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T. W. Leung 

 
Olympiad Corner 
 
The 45th International Mathematical 
Olympiad took place on July 2004.  
Here are the problems.  
 
Day 1 Time allowed: 4 hours 30 
minutes. 

 
Problem 1.  Let ABC be an acute-angled 
triangle with AB ≠ AC.  The circle with 
diameter BC intersects the sides AB and 
AC at M and N, respectively.  Denote by 
O the midpoint of the side BC.  The 
bisectors of the angles BAC and MON 
intersect at R.  Prove that the 
circumcircles of the triangles BMR and 
CNR have a common point lying on the 
side BC. 
 
Problem 2.  Find all polynomials P(x) 
with real coefficients which satisfy the 
equality 

 
P(a-b)+P(b-c)+P(c-a) = 2P(a+b+c) 

  
for all real numbers a, b, c such that ab + 
bc + ca = 0. 
 
Problem 3.  Define a hook to be a figure 
made up of six unit squares as shown in 
the diagram 
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      The 45th International Mathematical 
Olympiad (IMO) was held in Greece 
from July 4 to July 18.  Since 1988, we 
have been participating in the 
Olympiads.  This year our team was 
composed as follows. 

 
Members 

 
Cheung Yun Kuen (Hong Kong Chinese 
Women’s Club College) 

 
Chung Tat Chi (Queen Elizabeth 
School) 

 
Kwok Tsz Chiu (Yuen Long Merchant 
Association Secondary School) 

 
Poon Ming Fung (STFA Leung Kau Kui 
College) 

 
Tang Chiu Fai (HKTA Tang Hin 
Memorial Secondary School) 

 
Wong Hon Yin (Queen’s College) 

 
Cesar Jose Alaban (Deputy Leader) 

 
   Leung Tat Wing (Leader) 

 
I arrived at Athens on July 6.  After 
waiting for a couple of hours, leaders 
were then delivered to Delphi, a hilly 
town 170 km from the airport, 
corresponding to 3 more hours of 
journey. In these days the Greeks were 
still ecstatic about what they had 
achieved in the Euro 2004, and were 
busy preparing for the coming Olympic 
Games in August.  Of course Greece is a 
small country full of legend and 
mythology.  Throughout the trip, I also 
heard many times that they were the 
originators of democracy, their 
contribution in the development of 
human body and mind and their 
emphasis on fair play.  

 
After receiving the short-listed 
problems leaders were busy studying 
them on the night of July 8.  However 
obviously some leaders had strong 
opinions on the beauty and degree of 
difficulty of the problems, so selections 
of all six problems were done in one 
day.  Several problems were not even 
discussed in details of their own merits. 

The following days were spent on 
refining the wordings of the questions 
and translating the problems into 
different languages. 
 
The opening ceremony was held on July 
11. In the early afternoon we were 
delivered to Athens.  After three hours 
of ceremony we were sent back to 
Delphi.  By the time we were in Delphi 
it was already midnight.  Leaders were 
not allowed to talk to students in the 
ceremony. 
 
Contests were held in the next two days.  
The days following the contests were 
spent on coordination, i.e. leaders and 
coordinators discussed how many 
points should be awarded to the answers 
of the students.  This year the 
coordinators were in general very 
careful.  I heard several teams spent 
more than three hours to go over six 
questions.  Luckily coordination was 
completed on the afternoon of July 15.  
The final Jury meeting was held that 
night. In the meeting the cut-off scores 
were decided, namely 32 points for 
gold, 24 for silver and 16 for bronze.  
Our team was therefore able to obtain 
two silver medals (Kwok and Chung) 
and two bronze medals (Tang and 
Cheung).  Other members (Poon and 
Wong) both solved at least one problem 
completely, thus received honorable 
mention.  Unofficially our team ranked 
30 out of 85.  The top five teams in order 
were respectively China, USA, Russia, 
Vietnam and Bulgaria. 
 
In retrospect I felt that our team was 
good and balanced, none of the 
members was particularly weak.  In one 
problem we were as good as any strong 
team.  Every team members solved 
problem 4 completely.  Should we did 
better in the geometry problems our 
rank would be much higher.  Curiously 
geometry is in our formal school 
curriculum while number theory and 
combinatorics are not.  In this Olympiad 
we had two geometry problems, but 
fittingly so, after all, it was Greece. 
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Extending an IMO Problem 
Hà Duy Hung 

 
Dept. of Math and Informatics 

 Hanoi Univ. of Education 
 

In this brief note we give a 
generalization of a problem in the 41st 
International Mathematical Olympiad 
held in Taejon, South Korea in 2000. 
 
