
IMC2014, Blagoevgrad, Bulgaria

Day 2, August 1, 2014

Problem 1. For a positive integer x, denote its nth

deimal digit by dn(x), i.e. dn(x) ∈

{0, 1, . . . , 9} and x =
∞
∑

n=1

dn(x)10
n−1

. Suppose that for some sequene

(

an
)∞

n=1
, there are

only �nitely many zeros in the sequene

(

dn(an)
)∞

n=1
. Prove that there are in�nitely many

positive integers that do not our in the sequene (an)
∞
n=1.

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution 1. By the assumption there is some index n0 suh that dn(an) 6= 1 for n ≥ n0.

We show that

an+1, an+2, . . . > 10n for n ≥ n0. (1)

Notie that in the sum an =
∞
∑

k=1

dk(an)10
k−1

we have the term dn(an)10
n−1

with dn(an) ≥ 1.

Therefore, an ≥ 10n−1
. Then for m > n we have am ≥ 10m > 10n. This proves (1).

From (1) we know that only the �rst n elements, a1, a2, . . . , an may lie in the interval

[1, 10n]. Hene, at least 10n − n integers in this interval do not our in the sequene at

all. As lim(10n − n) = ∞, this shows that there are in�nitely many numbers that do not

appear among a1, a2, . . ..

Solution 2. We will use Cantor's diagonal method to onstrut in�nitely many positive

integers that do not our in the sequene (an)
Assume that dn(an) 6= 0 for n > n0. De�ne the sequene of digits

gn =

{

2 dn(xn) = 1

1 dn(xn) 6= 1.

Hene gn 6= dn(an) for every positive integer n. Let

xk =

k
∑

n=1

gn · 10
n−1

for k = 1, 2, . . . .

As xk+1 ≥ 10k > xk, the sequene (xk) is inreasing and so it ontains in�nitely many

distint positive integers. We show that the numbers xn0
, xn0+1, xn0+2, . . . no not our in

the sequene (an); in other words, xk 6= an for every pair n ≥ 1 and k ≥ n0 of integers.

Indeed, if k ≥ n then dn(xk) = gn 6= dn(an), so xk 6= an.
If n > k ≥ n0 then dn(xk) = 0 6= dn(an), so xk 6= an.

Problem 2. Let A = (aij)
n
i,j=1 be a symmetri n × n matrix with real entries, and let

λ1, λ2, . . . , λn denote its eigenvalues. Show that

∑

1≤i<j≤n

aiiajj ≥
∑

1≤i<j≤n

λiλj,

and determine all matries for whih equality holds.



(Proposed by Martin Niepel, Comenius University, Bratislava)

Solution. Eigenvalues of a real symmetri matrix are real, hene the inequality makes

sense. Similarly, for Hermitian matries diagonal entries as well as eigenvalues have to be

real.

Sine the trae of a matrix is the sum of its eigenvalues, for A we have

n
∑

i=1

aii =
n

∑

i=1

λi,

and onsequently

n
∑

i=1

a2ii + 2
∑

i<j

aiiajj =

n
∑

i=1

λ2
i + 2

∑

i<j

λiλj .

Therefore our inequality is equivalent to

n
∑

i=1

a2ii ≤
n

∑

i=1

λ2
i .

MatrixA2
, whih is equal toATA (orA∗A in Hermitian ase), has eigenvalues λ2

1, λ
2
2, . . . , λ

2
n.

On the other hand, the trae of ATA gives the square of the Frobenius norm of A, so we

have

n
∑

i=1

a2ii ≤

n
∑

i,j=1

|aij |
2 = tr(ATA) = tr(A2) =

n
∑

i=1

λ2
i .

The inequality follows, and it is lear that the equality holds for diagonal matries

only.

Remark. Same statement is true for Hermitian matries.

Problem 3. Let f(x) =
sin x

x
, for x > 0, and let n be a positive integer. Prove that

∣

∣f (n)(x)
∣

∣ <
1

n+ 1
, where f (n)

denotes the nth

derivative of f .

