Dear readers ,

This document will help you for your preparation of IMO International
Mathematical Olympiad , NO National Olympiad. It contains 169 functional
equations with the solutions of Patrick "pco" . Many thanks to Patrick for its
solutions on Mathlinks , it will help students for IMO.

Moubinool.

1. Determine all functions f : R — R such that the set {f(w) tx # 0 and

xT

x € R} is finite, and for all x € R, f(x — 1 — f(x)) = f(z) —x — 1

solution

Let P(z) be the assertion f(x —1— f(z)) = f(zr) —x — 1 Let a € R and
b= f(a)

Pla) = fla—b—-1)=b—a—-1Pla—b—-1) = f(2(a—b)—1) =
2(b—a) — 1 And we get easily f(2"(a—b)—1)=2"(b—a)—1VneN
It’s then immediate to see that the set {% cx#0and z=2"(a—0b)—1
Vn € N} is finite iff b =a < f(a) =a

Hence the unique solution | f(z) = = Vx| which indeed is a solution

2. Find all functions f : R — R such that for all z,y € R,
[+ @) =fla+y) + flz)+y

solution
Let P(z,y) be the assertion f(f(y + f(2))) = f(x +y) + f(z) +y

Pz, f(y)) = F(f(f(@)+f(y) = fle+ )+ [(@)+ fly) Py, f(z))
= f(f(f(@) + f() = fly+ f(2)) + () + f(y) Subtracting, we get
fle+ 1) =fly+ f(2))

So f(f(z+f(y)) = f(f(y+ f(x))) So (using P(x,y) and P(y,)) : f(z+
y) +fy) o= flzty)+ fl@)+y

So f(z) —x = f(y) —y and so f(z) = x + a, which is never a solution.

f(fly+f(2)=flx+y) + f(z) +y

3. Find all functions f : R+ — R+ such that f(1 + zf(y)) = yf(z +y)
for allz,y € R+.

solution
Let P(x,y) be the assertion f(1+ zf(y)) =yf(z+y)
1) f(z) is a surjective function ===~ P(f(@),@) =

N c)
1@ = S+ )




And so z = f(something) Q.E.D.

2) f(z) is an injective function ===

Let a > b > 0 such that f(a) = f(b) Let T=b—a >0
Comparing P(z,a) and P(z,b), we get af(x +a) =bf(z +b)
and so f(z) =2f(z+T)Vz>a

And so f(z) = (&)" f(x +nT) Yz > a,n €N

a
Let then y such that f(y) > 1 (such y exists since f(x) is a surjection,
according to 1) above) Let n great enough to have y +nT —1 >0

P(eity) = f(1 MRl — y f(5255 +y) which may

be written :
fy)+nT—1 _ fy)+nT—1

e (;/()y) r— +nl) =yf(* (J%()y) )
and since f(iyf(;’()?;;"T Lynr) = (%)nf(iyf(}’();;ﬁf_l), we get y = (%)"
Vn, which is impossible Q.E.D.
3) f1) =1===P(1,1) = f(1+ f(1)) = f(2) and so, since f(z) is
injective, f(1) =1 Q.E.D.
4) The only solutionis f(z) = 2 === P(1,2) = f(1+f(z)) = zf(14=x)
and so f(1+x) =+ f(1+ f(x))
P(ﬁ%)v%) - f(1+1') *% (f(é) +%)
And so (comparing these two lines) : f(1+ f(x)) = f(+{5 1)
And so (using injectivity) : 1+ f(z) = fé) + 1 andso f(1) = m
This implies (changing z — 1) : f(z) = f(l)il -
And _

nd so f(z) = WH -

Which gives 22 f(z)? — 2z f(z) +1=0

And so | f(z) = — |, which indeed is a solution

ISH

. Find all functions f: R — R satisfying the equality f(y) + f(z + f(y)) =
y+ f(f(@) + f(f()

solution

Let P(z,y) be the assertion f(y) + f(z + f(y)) =y + f(f(z) + f(f(y)))
0)

Y
P(f(2),0) = f(0) + f(f(z) + f(0)) = F(f(f(x)) + £(£(0))) P(f(0), )
= f(@) + f(f(z)+ f(0)) =2+ f(f(f(z)) + F(f(0)))
Subtracting, we get f(x) =z + f(0)
Plugging back f(z) = z + a in original equation, we get a = 0 and the

unique solution | f(zr) = 2Vz

+
+



5. Find all non-constant real polynomials f(x) such that for any real z the
following equality holds: f(sinx + cosz) = f(sinz) + f(cosx)

solution

If f(z) is non constant, let n > 0 its degree and Wlog consider f(z) is
monic.

Using half-tangent, the equation may be written f (1””” —z ) =f (13;2)

-I-f(H_I)Vx b

Multiplying by (1 4+ 22)", and setting then x = 4, we get (2 + 2i)" =
(2i)™ 4+ 2™ and so n =1 (look at modulus).

Hence the solutions: f(x) = ax Va € R*

6. Find all functions f: N — Z such that for all z,y € N holds f(z+]|f(y)|) =
x4 f(y)

solution
Let P(x,y) be the assertion f(x + |f(y)]) =z + f(y)

If | f(a)|] < a for some a € N, then P(a — |f(a)|,a) = |f(a)| =a and so
contradiction. So |f(z)] > x Vx € N

If f(a) <O for some a € N, then P(—f(a),a) = f(—2f(a)) =0 and so
contradiction with f(x) >« Vz € NSo f(z) >0Vx €N

As a consequence |f(z)| = f(z) and the problem becomes :

Find all functions f : N — N U {0} such that f(z + f(y)) = = + f(y)
Va,y € N Let then m = min(f(N)) and we get f(z) =z Vo >m

[Hence the solutions

Let a € N f(z) = © Vo > a f(z) can take any value in [a — 1, 400) for
€[l,a—1]

7. Determine all pairs of functions f,g : Q — Q satisfying the following
equality

flz+g) =g(x) +2y+ f(y),

for all z,y € Q.

solution

If f(x) is a solution, then so is f(x) + ¢. So Wlog consider that f(0) =
P(

Let P(x,y) be the assertion f(x + g(y)) = g(z) + 2y + f(y)
P(-9(0), ) 9(=9(0)) = 0 P(—g(0),—9(0)) = g(0) = 0 P(x,0)
= f(z)=



So we are looking for f(z) such that f(0) =0 and f(z + f(y)) = f(z) +
2y + f(y) Let Q(x,y) be the assertion f(z+ f(y)) = f(z) + 2y + f(y)
Q(z — f(x),r) = f(x — f(z)) = —2x and so f(z) is surjective

Qlr,y) = [+ f(y) = flx) +2y+ f(y) QOy) = [([(y) =
2y + f(y) Subtracting, we get f(z + f(y)) = f(z) + f(f(y)) and, since
surjective : /(2 +5) = £(z) + f()

Since f(x) is from Q — Q, this immediately gives f(z) = ax and, plugging
this in Q(z,y) : > —a—2=0

Hence the two solutions : f(z) = 2z + ¢ and g(x) = 2z Va and for any
real ¢, which indeed is a solution

. Given two positive real numbers a and b, suppose that a mapping f :
Rt — RT satisfies the functional equation

f(f(2)) +af(x) =bla+b)x.
Prove that there exists a unique solution of this equation.
solution

a+2b > 0 and we get thru simple induction : fIM)(z) = (atWztf(@)b"+(be—f(2))(za=b)"

a-+2b
If, for some z, f(z) — bx # 0, we get that, for some n great enough,
f"(z) < 0, which is impossible.

Hence the unique solution : f(z) = bz which indeed is a solution

. Find all non-constant functions f: Z — N satisfying all of the following
conditions: a)f(z —y) + fly — 2) + f(z — 2) = 3(f(z) + f(y) + f(2)) —
@ty +2) b)Y42, f(k) <1995

solution

Setting = y = z = 0 in the equation, we get f(0) = 0 ¢ N and so no
solution Since OP is a brand new user on this forum, I’ll consider that he
ignored that we use here the notation N for positive integers and that he
meant Ny, set of all non negative integers. If so :

Let P(x,y, z) be the assertion f(z —y)+ f(y — 2) + f(z —z) = 3(f(x) +
f)+1(2) - fle+y+2)

P(0,0,0) = f(0) =0 P(x,0,0) = f(-z)= f(z) P(z,—2,0) =
f(2z) =4f(z) P(z+1,-1,—2—1) = f(z+2) =2f(z+1)—f(z)+2f(1)
This recurrence definition (plus f(0) = 0) is quite classical and has simple
general solution f(x) = ax?

f(x) eNgVz € Z = a >0 f(z) non constant = a>02i5:1 f(k)=
a2 k? =1240a <1995 = a <1

[u][b]Hence the unique solution of the modified problem[/b][/u] : f(z) =
22 Ve,



10. .Determine all the functions f : R — R such that:
fle+yf(@)+ fxf(y) —y) = fz) — fy) + 22y

Here is a rather heavy
solution

Let P(z,y) be the assertion f(z+yf(x))+ f(zf(y)—y) = f(x)— f(y)+2zy
1) f(z) is an odd function and f(z) =0 <= =0 ==

P(0,0) = f(0) =0 P(0,2) = f(-z)=—f(z)

Suppose f(a) = 0. Then P(a,a) = 0=2a> = a=0andso f(z) =0
— z=0QED

2) f(z) is additive

Let then = # 0 such that f(x)
S5 - 5 = S(@) - F(3)

P(58. —x) = —fef(555) — 7&3) — fy) = F(55) + f(x) — 20553
Adding these two lines, we get : f(2z+y) = 2f(z)+ f(y) which is obviously
still true for x = 0 and so :

New assertion Q(z,y) : f(2z +y) = 2f(z) + f(y) Yo,y

Q(z,0) = f(2z) =2f(x) and so Q(z,y) becomes f(2z +y) = f(2x) +
fly) and so f(z +y) = f(x) + f(y) and f(z) is additive. Q.E.D.

3) f(x) solution implies — f(x) solution and so wlog consider from now
f1)>0====

Ply,z) = fly+zf(y)+ ff(@)—=z) = fly) - f(z) + 22y =
—f(—y+2(=f(y) = Fly(=f(2)) + =) = —f(z) — (= f(y) + 22y QE.D
4) f(x) is bijective and f(1) =1 ====

Using additive property, the original assertion becomes R(x,y) : f(xf(y))+
flyf(z)) = 2wy

R(z,Y) = f(=f(})+ @) =z and f(z) is surjective.

So Ja such that f(a) = 1 Then R(a,a) = a*? = 1 and so a = 1
(remember that in 3) we choosed f(1) > 0)

5) f(a) = & ====

R(z,1) = f(z)+f(f(z)) = 2z and so f(z) is injective, and so bijective.

Rzf(2),1) = f@f(@)+](f(2f(@)) = 2c](z) R(z,z) = f(f(z)) =
2% and so f(2?) = f(f(xf(x))) Combining these two lines, we get f(z?)+

=2z f(x)
So f((a:+y>2>+(ac+y>2 = 2(z+y) f(z+y) and so f(zy)+xy = xf(y)+yf(z)

Pz, 515%) = [z +y) +




11.

12.

So we have the properties : R(x,y) : f(zf(y)) + f(yf(x)) = 22y A(z,y)
 fley) = 2f(y) +yf(z) —ay B(x) : f(f(z)) =2z — f(2)

So :

(@) : R(x,2) = f(zf(z)) = 2? (b) : Az, f(z)) = f(af(x)) =
af(f(2) + f(2)? —af(x) () : B(z) = f(f(2))

And so -(a)+(b)+x(c) : 0 =22+ f(x)? —2zf(x) =
6) synthesis of solutions ==== Using 3) and 5), we get two solutions

(it’s easy to check back that these two functions indeed are solutions) :
f(z) =z Va f(x) = —x Va[/quote]

Find all functions f defined on real numbers and taking real values such
that f(z)% +2yf(z) + f(y) = f(y + f(x)) for all real numbers z,y. |

solution

Let P(x,y) be the assertion f(z)?+ 2yf(z) + f(y) = f(y + f())

f(z) = 0Vzis asolution. So we’ll look from now for non all-zero solutions.

Let f(a) #0: P(a, %((5))2) = u = f(something) — f(something else)

and so any real may be written as a difference f(v) — f(w)

Plw,—f(w)) = —f(w)+ f(—f(w)) = F(0) P(v,—f(w)) = F)*—
2f()f(w) + f(=f(w)) = f(f(v) = f(w))

Subtracting the first from the second implies f(v)? —2f(v)f(w)+ f(w)? =
F(f() = f(w)) = f(0) and so f(f(v) = f(w)) = (f(v) = f(w))* + f(0)
And so f(z) = 22 + f(0) Vo € R which indeed is a solution.

Hence the two solutions : f(z) =0 Vz f(z) = 2% +a Vx

Prove that f(x+y+zy) = f(x)+ f(y) + f(zy) is equivalent to f(z+y) =
f(@) + f(y).

solution
Let P(z,y) be the assertion f(x +y+ zy) = f(x) + f(y) + f(ay)
1) flzx+y) = flx)+ flyy = P(x,y) =—————=—= Trivial.
2) P(z,y) = flz+y) = fl2)+ fy) Yo,y ====== P(2,0) —

f(0)=0P(z,-1) = [f(-z) =—f(z)

2.1) new assertion R(z,y) : f(x+y) = f(z)+ f(y) Va,y such that z+y #
-2

Let z,y such th?t :Z—i—y #+ =2 P(‘”T”, mf_;%) = f(x) = f(%) +
FEEL) + f(E=t)

P(HY, 25 — fly) = f(5Y) - FGEYS) — f(555)




13.

14.

Adding these two lines gives new assertion Q(z,y) : f(z)+f(y) = 2f(%5Y)
Va,y such that x + y # -2 Q(z + y,0) = f(x +y) = 2f(%) and so
flx+y) = f(z)+ fly) QED.

2.2) flx+y) = f(z)+ f(y) Yo,y such that z +y = —2

If © = =2, then y = 0 and f(z +y) = f(z) + f(y) If = # —2, then
(x+2)+(—2) # —2 and then R(z+2,-2) = f(x) = (:c+2)+f( 2)
and so f(z) + f(=2 —x) = f(=2) and so f(z) + f(y) = f(z +y)
QE.D.

find all functions f : R — R such that f(f(z) +y) =2z + f(f(y) — x)

for all x, y reals
solution

Let P(z,y) be the assertion f(f(x)+y) =2z + f(f(y) — )
PG, —f(H572)) = @ = f(F(=F(E572) = H57) and so f(x)

is surjective.
So : Ju such that f(u) =0 Jv such that f(v) =z +u
And then P(u,v) = f(x) =z — u which indeed ,is a solution

Hence the answer : | f(z) =z + ¢

find all functions f : R — R such that f(z% + f(y)) = y + f(z)? for all
x,y reals

solution

Let P(z,y) be the assertion f(z? + f(y)) =y + f(2)?
P(0,y) = f(f(y)) = y+ f(0)* and then : P(z,f(y — f(0)?)) =
f(@® +y) = f(y — f£(0)®) + f(x)? Setting = = 0 in this last equality, we

get f(y) = f(y — £(0)*) + £(0)* and so f(a? +y) = f(y) + f(x)? — f(0)?
Setting y = 0 in this last equality, we get f(2?) = £(0) + f(2)? — f(0)?
and so f(z? +y) = f(y) + f(2*) - f(0)

Let then g(z) = f(z) — f(0). We got g(z +y) = g(z) + g(y) Yz > 0,Vy
It’s immediate to establish g(0) = 0 and g(—xz) = —g(x) and so g(z+y) =
9(x) +9(y) Va,y

P(2,0) = f(z*+f(0)) = f(2)? = f(a®+/(0))—f(0) = f(2)*~ f(0)
and so g(z) > —f(0) Vo > £(0)

So g(x) is a solution of Cauchy equation with a lower bound on some non
empty open interval. So g(z) = ax and f(z) =ax+b

Plugging this back in original equation, we get « = 1 and b = 0 and the

unique solution W



15. Find all @ € R for which there exists a non-constant function f : (0,1] - R
such that

a+ flz+y—ay)+ f(@)f(y) < flz)+ f(y)
for all z,y € (0,1].
solution

Let g(x) from [0,1) — R such that g(z) = f(1—2)—1a+ f(z+y—zy) +
f@)f(y) < f@) + fly) = 9((1-2)1-y)) +9(1 -2)g(l ~y) < —a
= glzy) +9(2)g(y) < —aVa,y €[0,1)
Let P(x,y) be the assertion g(xy) + g(z)g(y) < —a
P(0,0) = g(0)+g(0)? < —a < a<;—(9(0)+3)*andsoa < ;
If @ < 1 : Let us consider g(z) = —1 Vx € (0,1) and g(0) = -1

1 —a # —3 (so that g(z) is not constant) : If z =y = 0 : g(zy) +
g(x)g(y) = —a < —a Mz =0and y # 0: glay) +g(z)g(y) = —3 —

Wi—a<—-i<-alfz,y#0: glxy) +g(@)g(y) =% < —a

Ifa =1 : P0,0) = g(0)+g(0)* < —% and so g(0) = —5 P(x,0)
= g(z) 2 —3 P(Vz,V7) = g() +9(Vo)’ < -7 = g(2) <~
Let then the sequence u,, defined as : ug = *i Upt1 = f% — % It’s easy
to show with induction that —% < g(z) < a, < 0 Vz € [0,1) It’s then
easy to show that a, is a decreasmg sequence whose limit is — And SO
the unique solution for a = } is g(z) = —% which is not a solutlon (since
constant).
1
Hence the answer : |a € (—oo, 1)

16. Find all functions f : Q — C satisfying
(1) For any ri,xg,...,x2010 S Q f<.’171+$2+ +$2010) = f(a?l)f(.%‘g) e f(a’,‘2010).
(i1) f(2010)f(z) = f(2010)f( )forall z € Q. |

solution

Let a = f(0)

Using 1 = 23 = ... =z, = z and Xpq1 = ... = X2010 = 0, (i) =
f(pz) = a®*107P f(z)P V2 € Q,V0 < p < 2010 € Z

Setting © = 0 in the above equation, we get a = a?°'° and so : Either
a =0 and so f(x) = 0 Va, which indeed is a solution. Either a?°% = 1
and we get f(pz) = a' 7P f(z)P

Let then g(z) = @ and we got g(px) = g(z)? V0 < p < 2010 € Z A
simple induction using (i) shows that g(px) = g(x)? ¥p € NU {0}

and so g(z) =c* Vz € Q
So f(x) =a-c¢® (ii) implies then ¢ =¢ and so ¢ € R

S = ||

And it’s then immediate to get g(}) = g(z);



17.

18.

19.

Hence the solutions : f(z) =0 Vz

flz) = e'®m¢® with k € Z and ¢ € R (according to me, better to say
c € RT)

Find all functions f : R — R, satisfying: f(z) = maxyer(22y — f(y)) for
all z € R.

solution
1) f(z) > 22 Vo ==== f(z) > 22y — f(y) Va,y. Choosing y = x, we get
f(x) > 2? Q.E.D
2) f(z) < a? Vo ==== Let x € R Since f(z) = max,er(2zy — f(y)), I a

sequence y, such that im,, - (2zy, — f(yn)) = f(x)

So limy, s oo (f(yn) — ¥2 + (z — yn)?) = 2% — f(x) And since we know that
f(yn) —y2 >0, then LHS >0 and so RHS > 0 Q.E.D

So m which indeed is a solution

Find all functions f : R — R satisfying

f(f(@)+y) = f@® —y) +4f(x)y

for all z,y € R. |
solution

Let P(z,y) be the assertion f(f(z) +y) = f(z? —y) +4f(z)y

Pz, 2@y — f(@)(f(x) — 2%) = 0 and so : Va, either f(z) = 0,
either f(r) = 22

f(x) = 0 Vz is a solution f(z) = z? Vr is also a solution.

Suppose now that Ja # 0 such that f(a) = 0 Then if 3b # 0 such that
f(b) #£0: f(b) =b*and P(a,b) = b* = f(a® —b) and so b*> = (a® —b)?

and so b = % So there is a unique such b (equal to %2) But then there at

at most two such a (¢ and —a) And it is is impossible to have at most one
x # 0 such that f(z) = 2? and at most two = # 0 such that f(x) =0

So we have only two solutions : f(z) =0 Vz f(z) =22 Vz
Find all continous functions R — R such that :

fle+fly+f(2) = f@)+ F(Fy) + F(f(f(2)

solution

Let P(z,y,z) be the assertion f(xz + f(y + f(2))) = f(x) + f(f(y)) +
f(f(f(2)))

Subtracting P(0,y — f(2), 2) from P(z,y — f(2), z), we get f(x+ f(y)) =
f(@)+ f(f(y)) — f(0) Let g(z) = f(z) — f(0) and A = f(R)



20.

21.

We got g(z +y) = g(z) + g(y) Vo € R, Vy € A And also g(z — y) =
g(x) —g(y) vz e R, vy € A

g(@+yi1+y2) = g(x+y1) +9(y2) = g(x) +9(y1) + 9(y2) = 9(z) +9(y1 +2)
Ve € R, Yy1,y2 € A g(z +y1 —y2) = g(x +y1) — g(y2) = g(x) + g(y1) —
9(y2) = g(x) + g(y1 — y2) Vo € R, Vy1,y2 € A

And, with simple induction, g(z +y) = g(z) + ¢g(y) Vz, Vy finite sums and
differences of elements of A

If cardinal of A is 1, we get f(z) = ¢ and so f(z) = 0 If cardinal of A is
not 1 and since f(x) is continuous, Ju < v such that [u,v] C A and any
real may be represented as finite sums and differences of elements of [u, v]

So g(x +y) = g(x) + g(y) Vz,y and so, since continuous, g(z) = azx and
fl@)=azx+b

Plugging this in original equation, we get b(a +2) =0
Hence the solutions : f(z) = ax f(z) =b— 2z

Let a be a real number and let f : R — R be a function satisfying:

f(0) = 3 and f(z +y) = f(z)f(a —y) + f(y)f(a — x), Yo,y € R. Prove
that f is constant.

solution

Let P(z,y) be the assertion f(x +y) = f(x)f(a —y) + f(y)f(a — x)
P(0,0) = f(a) =1 P(z,0) = f(z) = f(a— ) and 50 P(z, ) may
also be written Q(x,y) : f(z+y) =2f(z)f(y)

Qa,—z) = fla—=)=f(-z)and so f(z) = f(-2)

Then, comparing Q(x,y) and Q(z, —y), we get f(z +y) = f(z — y) and
choosing z = *£* and y = %3¢, we get f(u) = f(v)

Find all continuous functions f : R — R such that

T

f@) =15

T (2® + Tz - f(z) + 16 f(2)?), Vz € R.

solution

This equation may be written (f(x)+%)*(f(x)+2) = 0 and so 4 solutions

S1: f

(v) = -5 Vo
S2: f(x) = —% Va
S3: f(z) = -5 Vz<O0and f(z) = —% Vo >
S4: f(z) = -5 Vo >0and f(z)= -5 Vo <0

10



22. Let f(x) be a real-valued function defined on the positive reals such that
(1) if 2 <y, then f(z) < f(y),

(2) f (j%) > 7f($);rf(y) for all z.

Show that f(z) < 0 for some value of x. |

solution

1) f(x) is concave. ====

Ifo<y: ¥ > 5%} and so f(ZE2) > w Using this plus the fact

that f(z) is stricly increasing, we get immediately the result.
2) LDIG) 5 pfee)tw)

Let a > 1. From the original inequality, using y = az , we get f(-22
f(z)+f(ax)
2

a+1 ) 2

)= fla) > L0
F@E1D1@) o at1 o) f (@)

o = —
arTT—w 2 ar—x

== f(a2+1x

=

Let then the sequence a,, defined as a1 =2 and a, 1 = 2“” . We got :

flanti1z)—f(z) > an+1 flanz)—f(z)

Apt1T—T AnT—T

f(z)— f( )>f(an$) f(z)

And, since f(x) is concave, we get also
AnT—

And so w > (IThey 5) M

II+@3ak+1

And since = 2, we got the required result in title of paragraph

2. (just write %L = gk,
Q41

3) Final result ==

From 2), we got f(z) — f(5) >
And so f(3) = f(3) = f(z) -
f(22) = f(x)

.. and so (summing these lines) : f(z) — f(57) > n(f(2z) — f(z))
Which may be written f(5%) < f(z) —n(f(2z) — f(z))

And, since f(2x) > f(x), and choosing n great enough, we get f(5%) <0

fQ2x) = f(z)
f(5) 2 f2x) = f(2) . f(z5) - f(5R) =2

23. Find all functions f: R — R satisfying:

f@f(y) + f(2) =2f(x) + 2y
solution

11



24.

25.

