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1 Quadratic Congruences to Prime Moduli

Definition 1. Let m, n and a be integers,m > 1, n ≥ 1 and (a, m) = 1. We say thata is a
residue ofn-th degree modulom if congruencexn ≡ a (modm) has an integer solution; elsea is a
nonresidue ofn-th degree.

Specifically, forn = 2, 3, 4 the residues are called quadratic, cubic, biquadratic, respectively.
This text is mainly concerned with quadratic residues.

Theorem 1. Given a primep and an integera, the equationx2 ≡ a has zero, one, or two solutions
modulop.

Proof. Suppose that the considered congruence has a solutionx1. Then so clearly isx2 = −x1.
There are no other solutions modulop, becausex2 ≡ a ≡ x2

1 (modp) impliesx ≡ ±x1. 2

As a consequence of the above simple statement we obtain:

Theorem 2. For every odd positive integerp, among the numbers1, 2, . . . , p − 1 there are exactly
p−1
2 quadratic residues (and as many quadratic nonresidues).2

Definition 2. Given a prime numberp and an integera, Legendre’s symbol
(

a
p

)

is defined as

(
a

p

)

=







1, if p ∤ a anda is a quadratic residue (modp);
−1, if p ∤ a anda is a quadratic nonresidue (modp);
0, if p | a.

Example 1. Obviously,
(

x2

p

)

= 1 for each primep and integerx, p ∤ x.

Example 2. Since 2 is a quadratic residue modulo 7 (32 ≡ 2), and 3 is not, we have
(

2
7

)
= 1 and

(
3
7

)
= −1.

From now on, unless noted otherwise,p is always an odd prime anda an integer. We also denote
p′ = p−1

2 .
Clearly,a is a quadratic residue modulop if and only if so isa + kp for some integerk. Thus

we may regard Legendre’s symbol as a map from the residue classes modulop to the set{−1, 0, 1}.
Fermat’s theorem asserts thatap−1 ≡ 1 (mod p), which impliesap′ ≡ ±1 (mod p). More

precisely, the following statement holds:
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Theorem 3 (Euler’s Criterion). ap′ ≡
(

a

p

)

(modp).

Proof. The statement is trivial forp | a. From now on we assume thatp ∤ a.
Let g be a primitive root modulop. Then the numbersgi, i = 0, 1, . . . , p − 2 form a reduced

system of residues modulop. We observe that(gi)p′

= gip′ ≡ 1 if and only if p − 1 | ip′, or
equivalently,2 | i.

On the other hand,gi is a quadratic residue modulop if and only if there existsj ∈ {0, 1, . . . , p−
2} such that(gj)2 ≡ gi (modp), which is equivalent to2j ≡ i (modp − 1). The last congruence is
solvable if and only if2 | i, that is, exactly when(gi)p′ ≡ 1 (modp). 2

The following important properties of Legendre’s symbol follow directly from Euler’s criterion.

Theorem 4. Legendre’s symbol is multiplicative, i.e.
(

ab
p

)

=
(

a
p

)(
b
p

)

for all integersa, b and

prime numberp > 2. 2

Problem 1. There exists a natural numbera <
√

p + 1 that is a quadratic nonresidue modulop.

Solution. Consider the smallest positive quadratic nonresiduea modulop and letb =
[

p

a

]
+1. Since

0 < ab − p < a, ab − p must be a quadratic residue. Therefore

1 =

(
ab − p

p

)

=

(
a

p

)(
a

p

)

= −
(

b

p

)

.

Thusb is a quadratic nonresidue and hencea ≤ b < p

a
+ 1, which implies the statement.

Theorem 5. For every prime numberp > 2,
(

−1
p

)

= (−1)
p−1

2 .

In other words, the congruencex2 ≡ −1 modulo a primep is solvable if and only ifp = 2 or
p ≡ 1 (mod 4).△

Problem 2. If p is a prime of the form4k + 1, prove thatx = (p′)! is a solution of the congruence
x2 + 1 ≡ 0 (modp).

Solution. Multiplying the congruencesi ≡ −(p − i) (modp) for i = 1, 2, . . . , p′ yields (p′)! ≡
(−1)p′

(p′ +1) · · · (p−2)(p−1). Note thatp′ is even by the condition of the problem. We now have

x2 = (p′)!2 ≡ (−1)p′

p′ · (p′ + 1) · · · (p − 2)(p − 1) = (−1)p′

(p − 1)! ≡ (−1)p′+1 = −1 (modp)

by Wilson’s theorem.△
One can conclude from Problem 1 that every prime factor of numberx2 + y2 (wherex, y ∈ N

are coprime) is either of the form4k + 1, k ∈ N, or equal to 2. This conclusion can in fact be
generalized.

