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1 SYMBOLS AND CONVENTIONS

1 Symbols and conventions

1.1 Sets of numbers

Z: the integers (a unique factorisation domain).
N: the positive integers, meaning those > 0.
P: the positive primes.
Q: the rationals (a field).
R: the reals (a field).
C: the complex numbers (a algebraically closed and complete field).
Qp: the p-adic numbers (a complete field); also Q0 := Q and Q∞ := R is used
sometimes.
Zn = Z/nZ: the residues mod n (a ring; a field for n prime).

When M is one of the sets from above, then M+ denotes the numbers > 0 (when
defined), analogous for M−.
The meaning of M∗ will depend on M : for most cases it denotes the invertible
elements, but for Z it means the nonzero integers (note that this definitions coincide
in most cases).
A zero in the index, like in M+

0 , tells us that 0 is also included.

1.2 Definitions

1.2.1 General stuff

For a set M , |M | = #M denotes the number of elements of M .

a divides b (both integers) is written as a|b or sometimes as b
...a.

Then for m, n ∈ Z, gcd(m, n) or (m, n) is their greatest common divisor, the
greatest d ∈ Z with d|m and d|n (gcd(0, 0) is defined as 0) and lcm(m,n) or [m, n]
denotes their least common multiple, the smallest non-negative integer d such that
m|d and n|d.
When gcd(m, n) = 1, one often says that m, n are called ”coprime”.

For n ∈ Z∗ to be ”squarefree” means that there is no integer k > 1 with k2|n.
Equivalently, this means that no prime factor occurs more than once in the
decomposition.
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1.2 Definitions 1 SYMBOLS AND CONVENTIONS

Factorial of n: n! := n · (n− 1) · (n− 2) · ... · 3 · 2 · 1.
Binomial coefficients:

(
n
k

)
= n!

k!(n−k)!
= Ck

n.

For two functions f, g : N → C the Dirichlet convolution f ∗ g is defined as
f ∗ g(n) :=

∑
d|n f(d)g

(
n
d

)
.

A (weak) multiplicative function f : N → C is one such that f(a · b) = f(a) · f(b)
for all a, b ∈ N with gcd(a, b) = 1.
Some special types of such functions:
Euler’s totient function: ϕ(n) = φ(n) := |{k ∈ N : k ≤ n, gcd(k, n)}| = |Z∗n|.
Moebius’ function:

µ(n) :=

{
0 iff n is not squarefree

(−1)s where s is the number of prime factors of n otherwise
.

Sum of powers of divisors: σk(n) :=
∑

d|n dk; often τ is used for σ0, the number of
divisors, and simply σ for σ1.

For any k, n ∈ N it denotes rk(n) :=
∣∣{(a1, a2, ..., ak) ∈ Zk|

∑
a2

i = n}
∣∣ the number of

representations of n as sum of k squares.

Let a, n be coprime integers. Then ordn(a), the ”order of a mod n” is the smallest
k ∈ N with ak ≡ 1 mod n.

For n ∈ Z∗ and p ∈ P, the p-adic valuation vp(n) can be defined as the multiplicity
of p in the factorisation of n, and can be extended for m

n
∈ Q∗, m, n ∈ Z∗ by

vp

(
m
n

)
= vp(m)− vp(n).

Additionally often vp(0) = ∞ is used.

For any function f we define ∆(f)(x) := f(x + 1)− f(x) as the (upper) finite
difference of f . Then we set ∆0(f)(x) := f(x) and then iteratively
∆n(f)(x) := ∆(∆n−1(f))(x) for all integers n ≥ 1.

1.2.2 Symbols

Legendre symbol: for a ∈ Z and odd p ∈ P we define(
a
p

)
:=


1 when x2 ≡ a mod p has a solution x ∈ Z∗p
0 iff p|a
−1 when x2 ≡ a mod p has no solution x ∈ Zp

Then the Jacobi symbol for a ∈ Z and odd n =
∏

pvi
i (prime factorisation of n) is

defined as:
(

a
n

)
=
∏(

a
pi

)vi

.
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1.2 Definitions 1 SYMBOLS AND CONVENTIONS

Hilbert symbol: let v ∈ P ∪ {0,∞} and a, b ∈ Q∗v. Then

(a, b)v :=

{
1 iff x2 = ay2 + bz2 has a nontrivial solution (x, y, z) ∈ Q3

v

−1 otherwise

is the ”Hilbert symbol of a, b in respect to v” (nontrivial means here that not all
numbers are 0).

