> Formulary
> (Number Theory)

Introduction

This is the pdf-version of the Number Theory Formulary on
MathLinks/ArtOfProblemSolving
(http://www.mathlinks.ro/Forum/viewtopic.php?t=76610).
All contributors are welcome to post new theorems at http://www.mathlinks.ro/Forum/viewtopic.php?t=76609.
Contributers till now: $\{x\}$, Myth, pbornzstein, Schoppenhauer, mathmanman, Xixas, campos, t0rajir0u, bodan, dule_00.

Daniel (ZetaX), June 10, 2006

Contents

1 Symbols and conventions 4
1.1 Sets of numbers 4
1.2 Definitions 4
1.2.1 General stuff 4
1.2.2 Symbols 5
1.2.3 Counting function and densities 6
2 Elementary congruences and divisors 7
3 Identities 8
4 Floor function 9
5 Number theoretic sums 9
6 Arithmetic functions 13
7 Sums of squares 14
8 p-adic numbers, Hasse-Minkowski 15
9 Legendre's and Jacobi's symbols, quadratic reciprocity law 17
10 Representations 18
11 p -adic valuations 19
12 Primes 19
13 Additive properties 20
14 Multiplicative functions 21
15 Irreducibility of polynomials 22
16 Finite differences 22

1 Symbols and conventions

1.1 Sets of numbers

\mathbb{Z} : the integers (a unique factorisation domain).
\mathbb{N} : the positive integers, meaning those >0.
\mathbb{P} : the positive primes.
\mathbb{Q} : the rationals (a field).
\mathbb{R} : the reals (a field).
\mathbb{C} : the complex numbers (a algebraically closed and complete field).
\mathbb{Q}_{p} : the p-adic numbers (a complete field); also $\mathbb{Q}_{0}:=\mathbb{Q}$ and $\mathbb{Q}_{\infty}:=\mathbb{R}$ is used sometimes.
$\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$: the residues $\bmod n$ (a ring; a field for n prime).
When M is one of the sets from above, then M^{+}denotes the numbers >0 (when defined), analogous for M^{-}.
The meaning of M^{*} will depend on M : for most cases it denotes the invertible elements, but for \mathbb{Z} it means the nonzero integers (note that this definitions coincide in most cases).
A zero in the index, like in M_{0}^{+}, tells us that 0 is also included.

1.2 Definitions

1.2.1 General stuff

For a set $M,|M|=\# M$ denotes the number of elements of M.
a divides b (both integers) is written as $a \mid b$ or sometimes as $b: a$.
Then for $m, n \in \mathbb{Z}, \operatorname{gcd}(m, n)$ or (m, n) is their greatest common divisor, the greatest $d \in \mathbb{Z}$ with $d \mid m$ and $d \mid n(\operatorname{gcd}(0,0)$ is defined as 0$)$ and $\operatorname{lcm}(m, n)$ or $[m, n]$ denotes their least common multiple, the smallest non-negative integer d such that $m \mid d$ and $n \mid d$.
When $\operatorname{gcd}(m, n)=1$, one often says that m, n are called "coprime".
For $n \in \mathbb{Z}^{*}$ to be "squarefree" means that there is no integer $k>1$ with $k^{2} \mid n$. Equivalently, this means that no prime factor occurs more than once in the decomposition.

Factorial of $n: n!:=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$.
Binomial coefficients: $\binom{n}{k}=\frac{n!}{k!(n-k)!}=C_{n}^{k}$.
For two functions $f, g: \mathbb{N} \rightarrow \mathbb{C}$ the Dirichlet convolution $f * g$ is defined as $f * g(n):=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)$.
A (weak) multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ is one such that $f(a \cdot b)=f(a) \cdot f(b)$ for all $a, b \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1$.
Some special types of such functions:
Euler's totient function: $\varphi(n)=\phi(n):=|\{k \in \mathbb{N}: k \leq n, \operatorname{gcd}(k, n)\}|=\left|\mathbb{Z}_{n}^{*}\right|$.
Moebius' function:
$\mu(n):=\left\{\begin{array}{l}0 \text { iff } n \text { is not squarefree } \\ (-1)^{s} \text { where } s \text { is the number of prime factors of } n \text { otherwise }\end{array}\right.$.
Sum of powers of divisors: $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$; often τ is used for σ_{0}, the number of divisors, and simply σ for σ_{1}.

For any $k, n \in \mathbb{N}$ it denotes $r_{k}(n):=\left|\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{Z}^{k} \mid \sum a_{i}^{2}=n\right\}\right|$ the number of representations of n as sum of k squares.

Let a, n be coprime integers. Then $\operatorname{ord}_{n}(a)$, the "order of $a \bmod n$ " is the smallest $k \in \mathbb{N}$ with $a^{k} \equiv 1 \bmod n$.

