thus we conclude that our polygon has an irrational area when n 6= 4

However, by the Shoelace Theorem , a polygon with lattice point vertices has a rational area.

Contradiction �

Prove that if a+ b+ c = 0, then

(ax+ b)4 + (bx+ c)4 + (cx+ a)4 = (bx+ a)4 + (cx+ b)4 + (ax+ c)4

for any complex number x

Solution

Consider the polynomial P (x) = (ax+b)4+(bx+c)4+(cx+a)4−(bx+a)4−(cx+b)4−(ax+c)4 I claim

that 0,1,2,−1 and 1
2
are all roots. 0,1, and −1 are obviously roots. Note that 2a+b = a+(a+b) = a−c,

and so on, thus 2 is a root. Also, 1
2
a + b = 1

2
a + 1

2
b + 1

2
b = 1

2
(a + b) + 1

2
b = 1

2
(b− c) and so on, thus

1
2
is a root. Since P (x) is a fourth degree polynomial with 5 roots, it must just be 0. Actually, if you

expand P (x) is only a cubic so we only needed four roots. In fact, for any a,b, and c, P (x) will be

divisible by x3 − x.
Let ABC be a triangle, and let D,E, F be the feet of the altitudes from A,B,C respectively.

Construct the incircles of triangles AEF,BDF and CDE; let the points of tangency with DE,EF

and FD be C”, A”, and B” respectively. Prove that AA”, BB”, CC” concur.

Solution

Let A′, B′, C ′ be the tangency points of the incircle (I) of 4ABC with BC,CA,AB. Sidelines
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EF, FD,DE of the orthic triangle are respectively antiparallel to BC,CA,AB. Thus, there exists

the product of the axial symmetry about the angle bisector of ∠BAC and a positive homothety

centered at A taking EF into BC and therefore carrying the incircle of 4AEF into (I) =⇒ AA′

and AA′′ are isogonals with respect to ∠CAB. Similarly, BB′, BB′′ and CC ′, CC ′′ are isogonals with

respect to ∠ABC and ∠BCA. Since AA′, BB′, CC ′ concur at the Gergonne point of 4ABC, then
AA′′, BB′′, CC ′′ concur at its isogonal conjugate with respect to 4ABC.

Solve in natural the equation (x+ y)(x+ z) = xyz

Solution

Let g = gcd(x, y), x = ga, y = gb, then (a + b)(ga + z) = gabz. But gcd(a, b) = 1 so a|ga + z,

so a|z. So z = ka. Thus, (a + b)(g + k) = gbak. Let gcd(g, k) = n. Then g = nr, k = ns and

gcd(r, s) = 1. Thus, (a+ b)(r+ s) = nrsab. So we must have rs|a+ b, ab|r+ s. Thus, a+ b ≥ rs and

r + s ≥ ab. But if either r or s is at least 2 then a+ b ≥ rs ≥ r + s ≥ ab, so either a or b is at most

2. I have the solutions (a, b, r, s) = (1, 1, 1, 1),(2, 2, 2, 2),(2, 1, 1, 1),(3, 1, 2, 1) which yield the solutions

(x, y, z) = (4, 4, 4),(6, 3, 6),(6, 6, 3),(12, 4, 6), and (12, 6, 4). I think that’s it, I may have left out some.

Prove that
n−1∏
k=1

sin
kπ

n
=

n

2n−1
.

Solution

we know that i3n+1 exp
(
iπ(n−1)

2

)
= 1 now Consider the function f (x) = xn−1 + xn−2 + ... + x +

1 = xn−1
x−1

=
n−1∏
j=1

(x− wj) note that wj = exp
(

2πki
n

)
= cos

(
2πk
n

)
+ i sin

(
2πk
n

)
= 1 − 2 sin2

(
πk
n

)
+

2i sin
(
πk
n

)
cos
(
πk
n

)
then 1−wj =

(
sin
(
πk
n

)
− i cos

(
πk
n

))
2 sin

(
πk
n

)
now, we know that n = 1 + 1 + 1 +

...+1+1 = 1n−1 +1n−2 + ...+1+1 = f (1) f (1) =
n−1∏
j=1

(1− wj) =
n−1∏
j=1

(
sin
(
πk
n

)
− i cos

(
πk
n

))
2 sin

(
πk
n

)
=

n−1∏
j=1

(
sin
(
πk
n

)
− i cos

(
πk
n

)) n−1∏
j=1

2
n−1∏
j=1

sin
(
πk
n

)
= 2n−1

n−1∏
j=1

sin
(
πk
n

)
· i3n+1 exp

(
iπ(n−1)

2

)
= n

2n−1
n−1∏
j=1

sin
(
πk
n

)
· 1 = n⇒

n−1∏
j=1

sin
(
πk
n

)
= n

2n−1

Let f : N → N solve for f(n) from system equation

f(n) + f(n+ 1) = f(n+ 2)f(n+ 3)− 1996

Solution

You can stack two equations to get f(n+2)−f(n) = f(n+3)(f(n+4)−f(n+2)). If f(n+2)−f(n) is

nonzero then we must have a steadily decreasing sequence or a steadily increasing sequence over the

evens. Decreasing is impossible because we are using the natural numbers. Increasing is impossible or

else we will need infinite divisors for the odd integers. Therefore f(n+2) = f(n). Set f(even) = a and

f(odd) = b. Then we get (a−1)(b−1) = 1997, and thus our solutions are f(odds) = 1998, f(evens) = 2

or f(odds) = 2, f(evens) = 1998.

Let x, y, z > 0 so that x+ y + z = 1 . Prove that :

logx(x
2 +y2 +z2)+logy(x

2 +y2 +z2)+logz(x
2 +y2 +z2) ≤ x logx(xyz)+ y logy(xyz)+z logz(xyz)

Solution

Pick a ∈ (0, 1), it suffices to prove

loga(x
2 + y2 + z2)

∑
1

loga(x)
≤ loga(xyz)

∑
1

loga(x)

Since a ∈ (0, 1), loga(x) is a decreasing concave functions. Therefore, by Jensen
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loga(xyz) = loga(x) + loga(y) + loga(z) ≥ 3 loga
(
x+y+z

3

)
= 3 loga(

1
3
) (1)

Also, since loga(x) is decreasing, and x2 + y2 + z2 ≥ 1
3
(x+ y + z)2 = 1

3
it follows that

loga
(

1
3

)
≥ loga(x

2 + y2 + z2) (2)

From (1) and (2), loga(xyz) ≥ 3 loga(x
2 + y2 + z2)

So it now suffices to prove that∑
1

loga(x)
≤
∑

3x
loga(x)

(3)

But since loga(x) is decreasing, this implies that

(x, y, z) and
(

1
loga(x)

, 1
loga(y)

, 1
loga(z)

)
are similarly sorted

Therefore (3) follows from Chebychev. �

Let a = 2010
√

2010 ,To compare aa
...a

(2010) 2010 ?

Solution
2010
√

2010 = 2010
1

2010 =⇒ (aa
a...a

)2010 = 2010

x and y are real numbers. Prove that

|2x− y − 1|+ |x+ y|+ |y| ≥ 1

3

Find the minimal value of |2x− y − 1|+ |x+ y|+ |y|, where {x, y} ⊂ C.
Solution

3|2x−y−1|+3|x+y|+3|y| ≥ |2x−y−1|+2|x+y|+3|y| ≥ |(2x−y−1)−2(x+y)+3y| = |−1| = 1

equality when x = −y = 1
3

Find alll the natural number solutions such that m > n > 1

and mn = nm

Solution

For any prime p and any integer x, let vp(x) be the largest power of p dividing x. mn = nm implies

that nvp(m) = mvp(n). Since m > n, vp(n) < vp(m), or else mvp(n) > nvp(m). This means that n|m,

so we may set m = kn for some integer k. Then (kn)n = nkn, giving kn = nk, so nk−1 = k. If n > 2,

then nk−1 > 3k−1. It can easily be shown by induction that 3k−1 > k for all k > 1, so we must have

that n = 2, trivially resulting in k = 2 as well. Hence, our only solution is (2, 4). Another way: You

could take the ln of both sides to get lnm
m

= lnn
n

and since lnx
x

is decreasing for x > e, we only need

to check n = 2. But (2, 4) is clearly a solution, and it can be the only as for m > 4, lnm
m

would just

be lower. This has been posted many times.

Find all the real positive numbers x, y knowing that a = x+y
2
, b =

√
xy, c = 2xy

x+y
, d =

√
x2+y2

2

they are natural numbers which sum is 66

Solution

a = x+y
2
, b =

√
xy, c = 2xy

x+y
, d =

√
x2+y2

2

We have b2 + d2 = 2a2 where a, b, d ∈ N
Hence for some coprime integers (m,n) we have

b = k(m2 − n2 − 2mn), d = k(m2 − n2 + 2mn), a = k(m2 + n2)

In addition c = b2

a
, which implies that

b2

a
= k(m2−n2−2mn)2

m2+n2 = k(m2 + n2)− 4kmn(m2−n2)
m2+n2 ∈ N

so m2 + n2|4kmn(m2 − n2) however since gcd(m,n) = 1, suppose p is prime and p|m2 + n2 then

p 6 |mn otherwise p divides both m and n which is a contradiction.

Similarly if p|m2 − n2 then p|((m2 − n2) + (m2 + n2))⇒ p|2m2 hence p|2
So we can conclude that m2 + n2|8k.
Now a+ b+ c+ d = 4km2 − 4mnk(m2−n2)

m2+n2 = 66
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Since 4k(m2−n2)
m2+n2 is an integer, we can factor out the m on the LHS to yield

m
(

4km− 4nk(m2−n2)
m2+n2

)
= 66

so m|66 =⇒ m = 1, 2, 3, 6, 11...

Now m < 6 because

m2 + n2|8k implies k ≥ (m2+n2)
8

And therefore

66 = 4km2 − 4kmn(m2−n2)
m2+n2 > 2k(m2 + n2) ≥ (m2+n2)2

4

Subbing in m ≥ 6 leads to contradiction, therefore (after noting that m > n ≥ 1) we are left with

only three cases

(m,n) = (2, 1), (3, 1), (3, 2)

Plugging in shows that only the first case works and k = 5, yielding (a, b, c, d) = (25, 5, 1, 35)

Solving the system and checking that the solution works gives

(x, y) = (25 + 5
√

24, 25− 5
√

24)

g(n) = (n2 − 2n+ 1)
1
3 + (n2 − 1)

1
3 + (n2 + 2n+ 1)

1
3 . 1

g(1)
+ 1

g(3)
+ . . .+ 1

g(999999)
=?

Solution

Factoring the function gives (n − 1)2/3 + [(n + 1)(n − 1)]1/3 + (n + 1)2/3, which is in the form

x2 +xy+ y2 = x3−y3

x−y , where x = (n+ 1)1/3 and y = (n− 1)1/3 Substituting gives 2
(n+1)1/3−(n−1)1/3 , and

so 1
g(n)

= (n+1)1/3−(n−1)1/3

2
The answer just telescopes:

3√2− 3√0+ 3√4− 3√2+···+ 3√1000000− 3√999998
2

=
3√1000000

2
=

50

Find all positive solution of system of equation:
xy

2005y+2004x
+ yz

2004z+2003y
+ zx

2003x+2005z
= x2+y2+z2

20052+20042+20032

Solution

Let (x, y, z) be any positive reals such that x+ y+ z = 1, and let k =
xy

2005y+2004x
+ yz

2004z+2003y
+ zx

2003x+2005z

x2+y2+z2

20052+20042+20032

.

Then (kx, ky, kz) seems to satisfy the equation.

Conversely, for any solution (x, y, z) can be written as (ka, kb, kc), where a + b + c = 1 (simply

let k = (x+ y + z), a = x
k
, b = y

k
, c = z

k
.)

Aside from that, setting a = x
2005

, b = y
2004

, and c = z
2003

seemed to make things a bit nicer...

Solve ( a,b > 0 ) 4
√
a+ x+ 4

√
a− x = b

Solution

Let y = 4
√
a+ x and z = 4

√
a− x. We have y + z = b and y4 + z4 = 2a. Let xy = c. Then

b4 − 4b2c+ 2c2 = 2a and 2(c− b2)2 = 2a+ b4. Thus c = b2 ±
√

2a+ b4

2
and y, z = b±

√
b2 − 4c and

x = max(y, z)4 − a.
How many three-digit numbers are there such that no two adjacent digits of the number are

consecutive?

Solution

If the first digit is 9, then there are 9 choices (0-7, 9) for the second digit. But if the second digit is

0 or 9, then there are 9 choices for the third digit; otherwise, there are 8 choices. In total, this case

accounts for 2 · 9 + 7 · 8 = 18 + 56 = 74 possibilities.

If the first digit is 8 or 1, then there are 8 choices (0-6,8) for the second digit. If the second digit

is 0 (in the case of first digit 8) or 9 (in the case of first digit 2) then there are 9 choices for the third

digit; otherwise, there are 8 choices. This case accounts for 2(9 + 7 · 8) = 2 · 65 = 130 possibilities.

In the rest of the cases, there are 8 choices for the second digit. If the second digit is 0 or 9,

then there are 9 choices for the third digit; otherwise, there are 8 choices. This case accounts for

413

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=333174
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=328266
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=332465
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=151&t=333098


6(2 · 9 + 6 · 8) = 6 · 66 = 396 possibilities.

The total is 74 + 130 + 396 = 600 .

Let be p ∈ N, p 6= 0. Prove that there is an increasing sequence of positives integers (an)n∈N∗

such that a2n + a2n−1 = pan for every n ∈ N only and only if p ≥ 4.

Solution

First a2 + a1 = pa1 ⇒ a2 = (p− 1)a1 ⇒ p− 1 > 1→ p > 2

Proof that p 6= 3

Assume there exists such a sequence {ai}i∈N with p = 3.

∴ a2n + a2n−1 = 3an(∗) and since a2n−1 > an ⇒ a2n < 2an

which becomes a2n < 2a2n−1 < · · · < 2na1 (1)

Similarly, a2n > a2n−1 ⇒ a2n−1 <
3
2
an (because of (∗))

when combined with (1) becomes: a2n−1 <
3
2
a2n−1 < 3 · 2n−2a1 (2)

Now, from (∗) follows this identity: a2n +a2n−1 +3a2n−1−1 +32a2n−2−1 + · · ·+3n−1a1 = 3na1 (3)

Using (3) and pluggin in inequalities (1) and (2), then dividing through a1 gives

2n + (3 · 2n−1 + 32 · 2n−2 + · · ·+ 3n−1) > 3n

∴ (3 · 2n−1 + 32 · 2n−2 + · · ·+ 3n−1) > 3n − 2n

∴ 0 > 2n−1 contradiction!

Hence p 6= 3, �

Sequence for p ≥ 4

When p is even define ai as follows

a1 = 2, a2n = p
2
an + 1, a2n−1 = p

2
an − 1

When p is odd:

a1 = 2, a2n =
⌊
p
2
an
⌋

+ 1, a2n−1 =
⌊
p
2
an
⌋
− 2

(
1
2
− p

2
an +

⌊
p
2
an
⌋)

17 + 187 + 1887 + .....+ 188....87, where the alst term contains exactly n 8’s

Solution

We can see intuitively that the sum is
∑n+1

k=0 10k + 8 · 10k−1
9
− 1.

Now we simply break this up...∑
10k = 10n+2−1

9
.∑

8 · 10k−1
9

= 8
9

∑
10k − 1 = 8

9

(
10n+2−1

9
− (n+ 2)

)
.∑

(−1) = −(n+ 2).

Summing, we get
17

9

(
10n+2 − 1

9
− n− 2

)
.

Another way Define a function f(n) = 188 . . . 87︸ ︷︷ ︸
n eights

.

Notice that f(n+ 1)− f(n) = 17 · 10n.

Therefore, f(n+ 1) = 17 · 10n + f(n) = 17 · 10n + 17 · 10n−1 + f(n− 1) = · · · =
∑n

k=0 17 · 10k.

Summing the geometric series, we find f(n+ 1) = 17 · 10n+1−1
9

.

Therefore,
∑n

k=1 f(n) = 17
9

∑n
k=1 10k+1 − 1, which gives the same answer as the above solution.

let a, b, c > 0 such that abc = 1 prove that:
1

1+a+b
+ 1

1+b+c
+ 1

1+c+a
≤ 1

Solution

We can rewrite the inequality as:

1

a+ b+ (abc)
1
3

+
1

b+ c+ (abc)
1
3

+
1

c+ a+ (abc)
1
3

≤ 1

(abc)
1
3
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By substituting a = x3, b = y3, c = z3 where x, y, z ≥ 0, xyz = 1; we get this to be equivalent to:

1

x3 + y3 + xyz
+

1

y3 + z3 + xyz
+

1

z3 + x3 + xyz
≤ 1

xyz

Using the inequality x3 + y3 = (x+ y)(x2 − xy + y2) ≥ xy(x+ y)(AM-GM) we have:∑
cyc

1

x3 + y3 + xyz
≤
∑
cyc

1

xy(x+ y + z)
=
∑
cyc

z

x+ y + z
= 1

Since xyz = 1. Equality holds iff a = b = c = 1.

Solve in natural the equation : 1√
x

+ 1√
y

= 1√
8

Solution

Obviously, both x and y are non-squares. From
1
x

+ 1
y

+ 2√
xy

= 1
8

we conclude that xy is a perfect square, hence there exist a, b, z ∈ N such that x = a2z, y = b2z

and z is not a perfect square.

Then√
2
z

(
1
a

+ 1
b

)
= 1

2

Therefore z = 2t2 for some t ∈ N. Now
2
a

+ 2
b

= t ⇐⇒ b = 2a
at−2

Since this implies 2a > at − 2, we get a 6 2
t−2

. From there, possible values for t are t ∈ {3, 4}
(since a can’t be less than 1).

Case 1. t = 3. Then a 6 2. For a = 1 we get b = 2, and for a = 2 we get b = 1. Corresponding

values for (x, y) are (x, y) = (2a2t2, 2b2t2) ∈ {(18, 72), (72, 18)}
Case 2. t = 4. Then a 6 1. For a = 1 we get b = 1. Corresponding values for (x, y) are

(x, y) = (2a2t2, 2b2t2) = (32, 32)

NOTE: From x = 2a2t2∧y = 2b2t2 we can simplify into x = 2u2, y = 2v2 and reduce the equation

into a known and easy problem 1
u

+ 1
v

= 1
2
, with solutions (u, v) ∈ {(3, 6), (6, 3), (4, 4)}

Let R denote a non-negative rational number. Determine a fixed set of integers a, b, c, d, e, f ,

such that for every choice of R, ∣∣∣∣ aR2 + bR + c

dR2 + eR + f
− 3
√

2

∣∣∣∣ < ∣∣∣R− 3
√

2
∣∣∣ .

Solution

We wish to determine fixed a, b, c, d, e, f to satisfy the inequality for all nonnegative rational R. As

R → 3
√

2 through a sequence of rational numbers, the right hand side of this inequality approaches

zero. Consequently, the left hand side must vanish if we set R = 3
√

2. Hence,

a · 2
2
3 + b · 2

1
3 + c = 2d+ e · 2

2
3 + f · 2

1
3 .

It follows that a = e, b = f , c = 2d. On substituting back into the inequality and factoring out

the common factor R− 3
√

2 from both sides, we obtain∣∣∣∣∣∣
aR + b− d · 2 1

3

(
R + 2

1
3

)
dR2 + aR + b

∣∣∣∣∣∣ < 1.
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For the last inequality to be satisfied, it suffices to let a, b, d be positive integers and make the

numerator nonnegative, i.e., by letting a > d · 2 1
3 , b > d · 2 2

3 . A simple choice is d = 1, a = b = 2,

leading to

2R2 + 2R + 2

R2 + 2R + 2
.

Prove that the function nϕ(n) is 1-1? Does it follow from unique factorization?

Solution

Suppose mφ(m) = nφ(n)

Let the canonical representations of m and n be

m = pα1
1 p

α2
2 · · · pαaa

n = qβ1

1 q
β2

2 · · · q
βb
b

such that p1 < p2 < · · · < pa and q1 < q2 < · · · < qb

We know that

φ(m) = pα1−1
1 pα2−1

2 · · · pαa−1
a (p1 − 1)(p2 − 1) · · · (pa − 1)

φ(n) = qβ1−1
1 qβ2−1

2 · · · qβb−1
b (q1 − 1)(q2 − 1) · · · (qb − 1)

mφ(m) = nφ(n)

=⇒ p2α1−1
1 p2α2−1

2 · · · p2αa−1
a (p1−1)(p2−1) · · · (pa−1) = q2β1−1

1 q2β2−1
2 · · · q2βb−1

b (q1−1)(q2−1) · · · (qb−
1) −→ (1)

Claim: pa = qb

Proof:

On the contrary, assume pa 6= qb

Without loss of generality, assume pa > qb

Then, all the primes composed in the canonical representation of RHS of (1) are less than pa

and hence, equality doesn’t occur which is false.

So, pa = qb

If follows that αa = βb as qb - q2β1−1
1 q2β2−1

2 · · · q2β(b−1)−1

(b−1) (q1 − 1)(q2 − 1) · · · (qb − 1)

So, p2αa−1
a (pa − 1) = q2βb−1

b (qb − 1) and (1) reduces to

p2α1−1
1 p2α2−1

2 · · · p2α(a−1)−1

a−1 (p1 − 1)(p2 − 1) · · · (p(a−1) − 1) = q2β1−1
1 q2β2−1

2 · · · q2β(b−1)−1

(b−1) (q1 − 1)(q2 −
1) · · · (q(b−1) − 1)

Now, Without loss of generality, assume a = b+ x for x ≥ 0

Also, we can similarly argue and claim that p(a−1) = q(b−1), α(a−1) = β(b−1)

And continuing in this manner, we get

p2α1−1
1 p2α2−1

2 · · · p2αx−1
x (p1 − 1)(p2 − 1) · · · (px − 1) = 1

=⇒ x = 0 =⇒ a = b and also, pi = qi, αi = βi for i = 1, 2, · · · , a
and hence, m = n

Find the equations of the lines that pass through the origin and are inclined at 75o to the line

x+ y + (y − x)
√

3 = a

Solution

After rearranging and simplifying, the given equation becomes

y = −(2−
√

3)x+ a
2
(
√

3− 1)

If k is the slope of the desired line, then
k+2−

√
3

1−(2−
√

3)k
= ± tan 75◦

tan 75◦ = tan(30◦ + 45◦) =
1√
3

+1

1− 1√
3

=
√

3+1√
3−1

= 2 +
√

3
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Case 1.
k+2−

√
3

1−(2−
√

3)k
= 2 +

√
3

k + 2−
√

3 = 2 +
√

3− k
2k = 2

√
3

Hence the first line is y = x
√

3

Case 2.
k+2−

√
3

1−(2−
√

3)k
= −(2 +

√
3)

k + 2−
√

3 = −2−
√

3 + k

This can be "satisfied" only for k =∞, hence the second line is x = 0

Let a, b, c ≥ 0 and a+ b+ c = 5. Determine the min value of:

A =
√
a+ 1 +

√
2b+ 1 +

√
3c+ 1

Solution

1 +
√
x+ y + 1 ≤

√
x+ 1 +

√
2y + 1 (1)

1 +
√
x+ y + 1 ≤

√
x+ 1 +

√
3y + 1 (2)

expanding/rearranging (1) and (2) shows that they are true

∴ A ≥ 1 +
√
a+ b+ 1 +

√
3c+ 1 ≥ 2 +

√
a+ b+ c+ 1 = 2 +

√
6

equality (a, b, c) = (5, 0, 0)

In a triangle ABC, choose an interior point P . Let AP meet BC at L, BP meet AC at M

and CP meet AB at N .