1.2.3 Counting function and densities

When A ⊂ N, then we can define a counting function a(n) := |{a ∈ A|a ≤ n}.
One special case of a counting function is the one that belongs to the primes P, which
is often called π.
With counting functions, some types of densities can be defined:

Lower asymptotic density: Ld(A) := lim infn→∞
a(n)

n

Upper asymptotic density: Ud(A) := lim supn→∞
a(n)

n

Asymptotic density (does not always exist): d(A) := limn→∞
a(n)

n

Shnirelman’s density: σ(A) := infn→∞
a(n)

n

Dirichlet’s density(does not always exist): δ(A) := lims→1+0

P
a∈A a−s

P
a∈N a−s

Ld(A) and Ud(A) are equal iff the asymptotic density d(A) exists and all three are
equal then and equal to Dirichlet’s density.

Often, density is meant in relation to some other set B (often the primes). Then
we need A ⊂ B ⊂ N with counting functions a, b and simply change n into b(n) and N
into B:

Lower asymptotic density: LdB(A) := lim infn→∞
a(n)
b(n)

Upper asymptotic density: UdB(A) := lim supn→∞
a(n)
b(n)

Asymptotic density (does not always exist): dB(A) := limn→∞
a(n)
b(n)

Shnirelman’s density: σB(A) := infn→∞
a(n)
b(n)

Dirichlet’s density(does not always exist): δB(A) := lims→1+0

P
a∈A a−s

P
a∈B a−s

Again the same relations as above hold.
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2 ELEMENTARY CONGRUENCES AND DIVISORS

2 Elementary congruences and divisors

Gauss’ theorem :
If a|bc and gcd(a, b) = 1, then a|c.

The Gauss’ theorem comes from :
Bezout’s identity :
The set {ax + by|x, y ∈ Z} is the set of all the multiples of gcd(a, b), that is to say :

aZ + bZ = gcd(a, b)Z

Fermat’s little theorem:
For any positive integer a and every prime p it is ap ≡ a mod p.

Generalization:
Theorem of Euler-Fermat:
If gcd(a, m) = 1 then aφ(m) ≡ 1 mod m.

Wilson’s theorem:
For prime p it is (p− 1)! ≡ −1 mod p.

Polynomial congruences:
For any polynom f with integral coefficients and any integers a, b with a ≡ b mod m
for some integer m it is f(a) ≡ f(b) mod m.

Lucas’ theorem:(
a
b

)
≡
∏k

i=0

(
ai

bi

)
mod p where ai’s and bi’s are the digits of a and b expressed in base p

(p is a prime) with leading zeros allowed.

Wolstenholme’s Theorem (number 1):(
2p
p

)
≡ 2 mod p3 for p ∈ P ≥ 5

Wolstenholme’s Theorem (number 2):
Let m

n
= 1 + 1

2
+ 1

3
+ ... + 1

p−1
with (m, n) = 1 and p is a prime greater than or equal to

5. Then p2 divides m.
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3 IDENTITIES

3 Identities

Identity of Sophie Germain:
For all integers a, b it is a4 + 4b4 = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab).

Sum-of-n-squares-identities:
- Two squares: (a2 + b2)(c2 + b2) = (ac− bd)2 + (ad + bc)2

- Four squares: (a2 + b2 + c2 + d2)(e2 + f 2 + g2 + h2) =
(ae− bf − cg− dh)2 + (af + be + ch− dg)2 + (ag + ce + df − bh)2 + (ah + de + bg− cf)2

- Eight squares:
(a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2)(m2 + n2 + o2 + p2 + q2 + r2 + s2 + t2) =
u2