For $n \in \mathbb{Z}^{*}$ and $p \in \mathbb{P}$, the p-adic valuation $v_{p}(n)$ can be defined as the multiplicity of p in the factorisation of n, and can be extended for $\frac{m}{n} \in \mathbb{Q}^{*}, m, n \in \mathbb{Z}^{*}$ by $v_{p}\left(\frac{m}{n}\right)=v_{p}(m)-v_{p}(n)$.
Additionally often $v_{p}(0)=\infty$ is used.
For any function f we define $\Delta(f)(x):=f(x+1)-f(x)$ as the (upper) finite difference of f. Then we set $\Delta^{0}(f)(x):=f(x)$ and then iteratively $\Delta^{n}(f)(x):=\Delta\left(\Delta^{n-1}(f)\right)(x)$ for all integers $n \geq 1$.

1.2.2 Symbols

Legendre symbol: for $a \in \mathbb{Z}$ and odd $p \in \mathbb{P}$ we define
$\left(\frac{a}{p}\right):= \begin{cases}1 & \text { when } x^{2} \equiv a \bmod p \text { has a solution } x \in \mathbb{Z}_{p}^{*} \\ 0 & \text { iff } p \mid a \\ -1 & \text { when } x^{2} \equiv a \bmod p \text { has no solution } x \in \mathbb{Z}_{p}\end{cases}$
Then the Jacobi symbol for $a \in \mathbb{Z}$ and odd $n=\prod p_{i}^{v_{i}}$ (prime factorisation of n) is defined as: $\left(\frac{a}{n}\right)=\prod\left(\frac{a}{p_{i}}\right)^{v_{i}}$.

Hilbert symbol: let $v \in \mathbb{P} \cup\{0, \infty\}$ and $a, b \in \mathbb{Q}_{v}^{*}$. Then

$$
(a, b)_{v}:= \begin{cases}1 & \text { iff } x^{2}=a y^{2}+b z^{2} \text { has a nontrivial solution }(x, y, z) \in \mathbb{Q}_{v}^{3} \\ -1 & \text { otherwise }\end{cases}
$$

is the "Hilbert symbol of a, b in respect to v " (nontrivial means here that not all numbers are 0).

1.2.3 Counting function and densities

When $A \subset \mathbb{N}$, then we can define a counting function $a(n):=\mid\{a \in A \mid a \leq n\}$.
One special case of a counting function is the one that belongs to the primes \mathbb{P}, which is often called π.
With counting functions, some types of densities can be defined:
Lower asymptotic density: ${ }_{L} d(A):=\liminf _{n \rightarrow \infty} \frac{a(n)}{n}$
Upper asymptotic density: ${ }_{U} d(A):=\lim \sup _{n \rightarrow \infty} \frac{a(n)}{n}$
Asymptotic density (does not always exist): $d(A):=\lim _{n \rightarrow \infty} \frac{a(n)}{n}$
Shnirelman's density: $\sigma(A):=\inf _{n \rightarrow \infty} \frac{a(n)}{n}$
Dirichlet's density(does not always exist): $\delta(A):=\lim _{s \rightarrow 1+0} \frac{\sum_{a \in A} a^{-s}}{\sum_{a \in \mathbb{N}} a^{-s}}$
${ }_{L} d(A)$ and ${ }_{U} d(A)$ are equal iff the asymptotic density $d(A)$ exists and all three are equal then and equal to Dirichlet's density.

Often, density is meant in relation to some other set B (often the primes). Then we need $A \subset B \subset \mathbb{N}$ with counting functions a, b and simply change n into $b(n)$ and \mathbb{N} into B :

Lower asymptotic density: ${ }_{L} d_{B}(A):=\liminf _{n \rightarrow \infty} \frac{a(n)}{b(n)}$
Upper asymptotic density: ${ }_{U} d_{B}(A):=\lim \sup _{n \rightarrow \infty} \frac{a(n)}{b(n)}$
Asymptotic density (does not always exist): $d_{B}(A):=\lim _{n \rightarrow \infty} \frac{a(n)}{b(n)}$
Shnirelman's density: $\sigma_{B}(A):=\inf _{n \rightarrow \infty} \frac{a(n)}{b(n)}$
Dirichlet's density(does not always exist): $\delta_{B}(A):=\lim _{s \rightarrow 1+0} \frac{\sum_{a \in A} a^{-s}}{\sum_{a \in B} a^{-s}}$
Again the same relations as above hold.

2 Elementary congruences and divisors

Gauss' theorem :

If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
The Gauss' theorem comes from :

Bezout's identity :

The set $\{a x+b y \mid x, y \in \mathbb{Z}\}$ is the set of all the multiples of $\operatorname{gcd}(a, b)$, that is to say :

$$
a \mathbb{Z}+b \mathbb{Z}=\operatorname{gcd}(a, b) \mathbb{Z}
$$

Fermat's little theorem:

For any positive integer a and every prime p it is $a^{p} \equiv a \bmod p$.
Generalization:
Theorem of Euler-Fermat:
If $\operatorname{gcd}(a, m)=1$ then $a^{\phi(m)} \equiv 1 \bmod m$.

Wilson's theorem:

For prime p it is $(p-1)!\equiv-1 \bmod p$.