Let P(z,y) be the assertion f(xf(y) + f(z)) = 2f(x) + xy

P(1,z —2f(1)) = f(something) = z and f(z) is surjective. If f(a) =
f(b), subtracting P(1,a) from P(1,b) implies a = b and f(z) is injective,
and so bijective.

Let f(0) = a and u such that f(u) =0

P(u,0) = f(au) =0 = f(u) and so, since injective, au = u

If u =0, then a = 0 and P(z,0) = f(f(x)) = 2f(z) and so, since
surjective, f(z) = 2z which is not a solution.

Sou #0and a =1. Then P(u,u) = 1=1u?and sou=+1Ifu=1,
P(0,—-1) = 0 =2, impossible.

Soa=0and u=-1: f(-1) =0 and f(0) =1 and P(0,-1) =
f1) =2

P(-1,2) = [f(=f(x)) = —z P(z,=f(1)) = f(f(x)—z) = 2(f(x)—x)
Let then x € R and z such f(z) = f(x) — « which exists since f(x) is
surjective. Using last equation, we get f(f(z)) = 2f(z) P(z,—1) =

f(f(2) =2f(2) -
And so z =0 and f(z) =1 and f(z) = z + 1, which indeed is a solution.

Hence the answer : | f(z) =2z +1

Find all one-one (injective)functions f : N — N, where N is the set of
positive integers, which satisfies

f(n)+n
Frmy) < L2
solution
It’s easy to show with induction that fI*(n) < 2f(7§)+" + 505F 2 =(n—f(n))

So, for k great enough : fI*(n) < m + 1 and so 3 k1 > ko such that
fEl(n) = flk2l(n) and, since injective :

¥n 3p, > 1 such that fPrl(n) =n

Then, setting k& = p, in the above inequality, we get n < m +
52 (n — f(n)

= 0<(f(n) —n)(1 - = 2)pn) and so f(n) >n Vn

But f(n) > n for some n and injectivity would imply f»l(n) > n and so
f(n) = n Vn which indeed is a solution

For a given natural number k£ > 1, find all functions f : R — R such that
for all 2,y € R, f[z" + f(y)] = y + [f(=)]".

solution

12



26.

Let P(x,y) be the assertion f(x* + f(y)) =y + f(x)* Let £(0) =

P(0,y) = f(f(y)) =y+a" P(x,0) = [(z"+a)= f(2)" Pz, f(y))

= f@@*+y+a")=fy)+ /=" +a)

Let then g(z) = f(z —a¥ +a). This last equality becomes g(x* +y 4 2a* —

a)=g(y+a —a)+g@@a* +a*) = 9" +a" +y) = g(y) + g(a" +a*)

And so g(z+y) = g(x) +g(y) Vz > a*,Vy Let then 2 > 0: g(a* +2+y) =

g9(a* + (@ +y)) = g(a*) + g(z +v) g(a* + 2z +y) = g(("* +2) +y) =

g(a® + ) + g(y) = g(a*) + g(x) + g(y) And so g(z +y) = g(z) + g(y)

Vo > 0,Vy

So ¢g(0) = 0 and g(—x) = —g(x). Then : Vo > 0,Vy : —g(z —y) =

v—g(x)—g(—y) — g(=z+y) = g(—x)+g(y) and so g(z+y) = g(z)+9(y)
T,y

And so g(pz) = pg(x) ¥p € Q,Vz

Then f(2* + ) = f(z)k 1mphes g(z® + a¥) = g(w—l—a —a)t =

g(@®) + g(a*) = (g9(2) + g(a* — a))* Notice that g(a* —a) = f(0) = a and

replace x with = + y and we get :

9((x +)*) +9(a*) = (9(=) + 9(y) + a)*

91 ()" ) +9(ah) = iy (1)9(2) (a(w) + )t~
Let then x € Q and this equation becomes :
k k—i k  (k i k—i
Yo (Da'g(y" ™) + g(a®) = S, () g(1) 2 (g(y) + a)
And so we have two polynomials in 2 (LHS and RHS) which are equal for
any x € Q. So they are identical and all their coefficients are equal.

k

Since k > 2, consider the equality of coefficients of zF=2 : If k > 2,
this equality is g(y?) = g(1)*~2(g(y) + a)? and g(x) has a constant sign
over R If k = 2, this equality becomes g(y?) + g(a?®) = (9(y) + a)? and
g(z) > —g(a?) Yo >0

In both cases, we have g(z) either upper bounded, either lower-bounded
on a non empty open interval, and this a classical condition to conclude
to continuity and g(z) = cx Vz

And so f(z) = cz + d for some real ¢, d
Plugging this back in original equation, we get :

f(x) = x Va which is a solution for any k f(x) = —x Va which is another
solution if k is odd

Find all functions f : R — R such that for all z,y € R,
(@ +y)(f(2) = f(y) = (z = y)(f(2) + [(y))

solution

Expanding, we get

13



27.

28.

zf () —xf(y) +yf(z) —yfly) =xf(x) —yf(z) +xfly) —yf(y)
Simplifying,

2yf(z) =2xf(y)

yf(x) =2f(y)

fz) _ fly)

T Y

Let g(z) = @ Since g(z) = g(y) for all z and y, g(x) = k where k is a
x
constant. Thus,

(=)

Find all functions f : Z — Z such that for all z,y € Z:

flz—y+ f(y) = fl@)+ fy)

solution

Let P(z,y) be the assertion f(x —y+ f(y)) = f(z) + f(y) Let f(0) =a
P(0,0) = f(a) =2a and so f(a) —a =a P(0,a) = f(f(a) —a) =
f(0) + f(a) and so f(0) =0

P0,2) = [f(f(x) —x) = f(z) P(z,f(y) —y) = fl@—fy)+y+
() —v) = f@) + F(f(y) —y) and so f(z+y) = f(z) + f(y) and so

f(z) =zf(1) (remember we are in Z)
Plugging this in original equation, we get two solutions :
f(z)=0Vz f(x) =22 Vz

We denote by R+ the set of all positive real numbers.

Find all functions f : R+ — R+ which have the property: f(z)f(y) =
2f(z +yf(x))

for all positive real numbers x and y.
solution

Let P(x,y) be the assertion f(z)f(y) =2f(z +yf(x))

Let u,v > 0. Let a € (0,u)

B _ u—a _ 2v
Letx-a>0&ndy-m>0andz—m>0

f@)fly) = 2f(z +yf(x)) = 2f(u) and so f(x)f(y)f(2) = 2f(u)f(2) =
Af(u+2f(u)) = 4f(u+v)
fW)f(z) = 2f(y + 2f(y)) and so f(x)f(y)f(z) =

2f(x)f(y + 2f(y)) =
Af(x+ (y+2f () f(x) = 4f(x +yf(2x) + 2f(2) f(y)) =

4f(u+ 2v)

14



29.

And so f(u+v) = f(u+2v) Yu,v > 0 and so f(z) = f(y) Vz,y such that
20 >y >z >0

And it’s immediate from there to conclude f(x) = f(y) Vz,y >0

Hence the unique solution ’ flx)=2vx >0 ‘

Find all continuous functions R — R satisfying the equation: f(z)+ f(y)+
fE+flat+y+z)=fla+y) + fly+z)+ flz+z)+ f(0)

solution

Let P(x,y, z) be the assertion
f@)+fW)+ )+ fa+y+2)=fle+y)+fly+2)+ f(z+2)+ f(0)

Plx,y,y) = fle+2y)—f(a+y) = fla+y)—f(2)+(f(29)+F(0) -2/ (y))
Ple+y,y,y) = fle+3y)—flz+2y) = fe+2y) = fz+y)+(F(2y) +
f0)=2f(y)) .. Ple+(n—1y,y,y) = [flz+(n+1)y)—flz+ny) =
f@+ny) = fle+n—1)y)+ (f2y) + f(0) = 2/ (y))

Adding these lines gives f(z + (n+ 1)y) — f(z +ny) = f(x +y) — f(x) +
n(f(2y) + £(0) = 2f(y))

And so (adding this last lines for n = 0,...,k — 1) : f(z + ky) — f(z) =
B(f (x4 y) = f()) + 252 (£(29) + £(0) - 2£ ()

Setting x = 0 in this last equality and renaming y — = and k — n, we get

Flna) = LEREIOI20@) 2 | 4@=ER=31O), 4 5()

FREY+f(0)-2f(2 4f(2)—f(22)-3f(0)
So: f(q2) = LRI 2y WEZTEIZ3O 4 4(0)

And since f(q2) = f(p) = f(2)+f(g)*2f(1)p2 + 4f(1)*f(22)*3f(0)p+f(0)’ we
get :

(f(2) + f(0) = 2f(1))p* + (4F(1) = £(2) = 3f(0)p = (f(2Z) + f(0) —
2/(2))q? + (4f(2) — £(22) - 3£(0))q

Replacing p — np and ¢ — nq in this equation, we get :

(f(2) + £(0) = 2f(1))p*n® + (4f (1) — £(2) = 3£(0))pn = (f(22) + f(0) —
2/(2))¢n? + (4 (2) — f(22) - 3£(0))gn and so

n? ((£(2) + £(0) —27(1)p? — (F(22) + £(0) — 2/(2))a?) +n ((4£(1) = F(2) ~3£(0))p — (4F(2) —
0

And since this is true for any n, we get : (f(2)+ f(0)—2f(1))p?— (f(2§) +
F(0)=2£(E))a® = 0 (4f(1) — £(2) ~3£(0))p— (4F(2) — F(22) ~3(0))q = 0
f(2)+f((23)—2f(1);;>é +4f(1)—f(22)—3f(0) §+

From these two lines, we get f(2) =
f(0)
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And so f(z) = ax?® +bx +c Vo € Q1 which indeed fits whatever are a, b, c.
So f(x) = az? + bx + ¢ Vo € RT (using continuity)

Let then z > 0 : P(—z,z,2) = f(—xz)+3f(z) = f(2z) + 3f(0) and,
since x > 0 and 22 >0 :

f(—z) = (4az® + 2bz + ¢) + 3¢ — 3(ax?® + bz + ¢) = ax® —bxr + ¢

And so f(z) =ar? +br+cVz eR

. Find all continuous functions f : R — R that satisfy f(z+y)+ f(zy)+1 =
f@)+ fly) + f(zy +1) Vo,y € R.

solution

Let P(x,y) be the assertion f(z+y)+ f(zy)+1= f(a)+ f(y)+ f(zy+1)
1) Let us solve the easier equation (Fl) : =—===========—=======c=======x=
"Find all functions g(z) from N — R such that : g(2z+y)—g(2z)—g(y) =
92y + =) — 9(2y) — g(x) Yo,y € N"
The set S of solutions is a R-vector space. Setting y = 1, we get g(2z+1) =
g(2x) + g(1) + g(z + 2) — g(2) — g(x) Setting y = 2, we get g(2z + 2) =
9(2x) 4+ g(2) + g(z + 4) — g(4) — g(z) From these two equations, we see
that knowledge of ¢(1),4(2),9(3),9(4) and ¢(6) gives knowledge of g(x)
Vx € N and so dimension of S is at most 5. But the 5 functions below
are independant solutions : gi(z) = 1 go(z) = x g3(x) = 22 ga(x) = 1
if ©+ =0 (mod 2) and ga(x) = 0if  # 0 (mod 2) gs(z) = 1if z =0
(mod 3) and g5(z) =0if 2 # 0 (mod 3) And the general solution of (E1)
isglr)=a-22+b-x+c+d-gs(z)+e-gs(x)
2) Solutions of the original equation : =—============—==========
P(z,0) = f(1) =1 Comparing P(zy, z) and P(xz,y), we get Q(x,y, z)
D f(xy +2) = flay) = f(2) = flez +y) = fzz) = f(y)
2.1) f(x) = ax®> +br+cVr >0 Let p a
positive integer. Q(2, %, %) = f(#52) - f(5) — £(3) = f(3™) -
2n m
F(S) = ()
So f($) is a solution of (E1) and so f(3) = ap - 22 +by -z +cp+dy-
ga(x)ep - gs(x) Yo € N Choosing x = kp, it’s easy to see that a, = I;%, then
that b, = % Choosing x = 2kp, x = 3kp and = = 6kp, it’s easy to see that
cp=candd, =€, =0
And so f(2) = a($)* +b(%) + ¢ Va,p € N And so f(z) = az® + bx + ¢
Ve € Qt*
Now, f(x) continuous implies f(z) = ax® + bx + ¢ Vo € RT Q.E.D.
22) f(z) = d2®> + bz + Vo < 0

QR -, -B) = f(-EmEm) _ f(-Im) _ p(-n) = f o Zuim g
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31.

32.

f(—%”) — f(=2) So f(=%) is a solution of (E1) and the same method as
in 2.1 above gives the result.

2.3) f(x) =ax’ +bz+1—a—bVx We
got f(z) =ax® + bz +cVx >0and f(z) =dz? +bz+c Vo <0

Continuity at 0 implies ¢ = ¢ and f(1) = 1 impliesc=1—a—b P(—1,—-1)
— d =aP(-2,3) = V=0QED

It is then easy to check back that this necessary form is indeed a solution
and we got the result :

fx)=az*+bxr+1—a—b|Vr

Find all functions f : Q1 — QT such that:

)+ 1)+ 2auflan) = 712
solution
Let P(xz,y) be the assertion f(z)+ f(y)+2zyf(xy) = ff(igfy) Let f(1) =a
P(1,1) = f(2)=3; P(2,2) = f(4) =1 P(2,1) = [B3) =15

P(3,1) = [f(4) = gmzgsass and 50 40> + 5a+7 = 16 and s0 a = 1
(remember f(z) > 0)

1 _ 1
P(z,1) = 5550 = 70 + 22+ L and so 55y = 7357 +2ne +2° and
f(n) =3
)+
P(e,n) = f(nz) = L5ta2
e

Setting » = £ in this last equality, we get f(£) = Z—; (remember f(x) > 0)

1
Hence the answer : | f(z) = — | Vo € Q* which indeed is a solution.

x

Find all continuous f : R — R such that for reals z,y - f(z + f(y)) =
y+ flz+1)
solution

Let P(z,y) be the assertion f(x + f(y)) =y + f(z + 1)

PO,y+1-f(1)) = f(f(y+1-f(1)) = y+1 P(z—f(1), f(y+1-F(1)))
— fe—fO)+ffly+1-f1) = fly+1-f)+ flz+1-F(1))
and so f(z+y+1—f(1)) = fly+1-f(1)+ flz+1-f(1))

Let then g(z) = f(x + 1 — f(1)) and we get g(z + y) = g(z) + g(y) and
so, since continuous, g(x) = ax and f(z) = a(z + f(1) — 1)

Plugging f(x) = ax +b in original equation, we get two solutions : f(x) =
l+aVe fl(a)=1—a Vz

17



33.

34.

35.

f:Z=Z fm+n)+ f(mn—-1)= f(m)f(n)+2

solution
Let P(x,y) be the assertion f(x +y)+ f(zy — 1) = f(x)f(y) + 2
P(z,0) = f(x)(f(0)—1) = f(-1) -2

If £(0) # 1, this implies f(z) = ¢ and 2¢ = ¢? + 2 and no solution. So
f(0)=1and f(—-1)=2
Let then f(1) =a P(1,1) = f(2)=a?>+1P(2,1) = f(3)=a>+2
P3,1) = f(4)=a*-a?’+2a+1P(2,2) = f(4) =a*—a®+2a>+1
Andsoa*—a?>+2a+1=a*-a*+2a>+1 < ala—1)(a—2)=0
=1land f(3) =2and f(4) =1 P(4,1)
5) = 2 and so contradiction

=2and f(3) =3 and f(4) =3 P(4,1)
5) = 4 and so contradiction

If a = 0 : Previous lines imply f(2
= f(5)=0But P(3,2) = f

If a = 1 : Previous lines imply f(2
= f(5)=2But P(3,2) = f
If a =2, then P(m+1,1) = f(m+2)=2f(m+1)— f(m)+ 2 which
is easily solved in f(m) = m? + 1 which indeed is a soluion.

/\\/ /\\/

Hence the unique solution : | f(z) = 2* +1|Vz € Z
Find All Functions f: R — R Such That f(x —y) = f(z +y)f(y)
solution

Let P(x,y) be the assertion f(xz —y) = f(z + y)f(y)
P(0,0) = f(0)* = f(0) and so f(0) =0 or f(0) =1
If f(0) : P(z,0) = f(z) =0 V2 which indeed is a solution

If f(0)=1: P(z,z) = f(2)f(2z) =1 and so f(z) # 0 Vo P(%,2)
= f(5) = f(z)f(3) and, since f(5) # 0: f(z) = 1 which indeed is a
solution.

Hence the two solutions : f(z) =0Vx f(x) =1Vz

Find all functions f : R — R such that

fx)- fy) = fl@)+ f(y) + flzy) =2 Va,y €R.

solution

Setting f(x) = g(x) + 1, the equation becomes g(zy) = g(z)g(y),
classical equation whose general solutions are : g(z) = 1 Vz ¢g(0) = 0
and g(z) = |z|* Yo # 0 where a is any non zero real. ¢(0) = 0 and
g(x) = sign(x)|z|* Vo # 0 where a is any non zero real.

18



36.

37.

Hence the three solutions of the required equation : f(z) =2 Va f(0) =
and f(z) = 1+ |z|* V& # 0 where a is any non zero real. f(0) = 1 and
f(z) =1+ sign(z)|x|* Yz # 0 where « is any non zero real

And so : ..g(zy) = g(x)g(y), very classical :) equation whose general
solutions are : g(z) = 0 Va g(z) = 1 Vo g(0) = 0 and g(x) = eh(nlzl)
Vo # 0 where h(z) is any solution of Cauchy’s equation. ¢(0) = 0 and
g(x) = sign(z)e™ D) Yz £ 0 where h(z) is any solution of Cauchy’s
equation.

Hence the four solutions of the required equation : f(z) =1 Vz f(z) =2
Vz f(0) = 1 and f(z) = 1 + "2 Wz £ 0 where h(z) is any solution
of Cauchy’s equation. f(0) = 1 and f(z) = 1 + sign(z)e™ 12D vz £ 0
where h(z) is any solution of Cauchy’s equation

Find all functional f : R — Rand g : R — R satisfy: f(2®+2y)+f(z+y) =
g(x +2y) Yo,y € R
solution

If (f,g) is a solution, so is (f + ¢, g + 2¢) and so Wlog say f(0) =

Setting y = 0 in the equation gives g(z) = f(23) + f(x) Pluging this

in original equation, we get assertion P(z,y) : f(z3 + 2y) + f(z +y) =

fl(@+29)°) + fz +29)

Setting ¥ = —y in the equation gives g(y) = f(2y — y3) and so g(z) =

f(233 — 23) Pluging this in original equation, we get assertion Q(z,vy) :
2 +2y) + f(z +y) = f(2(z + 2y) — (z +2y)°)

f@®

D 0 d) = fle) e o Pl ) =

flz+ ) f(22)%) P(0,2) = f(z) = f((22)*) And s0 f(z+3) = f()
QED.
2) f(x) =0Vx €[0,1] ==============Let y € (0,1] Q(z,y — x)
= f(2® - 22 +2y) + f(y) = f(2(2y — z) — (2y — x)3) Consider now
the equation z3 — 2z + 2y = 2(2y — x) — (2y — x)3 It may be written

(x —y)? = % and it has always at least one solution z since y € (0, 1]

Choosing this value z, f(z® — 2z 4+ 2y) + f(y) = f(2(2y — ) — (2y — x)3)
becomes f(y) =0 Q.E.D.

3) Solutions ========2) gave f(z) = 0Vz € [0,1] 1) gave f(z+3) =
f(z) So f(x) =0Vz So g(z) =0 Vz

Hence the answer : ’ (f(x),g9(x)) = (¢, 2¢) ‘ for any real ¢

Find all functional f : R — R satisfy:xf(z) — yf(y) = (z — y) f(z + y) for
all z,y e R
solution

Let P(x,y) be the assertion zf(z) —yf(y) = (x —y)f(z +y)
P(r3h15%) = () () = (@ = 1f(0)
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38.

39.

P(i5t, ) = S50 () = —2f(1)
P(s5 554) = () - 5550 = f(x)
Adding these three lines, we get f(z) — zf(1) + (x — 1)f(0) = 0 and so

f(x) = (f(1) = f(0))x — f(0)

And so | f(z) = ax + b | which indeed is a solution

Find all continuous, strictly increasing functions f : R — R such that

D f0)=02) f(1) =13) [flz+y)] = [f@]+[f¥)] ¥V zy e
R such that [x + y] = [z] + [y]

solution
a) f(z) € (0,1) Vz € (0,1) Trivial using 1) 2) and increasing property
b) [f(n)] =nVYn € Z [m+n| = [m]+ [n] Vm,n € Z and so [f(m +n)] =
[f(m)] + [f(n)] and so [f(n)] = n[f(1)] = n
¢) [f(x)] > [x] Vo = > [z] and f(z) increasing implies f(x) > f([z]) and
so [f(2)] = [f([])] = [«]
d) [f(z)] <[] + 1 Va If [f(a)] > [a] + 1 for some a, then : [f([a])] = [a]
and so f([a]) < [a] + 1 Then continuity implies Ju € ([a],a) such that
f(u) = [a] + 1 Choosing then some z € ([a],u) and y = a — 2 € (0,1)
we get [z +y] = [a] = [2] + [y] and so = [f(z +y)] = [f(@)] + [f(y)]

E
which is [f(a)] = [f(2)]+[f(y)] which is wrong since [f(a)] > [a] 4+ 1 while
[f(z)] = [a] and [f(y)] = 0 So no such a

From c),d) we get [f(z)] = [z] and, plugging this in original equation, we
get that any strictly increasing continuous function matching 1) and 2)
and [f(z)] = [x] matches 3) too.

[f(x)] = [z] and continuity imply f(n) =n
[u][b]Hence the answer[/b][/u]: f(z) solution if and only if : f(z) = =

Va € Z f(x) may take any values in (n,n + 1) when = € (n,n + 1) with
respect to the properties "strictly increasing and continuous"

=

Find All Functions f: N = N f(m+ f(n)) =n+ f(m+k) Ym,n,k € N
With k Being Fixed Natural Number

solution

If f(n) < k for some n, then the equation may be written f(m + (k —
f(n))) = f(m) —=n¥m > f(n) So f(m+p(k— f(n))) = f(m) — pn, which

is impossible, since this would imply f(x) < 0 for some z great enough.
If f(n) = k for some n, then the equation implies n = 0, impossible

So f(n) > k Vn and the equation may be written f(m + (f(n) — k)) =
n+ f(m) Ym >k And so f(m+p(f(n) —k)) = pn+ f(m) Choosing then
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41.

p = f(q) =k, we get f(m+(f(q) —Fk)(f(n) —k)) = (f(¢) —k)n+ f(m) and
so, by symetry : (f(q) — k)n = (f(n) — k)q Vg,n And so f(qgfk = f(ngfk
and so f(n) = k + cn for some constant ¢

Plugging this in original equation, we get ¢ = 1 and so solution| f(n) = n + k

find all f: R — R such that f(z)f(yf(z) — 1) = 22 f(y) — f(x) for real
xX,y.

solution

f(z) =0 Vz is a solution and let us from now look for non all-zero solu-
tions.

Let P(z,y) be the assertion f(z)f(yf(z) — 1) = 22 f(y) — f(z) Let u such
that f(u) #0

P(1,1) = f()f(f(1) —1) = 0 and so Jv such that f(v) =0 P(v,u)
= v2f(u)=0andsov=0

So f(z) =0 <= z =0 and we got f(1)=1

P(l,z) = f(zx—1)= f(z) — 1 and so P(z,y) may be written : New
assertion Q(z,y) : f(z)f(yf(x)) = 2°f(y)

Let 2 #0: Q(z,2) = f(zf(z)) = 2% and so any z > 0 is in f(R)
Qz,y) = [f@)f(yf() =2°f(y) Qz.1) = f(2)f(f(2)) = 2
Ql,y+1) = f@)f(yf(2)+ f(x)) =2"f(y) + 2

And so f(x)f(yf(x) + f(z)) = f(2)f(yf(2)) + f(2)f(f(2))

Choosing then z > 0 and z such that f(z) = z, we get : f(yz + 2) =
f(yz) + f(z) and so f(z +y) = f(z) + f(y) V& > 0, Vy

And this immediately implies f(z + y) = f(z) + f(y) Vz,y (x = 0 is
obvious and using y = —z, we get f(—x) = —f(x))

Q1) = f(@)f(f(z)) =2" Qz+1,1) = (f(2)+1)(f(f(x))+1) =
2?4+ 2z + 1 And so f(f(z)) + f(z) = 2z

And combinaison of f(z)f(f(x)) = 2? and f(f(z)) + f(z) = 2z implies
(f(z) —x)?> =0 and so f(z) = x Vo, which indeed is a solution

[u][b]Hence the solutions [/b][/u]: f(z) =0Vz f(z) =z Va

Prove that there is no function like f : Ry — R such that for all positive
T,y
fl@+y) >y(f(@)?)

solution

Let P(x,y) be the assertion f(x +y) > yf(x)?