1 + u2
2 + u2

3 + u2
4 + u2

5 + u2
6 + u2

7 + u2
8

where
u1 = am− bn− co− dp− eq − fr − gs− ht
u2 = bm + an + do− cp + fq − er − hs + gt
u3 = cm− dn + ao + bp + gq + hr − es− ft
u4 = dm + cn− bo + ap + hq − gr + fs− et
u5 = em− fn− go− hp + aq + br + cs + dt
u6 = fm + en− ho + gp− bq + ar − ds + ct
u7 = gm + hn + eo− fp− cq + dr + as− bt
u8 = hm− gn + fo + ep− dq − cr + bs + at
(see also http://www.geocities.com/titus piezas/DegenGraves1.htm )

Similar to the previous ones:
(a2 + nb2)(c2 + nd2) = (ac− nbd)2 + n(ad + bc)2

Theorem: (Leibnitz):

(x1 + x2 + · · ·+ xm)n =
∑

k1,...,km>0
k1+···+km=n

(
n

k1, k2, . . . , km

)
xk1

1 xk2
2 · · ·xkm

m .

The Binet–Caushy identity:
For reals ak, bk, ck, dk we have(

n∑
k=1

akck

)(
n∑

k=1

bkdk

)
−

(
n∑

k=1

akdk

)(
n∑

k=1

bkck

)
=

∑
1≤i<j≤n

(aibj − ajbi) (cidj − cjdi) .

Vandermonde’s identity:
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5 NUMBER THEORETIC SUMS

(
m + n

k

)
=

max{k,n}∑
l=0

(
m

k − l

)(
n

l

)

Theorem (Vandermonde):
For the determinant

Vn(a1, a2, . . . , an) =

∣∣∣∣∣∣∣∣∣
1 a1 · · · an−1

1

1 a2 · · · an−1
2

...
...

...
...

1 an · · · an−1
n

∣∣∣∣∣∣∣∣∣
we have

Vn(a1, a2, . . . , an) =
∏

1≤i≤j≤n

(aj − ai).

4 Floor function

On dealing with the floor function:
1. Let n, m ∈ N, then

m mod n = m− n ·
⌊m

n

⌋
Remark: Perhaps this could work with n,m ∈ R but who would use it ?

2. Let m ∈ N, n ∈ Z, x ∈ R, then

m−1∑
k=0

⌊
nk + x

m

⌋
= (m, n) ·

⌊x

d

⌋
+

m− 1

2
· n +

(m, n)−m

2

3. Let m ∈ N, x ∈ R, then

bm · xc =
m−1∑
k=0

⌊
x +

k

m

⌋

5 Number theoretic sums

Some number theorethic sum:
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5 NUMBER THEORETIC SUMS

1. Let n ∈ N
n∑

j=1

ϕ(j) =
3

π2
n2 + O (n log n)

n∑
j=1

ϕ(j) =
3

π2
n2 + O

(
n (log n)2/3 (log log n)4/3

)
2. Let n ∈ N

n∑
j=1

d (j) = n log n + (2γ − 1)n + O
(√

n
)

3. Let n, k ∈ N
n∑

j=1

σk(j) =

(
1

k + 1

∞∑
j=1

1

j1+k

)
n1+k + Rk(n)

where

Rk(n) =


O(n), when 0 < k < 1
O(n log n), when k = 1
O(nk), when k > 1

4. Let n > 2. Let Q(n) denote the number of squarefree integers less than n. Then

Q(n) =
n∑

j=1

µ2(j) =
6

π2
n2 + O

(√
n
)

5. Let f be a multiplicative function, if

S =
∞∑

n=1

f(n)

converges absolutely, then

∏
p

(
∞∑

k=0

f
(
pk
))

=
∞∑

n=1

f(n)

where p runs through primes.

6. If f is completely multiplicative then

∞∑
n=1

f(n) =
∏

p

1

1− f(p)

where p runs through primes.
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5 NUMBER THEORETIC SUMS

7. Let f be a multiplicative function, then∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p))

∑
d|n

µ2(d)f(d) =
∏
p|n

(1 + f(p))

where p is prime.

8. Let n ∈ N, then ∑
d|n

µ(d) =

{
1, if n = 1
0, if n > 1

9. Let n ∈ N, then
n∑

j=1

1

ϕ(j)
= C1 log n + C2 + O

(
log n

n

)
where C1 > 0 and C2 are real constants.

10. Let n ∈ N, then

n∑
j=1

ω(j) = n log log n + Bn + O

(
n

log n

)
n∑

j=1

Ω(j) = n log log n + (B + C)n + O

(
n

log n

)
n∑

j=1

ω2(j) = n (log log n)2 + O (n log log n)

where B, C are constants.