Polynomial congruences:

For any polynom f with integral coefficients and any integers a, b with $a \equiv b \bmod m$ for some integer m it is $f(a) \equiv f(b) \bmod m$.

Lucas' theorem:

$\binom{a}{b} \equiv \prod_{i=0}^{k}\binom{a_{i}}{b_{i}} \quad \bmod p$ where a_{i} 's and b_{i} 's are the digits of a and b expressed in base p (p is a prime) with leading zeros allowed.

Wolstenholme's Theorem (number 1):
$\binom{2 p}{p} \equiv 2 \bmod p^{3}$ for $p \in \mathbb{P} \geq 5$
Wolstenholme's Theorem (number 2):
Let $\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{p-1}$ with $(m, n)=1$ and p is a prime greater than or equal to 5. Then p^{2} divides m.

3 Identities

Identity of Sophie Germain:

For all integers a, b it is $a^{4}+4 b^{4}=\left(a^{2}+2 b^{2}+2 a b\right)\left(a^{2}+2 b^{2}-2 a b\right)$.

Sum-of- n-squares-identities:

- Two squares: $\left(a^{2}+b^{2}\right)\left(c^{2}+b^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}$
- Four squares: $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(e^{2}+f^{2}+g^{2}+h^{2}\right)=$
$(a e-b f-c g-d h)^{2}+(a f+b e+c h-d g)^{2}+(a g+c e+d f-b h)^{2}+(a h+d e+b g-c f)^{2}$
- Eight squares:
$\left(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}\right)\left(m^{2}+n^{2}+o^{2}+p^{2}+q^{2}+r^{2}+s^{2}+t^{2}\right)=$ $u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}+u_{5}^{2}+u_{6}^{2}+u_{7}^{2}+u_{8}^{2}$
where
$u_{1}=a m-b n-c o-d p-e q-f r-g s-h t$
$u_{2}=b m+a n+d o-c p+f q-e r-h s+g t$
$u_{3}=c m-d n+a o+b p+g q+h r-e s-f t$
$u_{4}=d m+c n-b o+a p+h q-g r+f s-e t$
$u_{5}=e m-f n-g o-h p+a q+b r+c s+d t$
$u_{6}=f m+e n-h o+g p-b q+a r-d s+c t$
$u_{7}=g m+h n+e o-f p-c q+d r+a s-b t$
$u_{8}=h m-g n+f o+e p-d q-c r+b s+a t$
(see also http://www.geocities.com/titus_piezas/DegenGraves1.htm)
Similar to the previous ones:
$\left(a^{2}+n b^{2}\right)\left(c^{2}+n d^{2}\right)=(a c-n b d)^{2}+n(a d+b c)^{2}$
Theorem: (Leibnitz):

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{\substack{k_{1}, \ldots, k_{m}>0 \\ k_{1}+\cdots+k_{m}=n}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}
$$

The Binet-Caushy identity:

For reals $a_{k}, b_{k}, c_{k}, d_{k}$ we have

$$
\left(\sum_{k=1}^{n} a_{k} c_{k}\right)\left(\sum_{k=1}^{n} b_{k} d_{k}\right)-\left(\sum_{k=1}^{n} a_{k} d_{k}\right)\left(\sum_{k=1}^{n} b_{k} c_{k}\right)=\sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)\left(c_{i} d_{j}-c_{j} d_{i}\right) .
$$

Vandermonde's identity:

$$
\binom{m+n}{k}=\sum_{l=0}^{\max \{k, n\}}\binom{m}{k-l}\binom{n}{l}
$$

Theorem (Vandermonde):
For the determinant

$$
V_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left|\begin{array}{cccc}
1 & a_{1} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & a_{n} & \cdots & a_{n}^{n-1}
\end{array}\right|
$$

we have

$$
V_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\prod_{1 \leq i \leq j \leq n}\left(a_{j}-a_{i}\right)
$$

4 Floor function

On dealing with the floor function:

1. Let $n, m \in \mathbb{N}$, then

$$
m \bmod n=m-n \cdot\left\lfloor\frac{m}{n}\right\rfloor
$$

Remark: Perhaps this could work with $n, m \in \mathbb{R}$ but who would use it ?
2. Let $m \in \mathbb{N}, n \in \mathbb{Z}, x \in \mathbb{R}$, then

$$
\sum_{k=0}^{m-1}\left\lfloor\frac{n k+x}{m}\right\rfloor=(m, n) \cdot\left\lfloor\frac{x}{d}\right\rfloor+\frac{m-1}{2} \cdot n+\frac{(m, n)-m}{2}
$$

3. Let $m \in \mathbb{N}, x \in \mathbb{R}$, then

$$
\lfloor m \cdot x\rfloor=\sum_{k=0}^{m-1}\left\lfloor x+\frac{k}{m}\right\rfloor
$$

5 Number theoretic sums

Some number theorethic sum:

