
IMC2014, Blagoevgrad, Bulgaria

Day 2, August 1, 2014

Problem 1. For a positive integer x, denote its nth

de
imal digit by dn(x), i.e. dn(x) ∈

{0, 1, . . . , 9} and x =
∞
∑

n=1

dn(x)10
n−1

. Suppose that for some sequen
e

(

an
)∞

n=1
, there are

only �nitely many zeros in the sequen
e

(

dn(an)
)∞

n=1
. Prove that there are in�nitely many

positive integers that do not o

ur in the sequen
e (an)
∞
n=1.

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution 1. By the assumption there is some index n0 su
h that dn(an) 6= 1 for n ≥ n0.

We show that

an+1, an+2, . . . > 10n for n ≥ n0. (1)

Noti
e that in the sum an =
∞
∑

k=1

dk(an)10
k−1

we have the term dn(an)10
n−1

with dn(an) ≥ 1.

Therefore, an ≥ 10n−1
. Then for m > n we have am ≥ 10m > 10n. This proves (1).

From (1) we know that only the �rst n elements, a1, a2, . . . , an may lie in the interval

[1, 10n]. Hen
e, at least 10n − n integers in this interval do not o

ur in the sequen
e at

all. As lim(10n − n) = ∞, this shows that there are in�nitely many numbers that do not

appear among a1, a2, . . ..

Solution 2. We will use Cantor's diagonal method to 
onstru
t in�nitely many positive

integers that do not o

ur in the sequen
e (an)
Assume that dn(an) 6= 0 for n > n0. De�ne the sequen
e of digits

gn =

{

2 dn(xn) = 1

1 dn(xn) 6= 1.

Hen
e gn 6= dn(an) for every positive integer n. Let

xk =

k
∑

n=1

gn · 10
n−1

for k = 1, 2, . . . .

As xk+1 ≥ 10k > xk, the sequen
e (xk) is in
reasing and so it 
ontains in�nitely many

distin
t positive integers. We show that the numbers xn0
, xn0+1, xn0+2, . . . no not o

ur in

the sequen
e (an); in other words, xk 6= an for every pair n ≥ 1 and k ≥ n0 of integers.

Indeed, if k ≥ n then dn(xk) = gn 6= dn(an), so xk 6= an.
If n > k ≥ n0 then dn(xk) = 0 6= dn(an), so xk 6= an.

Problem 2. Let A = (aij)
n
i,j=1 be a symmetri
 n × n matrix with real entries, and let

λ1, λ2, . . . , λn denote its eigenvalues. Show that

∑

1≤i<j≤n

aiiajj ≥
∑

1≤i<j≤n

λiλj,

and determine all matri
es for whi
h equality holds.



(Proposed by Martin Niepel, Comenius University, Bratislava)

Solution. Eigenvalues of a real symmetri
 matrix are real, hen
e the inequality makes

sense. Similarly, for Hermitian matri
es diagonal entries as well as eigenvalues have to be

real.

Sin
e the tra
e of a matrix is the sum of its eigenvalues, for A we have

n
∑

i=1

aii =
n

∑

i=1

λi,

and 
onsequently

n
∑

i=1

a2ii + 2
∑

i<j

aiiajj =

n
∑

i=1

λ2
i + 2

∑

i<j

λiλj .

Therefore our inequality is equivalent to

n
∑

i=1

a2ii ≤
n

∑

i=1

λ2
i .

MatrixA2
, whi
h is equal toATA (orA∗A in Hermitian 
ase), has eigenvalues λ2

1, λ
2
2, . . . , λ

2
n.

On the other hand, the tra
e of ATA gives the square of the Frobenius norm of A, so we

have

n
∑

i=1

a2ii ≤

n
∑

i,j=1

|aij |
2 = tr(ATA) = tr(A2) =

n
∑

i=1

λ2
i .

The inequality follows, and it is 
lear that the equality holds for diagonal matri
es

only.

Remark. Same statement is true for Hermitian matri
es.

Problem 3. Let f(x) =
sin x

x
, for x > 0, and let n be a positive integer. Prove that

∣

∣f (n)(x)
∣

∣ <
1

n+ 1
, where f (n)

denotes the nth

derivative of f .