11. Let n ∈ N, then

(log log x)− 1 6
∑
p≤x

1

p
= log log x + B + O

(
1

log x

)
where p runs through primes and B is a constant.∑

k≥2,pk≤x

1

pk
= C + O

(
1

log x

)
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5 NUMBER THEORETIC SUMS

where p runs through primes and C is a constant.

12. Let n ∈ N, then ∑
n≤x

r2(n) = πx + O
(
x1/3 log x

)
Let n > 2 be a positive integer, then∑

p≤n

log p

p
= log n + O(1)

where p runs through primes.

13. Let z ∈ C, and n ∈ N, then∏
p≤n

(
1 +

z

p

)
= A(z) (log n)z ·

(
1 + O

(
1

log n

))
for A(z) a constant depending on z.

14. Let n ∈ N, then ∑
d|n

1

d
>

n

2ϕ(n)

15. Let k, l be two positive integers with (k, l) = 1, then∑
p ≤ x

p ≡ l( mod k)

1

p
=

1

ϕ(k)
log log x + O(1)

where p runs through primes.

16. Let f be an additive function and n a positive integer, then

∑
m≤n

(
|f(m)−

∑
p≤n

f(p)

p
|

)2

6 Cn
∑
pk≤n

|f
(
pk
)
|2

pk

where p runs through primes, and C is a constant (C 6 32).

17. Let f be a strongly additive function, and n a positive integer. Then

∑
m≤n

(
|f(m)−

∑
p≤n

f(p)

p
|

)2

6 2Cn
∑
p≤n

|f(p)|2

p
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6 ARITHMETIC FUNCTIONS

where p runs through primes and C is a constant (C 6 32).

Some other sums 1. Abelian summation

Let (aj)
n
j=1 , (bj)

n
j=1 be a finite sequence of complex numbers. Then

n∑
i=1

aibi =

(
n∑

i=1

ai

)
bn −

n−1∑
m=1

((
m∑

i=1

ai

)
(bm+1 − bm)

)

2. Let (am)n
m=1, (bm)n

m=1 be two finite sequence of real numbers. Then(
n∑

k=1

ak

)
·

(
n∑

k=1

bk

)
= n

n∑
k=1

akbk −
n∑

k=2

k−1∑
j=1

(ak − aj) · (bk − bj)

Or equivalently(
n∑

k=1

ak

)
·

(
n∑

k=1

bk

)
= n

n∑
k=1

akbk −
∑

1≤j<k≤n

(ak − aj) · (bk − bj)

3. Let n ∈ N

ln n + γ +
1

2n
6

n∑
j=1

1

j
= ln n + γ +

1

2n
+ O

(
1

n2

)
Where γ = lim

n→∞

(∑n
j=1

1
j
− ln n

)
is the gamma constant.

6 Arithmetic functions

1. Let n ∈ N, then

ϕ(n) = n
∏
p|n

(
1− 1

p

)
=
∑
d|n

µ(d)
n

d

2. Let n ∈ N, then
1

ϕ(n)
=

1

n

∑
d|n

µ2(d)

ϕ(d)

3. Let n ∈ N, then

0, 92129 · n

log n
< π(n) < 1, 1055 · n

log n
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7 SUMS OF SQUARES

4. Let n ∈ N, then
6

π2
n2 ≤ σ(n)ϕ(n) ≤ n2

5. Let n > 2 be a positive integer, then

ϕ(n) >
cn

log log n

for some positive constant c > 0.

6. For all composite numbers n it holds

ϕ(n) ≤ n−
√

n

7. Let pn be the n-th prime number, then

an log n 6 pn 6 bn log n

for two constants 0 < a < b.

8. Let n be a positive integer, then

ω(n) 6 lg2 n

9. Let n be a positive integer, then

d(n) 6 2
√

n

7 Sums of squares

2) Sum of two squares:
A positive integer n can be represented as sum of two perfect squares iff all prime
factors p ≡ 3 mod 4 of n occur an even number of times in the factorisation of n. n
can be written as sum of squares 6= 0 iff the previous condition holds and it has at
least one prime factor ≡ 1 mod 4 or v2(n) is odd.
There are exactly

r2(n) = 4 ·
∑
d∈N
d|n

d≡1 mod 2

(−1)
d−1
2 = 4 ·

∏
p∈P

p≡1 mod 4

(vp(n) + 1)
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8 P-ADIC NUMBERS, HASSE-MINKOWSKI

different solutions (a, b) ∈ Z2 to n = a2 + b2.

