IMC 2014, Blagoevgrad, Bulgaria

Day 1, July 31, 2014

Problem 1. Determine all pairs (a, b) of real numbers for which there exists a unique symmetric 2×2 matrix M with real entries satisfying trace $(M)=a$ and $\operatorname{det}(M)=b$.
(Proposed by Stephan Wagner, Stellenbosch University)
Solution 1. Let the matrix be

$$
M=\left[\begin{array}{ll}
x & z \\
z & y
\end{array}\right]
$$

The two conditions give us $x+y=a$ and $x y-z^{2}=b$. Since this is symmetric in x and y, the matrix can only be unique if $x=y$. Hence $2 x=a$ and $x^{2}-z^{2}=b$. Moreover, if (x, y, z) solves the system of equations, so does $(x, y,-z)$. So M can only be unique if $z=0$. This means that $2 x=a$ and $x^{2}=b$, so $a^{2}=4 b$.

If this is the case, then M is indeed unique: if $x+y=a$ and $x y-z^{2}=b$, then

$$
(x-y)^{2}+4 z^{2}=(x+y)^{2}+4 z^{2}-4 x y=a^{2}-4 b=0,
$$

so we must have $x=y$ and $z=0$, meaning that

$$
M=\left[\begin{array}{cc}
a / 2 & 0 \\
0 & a / 2
\end{array}\right]
$$

is the only solution.
Solution 2. Note that $\operatorname{trace}(M)=a$ and $\operatorname{det}(M)=b$ if and only if the two eigenvalues λ_{1} and λ_{2} of M are solutions of $x^{2}-a x+b=0$. If $\lambda_{1} \neq \lambda_{2}$, then

$$
M_{1}=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \quad \text { and } \quad M_{2}=\left[\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{1}
\end{array}\right]
$$

are two distinct solutions, contradicting uniqueness. Thus $\lambda_{1}=\lambda_{2}=\lambda=a / 2$, which implies $a^{2}=4 b$ once again. In this case, we use the fact that M has to be diagonalisable as it is assumed to be symmetric. Thus there exists a matrix T such that

$$
M=T^{-1} \cdot\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \cdot T,
$$

however this reduces to $M=\lambda\left(T^{-1} \cdot I \cdot T\right)=\lambda I$, which shows again that M is unique.

Problem 2. Consider the following sequence

$$
\left(a_{n}\right)_{n=1}^{\infty}=(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1, \ldots)
$$

Find all pairs (α, β) of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k}}{n^{\alpha}}=\beta$.

> (Proposed by Tomas Barta, Charles University, Prague)

Solution. Let $N_{n}=\binom{n+1}{2}$ (then $a_{N_{n}}$ is the first appearance of number n in the sequence) and consider limit of the subsequence

$$
b_{N_{n}}:=\frac{\sum_{k=1}^{N_{n}} a_{k}}{N_{n}^{\alpha}}=\frac{\sum_{k=1}^{n} 1+\cdots+k}{\binom{n+1}{2}^{\alpha}}=\frac{\sum_{k=1}^{n}\binom{k+1}{2}}{\binom{n+1}{2}^{\alpha}}=\frac{\binom{n+2}{3}}{\binom{n+1}{2}^{\alpha}}=\frac{\frac{1}{6} n^{3}(1+2 / n)(1+1 / n)}{(1 / 2)^{\alpha} n^{2 \alpha}(1+1 / n)^{\alpha}} .
$$

We can see that $\lim _{n \rightarrow \infty} b_{N_{n}}$ is positive and finite if and only if $\alpha=3 / 2$. In this case the limit is equal to $\beta=\frac{\sqrt{2}}{3}$. So, this pair $(\alpha, \beta)=\left(\frac{3}{2}, \frac{\sqrt{2}}{3}\right)$ is the only candidate for solution. We will show convergence of the original sequence for these values of α and β.

Let N be a positive integer in $\left[N_{n}+1, N_{n+1}\right]$, i.e., $N=N_{n}+m$ for some $1 \leq m \leq n+1$. Then we have

$$
b_{N}=\frac{\binom{n+2}{3}+\binom{m+1}{2}}{\left(\binom{n+1}{2}+m\right)^{3 / 2}}
$$

which can be estimated by

$$
\frac{\binom{n+2}{3}}{\left(\binom{n+1}{2}+n\right)^{3 / 2}} \leq b_{N} \leq \frac{\binom{n+2}{3}+\binom{n+1}{2}}{\binom{n+1}{2}^{3 / 2}}
$$

Since both bounds converge to $\frac{\sqrt{2}}{3}$, the sequence b_{N} has the same limit and we are done.