1. Let $n \in \mathbb{N}$

$$
\begin{gathered}
\sum_{j=1}^{n} \varphi(j)=\frac{3}{\pi^{2}} n^{2}+O(n \log n) \\
\sum_{j=1}^{n} \varphi(j)=\frac{3}{\pi^{2}} n^{2}+O\left(n(\log n)^{2 / 3}(\log \log n)^{4 / 3}\right)
\end{gathered}
$$

2. Let $n \in \mathbb{N}$

$$
\sum_{j=1}^{n} d(j)=n \log n+(2 \gamma-1) n+O(\sqrt{n})
$$

3. Let $n, k \in \mathbb{N}$

$$
\sum_{j=1}^{n} \sigma_{k}(j)=\left(\frac{1}{k+1} \sum_{j=1}^{\infty} \frac{1}{j^{1+k}}\right) n^{1+k}+R_{k}(n)
$$

where

$$
R_{k}(n)=\left\{\begin{array}{l}
O(n), \text { when } 0<k<1 \\
O(n \log n), \text { when } k=1 \\
O\left(n^{k}\right), \text { when } k>1
\end{array}\right.
$$

4. Let $n \geqslant 2$. Let $Q(n)$ denote the number of squarefree integers less than n. Then

$$
Q(n)=\sum_{j=1}^{n} \mu^{2}(j)=\frac{6}{\pi^{2}} n^{2}+O(\sqrt{n})
$$

5. Let f be a multiplicative function, if

$$
S=\sum_{n=1}^{\infty} f(n)
$$

converges absolutely, then

$$
\prod_{p}\left(\sum_{k=0}^{\infty} f\left(p^{k}\right)\right)=\sum_{n=1}^{\infty} f(n)
$$

where p runs through primes.
6. If f is completely multiplicative then

$$
\sum_{n=1}^{\infty} f(n)=\prod_{p} \frac{1}{1-f(p)}
$$

where p runs through primes.
7. Let f be a multiplicative function, then

$$
\begin{aligned}
& \sum_{d \mid n} \mu(d) f(d)=\prod_{p \mid n}(1-f(p)) \\
& \sum_{d \mid n} \mu^{2}(d) f(d)=\prod_{p \mid n}(1+f(p))
\end{aligned}
$$

where p is prime.
8. Let $n \in \mathbb{N}$, then

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1\end{cases}
$$

9. Let $n \in \mathbb{N}$, then

$$
\sum_{j=1}^{n} \frac{1}{\varphi(j)}=C_{1} \log n+C_{2}+O\left(\frac{\log n}{n}\right)
$$

where $C_{1}>0$ and C_{2} are real constants.
10. Let $n \in \mathbb{N}$, then

$$
\begin{gathered}
\sum_{j=1}^{n} \omega(j)=n \log \log n+B n+O\left(\frac{n}{\log n}\right) \\
\sum_{j=1}^{n} \Omega(j)=n \log \log n+(B+C) n+O\left(\frac{n}{\log n}\right) \\
\sum_{j=1}^{n} \omega^{2}(j)=n(\log \log n)^{2}+O(n \log \log n)
\end{gathered}
$$

where B, C are constants.
11. Let $n \in \mathbb{N}$, then

$$
(\log \log x)-1 \leqslant \sum_{p \leq x} \frac{1}{p}=\log \log x+B+O\left(\frac{1}{\log x}\right)
$$

where p runs through primes and B is a constant.

$$
\sum_{k \geq 2, p^{k} \leq x} \frac{1}{p^{k}}=C+O\left(\frac{1}{\log x}\right)
$$

where p runs through primes and C is a constant.
12. Let $n \in \mathbb{N}$, then

$$
\sum_{n \leq x} r_{2}(n)=\pi x+O\left(x^{1 / 3} \log x\right)
$$

Let $n \geqslant 2$ be a positive integer, then

$$
\sum_{p \leq n} \frac{\log p}{p}=\log n+O(1)
$$

where p runs through primes.
13. Let $z \in \mathbb{C}$, and $n \in \mathbb{N}$, then

$$
\prod_{p \leq n}\left(1+\frac{z}{p}\right)=A(z)(\log n)^{z} \cdot\left(1+O\left(\frac{1}{\log n}\right)\right)
$$

for $A(z)$ a constant depending on z.
14. Let $n \in \mathbb{N}$, then

$$
\sum_{d \mid n} \frac{1}{d} \geqslant \frac{n}{2 \varphi(n)}
$$

15 . Let k, l be two positive integers with $(k, l)=1$, then

$$
\sum_{p \leq x} \frac{1}{p}=\frac{1}{\varphi(k)} \log \log x+O(1)
$$

where p runs through primes.
16. Let f be an additive function and n a positive integer, then

$$
\sum_{m \leq n}\left(\left|f(m)-\sum_{p \leq n} \frac{f(p)}{p}\right|\right)^{2} \leqslant C n \sum_{p^{k} \leq n} \frac{\left|f\left(p^{k}\right)\right|^{2}}{p^{k}}
$$

where p runs through primes, and C is a constant $(C \leqslant 32)$.
17. Let f be a strongly additive function, and n a positive integer. Then

$$
\sum_{m \leq n}\left(\left|f(m)-\sum_{p \leq n} \frac{f(p)}{p}\right|\right)^{2} \leqslant 2 C n \sum_{p \leq n} \frac{|f(p)|^{2}}{p}
$$

where p runs through primes and C is a constant $(C \leqslant 32)$.