IMO 2000/5.  Determine whether or 
not there exists a positive integer n 
such that n is divisible by exactly 
2000 different prime divisors, and 

 is divisible by n. 2 1n +
 

The answer to the question is 
positive.  This intriguing problem 
made me recall a well-known theorem 
due to O. Reutter in [1] as follows. 

 
Theorem 1.  If a is a positive integer 
such that  is not a power of 2, then 

 is divisible by n for infinitely 
many positive integers n. 

1a +
1na +

 
We frequently encounter the 

theorem in the case .  The 
theorem and the IMO problem 
prompted me to think of more general 
problem.  Can we replace the number 2 
in the IMO problem by other positive 
integers?  The difficulty partly lies in 
the fact that the two original problems 
are solved independently.  After a long 
time, I finally managed to prove a 
generalization as follows. 

2a =

 
Theorem 2.  Let s, a, b be given 
positive integers, such that a, b are 
relatively prime and a  is not a 
power of 2.  Then there exist infinitely 
many positive integers n such that 

b+

 
• n has exactly s different prime 
divisors; and 
•  is divisible by n. na b+
 
We give a proof of Theorem 2 below.  
We shall make use of two familiar 
lemmas. 
 
Lemma 1.  Let n be an odd positive 
integer, and a, b be relative prime 
positive integers.  Then 

n na b
a b
+
+

 

is an odd integer , equality if and 
only if  or . 

1≥
1n = 1a b= =

 
The proof of Lemma 1 is simple and is 
left for the reader. 
     Also, we remind readers the usual 

notations r | s means s is divisible by r and 
u ≡ v (mod m) means u – v is divisible by 
m. 
 
Lemma 2.  Let a, b be distinct and 
relatively prime positive integers, and p an 
odd prime number which divides a b+ .  
Then for any non-negative integer k, 

1 |k mp a+ mb+ , 

where . km p=
 
Proof.  We prove the lemma by induction. 
It is clear that the lemma holds for 0k = .  
Suppose the lemma holds for some 
non-negative integer k, and we proceed to 
the case 1k + . 

Let 
kpx a=  and 

kpy b= .  Since 
1

1

0
( ) ( 1)

p
p p i

i

p i ix y x y x y
−

− −

=

+ = + −∑ , 

it suffices to show that the whole 
summation is divisible by p.  Since 
x y≡ −  (mod 1kp + ), we have 

1
1

p
i i

−
− −−

0
1

2 1

0
1 1

( 1)

( 1)

(mod )

i p

i
p

i p

i
p k

x y

x

px p

=

−
−

=

− +

≡ −

≡

∑

∑  

completing the proof. 
 

is note we shall 
om

 
loss of 

In the rest of th
c plete the proof of Theorem 2. 

Proof of Theorem 2.  Without 
generality, let a b> .  Since a b+  is not a 
power of 2, it has an odd prime factor p.  
For natural number k, set 

k kp p
kx a b= + , 1k

k
k

x
y

x
+= . 

Then  is a positive integer and 

i p p i p i
k

i
p

i p p

i
p k

y a b

a

px p

− −

=

−
−

=

− +

= −

≡ −

≡

∑

∑  

which implies that 

 ky

1p−
1

0
1

2 1

0
1 1

( 1) ( ) ( )

( 1) ( )

(mod )

k k

k

ky
p

 is a positive 

integer. Also, we have 

( )1kp pky
b − ⎛ ⎞

≡ mod kx
p p⎜ ⎟

⎝ ⎠
, 

so that 

gcd , 1k kx y
p p

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 

for k = 1, 2, …  By Lemma 2, we also 
have 

gcd , 1kky
p

p
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 

for k = 1, 2, ….  Moreover, we have 
k

kx p≥ .  This leads us to 

( )
1

2
1 2 1 2

1
[( ) ( )

p

k k kp p

2 1 2

1

( ) ( ) ]
k k

k k

p i p p i
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− −
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=
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It follows that  

y b a b
−

− − −

=

= +∑

1kky
p

p
≥ > . 

