
Olympiad Corner 
 
The 41st International Mathematical 
Olympiad, July 2000: 

Time allowed: 4 hours 30 minutes 
Each problem is worth 7 points. 
 
Problem 1.  Two circles 1Γ  and 2Γ  
intersect at M and N.  Let  be the 
common tangent to 1Γ  and 2Γ  so that M 
is closer to  than N is.  Let  touches 1Γ  
at A and 2Γ  at B.  Let the line through M 
parallel to  meets the circle 1Γ  again at 
C and the circle 2Γ  at D.  Lines CA and 
DB meet at E; lines AN and CD meet at P; 
lines BN and CD meet at Q.  Show that EP 
= EQ. 
 
Problem 2.  Let a, b, c be positive real 
numbers such that abc = 1.  Prove that 

1)/11)(/11)(/11( ≤+−+−+− accbba  
 
Problem 3.  Let 2≥n  be a positive 
integer.  Initially, there are n fleas on a 
horizontal line, not all at the same point.  
For a positive real number λ , define a 
move as follows: 
Choose any two fleas, at points A and B, 
with A to the left of B; let the flea at A 
jump to the point C on the line to the line 
to the right of B with BC/AB = λ . 

(continued on page 4) 

In comparing two similar expressions, 
often they involve a common function.  
To see which expression is greater, the 
shape of the graph of the function on an 
interval is every important.  A function f 
is said to be convex on an interval I if for 
any two points ( 1x , f( 1x )) and ( 2x , 
f( 2x )) on the graph, the segment joining 
these two points lie on or above the graph 
of the function over [ 1x , 2x ].  That is, 

))1(( 21 txxtf +− )()( )1( 21 xtfxft +−≤  

for every t in [0, 1].  If f is continuous on I, 
then it is equivalent to have 
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for every 1x , 2x  in I.  If furthermore f is 
differentiable, then it is equivalent to have 
a nondecreasing derivative.  Also, f is 
strictly convex on I if f is convex on I and 
equality holds in the inequalities above 
only when 1x  = 2x .  We say a function g 
is concave on an interval I if the 
function –g is convex on I.  Similarly, g is 
strictly concave on I if –g is strictly 
convex on I. 
The following are examples of strictly 
convex functions on intervals: 

px  on [0, ∞ ) for p > 1, 
px  on (0, ∞ ) for p < 0, 

xa  on ( −∞ , ∞ ) for a > 1, 

tan x on [0, )
2
π . 

The following are examples of strictly 
concave functions on intervals: 

px  on [0, ∞ ) for 0 < p < 1, 
xalog  on (0, ∞ ) for a > 1, 

cos x on [ 2/  ,2/ ππ− ], 
sin x on [0, π ]. 

The most important inequalities 
con-cerning these functions are the 
following. 
Jensen’s Inequality.  If f is convex on an 
interval I and nxxx  ..., , , 21  are in I, then 
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For strictly convex functions, equality 
holds if and only if nxxx === 21 . 
Generalized Jensen’s Inequality.  Let f 
be continuous and convex on an interval I.  
If nxx  ..., ,1  are in I and nttt  ..., , ,0 21<  < 
1 with 121 =+++ nttt , then 

)( 2211 nn xtxtxtf +++  

)()()( 2211 nn xftxftxft +++≤  

(with the same equality condition for 
strictly convex functions). 
Jensen’s inequality is proved by doing a 
forward induction to get the cases n = k2 , 
then a backward induction to get case n – 
1 from case n by taking nx  to be the 
arithmetic mean of 1x , 2x , …, 1−nx .  For 
the generalized Jensen’s inequality, the 
case all it ’s are rational is proved by 
taking common denominator and the other 
cases are obtained by using continuity of 
the function and the density of rational 
numbers. 
There are similar inequalities for concave 
and strictly concave functions by 
reversing the inequality signs. 
Example 1.  For a triangle ABC, show that 

sin A + sin B + sin C 
2

33≤  and 

determine when equality holds. 
Solution.  Since )(xf  = sin x is strictly 
concave on [0, π ], so 
 

  sin A + sin B + sin C 
 = )()()( CfBfAf ++  
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Equality holds if and only if A = B = C = 
π /3, i.e. ABC∆  is equilateral. 
Example 2.  If a, b, c > 0 and 

a + b + c = 1, 
then find the minimum of 
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Solution.  Note 0 < a, b, c < 1.  Let )(xf  
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x  on I = (0, 1), then f is strictly 

convex on I because its second derivative 
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is positive on I.  By Jensen’s inequality, 

         




 ++=

3
3

3
10

9

10 cbaf  

      )()()(  cfbfaf ++≤  

   = 
1010 11






 ++





 +

b
b

a
a

101





 ++

c
c . 