Theorem 6. Let x, y be coprime integers anda, b, c be arbitrary integers. Ifp is an odd prime
divisor of numberax2 + bxy + cy2 which doesn’t divideabc, then

D = b2 − 4ac

is a quadratic residue modulop.
In particular, if p | x2 − Dy2 and(x, y) = 1, thenD is a quadratic residue (modp).

Proof. DenoteN = ax2 + bxy + cy2. Since4aN = (2ax + by)2 − Dy2, we have

(2ax + by)2 ≡ Dy2 (modp).
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Furthermore,y is not divisible byp; otherwise so would be2ax + by and thereforex itself, contra-
dicting the assumption.

There is an integery1 such thatyy1 ≡ 1 (modp). Multiplying the above congruence byy2
1 gives

us(2axy1 + byy1)
2 ≡ D(yy1)

2 ≡ D (modp), implying the statement.2

For an integera, p ∤ a andk = 1, 2, . . . , p′ there is a uniquerk ∈ {−p′, . . . ,−2,−1, 1, 2, . . . , p′}
such thatka ≡ rk (mod p). Moreover, no two of therk ’s can be equal in absolute value; hence
|r1|, |r2|, . . . , |rp′ | is in fact a permutation of{1, 2, . . . , p′}. Then

ap′

=
a · 2a · · · · · p′a
1 · 2 · · · · · p′ ≡ r1r2 . . . rp′

1 · 2 · · · · · p′ .

Now, settingrk = ǫk|rk| for k = 1, . . . , p′, whereǫk = ±1, and applying Euler’s criterion we
obtain:

Theorem 7.
(

a

p

)

= ǫ1ǫ2 · · · ǫp′ . 2

Observe thatrk = −1 if and only if the remainder ofka upon division byp is greater thanp′,

i.e. if and only if
[

2ka
p

]

= 2
[

ka
p

]

+ 1. Therefore,rk = (−1)[
2ka

p ]. Now Theorem 7 implies the

following statement.

Theorem 8 (Gauss’ Lemma).
(

a

p

)

= (−1)S , whereS =

p′

∑

k=1

[
2ka

p

]

. 2

Gauss’ lemma enables us to easily compute the value of Legendre’s symbol
(

a
p

)

for smalla or

smallp. If, for instance,a = 2, we have
(

2
p

)

= (−1)S, whereS =
∑p′

k=1

[
4k
p

]

. Exactly
[

1
2p′
]

summands in this sum are equal to 0, while the remainingp′ −
[
1
2p′
]

are equal to 1. Therefore
S = p′ −

[
1
2p′
]

=
[

p+1
4

]
, which is even forp ≡ ±1 and odd forp ≡ ±3 (mod 8). We have proven

the following

Theorem 9.
(

2

p

)

= (−1)[
p+1

4 ].

In other words, 2 is a quadratic residue modulo a primep > 2 if and only ifp ≡ ±1 (mod 8).

The following statements can be similarly shown.

Theorem 10. (a) -2 is a quadratic residue modulop if and only ifp ≡ 1 or p ≡ 3 (mod 8);

(b) -3 is a quadratic residue modulop if and only ifp ≡ 1 (mod 6);

(c) 3 je quadratic residue modulop if and only ifp ≡ ±1 (mod 12);

(d) 5 is a quadratic residue modulop if and only ifp ≡ ±1 (mod 10).2

Problem 3. Show that there exist infinitely many prime numbers of the form (a)4k+1; (b) 10k+9.

Solution. (a) Suppose the contrary, thatp1, p2, . . . , pn are all such numbers. Then by Theorem 5,
all prime divisors ofN = (2p1p2 · · · pn)2 + 1 are of the form4k + 1. However,N is not divisible
by any ofp1, p2, . . . , pn, which is impossible.

Part (b) is similar to (a), with numberN = 5(2p1p2 · · · pn)2 − 1 being considered instead.△

Problem 4. Prove that forn ∈ N every prime divisorp of numbern4−n2+1 is of the form12k+1.
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Solution. We observe that

n4 − n2 + 1 = (n2 − 1)2 + n2 i n4 − n2 + 1 = (n2 + 1)2 − 3n2.