Let x> 0: P(§,3) = f(z)>0Vz
Let then a > 0 and z € [0,a] : P(z,2a—1z) = f(2a) > (2a—x)f(x)? >

af(z)? and so f(r)? < @
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43.

And so f(z) is upper bounded over any interval (0, al

Let then f(1) = u > 0 and the sequence o = 1 and x,,11 = z, + ﬁ
Vn >0 :

P(xn,%) = f(zny1) > 2f(xy,) and so f(z,) > 2"u Vn >0
Soxlzl—i—%andxnﬂ <xn+ﬁVn>0
Sox, <1+ +(2+1+5+5+..5i1) <1+32

But f(z,) > 2"u and z, < 1+ 2 shows that f(z) is not upper bounded
over (0,1 + %], and so contradiction with the first sentence of this proof.

So no such function.

Let f be a function defined for positive integers with positive integral
values satisfying the conditions:

[b](R)[/b] f(ab) = f(a) (D),
[bJGD)[/D] f(a) < f(b) if a <D,
[b]iH)[/b] £(3) = 7.

Find the minimum value for f(3).

solution
Let m > n > 1 two integers :

If% < hm £, with p,q,7,5 € N, we get :

Inn

p  Inf(m)
n? <m? and so f(n)? < f(m)? and so £ < 35505
In f(m)

m® <n" and so f(m)* < f(n)" and so 1 @)

T
<3

And so 11?1]}((21)) = i and % = % =c

And f(n) =n°

Andso f(3)=3°>7

So ¢ = 2 and minimum value for f(3) is nine, which is reached for function

f(n) =n?
Find all functions f : R — R such that

f(a?’) + f(b3) + f(c‘3) = f(3abc) Va,b,ceR.
solution

Setting b = ¢ = 0, we get f(a®) = —f(0) and so f(x) is constant and the

only constant solution is | f(x) = 0| V&
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44. Find all functions f : R — R such that
F@®) + fO*) + f() =a- f(@®)+b- f(b*) +c- f(c®) Va,bcER.

solution

This is equivalent to f(x®) = xf(2?) and there are infinitely many solution.

In(Inz)—In(Iny)

In3—In2 €L
This is an equivalence relation. Let ¢(x) any choice function which as-
sociates to any real in (1,400) a representant (unique per class) of its

n(x)
—ln(lnfrzgl_nlg;c(x)) € Z We get x = c(x)(%)

Let x ~ y the relation defined on (1, +00) as

class. Let n(x) = and so

_ zf(c())
fz) = ()

And so we can define f(z) only over ¢((1,400)) Let g(z) any finction from
R—+R

_ zg(c(z))
f(z) = ()

We can define in the same way f(x) over (0,1) We can define then f(1)
as any value, f(0) as 0 and f(—z) = —f(x)

And we have got all suitable f(z)

45. Determine all monotone functions f : R — Z such that f(z) = x,Vo € Z
and f(z +y) > f(x) + f(y), Yo,y € R.

solution
Induction gives f(qz) > ¢f(x) Vg € N and so, setting 2 = £, f(£) < L.
Since f(z) is non decreasing and f(z) € Z, this implies f(z) = [¢] Vz € Q

Since f(z) is non decreasing, this implies f(x) = [z] Vz € R

46. Find all monotone functions f : R — R such that f(4z) — f(3x) = 2z, for
each z € R.
solution

Forget the "monotone" constraint and the general solution of functional
equation is :

Ve >0: f(x) =2x+ h(m}f‘faﬁlg) where h(z) is any function defined over

[0,1) f(0) =aVz <0: f(z)=22+k(;25%;) where k(x) is any function
defined over [0, 1)

Adding then monotone constraint and looking at f(z) when z — 0, we
see that we must have sup h(]0,1)) = inf ~([0, 1) and so h(x) = ¢ constant.

And then, continuity at 0 implies that h(z) = k(z) = aand so| f(z) =2z + a
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47. Let n € N, such that v/n ¢ N and A = {a + b\/n|a,b € N,a? — nb* = 1}.
Prove that the function f : A — N, such that f(x) = [z] is injective but
not surjective.

(N={1,2,..})

solution
If [a+ by/n] =p > 1, then :
p§a+b\/ﬁ<p+1p%<afb\/ﬁ<%
Adding, wegetp%—r}rl<2a<p+1+%

And since (p+1+ %) - (p+ ﬁ) =1+ p(Tlﬂ) < 2, this interval may

contain at most one even integer.

So knowledge of f(z) implies knowledge of a and so (using a? — nb? = 1),
knowledge of b

So f(z) is injective.

Consider then p = 2 and the equation becomes 2 + % <2a <3+ % and so
1< I<a<I<2andsonosucha. So f(z)=2isimpossible and f(z)
is not surjective.

48. Find all functions f : Rt — RT such that :
f@®+y?) = f(ay)

solution

The system z2? 4+ 32 = u and zy = v has solution with z,y > 0 iff u >
2v >0

And so f(u) = f(v) Yu >2v >0

Let then 2 >y > 0: 2 > 2% and so f(z) = f(¥)
y > 2% and so £(y) = (%)

And so f(z) = f(y) and so f(z) is constant

49. find all functions f : Z —>7Z such that f(-1) = (1) and f(x) + f(y) =
f(x+2xy) + f(y-2xy) for all integers x,y.

solution

Let f(1) = f(—1) = a Let P(x,y) be the assertion f(x)+ f(y) = f(z +

2zy) + f(y — 2zy)

Let A = {z such that f(z) = f(—z)=a} 1€ A

]-) rEA —= Wt EA=——c—m—mmmm— e e e e e e e e e e

Let x € A P(—z,-1) = f(—z)+ f(-1) = f(x)+ f(-1—-22) =

f(-2z—-1) =a P(l,2) = f(1)+ f(z) = f(1+22)+ f(—2) =

f2r+1)=aSo f2x+1)=f(—2x—1)=aand so 2z +1 € A QE.D.

2) f(2) = F(—) = f(#—1) = F(1—) =
Let = such that f(z) = f(—=x) P(1,—z) = f(1)+ f(—x)=f(1—2z)+
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51.

f(z) and so f(1 —2z) = a P(1 —-2,-1) = f(1—-2a)+ f(-1) =
flx—=1)+ f(1—-2x)and so f(1—=x)= f(x —1) QE.D

From 1) and since 1 € A, we deduce 1 € 4,3€ A, T€ A, ..,2"—-1€ A
.. So we can find in A numbers as great as we want. Using then 2) as
many times as we want, we get thet f(z) = f(—x) Vo Then P(1,2) —
fO+ fx)=fA4+22)+ f(—z) = f(2x+1) =a Q.E.D.

4 F(2k+1)z) = f@)Va, h=mmmmm e e e e

P(z,2k+1) = f(z)+ f(2k+1) = f(z(4k +3)) + f((2k + 1)(1 — 22))
and so, using 3) : f(z) = f(z(4k + 3)) P(—z, -2k — 1) = f(—z)+
f(—=2k—1) = f(z(4dk+1))+ f(—(2k+1)(22 + 1)) and so, using 2) and 3)
s fx) = f(—z) = f(z(4k + 1)) So f(z) = f(x(2k+ 1)) Q.E.D.

5) General solution ============—==————From f(z) = f(z(2k+
1)), we get that f(z) = h(va(z)) And since vo(x) = vo(x(2y + 1)) and
va(y) = vg(y(l — 2x)), we get that any h(z) is a solution. Hence the

’f = h(va(z ‘ where h(z) is any function from NU {0} — Z

Determine all functions f : R — R such that f(z +y) < f(z) + f(y) for
all z,y € R and f(z) < e* — 1 for each z € R.

solution

and so f(0) > 0 and since f(0) < e—l_()we
get f(0) =0 f(z + (=) < f(x) + f(—=x) and so f(z) + f(-2) =
fl@)<e” =1 = f(z) < f(5)+ f(5) <2z —1)
fl@) <202 —1) = [f(x) < f(5)+ f(5) <4(ef —1)

(x

And immediate induction gives f(z) < 2"(e2" — 1)

flz+0) < f(z)+ f(0)

Setting n — +oo, we get f(z) <z

So f(z) + f(—x) < x + (—z) = 0 and so, since we already got f(z) +
f(=2) 20, we get f(z)+ f(-2) =

Then f(-z) < -2 = —f(r) < -2 = f(z)>=x

And so | f(z) = | which indeed is a solution

find all continues functions f : R — R for each two real numbers z, y:

flx+y) = flz+ f(y)

solution

If f(x) = x Vz, we got a solution. If Ja such that f(a) # a, then f(z+a) =
f(z+ f(a)) implies that f(x) is periodic and one of its periods is | f(a) —al.

Let T = inf{positive periods} If T = 0, then f(x) = ¢ is constant and we
got another solution. if T # 0, then T is a period of f(x) (since continuous)
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53.

and, since any f(y) — y is also a period, we get that f(y) —y = n(y)T
where n(y) € Z but then n(y) is a continuous function from R — Z and
so is constant and f(y) =y + kT which is not a periodic function. Hence
the two solutions : f(z) =z Va f(x) = ¢ Va for any ¢ € R

o f(f(x)y+z)==af(y)+f(x), for all real numbers z, y and e the equation
f(t) = —t has exactly one root.

solution

Let P(z,y) be the assertion f(f(z)y + ) = xf(y) + f(x) Let ¢ be the
unique real such that f(t) = —t

f(z) = 0 Vx is a solution. Let us from now look for non all-zero solutions.
Let u such that f(u) # 0

P(1,00) = f(0) =0andsot = 01If f(a) = 0, then P(a,u) =
af(uy=0andsoa=08So f(z) =0 <= z=0

If f(1) # 1, then P(L, —ty) = F(25%05 + 1) = f(=F) + £(1) and
so f(1) =0, which is impossible. So f(1) =1

P, -1) = f(=1) = -1 P(z,-1) = f(z— f(z)) = f(x) - 2 and
so, since the only solution of f(t) = —tist =0: f(x) = x which indeed
is a solution.

[u][b]Hence the two solutions [/b][/u]: f(z) =0Vz f(x) =z Vz

Find all function f : R — R f(x + f(v)) + f(f(v)) = f(f(x)) + 2f(y)
f(x+ f(z)) = 2f(x) and f(f(z)) = f(z) while f(0) =0

solution

1) It’s not very fair to transform a problem and claim that there exists a
solution when your transformation is not an equivalence and so you dont
know if there is such an olympiad level solution.

2) Solution of the original problem : Let P(x,y) be the assertion f(x +
f@) + 1(f(y) = F(f(2) +2f ()

P(0,y) = f(f() = D52 +1(y) P(0,2) = f(f(2)) = HE2+f(a)
Plugging this in P(x,y), we get new assertion Q(z,y) : f(z + f(y)) =
f(z)+ f(y) It’s immediate to see that the two assertions are equivalent.

The new assertion has been solved many times in mathlinks :

Let A = f(R). Using f(z) + f(y) = flz + f(y)) and f(z) — f(y) =
flx—f(y)) (look at Q(z— f(y),y)), we see that A is an additive subgroup
of R

Then the relation x ~y <= z —y € A is an equivalence relation and
let ¢(z) any choice function which assocoates to a real z a representant
(unique per class) of it’s equivalence class.
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Setting g(z) = f(z) —z, Q(z,y) may be written g(z+ f(y)) = g(x) and so
g(x) is constant in any equivalence class and so f(z) —x = f(c(x)) — ¢(x)
and so f(z) = h(c(z)) + = — ¢(x) where h(zx) is a function from R — A
[u][b]So, any solution may be written as |/b]|/u|f(z) = z — ¢(z) + h(c(z))
where : A C R is an additive subgroup of R ¢(z) is any choice function
associating to a real x a representant (unique per class) of it’s equivalence
class for the equivalence relation z —y € A h(x) is any function from
R— A

[u][b]Let us show now that this mandatory form is sufficient and so that
we got a general solution [/b][/u]: Let A C R any additive subgroup of R
Let ¢(x) any choice function associating to a real x a representant (unique
per class) of it’s equivalence class for the equivalence relation z —y € A
Let h(z) any function from R — A Let f(z) = z — ¢(z) + h(c(x))

x —c(x) € A and h(c(r)) € A and A subgroup imply that f(z) € A So
e+ f(y) ~x and c(z + f(y)) = c(z) So f(z + f(y)) =  + fy) — clz +
FW) +hle(z + f) =z + f(y) — c(x) + h(c(z)) = f(z) + f(y) QE.D.

And so we got a general solution.

[u][b]Some examples [/b][/u]: 1) Let A = R and so a unique class and
c¢(xr) = a and f(x) = x — a + h(a) and so the solution | f(x) =2+
(notice that f(0) = 0 is not mandatory.

2) Let A = {0} and so equivalence classes are {z} and so ¢(z) = x and
h(z) =0 and f(z) =z —x + 0 and so the solution | f(z) =0

3) Let A=7Z and ¢(z) =z — |z and h(z) = |22] f(z) =2 —x+ |z| +
|20 — 2|z] | and so the solution | f(z) = [2¢] — ]|

and infinitely many other

Find all functions f : Ry — Ry satisfying the functional relation f(f(z)—
x) =2z Vr € Ry
solution

Ok, so Rq here is the set of non negative real numbers. Then : In order to
LHS be defined, we get f(z) > = Va So f(f(z) —x) > f(z) —a Vo <~
flx) <3z

So we got z < f(z) < 3x

If we consider a,z < f(z) < bz, we get a,(f(x) —x) <2z < b,(f(z)—x)
and so b’g—:zx < f(z) < “z—:r?x

And so the sequences : a; =1 by =3 a1 = b’;)—“ by = %nt2

An

And it’s easy to show that : a, is a non decreasing sequence whose limit
is 2 b, is a non increasing sequence whose limit is 2

And so| f(x) = 22 | which indeed is a solution.
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56.

(Romania District Olympiad 2011 - Grade XI)
Find all functions f : [0,1] — R for which we have:

lz =y <|f(z) — f)| < |z —yl,

for all z,y € [0, 1].
solution

Let P(z,y) be the assertion |z —y|? < |f(z) — f(y)| < |z — 9

Setting y — = in P(x,y), we conclude that f(x) is continuous. If f(a) =
f(b), then P(a,b) = (a—b)? <0 and so a=>band f(x) is injective
f(x) continuous and injective implies monotonous. f(x) solution implies
f(z) + ¢ and ¢ — f(z) solutions too. So Wlog say f(0) = 0 and f(x)
increasing.

Then : P(1,0) = f(1) =1 and so f(z) € [0,1] P(z,0) = f(z) <z
Plz,1) = 1—f(z)<1-=x

And so f(z) =  which indeed is a solution.

[u][b]Hence the solutions [/b][/u]: f(z) = x+a for any real a f(z) =a—=x
for any real a

Find all functions f : R — R such that f(z? — f%(y)) = «f(z) — y? , for
all real numbers z, y.
solution

Let P(z,y) be the assertion f(z% — f2(y)) = o f(z) — v?

1) f(x) =0iff o =0 ===========—======Let u = —f2(0) :
P0,0) = f(u)=0

P(0,u) = f(0) = —u? and so u = —f2(0) = —u?* and so u € {—1,0}
Ifu=-1: f(0)=—-1and P(—-1,00 = f(0) = —f(—1) and so
contradiction since f(0) = —1 while f(—1) = f(u) = 0. So u = 0 and
f(0) =0 Then P(x,0) = f(2?) = zf(x) and if f(y) = 0, then P(z,y)
= y=0Q.E.D.

2) f(x)is odd and surjective =========—==——c———= P(0,2) =
f(=f?(z)) = —2? and so any non positive real may be reached Comparing
P(z,0) and P(—z,0), we get xf(x) — 2f(—z) and si f(—z) = —f(x)
Vo # 0, still true if = 0 and so f(x) is odd. So any non negative real
may be reached too. And since f(0) =0, f(z) is surjective. Q.E.D.

3) f(z) = a2 Vo ============ P(2,0) = f(2?) =zf(z) P(0,y)
= f(=f*(y)) = —y* And so f(a* — f2(y)) = f(a*) + f(=f*(v))

And so, since surjective : f(z +y) = f(z) + f(y) Vo > 0,y < 0 And so,
since odd, f(z +y) = f(z) + f(y) Va,y

Then from f(2?) = xf(z), we get f((z +1)?) = (z+ 1)f(x + 1) and so
f@) +2f(x) + f(1) = af(z) + 2f(1) + f(z) + (1)
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59.

And so 2f(z) = zf(1)+ f(z) and f(z) = ax Plugging this back in original
equation, we get a = 1

And so the unique solution | f(z) = = | Va

Find all functions f : N* — N* such that f(2z+ 3y) = 2f(x) +3f(y) + 4,
for all integers z,y > 1.
solution

I suppose that N* = N is the set of natural numbers (positive integers)
Let P(z,y) be the assertion f(2z + 3y) = 2f(x) +3f(y) +4

Subtracting P(z + 3,y) from P(z,y + 2), we get 2(f(z + 3) — f(x)) =
3(fly+2) - f(y)

And so these two quantities are constant and multiple of 6 and so : f(x +
3) = f(z) +3c fly+2) = f(y) +2c and (using y = x + 1 in this last
equation) : f(z+3) = f(z+1)+2¢

and so f(r+1) = f(z)+cand f(z) =cx+d

Plugging this in P(z,y), we get for any real a > 1 (the
case ¢ = 1 must be excluded in order to have f(1) € N)

Find all functions f : Z — Z such that f(m+ f(n)) = f(m+n)+2n+1,

for all integers m, n.
solution

The equation may be written f(m + (f(n) —n)) = f(m)+2n+1

And so f(m+k(f(n)—n)) = f(m)+ k(2n+ 1) Setting k = f(p) — p, this
becomes f(m + (f(p) —p)(f(n) —n)) = f(m) + (f(p) —p)(2n +1)

And using symetry between n and p, we get (f(p) —p)(2n+1) = (f(n) —
n)(2p+1)

And so %ﬁ" =cand so f(n) =n(2c+ 1)+ c with c = f(0) € Z
Plugging this in original equation, we get ¢ = —1 and so the solution

Find all functions f : Z — Z such that f(0) = 2 and f(z + f(z + 2y)) =
f(2z) + f(2y), for all integers z,y.

solution

Let P(z,y) be the assertion f(x + f(z + 2y)) = f(2z) + f(2y)

P(0,2) = f(2)=4P(0,1) = f(4) = 6 And so, using induction with
P(0,n), we get f(2n) =2n+2VYn >0

Let x > 0: P(2z,—2) = f(-22) = f(2x+2)— f(4z) = 2z +4) —
(dx 4+ 2) = —2x+2

So f(2x) = 2x+2 Vx € Z and P(x,y) may be written f(z+ f(x+2y)) =
2z +2y+4
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If 3 odd 2a + 1 such that f(2a + 1) = 2b is even, then : P(2a — 2b+ 1,b)
= 4b = 4a + 6, which is impossible modulus 4

So f(y) is odd for any odd y Let then odd z : f(z + 2y) is odd and so
x4+ f(x + 2y) is even and so f(z + f(z +2y)) = 2+ f(x + 2y) + 2 So
x4+ flz+2y)+2=2x+2y+4and f(z +2y) =x+2y+2

And so| f(x) =« + 2| Va € Z, which indeed is a solution

For wich integer k does there exist a function f: N — Z with f(1995) =
1996 and f(zy) = f(x)+ f(y) + kf(ged(z,y)) for all x,y € N

solution

Let P(x,y) be the assertion f(zy) = f(z) + f(y) + kf(ged(z, y))
P(z,z) = f(2?) = (k+2)f(z) P($2,l‘) fa®) = (2k + 3)f(x)
P(2®,2) = f(a') = Bk +4)f(z) P(a*2?) = f(a') = (k+2)*f()

So (3k +4)f(x) = (k + 2)%f(x) and setting x = 1995, we get (k +2)? =
(3k +4) and so k € {-1,0}

For k = —1, solutions exist. For example f(n) = 1996 Vn.

For k = 0, solutions exist. For example f(1) = 0 and f([];_, p}") =
499>, _, n; (where p; are distinct primes and n; € N).

Hence the answer : |k € {—1,0}

Find all functions f, g : Z — Z such that g is bijective and

flg(x) +y) = g(f(y) + ).

solution

We just need g(z) injective and we dont need the restriction Z — Z (it’s
the same result for R — R) :

Let P(x,y) be the assertion f(g(z) +vy) = g(f(y) + )
P(z,9(0)) = f(g(x)+g(0)) = g(f(9(0)) +z) P(0,9(z)) = f(g(0)+

g( )) 9(f(g(x)))
So g(f(9(0)) +z) = g(f(g(z))) and, since g(x) is injective : f(g(z)) =
z+ f(g(0))

(2,0) = f(9(x)) = g(f(0) +2) and so g(x + f(0)) = = + f(g(0)) and

so g(z) = x + a for some a

( We previously got f(g(x)) =z + f(g(0)) Then P(z,0) = f(g(x)) =
9(f(0) + ) and so g(x + £(0)) = = + f(9(0))

From there we immediately get g(z) = (z — f(0)) + f(g(0)) and so g(z) =
x + a for some a = f(g(0)) — £(0))
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Then f(g(z)) = = + f(g(0)) becomes f(z + a) = x + f(g(0)) and so
f(z) =z + b for some b

Plugging back in original equation we get that these are solutions whatever
are a,b € Z

Hence the answer : f(x) = z + b Yz and for any b € Z (or R is we move
the problem in R) g(z) = x 4+ a Va and for any a € Z (or R is we move
the problem in R)

(Belarus 1995) Find all f : R — R such that

fU@+y) =fl@+y)+ f(@)fly) -2y Ve,yeR

solution

?(Et)P(x,y) be the assertion f(f(z+vy)) = f(z+vy) + f(z)f(y) — zy Let
0)=a

P(z,y) = [f(flz+y)) = flz+y)+ fl@)fly) —2y Plz+y,0) =
f(f(z+v) = flx +y) + af(x + y) Subtracting, we get new assertion
Qz,y) : af(x+y) = f(2)f(y) —xy

Qo —2) = @ = f(@)f(—2) + 2% Q(z,2) = af(22) = f(2)? —
Q(-=,22) = af(z) = f(-2)f(22)+22° = a2f( ) = f(=2)(f(z )2
2?) + 202° = a’f(2)* = f(2)f(-2)(f(x)? — 2?) + 202°f (2) = (a® —
2?)(f(2)? — %) + 202 f ()

And so 22(f(z) —a—2)(f(z) —a+2) =0

So : Vux, either f(x) = a + z, either f(x) = a — x (the case x = 0 is true
t00)

Suppose now that f(z) = a + « for some z P(z,0) = f(a+z) =
(a+ 1z +ala+1) and so : either (a + Dz +ala+1) =a+ (a+ =
< a(x+a—1) =0either (a+ 1)z +ala+1) =a—(a+1z) =
(a+2)x+ ala+ 1) =0 And so either a = 0, either there are at most two

a(a+1)
a+2

Suppose now that f(z) = a — x for some z P(z,0) = f(a—z) =
—(a+ Dz +ala+1) and so : either —(a+ 1)z +ala+1)=a+ (a—=x
< a(r—a+1) =0ceither —(a+ Dz +ala+1)=a—(a—2) <
(a+2)x —a(a+ 1) = 0 And so either a = 0, either there are at most two

. a(a+1)
such z : a —1 and etz

And so a = 0 and either f(z) = z, either f(z) = —a If f(1) = 1, then
Q(z,1) = f(z) = « Vo which indeed is a solution If f(1) = —1, then
Q(z,—1) = f(r) = —x Vz which is not a solution

suchz : 1 —a and —

Hence the answer : | f(z) =z | Vx
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63. Find all numbers d € [0,1] such that if f(z) is an arbitrary continues

64.

function with domain [0,1] and f(0) = f(1),there exist number z, €
[0,1 — d] such that f(zo) = f(z¢ + d)

solution
1) d = 0 fits ========= Just choose 27 =0 :)
2) d = 1 fits ==========Let g(z) = f(z +d) = f(z + 1) Let the

sequence aj, = f(£) ap = a,, = f(0) and so : either Ik € [0,n — 1] such

that ar = ar4+1 and just choose zg = % either a, # agx41 Vk € [0,n — 1]
and then :

If a1 > ag, the sequence cannot be increasing for any k£ and then Jk €
[0,n — 1] such that a; < ar4+1 and agyo < ak+1 and then : f(£) < g(£)
and g(£ +d) < f(£ +d) and so 3z € (£, £ 4 d) such that f(z0) = g(wo)
(since continuous).

