INTERNATIONAL JOURNAL OF GEOMETRY Vol. 3 (2014), No. 2, 74 - 80

A SYNTHETIC PROOF OF A. MYAKISHEV'S GENERALIZATION OF VAN LAMOEN CIRCLE THEOREM AND AN APPLICATION

OAI THANH DAO

Abstract. In this article we give a synthetic proof of A.Myakishev's generalization of van Lamoen's circle theorem and introduce a family six circumcenters lie on circle of a triangle associated with Kiepert's configuration.

1. Introduction

The famous van Lamoen circle theorem states that: If a triangle is divided by its three medians into 6 smaller triangles, then the circumcenters of these smaller triangles lie on a circle.

The Van Lamoen circle be introduced in Floor van Lamoen Problem 10830, American Mathematical Monthly 107 (2000) 863 (see [5]); solution by the editors, 109 (2002) 396-397. The proof of van Lamoen circle theorem can be found in many texts, see [3], [4], [6] or [8]. In 2002, A.Myakishev's generalization of van Lamoen circle theorem as follows:

Theorem 1.1 (A. Myakishev-[7]). Let two triangles ABC and $A_1B_1C_1$ perpective and its have same the centroid, if the perpector of two triangles is D, then circumcenter of six triangles ADB_1 , B_1DC , CDA_1 , A_1DB , BDC_1 , C_1DA lie on a circle.

The first proof of A. Myakishev's theorem by Darij Grinberg, see [2]. In the paper we give another synthetic proof A. Myakishev's theorem and in the application we show that exist a family six circumcenters lie on a circle of a triangle associated with Kiepert's configuration.

Keywords and phrases: van Lamoen circle, Triangle, six circumcenter lie on a circle

(2010) Mathematics Subject Classification: 51P99, 60A99

Received: 25.06.2014. In revised form: 08.09.2014. Accepted: 30.09.2014.

2. A PROOF OF A.MYAKISHEV THEOREM

We omit the proof of a easy lemma following:

Lemma 2.1. Let four circles $(O_1), (O_2), (O_3), (O_4)$ concurrent at D. The circle (O_i) meets (O_{i+1}) again at $D_{i(i+1)}$ with i = 1, 2, 3, 4 and $(O_5) \equiv (O_1)$. Then O_1, O_2, O_3, O_4 lie on a circle if only if $\angle D_{23}DD_{12} = \angle D_{34}DD_{41}$ $(mod\pi)$.

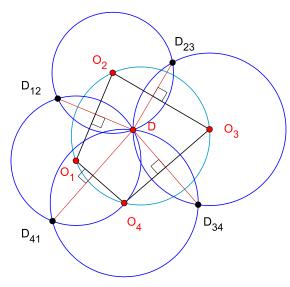


Figure 1

Lemma 2.2. Let ACA_1C_1 be a quadrilateral, AA_1 meets CC_1 at D. Let N, N_1 be the midpoint of AC, A_1C_1 respectively. NN_1 meets AD at F. The circle (ADC_1) meets the circle (CDA_1) again at Q. Then $\angle AFN = \angle QDC$ $\pmod{\pi}$

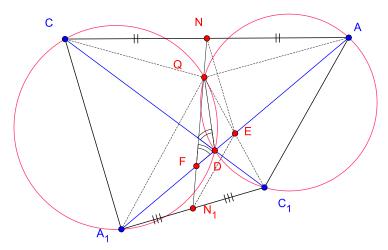


Figure 2

Proof. Since $\angle C_1AQ = \angle C_1DQ = \angle CA_1Q \pmod{\pi}$ and $\angle AC_1Q = \angle A_1DQ = \angle A_1CQ \pmod{\pi}$, hence two triangles AQC_1, A_1QC are similar $\Rightarrow \frac{C_1Q}{AC_1} = \frac{CQ}{A_1C}$.

