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1 Quadratic Congruences to Prime Moduli

Definition 1. Letm,n anda be integersyn > 1, n > 1 and(a,m) = 1. We say that is a
residue ofn-th degree modulan if congruence:™ = a (modm) has an integer solution; elseis a
nonresidue ofi-th degree.

Specifically, forn = 2, 3, 4 the residues are called quadratic, cubic, biquadratipectively.
This text is mainly concerned with quadratic residues.

Theorem 1. Given a primep and an integer, the equationr? = a has zero, one, or two solutions
modulop.

Proof. Suppose that the considered congruence has a solutiomhen so clearly is; = —x5.
There are no other solutions modylobecause? = a = 23 (modp) impliesz = 4. O
As a consequence of the above simple statement we obtain:

Theorem 2. For every odd positive integer, among the numbers 2, ..., p — 1 there are exactly
7”2;1 guadratic residues (and as many quadratic nonresidugs).

Definition 2. Given a prime number and an integer, Legendre’s symb(ﬁ%) is defined as

a 1, if ptaandais aquadratic residue (mop);
(—) =< -1, ifptaandaisaquadratic nonresidue (maqg;
p 0, ifp]a.

Example 1. Obviously,(lz‘)—z) = 1 for each primep and integerz, p 1 x.

Example 2. Since 2 is a quadratic residue modulo3? (= 2), and 3 is not, we hav(a%) =1land
(=1
s .

From now on, unless noted otherwigds always an odd prime andan integer. We also denote
—1
p=
Clearly, a is a quadratic residue modutoif and only if so isa + kp for some integek. Thus
we may regard Legendre’s symbol as a map from the residuseslasodulg to the sef{ —1,0, 1}.
Fermat's theorem asserts th#t™! = 1 (mod p), which impliesa? = +1 (modp). More

precisely, the following statement holds:
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Theorem 3 (Euler’s Criterion). a? = (9) (modbp).
p

Proof. The statement is trivial fop | a. From now on we assume that a.

Let g be a primitive root modulg. Then the numberg’, i = 0,1,...,p — 2 form a reduced
system of residues modujp We observe thatg’)? = ¢ = 1ifand onlyifp — 1 | ip/, or
equivalently?2 | i.

On the other hangj’ is a quadratic residue moduybaf and only if there existg € {0,1,...,p—
2} such thatg?)? = ¢ (modp), which is equivalent t@j = i (modp — 1). The last congruence is
solvable if and only if? | 4, that is, exactly whefg?)?" = 1 (modp). O

The following important properties of Legendre’s symbdldw directly from Euler’s criterion.

Theorem 4. Legendre’s symbol is multiplicative, |e(“7f’) = (%) (%) for all integersa, b and
prime numbep > 2. O

Problem 1. There exists a natural number< ,/p + 1 that is a quadratic nonresidue modyo

Solution. Consider the smallest positive quadratic nonresidomdulop and leth = [5] +1. Since
0 < ab—p < a, ab — p must be a quadratic residue. Therefore

-()-0)6)--C)

Thusb is a quadratic nonresidue and heacs b < £ + 1, which implies the statement.

Theorem 5. For every prime number > 2, (‘71) =(-1)"=".

In other words, the congrueneé = —1 modulo a primep is solvable if and only ifp = 2 or
p=1(mod4).A

Problem 2. If p is a prime of the formlk + 1, prove thatr = (p’)! is a solution of the congruence
2% 4+ 1 = 0 (modp).

Solution. Multiplying the congruences = —(p — ) (modp) fori = 1,2,...,p’ yields (p')! =
(=1 (p'+1)--- (p—2)(p—1). Note tha’ is even by the condition of the problem. We now have

2= )P =070 D) (-2 - ) = (-1 (p - 1)l = (-1)” ! = ~1 (modp)
by Wilson’s theoremA

One can conclude from Problem 1 that every prime factor oftremn?® 4 32 (wherez,y € N
are coprime) is either of the formk + 1, £ € N, or equal to 2. This conclusion can in fact be
generalized.