Some other sums 1. Abelian summation

Let $\left(a_{j}\right)_{j=1}^{n},\left(b_{j}\right)_{j=1}^{n}$ be a finite sequence of complex numbers. Then

$$
\sum_{i=1}^{n} a_{i} b_{i}=\left(\sum_{i=1}^{n} a_{i}\right) b_{n}-\sum_{m=1}^{n-1}\left(\left(\sum_{i=1}^{m} a_{i}\right)\left(b_{m+1}-b_{m}\right)\right)
$$

2. Let $\left(a_{m}\right)_{m=1}^{n},\left(b_{m}\right)_{m=1}^{n}$ be two finite sequence of real numbers. Then

$$
\left(\sum_{k=1}^{n} a_{k}\right) \cdot\left(\sum_{k=1}^{n} b_{k}\right)=n \sum_{k=1}^{n} a_{k} b_{k}-\sum_{k=2}^{n} \sum_{j=1}^{k-1}\left(a_{k}-a_{j}\right) \cdot\left(b_{k}-b_{j}\right)
$$

Or equivalently

$$
\left(\sum_{k=1}^{n} a_{k}\right) \cdot\left(\sum_{k=1}^{n} b_{k}\right)=n \sum_{k=1}^{n} a_{k} b_{k}-\sum_{1 \leq j<k \leq n}\left(a_{k}-a_{j}\right) \cdot\left(b_{k}-b_{j}\right)
$$

3. Let $n \in \mathbb{N}$

$$
\ln n+\gamma+\frac{1}{2 n} \leqslant \sum_{j=1}^{n} \frac{1}{j}=\ln n+\gamma+\frac{1}{2 n}+O\left(\frac{1}{n^{2}}\right)
$$

Where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \frac{1}{j}-\ln n\right)$ is the gamma constant.

6 Arithmetic functions

1. Let $n \in \mathbb{N}$, then

$$
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)=\sum_{d \mid n} \mu(d) \frac{n}{d}
$$

2. Let $n \in \mathbb{N}$, then

$$
\frac{1}{\varphi(n)}=\frac{1}{n} \sum_{d \mid n} \frac{\mu^{2}(d)}{\varphi(d)}
$$

3. Let $n \in \mathbb{N}$, then

$$
0,92129 \cdot \frac{n}{\log n}<\pi(n)<1,1055 \cdot \frac{n}{\log n}
$$

4. Let $n \in \mathbb{N}$, then

$$
\frac{6}{\pi^{2}} n^{2} \leq \sigma(n) \varphi(n) \leq n^{2}
$$

5. Let $n \geqslant 2$ be a positive integer, then

$$
\varphi(n) \geqslant \frac{c n}{\log \log n}
$$

for some positive constant $c>0$.
6. For all composite numbers n it holds

$$
\varphi(n) \leq n-\sqrt{n}
$$

7. Let p_{n} be the n-th prime number, then

$$
a n \log n \leqslant p_{n} \leqslant b n \log n
$$

for two constants $0<a<b$.
8. Let n be a positive integer, then

$$
\omega(n) \leqslant \lg _{2} n
$$

9. Let n be a positive integer, then

$$
d(n) \leqslant 2 \sqrt{n}
$$

$7 \quad$ Sums of squares

2) Sum of two squares:

A positive integer n can be represented as sum of two perfect squares iff all prime factors $p \equiv 3 \bmod 4$ of n occur an even number of times in the factorisation of $n . n$ can be written as sum of squares $\neq 0$ iff the previous condition holds and it has at least one prime factor $\equiv 1 \bmod 4$ or $v_{2}(n)$ is odd.
There are exactly

$$
\mathrm{r}_{2}(n)=4 \cdot \sum_{\substack{d \in \mathbb{N} \\ d \mid n \\ d \equiv 1 \\ \bmod 2}}(-1)^{\frac{d-1}{2}}=4 \cdot \prod_{\substack{p \in \mathbb{P} \\ p \equiv 1 \\ \bmod 4}}\left(v_{p}(n)+1\right)
$$

different solutions $(a, b) \in \mathbb{Z}^{2}$ to $n=a^{2}+b^{2}$.
3) Sum of three squares:

Write n as $n=4^{k} u, k, u \in \mathbb{N}_{0}$ with $4 \nmid u$ (but u can be even). Then n can be written as sum of three squares iff $u \not \equiv 7 \bmod 8$.
4) Sum of four squares:

Every positive interger can be written as sum of four squares, and there are

$$
\mathrm{r}_{4}(n)=8 \cdot \sum_{\substack{d \in \mathbb{N} \\
4 \nmid d \mid n}} d=\left\{\begin{array}{c}
8 \sigma(n) \text { iff } n \text { is odd } \\
24 \sigma(n) \text { iff } n \text { is even }
\end{array}\right.
$$

different solutions $(a, b, c, d) \in \mathbb{Z}^{4}$ to $n=a^{2}+b^{2}+c^{2}+d^{2}$.
5) Sum of five squares:

As corollary to 4) every integer can be written as sum of five squares, but there is one more thing to say: except of some small numbers (all <100), every positive integer can be written as sum of five nonzero perfect squares.
8) Sum of eight squares:

There are

$$
\mathrm{r}_{8}(n)=16 \cdot \sum_{\substack{d \in \mathbb{N} \\ d \mid n}}(-1)^{n-d} d^{3}
$$

different solutions $(a, b, c, d, e, f, g, h) \in \mathbb{Z}^{8}$ to $n=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+f^{2}+g^{2}+h^{2}$.

8 p-adic numbers, Hasse-Minkowski

p-adic numbers
The p-adic integers (for that and only that post written by \mathbb{Z}_{p}) are isomorphic (or by definition identical) to:
a) the (formal) series $\sum_{k=0}^{\infty} a_{k} p^{k}$ with $a_{k} \in\{0,1,2, \ldots, p-1\}$.
b) the cauchy-sequences $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ of integers in respect to the p-adic valuation $|\cdot|_{p}=p^{-v_{p}(\cdot)}$.
c) the projective limit $\lim _{\leftarrow_{n}} \mathbb{Z} / p^{n} \mathbb{Z}$.

The last one gives that a polynomial equation $p(x)=p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has a solution in \mathbb{Z}_{p} iff it has one \bmod any power of p.

The p-adic numbers \mathbb{Q}_{p} are isomorphic (or by definition identical) to:
a) the (formal) series $\sum_{k=-s}^{\infty} a_{k} p^{k}$ with $a_{k} \in\{0,1,2, \ldots, p-1\}$.
b) the rational cauchy-sequences $\left(b_{k}\right)_{k \in \mathbb{N}_{0}}$ in respect to the p-adic valuation
$|\cdot|_{p}=p^{-v_{p}(\cdot)}$.
c) the field of quotients of \mathbb{Z}_{p}.

Some properties of the Hilbert symbol (holding for any $v \in \mathbb{P} \cup\{0, \infty\}$ and $\left.a, b, c \in \mathbb{Q}_{v}^{*}\right)$:
$-(a, b)_{v}=(b, a)_{v}$

- $(a, 1)_{v}=1=(1, b)_{v}$
- $\left(a, b c^{2}\right)_{v}=(a, b)_{v}=\left(a c^{2}, b\right)_{v}$
$-(a, b c)_{v}=(a, b)_{v} \cdot(a, c)_{v}$
Product formula for the Hilbert symbols:
Let a, b be rational. Then $(a, b)_{v}=1$ for all but finetely many $v \in \mathbb{P} \cup\{\infty\}$ and:

$$
\prod_{v \in \mathbb{P} \cup\{\infty\}}(a, b)_{v}=1
$$

Approximation of the Hilbert Symbols: Let a finite set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of rational numbers and then for all $j \in K:=\{1,2, \ldots, k\}$ and $v \in \mathbb{P} \cup\{\infty\}$ an $e_{j, v} \in\{ \pm 1\}$ be given such that:

- all but finetely many $e_{j, v}$ are equal to 1
- for any $j \in K$ it holds $\prod_{v \in \mathbb{P} \cup\{\infty\}} e_{j, v}=1$
- there is an $x_{v} \in \mathbb{Q}_{v}^{*}$ such that $\left(a_{j, v}, x_{v}\right)_{v}$ for all $j \in K$

Then there exists a rational number x with $\left(a_{j, v}, x\right)_{v}=e_{j, v}$ for all (j, v).

The theorem of Hasse-Minkowski:

Let $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ be any homogenous polynomial equation of degree 2
(so f is a polynomial where every single monomial has degree 2).
Then there exists a nontrivial (not all numbers $=0$) rational solution $x \in \mathbb{Q}^{n}$ to $f(x)=0$ iff this equation has a nontrivial solution $x \in \mathbb{Q}_{v}^{n}$ for all $v \in \mathbb{P} \cup\{\infty\}$.

Corollary: when f has also integer coefficients, the equation $f(x)=$ has a nontrivial integral solution iff it has a solution mod any integer (where by the Chinese Remainder Theorem we can restrict to perfect powers of primes).

9 Legendre's and Jacobi's symbols, quadratic reciprocity law

Basic facts on the Legendre's and Jacobi's symbols. The quadratic reciprocity law.

Theorem 1.
If $a \equiv b(\bmod p)$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$.
Theorem 2.
For all $a \not \equiv 0(\bmod p)$ we have $\left(\frac{a^{2}}{p}\right)=+1$.
Theorem 3 (Euler's criteria).
$a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right) \quad(\bmod p)$.
Theorem 4.

