On a vector equality

Nguyen Tien Lam

Abstract

In this paper, we recall a vector equality and give some of its applications.

Let us start by introducing the notations that will be used in this paper. By T we will denote the triangle $A_{1} A_{2} A_{3}$. The inscribed circle of T has center I and is tanget to the side opposite to vertex A_{i} at $B_{i}, i=1,2,3$. Denote by a_{i} and $h_{i}, i=1,2,3$ the lengths of the side opposite to vertex A_{i} and the length of the height from that same vertex, respectively. Let K, p, R, r be the area, semiperimeter, circumradius, and inradius of T. Denote by K_{1}, p_{1}, r_{1} the area, semiperimeter, and inradius of $B_{1} B_{2} B_{3}$.

Theorem. I is the center of mass of the system B_{1}, B_{2}, B_{3} with masses $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \frac{1}{h_{3}}$ or

$$
\begin{equation*}
\frac{\overrightarrow{I B_{1}}}{h_{1}}+\frac{\overrightarrow{I B_{2}}}{h_{2}}+\frac{\overrightarrow{I B_{3}}}{h_{3}}=0 \tag{1}
\end{equation*}
$$

Proof. We have

$$
A_{1} B_{2}=A_{1} B_{3}=p-a_{1}, A_{2} B_{3}=A_{2} B_{1}=p-a_{2}, A_{3} B_{1}=A_{3} B_{2}=p-a_{3}
$$

It is not difficult to prove that for every point M on the side $A_{i} A_{j}, i \neq j, i, j \in$ $\{1,2,3\}$ we have

$$
\overrightarrow{I M}=\frac{M A_{j}}{A_{i} A_{j}} \cdot \overrightarrow{I A_{i}}+\frac{M A_{i}}{A_{i} A_{j}} \cdot \overrightarrow{I A_{j}}
$$

When $M=B_{1}$ we get

$$
\overrightarrow{I B_{1}}=\frac{B_{1} A_{j}}{A_{i} A_{j}} \cdot \overrightarrow{I A_{i}}+\frac{B_{1} A_{i}}{A_{i} A_{j}} \cdot \overrightarrow{I A_{j}}
$$

or equivalently $a_{1} \overrightarrow{I B_{1}}=\left(p-a_{3}\right) \overrightarrow{I A_{2}}+\left(p-a_{2}\right) \overrightarrow{I A_{3}}$. Similarly, we obtain

$$
a_{2} \overrightarrow{I B_{2}}=\left(p-a_{1}\right) \overrightarrow{I A_{3}}+\left(p-a_{3}\right) \overrightarrow{I A_{1}}
$$

and

$$
a_{3} \overrightarrow{I B_{3}}=\left(p-a_{2}\right) \overrightarrow{I A_{1}}+\left(p-a_{1}\right) \overrightarrow{I A_{2}}
$$

Adding the above equalities side by side, we obtain

$$
a_{1} \overrightarrow{I B_{1}}+a_{2} \overrightarrow{I B_{2}}+a_{3} \overrightarrow{I B_{3}}=\left(2 p-a_{2}-a_{3}\right) \overrightarrow{I A_{1}}+\left(2 p-a_{3}-a_{1}\right) \overrightarrow{I A_{2}}+\left(2 p-a_{1}-a_{2}\right) \overrightarrow{I A_{3}}
$$

Note that $2 p=a_{1}+a_{2}+a_{3}$ and recall that $a_{1} \overrightarrow{I A_{1}}+a_{2} \overrightarrow{I A_{2}}+a_{3} \overrightarrow{I A_{3}}=0$, thus

$$
a_{1} \overrightarrow{I B_{1}}+a_{2} \overrightarrow{I B_{2}}+a_{3} \overrightarrow{I B_{3}}=0
$$

Using the formula $a_{i}=\frac{2 K}{h_{i}}$ we conclude that

$$
\frac{\overrightarrow{I B_{1}}}{h_{1}}+\frac{\overrightarrow{I B_{2}}}{h_{2}}+\frac{\overrightarrow{I B_{3}}}{h_{3}}=0
$$