So the minimum is 910 3/10 , attained 
when a = b = c = 1/3. 
Example 3.  Prove that AM-GM 
in-equality, which states that if 1a , 

2a , …, 0≥na , then 

n n
n aaa

n
aaa

21
21     ≥

+++
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Solution.  If one of the ia ’s is 0, then the 
right side is 0 and the inequality is clear.  
If 1a , 2a , …, 0>na , then since )(xf  = 
log x is strictly concave on (0, ∞ ), by 
Jensen’s inequality, 
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Exponentiating both sides, we get the 
AM-GM inequality. 
Remarks.  If we use the generalized 
Jensen’s inequality instead, we can get the 
weighted AM-GM inequality.  It states 
that if 1a , …, 0>na  and 0 < 1t , …, nt  
< 1 satisfying 1t ++ nt = 1, then 1t 1a  

++ nt na ntn
t aa 1
1≥  with equality if 

and only if all ia ’s are equal. 
Example 4.  Prove the power mean 
inequality, which states that for 1a , 

2a , …, 0>na  and s < t, if 
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then ts SS ≤ .  Equality holds if and only 
if 1a = 2a = na= . 
Remarks.  1S  is the arithmetic mean (AM) 
and 1−S  is the harmonic mean (HM) and 

2S  is the root-mean-square (RMS) of 1a , 
2a , na, .  Taking limits, it can be shown 

that ∞+S  is the maximum (MAX), 0S  is 
the geometric mean (GM) and ∞−S  is the 
minimum (MIN) of 1a , 2a , na, . 
 

Solution.  In the cases 0 < s < t or s < 0 < t, 
we can apply Jensen’s inequality to f(x) = 

stx / .  In the case s < t < 0, we let ib  = 
1/ ia  and apply the case 0 < -t < -s.  The 
other cases can be obtained by taking limit 
of the cases proved. 
Example 5.  Show that for x, y , z > 0, 
  555 zyx ++  
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Solution.  Let a = x , b = y , c = z , 
then the inequality becomes 

abc
cbacba

131313
101010    ++≤++ . 

By the power mean inequality, 
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Example 6.  Prove Hölder’s inequality, 

which states that if p, q > 1 satisfy 
qp
11 +  

= 1 and 1a , …, na , 1b , …, nb  are real 
(or complex) numbers, then 
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(The case p = q = 2 is the Cauchy-Schwarz 
inequality.) 
 

Solution.  Let 
p

n
p aaA ++=   1 . 

q
n

p bbB ++=   1 . 
If A or B is 0, then either all ia ’s or all 

ib ’s are 0, which will make both sides of 
the inequality 0. 
So we need only consider the case A ≠  0 
and B ≠  0.  Let 1t  = 1/p and 2t  = 1/q, 
then 0 < 1t , 2t  < 1 and 1t  + 2t  = 1.  Let 

ix  = Aa p
i /  and iy = Bb q

i / , then 
,11 =++ nxx      11 =++ nyy . 

Since )(xf  = xe  is strictly convex on 
( −∞ , ∞ ), by the generalized Jensen’s 
inequality, 
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Adding these for i = 1, …, n, we get 
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Example 7.  If a, b, c, d > 0 and 
32222 )( badc +=+ , 

then show that 

1
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Solution 1.  Let 

cax /3
1 = ,    dbx /3

2 = , 

acy =1 ,    bdy =2 . 
By the Cauchy-Schwarz inequality, 
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 bdac +≥ . 
Cancelling ac + bd on both sides, we get 
the desired inequality.  

Solution 2.  Let 
3/23 )/( cax = ,    3/23 )/( dby = . 

By the p = 3, q = 3/2 case of Hölder’s 
inequality, 

    22 ba +  

 ydxc )()( 3/23/2 +=  

 3/22/32/33/122 )()( yxdc ++≤  

Cancelling 3/12222 )( dcba +=+  on 

both sides, we get 2/32/31 yx +≤  = 

)/()/( 33 dbca + . 
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Problem Corner 
 
We welcome readers to submit solutions 
to the problems posed below for 
publication consideration.  Solutions 
should be preceeded by the solver’s 
name, home address and school 
affiliation.  Please send submissions to 
Dr. Kin Y. Li, Department of 
Mathematics, Hong Kong University of 
Science & Technology, Clear Water Bay, 
Kowloon.  The deadline for submitting 
solutions is December 10, 2000. 
 