Theorem 6. Let =,y be coprime integers and, b, ¢ be arbitrary integers. lip is an odd prime
divisor of numberx? + bxy + cy?® which doesn’t dividebc, then

D = b? — 4ac

is a quadratic residue modula
In particular, if p | 22 — Dy? and(z,y) = 1, thenD is a quadratic residue (mog).

Proof. DenoteN = ax? + by + cy?. SincedaN = (2ax + by)? — Dy?, we have

(2azx + by)*> = Dy?* (modp).
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Furthermorey is not divisible byp; otherwise so would b2ax + by and therefore: itself, contra-
dicting the assumption.

There is an integey; such thayy; = 1 (modp). Multiplying the above congruence lyy gives
us(2azy; + byy1)? = D(yy1)? = D (modp), implying the statements

Foranintegea,ptaandk = 1,2,...,p' thereisaunique, € {—p’,...,—2,-1,1,2,...,p'}
such thatta = r;, (modp). Moreover, no two of the’s can be equal in absolute value; hence
|r1], |r2], ..., |rp| is in fact a permutation of1,2,...,p'}. Then

/
o a-2a----- pa _ TITY .. Ty

Now, settingr, = ex|rg| for k = 1,...,p’, wheree, = +1, and applying Euler’s criterion we
obtain:

a
Theorem 7. (—) =€1€2 €. O
p

Observe that;, = —1 if and only if the remainder ok« upon division byp is greater thap’,
i.e. if and only if {2’“7“} =2 ["7‘1} + 1. Thereforey;, = (71)[%]. Now Theorem 7 implies the
following statement.

a 4 2ka
Theorem 8 (Gauss’ Lemma). <—> = (—1)°, whereS = Z [—} |
p p

k=1
Gauss’ lemma enables us to easily compute the value of Leg’eerbol(%) for smalla or

smallp. If, for instancea = 2, we have(%) = (-1)%, whereS = i/:l {%}. Exactly [3p/]

summands in this sum are equal to 0, while the remaiping [%p'] are equal to 1. Therefore
S =p' — [5p'] = [EE], which is even fop = £1 and odd forp = £3 (mod 8). We have proven
the following

Theorem 9. (2) = (—1)[”7“]
In other Wolids, 2 is a quadratic residue modulo a prime 2 if and only ifp = £1 (mod 8).
The following statements can be similarly shown.
Theorem 10. (a) -2 is a quadratic residue modupoif and only ifp = 1 or p = 3 (mod 8);
(b) -3is a quadratic residue modujoif and only ifp = 1 (mod 6);
(c) 3je quadratic residue modujeif and only ifp = +1 (mod 12);
(d) 5is aquadratic residue moduoif and only ifp = +1 (mod 10).0

Problem 3. Show that there exist infinitely many prime numbers of thaf@)4k + 1; (b) 10k + 9.

Solution. (a) Suppose the contrary, that, p, . . ., p,, are all such numbers. Then by Theorem 5,
all prime divisors ofN = (2p1ps - - pn)? + 1 are of the formdk + 1. However,N is not divisible
by any ofpy, pa, ..., pn, Which is impossible.

Part (b) is similar to (a), with numbe¥ = 5(2p1pz - - - p,)?> — 1 being considered insteat

Problem 4. Prove that forn € N every prime divisop of numbem?* —n2+1 is of the formi 2k + 1.
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Solution. We observe that
nt=n?+1=m2-12+n i nt-n?4+1=m>+1)7-3n2%

In view of theorems 5, 6, and 10, the first equality givepus 1 (mod 4), whereas the other one
gives ugp = +1 (mod 12). These two congruences together yietd 1 (mod 12).A

1 2 22 22001
[2003} + [2003] + [2003} L [2003] '
Solution. Note that 2003 is prime. It follows from Euler’s criterioncifheorem 10 tha2!%! =

(555) = —1 (Mod2003). Therefore2003 | 2¢(2'09! + 1) = 21001+ 4 2¢; since2’ and2!'%°'+* are
not multiples 0f2003, we conclude that

2i 21001+i 21 + 21001+i
7] * [

Problem 5. Evaluate

2003 2003 2003
Summing up these equalities foe= 0, 1, . .., 1000 we obtain that the desired sum equals
142422 4 ... 22001 22092 — 1
—1001 = ——— —1001. A
2003 2003

The theory we have presented so far doesn’t really faalitad job if we need to find out whether,
say,814 is a quadratic residue modu®03. That will be done by the following theorem, which
makes such a verification possible with the amount of work ganable to that of the Euclidean
algorithm.