(Proposed by Alexander Bolbot, State University, Novosibirsk)

Solution 1. Putting f(0) = 1 we an assume that the funtion is analyti in R. Let
g(x) = xn+1(fn(x)− 1

n+1
). Then g(0) = 0 and

g′(x) = (n + 1)xn

(

f (n)(x)−
1

n + 1

)

+ xn+1f (n+1)(x) =

= xn
(

(n+ 1)f (n)(x) + xf (n+1)(x)− 1
)

= xn
(

(xf(x))(n+1 − 1
)

= xn(sin(n+1)(x)−1) ≤ 0.

Hene g(x) ≤ 0 for x > 0. Taking into aount that g′(x) < 0 for 0 < x < π
2
we obtain

the desired (strit) inequality for x > 0.



Solution 2.

(

sin x

x

)(n)

=
dn

dxn

∫ 1

0

− cos(xt)dt =

∫ 1

0

∂n

∂xn
(− cos(xt)) dt =

∫ 1

0

tngn(xt)dt

where the funtion gn(u) an be ± sin u or ± cosu, depending on n. We only need that

|gn| ≤ 1 and equality ours at �nitely many points. So,

∣

∣

∣

∣

∣

(

sin x

x

)(n)
∣

∣

∣

∣

∣

≤

∫ 1

0

tn
∣

∣gn(xt)
∣

∣dt <

∫ 1

0

tndt =
1

n+ 1
.

Problem 4. We say that a subset of R
n
is k-almost ontained by a hyperplane if there

are less than k points in that set whih do not belong to the hyperplane. We all a �nite

set of points k-generi if there is no hyperplane that k-almost ontains the set. For eah

pair of positive integers k and n, �nd the minimal number d(k, n) suh that every �nite

k-generi set in R
n
ontains a k-generi subset with at most d(k, n) elements.

(Proposed by Shahar Carmeli, Weizmann Inst. and Lev Radzivilovsky, Tel Aviv Univ.)

Solution. The answer is: d(k, n) =

{

k · n k, n > 1

k + n otherwise

Throughout the solution, we shall often say that a hyperplanes skips a point to signify

that the plane does not ontain that point.

For n = 1 the laim is obvious.

For k = 1 we have an arbitrary �nite set of points in R
n
suh that neither hyperplane

ontains it entirely. We an build a subset of n + 1 points step by step: on eah step we

add a point, not ontained in the minimal plane spanned by the previous points. Thus

any 1-generi set ontains a non-degenerate simplex of n + 1 points, and obviously a

non-degenerate simplex of n + 1 points annot be redued without loosing 1-generality.

In the ase k, n > 1 we shall give an example of k ·n points. On eah of the Cartesian

axes hoose k distint points, di�erent from the origin. Let's show that this set is k-
generi. There are two types of planes: ontaining the origin and skipping it. If a plane

ontains the origin, it either ontains all the hose points of a axis or skips all of them.

Sine no plane ontains all axes, it skips the k hosen points on one of the axes. If a plane

skips the origin, it it ontains at most one point of eah axis. Therefore it skips at least

n(k− 1) points. It remains to verify a simple inequality n(k − 1) ≥ k whih is equivalent

to (n− 1)(k − 1) ≥ 1 whih holds for n, k > 1.
The example we have shown is minimal by inlusion: if any point is removed, say a

point from axis i, then the hyperplane xi = 0 skips only k − 1 points, and our set stops

being k-generi. Hene d(k, n) ≥ kn.
It remains to prove that Hene d(k, n) ≥ kn for k, n > 1, meaning: for eah k-generi

�nite set of points, it is possible to hoose a k-generi subset of at most kn points. Let

us all a subset of points minimal if by taking out any point, we loose k-generality.
It su�es to prove that any minimal k-generi subset in R

n
has at most kn points. A

hyperplane will be alled ample if it skips preisely k points. A point annot be removed

from a k-generi set, if and only if it is skipped by an ample hyperplane. Thus, in a

minimal set eah point is skipped by an ample hyperplane.