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution 1. Putting f(0) = 1 we 
an assume that the fun
tion is analyti
 in R. Let
g(x) = xn+1(fn(x)− 1

n+1
). Then g(0) = 0 and

g′(x) = (n + 1)xn

(

f (n)(x)−
1

n + 1

)

+ xn+1f (n+1)(x) =

= xn
(

(n+ 1)f (n)(x) + xf (n+1)(x)− 1
)

= xn
(

(xf(x))(n+1 − 1
)

= xn(sin(n+1)(x)−1) ≤ 0.

Hen
e g(x) ≤ 0 for x > 0. Taking into a

ount that g′(x) < 0 for 0 < x < π
2
we obtain

the desired (stri
t) inequality for x > 0.



Solution 2.

(

sin x

x

)(n)

=
dn

dxn

∫ 1

0

− cos(xt)dt =

∫ 1

0

∂n

∂xn
(− cos(xt)) dt =

∫ 1

0

tngn(xt)dt

where the fun
tion gn(u) 
an be ± sin u or ± cosu, depending on n. We only need that

|gn| ≤ 1 and equality o

urs at �nitely many points. So,

∣

∣

∣

∣

∣

(

sin x

x

)(n)
∣

∣

∣

∣

∣

≤

∫ 1

0

tn
∣

∣gn(xt)
∣

∣dt <

∫ 1

0

tndt =
1

n+ 1
.

Problem 4. We say that a subset of R
n
is k-almost 
ontained by a hyperplane if there

are less than k points in that set whi
h do not belong to the hyperplane. We 
all a �nite

set of points k-generi
 if there is no hyperplane that k-almost 
ontains the set. For ea
h

pair of positive integers k and n, �nd the minimal number d(k, n) su
h that every �nite

k-generi
 set in R
n

ontains a k-generi
 subset with at most d(k, n) elements.

(Proposed by Sha
har Carmeli, Weizmann Inst. and Lev Radzivilovsky, Tel Aviv Univ.)

Solution. The answer is: d(k, n) =

{

k · n k, n > 1

k + n otherwise

Throughout the solution, we shall often say that a hyperplanes skips a point to signify

that the plane does not 
ontain that point.

For n = 1 the 
laim is obvious.

For k = 1 we have an arbitrary �nite set of points in R
n
su
h that neither hyperplane


ontains it entirely. We 
an build a subset of n + 1 points step by step: on ea
h step we

add a point, not 
ontained in the minimal plane spanned by the previous points. Thus

any 1-generi
 set 
ontains a non-degenerate simplex of n + 1 points, and obviously a

non-degenerate simplex of n + 1 points 
annot be redu
ed without loosing 1-generality.

In the 
ase k, n > 1 we shall give an example of k ·n points. On ea
h of the Cartesian

axes 
hoose k distin
t points, di�erent from the origin. Let's show that this set is k-
generi
. There are two types of planes: 
ontaining the origin and skipping it. If a plane


ontains the origin, it either 
ontains all the 
hose points of a axis or skips all of them.

Sin
e no plane 
ontains all axes, it skips the k 
hosen points on one of the axes. If a plane

skips the origin, it it 
ontains at most one point of ea
h axis. Therefore it skips at least

n(k− 1) points. It remains to verify a simple inequality n(k − 1) ≥ k whi
h is equivalent

to (n− 1)(k − 1) ≥ 1 whi
h holds for n, k > 1.
The example we have shown is minimal by in
lusion: if any point is removed, say a

point from axis i, then the hyperplane xi = 0 skips only k − 1 points, and our set stops

being k-generi
. Hen
e d(k, n) ≥ kn.
It remains to prove that Hen
e d(k, n) ≥ kn for k, n > 1, meaning: for ea
h k-generi


�nite set of points, it is possible to 
hoose a k-generi
 subset of at most kn points. Let

us 
all a subset of points minimal if by taking out any point, we loose k-generality.
It su�
es to prove that any minimal k-generi
 subset in R

n
has at most kn points. A

hyperplane will be 
alled ample if it skips pre
isely k points. A point 
annot be removed

from a k-generi
 set, if and only if it is skipped by an ample hyperplane. Thus, in a

minimal set ea
h point is skipped by an ample hyperplane.