Alternative proof. For $i=1,2,3$ we know that $\frac{\overrightarrow{I B_{i}}}{I B_{i}}$ is a unit vector perpendicular to the side opposite to vertex A_{i}, its direction being out of the triangle. By applying the "Porcupine Theorem" we obtain

$$
a_{1} \frac{\overrightarrow{I B_{1}}}{I B_{1}}+a_{2} \frac{\overrightarrow{I B_{2}}}{I B_{2}}+a_{3} \frac{\overrightarrow{I B_{3}}}{I B_{3}}=0
$$

Note that $I B_{1}=I B_{2}=I B_{3}=r$ and by using the formula $a_{i}=\frac{2 K}{h_{i}}, i=1,2,3$ we deduce that

$$
\frac{\overrightarrow{I B_{1}}}{h_{1}}+\frac{\overrightarrow{I B_{2}}}{h_{2}}+\frac{\overrightarrow{I B_{3}}}{h_{3}}=0
$$

The proof is thus complete and we are ready to show some of the results due to this theorem.

Problem 1. Prove that

$$
\begin{equation*}
\frac{B_{1} B_{2}^{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}^{2}}{h_{2} h_{3}}+\frac{B_{3} B_{1}^{2}}{h_{3} h_{1}}=1 . \tag{2}
\end{equation*}
$$

Solution. By squaring both sides of the equation (1) and using the following identity

$$
2 \overrightarrow{I B_{i}} \overrightarrow{I B_{j}}=I B_{i}^{2}+I B_{j}^{2}-B_{i} B_{j}^{2}=2 r^{2}-B_{i} B_{j}^{2}
$$

we obtain

$$
\left[\left(\sum_{i=1}^{3} \frac{1}{h_{i}^{2}}+2 \cdot \sum_{i=1}^{3} \frac{1}{h_{i} h_{j}}\right) r^{2}-\left(\frac{B_{1} B_{2}^{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}^{2}}{h_{2} h_{3}}+\frac{B_{3} B_{1}^{2}}{h_{3} h_{1}}\right)\right]=0 .
$$

Using the fact that $\frac{1}{h_{1}}+\frac{1}{h_{2}}+\frac{1}{h_{3}}=\frac{1}{r}$ it follows that

$$
\frac{B_{1} B_{2}^{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}^{2}}{h_{2} h_{3}}+\frac{B_{3} B_{1}^{2}}{h_{3} h_{1}}=1
$$

We will now present four corollaries following from Problem 1.

Corollary 1. The following inequality holds

$$
\begin{equation*}
a_{1} a_{2} B_{1} B_{2}+a_{2} a_{3} B_{2} B_{3}+a_{3} a_{1} B_{3} B_{1} \leq \frac{4 \sqrt{3}}{3} p K \tag{3}
\end{equation*}
$$

Solution. Knowing that $a_{i}=\frac{2 K}{h_{i}}$, we can rewrite the inequality in the form

$$
4 K^{2}\left(\frac{B_{1} B_{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}}{h_{2} h_{3}}+\frac{B_{3} B_{1}}{h_{3} h_{1}}\right) \leq \frac{4 \sqrt{3}}{3} p K
$$

Because $K=p r$, the above inequality becomes

$$
\left(\frac{B_{1} B_{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}}{h_{2} h_{3}}+\frac{B_{3} B_{1}}{h_{3} h_{1}}\right) \leq \frac{\sqrt{3}}{3 r} .
$$

We will now prove that the last inequality is true. Indeed, by applying the CauchySchwarz inequality we obtain

$$
\left(\frac{B_{1} B_{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}}{h_{2} h_{3}}+\frac{B_{3} B_{1}}{h_{3} h_{1}}\right)^{2} \leq\left(\frac{1}{h_{1} h_{2}}+\frac{1}{h_{2} h_{3}}+\frac{1}{h_{3} h_{1}}\right)\left(\frac{B_{1} B_{2}^{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}^{2}}{h_{2} h_{3}}+\frac{B_{3} B_{1}^{2}}{h_{3} h_{1}}\right) .
$$