Organise the following proess: on eah step we hoose an ample hyperplane, and paint

blue all the points whih are skipped by it. Eah time we hoose an ample hyperplane,

whih skips one of the unpainted points. The unpainted points at eah step (after the

beginning) is the intersetion of all hosen hyperplanes. The intersetion set of hosen

hyperplanes is redued with eah step (sine at least one point is being painted on eah

step).

Notie, that on eah step we paint at most k points. So if we start with a minimal

set of more then nk points, we an hoose n planes and still have at least one unpainted

points. The intersetion of the hosen planes is a point (sine on eah step the dimension

of the intersetion plane was redued), so there are at most nk+ 1 points in the set. The

last unpainted point will be denoted by O. The last unpainted line (whih was formed on

the step before the last) will be denoted by ℓ1.
This line is an intersetion of all the hosen hyperplanes exept the last one. If we

have more than nk points, then ℓ1 ontains exatly k+1 points from the set, one of whih

is O.
We ould have exeuted the same proess with hoosing the same hyperplanes, but in

di�erent order. Anyway, at eah step we would paint at most k points, and after n steps

only O would remain unpainted; so it was preisely k points on eah step. On step before

the last, we might get a di�erent line, whih is intersetion of all planes exept the last

one. The lines obtained in this way will be denoted ℓ1, ℓ2, ..., ℓn, and eah ontains exatly

k points exept O. Sine we have O and k points on n lines, that is the entire set. Notie

that the vetors spanning these lines are linearly independent (sine for eah line we have

a hyperplane ontaining all the other lines exept that line). So by removing O we obtain

the example that we've desribed already, whih is k-generi.

Remark. From the proof we see, that the example is unique.

Problem 5. For every positive integer n, denote by Dn the number of permutations

(x1, . . . , xn) of (1, 2, . . . , n) suh that xj 6= j for every 1 ≤ j ≤ n. For 1 ≤ k ≤ n
2
, denote

by ∆(n, k) the number of permutations (x1, . . . , xn) of (1, 2, . . . , n) suh that xi = k + i
for every 1 ≤ i ≤ k and xj 6= j for every 1 ≤ j ≤ n. Prove that

∆(n, k) =
k−1
∑

i=0

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
.

(Proposed by Combinatoris; Ferdowsi University of Mashhad, Iran; Mirzavaziri)

Solution. Let ar ∈ {i1, . . . , ik} ∩ {a1, . . . , ak}. Thus ar = is for some s 6= r. Now there

are two ases:

Case 1. as ∈ {i1, . . . , ik}. Let as = it. In this ase a derangement x = (x1, . . . , xn)
satis�es the ondition xij = aj if and only if the derangement x′ = (x′

1, . . . , x
′
it−1, x

′
it+1, x

′
n)

of the set [n] \ {it} satis�es the ondition x′
ij
= a′j for all j 6= t, where a′j = aj for j 6= s

and a′s = at. This provides a one to one orrespondene between the derangements

x = (x1, . . . , xn) of [n] with xij = aj for the given sets {i1, . . . , ik} and {a1, . . . , ak} with

ℓ elements in their intersetions, and the derangements x′ = (x′
1, . . . , x

′
it−1, x

′
it+1, x

′
n) of

[n] \ {it} with xij = a′j for the given sets {i1, . . . , ik} \ {it} and {a′1, . . . , a
′
k} \ {a′t} with

ℓ− 1 elements in their intersetions.