By Lemma 1, ky
p

 is an odd positive 

n 

divisor  of

integer, so we ca choose an odd prime 

kq  ky
p

We ow h e a sequ

.  

n av ence of odd 

prime numbers q +∞{ } 1k k=
 satisfying the 

 

(i) 

following properties 
 

gcd ( , ) 1k kx q =  

(ii) gcd ( ,p q ) 1k =  

 (iii) 1|k kq x +  

(iv) 1|k kx x + . 
 
We shall now show that the sequence 

 consists of distinct prime 

numbers a

{ } 1k k=

nd is thus infinite.  Indeed, if 

q +∞

0 1k k<  are positive integers and 

0 1k kq q= , then 

1 0 0 11| | |k k k kq x x+= ⋅⋅ ⋅  

erties (i

          

by prop ii) and (iv).  But this 
icts property (i). 

q

contrad
 
     Next, set 0 1 1...s

sn p q q −=  and nk+1 = 

np k for k = 0, 1, 2, ….  It is evident that 

increasing se

 
4) 

{ } 0k kn +∞

=
is a strictly quence 

            (continued on page 
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roblem ner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 
submitting solutions is October 20, 
2004. 
 
Problem 206.  (Due to Zdravko F. 
Starc, Vršac, Serbia and Montenegro) 
Prove that if a, b are the legs and c is 
the hypotenuse of a right triangle, then 
 

P  Cor

( ) ( ) 2 2a b a a b b c c+ + − <  
 

.

Problem 207.  Let A = { 0, 1, 2, …, 9} 
and B1, B2, …, Bk be nonempty subsets 
of A such that Bi and Bj have at most 2 
common elements whenever i ≠ j. Find 
the maximum possible value of k. 
 
Problem 208. In ∆ABC, AB > AC > BC.  
Let D be a point on the minor arc BC of 
the circumcircle of ∆ABC.  Let O be 
the circumcenter of ∆ABC.  Let E, F be 
the intersection points of line AD with 
the perpendiculars from O to AB, AC, 
respectively.  Let P be the intersection 
of lines BE and CF.  If PB = PC + PO, 
then find ∠BAC with proof.  
 
Problem 209.  Prove that there are 
infinitely many positive integers n such 
that 2n + 2 is divisible by n and 2n + 1 is 
divisible by n – 1. 
 
Problem 210.  Let a = 1 and  1 

1
1

2
n

n
n

aa
a+ = +  

for n = 1, 2, 3, … .  Prove that for every 

integer n > 1,  

2

2
2na −

 

is an integer. 
 
 

***************** 
Solutions 

**************** 
 
Problem 201.  (Due to Abderrahim 
OUARDINI, Talence, France)  Find 
which nonright triangles ABC satisfy 

    tan A tan B tan C 
> [tan A] + [tan B] + [tan C], 

 
where [t] denotes the greatest integer less 
than or equal to t.  Give a proof. 
  
Solution. CHENG Hao (The Second 
High School Attached to Beijing Normal 
University), CHEUNG Yun Kuen 
(HKUST, Math, Year 1) and YIM Wing 
Yin (South Tuen Mun Government 
Secondary School, Form 4). , Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece),  
 
From  
 
tan C = tan (180○– A – B)  
         = – tan (A+B)  
         = – (tan A + tan B)/(1– tan A tan B),  
we get  
 
tan A + tan B + tan C = tan A tan B tan C.  
 
Let x = tan A, y = tan B and z = tan C.  If 
xyz ≤ [x]+[y]+[z], then x+y+z ≤ [x] + [y] 
+ [z].  As [t] ≤ t, x, y, z must be integers. 
 
If triangle ABC is obtuse, say A > 90○, 
then x < 0 < 1 ≤ y ≤ z.  This implies 1 ≤ yz 
= (x + y + z)/x = 1 + (y + z)/x < 1, a 
contradiction.  If triangle ABC is acute, 
then we may assume 1 ≤ x ≤ y ≤ z.  Now 
xy = (x+y+z)/z ≤ (3z)/z = 3.  Checking the 
cases xy = 1, 2, 3, we see x+y+z = xyz can 
only happen when x=1, y=2 and z=3.  
This corresponds to A = tan-1 1, B = tan-1

 

2 and C = tan-1 3.  Reversing the steps, 
we see among nonright triangles, the 
inequality in the problem holds except 
only for triangles with angles equal 45○ 
= tan-1 1, tan-1

 2 and tan-1 3. 
 