In view of theorems 5, 6, and 10, the first equality gives usp ≡ 1 (mod 4), whereas the other one
gives usp ≡ ±1 (mod 12). These two congruences together yieldp ≡ 1 (mod 12).△

Problem 5. Evaluate
[

1

2003

]

+

[
2

2003

]

+

[
22

2003

]

+ · · · +
[
22001

2003

]

.

Solution. Note that 2003 is prime. It follows from Euler’s criterion and Theorem 10 that21001 ≡
(

2
2003

)
= −1 (mod2003). Therefore2003 | 2i(21001 + 1) = 21001+i + 2i; since2i and21001+i are

not multiples of2003, we conclude that

[
2i

2003

]

+

[
21001+i

2003

]

=
2i + 21001+i

2003
− 1.

Summing up these equalities fori = 0, 1, . . . , 1000 we obtain that the desired sum equals

1 + 2 + 22 + · · · + 22001

2003
− 1001 =

22002 − 1

2003
− 1001. △

The theory we have presented so far doesn’t really facilitate the job if we need to find out whether,
say,814 is a quadratic residue modulo2003. That will be done by the following theorem, which
makes such a verification possible with the amount of work comparable to that of the Euclidean
algorithm.

Theorem 11 (Gauss’ Reciprocity Law).For any different odd primesp andq,
(

p

q

)(
q

p

)

= (−1)p′q′

,

wherep′ = p−1
2 andq′ = q−1

2 .

Proof. DefineS(p, q) =
∑q′

k=1

[
kp
q

]

. We start by proving the following auxiliary statement.

Lemma 1. S(p, q) + S(q, p) = p′q′.

Proof of the Lemma. Givenk ∈ N, we note that
[

kp
q

]

is the number of integer points(k, l) in

the coordinate plane with0 < l < kp/q, i.e. such that0 < ql < kp. It follows that the sum
S(p, q) equals the number of integer points(k, l) with 0 < k < p′ and0 < ql < kp. ThusS(p, q)
is exactly the number of points with positive integer coordinates in the interior or on the boundary
of the rectangleABCD that lie below the lineAE, whereA(0, 0), B(p′, 0), C(p′, q′), D(0, q′),
E(p, q).

Analogously,S(q, p) is exactly the number of points with positive integer coordinates in the
interior or on the boundary of the rectangleABCD that lieabovethe lineAE. Since there arep′q′

integer points in total in this rectangle, none of which is onthe lineAE, it follows thatS(p, q) +
S(q, p) = p′q′. ▽

We now return to the proof of the theorem. We have

S(p + q, q) − S(p, q) = 1 + 2 + · · · + p′ =
p2 − 1

8
.
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Since Theorem 9 is equivalent to
(

2
p

)

= (−1)
p2

−1

8 , Gauss’ lemma gives us

(
2

q

)(
p

q

)

=

(
2p

q

)

=

(
2(p + q)

q

)

=

(
p+q

2

q

)

= (−1)S(p+q,q) =

(
2

q

)

(−1)S(p,q),

hence
(

p

q

)

= (−1)S(p,q). Analogously,
(

q

p

)

= (−1)S(q,p). Multiplying the last two inequalities

and using the lemma yields the desired equality.2

Let us now do the example mentioned before the Reciprocity Law.

Example 3.
(

814

2003

)

=

(
2

2003

)(
11

2003

)(
37

2003

)

= −
(

11

2003

)(
37

2003

)

.

Furthermore, the Reciprocity Law gives us

(
11

2003

)

= −
(

2003

11

)

=

(
1

11

)

= 1 and

(
37

2003

)

=

(
2003

37

)

=

(
5

37

)

=

(
37

5

)

= −1.

Thus
(

814
2003

)
= 1, i.e. 814 is a quadratic residue modulo2003.

Problem 6. Prove that an integera is a quadratic residue modulo every prime number if and only
if a is a perfect square.

Solution. Suppose thata is not a square. We may assume w.l.o.g. (why?) thata is square-free.
Suppose thata > 0. Thena = p1p2 · · · pk for some primesp1, . . . , pk. For every prime number

p it holds that
(

a

p

)

=
k∏

i=1

(
pi

p

)

and

(
pi

p

)

= (−1)p′

ip
′

(
p

pi

)

. (1)

If a = 2, it is enough to choosep = 5. Otherwisea has an odd prime divisor, saypk. We choose a
prime numberp such thatp ≡ 1 (mod 8),p ≡ 1 (modpi) for i = 1, 2, . . . , k−1, andp ≡ a (modpk),
wherea is an arbitrary quadratic nonresidue modulopk. Such prime numberp exists according to the
Dirichlet theorem on primes in an arithmetic progression. Then it follows from (1) thatp1, . . . , pk−1

are quadratic residues modulop, butpk is not. Thereforea is a quadraic nonresidue modulop.
The proof in the casea < 0 is similar and is left to the reader.△

2 Quadratic Congruences to Composite Moduli

Not all moduli are prime, so we do not want to be restricted to prime moduli. The above theory
can be generalized to composite moduli, yet losing as littleas possible. The following function
generalizes Legendre’s symbol to a certain extent.

