
Dear readers ,
This document will help you for your preparation of IMO International

Mathematical Olympiad , NO National Olympiad. It contains 169 functional
equations with the solutions of Patrick "pco" . Many thanks to Patrick for its
solutions on Mathlinks , it will help students for IMO.

Moubinool.

1. Determine all functions f : R → R such that the set { f(x)x : x 6= 0 and
x ∈ R} is �nite, and for all x ∈ R, f(x− 1− f(x)) = f(x)− x− 1

solution

Let P (x) be the assertion f(x− 1− f(x)) = f(x)− x− 1 Let a ∈ R and
b = f(a)

P (a) =⇒ f(a− b− 1) = b− a− 1 P (a− b− 1) =⇒ f(2(a− b)− 1) =
2(b− a)− 1 And we get easily f(2n(a− b)− 1) = 2n(b− a)− 1 ∀n ∈ N

It's then immediate to see that the set { f(x)x : x 6= 0 and x = 2n(a− b)− 1
∀n ∈ N} is �nite i� b = a ⇐⇒ f(a) = a

Hence the unique solution f(x) = x ∀x which indeed is a solution

2. Find all functions f : R→ R such that for all x, y ∈ R,
f(f(y + f(x))) = f(x+ y) + f(x) + y

solution

Let P (x, y) be the assertion f(f(y + f(x))) = f(x+ y) + f(x) + y

P (x, f(y)) =⇒ f(f(f(x)+ f(y))) = f(x+ f(y))+ f(x)+ f(y) P (y, f(x))
=⇒ f(f(f(x) + f(y))) = f(y + f(x)) + f(x) + f(y) Subtracting, we get
f(x+ f(y)) = f(y + f(x))

So f(f(x+f(y))) = f(f(y+f(x))) So (using P (x, y) and P (y, x)) : f(x+
y) + f(y) + x = f(x+ y) + f(x) + y

So f(x)− x = f(y)− y and so f(x) = x+ a, which is never a solution.

f(f(y + f(x))) = f(x+ y) + f(x) + y

3. Find all functions f : R+ → R+ such that f(1 + xf(y)) = yf(x + y)
for allx, y ∈ R+.

solution

Let P (x, y) be the assertion f(1 + xf(y)) = yf(x+ y)

1) f(x) is a surjective function ==== P ( 1

f(
f(2)
x )

, f(2)x ) =⇒

f(2) =
f(2)

x
f(

1

f( f(2)x )
+
f(2)

x
)
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And so x = f(something) Q.E.D.

2) f(x) is an injective function ===

Let a > b > 0 such that f(a) = f(b) Let T = b− a > 0

Comparing P (x, a) and P (x, b), we get af(x+ a) = bf(x+ b)

and so f(x) = b
af(x+ T ) ∀x > a

And so f(x) =
(
b
a

)n
f(x+ nT ) ∀x > a, n ∈ N

Let then y such that f(y) > 1 (such y exists since f(x) is a surjection,
according to 1) above) Let n great enough to have y + nT − 1 > 0

P (y+nT−1f(y)−1 , y) =⇒ f(1+ yf(y)+(nT−1)f(y)
f(y)−1 ) = yf(y+nT−1f(y)−1 + y) which may

be written :

f(yf(y)+nT−1f(y)−1 + nT ) = yf(yf(y)+nT−1f(y)−1 )

and since f(yf(y)+nT−1f(y)−1 + nT ) =
(
a
b

)n
f(yf(y)+nT−1f(y)−1 ), we get y =

(
a
b

)n
∀n, which is impossible Q.E.D.

3) f(1) = 1 === P (1, 1) =⇒ f(1 + f(1)) = f(2) and so, since f(x) is
injective, f(1) = 1 Q.E.D.

4) The only solution is f(x) = 1
x === P (1, x) =⇒ f(1+f(x)) = xf(1+x)

and so f(1 + x) = 1
xf(1 + f(x))

P ( x
f( 1
x )
, 1x ) =⇒ f(1 + x) = 1

xf(
x

f( 1
x )

+ 1
x )

And so (comparing these two lines) : f(1 + f(x)) = f( x
f( 1
x )

1
x )

And so (using injectivity) : 1 + f(x) = x
f( 1
x )

+ 1
x and so f( 1x ) =

x
f(x)+1− 1

x

This implies (changing x→ 1
x ) : f(x) =

1
x

f( 1
x )+1−x

And so f(x) =
1
x

x

f(x)+1− 1
x

+1−x

Which gives x2f(x)2 − 2xf(x) + 1 = 0

And so f(x) =
1

x
, which indeed is a solution

4. Find all functions f : R→ R satisfying the equality f(y) + f(x+ f(y)) =
y + f(f(x) + f(f(y)))

solution

Let P (x, y) be the assertion f(y) + f(x+ f(y)) = y + f(f(x) + f(f(y)))

P (f(x), 0) =⇒ f(0) + f(f(x) + f(0)) = f(f(f(x)) + f(f(0))) P (f(0), x)
=⇒ f(x) + f(f(x) + f(0)) = x+ f(f(f(x)) + f(f(0)))

Subtracting, we get f(x) = x+ f(0)

Plugging back f(x) = x + a in original equation, we get a = 0 and the

unique solution f(x) = x∀x
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5. Find all non-constant real polynomials f(x) such that for any real x the
following equality holds: f(sinx+ cosx) = f(sinx) + f(cosx)

solution

If f(x) is non constant, let n > 0 its degree and Wlog consider f(x) is
monic.

Using half-tangent, the equation may be written f
(

1+2x−x2

1+x2

)
= f

(
2x

1+x2

)
+f
(

1−x2

1+x2

)
∀x

Multiplying by (1 + x2)n, and setting then x = i, we get (2 + 2i)n =
(2i)n + 2n and so n = 1 (look at modulus).

Hence the solutions: f(x) = ax ∀a ∈ R∗

6. Find all functions f : N→ Z such that for all x, y ∈ N holds f(x+|f(y)|) =
x+ f(y)

solution

Let P (x, y) be the assertion f(x+ |f(y)|) = x+ f(y)

If |f(a)| < a for some a ∈ N, then P (a− |f(a)|, a) =⇒ |f(a)| = a and so
contradiction. So |f(x)| ≥ x ∀x ∈ N
If f(a) < 0 for some a ∈ N, then P (−f(a), a) =⇒ f(−2f(a)) = 0 and so
contradiction with f(x) ≥ x ∀x ∈ N So f(x) ≥ 0 ∀x ∈ N
As a consequence |f(x)| = f(x) and the problem becomes :

Find all functions f : N → N ∪ {0} such that f(x + f(y)) = x + f(y)
∀x, y ∈ N Let then m = min(f(N)) and we get f(x) = x ∀x > m

[Hence the solutions

Let a ∈ N f(x) = x ∀x ≥ a f(x) can take any value in [a − 1,+∞) for
x ∈ [1, a− 1]

7. Determine all pairs of functions f, g : Q → Q satisfying the following
equality

f(x+ g(y)) = g(x) + 2y + f(y),

for all x, y ∈ Q.

solution

If f(x) is a solution, then so is f(x) + c. So Wlog consider that f(0) = 0
Let P (x, y) be the assertion f(x+ g(y)) = g(x) + 2y + f(y)

P (−g(0), 0) =⇒ g(−g(0)) = 0 P (−g(0),−g(0)) =⇒ g(0) = 0 P (x, 0)
=⇒ f(x) = g(x)
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So we are looking for f(x) such that f(0) = 0 and f(x + f(y)) = f(x) +
2y + f(y) Let Q(x, y) be the assertion f(x+ f(y)) = f(x) + 2y + f(y)

Q(x− f(x), x) =⇒ f(x− f(x)) = −2x and so f(x) is surjective

Q(x, y) =⇒ f(x + f(y)) = f(x) + 2y + f(y) Q(0, y) =⇒ f(f(y)) =
2y + f(y) Subtracting, we get f(x + f(y)) = f(x) + f(f(y)) and, since
surjective : f(x+ y) = f(x) + f(y)

Since f(x) is from Q→ Q, this immediately gives f(x) = ax and, plugging
this in Q(x, y) : a2 − a− 2 = 0

Hence the two solutions : f(x) = 2x + c and g(x) = 2x ∀x and for any
real c, which indeed is a solution

8. Given two positive real numbers a and b, suppose that a mapping f :
R+ → R+ satis�es the functional equation

f(f(x)) + af(x) = b(a+ b)x.

Prove that there exists a unique solution of this equation.

solution

a+2b > 0 and we get thru simple induction : f [n](x) = ((a+b)x+f(x))bn+(bx−f(x))(−a−b)n
a+2b

If, for some x, f(x) − bx 6= 0, we get that, for some n great enough,
f [n](x) < 0, which is impossible.

Hence the unique solution : f(x) = bx which indeed is a solution

9. Find all non-constant functions f : Z → N satisfying all of the following
conditions: a)f(x − y) + f(y − z) + f(z − x) = 3(f(x) + f(y) + f(z)) −
f(x+ y + z) b)

∑15
k=1 f(k) ≤ 1995

solution

Setting x = y = z = 0 in the equation, we get f(0) = 0 /∈ N and so no
solution Since OP is a brand new user on this forum, I'll consider that he
ignored that we use here the notation N for positive integers and that he
meant N0, set of all non negative integers. If so :

Let P (x, y, z) be the assertion f(x− y) + f(y − z) + f(z − x) = 3(f(x) +
f(y) + f(z))− f(x+ y + z)

P (0, 0, 0) =⇒ f(0) = 0 P (x, 0, 0) =⇒ f(−x) = f(x) P (x,−x, 0) =⇒
f(2x) = 4f(x) P (x+1,−1,−x−1) =⇒ f(x+2) = 2f(x+1)−f(x)+2f(1)

This recurrence de�nition (plus f(0) = 0) is quite classical and has simple
general solution f(x) = ax2

f(x) ∈ N0 ∀x ∈ Z =⇒ a ≥ 0 f(x) non constant =⇒ a > 0
∑15
k=1 f(k) =

a
∑15
k=1 k

2 = 1240a ≤ 1995 =⇒ a ≤ 1

[u][b]Hence the unique solution of the modi�ed problem[/b][/u] : f(x) =
x2 ∀x,
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10. .Determine all the functions f : R→ R such that:

f(x+ yf(x)) + f(xf(y)− y) = f(x)− f(y) + 2xy

Here is a rather heavy
solution

:

Let P (x, y) be the assertion f(x+yf(x))+f(xf(y)−y) = f(x)−f(y)+2xy

1) f(x) is an odd function and f(x) = 0 ⇐⇒ x = 0 ==

P (0, 0) =⇒ f(0) = 0 P (0, x) =⇒ f(−x) = −f(x)
Suppose f(a) = 0. Then P (a, a) =⇒ 0 = 2a2 =⇒ a = 0 and so f(x) = 0
⇐⇒ x = 0 Q.E.D

2) f(x) is additive

===

Let then x 6= 0 such that f(x) 6= 0 : P (x, x+yf(x) ) =⇒ f(2x + y) +

f(xf( x+yf(x) )−
x+y
f(x) ) = f(x)− f( x+yf(x) ) + 2x x+yf(x)

P ( x+yf(x) ,−x) =⇒ −f(xf( x+yf(x) )−
x+y
f(x) )− f(y) = f( x+yf(x) ) + f(x)− 2x x+yf(x)

Adding these two lines, we get : f(2x+y) = 2f(x)+f(y) which is obviously
still true for x = 0 and so :

New assertion Q(x, y) : f(2x+ y) = 2f(x) + f(y) ∀x, y
Q(x, 0) =⇒ f(2x) = 2f(x) and so Q(x, y) becomes f(2x+ y) = f(2x) +
f(y) and so f(x+ y) = f(x) + f(y) and f(x) is additive. Q.E.D.

3) f(x) solution implies −f(x) solution and so wlog consider from now
f(1) ≥ 0 ====

P (y, x) =⇒ f(y + xf(y)) + f(yf(x) − x) = f(y) − f(x) + 2xy =⇒
−f(−y + x(−f(y)))− f(y(−f(x)) + x) = −f(x)− (−f(y)) + 2xy Q.E.D

4) f(x) is bijective and f(1) = 1 ====

Using additive property, the original assertion becomesR(x, y) : f(xf(y))+
f(yf(x)) = 2xy

R(x, 12 ) =⇒ f(xf( 12 ) +
f(x)
2 ) = x and f(x) is surjective.

So ∃a such that f(a) = 1 Then R(a, a) =⇒ a2 = 1 and so a = 1
(remember that in 3) we choosed f(1) ≥ 0)

5) f(x) = x ====

R(x, 1) =⇒ f(x)+f(f(x)) = 2x and so f(x) is injective, and so bijective.

R(xf(x), 1) =⇒ f(xf(x))+f(f(xf(x))) = 2xf(x)R(x, x) =⇒ f(xf(x)) =
x2 and so f(x2) = f(f(xf(x))) Combining these two lines, we get f(x2)+
x2 = 2xf(x)

So f((x+y)2)+(x+y)2 = 2(x+y)f(x+y) and so f(xy)+xy = xf(y)+yf(x)
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So we have the properties : R(x, y) : f(xf(y)) + f(yf(x)) = 2xy A(x, y)
: f(xy) = xf(y) + yf(x)− xy B(x) : f(f(x)) = 2x− f(x)
So :

(a) : R(x, x) =⇒ f(xf(x)) = x2 (b) : A(x, f(x)) =⇒ f(xf(x)) =
xf(f(x)) + f(x)2 − xf(x) (c) : B(x) =⇒ f(f(x)) = 2x− f(x)
And so -(a)+(b)+x(c) : 0 = x2 + f(x)2 − 2xf(x) = (f(x)− x)2 Q.E.D.

6) synthesis of solutions ==== Using 3) and 5), we get two solutions
(it's easy to check back that these two functions indeed are solutions) :
f(x) = x ∀x f(x) = −x ∀x[/quote]

11. Find all functions f de�ned on real numbers and taking real values such
that f(x)2 + 2yf(x) + f(y) = f(y + f(x)) for all real numbers x, y. [

solution

Let P (x, y) be the assertion f(x)2 + 2yf(x) + f(y) = f(y + f(x))

f(x) = 0 ∀x is a solution. So we'll look from now for non all-zero solutions.

Let f(a) 6= 0 : P (a, u−f(a)
2

2f(a) ) =⇒ u = f(something)− f(something else)

and so any real may be written as a di�erence f(v)− f(w)
P (w,−f(w)) =⇒ −f(w)2+f(−f(w)) = f(0) P (v,−f(w)) =⇒ f(v)2−
2f(v)f(w) + f(−f(w)) = f(f(v)− f(w))
Subtracting the �rst from the second implies f(v)2−2f(v)f(w)+f(w)2 =
f(f(v)− f(w))− f(0) and so f(f(v)− f(w)) = (f(v)− f(w))2 + f(0)

And so f(x) = x2 + f(0) ∀x ∈ R which indeed is a solution.

Hence the two solutions : f(x) = 0 ∀x f(x) = x2 + a ∀x

12. Prove that f(x+y+xy) = f(x)+f(y)+f(xy) is equivalent to f(x+y) =
f(x) + f(y).

solution

Let P (x, y) be the assertion f(x+ y + xy) = f(x) + f(y) + f(xy)

1) f(x+ y) = f(x) + f(y) =⇒ P (x, y) ======= Trivial.

2) P (x, y) =⇒ f(x + y) = f(x) + f(y) ∀x, y ====== P (x, 0) =⇒
f(0) = 0 P (x,−1) =⇒ f(−x) = −f(x)
2.1) new assertion R(x, y) : f(x+y) = f(x)+f(y) ∀x, y such that x+y 6=
−2 ��������

Let x, y such that x + y 6= −2 : P (x+y2 , x−y
x+y−2 ) =⇒ f(x) = f(x+y2 ) +

f( x−y
x+y−2 ) + f( x

2−y2
x+y−2 )

P (x+y2 , y−x
x+y−2 ) =⇒ f(y) = f(x+y2 )− f( x−y

x+y−2 )− f(
x2−y2
x+y−2 )
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Adding these two lines gives new assertion Q(x, y) : f(x)+f(y) = 2f(x+y2 )

∀x, y such that x + y 6= −2 Q(x + y, 0) =⇒ f(x + y) = 2f(x+y2 ) and so
f(x+ y) = f(x) + f(y) Q.E.D.

2.2) f(x+ y) = f(x) + f(y) ∀x, y such that x+ y = −2
If x = −2, then y = 0 and f(x + y) = f(x) + f(y) If x 6= −2, then
(x+2)+ (−2) 6= −2 and then R(x+2,−2) =⇒ f(x) = f(x+2)+ f(−2)
and so f(x) + f(−2− x) = f(−2) and so f(x) + f(y) = f(x+ y)

Q.E.D.

13. �nd all functions f : R −→ R such that f(f(x) + y) = 2x + f(f(y) − x)
for all x, y reals

solution

Let P (x, y) be the assertion f(f(x) + y) = 2x+ f(f(y)− x)

P ( f(0)−x2 ,−f( f(0)−x2 )) =⇒ x = f(f(−f( f(0)−x2 )) − f(0)−x
2 ) and so f(x)

is surjective.

So : ∃u such that f(u) = 0 ∃v such that f(v) = x+ u

And then P (u, v) =⇒ f(x) = x− u which indeed ,is a solution

Hence the answer : f(x) = x+ c

14. �nd all functions f : R −→ R such that f(x2 + f(y)) = y + f(x)2 for all
x, y reals

solution

Let P (x, y) be the assertion f(x2 + f(y)) = y + f(x)2

P (0, y) =⇒ f(f(y)) = y + f(0)2 and then : P (x, f(y − f(0)2)) =⇒
f(x2 + y) = f(y − f(0)2) + f(x)2 Setting x = 0 in this last equality, we
get f(y) = f(y − f(0)2) + f(0)2 and so f(x2 + y) = f(y) + f(x)2 − f(0)2
Setting y = 0 in this last equality, we get f(x2) = f(0) + f(x)2 − f(0)2
and so f(x2 + y) = f(y) + f(x2)− f(0)
Let then g(x) = f(x) − f(0). We got g(x + y) = g(x) + g(y) ∀x ≥ 0,∀y
It's immediate to establish g(0) = 0 and g(−x) = −g(x) and so g(x+y) =
g(x) + g(y) ∀x, y
P (x, 0) =⇒ f(x2+f(0)) = f(x)2 =⇒ f(x2+f(0))−f(0) = f(x)2−f(0)
and so g(x) ≥ −f(0) ∀x ≥ f(0)
So g(x) is a solution of Cauchy equation with a lower bound on some non
empty open interval. So g(x) = ax and f(x) = ax+ b

Plugging this back in original equation, we get a = 1 and b = 0 and the

unique solution f(x) = x
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15. Find all a ∈ R for which there exists a non-constant function f : (0, 1]→ R
such that

a+ f(x+ y − xy) + f(x)f(y) ≤ f(x) + f(y)

for all x, y ∈ (0, 1].
solution

Let g(x) from [0, 1)→ R such that g(x) = f(1−x)−1 a+f(x+y−xy)+
f(x)f(y) ≤ f(x) + f(y) ⇐⇒ g((1− x)(1− y)) + g(1− x)g(1− y) ≤ −a
⇐⇒ g(xy) + g(x)g(y) ≤ −a ∀x, y ∈ [0, 1)

Let P (x, y) be the assertion g(xy) + g(x)g(y) ≤ −a
P (0, 0) =⇒ g(0) + g(0)2 ≤ −a ⇐⇒ a ≤ 1

4 − (g(0) + 1
2 )

2 and so a ≤ 1
4

If a < 1
4 : Let us consider g(x) = − 1

2 ∀x ∈ (0, 1) and g(0) = − 1
2 −√

1
4 − a 6= −

1
2 (so that g(x) is not constant) : If x = y = 0 : g(xy) +

g(x)g(y) = −a ≤ −a If x = 0 and y 6= 0 : g(xy) + g(x)g(y) = − 1
4 −

1
2

√
1
4 − a < −

1
4 < −a If x, y 6= 0 : g(xy) + g(x)g(y) = − 1

4 < −a

If a = 1
4 : P (0, 0) =⇒ g(0) + g(0)2 ≤ − 1

4 and so g(0) = − 1
2 P (x, 0)

=⇒ g(x) ≥ − 1
2 P (

√
x,
√
x) =⇒ g(x) + g(

√
x)2 ≤ − 1

4 =⇒ g(x) ≤ − 1
4

Let then the sequence un de�ned as : u0 = − 1
4 un+1 = − 1

4 − a
2
n It's easy

to show with induction that − 1
2 ≤ g(x) ≤ an < 0 ∀x ∈ [0, 1) It's then

easy to show that an is a decreasing sequence whose limit is − 1
2 And so

the unique solution for a = 1
4 is g(x) = − 1

2 which is not a solution (since
constant).

Hence the answer : a ∈ (−∞, 1
4
)

16. Find all functions f : Q 7→ C satisfying

(i) For any x1, x2, . . . , x2010 ∈ Q, f(x1+x2+. . .+x2010) = f(x1)f(x2) . . . f(x2010).

(ii) f(2010)f(x) = f(2010)f(x) for all x ∈ Q. [

solution

Let a = f(0)

Using x1 = x2 = ... = xp = x and xp+1 = ... = x2010 = 0, (i) =⇒
f(px) = a2010−pf(x)p ∀x ∈ Q,∀0 ≤ p ≤ 2010 ∈ Z
Setting x = 0 in the above equation, we get a = a2010 and so : Either
a = 0 and so f(x) = 0 ∀x, which indeed is a solution. Either a2009 = 1
and we get f(px) = a1−pf(x)p

Let then g(x) = f(x)
a and we got g(px) = g(x)p ∀0 ≤ p ≤ 2010 ∈ Z A

simple induction using (i) shows that g(px) = g(x)p ∀p ∈ N ∪ {0}

And it's then immediate to get g(xp ) = g(x)
1
p and so g(x) = cx ∀x ∈ Q

So f(x) = a · cx (ii) implies then c = c and so c ∈ R
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Hence the solutions : f(x) = 0 ∀x

f(x) = ei
2kπ
2009 cx with k ∈ Z and c ∈ R (according to me, better to say

c ∈ R+)

17. Find all functions f : R→ R, satisfying: f(x) = maxy∈R(2xy − f(y)) for
all x ∈ R.

solution

1) f(x) ≥ x2 ∀x ==== f(x) ≥ 2xy − f(y) ∀x, y. Choosing y = x, we get
f(x) ≥ x2 Q.E.D

2) f(x) ≤ x2 ∀x ==== Let x ∈ R Since f(x) = maxy∈R(2xy− f(y)), ∃ a
sequence yn such that limn→+∞(2xyn − f(yn)) = f(x)

So limn→+∞(f(yn)− y2n+(x− yn)2) = x2− f(x) And since we know that
f(yn)− y2n ≥ 0, then LHS ≥ 0 and so RHS ≥ 0 Q.E.D

So f(x) = x2 which indeed is a solution

18. Find all functions f : R→ R satisfying

f(f(x) + y) = f(x2 − y) + 4f(x)y

for all x, y ∈ R. [
solution

Let P (x, y) be the assertion f(f(x) + y) = f(x2 − y) + 4f(x)y

P (x, x
2−f(x)

2 ) =⇒ f(x)(f(x) − x2) = 0 and so : ∀x, either f(x) = 0,
either f(x) = x2

f(x) = 0 ∀x is a solution f(x) = x2 ∀x is also a solution.

Suppose now that ∃a 6= 0 such that f(a) = 0 Then if ∃b 6= 0 such that
f(b) 6= 0 : f(b) = b2 and P (a, b) =⇒ b2 = f(a2− b) and so b2 = (a2− b)2

and so b = a2

2 So there is a unique such b (equal to a2

2 ) But then there at
at most two such a (a and −a) And it is is impossible to have at most one
x 6= 0 such that f(x) = x2 and at most two x 6= 0 such that f(x) = 0

So we have only two solutions : f(x) = 0 ∀x f(x) = x2 ∀x

19. Find all continous functions R→ R such that :

f(x+ f(y + f(z))) = f(x) + f(f(y)) + f(f(f(z)))

solution

Let P (x, y, z) be the assertion f(x + f(y + f(z))) = f(x) + f(f(y)) +
f(f(f(z)))

Subtracting P (0, y− f(z), z) from P (x, y− f(z), z), we get f(x+ f(y)) =
f(x) + f(f(y))− f(0) Let g(x) = f(x)− f(0) and A = f(R)

9



We got g(x + y) = g(x) + g(y) ∀x ∈ R, ∀y ∈ A And also g(x − y) =
g(x)− g(y) ∀x ∈ R, ∀y ∈ A
g(x+y1+y2) = g(x+y1)+g(y2) = g(x)+g(y1)+g(y2) = g(x)+g(y1+y2)
∀x ∈ R, ∀y1, y2 ∈ A g(x + y1 − y2) = g(x + y1) − g(y2) = g(x) + g(y1) −
g(y2) = g(x) + g(y1 − y2) ∀x ∈ R, ∀y1, y2 ∈ A
And, with simple induction, g(x+ y) = g(x)+ g(y) ∀x, ∀y �nite sums and
di�erences of elements of A

If cardinal of A is 1, we get f(x) = c and so f(x) = 0 If cardinal of A is
not 1 and since f(x) is continuous, ∃u < v such that [u, v] ⊆ A and any
real may be represented as �nite sums and di�erences of elements of [u, v]

So g(x + y) = g(x) + g(y) ∀x, y and so, since continuous, g(x) = ax and
f(x) = ax+ b

Plugging this in original equation, we get b(a+ 2) = 0

Hence the solutions : f(x) = ax f(x) = b− 2x

20. Let a be a real number and let f : R → R be a function satisfying:
f(0) = 1

2 and f(x + y) = f(x)f(a − y) + f(y)f(a − x), ∀x, y ∈ R. Prove
that f is constant.

solution

Let P (x, y) be the assertion f(x+ y) = f(x)f(a− y) + f(y)f(a− x)
P (0, 0) =⇒ f(a) = 1

2 P (x, 0) =⇒ f(x) = f(a− x) and so P (x, y) may
also be written Q(x, y) : f(x+ y) = 2f(x)f(y)

Q(a,−x) =⇒ f(a− x) = f(−x) and so f(x) = f(−x)
Then, comparing Q(x, y) and Q(x,−y), we get f(x + y) = f(x − y) and
choosing x = u+v

2 and y = u−v
2 , we get f(u) = f(v)

21. Find all continuous functions f : R→ R such that

f(x)3 = − x

12
·
(
x2 + 7x · f(x) + 16 · f(x)2

)
, ∀x ∈ R.

solution

This equation may be written (f(x)+ x
2 )

2(f(x)+ x
3 ) = 0 and so 4 solutions

:

S1 : f(x) = −x2 ∀x
S2 : f(x) = −x3 ∀x
S3 : f(x) = −x2 ∀x < 0 and f(x) = −x3 ∀x ≥ 0

S4 : f(x) = −x2 ∀x > 0 and f(x) = −x3 ∀x ≤ 0

10



22. Let f(x) be a real-valued function de�ned on the positive reals such that

(1) if x < y, then f(x) < f(y),

(2) f
(

2xy
x+y

)
≥ f(x)+f(y)

2 for all x.

Show that f(x) < 0 for some value of x. [

solution

1) f(x) is concave. ====

If x < y : x+y
2 > 2xy

x+y and so f(x+y2 ) > f(x)+f(y)
2 Using this plus the fact

that f(x) is stricly increasing, we get immediately the result.

2)
f(x)−f( x2 )

x
2

≥ 2 f(2x)−f(x)x ==

Let a > 1. From the original inequality, using y = ax , we get f( 2a
a+1x) ≥

f(x)+f(ax)
2

=⇒ f( 2a
a+1x)− f(x) ≥

f(ax)−f(x)
2

=⇒ f( 2a
a+1x)−f(x)

2a
a+1x−x

≥ a+1
2

f(ax)−f(x)
ax−x

Let then the sequence an de�ned as a1 = 2 and an+1 = 2an
an+1 . We got :

f(an+1x)−f(x)
an+1x−x ≥ an+1

2
f(anx)−f(x)

anx−x

And, since f(x) is concave, we get also
f(x)−f( x2 )

x
2

≥ f(anx)−f(x)
anx−x

And so
f(x)−f( x2 )

x
2

≥
(∏n

k=1
ak+1

2

) f(2x)−f(x)
x

And since
∏+∞
k=1

ak+1
2 = 2, we got the required result in title of paragraph

2. (just write ak+1
2 = ak

ak+1
).