(a) Prove that the value of the expression AP
AL

+ BP
BM

+ CP
CN

is independent of the choice of triangle

or the choice of P : it is constant for every triangle and point P .

(b) Given a triangle ABC, find the point P such that (AP
AL

)2 + ( BP
BM

)2 + (CP
CN

)2 is minimised.

Solution

Denote by [XY Z] the area of 4XY Z. For part a) AP
AL

= [ABP ]
[BLP ]

= [APC]
[PLC]

= [ABP ]+[APC]
[ABC]

= 1 − [BPC]
[ABC]

.

So summing all of the terms give 3− 1 = 2.

For part b) just use Cauchy-Schwarz: AP
AL

2
+ BP

BM

2
+ CP

CN

2 ≥ (AP
AL

+ BP
BM

+ CP
CN

)2

3
= 4

3
with equality if and

only AP
AL

= BP
BM

= CP
CN

. From above, AP
AL

= 1− [BPC]
[ABC]

etc, so [BPC]
[ABC]

= 1
3
etc. This implies that P is the

centroid.

Let x, y, x ∈ C− R so that


x2 = y + z

y2 = z + x

z2 = x+ y

. Prove that |x|+ |y|+ |z| = 2 +
√

2 .

Solution

The system gives x2 + x = y2 + y = z2 + z = x+ y + z

Since a quadratic has only two complex solutions, two of x, y, z are equal. wlog x = y

Then x2 = x+ z and z2 = 2x giving (x2 − x)2 = 2x =⇒ x(x− 2)(x2 + 1) = 0

x = y = 0, 2,±i =⇒ x2 − x = z = −1± i because x 6∈ Z
|x|+ |y|+ |z| = 2| ± i|+ | − 1± i| = 2 +

√
2

Find x such that: 1 + a+ a2 + ...+ ax = (1 + a)(1 + a2)(1 + a4)(1 + a8), where a > 0, a 6= 1.

Solution

Check the coefficient of xr in RHS

Lemma: The product of unique terms gives xr for unique r
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Proof: Note that r = as + at + az + aw is the only possible way because it has to be obtained

through products of powers of a where s, t, z, w are whole numbers.

It is base− a representation, there is a unique representation of r and hence coefficient of ar is 1

for any r and r ≤ 16 =⇒ x = 16

Another way: By GP summation,

LHS = ax+1−1
a−1

= RHS = (a+ 1)(a2 + 1)(a4 + 1)(a8 + 1)

=⇒ ax+1 − 1 = (a− 1)(a+ 1)(a+ 1)(a2 + 1)(a4 + 1)(a8 + 1)

=⇒ ax+1−1 = (a2−1)(a2 +1)(a4 +1)(a8 +1) = (a4−1)(a4 +1)(a8 +1) = (a8−1)(a8 +1) = a16−1

=⇒ x+ 1 = 16 =⇒ x = 15

Let f(x) = p(sinx)2 + q sinx cosx+ r(cosx)2, p 6= r, q 6= 0 .Find max and min value of f(x) in

the form of p, q, r.

Solution

The maximum of a sinx+b cosx is
√
a2 + b2. The proof of this relies on the computation of sinα+β,

by letting α = x and β = sin−1 b√
a2+b2

.

f(x) = p sin2 x+ q sinx cosx+ r cos2 x.

There are three cases: p < r, p = r, and p > r.

Case 1: p = r. Thus, f(x) = p+ q sinx cosx = p+ q
2

sin 2x. Max: p+ q
2
. Min: p− q

2
.

Case 2: p < r. Thus, f(x) = p+ q
2

sin 2x+ (r− p) cos2 x = p+ q
2

sin 2x+ (r− p) cos2 x+ r−p
2
− r−p

2

= p+ q
2

sin 2x+ r−p
2

cos 2x+ r−p
2
.

Thus, the maximum is p+ r−p
2

+
√(

q
2

)2
+
(
r−p

2

)2
, and the minimum is p+ r−p

2
−
√(

q
2

)2
+
(
r−p

2

)2

Case 3: p > r. Thus, f(x) = r+ q
2

sin 2x+ (p− r) sin2 x = r+ q
2

sin 2x+ (p− r) cos2 x+ p−r
2
− p−r

2

= r + q
2

sin 2x− p−r
2

cos 2x+ p−r
2
.

Thus, the maximum is r+ p−r
2

+
√(

q
2

)2
+
(
p−r

2

)2
, and the minimum is r+ p−r

2
−
√(

q
2

)2
+
(
p−r

2

)2

prove that 1
2

+ 1
3

+ 1
4

+ ...+ 1
n
< n

√
n+1−1
n+1

Solution

⇐⇒
∑n+1

k=2
1
k
< n√

n+1
.

Proof:∑n+1
k=2

1
k
<
∫ n+1

1
1
x
dx <

∫ n+1

1
1√
x
dx = 2(

√
n+ 1− 1)

= 2√
n+1+1

< 2√
n+1

< n√
n+1

In triangle ABC, AB = AC = 1 and BC =
√

2. Let O be the midpoint of BC and P be a

point chosen at random on the interior of the triangle. If H is the foot of the altitude from P to AB, l

is the perpendicular bisector of OH, and P ′ is the intersection of l and AB, compute the probability

that ∠POP ′ is acute.

Solution

Let the coordinates of A,B,C be (0, 0), (1, 0), (0, 1) respectively. Then O
(

1
2
, 1

2

)
. If P (a, b) then

H(a, 0), where a, b are variables.

If M is the midpoint of OH, then M
(

2a+1
4
, 1

4

)
.

The slope of line OH is kOH =
1
2

1
2
−a = 1

1−2a
. Hence the slope of l is kl = 2a− 1, and its equation

is y − 1
4

= (2a− 1)
(
x− 2a+1

4

)
. For y = 0 we get x = 2a+1

4
− 1

4(2a−1)
= 2a2−1

2(2a−1)
, hence P ′

(
2a2−1

2(2a−1)
, 0
)

Angle POP ′ is acute iff
−→
OP ·

−−→
OP ′ > 0

−→
OP =

〈
a− 1

2
, b− 1

2

〉
=
〈

2a−1
2
, 2b−1

2

〉
−−→
OP ′ =

〈
2a2−1

2(2a−1)
− 1

2
,−1

2

〉
=
〈
a2−a
2a−1

,−1
2

〉
−→
OP ·

−−→
OP ′ = 2a−1

2
· a2−a

2a−1
− 2b−1

4
= 1

2

(
a2 − a− b+ 1

2

)
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For this to be positive, we must have b < a2 − a+ 1
2

The equation of the line BC is b = 1− a. The intersection of this line and the above parabola in

the first quadrant is obtained from 1− a = a2 − a+ 1
2
∧ a > 0 =⇒ a = 1√

2
.

Let V
(
0, 1

2

)
, Q
(

1√
2
, 1− 1√

2

)
, R
(

1√
2
, 0
)
.

The area of "parabolic trapezoid" ARQV is

S1 =
∫ 1/
√

2

0

(
a2 − a+ 1

2

)
da = a3

3
− a2

2
+ a

2

∣∣∣∣1/
√

2

0

= 4
√

2−3
12

The area of triangle RQB is S2 = 1
2

(
1− 1√

2

)2

= 3−2
√

2
4

The total favorable area is S = S1 + S2 = 3−
√

2
6

Since the area of 4ABC is S0 = 1
2
, we get p = S

S0
= 3−

√
2

3
= 1−

√
2

3

In how many ways can 5 persons be seated in a circle such that there are only three chairs

where they can be seated? and also please generalise it

Solution

Suppose there are m people and n seats, with m ≥ n. There are
(
m
n

)
ways of choosing n people to

seat, and within these n people there are n! ways of seating them. However, for most ’circular table’

problems, the sequence of people ABC is the same as BCA. In the sequence of people p1, p2...pn

there are a total of n derangements sustaining the same order (a1, a2, . . . an and a2, a3, . . . an, a1

etc.). So in that case we divide n!
(
m
n

)
by n to receive (n − 1)!

(
m
n

)
= m!

(m−n)!n
. In your example,

(n− 1)!
(
m
n

)
= m!

(m−n)!n
= 20.

It may interest you to note that when n > m, the situation is symmetric with the first and there

are (m− 1)!
(
n
m

)
= n!

(n−m)!m
combinations.

Consider the point A(5, 1). Find the equations of the sides of the triangle ∆ABC, knowing

that this triangle has a median with the equation y = 2x, and an altitude with the equation y = −x.
Solution

Lines m : y = 2x and h : y = −x are given.

Line AB is perpendicular to h.

AB : y − 1 = 1(x− 5) ⇐⇒ AB : y = x− 4

The vertex B is the intersection of AB and m.

yB = xB − 4 ∧ yB = 2xB

The solution to the system is B(−4,−8)

The vertex C must belong to h and the midpoint of AC must belong to m.

yC = −xC ∧ yC+1
2

= 2xC+5
2

The solution to the system is C(−3, 3)

The line AC: y − 1 = −2
8

(x− 5) ⇐⇒ y = −x−9
4

The line BC: y − 3 = 11
1

(x+ 3) ⇐⇒ y = 11x+ 36

Solve the equation x ∈ C:(
x+ 1

x+ 2

)2

+

(
x+ 1

x

)2

= m(m− 1)

Solution

x2(x+1)2+(x+1)2(x+2)2

(x2+2x)2 = m2 −m
(x+1)2(2x2+4x+4)

(x2+2x)2 = m2 −m
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2(x2+2x+1)(x2+2x+2)
(x2+2x)2 = m2 −m

Put u := x2 + 2x

(m2 −m)u2 = 2(u+ 1)(u+ 2) = 2u2 + 6u+ 4

(m2 −m− 2)u2 − 6u− 4 = 0

Case 1. m ∈ {−1, 2}. Then the equation becomes 3u+ 2 = 0 ⇐⇒ u = −2
3
⇐⇒ x2 + 2x+ 2

3
=

0 ⇐⇒ x1,2 = −1±
√

3
3

Case 2. m 6∈ {−1, 2}. Then u1,2 = 6±
√

16m2−16m+4
2(m2−m−2)

= 3±(2m−1)
m2−m−2

u1 = 2m+2
m2−m−2

⇐⇒ (x+ 1)2 = m2+m
m2−m−2

= m
m−2

⇐⇒ ⇐⇒ x1,2 = −1±
√

m
m−2

u2 = 4−2m
m2−m−2

⇐⇒ (x+ 1)2 = m2−3m+2
m2−m−2

= m−1
m+1

⇐⇒ ⇐⇒ x3,4 = −1±
√

m−1
m+1

Neither of x1,2,3,4 can take values of 0 or −2, hence there aren’t any redundant solutions.

Prove that if d|2n2 than n2 + d cannot be a perfect square.

Solution

Suppose n2 + 2n2

k
= m2 where k is a positive integer. Then n2(k + 2) = km2, or k+2

k
= m2

n2 . Let g

be the greatest common divisor of m and n so m = gx, n = gy, and m2

n2 = x2

y2 and this fraction is

irreducible. If k is odd then gcd(k, k+ 2) = 1 so the fraction k+2
k

is also irreducible, so we must have

k + 2 = x2, k = y2 which is impossible as no two squares differ by 2. If k is even then we can let

k = 2z and we have k+2
k

= z+1
z

which is irreducible. Thus, z+ 1 = x2 and z = y2, which is impossible

as no two positive squares differ by 1.

Let function f be defined such that - f(c) = (b − c)(a + c) + c2 where a,b,c are positive reals

and a,b are fixed with a ≥ b. Pove that the following inequality holds true - f(a− b) +f(c) ≤ a2 + b2.

Solution

f(a− b) + f(c) =(b− a+ b)(a+ a− b) + (a− b)2 + (b− c)(a+ c) + c2

= (2b− a)(2a− b) + (a− b)2 + ab− ca+ bc− c2 + c2

= 4ab− 2(a2 + b2) + ab+ (a− b)2 + ab− ca+ bc

= 2[2ab− a2 − b2] + a2 + b2 − c(a− b)
≤ 2[2ab− 2ab] + a2 + b2 − c(a− a) = a2 + b2;

Hence proved.

Let c be a nonnegative integer, and define an = n2 + c (for n ≥ 1). Define dn as the greatest

common divisor of an and an+1. (a) Suppose that c = 0. Show that dn = 1, ∀n ≥ 1. (b) Suppose

that c = 1. Show that dn ∈ {1, 5}, ∀n ≥ 1. (c) Show that dn ≤ 4c+ 1, ∀n ≥ 1.

Solution

a) We have an = n2 and an+1 = (n+ 1)2, and since (n, n+ 1) = 1, the result follows.

b) We have an = n2 + 1 and an+1 = n2 + 2n+ 2. Now use Euclidean Algorithm. If n is even, put

n = 2k. So we have dn = (4k2 + 4k + 2, 4k2 + 1) = (4k2 + 1, 4k + 1) = (4k + 1, k − 1) = (k − 1, 5),

and the result follows. If n is odd, put n = 2k − 1. So we have dn = (4k2 + 1, 4k2 − 4k + 2) =

(4k2 + 1, 4k − 1) = (4k − 1, k + 1) = (k + 1, 5), and the result follows.

c) We have an = n2 + c and a2
n+1 = n2 + 2n + c + 1. Now use Euclidean Algorithm again.

If n is even, put n = 2k. So we have dn = (4k2 + 4k + c + 1, 4k2 + c) = (4k2 + c, 4k + 1) =

(4k + 1, k − c) = (k − c, 4c + 1), and the result follows. If n is odd, put n = 2k − 1. So we have

dn = (4k2 + c, 4k2 − 4k + c+ 1) = (4k2 + c, 4k− 1) = (4k− 1, k + c) = (k + c, 4c+ 1), and the result

follows.

Find all natural number such as n that that (2n)2n+1 and nn+1 are prime number[/list][/code]

Solution
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First note the trivial solution n = 1, and from now on assume n > 1

Suppose a, n ∈ N and an + 1 is prime, then n must be a power of 2

proof

let n = r · 2k with gcd(r, 2) = 1

then ar·2
k

+ 1 =
(
a2k
)r

+ 1 =
(
a2k + 1

)((
a2k
)r−1 −

(
a2k
)r−2

+ · · ·+ 1
)
Hence not prime

So if n = 2k we have
(
2k
)2k

+ 1 = 2k·2
k

+ 1 is prime

From our last proof it is clear that k2k must be a power of 2, hence k is also a power of 2.

Now if (2n)2n + 1 is also a prime then 2(k+1)2k+1
+ 1 is a prime. and as before k + 1 must be a

power of two.

Ovbiously the only k such that both k and k + 1 are powers of 2 is k = 1

Hence our answer is n = 1, 2

Evaluate:
∞∑
n=1

arctan
(

1
n2−n+1

)
Solution

Now tan(A − B) = tanA−tanB
1+tanAtanB

So when you sub. X = tanA and Y = tanB in the above then you

get arctanX − arctanY = arctan
(
X−Y
1+XY

)
Sub. X = n and Y = n − 1 in the above then you get

tan−1(n)− tan−1(n− 1) = arctan
(

1
n2−n+1

)
So

n∑
n=1

arctan
(

1
n2−n+1

)
= [tan−1(n)− tan−1(n− 1)] + ...+

[tan−1(1)− tan−1(0)] Therefore
n∑
n=1

arctan
(

1
n2−n+1

)
= tan−1(n) As n tends to infinity, tan−1(n) tends

to π
2
. Therefore the sum is equal to π

2
.

Find all complex numbers a, b, c so that :


a3 + b3 + c3 = 24

(a+ b)(b+ c)(c+ a) = 64

|a+ b| = |b+ c| = |c+ a|

.

Solution

From (a+ b+ c)3 − a3 − b3 − c3 = 3(a+ b)(b+ c)(c+ a) we get

(a+ b+ c)3 = 216 ⇐⇒ a+ b+ c = 6eiφ where φ ∈ {0,±2π/3}
If a+ b = ρeiγ, b+ c = ρeiα, c+ a = ρeiβ, ρ ∈ R, then
ρ3ei(α+β+γ) = 64 ⇐⇒ ρ = 4 ∧ α + β + γ = 2kπ, k ∈ Z
From a+ b = 4eiγ, b+ c = 4eiα, c+ a = 4eiβ we get a+ b+ c = 2(eiα + eiβ + eiγ), hence

eiα + eiβ + eiγ = 3eiφ

Case 1. φ = 0

Then cosα + cos β + cos γ = 3 ∧ sinα + sin β + sin γ = 0.

Obviously, the first equation can be satisfied only for α, β, γ ∈ 2Zπ, hence a+ b = b+ c = c+a =

4 ⇐⇒ a = b = c = 2

Case 2. φ = 2π/3

Then cosα + cos β + cos γ = −3
2
∧ sinα + sin β + sin γ = −3

√
3

2

Squaring and adding up those two, we get

3 + 2 (cos(α− β) + cos(β − γ) + cos(γ − α)) = 9

which yields

cos(α− β) + cos(β − γ) + cos(γ − α) = 3

Obviously, this can be satisfied only if α = β = γ, and with α + β + γ = 2kπ we get α = β =

γ = 2kπ/3. From a+ b = b+ c = c+ a = 4ei2kπ/3 we get

a = b = c = 2ei2kπ/3, k ∈ Z
or
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a = b = c = 2 ∨ a = b = c = −1± i
√

3

Case 3. φ = −2π/3

Similar discussion as in the Case 2.

Let ABC be a triangle for which AB 6= AC . Denote the its centroid G and the its incircle

C(I, r) . Prove that IB · IC = r · IA ⇐⇒ IG ⊥ BC .

Solution

Let M be the midpoint of BC, D the tangency point of the incircle (I) with BC and P the second

intersection of AI with the circumcircle (O) of 4ABC. It’s well-known that P is the circumcenter

of 4IBC. Thus, IP, ID are isogonals with respect to ∠BIC =⇒ IB · IC = 2ID · IP = 2r · IP (?).

Obviously, IG ⊥ BC ⇐⇒ IG ‖ MP. Hence by Thales theorem we claim that IG ⊥ BC ⇐⇒
AI
IP = AG

GM = 2. Then, from the expression (?), it follows that IG ⊥ BC ⇐⇒ IB · IC = r · IA.
ABCD is a rectangle, labelled anti-clockwise, with A at the bottom left-hand corner. E is

a point on AB, closer to B than to A. F is a point on BC (roughly half-way between them). EC

meets DF at G, AF meets EC at H and AF meets DE at J . Triangle CGF has an area of 1, the

quadrilateral BEHF has an area of 2 and triangle AEJ has an area of 3. What is the area of the

quadrilateral DJHG?

Solution

Let BF = a, FC = b, so DA = a+ b

Note that the area of CDE is 1
2
CD(a+ b)

Also, [CDF ] = 1
2
CDb and [ABF ] = 1

2
CDa

So [CDE]− [CDF ]− [ABF ] = 1
2
CD(a+ b)− 1

2
CDb− 1

2
CDa = 0

But also,

[CDE]− [CDF ]− [ABF ]

= [DJHG] + [CDG] + [JHE]− [CDG]− [CGF ]− [AJE]− [JHE]− [HEBF ]

= [DJHG]− [CGF ]− [AJE]− [HEBF ]

= [DJHG]− 6

By transtitivity, [DJHG]− 6 = 0

So [DJHG] = 6.

Let ABC be an isosceles triangle (BA = BC) . (O,R) is the circumcircle of 4ABC . It’s

known that : There exists a point D inside (O) such that 4BCD is an equilateral triangle . AD

intersects (O) at E . Prove that : DE = R

Solution

Since BA = BD = BC, it follows that 4BAD is isosceles with apex B. Thus, ∠BDA = ∠BAE =

π−∠BCE =⇒ BCED is a kite =⇒ BE is the perpendicular bisector ofDC. Consequently, ∠COE =

2∠CBE = 60◦ =⇒ 4OCE is equilateral with side lenght R =⇒ DE = EC = EO = R.

Find all positive-integer solutions (a, b, c, d) to the equation:

a+ b+ c+ d = abcd

Solution

WLOG we can assume a 6 b 6 c 6 d, since the other possible solutions are mere permutations of

those cases.

Then abcd = a+ b+ c+ d 6 4d ⇐⇒ abc 6 4

Therefore (a, b, c) ∈ {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2)}
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Solving all those cases for d, we find only two integer quadruplets: (1, 1, 2, 4) and (1, 1, 4, 2), which

are essentially the same.

Hence there are 12 solutions, which are permutations of the basic quadruplet (a, b, c, d) = (1, 1, 2, 4)

Find all functions f : R→ R such that f(x+ f(y)) = yf(x) + (2− x)f(y),∀x, y ∈ R.
Solution

Put y := 0 and x := x− f(0) to get f(x) = −f(0)x+ (2 + f(0))f(0) = ax+ b.

Substituing to the original equation we get f(x) = 0 ∀x or f(x) = x− 1 ∀x
Let the medians of the triangle ABC intersect at point M . A line d through M intersects the

circumcircle ABC at X and Y so that A and C lie on the same side of d. Prove that BX · BY =

AX · AY + CX · CY .

Solution

Let N be the midpoint of AC and A′, B′, C ′, N ′ the orthogonal projections of A,B,C,N on the

line d. Segment NN ′ becomes the median of the trapezoid ACC ′A′ =⇒ NN ′ = 1
2 (AA′ + CC ′).

But from 4MBB′ ∼ 4MNN ′, we get the proportion BB′
NN′ = BM

NM = 2. Hence, it follows that

BB′ = AA′ + CC ′ (?).