Theorem 11 (Gauss’ Reciprocity Law). For any different odd primeg andgq,

-

Proof. DefineS(p, q) = Zz;l [%p] . We start by proving the following auxiliary statement.

wherep’ = 221 and¢’ = .

Lemma 1. S(p,q) + S(¢,p) =p'q .

Proof of the Lemma. Givenk € N, we note that{%p} is the number of integer point, () in

the coordinate plane with < [ < kp/q, i.e. such thad < ¢l < kp. It follows that the sum
S(p, ¢) equals the number of integer poirts /) with 0 < k& < p’ and0 < ¢l < kp. ThusS(p, q)

is exactly the number of points with positive integer conedes in the interior or on the boundary
of the rectangleA BC D that lie belowthe line AE, where A(0,0), B(p',0), C(p',q"), D(0,q'),
E(p,q).

Analogously,S(q, p) is exactly the number of points with positive integer conedes in the
interior or on the boundary of the rectangld3C D that lieabovethe line AE. Since there arg’q’
integer points in total in this rectangle, none of which istbe line AE, it follows thatS(p, ¢) +
S(g,p)=p'q. v

We now return to the proof of the theorem. We have

p?—1
o

/

Sp+aq,9) =S, q) =1+2+---+p =
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p2-1

s, Gauss’ lemma gives us

Since Theorem 9 is equivalent (c?) = (-1)

()~ (2)-(2552)= () oo Qo

hence(%) = (=1)5P9), Analogously,(%) = (=1)%@P), Multiplying the last two inequalities
and using the lemma yields the desired equatity.

Let us now do the example mentioned before the Reciprocity La

814 2 11 37 11 37
Example 3. = === )=
2003 2003 / \ 2003 / \ 2003 2003/ \ 2003

Furthermore, the Reciprocity Law gives us

()= C0)- () = (38)- () (2)- ()

Thus($55) = 1,i.e.814 is a quadratic residue modul003.

Problem 6. Prove that an integes is a quadratic residue modulo every prime number if and only
if a is a perfect square.

Solution. Suppose that is not a square. We may assume w.l.0.g. (why?) éhatsquare-free.
Suppose thai > 0. Thena = pips - - - px, for some primewy, . .., pr. For every prime number

p it holds that .
000 = ()

If @ = 2, itis enough to choose = 5. Otherwisex has an odd prime divisor, say,. We choose a
prime numbep such thap = 1 (mod 8),p = 1 (modp;) fori =1,2,...,k—1,andp = a (modpy),
whereq is an arbitrary quadratic nonresidue modulo Such prime numbaerexists according to the
Dirichlet theorem on primes in an arithmetic progressidmeiTit follows from (1) thaps, . .., pr—1
are quadratic residues moduylpbutpy is not. Therefore is a quadraic nonresidue modylo

The proof in the case < 0 is similar and is left to the readef\

2 Quadratic Congruences to Composite Moduli

Not all moduli are prime, so we do not want to be restrictedrimp moduli. The above theory
can be generalized to composite moduli, yet losing as lttigoossible. The following function
generalizes Legendre’s symbol to a certain extent.

Definition 3. Leta be an integer andl an odd number, and lét= p"'p5? - - - p>~ be the factoriza-
tion of b onto primes. Jakobi'a symbdF ) is defined as

6-G) G -G

Since there is no danger of confusion, Jacobi’s and Leg&simbol share the notation.
It is easy to see tha(t%) = —1 implies thata is a quadratic nonresidue modulo Indeed,
if (%) = —1, then by the definitior( ) = —1 for at least one; | b; hencea is a quadratic

a
i pi
nonresidue modulp;.
However, the converse false as seen from the following example.
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(3)-() ) -

2 is not a quadratic residue modulo 15, as it is not so modula@%

Example 4. Although

In fact, the following weaker statement holds.