3) Final result ==

From 2), we got f(x)− f(x2 ) ≥ f(2x)− f(x)
And so f(x2 )− f(

x
4 ) ≥ f(x)− f(

x
2 ) ≥ f(2x)− f(x) ... f(

x
2n−1 )− f( x2n ) ≥

f(2x)− f(x)
... and so (summing these lines) : f(x)− f( x2n ) ≥ n(f(2x)− f(x))
Which may be written f( x2n ) ≤ f(x)− n(f(2x)− f(x))
And, since f(2x) > f(x), and choosing n great enough, we get f( x2n ) < 0

23. Find all functions f : R→ R satisfying:

f(xf(y) + f(x)) = 2f(x) + xy

solution

11



Let P (x, y) be the assertion f(xf(y) + f(x)) = 2f(x) + xy

P (1, x − 2f(1)) =⇒ f(something) = x and f(x) is surjective. If f(a) =
f(b), subtracting P (1, a) from P (1, b) implies a = b and f(x) is injective,
and so bijective.

Let f(0) = a and u such that f(u) = 0

P (u, 0) =⇒ f(au) = 0 = f(u) and so, since injective, au = u

If u = 0, then a = 0 and P (x, 0) =⇒ f(f(x)) = 2f(x) and so, since
surjective, f(x) = 2x which is not a solution.

So u 6= 0 and a = 1. Then P (u, u) =⇒ 1 = u2 and so u = ±1 If u = 1,
P (0,−1) =⇒ 0 = 2, impossible.

So a = 0 and u = −1 : f(−1) = 0 and f(0) = 1 and P (0,−1) =⇒
f(1) = 2

P (−1, x) =⇒ f(−f(x)) = −x P (x,−f(1)) =⇒ f(f(x)−x) = 2(f(x)−x)
Let then x ∈ R and z such f(z) = f(x) − x which exists since f(x) is
surjective. Using last equation, we get f(f(z)) = 2f(z) P (z,−1) =⇒
f(f(z)) = 2f(z)− z
And so z = 0 and f(z) = 1 and f(x) = x+ 1, which indeed is a solution.

Hence the answer : f(x) = x+ 1

24. Find all one-one (injective)functions f : N → N, where N is the set of
positive integers, which satis�es

f(f(n)) ≤ f(n) + n

2

solution

It's easy to show with induction that f [k](n) ≤ 2f(n)+n
3 + 2

3(−2)k (n−f(n))

So, for k great enough : f [k](n) ≤ 2f(n)+n
3 + 1 and so ∃ k1 > k2 such that

f [k1](n) = f [k2](n) and, since injective :

∀n ∃pn ≥ 1 such that f [pn](n) = n

Then, setting k = pn in the above inequality, we get n ≤ 2f(n)+n
3 +

2
3(−2)pn (n− f(n))

⇐⇒ 0 ≤ (f(n)− n)(1− 1
(−2)pn ) and so f(n) ≥ n ∀n

But f(n) > n for some n and injectivity would imply f [pn](n) > n and so
f(n) = n ∀n which indeed is a solution

25. For a given natural number k > 1, �nd all functions f : R→ R such that
for all x, y ∈ R, f [xk + f(y)] = y + [f(x)]k.

solution
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Let P (x, y) be the assertion f(xk + f(y)) = y + f(x)k Let f(0) = a

P (0, y) =⇒ f(f(y)) = y+ ak P (x, 0) =⇒ f(xk + a) = f(x)k P (x, f(y))
=⇒ f(xk + y + ak) = f(y) + f(xk + a)

Let then g(x) = f(x−ak+a). This last equality becomes g(xk+y+2ak−
a) = g(y + al − a) + g(xk + ak) ⇐⇒ g(xk + ak + y) = g(y) + g(xk + ak)

And so g(x+y) = g(x)+g(y) ∀x ≥ ak,∀y Let then x ≥ 0 : g(ak+x+y) =
g(ak + (x + y)) = g(ak) + g(x + y) g(ak + x + y) = g((ak + x) + y) =
g(ak + x) + g(y) = g(ak) + g(x) + g(y) And so g(x + y) = g(x) + g(y)
∀x ≥ 0,∀y
So g(0) = 0 and g(−x) = −g(x). Then : ∀x ≥ 0,∀y : −g(x − y) =
−g(x)−g(−y) =⇒ g(−x+y) = g(−x)+g(y) and so g(x+y) = g(x)+g(y)
∀x, y
And so g(px) = pg(x) ∀p ∈ Q,∀x
Then f(xk + a) = f(x)k implies g(xk + ak) = g(x + ak − a)k =⇒
g(xk) + g(ak) = (g(x) + g(ak − a))k Notice that g(ak − a) = f(0) = a and
replace x with x+ y and we get :

g((x+ y)k) + g(ak) = (g(x) + g(y) + a)k

g(
∑k
i=0

(
k
i

)
xiyk−i) + g(ak) =

∑k
i=0

(
k
i

)
g(x)i(g(y) + a)k−i

Let then x ∈ Q and this equation becomes :∑k
i=0

(
k
i

)
xig(yk−i) + g(ak) =

∑k
i=0

(
k
i

)
g(1)ixi(g(y) + a)k−i

And so we have two polynomials in x (LHS and RHS) which are equal for
any x ∈ Q. So they are identical and all their coe�cients are equal.

Since k ≥ 2, consider the equality of coe�cients of xk−2 : If k > 2,
this equality is g(y2) = g(1)k−2(g(y) + a)2 and g(x) has a constant sign
over R+ If k = 2, this equality becomes g(y2) + g(a2) = (g(y) + a)2 and
g(x) ≥ −g(a2) ∀x ≥ 0

In both cases, we have g(x) either upper bounded, either lower-bounded
on a non empty open interval, and this a classical condition to conclude
to continuity and g(x) = cx ∀x
And so f(x) = cx+ d for some real c, d

Plugging this back in original equation, we get :

f(x) = x ∀x which is a solution for any k f(x) = −x ∀x which is another
solution if k is odd

26. Find all functions f : R→ R such that for all x, y ∈ R,
(x+ y)(f(x)− f(y)) = (x− y)(f(x) + f(y))

solution

Expanding, we get

13



xf(x)− xf(y) + yf(x)− yf(y) = xf(x)− yf(x) + xf(y)− yf(y)
Simplifying,

2yf(x) = 2xf(y)

yf(x) = xf(y)

f(x)

x
=
f(y)

y

Let g(x) =
f(x)

x
. Since g(x) = g(y) for all x and y, g(x) = k where k is a

constant. Thus,

g(x) = k =
f(x)

x

f(x) = kx

27. Find all functions f : Z→ Z such that for all x, y ∈ Z:

f(x− y + f(y)) = f(x) + f(y).

solution

Let P (x, y) be the assertion f(x− y + f(y)) = f(x) + f(y) Let f(0) = a

P (0, 0) =⇒ f(a) = 2a and so f(a) − a = a P (0, a) =⇒ f(f(a) − a) =
f(0) + f(a) and so f(0) = 0

P (0, x) =⇒ f(f(x) − x) = f(x) P (x, f(y) − y) =⇒ f(x − f(y) + y +
f(f(y)− y)) = f(x) + f(f(y)− y) and so f(x+ y) = f(x) + f(y) and so
f(x) = xf(1) (remember we are in Z)
Plugging this in original equation, we get two solutions :

f(x) = 0 ∀x f(x) = 2x ∀x

28. We denote by R+ the set of all positive real numbers.

Find all functions f : R+ → R+ which have the property: f(x)f(y) =
2f(x+ yf(x))

for all positive real numbers x and y.

solution

Let P (x, y) be the assertion f(x)f(y) = 2f(x+ yf(x))

Let u, v > 0. Let a ∈ (0, u)

Let x = a > 0 and y = u−a
f(a) > 0 and z = 2v

f(x)f(y) > 0

f(x)f(y) = 2f(x + yf(x)) = 2f(u) and so f(x)f(y)f(z) = 2f(u)f(z) =
4f(u+ zf(u)) = 4f(u+ v)

f(y)f(z) = 2f(y + zf(y)) and so f(x)f(y)f(z) = 2f(x)f(y + zf(y)) =
4f(x+ (y + zf(y))f(x)) = 4f(x+ yf(x) + zf(x)f(y)) = 4f(u+ 2v)

14



And so f(u+ v) = f(u+2v) ∀u, v > 0 and so f(x) = f(y) ∀x, y such that
2x > y > x > 0

And it's immediate from there to conclude f(x) = f(y) ∀x, y > 0

Hence the unique solution f(x) = 2∀x > 0

29. Find all continuous functions R→ R satisfying the equation: f(x)+f(y)+
f(z) + f(x+ y + z) = f(x+ y) + f(y + z) + f(z + x) + f(0)

solution

Let P (x, y, z) be the assertion

f(x) + f(y) + f(z) + f(x+ y+ z) = f(x+ y) + f(y+ z) + f(z + x) + f(0)

P (x, y, y) =⇒ f(x+2y)−f(x+y) = f(x+y)−f(x)+(f(2y)+f(0)−2f(y))
P (x+y, y, y) =⇒ f(x+3y)−f(x+2y) = f(x+2y)−f(x+y)+(f(2y)+
f(0)− 2f(y)) ... P (x+ (n− 1)y, y, y) =⇒ f(x+ (n+1)y)− f(x+ ny) =
f(x+ ny)− f(x+ (n− 1)y) + (f(2y) + f(0)− 2f(y))

Adding these lines gives f(x+ (n+ 1)y)− f(x+ ny) = f(x+ y)− f(x) +
n(f(2y) + f(0)− 2f(y))

And so (adding this last lines for n = 0, ..., k − 1) : f(x + ky) − f(x) =
k(f(x+ y)− f(x)) + k(k−1)

2 (f(2y) + f(0)− 2f(y))

Setting x = 0 in this last equality and renaming y → x and k → n, we get
:

f(nx) = f(2x)+f(0)−2f(x)
2 n2 + 4f(x)−f(2x)−3f(0)

2 n+ f(0)

So : f(q pq ) =
f(2 pq )+f(0)−2f(

p
q )

2 q2 +
4f( pq )−f(2

p
q )−3f(0)

2 q + f(0)

And since f(q pq ) = f(p) = f(2)+f(0)−2f(1)
2 p2+ 4f(1)−f(2)−3f(0)

2 p+ f(0), we
get :

(f(2) + f(0) − 2f(1))p2 + (4f(1) − f(2) − 3f(0))p = (f(2pq ) + f(0) −
2f(pq ))q

2 + (4f(pq )− f(2
p
q )− 3f(0))q

Replacing p→ np and q → nq in this equation, we get :

(f(2) + f(0)− 2f(1))p2n2 + (4f(1)− f(2)− 3f(0))pn = (f(2pq ) + f(0)−
2f(pq ))q

2n2 + (4f(pq )− f(2
p
q )− 3f(0))qn and so :

n2
(
(f(2) + f(0)− 2f(1))p2 − (f(2pq ) + f(0)− 2f(pq ))q

2
)
+n
(
(4f(1)− f(2)− 3f(0))p− (4f(pq )− f(2

p
q )− 3f(0))q

)
=

0

And since this is true for any n, we get : (f(2)+f(0)−2f(1))p2−(f(2pq )+
f(0)−2f(pq ))q

2 = 0 (4f(1)−f(2)−3f(0))p−(4f(pq )−f(2
p
q )−3f(0))q = 0

From these two lines, we get f(pq ) =
f(2)+f(0)−2f(1)

2
p2

q2 + 4f(1)−f(2)−3f(0)
2

p
q+

f(0)
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And so f(x) = ax2+ bx+c ∀x ∈ Q+ which indeed �ts whatever are a, b, c.

So f(x) = ax2 + bx+ c ∀x ∈ R+ (using continuity)

Let then x > 0 : P (−x, x, x) =⇒ f(−x) + 3f(x) = f(2x) + 3f(0) and,
since x ≥ 0 and 2x ≥ 0 :

f(−x) = (4ax2 + 2bx+ c) + 3c− 3(ax2 + bx+ c) = ax2 − bx+ c

And so f(x) = ax2 + bx+ c ∀x ∈ R

30. Find all continuous functions f : R→ R that satisfy f(x+y)+f(xy)+1 =
f(x) + f(y) + f(xy + 1) ∀x, y ∈ R.

solution

Let P (x, y) be the assertion f(x+y)+f(xy)+1 = f(x)+f(y)+f(xy+1)

1) Let us solve the easier equation (E1) : ===========================
"Find all functions g(x) from N→ R such that : g(2x+y)−g(2x)−g(y) =
g(2y + x)− g(2y)− g(x) ∀x, y ∈ N"
The set S of solutions is a R-vector space. Setting y = 1, we get g(2x+1) =
g(2x) + g(1) + g(x + 2) − g(2) − g(x) Setting y = 2, we get g(2x + 2) =
g(2x) + g(2) + g(x + 4) − g(4) − g(x) From these two equations, we see
that knowledge of g(1), g(2), g(3), g(4) and g(6) gives knowledge of g(x)
∀x ∈ N and so dimension of S is at most 5. But the 5 functions below
are independant solutions : g1(x) = 1 g2(x) = x g3(x) = x2 g4(x) = 1
if x = 0 (mod 2) and g4(x) = 0 if x 6= 0 (mod 2) g5(x) = 1 if x = 0
(mod 3) and g5(x) = 0 if x 6= 0 (mod 3) And the general solution of (E1)
is g(x) = a · x2 + b · x+ c+ d · g4(x) + e · g5(x)
2) Solutions of the original equation : ========================
P (x, 0) =⇒ f(1) = 1 Comparing P (xy, z) and P (xz, y), we get Q(x, y, z)
: f(xy + z)− f(xy)− f(z) = f(xz + y)− f(xz)− f(y)
2.1) f(x) = ax2 + bx+ c ∀x > 0 ��������������� Let p a
positive integer. Q(2, mp ,

n
p ) =⇒ f( 2m+n

p )− f( 2mp )− f(np ) = f( 2n+mp )−
f( 2np )− f(mp )

So f(xp ) is a solution of (E1) and so f(xp ) = ap · x2 + bp · x + cp + dp ·
g4(x)ep ·g5(x) ∀x ∈ N Choosing x = kp, it's easy to see that ap =

a
p2 , then

that bp =
b
p Choosing x = 2kp, x = 3kp and x = 6kp, it's easy to see that

cp = c and dp = ep = 0

And so f(xp ) = a(xp )
2 + b(xp ) + c ∀x, p ∈ N And so f(x) = ax2 + bx + c

∀x ∈ Q+∗

Now, f(x) continuous implies f(x) = ax2 + bx+ c ∀x ∈ R+ Q.E.D.

2.2) f(x) = a′x2 + b′x + c′ ∀x < 0 ���������������
- Q(2,−mp ,−

n
p ) =⇒ f(− 2m+n

p ) − f(− 2m
p ) − f(−np ) = f − 2n+m

p ) +

16



f(− 2n
p )− f(−mp ) So f(−

x
p ) is a solution of (E1) and the same method as

in 2.1 above gives the result.

2.3) f(x) = ax2+ bx+1−a− b ∀x��������������� We
got f(x) = ax2 + bx+ c ∀x > 0 and f(x) = a′x2 + b′x+ c′ ∀x < 0

Continuity at 0 implies c = c′ and f(1) = 1 implies c = 1−a−b P (−1,−1)
=⇒ a′ = a P (−2, 3) =⇒ b′ = b Q.E.D

It is then easy to check back that this necessary form is indeed a solution
and we got the result :

f(x) = ax2 + bx+ 1− a− b ∀x

31. Find all functions f : Q+ 7→ Q+ such that:

f(x) + f(y) + 2xyf(xy) =
f(xy)

f(x+ y)
.

solution

Let P (x, y) be the assertion f(x)+f(y)+2xyf(xy) = f(xy)
f(x+y) Let f(1) = a

P (1, 1) =⇒ f(2) = 1
4 P (2, 2) =⇒ f(4) = 1

16 P (2, 1) =⇒ f(3) = 1
4a+5

P (3, 1) =⇒ f(4) = 1
4a2+5a+7 and so 4a2 + 5a + 7 = 16 and so a = 1

(remember f(x) > 0)

P (x, 1) =⇒ 1
f(x+1) =

1
f(x) +2x+1 and so 1

f(x+n) =
1

f(x) +2nx+ x2 and

f(n) = 1
n2

P (x, n) =⇒ f(nx) =
f(x)+ 1

n2
1

f(x)
+n2

Setting x = p
n in this last equality, we get f( pn ) =

n2

p2 (remember f(x) > 0)

Hence the answer : f(x) =
1

x2
∀x ∈ Q+ which indeed is a solution.

32. Find all continuous f : R → R such that for reals x, y - f(x + f(y)) =
y + f(x+ 1)

solution

Let P (x, y) be the assertion f(x+ f(y)) = y + f(x+ 1)

P (0, y+1−f(1)) =⇒ f(f(y+1−f(1))) = y+1 P (x−f(1), f(y+1−f(1)))
=⇒ f(x− f(1) + f(f(y+1− f(1)))) = f(y+1− f(1)) + f(x+1− f(1))
and so f(x+ y + 1− f(1)) = f(y + 1− f(1)) + f(x+ 1− f(1))
Let then g(x) = f(x + 1 − f(1)) and we get g(x + y) = g(x) + g(y) and
so, since continuous, g(x) = ax and f(x) = a(x+ f(1)− 1)

Plugging f(x) = ax+ b in original equation, we get two solutions : f(x) =
1 + x ∀x f(x) = 1− x ∀x

17



33. f : Z → Z f(m+ n) + f(mn− 1) = f(m)f(n) + 2

solution

Let P (x, y) be the assertion f(x+ y) + f(xy − 1) = f(x)f(y) + 2

P (x, 0) =⇒ f(x)(f(0)− 1) = f(−1)− 2

If f(0) 6= 1, this implies f(x) = c and 2c = c2 + 2 and no solution. So
f(0) = 1 and f(−1) = 2

Let then f(1) = a P (1, 1) =⇒ f(2) = a2 + 1 P (2, 1) =⇒ f(3) = a3 + 2
P (3, 1) =⇒ f(4) = a4−a2+2a+1 P (2, 2) =⇒ f(4) = a4−a3+2a2+1

And so a4 − a2 + 2a+ 1 = a4 − a3 + 2a2 + 1 ⇐⇒ a(a− 1)(a− 2) = 0

If a = 0 : Previous lines imply f(2) = 1 and f(3) = 2 and f(4) = 1 P (4, 1)
=⇒ f(5) = 0 But P (3, 2) =⇒ f(5) = 2 and so contradiction

If a = 1 : Previous lines imply f(2) = 2 and f(3) = 3 and f(4) = 3 P (4, 1)
=⇒ f(5) = 2 But P (3, 2) =⇒ f(5) = 4 and so contradiction

If a = 2, then P (m+ 1, 1) =⇒ f(m+ 2) = 2f(m+ 1)− f(m) + 2 which
is easily solved in f(m) = m2 + 1 which indeed is a soluion.

Hence the unique solution : f(x) = x2 + 1 ∀x ∈ Z

34. Find All Functions f : R→ R Such That f(x− y) = f(x+ y)f(y)

solution

Let P (x, y) be the assertion f(x− y) = f(x+ y)f(y)

P (0, 0) =⇒ f(0)2 = f(0) and so f(0) = 0 or f(0) = 1

If f(0) = 0 : P (x, 0) =⇒ f(x) = 0 ∀x which indeed is a solution

If f(0) = 1 : P (x, x) =⇒ f(x)f(2x) = 1 and so f(x) 6= 0 ∀x P ( 2x3 ,
x
3 )

=⇒ f(x3 ) = f(x)f(x3 ) and, since f(
x
3 ) 6= 0 : f(x) = 1 which indeed is a

solution.

Hence the two solutions : f(x) = 0 ∀x f(x) = 1 ∀x

35. Find all functions f : R→ R such that

f(x) · f(y) = f(x) + f(y) + f(xy)− 2 ∀x, y ∈ R.

solution

Setting f(x) = g(x) + 1, the equation becomes g(xy) = g(x)g(y), very
classical equation whose general solutions are : g(x) = 1 ∀x g(0) = 0
and g(x) = |x|a ∀x 6= 0 where a is any non zero real. g(0) = 0 and
g(x) = sign(x)|x|a ∀x 6= 0 where a is any non zero real.
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Hence the three solutions of the required equation : f(x) = 2 ∀x f(0) = 1
and f(x) = 1 + |x|a ∀x 6= 0 where a is any non zero real. f(0) = 1 and
f(x) = 1 + sign(x)|x|a ∀x 6= 0 where a is any non zero real

And so : ...g(xy) = g(x)g(y), very classical :) equation whose general
solutions are : g(x) = 0 ∀x g(x) = 1 ∀x g(0) = 0 and g(x) = eh(ln |x|)

∀x 6= 0 where h(x) is any solution of Cauchy's equation. g(0) = 0 and
g(x) = sign(x)eh(ln |x|) ∀x 6= 0 where h(x) is any solution of Cauchy's
equation.

Hence the four solutions of the required equation : f(x) = 1 ∀x f(x) = 2
∀x f(0) = 1 and f(x) = 1 + eh(ln |x|) ∀x 6= 0 where h(x) is any solution
of Cauchy's equation. f(0) = 1 and f(x) = 1 + sign(x)eh(ln |x|) ∀x 6= 0
where h(x) is any solution of Cauchy's equation

36. Find all functional f : R→ R and g : R→ R satisfy: f(x3+2y)+f(x+y) =
g(x+ 2y) ∀x, y ∈ R

solution

If (f, g) is a solution, so is (f + c, g + 2c) and so Wlog say f(0) = 0

Setting y = 0 in the equation gives g(x) = f(x3) + f(x) Pluging this
in original equation, we get assertion P (x, y) : f(x3 + 2y) + f(x + y) =
f((x+ 2y)3) + f(x+ 2y)

Setting x = −y in the equation gives g(y) = f(2y − y3) and so g(x) =
f(2x − x3) Pluging this in original equation, we get assertion Q(x, y) :
f(x3 + 2y) + f(x+ y) = f(2(x+ 2y)− (x+ 2y)3)

1) f(x+ 1
2 ) = f(x) ∀x==================== P (1, x− 1

2 ) =⇒
f(x+ 1

2 ) = f((2x)3) P (0, x) =⇒ f(x) = f((2x)3) And so f(x+ 1
2 ) = f(x)

Q.E.D.

2) f(x) = 0 ∀x ∈ [0, 1] ============== Let y ∈ (0, 1] Q(x, y− x)
=⇒ f(x3 − 2x + 2y) + f(y) = f(2(2y − x) − (2y − x)3) Consider now
the equation x3 − 2x + 2y = 2(2y − x) − (2y − x)3 It may be written

(x− y)2 = 1−y2
3 and it has always at least one solution x since y ∈ (0, 1]

Choosing this value x, f(x3 − 2x+ 2y) + f(y) = f(2(2y − x)− (2y − x)3)
becomes f(y) = 0 Q.E.D.

3) Solutions ======== 2) gave f(x) = 0 ∀x ∈ [0, 1] 1) gave f(x+ 1
2 ) =

f(x) So f(x) = 0 ∀x So g(x) = 0 ∀x

Hence the answer : (f(x), g(x)) = (c, 2c) for any real c

37. Find all functional f : R→ R satisfy:xf(x)− yf(y) = (x− y)f(x+ y) for
all x, y ∈ R

solution

Let P (x, y) be the assertion xf(x)− yf(y) = (x− y)f(x+ y)

P (x−12 , 1−x2 ) =⇒ x−1
2 f(x−12 )− 1−x

2 f( 1−x2 ) = (x− 1)f(0)
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P ( 1−x2 , x+1
2 ) =⇒ 1−x

2 f( 1−x2 )− x+1
2 f(x+1

2 ) = −xf(1)
P (x+1

2 , x−12 ) =⇒ x+1
2 f(x+1

2 )− x−1
2 f(x−12 ) = f(x)

Adding these three lines, we get f(x) − xf(1) + (x − 1)f(0) = 0 and so
f(x) = (f(1)− f(0))x− f(0)

And so f(x) = ax+ b which indeed is a solution

38. Find all continuous, strictly increasing functions f : R → R such that
1) f(0) = 0 2) f(1) = 1 3) [f(x + y)] = [f(x)] + [f(y)] ∀ x, y ∈
R such that [x+ y] = [x] + [y]

solution

a) f(x) ∈ (0, 1) ∀x ∈ (0, 1) Trivial using 1) 2) and increasing property

b) [f(n)] = n ∀n ∈ Z [m+ n] = [m] + [n] ∀m,n ∈ Z and so [f(m+ n)] =
[f(m)] + [f(n)] and so [f(n)] = n[f(1)] = n

c) [f(x)] ≥ [x] ∀x x ≥ [x] and f(x) increasing implies f(x) ≥ f([x]) and
so [f(x)] ≥ [f([x])] = [x]

d) [f(x)] < [x] + 1 ∀x If [f(a)] ≥ [a] + 1 for some a, then : [f([a])] = [a]
and so f([a]) < [a] + 1 Then continuity implies ∃u ∈ ([a], a) such that
f(u) = [a] + 1 Choosing then some x ∈ ([a], u) and y = a − x ∈ (0, 1)
we get [x + y] = [a] = [x] + [y] and so : [f(x + y)] = [f(x)] + [f(y)]
which is [f(a)] = [f(x)]+ [f(y)] which is wrong since [f(a)] ≥ [a]+1 while
[f(x)] = [a] and [f(y)] = 0 So no such a

From c),d) we get [f(x)] = [x] and, plugging this in original equation, we
get that any strictly increasing continuous function matching 1) and 2)
and [f(x)] = [x] matches 3) too.

[f(x)] = [x] and continuity imply f(n) = n

[u][b]Hence the answer[/b][/u]: f(x) solution if and only if : f(x) = x
∀x ∈ Z f(x) may take any values in (n, n + 1) when x ∈ (n, n + 1) with
respect to the properties "strictly increasing and continuous"

39. Find All Functions f : N→ N f(m+ f(n)) = n+ f(m+ k) ∀ m,n, k ∈ N
With k Being Fixed Natural Number

solution

If f(n) < k for some n, then the equation may be written f(m + (k −
f(n))) = f(m)−n ∀m > f(n) So f(m+ p(k− f(n))) = f(m)− pn, which
is impossible, since this would imply f(x) < 0 for some x great enough.

If f(n) = k for some n, then the equation implies n = 0, impossible

So f(n) > k ∀n and the equation may be written f(m + (f(n) − k)) =
n+ f(m) ∀m > k And so f(m+ p(f(n)− k)) = pn+ f(m) Choosing then
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p = f(q)−k, we get f(m+(f(q)−k)(f(n)−k)) = (f(q)−k)n+f(m) and

so, by symetry : (f(q)− k)n = (f(n)− k)q ∀q, n And so f(q)−k
q = f(n)−k

n

and so f(n) = k + cn for some constant c

Plugging this in original equation, we get c = 1 and so solution f(n) = n+ k

40. �nd all f : R → R such that f(x)f(yf(x) − 1) = x2f(y) − f(x) for real
x,y.

solution

f(x) = 0 ∀x is a solution and let us from now look for non all-zero solu-
tions.