Definition 3. Leta be an integer andb an odd number, and letb = pα1

1 pα2

2 · · · pαr
r be the factoriza-

tion of b onto primes. Jakobi’a symbol
(

a
b

)
is defined as

(a

b

)

=

(
a

p1

)α1
(

a

p2

)α2

· · ·
(

a

pr

)αr

.

Since there is no danger of confusion, Jacobi’s and Legendre’s symbol share the notation.
It is easy to see that

(
a
b

)
= −1 implies thata is a quadratic nonresidue modulob. Indeed,

if
(

a
b

)
= −1, then by the definition

(
a
pi

)

= −1 for at least onepi | b; hencea is a quadratic

nonresidue modulopi.
However, the converse isfalse, as seen from the following example.
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Example 4. Although
(

2

15

)

=

(
2

3

)(
2

5

)

= (−1) · (−1) = 1,

2 is not a quadratic residue modulo 15, as it is not so modulo 3 and 5.

In fact, the following weaker statement holds.

Theorem 12. Let a be an integer andb a positive integer, and letb = pα1

1 pα2

2 · · · pαr
r be the fak-

torization ofb onto primes. Thena is a quadratic residue modulob if and only ifa is a quadratic
residue modulopαi

i for eachi = 1, 2, . . . , r.

Proof. If a quadratic residue modulob, it is clearly so modulo eachpαi

i , i = 1, 2, . . . , r.
Assume thata is a quadratic residue modulo eachpαi

i and thatxi is an integer such thatx2
i ≡ a

(modpαi

i ). According to Chinese Remainder Theorem there is anx such thatx ≡ xi (modpαi

i ) for
i = 1, 2, . . . , r. Thenx2 ≡ x2

i ≡ a (modpαi

i ) for eachi, and thereforex2 ≡ a (modb). 2

Theorem 13. The number of quadratic residues modulopn (n > 0) is equal to
[
2n−1 − 1

3

]

+ 2 for p = 2, and

[
pn+1 − 1

2(p + 1)

]

+ 1 for p > 2.

Proof. Let kn denote the number of quadratic residues modulopn.
Let p be odd andn ≥ 2. Numbera is a quadratic residue modulopn if and only if eitherp ∤ a

anda is a quadratic residue modulop, or p2 | a anda/p2 is a quadratic residue modulopn−2. It
follows thatkn = kn−2 + p′pn−1.

Let p = 2 andn ≥ 3. Numbera is a quadratic residue modulo2n if and only if eithera ≡ 1
(mod 8) or4 | a anda/4 is a quadratic residue modulo2n−2. We obtainkn = kn−2 + 2n−3.

Now the statement is shown by simple induction onn. 2

Many properties of Legendre’s symbols apply for Jacobi’s symbols also. Thus the following
statements hold can be easily proved by using the definition of Jacobi’s symbol and the analogous
statements for Legendre’s symbols.

Theorem 14. For all integersa, b and odd numbersc, d the following equalities hold:
(

a + bc

c

)

=
(a

c

)

,

(
ab

c

)

=
(a

c

)(b

c

)

,
( a

cd

)

=
(a

c

)(a

d

)

. 2

Theorem 15. For every odd integera,
(−1

a

)

= (−1)
a−1

2 ,

(
2

a

)

= (−1)[
a+1

4 ]. 2

Theorem 16 (The Reciprocity Rule).For any two coprime odd numbersa, b it holds that

(a

b

)( b

a

)

= (−1)
a−1

2
· b−1

2 . 2

Problem 7. Prove that the equationx2 = y3 − 5 has no integer solutions(x, y).

Solution. For eveny we havex2 = y3 − 5 ≡ 3 (mod 8), which is impossible.
Now lety be odd. Ify ≡ 3 (mod 4), thenx2 = y3 − 5 ≡ 33 − 5 ≡ 2 (mod 4), impossible again.

Hencey must be of the form4z + 1, z ∈ Z. Now the given equation transforms into

x2 + 4 = 64z3 + 48z2 + 12z = 4z(16z2 + 12z + 3).