Problem 3. Let n be a positive integer. Show that there are positive real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that for each choice of signs the polynomial

$$
\pm a_{n} x^{n} \pm a_{n-1} x^{n-1} \pm \cdots \pm a_{1} x \pm a_{0}
$$

has n distinct real roots.
(Proposed by Stephan Neupert, TUM, München)
Solution. We proceed by induction on n. The statement is trivial for $n=1$. Thus assume that we have some a_{n}, \ldots, a_{0} which satisfy the conditions for some n. Consider now the polynomials

$$
\tilde{P}(x)= \pm a_{n} x^{n+1} \pm a_{n-1} x^{n} \pm \ldots \pm a_{1} x^{2} \pm a_{0} x
$$

By induction hypothesis and $a_{0} \neq 0$, each of these polynomials has $n+1$ distinct zeros, including the n nonzero roots of $\pm a_{n} x^{n} \pm a_{n-1} x^{n-1} \pm \ldots \pm a_{1} x \pm a_{0}$ and 0 . In particular none of the polynomials has a root which is a local extremum. Hence we can choose some $\varepsilon>0$ such that for each such polynomial $\tilde{P}(x)$ and each of its local extrema s we have $|\tilde{P}(s)|>\varepsilon$. We claim that then each of the polynomials

$$
P(x)= \pm a_{n} x^{n+1} \pm a_{n-1} x^{n} \pm \ldots \pm a_{1} x^{2} \pm a_{0} x \pm \varepsilon
$$

has exactly $n+1$ distinct zeros as well. As $\tilde{P}(x)$ has $n+1$ distinct zeros, it admits a local extremum at n points. Call these local extrema $-\infty=s_{0}<s_{1}<s_{2}<\ldots<s_{n}<$ $s_{n+1}=\infty$. Then for each $i \in\{0,1, \ldots, n\}$ the values $\tilde{P}\left(s_{i}\right)$ and $\tilde{P}\left(s_{i+1}\right)$ have opposite signs (with the obvious convention at infinity). By choice of ε the same holds true for $P\left(s_{i}\right)$ and $P\left(s_{i+1}\right)$. Hence there is at least one real zero of $P(x)$ in each interval $\left(s_{i}, s_{i+1}\right)$, i.e. $P(x)$ has at least (and therefore exactly) $n+1$ zeros. This shows that we have found a set of positive reals $a_{n+1}^{\prime}=a_{n}, a_{n}^{\prime}=a_{n-1}, \ldots, a_{1}^{\prime}=a_{0}, a_{0}^{\prime}=\varepsilon$ with the desired properties.

Problem 4. Let $n>6$ be a perfect number, and let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be its prime factorisation with $1<p_{1}<\ldots<p_{k}$. Prove that e_{1} is an even number.

A number n is perfect if $s(n)=2 n$, where $s(n)$ is the sum of the divisors of n.
(Proposed by Javier Rodrigo, Universidad Pontificia Comillas)
Solution. Suppose that e_{1} is odd, contrary to the statement.
We know that $s(n)=\prod_{i=1}^{k}\left(1+p_{i}+p_{i}^{2}+\cdots+p_{i}^{e_{i}}\right)=2 n=2 p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$. Since e_{1} is an odd number, $p_{1}+1$ divides the first factor $1+p_{1}+p_{1}^{2}+\cdots+p_{1}^{e_{1}}$, so $p_{1}+1$ divides $2 n$. Due to $p_{1}+1>2$, at least one of the primes p_{1}, \ldots, p_{k} divides $p_{1}+1$. The primes p_{3}, \ldots, p_{k} are greater than $p_{1}+1$ and p_{1} cannot divide $p_{1}+1$, so p_{2} must divide $p_{1}+1$. Since $p_{1}+1<2 p_{2}$, this possible only if $p_{2}=p_{1}+1$, therefore $p_{1}=2$ and $p_{2}=3$. Hence, $6 \mid n$.