If a1 < ag, the sequence cannot be decreasing for any k£ and then Jk €
[0,n — 1] such that ar > ap+1 and agyo > ak+1 and then : ( ) > (%)
and g(£ +d) > f(£ +d) and so 3z € (£, £ 4 d) such that f(z0) = g(wo)
(since contlnuous) Q.ED

3) no other d fit ========== TLet d € (0,1) and n,r such that 1 =
nd + r with n non negative integer and r € (0,d) Choose any u > 0 and
any continuous h(z) defined over [0,d] such that : h(0) = 0 h(r) = nu
h(d) = —u

And define f(z) in a recursive manner : Va € [0,d] : f(x) = h(z) Yz > d
D f@) = fle—d)—u

We have : f(x) continuous f(0) = f(1) = 0 And the equation f(z) =
f(z + d) is equivalent to f(z) = f(x) — u and has no solution. Q.E.D.

[u][b]Hence the result[/b][/u] : |d € {0} U <U {i})

neN

Find all functions f: R — R
fla+ flay) = flz+ f(2)f(y) = f(@) +2f(y)

solution

Let P(x,y) be the assertions f(z-+f(zy)) = f(a-+F (@) f(y)) = f(@)+2f(y)

f(x) = 0Vz is a solution and let us from now look for non allzero solutions.
Let w such that f(u) # 0

1) f(iC) B A== ————————————— P(—l7 —
f(=1+ f(1)) = f(=1+ f(=1)?) = 0 and so Jv such that f(v) =0 P(v,u)
= 0=wvf(u) and so v =0 Q.E.D.
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2) f(n) =nV¥neN ========———c—c P(-1,-1) = f(-1+
F(1) = f(=1+f(=1)%) = 0and so, using 1) : —1+f(1) = —1+f(=1)2 =0

P(l,z2) = f(1+f(z)) = 1+ f(z) and so from f(1) = 1, we get f(n) =
D

3) f(-1) = =1 =========== P(-1,-1) = f(-1+ f(1)) =

f(=1+ f(=1)?) = 0 and so, using 1) : =1+ f(1) = -1+ f(-=1)> =0 So
f(=1)==x11f f(-1) =1, then :

P(p.n) = f(;+1) = f(;)+5f(n) P(5,—n) = f(G+1)=f(3)+
Lf(—n) And so f(-n) = f(n )—nThen P(-1,2) = f(-14+f(-2)) =
f(=1+4+ f(-1)f(2)) = f(-1) = f(2) = 1 =1 = —1, contradiction So
f(-1)=-1 Q.E.D.

4) f(zx) is injective ===========1If f(y1) = f(y2) and yo = 0 then
f(y1) =0and 1) gives y1 =y = 0 If f(y1) = f(y2) and y2 # 0, let a = &>

P(y2,1) = f(y2+ f(y2)) = f(y2) +v2 P(y2,a) = f(y2+ f(y1)) =
f(y2) +y2f(a) And so f(a) =1

P(a,1) = f(a+1)=a+1

Notice that if f(z) = x, then : P(l,2) = f(x+1) =241 P(-1,x)
= [+ (=D f() = f(-1) = flz) = flce—-1)=—-2—1
Applying this to f(a +1) = a+ 1, we get f(—a —2) = —a — 2 (second
property) f(—a—1) = —a—1 (then first property) f(a) = a (then second
property) And so a =1 And so y; = y2 Q.E.D.

5) flzy) = f(x)f(y) =========== This is an immediate conse-
quence of f(x + f(zy)) = f(z + f(x)f(y)) and f(x) injective

6) f(z) = v Vo ========== Let = # 0 We trivially have from 5)
that f(3) = 75

Then P(%,x) — f(% +1) = ﬁ 4+ L)

Then f(z +1) = f(a(} +1)) = fla)f(2 +1) = 1+ L
But P(z,%) = flz+1) = f(z) +2f(%) = f(2) + 755
So 1+ L8 = f(a) + 725

= zf(z) + f(2)’ = 2f(2)? + 2°

= (f(2)? +2)(f(z) —2) =0

And so f(z) = x Vo > 0 And since f(—z) = f((—1)z) = f(-1)f(z) =
—f(x), we get f(z) =z Va which indeed is a solution

7) Synthesis of solutions ================= And so we got two
solutions : f(z) =0Vzx f(z) =z Vz

Let f : [0,1] — R be a continous function such that f(z1)f(x2)...f(z,) =
e, for all n € N* and for all z1,za, ..., z, € [0,1] with 21 + 22 +...+ 2, = 1.
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67.

Prove that f(z) =e*, = €0,1].
solution

Choosing z; = X, we get f(£)" = e and so f(2) = en

Let g >p>1:choosingn=q¢q—p+landz) =22 =...=2,-1 = % and
x, =5, weget: f(3)""f(2) =eandso eq;qpf(g) =ecandso f(8) =e
And so f(z) = €® Vx € QN (0,1) and continuity implies f(z) = e*
Va € [0,1] which indeed is a solution

P
q

Find all functions f: R — R:
) f(f(@) = fy) = (@ —y)f(x)f(y)

solution

There are infinitely many solutions but I did not succeed up to now finding
all of them.

[u][b]Some solutions [/b][/u]:
1) trivial solution f(z) =z V&
2) trivial solution f(x) =0 Vz

3) f(a) =band f(x) =0 Vz # a where a is any nonzero real and b # +a
4) f(x) =2 Vo € Q and f(z) = 0 anywhere else
5) f(z) =z Yo € Q[v2] and f(z) = 0 anywhere else

In fact 4) and 5) may be merged in :
f(z) =2 Vo € Kand f(x) = 0 anywhere else where K is any subfield of R

.. and a lot of other.

find all functions f from the set R of real numbers into R which satisfy
for all x,y, z € R the identity

@)+ fy) + f(2) = F(f(2) = F(y) + fQRuy + f(2) + 2f (xz — yz)

solution

f(z) constant implies f(z) = 0 Vo which indeed is a solution. Let us from
now look for non constant solutions.

Let P(z,y,z) be the assertion f(f(z) + f(y) + f(2)) = f(f(z) — f(y)) +
fQRxy+ f(2)) +2f(xz — yz) Let f(0) =a

1) f(z) is even ============ Subtracting P(2, 1, 0) from P(1,2,0),
we get f(f(2)— f(1) = f(f(1) — f(2)) Subtracting then P(2,1,z) from
P(1,2,x) and using the above result, we get f(x) = f(—x) and so f(x) is
an even function. Q.E.D.
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2) f£) =0 > J0) =0 2]
f(0) = 0 ————— Subtracting P(—z — a, £,0) from P(z + a, 3y,0), w
get f(x + 2a) = f(—x) = f(x) and so, if a # 0, f(x) is periodic and one
period is 2a

But then comparing P(z,y,z + 2a) and P(z,y,z), we get f((z —y)z) =
f((z —y)(z + 2a)) and so f(z) is constant, impossible

Soa=0 Q.E.D.

22) fl(x) =0 = =0 If f(u) = 0 for some u,
then comparing P(z,y,u) and P(z, —y,u), we get f((z—y)u) = f(z+y)u)
And so, if u # 0, we get that f(z) is constant, impossible So v = 0 Q.E.D.

3) f(']jl) = f($2) —t 5[,‘1 = :l:.l'Q e
If f(xz1) = f(x2) =0, then 21 = x5 = 0, according to 2) above.
If f(x1) = f(z2) # 0, then 1 # 0 and 22 # 0 Comparing P(z1,x,0)

and P(z2,x,0), we get f(2x12) = f(2z22) and so f(tx) = f(x) Va, with

t=2%1
T2

Comparing then P(tx,y,1) with P(x,ty,1), we get f(tx —y) = f(a — ty)
Va,y If t # +1, this implies that f(x) is constant, impossible.

QED

4) f(z) = 22 Vx ============= Suppose f(u) # u? for some u.
Then : P(u,u,x) = f(2f(u) + f(x)) = f(2u® + f(z)) and so :

either 2f(u) + f(x) = 2u® + f(z) and so f(u) = u?, impossible either
2f(u) + f(z) = —2u® — f(z) and so f(z) = —f(u) — u? and f(x) is

constant, impossible.
And so f(z) = 22 Va, which indeed is a solution.
5) Synthesis of solutions : ================== So we found
two solutions : f(x) =0 Vo f(z) = 2 Va
. i me e J@) _
Determine all functions f : R* — R* such that f | ——= | = — - f(f(2)),

for each z,y € R* and are strictly monotonic on (0, +00).

solution

Let P(z,y) be the assertion f()) = L)

f(x) is injective and then P(z,1) implies f(1) =

P(Lz) = f(35) ==

P(5iry: 7iy) = flay) = f(2)f(y)

This implies f(z) > 0 Vo > 0 and so g(z) = In(f(e®)) is a monotonous
function such that g(z+y) = g(x)+g¢(y) and so g(x) = ax and so f(z) = z°
Ve >0
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Plugging this in f(ﬁ) =1 weget f(x)=a Ve >0or f(z)=21Vzs>0
f(zy) = f(z)f(y) implies f(—1) = £1 and so f(—1) = —1 (since f(x) is
injective an f(1) = 1) and so f(—z) = —f(x).

[u][b]Hence the two solutions[/b][/u] : f(z) =z Yz #0 f(z) = L Vo #0
which indeed are solutions

Find all functions, f : RT — RT such that: 22f(f(z) + f(y)) = (z +
y)f(yf(z)) for all x,y in R

solution

I consider that R is the set of all positive real numbers. Let P(z,y) be
the assertion 2 f(f(x) + f(y)) = (x +y)f(y/ (x))

If f(u) = f(v) then, comparing P(u,1) and P(v,1) we get “h! = ©tl
<— (v—u)(uww+v+u)=0and so u=v and f(z) is injective.

Then P(3,3) = f(F(3)+ /() = f(Gf(3))

And so, since injective : f(3) + f(3) =3 f(2)

And so ;1 f(2) + f(2) =0, impossible since f(z) >0 Vz

So no solution.

Let f: R>o — Rx¢ be a function which is bounded on the interval [0, 1]
and obeys the inequality

f@)fw <af (5) +v% (5)

for each pair of nonnegative reals = and y. Prove that f(z) < “’—; for all
nonnegative reals x.
solution

Setting = = y in the inequality, we get 23@2]‘(%) > f(z)?

Setting g(z) = 2£) this becomes 9(%) > g(2)? and so g(&) > g(z)*"
>

xT

Suppose then that g(u) = a > 1 for some u, then g(5%) a?"

And so f(55) > u%?i%

Setting n — 400 in the above inequation, we get thet LHS is clearly
unbounded, and so contradiction with the fact that f(z) is bounded on
[0,1]

2

So f(x) < & Va

Find all strictly increasing bijective function f : R — — > R such that
f(x)+ f~(x) = 2z for all real .

solution
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f(z) increasing bijection implies f(z) continuous. The equation may be

written f(f(x)) — f(z) = f(z) — « and so g(x + g(x)) = g(x) where
g(z) = f(x) — x is continuous.

Let us look for continuous solutions of g(x + g(x)) = g(z)
g(x) = 0Vzis asolution and let us from now look for non all zero solutions.

If g(z) is solution, then —g(—=x) is solution too and so Wlog say g(u) =
v > 0 for some u

Let A = {2z > w such that g(z) = g(u) = v}
From g(z + g(x)) = g(z), we get g(z + ng(x)) = g(z) and so u+nv € A
Vn € NU {0}

If A is not dense in [u,400), let then a,b € A such that v < a < b and
(a,b) N A = (). (existence of a,b needs continuity of g(x))

Let then y € (a,b). So g(y) # v Consider then y — a + n(g(y) — v) for
n € N Since g(y) # v, this quantity, for n great enough is out of [—v, +v]
and so let m > 0 such that y — a + m(g(y) —v) ¢ [—v,+v] and so such
that y +mg(y) ¢ [a+ (m —1)v,a + (m +1)v]

Looking at the continuous function h(z) = z + mg(z), we get : h(a) =
a+mv € (a+ (m—1)v,a+ (m+1)v) h(y) = y+mg(y) ¢ [a+ (m -
1v,a+ (m+ 1)v]

So (using continuity of h(x)), 3z € (a,y) such that h(z) = a+ (m —1)v or
h(z) = a4+ (m+1)v But then g(h(z)) = v and so g(z+mg(z)) = g(z) =
impossible since z € (a,b) and (a,b) N A = 0.

So A is dense in [u, +00)

Then continuity of g(z) implies g(z) = v Vo > u. Let then any w < u
: If g(w) > 0, then In € N such that w + ng(w) > u and so g(w) = v.
So Vx < w : either g(z) = v, either g(x) < 0 and continuity gives the
conclusion g(x) =v Vz

So g(x) = c and | f(x) = x + ¢| which indeed is a solution.

Find all functions f : R — R satisfying (a) f(0) = 0 (b) f (M) =
[HOE v 2y e Roa# 0,y #0

2zy

solution

Let P(z,y) be the assertion f (I +y ) = f(l')z*f(y)z
2xy Ty
P(1,1

1) = f(1) = f(1)? and so f(1) € {0,1}
If /(1) =0, then P(z,2) = f(x) =0Vx #0 and so f(z) =0 V&
If f(1) =1, then P(z,2) = f(z)? =22 Vz # 0 and so f(r)? = 22 Vx

Then P(z,y) becomes f (x2+y2> B T

2zy 2zy
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74.

75.

And so f(z) = « Va such that |z| > 1 and obviously f(x) may be either
x, either —x for any other z

And so the solutions : 1) f(z) =0 Vz

2) f(z) = e(x)x Vx € (—1,1) and f(z) = z Vz € (—oo,—1] U [1,400)
where e(x) is any function from (—1,1) — {—1,1}

Find all f: R — R such that xf(y) — yf(x) = f(£) for z,y € R,z # 0

solution

Let P(x,y) be the assertion zf(y) — yf(z) = f(¥£)

P(2,0) = f(0)=0P(1,1) = f(1)=0P(z,1) = f(z) =—f(})
Vr #0

P(12) = & 1 af(x) = f(22) ¥z £ 0
P(3.x) = L2 +af(2) = f(2x) Vo £0
Subtracting, we get f(x) = %(2)% Ve # 0

Hence the solution : f(0) = 0 and f(z) = a® =1 Va # 0 which indeed is
a solution (where a is any real)

Find all £ € N such that there exist exactly k functions f : Q — Q
satisfying: f(x +y) = kf(x)f(y) + (@) + f(y) for all z,y in Q

solution

Let h(z) = kf(z) + 1. The equation becomes h(z + y) = h(x)h(y) and so
two solutions : h(x) = 0 Vo h(x) = 1 Vz The other solutions h(z) = a”
do not fit since they are not from Q — Q

Hence the answer

Find all functions f : R — R such that: f(z+vy*+2) = f(f(z)) +yf(x)+
f(z) Va,y,z € R
solution

I suppose we must read Vz,y,z € R and not Vz,y,xz € R
f(z) =0 Vz is a solution. Let us from now look for non allzero solutions.

Let P(z,y) be the assertion f(x + 3%+ 2) = f(f(x)) +yf(z) + f(z) Let
w such that f(u) #0

P(u, %M, 0) = f(something) = x and so f(z) is surjective.
P(2,0,0) = [f(z) = f(f(z)) + f(0) and so f(z) =z — f(0) Vz € f(R)
And since f(x) is surjective, we get f(z) =z — f(0) Vz € R.

Setting then = = 0, we get f(0) = 0 and hence the result :

f(z) =0Vz f(xr) =2 Vo which indeed is a solution
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79.

Find all functions f : R — R such that f(z? — 3?) = 22 — f(y?) for all
reals z,y
solution

P(z,y) be the assertion f(z? —y?) = 22 — f(y?)

- 2 r—1)2

i%)=$f@ﬂ=(T)—fU4”)
Tr— 2 Tr— 2

715):>Oz(41) _f(( 41))

Find all functions f : Q — Q such that: zf(yz)+yf(z) + 2z = f(f(z)yz+
F(9)2 + () Vo, €Q

solution
Let P(x,y, z) be the assertion = f (yz)+y f(2)+z = f(f(x)yz+[f(y)z+f(2))
P(z,0,0) = zf(0) = f(f(0)) Vz and so f(0) = 0 P(0,0,2) =
f(f(z)) = x and so f(z) is an involutive bijection.
P(-1,1,1) = 1= f(f(-1)+2f(1)) = f(f(1)) and so, since injective,
F(=D)+2f(1) = f(1)andso f(1)+f(—1) =0 P(0,-1,1) = —f(1)+1 =
fUF(=1)+f(1)) =0and so f(1) =1
P0,z,1) = z+1=f(f(z)+1) = f(f(z+1)) and so, since injective,
flx+1)=f(z)+1 Andso f(z+n) = f(z)+nand f(n) =nVz,Vnc€Z
Let then p,q € Z with ¢ # 0 : P(0, f(2),q) = qf(5)+q=flp+q) =
p+qandso f(£) =12
So | f(x) = x| Vz € Q which indeed is a solution.

Find all such functions f : R — R such that: f(z+y+f(y)) = f(f(z))+2y
for all real x,y
solution

Let P(z,y) be the assertion f(x +y+ f(y)) = f(f(x)) + 2y

If f(a) = f(b) = cfor some a,b, then : P(a,b) = f(a+b+c) = f(c)+2b
P(b,a) = f(b+a+c)= f(c)+2a And so a = b and f(x) is injective.

Then P(z,0) = f(z+ f(0)) = f(f(z)) and so, since injective : f(z) =
2 + f(0) which indeed is a solution whatever is f(0)

Hence the answer : | f(x) = + a | Va and for any real a
Find all functions f : R — R such that

2 f(@) +y* f(y) = (@ +y)flay) = (@~ fl@ +y)
holds for every pair (z,y) € R2.

solution
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Let P(x,y) be the assertion 22 f(z)+vy2f(y) — (z+y) f(xy) = (x—y)* f(z+
y) Let a = f(1)

P(1,0) = f(0) =0 P(z,—v) = 2?(f(x)+ f(—x)) = 0 and so
(=) ==f@) V2 #0 — f(-z) = —f(z) Vo

P(z,1) = 2*f(z) +a—(z+1)f(z) = (z = 1)*f(z +1) Plz +1,-1)
= (z+1)2f(z+1)—a+zf(z+1) = (x+2)2f(x) Adding : xf(z+1) =
(x+1)f(z) and so f(z+1) = ZEL f(z) Vo £ 0

Plugging this in P(z,1), we get a = Lf(z) Vo # 0 and so f(z) = ax
Vo # 0 and so f(z) = ax Vx

And it is easy to check back that this indeed is a solution, whatever is a

Hence the answer : | f(x) = ax | Vo and for any a € R
Find all f : Z* — — > Z™ such that

cf(y) +yf (@) = (@f(f(2) +yf(FW))f(zy)

and f is increasing(not necessarily strictly increasing).

solution

Let P(z,y) be the assertion zf(y) +yf(z) = (xf(f(x)) +yf(f () f(«

P(1,1) = f(f(1)) = Tandso f(1) < ()fl

Y)
)) = 1 (since non decreasing)
and so f(1) =1 P(z,1) = f(f(z))f( 1

and so f(z) = f(f(x)) =1

Hence the unique solution : | f(z) =1 Vz

Find all pairs of functions f,g: R — R such that f is strictly increasing
and for all 2,y € R we have f(zy) = g(y)f(z) + f(y)

solution

Let P(x,y) be the assertion f(zy) = g(y)f(x) + f(y)

f(z) strictly increasing implies Ju such that f(u) # 0

Plr,u) = flru) = g(u)f(2) + f(u) P(u,z) = f(zu) = g(2)f(u) +
f(x) Subtracting, we get g(x) = g(J}‘(L_)lf(:E) +1 and so g(z) = af(x) + 1
for some real a

Plugging this in original equation, we get new assertion Q(z,y) : f(zy) =
af(x)f(y) + f(z) + f(y)

If a =0, we get f(zy) = f(x) + f(y) but then : Q(1,1) = f(1) =0
Q(-1,-1) = f(-1) = 0 And so f(—1) = f(1) which is impossible
since f(x) is strictly increasing

Soa # 0. Let then h(z) = af(x)+1 h(x) is strictly monotonous (increasing
if a > 0 and decreasing if a < 0) and Q(z,y) becomes h(zy) = h(z)h(y)
This is a well known functional equation whose only monotonous solutions
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are h(z) = sign(z)|z|" where t € RT (where sign(z) = —1 Vz < 0,
sign(0) = 0, sign(z) =1 Va > 0)

Then a > 0 and[b][u] the solutions of original equation are[/u][/b] : Let
any ¢,t € R f(x) = c(sign(z)|z|* — 1) Vo g(x) = sign(z)|z|" Vo which
inded are solutions

Notice that hungnguyenvn’solution is not well defined for x < 0 and, if
he/she adds the condition ¢ € N in order to have the function fully defined,
then a lot of solutions are missing

find all functions f,g,h : R — R such that for all z,y,z € R :
f(h(g(z) +y)) +9(z+ f(y) =h(y) +9(y + f(2)) + =

solution

It’s easy to show that f(z) = 2+ a But then, infinitely many solutions ex-
ist. For example, Choose as h(z) any bijective solution of Cauchy equation
and choose g(z) = h~1(x — a)

And T think that a lot of other exist.

f:RT—>RT f(x)f(yf(z)) = f(x +y) determine f.

solution

[i][b]Modified problem where the function if from R>¢ — R>o[/b][/i]
Let P(z,y) be the assertion f(x)f(yf(z)) = f(x + )
P(0,00) = f(0) € {0,1} If f(0) = O then P(0,2) = f(x) =0 Va
which indeed is a solution.
Let us from now consider f(0) =1
1

If f(x) > 0 Va > 0, then : The previous posts imply f(z) = 7 for some
a > 0 and for any 2 > 0 And since f(0) = 1, this formula is true again for
x = 0 and it’s easy to see that this indeed is a solution.

If Ju > 0 such that f(u) =0, then P(u,2) = f(u+x) =0 Vx >0 Let
then a = inf{z > 0 such that f(z) =0}

If a =0, we get f(z) = 0Vz > 0 and it’s immediate to see that this indeed
is a solution (including the fact that f(0) = 1).

Ifa >0, weget f(x) =0Vx >aand f(z) >0Vz <a

Consider now z < a and z +y > a : P(z,y) = f(yf(xz)) =0 and so
yf(z) ZaSo f(z) = § Vy € (a — x,+00) So f(z) = 3%, Vz € (0,a)

- a—x

Consider now z < a and z+y < a withy #0: P(z,y) = f(yf(z)) #0
and so yf(z) < aSo f(z) < Vy € (0,a—2) So f(z) < ;% Vo € (0,a)

So we got a mandatory condition : f(z) = -4 Vx € (0, a), still true for
x =0 Then P(5,5) = f(a) =0 and we got the function : f(z) = -

Vz € [0,a) and f(z) = 0 Yz > a which indeed is a solution.
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[u][b]Hence the solutions |/b]|/u]: S1: f(x) =0 Vz

S2: f(z) =0Vz >0 and f(0) =

S3: f(x) = 1347 Vo and for any a >0

S4: f(x) = [0,a) and f(z) =0 Vz > a for any a > 0

Determine all injective functions f : N* — N such that f(C") = C}f(z;),
for all m,n € N* n>m,

m n
where CT" = .
solution

If f(1) #1, then f(n) = f((})) = (’;((?))) implies f(1) = f(n) — 1 which is
impossible for any n since f(z) is injective.

So f(1) =1 Let then n > 2 : f(n) = f((,",)) = (f(féi)l)) and so either
f(n —1) = 1, impossible since injective, either f(n — 1) = f(n) — 1 So
f(n)=f(n—1)+1 and we get f(n) =n+cVn > 1 where c= f(2) — 2
Using then f((3)) = (;gg), we get f(6) = (¢73) and so c+ 6 = {etd)(e+3)
which gives ¢ € {—5,0} and so ¢ =0

Hence the unique solution | f(n) = n | Vn, which indeed is a solution.
Find all f: R — R such that: f(2® — %) = 22f(23) — v f ()
solution

Let P(z,y) be the assertion f(z° — y°) = 22 f(23) — 2 f(v?)
P(0,0) = f( ) = 0P(2,00 = [(°) =2f(a®) P(0,z) =
f(—2°) = —2%f(2®) = — f(2°) and so f(x) is an odd function.
So P(z, —y) = f(2°+y°) = f(2°)+f(y°) and so f(z+y) = f(2)+f(y)
Va,y and so f(qx) = qf(z) Vg € Q
Writing then P(z+q,0), we get f(2°+5qz*+10¢?23+10¢32% +5¢*z+¢°) =
(2? +2qz + ¢*) f(2° + 3¢2® + 3¢°z + ¢°)
So f(a®) + 5qf (%) + 10¢f(2°) + 10¢°f(2*) +5¢*f () + ¢° (1)~ (& +
2qz + ¢*)(f(2%) + 3¢f (2?) + 3¢*f (x) + ¢ f(1)) = 0

This is a polynomial in ¢ which is zero for any g € Q. So this is the allzero
polynomial and all its coefficients are zero.