Problem 111.  Is it possible to place 100 
solid balls in space so that no two of them 
have a common interior point, and each 
of them touches at least one-third of the 
others?  (Source: 1997 Czech-Slovak 
Match) 
 
Problem 112.  Find all positive integers 
(x, n) such that 12 ++ nnx  is divisor of 

.12 11 ++ ++ nnx   (Source: 1998 Romanian 
Math Olympiad) 
 
Problem 113.  Let a, b, c > 0 and abc ≤  
1.  Prove that 

.  cba
b
c

a
b

c
a ++≥++  

(Hint: Consider the case abc = 1 first.) 
 
Problem 114.  (Proposed by Mohammed 
Aassila, Universite Louis Pasteur, 
Strasbourg, France)  An infinite 
chessboard is given, with n black squares 
and the remainder white.  Let the 
collection of black squares be denoted by 
G0.  At each moment t = 1, 2, 3, …, a 
simultaneous change of colour takes 
place throughout the board according to 
the following rule: every square gets the 
colour that dominates in the three square 
configuration consisting of the square 
itself, the square above and the square to 
the right.  New collections of black 
squares G1, G2, G3, … are so formed.  
Prove that Gn is empty. 
 
Problem 115.  (Proposed by Mohammed 
Aassila, Universite Louis Pasteur, 
Strasbourg, France)  Find the locus of the 
points P in the plane of an equilateral 
triangle ABC for which the triangle 
formed with lengths PA, PB and PC has 
constant area. 
 

***************** 
Solutions 

***************** 

Problem 106.  Find all positive integer 
ordered pairs (a, b) such that  

6) ,(lcm) ,gcd( ++=+ bababa , 

where gcd stands for greatest common 
divisor (or highest common factor) and 
lcm stands for least common multiple. 
 
Solution.  CHAN An Jack and LAW Siu 
Lun Jack (Mei Kei College, Form 6), 
CHAN Chin Fei (STFA Leung Kau Kui 
College), CHAO Khek Lun Harold (St. 
Paul’s College, Form 6), CHAU Suk Ling 
(Queen Elizabeth School, Form 6), 
CHENG Man Chuen (Tsuen Wan 
Government Secondary School, Form 7), 
FUNG Wing Kiu Ricky (La Salle College), 
HUNG Chung Hei (Pui Ching Middle 
School, Form 5), KO Man Ho (Wah Yan 
College, Kowloon, Form 7), LAM Shek 
Ming Sherman (La Salle College, Form 5), 
LAW Ka Ho (HKU, Year 1), LEE Kevin 
(La Salle College), LEUNG Wai Ying 
(Queen Elizabeth School, Form 6), MAK 
Hoi Kwan Calvin (La Salle College), OR 
Kin (SKH Bishop Mok Sau Tseng 
Secondary School), POON Wing Sze 
Jessica (STFA Leung Kau Kui College, 
Form 7), TANG Sheung Kon (STFA 
Leung Kau Kui College, Form 6), TONG 
Chin Fung (SKH Lam Woo Memorial 
Secondary School, Form 6), WONG Wing 
Hong (La Salle College, Form 3) and 
YEUNG Kai Shing (La Salle College, 
Form 4). 
 
Let m = gcd(a, b), then a = mx and b = my 
with gcd(x, y) = 1.  In that case, lcm(a, b) = 
mxy.  So the equation becomes m + mxy = 
mx + my + 6.  This is equivalent to m(x – 
1)(y – 1) = 6.  Taking all possible positive 
integer factorizations of 6 and requiring 
gcd(x, y) = 1, we have (m, x, y) = (1, 2, 7), 
(1, 7, 2), (1, 3, 4), (1, 4, 3), (3, 2, 3) and (3, 
3, 2).  Then (a, b) = (2, 7), (7, 2), (3, 4), (4, 
3), (6, 9) and (9, 6).  Each of these is easily 
checked to be a solution. 
 

Other recommended solvers:  CHAN Kin 
Hang Andy (Bishop Hall Jubilee School, 
Form 7) and CHENG Kei Tsi Daniel (La 
Salle College, Form 6). 
 
Problem 107.  For a, b, c > 0, if abc = 1, 
then show that 
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Solution 1.  CHAN Hiu Fai Philip 
(STFA Leung Kau Kui College, Form 7), 
LAW Ka Ho (HKU, Year 1) and TSUI 
Ka Ho Willie (Hoi Ping Chamber of 
Commerce Secondary School, Form 7). 
 