Let P (x, y) be the assertion f(x)f(yf(x)− 1) = x2f(y)− f(x) Let u such
that f(u) 6= 0

P (1, 1) =⇒ f(1)f(f(1) − 1) = 0 and so ∃v such that f(v) = 0 P (v, u)
=⇒ v2f(u) = 0 and so v = 0

So f(x) = 0 ⇐⇒ x = 0 and we got f(1) = 1

P (1, x) =⇒ f(x − 1) = f(x) − 1 and so P (x, y) may be written : New
assertion Q(x, y) : f(x)f(yf(x)) = x2f(y)

Let x 6= 0 : Q(x, x) =⇒ f(xf(x)) = x2 and so any x ≥ 0 is in f(R)
Q(x, y) =⇒ f(x)f(yf(x)) = x2f(y) Q(x, 1) =⇒ f(x)f(f(x)) = x2

Q(x, y + 1) =⇒ f(x)f(yf(x) + f(x)) = x2f(y) + x2

And so f(x)f(yf(x) + f(x)) = f(x)f(yf(x)) + f(x)f(f(x))

Choosing then z > 0 and x such that f(x) = z, we get : f(yz + z) =
f(yz) + f(z) and so f(x+ y) = f(x) + f(y) ∀x > 0, ∀y
And this immediately implies f(x + y) = f(x) + f(y) ∀x, y (x = 0 is
obvious and using y = −x, we get f(−x) = −f(x))
Q(x, 1) =⇒ f(x)f(f(x)) = x2 Q(x+1, 1) =⇒ (f(x)+1)(f(f(x))+1) =
x2 + 2x+ 1 And so f(f(x)) + f(x) = 2x

And combinaison of f(x)f(f(x)) = x2 and f(f(x)) + f(x) = 2x implies
(f(x)− x)2 = 0 and so f(x) = x ∀x, which indeed is a solution

[u][b]Hence the solutions [/b][/u]: f(x) = 0 ∀x f(x) = x ∀x

41. Prove that there is no function like f : R+ → R such that for all positive
x, y :

f(x+ y) > y(f(x)2)
solution

Let P (x, y) be the assertion f(x+ y) > yf(x)2

Let x > 0 : P (x2 ,
x
2 ) =⇒ f(x) > 0 ∀x

Let then a > 0 and x ∈ [0, a] : P (x, 2a−x) =⇒ f(2a) > (2a−x)f(x)2 ≥
af(x)2 and so f(x)2 < f(2a)

a
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And so f(x) is upper bounded over any interval (0, a]

Let then f(1) = u > 0 and the sequence x0 = 1 and xn+1 = xn + 2
f(xn)

∀n ≥ 0 :

P (xn,
2

f(xn)
) =⇒ f(xn+1) > 2f(xn) and so f(xn) > 2nu ∀n > 0

So x1 = 1 + 2
u and xn+1 < xn + 1

2n−1u ∀n > 0

So xn < 1 + 1
u (2 + 1 + 1

2 + 1
4 + ... 1

2n−1 ) < 1 + 4
u

But f(xn) > 2nu and xn < 1 + 4
u shows that f(x) is not upper bounded

over (0, 1 + 4
u ], and so contradiction with the �rst sentence of this proof.

So no such function.

42. Let f be a function de�ned for positive integers with positive integral
values satisfying the conditions:

[b](i)[/b] f(ab) = f(a)f(b),

[b](ii)[/b] f(a) < f(b) if a < b,

[b](iii)[/b] f(3) ≥ 7.

Find the minimum value for f(3).

solution

Let m > n > 1 two integers :

If pq <
lnm
lnn < r

s , with p, q, r, s ∈ N, we get :

np < mq and so f(n)p < f(m)p and so p
q <

ln f(m)
ln f(n)

ms < nr and so f(m)s < f(n)r and so ln f(m)
ln f(n) <

r
s

And so ln f(m)
ln f(n) = lnm

lnn and ln f(m)
lnm = ln f(n)

lnn = c

And f(n) = nc

And so f(3) = 3c ≥ 7

So c = 2 and minimum value for f(3) is nine, which is reached for function
f(n) = n2

43. Find all functions f : R→ R such that

f(a3) + f(b3) + f(c3) = f(3abc) ∀a, b, c ∈ R.

solution

Setting b = c = 0, we get f(a3) = −f(0) and so f(x) is constant and the

only constant solution is f(x) = 0 ∀x
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44. Find all functions f : R→ R such that

f(a3) + f(b3) + f(c3) = a · f(a2) + b · f(b2) + c · f(c2) ∀a, b, c ∈ R.

solution

This is equivalent to f(x3) = xf(x2) and there are in�nitely many solution.

Let x ∼ y the relation de�ned on (1,+∞) as ln(ln x)−ln(ln y)
ln 3−ln 2 ∈ Z

This is an equivalence relation. Let c(x) any choice function which as-
sociates to any real in (1,+∞) a representant (unique per class) of its

class. Let n(x) = ln(ln x)−ln(ln c(x))
ln 3−ln 2 ∈ Z We get x = c(x)(

3
2 )
n(x)

and so

f(x) = xf(c(x))
c(x)

And so we can de�ne f(x) only over c((1,+∞)) Let g(x) any �nction from
R→ R
f(x) = xg(c(x))

c(x)

We can de�ne in the same way f(x) over (0, 1) We can de�ne then f(1)
as any value, f(0) as 0 and f(−x) = −f(x)
And we have got all suitable f(x)

45. Determine all monotone functions f : R → Z such that f(x) = x, ∀x ∈ Z
and f(x+ y) ≥ f(x) + f(y),∀x, y ∈ R.

solution

Induction gives f(qx) ≥ qf(x) ∀q ∈ N and so, setting x = p
q , f(

p
q ) ≤

p
q .

Since f(x) is non decreasing and f(x) ∈ Z, this implies f(x) = [x] ∀x ∈ Q
Since f(x) is non decreasing, this implies f(x) = [x] ∀x ∈ R

46. Find all monotone functions f : R→ R such that f(4x)− f(3x) = 2x, for
each x ∈ R.

solution

Forget the "monotone" constraint and the general solution of functional
equation is :

∀x > 0 : f(x) = 2x+ h( ln x
ln 4−ln 3 ) where h(x) is any function de�ned over

[0, 1) f(0) = a ∀x < 0 : f(x) = 2x+k( ln−x
ln 4−ln 3 ) where k(x) is any function

de�ned over [0, 1)

Adding then monotone constraint and looking at f(x) when x → 0, we
see that we must have suph([0, 1)) = inf h([0, 1) and so h(x) = c constant.

And then, continuity at 0 implies that h(x) = k(x) = a and so f(x) = 2x+ a
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47. Let n ∈ N, such that
√
n /∈ N and A = {a+ b

√
n|a, b ∈ N, a2 − nb2 = 1}.

Prove that the function f : A → N, such that f(x) = [x] is injective but
not surjective.

(N = {1, 2, ...})
solution

If [a+ b
√
n] = p ≥ 1, then :

p ≤ a+ b
√
n < p+ 1 1

p+1 < a− b
√
n < 1

p

Adding, we get p+ 1
p+1 < 2a < p+ 1 + 1

p

And since (p + 1 + 1
p ) − (p + 1

p+1 ) = 1 + 1
p(p+1) < 2, this interval may

contain at most one even integer.

So knowledge of f(x) implies knowledge of a and so (using a2 − nb2 = 1),
knowledge of b

So f(x) is injective.

Consider then p = 2 and the equation becomes 2+ 1
3 < 2a < 3+ 1

2 and so
1 < 7

6 < a < 7
4 < 2 and so no such a. So f(x) = 2 is impossible and f(x)

is not surjective.

48. Find all functions f : R+ → R+ such that :

f(x2 + y2) = f(xy)
solution

The system x2 + y2 = u and xy = v has solution with x, y > 0 i� u >
2v > 0

And so f(u) = f(v) ∀u > 2v > 0

Let then x > y > 0 : x > 2y4 and so f(x) = f(y4 )

y > 2y4 and so f(y) = f(y4 )

And so f(x) = f(y) and so f(x) is constant

49. �nd all functions f : Z ��>Z such that f(-1) = f(1) and f(x) + f(y) =
f(x+2xy) + f(y-2xy) for all integers x,y.

solution

Let f(1) = f(−1) = a Let P (x, y) be the assertion f(x) + f(y) = f(x +
2xy) + f(y − 2xy)

Let A = {x such that f(x) = f(−x) = a} 1 ∈ A
1) x ∈ A =⇒ 2x+1 ∈ A==================================
Let x ∈ A P (−x,−1) =⇒ f(−x) + f(−1) = f(x) + f(−1 − 2x) =⇒
f(−2x − 1) = a P (1, x) =⇒ f(1) + f(x) = f(1 + 2x) + f(−x) =⇒
f(2x+ 1) = a So f(2x+ 1) = f(−2x− 1) = a and so 2x+ 1 ∈ A Q.E.D.

2) f(x) = f(−x) =⇒ f(x−1) = f(1−x)=========================================
Let x such that f(x) = f(−x) P (1,−x) =⇒ f(1)+ f(−x) = f(1− 2x)+
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f(x) and so f(1 − 2x) = a P (1 − x,−1) =⇒ f(1 − x) + f(−1) =
f(x− 1) + f(1− 2x) and so f(1− x) = f(x− 1) Q.E.D

3) f(x) = f(−x) ∀x and f(2x+1) = a ∀x======================================
From 1) and since 1 ∈ A, we deduce 1 ∈ A, 3 ∈ A, 7 ∈ A, ..., 2n − 1 ∈ A
... So we can �nd in A numbers as great as we want. Using then 2) as
many times as we want, we get thet f(x) = f(−x) ∀x Then P (1, x) =⇒
f(1) + f(x) = f(1 + 2x) + f(−x) =⇒ f(2x+ 1) = a Q.E.D.

4)f((2k+1)x) = f(x) ∀x, k =================================
P (x, 2k + 1) =⇒ f(x) + f(2k + 1) = f(x(4k + 3)) + f((2k + 1)(1− 2x))
and so, using 3) : f(x) = f(x(4k + 3)) P (−x,−2k − 1) =⇒ f(−x) +
f(−2k− 1) = f(x(4k+1))+ f(−(2k+1)(2x+1)) and so, using 2) and 3)
: f(x) = f(−x) = f(x(4k + 1)) So f(x) = f(x(2k + 1)) Q.E.D.

5) General solution =================== From f(x) = f(x(2k+
1)), we get that f(x) = h(v2(x)) And since v2(x) = v2(x(2y + 1)) and
v2(y) = v2(y(1 − 2x)), we get that any h(x) is a solution. Hence the
answer :

f(x) = h(v2(x)) where h(x) is any function from N ∪ {0} → Z

50. Determine all functions f : R → R such that f(x + y) ≤ f(x) + f(y) for
all x, y ∈ R and f(x) ≤ ex − 1 for each x ∈ R.

solution

f(x + 0) ≤ f(x) + f(0) and so f(0) ≥ 0 and since f(0) ≤ e0 − 1 = 0, we
get f(0) = 0 f(x+ (−x)) ≤ f(x) + f(−x) and so f(x) + f(−x) ≥ 0

f(x) ≤ ex − 1 =⇒ f(x) ≤ f(x2 ) + f(x2 ) ≤ 2(e
x
2 − 1)

f(x) ≤ 2(e
x
2 − 1) =⇒ f(x) ≤ f(x2 ) + f(x2 ) ≤ 4(e

x
4 − 1)

And immediate induction gives f(x) ≤ 2n(e
x
2n − 1)

Setting n→ +∞, we get f(x) ≤ x
So f(x) + f(−x) ≤ x + (−x) = 0 and so, since we already got f(x) +
f(−x) ≥ 0, we get f(x) + f(−x) = 0

Then f(−x) ≤ −x =⇒ −f(x) ≤ −x =⇒ f(x) ≥ x

And so f(x) = x which indeed is a solution

51. �nd all continues functions f : R −→ R for each two real numbers x, y:

f(x+ y) = f(x+ f(y))
solution

If f(x) = x ∀x, we got a solution. If ∃a such that f(a) 6= a, then f(x+a) =
f(x+f(a)) implies that f(x) is periodic and one of its periods is |f(a)−a|.
Let T = inf{positive periods} If T = 0, then f(x) = c is constant and we
got another solution. if T 6= 0, then T is a period of f(x) (since continuous)
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and, since any f(y) − y is also a period, we get that f(y) − y = n(y)T
where n(y) ∈ Z but then n(y) is a continuous function from R → Z and
so is constant and f(y) = y + kT which is not a periodic function. Hence
the two solutions : f(x) = x ∀x f(x) = c ∀x for any c ∈ R

52. • f (f(x)y + x) = xf(y)+f(x) , for all real numbers x, y and • the equation
f(t) = −t has exactly one root.

solution

Let P (x, y) be the assertion f(f(x)y + x) = xf(y) + f(x) Let t be the
unique real such that f(t) = −t
f(x) = 0 ∀x is a solution. Let us from now look for non all-zero solutions.
Let u such that f(u) 6= 0

P (1, 0) =⇒ f(0) = 0 and so t = 0 If f(a) = 0, then P (a, u) =⇒
af(u) = 0 and so a = 0 So f(x) = 0 ⇐⇒ x = 0

If f(1) 6= 1, then P (1, 1
1−f(1) ) =⇒ f( f(1)

1−f(1) + 1) = f( 1
1−f(1) ) + f(1) and

so f(1) = 0, which is impossible. So f(1) = 1

P (1,−1) =⇒ f(−1) = −1 P (x,−1) =⇒ f(x − f(x)) = f(x) − x and
so, since the only solution of f(t) = −t is t = 0 : f(x) = x which indeed
is a solution.

[u][b]Hence the two solutions [/b][/u]: f(x) = 0 ∀x f(x) = x ∀x

53. Find all function f : R → R f(x + f(y)) + f(f(y)) = f(f(x)) + 2f(y)
f(x+ f(x)) = 2f(x) and f(f(x)) = f(x) while f(0) = 0

solution

1) It's not very fair to transform a problem and claim that there exists a
solution when your transformation is not an equivalence and so you dont
know if there is such an olympiad level solution.

2) Solution of the original problem : Let P (x, y) be the assertion f(x +
f(y)) + f(f(y)) = f(f(x)) + 2f(y)

P (0, y) =⇒ f(f(y)) = f(f(0))
2 +f(y) P (0, x) =⇒ f(f(x)) = f(f(0))

2 +f(x)
Plugging this in P (x, y), we get new assertion Q(x, y) : f(x + f(y)) =
f(x) + f(y) It's immediate to see that the two assertions are equivalent.

The new assertion has been solved many times in mathlinks :

Let A = f(R). Using f(x) + f(y) = f(x + f(y)) and f(x) − f(y) =
f(x−f(y)) (look at Q(x−f(y), y)), we see that A is an additive subgroup
of R
Then the relation x ∼ y ⇐⇒ x − y ∈ A is an equivalence relation and
let c(x) any choice function which assocoates to a real x a representant
(unique per class) of it's equivalence class.
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Setting g(x) = f(x)−x, Q(x, y) may be written g(x+f(y)) = g(x) and so
g(x) is constant in any equivalence class and so f(x)− x = f(c(x))− c(x)
and so f(x) = h(c(x)) + x− c(x) where h(x) is a function from R→ A

[u][b]So, any solution may be written as [/b][/u]f(x) = x− c(x) + h(c(x))
where : A ⊆ R is an additive subgroup of R c(x) is any choice function
associating to a real x a representant (unique per class) of it's equivalence
class for the equivalence relation x − y ∈ A h(x) is any function from
R→ A

[u][b]Let us show now that this mandatory form is su�cient and so that
we got a general solution [/b][/u]: Let A ⊆ R any additive subgroup of R
Let c(x) any choice function associating to a real x a representant (unique
per class) of it's equivalence class for the equivalence relation x − y ∈ A
Let h(x) any function from R→ A Let f(x) = x− c(x) + h(c(x))

x − c(x) ∈ A and h(c(x)) ∈ A and A subgroup imply that f(x) ∈ A So
x + f(y) ∼ x and c(x + f(y)) = c(x) So f(x + f(y)) = x + f(y) − c(x +
f(y)) + h(c(x+ f(y))) = x+ f(y)− c(x) + h(c(x)) = f(x) + f(y) Q.E.D.

And so we got a general solution.

[u][b]Some examples [/b][/u]: 1) Let A = R and so a unique class and

c(x) = a and f(x) = x − a + h(a) and so the solution f(x) = x+ b

(notice that f(0) = 0 is not mandatory.

2) Let A = {0} and so equivalence classes are {x} and so c(x) = x and

h(x) = 0 and f(x) = x− x+ 0 and so the solution f(x) = 0

3) Let A = Z and c(x) = x − bxc and h(x) = b2xc f(x) = x − x + bxc +
b2x− 2bxcc and so the solution f(x) = b2xc − bxc

and in�nitely many other

54. Find all functions f : R0 → R0 satisfying the functional relation f(f(x)−
x) = 2x ∀x ∈ R0

solution

Ok, so R0 here is the set of non negative real numbers. Then : In order to
LHS be de�ned, we get f(x) ≥ x ∀x So f(f(x)− x) ≥ f(x)− x ∀x ⇐⇒
f(x) ≤ 3x

So we got x ≤ f(x) ≤ 3x

If we consider anx ≤ f(x) ≤ bnx, we get an(f(x)−x) ≤ 2x ≤ bn(f(x)−x)
and so bn+2

bn
x ≤ f(x) ≤ an+2

an
x

And so the sequences : a1 = 1 b1 = 3 an+1 = bn+2
bn

bn+1 = an+2
an

And it's easy to show that : an is a non decreasing sequence whose limit
is 2 bn is a non increasing sequence whose limit is 2

And so f(x) = 2x which indeed is a solution.
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55. (Romania District Olympiad 2011 - Grade XI)

Find all functions f : [0, 1]→ R for which we have:

|x− y|2 ≤ |f(x)− f(y)| ≤ |x− y|,

for all x, y ∈ [0, 1].
solution

Let P (x, y) be the assertion |x− y|2 ≤ |f(x)− f(y)| ≤ |x− y|
Setting y → x in P (x, y), we conclude that f(x) is continuous. If f(a) =
f(b), then P (a, b) =⇒ (a− b)2 ≤ 0 and so a = b and f(x) is injective

f(x) continuous and injective implies monotonous. f(x) solution implies
f(x) + c and c − f(x) solutions too. So Wlog say f(0) = 0 and f(x)
increasing.

Then : P (1, 0) =⇒ f(1) = 1 and so f(x) ∈ [0, 1] P (x, 0) =⇒ f(x) ≤ x
P (x, 1) =⇒ 1− f(x) ≤ 1− x
And so f(x) = x which indeed is a solution.

[u][b]Hence the solutions [/b][/u]: f(x) = x+a for any real a f(x) = a−x
for any real a

56. Find all functions f : R → R such that f(x2 − f2(y)) = xf(x) − y2 , for
all real numbers x, y.

solution

Let P (x, y) be the assertion f(x2 − f2(y)) = xf(x)− y2

1) f(x) = 0 iff x = 0 ================= Let u = −f2(0) :
P (0, 0) =⇒ f(u) = 0

P (0, u) =⇒ f(0) = −u2 and so u = −f2(0) = −u4 and so u ∈ {−1, 0}
If u = −1 : f(0) = −1 and P (−1, 0) =⇒ f(0) = −f(−1) and so
contradiction since f(0) = −1 while f(−1) = f(u) = 0. So u = 0 and
f(0) = 0 Then P (x, 0) =⇒ f(x2) = xf(x) and if f(y) = 0, then P (x, y)
=⇒ y = 0 Q.E.D.

2) f(x) is odd and surjective ================== P (0, x) =⇒
f(−f2(x)) = −x2 and so any non positive real may be reached Comparing
P (x, 0) and P (−x, 0), we get xf(x) − xf(−x) and si f(−x) = −f(x)
∀x 6= 0, still true if x = 0 and so f(x) is odd. So any non negative real
may be reached too. And since f(0) = 0, f(x) is surjective. Q.E.D.

3) f(x) = x ∀x ============ P (x, 0) =⇒ f(x2) = xf(x) P (0, y)
=⇒ f(−f2(y)) = −y2 And so f(x2 − f2(y)) = f(x2) + f(−f2(y))
And so, since surjective : f(x + y) = f(x) + f(y) ∀x ≥ 0, y ≤ 0 And so,
since odd, f(x+ y) = f(x) + f(y) ∀x, y
Then from f(x2) = xf(x), we get f((x + 1)2) = (x + 1)f(x + 1) and so
f(x2) + 2f(x) + f(1) = xf(x) + xf(1) + f(x) + f(1)
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And so 2f(x) = xf(1)+f(x) and f(x) = ax Plugging this back in original
equation, we get a = 1

And so the unique solution f(x) = x ∀x

57. Find all functions f : N∗ → N∗ such that f(2x+ 3y) = 2f(x) + 3f(y) + 4,
for all integers x, y ≥ 1.

solution

I suppose that N∗ = N is the set of natural numbers (positive integers)
Let P (x, y) be the assertion f(2x+ 3y) = 2f(x) + 3f(y) + 4

Subtracting P (x + 3, y) from P (x, y + 2), we get 2(f(x + 3) − f(x)) =
3(f(y + 2)− f(y))
And so these two quantities are constant and multiple of 6 and so : f(x+
3) = f(x) + 3c f(y + 2) = f(y) + 2c and (using y = x + 1 in this last
equation) : f(x+ 3) = f(x+ 1) + 2c

and so f(x+ 1) = f(x) + c and f(x) = cx+ d

Plugging this in P (x, y), we get f(x) = ax− 1 for any real a > 1 (the

case a = 1 must be excluded in order to have f(1) ∈ N)

58. Find all functions f : Z→ Z such that f(m+ f(n)) = f(m+ n) + 2n+ 1,
for all integers m,n.

solution

The equation may be written f(m+ (f(n)− n)) = f(m) + 2n+ 1

And so f(m+ k(f(n)− n)) = f(m) + k(2n+1) Setting k = f(p)− p, this
becomes f(m+ (f(p)− p)(f(n)− n)) = f(m) + (f(p)− p)(2n+ 1)

And using symetry between n and p, we get (f(p)− p)(2n+1) = (f(n)−
n)(2p+ 1)

And so f(n)−n
2n+1 = c and so f(n) = n(2c+ 1) + c with c = f(0) ∈ Z

Plugging this in original equation, we get c = −1 and so the solution

f(x) = −x− 1

59. Find all functions f : Z → Z such that f(0) = 2 and f(x + f(x + 2y)) =
f(2x) + f(2y), for all integers x, y.

solution

Let P (x, y) be the assertion f(x+ f(x+ 2y)) = f(2x) + f(2y)

P (0, 2) =⇒ f(2) = 4 P (0, 1) =⇒ f(4) = 6 And so, using induction with
P (0, n), we get f(2n) = 2n+ 2 ∀n ≥ 0

Let x ≥ 0 : P (2x,−x) =⇒ f(−2x) = f(2x + 2) − f(4x) = (2x + 4) −
(4x+ 2) = −2x+ 2

So f(2x) = 2x+2 ∀x ∈ Z and P (x, y) may be written f(x+ f(x+2y)) =
2x+ 2y + 4
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If ∃ odd 2a+ 1 such that f(2a+ 1) = 2b is even, then : P (2a− 2b+ 1, b)
=⇒ 4b = 4a+ 6, which is impossible modulus 4

So f(y) is odd for any odd y Let then odd x : f(x + 2y) is odd and so
x + f(x + 2y) is even and so f(x + f(x + 2y)) = x + f(x + 2y) + 2 So
x+ f(x+ 2y) + 2 = 2x+ 2y + 4 and f(x+ 2y) = x+ 2y + 2

And so f(x) = x+ 2 ∀x ∈ Z, which indeed is a solution

60. For wich integer k does there exist a function f : N → Z with f(1995) =
1996 and f(xy) = f(x) + f(y) + kf(gcd(x, y)) for all x, y ∈ N

solution

Let P (x, y) be the assertion f(xy) = f(x) + f(y) + kf(gcd(x, y))

P (x, x) =⇒ f(x2) = (k + 2)f(x) P (x2, x) =⇒ f(x3) = (2k + 3)f(x)
P (x3, x) =⇒ f(x4) = (3k + 4)f(x) P (x2, x2) =⇒ f(x4) = (k + 2)2f(x)

So (3k + 4)f(x) = (k + 2)2f(x) and setting x = 1995, we get (k + 2)2 =
(3k + 4) and so k ∈ {−1, 0}
For k = −1, solutions exist. For example f(n) = 1996 ∀n.
For k = 0, solutions exist. For example f(1) = 0 and f(

∏n
k=1 p

ni
i ) =

499
∑n
k=1 ni (where pi are distinct primes and ni ∈ N).

Hence the answer : k ∈ {−1, 0}

61. Find all functions f, g : Z→ Z such that g is bijective and

f(g(x) + y) = g(f(y) + x).

solution

We just need g(x) injective and we dont need the restriction Z → Z (it's
the same result for R→ R) :
Let P (x, y) be the assertion f(g(x) + y) = g(f(y) + x)

P (x, g(0)) =⇒ f(g(x) + g(0)) = g(f(g(0))+ x) P (0, g(x)) =⇒ f(g(0)+
g(x)) = g(f(g(x)))

So g(f(g(0)) + x) = g(f(g(x))) and, since g(x) is injective : f(g(x)) =
x+ f(g(0))

P (x, 0) =⇒ f(g(x)) = g(f(0) + x) and so g(x+ f(0)) = x+ f(g(0)) and
so g(x) = x+ a for some a

( We previously got f(g(x)) = x + f(g(0)) Then P (x, 0) =⇒ f(g(x)) =
g(f(0) + x) and so g(x+ f(0)) = x+ f(g(0))

From there we immediately get g(x) = (x− f(0))+ f(g(0)) and so g(x) =
x+ a for some a = f(g(0))− f(0))
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Then f(g(x)) = x + f(g(0)) becomes f(x + a) = x + f(g(0)) and so
f(x) = x+ b for some b

Plugging back in original equation we get that these are solutions whatever
are a, b ∈ Z
Hence the answer : f(x) = x + b ∀x and for any b ∈ Z (or R is we move
the problem in R) g(x) = x + a ∀x and for any a ∈ Z (or R is we move
the problem in R)

62. (Belarus 1995) Find all f : R→ R such that

f(f(x+ y)) = f(x+ y) + f(x)f(y)− xy ∀x, y ∈ R.

solution

Let P (x, y) be the assertion f(f(x+ y)) = f(x+ y) + f(x)f(y)− xy Let
f(0) = a

P (x, y) =⇒ f(f(x + y)) = f(x + y) + f(x)f(y) − xy P (x + y, 0) =⇒
f(f(x + y)) = f(x + y) + af(x + y) Subtracting, we get new assertion
Q(x, y) : af(x+ y) = f(x)f(y)− xy
Q(x,−x) =⇒ a2 = f(x)f(−x) + x2 Q(x, x) =⇒ af(2x) = f(x)2 − x2
Q(−x, 2x) =⇒ af(x) = f(−x)f(2x)+2x2 =⇒ a2f(x) = f(−x)(f(x)2−
x2) + 2ax2 =⇒ a2f(x)2 = f(x)f(−x)(f(x)2 − x2) + 2ax2f(x) = (a2 −
x2)(f(x)2 − x2) + 2ax2f(x)

And so x2(f(x)− a− x)(f(x)− a+ x) = 0

So : ∀x, either f(x) = a + x, either f(x) = a − x (the case x = 0 is true
too)

Suppose now that f(x) = a + x for some x P (x, 0) =⇒ f(a + x) =
(a + 1)x + a(a + 1) and so : either (a + 1)x + a(a + 1) = a + (a + x)
⇐⇒ a(x + a − 1) = 0 either (a + 1)x + a(a + 1) = a − (a + x) ⇐⇒
(a+ 2)x+ a(a+ 1) = 0 And so either a = 0, either there are at most two

such x : 1− a and −a(a+1)
a+2

Suppose now that f(x) = a − x for some x P (x, 0) =⇒ f(a − x) =
−(a + 1)x + a(a + 1) and so : either −(a + 1)x + a(a + 1) = a + (a − x)
⇐⇒ a(x − a + 1) = 0 either −(a + 1)x + a(a + 1) = a − (a − x) ⇐⇒
(a+ 2)x− a(a+ 1) = 0 And so either a = 0, either there are at most two

such x : a− 1 and a(a+1)
a+2

And so a = 0 and either f(x) = x, either f(x) = −x If f(1) = 1, then
Q(x, 1) =⇒ f(x) = x ∀x which indeed is a solution If f(1) = −1, then
Q(x,−1) =⇒ f(x) = −x ∀x which is not a solution

Hence the answer : f(x) = x ∀x
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63. Find all numbers d ∈ [0, 1] such that if f(x) is an arbitrary continues
function with domain [0, 1] and f(0) = f(1),there exist number x0 ∈
[0, 1− d] such that f(x0) = f(x0 + d)

solution

1) d = 0 �ts ========= Just choose x0 = 0 :)

2) d = 1
n �ts ========== Let g(x) = f(x + d) = f(x + 1

n ) Let the

sequence ak = f( kn ) a0 = an = f(0) and so : either ∃k ∈ [0, n − 1] such

that ak = ak+1 and just choose x0 = k
n either ak 6= ak+1 ∀k ∈ [0, n − 1]

and then :

If a1 > a0, the sequence cannot be increasing for any k and then ∃k ∈
[0, n − 1] such that ak < ak+1 and ak+2 < ak+1 and then : f( kn ) < g( kn )

and g( kn + d) < f( kn + d) and so ∃x0 ∈ ( kn ,
k
n + d) such that f(x0) = g(x0)

(since continuous).