Problem 202.  (Due to LUK Mee Lin, La 
Salle College)  For triangle ABC, let D, E, 
F be the midpoints of sides AB, BC, CA, 
respectively.  Determine which triangles 
ABC have the property that triangles ADF, 
BED, CFE can be folded above the plane 
of triangle DEF to form a tetrahedron with 
AD coincides with BD; BE coincides with 
CE; CF coincides with AF. 
 
Solution. CHENG Hao (The Second 
High School Attached to Beijing Normal 
University), CHEUNG Yun Kuen 
(HKUST, Math, Year 1) and YIM Wing 
Yin (South Tuen Mun Government 
Secondary School, Form 4). 
 
Observe that ADEF, BEFD and CFDE are 
parallelograms.  Hence ∠BDE =∠BAC, 
∠ADF = ∠ABC and ∠EDF = ∠BCA.  
In order for AD to coincide with BD in 
folding, we need to have ∠ BDE + 

ADF∠  > ∠EDF.  So we need ∠BAC 
 > ∠BCA.  Similarly, for BE to 

 with CE and for CF to coincide 
, we need ∠ABC +∠BCA > 

+ ∠ABC
coincide
with AF

BAC∠  and ∠BCA + ∠BAC > ∠ABC.  
So no angle of ∆ABC is 90 or more.  
Therefore, ∆ABC is acute.  
 
Conversely, if ∆ABC is acute, then 
reversing the steps, we can see that the 
required tetrahedron can be obtained. 
 
Problem 203.  (Due to José Luis 
DÍAZ-BARRERO, Universitat Politec- 
nica de Catalunya, Barcelona, Spain) 
Let a, b and c be real numbers such that 
a + b + c ≠ 0.  Prove that the equation 
 
(a+b+c)x2 + 2(ab+bc+ca)x + 3abc = 0 
 
has only real roots. 
 
Solution. CHAN Pak Woon (Wah Yan 
College, Kowloon, Form 6), CHENG Hao 
(The Second High School Attached to 
Beijing Normal University), CHEUNG 
Hoi Kit (SKH Lam Kau Mow Secondary 
School, Form 7), CHEUNG Yun Kuen 
(HKUST, Math, Year 1), Murray 
KLAMKIN  (University of Alberta, 
Edmonton, Canada), Achilleas P. 
PORFYRIADIS (American College of 
Thessaloniki “Anatolia”, Thessaloniki, 
Greece) and YIM Wing Yin (South Tuen 
Mun Government Secondary School, 
Form 4). 
 
The quadratic has real roots if and only 
if its discriminant 
  D = 4(ab+bc+ca)2 – 12(a+b+c)abc 
      = 4[(ab)2+(bc)2+(ca)2–(a+b+c)abc] 
      = 4[(ab–bc)2 +(bc–ca)2 +(ca–ab)2 ] 
is nonnegative, which is clear.  
 
Other commended  solvers: Jason CHENG 
Hoi Sing (SKH Lam Kau Mow Secondary 
School, Form 7), POON Ho Yin (Munsang 
College (Hong Kong Island), Form 4) and 
Anderson TORRES (Universidade de 
Sao Paulo – Campus Sao Carlos). 
 
Problem 204.   Let n be an integer with 
n > 4.  Prove that for every n distinct 
integers taken from 1, 2, …, 2n, there 
always exist two numbers whose least 
common multiple is at most 3n + 6. 
 
Solution.  CHENG Hao (The Second 
High School Attached to Beijing 
Normal University), CHEUNG Yun 
Kuen (HKUST, Math, Year 1) and YIM 
Wing Yin (South Tuen Mun 
Government Secondary School, Form 
4). 
 
Let S be the set of n integers taken and k 
be the minimum of these integers.  If k ≤ 
n, then either 2k is also in S or 2k is not 
in S.  In the former case, lcm(k,2k) = 2k 
≤ 2n < 3n+6.  In the latter case, we 
replace k in S by 2k.  Note this will not 
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f the new S 

 
e 
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h 
t 

r 

 
ost 2n and lcm(n+1,3(n+1)/2) 

, 
)  
, 

such that an – 1 is divisible by n.  Pr ve 
at the greatest common divisor (or 

d 
al 

Kuen 
ST, Math, Year 1) and YIM Wing 

t 

. 
 1 
y 
 

nteger such 
at a  ≡ 1 (mod p).  Dividing n by d, we 

 

0.  
e by d.  Similarly, 

1 ≡ 1 (mod  

p sible by d.  Hence, 
gcd(n,  p is 
t
h
defi sible by 
p
 

decrease the least common
ny pair of numbers.  So ia

satisfies the problem, then the original S
will also satisfy the problem.  As w
repeat this, the new minimum wil
increase strictly so that we eventually
reach either k and 2k both in S, in whic
case we are done, or the new S will consis
of n+1, n+2, …, 2n.  So we need to 
consider the latter case only.  
 