Theorem 12. Leta be an integer and a positive integer, and gt = pi'p3? - - - p®~ be the fak-
torization ofb onto primes. Thew is a quadratic residue modulbif and only ifa is a quadratic
residue module;* for eachi =1,2,...,r.

Proof. If a quadratic residue modulg it is clearly so modulo eachf**, i =1,2,...,r.

Assume that is a quadratic residue modulo eaeh and thatr; is an integer such that = a
(modp;**). According to Chinese Remainder Theorem there is anch thatr = z; (modp;**) for
i=1,2,...,r. Thenz? = 27 = a (modp*) for eachi, and therefore? = a (modb). O
Theorem 13. The number of quadratic residues modglb(n > 0) is equal to

27171 -1 pn+1 —1
— | +2forp=2, and |—|+1 forp>2.
e S ¢

Proof. Let k,, denote the number of quadratic residues mogtilo

Let p be odd and: > 2. Numbera is a quadratic residue modutd if and only if eitherp 1 a
anda is a quadratic residue modute or p? | @ anda/p? is a quadratic residue moduld—2. It
follows thatk,, = k,,_» + p’p" 1.

Letp = 2 andn > 3. Numbera is a quadratic residue modudd if and only if eithera = 1
(mod 8) or4 | a anda/4 is a quadratic residue modu§—2. We obtaink,, = k,, _o + 2"73.

Now the statement is shown by simple inductiornoro

Many properties of Legendre’s symbols apply for Jacobimiyls also. Thus the following
statements hold can be easily proved by using the definifida@bi’s symbol and the analogous
statements for Legendre’s symbols.

Theorem 14. For all integersa, b and odd numberg, d the following equalities hold:

(-0 (2)-00) @-06) -

Theorem 15. For every odd integet,

(2. ()-cobe

Theorem 16 (The Reciprocity Rule). For any two coprime odd numbetisb it holds that

OIOREIEE

Problem 7. Prove that the equation® = 3® — 5 has no integer solution&r, y).

Solution. For eveny we haver? = 3? — 5 = 3 (mod 8), which is impossible.
Now lety be odd. Ify = 3 (mod 4), thenz? = 3 — 5 = 3% — 5 = 2 (mod 4), impossible again.
Hencey must be of the formz + 1, z € Z. Now the given equation transforms into

2?2 4 = 6423 + 4827 + 122 = 42(162% + 122 + 3).

It follows thatz? = 4 (mod 1622 + 12z + 3).
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However, the value of Jacobi’s symbol

—4 -1
(16z2 +122 + 3) B (1622 + 122 + 3)
equals—1 becausé6z2 + 12z + 3 = 3 (mod 4). ContradictionA

Problem 8. Prove that4kxzy — 1 does not divide the numbef™ + y™ for any positive integers
x,y, k,m,n.

Solution. Note that(x™, y™, 4kxzy — 1) = 1. Let us writem’ = [m/2] andn’ = [n/2]. We need to
investigate the following cases.

1° m = 2m’ andn = 2n/. Thendkzy —1 | (z™)2 + (y™')? by Theorem 6 implie{ﬁ) —
1, which is false.

2° m = 2m’ andn = 2n’/ + 1 (the casen = 2m’ 4+ 1, n = 2n’ is analogous). Thetkzy — 1 |
(z™)% + y(y™')?* and hence(ﬁ) = 1. We claim this to be impossible.
Suppose thag is odd. The Reciprocity Rule gives us

<4k$yy— 1) - <4k:xy1— 1) (4;%3_ 1) — (1) (-1 <71> — 1

Now assume thaj = 2!y, wheret > 1 is an integer ang; € N. According to Theorem 15,
= 1, whereas, like in the case of ogjd( _yil) = ( — ) =—1.

4kxy 4-2tkxy; —1

—y _ 2 ¢ —Y1 -1
dkxy — 1 dkxy — 1 dkxy — 1 '

3° m = 2m/+1andn = 2n’'+1. Thendkay—1 | z(z™ )2 +y(y" )2, and hencs{%) —1.
On the other hand,

—zy _ —4xy _ —71 _ 1
dkxy — 1 dkxy — 1 dkxy — 1 ’

This finishes the proofA

2
we have(m
It follows that

a contradiction.