3) Sum of three squares:
Write n as n = 4ku, k, u ∈ N0 with 4 - u (but u can be even). Then n can be written
as sum of three squares iff u 6≡ 7 mod 8.

4) Sum of four squares:
Every positive interger can be written as sum of four squares, and there are

r4(n) = 8 ·
∑
d∈N
4-d|n

d =

{
8σ(n) iff n is odd

24σ(n) iff n is even

different solutions (a, b, c, d) ∈ Z4 to n = a2 + b2 + c2 + d2.

5) Sum of five squares:
As corollary to 4) every integer can be written as sum of five squares, but there is one
more thing to say: except of some small numbers (all < 100), every positive integer
can be written as sum of five nonzero perfect squares.

8) Sum of eight squares:
There are

r8(n) = 16 ·
∑
d∈N
d|n

(−1)n−dd3

different solutions (a, b, c, d, e, f, g, h) ∈ Z8 to n = a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2.

8 p-adic numbers, Hasse-Minkowski

p-adic numbers

The p-adic integers (for that and only that post written by Zp) are isomorphic (or by
definition identical) to:
a) the (formal) series

∑∞
k=0 akp

k with ak ∈ {0, 1, 2, ..., p− 1}.
b) the cauchy-sequences (bk)k∈N0

of integers in respect to the p-adic valuation

|·|p = p−vp(·).
c) the projective limit lim←n Z/pnZ.

The last one gives that a polynomial equation p(x) = p(x1, x2, ..., xn) has a solution in
Zp iff it has one mod any power of p.
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8 P-ADIC NUMBERS, HASSE-MINKOWSKI

The p-adic numbers Qp are isomorphic (or by definition identical) to:
a) the (formal) series

∑∞
k=−s akp

k with ak ∈ {0, 1, 2, ..., p− 1}.
b) the rational cauchy-sequences (bk)k∈N0

in respect to the p-adic valuation

|·|p = p−vp(·).
c) the field of quotients of Zp.

Some properties of the Hilbert symbol (holding for any v ∈ P ∪ {0,∞} and
a, b, c ∈ Q∗v):
- (a, b)v = (b, a)v

- (a, 1)v = 1 = (1, b)v

- (a, bc2)v = (a, b)v = (ac2, b)v

- (a, bc)v = (a, b)v · (a, c)v

Product formula for the Hilbert symbols:
Let a, b be rational. Then (a, b)v = 1 for all but finetely many v ∈ P ∪ {∞} and:∏

v∈P∪{∞}

(a, b)v = 1

Approximation of the Hilbert Symbols: Let a finite set {a1, a2, ..., ak} of rational
numbers and then for all j ∈ K := {1, 2, ..., k} and v ∈ P ∪ {∞} an ej,v ∈ {±1} be
given such that:
- all but finetely many ej,v are equal to 1
- for any j ∈ K it holds

∏
v∈P∪{∞} ej,v = 1

- there is an xv ∈ Q∗v such that (aj,v, xv)v for all j ∈ K
Then there exists a rational number x with (aj,v, x)v = ej,v for all (j, v).

The theorem of Hasse-Minkowski:
Let f(x) = f(x1, x2, ..., xn) = 0 be any homogenous polynomial equation of degree 2
(so f is a polynomial where every single monomial has degree 2).
Then there exists a nontrivial (not all numbers = 0) rational solution x ∈ Qn to
f(x) = 0 iff this equation has a nontrivial solution x ∈ Qn

v for all v ∈ P ∪ {∞}.

Corollary: when f has also integer coefficients, the equation f(x) = has a nontrivial
integral solution iff it has a solution mod any integer (where by the Chinese
Remainder Theorem we can restrict to perfect powers of primes).
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9 LEGENDRE’S AND JACOBI’S SYMBOLS, QUADRATIC RECIPROCITY LAW

9 Legendre’s and Jacobi’s symbols, quadratic

reciprocity law

Basic facts on the Legendre’s and Jacobi’s symbols. The quadratic
reciprocity law.