On the other hand, if R denotes the circumradius of 4ABC, we have the relations

BX ·BY = 2R ·BB′ , AX · AY = 2R · AA′ , CX · CY = 2R · CC ′.
Combining these expressions with (?) yields
BX·BY

2R
= AX·AY

2R
+ CX·CY

2R
=⇒ BX ·BY = AX · AY + CX · CY.

At a prize award five books are shared to three students. In how many ways can be shared the

books, knowing that each student receives at least a book? But seven books to four students?

Solution

Suppose H(k, n) is the number of ways to distribute k distinguishable books among n students such

that each student gets at least one book.

Intuitively we have H(k, 1) = 1 and H(k, 2) = k − 1

Now suppose there are n students, the first student receives i books i ∈ [1, k−n+ 1], and he can

receive these i books in
(
k
i

)
ways. This leaves k − i books to distribute among n− 1 students. So we

get

H(k, n) =
∑k−n+1

i=1

(
k
i

)
H(k − i, n− 1)

Therefore,

H(5, 3) =
∑3

i=1

(
5
i

)
H(k − i, 2) =

∑3
i=1

(
5
i

)
(4− i) = 45

H(7, 4) =
∑4

i=1

(
7
i

)
H(k − i, 3) = 2576

In acute triangle ABC, w is the circumcircle and O the circumcenter. w1 is the circumcircle

of triangle AOC, and OQ is the diameter of w1. Let M,N be on AQ,AC respectively such that

AMBN is a parallelogram. Prove that MN,BQ intersect on w1.

Solution

Let L be the midpoint of AB and P be the second intersection of ω1 with BQ. Then ∠APQ =

∠BNA = ∠ABC. Thus if R ≡ BQ ∩ AC and D ≡ BN ∩ AP, then PDNR is cyclic. But notice

that PQ bisects ∠APC since Q is the midpoint of the arc AC of ω1. As a resut, ∠BPC = 180◦ −
∠ABC = ∠BNC =⇒ BPNC is cyclic =⇒ ∠NPR = ∠BCA, but since PDNR is cyclic, we obtain

∠NPR = ∠NDR = ∠BCA = ∠ABN =⇒ DR ‖ BA. Therefore, the cevian NP of 4BNA goes

trough the midpoint L of AB =⇒ P ≡ BQ ∩MN ∈ ω1.

A deck of n playing cards, which contains three aces, is shuffled at random (it is assumed that

all possible card distributions are equally likely). The cards are then turned up one by one from the
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top until the second ace appears. Prove that the expected (average) number of cards to be turned

up is (n+ 1)/2.

Solution

The probability that the mth card is the second ace is given by

P (m) = (m− 1)
(

3
n
· n−3
n−1
· n−4
n−2
· · · n−m

n−m+2

)
2

n−m+1

= 6(m− 1) (n−m)!
n!

(n−3)!
(n−m−1)!

= (n−m)(m−1)

(n3)
Where 2 ≤ m ≤ n− 1

Therefore E(x) =
∑n−1

k=2 kP (k)

= 1

(n3)

∑n−1
k=2 k(n− k)(k − 1)

For n odd

There is symmetry in the expression p(m) = m(n − m)(m − 1), that is p(k) + p(n − k) =

(n− 2)(n− k)k

∴
∑n−1

k=2 k(n−k)(k−1) = (n−1)P (n−1)+(n−2)
∑n−1

2
k=2 k(n−k) = (n−2)

(
(n− 1) + (n−1)(n2+n−12)

12

)
=

(n−2)(n−1)n(n+1)
12

For n even

The symetry is p(k) + p(n− k + 1) = (k − 1)(n− k)(n+ 1)

∴
∑n−1

k=2 k(n− k)(k − 1) = (n+ 1)
∑n

2
k=2(k − 1)(n− k)

= (n+ 1)
(
x(x−2)(x−1)

12

)
= (n−2)(n−1)n(n+1)

12

∴ E(x) = 1

(n3)
(n−2)(n−1)n(n+1)

12
=

n+ 1

2
If the inequality 1 + log2

(
2x2 + 2x+ 7

2

)
≥ log2 (ax2 + a) has atleast one solution for a which

belongs to (0, φ].Then find φ.

Solution

The inequation is equivalent to 4x2 + 4x+ 7 > ax2 + a ⇐⇒ (4− a)x2 + 4x+ 7− a > 0

Let’s find the conditions for the last inequation not to have any solutions. This only can happen

if

4− a < 0 ∧ 16− 4(4− a)(7− a) < 0

After easy solving, we find that this is equivalent to

(a > 4) ∧ (a > 8 ∨ a < 3) ⇐⇒ a > 8

Hence we must have a 6 8, so φ = 8

How many different ways are there to express 2
15

in the form 1
a

+ 1
b
, where a and b are positive

integers with a ≤ b?

Solution
1
a

+ 1
b

= 2
15
⇐⇒ (2a− 15)(2b− 15) = 225 = 32 · 52

Hence 2a− 15 ∈ {1, 3, 5, 9, 15}, so there are 5 different ways:

(a, b) ∈ {(8, 120), (9, 45), (10, 30), (12, 20), (15, 15)}
Let a triangle ABC and I is its incenter. AI cuts the incircle (I) at D. Prove that the tangent

of (I) at D and the external bisector of angle BIC meet on BC.

Solution

Denote X, Y, Z the tangency points of (I) with BC,CA,AB and let the internal angle bisector of

∠BIC and the tangent of (I) at D cut BC at V, P, respectively. We shall prove that IP is the

external bisector of ∠BIC. Midpoint M of the arc BC of the circumcircle �(ABC) is circumcenter

of 4BIC. Thus, IX and IM ≡ IA are isogonals with respect to ∠BIC =⇒ IV bisects ∠MIX.

Analogously, if R is the projection of X on Y Z, the rays XI,XR are isogonals with respect to
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∠Y XZ. Lines IM,XR are parallel since they are both perpendicular to Y Z =⇒ angle bisectors of

∠MIX and ∠RXI are parallel =⇒ XD ‖ IV, but IP ⊥ XD. Then IP ⊥ IV =⇒ IP is the external

bisector of ∠BIC.

Prove that if the opposite sides of a skew (non-planar) quadrilateral are congruent, then the

line joining the midpoints of the two diagonals is perpendicular to these diagonals, and conversely, if

the line joining the midpoints of the two diagonals of a skew quadrilateral is perpendicular to these

diagonals, then the opposite sides of the quadrilateral are congruent.

Solution

Label ABCD the given quadrilateral. M,N denote the midpoints of the diagonals AC,BD, respec-

tively.

• Assume that AD = CB and AB = CD. Then 4ADC ∼= 4CBA by SSS criterion =⇒ their

medians DM and BM are congruent. Hence 4DMB is isosceles with apex M. The median MN

is identical to the altitude on DB =⇒ MN ⊥ DB. Likewise, 4ADB ∼= 4CBD, then 4ANC is

isosceles with apex N =⇒ NM ⊥ AC.

• Conversely, if MN ⊥ DB and NM ⊥ AC, the triangles 4MDB and 4NAC are isosceles with

legs MB = MD and NA = NC, respectively, which implies that

CD2 + CB2 = AB2 + AD2 , AD2 + CD2 = AB2 + CB2.

Substracting and adding both expressions yields AD = CB and AB = CD.

Find a set of integer solutions for the following equations. 17w + 13x = 3 13y + 17z = 7

w + x+ y + z = 10 If possible, find all integer solutions.

Solution

x = 3−17w
13

= −w + 3−4w
13

3− 4w = 13a

w = 3−13a
4

= −3a+ 3−a
4

3− a = 4b

a = 3− 4b

w = −9 + 12b+ b = 13b− 9

x = −13b+ 9 + 3− 4b = −17b+ 12

So, x = −17b+ 12, w = 13b− 9, b ∈ Z (1)

y = 7−17z
13

= −z + 7−4z
13

7− 4z = 13c

z = 7−13c
4

= −3c+ 7−c
4

7− c = 4d

c = 7− 4d

z = −21 + 12d+ d = 13d− 21

y = −13d+ 21 + 7− 4d = −17d+ 28

So, y = −17d+ 28, z = 13d− 21, d ∈ Z (2)

Plugging (1) and (2) into the third equation we get

−4b+ 3− 4d+ 7 = 10 ⇐⇒ d = −b
Therefore, the complete set of solutions is given by

(x, y, z, w) = (−17n+ 12, 17n+ 28,−13n− 21, 13n− 9), n ∈ Z
Show that if ai ≥ 1 , for i ∈ N∗ , then:

(1 + a1)(1 + a2)(1 + a3) · . . . · (1 + an) ≥ 2n

n+1
· (1 + a1 + · . . . ·+an)

Solution
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Just use induction, let Mn = 2n

n+1
(1 +

∑n
i=1 ai)

Mn+1 = 2(n+1)
n+2

Mn + 2n+1

n+2
an+1 (1)

All you have to show is

(1 + an+1)Mn ≥Mn+1

Using (1) and the fact that Mn ≥ 2n the result follows easily

If f(x)f(y)− f(xy) = x+ y,∀(x, y) ∈ < find f(x).

Solution

f(x)f(y)− f(xy) = x+ y

Setting x = y = 0, we get

f 2(0)− f(0) = 0 =⇒ f(0) = 0 or 1

Setting y = 0, we get

f(x)f(0)− f(0) = x =⇒ f(0)(f(x)− 1) = x

If f(0) = 0, we get x = 0 for all x, which is impossible. So we get f(0) = 1

Plugging this into the equation, we get

f(x)− 1 = x =⇒ f(x) = (x+ 1)

Thus, the solution is f(x) = (x+ 1)

Prove that the equation x9 + y9 + z9 = x+ y + z + 20022001 has no solution in N.
Solution

We first note that x3 ≡ x (mod 3)

This follows because x3 − x = (x− 1)x(x+ 1) and one of the products on the right side must be

a multiple of 3.

Thus, x9 = (x3)3 ≡ x3 ≡ x (mod 3)

Thus, (x9 + y9 + z9) ≡ (x+ y + z) (mod 3)

As 20022001 is not a multiple of 3 (because 2002 is not a multiple of 3),

x+ y + z + 20022001 is not congruent to (x+ y + z) ≡ (x9 + y9 + z9) (mod 3)

Thus, the given equation has no solutions in N.
Find the remainder when 411041

is divided by 251

Solution

250 | 1041 because 250 = 2× 53 and, thus, 250 | 10m for all m ≥ 3.

Let 1041 = 250k for some k ∈ N.
411041

= 41250k = (41250)k

However, because 251 is prime, by Fermat’s Little Theorem,

ap−1 ≡ 1 (mod p) =⇒ 41250 ≡ 1 (mod 251)

Thus, raising both sides to the kth power,

(41250)k ≡ 1k ≡ 1 (mod 251). Hence, we get

411041 ≡ 1 (mod 251)

Find all the integer positive solutions x, y of

x4 + 3x2y2 + 9y4 = 122005

Solution

x4 + 3x2y2 + 9y4 = 122005

We observe that 3 | x. Replacing x by 3x1 and dividing the equation by 9, we obtain

1) 9x4
1 + 3x2

1y
2 + y4 = 122003 · 161

Now, 3 | y, so let y = 3y1 and divide the equation by 9 after substitution to get

2) x4
1 + 3x2

1y
2
1 + 9y4

1 = 122001 · 162
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We see that the process can be repeated a very large number of times, and in general, we have

2i− 1) 9x4
i + 3x2

i y
2
i−1 + y4

i−1 = 122007−4i · 162i−1

2i) x4
i + 3x2

i y
2
i + 9y4

i = 122005−4i · 162i

where x = 3ixi, y = 3iyi and x0 = x and y0 = y

We can repeat the process until we reach a stage when the exponent of 12 is less than 2, so that

the right hand side is no longer a multiple of 9. In particular, we have the 1002nd iteration of this

process, for i = 501,

1002) x4
501 + 3x2

501y
2
501 + 9y4

501 = 12 · 161002

At this stage, we see that 3 | x501 and replacing by 3x502, we see that 9 divides the left hand side,

but not the right hand side.

Thus, we have no solution to the original equation.

Prove that

(an − 1, am − 1) = a(m,n) − 1

Solution

Let (am − 1, an − 1) = d

So, am ≡ an ≡ 1mod d

Let k = ordda|m,n =⇒ k|(m,n)

So, a(m,n) ≡ 1mod d =⇒ d|a(m,n) − 1

Now, since a(m,n) − 1|am − 1, an − 1, we have a(m,n) − 1|d but d|a(m,n) − 1

So, d = a(m,n) − 1

as desired.

Prove that the equation

x3 + y5 = z7 has infinite solutions if x, y, z are integers.

Solution

We have : 2300 + 2300 = 2301 ⇐⇒ 2300 · 2105k + 2300 · 2105k = 2301 · 2105k

⇐⇒ 23(100+35k) + 25(60+21k) = 27(43+15k) ⇐⇒ (2100+35k)3 + (260+21k)5 = (243+15k)7 .

Therefore, (x, y, z) ∈ {(2100+35k, 260+21k, 243+15k)} , where k ∈ N∗ .
If p is a prime greater than 3, then prove that p divides the sum of the quadratic residues

between 0 and p

Solution

Let S denote the sum of the quadratic residues (mod p). Suppose we square every element of

{1, 2, . . . , p−1}. Then we obtain a list of the quadratic residues. Furthermore, each quadratic residue

appears twice, once for x2 and once for (−x)2. (It is well known that there are (p − 1)/2 quadratic

residues (mod p).) So we have

S ≡ 12 + 22 + · · ·+ (p− 1)2 (mod p)

which is
p(p+ 1)(2p+ 1)

12
which is divisible by p since p is a prime greater than 3. It follows that p|S, as desired.

Let ABCD be a quadrilateral where ÂBC = ÂDC = 900 and B̂CD < 900.Choose a point E

on the opposite ray of AC such that DA is the angle-besector of BDE.Let M be the chosen arbitrarily

between D and E.choose another point N on the opposite ray of BE such that N̂CB = M̂CD.Prove

that MC is the angle-besector of DMN
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Solution

Let P ≡ AD ∩ BC and Q ≡ BA ∩DC. Then A becomes the orthocenter of the acute 4CPQ and

4BED is its orthic triangle. Thus, EC bisects ∠BED and C becomes the E-excenter of 4EBD.
If ∠MCD = ∠NCB, it follows that ∠MCN = ∠DCB =⇒ ∠DCB = ∠MCN = ∠90◦ − 1

2∠BED,

which implies that C is common E-excenter of 4BED and 4NEM =⇒ MC bisects ∠DMN.

In 4ABC, let I be the incenter, O be the circumcenter, H be the orthocenter, R be the

circumradius, E be the midpoint of OH, r be the inradius, and s be the semiperimeter.

a) Find the distance IH in form of R, r, s b) Find the distance IE in form of R, r

Solution

Using Leibniz theorem for the circumcenter O, we obtain the relation

OG2 = 1
3 (OA2 +OB2 +OC2)− 1

9 (a2 + b2 + c2) = R2 − 1
9 (a2 + b2 + c2)

Since OG = 1
3OH, it follows that OH

2 = 9R2 − (a2 + b2 + c2).

Incircle (I) and 9-point circle (E) of 4ABC are internally tangent =⇒ IE = 1
2R− r. Notice that

IE becomes the I-median of 4IOH, therefore
IE2 = 1

2 (IO2 + IH2)− 1
4OH

2 =⇒ IH2 = 2IE2 + 1
2OH

2 − IO2

IH2 = 2
(
R
2
− r
)2

+ 9
2R

2 − 1
2 (a2 + b2 + c2)− (R2 − 2Rr)

IH2 = 4R2 + 2r2 − 1
2 (a2 + b2 + c2)

Because of a2 + b2 + c2 = 2s2 − 2r2 − 8Rr =⇒ IH =
√

4R2 + 3r2 + 4Rr − s2.

Find all reals solutions of

x[x[x]] = 84

where [x] means the integer part of x

Solution

Obviously, x can’t be non-positive, since then [x] 6 0 =⇒ x[x] > 0 =⇒ [x[x]] > 0 =⇒ x[x[x]] 6 0.

So x > 0 - furthermore, x > 1, since [x] = 0 turns the whole LHS into zero.

Put n := [x], a := {x}. Then
(n2 + [an])(n+ a) = 84 =⇒ [an] = 84−n3−an2

n+a

Since [an] must be positive, we get n 6 4, and from there it’s just case-bashing.

n = 1:

[a] = 83−a
1+a

doesn’t have a solution since 0 6 a < 1 by definition, hence [a] = 0

n = 2

[2a] = 76−4a
2+a

. Since [2a] ∈ {0, 1}, we solve the equations 76−4a
2+a

= 0 and 76−4a
2+a

= 1 and recheck if

the obtained solutions satisfy 0 6 a < 1 and the chosen value of [2a], but no solution in this case.

Going on like this, we find the only solution: n = 4 ∧ a = 2
3

=⇒ x = 14
3

We have n objects with weights 1, 2, 3, · · · , n grams. We wish to choose two or more of these

objects so that the total weight of the chosen objects is equal to the average weight of the remaining

objects. Prove that, if the task is possible, then n is one less than a perfect square.

Solution

Let the number of chosen numbers be k, and let S be the sum of chosen numbers. Then if the task

is possible we must have

(n− k) · S =
n(n+ 1)

2
− S,

or (n− k+ 1)S = n(n+1)
2

. Also, S is at least the sum of the first k numbers, so S ≥ k(k+1)
2

. Therefore,

we must have

(n− k + 1)
k(k + 1)

2
≤ n(n+ 1)

2
,
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which can be written as

(n− k)(n+ 1− k2) ≥ 0,

which implies that k2 ≤ n+1 as n > k by the problem statement. This means that n−k+1 ≥ k2−k.
On the other hand,

n(n+ 1)

n− k + 1
= n+ k +

k2 − k
n− k + 1

must be a integer, so n − k + 1 must divide k2 − k, which means that n − k + 1 ≤ k2 − k. This is

only possible if n− k + 1 = k2 − k, which is the equality case. Therefore n+ 1 = k2 so n is one less

than a perfect square, as desired.

Prove without induction that if 0 < α < π
4(n−1)

where n = 2, 3, ... then:

tann · α > n · tanα

Solution

Note that the functions tan(nα) and tanα are both continuous on the given intervals. It suffices to

show that the function f(x) = tanx
x

is increasing in
(
0, π

2

)
, since then

tan(nα)

nα
>

tanα

α
=⇒ tan(nα) > n tanα.

We have f ′(x) = x sec2 x−tanx
x2 , which can be written as 1

2(x cosx)2 (2x − sin 2x). This is greater than

zero since 1
2(x cosx)2 is obviously positive on

(
0, π

2

)
and 2x > sin 2x on 0 < x < π

2
since x > sinx on

0 < x < π. (Actually x > sinx for all x > 0.) Therefore f(x) is increasing on
(
0, π

2

)
and we are done.

Find all couples (x, y) of real numbers such that
15
√
x− 15

√
y = 5
√
x− 5
√
y = 3
√
x− 3
√
y

Solution

Note that x = y is a solution. Now, assume x 6= y

Let a = 15
√
x; b = 15

√
y

a− b = a3 − b3 =⇒ a2 + ab+ b2 = 1 =⇒ (a2 + ab+ b2)2 = 1

a− b = a5 − b5 =⇒ a4 + a3b+ a2b2 + ab3 + b4 = 1

Now, (a2 + ab+ b2)2 = a4 + a3b+ a2b2 + ab3 + b4

=⇒ ab(a+ b)2 = 0

=⇒ x = 0 or y = 0 or x = −y
So, the solution set is (x, y) = (a, a), (a,−a), (0, a), (a, 0) where a is an integer.

Let (a, b) ∈ R2 such that the polynomial P (x) = x3 +
√

3(a−1)x2−6ax+b has 3 reals solution

. Show that : |b| ≤ |(a+ 1)3|
Solution

Let P (x) = (x+ p)(x+ q)(x+ r) Then pqr = b Also pq + qr + rp = −6a And p+ q + r =
√

3(a− 1)

Since p2 + q2 + r2 = (p+ q + r)2 − 2(pq + qr+ rp) We get p2 + q2 + r2 = 3(a− 1)2 + 12a = 3(a+ 1)2

By AM-GM inequality: p2 + q2 + r2 ≥ 3(pqr)
2
3 So (a + 1)2 ≥ b

2
3 Hence (a + 1)6 ≥ b2 Therefore

| (a+ 1)3 |≥| b | as required.
1) Find the ratio of the radius of an escribed circle of a triangle to the radius of the circum-

scribing circle, in terms of the angles of the triangle.

2) Prove that the ratio of the radii of the two circles which touch the inscribed circle and the

sides AB,AC of a triangle ABC is tan4 1
4
(B + C)
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Solution

1) Denote R and %a the circumradius and A-exradius of 4ABC, respectively. From the well-known

identities

[4ABC] = 2R2 · sinA · sinB · sinC , [4ABC] = %a(s− a)

=⇒ R
%a

= b+c−a
4R·sinA·sinB·sinC = sinB+sinC−sinA

2·sinA·sinB·sinC .

2) The radii Ri of a chain of circles (Oi, Ri) tangent to the sides of an angle ∠(p, q) such that

(Oi, Ri) is externally tangent to (Oi−1, Ri−1) and (Oi+1, Ri+1) form a decreasing geometric progression

with ratio 1−sin θ
1+sin θ

, where θ stands for 1
2∠(p, q).

Therefore, by denoting R1, R2 (R2 > R1) the radii of the two circles externally tangent to the

incircle (I, r) and tangent to the rays AB,AC, we obtain
R1

r
=

1−sin A
2

1+sin A
2

, r
R2

=
1−sin A

2

1+sin A
2

=⇒ R1

R2
=
(

1−sin A
2

1+sin A
2

)2

= tan4
(
π
4
− A

4

)
= tan4

(
B+C

4

)
.

Solve the equation 4x− 14[
√

2x+ 19] + 59 = 0

Solution

Put u :=
√

2x+ 19 =⇒ 2x = u2 − 19, hence the equation becomes

2u2 − 14[u] + 21 = 0 ⇐⇒ u2 − 7[u] + 21
2

= 0

Let u = n+ α where n = [u], α = {u}. By the definition of u we have n > 0

α2 + 2nα + n2 − 7n+ 21
2

= 0

α = −n+
√

7n− 21
2
(we discard the minus sign since α > 0)

−n+
√

7n− 21
2
> 0 =⇒ n ∈ {3, 4}

−n+
√

7n− 21
2
< 1 =⇒ n > 0

Therefore n ∈ {3, 4}. Now u = n + α =
√

7n− 21
2

=⇒ 2x + 19 = 7n − 21
2
, hence x = 14n−59

4
∈{

−17
4
,−3

4

}
Find the value of a in order that the equation 1 + sin2 ax = cosx has only one root.