Let E be the midpoint of AA_1 . We obtain $\overrightarrow{AC_1} = 2\overrightarrow{EN_1}$, $\overrightarrow{A_1C} = 2\overrightarrow{EN} \Rightarrow$

(1)
$$\frac{C_1 Q}{E N_1} = \frac{C Q}{E N}$$

On the other hand: $\angle C_1QC = \angle C_1QD + \angle DQC \pmod{\pi}$. But $\angle C_1QD = \angle C_1DA \pmod{\pi} = \angle(\overrightarrow{AC_1}, \overrightarrow{DA})$, and $\angle DQC = \angle DA_1C \pmod{\pi} = \angle(\overrightarrow{A_1D}, \overrightarrow{A_1C})$. Thus:

$$\angle C_1 QC = \angle(\overrightarrow{AC_1}, \overrightarrow{DA}) + \angle(\overrightarrow{A_1D}, \overrightarrow{A_1C}) = \\ \angle(\overrightarrow{AC_1}, \overrightarrow{A_1C}) = \angle(\overrightarrow{EN_1}, \overrightarrow{EN}) = \angle N_1 EN \pmod{\pi}$$

Since (1) and (2) we get that two triangles C_1QC , N_1EN are similar, since

$$(3) \angle ENN_1 = \angle QCC_1$$

We obtain: $\angle AFN = \angle FEN + \angle ENF \pmod{\pi}$. On the other hand: $\angle FEN = \angle DA_1C \pmod{\pi}$. And since (3) we obtain $\angle ENF = \angle QCD = \angle QA_1D \pmod{\pi}$. Therefore, $\angle AFN = \angle QA_1D + \angle DA_1C = \angle QA_1C = \angle QDC \pmod{\pi}$. The completes the proof of Lemma 2.2.

Proof of A. Myakishev theorem:

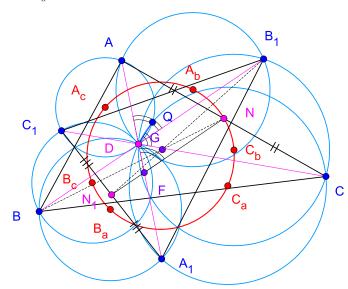


Figure 3

Let $A_c, B_c, B_a, C_a, C_b, A_b$ are circumcenter of six circles (ADC_1) , (C_1DB) , (BDA_1) , (A_1DC) , (CDB_1) , (B_1DA) respectively. Let N, N_1 be the midpoint of AC, A_1C_1 respectively, and NN_1 meets AA_1 at F. The circle (ADC_1) meets (CDA_1) again at Q. Easily we deduce that BB_1 , NN_1 are parallel, therefor $\angle ADB_1 = \angle AFN \pmod{\pi}$. By Lemma 2.2 we obtain $\angle AFN = \angle QDC$. Thus $\angle ADB_1 = \angle QDC$. By Lemma 2.1 we get that four circumcenters A_c, A_b, C_b, C_a lie on a circle. Similarly, four circumcenters A_b, C_b, C_a, B_a lie on a circle, and C_b, C_a, B_a, A_b lie on a circles. Hence six circumcenters $A_c, B_c, B_a, C_a, C_b, A_b$ lie on a circle. This completes the proof of Myakishev's theorem.

3. AN APPLICATION OF A.MYAKISHEV THEOREM

Theorem 3.1 (Dao-[1]). Let ABC be a triangle, G is the centroid. Constructed three similar isosceles triangles AC_0B , BA_0C , CB_0A (either all outward, or all inward). Let A_1 , B_1 , C_1 lie on AA_0 , BB_0 , CC_0 respectively, such that:

(4)
$$\frac{\overline{AA_1}}{\overline{AA_0}} = \frac{\overline{BB_1}}{\overline{BB_0}} = \frac{\overline{CC_1}}{\overline{CC_0}} = k_1$$

Let A_2, B_2, C_2 lie on GA_1, GB_1, GC_1 respectively, such that:

(5)
$$\frac{\overline{GA_2}}{\overline{GA_1}} = \frac{\overline{GB_2}}{\overline{GB_1}} = \frac{\overline{GC_2}}{\overline{GC_1}} = k_2$$

Then AA_2 , BB_2 , CC_2 are concurrent at a point K lie on Kiepert hyperbola. And circumcenter of six triangles AKB_2 , B_2KC , CKA_2 , A_2KB , BKC_2 , C_2KA lie on a circle.

- When A_0, B_0, C_0 at midpoint of BC, CA, AB respectively and $k_1 = k_2 = 1$, this circle is called as the van Lamoen circle.
- When A_0, B_0, C_0 at midpoint of BC, CA, AB respectively and $k_2 = 0$, and k_1 is any real number, this circle is called as the Dao six point circle [4].