Theorem 1.
If a ≡ b (mod p), then

(
a
p

)
=
(

b
p

)
.

Theorem 2.
For all a 6≡ 0 (mod p) we have

(
a2

p

)
= +1.

Theorem 3 (Euler’s criteria).

a
p−1
2 ≡

(
a
p

)
(mod p).

Theorem 4. (
−1

p

)
= (−1)

p−1
2 =

{
+1, p = 1 (mod 4),
−1, p = 3 (mod 4).

Theorem 5. (
a1a2...an

p

)
=

(
a1

p

)
...

(
an

p

)
.

Theorem 6 (Gauss criteria).
For all a 6= 0 (mod p), p > 2, the following equality holds(

a

p

)
= (−1)l,

where l = |{ak | 1 ≤ k ≤ p−1
2

, ak (mod p) ≥ p+1
2
}|.

Theorem 7. (
2

p

)
= (−1)

p2−1
8 =

{
+1, p = 8k ± 1,
−1, p = 8k ± 3.

Theorem 8 (The quadratic reciprocity law).
For all odd primes p 6= q the following equality holds:(

p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .
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10 REPRESENTATIONS

Definition.
Let odd m = p1p2...ps, where pi are prime number, not necessary distinct, (a, m) = 1.

Then Jacobi’s symbols
(

a
m

)
=
(

a
p1

)
...
(

a
ps

)
, where

(
a
pi

)
are Legendre’s symbols.

Theorem 1’.
The same as Theorem 1 for Legendre’s symbol.

Theorem 2’.
The same as Theorem 2 for Legendre’s symbol.

Theorem 4’. (
−1

m

)
= (−1)

m−1
2 =

{
+1, m = 1 (mod 4),
−1, m = 3 (mod 4).

Theorem 5’. (a1...as

m

)
=
(a1

m

)
...
(as

m

)
.

Theorem 7’. (
2

m

)
= (−1)

m2−1
8 =

{
+1, m = 8k ± 1,
−1, m = 8k ± 3.

Theorem 8’ (The reciprocity law for Jacobi’s symbols).
Let m, n be odd numbers, m,n > 1, then( n

m

)(m

n

)
= (−1)

n−1
2
·m−1

2 .

10 Representations

In base b:
Every n ∈ N0 can be uniquely written in base b, meaning n =

∑∞
k=0 akb

k with all
ak ∈ {0, 1, 2, ..., b− 1} and all but finetely many ak = 0.

Zeckendorf’s (base Fibonacci) representation:
Every n ∈ N can be uniquely expressed as a sum of Fibonacci numbers no two of
which are consecutive.

Waring’s Theorem:

18



12 PRIMES

Let f : N0 → N0 by a polynomial and let d = gcd(f(0), f(1), f(2), ...). Then every
sufficient large multiple of d can be expressed as sum of a bounded number of values
of f , or in other words: there is a k only depending on f such that for any n > N (N
some constant) there are a1, a2, ..., ak ∈ N0 with dn = f(a1) + f(a2) + ... + f(ak).
Especially when 0 and 1 are in the range of f , then every n ∈ N0 can be written as a
bounded number of values of f . Addionally, for any m there is a k such that any
n ∈ N0 is the sum of k non-negative m-th powers of integers.

Related to Waring’s Theorem:
- every positive integer is the sum of 4 perfect squares (see also the Sum of Squares
section).

- every positive integer is the sum of 3 triangular numbers (those of type n(n+1)
2

).
- every integer is the sum of 9 non-negative perfect cubes.
- every integer is the sum of 5 perfect cubes (they are allowed to be negative). It’s an
openen problem if 4 cubes suffice.

11 p-adic valuations

Let p be any fixed prime for this section.

Properties of vp:
For all rational a, b:
vp(ab) = vp(a) + vp(b)
Non-archimead triangle inequality: vp(a + b) ≥ min(vp(a), vp(b))

Hensel’s lemma:
ps||a− 1, pk||b, s ≥ 1 ⇒ ps+k||ab − 1, or in other words vp(a

b − 1) = vp(a− 1) + vp(b)
for vp(a− 1) ≥ 1, with exception of the case p = 2, s = 1.