Looking at coefficient of ¢*, we get then 5f(x) — 3f(z) — 2z f(1) = 0 and
so f(z) =xf(1) Vx

Hence the solution : | f(z) = ax | Vz and for any a € R, which indeed is a
solution
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86. Find all f: R — R, such that: f(xf(y)) = yf(x), limy— oo f(x) =0.
solution

f(x) = 0Vz is a solution. So let us from now look for non allzero solutions.
Let P(x,y) be the assertion f(xf(y)) = yf(x) Let u such that f(u) # 0
P(0,0) = f(0)=0and sou#0 P(u,x) = f(uf(z)) =zf(u) and
so f(z) is a bijection P(1,1) = f(f(1)) = f(1) and, since injective,
fA)=1PQ1,2) = f(f(z)) == P(-1,f(-1)) = 1= f(-1)* and
so f(—1) = —1 (since injective)

Pz, f(y)) = f(zy) = f(z)f(y) So f(x) > 0Vz > 0 Setting then f(z) =
ehn®) for x > 0, we get h(z +y) = h(x) + h(y) and lim, _, | o, h(x) = —00
So h(x) is a solution of Cauchy equation which is upper bounded from a
given point, and so h(xz) = cx with ¢ < 0

So f(z) = 2 VYa > 0 and then f(f(x)) = x implies ¢ = —1

[u][b]Hence the solutions[/b][/u] (which indeed are solutions) : f(z) =0
Vz f(0) =0 and f(z) =L Vz #0

87. Find all f: R — R, such that: f(z +y) = % and f is continuous.

solution

Let P(x,y) be the assertion f(xz +y) = Le)tf)

1+f(2)f(y)
P(z,r) = f(22)(1+ f(2)?) = 2f(z) and so : either f(2z) = 0, either
flx)? — f(gm) () +1 = 0 and so the discriminant of the quadratic must
be >0: |f(22)] <1
So [f(z)] < L.
If f(u) = 41 for some u : P(x —u,u) = f(x) =1 Vz and we got a
solution If f(u) = —1 for some u : P(z —u,u) = f(x) = —1 Vx and

we got another solution If |f(z)| < 1 Vz, let then g(x) = In(1 + f(x)) —
In(1 — f(z))

g(z) is continuous and f(z) = s D1

ed(®) 41
ed(x+y) 1 e9(®)+9(y) _q

P(m,y) becomes then ed(x+y) 41 = ed(@)+9(y) 41 and so g(l’-i—y) = g(x)+g(y)

And since g(x) is continuous, we get g(x) = ax

[u][b]Hence the solutions[/b][/u] (which indeed are solutions) : f(z) = —1
Vo

flx)=+1Vz
f(z) = %251 Va (notice that a = 0 gives the solution f(z) =0 Va

88. Find all functions f : R — R which satisfy the equality, f(z + f(y)) =
flx = fly)) + 4af(y) for any z,y € R (Here R denote the set of real
numbers)
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solution
A classical solution : f(x) = 0 Vz is a solution. Let us from now look for
non allzero solutions :
Let P(x,y) be the assertion f(xz+ f(y)) = f(x— f(y))+4xf(y) Let ¢ such
that f(t) #0
Let ue R : P(sfut) t) = u:2f(gf(t)+f( ) — 2f(gf ® f(t))

Let us call a = g7 + ft)and b= EF0) — f(t) so that 2f(a) —2f(b) =

P(2f(a) — f(b),b) = f(2f(a)) = f(2f(a) —2f(b)) +8f(a) f(b) — 4f(b)*
P(f(a),a) = f(2f(a)) = f(0) +4f(a)?

Subtracting these two lines, we get f(2f(a) — 2f(b)) = f(0) + (2f(a) —
2f(b))? and so f(u) = £(0) + u? Vu which indeed is a solution.

Hence the only solutions f(z) =0 Vz f(z) = 2 + ¢ Vz and for any real ¢

Show that for all integers a,b > 1 there is a function f : Z% — Z7 such
that f(a- f(n)) = b-n for all positive integer n.

solution

Consider the three sets : U, = N\ aN : the set of all positive integers not
divisible by a U, = N\ bN : the set of all positive integers not divisible
by b V =aN\ abN : the set of all positive integers divisible by a and not
divisible by ab

U, and U, both are infinite countable (since a,b > 1) and so 3 a bijection
u(n) from U, — Uy

Define then f(n) as: Vn € U, : f(n) = u(n
(notice that n € V. = a|n and b [2) ¥n
(notice that n ¢ U, UV = ab|n)

YVneV: f(n)=bxu Y
gU UV f(n)=abx f(2

Q3

)
)

gk

Easy to check that this function matches all requirements.

Find all functions f : Qt — Q% such that

f(zy)

f(x)+ f(y) + 22y f(xy) = m

Where Q7 is the set of positive rational numbers.

solution

Let P(z,y) be the assertion f(x)+ f(y) + 2zyf(zy) = M

P(L,1) = f(2)=1 P21 = f(3):5++f(1)
1

f3) _
TFEF 12+if(1) P(2,2) = f(4) =
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92.

And so f(1) = 1 and an easy induction using P(z,1) : f(# = ﬁ +

z+1)
2z + 1 gives m :2nx+n2+ﬁ
And f(n) = %

Then P(%.q) = f(5)+ f(a) + 20/ (0) = 755

Which becomes, using f(p) = ;%2 and f(q) = q% and m =2z +¢* +

J(z)

P f(2)* + (5; —¢*)f(%) — 1 =0 whose unique positive root is f(%) = g—z
1

Hence the answer : | f(x) = — | which indeed is a solution.
T

for all z € R and
|f(z) = f)| < |z —yl,

for all z,y € R.
solution

We get easily from first equation that % = @ Vo ¢ {—1,0}

and so f(z) = zp(x) Vo ¢ {—1,0} where p(x) is a periodic function whose
1 is a period.

The second inequation implies that f(z) is continuous and so p(z) is too
and so f(z) = xp(z) Va

Let then w,v € Rand n € Z Usingzs =u+n+1landy =v+n
in the second inequation, we get (remember that p(x) has period 1) :
[+ n+ Dp(u) — (v +n)p(0)] < Jutn+1-v—n]

= |(u+ 1)p(u) — vp(v) + n(p(u) — p(v))| < |u+1 -1
— (u+1)p(z)—v1)(v) + p(u) —p(v)‘ < ’u+71L—v’ Vn#£0

Setting n — +oo in this last line, we get p(u) = p(v) and so p(x) is the
constant function.

[b][u|Hence the result|/u][/b] : f(z) = cx Va where ¢ is any real € [—1,1]

Determine all functions f : R — R continuous on R such that: f(v/22) =
2f(z) , flx+1)=f(x)+2x+1forallz € R

solution

The general solution of second part is quite classical and is f(x) = 2% +p(x)
where p(z) is any periodical function for which 1 is a period.
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Plugging this general form in first part, we get p(v/22) = 2p(z) This shows
that either p(z) = 0 Vz, either p(z) is unbounded. But f(x) continuous
implies p(z) continuous and any periodical continuous function is bounded.
So p(z) =0 Vz

Hence the unique solution : f(x) = 22 V&

. Find all functions on real numbers such that :

fQRx+ f(y) = fQ2z) + 2 f(2y) + f(f(y))
solution

f(z) = 0 Va is a solution. Let us from now look for non all-zero solutions.

Let P(z,y) be the assertion f(2z + f(y)) = f(2z) +xf(2y) + f(f(y)) Let
u such that f(u) # 0 and let a = f(2u)

4f(u)
P(0,0) = f(0)=0
1) f(20) = daf (x)
P(E2 u) = f(f(2)+f(w) = F(f(2))+5F (@) fu)+f(f(w)) P(
= f(f(@)+f(w)) = f(f(2))+5f(w)f(22)+f(f(u)) And so f(x)f(2u) =
f(u)f(2x) and so f(2z) = daf(z) Va

u

Setting x = § in this equation shows that a # 0 and ends this part

2)a=1land f(f(z))=f(x)? Vo=
P(3,y) becomes f(z + f(y)) = f(z) + 2axf(y) + f(f(y)) Using this
equation, it’s easy to show thru induction that f(nf(y)) = an?f(y)? +

n(f(f(y) — af(y)?)

Replacing n — 2n in this equation, we get f(2nf(y)) = 4an?f(y)? +
2n(f(f(y) —af(y)?)

But f(2f(y)) = daf(nf(4)) = 4?0 [(3)? + dan(F(f () — af (4)°)

)
And so 4an?®f(y)? + 2n(f (f(y)) — af(y)?) = 4a®n® f(y)* + dan(f(f(y)) —
af(y)?)

These are two polynomials in n which take the same values for any positive
integer n and so we can equate their coefficients : 1) coefficient of n? :
daf(y)? = 4a®f(y)? and so a = 1 (since a # 0 and we can choose y = u 50
that f(y) # 0) 2) coefficient of n : f(f(y)) — f(y)* = 2(f(f(y)) — f(»)*)
and so f(f(y)) = f(y)* Vy Q.E.D.

3) f(z) = 2 Vo =—==—————eeeee P(-I9 0y — f(—f(z)) =
flx)?
P(-I8 ) = f(fly) - f(2)) = F(—f(2)) — 2f(2)f(y) + F(f(y)) =
f@)?=2f(2)f(y) + f(y)* = (f(y) — f(x))?

(

)
P(3.y) = flz+f(y) = f(x) +22f(y) + f(y)? Setting = = 7L
10}

and y = u in the previous line, we get that any real z may be written as
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f(r)—=f(s) for some real r, s And since we previously got f(f(y)— f(z)) =
(F(4) — F(2)? Var,y, we get f(z) = 2* ¥z QED.

4) Synthesis of solutions ================= We got two solu-
tions : f(z) = 0 Vz which indeed is a solutio,n f(z) = 22 Vx which indeed
is too a solution

Let f : R — R be such that for all z,y € R, |f(z —y)| = |f(z) — f(y)|-
Can we conclude that f(z +y) = f(x) + f(y) for all z,y € R? Justify
your answer.

solution

f(z) = 0 Vx is a solution of the functional equation and is such that
flx4+y) = f(x)+ f(y) Y,y So, let us look from now only for non allzero
solutions. Let P(x,y) be the assertion |f(z — y)| = |f(z) — f(y)| Let w
such that f(w) #0

P0,0) = f(0) =0 P(0,2) = [f(=2)] = [f(z)]

Suppose now that Ju,v such that f(—u) = —f(u) and f(—v) = f(v)
P(=u,—v) = [f(-utv)| = [f(u)+f(v)| and so | f(u—v)[ = [f(u)+f(v)]
and since |f(u—v)| = |f(u) — f(v)] : either f(u) =0 and so f(—u) = f(u)
and so both w,v are such that f(—z) = f(z) either f(v) = 0 and so
f(=v) = —f(v) and so both u,v are such that f(—z) = —f(z)

So f(—) = f(z) Y or f(—) = —f(x) ¥z

But if f(—z) = f(z) ¥z, then : P(2,~2) = [f(w)] = |f(£)— f(—
=[f(%) — f(§)] = 0, impossible (definition of w)

So f(—x) = —f(x) V&

Let us call (z,y) € R? : "white" if f(z) = f(y) and so f(x—y) = 0 "green"
i f(z—y) = f(z) — Fy) £ 0 "red" if f(z — ) = f(y) — /(z) # 0 Notice
that f(—x) = —f(z) implies that (z,y) and (y, x) have same colours

Let then (a,b) and (b, ¢) two non white pairs. If (a,b) and (¢, b) dont have
the same color, then : |f(a) — f(¢)| = |f(a — )| = |f((a —b) — (¢ — b))|
= [fla=b) = f(c=b)[ = |f(a) + f(c) —2f(b)] and so0 : either f(a)— f(c) =
fla)+ f(c) —2f(b) and so f(c) = f(b), impossible since (c, b) is not white
either f(a) — f(c) = —f(a) — f(c) + 2f(b) and so f(a) = f(b), impossible

since (a, b) is not white So (a,b) and (¢, b) have same color

ol

)|

Let then (x,y) and (z,¢) two non white pairs. : P(w,—w) = |f(2w)| =
2|f(w)] # 0 So f(w), f(2w), f(4w) are pairwise different So one of these
three numbers (let us call it f(u)) is different from f(y) and from f(z)
and so (y,u) and (z,u) both are non white.

(z,y) and (y,u) are both non white, so have same colours (y, u) and (u, 2)
are both non white, so have same colours (z,u) and (z,t) are both non
white, so have same colours

So (z,y) and (z,t) both have same colours and so : either all pairs are
either white, either green either all pairs are either white, either red
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In the first case, we get f(z —y) = f(x) — f(y) Vz,y and so f(z +y) =

f(z)+ f(y) Ya,y In the second case, we get f(x —y) = f(y) — f(x) Va,y
and so (choose © = w and y = 0) contradiction

[u][b]Hence the result [/b][/u]: f(z +y) = f(z) + f(y) Vz,y

Find all function f : R — R such that: +, f(z) € Z & © € Z +,
f(f(@f(y) +2) =yf(z) + 2 Vo e QF

solution

It’s rather easy to establish that f(z) =x Vx € ZUQT

But there are a lot of solutions out of the trivial f(z) = z : for example
any solution of Cauchy equation such that f(1) =1 and f(f(f(z))) =«
(easy to build infinitely many such functions using Hamel basis)

And I’m not sure at all that these are the only solutions :7:

Find all function f: R — R such that: f(z+ f(y)) = f(z) + gzf(4y) +
f(f ()

solution

f(z) =0 Vz is a solution. Let us from now look for non allzero solutions.

Let P(z,y) be the assertion f(z + f(y)) = f(z) + o f(4y) + f(f(y)) Let
t such that f(t) #0

P(0,0) = f(0)=0

P(f(x),f(t)) = [(f(@)+ [(t) = [(f(z)) + 5f(2)f(4t) + F(f(1))
P(f@t), f(z)) = f(f(z)+ f(t) = (())+%f()(4x)+f(f())
So f(x)f(4t) = f(t)f(4x) and so f(4z) = 8af(x) for some a € R (remem-

ber f(t) # 0)
P(z,y) implies then new assertion Q(z,y) : f(z+ f(y)) = f(z)+azxf(y)+
F(f(y)

Choosing y = t and the appropriate z in Q(z,y), we immediately get that
any real may be written as f(u) — f(v) for some real u,v

Q(f(u) = f(v),v) = f(f(w) = f(f(u) = f(v) +af(u)f(v) —af(v)
fUF) QUf(v) = f(u),u) = f(f(v)) = f(f(v) = f(u)) + af(v) f(u)
af(u)®+ f(f(u)) Adding these two lines, we get f(f(u)— f(v))+ f(f(v)
f(w) = a(f(u) = f(v))?

And so f(z)+ f(—z) = ax?® Vz Using then 4z instead of x in this equality
and remembering that f(4z) = 8af(x), we get a = 2 and so we now have

+

?((xuig) D flx+ f(y) = flz) +22f(y) + f(f(y) f(4z) = 16f(x) f(z) +
—z) = 222

Q(f(z),z) = [(2f(z)) =

3f(f(x) +6f(2)> QBf(x),z) = f(4f(
since f(4f(z)) = 16f(f(z)), )

~—
—
=
@
[0)]
[e]
-+
=
=
8
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And so Q(z, ) becomes new assertion R(x,y) : f(z + f(y)) = f(x) +
22f(y) + f(y)®

R(—f(v),v) = 0= f(=f(v)) = 2f(v)* + f(v)* and so f(—f(v)) =
f@)? R(=f(v),u) = f(f(u) = f(v)) = f(=f(v)) = 2f () f(v) + f(u)?
= f(u)? = 2f(u)f(v) + f(v)* = (f(u) = f(v))?

And so f(x) = 2 which indeed is a solution.

[u][b]Hence the solutions [/b][/u]: f(x) =0 Vz f(z) =22 Vo

Find all function f : R — R such that: f(f(z+y)) = f(z+y)+f(z)f(y)—
v solution

Let P(z,y) be the assertion f(f(z+vy)) = f(z+y)+ f(z)f(y) — zy
Pz +y,0) = f(fzx+vy)) = f(z+y)+ f(0)f(x+y) Subtracting this
from P(x,y), we get new assertion Q(z,y) : f(0)f(z+y) = f(z)f(y) —zy
Q(L,1) = f(0)f(2) = f(1)*~1Q(x,1) = [f(0)f(x+1) = f(x)f(1)~z
Qz+1,1) = f(0)f(z+2) = f(z+1)f(1)—(z+1) = [(0)*f(z+2) =
f@) f(1)? =2 f(1)—f0)z—f(0) Q(2,2) = f(0)f(z+2) = f(2)f(x) -2z
= f(0)*f(z+2) = (f(1)* - 1)f(z) - 2f(0)x

Andso f(2)f(1)? —2f(1) = f(0)z— f(0) = (f(1)* —1)f(z) —2f(0)x which
implies f(z) = 2(f(1) — f(0)) + f(0)

So f(xz) = ax + b and plugging this in original equation, we get ¢ = 1 and
b=0

Hence the solution m Vx

Let f(z) a continuous strictly decreasing function from RT — R* such

that = f(z+y)+f(f()+f(y) = f(fx+f(y)+f(y+f(2)) Yo,y € RT
Prove that f(f(z)) =z Vz € RT

solution

f(z) from RT — RT, continuous, strictly decreasing = equation f(z) =
z has a unique root a > 0 Setting y = a in the functional equation implies

flata)+f(f(x)+a) = f(f(z+a)+f(f(x)+a)) Andso f(x+a)+f(f(z)+
a) is alsoroot of f(X) =X andsoisa: f(z+a)+ f(f(z)+a) = a Setting
x — f(x) in this expression, we get f(f(z)+a)+f(f(f(z))+a) = a And so
F(f(f(x))+a) = f(x+ a) and, since injective (since strictly decreasing) :

f(f(x)) = 2| Q.E.D and, btw, such a function exists : choose for example
fl@)=3

Is there any systematic set of solutions to f,g: R — R such that
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for all z € R?

solution

Choose any sets A, B such that 0 € A and 0 € B Let u(z) any function
from R — A and v(z) any function from R — B Define f, g as :

VeeA: f(z)=0Vx ¢ A: f(z) =v(z)

Ve B: g(x)=0Vx ¢ B: f(r) =u(zx)

It’s easy to show that this is a general solution (it’s a solution and any
solution may be put in this form)

100. Find those values of the real parameter « such that there exists only one
function f from reals to reals satisfying the following functional equation

f@+y+ ) = (f()*+ay.

solution

Let P(z,y) be the assertion f(z% +y+ f(y)) = f(2)?> + ay Let f(0) =a

If @ = 0, then we get at least the two solutions f(z) =0 Vx and f(z) =1
V. So a#0

Since o # 0, P(0, I_a—“z) = f(””_T“QJrf(””_T‘f)) = z and so’ f(z) is surjective ‘
Comparing P(z,y) and P(—z,y), we get f(—z)? = f(x)? and so Vz : ei-
ther f(—z) = —f(x), either f(—z) = f(x)

Let > 0 and b such that f(b) = —x : P(y/z21,b) = —z = f(y/2)>+ab
and so b = —M # 0 So there is a unique b # 0 such that f(b) = —z
and so f(—b) cant be equal to f(b) and so f(—=b) = =z = —f(b) P(0,b)
= f(b+ f(b)) = a®* + ab P(0,—-b) = f(—b— f(b)) = a® — ab And
since f(—b— f(b)) = £f(b+ f(b)), we get a®> + ab = +(a? — ab) and so
a= (since b # 0)

If f(u) = f(v) = w < 0, then the previous lines proved that a = b
2

= —% V=W £ 0) If f(u) = f(v) = w > 0, then 3 unique ¢ such

that f(t) = —w and f(—t) = w and so u = £t but f(t) = —w and so

u=wv=—tIf f(u) = 0, then the previous lines proved that there is a

unique b such that f(b) = 0 and since f(0) =0, we get b=0

So ’ f(z) is an odd bijection ‘

P(0,y) = fly+f(y)) =ay P(x,0) = f(2?) = f(2)’

And so P(z,y) becomes f(z2+y+ f(y)) = f(2®)+ f(y+ f(y)) And since
f(z+ f(z)) = ax and f(z) is bijective, we get that = + f(x) is bijective
too
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And so f(z* +y + f(y)) = f(2?) + f(y + f(y)) becomes f(u +v) =
f(u)+ f(v) Yu > 0 and Vv So (since odd) : ’f(u—i—v) = f(u) + f(v) ‘Vu,v
But f(z?) = f(z)? implies f(v) > 0Vv > 0 and then f(u+v) = f(u)+f(v)
implies f(z) non decreasing.

So f(z) = cx (monotonous solution of Cauchy equation) and, plugging in
original equation, we get : ¢> = cand a = 2c and so ¢ = 1 and a=2

[u][b]Hence the answer [/b][/u]: If o ¢ {0,2} : no solution If &« =0 : at
least two solutions If : exactly one solution f(z) ==z

Find all functions f:R — R such that f(z+vy)+zy= f(z)f(y).
solution

Let P(z,y) be the assertion f(x +y) 4+ zy = f(x)f(y)

P(z,1) = fz+1)+2= f(z)f(1) and so f(x+1) = f(1)f(z) —
Pz +1,1) = f(x+2)+x+1:f(x+1)f() and so f(z +2) =
fWfz+1)—a—Tandso f(z+2) = f(1)*f(x) —=(f(1) +1)— 1 P(x,2)
= f(z+2)+2x=f(x)f(2) and so f(z +2) = f(2)f(z) — 2z

So f(1)*f(z) —x(f(1) +1) = 1 = f(2)f(2) — 2z and (f(1)* — f(2))f(2) =
z(f(1)—1)+1
f(1)2 = £(2) = 0 would imply z(f(1) — 1) + 1 = 0 Va, which is impossible

So f(x) = ax + b for some a,b and plugging this in original equation, we
geta=xland b=1

[u][b]Hence the solutions [/b][/u]: f(z) =2+ 1Vzx f(z)=1—z Vx

Let a and b be reals numbers, b < 0. Let f be a function from the real
line R into R and satisfying: (z € R), f(f(z)) = a + bz Prove that f has
infinitly discontinuities.

solution

Writing f(z) = g(x — %) + 1%, the equation becomes g(g(z)) = bx

If b = —1 First, we note that g(0) = 0. Suppose g has only n discontinuities
T1,...,2, (including zero), and let S = {z : x = g*(z;) for some 4,5} U
{0}. S is still finite, and contains 4k + 1 elements for some integer k < n.
Also, g(S) = S and g=1(S9) = S. R\ S is the union of 4k+2 open intervals,
and g is continuous on each of these intervals. Since g maps R\ S to itself
bijectively, these intervals must be mapped to each other by g. Let A be
the set of these intervals; we define g on A in the natural way. Since each
element of A is either entirely positive or entirely negative, g*(U) # U for
each U € A. On the other hand, ¢g* is the identity on U, so each orbit in
U has exactly four elements. The number of elements in U is not divisible
by 4, and we have a contradiction.

Ifb#-1:
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From g(g(z)) = bx, we get g(bx) = bg(x) and g(0) = 0 Notice that g(z) is
a bijection and so g(z) =0 < z =0

Let w > 0 and v = g(u) # 0 If v > 0, then g(v) = bu < 0 and so there
is a discontinuity in [u,v] (or [v,u]) else we would have some ¢ € (u,v) or
(v,u) such that g(t) = 0, impossible If v < 0, then g(v) = bu < 0 and
g(bu) = bv > 0 so there is a discontinuity in [v,bu] (or [bu,v]) else we
would have some ¢ € (v, bu) or (bu,v) such that g(t) = 0, impossible

So there is at least a discontinuity z¢ # 0 Since f(bx) = bf(x), a disconti-

nuity point at xg implies a discontinuity point at bxg and so, since b # —1
and zg # 0, infinitely many discontinuity points. Q.E.D.

Find all functions f and ¢ that satisfies:
flg(x)) = 22 + 1 and ¢(f(z)) = (22 + 1)

solution

Still a strange problem which strongly seems to be a crazy invented one
:( :( In what contest did you get it ?

Obviously there is the trivial solution f(z) = 2z + 1 and g(z) = 2?2 but
there are infinitely many other solutions and I dont think we can give a
form for all of them ..