3 Some Sums of Legendre’s symbols

Finding the number of solutions of a certain conguence isnofeduced to counting the values of
x € {0,1,...,p — 1} for which a given polynomia () with integer coefficients is a quadratic
residue modulo an odd prime The answer is obviously directly connected to the valudefstum

505

In this part we are interested in sums of this type.
For a linear polynomiaf, the considered sum is easily evaluated:

Theorem 17. For arbitrary integersa, b and a primep 1 a,

’”i <a3:p+ b> o

=0
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Proof. Sincep 1 a, the numbersax + b, z = 0,1,...,p — 1 form a complete system of residues
modulop. Exactly”—;1 of them are quadratic residues, exad—“kg;'l are quadratic nonresidues, and
one is divisible byp. It follows that

p—1

b 1 1
Z(az+ ):p 1+ c1+o0=0 0O
= p 2 2

To evaluate the desired sum for quadratic polynomfialse shall use the following proposition.

Theorem 18. Let f(2)? = ag + a1z + - - - + akp/x’“p', wherek is the degree of polynomigl. We
have

S (@) )
Z < > = *(apfl + a2(p—1) + .+ ak/(p_l)) (mOdp)7 Wherekl _ |:§:| .

=0 p
Proof. DefinesS,, = Z’;;é z™ (n € N) andSy = p. It can be shown tha$,, = —1 (modp) for
n > 0andp — 1 | n, andS,, = 0 (modp) otherwise. Now Euler’s Criterion gives us
p—1 f($) p—1 kp’
Z <7) = Z f@)P = Z%‘Si = —(ap—1 +agp—1) + - +arp_1) (Modp). O
=0 =0 1=0

Theorem 19. For any integers:, b, c and a primep { a, the sum

pz: (ax2+bx+c)
p

=0

equals— (%) if ptb? —4dac, and(p — 1) (%) if p | b — 4ac.

Proof. We have

()5 (=) -5 (=),

whereD = b? — 4ac. Since numberaz + b, x = 0,1,...,p — 1 comprise a complete system of
residues modulp, we obtain

(g)pil (a:z:2+b:r+c) :pil <$2D) _g
p x=0 p =0 p
Theorem 18 gives uS = —1 (modp), which together witHS| < pyieldsS = —-1orS =p — 1.

Suppose that = p — 1. Thenp — 1 of the numbers(””sz) are equal td, and exactly one,

say forx = z¢, is equal to 0, i.ep | #3 — D. Since this implie® | (—x¢)?> — D = x3 — p also,
we must havery = 0 and consequently | D. Conversely, ifp | D, we haveS = p — 1; otherwise
S = —1, which finishes the proota

Problem 9. The number of solutiong:, y) of congruence
2 —y*> =D (modp),

whereD # 0 (modp) is given, equalp — 1.
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Solution. This is an immediate consequence of the fact that, for fixatie number of solutiong
of the congruencg? = z? — D (modp) equals( ) +1.A

Evaluating the sums of Legendre’s symbols for polynomjdls) of degree greater than 2 is
significantly more difficult. In what follows we investigatee case of cubic polynomials of a

certain type.
For an integen, define

=0
Assume thap 1 a. We easily deduce that for eatlk Z,
P\ (552 +a)\ _ [t
o= (3) 5 (1452) - () e
() = ( g . S ) K@

Therefore K'(a)| depends only on whetheris a quadratic residue modujoor not.
Now we give one non-standard proof of the fact that every ggiree 1 (mod 4) is a sum of two
squares.

Theorem 20 (Jacobstal’s identity). Let a and b be a quadratic residue and nonresidue modulo a
prime numbep of the formdk + 1. Then|K (a)| and|K (b)| are even positive integers that satisfy

<§|K<a>|)2 " <§|K<b>|>2 -5

Proof. The previous consideration gives pl$K (a)? + K (b)?) = S7_ K(n)? = Y721 K(n)?,
sinceK (0) = 0. Letus determingﬁ;ﬁ) K (n)?. For eachh we have

pipzl(myx +n)(y? +n))

which implies

i’gK Ii’i(w)z(nm?gnw?))

z=0y=0 n=0

Note that by the theorem 19,71 ("”2)’%) equalsp — 1 if 2 = +y, and—1 otherwise.