By the AM-GM inequality and the fact 

abc = 1, we get  
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Solution 2.  CHAN Kin Hang Andy 
(Bishop Hall Jubliee School, Form 7), 
CHAO Khek Lun Harold (St. Paul’s 
College, Form 6), CHAU Suk Ling 
(Queen Elizabeth School, Form 6), 
CHENG Kei Tsi (La Salle College, Form 
6), CHENG Man Chuen (Tsuen Wan 
Government Secondary School, Form 7), 
LAW Ka Ho (HKU, Year 1) and 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6). 
 
Without loss of generality, assume 

cba ≥≥ .  Then cba /1/1/1 ≤≤ .  
By the rearrangement inequality, 
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Also, by the AM-GM inequality, 
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c
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Adding these two inequalities, we get the 
desired inequality. 
 
Generalization:  Professor Murray S. 
Klamkin (University of Alberta, Canada) 
sent in a solution, which proved a 
stronger inequality and later generalized 
it to n variables.  He made the 
sub-stitutions ax =1 , bx =2 , 

cx =3  to get rid of square roots and let 
Sm = mx1  + mx2 + mx3  so that the inequality 
became 
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By the AM-GM inequality, ≥mS  

3
3213 mmm xxx = 3.  Since 2

12 )3/(3/ SS ≥  

3/1S≥  by the power mean inequality, 
we would get a stronger inequality by 
replacing S1 + 3 by 2S2.  Rearranging 
terms, this stronger inequality could be 
rewritten as S2(S-1 – 3) ≥  S1 – S2.  Now 
the left side is nonnegative, but the right 
side is nonpositive.  So the stronger 
inequality is true.  If we replace 3 by n 
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and assume ,11 =nxx  then as above, 
we will get mmm SSnSS −≥−− 11 )(  by 
the AM-GM and power mean 
inequalities.  Expanding and regrouping 
terms, we get the stronger inequality in n 
variables, namely 

.)1( 
1 1 m

n

i m
i

m
im Sn

x
xS −≥−

∑
= −  

Other recommended solvers:  CHAN 
Chin Fei (STFA Leung Kau Kui College), 
LAM Shek Ming Sherman (La Salle 
College, Form 5), LAW Hiu Fai (Wah Yan 
College, Kowloon, Form 7), LEE Kevin 
(La Salle College, Form 5), MAK Hoi 
Kwan Calvin (La Salle College), OR Kin 
(SKH Bishop Mok Sau Tseng Secondary 
School) and YEUNG Kai Shing (La Salle 
College, Form 4). 
 
Problem 108.  Circles C1 and C2 with 
centers O1 and O2 (respectively) meet at 
points A, B.  The radii O1B and O2B 
intersect C1 and C2 at F and E.  The line 
parallel to EF through B meets C1 and C2 
at M and N, respectively.  Prove that MN = 
AE + AF.  (Source: 17th Iranian 
Mathematical Olympiad) 
 

 
 
Solution.  YEUNG Kai Shing (La Salle 
College, Form 4). 
 
As the case F = E = B would make the 
problem nonsensible, the radius O1B of C1 
can only intersect C2, say at F.  Then the 
radius O2B of C2 intersect C1 at E.  Since 
∆ EO1B and ∆ FO2B are isosceles, 

FEO1∠  = FBE∠− 2 180  = FEO2∠ .  
Thus, E, O2, O1, F are concyclic.  Then 

2/)360(  1BAOAEB ∠−=∠  = 180  
- .212 EBMEFOFOO ∠=∠=∠   So 
arcAMB = arcMAE.  Subtracting minor 
arcAM from both sides, we get minor 
arcMB = minor arcAE.  So MB = AE.  
Similarly, NB = AF.  Then MN = MB + 
NB = AE + AF. 
 
Other recommended solvers: Chan Kin 
Hang Andy (Bishop Hall Jubilee School, 
Form 7), CHAU Suk Ling (Queen 
Elizabeth School, Form 6) and LEUNG 
Wai Ying (Queen Elizabeth School, Form 
6). 
 