Solution

sin2 ax+ 2 sin2 x
2

= 0

Therefore x ∈
{
kπ
a

: k ∈ Z
}
∩ {2lπ : l ∈ Z}

Obviously, x = 0 is always a solution, no matter the value of a.

If (∃k, l ∈ Z \ {0})k
a

= 2l, then a = k
2l
. If a is rational, we can always find such k, l. If a is

irrational, we can never find such k, l.

Therefore a must be irrational in order to satisfy the problem condition.

Let n be a positive integer such that a + b2 | a2 + b + n has exactly one solution (a, b) with

a, b ∈ Z+. Prove that either b+ n ≤ ab2 or b+ n = 2ab2 + a2.

Solution

Let k be the positive integer such that ka+kb2 = a2+b+n. Rearranging gives a2−ka+b+n−kb2 = 0.

Let P (x) = x2 − kx + b + n− kb2. Clearly, a is one of the two roots to this equation. Let the other

root be x2. By Vieta’s formulas, a + x2 = k, so x2 is also an integer. If 0 < x2 6= a, then (x2, b) is

another solution to the divisibility relation, which contradicts our assumption that (a, b) is unique.

Therefore x2 ≤ 0 or x2 = a.

In the first case, this implies that k−a ≤ 0, or that k ≤ a. Thus a(a+b2) ≥ k(a+b2) = a2 +b+n.

Therefore, a2 + ab2 ≥ a2 + b + n, or b + n ≤ ab2. In the second case, this implies that k − a = a,

or that k = 2a. Thus 2a(a + b2) = k(a + b2) = a2 + b + n. Therefore, 2a2 + 2ab2 = a2 + b + n, or
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b+n = 2ab2 +a2. As one of these cases must be true, one of these two results must be true, so either

b+ n ≤ ab2 or b+ n = 2ab2 + a2.

In a regular 3982-gon the vertices are divided into pairs and both vertices in every pair are

then joined by a straight line. Prove that the 1991 lines not all can have diffrent lenghts.

Solution

Assume for contradiction that all 1991 lines have different lengths. First, if we label the vertices

A1, A2, ..., A3982, we can see that there are exactly 1991 possible lengths, namelyA1A2, A1A3, ..., A1A1992

(because A1 and A1992 are diametrically opposite points). Therefore, the length of each vertex pair

must equal a distinct length in the list A1A2, ..., A1A1992. Color the vertices of the 3982-gon alter-

nately white and black. Note that the lengths A1A2, A1A4, ..., A1A1992 will always connect a white

vertex to a black vertex, and the lengths A1A3, A1A5, ..., A1A1991 will always connect two vertices of

the same color. LetW equal the number of white vertices used up in these lengths. Because there are

996 lines that connect two vertices of different colors and 995 that connect two vertices of the same

color, we have that W = 996 + 2×x, where x is the number of lines that connect two white vertices.

However, this number is even, while the total number of white vertices is 1991, an odd number, so

we have a contradiction.

Let f : R→ [a, b] such that f(x) =
x+m

x2 + x+ 1
, a, b ∈ Q,m ∈ Z. Determine a, b,m for which

f is surjective.

Solution

We must have (∀y ∈ [a, b])(∃x ∈ R)y = f(x), hence yx2+yx+y = x+m ⇐⇒ yx2+(y−1)x+y−m =

0 must have a solution for x. Therefore (y − 1)2 − 4y(y − m) > 0 for all the y’s in the codomain.

The inequality is equivalent to −3y2 + (4m − 2)y + 1 > 0. Obviously, the discriminant must be

non-negative, and the boundaries of the codomain are the solutions of −3y2 + (4m− 2)y + 1 = 0.

The discriminant condition yields 4(2m− 1)2 + 12 > 0, which is satisfied for all real m, and the

roots of the equation are

y1,2 =
2m−1±

√
(2m−1)2+3

3

The radicand, being an integer, must be a perfect square, hence for some t ∈ Z we must have

(t + 2m − 1)(t − 2m + 1) = 3. Since the possible factorizations of 3 are 1 · 3, 3 · 1, (−1) · (−3) and

(−3) ·(−1), we get 4m−2 ∈ {2,−2} ⇐⇒ m ∈ {0, 1}. Finding y1,2 in those cases yields the solutions:

(a, b,m) ∈
{(
−1, 1

3
, 0
)
,
(
−1

3
, 1, 1

)}
For any n ≥ 1993, prove that:(

1− 1

19933

)(
1− 1

19943

)
· ... ·

(
1− 1

n3

)
>

1992

1993

Solution

We will prove a generalisation.(
1− 1

19933

) (
1− 1

19943

)
· · ·
(
1− 1

n3

)
> 1992

1993
· n+1

n

We use induction on n

The result is true for n = 1

This forms the base case for induction.

Assume the result for some natural n

Consider(
1− 1

19933

)
· · ·
(

1− 1
(n+1)3

)
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> 1992
1993
· n+1

n

(
1− 1

(n+1)3

)
So, it suffices to prove that
1992
1993
· n+1

n

(
1− 1

(n+1)3

)
≥ 1992

1993
· n+2
n+1

⇐⇒ (n+1)(n3+3n2+3n)
n(n+1)3 ≥ n+2

n+1

⇐⇒ n3 + 3n2 + 3n ≥ n(n+ 1)(n+ 2) = n3 + 3n2 + 2n

⇐⇒ n ≥ 0 which is true.

Find all integers x,y such that x6 + x3y = y3 + 2y2. Thank you in advance

Solution

Taking this as a quadratic in x3, we get

x6 + x3y − (y3 + 2y2) = 0 ⇐⇒ (x3)1,2 = −y±y
√

4y+9
2

Therefore for some integer n, y = n2−9
4
⇐⇒ (x3)1,2 = (n−3)(n+3)(−1±n)

8

The factors in the numerator are either all odd or all even, but as the product is divisible by 8,

they must be all even, hence n = 2m+ 1, which yields

(x3)1,2 = (m− 1)(m+ 2)−1±(2m+1)
2

, y = m2 +m− 2

Case 1. x3 = (m− 1)(m+ 2)m = m3 +m2 − 2m

By technique of "sandwiching" the expression m3 +m2 − 2m between two consecutive cubes, we

find that it’s sufficient to check m ∈ {−3,−2,−1, 0, 1, 2, 3}. Of those, only m ∈ {−2, 0, 1, 2} yield an

integer 3
√
m3 +m2 − 2m, hence the solutions are (x, y) ∈ {(0,−2), (0, 0), (2, 4)}

Case 2. x3 = (m− 1)(m+ 2)(−m− 1) ⇐⇒ −x3 = m3 + 2m2 −m− 2

The sandwiching technique yields no new solutions.

Conclusion. (x, y) ∈ {(0,−2), (0, 0), (2, 4)}
Let ABC is a triangle and M is the midpoint of BC, <BAM=30grad, and <MAC=15, find the

angles of ABC.

Solution

Let CK ⊥ AB and (AB)∩(CK) = {K}, MN ⊥ AB and (AB)∩(MN) = {N}. Hence,MN = 1
2
CK,

MN = 1
2
AM and AK = CK. Thus, AK = AM, which gives ]KBM = ]AKM = ]AMK = 75◦.

Id est, ]ABC = 105◦ and ]ACB = 30◦.

Caculate 23−1
23+1
· 33−1

33+1
· 43−1

43+1
· ... · n3−1

n3+1

Solution

S =
∏n

k=2
k3−1
k3+1

=
∏n

k=2
(k−1)(k2+k+1)
(k+1)(k2−k+1)∏n

k=2
(k−1)(k2+k+1)
(k+1)(k2−k+1)

= 2
n(n+1)

∏n
k=2

((k+1)2−(k+1)+1))
(k2−k+1)

2
n(n+1)

∏n
k=2

((k+1)2−(k+1)+1))
(k2−k+1)

= 2(n2+n+1)
3n(n+1)

Find the smallest natural number n which satisfies the inequality

20061003 < n2006

Solution

20061003 < n2006

=⇒ (20061003)
1

1003 < (n2006)
1

1003

=⇒ 2006 < n2.

Now, 442 = 1936 < 2006 < 2025 = 452, so the smallest possible value of n is 45 .

abc = 1, a, c, b > 0 prove that 1 + 3
a+b+c

≥ 6
ab+ac+bc

This rewrites into

[(a+ b+ c) + 3](ab+ bc+ ca) ≥ 6(a+ b+ c);

Note that ab + bc + ca ≥
√

3abc(a+ b+ c) =
√

3
√
a+ b+ c; and letting a + b + c = t ≥ 3 we have
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to show that

3t(t+ 3)2 − 36t2 ≥ 0;

Which equivalents 3t(t− 3)2 ≥ 0; which is perfectly true.2

Evaluate
∑2010

n=1 [n
1
5 ] where [.] denotes the greatest integer function.

Solution[
1

1
5

]
+
[
2

1
5

]
+ ...+

[
31

1
5

]
= (31)(1) = 31.

[
32

1
5

]
+
[
33

1
5

]
+ ...+

[
242

1
5

]
= (211)(2) = 422.

[
243

1
5

]
+[

244
1
5

]
+ ...+

[
1023

1
5

]
= (781)(3) = 2343.

[
1024

1
5

]
+
[
1025

1
5

]
+ ...+

[
2010

1
5

]
= (987)(4) = 3948. So

2010∑
n=1

[
n

1
5

]
= 31 + 422 + 2343 + 3948 = 6744

.

prove that:

cos(sin(x)) > sin(cos(x))

Solution

cos sinx > sin cosx⇔ sin
(
π
2
− sinx

)
−sin cosx > 0⇔⇔ 2 sin

π
2
−sinx−cosx

2
cos

π
2
−sinx+cosx

2
> 0, which

is true because | sinx+ cosx| ≤
√

2 and | sinx− cosx| ≤
√

2, which gives 0 <
π
2
−
√

2

2
≤

π
2
−sinx−cosx

2
≤

π
2

+
√

2

2
< π

2
and 0 <

π
2
−
√

2

2
≤

π
2
−sinx+cosx

2
≤

π
2

+
√

2

2
< π

2
.

Let f, g be two functions defined on [0, 2c] where c>0. Show that there exists x, y, is an element

of [0, 2c] such that |xy − f(x) + g(y)| ≥ c2

Solution

Assume that |xy− f(x) + g(y)| < c2 ∀x, y ∈ [0, 2c] This is equivelant to −c2 < xy− f(x) + g(y) < c2

∀x, y ∈ [0, 2c]

From the last we have

for x = y = 0: −c2 < f(0)− g(0) < c2 (1)

for x = y = 2c: −c2 < f(2c)− g(2c)− 4c2 < c2 (2)

for x = 0, y = 2c: −c2 < g(2c)− f(0) < c2 (3)

for x = 2c, y = 0: −c2 < g(0)− f(2c) < c2 (4)

Adding (1),(2),(3),(4) we get −4c2 < −4c2 < 4c2 contraction. So exist x, y ∈ [0, 2c] such that

|xy − f(x) + g(y)| ≥ c2 Let a1, a2, a3, a4, a5 be positive real numbers which satisfy

(i) 2a1, 2a2, 2a3, 2a4, 2a5 are positive integers (ii) a1 + a2 + a3 + a4 + a5 = 99

Find the minimum and maximum of P = a1a2a3a4a5

Solution

This is equivalent to:

If b1, b2, b3, b4, b5 are positive integers such that b1 + b2 + b3 + b4 + b5 = 198, then find the extrema

of P = b1b2b3b4b5
32

By AM-GM principles, the product will be maximized for numbers which are as close as possible

to their average, hence we must take {b1, b2, b3, b4, b5} = {40, 40, 40, 39, 39} for Pmax = 3042000

To minimize the product, we must take as many 1’s as possible, hence {b1, b2, b3, b4, b5} =

{1, 1, 1, 1, 194}, for Pmin = 97
16

A,B,C - angles of non-isosceles triangle. Solve an equation system:

sinA = 2 sinC sin(B − 30◦)

sinC = 2 sinB sin(A− 30◦)

Solution

sinA = 2 sinC sin(B − 30◦) (1) sinC = 2 sinB sin(A− 30◦) (2)
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Using Sine Law and Cosine Law on (1), we get:
a

2R
= 2 c

2R

(
b

2R
·
√

3
2
− 1

2
cosB

)
a
c

= b
√

3
2R
− cosB

a2+c2−b2
2ac

= b
√

3
2R
− a

c

Ra2 +Rc2 −Rb2 = abc
√

3− 2Ra2

3a2 − b2 + c2 = 4P
√

3 (3)

where P = [ABC]

The similar procedure applied to (2) yields

−a2 + b2 + 3c2 = 4P
√

3 (4)

Now (3)− (4) =⇒ b2 + c2 = 2a2 ⇐⇒ c2 = 2a2 − b2 (5)

Plugging (5) into (3) we get

5a2 − 2b2 = 4P
√

3

Squaring that and using Heron’s, we get

25a4 − 20a2b2 + 4b4 = 3[(a+ b)2 − c2][c2 − (a− b)2]

Using (5), after a lengthy but trivial simplification, we get

7a4 − 11a2b2 + 4b4 = 0

From there,
(
a2

b2

)
1,2

= 11±3
14

, but as a 6= b by the problem condition, we take a2

b2
= 4

7
⇐⇒ a = 2b√

7

Now (5) yields c = b√
7

Therefore a : b : c = 2 :
√

7 : 1

Solving for the angles, we find ∠A = arctan

√
3

2
,∠B = 120◦,∠C = arctan

√
3

5
NOTE: Without the non-isosceles condition, we have another solution in the form of an equilateral

triangle.

Find the polynomial P (x) , which satisfies the identity P (x2) + 2x2 + 10x = 2xP (x+ 1) + 3

Solution

If n = degP , then max{2n, 2} = n+ 1, which can be satisfied only for n = 1. Hence P (x) = ax+ b.

Plugging that into the equation and equating the coefficients, we find P (x) = 2x+ 3.

Let a be a positive integer and define a sequence {un} is defined as follows.

u1 = 2, u2 = a2 + 2, un = aun−2 − un−1, n = 3, 4, 5, · · ·

Find the necessary and sufficient condition for a such that a multiple of 4 doesn’t appear in the term

of the sequence {un}.
Solution

Obviously, we can simply consider the whole sequence mod4 and ask when 0 will never occur in the

sequence.

Next, note that the sequence mod4 can be calculated from a mod 4, so we can simply consider

the four cases of a.

If a ≡ 0 mod 4 then the sequence goes 2, 2, 2, 2, 2, ... so 0 never occurs.

If a ≡ 1 mod 4 then the sequence goes 2, 3, 3, 0, 3, ... so u4 is divisible by 4.

If a ≡ 2 mod 4 then the sequence goes 2, 2, 2, 2, 2, ... so 0 never occurs.

If a ≡ 3 mod 4 then the sequence goes 2, 3, 3, 2, 3, 3, 2, ... so 0 never occurs.

Therefore, no multiple of 4 occurs in {un} iff a 6≡ 1 mod 4.

The product of two numbers ‘231’ and ‘ABA’ is ‘BA4AA’ in a certain base system (where base

is less than 10), where A and B are distinct digits. What is the base of that system?
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Solution

Let x be the base. Due to the presence of the digit 4, we have 5 6 x 6 9, and also 1 6 a, b 6 x− 1.

The given equation is equivalent to (x+ 1)(2x+ 1)(ax2 + bx+ a) = bx4 + ax3 + 4x2 + ax+ a. By

Bezout we get bx4+ax3+4x2+ax+a ≡ b−a+4 (mod x+1) and bx4+ax3+4x2+ax+a ≡ b
16

+ 3a
8

+1

(mod 2x+1). Since 2x+1 is odd, the last condition is equivalent to bx4+ax3+4x2+ax+a ≡ b+6a+16

(mod 2x+ 1).

Therefore we have two conditions:
b−a+4
x+1

∈ N (1)
b+6a+16

2x+1
∈ N (2)

Since b 6 x − 1 ∧ a > 1, we have b−a+4
x+1

6 x+2
x+1

= 1 + 1
x+1

, hence b−a+4
x+1

= 1 =⇒ b − a = x − 3.

Since b 6 x− 1 and a > 1, we have only two possibilities: (a, b) = (2, x− 1) and (a, b) = (1, x− 2).

Plugging the first possibility into (2) we get x+27
2x+1

= 1
2

(
1 + 53

2x+1

)
, hence 2x+ 1 must be a divisor

of 53, which can’t be fulfilled for 5 6 x 6 9 as 53 is prime.

The second possibility yields x+20
2x+1

= 1
2

(
1 + 39

2x+1

)
. The only divisor of 39 for 5 6 x 6 9 is 13 for

x = 6, which in turn yields (a, b) = (1, 4).

Hence the solution is 2316 · 1416 = 414116 (in the decimal system: 91 · 61 = 5551)

Find all n ∈ N satisfy : x2n − xn + 1 ≡ 0(modx2 − x+ 1)

Solution

Put P (x) = x2n − xn + 1. The zeroes of x2 − x+ 1 are e±iπ/3, so we must have P (e±iπ/3) = 0, which

reduces to a system:

cos 2nπ
3
− cos nπ

3
+ 1 = 0 ⇐⇒ 2 cos2 nπ

3
− cos nπ

3
= 0

sin 2nπ
3
− sin nπ

3
= 0 ⇐⇒ sin nπ

3
(2 cos nπ

3
− 1) = 0

The first equation yields cos nπ
3

= 0∨cos nπ
3

= 1
2
, and the second one yields sin nπ

3
= 0∨cos nπ

3
= 1

2
.

Assume cos nπ
3

= 0. Then sin nπ
3

= ±1 ∧ cos nπ
3
6= 1

2
, hence the second set of the conditions can’t

be satisfied. Therefore cos nπ
3

= 1
2
, which also satisfies the second set of the conditions.

cos nπ
3

= 1
2

=⇒ nπ
3

= ±π
3

+ 2kπ =⇒ n = 6k ± 1

Therefore n ∈ (6N0 + 1) ∪ (6N0 + 5)

Given a triangle ABC and a point P in the same plane as 4ABC, let the directed distance

from P to AB,BC,CA be c, a, b respectively, where negative means that P is on the opposite side

of the edge as the other vertex. Prove that
a
ha

+ b
hb

+ c
hc

= 1

where ha, hb, hc are the lengths of the altitudes to BC,CA,AB respectively. No using barycentric

coordinates, because that makes the problem trivial.

Solution

First let’s assume P is an internal point of the triangle. If S := [ABC], then
aBC

2
+ bCA

2
+ cAB

2
= S

Putting BC = 2S
ha
, CA = 2S

hb
, AB = 2S

hc
, we obtain the result.

Now assume A and P are on the opposite sides of BC, and that P,B and P,C are on the same

side of AC,AB respectively. Then [ABC] = [ABP ] + [APC]− [BPC], hence

− |a|BC
2

+ bCA
2

+ cAB
2

= S =⇒ − |a|
ha

+ b
hb

+ c
hc

= 1

But −|a| = a, hence the result follows.

We proceed similarly in the remaining cases.

in a warehouse N containersmarked 1 through N are arranged in two piles. A forklift can take

several containers from the top of one pile and place them on the top of other pile. Prove that all the
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containers can be arranged in one pile in increasing order of their numbers with 2N-1 such operations

of the forklift.

Solution

We assume that during the moves some pile is allowed to be empty (otherwise there can be no

solution, for example for pile A being 23 and pile B being 41). The correct formula is 2(N −1) and is

proved by induction. For N = 1 it is trivial 0 moves are needed. Assume 2(N − 1) moves are enough

for N containers. When having N + 1 containers, assume 1 is in some position in pile A. Put pile A

over B, then cut at 1 and recreate pile A, now having 1 at the bottom (it took 2 moves). Now the

remaining N containers (from 2 to N +1) require at most 2(N −1) moves (by induction hypothesis),

so 2 + 2(N − 1) = 2((N + 1)− 1) moves are enough for N + 1 containers.

Find min of m2 +n2 with m,n satisfies that following equation have solution. x4 +mx3 +nx2 +

mx+ 1 = 0

m,n ∈ R
Solution

x = 0 is not a solution, so we can divide by x2 to get x2 +mx+ n+ m
x

+ 1
x2 = 0.

Let k = x + 1
x
. Then |k| ≥ 2 by AM-GM. We have k2 − 2 + mk + n = 0. We can assume that

k > 0, because we can do the transformation (k,m) → (−k,−m) and keep the rest of the equation

true.

We see that

(km+ n)2 + (m− kn)2 = (k2 + 1)(m2 + n2).

Keeping k constant, we see that the min of m2 +n2 is when m = kn, because km+n is constant,

equal to 2− k2. Then

m2 + n2 = (2−k2)2

k2+1
= (k2−5)(k2+1)+9

k2+1
= k2 − 5 + 9

k2+1
.

This is an increasing function in k because a + 1
a
− 4 is, where a = k2 + 1, so the min is when

k = 2 and m2 + n2 = 22 − 5 + 9
22+1

= −1 + 9
5

= 4
5
, when n = −1 and m = −1

2
. This has solution

x = 1.

There exists a polynomials P of degree 5 with the property that If Z is a complex no. such

that Z5 + 2004Z = 1 ,then P (Z2) = 0. Then find the value of | P (1)
P (−1)

|
Solution

Let Q(z) = z5 + 2004z − 1 and let z1,2,3,4,5 be its zeroes. By the definition of P (x), we have

P (x) = C(x− z2
1)(x− z2

2)(x− z2
3)(x− z2

4)(x− z2
5) where C is a constant.

Since we need to find a ratio, WLOG we can take C = 1.

Then P (1) = (1 − z2
1)(1 − z2

2)(1 − z2
3)(1 − z2

4)(1 − z2
5). By factoring this, we find that P (1) =

Q(1) · (−1)5Q(−1) = −2004 · (−2006) = 20052 − 1

For P (−1) we get P (−1) = −(1+z2
1)(1+z2

2)(1+z2
3)(1+z2

4)(1+z2
5). By factoring this in C - i.e. using

1+a2 = (−i+a)(i+a) - we find that P (−1) = −(−1)5Q(i)(−1)5Q(−i) = −(−1+2005i)(−1−2005i) =

−(1 + 20052) Hence P (1)
P (−1)

= 1−20052

1+20052

Twenty five boys and twenty five girls sit around a table. Prove that is always possible to find

a person both whose neighbors are girls.