Let the sequence a, defined as agp = 0 and a,11 = 2a2 + 1 Choose
then u(z) as any continuous strictly increasing bijection from [0,1] —
0,1] Define g(z) as : ¥z € lapya1) : g(z) = u(z) Y2 € (a1, ins2)
: g(z) = (29(1/%52) + 1)? (notice that (/251 € [an,ans1)) Vo < 0 :
g(x) = g(—z) So g(x) is even and is also a continuous increasing bijection
from [0, +00) — [0, +00)

For any « > —3, the equation g(z) = (2z + 1)? has two roots £z and let
f(z) = || For any # < —3%, the equation g(z) = (2z + 1)? has two roots
+z and let f(z) = —|z|

f(x) and g(x) are fully defined By construction of f(x), we clearly have
g(f(z)) = (22 + 1)? Vz Tt remains to check f(g(z))) =222 +1:

Since g(f(x)) = (2z+1)2, we get g(f(g9())) = (2g(x)+1)? By construction
of g(x), we had g(222 +1) = (2g9(x) + 1)2 So g(f(g(x))) = g(22% + 1) But
g(z) > 0 and so f(g(z)) > 1 And so f(g(x)) = 22% + 1 (remember that
g(x) is even and is also a continuous increasing bijection from [0, +00) —
[0,4+0)) Q.E.D.

So we built infinitely many solutions (f, g) to the problem.

Caution : these are not all the solutions. There are certainly a lot of other
solutions

104. If f(x) is a continuous function and f(f(x)) = 1+ x then find f(z).

solution
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f(z) is a continuous bijection and so is monotonic. If f(z) is decreasing,
then Ju such that f(u) = u but then f(f(u)) =u # u+1 and so f(x) is
increasing.

If f(z) < x for some z, then f(f(z)) < f(z) < x and so f(f(x)) 75 x+ 1.
So f(z) > a Vo If f(z) > x+ 1 for some x, then f(f(z)) > f(z+ 1) and
so f(x +1) < x+ 1, impossible (see previous line)

So f(z) is a continuous increasing function such that z < f(z) < z+1 Vz
Let then £(0) = a € (0,1) f(a) = f((0)) = 1 and so £([0,a)) = [a,1)
Using then f(z) = 1+ f~1(z), we get that knowledge of f(z) in [0,a)
implies knowledge of f(z) in [a,1) Using then f(z+1) = f(z) + 1, we get
that knowledge of f(x) in [0,1) implies knowledge of f(x) in R

So f(x) is full defined by its values over [0, a)

And obviously, the only constraints for these values are : increasing, con-
tinuous, and f(a) =1

[u][b]Hence the solutions [/b][/u]: Let any a € (0,1) Let any continu-
ous increasing bijection h(z) from [0,a] — [a,1] h™1(x) is a continuous
increasing bijection from [a, 1] — [0, a]

Define f(x) as: Vo € [0,a) : f(x) = h(z) Vx € [a,1) : f(z) =1+ h"1(z)
Ve ¢ [0,1): f(a) = f({z}) + =]

And so obviously infinitely many solutions (the simplest is trivially = + 3)
Just for complementary info : here is a rather nice general family of solu-
tions :

Let u(x) any increasing continuous bijection from [0, 1] — [0, 1]

Let h(z) = |z] + u({z}) h(x) is an increasing continuous bijection from
R—R

Then f(z) = h™'(h(x) + %) is a continuous solution of the functional
equation f(f(z))=x+1

The problem is that I’'m not sure that this is a general solution (I mean

that 'm not sure that all solutions may be obtained in this form). My
previous post gives all the solutions

Given a real number A and an integer n with 2 < n < 19, find all polyno-
mials P(z) with real coefficients such that P(P(P(z))) = Az™ + 19z + 99.

solution

Let m = degree of P(x). We know that degree of P(P(P(x))) is m®

If A =0 we get then m® = 1 and so m = 1 and P(z) = az + b and
we get P(P(P(z))) = a®z +b(a® + a+ 1) = 192 + 99 and so P(x) =

Y19z Jr99\ﬁ 1)

If A# 0, we get then m® = n and, since n € [2,19], we get m = 2 and
n==§
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So P(x) = ax® + bz + ¢ The two highest degree summands of P(P(z)) are
then a®z* + 2a?bz® The two highest degree summands of P(P(P(z))) are
then a”2® 4+ 4ab2™ and so b = 0 But then P(z) is even, and so must be
P(P(P(x))), which is wrong. So no solution if A # 0

Hence the unique answer : A =0 and P(z) = /192 + 99(\ﬁ D)

Find all functions f : R — R such that
ff(y) + f(2)) = 2f(x) + zy Vo,y € R.

solution

Let P(x,y) be the assertion f(xf(y) + f(z)) = 2f(x) + a2y

If f(a) = f(b), comparing P(1,a) and P(1,b) implies a« = b and f(x) is an
injection. P(1,z —2f(1)) = f(f(x —2f(1)) + f(1)) =z and f(x) is a
surjection Let then w,v such that f(u) =0 and flv)=1: P(u,v) =
0 = wv and so either f(0) = 0, either f(0) =

If £(0) = 0, then P(z,0) = f(f(z)) =2
fa

= (:1:) and so, since surjective,
f(z) = 2z which is not a solution So f(0)

Let then x # 0 and y such that f(y) =

—= (which exists since f(x) is

surjective) P(z,y) = y = %ﬂm) and so : (i) : f(%f(m)) f( )
YV # 0

p(xvff(;)) = flaf(— ) flx )) f( ) and so, since injective,
xf(—f(;))—kf(x)_ andso. (i) = f(— ) —z)Vx;«éO

P(-1,-1) = f(-1) =0 P(z,-1) = f( (z)) = 2f( ) — @ Set-
ting * — 172;_?(96) in this expression and, using (i) and (ii), we get :
f(f(if(x))) - 2f(1 2f(93)) _ 1=2f(@) f(— f(x)) - Qf(x) 1-2f(z)

1= 10 = a0 1M o (o) = —2f(2) — (1-2f(2) (@) = +1

x

Vax # 0 And since f(0) = 1 = 0+ 1, we get | f(z) =z + 1| Vz, which

indeed is a solution

Find all functions f : R — R such that for all reals x, y, z it holds that

flz+ fly+2)+ f(flz+y)+2) =2y
solution

Let P(x,y, z) be the assertion f(z+ f(y+2))+ f(f(zx+y)+ 2) = 2y Let
f0)=a

Plx—a, 5%, 55%) = fl@)+ f(f(554) + 5
P(55%,0,%55%) = f(*7* + f(%5%)) =0

And so m which indeed is a solution, whatever is the real a
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The set of all solutions of the equation f(zy) = f(z)f(y) is :

a) f(x) =0Vab) f(z) =1Vzc) £f(0) =0and f(z) = "2 where h(z)
is any solution of Cauchy equation h(xz 4+ y) = h(z) + h(y) d) f(0) =0
and f(z) = sign(z)e"™ 12D where h(z) is any solution of Cauchy equation
Mz +y) = h(z) + h(y)

If you restrict to continuous solutions, then you get : a) f(x) = 0 V.
b) f(z) = 1 Vx ¢) f(z) = |z|* where a is any positive real d) f(z) =
sign(z)|x|* where a is any positive real

Does the equation = + f (y + f(z)) = y + f (x + f(y)) have a continuous
solution f: R — R?
solution

Let P(x,y) be the assertion x + f(y+ f(x)) =y + f(x + f(y)) Let g(z) =
f(z)—z P(z,y) becomes new assertion Q(z,y) : x+g(x)+g(x+y+g(z)) =
y+9g(y)+g(x+y+g(y)) From this equation, we get that g(z) is injective
and so, since continuous, monotonous.

Qz, —z) = z+g(x)+9(9(x)) = —z+g(—z)+g(9(—)) and so z+g(z)+
g(g(z)) is an even function. But if g(x) is increasing, « + g(x) + g(g(z))
is increasing, so injective, and so cant be even. So g(x) is decreasing.
Looking at Q(z,y), we immediately get then that lim,_, ., g(z) = 400
and lim,_, 4 g(2) = —oo (il any of these limits was a finite value, Q(z, y)
would lead to contradiction : one side infinite, the other finite).

Writing Q(z,y) as f(z)+g(y+f(2)) = f(y)+g(z+f(y)), we get that f(x
is injective too, and so monotonous. Writing Q(z,y) as —y+ f(y+ f(x)) =
f)+g(x+f(y)), we get that limy_, o f(x) = —oco0 and lim,_, _ f(z) =
—00, in contradiction with the fact that f(x) is monotonous.

[u][b]So no such continuous solution.[/b][/u]

Find all polynomials P(z) of the smallest possible degree with the follow-
ing properties:
[b](i)[/b] The leading coefficient is 200; [b](ii)[/b] The coefficient at the

smallest non-vanishing power is 2; [b](iii)[ /b] The sum of all the coefficients
is 4; [b](iv)[/b] P(—1) =0, P(2) =6, P(3) = 8.

solution

(iii) implies f(1) =4 (ili))+(@v) imply f(z) =2(z+ 1)+ (z+1)(z - 1)(x —
2)(:}5:5()@)@) (i) implies f(x) = 2(x+1)+200(z+1)(z—1)(z—2)(z—3)Q(x)
wit ) monic

Q(z) = 1 is not a solution (smallest non vanishing power summand is
—1998) Q(x) = = + c¢ implies that the powers 1 and 0 summands are
(1000¢ — 1198)x + 2 — 1200¢

¢ = 0 gives smallest non vanishing power summand is 2 and so is a solution

¢ = 555 gives smallest non vanishing power summand is (5 — 1198)z and

so is not a solution
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Hence the unique answer : ’ flz) =2(x+1) 4+ 200z(z + 1)(z — 1)(x — 2)(z — 3) ‘

111. Find all functions f : R — R satisfy the following equation f(f(z —vy)) =
f@)fy) + f(@) = fly) —zy

solution

Let P(z,y) be the assertion f(f(z —y)) = f(2)f(y) + f(z) — f(y) -y
Let f(0) =a

Notice that the summand xy in RHS implies that f(z) can not be bounded.

P(2,0) = f(f(z)) = (a+1)f(x)—a And so (squaring) : f(f(2))* = (a+
1)?f(2)? —2a(a+1)f(z) +a® P(f(x), f(z)) = f(f(2))* = f(2)*+f(a)
Andso (a+1)2f(x)?—2a(a+1)f(z)+a? = f(x)?+ f(a) And since P(0,0)
implies a? = f(a), we get : af(z)((a +2)f(x) —2(a+1)) =0

Setting « = 0 in this last equality, we get a?(a® —2) = 0 and so a = 0 or
a?=2

If a® = 2, then af(z)((a+2) f(z) —2(a+1)) = 0 implies f(z) € {0,221}

a+
bounded, in contradiction with original equation. So ¢ = 0 and P(x,x)

= f(x)?=2%Vx

Let then x,y ¢ {0,1} such that f(z) =z and f(y) = —y: If f(f(x—y))
x —y, P(x,y) becomes zy = y, impossible If f(f(x —y)) =y — =z, P(z,y
becomes xy = x, impossible So : either f(z) = x Vz # 1 either f(z) = —
Ve # 1

If f(z) = o Vo # 1, then P(3,1) = 2=3f(1)+3— f(1) — 3 and so
f(1) =1 and so f(z) = « Vo If f(z) = —x Vo # 1 then P(2,0) —
2 = —2, impossible

~

8]

Hence the unique solution : | f(x) = « | V2 which indeed is a solution

112. Find polynomials f(z), g(z) and h(z), if they exist, such that for all z,
[f(@)] = lg()| + h(z) = —1if © < =15 [f(2)] - |9(z)| + h(z) = 3z + 2 if
-1 <x<0;
|f(z)| = |g(x)| + h(zx) = —2zx+2if x>0

solution

If (f,g,h) is solution, so are (£f,+g,h). So wlog say highest degrees
coefficicients of f, g are positive.

1) If both f,g have even degrees : Then |f(z)| = f(z) and |g(z)| = g(z)
when © — oo, which is impossible (values of |f| — |g| + h are different
when z — +00)

2) If both f,g have odd degrees : When z — —oo, we get |f| = —f and
lg| = —¢g and so —f + g+ h = —1 When z — +o0, we get |f| = f and
lgj=gandso f—g+h=2-22Soh(z)=4%—zand f-g=3—2
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114.

Then 3z +2 canonly be f+g+hor —f—g+h:21) f+g+h=3x+2

Then f(z) = 3(x + 1) and g(z) = Sz which is a solution

22) —f —g+h =3z +2 Then f(z) = —3z and g(z) = —3(z + 1),
impossible (we choosed highest coeflicients positive)

3) If degree of f is even and degree of g is odd : When & — —o0, we get
|f| = fand |g| = —gand so f+g+h = —1 When  — 400, we get |f| = f
and |g| :gandsof—g—l—h:Q—QmSog(x):x—%andf—i—h:%—m
Then 3z 4+ 2 can only be —f +g+hor —f —g+h:31) —f+g+h=
3z+2 Then f(z) = —3(x+1), impossible (we choosed highest coefficients
positive)

3.2) —f—g+h =3z+2 Then f(z) = —2x, impossible (we choosed highest
coefficients positive)

4) If degree of f is odd and degree of g is even : When & — —oo, we get
|f|=—fand |g| =g and so —f — g+ h = —1 When & — 400, we get
|f|=fand|g|=gandso f—g+h=2—2zSo f(x) = %fx , impossible
(we choosed highest coefficients positive)

1
Hence the four solutions : | (f,g,h) = (:tg(:n +1), :i:g:v, 5~ x)

Find all functions f : Z\{0} — Q, satisfying f (%) = M whenever
,y, =% € Z\ {0}.

solution
Let P(z,y) be the assertion f (%) = w
P(1,2) = f(2)=f(Q1) P(3,3) = fB)=/(2)=/Q1) P2,4) =
f4)=r2)=rQ)
Let then integer n > 2 : P(n,2n) = f(2n) = f(n) P(n —1,2n+ 1)
— f@n+1)=2f(n)— f(n—1)
And so (induction) f(n) = f(1) Vn € N
Let thenn e N: P(n+3,—n) = f(—n)=2f(1) — f(n+3) = f(1)

Hence the solution : | f(z) = a|Vx € Z \ {0} and for any a € Q

Find all functions f : R — R such that for all real =,y

f(F@)? + f(y) = 2f(2) +y.
solution

Let P(x,y) be the assertion f(f(x)?+ f(y)) =z f(z) +y Let f(0) =a

P(0,0) = f(a®+a) =0 and then P(a® +a,2) = f(f(z)) =z and
f(z) is bijective and involutive.

Then P(f(1),a) = f(1)=f(1)+aandsoa=0
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116.

117.

P(f(z), f(y)) = f@®+y) =af(@)+ fy) P(f(z),0) = [f(z*) =
xf(z) Subtracting, we get f(z% +y) = f(2?) + f(y)

So f(z+vy) = f(x) + f(y) Yo > 0,Vy and it’s immediate to conclude
fx+y) = f(z)+ fy) Va,y.

P(f(2),0) = f(z) = of(x) P(f(x+1),0) = f(@®+20+1) =
(z4+1)f(x+1)

gubtracting, we get 2f (x)+f(1) =2 f(1)+f(z)+f(1) and so f(zx) = 2 f(1)

Plugging back in original equation, we get two solutions : f(z) = z Va
f(z) = —x Vx

Find all continuous function f: R — R such that f(z+y) = f(x)+ f(y) +
xy(z +y)(2? + 2y + 3?).
solution

5 -
Let g(x) = f(r) — % and the equation becomes g(z +y) = g(z) + g(y)
and so g(z) = ax since continuous

5
Hence the solutions : | f(z) = % + az | Vo and for any real a

Find polynomial P(z) such that P(x) is divisible by (2 +1) and P(x)+1
is divisible by 2 + 22 + 1
solution
So P(z) = (2® + 1)Q(x) and P(z) + 1 = (2* + 22 + 1)R(z)
= (22 +1)Q(x) +1 = (23 + 22 + 1)R(x)
= R(i) =i and R(—i) = —i and so R(z) —x = (z® +1)S(x)
= Qx)=2>+2 -1+ (23 +22+1)S(x)

— | P(a) = (2 + )(@® + 2~ )+ (2® + (& + 2> + 1)S(x) | which in-
deed is a solution whatever is polynomial S(z)

Find all functions f : R — R such that f(z + f(y)) = 2f(zf(y))
solution

Let P(z,y) be the assertion f(x + f(y)) = 2f(zf(y))

f(z) =1V is not a solution and so Ju such that f(u) # 1

P(f(ftf;‘ll,u) = f(v) =0 with v = f{q(s)—l

P(0,v) = f(0) =0 and then P(z,v) = | f(z) = 0| Va which indeed

is a solution.
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118. Find all functions f : Q* — Q7 such that for all 2,y in Q f(f?(2)y) =
23 f(xy) Here f2(x) means f(x) x f(x)

solution

Let P(z,y) be the assertion f(f2(x)y) = 2°f(xy)

P(z,1) = f(f*(z)) = 2*f(x) and so f(x) is injective.

Pz, f2(y)) = [(f*(2)f*(y)) = 2*f(2f*(y)) Py,x) = [([*(y)z) =
Y f(zy) Pzy,1) = 2%y’ f(ay) = f(f*(zy))

Multiplying these lines (and since no factor may be zero), we get f(f2(z)f?(y)) =
F(f%(zy)) and so, since injective and positive : f(zy) = f(x)f(y)

(( If you agree with f(z) injective and f(f%(z)f2(y)) = f(f?(xy)) then,
since f(u) = f(v) implies u = v, we get f2(z)f%(y) = f2(xy)

And since f(x) > 0 Vz, we can just take square root and we get f(z)f(y) =
f(zy))) P(z,y) becomes then (f(f(x)))* = 2°f(x) and f(zy) = f(z)f(y)
Setting g1(z) = xf(z), this is equivalent to (g1(g1(z))? = g¢5(z) and
g1(zy) = 91(x)g1(y)

From there we get that ¢;(z) must always be the square of a rational and
s0 it exists a function go(z) from QT — QT such that : g;(z) = go(2)?
and 50 : (g2(92(2))" = g3(x) and ga(zy) = g2(2)92(y)

And this may be repeated infinitely, building a sequence of multiplicative
functions g, (z) such that : g,_1(z) = ¢2(x) and (gn(gn(2)))*" = g5 (2)

1
And so the only possibility is g, (z) = 1 Yz and g(x) =1 and so| f(z) = —
x

which indeed is a solution.

119. Find all functions f : R — R such that f (z + f(y)) = f(z+xy)+yf(l1—=z)
for all real numbers = and y.

solution

Let P(z,y) be the assertion f(x + f(y)) = f(z + zy) + yf (1 — x)

DI f(1) #0 === P(0,z) = [f(f(x)) = f(0) + /(1) and so f(x) is
injective. P(0,0) = f(f(0)) = f(0) nd o f(0) = 0 (since injective)
Let then o # 0 : P({®) 2) — f( )y = 0 and so 1 — (w):0

x b

(since injective) So f(x) = = V& which indee +d is a solution.

2)If f(1) = 0 === P(0,0) = f(f(0)) = f(0) P(L, f(0)) = f(0)>=0
and so f(0) =0 P(0,z) = f(f(x))=0

Jl;’((l),f(w—l)) = [(fe-1)+1)=0P(1z-1) = f(flz-1)+1) =
And so f(x) =0 Va which indeed is a solution.
[u][b]Hence the solutions [/b][/u]: f(x) =z Vz f(x) =0 Vx
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121.

Find all functions f such that [f(z).f(y)]? = f(z+y).f(z—y) ( z,y Reals
)

solution

As is, we have at least infinitely many solutions : f(x) = 0 Vz f(x) =

eh(®)* where h(z) is any solution of Cauchy equation f(x) = —eah(@)?

where h(x) is any solution of Cauchy equation And also any product of
such solutions

If we add the statment of continuity Let P(z, y) be the assertion f(z)?f(y)? =
fx+y)flz—y)

f(z) =0 Vz is a solution and let us from now look for non all-zero solu-
tions. Let u such that f(u) #0

P(u,0) = f(u)?f(0)? = f(u)? and so f(0) = 1 f(x) solution implies
—f(x) solution and so wlog say f(0) = +1

If f(t) = 0 for some t # 0, then P(§,5) = f(5)* = f(¢) and so
f(£) =0and so f(55) = 0Vn € N So continuity would imply f(0) = 0,
impossible.

So f(z) > 0V and we can write f(z) = e9(*) for some continuous function
g(x) such that : ¢g(0) = 0 New assertion Q(z,y) : 2¢g(x) + 2¢9(y) = g(x +
y)+9(x—y) Va,y

Let € R and the sequence a,, = g(nz) with ap =0 Q((n + 1)z,z) =
Anyo = 20,41 — ap + 2a; whose solution is a,, = a;n?

So g(nz) = n%g(x) Vz,Vn € N It’s immediate to show that this is still true
forneZ

9(p) = p*9(1) ¥p € Z and so p*g(1) = g(¢%) = ¢*9(%)
So g(x) = 22g(1) Vx € Q and continuity again gives g(z) = az? Vo € R
[u][b]Hence the continuous solutions of the equation [/b][/u] (it’s easy to

check back that they indeed are solutions) : f(x) = 0 Va f(x) = e**
Va € R and for any real a f(z) = —e%” Yz € R and for any real a

Find all functions f : R — [0; +00) such that:
F@® +y?) = f(2® = y*) + f(2zy)
for all real numbers z and y.
solution

Let P(x,y) be the assertion f(x? + y?) = f(2? — y?) + f(2zy)
P(0,0) = f(0)=0 P(0,2) = f(2%) = f(—2?) and so f(x) is even.
Letz>y>22>0

(a) : P(\/ 552\ 55Y) = fl2) = f(y) + f(Va? = y?)
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123.

P(y/ %5 7) =)+ Wy -2
P55/ 557) =[x+ f(WVa? - 22)
(a)+(b)-(c) : fF(Va? —2%) = f(Va? —y?) + F(Vy? — 2?)

Writing f(x) g(x?), this becomes g(z + y) = g(x) + g(y) Va,y > 0 And
since g(z) > 0, we get g(r) = ax and so f(z) = ax? Vax > 0 and for some
a>0

ﬁ

And since f(z) is even, we get | f(z) = az? | Vo and for any real a > 0
which indeed is a solution.

Given two function f,g: R — R, such that f(x + g(y)) = 3z + y + 12 for
all z,y € R. Find the value of g(2004 + £(2004))

solution

Let P(x,y) be the assertion f(x + g(y)) =3z +y + 12
P(z —¢(0),0) = f(z) =3z —3¢(0) + 12
P(—g(z),z) = f(0) = —3¢g(x)+z+ 12

So f(x) = 3r 4+ a and g(z) = § + b with a + 3b = 12 which indeed are
solutions

Then g(z + f(z)) = g4z +a) = %—5—%% = %4—4
And so | g(2004 + £(2004)) = 2676 |

Find all functions f : R — R such that

fla+f)=f@*+3)+2z- fy) + f(z) =3, Ve,yeR.
solution

Let P(z,y) be the assertion f(z + f(y)) = f(y*> +3) +22f(y) + f(x) — 3

Let f(0) =

P(x,y) may be written f(z+ f(y)) — f(z) = (f(y* +3) —3) +22f(y) So

since f(z) = 0 Vz is not a solution, we get that any real  may be written

z = f(u) — f(v) for some u,v
)

Let g(z) = f(z) —2?—a. P(x,y) becomes g(x+ f(y)) = +f(y?+3)—

)
f(y)* =3 P(0,y) becomes g(f(y)) = f(y* +3) — f(y)* — 3 Subtracting,
)

g(x
we get new assertion Q(z,y) : g(z + f(y)) = g(x) + g(f(y

)
(a) : Qz — f(2),y) = g(z+[f(y) = f(2) = g(z = f(2)) + 9(f(y)) (b) :
Qr—[(2),2) = 9(x) = g(z—f(2))+9(f(2)) () : Qf(y)—f(2),2) =
9(f(y)) = 9(f(y) = [(2))+9(f(2)) (a)-(b)+(c) : gla+[(y)—[f(2))—g(x) =

9(f(y) = f(2))
And since any real may be written as f(y) — f(z), we get g(z +y) =
9(x) +9(y)
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125.

And so we get f(z) = 2% +a+g(z) where g(z) is some solution of additive
Cauchy equation.