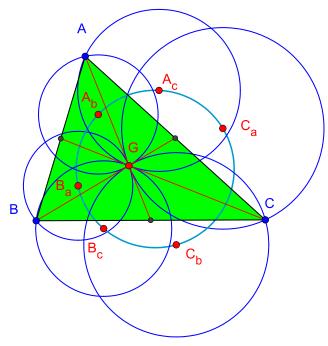


Figure 4

Proof. By (4) we get

(6)
$$\frac{\overline{AA_0} + \overline{A_0A_1}}{\overline{AA_0}} = \frac{\overline{BB_0} + \overline{B_0B_1}}{\overline{BB_0}} = \frac{\overline{CC_0} + \overline{C_0C_1}}{\overline{CC_0}}$$

(7)
$$\frac{\overline{A_0 A}}{\overline{A_0 A_1}} = \frac{\overline{B_0 B}}{\overline{B_0 B_1}} = \frac{\overline{C_0 C}}{\overline{C_0 C_1}}$$

 \Leftrightarrow

(8)
$$\frac{\overline{A_0 A_1} + \overline{A_1 A}}{\overline{A_0 A_1}} = \frac{\overline{B_0 B_1} + \overline{B_1 B}}{\overline{B_0 B_1}} = \frac{\overline{C_0 C_1} + \overline{C_1 C}}{\overline{C_0 C_1}}$$

$$\Leftrightarrow$$

(9) $\frac{\overline{A_1 A_0}}{\overline{A_1 A}} = \frac{\overline{B_1 B_0}}{\overline{B_1 B}} = \frac{\overline{C_1 C_0}}{\overline{C_1 C}}$

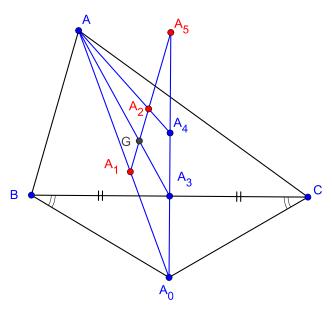


Figure 5

Denote A_3 , B_3 , C_3 are midpoint of BC, CA, AB repectively. Let AA_2 , BB_2 , CC_2 meet A_3A_0 , B_3B_0 , C_3C_0 at A_4 , B_4 , C_4 respectively. Let GA_1 , GB_1 , GC_1 meet A_3A_0 , B_3B_0 , C_3C_0 at A_5 , B_5 , C_5 respectively. By Menelaus' theorem for $\triangle AA_3A_0$ cut by $\overline{A_1A_5G}$, we obtain:

(10)
$$\frac{\overline{A_5 A_0}}{\overline{A_5 A_3}} = \frac{\overline{GA}}{\overline{GA_3}} \cdot \frac{\overline{A_1 A_0}}{\overline{A_1 A}} = 2 \frac{\overline{A_1 A_0}}{\overline{A_1 A}}$$

Similarly we obtain:

$$\frac{\overline{B_5 B_0}}{\overline{B_5 B_3}} = 2 \frac{\overline{B_1 B_0}}{\overline{B_1 B}}$$

$$\frac{\overline{C_5C_0}}{\overline{C_5C_3}} = 2\frac{\overline{C_1C_0}}{\overline{C_1C}}$$

Since (10),(11),(12) and (9), we obtain:

(13)
$$\frac{\overline{A_5 A_0}}{\overline{A_5 A_3}} = \frac{\overline{B_5 B_0}}{\overline{B_5 B_3}} = \frac{\overline{C_5 C_0}}{\overline{C_5 C_3}}$$

By Menelaus' theorem for $\triangle AGA_1$ cut by $\overline{A_0A_5A_3}$, we obtain:

(14)
$$\frac{\overline{A_5G}}{\overline{A_5A_1}} = \frac{\overline{A_3G}}{\overline{A_3A}} \cdot \frac{\overline{A_0A}}{\overline{A_0A_1}} = \frac{1}{3} \cdot \frac{\overline{A_0A}}{\overline{A_0A_1}}$$

Similarly we obtain:

$$\frac{\overline{B_5G}}{\overline{B_5B_1}} = \frac{1}{3} \cdot \frac{\overline{B_0B}}{\overline{B_0B_1}}$$

(16)
$$\frac{\overline{C_5G}}{\overline{C_5C_1}} = \frac{1}{3} \cdot \frac{\overline{C_0C}}{\overline{C_0C_1}}$$

Since (14),(15),(16) and (7) we get:

(17)
$$\frac{\overline{A_1 A_5}}{\overline{G A_5}} = \frac{\overline{B_1 B_5}}{\overline{G B_5}} = \frac{\overline{C_1 C_5}}{\overline{G C_5}}$$

(18)
$$\frac{\overline{A_1G} + \overline{GA_5}}{\overline{GA_5}} = \frac{\overline{B_1G} + \overline{GB_5}}{\overline{GB_5}} = \frac{\overline{C_1G} + \overline{GC_5}}{\overline{GC_5}}$$

