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PUZZLES ARE AS OLD AS HUMAN HISTORY. They are found in cultures through-
out the ages. Why is this so? What are puzzles? What do they reveal

about the human mind? Do they have any implications for the study of
mathematics?

This book attempts to answer some of these questions. Its main focus is
on showing how certain ideas in mathematics originated in the form of
puzzles. I use the word puzzle in its basic sense, to mean a challenging
problem that conceals a nonobvious answer. I do not use it in the figurative
sense of “anything that remains unsolved,” even though the two meanings
share a lot of semantic territory, as the mathematician Keith Devlin recently
demonstrated in his fascinating book on the seven greatest unsolved math-
ematical puzzles of our time (The Millennium Problems, Basic Books, 2002).

In the humanities and the arts, there is a long-standing tradition of iden-
tifying the masterpieces—the great novels, the great symphonies, and the
great paintings—as the most illuminating things to study. Books are written
and courses taught on them. Mathematics, too, has its “great” problems.
Significantly, most of these were originally devised as clever puzzles. So, in
line with teaching practices in literature, music, and the fine arts, this book
introduces basic mathematical ideas through ten puzzle masterpieces.
Needless to say, so many ingenious puzzles have been invented throughout
history that it would be brazenly presumptuous to claim that I chose the ten
best. In reality, I went on a mathematical dig to unearth ten puzzles that
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were demonstrably pivotal in shaping mathematical history and that, I
believe, most mathematicians would also identify as among the most
important ever devised.

The Uses of This Book

Above all else, this book can be read to gain a basic understanding of what
puzzles are all about and to grasp their importance to mathematics. Anyone
wishing to acquire a basic skill at puzzle-solving and at doing elementary
mathematics can also use it profitably as a self-study manual. It is not
meant, however, to be a collection of puzzles, challenging or otherwise.
There are many such books on the market. Rather, it is a manual on the rela-
tionship between puzzles and mathematics. In a word, it is written for
“beginners,” not for inveterate puzzle solvers.

Teachers will find that as a classroom text, it covers the same kind of top-
ics found in more traditional introductory math texts, even though it takes
a different, more creative slant toward them. Students can discuss each puz-
zle and its implications for the study of mathematics, then can follow up on
the sources in the Further Reading sections. They can also come up with
their own puzzle activities or research each great puzzle further and report
their findings to the class.

This book is based on materials I prepared for a noncredit course that
I’ve taught at the University of Toronto for over a decade. The course is
aimed at so-called math phobics. I have consistently found that an engage-
ment with puzzles allows such students to gain confidence and go on to
more complex areas of mathematics with little or no difficulty. The congrat-
ulatory e-mails that I receive from ex-students are a source of great pride.
Nothing makes teachers happier than to witness students become proficient
at what they teach! I truly hope that this book will allow readers to achieve
similar results. I invite the readers of this book to contact me at my e-mail
address any time they wish: marcel.danesi@utoronto.ca.

Format

Each of the ten chapters is divided into five sections: The Puzzle, Mathe-
matical Annotations, Reflections, Explorations, and Further Reading.

The Puzzle

Each puzzle is explained in an easy-to-follow manner. Complete adherence
to the original solutions and to the mathematical implications that ensued
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from them would make some of the puzzles extremely difficult to under-
stand. In such cases, I made appropriate modifications. Nevertheless, I tried
to retain the spirit of each puzzle and its solution. Regarding the reader’s
background knowledge, I took very little for granted. Every mathematical
symbol, notation, formula, and concept introduced into the discussion of a
puzzle is fully explained. For example, if knowledge of exponents is
required at some point, then I provide a brief explanatory note on that topic
in a sidebar.