Solution

Denote the positions around the table by 0, 1, . . . , 49; notice 49 also neighbors 0. Either the odd

positions 1, 3, . . . , 49 or the even positions 0, 2, . . . , 48 accommodate 12 or less boys (pigeonhole

principle). WLOG, assume it’s the 25 odd positions. If no boys are seated there, the triplet (1, 2, 3)

(for example; in fact many other) has two girls at its ends. So at least a boy must be seated there.
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Fix one of them, say k, and group the remaining 24 positions in 12 pairs (k+ 2, k+ 4), (k+ 6, k+

8), . . . , (k − 4, k − 2), the indices being taken modulo 50 (for example, k = 15 and group in 12 pairs

(17, 19), (21, 23), . . . , (45, 47), (49, 1), (3, 5), . . . , (11, 13)). If any pair contains no boy, then it’s made

of two girls, and, together with the middle person, it’s a triplet with two girls at its ends. So we need

a boy in each pair, which is impossible, since we have at most 12− 1 = 11 boys left.

Of course, the problem being symmetric in boys and girls, the same conclusion is valid for genders

reverted.

Prove that
∑n

k=1 tan2 kπ
2n+1

= n(2n+ 1)
∑n

k=1 cot2 kπ
2n+1

= n(2n−1)
3

Solution

sin(2n + 1)θ =
∑n

k=0(−1)k
(

2n+1
2k+1

)
sin2k+1 θ cos2n−2k θ = cos2n+1 θ

∑n
k=0(−1)k

(
2n+1
2k+1

)
tan2k+1 θ So∑n

k=0(−1)k
(

2n+1
2k+1

)
x2k+1 = 0 ⇐⇒

∑n
k=0(−1)k

(
2n+1

2k

)
x2n−2k = 0 ⇐⇒ x = tan kπ

2n+1
(k = 1, . . . 2n)

Therefore
∑n

k=0(−1)k
(

2n+1
2k

)
xn−k = 0 ⇐⇒ x = tan2 kπ

2n+1
(k = 1, . . . n)

Thus
∑n

k=1 tan2 kπ
2n+1

=
(2n+1

2 )
(2n+1

0 )
= n(2n+ 1) and

∑n
k=1 cot2 kπ

2n+1
=

(2n+1
2n−2)

(2n+1
2n )

= n(2n−1)
3

The coefficients of x13 and x0 match. The coefficient of x in the LHS is 1 which is equal to the

coefficient of x in the RHS which is a[x]T − b. Therefore [x]T = 1+b
a
. But [x]T must be an integer,

so from the factors of 90, the only possible values of a are −9,−2,−1, 1, 2, 10. Checking all of these

cases yields that a = 2 is the solution.

(Note: We could have either gone further, calculating more coefficients of T (x), or we could have

just checked all the factors of 90.)

Let z ∈ C and a, b ≥ 0 . If ω = cos 2π
3

+ i sin 2π
3
, then prove that : |z−1|+ |z−aω|+ |z−bω2| ≥

1 + a+ b .

Solution

let Arg(ω) = θ = 2π
3
, Arg(ω2) = Arg(ω) = −θ = −2π

3

A = (1, 0), B = (a cos θ, a sin θ), C = (b cos(−θ), b sin(−θ)) = (b cos θ,−b sin θ) For any ponit Pz

on the complex plane, we have

PzA+ PzB ≥ AB which is true by triangular ineq. i.e.

|z − 1|+ |z − aω| ≥
√

(a cos θ − 1)2 + (a sin θ)2 =
√
a2 − 2a cos θ + 1 = a+ 1 , since cos 2π

3
= −1

2

Similarly, PzA+ PzC ≥ AC

|z − 1|+ |z − bω2| ≥
√

(b cos θ − 1)2 + (−b sin θ)2 =
√
b2 − 2b cos θ + 1 = b+ 1 ,and

PzB + PzC ≥ BC

|z − aω|+ |z − bω2| ≥
√

(a cos θ − b cos θ)2 + (a sin θ + b sin θ)2

=
√
a2 + b2 − 2ab cos2 θ + 2ab sin2 θ =

√
a2 + b2 − 2ab cos 2θ = a+ b , since cos 2θ = cos 4π

3
= −1

2

Hence ,adding the above three ineq., then |z−1|+|z−aω|+|z−bω2| ≥ 1
2
(a+1+b+1+a+b) = 1+a+b

The equality holds only when Pz = (0, 0)

Find maxn∈N∗ an , where an = n
√
n .

Solution

Define over R the following equivalence relation: x ∼ y ⇐⇒ sign(x) = sign(y) ⇐⇒ x = y =

0 ∨ xy > 0 ⇐⇒
x and y [u]have same sign[/u] . Denote an = n

√
n , n ∈ N∗ . Thus, for any n ≥ 3 , an+1 − an =(

n
√
n+ 1− n

√
n
)
∼

[(n+ 1)n − nn+1] ∼
[(

1 + 1
n

)n − n] < 0 because
(
1 + 1

n

)n ↗ e =⇒
(
1 + 1

n

)n
< e < 3 ≤ n .

Given the equation: sin kx = sinx Find the value of k for which this equation and the equation

cos 3x = cos 2x have, within the range (0, 360] (degrees), one and only one common solution
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Solution

Angles will be in degrees.

When is sin a = sin b? When either a ≡ b (mod 360) or a ≡ 180− b (mod 360).

When is cos a = cos b? When either a ≡ b (mod 360) or a ≡ −b (mod 360).

So the equation

sinkx =

sinx can be written as kx ≡ x (mod 360) or kx ≡ 180− x (mod 360). That gets us two families of

solutions:

x = 360j
k−1

or x = 180+360j
k+1

for j ∈ Z.
The equation cos 3x = cos 2x can be solved as follows:

3x ≡ 2x (mod 360) which implies x ≡ 0 (mod 360) or x = 360n.

or

3x ≡ −2x (mod 360), which implies 5x ≡ 0 (mod 360) or x = 360n
5
.

That second equation includes the first.

So, when do solutions coincide?

Either 360n
5

= 360j
k−1

or 360n
5

= 180+360j
k+1

.

Take the first equation, divide by 360 and multiply by 5(k − 1) to get (k − 1)n = 5j.

This always has n = 0, j = 0 as a solution. We also have solutions whenever 5 |n (but that’s the

same place on the circle). If 5 doesn’t divide n, then we would need 5 | (k−1) or k ≡ 1 (mod 5). Then

j = (k−1)n
5

, and as n ranges over all integers not equivalent to 5, then j will always be an integer.

Now let’s look at the other equation. This time, divide by 180 and multiply by 5(k + 1). That

leaves 2(k + 1)n = 5 + 10j.

If 5 divides k + 1, we get no solution, as one side is divisible by 10 and the other side is ≡ 5

(mod 10). But if 5 doesn’t divide k + 1, then we would have 5 |n, which gets us back to x ≡ 0

(mod 360).

So:

If k 6≡ 1 (mod 5), then the only solution in the circle is x ≡ 0 (mod 360). However, if k ≡ 1

(mod 5), then {0, 72, 144, 216, 288} and their equivalents mod 360 are all solutions.

The question asked for the k that produce a unique solution in the circle; that would be {k : k 6≡ 1

(mod 5)}.
(x) is a polynomial of degree 998.p(k)=1/k for K is integral varying from 1 to 999. Find the

value of P (1001).

Solution

a. 1 b. 1001 c. 1/1001 d.1/(1001!)

Your definition is equivalent to kP (k) = 1 for all the integers between 1 and 999. So, kP (k) −
1 = A(k − 1)(k − 2) . . . (k − 999), where A is some unknown constant. For k = 0, we have that

−1 = −A(999!), so A = 1
999!

. Now, 1001P (1001)− 1 = 1000!
999!

. 1001P (1001) = 1001, so P (1001) = 1 .

The answer: A .

Given a, b, c and ab+bc+ac√
abc

are all positive integers, does that imply that
√

ac
b
,
√

ab
c
,
√

bc
a
must all

be integers?

Solution

Clearly
√
abc ∈ N so abc = k2, k ∈ N
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Write M = (a, b, c) = (α2xy, β2yz, γ2zx)

With gcd(α, β) = gcd(β, γ) = gcd(γ, α) = 1

constructive proof Take M = (a, b, c) and let gcd(a, b) = y =⇒M = (a′y, b′y, c)

Let gcd(a′, c) = x =⇒M = (a′′yx, b′y, c′x)

Let gcd(b′, c′) = z =⇒M = (a′′xy, b′′yz, c′′zx)

since gcd(a′′, b′′) = gcd(b′′, c′′) = gcd(c′′, a′′) = 1 it follows that a′′, b′′, c′′ are perfect squares.

∴M = (α2xy, β2yz, γ2zx)

This gives
ab+bc+ca√

abc
=

∑
α2β2y
αβγ

Hence α|z, β|x and γ|y
Therefore√

ab
c

=
√

α2xyβ2yz
γ2zx

= αβy
γ
∈ N because γ|y

Prove that every f : N→ N which is a bijection can be written as the sum of two involutions.

Solution

I assume that should read "composition of two involutions".

LetX1 = N. We defineXn iteratively as follows: let Sn = {x : ∃min(Xn)}, and setXn+1 = Xn\Sn;
thus,

⋃
Sn = N. (here fn refers to the composition of f , n times)

Suppose |Sn| = k ∈ N. If k = 1, then define gn(x) = hn(x) = x where x ∈ Sn. Otherwise,

Sn = {x1, . . . , xk} where f(xi) = xi+1, xk+1 := x1, define the involutions gn, hn : Sn → Sn as

follows: gn(xi) = xk+2−i, hn(xi) = xk+3−i (they are involutions due to the definition of xk+1, though

this is shown in more detail in the hidden tag); obviously fn(xi) = hn(gn(xi)). More specifically

gn(x1) = x1, gn(xi) = xk+2−i for 2 ≤ i ≤ k; and hn(x1) = x2, hn(x2) = x1, and hn(xi) = xk+3−i for

3 ≤ i ≤ k. Observe that

hn(gn(xi)) =


xk+3−(k+2−i) = xi+1, 2 ≤ i ≤ k − 1

x2, i = 1

x1, i = k

= fn(xi).

Here’s an example, for k = 5 and Sn = {1, 2, 3, 4, 5}:

x g(x) h(g(x))

1 1 2

2 5 3

3 4 4

4 3 5

5 2 1

where g(1) = 1, and the remaining elements are ’reflected’ by g; and all the elements are ’reflected’ by

h. If Sn is countably infinite, select an arbitrary element x1 ∈ Sn, and let Sn = {x1, . . .} where x2k+1 =

fk(x1) and fk(x2k) = x1, k ∈ N. Then define the involutions gn, hn : Sn → Sn as follows: gn(x1) =

x1, gn(x2k) = x2k+1, gn(x2k+1) = x2k; and hn(x1) = x3, hn(x3) = x1, hn(x2k) = x2k+3, hn(x2k+3) = x2k.

Verify, much like above, that fn(xi) = hn(gn(xi)).

Then, naturally, we have f = h(g(x)), where g(x) = gn(x) if x ∈ Sn and h(x) = hn(x) if x ∈ Sn.
Note in essence that the involutions defined are similar to slightly shifted reflections; will post a

more informal explanation.
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2 ≡ 1 (mod 30) or p2 ≡ 19 (mod 30)

Solution

It’s only true for p > 5. We have to show that either p2 − 1 is divisible by 30 or p2 − 19 is. Both are

even for p > 5.Since p is either 1 or 2 mod 3 for p >5, both are divisible by 3. So we have to show

5 divides one of the two. If p > 5 then it is either 1,2,3, or 4 mod 5. If it is 1 or 4 mod 5, then 5

divides p2− 1. If it is 2 or 3 mod 5, then 5 divides p2− 19. SoSince 2,3, and 5 all divide one of p2− 1

or p2 − 19, one of them must be divisible by 30.

Find the smallest natural number n,such that there exist positive integrs x1, x2, . . . , xn, such

that x3
1 + x3

2 + . . .+ x3
n = 2008

Solution

Assume there are two positive integers a, b such that a3 + b3 = 2008

Then 2008 = a3 + b3 ≥ (a+b)3

4
=⇒ a+ b < 2 3

√
1004 < 2 · 11 = 22

Since 2008 = 23 · 251 we have a+ b = 1, 2, 4 or 8

But a3 + b3 = (a+ b)(a2−ab+ b2) so a2−ab+ b2 ≥ 251 but a2−ab+ b2 = (a+ b)2−3ab < 82 = 64

Contradiction

prove: lcm(1, 2, . . . , 2n) = lcm(n+ 1, n+ 2, . . . , n+ n)

Solution

This is obvious,Since for every number a ∈ {1, 2, 3, . . . , n} there exist a number b ∈ {n + 1, n +

2, . . . , 2n} such that a | b. The claim easily follows.

Prove that: in eight integers have three digits,∃ a1a2a3 and b1b2b3 satisfy a1a2a3b1b2b3 ≡ 0

(mod 7)

Solution

Just note that 103 ≡ −1 mod 7, By the box principle there are two integers ai, aj with the same

residue mod 7 so 103aj + ai ≡ ai − aj ≡ 0 mod 7

a1, a2, . . . , an are positive numbers such that their sum is one. Find the minimum of: a1/(1 +

a2 + . . .+ n) + a2/(1 + a1 + a3 + . . .+ an) + . . .+ an/(1 + a1 + . . .+ an−1)(and please prove it!).

Solution

Assuming you meant to have 1 + a2 + · · · + an in the denominator of the first term, Let S =
a1

1 + a2 + · · ·+ an
+

a2

1 + a1 + · · ·+ an
+ · · ·+ an

1 + a1 + · · ·+ an−1

. We have that a1 +a2 + · · ·+an = 1,

Thus we can rewrite the original expression as,

S =
n∑
i=1

ai
2− ai

We can then add one to each term then subtract n to get,

S = −n+
n∑
i=1

2

2− a1

Take out a factor of 2 from the sum,

S = −n+ 2

(
n∑
i=1

1

2− a1

)
Use Cauchy-Schwarz to show that,

(2n− 1)

(
n∑
i=1

1

2− a1

)
≥ n2 =⇒

n∑
i=1

1

2− a1

≥ n2

2n− 1
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Hence,

S = −n+ 2

(
n∑
i=1

1

2− a1

)
≥ −n+ 2

(
n2

2n− 1

)
=

2n2

2n− 1
− n =

n

2n− 1

And that’s our answer. Equality occurs when a1 = a2 = · · · = an = 1
n

Prove that there are infinitely many solutions: a2b2 − 4b(b+ 1) = c2

Solution

Let a = 3 and b = F 2
2n−1 where n ∈ N. (Note: Fn is the Fibonacci sequence). Using the well-known

fact that 5F 2
2n−1 − 4 is a perfect square for n ∈ N, we have:

a2b2 − 4b(b+ 1) = 9F 4
2n−1 − 4F 4

2n−1 − 4F 2
2n−1

= 5F 4
2n−1 − 4F 2

2n−1

= F 2
2n−1(5F 2

2n−1 − 4),

which is a perfect square.

Therefore,Since there are infinitely many numbers of the form F 2
2n−1, there are infinitely many

integer solutions.

Find all x such that:√
cos 2x− sin 4x = sinx− cosx

Solution√
cos 2x− sin 4x = sinx− cosx

⇔

{
sinx− cosx ≥ 0

cos 2x− sin 4x = 1− sin 2x

⇔

{
sin(x− π

4
) ≥ 0

(cos 2x+ sin 2x)(cos 2x+ sin 2x− 1) = 0

⇔


k2π ≤ x− π

4
≤ π + k2π (k ∈ Z) (∗)[

sin(2x+ π
4
) = 0 (1)

sin(2x+ π
4
) =

√
2

2
= sin π

4
(2)

We have

(1) : sin(2x+ π
4
) = 0

⇔ x = −π
8

+ lπ
2

(l ∈ Z)

Because the condition (*) must be satisfied by x, therefore :

k2π ≤ −π
8

+ lπ
2
− π

4
≤ π + k2π (l, k ∈ Z)

⇒ 3π
8
≤ lπ

2
− k2π ≤ 11π

8

⇒ 3
8
≤ l

2
− 2k ≤ 11

8

⇒ l = 2(2k + 1) = 2a(a ∈ Z)

⇒ x = −π
8

+ aπ(a ∈ Z)

We have

(2) : sin(2x+ π
4
) = sin π

4

⇔

[
x = mπ

x = π
4

+mπ
(m ∈ Z)

Similarly, we obtain x = π
4

+mπ and x = (2k + 1)π where k,m ∈ Z
Conclusion, the solutions for the given equation are: x = −π

8
+ aπ, x = π

4
+ mπ, x = (2k + 1)π

where a,m, k ∈ Z.
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I mean that the number of digits of a, plus the number of digits of an equals 361

Solution

blog10 ac+ bn log10 ac = 359 (1)

so (n+ 1)blog10 ac ≤ blog10 ac+ bn log10 ac ≤ b(n+ 1) log10 ac
let log10 a = p+ r with p ∈ N and 0 < r < 1 then

(n+ 1)p ≤ 359 ≤ (n+ 1)p+ (n+ 1)r < (n+ 1)(p+ 1) =⇒ p ≤ 359
n+1

< p+ 1

so p =
⌊

356
n+1

⌋
from (1): p+ np+ bnrc = 359 butSince 0 ≤ bnrc < n we have

359 < (n+ 1)
⌊

356
n+1

⌋
+ n (2)

but the only value of n ∈ {1, 2, . . . , 9} for which (2) is true is n = 6

Solve the equation xx + yy = xy + 3 where xy = 10x+ y

Solution

xy + 3 ≤ 99 + 3 ≤ 102 =⇒ xx + yy ≤ 102 =⇒ x, y ≤ 3.

Furthermore, 00 is undefined so neither digit can be 0.

Case x = 1: 1 + yy = 13 + y =⇒ yy − y = 12 =⇒ y /∈ N.
Case x = 2: 4 + yy = 23 + y =⇒ yy − y = 19 =⇒ y /∈ N.
Case x = 3: 27 + yy = 33 + y =⇒ yy − y = 6 =⇒ y /∈ N.
So, there are no solutions in N.
Find all integer solutions (n,m) to - n4 + 2n3 + 2n2 + 2n+ 1 = m2

Solution

we factor the left side of the equation, we obtain

(n+ 1)2(n2 + 1) = m2

Now n2 + 1 needs to be perfect square, because (n+ 1)2 and m2 are perfect squares.

From n2 + 1 = x2 we get n = 0 and x = +− 1, from there m = +− 1

And second solution would be for m = 0, then we have n = −1.

For a math contest there is a shortlist with 46 problems, of which 10 are geometry problems. The

difficulty of every two problems is different (so there are no two problems with the same difficulty).

Let N be the number of ways the selection committee can select 3 problems, such that - Problem

1 is easier than problem 2, - Problem 2 is easier than problem 3, - There is at least one geometry

problem in the test. Calculate N
4
.

Solution

Given an arbitrary selection of three problems, there is only one way to order them such that they are

in ascending order of difficulty. Therefore, there are
(

46
3

)
= 15180 possible tests. However, we must

compute the number of tests with no geometry problems. This is
(

36
3

)
= 7140.N = 15180−7140

4
= 2010 .

Show, using the binomial expansion, that (1 +
√

2)5 < 99. Show also that
√

2 > 1.4. Deduce that

2
√

2 > 1 +
√

2.

Solution

first we will prove that
√

2 > 1.4. Squaring that we get that 2 > 1.96 which is true and we ’ll prove

that 1.5 >
√

2, which is also trivial when we square it.

Now (1 +
√

2)5 < 99. –> (1 +
√

2)5 < (1 + 1.5)5 = 97.65625 < 99
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2
√

2 > 1 +
√

2 is trivial by Bernoulli’s inequality . . . Rewrite number 2 from left side of inequality

in form (1 + 1)

Prove that: p is prime, p ≥ 3, the equation x2 + 1 ≡ (mod p) have solution if p = 4k + 1

Solution

Assume p = 4k + 3, then obviously p does not divide x so

x2 ≡ −1 =⇒ 1 ≡ xp−1 ≡ x2· p−1
2 = (−1)

p−1
2 = −1 (mod p).

Let a > 2 be an odd number and let n be a positive integer. Prove that a divides 1a
n

+ 2a
n

+

· · ·+ (a− 1)a
n

Solution

"Solution 1 Let S = 1a
n

+ 2a
n

+ · · ·+ (a− 1)a
n
. We can express S as,

(1a
n

+ (a− 1)a
n

) + (2a
n

+ (a− 2)a
n

) + · · ·+

((
a− 1

2

)an
+

(
a+ 1

2

)an)

Then use the fact that

a+ b|ak + bk

for positive integers a and b whenever k is an odd positive integer. Click here for proof of this fact

We know that,

a+ b ≡ 0 (mod a+ b)

Thus,

a ≡ −b (mod a+ b) =⇒ ak ≡ (−b)k (mod a+ b)

Since k is odd we know that, (−b)k ≡ −bk (mod a+ b) and therefore,

ak ≡ −bk (mod a+ b) =⇒ ak + bk ≡ 0 (mod a+ b)

From where we get that a+ b|ak + bk.

Thus,

1 + (a− 1) | 1a
n

+ (a− 1)a
n

2 + (a− 2) | 2a
n

+ (a− 2)a
n

...(
a− 1

2

)
+

(
a+ 1

2

)
|
(
a− 1

2

)an
+

(
a+ 1

2

)an
We can use this fact because an is always an odd integer when n is a positive integer and a is odd.

Hence S is divisible by a.

Solution 2 Note that,

1a
n

+ (a− 1)a
n ≡ 1a

n

+ (−1)a
n ≡ 1a

n − 1a
n ≡ 0 (mod a)

2a
n

+ (a− 2)a
n ≡ 1a

n

+ (−2)a
n ≡ 2a

n − 2a
n ≡ 0 (mod a)

...(
a− 1

2

)an
+

(
a+ 1

2

)an
≡

(
a− 1

2

)an
+

(
a− a− 1

2

)an
≡
(
a− 1

2

)an
−
(
a− 1

2

)an
≡ 0 (mod a)
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Adding all the equations up we get that,

S ≡ 0 + 0 + · · ·+ 0 ≡ 0 (mod a)

Σxi ≤ Σx2
i for xi > 0

Prove that

Solution

Σxpi ≤ Σxp+1
i for p > 1, p ∈ R

Σxi ≤ Σx2
i =⇒ Σx2

i − xi ≥ 0 =⇒ Σxi(xi − 1) ≥ 0

So it is only natural to divide the terms depending on whether or not they are positive or negative,

i.e.:∑
i:xi>1 xi(xi − 1) +

∑
i:xi<1 xi(xi − 1) ≥ 0

Clearly all the terms in the first summand on LHS are positive, whereas all the terms in the

second one are negative.