Organise the following pro
ess: on ea
h step we 
hoose an ample hyperplane, and paint

blue all the points whi
h are skipped by it. Ea
h time we 
hoose an ample hyperplane,

whi
h skips one of the unpainted points. The unpainted points at ea
h step (after the

beginning) is the interse
tion of all 
hosen hyperplanes. The interse
tion set of 
hosen

hyperplanes is redu
ed with ea
h step (sin
e at least one point is being painted on ea
h

step).

Noti
e, that on ea
h step we paint at most k points. So if we start with a minimal

set of more then nk points, we 
an 
hoose n planes and still have at least one unpainted

points. The interse
tion of the 
hosen planes is a point (sin
e on ea
h step the dimension

of the interse
tion plane was redu
ed), so there are at most nk+ 1 points in the set. The

last unpainted point will be denoted by O. The last unpainted line (whi
h was formed on

the step before the last) will be denoted by ℓ1.
This line is an interse
tion of all the 
hosen hyperplanes ex
ept the last one. If we

have more than nk points, then ℓ1 
ontains exa
tly k+1 points from the set, one of whi
h

is O.
We 
ould have exe
uted the same pro
ess with 
hoosing the same hyperplanes, but in

di�erent order. Anyway, at ea
h step we would paint at most k points, and after n steps

only O would remain unpainted; so it was pre
isely k points on ea
h step. On step before

the last, we might get a di�erent line, whi
h is interse
tion of all planes ex
ept the last

one. The lines obtained in this way will be denoted ℓ1, ℓ2, ..., ℓn, and ea
h 
ontains exa
tly

k points ex
ept O. Sin
e we have O and k points on n lines, that is the entire set. Noti
e

that the ve
tors spanning these lines are linearly independent (sin
e for ea
h line we have

a hyperplane 
ontaining all the other lines ex
ept that line). So by removing O we obtain

the example that we've des
ribed already, whi
h is k-generi
.

Remark. From the proof we see, that the example is unique.

Problem 5. For every positive integer n, denote by Dn the number of permutations

(x1, . . . , xn) of (1, 2, . . . , n) su
h that xj 6= j for every 1 ≤ j ≤ n. For 1 ≤ k ≤ n
2
, denote

by ∆(n, k) the number of permutations (x1, . . . , xn) of (1, 2, . . . , n) su
h that xi = k + i
for every 1 ≤ i ≤ k and xj 6= j for every 1 ≤ j ≤ n. Prove that

∆(n, k) =
k−1
∑

i=0

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
.

(Proposed by Combinatori
s; Ferdowsi University of Mashhad, Iran; Mirzavaziri)

Solution. Let ar ∈ {i1, . . . , ik} ∩ {a1, . . . , ak}. Thus ar = is for some s 6= r. Now there

are two 
ases:

Case 1. as ∈ {i1, . . . , ik}. Let as = it. In this 
ase a derangement x = (x1, . . . , xn)
satis�es the 
ondition xij = aj if and only if the derangement x′ = (x′

1, . . . , x
′
it−1, x

′
it+1, x

′
n)

of the set [n] \ {it} satis�es the 
ondition x′
ij
= a′j for all j 6= t, where a′j = aj for j 6= s

and a′s = at. This provides a one to one 
orresponden
e between the derangements

x = (x1, . . . , xn) of [n] with xij = aj for the given sets {i1, . . . , ik} and {a1, . . . , ak} with

ℓ elements in their interse
tions, and the derangements x′ = (x′
1, . . . , x

′
it−1, x

′
it+1, x

′
n) of

[n] \ {it} with xij = a′j for the given sets {i1, . . . , ik} \ {it} and {a′1, . . . , a
′
k} \ {a′t} with

ℓ− 1 elements in their interse
tions.