If a1 < a0, the sequence cannot be decreasing for any k and then ∃k ∈
[0, n − 1] such that ak > ak+1 and ak+2 > ak+1 and then : f( kn ) > g( kn )

and g( kn + d) > f( kn + d) and so ∃x0 ∈ ( kn ,
k
n + d) such that f(x0) = g(x0)

(since continuous). Q.E.D

3) no other d �t ========== Let d ∈ (0, 1) and n, r such that 1 =
nd + r with n non negative integer and r ∈ (0, d) Choose any u > 0 and
any continuous h(x) de�ned over [0, d] such that : h(0) = 0 h(r) = nu
h(d) = −u
And de�ne f(x) in a recursive manner : ∀x ∈ [0, d] : f(x) = h(x) ∀x > d
: f(x) = f(x− d)− u
We have : f(x) continuous f(0) = f(1) = 0 And the equation f(x) =
f(x+ d) is equivalent to f(x) = f(x)− u and has no solution. Q.E.D.

[u][b]Hence the result[/b][/u] : d ∈ {0} ∪

(⋃
n∈N
{ 1
n
}

)

64. Find all functions f : R −→ R
f(x+ f(xy)) = f(x+ f(x)f(y)) = f(x) + xf(y)

solution

Let P (x, y) be the assertions f(x+f(xy)) = f(x+f(x)f(y)) = f(x)+xf(y)

f(x) = 0 ∀x is a solution and let us from now look for non allzero solutions.
Let u such that f(u) 6= 0

1) f(x) = 0 ⇐⇒ x = 0 ================== P (−1,−1) =⇒
f(−1+ f(1)) = f(−1+ f(−1)2) = 0 and so ∃v such that f(v) = 0 P (v, u)
=⇒ 0 = vf(u) and so v = 0 Q.E.D.
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2) f(n) = n ∀n ∈ N ============== P (−1,−1) =⇒ f(−1 +
f(1)) = f(−1+f(−1)2) = 0 and so, using 1) : −1+f(1) = −1+f(−1)2 = 0
So f(1) = 1

P (1, x) =⇒ f(1+f(x)) = 1+f(x) and so from f(1) = 1, we get f(n) = n
∀n ∈ N Q.E.D.

3) f(−1) = −1 =========== P (−1,−1) =⇒ f(−1 + f(1)) =
f(−1 + f(−1)2) = 0 and so, using 1) : −1 + f(1) = −1 + f(−1)2 = 0 So
f(−1) = ±1 If f(−1) = 1, then :

P ( 1n , n) =⇒ f( 1n +1) = f( 1n )+
1
nf(n) P (

1
n ,−n) =⇒ f( 1n +1) = f( 1n )+

1
nf(−n) And so f(−n) = f(n) = n Then P (−1, 2) =⇒ f(−1+ f(−2)) =
f(−1 + f(−1)f(2)) = f(−1) − f(2) =⇒ 1 = 1 = −1, contradiction So
f(−1) = −1 Q.E.D.

4) f(x) is injective =========== If f(y1) = f(y2) and y2 = 0 then
f(y1) = 0 and 1) gives y1 = y2 = 0 If f(y1) = f(y2) and y2 6= 0, let a = y1

y2

P (y2, 1) =⇒ f(y2 + f(y2)) = f(y2) + y2 P (y2, a) =⇒ f(y2 + f(y1)) =
f(y2) + y2f(a) And so f(a) = 1

P (a, 1) =⇒ f(a+ 1) = a+ 1

Notice that if f(x) = x, then : P (1, x) =⇒ f(x + 1) = x + 1 P (−1, x)
=⇒ f(−1 + f(−1)f(x)) = f(−1)− f(x) =⇒ f(−x− 1) = −x− 1

Applying this to f(a + 1) = a + 1, we get f(−a − 2) = −a − 2 (second
property) f(−a− 1) = −a− 1 (then �rst property) f(a) = a (then second
property) And so a = 1 And so y1 = y2 Q.E.D.

5) f(xy) = f(x)f(y) =========== This is an immediate conse-
quence of f(x+ f(xy)) = f(x+ f(x)f(y)) and f(x) injective

6) f(x) = x ∀x ========== Let x 6= 0 We trivially have from 5)
that f( 1x ) =

1
f(x)

Then P ( 1x , x) =⇒ f( 1x + 1) = 1
f(x) +

f(x)
x

Then f(x+ 1) = f(x( 1x + 1)) = f(x)f( 1x + 1) = 1 + f(x)2

x

But P (x, 1x ) =⇒ f(x+ 1) = f(x) + xf( 1x ) = f(x) + x
f(x)

So 1 + f(x)2

x = f(x) + x
f(x)

=⇒ xf(x) + f(x)3 = xf(x)2 + x2

=⇒ (f(x)2 + x)(f(x)− x) = 0

And so f(x) = x ∀x > 0 And since f(−x) = f((−1)x) = f(−1)f(x) =
−f(x), we get f(x) = x ∀x which indeed is a solution

7) Synthesis of solutions ================= And so we got two
solutions : f(x) = 0 ∀x f(x) = x ∀x

65. Let f : [0, 1]→ R∗+ be a continous function such that f(x1)f(x2)...f(xn) =
e, for all n ∈ N∗ and for all x1, x2, ..., xn ∈ [0, 1] with x1+x2+ ...+xn = 1.
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Prove that f(x) = ex, x ∈ [0, 1].

solution

Choosing xi =
1
n , we get f(

1
n )
n = e and so f( 1n ) = e

1
n

Let q > p ≥ 1 : choosing n = q − p+ 1 and x1 = x2 = ... = xn−1 = 1
q and

xn = p
q , we get : f(

1
q )
q−pf(pq ) = e and so e

q−p
q f(pq ) = e and so f(pq ) = e

p
q

And so f(x) = ex ∀x ∈ Q ∩ (0, 1) and continuity implies f(x) = ex

∀x ∈ [0, 1] which indeed is a solution

66. Find all functions f : R→ R:

f(xy)f(f(x)− f(y)) = (x− y)f(x)f(y)

solution

There are in�nitely many solutions but I did not succeed up to now �nding
all of them.

[u][b]Some solutions [/b][/u]:

1) trivial solution f(x) = x ∀x
2) trivial solution f(x) = 0 ∀x
3) f(a) = b and f(x) = 0 ∀x 6= a where a is any nonzero real and b 6= ±a
4) f(x) = x ∀x ∈ Q and f(x) = 0 anywhere else

5) f(x) = x ∀x ∈ Q[
√
2] and f(x) = 0 anywhere else

In fact 4) and 5) may be merged in :

f(x) = x ∀x ∈ K and f(x) = 0 anywhere else where K is any sub�eld of R
... and a lot of other.

67. �nd all functions f from the set R of real numbers into R which satisfy
for all x, y, z ∈ R the identity

f(f(x) + f(y) + f(z)) = f(f(x)− f(y)) + f(2xy + f(z)) + 2f(xz − yz)

solution

f(x) constant implies f(x) = 0 ∀x which indeed is a solution. Let us from
now look for non constant solutions.

Let P (x, y, z) be the assertion f(f(x) + f(y) + f(z)) = f(f(x) − f(y)) +
f(2xy + f(z)) + 2f(xz − yz) Let f(0) = a

1) f(x) is even ============ Subtracting P (2, 1, 0) from P (1, 2, 0),
we get f(f(2) − f(1)) = f(f(1) − f(2)) Subtracting then P (2, 1, x) from
P (1, 2, x) and using the above result, we get f(x) = f(−x) and so f(x) is
an even function. Q.E.D.

34



2) f(x) = 0 ⇐⇒ f(0) = 0 ==================== 2.1)
f(0) = 0 ����- Subtracting P (−x − a, 12 , 0) from P (x + a, 12y, 0), we
get f(x + 2a) = f(−x) = f(x) and so, if a 6= 0, f(x) is periodic and one
period is 2a

But then comparing P (x, y, z + 2a) and P (x, y, z), we get f((x − y)z) =
f((x− y)(z + 2a)) and so f(x) is constant, impossible

So a = 0 Q.E.D.

2.2) f(x) = 0 =⇒ x = 0 ���������� If f(u) = 0 for some u,
then comparing P (x, y, u) and P (x,−y, u), we get f((x−y)u) = f(x+y)u)
And so, if u 6= 0, we get that f(x) is constant, impossible So u = 0 Q.E.D.

3) f(x1) = f(x2) =⇒ x1 = ±x2 ================================
If f(x1) = f(x2) = 0, then x1 = x2 = 0, according to 2) above.

If f(x1) = f(x2) 6= 0, then x1 6= 0 and x2 6= 0 Comparing P (x1, x, 0)
and P (x2, x, 0), we get f(2x1x) = f(2x2x) and so f(tx) = f(x) ∀x, with
t = x1

x2

Comparing then P (tx, y, 1) with P (x, ty, 1), we get f(tx− y) = f(x− ty)
∀x, y If t 6= ±1, this implies that f(x) is constant, impossible.

Q.E.D

4) f(x) = x2 ∀x ============= Suppose f(u) 6= u2 for some u.
Then : P (u, u, x) =⇒ f(2f(u) + f(x)) = f(2u2 + f(x)) and so :

either 2f(u) + f(x) = 2u2 + f(x) and so f(u) = u2, impossible either
2f(u) + f(x) = −2u2 − f(x) and so f(x) = −f(u) − u2 and f(x) is
constant, impossible.

And so f(x) = x2 ∀x, which indeed is a solution.

5) Synthesis of solutions : ================== So we found
two solutions : f(x) = 0 ∀x f(x) = x2 ∀x

68. Determine all functions f : R∗ → R∗ such that f

(
f(x)

f(y)

)
=

1

y
· f(f(x)),

for each x, y ∈ R∗ and are strictly monotonic on (0,+∞).

solution

Let P (x, y) be the assertion f( f(x)f(y) ) =
f(f(x))

y

f(x) is injective and then P (x, 1) implies f(1) = 1

P (1, x) =⇒ f( 1
f(x) ) =

1
x

P ( 1
f( 1
x )
, 1
f(y) ) =⇒ f(xy) = f(x)f(y)

This implies f(x) > 0 ∀x > 0 and so g(x) = ln(f(ex)) is a monotonous
function such that g(x+y) = g(x)+g(y) and so g(x) = ax and so f(x) = xa

∀x > 0

35



Plugging this in f( 1
f(x) ) =

1
x , we get f(x) = x ∀x > 0 or f(x) = 1

x ∀x > 0

f(xy) = f(x)f(y) implies f(−1) = ±1 and so f(−1) = −1 (since f(x) is
injective an f(1) = 1) and so f(−x) = −f(x).
[u][b]Hence the two solutions[/b][/u] : f(x) = x ∀x 6= 0 f(x) = 1

x ∀x 6= 0
which indeed are solutions

69. Find all functions, f : R+ → R+ such that: x2f(f(x) + f(y)) = (x +
y)f(yf(x)) for all x,y in R+

solution

I consider that R+ is the set of all positive real numbers. Let P (x, y) be
the assertion x2f(f(x) + f(y)) = (x+ y)f(yf(x))

If f(u) = f(v) then, comparing P (u, 1) and P (v, 1) we get u+1
u2 = v+1

v2

⇐⇒ (v − u)(uv + v + u) = 0 and so u = v and f(x) is injective.

Then P ( 32 ,
3
4 ) =⇒ f(f( 32 ) + f( 34 )) = f( 34f(

3
2 ))

And so, since injective : f( 32 ) + f( 34 ) =
3
4f(

3
2 )

And so 1
4f(

3
2 ) + f( 34 ) = 0, impossible since f(x) > 0 ∀x

So no solution.

70. Let f : R≥0 → R≥0 be a function which is bounded on the interval [0, 1]
and obeys the inequality

f(x)f(y) ≤ x2f
(y
2

)
+ y2f

(x
2

)
for each pair of nonnegative reals x and y. Prove that f(x) ≤ x2

2 for all
nonnegative reals x.

solution

Setting x = y in the inequality, we get 2x2f(x2 ) ≥ f(x)
2

Setting g(x) = 2f(x)
x2 this becomes g(x2 ) ≥ g(x)

2 and so g( x2n ) ≥ g(x)
2n

Suppose then that g(u) = a > 1 for some u, then g( u2n ) ≥ a
2n

And so f( u2n ) ≥ u
2 a2

n

22n+1

Setting n → +∞ in the above inequation, we get thet LHS is clearly
unbounded, and so contradiction with the fact that f(x) is bounded on
[0, 1]

So g(x) ≤ 1 ∀x

So f(x) ≤ x2

2 ∀x

71. Find all strictly increasing bijective function f : R − − > R such that
f(x) + f−1(x) = 2x for all real x.

solution
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f(x) increasing bijection implies f(x) continuous. The equation may be
written f(f(x)) − f(x) = f(x) − x and so g(x + g(x)) = g(x) where
g(x) = f(x)− x is continuous.

Let us look for continuous solutions of g(x+ g(x)) = g(x)

g(x) = 0 ∀x is a solution and let us from now look for non all zero solutions.
If g(x) is solution, then −g(−x) is solution too and so Wlog say g(u) =
v > 0 for some u

Let A = {x ≥ u such that g(x) = g(u) = v}
From g(x+ g(x)) = g(x), we get g(x+ ng(x)) = g(x) and so u+ nv ∈ A
∀n ∈ N ∪ {0}
If A is not dense in [u,+∞), let then a, b ∈ A such that u ≤ a < b and
(a, b) ∩A = ∅. (existence of a, b needs continuity of g(x))

Let then y ∈ (a, b). So g(y) 6= v Consider then y − a + n(g(y) − v) for
n ∈ N Since g(y) 6= v, this quantity, for n great enough is out of [−v,+v]
and so let m > 0 such that y − a +m(g(y) − v) /∈ [−v,+v] and so such
that y +mg(y) /∈ [a+ (m− 1)v, a+ (m+ 1)v]

Looking at the continuous function h(x) = x + mg(x), we get : h(a) =
a + mv ∈ (a + (m − 1)v, a + (m + 1)v) h(y) = y + mg(y) /∈ [a + (m −
1)v, a+ (m+ 1)v]

So (using continuity of h(x)), ∃z ∈ (a, y) such that h(z) = a+(m− 1)v or
h(z) = a+(m+1)v But then g(h(z)) = v and so g(z+mg(z)) = g(z) = v,
impossible since z ∈ (a, b) and (a, b) ∩A = ∅.
So A is dense in [u,+∞)

Then continuity of g(x) implies g(x) = v ∀x ≥ u. Let then any w < u
: If g(w) > 0, then ∃n ∈ N such that w + ng(w) > u and so g(w) = v.
So ∀x < u : either g(x) = v, either g(x) ≤ 0 and continuity gives the
conclusion g(x) = v ∀x

So g(x) = c and f(x) = x+ c which indeed is a solution.

72. Find all functions f : R → R satisfying (a) f(0) = 0 (b) f
(
x2+y2

2xy

)
=

f(x)2+f(y)2

2xy ∀ x, y ∈ R, x 6= 0, y 6= 0

solution

Let P (x, y) be the assertion f
(
x2+y2

2xy

)
= f(x)2+f(y)2

2xy

P (1, 1) =⇒ f(1) = f(1)2 and so f(1) ∈ {0, 1}
If f(1) = 0, then P (x, x) =⇒ f(x) = 0 ∀x 6= 0 and so f(x) = 0 ∀x
If f(1) = 1, then P (x, x) =⇒ f(x)2 = x2 ∀x 6= 0 and so f(x)2 = x2 ∀x

Then P (x, y) becomes f
(
x2+y2

2xy

)
= x2+y2

2xy
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And so f(x) = x ∀x such that |x| ≥ 1 and obviously f(x) may be either
x, either −x for any other x

And so the solutions : 1) f(x) = 0 ∀x
2) f(x) = e(x)x ∀x ∈ (−1, 1) and f(x) = x ∀x ∈ (−∞,−1] ∪ [1,+∞)
where e(x) is any function from (−1, 1)→ {−1, 1}

73. Find all f : R→ R such that xf(y)− yf(x) = f( yx ) for x, y ∈ R, x 6= 0

solution

Let P (x, y) be the assertion xf(y)− yf(x) = f( yx )

P (2, 0) =⇒ f(0) = 0 P (1, 1) =⇒ f(1) = 0 P (x, 1) =⇒ f(x) = −f( 1x )
∀x 6= 0

P ( 1x , 2) =⇒ f(2)
x + 2f(x) = f(2x) ∀x 6= 0

P ( 12 , x) =⇒ f(x)
2 + xf(2) = f(2x) ∀x 6= 0

Subtracting, we get f(x) = 2f(2)
3

x2−1
x ∀x 6= 0

Hence the solution : f(0) = 0 and f(x) = ax
2−1
x ∀x 6= 0 which indeed is

a solution (where a is any real)

74. Find all k ∈ N such that there exist exactly k functions f : Q → Q
satisfying: f(x+ y) = kf(x)f(y) + f(x) + f(y) for all x, y in Q

solution

Let h(x) = kf(x) + 1. The equation becomes h(x+ y) = h(x)h(y) and so
two solutions : h(x) = 0 ∀x h(x) = 1 ∀x The other solutions h(x) = ax

do not �t since they are not from Q→ Q

Hence the answer k = 2

75. Find all functions f : R→ R such that: f(x+y2+z) = f(f(x))+yf(x)+
f(z) ∀x, y, x ∈ R

solution

I suppose we must read ∀x, y, z ∈ R and not ∀x, y, x ∈ R
f(x) = 0 ∀x is a solution. Let us from now look for non allzero solutions.

Let P (x, y) be the assertion f(x + y2 + z) = f(f(x)) + yf(x) + f(z) Let
u such that f(u) 6= 0

P (u, x−f(f(u))−f(0)f(u) , 0) =⇒ f(something) = x and so f(x) is surjective.

P (x, 0, 0) =⇒ f(x) = f(f(x)) + f(0) and so f(x) = x− f(0) ∀x ∈ f(R)
And since f(x) is surjective, we get f(x) = x− f(0) ∀x ∈ R.
Setting then x = 0, we get f(0) = 0 and hence the result :

f(x) = 0 ∀x f(x) = x ∀x which indeed is a solution
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76. Find all functions f : R → R such that f(x2 − y2) = x2 − f(y2) for all
reals x, y

solution

Let P (x, y) be the assertion f(x2 − y2) = x2 − f(y2)
P (0, 0) =⇒ f(0) = 0

(a) : P (x+1
2 , x−12 ) =⇒ f(x) = (x+1)2

4 − f( (x−1)
2

4 )

(b) : P (x−12 , x−12 ) =⇒ 0 = (x−1)2
4 − f( (x−1)

2

4 )

(a)-(b) : f(x) = x which indeed is a solution

77. Find all functions f : Q→ Q such that: xf(yz)+ yf(z)+ z = f(f(x)yz+
f(y)z + f(z)) ∀x, y ∈ Q

solution

Let P (x, y, z) be the assertion xf(yz)+yf(z)+z = f(f(x)yz+f(y)z+f(z))

P (x, 0, 0) =⇒ xf(0) = f(f(0)) ∀x and so f(0) = 0 P (0, 0, x) =⇒
f(f(x)) = x and so f(x) is an involutive bijection.

P (−1, 1, 1) =⇒ 1 = f(f(−1) + 2f(1)) = f(f(1)) and so, since injective,
f(−1)+2f(1) = f(1) and so f(1)+f(−1) = 0 P (0,−1, 1) =⇒ −f(1)+1 =
f(f(−1) + f(1)) = 0 and so f(1) = 1

P (0, x, 1) =⇒ x+ 1 = f(f(x) + 1) = f(f(x+ 1)) and so, since injective,
f(x+1) = f(x)+ 1 And so f(x+n) = f(x)+n and f(n) = n ∀x, ∀n ∈ Z
Let then p, q ∈ Z with q 6= 0 : P (0, f(pq ), q) =⇒ qf(pq ) + q = f(p+ q) =

p+ q and so f(pq ) =
p
q

So f(x) = x ∀x ∈ Q which indeed is a solution.

78. Find all such functions f : R→ R such that: f(x+y+f(y)) = f(f(x))+2y
for all real x, y

solution

Let P (x, y) be the assertion f(x+ y + f(y)) = f(f(x)) + 2y

If f(a) = f(b) = c for some a, b, then : P (a, b) =⇒ f(a+b+c) = f(c)+2b
P (b, a) =⇒ f(b+ a+ c) = f(c) + 2a And so a = b and f(x) is injective.

Then P (x, 0) =⇒ f(x+ f(0)) = f(f(x)) and so, since injective : f(x) =
x+ f(0) which indeed is a solution whatever is f(0)

Hence the answer : f(x) = x+ a ∀x and for any real a

79. Find all functions f : R→ R such that

x2f(x) + y2f(y)− (x+ y)f(xy) = (x− y)2f(x+ y)

holds for every pair (x, y) ∈ R2.

solution
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Let P (x, y) be the assertion x2f(x)+y2f(y)−(x+y)f(xy) = (x−y)2f(x+
y) Let a = f(1)

P (1, 0) =⇒ f(0) = 0 P (x,−x) =⇒ x2(f(x) + f(−x)) = 0 and so
f(−x) = −f(x) ∀x 6= 0 =⇒ f(−x) = −f(x) ∀x
P (x, 1) =⇒ x2f(x) + a − (x + 1)f(x) = (x − 1)2f(x + 1) P (x + 1,−1)
=⇒ (x+1)2f(x+1)−a+xf(x+1) = (x+2)2f(x) Adding : xf(x+1) =
(x+ 1)f(x) and so f(x+ 1) = x+1

x f(x) ∀x 6= 0

Plugging this in P (x, 1), we get a = 1
xf(x) ∀x 6= 0 and so f(x) = ax

∀x 6= 0 and so f(x) = ax ∀x
And it is easy to check back that this indeed is a solution, whatever is a

Hence the answer : f(x) = ax ∀x and for any a ∈ R

80. Find all f : Z+ −− > Z+ such that

xf(y) + yf(x) = (xf(f(x)) + yf(f(y)))f(xy)

and f is increasing(not necessarily strictly increasing).

solution

Let P (x, y) be the assertion xf(y) + yf(x) = (xf(f(x)) + yf(f(y)))f(xy)

P (1, 1) =⇒ f(f(1)) = 1 and so f(1) ≤ f(f(1)) = 1 (since non decreasing)
and so f(1) = 1 P (x, 1) =⇒ f(f(x))f(x) = 1 and so f(x) = f(f(x)) = 1

Hence the unique solution : f(x) = 1 ∀x

81. Find all pairs of functions f, g : R → R such that f is strictly increasing
and for all x, y ∈ R we have f(xy) = g(y)f(x) + f(y)

solution

Let P (x, y) be the assertion f(xy) = g(y)f(x) + f(y)

f(x) strictly increasing implies ∃u such that f(u) 6= 0

P (x, u) =⇒ f(xu) = g(u)f(x) + f(u) P (u, x) =⇒ f(xu) = g(x)f(u) +

f(x) Subtracting, we get g(x) = g(u)−1
f(u) f(x) + 1 and so g(x) = af(x) + 1

for some real a

Plugging this in original equation, we get new assertion Q(x, y) : f(xy) =
af(x)f(y) + f(x) + f(y)

If a = 0, we get f(xy) = f(x) + f(y) but then : Q(1, 1) =⇒ f(1) = 0
Q(−1,−1) =⇒ f(−1) = 0 And so f(−1) = f(1) which is impossible
since f(x) is strictly increasing

So a 6= 0. Let then h(x) = af(x)+1 h(x) is strictly monotonous (increasing
if a > 0 and decreasing if a < 0) and Q(x, y) becomes h(xy) = h(x)h(y)
This is a well known functional equation whose only monotonous solutions
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are h(x) = sign(x)|x|t where t ∈ R+ (where sign(x) = −1 ∀x < 0,
sign(0) = 0, sign(x) = 1 ∀x > 0)

Then a > 0 and[b][u] the solutions of original equation are[/u][/b] : Let
any c, t ∈ R+ f(x) = c(sign(x)|x|t − 1) ∀x g(x) = sign(x)|x|t ∀x which
inded are solutions

Notice that hungnguyenvn'solution is not well de�ned for x < 0 and, if
he/she adds the condition t ∈ N in order to have the function fully de�ned,
then a lot of solutions are missing

82. �nd all functions f, g, h : R→ R such that for all x, y, z ∈ R :

f(h(g(x) + y)) + g(z + f(y)) = h(y) + g(y + f(z)) + x

solution

It's easy to show that f(x) = x+a But then, in�nitely many solutions ex-
ist. For example, Choose as h(x) any bijective solution of Cauchy equation
and choose g(x) = h−1(x− a)
And I think that a lot of other exist.

83. f : R+− > R+ f(x)f(yf(x)) = f(x+ y) determine f .

solution

[i][b]Modi�ed problem where the function if from R≥0 → R≥0[/b][/i]
Let P (x, y) be the assertion f(x)f(yf(x)) = f(x+ y)

P (0, 0) =⇒ f(0) ∈ {0, 1} If f(0) = 0 then P (0, x) =⇒ f(x) = 0 ∀x
which indeed is a solution.

Let us from now consider f(0) = 1

If f(x) > 0 ∀x > 0, then : The previous posts imply f(x) = 1
1+ax for some

a ≥ 0 and for any x > 0 And since f(0) = 1, this formula is true again for
x = 0 and it's easy to see that this indeed is a solution.

If ∃u > 0 such that f(u) = 0, then P (u, x) =⇒ f(u+ x) = 0 ∀x ≥ 0 Let
then a = inf{x > 0 such that f(x) = 0}
If a = 0, we get f(x) = 0 ∀x > 0 and it's immediate to see that this indeed
is a solution (including the fact that f(0) = 1).

If a > 0, we get f(x) = 0 ∀x > a and f(x) > 0 ∀x < a

Consider now x < a and x + y > a : P (x, y) =⇒ f(yf(x)) = 0 and so
yf(x) ≥ a So f(x) ≥ a

y ∀y ∈ (a− x,+∞) So f(x) ≥ a
a−x ∀x ∈ (0, a)

Consider now x < a and x+y < a with y 6= 0 : P (x, y) =⇒ f(yf(x)) 6= 0
and so yf(x) ≤ a So f(x) ≤ a

y ∀y ∈ (0, a− x) So f(x) ≤ a
a−x ∀x ∈ (0, a)

So we got a mandatory condition : f(x) = a
a−x ∀x ∈ (0, a), still true for

x = 0 Then P (a2 ,
a
2 ) =⇒ f(a) = 0 and we got the function : f(x) = a

a−x
∀x ∈ [0, a) and f(x) = 0 ∀x ≥ a which indeed is a solution.
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[u][b]Hence the solutions [/b][/u]: S1 : f(x) = 0 ∀x
S2 : f(x) = 0 ∀x > 0 and f(0) = 1

S3 : f(x) = 1
1+ax ∀x and for any a ≥ 0

S4 : f(x) = a
a−x ∀x ∈ [0, a) and f(x) = 0 ∀x > a for any a > 0

84. Determine all injective functions f : N∗ → N such that f (Cmn ) = C
f(m)
f(n) ,

for all m,n ∈ N∗, n ≥ m,

where Cmn =

(
n

m

)
.

solution

If f(1) 6= 1, then f(n) = f(
(
n
1

)
) =

(
f(n)
f(1)

)
implies f(1) = f(n)− 1 which is

impossible for any n since f(x) is injective.

So f(1) = 1 Let then n > 2 : f(n) = f(
(
n
n−1
)
) =

(
f(n)
f(n−1)

)
and so either

f(n − 1) = 1, impossible since injective, either f(n − 1) = f(n) − 1 So
f(n) = f(n− 1) + 1 and we get f(n) = n+ c ∀n > 1 where c = f(2)− 2

Using then f(
(
4
2

)
) =

(
f(4)
f(2)

)
, we get f(6) =

(
c+4
c+2

)
and so c+ 6 = (c+4)(c+3)

2

which gives c ∈ {−5, 0} and so c = 0

Hence the unique solution f(n) = n ∀n, which indeed is a solution.