In-depth discussions of the selected puzzles can be found in W. W. Rouse
Ball’s Mathematical Recreations and Essays, which was published in 1892 and
was since reissued in many more editions. Readers can also refer to the
writings of Martin Gardner (1914–) and Raymond Smullyan (1919–), if they
would like more exposure to puzzle-solving and are interested in 
complementary treatments of the relationship between puzzles and math-
ematics and logic. Their writings are listed in some of the Further Reading
sections at the end of the chapters. For thirty years, starting in 1956, 
Gardner wrote a famous puzzle column for Scientific American. Smullyan
has written a series of ingenious puzzle books designed to strip down log-
ical reasoning to its essentials. There are also magazines and journals, such
as the Journal of Recreational Mathematics, Eureka, and Games, that readers can
consult to extend their involvement with puzzlemath. However, I warn the
neophyte puzzlist that it would be a difficult task indeed to directly tackle
the subject matter of these sources, without some elementary training
beforehand. I hope this book will provide exactly that.

Mathematical Annotations

The discussion of each puzzle is followed by annotations on its implications
for a specific area of mathematics or for mathematics generally. Every
notion introduced in the discussion is explained fully. Even common con-
cepts, such as prime number and composite number, are clarified when they
are introduced. A glossary of such terms is provided at the back, for the
reader’s convenience. The only assumption I make is that the reader knows
how to carry out basic arithmetical operations such as addition, subtraction,
multiplication, and division, and knows generally what an equation is. In
more detail, an equation is a statement asserting that two expressions are
equal or the same. It is usually written as a line of symbols that are sepa-
rated into left and right sides and joined by an equal sign (=). For example,
in x + 5 = 8, the expression (x + 5) is the left side of the equation and the
number 8 is the right side. The left side of this equation will be equal to the
right side when the letter x is replaced by the number 3—(3 + 5 = 8). I have
taken virtually nothing else for granted.
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Reflections

After the mathematical annotations, I have added my own reflections on
the puzzle or its mathematical implications. 

Explorations

This section provides follow-up exploratory exercises that allow readers to
engage directly in puzzle-solving. Answers and detailed explanations to the
exercises are found at the back of the book. A word of advice is in order. Do
not be discouraged if, at first, you have difficulty with a specific exercise.
Try your best to solve it before you read the explanation at the back. This
will allow you to grasp the spirit of the puzzle.

The explorations are numbered consecutively across chapters. This
allows readers who might prefer to use the book primarily for its puzzle-
solving value to go to the exercises directly in sequence. There are eighty-
five brainteasers—no less than are usually found in most puzzle books
available on the market.

Further Reading

A list of the sources I used is provided at the end of each chapter. Readers
who are interested in expanding their knowledge of a certain puzzle or a
related area of mathematics can consult the sources directly.
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IF WE VISIT THE CITY OF GIZA in Egypt today, we cannot help but be over-
whelmed by the massive sculpture known as the Great Sphinx, a creature

with the head and the breasts of a woman, the body of a lion, the tail of a
serpent, and the wings of a bird. Dating from before 2500 B.C., the Great
Sphinx magnificently stretches 240 feet (73 meters) in length and rises
about 66 feet (20 meters) above us. The width of its face measures an
astounding 13 feet, 8 inches (4.17 meters).

Legend has it that a similarly enormous sphinx guarded the entrance to
the ancient city of Thebes. The first recorded puzzle in human history
comes out of that very legend. The Riddle of the Sphinx, as it came to be
known, constitutes not only the point of departure for this book but the
starting point for any study of the relationship between puzzles and math-
ematical ideas. As humankind’s earliest puzzle, it is among the ten greatest
of all time. Riddles are so common, we hardly ever reflect upon what they
are. Their appeal is ageless and timeless. When children are posed a simple
riddle, such as “Why did the chicken cross the road?” without any hesita-
tion whatsoever, they seek an answer to it, as if impelled by some uncon-
scious mythic instinct to do so.