Since xi > 1 =⇒ xp−1
i > 1 we have,

∑
i:xi>1 x

p
i (xi − 1) ≥

∑
i:xi>1 xi(xi − 1)

Similarly, xi < 1 =⇒ xp−1
i < 1 =⇒

∑
i:xi<1 x

p
i (xi − 1) ≥

∑
i:xi<1 xi(xi − 1) (recall that both

sides are negative)

Adding the two inequalities, we get:
∑

i:xi>1 x
p
i (xi− 1) +

∑
i:xi<1 x

p
i (xi− 1) ≥

∑
i:xi>1 xi(xi− 1) +∑

i:xi<1 xi(xi − 1) ≥ 0 =⇒
∑

i:xi>1 x
p
i (xi − 1) +

∑
i:xi<1 x

p
i (xi − 1) =

∑
xpi (xi − 1) ≥ 0 =⇒

∑
xpi ≤∑

xp+1
i as desired

Let a1, a2, . . . , an be postive real numbers. Prove: (a1 + . . .+an)2 ≤ π2

6
(12a2

1 + 22a2
2 + . . .+n2a2

n)

Solution

From Cauchy-Schwarz inequality,

π2

6

(
n∑
i=1

i2a2
i

)
=

(
∞∑
i=1

1

i2

)(
n∑
i=1

i2a2
i

)
≥

(
n∑
i=1

1

i2

)(
n∑
i=1

i2a2
i

)
≥

(
n∑
i=1

ai

)2

.

Find all pairs of integers (m,n) such that the numbers A = n2 + 2mn + 3m2 + 2, B =

2n2 + 3mn+m2 + 2, C = 3n2 +mn+ 2m2 + 1 have a common divisor greater than 1.

Solution

Suppose p is prime and p|A,B,C.

A−B = 2m2 −mn− n2 = (m− n)(2m+ n) (1)

C −B = m2 − 2mn+ n2 − 1 = (m− n)2 − 1 (2)

From (1), p|(m− n) or p|(2m+ n) but clearly p 6 |(m− n) because of (2)

replacing n ≡ −2m mod p in A and C gives 3m2 + 2 ≡ 12m2 + 1 mod p

But gcd(3m2 + 2, 12m2 + 1) = gcd(3m2 + 2, 7) so the greatest common denominator is at most 7

So 3m2 + 1 ≡ 0 mod 7 =⇒ m ≡ 2, 5 mod 7 =⇒ n ≡ 3, 4 mod 7

Hence (m,n) = (7k1 + 2, 7k2 + 3)or(7k1 + 5, 7k2 + 4)

100 lines lie in the plane. Is it possible for them to have exactly 2010 points of intersection?

Solution

Let (a, b, c, d, e, ...) be the parallel line sets and numbers of lines parallel. (suppose there are 7 line,

Parallel sets are (1,2,3) (4,5) (6) (7), then the code will be (3,2,1,1)) It is easy to see that the

intersections are in form a(100−a)+b(100−b)+c(100−c)...
2

= 2010 Where a+ b+ c+ . . . = 100

100(a+ b+ c+ . . .)− a2 + b2 + c2 . . . = 4020 5980 = a2 + b2 + c2 . . .

Then using trial and error, I obtained a set (77,4,2,2,2,2,2,2,2,2,1,1,1) so it is possible
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Find the values of k such that the equations are equivalent. kx2 − (2k − 3)x + k + 3 = 0 x2 −
2(k − 1)x+ k + 1 = 0

Solution

Expanding each equation,

kx2 − 2kx+ 3x+ k + 3 = 0

x2 − 2kx+ 2x+ k + 1 = 0.

since they are both equal to 0, we can set them equal to each other to get (including some simplifying)

kx2 − 2kx+ 3x+ k + 3 = x2 − 2kx+ 2x+ k + 1

kx2 + x+ 2 = x2

(k − 1)x2 + x+ 2 = 0.

The solutions to this quadratic must be real, so using the quadratic formula, the roots are

−1±
√

12 − 4 · 2(k − 1)

2(k − 1)
=
−1±

√
−8k + 9

2k − 2
.

We need the radicand to be positive, but at the same time, we can’t have k = 1 otherwise the

denominator is undefined. In order for the radicand to be positive,

−8k + 9 ≤ 0⇒ k ≤ 9

8

so

k ∈ (−∞, 1) ∪
(

1,
9

8

]
.

Solve for r, w, b, and g where n = r + w + b+ g.
(r4)
(n4)

=
(r3)(

w
1)

(n4)
=

(r2)(
w
1)(

b
1)

(n4)
=

(r1)(
w
1)(

b
1)(

g
1)

(n4)
Solution

First, you can get rid of the denominator.

Next, expand the expressions. You get:

1

24
r(r − 1)(r − 2)(r − 3) =

1

6
r(r − 1)(r − 2)w =

1

2
r(r − 1)wb = rwbg

Getting rid of the fractions:

r(r − 1)(r − 2)(r − 3) = 4r(r − 1)(r − 2)w = 12r(r − 1)wb = 24rwbg

From this, you can conclude the following:

r − 3 = 4w

r − 2 = 3b

r − 1 = 2g

And therefore, r = 2g + 1 = 3b + 2 = 4w + 3. In other words, r ≡ 1 (mod 2) ≡ 2 (mod 3) ≡ 3

(mod 4), and the smallest possible value for r that satisfies the above is 11.
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Working backwards, g = 5, b = 3, and w = 2. So the sum is 11 + 5 + 3 + 2 = 21 .

Let f,g: R >R be functions like that so f(g(x))=g(f(x))=-x for any x is element of R a) prove

that f and g are odd functions b) Make an example of these two functions f isn’t equal to g

Solution

a) : g(f(g(x))) = g(u) where u = f(g(x)) = −x and so g(f(g(x))) = g(−x) g(f(g(x))) =

g(f(v)) = −v where v = g(x) and so g(f(g(x))) = −g(x) So g(−x) = −g(x) and g(x) is an odd

function.

Same computation with f(g(f(x))) shows that f(x) is an odd function.

b) Choose f(x) = 2x and g(x) = −x
2

If a+b+c=1, a,b,c>0, prove that
ab+
√
a3c+

√
b3c

a+b
+ bc+

√
b3a+

√
c3a

b+c
+ ca+

√
a3b+

√
c3b

c+a
≤ 3

2

Solution

By AM-GM ,
√
a3c ≤ a2+ac

2
and,

√
b3c ≤ b2+bc

2
, therefore -

∑
cyclic

ab+
√
a3c+

√
b3c

a+b
≤
∑

cyclic
2ab+a2+b2+c(a+b)

2(a+b)
=∑

cyclic
(a+b)(a+b+c)

2(a+b)
=
∑

cyclic
a+b+c

2
= 3

2
Equality for a = b = c = 1

3
Q.E.D

Solve for x, y such that 2x > y > x ,if 2(2x− y)2 = (y − x)

Solution

Let z = y − x, so 0 < z < x and 2(x− z)2 = z. Solving for z using the quadratic formula gives:

z =
4x+ 1±

√
8x+ 1

4

The positive sign gives z > x, so take the negative sign. For z to be an integer, 8x + 1 = (4k + 1)2

for some k. Solving for x gives x = 2k2 + k for some k, so z = 2k2, so (x, y) = (2k2 + k, 4k2 + k) for

k ∈ N
Find the sum∑89
k=1 tan2 k

Solution

Let’s find a polynomial such that this 89 numbers are the roots of it, then the coefficients will give

the sum. We have (cos(x)+ i ·sin(x))n = cos(nx)+ i ·sin(nx) =⇒ (1+ i · tan(x))n = 1
cos(x)n

(cos(nx)+

i · sin(nx)). Write z := tan(x). Thus,
∑n

k=0

(
n
k

)
ikzk = 1

cos(x)n
(cos(nx) + i sin(nx)). Now let n = 180

and let x having ’integer-valued degree’, so
∑180

k=0

(
180
k

)
ikzk = 1

cos(x)n
(cos(nx) + i · sin(nx)) = (−1)x

cos(x)n
.

Now look at the imaginary part, giving: z
∑89

k=0

(
180

2k+1

)
(−1)k(z2)k = 0. But this is the polynomial

we wanted, since its roots are tan(k◦)2 (we also counted tan(0) = 0, which can be neglected). So∑89
k=1 tan(k◦)2 =

(180
177)

(180
179)

= 15931
3

.

Find positive integers a, b, c, d such that a+ b+ c+ d− 3 = ab = cd .

Solution

Without loss of generality, 1 ≤ a ≤ b ≤ c ≤ d so we have a + b + c + d − 3 ≤ 4d − 3. We also have

a + b + c + d − 3 = cd ≤ 4d − 3 =⇒ 3 ≤ (4 − c)d. The product on the RHS must be positive and

it follows that each factor must be positive because d must be a positive integer. Therefore, we have

1 ≤ c ≤ 3. From here, we have 3 cases.

Case 1: c = 1 If c = 1, we must have a = b = 1 from our inequality chain. The equality chain

becomes d = 1 = d so the solution for this case is a = b = c = d = 1. Substituting values, we find

that this solution works.
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Case 2: c = 2 If c = 2, we have a+ b+ d− 1 = 2d =⇒ a+ b− 1 = d. Note that a+ b ≤ 4 =⇒
a + b − 1 = d ≤ 3. Now suppose that d = 3. Then we have a + b = 4 which is only satisfied by

a = b = 2. Quickly checking, we find that this does not work. If d = 2, then we have ab = 4, which

again is satisfied by a = b = 2, so there are no solutions for this case.

Case 3: c = 3 If c = 3, we have a + b + d = 3d =⇒ a + b = 2d. Note that a + b ≤ 6 so that

d ≤ 3. using the equation ab = cd and checking d = 3, we find that no a, b exist. Thus, there are no

solutions for this case.

The only solution is (a, b, c, d) = (1, 1, 1, 1) .

The age of the father is 5.5 times as that of the second daughter. Mom got married at 20; at that

time grandfather was 57. The first son was born when mom was 22. At present, the first daughter is

19; her age differs from the second son by 5 and from the second daughter by 9. The last year, age

of the third son was half of the first son. The sum of the age of the second daughter and the third

son equal the age of the second son. What is the the age of the first son?

Solution

Let the first son be x years old.

We know that the second daughter must be 10 years old and the third son’s is x+1
2

years old.

Also, 10 + x+1
2

= 14 or 24 since the second son is 5 years older or younger than the first daughter.

If x+1
2

= 14, x = 27 and if x+1
2

= 4, x = 7. since the first son must be older than the second, then

27 .

LetABC be anA-right triangle and letM be a point of [BC] . Denote


E ∈ (AB) ; ÊMA ≡ ÊMB

F ∈ (AC) ; F̂MA ≡ F̂MC

∥∥∥∥∥∥∥
.

Prove that



c2

AM+MB
+ b2

AM+MC
= a

c · AE + b · AF = a · AM

c2 ·MC2 + b2 ·MB2 = a2 · AM2

∥∥∥∥∥∥∥∥∥∥∥∥
, where BC = a , AC = b , AB = c .

Solution

By applying Stewart’s theoremand the Pytagorean theorem in triangleABC, we obtain that c2

AM+MB
+

b2

AM+MC
= c2(AM+MC)+b2(AM+MB)

(AM+MB)(AM+MC)
= AM(b2+c2)+c2MC+b2MB

AM2+MB·MC+AM(MB+MC)
= = AM ·a2+a·AM2+a·MB·MC

AM2+MB·MC+a·AM = a(AM2+MB·MC+a·AM)
AM2+MB·MC+a·AM =

a. since ME and MF are the bisectors of the angles ∠AMB ∠AMC, we have that c ·AE+ b ·AF =

c · AM ·AB
AM+MB

+ b · AM ·AC
AM+MC

= AM( c2

AM+MB
+ b2

AM+MC
) = a · AM . Again, with Stewart’s theorem,

a2 · AM2 = a(c2MC + b2MB − a ·MB ·MC) = (MB + MC)(c2MC + b2MB) − a2 ·MB ·MC =

= c2 ·MC2 + b2 ·MB2 +MB ·MC(b2 + c2 − a2) = c2 ·MC + b2 ·MB.

Let ABC be an A-isosceles triangle with the circumcentre O and the incentre I . Denote

D ∈ AC for which DO ⊥ CI . Prove that ID ‖ AB .

Solution

Denote the midpoint M of [BC] and K ∈ CI ∩DO . Thus, the quadrilateral OKMC is inscribed in

the circle with the diameter [OC] =⇒ D̂OA ≡ M̂OK ≡ M̂CK ≡ D̂CI =⇒ D̂OA ≡ D̂CI =⇒
DOIC is cyclically =⇒ D̂IA ≡ D̂IO ≡ D̂CO ≡ ĈAM ≡ M̂AB =⇒ ID ‖ AB .

Prove that
∑m

r=0(−1)r
(
n
r

)
= (−1)m

(
n−1
m

)
where m < n .

Solution∑m
r=0(−1)r

(
n
r

)
=
(
n
0

)
+
∑m

r=1(−1)r
(
n
r

)
=
(
n−1

0

)
+
∑m

r=1(−1)r
[(
n−1
r

)
+
(
n−1
r−1

)]
=
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∑m
r=0(−1)r

(
n−1
r

)
−
∑m

r=1(−1)r−1
(
n−1
r−1

)
=
∑m

r=0(−1)r
(
n−1
r

)
−
∑m−1

r=0 (−1)r
(
n−1
r

)
= (−1)m

(
n−1
m

)
.

Remark. I used the Pascal’s relation :
(
n
r

)
=
(
n−1
r

)
+
(
n−1
r−1

)
and

∑m
r=s f(r) =

∑m−p
r=s−p f(r + p) .

A polynomial p has remainder 7 when it is divided by X + 2 and remainder X + 3 when

it is divided by X2 + 2 . Determine the remainder when p is divided by (X + 2) (X2 + 2) .

Solution

Proof 1. The polynomial p has remainder X + 3 when it is divided by X2 + 2 ⇐⇒ exist a

polynomial q ∈ C[X] so that

p =
(
X2 + 2

)
q +X + 3 (∗) . The polynomial p has remainder 7 when it is divided byX+2 ⇐⇒

p(−2) = 7
(∗)⇐⇒

6q(−2) + 1 = 7 ⇐⇒ q(−2) = 1 ⇐⇒ exists s ∈ C[X] so that q = (X + 2)s+ 1 (1) . Thus,

from the relatio (∗)
obtain that p = (x2 + 2) [(X + 2)s+ 1] +X + 3 ⇐⇒ p = (X + 2)

(
X2 + 2

)
s+X2 +X + 5 .

In conclusion, from the oneness of the remainder obtain that the required remainder is r = X2 +X + 5

.

Proof 2. Exist uniquelly {a, b, c} ⊂ C and q ∈ C[X] so that p = (X+2) (X2 + 2) q+aX2+bX+c

.

From the hypothesis obtain that


p(−2) = 7

p (X2 := −2) ≡ X + 3

∣∣∣∣∣∣∣ ⇐⇒


4a− 2b+ c = 7

bX + (c− 2a) ≡ X + 3

∣∣∣∣∣∣∣ ⇐⇒

4a− 2b+ c = 7

b = 1

−2a+ c = 3

∣∣∣∣∣∣∣∣∣∣∣∣
⇐⇒



a = 1

b = 1

c = 5

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ the required remainder is X2 +X + 5 .

An easy extension. A polynomial p has remainder k when it is divided by X+α and remainder

mX + n

when it is divided by βX2 +γ . Determine the remainder when p is divided by (X+α) (βX2 + γ)

.

Proof 2. Exist uniquelly {a, b, c} ⊂ C and q ∈ C[X] so that p = (X+α) (βX2 + γ) q+aX2+bX+c

.

From the hypothesis obtain that


p(−α) = k

p
(
X2 := − γ

β

)
≡ mX + n

∣∣∣∣∣∣∣∣ ⇐⇒


α2a− αb+ c = k

bX +
(
c− γa

β

)
≡ mX + n

∣∣∣∣∣∣∣∣ ⇐⇒

α2a− αb+ c = k

b = m

c− γa
β

= n

∣∣∣∣∣∣∣∣∣∣∣∣
⇐⇒



a = β(αm+k−n)
α2β+γ

b = m

c = γ(αm+k)+α2βn
α2β+γ

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ the required remainder is

β(αm+ k − n)

α2β + γ
X2 +mX +

γ(αm+ k) + α2βn

α2β + γ
.

Solve the inequation |x+ 1| − |2x− 1| > −1 .

Solution

|x + 1| − |2x− 1| > −1 ⇐⇒ |2x− 1| < |x + 1| + 1 . Thus, appear two cases: Case 1. x ≥ 1
2

=⇒
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2x− 1 < x+ 2 =⇒ x < 3 =⇒ x ∈ S1 =
[

1
2
, 3
)
.

Case 2. x < 1
2

=⇒ 1− 2x < |x+ 1|+ 1 =⇒ −2x < |x+ 1| . Appear two subcases:

. . . . . .Case 2.1 x ≥ 0 =⇒ x ∈ S21 =
[
0, 1

2

)
.

. . . . . .Case 2.2 x < 0 =⇒ 4x2 < (x+ 1)2 =⇒ 3x2 − 2x− 1 < 0 =⇒ x ∈ S22 =
(
−1

3
, 0
)
.

Therefore, S2 = S21 ∪ S22 =
[
0, 1

2

)
∪
(
−1

3
, 0
)

=⇒ S2 =
(
−1

3
, 1

2

)
. In conclusion, the solution of

the proposed inequation is S = S1 ∪ S2 =
[

1
2
, 3
)
∪
(
−1

3
, 1

2

)
=⇒ S =

(
−1

3
, 3
)
, i.e. −1

3
< x < 3 .

3. Let P be an interior point of an equilateral triangle ABC such that AP 2 = BP 2 + CP 2.

Prove that ∠BPC = 150o.

Solution

Let R be the reflection of the point P w.r.t. the midpoint M of the side [BC].

PA2 = PB2+PC2, 4AM2 = 3a2, 4AM2 = 2(AR2+PA2)−4MP 2 , 4MP 2 = 2(PB2+PC2)−a2;

2AR2 = 4AM2−2PA2 +4MP 2 = 3a2−2(PB2 +PC2) +[2(PB2 +PC2)−a2] = 2a2 =⇒ AR = a.

Therefore R ∈ C(A, a), the quadrilateral BPCR is a parallelogram and A = 60◦.

Thus, m(B̂PC) = m(B̂RC) = 1
2
(360◦ − A) = 150◦.

bdt

Here is a inequality stronger than the well-known inequality
∑

cosA ≤ 3
2
in any ABC :

12 · (cosA+ cosB + cosC) ≤ 15 + cos(A−B) + cos(B − C) + cos(C − A) ≤ 18 .

Solution

0 ≤ 2 ·
∑(

2sinA
2
− cosB−C

2

)2
=

4
∑

2

sin2A
2

+
∑

2

cos2B−C
2
− 4

∑
2

cosB+C
2

cosB−C
2

=

4 (3−
∑
cosA) + 3 +

∑
cos(B − C)− 4

∑
(

cosB +

cosC) =

15 +
∑

cos(B − C)− 12
∑

cosA . In conclusion,

12
∑

cosA ≤ 15 +
∑

cos(B − C) .

Prove easily that we’ll have equality iff A = B = C . Another way: We have: cos(A − B) +

cos(B−C)+cos(C−A) =
∑

cosA cosB+
∑

sinA sinB = p2+r2−4R2

4R2 + p2+r2+4Rr
4R2 = p2+r2+2Rr−2R2

2R2 And:∑
cosA = R+r

R
The inequality is equivalent to: p

2+r2+2Rr−2R2

2R2 +15 ≥ 12.R+r
R
⇔ 28R2 +p2 +r2 +2Rr ≥

24R(R+ r)⇔ 4R2 + p2 + r2 ≥ 22Rr By Gerretsen inequality, we have: p2 ≥ r(16R− 5r) So we need

to prove that: 4R2 + r(16R − 5r) + r2 ≥ 22Rr ⇔ 4R2 ≥ 4r2 + 6Rr ⇔ (R − 2r)(2R + r) ≥ 0 Which

is clearly true because R ≥ 2r so we are done!

Let ABC be a triangle and let D ∈ (BC) be a point for which B̂AD ≡ ĈAD . Then

AD2 = AB · AC −DB ·DC .

Solution
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Proof 1. Denote the second intersection E between the line AD and the circumcircle w of the tri-

angle ABC . From the relation pw(D) = DA · DE = DB · DC- the power of the point D w.r.t.

the circle w and 4ABE ∼ 4ADC obtain : AB
AD

= AE
AC

=⇒ AE · (AD + DE) = AB · AC =⇒
AD2 = AB · AC −DB ·DC .

Proof 2. From the bisector theorem DB
c

= DC
b

= a
b+c

and the Stewart’s theorem a ·AD2 +a ·DB ·
DC = c2 ·DC+b2 ·DB obtain a·(AD2+DB ·DC) = c2 · ab

b+c
+b2 · ac

b+c
, i.e. a·(AD2+DB ·DC) = abc(b+c)

b+c

=⇒ AD2 = bc−DB ·DC .

Remark. If the point D1 ∈ BC so that the ray [AD1 is the exterior bisector of the angle ∠BAC

, then AD2
1 = D1B ·D1C − AB · AC .

Circles with centers O and O′ are disjoint. A tangent from O to the second circle intersects the

first in A and B . A tangent from O′ to the first circle intersects the second circle in A′ and B′ such

that A and A′ lie on the same side of OO′ .Prove that AA′B′B is a trapezoid .

Solution

Denote : the circles w = C(O), w′ = C(O′) ; the tangent points T ∈ w, T ′ ∈ w′ so that the line OO′

separates these points T , T ′; the intersection S ∈ BOAT ′ ∩ A′O′B′T . Therefore, the quadrilateral

OTO′T ′ is cyclically , i.e. ÂOT ≡ Â′O′T ′ =⇒ the isosceles triangles AOT , A′O′T ′ are similarly

=⇒ ÔAT ≡ T̂ ′A′T , ŜTB ≡ B̂T ′B′ =⇒ the quadrilaterals ATA′T ′, BTB′T ′ are cyclically =⇒
SA · ST ′ = ST · SA′ , SB · ST ′ = ST · SB′ =⇒ SA

SB
= SA′

SB′
=⇒ AA′ ‖ BB′ .

Remarks. Prove easily that : BT ‖ A′T ′, AT ‖ B′T ′, i.e. and the quadrilaterals BTA′T ′, ATB′T ′

are trapezoids ; if denote the intersections U ∈ AT ∩A′T ′ and V ∈ BT ∩B′T ′ then the quadrilateral

TUT ′V is rectangle and the line UV is radical axis between the circles w, w′.