85. Find all f : R→ R such that: f(x5 − y5) = x2f(x3)− y2f(y3)

solution

Let P (x, y) be the assertion f(x5 − y5) = x2f(x3)− y2f(y3)
P (0, 0) =⇒ f(0) = 0 P (x, 0) =⇒ f(x5) = x2f(x3) P (0, x) =⇒
f(−x5) = −x2f(x3) = −f(x5) and so f(x) is an odd function.

So P (x,−y) =⇒ f(x5+y5) = f(x5)+f(y5) and so f(x+y) = f(x)+f(y)
∀x, y and so f(qx) = qf(x) ∀q ∈ Q
Writing then P (x+q, 0), we get f(x5+5qx4+10q2x3+10q3x2+5q4x+q5) =
(x2 + 2qx+ q2)f(x3 + 3qx2 + 3q2x+ q3)

So f(x5) + 5qf(x4) + 10q2f(x3) + 10q3f(x2) + 5q4f(x) + q5f(1)− (x2 +
2qx+ q2)(f(x3) + 3qf(x2) + 3q2f(x) + q3f(1)) = 0

This is a polynomial in q which is zero for any q ∈ Q. So this is the allzero
polynomial and all its coe�cients are zero.

Looking at coe�cient of q4, we get then 5f(x)− 3f(x)− 2xf(1) = 0 and
so f(x) = xf(1) ∀x

Hence the solution : f(x) = ax ∀x and for any a ∈ R, which indeed is a

solution
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86. Find all f : R→ R, such that: f(xf(y)) = yf(x), limx→+∞f(x) = 0.

solution

f(x) = 0 ∀x is a solution. So let us from now look for non allzero solutions.
Let P (x, y) be the assertion f(xf(y)) = yf(x) Let u such that f(u) 6= 0

P (0, 0) =⇒ f(0) = 0 and so u 6= 0 P (u, x) =⇒ f(uf(x)) = xf(u) and
so f(x) is a bijection P (1, 1) =⇒ f(f(1)) = f(1) and, since injective,
f(1) = 1 P (1, x) =⇒ f(f(x)) = x P (−1, f(−1)) =⇒ 1 = f(−1)2 and
so f(−1) = −1 (since injective)

P (x, f(y)) =⇒ f(xy) = f(x)f(y) So f(x) > 0 ∀x > 0 Setting then f(x) =
eh(ln x) for x > 0, we get h(x+ y) = h(x)+h(y) and limx→+∞ h(x) = −∞
So h(x) is a solution of Cauchy equation which is upper bounded from a
given point, and so h(x) = cx with c < 0

So f(x) = xc ∀x > 0 and then f(f(x)) = x implies c = −1
[u][b]Hence the solutions[/b][/u] (which indeed are solutions) : f(x) = 0
∀x f(0) = 0 and f(x) = 1

x ∀x 6= 0

87. Find all f : R→ R, such that: f(x+ y) = f(x)+f(y)
1+f(x)f(y) and f is continuous.

solution

Let P (x, y) be the assertion f(x+ y) = f(x)+f(y)
1+f(x)f(y)

P (x, x) =⇒ f(2x)(1 + f(x)2) = 2f(x) and so : either f(2x) = 0, either
f(x)2 − 2

f(2x)f(x) + 1 = 0 and so the discriminant of the quadratic must

be ≥ 0 : |f(2x)| ≤ 1

So |f(x)| ≤ 1.

If f(u) = +1 for some u : P (x − u, u) =⇒ f(x) = 1 ∀x and we got a
solution If f(u) = −1 for some u : P (x − u, u) =⇒ f(x) = −1 ∀x and
we got another solution If |f(x)| < 1 ∀x, let then g(x) = ln(1 + f(x)) −
ln(1− f(x))

g(x) is continuous and f(x) = eg(x)−1
eg(x)+1

P (x, y) becomes then eg(x+y)−1
eg(x+y)+1

= eg(x)+g(y)−1
eg(x)+g(y)+1

and so g(x+y) = g(x)+g(y)

And since g(x) is continuous, we get g(x) = ax

[u][b]Hence the solutions[/b][/u] (which indeed are solutions) : f(x) = −1
∀x
f(x) = +1 ∀x
f(x) = eax−1

eax+1 ∀a (notice that a = 0 gives the solution f(x) = 0 ∀x

88. Find all functions f : R → R which satisfy the equality, f(x + f(y)) =
f(x − f(y)) + 4xf(y) for any x, y ∈ R (Here R denote the set of real
numbers)
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solution

A classical solution : f(x) = 0 ∀x is a solution. Let us from now look for
non allzero solutions :

Let P (x, y) be the assertion f(x+f(y)) = f(x−f(y))+4xf(y) Let t such
that f(t) 6= 0

Let u ∈ R : P ( u
8f(t) , t) =⇒ u = 2f( u

8f(t) + f(t))− 2f( u
8f(t) − f(t))

Let us call a = u
8f(t) + f(t) and b = u

8f(t) − f(t) so that 2f(a)− 2f(b) = u

P (2f(a)− f(b), b) =⇒ f(2f(a)) = f(2f(a)− 2f(b))+ 8f(a)f(b)− 4f(b)2

P (f(a), a) =⇒ f(2f(a)) = f(0) + 4f(a)2

Subtracting these two lines, we get f(2f(a) − 2f(b)) = f(0) + (2f(a) −
2f(b))2 and so f(u) = f(0) + u2 ∀u which indeed is a solution.

Hence the only solutions f(x) = 0 ∀x f(x) = x2 + c ∀x and for any real c

89. Show that for all integers a, b > 1 there is a function f : Z∗+ → Z∗+ such
that f(a · f(n)) = b · n for all positive integer n.

solution

Consider the three sets : Ua = N \ aN : the set of all positive integers not
divisible by a Ub = N \ bN : the set of all positive integers not divisible
by b V = aN \ abN : the set of all positive integers divisible by a and not
divisible by ab

Ua and Ub both are in�nite countable (since a, b > 1) and so ∃ a bijection
u(n) from Ua → Ub

De�ne then f(n) as : ∀n ∈ Ua : f(n) = u(n) ∀n ∈ V : f(n) = b× u−1(na )
(notice that n ∈ V =⇒ a|n and b 6 |na ) ∀n /∈ Ua ∪ V : f(n) = ab× f( nab )
(notice that n /∈ Ua ∪ V =⇒ ab|n)
Easy to check that this function matches all requirements.

90. Find all functions f : Q+ → Q+ such that

f(x) + f(y) + 2xyf(xy) =
f(xy)

f(x+ y)
.

Where Q+ is the set of positive rational numbers.

solution

Let P (x, y) be the assertion f(x) + f(y) + 2xyf(xy) = f(xy)
f(x+y)

P (1, 1) =⇒ f(2) = 1
4 P (2, 1) =⇒ f(3) = 1

5+4f(1) P (3, 1) =⇒ f(4) =
f(3)

7f(3)+1 = 1
12+4f(1) P (2, 2) =⇒ f(4) = 1

16
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And so f(1) = 1 and an easy induction using P (x, 1) : 1
f(x+1) = 1

f(x) +

2x+ 1 gives 1
f(x+n) = 2nx+ n2 + 1

f(x)

And f(n) = 1
n2

Then P (pq , q) =⇒ f(pq ) + f(q) + 2pf(p) = f(p)
f( pq+q)

Which becomes, using f(p) = 1
p2 and f(q) = 1

q2 and 1
f(x+q) = 2qx+ q2 +

1
f(x) :

p2f(pq )
2 + (p

2

q2 − q
2)f(pq )− 1 = 0 whose unique positive root is f(pq ) =

q2

p2

Hence the answer : f(x) =
1

x2
which indeed is a solution.

91. Find all functions f : R→ R for which

x(f(x+ 1)− f(x)) = f(x),

for all x ∈ R and
|f(x)− f(y)| ≤ |x− y|,

for all x, y ∈ R.
solution

We get easily from �rst equation that f(x+1)
x+1 = f(x)

x ∀x /∈ {−1, 0}
and so f(x) = xp(x) ∀x /∈ {−1, 0} where p(x) is a periodic function whose
1 is a period.

The second inequation implies that f(x) is continuous and so p(x) is too
and so f(x) = xp(x) ∀x
Let then u, v ∈ R and n ∈ Z Using x = u + n + 1 and y = v + n
in the second inequation, we get (remember that p(x) has period 1) :
|(u+ n+ 1)p(u)− (v + n)p(v)| ≤ |u+ n+ 1− v − n|
=⇒ |(u+ 1)p(u)− vp(v) + n(p(u)− p(v))| ≤ |u+ 1− v|

=⇒
∣∣∣ (u+1)p(u)−vp(v)

n + p(u)− p(v)
∣∣∣ ≤ ∣∣u+1−v

n

∣∣ ∀n 6= 0

Setting n → +∞ in this last line, we get p(u) = p(v) and so p(x) is the
constant function.

[b][u]Hence the result[/u][/b] : f(x) = cx ∀x where c is any real ∈ [−1, 1]

92. Determine all functions f : R→ R continuous on R such that: f(
√
2x) =

2f(x) , f(x+ 1) = f(x) + 2x+ 1 for all x ∈ R

solution

The general solution of second part is quite classical and is f(x) = x2+p(x)
where p(x) is any periodical function for which 1 is a period.
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Plugging this general form in �rst part, we get p(
√
2x) = 2p(x) This shows

that either p(x) = 0 ∀x, either p(x) is unbounded. But f(x) continuous
implies p(x) continuous and any periodical continuous function is bounded.
So p(x) = 0 ∀x
Hence the unique solution : f(x) = x2 ∀x

93. Find all functions on real numbers such that :

f(2x+ f(y)) = f(2x) + xf(2y) + f(f(y))

solution

f(x) = 0 ∀x is a solution. Let us from now look for non all-zero solutions.
Let P (x, y) be the assertion f(2x+ f(y)) = f(2x) + xf(2y) + f(f(y)) Let

u such that f(u) 6= 0 and let a = f(2u)
4f(u)

P (0, 0) =⇒ f(0) = 0

1) f(2x) = 4af(x) ∀x and a 6= 0==========================

P ( f(x)2 , u) =⇒ f(f(x)+f(u)) = f(f(x))+ 1
2f(x)f(2u)+f(f(u)) P (

f(u)
2 , x)

=⇒ f(f(x)+f(u)) = f(f(x))+ 1
2f(u)f(2x)+f(f(u)) And so f(x)f(2u) =

f(u)f(2x) and so f(2x) = 4af(x) ∀x
Setting x = u

2 in this equation shows that a 6= 0 and ends this part

2) a = 1 and f(f(x)) = f(x)2 ∀x=======================
P (x2 , y) becomes f(x + f(y)) = f(x) + 2axf(y) + f(f(y)) Using this
equation, it's easy to show thru induction that f(nf(y)) = an2f(y)2 +
n(f(f(y))− af(y)2)
Replacing n → 2n in this equation, we get f(2nf(y)) = 4an2f(y)2 +
2n(f(f(y))− af(y)2)
But f(2nf(y)) = 4af(nf(y)) = 4a2n2f(y)2 + 4an(f(f(y))− af(y)2)
And so 4an2f(y)2 + 2n(f(f(y))− af(y)2) = 4a2n2f(y)2 + 4an(f(f(y))−
af(y)2)

These are two polynomials in n which take the same values for any positive
integer n and so we can equate their coe�cients : 1) coe�cient of n2 :
4af(y)2 = 4a2f(y)2 and so a = 1 (since a 6= 0 and we can choose y = u so
that f(y) 6= 0) 2) coe�cient of n : f(f(y)) − f(y)2 = 2(f(f(y)) − f(y)2)
and so f(f(y)) = f(y)2 ∀y Q.E.D.

3) f(x) = x2 ∀x ============= P (− f(x)2 , x) =⇒ f(−f(x)) =
f(x)2

P (− f(x)2 , y) =⇒ f(f(y) − f(x)) = f(−f(x)) − 2f(x)f(y) + f(f(y)) =
f(x)2 − 2f(x)f(y) + f(y)2 = (f(y)− f(x))2

P (x2 , y) =⇒ f(x + f(y)) = f(x) + 2xf(y) + f(y)2 Setting x = z−f(u)2
2f(u)

and y = u in the previous line, we get that any real z may be written as
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f(r)−f(s) for some real r, s And since we previously got f(f(y)−f(x)) =
(f(y)− f(x))2 ∀x, y, we get f(z) = z2 ∀z Q.E.D.
4) Synthesis of solutions ================= We got two solu-
tions : f(x) = 0 ∀x which indeed is a solutio,n f(x) = x2 ∀x which indeed
is too a solution

94. Let f : R → R be such that for all x, y ∈ R, |f(x− y)| = |f(x)− f(y)|.
Can we conclude that f(x + y) = f(x) + f(y) for all x, y ∈ R? Justify
your answer.

solution

f(x) = 0 ∀x is a solution of the functional equation and is such that
f(x+ y) = f(x) + f(y) ∀x, y So, let us look from now only for non allzero
solutions. Let P (x, y) be the assertion |f(x − y)| = |f(x) − f(y)| Let w
such that f(w) 6= 0

P (0, 0) =⇒ f(0) = 0 P (0, x) =⇒ |f(−x)| = |f(x)|
Suppose now that ∃u, v such that f(−u) = −f(u) and f(−v) = f(v)
P (−u,−v) =⇒ |f(−u+v)| = |f(u)+f(v)| and so |f(u−v)| = |f(u)+f(v)|
and since |f(u−v)| = |f(u)−f(v)| : either f(u) = 0 and so f(−u) = f(u)
and so both u, v are such that f(−x) = f(x) either f(v) = 0 and so
f(−v) = −f(v) and so both u, v are such that f(−x) = −f(x)
So f(−x) = f(x) ∀x or f(−x) = −f(x) ∀x
But if f(−x) = f(x) ∀x, then : P (w2 ,−

w
2 ) =⇒ |f(w)| = |f(w2 )− f(−

w
2 )|

= |f(w2 )− f(
w
2 )| = 0, impossible (de�nition of w)

So f(−x) = −f(x) ∀x
Let us call (x, y) ∈ R2 : "white" if f(x) = f(y) and so f(x−y) = 0 "green"
if f(x− y) = f(x)− f(y) 6= 0 "red" if f(x− y) = f(y)− f(x) 6= 0 Notice
that f(−x) = −f(x) implies that (x, y) and (y, x) have same colours

Let then (a, b) and (b, c) two non white pairs. If (a, b) and (c, b) dont have
the same color, then : |f(a) − f(c)| = |f(a − c)| = |f((a − b) − (c − b))|
= |f(a− b)−f(c− b)| = |f(a)+f(c)−2f(b)| and so : either f(a)−f(c) =
f(a)+ f(c)− 2f(b) and so f(c) = f(b), impossible since (c, b) is not white
either f(a)− f(c) = −f(a)− f(c) + 2f(b) and so f(a) = f(b), impossible
since (a, b) is not white So (a, b) and (c, b) have same color

Let then (x, y) and (z, t) two non white pairs. : P (w,−w) =⇒ |f(2w)| =
2|f(w)| 6= 0 So f(w), f(2w), f(4w) are pairwise di�erent So one of these
three numbers (let us call it f(u)) is di�erent from f(y) and from f(z)
and so (y, u) and (z, u) both are non white.

(x, y) and (y, u) are both non white, so have same colours (y, u) and (u, z)
are both non white, so have same colours (z, u) and (z, t) are both non
white, so have same colours

So (x, y) and (z, t) both have same colours and so : either all pairs are
either white, either green either all pairs are either white, either red

47



In the �rst case, we get f(x − y) = f(x) − f(y) ∀x, y and so f(x + y) =
f(x) + f(y) ∀x, y In the second case, we get f(x− y) = f(y)− f(x) ∀x, y
and so (choose x = w and y = 0) contradiction

[u][b]Hence the result [/b][/u]: f(x+ y) = f(x) + f(y) ∀x, y

95. Find all function f : R → R such that: +, f(x) ∈ Z ⇔ x ∈ Z +,
f(f(xf(y)) + x) = yf(x) + x ∀x ∈ Q+

solution

It's rather easy to establish that f(x) = x ∀x ∈ Z ∪Q+

But there are a lot of solutions out of the trivial f(x) = x : for example
any solution of Cauchy equation such that f(1) = 1 and f(f(f(x))) = x
(easy to build in�nitely many such functions using Hamel basis)

And I'm not sure at all that these are the only solutions :?:

96. Find all function f : R → R such that: f(x + f(y)) = f(x) + 1
8xf(4y) +

f(f(y))
solution

f(x) = 0 ∀x is a solution. Let us from now look for non allzero solutions.
Let P (x, y) be the assertion f(x+ f(y)) = f(x) + 1

8xf(4y) + f(f(y)) Let
t such that f(t) 6= 0

P (0, 0) =⇒ f(0) = 0

P (f(x), f(t)) =⇒ f(f(x) + f(t)) = f(f(x)) + 1
8f(x)f(4t) + f(f(t))

P (f(t), f(x)) =⇒ f(f(x) + f(t)) = f(f(x)) + 1
8f(t)f(4x) + f(f(t))

So f(x)f(4t) = f(t)f(4x) and so f(4x) = 8af(x) for some a ∈ R (remem-
ber f(t) 6= 0)

P (x, y) implies then new assertion Q(x, y) : f(x+f(y)) = f(x)+axf(y)+
f(f(y))

Choosing y = t and the appropriate x in Q(x, y), we immediately get that
any real may be written as f(u)− f(v) for some real u, v

Q(f(u)− f(v), v) =⇒ f(f(u)) = f(f(u)− f(v)) + af(u)f(v)− af(v)2 +
f(f(v)) Q(f(v) − f(u), u) =⇒ f(f(v)) = f(f(v) − f(u)) + af(v)f(u) −
af(u)2+f(f(u)) Adding these two lines, we get f(f(u)−f(v))+f(f(v)−
f(u)) = a(f(u)− f(v))2

And so f(x)+ f(−x) = ax2 ∀x Using then 4x instead of x in this equality
and remembering that f(4x) = 8af(x), we get a = 2 and so we now have
:

Q(x, y) : f(x + f(y)) = f(x) + 2xf(y) + f(f(y)) f(4x) = 16f(x) f(x) +
f(−x) = 2x2

Q(f(x), x) =⇒ f(2f(x)) = 2f(f(x))+2f(x)2 Q(2f(x), x) =⇒ f(3f(x)) =
3f(f(x)) + 6f(x)2 Q(3f(x), x) =⇒ f(4f(x)) = 4f(f(x)) + 12f(x)2 And
since f(4f(x)) = 16f(f(x)), we get f(f(x)) = f(x)2
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And so Q(x, y) becomes new assertion R(x, y) : f(x + f(y)) = f(x) +
2xf(y) + f(y)2

R(−f(v), v) =⇒ 0 = f(−f(v)) − 2f(v)2 + f(v)2 and so f(−f(v)) =
f(v)2 R(−f(v), u) =⇒ f(f(u) − f(v)) = f(−f(v)) − 2f(u)f(v) + f(u)2

= f(u)2 − 2f(u)f(v) + f(v)2 = (f(u)− f(v))2

And so f(x) = x2 which indeed is a solution.

[u][b]Hence the solutions [/b][/u]: f(x) = 0 ∀x f(x) = x2 ∀x

97. Find all function f : R→ R such that: f(f(x+y)) = f(x+y)+f(x)f(y)−
xy

solution

Let P (x, y) be the assertion f(f(x+ y)) = f(x+ y) + f(x)f(y)− xy
P (x+ y, 0) =⇒ f(f(x+ y)) = f(x+ y) + f(0)f(x+ y) Subtracting this
from P (x, y), we get new assertion Q(x, y) : f(0)f(x+y) = f(x)f(y)−xy
Q(1, 1) =⇒ f(0)f(2) = f(1)2−1Q(x, 1) =⇒ f(0)f(x+1) = f(x)f(1)−x
Q(x+1, 1) =⇒ f(0)f(x+2) = f(x+1)f(1)−(x+1) =⇒ f(0)2f(x+2) =
f(x)f(1)2−xf(1)−f(0)x−f(0) Q(2, x) =⇒ f(0)f(x+2) = f(2)f(x)−2x
=⇒ f(0)2f(x+ 2) = (f(1)2 − 1)f(x)− 2f(0)x

And so f(x)f(1)2−xf(1)−f(0)x−f(0) = (f(1)2−1)f(x)−2f(0)x which
implies f(x) = x(f(1)− f(0)) + f(0)

So f(x) = ax+ b and plugging this in original equation, we get a = 1 and
b = 0

Hence the solution f(x) = x ∀x

98. Let f(x) a continuous strictly decreasing function from R+ → R+ such
that : f(x+y)+f(f(x)+f(y)) = f(f(x+f(y))+f(y+f(x))) ∀x, y ∈ R+

Prove that f(f(x)) = x ∀x ∈ R+

solution

f(x) from R+ → R+, continuous, strictly decreasing =⇒ equation f(x) =
x has a unique root a > 0 Setting y = a in the functional equation implies
f(x+a)+f(f(x)+a) = f(f(x+a)+f(f(x)+a)) And so f(x+a)+f(f(x)+
a) is also root of f(X) = X and so is a : f(x+a)+f(f(x)+a) = a Setting
x→ f(x) in this expression, we get f(f(x)+a)+f(f(f(x))+a) = a And so
f(f(f(x)) + a) = f(x+ a) and, since injective (since strictly decreasing) :

f(f(x)) = x Q.E.D and, btw, such a function exists : choose for example

f(x) = 1
x

99. Is there any systematic set of solutions to f, g : R→ R such that

f(g(x)) = g(f(x)) = 0
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for all x ∈ R?

solution

Choose any sets A,B such that 0 ∈ A and 0 ∈ B Let u(x) any function
from R→ A and v(x) any function from R→ B De�ne f, g as :

∀x ∈ A : f(x) = 0 ∀x /∈ A : f(x) = v(x)

∀x ∈ B : g(x) = 0 ∀x /∈ B : f(x) = u(x)

It's easy to show that this is a general solution (it's a solution and any
solution may be put in this form)

100. Find those values of the real parameter α such that there exists only one
function f from reals to reals satisfying the following functional equation
:

f(x2 + y + f(y)) = (f(x))2 + αy.

solution

Let P (x, y) be the assertion f(x2 + y + f(y)) = f(x)2 + αy Let f(0) = a

If α = 0, then we get at least the two solutions f(x) = 0 ∀x and f(x) = 1
∀x. So α 6= 0

Since α 6= 0, P (0, x−a
2

α ) =⇒ f(x−a
2

α +f(x−a
2

α )) = x and so f(x) is surjective .

Comparing P (x, y) and P (−x, y), we get f(−x)2 = f(x)2 and so ∀x : ei-
ther f(−x) = −f(x), either f(−x) = f(x)

Let x > 0 and b such that f(b) = −x : P (
√
x1, b) =⇒ −x = f(

√
x)2+αb

and so b = −x+f(
√
x)2

α 6= 0 So there is a unique b 6= 0 such that f(b) = −x
and so f(−b) cant be equal to f(b) and so f(−b) = x = −f(b) P (0, b)
=⇒ f(b + f(b)) = a2 + αb P (0,−b) =⇒ f(−b − f(b)) = a2 − αb And
since f(−b − f(b)) = ±f(b + f(b)), we get a2 + αb = ±(a2 − αb) and so

a = f(0) = 0 (since b 6= 0)

If f(u) = f(v) = w < 0, then the previous lines proved that a = b

(= −−w+f(
√
−w)2

α 6= 0) If f(u) = f(v) = w > 0, then ∃ unique t such
that f(t) = −w and f(−t) = w and so u = ±t but f(t) = −w and so
u = v = −t If f(u) = 0, then the previous lines proved that there is a
unique b such that f(b) = 0 and since f(0) = 0, we get b = 0

So f(x) is an odd bijection .

P (0, y) =⇒ f(y + f(y)) = αy P (x, 0) =⇒ f(x2) = f(x)2

And so P (x, y) becomes f(x2+ y+ f(y)) = f(x2)+ f(y+ f(y)) And since
f(x + f(x)) = αx and f(x) is bijective, we get that x + f(x) is bijective
too
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And so f(x2 + y + f(y)) = f(x2) + f(y + f(y)) becomes f(u + v) =

f(u)+f(v) ∀u ≥ 0 and ∀v So (since odd) : f(u+ v) = f(u) + f(v) ∀u, v
But f(x2) = f(x)2 implies f(v) ≥ 0 ∀v ≥ 0 and then f(u+v) = f(u)+f(v)
implies f(x) non decreasing.

So f(x) = cx (monotonous solution of Cauchy equation) and, plugging in
original equation, we get : c2 = c and α = 2c and so c = 1 and α = 2

[u][b]Hence the answer [/b][/u]: If α /∈ {0, 2} : no solution If α = 0 : at

least two solutions If α = 2 : exactly one solution f(x) = x

101. Find all functions f : R→ R such that f(x+ y) + xy = f(x)f(y).

solution

Let P (x, y) be the assertion f(x+ y) + xy = f(x)f(y)

P (x, 1) =⇒ f(x + 1) + x = f(x)f(1) and so f(x + 1) = f(1)f(x) − x
P (x + 1, 1) =⇒ f(x + 2) + x + 1 = f(x + 1)f(1) and so f(x + 2) =
f(1)f(x+1)−x− 1 and so f(x+2) = f(1)2f(x)−x(f(1)+1)− 1 P (x, 2)
=⇒ f(x+ 2) + 2x = f(x)f(2) and so f(x+ 2) = f(2)f(x)− 2x

So f(1)2f(x)− x(f(1) + 1)− 1 = f(2)f(x)− 2x and (f(1)2− f(2))f(x) =
x(f(1)− 1) + 1

f(1)2 − f(2) = 0 would imply x(f(1)− 1) + 1 = 0 ∀x, which is impossible

So f(x) = ax+ b for some a, b and plugging this in original equation, we
get a = ±1 and b = 1

[u][b]Hence the solutions [/b][/u]: f(x) = x+ 1 ∀x f(x) = 1− x ∀x

102. Let a and b be reals numbers, b < 0. Let f be a function from the real
line R into R and satisfying: (x ∈ R), f(f(x)) = a+ bx Prove that f has
in�nitly discontinuities.

solution

Writing f(x) = g(x− a
1−b ) +

a
1−b , the equation becomes g(g(x)) = bx

If b = −1 First, we note that g(0) = 0. Suppose g has only n discontinuities
x1, . . . , xn (including zero), and let S = {x : x = gi(xj) for some i, j} ∪
{0}. S is still �nite, and contains 4k+ 1 elements for some integer k ≤ n.
Also, g(S) = S and g−1(S) = S. R\S is the union of 4k+2 open intervals,
and g is continuous on each of these intervals. Since g maps R \S to itself
bijectively, these intervals must be mapped to each other by g. Let A be
the set of these intervals; we de�ne g on A in the natural way. Since each
element of A is either entirely positive or entirely negative, g2(U) 6= U for
each U ∈ A. On the other hand, g4 is the identity on U , so each orbit in
U has exactly four elements. The number of elements in U is not divisible
by 4, and we have a contradiction.

If b 6= −1 :
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From g(g(x)) = bx, we get g(bx) = bg(x) and g(0) = 0 Notice that g(x) is
a bijection and so g(x) = 0 ⇐⇒ x = 0

Let u > 0 and v = g(u) 6= 0 If v > 0, then g(v) = bu < 0 and so there
is a discontinuity in [u, v] (or [v, u]) else we would have some t ∈ (u, v) or
(v, u) such that g(t) = 0, impossible If v < 0, then g(v) = bu < 0 and
g(bu) = bv > 0 so there is a discontinuity in [v, bu] (or [bu, v]) else we
would have some t ∈ (v, bu) or (bu, v) such that g(t) = 0, impossible

So there is at least a discontinuity x0 6= 0 Since f(bx) = bf(x), a disconti-
nuity point at x0 implies a discontinuity point at bx0 and so, since b 6= −1
and x0 6= 0, in�nitely many discontinuity points. Q.E.D.

103. Find all functions f and g that satis�es:

f(g(x)) = 2x2 + 1 and g(f(x)) = (2x+ 1)2

solution

Still a strange problem which strongly seems to be a crazy invented one
:( :( In what contest did you get it ?

Obviously there is the trivial solution f(x) = 2x + 1 and g(x) = x2 but
there are in�nitely many other solutions and I dont think we can give a
form for all of them ..