Readers may wonder what a riddle shrouded in mythic lore has to do
with mathematics. The answer to this will become obvious as they work
their way through this chapter. Simply put, in its basic structure, the Riddle

� 5 �

The Riddle of the Sphinx

Let us consider that we are all partially insane. 
It will explain us to each other; it will unriddle many 

riddles; it will make clear and simple many things 
which are involved in haunting and harassing 

difficulties and obscurities now.

MARK TWAIN (1835–1910)

1



of the Sphinx is a model of how so-called insight thinking unfolds. And this
form of thinking undergirds all mathematical discoveries.

The Puzzle

According to legend, when Oedipus approached the city of Thebes, he
encountered a gigantic sphinx guarding the entrance to the city. The men-
acing beast confronted the mythic hero and posed the following riddle to
him, warning that if he failed to answer it correctly, he would die instantly
at the sphinx’s hands:

What has four feet in the morning, two at noon, and three at night?

6 � The Liar Paradox and the Towers of Hanoi

In Greek mythology, the oracle (prophet) at Delphi warned King
Laius of Thebes that a son born to his wife, Queen Jocasta, would

grow up to kill him. So, after Jocasta gave birth to a son, Laius
ordered the baby taken to a mountain and left there to die. As fate
would have it, a shepherd rescued the child and brought him to
King Polybus of Corinth, who adopted the boy and named him
Oedipus.

Oedipus learned about the ominous prophecy during his youth.
Believing that Polybus was his real father, he fled to Thebes, of all
places, to avoid the prophecy. On the road, he quarreled with a
strange man and ended up killing him. At the entrance to Thebes,
Oedipus was stopped by an enormous sphinx that vowed to kill
him if he could not solve its riddle. Oedipus solved it. As a conse-
quence, the sphinx took its own life. For ridding them of the mon-
ster, the Thebans asked Oedipus to be their king. He accepted and
married Jocasta, the widowed queen.

Several years later, a plague struck Thebes. The oracle said that
the plague would end when King Laius’s murderer had been driven
from Thebes. Oedipus investigated the murder, discovering that
Laius was the man he had killed on his way to Thebes. To his hor-
ror, he learned that Laius was his real father and Jocasta his
mother. In despair, Oedipus blinded himself. Jocasta hanged her-
self. Oedipus was then banished from Thebes. The prophecy pro-
nounced at Delphi had come true.

THE OEDIPUS LEGEND



The fearless Oedipus answered, “Humans, who crawl on all fours as
babies, then walk on two legs as grown-ups, and finally need a cane in old
age to get around.” Upon hearing the correct answer, the astonished sphinx
killed itself, and Oedipus entered Thebes as a hero for ridding the city of the
terrible monster that had kept it captive for so long.

Various versions of the riddle exist. The previous one is adapted from
the play Oedipus Rex by the Greek dramatist Sophocles (c. 496–406 B.C.).
Following is another common statement of the riddle, also dating back to
antiquity:

What is it that has one voice and yet becomes four-footed, then two-
footed, and finally three-footed?

Whatever its version, the Riddle of the Sphinx is the prototype for all rid-
dles (and puzzles, for that matter). It is intentionally constructed to harbor a
nonobvious answer—namely, that life’s three phases of infancy, adulthood,
and old age are comparable, respectively, to the three phases of a day (morn-
ing, noon, and night). Its function in the Oedipus story, moreover, suggests
that puzzles may have originated as tests of intelligence and thus as probes
of human mentality. The biblical story of Samson is further proof of this. At
his wedding feast, Samson, obviously wanting to impress the relatives of his
wife-to-be, posed the following riddle to his Philistine guests (Judges 14:14):

Out of the eater came forth meat and out of the strong came forth
sweetness.

He gave the Philistines seven days to come up with the answer, con-
vinced that they were incapable of solving it. Samson contrived his riddle
to describe something that he once witnessed—a swarm of bees that made
honey in a lion’s carcass. Hence, the wording of the riddle: the “eater” =
“swarm of bees”; “the strong” = the “lion”; and “came forth sweetness” =
“made honey.” The deceitful guests, however, took advantage of the seven
days to coerce the answer from Samson’s wife. When they gave Samson the
correct response, the mighty biblical hero became enraged and declared
war against all Philistines. The ensuing conflict eventually led to his own
destruction.