Problem 109.  Show that there exists an 
increasing sequence a1, a2, a3, … of 
positive integers such that for every 
nonnegative integer k, the sequence k + a1, 
k + a2, k + a3, … contains only finitely 
many prime numbers. (Source: 1997 
Math Olympiad of Czech and Slovak 
Republics) 
 
Solution.  CHAU Suk Ling (Queen 
Elizabeth School, Form 6), CHENG Kei 
Tsi (La Salle College, Form 6), CHENG 
Man Chuen (Tsuen Wan Government 
Secondary School, Form 7), LAM Shek 
Ming Sherman (La Salle College, Form 
5), LAW Hiu Fai (Wah Yan College, 
Kowloon, Form 7), LAW Ka Ho (HKU, 
Year 1) and YEUNG Kai Shing (La Salle 
College, Form 4). 
 
Let an = n! + 2.  Then for every 
non-negative integer k, if n ≥  k + 2, then k 
+ an is divisible by k + 2 and is greater than 
k + 2, hence not prime. 
 
Other commended solvers:  CHAN Kin 
Hang Andy (Bishop Hall Jubliee School, 
Form 7), KO Man Ho (Wah Yan College, 
Form 7), LEE Kevin (La Salle College, 
Form 5) and LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 
Problem 110.  In a park, 1000 trees have 
been placed in a square lattice.  
Determine the maximum number of trees 
that can be cut down so that from any 
stump, you cannot see any other stump.  
(Assume the trees have negligible radius 
compared to the distance between 
adjacent trees.)  (Source: 1997 German 
Mathematical Olympiad) 
 
Solution.  CHAN Kin Hang Andy 
(Bishop Hall Jubliee School, Form 7), 
CHAO Khek Lun Harold (St. Paul’s 
College, Form 6), Chau Suk Ling (Queen 
Elizabeth School, Form 6), CHENG Kei 
Tsi (La Salle College, Form 6), CHENG 
Man Chuen (Tsuen Wan Government 
Secondary School, Form 7), FUNG Wing 
Kiu Ricky (La Salle College), LAM 
Shek Ming Sherman (La Salle College, 
Form 5), LAW Ka Ho (HKU, Year 1), 
LEE Kevin (La Salle College, Form 5), 
LEUNG Wai Ying (Queen Elizabeth 
School, Form 6), LYN Kwong To and 
KO Man Ho (Wah Yan College, 
Kowloon, Form 7), POON Wing Sze 
Jessica (STFA Leung Kau Kui College, 
Form 7) and YEUNG Kai Shing (La 
Salle College, Form 4). 
 
In every 22×  subsquare, only one tree 
can be cut.  So a maximum of 2500 trees 

can be cut down.  Now let the trees be at 
(x, y), where x, y = 0, 1, 2, …, 99.  If we 
cut down the 2500 trees at (x, y) with 
both x and y even, then the condition will 
be satisfied.  To see this, consider the 
stumps at (x1, y1) and (x2, y2) with x1, y1, 
x2, y2 even.  The cases x1 = x2 or y1 = y2 
are clear.  Otherwise, write (y2 – y1)/(x2 – 
x1) = m/n in lowest term.  Then either m 
or n is odd and so the tree at (x1 + m, y1 + 
n) will be between (x1, y1) and (x2, y2). 
 

Other recommended solvers: NG Chok 
Ming Lewis (STFA Leung Kau Kui 
College, Form 7). 
 

 
 
Olympiad Corner 

(continued from page 1) 
 
Problem 3.  (cont’d) 
Determine all values of λ  such that, for 
any point M on the line and any initial 
position of the n fleas, there is a finite 
sequence of moves that will take all the 
fleas to positions to the right of M.  
Problem 4.  A magician has one hundred 
cards numbered 1 to 100.  He puts them 
into three boxes, a red one, a white one a 
blue one, so that each contains at least 
one card.  
A member of the audience selects two of 
the three boxes, chooses one card from 
each and announces the sum of the 
numbers on the chosen cards.  Given this 
sum, the magician identifies the box from 
which no card has been chosen.  
How many ways are there to put all the 
cards into the boxes so that this trick 
always works? (Two ways are considered 
different if at least one card is put into a 
different box.) 
Problem 5.  Determine whether or not 
there exists a positive integer n such that 
n is divisible by exactly 2000 different 
prime numbers, and n2 + 1 is divisible by 
n. 
Problem 6.  Let AH1, BH2, CH3, be the 
altitudes of an acute-angled triangle ABC.  
The incircle of the triangle ABC touches 
the sides BC, CA, AB at T1, T2, T3, 
respectively.  Let the lines 321  , ,  be 
the reflections of the lines H2H3, H3H1, 
H1H2 in the lines T2T3, T3T1, T1T2, 
respectively.  
Prove that 321  , ,  determine a 
triangle whose vertices lie on the incircle 
of the triangle ABC. 
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