By using the well-known inequality $a b+b c+c a \leq \frac{1}{3}(a+b+c)^{2}$ for all real number a, b, c and the equality $\frac{1}{h_{1}}+\frac{1}{h_{2}}+\frac{1}{h_{3}}=\frac{1}{r}$ it follows, from Problem 1, that

$$
\left(\frac{B_{1} B_{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}}{h_{2} h_{3}}+\frac{B_{3} B_{1}}{h_{3} h_{1}}\right)^{2} \leq \frac{1}{3 r^{2}}
$$

or equivalently

$$
\frac{B_{1} B_{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}}{h_{2} h_{3}}+\frac{B_{3} B_{1}^{2}}{h_{3} h_{1}} \leq \frac{\sqrt{3}}{3 r} .
$$

The equality takes places if and only if T is an equilateral triangle.
Corollary 2. If T is an acute triangl, then

$$
\begin{equation*}
\max \left\{a_{1}, a_{2}, a_{3}\right\} \geq \sqrt{3} R \tag{4}
\end{equation*}
$$

with equality if and only if T is an equilateral triangle.
Solution. Draw three lines tanget to the circle circumscribed around T from its vertices. Suppose that these three lines intersect at three points C_{1}, C_{2}, and C_{3} where C_{i} is the vertex opposite to the side passing through $A_{i}, i=1,2,3$. The circle circumscribed to T is the incercle of $C_{1} C_{2} C_{3}$. Thus R is the length of the inradius of $C_{1} C_{2} C_{3}$. Denote by l_{1}, l_{2}, and l_{3} the lengths of the altitudes in the triange $C_{1} C_{2} C_{3}$. Applying the result of Problem 1 we obtain

$$
\frac{A_{1} A_{2}{ }^{2}}{l_{1} l_{2}}+\frac{A_{2} A_{3}{ }^{2}}{l_{2} l_{3}}+\frac{A_{3} A_{1}^{2}}{l_{3} l_{1}}=1
$$

or

$$
\frac{a_{3}^{2}}{l_{1} l_{2}}+\frac{a_{1}^{2}}{l_{2} l_{3}}+\frac{a_{2}^{2}}{l_{3} l_{1}}=1 .
$$

Hence

$$
1 \leq \max \left\{a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\} \cdot\left(\frac{1}{l_{1} l_{2}}+\frac{1}{l_{2} l_{3}}+\frac{1}{l_{3} l_{1}}\right) \leq \frac{1}{3} \max \left\{a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\}\left(\frac{1}{l_{1}}+\frac{1}{l_{2}}+\frac{1}{l_{3}}\right)^{2}
$$

Note that $\frac{1}{l_{1}}+\frac{1}{l_{2}}+\frac{1}{l_{3}}=\frac{1}{R}$, thus it follows that

$$
\frac{1}{3 R^{2}} \max \left\{a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\} \geq 1
$$

and we conclude that

$$
\max \left\{a_{1}, a_{2}, a_{3}\right\} \geq \sqrt{3} R
$$

Equality occurs if and only if $l_{1}=l_{2}=l_{3}$ and thus $C_{1} C_{2}=C_{2} C_{3}=C_{3} C_{1}$. This imples that $C_{1} C_{2} C_{3}$ is equilateral which in turn means that $A_{1} A_{2} A_{3}$ is equilateral, and we are done.

Corollary 3.

$$
\begin{equation*}
p_{1}^{2} \leq \frac{p K}{2 R} \tag{5}
\end{equation*}
$$

When does equality occur ?
Solution. We introduce the following inequality

$$
\frac{a^{2}}{x}+\frac{b^{2}}{y}+\frac{c^{2}}{z} \geq \frac{(a+b+c)^{2}}{x+y+z}
$$

for all positive reals a, b, and c to prove the above inequality with equality if and only if $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}$. Using the above inequality and the result of Problem 1 we obtain

$$
1=\frac{B_{1} B_{2}^{2}}{h_{1} h_{2}}+\frac{B_{2} B_{3}^{2}}{h_{2} h_{3}}+\frac{B_{3} B_{1}^{2}}{h_{3} h_{1}} \geq \frac{\left(B_{1} B_{2}+B_{2} B_{3}+B_{3} B_{1}\right)^{2}}{h_{1} h_{2}+h_{2} h_{3}+h_{3} h_{1}}
$$