If n > 4 is even, then 3(n+2)/2 is an intege
at most 2n and lcm(n+2, 3(n+2)/2) = 
3n+6.  If n > 4 is odd, then 3(n+1)/2 is an
integer at m
= 3n+3.  
 
Problem 205.  (Due to HA Duy Hung
Hanoi University of Education, Vietnam

et a, n be integers, both greater than 1L
o

th
highest common factor) of a – 1 and n is 
greater than 1. 
 
Solution. CHENG Hao (The Secon
High School Attached to Beijing Norm
University), CHEUNG Yun 
(HKU
Yin (South Tuen Mun Governmen
Secondary School, Form 4). 
 
Let p be the smallest prime divisor of n
Then an – 1 is divisibly by p so that an ≡
(mod p).  In particular, a is not divisible b
p.  Then, by Fermat’s little theorem, ap – 1

≡1 (mod p).  
 
Let d be the smallest positive i

dth
get n = dq + r for some integers q, r with 0
≤ r < d.  Then ar ≡ (ad)q ar = an ≡ 1 (mod 
p).  By the definition of d, we get r = 

hen n is divisiblT
dividing p – 1 by d, we see ap – 

) implies p – 1 is divi
p – 1) is divisible by d.  Since

he smallest prime dividing n, we must 
ave gcd(n, p – 1) = 1.  So d =1.  By the 

nition of d, we get a – 1 is divi
.  Therefore, gcd(a – 1, n)  ≥ p > 1. 

 
O
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r any of the figures obtained by applying 
d reflections to this figure. otations an

etermine all m x n rectangles that can be 
vered with hooks so that  o

 the rectangle is covered without gaps 
nd without overlaps; 
 no part of a hook covers area outside the

ectangle. 

ay 2 Time allowed:  4 hours 30 
inutes. 

roblem 4.  Let n ≥ 3 be an integer. Let 
1, t2, …, tn be positive real numbers such 
hat 

  n2 + 1  >  (t1 + t2 + ⋯ +  tn) 

1 2

1 1 1 .
n

t t t
⎛ ⎞

× + + +⎜ ⎟
⎝ ⎠

S
t
 
P
A
a .  The point 
P

∠ PBC =

Pro
if a
 
Probl
alt
in n are of 
dif t parity.  

L
 

how that ti, tj, tk are side lengths of a 
riangle for all i, j, k with 1≤ i <j <k ≤ n. 

roblem 5.  In a convex quadrilateral 
BCD the diagonal BD bisects neither the 
gle ABC not the angle CDAn

 lies inside ABCD and satisfies  

∠ DBA and ∠ PDC =∠BDA 

ve that ABCD is a cyclic quadrilateral 
nd only if AP = CP.

em 6.  We call a positive integer 
ernating if every two consecutive digits 

its decimal representatio
feren

 
Fin
a m
 

d all positive integers n such that n has 
ultiple which is alternating. 

 
Ex

 
of 
sequence has

tending an IMO Problem 
(continued from page 2)

positive integers and each term of the 
 exactly s  distinct prime 

div

for 
pos
a

isors. 
It remains to show that  

| k kn n
kn a b+  

k = 0, 1, 2, …  Note that for odd 
itive integers m, n with |m n , we have 

|m n nb a bm + + .  By property (iii), we 
e, for 0 k s≤ < ,  

0 0
1| | | | j jn nn n

k k sq x x a b a b+ + +  
j = 0, 1, 2, … .  Now it suffices to show 
t  

| k kn nk sp a b+ +  
 = 0, 1, 2

hav

for 
tha

for llows easily 
fro

a b+ . 
Th
 
Re
[1] , 18 

[2]

 

k , … .  But this fo
m Lemma 2 since 

| |s k
k sp x+
+

k kn n

is completes the proof of Theorem 2. 

ferences: 
 O. Reutter, Elemente der Math.
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 W. Sierpinski, Elementary Theory of 

Numbers, English translation, 
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