It follows thatx2 ≡ 4 (mod16z2 + 12z + 3).
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However, the value of Jacobi’s symbol
( −4

16z2 + 12z + 3

)

=

( −1

16z2 + 12z + 3

)

equals−1 because16z2 + 12z + 3 ≡ 3 (mod 4). Contradiction.△
Problem 8. Prove that4kxy − 1 does not divide the numberxm + yn for any positive integers
x, y, k, m, n.

Solution. Note that(xm, yn, 4kxy − 1) = 1. Let us writem′ = [m/2] andn′ = [n/2]. We need to
investigate the following cases.

1◦ m = 2m′ andn = 2n′. Then4kxy−1 | (xm′

)2 +(yn′

)2 by Theorem 6 implies
(

−1
4kxy−1

)

=

1, which is false.

2◦ m = 2m′ andn = 2n′ + 1 (the casem = 2m′ + 1, n = 2n′ is analogous). Then4kxy − 1 |
(xm′

)2 + y(yn′

)2 and hence
(

−y

4kxy−1

)

= 1. We claim this to be impossible.

Suppose thaty is odd. The Reciprocity Rule gives us
( −y

4kxy − 1

)

=

( −1

4kxy − 1

)(
y

4kxy − 1

)

= (−1) · (−1)
y−1

2

(−1

y

)

= −1.

Now assume thaty = 2ty1, wheret ≥ 1 is an integer andy1 ∈ N. According to Theorem 15,

we have
(

2
4kxy−1

)

= 1, whereas, like in the case of oddy,
(

−y1

4kxy−1

)

=
(

−y1

4·2tkxy1−1

)

= −1.

It follows that
( −y

4kxy − 1

)

=

(
2

4kxy − 1

)t( −y1

4kxy − 1

)

= −1.

3◦ m = 2m′+1 andn = 2n′+1. Then4kxy−1 | x(xm′

)2+y(yn′

)2, and hence
(

−xy
4kxy−1

)

= 1.

On the other hand,
( −xy

4kxy − 1

)

=

( −4xy

4kxy − 1

)

=

( −1

4kxy − 1

)

= −1,

a contradiction.

This finishes the proof.△

3 Some Sums of Legendre’s symbols

Finding the number of solutions of a certain conguence is often reduced to counting the values of
x ∈ {0, 1, . . . , p − 1} for which a given polynomialf(x) with integer coefficients is a quadratic
residue modulo an odd primep. The answer is obviously directly connected to the value of the sum

p−1
∑

x=0

(
f(x)

p

)

.

In this part we are interested in sums of this type.
For a linear polynomialf , the considered sum is easily evaluated:

Theorem 17. For arbitrary integersa, b and a primep ∤ a,

p−1
∑

x=0

(
ax + b

p

)

= 0.
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Proof. Sincep ∤ a, the numbersax + b, x = 0, 1, . . . , p − 1 form a complete system of residues
modulop. Exactly p−1

2 of them are quadratic residues, exactlyp−1
2 are quadratic nonresidues, and

one is divisible byp. It follows that

p−1
∑

x=0

(
ax + b

p

)

=
p − 1

2
· 1 +

p − 1

2
· (−1) + 0 = 0. 2

To evaluate the desired sum for quadratic polynomialsf , we shall use the following proposition.

Theorem 18. Let f(x)p′

= a0 + a1x + · · · + akp′xkp′

, wherek is the degree of polynomialf . We
have

p−1
∑

x=0

(
f(x)

p

)

≡ −(ap−1 + a2(p−1) + · · · + ak′(p−1)) (modp), wherek′ =

[
k

2

]

.

Proof. DefineSn =
∑p−1

x=0 xn (n ∈ N) andS0 = p. It can be shown thatSn ≡ −1 (modp) for
n > 0 andp − 1 | n, andSn ≡ 0 (modp) otherwise. Now Euler’s Criterion gives us

p−1
∑

x=0

(
f(x)

p

)

≡
p−1
∑

x=0

f(x)p′

=

kp′

∑

i=0

aiSi ≡ −(ap−1 + a2(p−1) + · · · + ak′p−1) (modp). 2

Theorem 19. For any integersa, b, c and a primep ∤ a, the sum

p−1
∑

x=0

(
ax2 + bx + c

p

)

equals−
(

a
p

)

if p ∤ b2 − 4ac, and(p − 1)
(

a
p

)

if p | b2 − 4ac.