Observe that $B_{1} B_{2}+B_{2} B_{3}+B_{3} B_{1}=2 p_{1}$ and

$$
h_{1} h_{2}+h_{2} h_{3}+h_{3} h_{1}=4 K^{2}\left(\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\frac{1}{a_{3} a_{1}}\right)=\frac{8 K^{2} p}{a_{1} a_{2} a_{3}}
$$

By using the formulae $K=\frac{a_{1} a_{2} a_{3}}{4 R}$ and $h_{1} h_{2}+h_{2} h_{3}+h_{3} h_{1}=\frac{2 K p}{R}$ it follows that

$$
p_{1}^{2} \leq \frac{p K}{2 R}
$$

Equality occurs if and only if $\frac{B_{1} B_{2}}{h_{1} h_{2}}=\frac{B_{2} B_{3}}{h_{2} h_{3}}=\frac{B_{3} B_{1}}{h_{3} h_{1}}$ or

$$
a_{1} a_{2} B_{1} B_{2}=a_{2} a_{3} B_{2} B_{3}=a_{3} a_{1} B_{3} B_{1}
$$

Because $a_{1} a_{2} B_{1} B_{2}=a_{2} a_{3} B_{2} B_{3}$ then $a_{1}^{2} B_{1} B_{2}{ }^{2}=a_{2} B_{2} B_{3}{ }^{2}$. By the Law of Cosines we obtain

$$
B_{1} B_{2}^{2}=2\left(p-a_{3}\right)^{2}\left(1-\cos A_{3}\right)=2\left(p-a_{3}\right)^{2}\left(1-\frac{a_{1}^{2}+a_{2}^{2}-a_{3}^{2}}{2 a_{1} a_{2}}\right) .
$$

Therefore

$$
B_{1} B_{2}^{2}=\frac{4\left(p-a_{3}\right)^{2}\left(p-a_{1}\right)\left(p-a_{2}\right)}{a_{1} a_{2}} .
$$

Similarly

$$
B_{2} B_{3}^{2}=\frac{4\left(p-a_{1}\right)^{2}\left(p-a_{2}\right)\left(p-a_{3}\right)}{a_{2} a_{3}}
$$

Thus, the inequality $a_{1}^{2} B_{1} B_{2}{ }^{2}=a_{2} B_{2} B_{3}{ }^{2}$ is equivalent to $a_{1}\left(p-a_{3}\right)=a_{3}\left(p-a_{1}\right)$ and so $a_{1}=a_{3}$. Analogously we deduce that $a_{2}=a_{3}$. Consequantly $a_{1}=a_{2}=a_{3}$ which proves that T is equilateral and we are done.

Corollary 4. Let O be the circumcenter of T. Then

$$
\begin{equation*}
\frac{O B_{1}}{h_{1}}+\frac{O B_{2}}{h_{2}}+\frac{O B_{3}}{h_{3}} \leq \frac{R}{r}-1 . \tag{6}
\end{equation*}
$$

Solution. By using (1) and the equality $\frac{1}{h_{1}}+\frac{1}{h_{2}}+\frac{1}{h_{3}}=\frac{1}{r}$ we obtain

$$
\overrightarrow{O I}=r\left(\frac{\overrightarrow{O B_{1}}}{h_{1}}+\frac{\overrightarrow{O B_{2}}}{h_{2}}+\frac{\overrightarrow{O B_{3}}}{h_{3}}\right) .
$$

On squaring both sides and using the identity $2 \overrightarrow{O B_{i}} \overrightarrow{O B_{j}}=O B_{i}{ }^{2}+O B_{j}{ }^{2}-B_{i} B_{j}{ }^{2}, i, j=$ $1,2,3$ we get

$$
O I^{2}=r^{2}\left(\sum_{i=1}^{3} \frac{O B_{i}^{2}}{h_{i}^{2}}+\sum_{1 \leq i<j \leq 3} \frac{O B_{i}{ }^{2}+O B_{j}^{2}}{h_{i} h_{j}}+\sum_{1 \leq i<j \leq 3} \frac{B_{i} B_{j}^{2}}{h_{i} h_{j}}\right) .
$$

