IMO Shortlist

Algebra

A1 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a, b, c that satisfy $a+b+c=0$, the following equality holds:

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a) .
$$

(Here \mathbb{Z} denotes the set of integers.)

Proposed by Liam Baker, South Africa

A2 Let \mathbb{Z} and \mathbb{Q} be the sets of integers and rationals respectively. a) Does there exist a partition of \mathbb{Z} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?
b) Does there exist a partition of \mathbb{Q} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?
Here $X+Y$ denotes the set $\{x+y: x \in X, y \in Y\}$, for $X, Y \subseteq \mathbb{Z}$ and for $X, Y \subseteq \mathbb{Q}$.
A 3 Let $n \geq 3$ be an integer, and let $a_{2}, a_{3}, \ldots, a_{n}$ be positive real numbers such that $a_{2} a_{3} \cdots a_{n}=$ 1. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Proposed by Angelo Di Pasquale, Australia
A4 Let f and g be two nonzero polynomials with integer coefficients and $\operatorname{deg} f>\operatorname{deg} g$. Suppose that for infinitely many primes p the polynomial $p f+g$ has a rational root. Prove that f has a rational root.

A5 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the conditions

$$
f(1+x y)-f(x+y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R},
$$

and $f(-1) \neq 0$.
A6 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let f^{m} be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2 k}(n)=n+k$, and let k_{n} be the smallest such k. Prove that the sequence k_{1}, k_{2}, \ldots is unbounded.
A7 We say that a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integer m and n, it can be represented in the form

$$
f\left(x_{1}, \cdots, x_{k}\right)=\max _{i=1, \cdots, m} \min _{j=1, \cdots, n} P_{i, j}\left(x_{1}, \cdots, x_{k}\right),
$$

where $P_{i, j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

IMO Shortlist 2012

Combinatorics

C1 Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or ($x-1, x$). Prove that she can perform only finitely many such iterations.

C2 Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

C3 In a 999×999 square table some cells are white and the remaining ones are red. Let T be the number of triples (C_{1}, C_{2}, C_{3}) of cells, the first two in the same row and the last two in the same column, with C_{1}, C_{3} white and C_{2} red. Find the maximum value T can attain.

C4 Players A and B play a game with $N \geq 2012$ coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, \ldots by the following rules: (a) On every move of his B passes 1 coin from every box to an adjacent box. (b) On every move of hers A chooses several coins that were not involved in B 's previous move and are in different boxes. She passes every coin to and adjacent box. Player A 's goal is to ensure at least 1 coin in each box after every move of hers, regardless of how B plays and how many moves are made. Find the least N that enables her to succeed.

C5 The columns and the row of a $3 n \times 3 n$ square board are numbered $1,2, \ldots, 3 n$. Every square (x, y) with $1 \leq x, y \leq 3 n$ is colored asparagus, byzantium or citrine according as the modulo 3 remainder of $x+y$ is 0,1 or 2 respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3 n^{2}$ tokens of each color. Suppose that on can permute the tokens so that each token is moved to a distance of at most d from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citirine token, and each citrine token replaces an aspargus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

C6 The liar's guessing game is a game played between two players A and B. The rules of the game depend on two positive integers k and n which are known to both players.
At the start of the game A chooses integers x and N with $1 \leq x \leq N$. Player A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), and asking A whether x belongs to S. Player B may ask as many questions as he wishes. After each

IMO Shortlist 2012

question, player A must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful.
After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:

1. If $n \geq 2^{k}$, then B can guarantee a win. 2. For all sufficiently large k, there exists an integer $n \geq(1.99)^{k}$ such that B cannot guarantee a win.

Proposed by David Arthur, Canada
C7 There are given 2^{500} points on a circle labeled $1,2, \ldots, 2^{500}$ in same order. Prove that one can choose 100 pairwise disjoint chords joining some of theses points so that the 100 sums of the pairs of numbers at the endpoints of the chosen chord are equal.

IMO Shortlist 2012

Geometry

G1 Given triangle $A B C$ the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L, respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.
(The excircle of $A B C$ opposite the vertex A is the circle that is tangent to the line segment $B C$, to the ray $A B$ beyond B, and to the ray $A C$ beyond C.)

Proposed by Evangelos Psychas, Greece
G2 Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the pint such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.

G3 In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

G4 Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.

G5 Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. Let M be the point of intersection of $A L$ and $B K$.
Show that $M K=M L$.
Proposed by Josef Tkadlec, Czech Republic
G6 Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

G7 Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are

IMO Shortlist 2012

circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.

G8 Let $A B C$ be a triangle with circumcircle ω and l a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to l. The side-lines $B C, C A, A B$ intersect l at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P$ and $C Z P$ have a common point different from P or are mutually tangent at P.

Number Theory

N1 Call admissible a set A of integers that has the following property: If $x, y \in A($ possibly $x=y)$ then $x^{2}+k x y+y^{2} \in A$ for every integer k. Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

N2 Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2) .
$$

N3 Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.

N4 An integer a is called friendly if the equation $\left(m^{2}+n\right)\left(n^{2}+m\right)=a(m-n)^{3}$ has a solution over the positive integers. a) Prove that there are at least 500 friendly integers in the set $\{1,2, \ldots, 2012\}$. b) Decide whether $a=2$ is friendly.

N5 For a nonnegative integer n define $\operatorname{rad}(n)=1$ if $n=0$ or $n=1$, and $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{k}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are all prime factors of n. Find all polynomials $f(x)$ with nonnegative integer coefficients such tat $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for every nonnegative integer n.

N6 Let x and y be positive integers. If $x^{2^{n}}-1$ is divisible by $2^{n} y+1$ for every positive integer n, prove that $x=1$.

N 7 Find all positive integers n for which there exist non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

Proposed by Dusan Djukic, Serbia
N8 Prove that for every prime $p>100$ and every integer r, there exist two integers a and b such that p divides $a^{2}+b^{5}-r$.