Kummer’s theorem:
If ps|

(
n

n−k

)
then s does not exceed the number of carries needed when the numbers

n− k and k are added when expressed in base p.

12 Primes

Bertrands postulate

19



13 ADDITIVE PROPERTIES

There is always a prime between n and 2n (n ∈ N).

Chebychevs Theorem:
There are constants a, b, 0 < a < b such that for all big n (e.g. a = log(2), b = log(4)
for n ≥ 2) we have

a · n ≤ π(n) · log(n) ≤ b · n

Prime number theorem
There are asymptotically x

log(x)
primes ≤ x.

Dirichlet’s theorem on primes in arithmetic progression:
In every arithmetic progression an + b with gcd(a, b) = 1 there are infinitely many
primes. More exactly, the asymptotic and Dirichlet’s densities of these primes in the
set of all primes are 1

φ(n)
.

Zsigmondy’s Theorem:
Let a > b ≥ 1 and be coprime integers. Then for any n ∈ N there is a prime p dividing
an − bn but not dividing ak − bk for all k < n with two exceptions: a)
a = 2, b = 1, n = 6 b) a + b a power of 2 and n = 2

13 Additive properties

The Theorem of Chevalley-Warning:
Let be p prime and f1, f2, ..., fm be m polynomials with integer coefficients in the n
variables x = (x1, x2, ..., xn). If

∑m
i=1 deg(fi) < n, then the number of solutions of

f1(x) ≡ 0 mod p

f2(x) ≡ 0 mod p

...

fm(x) ≡ 0 mod p

is divisible by p (this generalizes to any finite field).

The Cauchy-Davenport Theorem:
Let p be prime and A, B ⊂ Z/pZ. Then the following inequality holds for the sumset
A + B:

|A + B| ≥ min(p, |A|+ |B| − 1)

20



14 MULTIPLICATIVE FUNCTIONS

Vosper’s Theorem (the case of equality in the Cauchy-Davenport Theorem):
With the conditions above and A + B 6= Z/pZ, we have |A + B| = |A|+ |B| − 1 if and
only if one of the following is true:
a) |A| = 1 or |B| = 1
b) |A + B| = p− 1 and B = (Z/pZ)\(c− A), where c is the only one residue class
6∈ A + B
c) A and B are (seen mod p) arithmetic progressions with the same common
difference

Some results that follow from the above:

The Erdös-Ginzburg-Ziv Theorem:
Let n ∈ N and 2n− 1 integers be given. Then we can choose exactly n of them such
that their sum is divisible by n.

Sums of k-th powers mod p:
Let p be prime and k ∈ N. Then mod p any number is the sum of k k-th powers, or
in other words: for any n ∈ Z, there are integers a1, a2, a3, ..., ak with
n ≡ ak

1 + ak
2 + ak

3 + ... + ak
k mod p.

Sharper version of the previous one:
With the same conditions as before, extended by p ≥ 5, 1 < k < p−1

2
and k|p− 1 (it’s

clear that the condition k|p− 1 is no restriction), and any n ∈ N we have that there
are at least min

(
p, (2n− 1)p−1

k
+ 1
)

residues that are the sum of n k-th powers.

14 Multiplicative functions

Theorem(Ramanujan):
For (m, n) ∈ N2: ∑

d|gcd(m,n)

dµ(
n

d
) =

( n
gcd(m,n)

)φ(n)

φ( n
gcd(m,n)

)
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16 FINITE DIFFERENCES

15 Irreducibility of polynomials

Theorem (Eisenstein) Suppose we have the following polynomial with integer
coefficients:

f(x) = anx
n + · · ·+ a1x + a0.

If there exists a prime p such that p|aj, j ∈ {0, 1, 2, . . . , n− 1}, p - an and p2 - a0,
then f(x) is irreducible.

16 Finite differences

Formula for ∆n(f):

∆nf(x) =
n∑

r=0

(−1)n−r

(
n

r

)
f(x + r)

Effect on degrees of polynomials:
When P is a polynomial of degree n, then ∆k(P ) is a polynomial of degree n− k,
where negative degrees mean the constant polynomial 0 everytime.
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