Now $n, \frac{n}{2}, \frac{n}{3}, \frac{n}{6}$ and 1 are distinct divisors of n, so

$$
s(n) \geq n+\frac{n}{2}+\frac{n}{3}+\frac{n}{6}+1=2 n+1>2 n
$$

contradiction.

Remark. It is well-known that all even perfect numbers have the form $n=2^{p-1}\left(2^{p}-1\right)$ such that p and $2^{p}-1$ are primes. So if e_{1} is odd then $k=2, p_{1}=2, p_{2}=2^{p}-1, e_{1}=p-1$ and $e_{2}=1$. If $n>6$ then $p>2$ so p is odd and $e_{1}=p-1$ should be even.

Problem 5. Let $A_{1} A_{2} \ldots A_{3 n}$ be a closed broken line consisting of $3 n$ line segments in the Euclidean plane. Suppose that no three of its vertices are collinear, and for each index $i=1,2, \ldots, 3 n$, the triangle $A_{i} A_{i+1} A_{i+2}$ has counterclockwise orientation and $\angle A_{i} A_{i+1} A_{i+2}=60^{\circ}$, using the notation $A_{3 n+1}=A_{1}$ and $A_{3 n+2}=A_{2}$. Prove that the number of self-intersections of the broken line is at most $\frac{3}{2} n^{2}-2 n+1$.

(Proposed by Martin Langer)
Solution. Place the broken line inside an equilateral triangle T such that their sides are parallel to the segments of the broken line. For every $i=1,2, \ldots, 3 n$, denote by x_{i} the
distance between the segment $A_{i} A_{i+1}$ and that side of T which is parallel to $A_{i} A_{i+1}$. We will use indices modulo $3 n$ everywhere.

It is easy to see that if $i \equiv j(\bmod 3)$ then the polylines $A_{i} A_{i+1} A_{i+2}$ and $A_{j} A_{j+1} A_{j+2}$ intersect at most once, and this is possible only if either $x_{i}<x_{i+1}$ and $x_{j}>x_{j+1}$ or $x_{i}<x_{i+1}$ and $x_{j}>x_{j+1}$. Moreover, such cases cover all self-intersections. So, the number of self-intersections cannot exceed number of pairs (i, j) with the property
$(*) i \equiv j \quad(\bmod 3), \quad$ and $\quad\left(x_{i}<x_{i+1}\right.$ and $\left.x_{j}>x_{j+1}\right) \quad$ or $\quad\left(x_{i}>x_{i+1}\right.$ and $\left.x_{j}<x_{j+1}\right)$.

Grouping the indices $1,2, \ldots, 3 n$, by remainders modulo 3 , we have n indices in each residue class. Altogether there are $3\binom{n}{2}$ index pairs (i, j) with $i \equiv j(\bmod 3)$. We will show that for every integer k with $1 \leq k<\frac{n}{2}$, there is some index i such that the pair $(i, i+6 k)$ does not satisfy $(*)$. This is already $\left[\frac{n-1}{2}\right]$ pair; this will prove that there are at most

$$
3\binom{n}{2}-\left[\frac{n-1}{2}\right] \geq \frac{3}{2} n^{2}-2 n+1
$$

self-intersections.
Without loss of generality we may assume that $x_{3 n}=x_{0}$ is the smallest among $x_{1}, \ldots, x_{3 n}$. Suppose that all of the pairs

$$
\begin{equation*}
(-6 k, 0), \quad(-6 k+1,1), \quad(-6 k+2,2), \quad \ldots, \quad(-1,6 k-1), \quad(0,6 k) \tag{**}
\end{equation*}
$$

satisfy $(*)$. Since x_{0} is minimal, we have $x_{-6 k}>x_{0}$. The pair $(-6 k, 0)$ satisfies $(*)$, so $x_{-6 k+1}<x_{1}$. Then we can see that $x_{-6 k+2}>x_{2}$, and so on; finally we get $x_{0}>x_{6 k}$. But this contradicts the minimality of x_{0}. Therefore, there is a pair in $\left({ }^{* *}\right)$ that does not satisfy (*).

Remark. The bound $3\binom{n}{2}-\left[\frac{n-1}{2}\right]=\left[\frac{3}{2} n^{2}-2 n+1\right]$ is sharp.