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}= \begin{cases}+1, p=1 & (\bmod 4) \\ -1, p=3 & (\bmod 4)\end{cases}
$$

Theorem 5.

$$
\left(\frac{a_{1} a_{2} \ldots a_{n}}{p}\right)=\left(\frac{a_{1}}{p}\right) \ldots\left(\frac{a_{n}}{p}\right) .
$$

Theorem 6 (Gauss criteria).
For all $a \neq 0(\bmod p), p>2$, the following equality holds

$$
\left(\frac{a}{p}\right)=(-1)^{l}
$$

where $l=\left|\left\{a k \left\lvert\, 1 \leq k \leq \frac{p-1}{2}\right., a k(\bmod p) \geq \frac{p+1}{2}\right\}\right|$.
Theorem 7.

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=\left\{\begin{array}{l}
+1, p=8 k \pm 1 \\
-1, p=8 k \pm 3
\end{array}\right.
$$

Theorem 8 (The quadratic reciprocity law).
For all odd primes $p \neq q$ the following equality holds:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} .
$$

Definition.

Let odd $m=p_{1} p_{2} \ldots p_{s}$, where p_{i} are prime number, not necessary distinct, $(a, m)=1$. Then Jacobi's symbols $\left(\frac{a}{m}\right)=\left(\frac{a}{p_{1}}\right) \ldots\left(\frac{a}{p_{s}}\right)$, where $\left(\frac{a}{p_{i}}\right)$ are Legendre's symbols.

Theorem 1'.

The same as Theorem 1 for Legendre's symbol.

Theorem 2'.

The same as Theorem 2 for Legendre's symbol.
Theorem 4'.

$$
\left(\frac{-1}{m}\right)=(-1)^{\frac{m-1}{2}}= \begin{cases}+1, m=1 & (\bmod 4) \\ -1, m=3 & (\bmod 4)\end{cases}
$$

Theorem 5'.

$$
\left(\frac{a_{1} \ldots a_{s}}{m}\right)=\left(\frac{a_{1}}{m}\right) \ldots\left(\frac{a_{s}}{m}\right) .
$$

Theorem 7'.

$$
\left(\frac{2}{m}\right)=(-1)^{\frac{m^{2}-1}{8}}=\left\{\begin{array}{l}
+1, m=8 k \pm 1, \\
-1, m=8 k \pm 3 .
\end{array}\right.
$$

Theorem 8' (The reciprocity law for Jacobi's symbols).
Let m, n be odd numbers, $m, n>1$, then

$$
\left(\frac{n}{m}\right)\left(\frac{m}{n}\right)=(-1)^{\frac{n-1}{2} \cdot \frac{m-1}{2}} .
$$

10 Representations

In base b :
Every $n \in \mathbb{N}_{0}$ can be uniquely written in base b, meaning $n=\sum_{k=0}^{\infty} a_{k} b^{k}$ with all $a_{k} \in\{0,1,2, \ldots, b-1\}$ and all but finetely many $a_{k}=0$.

Zeckendorf's (base Fibonacci) representation:

Every $n \in \mathbb{N}$ can be uniquely expressed as a sum of Fibonacci numbers no two of which are consecutive.

Waring's Theorem:

Let $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ by a polynomial and let $d=\operatorname{gcd}(f(0), f(1), f(2), \ldots)$. Then every sufficient large multiple of d can be expressed as sum of a bounded number of values of f, or in other words: there is a k only depending on f such that for any $n>N(N$ some constant) there are $a_{1}, a_{2}, \ldots, a_{k} \in \mathbb{N}_{0}$ with $d n=f\left(a_{1}\right)+f\left(a_{2}\right)+\ldots+f\left(a_{k}\right)$.
Especially when 0 and 1 are in the range of f, then every $n \in \mathbb{N}_{0}$ can be written as a bounded number of values of f. Addionally, for any m there is a k such that any $n \in \mathbb{N}_{0}$ is the sum of k non-negative m-th powers of integers.

Related to Waring's Theorem:

- every positive integer is the sum of 4 perfect squares (see also the Sum of Squares section).
- every positive integer is the sum of 3 triangular numbers (those of type $\frac{n(n+1)}{2}$).
- every integer is the sum of 9 non-negative perfect cubes.
- every integer is the sum of 5 perfect cubes (they are allowed to be negative). It's an openen problem if 4 cubes suffice.

11 p-adic valuations

Let p be any fixed prime for this section.
Properties of v_{p} :
For all rational a, b :
$v_{p}(a b)=v_{p}(a)+v_{p}(b)$
Non-archimead triangle inequality: $v_{p}(a+b) \geq \min \left(v_{p}(a), v_{p}(b)\right)$
Hensel's lemma:
$p^{s}\left\|a-1, p^{k}\right\| b, s \geq 1 \Rightarrow p^{s+k} \| a^{b}-1$, or in other words $v_{p}\left(a^{b}-1\right)=v_{p}(a-1)+v_{p}(b)$ for $v_{p}(a-1) \geq 1$, with exception of the case $p=2, s=1$.