The ancients saw riddles as tests of intelligence and thus as a means
through which they could gain knowledge. This explains why the Greek
priests and priestesses (called oracles) expressed their prophecies in the
form of riddles. The implicit idea was, evidently, that only people who
could penetrate the language of the message would unravel its concealed
prophecy.

The Riddle of the Sphinx � 7



However, not all riddles were devised to test the acumen of mythic
heroes. The biblical kings Solomon and Hiram, for example, organized 
riddle contests simply for the pleasure of outwitting each other. The 
ancient Romans made riddling a recreational activity of the Saturnalia, a
religious event that they celebrated from December 17 to 23. By the fourth
century A.D., riddles had, in fact, become so popular for their “recreational
value” that the memory of their mythic origin started to fade. In the tenth
century, Arabic scholars used riddles for pedagogical reasons—namely, to
train students of the law to detect linguistic ambiguities. This coincided
with the establishment of the first law schools in Europe.

Shortly after the invention of the printing press in the fifteenth century,
some of the first books ever printed for popular entertainment were collec-
tions of riddles. One of these, titled The Merry Book of Riddles, was published
in 1575. Here is a riddle from that work:

He went to the wood and caught it,
He sate him downe and sought it;
Because he could not finde it,
Home with him he brought it.

(answer: a thorn caught on a foot)

By the eighteenth century, riddles were regularly included in many
newspapers and periodicals. Writers and scholars often composed riddles.
The American inventor Benjamin Franklin (1706–1790), for instance,
devised riddles under the pen name of Richard Saunders. He included
them in his Poor Richard’s Almanack, first published in 1732. The almanac
became an unexpected success, due in large part to the popularity of its rid-
dle section. In France, no less a literary figure than the great satirist Voltaire
(1694–1778) penned brain-teasing riddles, such as the following one:

What of all things in the world is the longest, the shortest, the
swiftest, the slowest, the most divisible and most extended, most
regretted, most neglected, without which nothing can be done, and
with which many do nothing, which destroys all that is little and
ennobles all that is great?

(answer: time)

The ever-increasing popularity of riddles in the nineteenth century
brought about a demand for more variety. This led to the invention of a new
riddle genre, known as the charade. Charades are solved one syllable or line
at a time, by unraveling the meanings suggested by separate syllables,
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words, or lines. In the nineteenth century, this led to the mime charade, which
became, and continues to be, a highly popular game at social gatherings. It
is played by members of separate teams who act out the meanings of vari-
ous syllables of a word, an entire word, or a phrase in pantomime. If the
answer to the charade is, for example, “baseball,” the syllables base and ball
of that word are the ones normally pantomimed. By the end of the century,
riddles were firmly embedded in European and American recreational cul-
ture and remain so to this very day.

Mathematical Annotations

The question that the legendary sphinx asked Oedipus seems to defy an
answer at first. What bizarre creature could possibly have four, then two,
and finally three legs, in that order? Wresting an answer from the riddle
requires us to think imaginatively, not linearly. This very type of imagina-
tive thinking undergirds all true mathematical inquiry.

Problem-Solving

Riddles highlight how puzzles differ in general from typical mathematical
problems, such as those found in school textbooks. The latter are designed
to help students do something systematically (for example, add large num-
bers, solve equations, prove theorems, etc.). To grasp the difference, con-
sider two typical textbook problems. Here’s the first one:

Prove that the vertically opposite angles formed when two straight
lines intersect are equal.

The method used to solve this type of problem is called deduction. It
involves applying previous knowledge to the problem at hand.

The Riddle of the Sphinx � 9

Deduction: This involves applying previous knowledge to the
problem.