Proof. We have

(
4a

p

) p−1
∑

x=0

(
ax2 + bx + c

p

)

=

p−1
∑

x=0

(
(2ax + b)2 − D

p

)

,

whereD = b2 − 4ac. Since numbersax + b, x = 0, 1, . . . , p − 1 comprise a complete system of
residues modulop, we obtain

(
a

p

) p−1
∑

x=0

(
ax2 + bx + c

p

)

=

p−1
∑

x=0

(
x2 − D

p

)

= S.

Theorem 18 gives usS ≡ −1 (modp), which together with|S| ≤ p yieldsS = −1 or S = p − 1.

Suppose thatS = p − 1. Thenp − 1 of the numbers
(

x2−D
p

)

are equal to1, and exactly one,

say forx = x0, is equal to 0, i.e.p | x2
0 − D. Since this impliesp | (−x0)

2 − D = x2
0 − p also,

we must havex0 = 0 and consequentlyp | D. Conversely, ifp | D, we haveS = p − 1; otherwise
S = −1, which finishes the proof.2

Problem 9. The number of solutions(x, y) of congruence

x2 − y2 = D (modp),

whereD 6≡ 0 (modp) is given, equalsp − 1.
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Solution. This is an immediate consequence of the fact that, for fixedx, the number of solutionsy

of the congruencey2 ≡ x2 − D (modp) equals
(

x2−D
p

)

+ 1. △

Evaluating the sums of Legendre’s symbols for polynomialsf(x) of degree greater than 2 is
significantly more difficult. In what follows we investigatethe case of cubic polynomialsf of a
certain type.

For an integera, define

K(a) =

p−1
∑

x=0

(
x(x2 + a)

p

)

.

Assume thatp ∤ a. We easily deduce that for eacht ∈ Z,

K(at2) =

(
t

p

) p−1
∑

x=0

( x
t
((x

t
)2 + a)

p

)

=

(
t

p

)

K(a).

Therefore|K(a)| depends only on whethera is a quadratic residue modulop or not.
Now we give one non-standard proof of the fact that every primep ≡ 1 (mod 4) is a sum of two

squares.

Theorem 20 (Jacobstal’s identity). Let a andb be a quadratic residue and nonresidue modulo a
prime numberp of the form4k + 1. Then|K(a)| and|K(b)| are even positive integers that satisfy

(
1

2
|K(a)|

)2

+

(
1

2
|K(b)|

)2

= p.

Proof. The previous consideration gives usp′(K(a)2 + K(b)2) =
∑p−1

n=1 K(n)2 =
∑p−1

n=0 K(n)2,
sinceK(0) = 0. Let us determine

∑p−1
n=0 K(n)2. For eachn we have

K(n)2 =

p−1
∑

x=0

p−1
∑

y=0

(
xy(x2 + n)(y2 + n)

p

)

,

which implies
p−1
∑

n=0

K(n)2 =

p−1
∑

x=0

p−1
∑

y=0

(
xy

p

) p−1
∑

n=0

(
(n + x2)(n + y2)

p

)

.

Note that by the theorem 19,
∑p−1

n=0

(
(n+x2)(n+y2)

p

)

equalsp − 1 if x = ±y, and−1 otherwise.

Upon substituting these values the above equality becomes

p−1
∑

n=0

K(n)2 = p(2p − 2) −
p−1
∑

x=0

p−1
∑

y=0

(
xy

p

)

= 4pp′.

We conclude thatK(a)2 + K(b)2 = 4p. Furthermore, sinceK(a)2 + K(b)2 is divisible by 4, both
K(a) andK(b) must be even, and the statement follows.2

4 Problems

10. Letp be a prime number. Prove that there existsx ∈ Z for whichp | x2 − x + 3 if and only if
there existsy ∈ Z for whichp | y2 − y + 25.

11. Letp = 4k−1 be a prime number,k ∈ N. Show that ifa is an integer such that the congruence
x2 ≡ a (modp) has a solution, then its solutions are given byx = ±ak.
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12. Show that all odd divisors of number5x2 + 1 have an even tens digit.

13. Show that for every prime numberp there exist integersa, b such thata2 + b2 +1 is a multiple
of p.

14. Prove thatx
2+1

y2−5 is not an integer for any integersx, y > 2.

15. Letp > 3 be a prime and leta, b ∈ N be such that

1 +
1

2
+ · · · + 1

p − 1
=

a

b
.

Prove thatp2 | a.