Plugging this in P(0,z) : f(f(z)) = f(z* +3) + a — 3, we get :
a’+g(x)? +2ax? +222g(x)+2ag(x)+g(a) +g(g(x)) — 622 —6—g(3)—a =0
Replacing in the above line x — px with p € Q and remembering that
9(pzr) = pg(x), we get : a® + p*g(x)® +2a2%p? + 22%g(2)p* +2ag(z)p +
g(a) +g(g(z))p —62?p* —6 —g(3) —a =0

And this is a polynomial in p which is zero for any p € Q and so this is
the null polynomial. So coefficient of p? is zero and so g(x) = 0 Va

So f(z) = 2% + a and plugging this in original equation, we easily get
a=3

Hence the unique solution | f(x) = 2% + 3

Find all functions f : R — R such that for x € R\0,1:
fG)+fA-a)=2

solution
Let P(z) be the assertion f(1)+ f(1—2) =2
(@) : P(3) = flo)+f(5H) =2
(b): P(l—2) = f(;5)+fl@)=1-z
(€): P(;%5) = f(5H) + /(i) =75

(a)+(b)-(c) : | f(x) = 5% 2 3m-1) Vo ¢ {0,1} and f(0), f(1) tak-

ing any value we want. And it’s easy to check back that this indeed is a
solution.

Find all pairs of functions f, g : Z — Z such that:

flg(x) +y) =9(f(y) + )
holds for arbitrary integers x,y and g is injective.

solution

I didn’t notice why we need Z instead of R in this problem, but anyway.
fl9(@) +y) =9(f(y) +2) = g(f(9(z) +y) +2) = 9(9(f(y) + 2) + 2) &

& f9(2) +9(@) +y) = 9(9(f(y) + 2) +2) &

< g(f9(z) +y) +2) =9(g(fy) +2)+2) =

= flg(@)+y)+z=9(f(y)+z)+2z < 9(fy)+2)+z=g(f(y)+2)+=
Put z = —f(y) : g(0) + = + f(y) = 9(f (y) + x)
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Putz=—f(y)+t:gt)=t+g(0)=t+c.

Our statement now looks as follows f(z +vy +¢) =z + f(y) + c.
Put z = —c—vy: f(y) =y + f(0).

[b]Answer: f(z) =z +c1,9(x) =+ 2

126. Find all function f: R — R such that:

f(f(@)+y) = f(@® =) +4f(x).y, Yo,y €R
solution

f(z) = 0 Vz is a solution. Let us from now look for non allzero solutions.
Let P(x,y) be the assertion f(f(z)+y) = f(2? —y?)+4f(x)y Let f(u) =
v#0

1

~—

Any real may be written as « = f(a)—f(b) forsome a,b e R ============c=c=======
) Plu,gr) = flutg)=fu® —(5)*)+ 5 (b): Plu,—g;
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<
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non allzero solution ======================= P(0,u)
= f(u) = f(-v®) = f(u?*) P(u,0) = f(f(u)) = f(u®) And so
f(f(u)) = f(u) and so, using 3) : f(u) =0 and so contradiction

Hence the unique solution : | f(z) = 0|V
127. Find all surjective functions f : N — Nif f(n) >n+ (-1)",Vn € N.
solution

Let S, be the set of natural numbers solutions of the equation x4 (—1)* <
n : Obviously, this set is the set of all even numbers < n — 1 and all odd
numbers < n + 1 and so :

Sop = {1,2,3,..,2p — 1,2p + 1} Sopy1 = {1,2,3,.... 2p + 1}

So S; ={1}andso f(1) =1

We clearly have f~"([1,n]) € Uy Sk So fH([1,2p]) € {1,2,3,...,2p—
1,2p+1} And f=3([1,2p+1]) €{1,2,3,...,2p+ 1}
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129.

S](; |f~1([1,n])] = n and this implies that f~*({n}) = f~1([1,n)\f~([1,n—
1

[u][b]Hence the unique solution [/b][/u]: f(1) =1 f(2p) =2p+1V¥p >1
fEp+1)=2pVp> 1

It is true,for any quadratic functions f(z) and for any distinct number
a,b,c, f(a) =be, f(b) = ac, f(c) = ab. Find f(a+b+c)

solution

I had a doubt about the fact that P(x) was monic but I understood that
you used the constant term to conclude this (and this was the reason for
which you distinguished the case abc = 0).

Direct method is less elegant but works fine too : let f(z) = ux? + vz +w
: (1) : wa® +va+w=be (2) : ub®> +vb+w =ac (3) : uc® +vc+w = ab
(2)-(1) : w(b®*—a?)+v(b—a) = c(a—b) and so, since distincts : u(a+b)+v =
—c (3)-(1) : u(c®* = a?) + v(c — a) = bla — ¢) and so, since distincts :
u(la+c¢)+v=-b

Subtracting ; u(b—c¢) =b—cand so u =1 and so v = —a — b — ¢ and so,
using (1) : w = ab+ bc+ ca

And f(z) =2?> - (a+b+c)z+ab+bc+ca and f(a+b+c) = ab+bc+ca

Determine all monotone functions f : [0; +00[— R such that
fle+y) = f@) = fly) = fley +1) = f(zy) — f(1), for all 7,y > 0 and
fB)+3f(1) =3£(2) + f(0).

solution

If f(z) is solution, then so is f(x) + a and so Wlog say f(1) =1

Let P(xz,y) be the assertion f(z+y)— f(z)— f(y) = flzy+1)— f(zy)—1
Let m,n,p € N and let g(z) = f(§;) Comparing P(%", %) and P(Q?", =)
we get : g(2m +n) — g(2m) — g(n) = g(2n +m) — g(2n) — g(m)

1) Let us look for all solutions of the following problem : "Find all functions
g(z) from N — R such that : g(2z+y)—g(22) —g(y) = 92y +2z) —g(2y) —
g(z) Ya,y € N"

The set S of solutions is a R-vector space. Setting y = 1, we get g(22+1) =
9(2z) + g(1) + g(z + 2) — g(2) — g(x) Setting y = 2, we get g(2x + 2) =
9(2z) + g(2) + g(x + 4) — g(4) — g(z) From these two equations, we see
that knowledge of ¢g(1),4(2),9(3),9(4) and ¢(6) gives knowledge of g(x)
Vz € N and so dimension of S is at most 5. But the 5 functions below
are independant solutions : g1(z) = 1 go(2) = 2 g3(v) = 22 gu(x) = 1
if x =0 (mod 2) and gs(x) = 0if x # 0 (mod 2) gs(z) = 1if z =0
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131.

(mod 3) and g5(x) = 0 if 2 # 0 (mod 3) And the general solution is
g@)=a-2°+b-z+c+d- gs(x) +e-gs(z)

2) back to our problem So f(3) = apr? + byx + ¢, + dpga(x) + epgs(z)
Ve e N

Choosing © = kp, we get f(k) = a,k?p? + bykp + ¢, + dpga(kp) + g5 (kp)
and so app2 = a and b,p = b for some real a,b Choosing = = 2kp, x = 3kp
and x = 6kp, we get ¢, =cand d, = e, =0

So f(£) =aZ +bE +cVreN

And so f(z) = ax?® + br + c Vo € QF

f(z) monotonous implies then a =0 or 2 >0

f(x) monotonous implies then f(x) = ax? + bz + ¢ Vz € Rt

f(3) +3f(1) = 3f(2) + f(0) implies then f(z) = az® + bx + ¢ Vo € R}
and it’s easy to check back that this mandatory form indeed is a solution.

[u][b]Hence the answer [/b][/u]: ’ f(x) = az® 4+ bx + ¢ ‘ Vx > 0 and for any
real a, b, c such that ab >0

"Find all polynomials p(z),q(z) € R[X] such that p(x)q(z + 1) — p(x +
1)g(xz) =1Vz e R"
solution

Notice that if the equality is true for any x € R, it’s also true for any
zeC

We get : p(z)q(z +1) — p(z + 1)q(z) = 1 p(z — 1)q(z) — p(x)g(z —1) =1
And so, subtracting p(x)(¢(x — 1) + ¢z + 1)) = ¢(x)(p(z — 1) + p(z + 1))
But no real or complex zero of p(x) may be a zero of g(x) else p(z)q(x +
1) —p(z+1)g(z) = 1 would be false. So p(z)|p(z —1) + p(x + 1) and since
they are two polynomials with same degree, we get :

p(z+ 1)+ p(x — 1) = ap(z) (and same for ¢(z) with same constant a).

p(z+1) | p(z—1)
p(z) + p(z)

So p(x+1) — p(z) = p(x) — p(x — 1) and so p(z + 1) — p(x) = b constant
(since polynomials).

So p(x) = bxr +cand ¢(z) =bz+ ¢

Writing this as = a and setting x — 400, we get a = 2

Plugging this in original equation, we get ¢b’ — b’ = 1

Hence the answer p(z) = axz + b ¢(z) = cx + d for any real a,b,c,d such
that bc —ad =1

The function f(x) defined by

_ b .
flx) = g;fid. Where a, b, c,d are non zero real number has the properties

F(19) =19 and f(97) = 97.
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133.

And, f(z(z)) = z. for all value of = except —%. Find the range of f(z)

solution
fl@)=x— mzﬂii:;)gﬁ_b and so cx? + (d —a)x — b = c(z —19)(z — 97) and
so ©=% = —116 and £ = —1843

_ (1164u)z—1843
- z+u

Since f(f(x)) = x Vax # —u, we get f(z) # —u Vo # —u The equation
f(r) = —uis x # —u and (116 +2u)z = 1843 —u? and so : either u = —58
and so we have no solution to this equation either —(116+2u)u = 1843 —u?

Setting ¢ = u, we get f(z)

(and so the only solution is x = —u) but then we get —u € {19,97},
impossible
So u = —58 and f(z) = 382=1843 and it’s easy to check that this function

indeed is a solution.

And so| f(R\ {~2}) = B\ {58)

Let E be the set of all bijective mappings from R to R satisfying
f@)+ 71t =2, vt € R,

where f~! is the mapping inverse to f. Find all elements of F that are
monotonic mappings.
solution

f(x) strictly (since bijective) monotonic implies f~!(x) strictly monotonic
in the same direction (both increasing or both decreasing) and since their
sum is increasing, we get that f(x) is increasing.

Suppose now that f(x) — x is not constant. Let then u # v such that
flwy—u=a>b=fv)—v

Using f(x)+ f~1(x) = 2z, it’s easy to show that f(u+mna) =u+ (n+1)a
and flu+nb)=v+(n+1)bVneZ

b a—b —
na—nb = v+nb>u+na = f(v+nb) > f(u+na) (since increasing)
= v+n+1)b>u+(n+1)a = “=¢ >n+1 And so contradiction.

Let then n = LZ:“J sothat n+1> %= >n: == >n = v—u>

So f(x) —x is constant and | f(z) = = + ¢ | Vz, and for any real ¢ And it’s
easy to check back that these functions indeed are solutions.

If
fle)+ fly)=f (fjfy) Vo,y € R and zy # 1
and
lim @ =2
z—0 X
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Then find f(z).
solution

Let g(x) from =] — 7; +5[— R defined as g(x) = f(tanx)

The functional equation implies g(z) + g(y) = g(x + y) Va,y,z +y € A
The second property implies that g(x) is bounded on some non empty
open interval containing 0

So we get g(z) = ax Vzr € A and second property implies a = 2 So
f(z) = 2arctanz Va

But this mandatory function obviously does not match the functional
equation (set z = y = v/3 as counterexample)

So no solution for this functional equation.

134. If
flay) =xf(y) +yf(x) Yo,y eRT
and f(x) is differentiable in (0, 00). Then find f(z).

solution

Let g(x) from R — R defined as g(x) = e~ * f(e”) and we get g(z +y) =
9(x) +9(y)
Since f(x) is differentiable in (0, +00), g(z) is continuous and so g(x) = ax

And so| f(z) =axInz |Vz > 0 and f(x) = any value for x < ([

135. Find all functions from rationals to reals such that f(xy)=f(x)+£(y)
solution

Let P(z,y) be the assertion f(xy) = f(x) + f(y)

P(1,1) = f(1)=0P(-1,-1) = f(-1) =0 P(z,-1) =
f(=z) = f(z)

P(z,3) = f(3)=—f(x)

So f(z") =nf(x) Vx € Q*,Vn e Z

And since any positive rational may be written in a unique manner as
x = [[p;"* with p; prime and n; € Z*, we get f(z) =>_ n;f(p;)

And it’s easy to see that this indeed is a solution.

[u][b]Hence the answer [/b][/u]: We can choose in any manner the values
f(p;) for all primes and from there : For any rational z > 0: f(1) = 0 For
x#1: x=]]p! with p; prime and n; € Z* and then f(z) = > n;f(p;)

K2

For any rational z < 0: f(z) = f(—x)
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136.

137.

138.

Let a function g : Ny — Ny satisfy ¢(0) = 0 and g(n) = n — g(g(n — 1))
for all n > 1. Prove that:

a) g(k) > g(k — 1) for any positive integer k. b) There is no k such that

gk —1) = g(k) = g(k +1).
solution

First notice that g(n) < n Vn € Ny Let us then prove with induction that
gn+1) —g(n) € {0,1} Vn € Ny

9(0) =09(1) =1-9(g(0)) =1 9(2) =2 = g(9(1)) =1

and so g(k+ 1) —g(k) € {0,1} Vk € [0,1]

Suppose now g(k + 1) — g(k) € {0,1} Vk € [0,n — 1] for some n > 2 € N
g(n+1)=g(n) = 1-(g(g(n))—g(g(n—1))) We know that g(n)—g(n—1)
{0,1} and so : If g(n) —g(n—1) = 0, we get g(g(n)) —g(g(n—1)) = 0 and
sog(n+1)—g(n) = 11f g(n) —g(n—1) = 1, we get g(g(n)) —g(g(n—1)) =
g(g(n—1)+1)—g(g(n—1)) € {0,1} (since g(n—1) < n—1 and using then
the induction property) And so g(n+1) — g(n) =1 — (g(g9(n)) — g(g(n —
1))) € {0,1} End of induction step

And so g(n+1) > g(n) Vn € Ny and part a) is proved.

Part b) is quite simple : If g(n) = g(n — 1), then g(g(n)) = g(g(n — 1))
and so g(n+ 1) —g(n) =n+1-g(g(n)) —n+g(g(n — 1)) = 1 and so
g(n+1) # g(n) Q.E.D.

Does there exist f: N— > N such that 3n < f(n) + f(f(n)) < 3n+17?

solution

fF) + f(£(1)) € 3,4 and so f(1) € {1,2,3}

If f(1) =1 then f(1)+ f(f(1)) =2 ¢ [3,4] and so impossible If f(1) =2
then f(f(1)) € [1,2] —If f(1) = 2 and f(f(1)) = f(2) = 1 then f(2) +
f(f(2)) =3 ¢ [6,7] and so impossible —If f(1) = 2and f(f(1)) = f(2) =2
then f(2) + f(f(2)) = 4 ¢ [6,7] and so impossible If f(1) = 3 then
f(f(1)) = f(3) = 1 and then f(3)+f(f(3)) =4 ¢ [9,10] and so impossible

So no such function

find the polyminal with coefficient in R such that:

Ve,y € R
P(LL'ZOIO + y2010) _ (P(LL'))QOIO =+ (P(y))QOIO

solution
Let A(z,y) be the assertion P(z" +y") = P(z)" + P(y)" where n = 2010
A(z,0) = P(z™) = P(z)"+P(0)" A(y,0) = P(y") = P(y)"+P((0)"

Subtracting these two lines from A(z,y), we get P(z™ + y™) = P(z™) +
Py") —2pP(0)"
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139.

140.

And so P(z +y) = P(z) + P(y) + a Ya,y > 0 and for some ¢ € R And so
P(z+y) = P(x) + P(y) + a Va,y and for some a € R And so P(z) —a is
a continuous solution of Cauchy’s equation.

So P(x) = cx + a for some a,b and, plugging in original equation, we get
the solutions :

P(z) =0V
P(z) = 2~ 3005 Vg
P(z) =z Vx

Given f(x) = ax®+bx? + cx +d , such that f(0) =1, f(1) =2, f(2) =4,
f(3) = 8. Find the value of f(4)

solution

f0O)=1 < d=1

el) : (1)72 < a+bt+c=1(e2): f(2)=4 <= 8a+4b+2c=3
e3): f(3) =8 < 2Ta+9b+3c="7

e2)-2(el) : 6a+2b =1 (e3)-3(el) : 12a + 3b = 2 This gives a = + and
0

And so ¢ = 3 and f(z) = £43u+6 andm

Does There Exist A Function
f:N—=>N

Vn > 2
FF=1)) = fln+1) = ()

SN NS

solution

f(n+1)—f(n)>1Vn>2andso f(n) > f2)+n—-2>n—-1Vn>3

So:Vn>5: f(n—1)>n—2>3andso f(f(n—1)) > f(n—1)—1>n-3
and so f(n+1) — f(n) >n—3

Adding these lines for n = 5,6, 7, we get f(8)— f(5) > 9 and so f(8) > 10.
Let then a = f(8) > 10

Adding then the lines f(f(n —1)) = f(n+1) — f(n) forn =2 - a — 1,
we get f(a) = £(2) = 423 F(F(K)
And, since a > 10, we can write f(a)— f(2) = f(f(8))+ 30> Lrzs f(f(K))

and so, since f(8) = a, this becomes : —f(2) = Zk Lrxs f(f(K)), clearly
impossible since LHS < 0 while RHS > 0

And so no solution
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142.

143.

144.

If f:R — Rsatisfies f(z +y) = f(x) - f(y); then is it necessary for f(z)
to be of the form a” for some a € R ?

solution

No.

First notice that f(u) =0 = f(z) = f(xr —u)f(u) = 0 Vo and so a
solution f(z) = 0Vw Then, if f(z) # 0Vz, we get f(z) = f(£)* > 0 and so
we can write g(z) = In f(x) and we have the equation g(z+y) = g(x)+g(y)

So g(z) is any solution of Cauchy’s equation and we have the general
solutions :

f(z) =0Vz f(z) = e9®) where g(z) is any solution of Cauchy’s equation.

[u]If you add some constraints [/u](continuity, or In f(z) upper bounded or
lower bounded on some interval, then we get g(x) = cx and so f(z) = a*
for some a > 0|

Give all functions f : R+ — R+ such that (z+vy)f(f(2)y) = 22(f(f(x) +
f(y)) for all x,y positive real.

solution

Let P(z,y) be the assertion (z + ) f(f(z)y) = 22f(f(x) + f(y))
If f(a) = f(b), then, comparing P(a,y) and P(b,y), we get a;;y = b:—f
and so a = b and f(z) is injective.

PSS 1) = f(F(155)) = f(f(155

+f(1)
+2

%)
And so, since injective : f(l%‘/g) = f( \/5) + f(1) and f(1) =0, impos-

sible.
So no solution to this equation.

Find all functions f: R — R such that f(z + y) = maz(f(x),y) +
min(z, f(y))

solution
Let P(x,y) be the assertion f(x + y) = max(f(x),y) + min(z, f(y))
(a) : P(z,0) = f(z) = max(f(x),0)+ min(z, f(0)) (b) : P(0,z) =
f(x) = min(0, f(x)) + max(f(0), )
Using the fact that max(u, v) +min(u, v) = u+v, the sum (a)+(b) implies
f(x) =+ 1(0)
Then P(0, f(0)) = f(0) = min(0,2/(0)) and so f(0) =0

Hence the unique solution : | f(x) = x| Va, which indeed is a solution

Find all functions f: R — R such that for every z,y € R f(z + f(y)) =
flz—=fy) +4zf(y)

solution
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146.

Let P(z,y) be the assertion f(x + f(y)) = f(z — f(y)) + 4z f(y)

f(z) = 0Vz is a solution and let us from now look for non allzero solutions.
Let u such that f(u) # 0 Let A = {2f(x) Vz € R}

Plsfimu) = @ = 2f(sf5; + F(u) = 2f (55 — f(w) So any @ € R
may be written as x = a — b where a,b € A

Let then g(z) = f(z) —2® Let a = 2f(y) € A P(z + f(y),y) =
f(x+a) = f(z) 4+ 2az + a® and so g(x +a) = g(z) Ve e R, Va € A

Sog(x —b)=g(z) VzeR,Vbe A

Sog(zx+a—>b)=g(xr—b)=g(z) Vx €R, Va,be A

And since we already proved that any real may be written as a — b with
a,be A, we get g(x +y) = g(z) Vz,y € R and so g(z) = ¢

Hence the two solutions : f(z) = 0 Vo f(x) = 22 +c¢ Vo and for any ¢ € R,
which indeed is a solution

Find all functions f : Z* — Z* such that f(a) + b divides (f(b) + a)? for
all a, b positive integers.
solution

Let P(z,y) be the assertion f(z) + y|(f(y) + z)?

Let > 0 and p > f(x) prime. P(p — f(z),2) = f(p — f(x)) + x|p?
and so f(p — f(z)) € {p — z,p* — =}

Let A, = {p prime integers > f(z) such that f(p — f(z)) = p* — x}
Forp € Ay« Plp— f(2),y) = »* — 2 +yl(f(y) +p - f(2))

And so (subtracting LH S from RHS) : p?+y—x|x—y+(f(y)—f(x))(2p+
fy) = f(=))

But, for p great enough, |LHS| > |RHS| and RHS cant be zero for any
y and any p and so impossibility

So A, is upper bounded and 3N, such that Vp > N, f(p— f(z))=p—=z

Then, For p > N, : P(p— f(x),y) = p—xz+y|(f(y) +p— f(z))* And
so (subtracting LHS? from RHS) : p+y—z|(f(y) — f(z) —y+2)(2p+
fly) — f(x) +y — x) And (subtracting 2(f(y) — f(x) —y +x)LHS from
RHS=: p+y—a|(f(y) — f(x) —y +2)°

But, for p great enough, |[LHS| > |RHS| and so RHS must be zero for
any y and so f(y) —y = f(z) —x

So M Vz and for any a € Z>o which indeed is a solution
Vo,y € ZT f(f(z)+ f(y)) =x+y find all f:ZT —Z7.
solution

If f(z1) = f(z2), we get &1 = z2 and the function is injective
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148.

fle+1) = f(z
So f(z) = (f(2) - /(1
because

Write = f(2) = f(1) + f(2) = f(1) f(3)
fF@)+f(2)—f(1) ... fl@)=flz—1)+f(2)
And add all these lines.

Plugging this back in original equation, we get a = +1 and b = 0 and,
since in ZV :

A unique solution m Vz

f?(z) = f(x +y)f(xr —y) find all f:R — R functions
solution

Let P(x,y) be the assertion f(2)? = f(z +vy)f(x —y)

if f(u) = 0 for some u, then P(x,u —z) = f(z) = 0 and we get the
allzero solution.

So let us consider from now that f (x) # 0 Va

P(3,5) = o) = ()2 and so f(O > 0Vz

Let then g(z) = In ;%3 : we get the new assertion Q(z,y) : 2¢g(z) =
g9(x +y) + g(x — y) with g(0) =0

Q(z,z) = 2¢g(x) = g(2x) and so the equation is g(2z) = g(xr +y) +
9z —y)

And so g((z+y)+(z—y)) = g(z+y)+g(z—y) and so g(z+y) = g(x)+9(y)
And so g(x) is any solution of Cauchy equation.

[u][b]Hence the solutions [/b][/u]:

f(z) = a-e"® | vz and for any real a and any h(z) solution of Cauchy

equation, which indeed is a solution
Notice that a = 0 gives the allzero solution
Yz € Qt find all f functions f: QT — QT
a)fx+1)=f(z)+1

b)f(2?) = f(x)?

solution
From a) we get f(x +n) = f(z) +n
From b) we get f((2 +q)%) = f( + ¢)?

And so f(% +2p+ %) = (F(2) +9)* = f(2)* + 2f () + ¢*
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150.

But LHS = f(f;—;) +2+¢% = f(%)2 +2p+q% and so p = qf(%) andso
s(2)=2

Hence the solution : | f(z) = 2| Vz € Q1 which indeed is a solution.

Ve,y € ZT 1. f(2) =2 2.f(mn) = f(m)f(n) 3.f(n+1) > f(n) find all
f:Z* — 7T functions.

solution
Usingm=n=11in 2, we get f(1) =1
Let u>1€N. Let a,b,c,d € N such that £ > % > <
This implies 2% > u” and u? > 2¢ and and so, using 3 : f(2%) > f(u®) and
f(u?) > £(2°) and so, using 1 and 2 : 2% > f(u)® and f(u)? > 2¢ and so :

In(f(u
P> >
a nu c : a In(f(u c
So § > 15 = 3 implies § > 1(11((2))) >4
In(f(u)) _ lnu
So (ln(2)) = oy
So f(u)

Hence the result : | f(n) = n |Vn € N, which indeed is a solution.