Kummer's theorem:

If $p^{s} \left\lvert\,\binom{ n}{n-k}\right.$ then s does not exceed the number of carries needed when the numbers $n-k$ and k are added when expressed in base p.

12 Primes

Bertrands postulate

There is always a prime between n and $2 n(n \in \mathbb{N})$.

Chebychevs Theorem:

There are constants $a, b, 0<a<b$ such that for all big $n($ e.g. $a=\log (2), b=\log (4)$ for $n \geq 2$) we have

$$
a \cdot n \leq \pi(n) \cdot \log (n) \leq b \cdot n
$$

Prime number theorem

There are asymptotically $\frac{x}{\log (x)}$ primes $\leq x$.

Dirichlet's theorem on primes in arithmetic progression:

In every arithmetic progression $a n+b$ with $\operatorname{gcd}(a, b)=1$ there are infinitely many primes. More exactly, the asymptotic and Dirichlet's densities of these primes in the set of all primes are $\frac{1}{\phi(n)}$.

Zsigmondy's Theorem:

Let $a>b \geq 1$ and be coprime integers. Then for any $n \in \mathbb{N}$ there is a prime p dividing $a^{n}-b^{n}$ but not dividing $a^{k}-b^{k}$ for all $k<n$ with two exceptions: a)
$a=2, b=1, n=6 \mathrm{~b}) a+b$ a power of 2 and $n=2$

13 Additive properties

The Theorem of Chevalley-Warning:

Let be p prime and $f_{1}, f_{2}, \ldots, f_{m}$ be m polynomials with integer coefficients in the n variables $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<n$, then the number of solutions of

$$
\begin{aligned}
f_{1}(x) \equiv 0 & \bmod p \\
f_{2}(x) \equiv 0 & \bmod p \\
& \\
f_{m}(x) \equiv 0 & \bmod p
\end{aligned}
$$

is divisible by p (this generalizes to any finite field).

The Cauchy-Davenport Theorem:

Let p be prime and $A, B \subset \mathbb{Z} / p \mathbb{Z}$. Then the following inequality holds for the sumset $A+B$:

$$
|A+B| \geq \min (p,|A|+|B|-1)
$$

Vosper's Theorem (the case of equality in the Cauchy-Davenport Theorem):
With the conditions above and $A+B \neq \mathbb{Z} / p \mathbb{Z}$, we have $|A+B|=|A|+|B|-1$ if and only if one of the following is true:
a) $|A|=1$ or $|B|=1$
b) $|A+B|=p-1$ and $B=(\mathbb{Z} / p \mathbb{Z}) \backslash(c-A)$, where c is the only one residue class $\notin A+B$
c) A and B are $($ seen $\bmod p)$ arithmetic progressions with the same common difference

Some results that follow from the above:

The Erdös-Ginzburg-Ziv Theorem:

Let $n \in \mathbb{N}$ and $2 n-1$ integers be given. Then we can choose exactly n of them such that their sum is divisible by n.

Sums of k-th powers $\bmod p$:
Let p be prime and $k \in \mathbb{N}$. Then $\bmod p$ any number is the sum of $k k$-th powers, or in other words: for any $n \in \mathbb{Z}$, there are integers $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$ with $n \equiv a_{1}^{k}+a_{2}^{k}+a_{3}^{k}+\ldots+a_{k}^{k} \bmod p$.

Sharper version of the previous one:

With the same conditions as before, extended by $p \geq 5,1<k<\frac{p-1}{2}$ and $k \mid p-1$ (it's clear that the condition $k \mid p-1$ is no restriction), and any $n \in \mathbb{N}$ we have that there are at least min $\left(p,(2 n-1) \frac{p-1}{k}+1\right)$ residues that are the sum of $n k$-th powers.

14 Multiplicative functions

Theorem(Ramanujan):

For $(m, n) \in \mathbb{N}^{2}$.

$$
\sum_{d \mid \operatorname{gcd}(m, n)} d \mu\left(\frac{n}{d}\right)=\frac{\left(\frac{n}{\operatorname{gcd}(m, n)}\right) \phi(n)}{\phi\left(\frac{n}{\operatorname{gcd}(m, n)}\right)}
$$

15 Irreducibility of polynomials

Theorem (Eisenstein) Suppose we have the following polynomial with integer coefficients:

$$
f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} .
$$

If there exists a prime p such that $p \mid a_{j}, j \in\{0,1,2, \ldots, n-1\}, \quad p \nmid a_{n}$ and $p^{2} \nmid a_{0}$, then $f(x)$ is irreducible.

16 Finite differences

Formula for $\Delta^{n}(f)$:

$$
\Delta^{n} f(x)=\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} f(x+r)
$$

Effect on degrees of polynomials:
When P is a polynomial of degree n, then $\Delta^{k}(P)$ is a polynomial of degree $n-k$, where negative degrees mean the constant polynomial 0 everytime.