Upon substituting these values the above equality becomes
p—1p—1
ZK p(2p — 2) ZZ( ):4pp’.
=0 y=0
We conclude thak (a)? + K (b)? = 4p. Furthermore, sinc& (a)? + K (b)? is divisible by 4, both
K (a) and K (b) must be even, and the statement follows.

4 Problems

10. Letp be a prime number. Prove that there exists Z for whichp | 22 — = + 3 if and only if
there existg, € Z for whichp | 42 — y + 25.

11. Letp = 4k—1 be a prime numbek, € N. Show that ife is an integer such that the congruence
22 = a (modp) has a solution, then its solutions are givery: +a”.
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12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22

5
10

11.
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Show that all odd divisors of numb&r? + 1 have an even tens digit.

Show that for every prime numbethere exist integers, b such that? + b2 + 1 is a multiple
of p.

Prove tha% is not an integer for any integersy > 2.

Letp > 3 be a prime and lai, b € N be such that

Prove thap? | a.

Consider”(z) = 23 + 1422 — 2z + 1. Show that there exists a natural numhesuch that
for eachz € Z,

101 | P(P(...P(z)...)) — .

n

Determine alh € N such that the sed = {n,n+ 1,...,n+ 1997} can be partitioned into
at least two subsets with equal products of elements.

() Prove thatforno,y € Nis4xy — x — y a square;
(b) Prove that for na:,y, z € Nis 4xyz — x — y a square.

If n» € N, show that all prime divisors of® — n* + 1 are of the fornR4k + 1, k € N.
Suppose that, n are positive integers such thatc™ — 1) = 5™ — 1. Prove thatm, n) > 1.
Prove that there are no positive integers ¢ for which

a® + b2 + ¢?
3(ab+ be+ ca)

is an integer.
. Prove that, for alk € Z, the number of solution&e, y, z) of the congruence

22 + y? + 2% = 2axyz (Modp)
A 2
equals(p + (=1)P ) .

Solutions

. The statement is trivial fgr < 3, so we can assume that> 5.

Sincep | 22—z +3is equivalentte | 4(z? —z +3) = (2x—1)?+ 11, integerr exists if and
only if —11 is a quadratic residue moduo Likewise, sincet(y* —y +25) = (2y —1)?+99,
y exists if and only if—99 is a quadratic residue modufo Now the statement of the problem

— — .

According to Euler’s criterion, the existence of a solubf 22 = a (modp) impliesa?*~! =
1 (modp). Hence forz = o we haver? = a?* = a (modp).
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12.

13.

14.

15.

16.

17.

18.

Ifp | 522 + 1, then(%’) = 1. The Reciprocity rule gives us

F)-G)G) = )

Itis easy to verify that the last expression has the valuadfonly ifp is congruenttd, 3,7
or 9 modulo20.
Clearlyp | a? +b? + 1 if and only if a®> = —b? — 1 (modp).

Both sets{a? | a € Z} and{-b*> — 1 | b € Z} modulop are of cardinality exactly+*, so
they have an element in common, i.e. thereare € Z with o and—b? — 1 being equal
modulop.

Ify is eveny? — 5 is of the form4k + 3, k € Z and thus cannot divide? + 1 for x € Z. If y
is odd, theny? — 5 is divisible by 4, whilez? + 1 is never a multiple of 4.

It suffices to show that?71'e — s~ 1 21 ig divisible byp?. To start with,

p—1

2p—Dla = (-1 (p—1) p(p—1)!
f?( R =R =3

i=1

Thereforep | a. Moreover, if fori € {1,2,...,p — 1} i’ denotes the inverse éfmodulop,
we have

2(p—1la (- Cant
z(p =) i"(p—1)!'=0 (modp).
=1

@
Il
N

It follows thatp? | 2(p — 1)!a.

All congruences in the solution will be modulo 101.
Itis clear thatP(z) = P(y) for integerse, y with x = y.
We claim that the converse holdB(x) # P(y) if £ y. We have

A[P(z) — P(y)]

p— =42 + 2y +y? + 1o+ 14y — 2) = 2z + y + 14) + 3(y — 29)2.