Determine all functions f from the nonnegative integers to the nonnegative
integers such that f(1) # 0 and, for all z and y in the nonnegative integers:

f@)?+ f(y)? = fa® + 7).

solution

Let P(z,y) be the assertion f(z)? + f(y)? = f(2? + y?)
1) f(x) = « V integer = € [0,9] ==== P(0,0) = f(0) = 0 P(1,0)
= f()=1P1,1) = f(2)=2P(2,0) )
f(5) =5 P(5,0) = f(25) =25 P(5,5) = )
f8) =3 P(7,1) = f(7) =7P((2,2) = f(8
F(9) =9 P(9,2) — f(85) =85 P(6,7) —

2) f(z) =z Ve ===Letz >4 P(2z+1,2—2) =
f(522 +5) (x—l,a:+2) = f(2z -1+ f(=
so f(2z+1)% = f(2z — 1)? + f(z +2)% — f(z — 2)?

P2r+2,2—4) = f(22+2)2+ f(x —4)? = f(522+20) P(2—2,2+4)
= f(2z —2)%? + f(z +4)%? = f(52% 4+ 20) And so f(2z +2)? = f(2z —
2%+ fle+4)" = fz —4)?

And so knowledge of f(n) up to 2z > 8 gives unique knowledge of f(2z+1)
and f(2x + 2)

And since f(z) is quite defined up to f(9), there is at most one solution
f(z)

And since f(x) = x Vz is obviously a solution, this is the unique one.
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151. Find all functions f : R — R such that f(z? +y+ f(y)) = 2y + (f(2))?
for every =,y € R.

solution
Let P(z,y) be the assertion f(z? +y+ f(y)) = 2y + f(z)?
Df@y=0¢:>x_0::: (0,—%f(0)%) = f(something) =0 and

so Ju such that f(u) =

Let u such that f(u) = 0, then, comparing P(u,0) and P(—wu,0), we get

that f(u) = f(—u) = 0 and so : P(0,u) = 0 = 2u+ £(0)? P(0,—u)

= 0= —2u+ f(0)? And so u = 0 Q.E.D.

2) f(x) is injective === @)—*f()) = [’ =5 f(@)*+f(—3/(2)*)) =

0 And so, using 1) above : 2% — 1 f(2)? + f(—3f(2)?) = 0 Then f(z1) =

f(z2) implies |z1| = |z2|

Comparing P(z,y) and P(—=z,y), we get f(—z) = £f(x) Let then ¢ such

that f(—t) = f(t) P(0,t) = f(t+ f(¢t)) = 2t and so P(t + f(t),0)

— F((t+ f(D)) = 42 PO,~8) = f(—t+ f(t)) = —2t and so
P(—t+f(t),0) = f((—t+f(1))?) = 4¢*

So f((t + f(t ))2) = f((—t + f(t))?) and so (see some lines above) |(t +
F(t)?] = |(—t + f(t))?| Which implies ¢f(t) = 0 and so t = 0 (using 1)

above)

So f(—z) = —f(2) Va

And then "f(x1) = f(x2) implies |z1| = |z2|" becomes "f(x1) = f(x2)

implies 1 = z2" (using again 1) above) Q.E.D.

9 o Sla) i suective ——= PO41() = JG31(0) + 730 =

flz

And so, since injective, 3 f(z) + f(3f(z)) =z Q.E.D.

4) f(z) = o Vo === P(z,0) = f(a?) = f(2)* P(0,y) = f(y+

f(y)) =2y So P(x,y) becomes f(z* +y+ f(y)) = f(z?) + f(y + f(y)

And since z + f(x) is surjective, this becomes f(z + y) = f(x)

Va > 0, Yy Since f(—x) = —f(x), this implies f(x + y) = f(z:)

Vz,y And since f(2?) = f(x)?, we get that f(x) > 0 Vo > 0

fx+y) = f(z)+ f(y) implies that f(x) is non decreasing.

So, as a monotonous solution of Cauchy’s equation, f(x) = ax Vx Plugging

this back in original equation, we get a = 1

And so the unique solution m YV

152. Determine all such funtions f, g, h from R™ to itself, that f(g(h(z))+vy)+
hz+ f(y) = 9(y) + h(y + f(2)) + 2

solution

I supposed that the domain of functional equation is the same than domain
of functions (better to indicate both domains).
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154.

Let P(x,y, z) be the assertion f(g(h(z))+y)+h(z+ f(y)) = g(y) +h(y+
f(z)+x P(z,y,y) = f(g(h(x))+y) = g(y) += and so h(z) is injective
Subtracting P(z,y,y) from P(z,y,z), we get h(z + f(y)) = h(y + f(2))
and so, since h(z) is injective : z + f(y) =y + f(z) and so f(z) =z +a
for some @ > 0

Plugging this in P(1,z,x), we get g(h(1)) + z +a = g(x) + 1 and so
g(x) = x + b for some b >0

Plugging f(z) = « + a and g(x) = 2 + b in original equation, we get
h(z)=x—aand soa=0

Hence the solutions : ’ (f,g9,h) = (z,x + b,x) ‘ for any real b > 0

Find all functions f : R — R such that for all z,y in R, zf(x + zy) =
af(x) + f(2?).f(y)

solution
Let P(z,y) be the assertion xf(z + zy) = xf(z) + f(z?)f(y)
P(0,0) = f(0)=01If f(1) =0, then P(1,z —1) = f(x) =0 which
indeed is a solution Let us from now consider that f(1) =a # 0
Ifa#1,P(l,z) = f(z+1) = af(x)+a and we easily get f(n) = a“anjll
¥n € N Plugging this expression in P(m,n), we see that this is not a
solution (rather ugly, I think).
Soa=1and P(1,2) = f(x+1) = f(z)+ 1 and so f(n) = n and
flx+n)=f(z)+n
P(z,—1) = f(2?) = 2f(x) Plugging this in P(x,y), we get zf(z(y +
D) =af(@)(f(y) +1) =af(z)fly+1)
And so f(zy) = f(2)f(y)
P(x,y) becomes then x f(z) f(y+1) = zf (2)+f(2)*f(y) <= xf(x)(f(y)+
1) =zf(z)+ f(2)*f(y)
And so, setting y = 1 : f(x)(f(z) — ) = 0 and so Vz, either f(z) =
0, either f(z) = z But, if for some =z # 0, we have f(x) = 0, then
fl@+1) = f(x) + 1 implies f(x + 1) = 1 which is impossible since either
fle+1)=xz+1+#1,either f(zx+1)=0#1
So f(x) = x Va, which indeed is a solution.
[u][b]Hence the answer [/b][/u]: f(z) =0 Vx f(x) =z V[

Find all polynomials P(z) € R[X], degP = 3 with the property that
P(2?) = —P(z)P(-x)

solution
P(x) is obviously monic and may be written 23 4+ az? + bx + ¢ and the
equation is :
2% +azt +b2? + ¢ = (23 + b + az? + ) (2% + br — (ax? +¢) = = 22 (2 +
b)?2 — (az? + ¢)? and so :
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a=2—a?b=0b—-2acc=—-c?andsoc=0orc=—1

c=0givesb=b>andsob=0orb=1c=0and b=0 gives a =0 or

a = —1 and so two solutions 2% and ® — 2% ¢ = 0 and b = 1 gives a = 1
or a = —2 and so two solutions z3 + 22 + z and 2 — 222 + z
¢ = —1 implies a® + a — 2b = 0 and b?> — b+ 2a = 0 and so two solutions

23 —1and 2% — 322 +3zx — 1
[u][b]Hence the six solutions [/b][/u]: P(x) = 23 P(x) = 2%(z —1) P(x) =
(@ +x+1) Pz) =2(x—1)?2 P(z) =2 -1 P(x) = (z — 1)3

Find all monotonic functions u : R — R which have the property that
there exists a strictly monotonic function f : R — R such that

flz+y) = fl@)u(z) + f(y)

for all z,y € R.
solution

Let P(x,y) be the assertion f(x +y) = f(x)u(z) + f(y)

Subtracting P(z,0) from P(z,y), we get f(z +vy) = f(z) + f(y) — f(0)
and so, since strictly increasing, f(x) = ax + b with a > 0

And so z = (z + )u(z)

Setting x = 73, we get b = 0 and so the solution :

u(z) =1 Vz # 0 and «(0) = ¢ any rea

Give all functions f : R— > R such that f(y)f(z) + f(2)f(zr +y+ 2) =
flx+y)f(z+ 2) for all z,y, z real.

solution

Is it a real olympiad exercise 7 With no forgotten constraint (like conti-
nuity, for example) ? In what contest did you get this problem ?

It’s easy to show that the functional equation is equivalent to f(x)? —
fW)?=fl=+y)fl@—y)

And this equation has infinitely many solutions. For example : f(z) =
any solution of additive Cauchy equation f(z) = asin(g(z)) where g(z) is
any solution of additive Cauchy equation f(x) = asinh(g(x)) where g(x)
is any solution of additive Cauchy equation

And T dont know if these are the only solutions.

Find all f: R — R that satisfy
fle=fW) +y) = fl2) - fy)

all real numbers x,y.
solution
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Let g(x) = f(z) — « and the equation becomes assertion P(z,y) : g(z —
9(y)) = g(z) —y

This implies that g(x) is a bijection. So Ju suvh that g(u) = 0. P(x,u)
implies then u =0

Pg(x),x) = g(g9(x)) = = Pz, 9(y)) = g(x—y) = g(x) —g(y) So
g(x) is any involutive solution of Cauchy’s equation.

And it’simmediate to verify that this is indeed a solution.

[u][b]Hence the answer [/b][/u]: f(x) = z + g(x) where g(z) is any invo-
lutive solution of Cauchy’s equation

Notice that we have infinitely many solutions. The only continuous solu-
tions are f(x) =0 Vz and f(z) = 2z Vz

Notice that the general solution for "involutive solutions of Cauchy’s equa-
tion" may also be written as :

Let A, B two supplementary subvectorspaces of the Q-vectorspace R Let
a(z) and b(x) the projections of z in A and B so that z = a(x) + b(z)
with a(x) € A and b(x) € B

Then g(z) = a(z) — b(x)

1) proof that any such g(z) is an involutive solution of Cauchy’s equation
and so this is a solution ===

a(x) and b(z) are additive and so g(z) is solution of Cauchy’s equation.
a(a(x)) = a(x) and a(b(z)) = 0 and a(a(z)—b(z)) = a(z) b(a(z)) = 0) and
lé(bé:cl))) = b(x) and b(a(z)—b(z)) = —b(z) And so g(g(z)) = a(z)+b(z) ==

2) proof that any solution may be written in this form and so it’s a general
solution ====

Let A = {x such that g(z) = 2} Let B = {z such that g(z) = —z} Obvi-
ously, since g(z) is additive, A, B are subvectorspaces of the Q-vectorspace
R AnB={0}

Since g(g(x)) = x, we get that g(x + g(z)) = =z + g(x) and so a(z) =
% € A Since g(g(x)) = x, we get that g(x — g(x)) = g(x) — x and so
b(z) = =9 ¢ B

And since a(x) + b(xz) = z, we conclude that A, B are supplementary
subvectorspaces.

And we clearly have g(x) = a(x) — b(z) Q.E.D.

Find all function f: R — R satisfying the condition:

fly+ (@) = f@)f(y) + f(f(2) + Fly) — 2y

solution

Let P(z,y) be the assertion f(y+ f(z)) = f(2)f(y) + f(f(x)) + f(y) —xy

7



f(x)

=

—1 Vz is not a solution and so let v such that f(v) # —1 P(v,0)
(0)(f(v) + 1) = 0 and so f(0) =
f(z) =0 Vz is not a solution and so let u such that f(u)

#*
P, f(u)) = f(f(2)+f(w) = f(@)f(f(w)+f(f(x)+f
Plu, f(@) = F(F(e)+F(u) = F)f(F(a)+ £ (Fla))+f
Subtracting, we get f(f(z)) +z = f(x )W

and so f(f(z)) = af(xz) — x for some a € R

So we can rewrite P(z,y) as new assertion Q(z,y) : f(y + f(z)) =
f@)fy) +af(z) —x+ fly) —zy

Qy,—1) = f(fly) =) = fW(f(=1) +a) + f(=1) = cf(y) +d
Qz, fly) = 1) = [(f(x) +fly) = 1) = f(2)(cf(y) +d) +af(z) -z +
cf(y) +d—=a(f(y) —1) and so :

f(f(@)+ fly) = 1) = cf(2)f(y) + (a+ d) f(x) + (¢ — ) f(y) + d Swapping

z,y, we get f(f(z)+f(y) —1) =cf(@)f(y) +(a+d)f(y) + (c—y)f(z)+d
Subtracting : (a+d—c+y)f(z) =(a+d—c+z)f(y)

Setting y = 0 in this line, we get a +d—c =0 and so yf(z) = 2 f(y) Vz,y

*’*II

0
(f (u) = f(u)
(f(u) —uf(z)

Setting y = 1 in this expression, we get f(z) = 2 f(1)
Plugging in original equation, we get f(1) = *1
[u][b]And so the two solutions |/b]|/u]: f(z) = Vz f(z) = —x Vz

159. Find all functions f : R — RT such that f(zyz) + f(z) + f(y) + f(2) =
F(/zy) f(\/yz) f(V/zz) for positive reals x,y, z and also f(z) < f(y) for

1<xz<y
solution

Let P(z,y) be the assertion f(zy2)+f(x)+f(y)+/f(2) = f(Vay) f(Vyz) f(Vzx)
P(1,1,1) = 4f(1) = f(1)% and so f(1) =2

P(22,1,1) = f(2?) = f(z)? -2

P(a?,y%,1) = f(a®y?) + f(2?) + f(y*) + 2 = f(ay)f(z)f(y) And so,
using f(2?) = f(x)? — 2 for 22y?, 22 and y* :

f@y)? = flzy) f(@) f(y) + f(2)* + f(y)? =4 =0

The discriminant of this quadratic in f(zy) is (f(z)? —4)(f(y)? —4) And
since we now that f(z) > 2 Vz > 1, we get that f(z) > 2 Vx >0

Let then u(z) > 1 such that f(x) = u(z)+ ﬁ (which always exists since
f(z)=2)
The above quadratic implies u(zy) = u(x)u(y) or u(zy)

u(y)
u(z)

Using the fact that f(z) is increasing for x > 1 and so u(x) is increasing
too, we get that u(zy) = u(r)u(y) Vz,y > 1

— wa=)

wty) Or u(zy) =
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161.

So u(z) =z with a > 0 Ve > 1

Plugging this back in original equation, we get that any real a > 0 fits
and so f(z) =2+ *Vr>1

P(z,1,1) = f(2®) + f(&)+4 = 2f(2)f(L) And so, using f(z?) =

S

f(z)? =2 for 2 and % :
(f(=) = f(3))? =0and so f(3) = f()
So’f(x) =z +z

Vz and for any real a # 0 which indeed is a solution

Find all continuous functions f : R — R so that : f(f(z)) = f(z) +
z,VaxeR
solution

Let € R and the sequence ag = z and an4+1 = f(a,) We get ag = = and
ay = f(z) and apq9 = apy1 + an.
Let r; < 72 be the two real roots of equation 22 —x — 1 = 0. We get

_ U@)=rox)ry’ —(f(z)—mz)ry

Qa
n T1—T2

f(x) is injective. It’s easy to see that f(x) is neither upper bounded,
neither lower bounded and so f(x) is a bijection from R — R

_ (f(x)—roz)r —(f(x)—riz)

r1—T2
Setting = 0 in the equation, we get f(f(0)) = f(0) and so f(0) = 0,
since injective. f(x) is injective and continuous, and so monotonous and

So the equality a, "2 is true also for n < 0

QAn 41
An

o) w has a constant sign and so has a constant sign.

(z)—rox)r? T —(f(z)—riz)rd T
So (f((f)@)—rlxl)rr'—Eﬁw;—mir?
If f(x) is decreasing and f(x) —rix # 0, then the above quantity has limit
re > 0 when n — 400, in contradiction with the fact f(z) decreasing. So
the only continuous decreasing solution may be f(z) = r;2 which indeed

is a solution.

1
has a constant sign.

If f(x) is increasing and f(x) —rox # 0, then the above quantity has limit
r1 < 0 when n — —oo, in contradiction with the fact f(z) increasing. So
the only continuous increasing solution may be f(z) = rox which indeed
is a solution.

1+v5

Hence the only solutions : f(z) = =5

fa)=—Yte

Let f : N— > N be a function satisfying: f(f(n)) = 4n—3 (2") = 2"+t -1,
for all natural n Find f(1993), can you find explicietly the value f(2007)?
what values can f(1997) take?

X

solution

I suppose that third line must be read f(2") = 2"t —1
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Let Ng = NU {0} Let g(n) from Ny — Ny defined as g(n) = f(n+1) — 1.
The equation is then g(g(n)) = 4n whose general solution is :

Let A, B two equinumerous sets whose intersection is empty and whose
union is the set of all natural numbers not divisible by 4. Let h(x) any
bijection from A — B and h~!(z) it’s inverse function.

Then g(x) may be defined as : g(0) =0Vz € A: g(z) = h(z) Vx € B :
g(z) =4h=1(z) V2 e N\ (AUB) : g(z) = 4”4(1)9(3:4_”4(”7))

The constraint f(27) = 2"*! — 1 becomes g(2" — 1) = 2"*! — 2 and
so we just have to add to the previous general solution the constraints :
2" —1€AVneN2"-2eBVYn>1eNhH2"-1)=2"" -2

Then f(1993) = ¢(1992) + 1 = 4¢(498) + 1 and since 498 is not divisible
by 4 and is not in the form 2" — 1 neither 2"*! — 1, we get nearly no
constraint for g(498) : We can put 498 in A and then ¢(498) € B may be
any value not divisible by 4 and not in the form 2"*! — 2 We can put 498
in B and then ¢(498) = 4u where u is any number not divisible by 4 and
not in the form 2™ — 1

And the same conclusions may be obtained for ¢(2006) and ¢(1996)

Find all function f: R-R — R such that f(f(z,z2), f(z,y)) = f(z,y) + 2
for all real numbers x,y and z

solution

Let P(z,y, z) be the assertion f(f(z,2), f(z,9)) = f(z,y) + 2

Let s(x) = f(x,x) where "s" stands for "same" Let r(z) = f(0,z) where
"r" stands for "right" Let l( ) = f(z,0) xhere "1" stands for "left"
P(z,z,x) = s(s(z)) = s(z) + 2 and so s(z) is injective P(0,0,0) =
(s(0)) = s(0) and so, since injective : s(0) = 0 and so r(0) = I(0) =
and £(0,0) = 0

V)

P(z,0,0) = I(l(z)) = l(z) P(0,2,0) = r(r(z)) =r(x)
P(z,y,0) = f(l(z),7(y)) = f(2,y) Then, I(I(z)) = l(z) = [f(x,y)
f((z),y) Same, r(r(y)) =r(y) = f(z,y) = f(x,7(y))

(0,0,2) = f(r(x),l(z)) ==

Suppose Ju, v such that [(u) = d(v) = a. Then : [({(u)) = I(u) and so
l(a)=ar(r(v)) =r()andsor(a) =aa= f(r(a),l(a)) and so f(a,a) =a
and so s(a) = a P(a,a,a) = s(s(a)) = s(a) + a and so a = 2a and
a =0 So l[(R)Nnr(R) = {0}

Suppose now Ju, v such that f(u,v) =0 P(u,v,u) = f(f(u,u), f(u,v)
flu,v)+u = l(s(u)) =u = u € l(R) P(u,v,v) = f(f(u,v), f(v,v

flu,v)+v = r(s(v)) =v = verR)Il(u) = f(u,0) = f(u, f(u,v

P ). 1), 1) v) = F(r(w).v) + () = F(r(uw],v) =0 =
r(u) € UR) r(v) = f(0,0) = f(f(u,v),0) = f(f(u,r(y)), f(r(v),(v)))
Flu, 1) +7(0) = F(u,l(0)) =0 = I(v) € () Sor(u) € IR)Nr(

-

~

) Y

Z
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165.

v=20

So f(z,y) =0 <= z=y=0

Then P(%Zh _f(x7y)) - f(f(xv _f(xuy))vf(_f(x7y)ay)) = 0 and SO
f(x,—f(z,y)) = f(=f(z,y),y) = 0 and so x = y = 0, impossible

So no solution for this equation

Let f: R — R satisfy f(4%) = f(2*) + = . Find all functions f with the
given property.

solution
Obviously f(z) can take any value we want for < 0 For « > 0, let us
write f(z) = g(Inz)+log, x and the equation becomes g(2z) = g(z) which
is very classical with solution : g(x) = u({log, 2} for any x > 0 where u(x)
is any function defined over [0,1) g(0) = a where a is any real we want
g(z) = v({logy, —x} for any x < 0 where v(z) is any function defined over
[0,1)
[u][b]Hence a general solution of required equation [/b][/u]:
Ve < 0: f(zr) is any function we want Vo € (0,1) : f(x) = logyz +
v({log, |Inz|}) where v(z) is any function defined over [0,1) f(1) = a
where a is any real we want Vo > 1 : f(x) = logy x + u({logy Inz}) where
u(z) is any function defined over [0,1)

P R=R flz+y)+ fly+2)+ f(z+2)?f(x+2y+3z2) for any real z,y, z

solution

There are obviously infinitely many solutions and I wonder how we can
find a general formula for these. Some examples : f(z) =1

f(z) = 27 + arctan(x)

f@) = 535

f(z) =5+ q(zr) with g(x)=x-floorfunction(x)

Find all f: Q — Q satisfy : f(f(z)+y) =2+ f(y),Vz,y € Q

solution

Let P(x,y) be the assertion f(f(z)+y) =+ f(y)

P,0) = [(f(z)) = = + f(0) P(f(@)y) = fa+y+ f(0)) =
f(@)+ f(y)
Writing f(z) = ¢(

= g(z +
gz + f(0)) +9(y + f
Vo € Q and so f(x) =

£(0)), this becomes g((x + f(0)) + (y + f(0))) =
(0)) So g(x +y) = g(x) + g(y) and g(x) = g(1)x
g(1)(z + £(0))
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So f(x) = ax+ b and, plugging this in original equation, we get b = 0 and
a’?=1

Hence the two solutions : f(x) = Vz f(z) = —x Vz

fla+1) = f(z)+1
fa?) = f*(x)

solution

Find all f: Q1 — Q% satisfy: { Vo e QT

The first equation implies f(z +n) = f(z) + n Vo € Qt, Vn e N

Then f((2+q)%) = f(% +2p+¢°) = f(%) + 20+ ¢* = f2(2) + 2p+ ¢
But f((2+q)%) = f2(5 +q) = (f(5) +)* = f2(5) +2¢f(5) + ¢°

And so 2p =2¢f(£) and f(2) ="

Hence the unique solution W Vx € QTF, which indeed is a solution

Find all contiuous function f : R+— > R+ satisfying: f(xﬂL%)Jrf(ij%) =
1 1
fl@+ )+ fly+ 3) for every x,y from R+

solution

Consider then a,b > 0 such that a # b and ab > 4

Consider the system : z > /% and y > \/gm—i—% =ay++=>bThs
system always have a unique real solution

Let then u = 2+ - and v = y + % It’s easy to see that : f(a) + f(b) =
fw) +fv)a+b=u+v|u—v|<|a—>blus#vand uww >4

And so we can create a sequence (a,b) — (u,v), repeating the process It’s

easy to see that the two numbers have their difference tending towards 0
and so have the same limit “t°

and so, since continuous, f(a)+ f(b) = 2f(“E%) Va,b > 0 such that a # b
and ab > 4

This is a classical functional equation which implies easily (continuity
again) f(z) =cx+d Ve > 2

Using then the functonal equation with for example y > %, we get x +
%,eri,er% > 2 and so f(y+%) :c(er%)erand so f(z) =cx+d
Ve > %

And it’s easy to use similar steps as many times as we want to get f(z) =
cx+dVz >0

And this indeed is a solution as soon as ¢ > 0 and d > 0 or ¢ = 0 and
d>0

Hence the answer : | f(z) = az + b|Va > 0 and for any (a > 0 and b > 0)
or (a=0and b > 0)
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Find the f : R — R such that f is a continuous function and satisfy :
fl@+y) = f@) + fy) + 20y, Yo,y € R

olution

Let f(x) = 22 + g(z) and the equation becomes g(z + y) = g(z) + g(y)

and so g(z) = az, since continuous and ’ fzx) =2* + ax‘ which indeed is

. 2
a solution. & — 22

Let f be a contiuous and injective function R — > R ; f(1) =1; f(2x —
f(x)) = x. Prove that f(x) = .

solution
So f(x) is strictly monotonous. If f(z) is decreasing, then 2z — f(z) is
increasing and f(2z — f(z)) is decreasing, which is wrong.

So f(x) is increasing.

If f(a) > a, then 2a — f(a) < a and f(2a — f(a)) < f(a) and so f(a) > a,
impossible If f(a) < a, then 2a — f(a) > a and f(2a — f(a)) > f(a) and
so f(a) < a, impossible

So m Vz, which indeed is a solution

83