Let the sequence an de�ned as a0 = 0 and an+1 = 2a2n + 1 Choose
then u(x) as any continuous strictly increasing bijection from [0, 1] →
[0, 1] De�ne g(x) as : ∀x ∈ [a0, a1) : g(x) = u(x) ∀x ∈ [an+1, an+2)

: g(x) = (2g(
√

x−1
2 ) + 1)2 (notice that

√
x−1
2 ∈ [an, an+1)) ∀x < 0 :

g(x) = g(−x) So g(x) is even and is also a continuous increasing bijection
from [0,+∞)→ [0,+∞)

For any x ≥ − 1
2 , the equation g(z) = (2x+ 1)2 has two roots ±z and let

f(x) = |z| For any x < − 1
2 , the equation g(z) = (2x + 1)2 has two roots

±z and let f(x) = −|z|
f(x) and g(x) are fully de�ned By construction of f(x), we clearly have
g(f(x)) = (2x+ 1)2 ∀x It remains to check f(g(x))) = 2x2 + 1 :

Since g(f(x)) = (2x+1)2, we get g(f(g(x))) = (2g(x)+1)2 By construction
of g(x), we had g(2x2 +1) = (2g(x) + 1)2 So g(f(g(x))) = g(2x2 +1) But
g(x) ≥ 0 and so f(g(x)) ≥ 1 And so f(g(x)) = 2x2 + 1 (remember that
g(x) is even and is also a continuous increasing bijection from [0,+∞)→
[0,+∞)) Q.E.D.

So we built in�nitely many solutions (f, g) to the problem.

Caution : these are not all the solutions. There are certainly a lot of other
solutions

104. If f(x) is a continuous function and f(f(x)) = 1 + x then �nd f(x).

solution
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f(x) is a continuous bijection and so is monotonic. If f(x) is decreasing,
then ∃u such that f(u) = u but then f(f(u)) = u 6= u+ 1 and so f(x) is
increasing.

If f(x) ≤ x for some x, then f(f(x)) ≤ f(x) ≤ x and so f(f(x)) 6= x+ 1.
So f(x) > x ∀x If f(x) ≥ x+ 1 for some x, then f(f(x)) ≥ f(x+ 1) and
so f(x+ 1) ≤ x+ 1, impossible (see previous line)

So f(x) is a continuous increasing function such that x < f(x) < x+1 ∀x
Let then f(0) = a ∈ (0, 1) f(a) = f(f(0)) = 1 and so f([0, a)) = [a, 1)
Using then f(x) = 1 + f−1(x), we get that knowledge of f(x) in [0, a)
implies knowledge of f(x) in [a, 1) Using then f(x+1) = f(x)+ 1, we get
that knowledge of f(x) in [0, 1) implies knowledge of f(x) in R
So f(x) is full de�ned by its values over [0, a)

And obviously, the only constraints for these values are : increasing, con-
tinuous, and f(a) = 1

[u][b]Hence the solutions [/b][/u]: Let any a ∈ (0, 1) Let any continu-
ous increasing bijection h(x) from [0, a] → [a, 1] h−1(x) is a continuous
increasing bijection from [a, 1]→ [0, a]

De�ne f(x) as : ∀x ∈ [0, a) : f(x) = h(x) ∀x ∈ [a, 1) : f(x) = 1 + h−1(x)
∀x /∈ [0, 1) : f(x) = f({x}) + bxc
And so obviously in�nitely many solutions (the simplest is trivially x+ 1

2 )

Just for complementary info : here is a rather nice general family of solu-
tions :

Let u(x) any increasing continuous bijection from [0, 1]→ [0, 1]

Let h(x) = bxc + u({x}) h(x) is an increasing continuous bijection from
R→ R
Then f(x) = h−1(h(x) + 1

2 ) is a continuous solution of the functional
equation f(f(x)) = x+ 1

The problem is that I'm not sure that this is a general solution (I mean
that I'm not sure that all solutions may be obtained in this form). My
previous post gives all the solutions

105. Given a real number A and an integer n with 2 ≤ n ≤ 19, �nd all polyno-
mials P (x) with real coe�cients such that P (P (P (x))) = Axn+19x+99.

solution

Let m = degree of P (x). We know that degree of P (P (P (x))) is m3

If A = 0 we get then m3 = 1 and so m = 1 and P (x) = ax + b and
we get P (P (P (x))) = a3x + b(a2 + a + 1) = 19x + 99 and so P (x) =
3
√
19x+ 99( 3√19−1)

18

If A 6= 0, we get then m3 = n and, since n ∈ [2, 19], we get m = 2 and
n = 8
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So P (x) = ax2+ bx+ c The two highest degree summands of P (P (x)) are
then a3x4 +2a2bx3 The two highest degree summands of P (P (P (x))) are
then a7x8 + 4a6bx7 and so b = 0 But then P (x) is even, and so must be
P (P (P (x))), which is wrong. So no solution if A 6= 0

Hence the unique answer : A = 0 and P (x) = 3
√
19x+ 99( 3√19−1)

18

106. Find all functions f : R→ R such that

f(xf(y) + f(x)) = 2f(x) + xy ∀x, y ∈ R.

solution

Let P (x, y) be the assertion f(xf(y) + f(x)) = 2f(x) + xy

If f(a) = f(b), comparing P (1, a) and P (1, b) implies a = b and f(x) is an
injection. P (1, x− 2f(1)) =⇒ f(f(x− 2f(1)) + f(1)) = x and f(x) is a
surjection Let then u, v such that f(u) = 0 and f(v) = 1 : P (u, v) =⇒
0 = uv and so either f(0) = 0, either f(0) = 1

If f(0) = 0, then P (x, 0) =⇒ f(f(x)) = 2f(x) and so, since surjective,
f(x) = 2x which is not a solution So f(0) = 1

Let then x 6= 0 and y such that f(y) = − f(x)x (which exists since f(x) is

surjective) P (x, y) =⇒ y = 1−2f(x)
x and so : (i) : f( 1−2f(x)x ) = − f(x)x

∀x 6= 0

P (x,− f(x)x ) =⇒ f(xf(− f(x)x ) + f(x)) = f(x) and so, since injective,

xf(− f(x)x ) + f(x) = x and so : (ii) : f(− f(x)x ) = 1− f(x)
x ∀x 6= 0

P (−1,−1) =⇒ f(−1) = 0 P (x,−1) =⇒ f(f(x)) = 2f(x) − x Set-

ting x → 1−2f(x)
x in this expression and, using (i) and (ii), we get :

f(f( 1−2f(x)x )) = 2f( 1−2f(x)x ) − 1−2f(x)
x f(− f(x)x ) = −2 f(x)x − 1−2f(x)

x

1− f(x)
x = −2 f(x)x −

1−2f(x)
x x−f(x) = −2f(x)− (1−2f(x)) f(x) = x+1

∀x 6= 0 And since f(0) = 1 = 0 + 1, we get f(x) = x+ 1 ∀x, which
indeed is a solution

107. Find all functions f : R→ R such that for all reals x, y, z it holds that

f(x+ f(y + z)) + f(f(x+ y) + z) = 2y.

solution

Let P (x, y, z) be the assertion f(x+ f(y+ z)) + f(f(x+ y) + z) = 2y Let
f(0) = a

P (x− a, a−x2 , x−a2 ) =⇒ f(x) + f(f(x−a2 ) + x−a
2 ) = a− x

P (x−a2 , 0, x−a2 ) =⇒ f(x−a2 + f(x−a2 )) = 0

And so f(x) = a− x which indeed is a solution, whatever is the real a
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108. The set of all solutions of the equation f(xy) = f(x)f(y) is :

a) f(x) = 0 ∀x b) f(x) = 1 ∀x c) f(0) = 0 and f(x) = eh(ln |x|) where h(x)
is any solution of Cauchy equation h(x + y) = h(x) + h(y) d) f(0) = 0
and f(x) = sign(x)eh(ln |x|) where h(x) is any solution of Cauchy equation
h(x+ y) = h(x) + h(y)

If you restrict to continuous solutions, then you get : a) f(x) = 0 ∀x
b) f(x) = 1 ∀x c) f(x) = |x|a where a is any positive real d) f(x) =
sign(x)|x|a where a is any positive real

109. Does the equation x + f (y + f(x)) = y + f (x+ f(y)) have a continuous
solution f : R→ R?

solution

Let P (x, y) be the assertion x+ f(y+ f(x)) = y+ f(x+ f(y)) Let g(x) =
f(x)−x P (x, y) becomes new assertion Q(x, y) : x+g(x)+g(x+y+g(x)) =
y+ g(y)+ g(x+ y+ g(y)) From this equation, we get that g(x) is injective
and so, since continuous, monotonous.

Q(x,−x) =⇒ x+g(x)+g(g(x)) = −x+g(−x)+g(g(−x)) and so x+g(x)+
g(g(x)) is an even function. But if g(x) is increasing, x + g(x) + g(g(x))
is increasing, so injective, and so cant be even. So g(x) is decreasing.
Looking at Q(x, y), we immediately get then that limx→−∞ g(x) = +∞
and limx→+∞ g(x) = −∞ (il any of these limits was a �nite value, Q(x, y)
would lead to contradiction : one side in�nite, the other �nite).

Writing Q(x, y) as f(x)+g(y+f(x)) = f(y)+g(x+f(y)), we get that f(x)
is injective too, and so monotonous. Writing Q(x, y) as −y+f(y+f(x)) =
f(y)+g(x+f(y)), we get that limx→+∞ f(x) = −∞ and limx→−∞ f(x) =
−∞, in contradiction with the fact that f(x) is monotonous.

[u][b]So no such continuous solution.[/b][/u]

110. Find all polynomials P (x) of the smallest possible degree with the follow-
ing properties:

[b](i)[/b] The leading coe�cient is 200; [b](ii)[/b] The coe�cient at the
smallest non-vanishing power is 2; [b](iii)[/b] The sum of all the coe�cients
is 4; [b](iv)[/b] P (−1) = 0, P (2) = 6, P (3) = 8.

solution

(iii) implies f(1) = 4 (iii)+(iv) imply f(x) = 2(x+1)+ (x+1)(x− 1)(x−
2)(x−3)Q(x) (i) implies f(x) = 2(x+1)+200(x+1)(x−1)(x−2)(x−3)Q(x)
with Q(x) monic

Q(x) = 1 is not a solution (smallest non vanishing power summand is
−1998) Q(x) = x + c implies that the powers 1 and 0 summands are
(1000c− 1198)x+ 2− 1200c

c = 0 gives smallest non vanishing power summand is 2 and so is a solution
c = 1

600 gives smallest non vanishing power summand is ( 53 − 1198)x and
so is not a solution
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Hence the unique answer : f(x) = 2(x+ 1) + 200x(x+ 1)(x− 1)(x− 2)(x− 3)

111. Find all functions f : R→ R satisfy the following equation f(f(x− y)) =
f(x)f(y) + f(x)− f(y)− xy

solution

Let P (x, y) be the assertion f(f(x − y)) = f(x)f(y) + f(x) − f(y) − xy
Let f(0) = a

Notice that the summand xy in RHS implies that f(x) can not be bounded.

P (x, 0) =⇒ f(f(x)) = (a+1)f(x)−a And so (squaring) : f(f(x))2 = (a+
1)2f(x)2−2a(a+1)f(x)+a2 P (f(x), f(x)) =⇒ f(f(x))2 = f(x)2+f(a)

And so (a+1)2f(x)2−2a(a+1)f(x)+a2 = f(x)2+f(a) And since P (0, 0)
implies a2 = f(a), we get : af(x)((a+ 2)f(x)− 2(a+ 1)) = 0

Setting x = 0 in this last equality, we get a2(a2 − 2) = 0 and so a = 0 or
a2 = 2

If a2 = 2, then af(x)((a+2)f(x)− 2(a+1)) = 0 implies f(x) ∈ {0, 2a+1
a+2}

bounded, in contradiction with original equation. So a = 0 and P (x, x)
=⇒ f(x)2 = x2 ∀x
Let then x, y /∈ {0, 1} such that f(x) = x and f(y) = −y : If f(f(x−y)) =
x− y, P (x, y) becomes xy = y, impossible If f(f(x− y)) = y − x, P (x, y)
becomes xy = x, impossible So : either f(x) = x ∀x 6= 1 either f(x) = −x
∀x 6= 1

If f(x) = x ∀x 6= 1, then P (3, 1) =⇒ 2 = 3f(1) + 3 − f(1) − 3 and so
f(1) = 1 and so f(x) = x ∀x If f(x) = −x ∀x 6= 1 then P (2, 0) =⇒
2 = −2, impossible

Hence the unique solution : f(x) = x ∀x which indeed is a solution

112. Find polynomials f(x), g(x) and h(x), if they exist, such that for all x,

|f(x)| − |g(x)| + h(x) = −1 if x < −1; |f(x)| − |g(x)| + h(x) = 3x + 2 if
−1 ≤ x ≤ 0;

|f(x)| − |g(x)|+ h(x) = −2x+ 2 if x > 0

solution

If (f, g, h) is solution, so are (±f,±g, h). So wlog say highest degrees
coe�cicients of f, g are positive.

1) If both f,g have even degrees : Then |f(x)| = f(x) and |g(x)| = g(x)
when x → ±∞, which is impossible (values of |f | − |g| + h are di�erent
when x→ ±∞)

2) If both f,g have odd degrees : When x → −∞, we get |f | = −f and
|g| = −g and so −f + g + h = −1 When x → +∞, we get |f | = f and
|g| = g and so f − g + h = 2− 2x So h(x) = 1

2 − x and f − g = 3
2 − x
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Then 3x+2 can only be f + g+h or −f − g+h : 2.1) f + g+h = 3x+2
Then f(x) = 3

2 (x+ 1) and g(x) = 5
2x which is a solution

2.2) −f − g + h = 3x + 2 Then f(x) = − 5
2x and g(x) = − 3

2 (x + 1),
impossible (we choosed highest coe�cients positive)

3) If degree of f is even and degree of g is odd : When x → −∞, we get
|f | = f and |g| = −g and so f+g+h = −1When x→ +∞, we get |f | = f
and |g| = g and so f − g+ h = 2− 2x So g(x) = x− 3

2 and f + h = 1
2 − x

Then 3x + 2 can only be −f + g + h or −f − g + h : 3.1) −f + g + h =
3x+2 Then f(x) = − 3

2 (x+1), impossible (we choosed highest coe�cients
positive)

3.2) −f−g+h = 3x+2 Then f(x) = − 5
2x, impossible (we choosed highest

coe�cients positive)

4) If degree of f is odd and degree of g is even : When x → −∞, we get
|f | = −f and |g| = g and so −f − g + h = −1 When x → +∞, we get
|f | = f and |g| = g and so f − g+h = 2−2x So f(x) = 3

2 −x , impossible
(we choosed highest coe�cients positive)

Hence the four solutions : (f, g, h) = (±3

2
(x+ 1),±5

2
x,

1

2
− x)

113. Find all functions f : Z\{0} 7→ Q, satisfying f
(
x+y
3

)
= f(x)+f(y)

2 whenever

x, y, x+y3 ∈ Z \ {0}.
solution

Let P (x, y) be the assertion f
(
x+y
3

)
= f(x)+f(y)

2

P (1, 2) =⇒ f(2) = f(1) P (3, 3) =⇒ f(3) = f(2) = f(1) P (2, 4) =⇒
f(4) = f(2) = f(1)

Let then integer n ≥ 2 : P (n, 2n) =⇒ f(2n) = f(n) P (n − 1, 2n + 1)
=⇒ f(2n+ 1) = 2f(n)− f(n− 1)

And so (induction) f(n) = f(1) ∀n ∈ N
Let then n ∈ N : P (n+ 3,−n) =⇒ f(−n) = 2f(1)− f(n+ 3) = f(1)

Hence the solution : f(x) = a ∀x ∈ Z \ {0} and for any a ∈ Q

114. Find all functions f : R→ R such that for all real x, y

f(f(x)2 + f(y)) = xf(x) + y.

solution

Let P (x, y) be the assertion f(f(x)2 + f(y)) = xf(x) + y Let f(0) = a

P (0, 0) =⇒ f(a2 + a) = 0 and then P (a2 + a, x) =⇒ f(f(x)) = x and
f(x) is bijective and involutive.

Then P (f(1), a) =⇒ f(1) = f(1) + a and so a = 0
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P (f(x), f(y)) =⇒ f(x2 + y) = xf(x) + f(y) P (f(x), 0) =⇒ f(x2) =
xf(x) Subtracting, we get f(x2 + y) = f(x2) + f(y)

So f(x + y) = f(x) + f(y) ∀x ≥ 0,∀y and it's immediate to conclude
f(x+ y) = f(x) + f(y) ∀x, y.
P (f(x), 0) =⇒ f(x2) = xf(x) P (f(x + 1), 0) =⇒ f(x2 + 2x + 1) =
(x+ 1)f(x+ 1)

Subtracting, we get 2f(x)+f(1) = xf(1)+f(x)+f(1) and so f(x) = xf(1)
∀x
Plugging back in original equation, we get two solutions : f(x) = x ∀x
f(x) = −x ∀x

115. Find all continuous function f : R→ R such that f(x+y) = f(x)+f(y)+
xy(x+ y)(x2 + xy + y2).

solution

Let g(x) = f(x) − x5

5 and the equation becomes g(x + y) = g(x) + g(y)
and so g(x) = ax since continuous

Hence the solutions : f(x) =
x5

5
+ ax ∀x and for any real a

116. Find polynomial P (x) such that P (x) is divisible by (x2+1) and P (x)+1
is divisible by x3 + x2 + 1

solution

So P (x) = (x2 + 1)Q(x) and P (x) + 1 = (x3 + x2 + 1)R(x)

=⇒ (x2 + 1)Q(x) + 1 = (x3 + x2 + 1)R(x)

=⇒ R(i) = i and R(−i) = −i and so R(x)− x = (x2 + 1)S(x)

=⇒ Q(x) = x2 + x− 1 + (x3 + x2 + 1)S(x)

=⇒ P (x) = (x2 + 1)(x2 + x− 1) + (x2 + 1)(x3 + x2 + 1)S(x) which in-

deed is a solution whatever is polynomial S(x)

117. Find all functions f : R→ R such that f(x+ f(y)) = 2f(xf(y))

solution

Let P (x, y) be the assertion f(x+ f(y)) = 2f(xf(y))

f(x) = 1 ∀x is not a solution and so ∃u such that f(u) 6= 1

P ( f(u)
f(u)−1 , u) =⇒ f(v) = 0 with v = f(u)2

f(u)−1

P (0, v) =⇒ f(0) = 0 and then P (x, v) =⇒ f(x) = 0 ∀x which indeed

is a solution.
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118. Find all functions f : Q+ → Q+ such that for all x, y in Q f(f2(x)y) =
x3f(xy) Here f2(x) means f(x) ∗ f(x)

solution

Let P (x, y) be the assertion f(f2(x)y) = x3f(xy)

P (x, 1) =⇒ f(f2(x)) = x3f(x) and so f(x) is injective.

P (x, f2(y)) =⇒ f(f2(x)f2(y)) = x3f(xf2(y)) P (y, x) =⇒ f(f2(y)x) =
y3f(xy) P (xy, 1) =⇒ x3y3f(xy) = f(f2(xy))

Multiplying these lines (and since no factor may be zero), we get f(f2(x)f2(y)) =
f(f2(xy)) and so, since injective and positive : f(xy) = f(x)f(y)

(( If you agree with f(x) injective and f(f2(x)f2(y)) = f(f2(xy)) then,
since f(u) = f(v) implies u = v, we get f2(x)f2(y) = f2(xy)

And since f(x) > 0 ∀x, we can just take square root and we get f(x)f(y) =
f(xy))) P (x, y) becomes then (f(f(x)))2 = x3f(x) and f(xy) = f(x)f(y)

Setting g1(x) = xf(x), this is equivalent to (g1(g1(x))
2 = g51(x) and

g1(xy) = g1(x)g1(y)

From there we get that g1(x) must always be the square of a rational and
so it exists a function g2(x) from Q+ → Q+ such that : g1(x) = g2(x)

2

and so : (g2(g2(x))
4 = g52(x) and g2(xy) = g2(x)g2(y)

And this may be repeated in�nitely, building a sequence of multiplicative
functions gn(x) such that : gn−1(x) = g2n(x) and (gn(gn(x)))

2n = g5n(x)

And so the only possibility is gn(x) = 1 ∀x and g(x) = 1 and so f(x) =
1

x
which indeed is a solution.

119. Find all functions f : R→ R such that f (x+ f(y)) = f(x+xy)+yf(1−x)
for all real numbers x and y.

solution

Let P (x, y) be the assertion f(x+ f(y)) = f(x+ xy) + yf(1− x)
1) If f(1) 6= 0 === P (0, x) =⇒ f(f(x)) = f(0) + xf(1) and so f(x) is
injective. P (0, 0) =⇒ f(f(0)) = f(0) and so f(0) = 0 (since injective)

Let then x 6= 0 : P ( f(x)x , x) =⇒ f(1 − f(x)
x ) = 0 and so 1 − f(x)

x = 0
(since injective) So f(x) = x ∀x which indeed is a solution.

2) If f(1) = 0=== P (0, 0) =⇒ f(f(0)) = f(0) P (1, f(0)) =⇒ f(0)2 = 0
and so f(0) = 0 P (0, x) =⇒ f(f(x)) = 0

P (1, f(x−1)) =⇒ f(f(x−1)+1) = 0 P (1, x−1) =⇒ f(f(x−1)+1) =
f(x)

And so f(x) = 0 ∀x which indeed is a solution.

[u][b]Hence the solutions [/b][/u]: f(x) = x ∀x f(x) = 0 ∀x
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120. Find all functions f such that [f(x).f(y)]2 = f(x+y).f(x−y) ( x, y Reals
)

solution

As is, we have at least in�nitely many solutions : f(x) = 0 ∀x f(x) =

eah(x)
2

where h(x) is any solution of Cauchy equation f(x) = −eah(x)2

where h(x) is any solution of Cauchy equation And also any product of
such solutions

If we add the statment of continuity Let P (x, y) be the assertion f(x)2f(y)2 =
f(x+ y)f(x− y)
f(x) = 0 ∀x is a solution and let us from now look for non all-zero solu-
tions. Let u such that f(u) 6= 0

P (u, 0) =⇒ f(u)2f(0)2 = f(u)2 and so f(0) = ±1 f(x) solution implies
−f(x) solution and so wlog say f(0) = +1

If f(t) = 0 for some t 6= 0, then P ( t2 ,
t
2 ) =⇒ f( t2 )

4 = f(t) and so
f( t2 ) = 0 and so f( t

2n ) = 0 ∀n ∈ N So continuity would imply f(0) = 0,
impossible.

So f(x) > 0 ∀x and we can write f(x) = eg(x) for some continuous function
g(x) such that : g(0) = 0 New assertion Q(x, y) : 2g(x) + 2g(y) = g(x +
y) + g(x− y) ∀x, y
Let x ∈ R and the sequence an = g(nx) with a0 = 0 Q((n+ 1)x, x) =⇒
an+2 = 2an+1 − an + 2a1 whose solution is an = a1n

2

So g(nx) = n2g(x) ∀x, ∀n ∈ N It's immediate to show that this is still true
for n ∈ Z
g(p) = p2g(1) ∀p ∈ Z and so p2g(1) = g(q pq ) = q2g(pq )

So g(x) = x2g(1) ∀x ∈ Q and continuity again gives g(x) = ax2 ∀x ∈ R
[u][b]Hence the continuous solutions of the equation [/b][/u] (it's easy to

check back that they indeed are solutions) : f(x) = 0 ∀x f(x) = eax
2

∀x ∈ R and for any real a f(x) = −eax2 ∀x ∈ R and for any real a

121. Find all functions f : R→ [0; +∞) such that:

f(x2 + y2) = f(x2 − y2) + f(2xy)

for all real numbers x and y.

solution

Let P (x, y) be the assertion f(x2 + y2) = f(x2 − y2) + f(2xy)

P (0, 0) =⇒ f(0) = 0 P (0, x) =⇒ f(x2) = f(−x2) and so f(x) is even.

Let x ≥ y ≥ z ≥ 0

(a) : P (
√

x+y
2 ,
√

x−y
2 ) =⇒ f(x) = f(y) + f(

√
x2 − y2)
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(b) : P (
√

y+z
2 ,
√

y−z
2 ) =⇒ f(y) = f(z) + f(

√
y2 − z2)

(c) : P (
√

x+z
2 ,
√

x−z
2 ) =⇒ f(x) = f(z) + f(

√
x2 − z2)

(a)+(b)-(c) : f(
√
x2 − z2) = f(

√
x2 − y2) + f(

√
y2 − z2)

Writing f(x) = g(x2), this becomes g(x+ y) = g(x) + g(y) ∀x, y ≥ 0 And
since g(x) ≥ 0, we get g(x) = ax and so f(x) = ax2 ∀x ≥ 0 and for some
a ≥ 0

And since f(x) is even, we get f(x) = ax2 ∀x and for any real a ≥ 0

which indeed is a solution.

122. Given two function f, g : R→ R, such that f(x+ g(y)) = 3x+ y + 12 for
all x, y ∈ R. Find the value of g(2004 + f(2004))

solution

Let P (x, y) be the assertion f(x+ g(y)) = 3x+ y + 12

P (x− g(0), 0) =⇒ f(x) = 3x− 3g(0) + 12

P (−g(x), x) =⇒ f(0) = −3g(x) + x+ 12

So f(x) = 3x + a and g(x) = x
3 + b with a + 3b = 12 which indeed are

solutions

Then g(x+ f(x)) = g(4x+ a) = 4x
3 + a+3b

3 = 4x
3 + 4

And so g(2004 + f(2004)) = 2676

123. Find all functions f : R→ R such that

f(x+ f(y)) = f(y2 + 3) + 2x · f(y) + f(x)− 3, ∀x, y ∈ R.

solution

Let P (x, y) be the assertion f(x+ f(y)) = f(y2 + 3) + 2xf(y) + f(x)− 3
Let f(0) = a

P (x, y) may be written f(x+ f(y))− f(x) = (f(y2 +3)− 3) + 2xf(y) So,
since f(x) = 0 ∀x is not a solution, we get that any real x may be written
x = f(u)− f(v) for some u, v

Let g(x) = f(x)−x2−a. P (x, y) becomes g(x+f(y)) = g(x)+f(y2+3)−
f(y)2 − 3 P (0, y) becomes g(f(y)) = f(y2 + 3) − f(y)2 − 3 Subtracting,
we get new assertion Q(x, y) : g(x+ f(y)) = g(x) + g(f(y))

(a) : Q(x− f(z), y) =⇒ g(x+ f(y)− f(z)) = g(x− f(z)) + g(f(y)) (b) :
Q(x−f(z), z) =⇒ g(x) = g(x−f(z))+g(f(z)) (c) : Q(f(y)−f(z), z) =⇒
g(f(y)) = g(f(y)−f(z))+g(f(z)) (a)-(b)+(c) : g(x+f(y)−f(z))−g(x) =
g(f(y)− f(z))
And since any real may be written as f(y) − f(z), we get g(x + y) =
g(x) + g(y)
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And so we get f(x) = x2+a+g(x) where g(x) is some solution of additive
Cauchy equation.

Plugging this in P (0, x) : f(f(x)) = f(x2 + 3) + a− 3, we get :

a2+g(x)2+2ax2+2x2g(x)+2ag(x)+g(a)+g(g(x))−6x2−6−g(3)−a = 0

Replacing in the above line x → px with p ∈ Q and remembering that
g(px) = pg(x), we get : a2 + p2g(x)2 +2ax2p2 + 2x2g(x)p3 +2ag(x)p +
g(a) + g(g(x))p −6x2p2 − 6− g(3)− a = 0

And this is a polynomial in p which is zero for any p ∈ Q and so this is
the null polynomial. So coe�cient of p3 is zero and so g(x) = 0 ∀x
So f(x) = x2 + a and plugging this in original equation, we easily get
a = 3

Hence the unique solution f(x) = x2 + 3

124. Find all functions f : R→ R such that for x ∈ R\0,1:
f( 1x ) + f(1− x) = x

solution

Let P (x) be the assertion f( 1x ) + f(1− x) = x

(a) : P ( 1x ) =⇒ f(x) + f(x−1x ) = 1
x

(b) : P (1− x) =⇒ f( 1
1−x ) + f(x) = 1− x

(c) : P ( x
x−1 ) =⇒ f(x−1x ) + f( 1

1−x ) =
x
x−1

(a)+(b)-(c) : f(x) =
1

2x
− x

2
− 1

2(x− 1)
∀x /∈ {0, 1} and f(0), f(1) tak-

ing any value we want. And it's easy to check back that this indeed is a
solution.