16. ConsiderP (x) = x3 + 14x2 − 2x + 1. Show that there exists a natural numbern such that
for eachx ∈ Z,

101 | P (P (. . . P
︸ ︷︷ ︸

n

(x) . . . )) − x.

17. Determine alln ∈ N such that the setA = {n, n + 1, . . . , n + 1997} can be partitioned into
at least two subsets with equal products of elements.

18. (a) Prove that for nox, y ∈ N is 4xy − x − y a square;

(b) Prove that for nox, y, z ∈ N is 4xyz − x − y a square.

19. If n ∈ N, show that all prime divisors ofn8 − n4 + 1 are of the form24k + 1, k ∈ N.

20. Suppose thatm, n are positive integers such thatϕ(5m − 1) = 5n − 1. Prove that(m, n) > 1.

21. Prove that there are no positive integersa, b, c for which

a2 + b2 + c2

3(ab + bc + ca)

is an integer.

22. Prove that, for alla ∈ Z, the number of solutions(x, y, z) of the congruence

x2 + y2 + z2 ≡ 2axyz (modp)

equals
(

p + (−1)p′

)2

.

5 Solutions

10. The statement is trivial forp ≤ 3, so we can assume thatp ≥ 5.

Sincep | x2−x+3 is equivalent top | 4(x2−x+3) = (2x−1)2 +11, integerx exists if and
only if −11 is a quadratic residue modulop. Likewise, since4(y2−y+25) = (2y−1)2 +99,
y exists if and only if−99 is a quadratic residue modulop. Now the statement of the problem
follows from (−11

p

)

=

(−11 · 32

p

)

=

(−99

p

)

.

11. According to Euler’s criterion, the existence of a solution of x2 ≡ a (modp) impliesa2k−1 ≡
1 (modp). Hence forx = ak we havex2 ≡ a2k ≡ a (modp).
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12. If p | 5x2 + 1, then
(

−5
p

)

= 1. The Reciprocity rule gives us

(−5

p

)

=

(−1

p

)(
5

p

)

= (−1)
p−1

2

(p

5

)

.

It is easy to verify that the last expression has the value 1 ifand only ifp is congruent to1, 3, 7
or 9 modulo20.

13. Clearly,p | a2 + b2 + 1 if and only if a2 ≡ −b2 − 1 (modp).

Both sets{a2 | a ∈ Z} and{−b2 − 1 | b ∈ Z} modulop are of cardinality exactlyp+1
2 , so

they have an element in common, i.e. there area, b ∈ Z with a2 and−b2 − 1 being equal
modulop.

14. If y is even,y2 − 5 is of the form4k + 3, k ∈ Z and thus cannot dividex2 + 1 for x ∈ Z. If y
is odd, theny2 − 5 is divisible by 4, whilex2 + 1 is never a multiple of 4.

15. It suffices to show that2(p−1)!a
b

=
∑p−1

i=1
2(p−1)!

i
is divisible byp2. To start with,

2(p − 1)!a

b
=

p−1
∑

i=1

(
(p − 1)!

i
+

(p − 1)!

p − i

)

=

p−1
∑

i=1

p(p − 1)!

i(p − i)
.

Therefore,p | a. Moreover, if fori ∈ {1, 2, . . . , p − 1} i′ denotes the inverse ofi modulop,
we have

2(p − 1)!a

pb
=

p−1
∑

i=1

(p − 1)!

i(p− i)
≡

p−1
∑

i=1

i′
2
(p − 1)! ≡ 0 (modp).

It follows thatp2 | 2(p − 1)!a.

16. All congruences in the solution will be modulo 101.

It is clear thatP (x) ≡ P (y) for integersx, y with x ≡ y.

We claim that the converse holds:P (x) 6≡ P (y) if x 6≡ y. We have

4[P (x) − P (y)]

x − y
= 4(x2 + xy + y2 + 14x + 14y − 2) ≡ (2x + y + 14)2 + 3(y − 29)2.

Since−3 is not a quadratic residue modulo 101, the left hand side is not divisible by 101
unless if2x + y + 14 ≡ y − 29 ≡ 0, i.e. x ≡ y ≡ 29. This justifies our claim.

We now return to the problem. The above statement implies that P (0), P (1), . . . , P (100) is
a permutation of0, 1, . . . , 100 modulo 101. We conclude that for eachx ∈ {0, 1, . . . , 100}
there is annx such thatP (P (. . . P (x) . . . )) ≡ x (with P appliednx times).

Any common multiple of the numbersn0, n1, . . . , n100 is clearly a desiredn.