{x, y, z} ⊂ R , x ≥ y , x ≥ z ; x+ y + z = 1 , xy + yz + zx = 1
4

=⇒
√
x =
√
y +
√
z .

Solution

p4 + q4 + r4 − 2p2q2 − 2q2r2 − 2p2r2 = (p+ q + r)(p+ q − r)(p− q + r)(p− q − r)
Hence

x2 + y2 + z2 − 2xy − 2yz − 2xz = (
√
x+
√
y +
√
z)(
√
x+
√
y −
√
z)(
√
x−√y +

√
z)(
√
x−√y −

√
z)

But the LHS is equal to (x + y + z)2 − 4(xy + yz + xz) = 0, hence either
√
z =

√
x +
√
y or

√
y =
√
x+
√
z or
√
x =
√
y+
√
z. However, because of x > y∧x > z, we have the third option. QED

PROVE that for any n ∈ N∗ and p ∈ N there is the inequality A2n
2(n+p) ≤ 22n−1 · n+ 2p

n+ p
·
[
Ann+p

]2
.

Particular case. p := n =⇒ A2n
4n ≤ 3 · 22(n−1) · (An2n)2 .

Notation. Anm = m(m−1)(m−2) . . . (m−n+2)(m−n+1) = m!
(m−n)!

, for m,n ∈ N , 0 ≤ n ≤ m .

Given are { m , n , p } ⊂ N∗ so that m > np and k > 0. Ascertain without derivatives the

ratio x
y
so that the expression xp · (x+ y) is minimum for the all positive real numbers x , y for which

xm · yn = k .

Solution

We want to use an inequality to reduce xp(x+ y) to a constant with an equality condition. Basically,

some multiple/power of xmyn. We can use AM-GM to get

(m+ n)(x+ y) =
∑m−np

i=1
m+n
m−npx+

∑n(p+1)
i=1

m+n
n(p+1)

y ≥ Cx
m−np
m+n y

n(p+1)
m+n

x+ y ≥ C
m+n

x
m−np
m+n y

n(p+1)
m+n

for some constant C. Then our expression is

xp(x+ y) ≥ C
m+n

x
m(p+1)
m+n y

n(p+1)
m+n = C

m+n
k
p+1
m+n ,
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which is constant. Equality holds when
m+n
m−npx = m+n

n(p+1)
y ⇒ x

m−np = y
n(p+1)

as desired.

Prove that the polynomial

x9999 + x8888 + x7777 + . . .+ x1111 + 1

is divisible by

x9 + x8 + x7 + . . .+ x+ 1

Solution

Denote the first polynomial by P (x) and the second one by Q(x). It’s obvious that P (x) = Q(x1111).

The roots of Q(x) are xk =

cos2kπ
10

+ i

sin2kπ
10
, k = 1, 2, . . . , 9. Since

x1111
k =

cos
2222kπ

10
+ i

sin
2222kπ

10
=

cos(222kπ +
2kπ

10
) + i

sin(222kπ +
2kπ

10
) = xk

, it follows that P (xk) = Q(x1111
k ) = Q(xk) = 0, i.e. all the roots of Q(x) are also the roots of P (x).

Therefore, P (x) is divisible by Q(x).

Let a and b be integers. Prove that a and b are relatively prime if and only if there exists x and

y such that ax+ by = 1.

Solution

Let S = {s ∈ N|∃x, y ∈ Z : s = ax + by}. It is non-empty since a2 + b2 ∈ S, so consider its minimal

element d.

Consider the remainders r, s when a, b are divided by d. We have

a = dp+ r, 0 ≤ r < d b = dt+ s, 0 ≤ s < d

So r = a− dp, s = b− dt are also linear combinations of a, b. But we assumed d was minimal, so

r, s 6∈ S. It follows that r, s 6∈ N, so they equal 0.

Then d|a, d|b, gcd(a, b) = 1 ⇒ d = 1. QED. Another way First, let’s assume that a and b aren’t

coprime. Then there exists d > 1 such that a = da1 and b = db1. But then 1 = ax+by = d(a1x+b1y),

which means that d|1, and that’s impossible.

Now, let’s assume that a and b are coprime. We’ll prove that the numbers 0, b, 2b, . . . , (a − 1)b

give pairwise distinct remainders modulo a. Assume the opposite, that there are distinct k, l ∈
{0, 1, . . . , a− 1} such that kb ≡ lb (mod a). Then a|(k − l)b, but as no prime factor of a is a prime

factor of b, it means that a|k − l. Since |k − l| < a, that implies k = l, contrary to the presumption.

Therefore, a different numbers give a different remainders modulo a, so one of those remainders

must be 1. Hence there exists k0 < a such that k0b ≡ 1 (mod a), which means that there exists

l0 ∈ Z such that k0b− 1 = l0a, so we can take x = −l0 and y = k0. QED.
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Find
∑49

k=0(−1)k
(

99
2k

)
where

(
n
j

)
= n!

j!(n−j)! .

Solution

The easiest way is to rewrite the sum as

S =
∑49

k=0(−1)k
(

99
2k

)
=
∑49

k=0 i
2k
(

99
2k

)
=
∑49

k=0

(
99
2k

)
i2k199−2k, and from there it’s obvious that the

sum is actually the real part of (1 + i)99, and that’s easy to calculate:

S = <{(1 + i)99}
= <{(

√
2eiπ/4)99}

= 249
√

2 · <{ei99π/4}
= 249

√
2 · <{ei3π/4}

= 249
√

2 · <{− 1√
2

+ i
1√
2
}

= −249

Let A = {x ∈ R| x2− (1−m)x− 2m− 2 = 0} and B = {x ∈ R|(m− 1)x2 +mx+ 1 = 0}. Find
all m such that M = A ∪B has 3 elements.

Solution

We have ∆A = (1 − m)2 + 4(2m + 2) = 1 − 2m + m2 + 8m + 8 = m2 + 6m + 9 = (m + 3)2, and

∆B = m2 − 4(m− 1) = m2 − 4m+ 4 = (m− 2)2. Therefore, for m 6= 1 we have

A = {1−m+m+3
2

, 1−m−m−3
2

} = {2,−m− 1} and B = {−m+m−2
2(m−1)

, −m−m+2
2(m−1)

} = { 1
1−m ,−1}

Now we have the following possibilities:

1. 2 = 1
1−m ⇐⇒ m = 1

2
2. − m − 1 = 1

1−m ⇐⇒ m2 − 1 = 1 ⇐⇒ m = ±
√

2

3. −m− 1 = −1 ⇐⇒ m = 0 4. 2 = −m− 1 ⇐⇒ m = −3 5. 1
1−m = −1 ⇐⇒ m = 2

(Options 1, 2 and 3 cover for equal elements between the sets, and 4 and 5 for double roots.)

For all those values we manually check that A ∪B indeed has 3 elements.

It remains to be seen what happens with m = 1. Then A = {x ∈ R|x2 − 4 = 0} = {2,−2} and
B = {x ∈ R|x+ 1 = 0} = {−1}. We see that in this case A ∪B clearly has 3 elements too.

Therefore,M = {−3,−
√

2, 0, 1
2
, 1,
√

2, 2}
How many 3-element subsets of the set {3, 32, 33, . . . , 31000} consist of three numbers which form

a geometric sequence?

Solution

This can be rephrased as: How many three-element subsets of {1, 2, . . . , 1000} form an arithmetic

sequence.

Let the elements be a, b, c where a < b < c. We must have a + c = 2b, hence a and c must be of

the same parity.

1) Among 500 even numbers in the given set, for every even c we have c
2
−1 even numbers smaller

than it. Choosing one of them as a will automatically determine b. The number of such choices for

all possible c is
∑500

k=1(k − 1) =
∑499

k=0 k = 499·500
2

2) Among 500 odd numbers in the given set, for every odd c we have c−1
2

odd numbers smaller

than it. Similarly as in the previous case, we find that the number of choices is
∑500

k=1(k − 1) =∑499
k=0 k = 499·500

2

Therefore, the total number of choices is 499 · 500 = 249500

Solve in Z the equation 3x = x2 + 3x+ 1.

Solution
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For x < 0 LHS isn’t integer.

For x > 3 we can use induction to prove 3x > x2 + 3x+ 1:

1◦ For x = 3 we have 33 > 32 + 3 · 3 + 1 which is true.

2◦ Inductive step:

x > 3 =⇒ (x+ 1)2 − 2 > 0

=⇒ 2x2 + 4x− 2 > 0

=⇒ 3x2 + 9x+ 3 > x2 + 5x+ 5

=⇒ 3(x2 + 3x+ 1) > (x+ 1)2 + 3(x+ 1) + 1

Hence 3x > x2 + 3x+ 1 =⇒ 3x+1 > 3(x2 + 3x+ 1) > (x+ 1)2 + 3(x+ 1) + 1

Therefore, we have to check x = 0, 1, 2 and we find that the unique solution is x = 0. Find

n ∈ N such that (x+ k)n − xn − kn = 0,k ∈ <, k 6= 0, x = ke
2πi
3

Solution

The equation is equivalent to

(1 + ei2π/3)n − ei2nπ/3 − 1 = 0, or

einπ/3 − ei2nπ/3 − 1 = 0

This produces the system

cosnπ
3
−

cos2nπ
3
− 1 = 0

sinnπ
3
−

sin2nπ
3

= 0

The second equation transforms into

sinnπ
3

(1− 2

cosnπ
3

) = 0, which gives nπ
3

= kπ ∨ nπ
3

= ±π
3

+ 2kπ, k ∈ Z. This in turn gives n = 3k ∨ n = 6k ± 1

Substituting these values into the first equation, we see that it’s satisfied only by n = 6k ± 1.

Hence, the desired set is n ∈ {6k + 1, 6k + 5|k ∈ Z+
0 }

Each side of a rhombus has length 12 and one of its angles is 150◦. External squares are drawn

on each of the four sides of the rhombus. A point is marked at the center of each square and they

are connected to form a quadrilateral. Find the area of this quadrilateral.

Solution

Thiếu hình vẽ ∠O1AO4 = 30◦+2 ·45◦ = 120◦ and AO1 = AO4 ∠O1BO2 = 360◦−2 ·45◦−150◦ = 120◦

and BO1 = BO2

Hence triangles O1AO4 and O1BO2 are isosceles and congruent because AO1 = BO1. Hence

1◦ O1O4 = O1O2 2◦ ∠AO1O4 = ∠BO1O2 =⇒ =⇒ ∠O4O1O2 = ∠AO1B − ∠AO1O4 +

∠BO1O2 = ∠AO1B = 90◦

Hence O1O2O3O4 is a square and AO1 = 6
√

2

Applying Cosine Law to 4AO1O4 we get O1O
2
4 = (6

√
2)2 + (6

√
2)2 − 2 · 6

√
2 · 6
√

2 ·
cos120◦ = 216, and in the same time that’s the area of the square.
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Given three real numbers p,q, and r where 0 < p, q, r < 1. Show that pq + qr + rp− 2pqr < 1

Solution

For positive reals u, v, t it holds

uvt+ uv + ut+ vt > 0

Adding u+ v + t+ 1 + 2 to the both sides and simplifying we get

(u+ 1)(v + 1)(t+ 1) + 2 > u+ v + t+ 3

Substitute a = u+ 1, b = v + 1, c = t+ 1 where a, b, c > 1:

abc+ 2 > a− 1 + b− 1 + c− 1 + 3 ⇐⇒ abc+ 2 > a+ b+ c ⇐⇒ a+ b+ c− 2 < abc

Substitute p = 1
a
, q = 1

b
, r = 1

c
where p, q, r < 1 and the result follows.

Prove that R = 1
4
·
√

(AB+CD)(AD+BC)(AC+BD)

A

for cyclic quad ABCD, where A is the area of ABCD.

Solution

We have

[ABC] =
abe

4R

ADC =
cde

4R

⇒ [ABCD] =
e(ab+ cd)

4R

ABD =
adf

4R

CBD =
bcf

4R

⇒ [ABCD] =
f(ad+ bc)

4R

(had to leave out brackets on some of those...the formatting get’s screwed up...)

So then

[ABCD]2 =
ef(ab+ cd)(ad+ bc)

(4R)2
.

But Ptolemy’s Thorem gives us ef = ac+ bd which leads us to conclude that

[ABCD] =

√
(ab+ cd)(ad+ bc)(ac+ bd)

4R
.

[/img]

The figure shows a rectangle divided into 9 squares. The squares have integral sides and adjacent

sides of the rectangle are coprime. Find the perimeter of the rectangle.

Solution

Thiếu hình vẽ On the attached picture, the letters denote the sides of the corresponding squares.

We have

c = a + b d = a + c = 2a + b e = c + d = 3a + 2b f = d + e = 5a + 3b g = a + d + f = 8a + 4b

h = g + a− b = 9a+ 3b i = b+ c+ e = 4a+ 4b

On the other hand, i = h− b = 9a+ 2b, therefore 9a+ 2b = 4a+ 4b =⇒ 5a = 2b =⇒ b = 5a
2

One side of the rectangle is s1 = g+h = 17a+7b = 69a
2
, and the other is s2 = f+g = 13a+7b = 61a

2
.

Since s1 and s2 are integer and coprime, a must be 2, and the perimeter is P = 2(s1 + s2) = 260

Find the smallest positive integer whose cube ends in 888. (do this without a calculator or computer.)

Solution

We have to find x such that x3 = 1000n+ 888 for some n ∈ N
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Obviously x is even, hence we can put x = 2y, which gives

125n+ 111 = y3 =⇒ 125n+ 110 = y3 − 1

From this y3 − 1 ≡ 0 (mod 5). Checking the cubes of the residues modulo 5, we see that only 1

satisfies the condition. Hence y = 5a+ 1. Substituting we get

125n + 110 = 125a3 + 75a2 + 15a =⇒ 25n + 22 = 25a3 + 15a2 + 3a =⇒ 25n + 20 =

25a3 + 15a2 + 3a− 2

Now 3a− 2 ≡ 0 (mod 5), hence we can write 3a− 2 = 5b. From there a = 5b+2
3

= b+ 2(b+1)
3

. This

means that b+ 1 = 3c, which gives a = 3c− 1 + 2c = 5c− 1. Substituting a we get

25n + 20 = 25(125c3 − 75c2 + 15c − 1) + 15(25c2 − 10c + 1) + 15c − 3 − 2 =⇒ 25n + 25 =

25(125c3− 75c2 + 15c− 1 + 15c2− 6c) + 15 + 15c =⇒ n+ 1 = 125c3− 60c2 + 9c− 1 + 3(c+1)
5

(∗)
From there it’s clear that c + 1 ≡ 0 (mod 5), hence c = 5k − 1. Now a = 5c− 1 = 25k − 6, and

x = 2y = 10a+ 2 = 250k− 58. Obviously, the smallest x is obtained for k = 1, which gives x = 192.

From k = 1 we get c = 4. Substituting that into (∗) we get n = 7077

Therefore, the desired number is 192 and 1923 = 7077888

Note: All numbers such that their cube ends in 888 are given by x = 250k − 58, k ∈ N
Find real numbers a, b such that for every x, y ∈ R we have |ax+ by|+ |ay + bx| = |x|+ |y|.

Solution

Putting x = 1, y = 0 and x = b, y = −a we get

|a|+ |b| = 1 |a2 − b2| = |a|+ |b| = 1

The second equation can be rewritten

||a| − |b|| · (|a|+ |b|) = 1 =⇒ |a| − |b| = ±1

From |a|+ |b| = 1 ∧ |a| − |b| = ±1 we find all the solutions: (±1, 0), (0,±1)

If w and z are complex numbers, prove that:

2|w||z||w − z| ≥ (|w|+ |z|)
∣∣w|z| − z|w||

Solution

If we write w = Weiα and z = Zeiβ where W,Z > 0, then the given inequality simplifies to

2|Weiα − Zeiβ| > (W + Z)|eiα − eiβ|
From there we have a chain of equivalent inequalities:

2(W 2 + Z2 − 2WZ

cos(α− β)) > W 2 + Z2 + 2WZ − (W 2 + Z2 + 2WZ)

cos(α− β)

W 2 + Z2 − 2WZ

cos(α− β) > 2WZ −W 2

cos(α− β)− Z2

cos(α− β)

W 2 + Z2 − 2WZ > −
cos(α− β)(W 2 + Z2 − 2WZ)

cos(α− β) > −1

and the last line is obviously true.

In quadrilateral ABCD, ∠A = ∠C = 90◦, AB +AD = 7 and BC − CD = 3. Find the area of

quadrilateral ABCD.

Solution
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Denote x = AB and y = BC. Then AD = 7− x and CD = y − 3

From Pythagoras we have

x2 + (7− x)2 = y2 + (y − 3)2 =⇒ 2x2 − 2y2 = 14x− 6y − 40

=⇒ x2 − y2 = 7x− 3y − 20 (∗)

From the formula for the area of the right triangle, we have that the quadrilateral area is

A =
x(7− x)

2
+
y(y − 3)

2

=
7x− 3y − x2 + y2

2

=
7x− 3y − (x2 − y2)

2

using (∗) we get A = 7x−3y−(7x−3y−20)
2

= 10

Let f(1) = 1 and for all natural numbers n, f(1)+f(2)+ . . .+f(n) = n2f(n). What is f(2006)?

Solution

The equation is equivalent to

f(1) + · · ·+ f(n− 1) = (n2 − 1)f(n) ⇐⇒ f(n) = 1
n2−1

(f(1) + · · ·+ f(n− 1))

Calculating the first few terms, we get f(2) = 1
3
, f(3) = 1

6
, f(4) = 1

10
, f(5) = 1

15
. We note that the

denominators are the triangular numbers, hence we assume f(n) = 2
n(n+1)

For n = 1 we have f(1) = 2
1·2 = 1

Inductive step:

f(n+ 1) =
1

(n+ 1)2 − 1

(
2

1 · 2
+

2

2 · 3
+ · · ·+ 2

n(n+ 1)

)
=

2

(n+ 1)2 − 1

(
1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n
− 1

n+ 1

)
=

2

(n+ 1)2 − 1

(
1− 1

n+ 1

)
=

2

n(n+ 2)
· n

n+ 1

=
2

(n+ 1)(n+ 2)

Hence f(2006) = 1
1003·2007

Find x ∈ R such that
2n∑
i=0

(−|i− n|+ n+ 1)xi = 0

Solution

The polynomial is

P (x) = x2n + 2x2n−1 + 3x2n−2 + · · ·+ nxn+1 + (n+ 1)xn + nxn−1 + · · ·+ 3x2 + 2x+ 1

.

We can write it as the sum of the following polynomials:
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Q1(x) = x2n + x2n−1 + · · ·+ x+ 1

Q2(x) = x2n−1 + x2n−2 + · · ·+ x2 + x

Q3(x) = x2n−2 + x2n−3 + · · ·+ x3 + x2

...

Qn(x) = xn+1 + xn + xn−1

Qn+1(x) = xn

It’s obvious that (∀i ∈ {1, 2, . . . , n})Qi(1) 6= 0 and P (1) 6= 0. Hence we can expand Qi(x) with

x− 1:

Q1(x) =
x2n+1 − 1

x− 1

Q2(x) = x · x
2n−1 − 1

x− 1
=
x2n − x
x− 1

Q3(x) = x2 · x
2n−3 − 1

x− 1
=
x2n−1 − x2

x− 1
...

Qn(x) = xn−1 · x
3 − 1

x− 1
=
xn+2 − xn−1

x− 1

Qn+1(x) = xn · x− 1

x− 1
=
xn+1 − xn

x− 1

Adding these fractions we get

P (x) = x2n+1+x2n+x2n−1+···+xn+1−xn−xn−1−···−x−1
x−1

Extracting the factor xn+1 from the first n+ 1 terms and the factor −1 from the last n+ 1 terms

of the numerator, we get

P (x) = (xn+1−1)(xn+xn−1+···+x+1)
x−1

Dividing the first term of the numerator with the denominator, we get

P (x) = (xn + xn−1 + · · ·+ x+ 1)2

Hence, the roots of this polynomial are (1) all double and (2) equal to strictly complex roots of

unity of the order n+ 1:

x2k−1 = x2k =

cos 2kπ
n+1

+ i

sin 2kπ
n+1

, k = 1, n

Solve the equation:

√
x−

√
x−

√
x−
√
x− 5 = 5.

Solution

Just take t =
√
x−
√
x− 5 and consider two cases: t > 5, t < 5 which will give you impossible

result. So the only case is t = 5 which gives x = 30.

If f(N + 1) = N(−1)N+1 − 2f(N) for all N>1 ,and f(1) = f(2005) so what is f(1) + f(2) +

f(3) + . . .+ f(2004)?

Solution

Denote S = f(1) + f(2) + · · ·+ f(2004). We have
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f(2) = 1− 2f(1)

f(3) = −2− 2f(2)

f(4) = 3− 2f(3)

. . .

f(2005) = −2004− 2f(2004)

First, observe that

1− 2 + 3− 4 + 5− 6 + · · ·+ 2003− 2004 = (1− 2) + (3− 4) + (5− 6) + · · ·+ (2003− 2004) = 1002 · (−1) = −1002.

Second, f(2) + f(3) + · · ·+ f(2005) = S − f(1) + f(2005) = S, since f(1) = f(2005).

Now, if we add up all the equations above, we get

S = −1002− 2S =⇒ 3S = −1002 =⇒ S = −334.

x, y, z are all positive real such that

x+ [y] + {z} = 13.2

[x] + {y}+ z = 14.3

{x}+ y + [z] = 15.1

Find x, y, z .

[x] =integer part of x . {x} = fraction part of x

Solution

As {a}+ [a] = a, adding up the equations we get

2(x+ y + z) = 42.6 ⇐⇒ x+ y + z = 21.3

Subtracting the first equation we get

{y}+ [z] = 8.1

Since 0 6 {y} < 1 and [z] is integer, the only possibility is {y} = 0.1, [z] = 8

In the same manner we find {x} = 0, [y] = 7 and [x] = 6, {z} = 0.2

Now x = [x] + {x} = 6, y = 7.1, z = 8.2

What is the remainder of x203−1
x4−1

?

Solution

Since the denominator is of the fourth degree, the remainder will be of the third degree, hence

x203 − 1 = (x4 − 1)Q(x) + ax3 + bx2 + cx+ d

for some polynomial Q(x)

Now substitute the roots of x4 − 1, which are ±1,±i:
a+ b+ c+ d = 0 −a+ b− c+ d = −2 −ia− b+ ic+ d = −i− 1 ia− b− ic+ d = i− 1

From the last two equations −a + c = −1 =⇒ c = −1 + a and −b + d = −1 =⇒ d = −1 + b.