125. Find all pairs of functions f, g : Z→ Z such that:

f(g(x) + y) = g(f(y) + x)

holds for arbitrary integers x, y and g is injective.

solution

I didn't notice why we need Z instead of R in this problem, but anyway.

f(g(x) + y) = g(f(y) + x)⇔ g(f(g(x) + y) + z) = g(g(f(y) + x) + z)⇔
⇔ f(g(z) + g(x) + y) = g(g(f(y) + x) + z)⇔
⇔ g(f(g(z) + y) + x) = g(g(f(y) + x) + z) =⇒
=⇒ f(g(z)+y)+x = g(f(y)+x)+z ⇔ g(f(y)+z)+x = g(f(y)+x)+z.

Put z = −f(y) : g(0) + x+ f(y) = g(f(y) + x)
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Put x = −f(y) + t : g(t) = t+ g(0) = t+ c.

Our statement now looks as follows f(x+ y + c) = x+ f(y) + c.

Put x = −c− y : f(y) = y + f(0).

[b]Answer: f(x) = x+ c1, g(x) = x+ c2

126. Find all function f : R→ R such that:

f(f(x) + y) = f(x2 − y2) + 4f(x).y,∀x, y ∈ R

solution

f(x) = 0 ∀x is a solution. Let us from now look for non allzero solutions.
Let P (x, y) be the assertion f(f(x)+y) = f(x2−y2)+4f(x)y Let f(u) =
v 6= 0

1) Any real may be written as x = f(a)−f(b) for some a, b ∈ R=====================================================
(a) : P (u, x8v ) =⇒ f(u+ x

8v ) = f(u2 − ( x8v )
2) + x

2 (b) : P (u,− x
8v ) =⇒

f(u− x
8v ) = f(u2− ( x8v )

2)− x
2 (a)-(b) : x = f(u+ x

8v )− f(u−
x
8v ) Q.E.D.

2) f(x) is even ============== (a) : P (x, f(y)) =⇒ f(f(x) +
f(y)) = f(x2 − f(y)2) + 4f(x)f(y) (b) : P (x,−f(y)) =⇒ f(f(x) −
f(y)) = f(x2− f(y)2)− 4f(x)f(y) (c) : P (y, f(x)) =⇒ f(f(x)+ f(y)) =
f(y2 − f(x)2) + 4f(x)f(y) (d) : P (y,−f(x)) =⇒ f(f(y) − f(x)) =
f(y2−f(x)2)−4f(x)f(y) (a)-(b)-(c)+(d) : f(f(x)−f(y)) = f(f(y)−f(x))
Q.E.D. (using 1) )

3) If f(x) = x for some x implies x = 0===================================
P (x,−x) =⇒ f(f(x) − x) = f(0) − 4xf(x) If f(x) = x, this becomes
f(0) = f(0)− 4x2 Q.E.D.

4) f(0) = 0 ========== P (0, 0) =⇒ f(f(0)) = f(0) and so, using
3) : f(0) = 0 Q.E.D.

5) No non allzero solution ======================= P (0, u)
=⇒ f(u) = f(−u2) = f(u2) P (u, 0) =⇒ f(f(u)) = f(u2) And so
f(f(u)) = f(u) and so, using 3) : f(u) = 0 and so contradiction

Hence the unique solution : f(x) = 0 ∀x

127. Find all surjective functions f : N→ N if f(n) ≥ n+ (−1)n,∀n ∈ N.

solution

Let Sn be the set of natural numbers solutions of the equation x+(−1)x ≤
n : Obviously, this set is the set of all even numbers ≤ n− 1 and all odd
numbers ≤ n+ 1 and so :

S2p = {1, 2, 3, ..., 2p− 1, 2p+ 1} S2p+1 = {1, 2, 3, ..., 2p+ 1}
So S1 = {1} and so f(1) = 1

We clearly have f−1([1, n]) ⊆
⋃
k∈[1,n] Sk So f

−1([1, 2p]) ⊆ {1, 2, 3, ..., 2p−
1, 2p+ 1} And f−1([1, 2p+ 1]) ⊆ {1, 2, 3, ..., 2p+ 1}
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So |f−1([1, n])| = n and this implies that f−1({n}) = f−1([1, n])\f−1([1, n−
1])

[u][b]Hence the unique solution [/b][/u]: f(1) = 1 f(2p) = 2p + 1 ∀p ≥ 1
f(2p+ 1) = 2p ∀p ≥ 1

128. It is true,for any quadratic functions f(x) and for any distinct number
a, b, c, f(a) = bc, f(b) = ac, f(c) = ab. Find f(a+ b+ c)

solution

I had a doubt about the fact that P (x) was monic but I understood that
you used the constant term to conclude this (and this was the reason for
which you distinguished the case abc = 0).

Direct method is less elegant but works �ne too : let f(x) = ux2+ vx+w
: (1) : ua2 + va+w = bc (2) : ub2 + vb+w = ac (3) : uc2 + vc+w = ab

(2)-(1) : u(b2−a2)+v(b−a) = c(a−b) and so, since distincts : u(a+b)+v =
−c (3)-(1) : u(c2 − a2) + v(c − a) = b(a − c) and so, since distincts :
u(a+ c) + v = −b
Subtracting ; u(b− c) = b− c and so u = 1 and so v = −a− b− c and so,
using (1) : w = ab+ bc+ ca

And f(x) = x2− (a+ b+ c)x+ab+ bc+ ca and f(a+ b+ c) = ab+ bc+ ca

129. Determine all monotone functions f : [0;+∞[→ R such that

f(x+ y)− f(x)− f(y) = f(xy + 1)− f(xy)− f(1), for all x, y ≥ 0 and

f(3) + 3f(1) = 3f(2) + f(0).

solution

If f(x) is solution, then so is f(x) + a and so Wlog say f(1) = 1

Let P (x, y) be the assertion f(x+y)−f(x)−f(y) = f(xy+1)−f(xy)−1

Let m,n, p ∈ N and let g(x) = f(xp ) Comparing P ( 2mp ,
n
p ) and P (

2n
p ,

m
p ),

we get : g(2m+ n)− g(2m)− g(n) = g(2n+m)− g(2n)− g(m)

1) Let us look for all solutions of the following problem : "Find all functions
g(x) from N→ R such that : g(2x+y)−g(2x)−g(y) = g(2y+x)−g(2y)−
g(x) ∀x, y ∈ N"
The set S of solutions is a R-vector space. Setting y = 1, we get g(2x+1) =
g(2x) + g(1) + g(x + 2) − g(2) − g(x) Setting y = 2, we get g(2x + 2) =
g(2x) + g(2) + g(x + 4) − g(4) − g(x) From these two equations, we see
that knowledge of g(1), g(2), g(3), g(4) and g(6) gives knowledge of g(x)
∀x ∈ N and so dimension of S is at most 5. But the 5 functions below
are independant solutions : g1(x) = 1 g2(x) = x g3(x) = x2 g4(x) = 1
if x = 0 (mod 2) and g4(x) = 0 if x 6= 0 (mod 2) g5(x) = 1 if x = 0
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(mod 3) and g5(x) = 0 if x 6= 0 (mod 3) And the general solution is
g(x) = a · x2 + b · x+ c+ d · g4(x) + e · g5(x)
2) back to our problem So f(xp ) = apx

2 + bpx + cp + dpg4(x) + epg5(x)
∀x ∈ N
Choosing x = kp, we get f(k) = apk

2p2 + bpkp+ cp+ dpg4(kp) + epg5(kp)
and so app

2 = a and bpp = b for some real a, b Choosing x = 2kp, x = 3kp
and x = 6kp, we get cp = c and dp = ep = 0

So f(xp ) = ax
2

p2 + bxp + c ∀x ∈ N

And so f(x) = ax2 + bx+ c ∀x ∈ Q+

f(x) monotonous implies then a = 0 or b
a ≥ 0

f(x) monotonous implies then f(x) = ax2 + bx+ c ∀x ∈ R+

f(3) + 3f(1) = 3f(2) + f(0) implies then f(x) = ax2 + bx + c ∀x ∈ R+
0

and it's easy to check back that this mandatory form indeed is a solution.

[u][b]Hence the answer [/b][/u]: f(x) = ax2 + bx+ c ∀x ≥ 0 and for any

real a, b, c such that ab ≥ 0

130. "Find all polynomials p(x), q(x) ∈ R[X] such that p(x)q(x + 1) − p(x +
1)q(x) = 1 ∀x ∈ R"

solution

Notice that if the equality is true for any x ∈ R, it's also true for any
x ∈ C
We get : p(x)q(x+ 1)− p(x+ 1)q(x) = 1 p(x− 1)q(x)− p(x)q(x− 1) = 1

And so, subtracting p(x)(q(x− 1) + q(x+ 1)) = q(x)(p(x− 1) + p(x+ 1))

But no real or complex zero of p(x) may be a zero of q(x) else p(x)q(x+
1)− p(x+1)q(x) = 1 would be false. So p(x)|p(x− 1)+ p(x+1) and since
they are two polynomials with same degree, we get :

p(x+ 1) + p(x− 1) = ap(x) (and same for q(x) with same constant a).

Writing this as p(x+1)
p(x) + p(x−1)

p(x) = a and setting x→ +∞, we get a = 2

So p(x+ 1)− p(x) = p(x)− p(x− 1) and so p(x+ 1)− p(x) = b constant
(since polynomials).

So p(x) = bx+ c and q(x) = b′x+ c′

Plugging this in original equation, we get cb′ − bc′ = 1

Hence the answer p(x) = ax + b q(x) = cx + d for any real a, b, c, d such
that bc− ad = 1

131. The function f(x) de�ned by

f(x) = ax+b
cx+d . Where a, b, c, d are non zero real number has the properties

f(19) = 19 and f(97) = 97.
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And, f(x(x)) = x. for all value of x except −dc . Find the range of f(x)

solution

f(x) = x− cx2+(d−a)x−b
cx+d and so cx2+(d−a)x− b = c(x− 19)(x− 97) and

so d−a
c = −116 and b

c = −1843

Setting d
c = u, we get f(x) = (116+u)x−1843

x+u

Since f(f(x)) = x ∀x 6= −u, we get f(x) 6= −u ∀x 6= −u The equation
f(x) = −u is x 6= −u and (116+2u)x = 1843−u2 and so : either u = −58
and so we have no solution to this equation either −(116+2u)u = 1843−u2
(and so the only solution is x = −u) but then we get −u ∈ {19, 97},
impossible

So u = −58 and f(x) = 58x−1843
x−58 and it's easy to check that this function

indeed is a solution.

And so f(R \ {−d
c
}) = R \ {58}

132. Let E be the set of all bijective mappings from R to R satisfying

f(t) + f−1(t) = 2t, ∀t ∈ R,

where f−1 is the mapping inverse to f . Find all elements of E that are
monotonic mappings.

solution

f(x) strictly (since bijective) monotonic implies f−1(x) strictly monotonic
in the same direction (both increasing or both decreasing) and since their
sum is increasing, we get that f(x) is increasing.

Suppose now that f(x) − x is not constant. Let then u 6= v such that
f(u)− u = a > b = f(v)− v
Using f(x)+ f−1(x) = 2x, it's easy to show that f(u+na) = u+(n+1)a
and f(v + nb) = v + (n+ 1)b ∀n ∈ Z

Let then n =
⌊
v−u
a−b

⌋
so that n + 1 > v−u

a−b ≥ n : v−u
a−b ≥ n =⇒ v − u ≥

na−nb =⇒ v+nb ≥ u+na =⇒ f(v+nb) ≥ f(u+na) (since increasing)
=⇒ v + (n+ 1)b ≥ u+ (n+ 1)a =⇒ v−u

a−b ≥ n+ 1 And so contradiction.

So f(x)− x is constant and f(x) = x+ c ∀x, and for any real c And it's

easy to check back that these functions indeed are solutions.

133. If

f(x) + f(y) = f

(
x+ y

1− xy

)
∀x, y ∈ R and xy 6= 1

and

lim
x→0

f(x)

x
= 2
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Then �nd f(x).
solution

Let g(x) from =]− π
2 ; +

π
2 [→ R de�ned as g(x) = f(tanx)

The functional equation implies g(x) + g(y) = g(x + y) ∀x, y, x + y ∈ A
The second property implies that g(x) is bounded on some non empty
open interval containing 0

So we get g(x) = ax ∀x ∈ A and second property implies a = 2 So
f(x) = 2 arctanx ∀x
But this mandatory function obviously does not match the functional
equation (set x = y =

√
3 as counterexample)

So no solution for this functional equation.

134. If
f(xy) = xf(y) + yf(x) ∀x, y ∈ R+

and f(x) is di�erentiable in (0,∞). Then �nd f(x).

solution

Let g(x) from R → R de�ned as g(x) = e−xf(ex) and we get g(x + y) =
g(x) + g(y)

Since f(x) is di�erentiable in (0,+∞), g(x) is continuous and so g(x) = ax

And so f(x) = ax lnx ∀x > 0 and f(x) = any value for x ≤ 0[

135. Find all functions from non-zero rationals to reals such that f(xy)=f(x)+f(y)

solution

Let P (x, y) be the assertion f(xy) = f(x) + f(y)

P (1, 1) =⇒ f(1) = 0 P (−1,−1) =⇒ f(−1) = 0 P (x,−1) =⇒
f(−x) = f(x)

P (x, 1x ) =⇒ f( 1x ) = −f(x)
So f(xn) = nf(x) ∀x ∈ Q∗,∀n ∈ Z
And since any positive rational may be written in a unique manner as
x =

∏
pnii with pi prime and ni ∈ Z∗, we get f(x) =

∑
nif(pi)

And it's easy to see that this indeed is a solution.

[u][b]Hence the answer [/b][/u]: We can choose in any manner the values
f(pi) for all primes and from there : For any rational x > 0 : f(1) = 0 For
x 6= 1 : x =

∏
pnii with pi prime and ni ∈ Z∗ and then f(x) =

∑
nif(pi)

For any rational x < 0 : f(x) = f(−x)
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136. Let a function g : N0 → N0 satisfy g(0) = 0 and g(n) = n − g(g(n − 1))
for all n ≥ 1. Prove that:

a) g(k) ≥ g(k − 1) for any positive integer k. b) There is no k such that
g(k − 1) = g(k) = g(k + 1).

solution

First notice that g(n) ≤ n ∀n ∈ N0 Let us then prove with induction that
g(n+ 1)− g(n) ∈ {0, 1} ∀n ∈ N0

g(0) = 0 g(1) = 1− g(g(0)) = 1 g(2) = 2− g(g(1)) = 1

and so g(k + 1)− g(k) ∈ {0, 1} ∀k ∈ [0, 1]

Suppose now g(k + 1) − g(k) ∈ {0, 1} ∀k ∈ [0, n − 1] for some n ≥ 2 ∈ N
g(n+1)−g(n) = 1−(g(g(n))−g(g(n−1)))We know that g(n)−g(n−1) ∈
{0, 1} and so : If g(n)−g(n−1) = 0, we get g(g(n))−g(g(n−1)) = 0 and
so g(n+1)−g(n) = 1 If g(n)−g(n−1) = 1, we get g(g(n))−g(g(n−1)) =
g(g(n−1)+1)−g(g(n−1)) ∈ {0, 1} (since g(n−1) ≤ n−1 and using then
the induction property) And so g(n+ 1)− g(n) = 1− (g(g(n))− g(g(n−
1))) ∈ {0, 1} End of induction step

And so g(n+ 1) ≥ g(n) ∀n ∈ N0 and part a) is proved.

Part b) is quite simple : If g(n) = g(n − 1), then g(g(n)) = g(g(n − 1))
and so g(n + 1) − g(n) = n + 1 − g(g(n)) − n + g(g(n − 1)) = 1 and so
g(n+ 1) 6= g(n) Q.E.D.

137. Does there exist f : N− > N such that 3n ≤ f(n) + f(f(n)) ≤ 3n+ 1?

solution

f(1) + f(f(1)) ∈ [3, 4] and so f(1) ∈ {1, 2, 3}
If f(1) = 1 then f(1) + f(f(1)) = 2 /∈ [3, 4] and so impossible If f(1) = 2
then f(f(1)) ∈ [1, 2] � If f(1) = 2 and f(f(1)) = f(2) = 1 then f(2) +
f(f(2)) = 3 /∈ [6, 7] and so impossible � If f(1) = 2 and f(f(1)) = f(2) = 2
then f(2) + f(f(2)) = 4 /∈ [6, 7] and so impossible If f(1) = 3 then
f(f(1)) = f(3) = 1 and then f(3)+f(f(3)) = 4 /∈ [9, 10] and so impossible

So no such function

138. �nd the polyminal with coe�cient in R such that:

∀x, y ∈ R
P (x2010 + y2010) = (P (x))2010 + (P (y))2010

solution

Let A(x, y) be the assertion P (xn+ yn) = P (x)n+P (y)n where n = 2010

A(x, 0) =⇒ P (xn) = P (x)n+P (0)n A(y, 0) =⇒ P (yn) = P (y)n+P (0)n

Subtracting these two lines from A(x, y), we get P (xn + yn) = P (xn) +
P (yn)− 2P (0)n
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And so P (x+ y) = P (x) + P (y) + a ∀x, y ≥ 0 and for some a ∈ R And so
P (x+ y) = P (x) + P (y) + a ∀x, y and for some a ∈ R And so P (x)− a is
a continuous solution of Cauchy's equation.

So P (x) = cx+ a for some a, b and, plugging in original equation, we get
the solutions :

P (x) = 0 ∀x
P (x) = 2−

1
2009 ∀x

P (x) = x ∀x

139. Given f(x) = ax3 + bx2 + cx+ d , such that f(0) = 1, f(1) = 2, f(2) = 4,
f(3) = 8. Find the value of f(4)

solution

f(0) = 1 ⇐⇒ d = 1

(e1) : f(1) = 2 ⇐⇒ a+ b+ c = 1 (e2) : f(2) = 4 ⇐⇒ 8a+ 4b+ 2c = 3
(e3) : f(3) = 8 ⇐⇒ 27a+ 9b+ 3c = 7

(e2)-2(e1) : 6a + 2b = 1 (e3)-3(e1) : 12a + 3b = 2 This gives a = 1
6 and

b = 0

And so c = 5
6 and f(x) = x3+5x+6

6 and f(4) = 15

140. Does There Exist A Function

f : N → N

∀n ≥ 2

f(f(n− 1)) = f(n+ 1)− f(n)

solution

f(n+ 1)− f(n) ≥ 1 ∀n ≥ 2 and so f(n) ≥ f(2) + n− 2 ≥ n− 1 ∀n ≥ 3

So : ∀n ≥ 5 : f(n−1) ≥ n−2 ≥ 3 and so f(f(n−1)) ≥ f(n−1)−1 ≥ n−3
and so f(n+ 1)− f(n) ≥ n− 3

Adding these lines for n = 5, 6, 7, we get f(8)−f(5) ≥ 9 and so f(8) ≥ 10.
Let then a = f(8) ≥ 10

Adding then the lines f(f(n − 1)) = f(n + 1) − f(n) for n = 2 → a − 1,

we get f(a)− f(2) =
∑a−2
k=1 f(f(k))

And, since a ≥ 10, we can write f(a)−f(2) = f(f(8))+
∑a−2
k=1,k 6=8 f(f(k))

and so, since f(8) = a, this becomes : −f(2) =
∑a−2
k=1,k 6=8 f(f(k)), clearly

impossible since LHS < 0 while RHS > 0

And so no solution
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141. If f : R→ R satis�es f(x+ y) = f(x) · f(y); then is it necessary for f(x)
to be of the form ax for some a ∈ R ?

solution

No.

First notice that f(u) = 0 =⇒ f(x) = f(x − u)f(u) = 0 ∀x and so a
solution f(x) = 0 ∀w Then, if f(x) 6= 0 ∀x, we get f(x) = f(x2 )

2 > 0 and so
we can write g(x) = ln f(x) and we have the equation g(x+y) = g(x)+g(y)

So g(x) is any solution of Cauchy's equation and we have the general
solutions :

f(x) = 0 ∀x f(x) = eg(x) where g(x) is any solution of Cauchy's equation.

[u]If you add some constraints [/u](continuity, or ln f(x) upper bounded or
lower bounded on some interval, then we get g(x) = cx and so f(x) = ax

for some a > 0[

142. Give all functions f : R+→ R+ such that (x+y)f(f(x)y) = x2(f(f(x)+
f(y)) for all x, y positive real.

solution

Let P (x, y) be the assertion (x+ y)f(f(x)y) = x2f(f(x) + f(y))

If f(a) = f(b), then, comparing P (a, y) and P (b, y), we get a+y
a2 = b+y

b2

and so a = b and f(x) is injective.

P ( 1+
√
5

2 , 1) =⇒ f(f( 1+
√
5

2 )) = f(f( 1+
√
5

2 ) + f(1))

And so, since injective : f( 1+
√
5

2 ) = f( 1+
√
5

2 ) + f(1) and f(1) = 0, impos-
sible.

So no solution to this equation.

143. Find all functions f : R → R such that f(x + y) = max(f(x), y) +
min(x, f(y))

solution

Let P (x, y) be the assertion f(x+ y) = max(f(x), y) + min(x, f(y))

(a) : P (x, 0) =⇒ f(x) = max(f(x), 0) + min(x, f(0)) (b) : P (0, x) =⇒
f(x) = min(0, f(x)) + max(f(0), x)

Using the fact that max(u, v)+min(u, v) = u+v, the sum (a)+(b) implies
f(x) = x+ f(0)

Then P (0, f(0)) =⇒ f(0) = min(0, 2f(0)) and so f(0) = 0

Hence the unique solution : f(x) = x ∀x, which indeed is a solution

144. Find all functions f : R → R such that for every x, y ∈ R f(x + f(y)) =
f(x− f(y)) + 4xf(y)

solution
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Let P (x, y) be the assertion f(x+ f(y)) = f(x− f(y)) + 4xf(y)

f(x) = 0 ∀x is a solution and let us from now look for non allzero solutions.
Let u such that f(u) 6= 0 Let A = {2f(x) ∀x ∈ R}
P ( x

8f(u) , u) =⇒ x = 2f( x
8f(u) + f(u)) − 2f( x

8f(u) − f(u)) So any x ∈ R
may be written as x = a− b where a, b ∈ A
Let then g(x) = f(x) − x2 Let a = 2f(y) ∈ A P (x + f(y), y) =⇒
f(x+ a) = f(x) + 2ax+ a2 and so g(x+ a) = g(x) ∀x ∈ R, ∀a ∈ A
So g(x− b) = g(x) ∀x ∈ R, ∀b ∈ A
So g(x+ a− b) = g(x− b) = g(x) ∀x ∈ R, ∀a, b ∈ A
And since we already proved that any real may be written as a − b with
a, b ∈ A, we get g(x+ y) = g(x) ∀x, y ∈ R and so g(x) = c

Hence the two solutions : f(x) = 0 ∀x f(x) = x2+c ∀x and for any c ∈ R,
which indeed is a solution

145. Find all functions f : Z+ → Z+ such that f(a) + b divides (f(b) + a)2 for
all a, b positive integers.

solution

Let P (x, y) be the assertion f(x) + y|(f(y) + x)2

Let x > 0 and p > f(x) prime. P (p − f(x), x) =⇒ f(p − f(x)) + x|p2
and so f(p− f(x)) ∈ {p− x, p2 − x}
Let Ax = {p prime integers > f(x) such that f(p− f(x)) = p2 − x}
For p ∈ Ax : P (p− f(x), y) =⇒ p2 − x+ y|(f(y) + p− f(x))2

And so (subtracting LHS from RHS) : p2+y−x|x−y+(f(y)−f(x))(2p+
f(y)− f(x))
But, for p great enough, |LHS| > |RHS| and RHS cant be zero for any
y and any p and so impossibility

So Ax is upper bounded and ∃Nx such that ∀p > Nx f(p− f(x)) = p− x
Then, For p > Nx : P (p− f(x), y) =⇒ p− x+ y|(f(y) + p− f(x))2 And
so (subtracting LHS2 from RHS) : p+ y − x|(f(y)− f(x)− y + x)(2p+
f(y) − f(x) + y − x) And (subtracting 2(f(y) − f(x) − y + x)LHS from
RHS= : p+ y − x|(f(y)− f(x)− y + x)2

But, for p great enough, |LHS| > |RHS| and so RHS must be zero for
any y and so f(y)− y = f(x)− x

So f(x) = x+ a ∀x and for any a ∈ Z≥0 which indeed is a solution

146. ∀x, y ∈ Z+ f(f(x) + f(y)) = x+ y �nd all f : Z+ → Z+.

solution

If f(x1) = f(x2), we get x1 = x2 and the function is injective
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Then f(f(x + 1) + f(1)) = x + 2 = f(f(x) + f(2)) and, since injective,
f(x+ 1) = f(x) + f(2)− f(1)
So f(x) = (f(2)− f(1))x+ 2f(1)− f(2) = ax+ b for some integers a, b

because

Write : f(2) = f(1) + f(2) − f(1) f(3) = f(2) + f(2) − f(1) f(4) =
f(3) + f(2)− f(1) ... f(x) = f(x− 1) + f(2)− f(1)
And add all these lines.

Plugging this back in original equation, we get a = ±1 and b = 0 and,
since in Z+ :

A unique solution f(x) = x ∀x

147. f2(x) = f(x+ y)f(x− y) �nd all f : R→ R functions

solution

Let P (x, y) be the assertion f(x)2 = f(x+ y)f(x− y)
if f(u) = 0 for some u, then P (x, u − x) =⇒ f(x) = 0 and we get the
allzero solution.

So let us consider from now that f(x) 6= 0 ∀x

P (x2 ,
x
2 ) =⇒ f(x)

f(0) =
f( x2 )

2

f(0)2 and so f(x)
f(0) > 0 ∀x

Let then g(x) = ln f(x)
f(0) : we get the new assertion Q(x, y) : 2g(x) =

g(x+ y) + g(x− y) with g(0) = 0

Q(x, x) =⇒ 2g(x) = g(2x) and so the equation is g(2x) = g(x + y) +
g(x− y)
And so g((x+y)+(x−y)) = g(x+y)+g(x−y) and so g(x+y) = g(x)+g(y)

And so g(x) is any solution of Cauchy equation.

[u][b]Hence the solutions [/b][/u]:

f(x) = a · eh(x) ∀x and for any real a and any h(x) solution of Cauchy

equation, which indeed is a solution

Notice that a = 0 gives the allzero solution

148. ∀x ∈ Q+ �nd all f functions f : Q+ → Q+

a)f(x+ 1) = f(x) + 1

b)f(x2) = f(x)2

solution

From a) we get f(x+ n) = f(x) + n

From b) we get f((pq + q)2) = f(pq + q)2

And so f(p
2

q2 + 2p+ q2) = (f(pq ) + q)2 = f(pq )
2 + 2qf(pq ) + q2
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But LHS = f(p
2

q2 ) + 2p + q2 = f(pq )
2 + 2p + q2 and so p = qf(pq ) andso

f(pq ) =
p
q

Hence the solution : f(x) = x ∀x ∈ Q+ which indeed is a solution.

149. ∀x, y ∈ Z+ 1. f(2) = 2 2.f(mn) = f(m)f(n) 3.f(n + 1) ≥ f(n) �nd all
f : Z+ → Z+ functions.

solution

Using m = n = 1 in 2, we get f(1) = 1

Let u > 1 ∈ N. Let a, b, c, d ∈ N such that a
b ≥

lnu
ln 2 ≥

c
d

This implies 2a ≥ ub and ud ≥ 2c and and so, using 3 : f(2a) ≥ f(ub) and
f(ud) ≥ f(2c) and so, using 1 and 2 : 2a ≥ f(u)b and f(u)d ≥ 2c and so :

a
b ≥

ln(f(u))
ln(2) ≥

c
d

So a
b ≥

lnu
ln 2 ≥

c
d implies a

b ≥
ln(f(u))
ln(2) ≥

c
d

So ln(f(u))
ln 2 = lnu

ln 2

So f(u) = u

Hence the result : f(n) = n ∀n ∈ N, which indeed is a solution.