17. Suppose thatA can be partitioned intok subsetsA1, . . . , Ak, each with the same product of
elementsm. Since at least one and at most two elements ofA are divisible by the prime
1997, we have1997 | m and hencek = 2. Furthermore, since the number of elements
divisible by the prime 1999 is at most one, we have1999 ∤ m; hence no elements ofA is
divisible by 1999, i.e. the elements ofA are congruent to1, 2, 3, . . . , 1998 modulo 1999.
Thenm2 ≡ 1 · 2 · 3 · · · 1998 ≡ −1 (mod1999), which is impossible because -1 is a quadratic
nonresidue modulo1999 = 4 · 499 + 3.

18. Part (a) is a special case of (b).
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(b) Supposex, y, z, t ∈ N are such that4xyz − x − y = t2. Multiplying this equation by4z
we obtain

(4xz − 1)(4yz − 1) = 4zt2 + 1.

Therefore,−4z is a quadratic residue modulo4xz − 1. However, it was proved in problem 8

that the value of Legendre’s symbol
(

−z
4xz−1

)

is−1 for all x, z, yielding a contradiction.

19. Consider an arbitrary prime divisorp of n8 − n4 + 1. It follows from problem 4 thatp is
congruent to1 or 13 (mod24). Furthermore, since

n8 − n4 + 1 = (n4 + n2 + 1) − 2(n3 + n)2,

2 is a quadratic residue modulop, excluding the possibilityp ≡ ±13 (mod 24).

20. Suppose that(m, n) = 1. Let

5m − 1 = 2αpα1

1 · · · pαk

k (1)

be the factorization of5m − 1 onto primes, wherepi > 2 zai = 1, . . . , k. By the condition of
the problem,

5n − 1 = ϕ(5m − 1) = 2α−1pα1−1
1 · · · pαk−1

k (p1 − 1) · · · (pk − 1). (2)

Obviously,2α | 5n − 1. On the other hand, it follows from(5m − 1, 5n − 1) = 51 − 1 = 4
thatαi = 1 for eachi = 1, . . . , k andα = 2. Since23 | 5x − 1 for every evenx, m must be
odd:m = 2m′ + 1 for somem′ ∈ N0.

Sincepi | 5 · (5m′

)2−1 for i = 1, . . . , k, 5 is a quadratic residue modulopi, and consequently
pi ≡ ±1 (mod 5). However, (2) implies that none ofpi − 1 is divisible by 5. We thus obtain
thatpi ≡ −1 (mod 5) for alli.

Reduction of equality (1) modulo 5 yields(−1)k = 1. Thusk is even. On the other hand,
equality (2) modulo 5 yields(−2)k+1 ≡ 1 (mod 5), and thereforek ≡ 3 (mod 4), contradicting
the previous conclusion.

Remark.Most probably,m andn do not even exist.

21. Suppose thata, b, c, n are positive integers such thata2 + b2 + c2 = 3n(ab + bc + ca). This
equality can be rewritten as

(a + b + c)2 = (3n + 2)(ab + bc + ca).

Choose a prime numberp ≡ 2 (mod 3) which divides3n + 2 with an odd exponent, i.e. such
thatp2i−1 | 3n + 2 andp2i ∤ 3n + 2 for somei ∈ N (suchp must exist). Thenpi | a + b + c
and thereforep | ab + bc + ca. Substitutingc ≡ −a − b (modp) in the previous relation we
obtain

p | a2 + ab + b2 ⇒ p | (2a + b)2 + 3b2.

It follows that
(

−3
p

)

= 1, which is false becausep ≡ 2 (mod 3).

22. The given congruence is equivalent to

(z − axy)2 ≡ (a2x2 − 1)y2 − x2 (modp). (1)

For any fixedx, y ∈ {0, . . . , p − 1}, the number of solutionsz of (1) equals

1 +

(
(a2x2 − 1)y2 − x2

p

)

.
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Therefore the total number of solutions of (1) equals

N = p2 +

p−1
∑

x=0

p−1
∑

y=0

(
(a2x2 − 1)y2 − x2

p

)

.

According to theorem 19,
∑p−1

y=0

(
(a2x2−1)y2−x2

p

)

is equal to−
(

a2x2−1
p

)

if ax 6≡ ±1 (mod

p), and top
(

−1
p

)

if ax ≡ ±1 (modp). Therefore

N = p2 + 2p

(−1

p

)

−
p−1
∑

x=0

(
a2x2 − 1

p

)

=

(

p +

(−1

p

))2

.