Case 2. as /∈ {i1, . . . , ik}. In this ase a derangement x = (x1, . . . , xn) satis�es the
ondition xij = aj if and only if the derangement x′ = (x′

1, . . . , x
′
as−1, x

′
as+1, x

′
n) of the



set [n] \ {as} satis�es the ondition x′
ij

= aj for all j 6= s. This provides a one to one

orrespondene between the derangements x = (x1, . . . , xn) of [n] with xij = aj for the
given sets {i1, . . . , ik} and {a1, . . . , ak} with ℓ elements in their intersetions, and the

derangements x′ = (x′
1, . . . , x

′
as−1, x

′
as+1, x

′
n) of [n] \ {as} with xij = aj for the given sets

{i1, . . . , ik} \ {is} and {a1, . . . , ak} \ {as} with ℓ− 1 elements in their intersetions.

These onsiderations show that ∆(n, k, ℓ) = ∆(n − 1, k − 1, ℓ − 1). Iterating this

argument we have

∆(n, k, ℓ) = ∆(n− ℓ, k − ℓ, 0).

We an therefore assume that ℓ = 0. We thus evaluate ∆(n, k, 0), where 2k 6 n. For

k = 0, we obviously have ∆(n, 0, 0) = Dn. For k > 1, we laim that

∆(n, k, 0) = ∆(n− 1, k − 1, 0) + ∆(n− 2, k − 1, 0).

For a derangement x = (x1, . . . , xn) satisfying xij = aj there are two ases: xa1 = i1 or

xa1 6= i1.
If the �rst ase ours then we have to evaluate the number of derangements of the

set [n] \ {i1, a1} for the given sets {i2, . . . , ik} and {a2, . . . , ak} with 0 elements in their

intersetions. The number is equal to ∆(n− 2, k − 1, 0).
If the seond ase ours then we have to evaluate the number of derangements of

the set [n] \ {a1} for the given sets {i2, . . . , ik} and {a2, . . . , ak} with 0 elements in their

intersetions. The number is equal to ∆(n− 1, k − 1, 0).
We now use indution on k to show that

∆(n, k, 0) =
k−1
∑

i=0

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
, 2 6 2k 6 n.

For k = 1 we have

∆(n, 1, 0) = ∆(n− 1, 0, 0) + ∆(n− 2, 0, 0) = Dn−1 +Dn−2 =
Dn

n− 1
.



Now let the result be true for k − 1. We an write

∆(n, k, 0) = ∆(n− 1, k − 1, 0) + ∆(n− 2, k − 1, 0)

=
k−2
∑

i=0

(

k − 2

i

)

Dn−(k−1+i)

(n− 1)− (k − 1 + i)
+

k−2
∑

i=0

(

k − 2

i

)

D(n−1)−(k−1+i)

(n− 2)− (k − 1 + i)

=
k−2
∑

i=0

(

k − 2

i

)

D(n+1)−(k+i)

n− (k + i)
+

k−1
∑

i=1

(

k − 2

i− 1

)

Dn−(k+i−1)

(n− 1)− (k + i− 1)

=
D(n+1)−k

n− k
+

k−2
∑

i=1

(

k − 2

i

)

D(n+1)−(k+i)

n− (k + i)

+
D(n+1)−(2k−1)

n− (2k − 1)
+

k−2
∑

i=1

(

k − 2

i− 1

)

D(n+1)−(k+i)

n− (k + i)

=
D(n+1)−k

n− k
+

k−2
∑

i=1

[

(

k − 2

i

)

+

(

k − 2

i− 1

)

]D(n+1)−(k+i)

n− (k + i)
+

D(n+1)−(2k−1)

n− (2k − 1)

=
D(n+1)−k

n− k
+

k−2
∑

i=1

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
+

D(n+1)−(2k−1)

n− (2k − 1)

=

k−1
∑

i=0

(

k − 1

i

)

D(n+1)−(k+i)

n− (k + i)
.

Remark. As a orollary of the above problem, we an solve the �rst problem. Let n = 2k,
ij = j and aj = k + j for j = 1, . . . , k. Then a derangement x = (x1, . . . , xn) satis�es the

ondition xij = aj if and only if x′ = (xk+1, . . . , xn) is a permutation of [k]. The number of suh

permutations x′ is k!. Thus
∑k−1

i=0

(

k−1
i

)Dk+1−i

k−i
= k!.