Induction: This involves reasoning from particular facts given in the
problem, to reach a general conclusion.

Insight thinking: This involves making guesses or following up on
hunches that come from trial-and-error approaches to the
problem.

PROBLEM-SOLVING METHODS AND STRATEGIES



Start by drawing a diagram that shows all the relevant features of the
problem. The two straight lines can be labeled AB and CD, and two of the
four vertically opposite angles formed by their intersection can be labeled
x and y. One of the angles between x and y can be labeled z, as shown:

The problem asks us, in effect, to prove that x and y (being vertically
opposite angles) are equal. There are, of course, two other vertically oppo-
site angles formed by the intersection of the two lines, but they need not be
considered here because the method of proof and the end result are the
same. The proof hinges on previous knowledge—specifically, that a straight
line is an angle of 180 degrees. Consider CD first. As a straight line, it is (as
mentioned) an angle of 180 degrees. Now, notice that CD is composed of
two smaller angles on the diagram, x and z. So, logically, these two must
add up to 180 degrees—a statement that can be represented with the equa-
tion x + z = 180°. The equation reads as follows: “Angle x and angle z when
added together equal 180°.”

Now, consider AB. Notice that it, too, is composed of two smaller angles
on the diagram, y and z. These two angles must also add up to 180
degrees—a fact that can be similarly represented with an equation: y + z =
180°. The two equations just discussed are listed as follows:

1. x + z = 180°
2. y + z = 180°

They can be rewritten as follows:

3. x = 180° – z
4. y = 180° – z

If you have forgotten your high school algebra, the reason we can do this
is that whatever is done to one side of an equation must also be done to the
other. Think of the two sides of an equation as the two pans on a balancing
scale, with equal weights in each pan. The weights are analogous to the
expressions on either side of an equation. If we want to maintain balance,
any weight we take from one of the pans (such as the left one) we must also
take from the other (the right one). In like fashion, if we subtract z from the
left side of equation 1, we must also subtract it from its right side. The result
is equation 3, which shows that z has been subtracted from both sides. Note
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that when z is subtracted from itself on the left side (z – z), it leaves 0—a
result that is not normally indicated. Subtracting z from both sides of equa-
tion 2 yields equation 4.

Now, since two things that are equal to the same thing are equal to each
other (for example, if Alex is six feet tall and Sarah is six feet tall, then the
two people are equal in height), we can deduce that x = y, since equation 3
shows that x is equal to (180° – z), and equation 4 shows that y is equal to
the same expression (180° – z). It is not necessary to figure out what the
value of the expression is. Whatever it is, the fact remains that both x and y
will be equal to it. We can now conclude that “any two vertically opposite
angles produced by the intersection of two straight lines are equal,” because
we did not assign a specific value to either angle. When a proof is general-
izable in this way, it is called a theorem.

Here’s our second textbook problem:

Develop a formula for the number of degrees in any polygon.

Solving this problem entails a different kind of strategy, known as induc-

tion. This involves extracting a generalization on the basis of observed facts.
Consider a triangle first—the polygon with the least number of sides. The
sum of the angles in a triangle is 180 degrees (see chapter 5 for the relevant
proof).

Next, consider any quadrilateral (a four-sided figure). ABCD is one such
figure:

The Riddle of the Sphinx � 11

Apolygon is a closed plane (two-dimensional) figure. Examples
of polygons are triangles, quadrilaterals such as rectangles 

and squares, pentagons (five-sided figures), and hexagons (six-
sided figures).

The sum of the three angles in any triangle is 180°, no matter
what type of triangle it is (see chapter 5).

POLYGONS



Notice that this figure can be divided into two triangles as shown (trian-
gle ABC and triangle ADC). By doing this, we have discovered that the
sum of the angles in the quadrilateral is equivalent to the sum of the angles
in two triangles, namely, 180° + 180° = 360°.