Substituting that into the first two equations we get

a+ b− 1 + a− 1 + b = 0 =⇒ a+ b = 1 −a+ b+ 1− a− 1 + b = −2 =⇒ −a+ b = −1

From these two we get a = 1, b = 0, which gives c = 0, d = −1

Hence the remainder is x3 − 1

On what intervals is it true that ||x−2|−|x+2||+||x−2|+|x+2||
x

> 1?

Solution

The numerator is never negative, hence the denominator must be positive in order for the fraction

to be greater than one. Therefore x > 0.
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Now let’s analyze the numerator. It’s of the form |a− b|+ |a+ b|. For a > b this simplifies to 2a,

and for a < b to 2b. Hence we can write |a− b|+ |a+ b| = 2 max{a, b}.
This turns the numerator into 2 max{|x− 2|, |x+ 2|}. For x > 0 it’s easy to check that |x+ 2| is

always greater than |x− 2|: For 0 < x < 2 we have to compare x + 2 to 2− x, or equivalently x to

−x, and for x > 2 we have to compare x+ 2 to x− 2, or equivalently 2 to −2. In both cases, we get

2 max{|x− 2|, |x+ 2|} = 2|x+ 2| = 2(x+ 2) (x being positive). Therefore the inequality becomes
2(x+2)
x

> 1
x>0⇐⇒ 2x+ 4 > x ⇐⇒ x > −4, which is satisfied for all x > 0.

solve it WITHOUT differential calculus and/or vectors.

Find the minimum and maximum possible values of

2 sinx cos y + 3 sinx sin y + 6 cosx

where x, y ∈ R.
Solution

2 sinx cos y + 3 sinx sin y + 6 cosx = sin x(2 cos y + 3 sin y) + 6 cosx

=
√

13 sinx(
2√
13

cos y +
3√
13

sin y) + 6 cosx

=
√

13 sinx sin(y + arctan
2

3
) + 6 cosx

=

√
13 sin2(y + arctan

2

3
) + 36 cos(x− arctan

√
13 sin(y + arctan 2

3
)

6
)

From here it’s obvious that the maximum and minimum values of the root are 6 (for sin(y +

arctan 2
3
) = 0 ⇐⇒ y+arctan 2

3
= kπ) and 7 (for sin(y+arctan 2

3
) = ±1 ⇐⇒ y+arctan 2

3
= π

2
+kπ).

In each of these cases, we can choose x independently of y such that the cosine is equal to ±1. Hence,

the minimum of the expression is −7 and the maximum is 7.

Let x be a real number such that x + 1
x
is an integer. Prove that xn + 1

xn
is an integer for all

positive integers n

Solution

Denote an = xn + 1
xn
. By the given presumption, we have that a1 ∈ Z, and hence a2 = x2 + 1

x2 =

(x+ 1
x
)2 − 2 = a2

1 − 2 ∈ Z
Now induction. Assume that for n > 2 both an and an−1 are integer. Then

ana1 = (xn + 1
xn

)(x+ 1
x
) = xn+1 + 1

xn+1 + xn−1 + 1
xn−1 = an+1 + an−1, which gives

an+1 = ana1 − an−1, so by the inductive assumption, an+1 is also an integer. QED

x and y are two real numbers, with x > y. . . Prove or disprove: x− [x] ≥ y − [y]

Solution

Generally, it can be said that the inequality [u]doesn’t[/u] hold for any x, y such that x > y and

[x− y] = [x]− [y]− 1

(Proof: put x = n+ α, y = n− k + β where n, k are integers and α, β are fractional parts. Then

x− y = k + α− β, from which the condition α− β < 0 gives [x− y] = k − 1. On the other hand, k

can be expressed as [x]− [y], hence the statement.)

If ABCD is a trapezoid with DC parallel to AB, ∠DCB is a right angle, DC = 6, BC =

4, AB = y, and ∠ADB = x, find y in terms of x.

Solution
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Assume CD < AB. Find E ∈ AB such thatDE ⊥ AB. Then AE = y−6, ED = 4,∠EDA = x−90◦,

hence y−6
4

= tan(x− 90◦) = − cotx =⇒ y = 6− 4 cotx.

If CD > AB, then AE = 6−y, ED = 4,∠EDA = 90◦−x, hence 6−y
4

= tan(90◦−x) = cot x =⇒
y = 6− 4 cotx.

Therefore, in any case y = 6− 4 cotx. – Solve in reals:

9x − 6x = 4x+ 1
2 – Let obtuse triangle ABC satisfy AB ·BC · CA = 3

√
3 sinA sinB sinC. Find

the upper bound of the area of ABC.

Solution

By the sine Law we have

3
√

3 = AB
sinC
· BC

sinA
· CA

sinB
= (2R)3

(2R)3 = 33/2 =⇒ R =
√

3
2

Since the triangle is obtuse, the upper bound of its area is the area of the equilateral right triangle

with the hypotenuse 2R, and that’s R2 = 3
4
. Hence A < 3

4

How many real numbers x satisfy the equation 1
5

log2 x = sin(5πx)?

Solution

Solution 1

1. On interval (0, 1) function y = 5 sin(5πx) has two negative half-periods, on (1/5, 2/5) and

(3/5, 4/5), reaching value −5 in x1 = 3/10 and x2 = 7/10. Since log2(3/10) > −5 and log2(7/10) >

−5, the sinusoid will intersect the logarithm curve in four points (two for each half-period).

2. In the point x = 1 the equation is satisfied, since log2 1 = 5 sin(5π · 1)

3. On interval (1, 32) function y = 5 sin(5πx) has 77 positive half-periods — 5 on each interval

(2n− 1, 2n + 1), plus 2 on (31, 32) — reaching value 5 in the midpoints of these half-periods. Since

log2 x ≤ 5 for 1 ≤ x ≤ 32, it follows that the logarithmic curve will intersect the sinusiod in 2 points

for each positive half-period, giving 154 points.

In total, we have 4 + 1 + 154 = 159 points.

Solution 2 The range of sinx is [−1, 1]. Hence, we only need to consider
∣∣1

5
log2 x

∣∣ ≤ 1. This is

satisfied for 1
32
≤ x ≤ 32. First let’s consider 1

32
≤ x < 1. In this interval, the left hand side is negative

while the right hand side is negative only in [1/5, 2/5] and [3/5, 4/5], so there are 4 solutions.

When 1 < x ≤ 32, the left hand side is positive, and the right hand side is positive only in

[6/5, 7/5], [8/5, 9/5], . . . , and [158/5, 169/5]. There are then 2 points of intersection in each of these

intervals, and there are 77 intervals.

When x = 1 both sides of the equation are 0, so in all we have 4 + 77 · 2 + 1 = 159 solutions.

Solution 3 y = 1
5

log2 x(a) - (A) = sin(5πx) - (B) can only be true when 0 < y ≤ 1. 1
5

log2 x =

1⇒ x = 32. B has a period of 2π
5π

= 2
5
. Therefore the graph A passes through B 32

2/5
= 80 times. For

each period, A passes through B 2 times except first one. So therefore there are 80 ∗ 2 − 1 = 159

such points where A and B intersect..

xem them

Find the remainder when you divide x81 + x49 + x25 + x9 + x by x3 − x.
Solution

since x3− x = x(x− 1)(x+ 1), we’ll use the remainders when P (x) is divided by x, x− 1, x+ 1, and

those are P (0) = 0, P (1) = 5, P (−1) = −5 respectively.

Now

P (x) = x(x− 1)(x+ 1)Q(x) + ax2 + bx+ c
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Substitute x = 0, x = 1, x = −1 to obtain the system of equations:

c = 0

a+ b+ c = 5

a− b+ c = −5

which has the solution a = 0, b = 5, c = 0

Therefore the desired remainder is 5x.

a1, a2, . . . a100 are real numbers that satisfy

a1 + . . .+ an = n(1 + an+1 + . . .+ a100)

for all integers 1 thru 100. Find a13.

Solution

Put Sn = a1 + · · ·+ an. By the initial equation, S100 = 100. Now

Sn = n(1 + S100 − Sn) ⇐⇒ (n+ 1)Sn = (S100 + 1)n ⇐⇒ Sn = 101n
n+1

Then

an = Sn − Sn−1 = 101n
n+1
− 101(n−1)

n
= 101

n(n+1)

Therefore a13 = 101
182

Prove the following without calculus. 1 + 1
1!

+ 1
2!

+ 1
3!

+ . . . < 3

Solution

Put S = 1 + 1
1!

+ 1
2!

+ 1
3!

+ . . . . Then 1
2!

+ 1
3!

+ · · · = S − 2. Now

2(S − 2) =
2

2!
+

2

3!
+

2

4!
+ . . .

<
2

2!
+

3

3!
+

4

4!
+ . . .

=
1

1!
+

1

2!
+

1

3!
+ . . .

= S − 1

Hence 2(S − 2) < S − 1 ⇐⇒ S < 3

If x is a positive real number, simplify:

cos(arctan(sin(arccot(x))))]2

Solution

cosφ = 1√
1+tan2 φ

, hence cos arctan t = 1√
1+t2

Similarly

sinφ = 1√
1+cot2 φ

, hence sin arccotx = 1√
1+x2

Therefore

A =

 1√
1+

(
1√

1+x2

)2


2

= 1+x2

2+x2

Find the residue when x1000 is divided by x3 + x2 + x + 1. and the coefficient of x100 for the

quotient.
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Solution

Denote P (x) = x1000. We have x3 + x2 + x+ 1 = (x+ 1)(x+ i)(x− i), hence
P (x) = (x + 1)(x + i)(x− i)Q(x) + R(x) for some polynomials Q(x), R(x), where degR(x) = 2,

hence we can write R(x) = ax2 + bx+ c

since P (1) = 1, P (i) = P (−i) = (−1)500 = 1, we have

1 = a · 12 + b · 1 + c =⇒ a + b + c = 1 1 = a · i2 + b · i + c =⇒ −a + c + ib = 1

1 = a · (−i)2 + b · (−i) + c =⇒ −a+ c− ib = 1

Obviously b = 0 and from a+ c = 1 ∧ −a+ c = 1 we get a = 0, c = 1

Hence R(x) ≡ 1

Now

Q(x) =
P (x)−R(x)

x3 + x2 + x+ 1

=
(x1000 − 1)(x− 1)

x4 − 1

= (x996 + x992 + · · ·+ x4 + 1)(x− 1)

Obviously, the coefficient of x100 is −1.

Find m and solve the following equation, knowing that its roots form a geometric sequence:

x4 − 15x3 + 70x2 − 120x+m = 0.

Solution

If the roots are a, aq, aq2, aq3, then by Vieta we have

a+ aq + aq2 + aq3 = 15

a2q + a2q2 + a2q3 + a2q3 + a2q4 + a2q5 = 70

a3q3 + a3q4 + a3q5 + a3q6 = 120

a4q6 = m

(1) simplifies to a(1 + q + q2 + q3) = 15, and (3) to a3q3(1 + q + q2 + q3) = 120. Dividing those

two we get a2q3 = 8, from which we obtain m = a4q6 = (a2q3)2 = 64.

The equation becomes

x4 − 15x3 + 70x2 − 120x+ 64 = 0 ⇐⇒ x4 − 3x3 + 2x2 − 12x3 + 36x2 − 24x+ 32x2 − 96x+ 64 = 0

⇐⇒ x2(x2 − 3x+ 2)− 12x(x2 − 3x+ 2) + 32(x2 − 3x+ 2) = 0

⇐⇒ (x2 − 12x+ 32)(x2 − 3x+ 2) = 0

The solutions are 1, 2, 4, 8

If x+ y = 3− cos 4α, x− y = 4 sin 2α. Prove
√
x+
√
y = 2

Solution

As cos 2φ = 1− 2 sin2 φ, we have cos 4α = 1− 2 sin2 2α. For shortness put a = sin 2α. Then

x+ y = 3− (1− 2a2) = 2 + 2a2 x− y = 4a

By adding up the equations we get

2x = 2(1 + 2a+ a2) ⇐⇒ x = (1 + a)2 ⇐⇒
√
x = |1 + a|
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since a > −1 (by the definition of a), we get |1 + a| = 1 + a ⇐⇒
√
x = 1 + a

By subtracting the second equation from the first we get

2y = 2(1− 2a+ a2) ⇐⇒ y = (1− a)2 ⇐⇒ √
y = |1− a|

since a 6 1 (by the definition of a), we get |1− a| = 1− a ⇐⇒ √
y = 1− a

Now
√
x+
√
y = 1 + a+ 1− a = 2

Another way:

∥∥∥∥∥∥∥
sin 2α = t ∈ [−1, 1]

cos 4α = 1− 2t2
=⇒

∥∥∥∥∥∥∥
x+ y = 2(t2 + 1)

x− y = 4t

=⇒

∥∥∥∥∥∥∥
x = (t+ 1)2

y = (t− 1)2

=⇒

∥∥∥∥∥∥∥
√
x = t+ 1

√
y = 1− t

=⇒
√
x+
√
y = 2 right.

Remark.

∥∥∥∥∥∥∥
√
x = (sinα + cosα)2

√
y = (sinα− cosα)2

=⇒

∥∥∥∥∥∥∥
√
x+
√
y = (sinα + cosα)2 + (sinα− cosα)2 = 2 .

4
√
x+ 4
√
y = | sinα + cosα|+ | sinα− cosα| ≤ 2 =⇒ 4

√
x+ 4
√
y ≤ 2 .

Let ABCD be a parallelogram. Denote the point M ∈ [CD] for which M̂AC ≡ M̂AD and the

point N ∈ [BC] for which N̂AB ≡ N̂AC . Define the points X ∈ AB ∩MN and Y ∈ AD ∩MN .

Prove that the area [XAY] is equally to the area [ABCD] if and only if ABCD becomes a rectangle.

Solution

Thiếu hình vẽ See the attached diagram for additional notation.

AM is the bisector of ∠DAC, which gives DM
MC

= b
d
. Similarly, BN

NC
= a

d

4Y DM ∼ 4NCM =⇒ [Y DM ]
[NCM ]

=
(
DM
MC

)2
= b2

d2 . Similarly, [XBN ]
[NCM ]

=
(
BN
NC

)2
= a2

d2

Now

[XBN ] + [Y DM ] = [NCM ] ⇐⇒ a2 + b2

d2
[NCM ] = [NCM ] ⇐⇒ a2 + b2 = d2

which is fulfilled if and only if ABCD is a rectangle.

Let ABC be a right triangle (AB ⊥ AC). The its incircle w = C(I, r) touches the sides

[AB] , [AC] in the points E , F .

Prove that the intersections of the line EF with the lines BI , CI belong to the circumcircle of

the triangle ABC .

Solution

Let BI meets EF at point D. since ∠A = 90o, so AFIE is a square. Thus EF is the perpendicular

bisector of AI, hence 4DIA is an isoseles triangle. Because

∠BDE = 180o − 135o − ∠B
2

= 45o − ∠B
2

so

∠ADB = 2∠BDE = 90o − ∠B = ∠C

Therefore D lies on the circumcircle of triangle ABC.

Let be given a triangle ABC. Prove that : 5
3
√

3
· S ≤ R2 + r2 (∗)

Solution

Denote 2p = a+ b+ c . Therefore,
p ≤ 3

√
3

2
·R =⇒ S = pr ≤ 3

√
3

2
·Rr =⇒ 5

3
√

3
· S ≤ 5

2
·Rr

2r ≤ R =⇒ 0 ≤ (R− 2r)(2R− r) =⇒ 5
2
·Rr ≤ R2 + r2

∥∥∥∥∥∥∥ =⇒ (∗) .

Let ABC be a triangle with the centroid G . Prove that BC+GA = CA+GB = AB+GC ⇐⇒
AB = BC = CA .
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Solution

Let AA′, BB′ be the medians. Then

AA′2 = b2+c2

2
− a2

4
(∗) BB′2 = a2+c2

2
− b2

4

giving

(AA′ −BB′)(AA′ +BB′) = 3
4
(b− a)(b+ a) (1)

From the given condition

GA−GB = CA− CB = b− a ⇐⇒ 2

3
(AA′ −BB′) = b− a ⇐⇒ AA′ −BB′ = 3

2
(b− a) (2)

Plugging (2) into (1):
3
2
(b− a)(AA′ +BB′) = 3

4
(b− a)(b+ a)

Assume a 6= b. Then the last equation yields

AA′ +BB′ = 1
2
(b+ a)

Together with

AA′ −BB′ = 3
2
(b− a)

we get

AA′ = b− a
2

Plugging that into (∗) we get

b2 − ab+ a2

4
= b2+c2

2
− a2

4
⇐⇒ c2 = (b− a)2 ⇐⇒ c = |b− a|

but that’s impossible by the triangle inequality. Therefore a = b. Similar argument for b = c, c = a.

QED

Prove that for all n, (n
e

)n
< n! < e

(n
2

)n
Solution

Lemma (well-known). n ∈ N , n ≥ 2 =⇒ 2 <
(
1 + 1

n

)n
<
(
1 + 1

n+1

)n+1
< e.

an =
(n
e

)n
bn = n!

cn = e ·
(n

2

)n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
=⇒


xn = an

bn
=
(
n
e

)n · 1
n!

yn = bn
cn

= n!
e
·
(

2
n

)n
∥∥∥∥∥∥∥ =⇒


xn+1

xn
= 1

e
·
(
1 + 1

n

)n
< 1

yn+1

yn
= 2

(1+ 1
n)

n < 1

∥∥∥∥∥∥∥∥ =⇒


xn+1 < xn

yn+1 < yn

∥∥∥∥∥∥∥ =⇒


. . . < xn+1 < xn < . . . < x1 = 1

e
< 1

. . . < yn+1 < yn < . . . < y1 = 2
e
< 1

∥∥∥∥∥∥∥ =⇒


an < bb

bn < cn

∥∥∥∥∥∥∥ =⇒

an < bn < cn .

In ∆ABC, draw the angle trisectors of ∠A and ∠B. Two of those trisectors intersect in the

midpoint of the circumscribed circle. Prove that the other two trisectors intersect in the orthocenter

of the triangle.
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Solution

In this case :


A
6

= B
3

= C
5

= π
14
∨ A

6
= B

5
= C

3
= π

14
;

m(ÂCH) = m(B̂CO) = π
14
∨ 2π

7
, m(ÔCH) = 3π

14

i.e. the rays [CH and [CO arn’t the trisectors of the angle ÂCB .

Thiếu hình vẽ Let M be the middlepoint of the hypotenuse (BC) of the right triangle ABC.

Prove that the line joining the incenters of the triangles ABM and ACM divides the area of the

triangle ABC evenly.

Remark. Prove easily that in a right triangle ABC , AB ⊥ AC there are the identities :∥∥∥∥∥∥∥
(a+ b+ c)2 = 2(a+ b)(a+ c) .

(b+ c− a)2 = 2(a− b)(a− c)

Lemma ([u]one’s own[/u]). In the rectangleABCD denote the points :

∥∥∥∥∥∥∥∥∥∥∥∥

M ∈ CD , M̂AC ≡ M̂AD

N ∈ BC , N̂AB ≡ N̂AC

X ∈ AB ∩MN , Y ∈ AD ∩MN

=⇒ [XAY ] = [ABCD] Proof of the lemma. Proof 1. Denote :

∥∥∥∥∥∥∥
AB = b , AD = c , AC = a

b2 + c2 = a2

=⇒

∥∥∥∥∥∥∥∥∥∥∥

MD
MC

= AD
AC

=⇒ MD
c

= MC
a

= b
a+c

=⇒ MC =
ab

a+ c

NB
NC

= AB
AC

=⇒ NB
b

= NC
a

= c
a+b

=⇒ NC =
ac

a+ b

Therefore,

∥∥∥∥∥∥∥∥∥∥∥

DY
NC

= MD
MC

=⇒ DY = ac
a+b
· c
a

= c2

a+b
=⇒ AY = AD +DY = c+ c2

a+b
=⇒ AY =

c(a+ b+ c)

a+ b

BX
MC

= NB
NC

=⇒ BX = ab
a+c
· b
a

= b2

a+c
=⇒ AX = AB +BX = b+ b2

a+c
=⇒ AX =

b(a+ b+ c)

a+ c

=⇒ AX · AY = bc(a+b+c)2

(a+b)(a+c)
.

Using the first identity from the above remark obtain AX · AY = 2bc , i.e. [XAY ] = [ABCD] .

Remark. [XAY ] = [ABCD] ⇐⇒ [DMY ] + [BNX] = [MCN ] ⇐⇒ DM · DY + BN · BX =

CM · CN ⇐⇒
bc
a+c
· c2

a+b
+ bc

a+b
· b2

a+c
= ab

a+c
· ac
a+b
⇐⇒ bc3 + b3c = a2bc ⇐⇒ b2 + c2 = a2 , what is truly.

Proof 2 (with areas).

J z I

Proof of the proposed problem. Denote the incircles w1 = C(I1, r1) , w2 = C(I2, r2) of the

triangles ABM , ACM respectively , the touch-points P ∈ AB ∩ w1 , N ∈ AC ∩ w2 and the

intersections X ∈ AB ∩ I1I2 , Y ∈ AC ∩ I1I2 . Apply the above lemma to the rectangle APMN (

the ray [AI1 is the bisector of the angle P̂AM and the ray [AI2 is the bisector of the angle N̂AM )

: AX · AY = 2 · AP · AN =⇒ AX · AY = AB·AC
2

, i.e. [XAY ] = 1
2
· [ABC] .

Another way

See the attached diagram for notation. The incenters are P,Q.

ra =
1
2
·(ab/2)

(a+ c
2

+ c
2

)/2
= ab

2(a+c)
, rb = ab

2(b+c)
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4PP1M ∼ 4QQ2M =⇒ rb
x

=
a
2

b
2
−ra+x

a
2
x = ab

2(b+c)

(
x+ b

2
− ab

2(a+c)

)
a
2
x = ab

2(b+c)

(
x+ bc

2(a+c)

)
x
(
a
2
− ab

2(b+c)

)
= ab2c

4(a+c)(b+c)

x ac
2(b+c)

= ab2c
4(a+c)(b+c)

x = b2

2(a+c)

Then CM = b
2

+ x = b(a+b+c)
2(a+c)

By symmetry, CN = a(a+b+c)
2(b+c)

Then

[CMN ] =
1

2
CM · CN

=
ab

2
· (a+ b+ c)2

4(a+ c)(b+ c)

= [ABC] · a
2 + b2 + c2 + 2ab+ 2ac+ 2bc

4(ab+ ac+ bc+ c2)

= [ABC] · 2a2 + 2b2 + 2ab+ 2ac+ 2bc

4(a2 + b2 + ab+ ac+ bc)

=
1

2
[ABC]

Hết năm 2007-12/6/2013 cho Virgil Nicula
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