By using the result from Problem 1 and Euler's theorem $O I^{2}=R^{2}-2 R r$ it follows that

$$
\frac{O B_{1}^{2}}{h_{1}^{2}}+\frac{O B_{2}^{2}}{h_{2}^{2}}+\frac{O B_{3}^{2}}{h_{3}^{2}}+\frac{O B_{1}+O B_{2}^{2}}{h_{1} h_{2}}+\frac{O B_{2}+O B_{3}^{2}}{h_{2} h_{3}}+\frac{O B_{3}+O B_{1}^{2}}{h_{3} h_{1}}=\left(\frac{R}{r}-1\right)^{2} .
$$

Because $O B_{i}{ }^{2}+O B_{j}{ }^{2} \geq 2 O B_{i} O B_{j}, i, j=1,2,3$ and the identity $(a+b+c)^{2}=$ $a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$ we obtain

$$
\left(\frac{O B_{1}}{h_{1}}+\frac{O B_{2}}{h_{2}}+\frac{O B_{3}}{h_{3}}\right) \leq\left(\frac{R}{r}-1\right)^{2} .
$$

Since $R \geq 2 r>r$ we obtain the desired result. Equality occurs if and only if T is an equilateral triangle.

Problem 2. Prove that

$$
\begin{equation*}
\frac{M B_{1}}{h_{1}}+\frac{M B_{2}}{h_{2}}+\frac{M B_{3}}{h_{3}} \geq 1 \tag{7}
\end{equation*}
$$

for all points M.
Solution. We will use the follwing two facts $|\vec{u}| \cdot|\vec{v}| \geq \vec{u} \cdot \vec{v}$ and $\overrightarrow{M B_{i}}=\overrightarrow{M I}+$ $\overrightarrow{I B_{i}}, i=1,2,3$ to obtain

$$
\sum_{i=1}^{3} \frac{M B_{i}}{h_{i}} \geq \frac{1}{r} \sum_{i=1}^{3} \frac{\overrightarrow{M B_{i}} \overrightarrow{M B_{i}}}{h_{i}}=\frac{1}{r}\left(\sum_{i=1}^{3} \frac{I B_{i}}{h_{i}}\right) \overrightarrow{M I}+r \sum_{i=1}^{3} \frac{1}{h_{i}} .
$$

The desired inequality follows if we keep in mind that $\frac{1}{h_{1}}+\frac{1}{h_{2}}+\frac{1}{h_{3}}=\frac{1}{r}$. Equality occurs if and only if $M=I$.

Problem 3. Prove that

$$
\begin{equation*}
\frac{M B_{1}{ }^{2}}{h_{1}}+\frac{M B_{2}{ }^{2}}{h_{2}}+\frac{M B_{3}{ }^{2}}{h_{3}}=\frac{M I^{2}}{r}+r \tag{8}
\end{equation*}
$$

for all points M in the plane.
Solution. We have

$$
\sum_{i=1}^{3} \frac{M B_{i}^{2}}{h_{i}}=\sum_{i=1}^{3} \frac{\left(\overrightarrow{M I}+\overrightarrow{I B_{i}}\right)}{h_{i}}=M I^{2} \sum_{i=1}^{3} \frac{1}{h_{i}}+2\left(\sum_{i=1}^{3} \frac{\overrightarrow{I B_{i}}}{h_{i}}\right) \overrightarrow{M I}+\sum_{i=1}^{3} \frac{I B_{i}{ }^{2}}{h_{i}} .
$$

Thus,

$$
\sum_{i=1}^{3} \frac{M B_{i}{ }^{2}}{h_{i}}=\frac{M I^{2}}{r}+r
$$

and we are done

References

[1] Viktor Prasolov, 2006, Problems in plane and solid geometry (translated and edited by Dimitry Leites.)
[2] Kiran S.Kedlaya, 2006, Geometry Unbound.
[3] Nguyen Minh Ha, 2005, Toan nang cao hinh hoc 10, Education Publishing House, Hanoi, Vietnam.
[4] Euler Triangle Formula, http://mathworld.wolfram.com/EulerTriangleFormula.html.