Next, consider the case of a pentagon (a five-sided figure). ABCDE, as
follows, is one such figure:

Since the pentagon can be divided into three triangles, as shown (trian-
gle ABE, triangle BEC, and triangle ECD), we have again discovered a sim-
ple fact—namely, that the sum of its angles is equivalent to the sum of the
angles in three triangles: 180° + 180° + 180° = 540°.

Continuing in this way, we can show just as easily that the number of
angles in a hexagon (a six-sided figure) is equal to the sum of the angles in
four triangles; in a heptagon (a seven-sided figure), to the sum of the angles
in five triangles; and so on. Let’s now attempt to generalize what we have
apparently discovered. The letter n can be used to represent any number of
sides, and the term n-gon can be used to refer to any polygon—that is, to a
polygon with an unspecified number of sides. The previous observations
suggest that the number of triangles that can be drawn in any polygon is
“two less” than the number of sides that make up the polygon. For exam-
ple, in a quadrilateral, we can draw two triangles, which is “two less” than
the number of its sides (4), or (4 – 2); in a pentagon, we can draw three tri-
angles, which is, again, “two less” than the number of its sides (5), or (5 – 2);
and so on. In the case of a triangle, this rule also applies, since we can draw
in it one and only one triangle (itself). This also is “two less” than the
number of its sides (3), or (3 – 2). In an n-gon, therefore, we can draw (n – 2)
triangles. To summarize:

TABLE 1-1: CALCULATING THE TRIANGLES IN A POLYGON

Number of Triangles That Can Be 
Number of Sides in the Polygon Drawn in the Polygon

3 (= triangle) (3 – 2) = 1 triangle

4 (= quadrilateral) (4 – 2) = 2 triangles
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Number of Triangles That Can Be 
Number of Sides in the Polygon Drawn in the Polygon

5 (= pentagon) (5 – 2) = 3 triangles

6 (= hexagon) (6 – 2) = 4 triangles

7 (= heptagon) (7 – 2) = 5 triangles

. . . . . .

n (= n-gon) (n – 2) triangles

Since we know that there are 180 degrees in a triangle, then there will be 
(4 – 2) 180° in a quadrilateral, (5 – 2) 180° in a pentagon, and so on. Thus, in
an n-gon, there will be (n – 2) 180°:

TABLE 1-2: DETERMINING THE DEGREES IN A POLYGON

Number of Sides Number of Triangles That Can Sum of Degrees of the 
in the Polygon Be Drawn in the Polygon Angles in the Polygon

3 (3 – 2) = 1 180° × 1 = 180°

4 (4 – 2) = 2 180° × 2 = 360°

5 (5 – 2) = 3 180° × 3 = 540°

6 (6 – 2) = 4 180° × 4 = 720°

7 (7 – 2) = 5 180° × 5 = 900°

. . . . . . . . .

n (n – 2) 180° × (n – 2) = 180°
(n – 2)

The formula can be written as

(n – 2) 180°

or as

180° (n – 2).

Now we can determine the number of degrees in any polygon in a straight-
forward fashion. For example, in the case of an octagon, n = 8. Plugging this
value into our formula will yield the number of degrees in an octagon:

(n – 2) 180° = (8 – 2) 180° = 6 × 180° = 1,080°.

The thing to note about this problem’s solution is that it involves gener-
alizing from particular instances. That is the sum and the substance of



inductive reasoning. However, a caveat is in order with respect to such rea-
soning. Consider the following arithmetical computations—multiplications
are on the left and additions are on the right:

Multiplication = Addition?

2 × 2 = 4 2 + 2 = 4

3–
2 × 3 = 4

1–
2

3–
2 + 3 = 4

1–
2

4–
3 × 4 = 5

1–
3

4–
3 + 4 = 5

1–
3

5–
4 × 5 = 6

1–
4

5–
4 + 5 = 6

1–
4
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Changing the order of the factors (numbers) in a multiplication
does not change the result (the product). This property of mul-

tiplication is known as commutativity. Examples include:

2 × 3 = 3 × 2 = 6

4 × 9 = 9 × 4 = 36

In general (n = any number, m = any other number),

n × m = m × n.