150. Determine all functions f from the nonnegative integers to the nonnegative
integers such that f(1) 6= 0 and, for all x and y in the nonnegative integers:

f(x)2 + f(y)2 = f(x2 + y2).
solution

Let P (x, y) be the assertion f(x)2 + f(y)2 = f(x2 + y2)

1) f(x) = x ∀ integer x ∈ [0, 9] ==== P (0, 0) =⇒ f(0) = 0 P (1, 0)
=⇒ f(1) = 1 P (1, 1) =⇒ f(2) = 2 P (2, 0) =⇒ f(4) = 4 P (2, 1) =⇒
f(5) = 5 P (5, 0) =⇒ f(25) = 25 P (5, 5) =⇒ f(50) = 50 P (3, 4) =⇒
f(3) = 3 P (7, 1) =⇒ f(7) = 7 P (2, 2) =⇒ f(8) = 8 P (3, 0) =⇒
f(9) = 9 P (9, 2) =⇒ f(85) = 85 P (6, 7) =⇒ f(6) = 6 Q.E.D.

2) f(x) = x ∀x=== Let x ≥ 4 P (2x+1, x−2) =⇒ f(2x+1)2+f(x−2)2 =
f(5x2 +5) P (2x− 1, x+2) =⇒ f(2x− 1)2 + f(x+2)2 = f(5x2 +5) and
so f(2x+ 1)2 = f(2x− 1)2 + f(x+ 2)2 − f(x− 2)2

P (2x+2, x− 4) =⇒ f(2x+2)2+ f(x− 4)2 = f(5x2+20) P (2− 2, x+4)
=⇒ f(2x − 2)2 + f(x + 4)2 = f(5x2 + 20) And so f(2x + 2)2 = f(2x −
2)2 + f(x+ 4)2 − f(x− 4)2

And so knowledge of f(n) up to 2x ≥ 8 gives unique knowledge of f(2x+1)
and f(2x+ 2)

And since f(x) is quite de�ned up to f(9), there is at most one solution
f(x)

And since f(x) = x ∀x is obviously a solution, this is the unique one.
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151. Find all functions f : R → R such that f(x2 + y + f(y)) = 2y + (f(x))2

for every x, y ∈ R.
solution

Let P (x, y) be the assertion f(x2 + y + f(y)) = 2y + f(x)2

1) f(x) = 0 ⇐⇒ x = 0 === P (0,− 1
2f(0)

2) =⇒ f(something) = 0 and
so ∃u such that f(u) = 0

Let u such that f(u) = 0, then, comparing P (u, 0) and P (−u, 0), we get
that f(u) = f(−u) = 0 and so : P (0, u) =⇒ 0 = 2u + f(0)2 P (0,−u)
=⇒ 0 = −2u+ f(0)2 And so u = 0 Q.E.D.

2) f(x) is injective === P (0,− 1
2f(x)

2) =⇒ f(x2− 1
2f(x)

2+f(− 1
2f(x)

2)) =
0 And so, using 1) above : x2 − 1

2f(x)
2 + f(− 1

2f(x)
2) = 0 Then f(x1) =

f(x2) implies |x1| = |x2|
Comparing P (x, y) and P (−x, y), we get f(−x) = ±f(x) Let then t such
that f(−t) = f(t) P (0, t) =⇒ f(t + f(t)) = 2t and so P (t + f(t), 0)
=⇒ f((t + f(t))2) = 4t2 P (0,−t) =⇒ f(−t + f(t)) = −2t and so
P (−t+ f(t), 0) =⇒ f((−t+ f(t))2) = 4t2

So f((t + f(t))2) = f((−t + f(t))2) and so (see some lines above) |(t +
f(t))2| = |(−t + f(t))2| Which implies tf(t) = 0 and so t = 0 (using 1)
above)

So f(−x) = −f(x) ∀x
And then "f(x1) = f(x2) implies |x1| = |x2|" becomes "f(x1) = f(x2)
implies x1 = x2" (using again 1) above) Q.E.D.

3) x + f(x) is surjective === P (0, 12f(x)) =⇒ f( 12f(x) + f( 12f(x))) =
f(x)

And so, since injective, 1
2f(x) + f( 12f(x)) = x Q.E.D.

4) f(x) = x ∀x === P (x, 0) =⇒ f(x2) = f(x)2 P (0, y) =⇒ f(y +
f(y)) = 2y So P (x, y) becomes f(x2 + y + f(y)) = f(x2) + f(y + f(y))

And since x + f(x) is surjective, this becomes f(x + y) = f(x) + f(y)
∀x ≥ 0, ∀y Since f(−x) = −f(x), this implies f(x + y) = f(x) + f(y)
∀x, y And since f(x2) = f(x)2, we get that f(x) ≥ 0 ∀x ≥ 0 and so
f(x+ y) = f(x) + f(y) implies that f(x) is non decreasing.

So, as a monotonous solution of Cauchy's equation, f(x) = ax ∀x Plugging
this back in original equation, we get a = 1

And so the unique solution f(x) = x ∀x

152. Determine all such funtions f, g, h from R+ to itself, that f(g(h(x))+y)+
h(z + f(y)) = g(y) + h(y + f(z)) + x.

solution

I supposed that the domain of functional equation is the same than domain
of functions (better to indicate both domains).
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Let P (x, y, z) be the assertion f(g(h(x))+ y)+h(z+ f(y)) = g(y)+h(y+
f(z))+x P (x, y, y) =⇒ f(g(h(x))+y) = g(y)+x and so h(x) is injective

Subtracting P (x, y, y) from P (x, y, z), we get h(z + f(y)) = h(y + f(z))
and so, since h(x) is injective : z + f(y) = y + f(z) and so f(x) = x + a
for some a ≥ 0

Plugging this in P (1, x, x), we get g(h(1)) + x + a = g(x) + 1 and so
g(x) = x+ b for some b ≥ 0

Plugging f(x) = x + a and g(x) = x + b in original equation, we get
h(x) = x− a and so a = 0

Hence the solutions : (f, g, h) = (x, x+ b, x) for any real b ≥ 0

153. Find all functions f : R → R such that for all x, y in R, xf(x + xy) =
xf(x) + f(x2).f(y)

solution

Let P (x, y) be the assertion xf(x+ xy) = xf(x) + f(x2)f(y)

P (0, 0) =⇒ f(0) = 0 If f(1) = 0, then P (1, x− 1) =⇒ f(x) = 0 which
indeed is a solution Let us from now consider that f(1) = a 6= 0

If a 6= 1, P (1, x) =⇒ f(x+1) = af(x)+a and we easily get f(n) = aa
n−1
a−1

∀n ∈ N Plugging this expression in P (m,n), we see that this is not a
solution (rather ugly, I think).

So a = 1 and P (1, x) =⇒ f(x + 1) = f(x) + 1 and so f(n) = n and
f(x+ n) = f(x) + n

P (x,−1) =⇒ f(x2) = xf(x) Plugging this in P (x, y), we get xf(x(y +
1)) = xf(x)(f(y) + 1) = xf(x)f(y + 1)

And so f(xy) = f(x)f(y)

P (x, y) becomes then xf(x)f(y+1) = xf(x)+f(x)2f(y) ⇐⇒ xf(x)(f(y)+
1) = xf(x) + f(x)2f(y)

And so, setting y = 1 : f(x)(f(x) − x) = 0 and so ∀x, either f(x) =
0, either f(x) = x But, if for some x 6= 0, we have f(x) = 0, then
f(x+ 1) = f(x) + 1 implies f(x+ 1) = 1 which is impossible since either
f(x+ 1) = x+ 1 6= 1, either f(x+ 1) = 0 6= 1

So f(x) = x ∀x, which indeed is a solution.

[u][b]Hence the answer [/b][/u]: f(x) = 0 ∀x f(x) = x ∀x[

154. Find all polynomials P (x) ∈ R[X], degP = 3 with the property that
P (x2) = −P (x)P (−x)

solution

P (x) is obviously monic and may be written x3 + ax2 + bx + c and the
equation is :

x6 + ax4 + bx2 + c = (x3 + bx+ ax2 + c)(x3 + bx− (ax2 + c) = = x2(x2 +
b)2 − (ax2 + c)2 and so :
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a = 2b− a2 b = b2 − 2ac c = −c2 and so c = 0 or c = −1
c = 0 gives b = b2 and so b = 0 or b = 1 c = 0 and b = 0 gives a = 0 or
a = −1 and so two solutions x3 and x3 − x2 c = 0 and b = 1 gives a = 1
or a = −2 and so two solutions x3 + x2 + x and x3 − 2x2 + x

c = −1 implies a2 + a − 2b = 0 and b2 − b+ 2a = 0 and so two solutions
x3 − 1 and x3 − 3x2 + 3x− 1

[u][b]Hence the six solutions [/b][/u]: P (x) = x3 P (x) = x2(x−1) P (x) =
x(x2 + x+ 1) P (x) = x(x− 1)2 P (x) = x3 − 1 P (x) = (x− 1)3

155. Find all monotonic functions u : R → R which have the property that
there exists a strictly monotonic function f : R→ R such that

f(x+ y) = f(x)u(x) + f(y)

for all x, y ∈ R.
solution

Let P (x, y) be the assertion f(x+ y) = f(x)u(x) + f(y)

Subtracting P (x, 0) from P (x, y), we get f(x + y) = f(x) + f(y) − f(0)
and so, since strictly increasing, f(x) = ax+ b with a > 0

And so x = (x+ b
a )u(x)

Setting x = − b
a , we get b = 0 and so the solution :

u(x) = 1 ∀x 6= 0 and u(0) = c any rea

156. Give all functions f : R− > R such that f(y)f(z) + f(x)f(x + y + z) =
f(x+ y)f(x+ z) for all x, y, z real.

solution

Is it a real olympiad exercise ? With no forgotten constraint (like conti-
nuity, for example) ? In what contest did you get this problem ?

It's easy to show that the functional equation is equivalent to f(x)2 −
f(y)2 = f(x+ y)f(x− y)
And this equation has in�nitely many solutions. For example : f(x) =
any solution of additive Cauchy equation f(x) = a sin(g(x)) where g(x) is
any solution of additive Cauchy equation f(x) = a sinh(g(x)) where g(x)
is any solution of additive Cauchy equation

And I dont know if these are the only solutions.

157. Find all f : R→ R that satisfy

f(x− f(y) + y) = f(x)− f(y)
all real numbers x, y.

solution
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Let g(x) = f(x) − x and the equation becomes assertion P (x, y) : g(x −
g(y)) = g(x)− y
This implies that g(x) is a bijection. So ∃u suvh that g(u) = 0. P (x, u)
implies then u = 0

P (g(x), x) =⇒ g(g(x)) = x P (x, g(y)) =⇒ g(x − y) = g(x) − g(y) So
g(x) is any involutive solution of Cauchy's equation.

And it'simmediate to verify that this is indeed a solution.

[u][b]Hence the answer [/b][/u]: f(x) = x + g(x) where g(x) is any invo-
lutive solution of Cauchy's equation

Notice that we have in�nitely many solutions. The only continuous solu-
tions are f(x) = 0 ∀x and f(x) = 2x ∀x
Notice that the general solution for "involutive solutions of Cauchy's equa-
tion" may also be written as :

Let A,B two supplementary subvectorspaces of the Q-vectorspace R Let
a(x) and b(x) the projections of x in A and B so that x = a(x) + b(x)
with a(x) ∈ A and b(x) ∈ B
Then g(x) = a(x)− b(x)
1) proof that any such g(x) is an involutive solution of Cauchy's equation
and so this is a solution ===

a(x) and b(x) are additive and so g(x) is solution of Cauchy's equation.
a(a(x)) = a(x) and a(b(x)) = 0 and a(a(x)−b(x)) = a(x) b(a(x)) = 0) and
b(b(x)) = b(x) and b(a(x)−b(x)) = −b(x) And so g(g(x)) = a(x)+b(x) = x
Q.E.D.

2) proof that any solution may be written in this form and so it's a general
solution ====

Let A = {x such that g(x) = x} Let B = {x such that g(x) = −x} Obvi-
ously, since g(x) is additive, A,B are subvectorspaces of the Q-vectorspace
R A ∩B = {0}
Since g(g(x)) = x, we get that g(x + g(x)) = x + g(x) and so a(x) =
x+g(x)

2 ∈ A Since g(g(x)) = x, we get that g(x− g(x)) = g(x)− x and so

b(x) = x−g(x)
2 ∈ B

And since a(x) + b(x) = x, we conclude that A,B are supplementary
subvectorspaces.

And we clearly have g(x) = a(x)− b(x) Q.E.D.

158. Find all function f : R→ R satisfying the condition:

f(y + f(x)) = f(x)f(y) + f(f(x)) + f(y)− xy

solution

Let P (x, y) be the assertion f(y+ f(x)) = f(x)f(y)+ f(f(x))+ f(y)−xy
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f(x) = −1 ∀x is not a solution and so let v such that f(v) 6= −1 P (v, 0)
=⇒ f(0)(f(v) + 1) = 0 and so f(0) = 0

f(x) = 0 ∀x is not a solution and so let u such that f(u) 6= 0

P (x, f(u)) =⇒ f(f(x)+f(u)) = f(x)f(f(u))+f(f(x))+f(f(u))−xf(u)
P (u, f(x)) =⇒ f(f(x)+f(u)) = f(u)f(f(x))+f(f(x))+f(f(u))−uf(x)
Subtracting, we get f(f(x)) + x = f(x) f(f(u))+uf(u)

and so f(f(x)) = af(x)− x for some a ∈ R
So we can rewrite P (x, y) as new assertion Q(x, y) : f(y + f(x)) =
f(x)f(y) + af(x)− x+ f(y)− xy
Q(y,−1) =⇒ f(f(y)− 1) = f(y)(f(−1) + a) + f(−1) = cf(y) + d

Q(x, f(y)− 1) =⇒ f(f(x) + f(y)− 1) = f(x)(cf(y) + d) + af(x)− x+
cf(y) + d− x(f(y)− 1) and so :

f(f(x) + f(y)− 1) = cf(x)f(y) + (a+ d)f(x) + (c− x)f(y) + d Swapping
x, y, we get f(f(x)+ f(y)−1) = cf(x)f(y)+ (a+d)f(y)+ (c− y)f(x)+d
Subtracting : (a+ d− c+ y)f(x) = (a+ d− c+ x)f(y)

Setting y = 0 in this line, we get a+ d− c = 0 and so yf(x) = xf(y) ∀x, y
Setting y = 1 in this expression, we get f(x) = xf(1)

Plugging in original equation, we get f(1) = ±1
[u][b]And so the two solutions [/b][/u]: f(x) = x ∀x f(x) = −x ∀x

159. Find all functions f : R+ → R+ such that f(xyz) + f(x) + f(y) + f(z) =
f(
√
xy)f(

√
yz)f(

√
zx) for positive reals x, y, z and also f(x) < f(y) for

1 ≤ x < y
solution

Let P (x, y) be the assertion f(xyz)+f(x)+f(y)+f(z) = f(
√
xy)f(

√
yz)f(

√
zx)

P (1, 1, 1) =⇒ 4f(1) = f(1)3 and so f(1) = 2

P (x2, 1, 1) =⇒ f(x2) = f(x)2 − 2

P (x2, y2, 1) =⇒ f(x2y2) + f(x2) + f(y2) + 2 = f(xy)f(x)f(y) And so,
using f(x2) = f(x)2 − 2 for x2y2, x2 and y2 :

f(xy)2 − f(xy)f(x)f(y) + f(x)2 + f(y)2 − 4 = 0

The discriminant of this quadratic in f(xy) is (f(x)2 − 4)(f(y)2 − 4) And
since we now that f(x) > 2 ∀x > 1, we get that f(x) ≥ 2 ∀x > 0

Let then u(x) ≥ 1 such that f(x) = u(x)+ 1
u(x) (which always exists since

f(x) ≥ 2)

The above quadratic implies u(xy) = u(x)u(y) or u(xy) = u(x)
u(y) or u(xy) =

u(y)
u(x)

Using the fact that f(x) is increasing for x ≥ 1 and so u(x) is increasing
too, we get that u(xy) = u(x)u(y) ∀x, y ≥ 1
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So u(x) = xa with a > 0 ∀x ≥ 1

Plugging this back in original equation, we get that any real a > 0 �ts
and so f(x) = xa + x−a ∀x ≥ 1

P (x, 1x , 1) =⇒ f(x2) + f( 1
x2 ) + 4 = 2f(x)f( 1x ) And so, using f(x2) =

f(x)2 − 2 for x2 and 1
x2 :

(f(x)− f( 1x ))
2 = 0 and so f( 1x ) = f(x)

So f(x) = xa + x−a ∀x and for any real a 6= 0 which indeed is a solution

160. Find all continuous functions f : R → R so that : f(f(x)) = f(x) +
x , ∀ x ∈ R

solution

Let x ∈ R and the sequence a0 = x and an+1 = f(an) We get a0 = x and
a1 = f(x) and an+2 = an+1 + an.

Let r1 < r2 be the two real roots of equation x2 − x − 1 = 0. We get

an =
(f(x)−r2x)rn1−(f(x)−r1x)r

n
2

r1−r2
f(x) is injective. It's easy to see that f(x) is neither upper bounded,
neither lower bounded and so f(x) is a bijection from R→ R

So the equality an =
(f(x)−r2x)rn1−(f(x)−r1x)r

n
2

r1−r2 is true also for n < 0

Setting x = 0 in the equation, we get f(f(0)) = f(0) and so f(0) = 0,
since injective. f(x) is injective and continuous, and so monotonous and

so f(x)−f(0)
x−0 has a constant sign and so an+1

an
has a constant sign.

So
(f(x)−r2x)rn+1

1 −(f(x)−r1x)rn+1
2

(f(x)−r2x)rn1−(f(x)−r1x)rn2
has a constant sign.

If f(x) is decreasing and f(x)−r1x 6= 0, then the above quantity has limit
r2 > 0 when n→ +∞, in contradiction with the fact f(x) decreasing. So
the only continuous decreasing solution may be f(x) = r1x which indeed
is a solution.

If f(x) is increasing and f(x)−r2x 6= 0, then the above quantity has limit
r1 < 0 when n→ −∞, in contradiction with the fact f(x) increasing. So
the only continuous increasing solution may be f(x) = r2x which indeed
is a solution.

Hence the only solutions : f(x) = 1+
√
5

2 x

f(x) = −
√
5−1
2 x

161. Let f : N− > N be a function satisfying: f(f(n)) = 4n−3 (2n) = 2n+1−1,
for all natural n Find f(1993), can you �nd explicietly the value f(2007)?
what values can f(1997) take?

solution

I suppose that third line must be read f(2n) = 2n+1 − 1
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Let N0 = N ∪ {0} Let g(n) from N0 → N0 de�ned as g(n) = f(n+ 1)− 1.
The equation is then g(g(n)) = 4n whose general solution is :

Let A,B two equinumerous sets whose intersection is empty and whose
union is the set of all natural numbers not divisible by 4. Let h(x) any
bijection from A→ B and h−1(x) it's inverse function.

Then g(x) may be de�ned as : g(0) = 0 ∀x ∈ A : g(x) = h(x) ∀x ∈ B :
g(x) = 4h−1(x) ∀x ∈ N \ (A ∪B) : g(x) = 4v4(x)g(x4−v4(x))

The constraint f(2n) = 2n+1 − 1 becomes g(2n − 1) = 2n+1 − 2 and
so we just have to add to the previous general solution the constraints :
2n − 1 ∈ A ∀n ∈ N 2n − 2 ∈ B ∀n > 1 ∈ N h(2n − 1) = 2n+1 − 2

Then f(1993) = g(1992) + 1 = 4g(498) + 1 and since 498 is not divisible
by 4 and is not in the form 2n − 1 neither 2n+1 − 1, we get nearly no
constraint for g(498) : We can put 498 in A and then g(498) ∈ B may be
any value not divisible by 4 and not in the form 2n+1 − 2 We can put 498
in B and then g(498) = 4u where u is any number not divisible by 4 and
not in the form 2n − 1

And the same conclusions may be obtained for g(2006) and g(1996)

162. Find all function f : R · R → R such that f(f(x, z), f(z, y)) = f(x, y) + z
for all real numbers x,y and z

solution

Let P (x, y, z) be the assertion f(f(x, z), f(z, y)) = f(x, y) + z

Let s(x) = f(x, x) where "s" stands for "same" Let r(x) = f(0, x) where
"r" stands for "right" Let l(x) = f(x, 0) xhere "l" stands for "left"

P (x, x, x) =⇒ s(s(x)) = s(x) + x and so s(x) is injective P (0, 0, 0) =⇒
s(s(0)) = s(0) and so, since injective : s(0) = 0 and so r(0) = l(0) = 0
and f(0, 0) = 0

P (x, 0, 0) =⇒ l(l(x)) = l(x) P (0, x, 0) =⇒ r(r(x)) = r(x)

P (x, y, 0) =⇒ f(l(x), r(y)) = f(x, y) Then, l(l(x)) = l(x) =⇒ f(x, y) =
f(l(x), y) Same, r(r(y)) = r(y) =⇒ f(x, y) = f(x, r(y))

P (0, 0, x) =⇒ f(r(x), l(x)) = x

Suppose ∃u, v such that l(u) = d(v) = a. Then : l(l(u)) = l(u) and so
l(a) = a r(r(v)) = r(v) and so r(a) = a a = f(r(a), l(a)) and so f(a, a) = a
and so s(a) = a P (a, a, a) =⇒ s(s(a)) = s(a) + a and so a = 2a and
a = 0 So l(R) ∩ r(R) = {0}
Suppose now ∃u, v such that f(u, v) = 0 P (u, v, u) =⇒ f(f(u, u), f(u, v)) =
f(u, v)+u =⇒ l(s(u)) = u =⇒ u ∈ l(R) P (u, v, v) =⇒ f(f(u, v), f(v, v)) =
f(u, v)+v =⇒ r(s(v)) = v =⇒ v ∈ r(R) l(u) = f(u, 0) = f(u, f(u, v)) =
f(f(r(u), l(u)), f(l(u), v)) = f(r(u), v) + l(u) =⇒ f(r(u), v) = 0 =⇒
r(u) ∈ l(R) r(v) = f(0, v) = f(f(u, v), v) = f(f(u, r(y)), f(r(v), l(v))) =
f(u, l(v))+r(v) =⇒ f(u, l(v)) = 0 =⇒ l(v) ∈ r(R) So r(u) ∈ l(R)∩r(R)
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and so r(u) = 0 and so u = f(r(u), l(u)) = r(l(u)) and r(u) = r(r(l(u))) =
r(l(u)) = u and so u = 0 Same : l(v)) ∈ l(R) ∩ r(R) and so l(v) = 0 and
so v = f(r(v), l(v)) = l(r(v)) and so l(v) = l(l(r(v))) = l(r(v)) = v and so
v = 0

So f(x, y) = 0 ⇐⇒ x = y = 0

Then P (x, y,−f(x, y)) =⇒ f(f(x,−f(x, y)), f(−f(x, y), y)) = 0 and so
f(x,−f(x, y)) = f(−f(x, y), y) = 0 and so x = y = 0, impossible

So no solution for this equation

163. Let f : R → R satisfy f(4x) = f(2x) + x . Find all functions f with the
given property.

solution

Obviously f(x) can take any value we want for x ≤ 0 For x > 0, let us
write f(x) = g(lnx)+log2 x and the equation becomes g(2x) = g(x) which
is very classical with solution : g(x) = u({log2 x} for any x > 0 where u(x)
is any function de�ned over [0, 1) g(0) = a where a is any real we want
g(x) = v({log2−x} for any x < 0 where v(x) is any function de�ned over
[0, 1)

[u][b]Hence a general solution of required equation [/b][/u]:

∀x ≤ 0 : f(x) is any function we want ∀x ∈ (0, 1) : f(x) = log2 x +
v({log2 | lnx|}) where v(x) is any function de�ned over [0, 1) f(1) = a
where a is any real we want ∀x > 1 : f(x) = log2 x+ u({log2 lnx}) where
u(x) is any function de�ned over [0, 1)

164. f : R→ R f(x+y)+f(y+ z)+f(z+x)?f(x+2y+3z) for any real x, y, z

solution

There are obviously in�nitely many solutions and I wonder how we can
�nd a general formula for these. Some examples : f(x) = 1

f(x) = 2π + arctan(x)

f(x) = x2+2
x2+1

f(x) = 5 + q(x) with q(x)=x-�oorfunction(x)

165. Find all f : Q→ Q satisfy : f(f(x) + y) = x+ f(y),∀x, y ∈ Q

solution

Let P (x, y) be the assertion f(f(x) + y) = x+ f(y)

P (x, 0) =⇒ f(f(x)) = x + f(0) P (f(x), y) =⇒ f(x + y + f(0)) =
f(x) + f(y)

Writing f(x) = g(x + f(0)), this becomes g((x + f(0)) + (y + f(0))) =
g(x + f(0)) + g(y + f(0)) So g(x + y) = g(x) + g(y) and g(x) = g(1)x
∀x ∈ Q and so f(x) = g(1)(x+ f(0))
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So f(x) = ax+ b and, plugging this in original equation, we get b = 0 and
a2 = 1

Hence the two solutions : f(x) = x ∀x f(x) = −x ∀x

166. Find all f : Q+ → Q+ satisfy:

{
f(x+ 1) = f(x) + 1
f(x2) = f2(x)

∀x ∈ Q+

solution

The �rst equation implies f(x+ n) = f(x) + n ∀x ∈ Q+, ∀n ∈ N

Then f((pq + q)2) = f(p
2

q2 + 2p+ q2) = f(p
2

q2 ) + 2p+ q2 = f2(pq ) + 2p+ q2

But f((pq + q)2) = f2(pq + q) = (f(pq ) + q)2 = f2(pq ) + 2qf(pq ) + q2

And so 2p = 2qf(pq ) and f(
p
q ) =

p
q

Hence the unique solution f(x) = x ∀x ∈ Q+, which indeed is a solution

167. Find all contiuous function f : R+− > R+ satisfying: f(x+ 1
x )+f(y+

1
y ) =

f(x+ 1
y ) + f(y + 1

x ) for every x,y from R+

solution

Consider then a, b > 0 such that a 6= b and ab ≥ 4

Consider the system : x ≥
√

a
b and y ≥

√
b
a x + 1

y = a y + 1
x = b Ths

system always have a unique real solution

Let then u = x + 1
x and v = y + 1

y It's easy to see that : f(a) + f(b) =

f(u) + f(v) a+ b = u+ v |u− v| < |a− b| u 6= v and uv ≥ 4

And so we can create a sequence (a, b)→ (u, v), repeating the process It's
easy to see that the two numbers have their di�erence tending towards 0
and so have the same limit a+b

2

and so, since continuous, f(a) + f(b) = 2f(a+b2 ) ∀a, b > 0 such that a 6= b
and ab ≥ 4

This is a classical functional equation which implies easily (continuity
again) f(x) = cx+ d ∀x ≥ 2

Using then the functonal equation with for example y ≥ 1
2 , we get x +

1
x , y +

1
y , x+ 1

y ≥ 2 and so f(y + 1
x ) = c(y + 1

x ) + d and so f(x) = cx+ d

∀x > 1
2

And it's easy to use similar steps as many times as we want to get f(x) =
cx+ d ∀x > 0

And this indeed is a solution as soon as c ≥ 0 and d ≥ 0 or c = 0 and
d > 0

Hence the answer : f(x) = ax+ b ∀x > 0 and for any (a > 0 and b ≥ 0)

or (a = 0 and b > 0)
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168. Find the f : R → R such that f is a continuous function and satisfy :
f(x+ y) = f(x) + f(y) + 2xy,∀x, y ∈ R

olution

Let f(x) = x2 + g(x) and the equation becomes g(x + y) = g(x) + g(y)

and so g(x) = ax, since continuous and f(x) = x2 + ax which indeed is

a solution. x2

2 → x2

169. Let f be a contiuous and injective function R − > R ; f(1) = 1 ; f(2x −
f(x)) = x. Prove that f(x) = x.

solution

So f(x) is strictly monotonous. If f(x) is decreasing, then 2x − f(x) is
increasing and f(2x− f(x)) is decreasing, which is wrong.

So f(x) is increasing.

If f(a) > a, then 2a− f(a) < a and f(2a− f(a)) < f(a) and so f(a) > a,
impossible If f(a) < a, then 2a − f(a) > a and f(2a − f(a)) > f(a) and
so f(a) < a, impossible

So f(x) = x ∀x, which indeed is a solution
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