(19)
$$\frac{\overline{GA_1}}{\overline{GA_5}} = \frac{\overline{GB_1}}{\overline{GB_5}} = \frac{\overline{GC_1}}{\overline{GC_5}}$$

Since (19) we have: $A_1B_1 \parallel A_5B_5$, $B_1C_1 \parallel B_5C_5$, $C_1A_1 \parallel C_5A_5$. And since (5) we have: $A_1B_1 \parallel A_2B_2$, $B_1C_1 \parallel B_2C_2$, $C_1A_1 \parallel C_2A_2$. on the other hand G, A_1, A_2, A_5 are collinear, G, B_1, B_2, B_5 are collinear; G, C_1, C_2, C_5 are collinear. Now by Thales'theorem we obtain:

$$\frac{\overline{A_2 A_5}}{\overline{A_2 A_1}} = \frac{\overline{B_2 B_5}}{\overline{B_2 B_1}} = \frac{\overline{C_2 C_5}}{\overline{C_2 C_1}}$$

By Menelaus' theorem for $\triangle A_5 A_0 A_1$ cut by $\overline{AA_2A_4}$, we obtain:

$$\frac{\overline{A_4 A_5}}{\overline{A_4 A_0}} = \frac{\overline{A A_1}}{\overline{A A_0}} \cdot \frac{\overline{A_2 A_5}}{\overline{A_2 A_1}}$$

Similarly we get:

$$\frac{\overline{B_4B_5}}{\overline{B_4B_0}} = \frac{\overline{BB_1}}{\overline{BB_0}} \cdot \frac{\overline{B_2B_5}}{\overline{B_2B_1}}$$

$$\frac{\overline{C_4C_5}}{\overline{C_4C_0}} = \frac{\overline{CC_1}}{\overline{CC_0}} \cdot \frac{\overline{C_2C_5}}{\overline{C_2C_1}}$$

Since (4),(20),(21),(22) and (23) we have:

(24)
$$\frac{\overline{A_4 A_5}}{\overline{A_4 A_0}} = \frac{\overline{B_4 B_5}}{\overline{B_4 B_0}} = \frac{\overline{C_4 C_5}}{\overline{C_4 C_0}}$$

Three triangles BC_0A , AB_0C and CA_0B are three similar isosceles triangle either all outward, or all inward on the sides $\triangle ABC$. Since (13) we get that three triangles BA_5C , CB_5A , AC_5B are similar isosceles triangle. Since (25) we get that three triangles BC_4A , AB_4C , CA_4B are similar isosceles triangle on the sides. By famous Kiepert theorem we have the lines AA_4 , BB_4 , CC_4 concurrent on Kiepert hyperbola, so AA_2 , BB_2 , CC_2 concurrent on Kiepert hyperbola. It is well-known that two triangles ABC, $A_0B_0C_0$ have same the centroid. Since (4) we can show that two triangles $A_0B_0C_0$ and $A_1B_1C_1$ have same the centroid. Since (5) we can show that two triangles ABC and $A_2B_2C_2$ have same the centroid. Therefore, two triangles ABC and $A_2B_2C_2$ have same the centroid. By Myakishev theorem we get that the circumcenter of six triangles AKB_2 , B_2KC , CKA_2 , A_2KB , BKC_2 , C_2KA lie on a circle. This completes the proof of Theorem 3.1.

References

- [1] Dao, T., Dao Thanh Oai problem, Art of Problem Solving, Oct. 24, 2013. available at http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47t=559546
- [2] Grinberg, D., Hyacinthos message 7351, Jul 13, 2003.
- [3] Ha, N. M., Another Proof of van Lamoen's Theorem and Its Converse, Forum Geom., 5(2005), 127-132.
- [4] Kimberling, C., X(5569) Center of the Dao six point circle, Nov. 3, 2013. Encyclopedia of Triangle Centers, available at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [5] Lamoen, F. M., Problem 10830, Amer. Math. Monthly, 107(2000), 893.
- [6] Li, K., Concyclic problem, Mathematical Excalibur, 6(1)(2001), 1-2.
- [7] Myakishev, A. and Wolk, B., Hyacinthos message 5612, May 31, 2002.
- [8] Myakishev, A. and Woo, P., On the Circumcenters of Cevasix Configuration, Forum Geom., 3(2003), 57-63.

SON LA HYDROPOWER COMPANY VIETNAM

E-mail address: daothanhoai@hotmail.com