Since—3 is not a quadratic residue modulo 101, the left hand side idivisible by 101
unlessif2e +y+ 14 =y — 29 =0, i.e.x = y = 29. This justifies our claim.

We now return to the problem. The above statement impligsA@), P(1), ..., P(100) is
a permutation of), 1, ..., 100 modulo 101. We conclude that for eache {0,1,...,100}
there is am, such thatP(P(... P(z)...)) = « (with P appliedn,, times).

Any common multiple of the numberg, n1, ..., n1go is clearly a desired.

Suppose that can be partitioned inté subsetsd,, ..., A, each with the same product of
elementsn. Since at least one and at most two elementgl afre divisible by the prime
1997, we havel997 | m and hencek = 2. Furthermore, since the number of elements
divisible by the prime 1999 is at most one, we ha®d9 { m; hence no elements of is
divisible by 1999, i.e. the elements df are congruent td, 2,3, ...,1998 modulo 1999.
Thenm? =1-2-3---1998 = —1 (mod1999), which is impossible because -1 is a quadratic
nonresidue modul®999 = 4 - 499 + 3.

Part (a) is a special case of (b).
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(b) Suppose:, y, z,t € N are such thatzyz — x — y = t2. Multiplying this equation byiz
we obtain

(4oz — 1)(dyz — 1) = 42t + 1.
Therefore,—4z is a quadratic residue modula:z — 1. However, it was proved in problem 8
that the value of Legendre’s sym Ij_l) is —1 for all z, 2, yielding a contradiction.

Consider an arbitrary prime divisprof n® — n* + 1. It follows from problem 4 thap is
congruent ta or 13 (mod24). Furthermore, since

n® —n'+1=n"+n*+1)—2(n°+n)
2 is a quadratic residue modupp excluding the possibility = £13 (mod 24).
Suppose thdtn,n) = 1. Let
5™ —1=2%7" ---pp* (1)

be the factorization d” — 1 onto primes, wherg; > 2 zai = 1, ..., k. By the condition of
the problem,

=5 - ) =2 T - -, ()

Obviously,2® | 5™ — 1. On the other hand, it follows frofs™ — 1,5" — 1) =5 — 1 =4
thata; = 1 foreachi = 1,...,k anda = 2. Since2? | 5% — 1 for every evenr, m must be
odd:m = 2m/ + 1 for somem’ € Ny.

Sincep; | 5- (57”')2 —1fori=1,...,k,5is aquadratic residue moduylg and consequently
p; = £1 (mod 5). However, (2) implies that none pf — 1 is divisible by 5. We thus obtain
thatp; = —1 (mod 5) for all:.

Reduction of equality (1) modulo 5 yields-1)* = 1. Thusk is even. On the other hand,
equality (2) modulo 5 yieldé—2)**! = 1 (mod 5), and therefore = 3 (mod 4), contradicting
the previous conclusion.

Remark Most probablyyn andn do not even exist.

Suppose that, b, c, n are positive integers such that + 2 + ¢ = 3n(ab + bc + ca). This
equality can be rewritten as

(a+b+c)* = (3n+2)(ab + be + ca).

Choose a prime number= 2 (mod 3) which dividesn + 2 with an odd exponent, i.e. such
thatp?*~! | 3n + 2 andp? { 3n + 2 for somei € N (suchp must exist). Thep’ | a + b+ ¢
and therefore | ab + bc + ca. Substitutinge = —a — b (modp) in the previous relation we
obtain

pla®+ab+b* = pl(2a+0b)*+ 3b°

It follows that(‘f) = 1, which is false becauge= 2 (mod 3).
The given congruence is equivalent to
(z — axy)? = (a®2® — 1)y? — 2° (modp). (1)

For any fixedz, y € {0,...,p — 1}, the number of solutions of (1) equals

L+ <(a2x21)y2x2)'
p
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Therefore the total number of solutions of (1) equals

1p—1

Ny +ZZ<” ~ 1)y zQ)'

z=0y=0

According to theorem 1927”:1 (M) is equal to— (L‘l) if ax # +1 (mod
p), and top ( ) if ax = +1 (modp). Therefore

v (3)-5 (75 - 0+ (5)