Case 2. as /∈ {i1, . . . , ik}. In this 
ase a derangement x = (x1, . . . , xn) satis�es the

ondition xij = aj if and only if the derangement x′ = (x′

1, . . . , x
′
as−1, x

′
as+1, x

′
n) of the



set [n] \ {as} satis�es the 
ondition x′
ij

= aj for all j 6= s. This provides a one to one


orresponden
e between the derangements x = (x1, . . . , xn) of [n] with xij = aj for the
given sets {i1, . . . , ik} and {a1, . . . , ak} with ℓ elements in their interse
tions, and the

derangements x′ = (x′
1, . . . , x

′
as−1, x

′
as+1, x

′
n) of [n] \ {as} with xij = aj for the given sets

{i1, . . . , ik} \ {is} and {a1, . . . , ak} \ {as} with ℓ− 1 elements in their interse
tions.

These 
onsiderations show that ∆(n, k, ℓ) = ∆(n − 1, k − 1, ℓ − 1). Iterating this

argument we have

∆(n, k, ℓ) = ∆(n− ℓ, k − ℓ, 0).

We 
an therefore assume that ℓ = 0. We thus evaluate ∆(n, k, 0), where 2k 6 n. For

k = 0, we obviously have ∆(n, 0, 0) = Dn. For k > 1, we 
laim that

∆(n, k, 0) = ∆(n− 1, k − 1, 0) + ∆(n− 2, k − 1, 0).

For a derangement x = (x1, . . . , xn) satisfying xij = aj there are two 
ases: xa1 = i1 or

xa1 6= i1.
If the �rst 
ase o

urs then we have to evaluate the number of derangements of the

set [n] \ {i1, a1} for the given sets {i2, . . . , ik} and {a2, . . . , ak} with 0 elements in their

interse
tions. The number is equal to ∆(n− 2, k − 1, 0).
If the se
ond 
ase o

urs then we have to evaluate the number of derangements of

the set [n] \ {a1} for the given sets {i2, . . . , ik} and {a2, . . . , ak} with 0 elements in their

interse
tions. The number is equal to ∆(n− 1, k − 1, 0).
We now use indu
tion on k to show that

∆(n, k, 0) =
k−1
∑

i=0

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
, 2 6 2k 6 n.

For k = 1 we have

∆(n, 1, 0) = ∆(n− 1, 0, 0) + ∆(n− 2, 0, 0) = Dn−1 +Dn−2 =
Dn

n− 1
.



Now let the result be true for k − 1. We 
an write

∆(n, k, 0) = ∆(n− 1, k − 1, 0) + ∆(n− 2, k − 1, 0)

=
k−2
∑

i=0

(

k − 2

i

)

Dn−(k−1+i)

(n− 1)− (k − 1 + i)
+

k−2
∑

i=0

(

k − 2

i

)

D(n−1)−(k−1+i)

(n− 2)− (k − 1 + i)

=
k−2
∑

i=0

(

k − 2

i

)

D(n+1)−(k+i)

n− (k + i)
+

k−1
∑

i=1

(

k − 2

i− 1

)

Dn−(k+i−1)

(n− 1)− (k + i− 1)

=
D(n+1)−k

n− k
+

k−2
∑

i=1

(

k − 2

i

)

D(n+1)−(k+i)

n− (k + i)

+
D(n+1)−(2k−1)

n− (2k − 1)
+

k−2
∑

i=1

(

k − 2

i− 1

)

D(n+1)−(k+i)

n− (k + i)

=
D(n+1)−k

n− k
+

k−2
∑

i=1

[

(

k − 2

i

)

+

(

k − 2

i− 1

)

]D(n+1)−(k+i)

n− (k + i)
+

D(n+1)−(2k−1)

n− (2k − 1)

=
D(n+1)−k

n− k
+

k−2
∑

i=1

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
+

D(n+1)−(2k−1)

n− (2k − 1)

=

k−1
∑

i=0

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
.

Remark. As a 
orollary of the above problem, we 
an solve the �rst problem. Let n = 2k,
ij = j and aj = k + j for j = 1, . . . , k. Then a derangement x = (x1, . . . , xn) satis�es the


ondition xij = aj if and only if x′ = (xk+1, . . . , xn) is a permutation of [k]. The number of su
h

permutations x′ is k!. Thus
∑k−1

i=0

(

k−1
i

)Dk+1−i

k−i
= k!.