It can also be written as

nm = mn.

So, applying the principle of commutativity to our case, we get

180° (n – 2) = (n – 2) 180°.

This same property, incidentally, holds for addition. Examples
are:

2 + 3 = 3 + 2 = 5

4 + 9 = 9 + 4 = 13

In general,

n + m = m + n.

Commutativity does not hold for either subtraction or division,
as you can see for yourself (≠ stands for “does not equal”). Some
examples are:

7 – 4 ≠ 4 – 7

9 ÷ 3 ≠ 3 ÷ 9

COMMUTATIVITY



From these examples, we might conclude that multiplying numbers always
produces the same result as adding them. But, of course, that is not true.
Therefore, certain conditions apply when using the method of induction to
solve problems. We will return to this topic in chapter 5.

Insight Thinking

What distinguishes the Riddle of the Sphinx from problems such as those
we just solved is that the solution strategy is not as predictable. Solving rid-
dles requires insight thinking. This can be characterized, essentially, as the
act or the outcome of intuitively grasping the inward or hidden nature of a
problem. Humanity’s first puzzle is a model of how insight thinking
unfolds.

The relevant insight required to solve the Riddle of the Sphinx is not to
interpret its words literally but to do so metaphorically. Most riddles are
based on the various meanings of a word. Consider the following example:

What has four wheels and flies?

(answer: a garbage truck)

The answer makes sense only when we realize that the word flies has
two meanings—as a verb (“to move through the air”) and as a noun (“an
insect with two wings”). A garbage truck is indeed something that has
“four wheels” and “flies” that surround it, given that flies are attracted to
garbage.

It might be instructive to turn the tables around and create a riddle our-
selves. Take, for example, the word smile. In English, a smile is said to be
something that, like clothing, can be worn. This is why we speak of “wear-
ing a smile,” “taking a smile off one’s face,” and so on. Now, we propi-
tiously can use this very linguistic convention to phrase our riddle:

I am neither clothes nor shoes, yet I can be worn and taken off when
not needed any longer. What am I?

Parenthetically, riddles can also be composed to provide humor. Take,
for example, the classic children’s riddle “Why did the chicken cross the
road?” The number of replies to this question is infinite. Here are three pos-
sible answers:

1. To get to the other side.

2. Because it was taken across by a farmer.

3. Because a fox was chasing it.
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All three answers tend to evoke moderate laughter, similar to the kind that
the punch line of a joke would elicit. Riddles of this kind abound, revealing
that they have a lot in common with humor.

Insight thinking is the defining characteristic of how most (if not all)
puzzles are solved. As an example, consider the following classic puzzle:

Without letting your pencil leave the paper, can you draw four
straight lines through the following nine dots?

At first, people tend to approach this puzzle by joining up the dots as if
they were located on the perimeter (boundary) of an imaginary square or a
flattened box:

But this reading of the puzzle does not yield a solution, no matter how
many times one tries to draw four straight lines without lifting the pencil.
A dot is always “left over,” as the following three attempts show:

At this point, intuition comes into play: “What would happen if I extend
one or more of the four lines beyond the box?” That hunch turns out, in fact,
to be the relevant insight.

Start by putting the pencil on, say, the bottom left dot, tracing a straight
line upward through the two dots above it and stopping at a point “outside
the box,” when you can see that it is in line diagonally with the two dots
below it. You could start with any of the four corner dots and produce a
solution (as you may wish to confirm yourself):
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Second, trace a straight line diagonally downward through the two dots.
Stop when you see that your second line is in horizontal alignment with the
three bottom dots:

Draw your third line through the bottom dots:

Finally, draw your fourth line through the remaining dots:

Incidentally, this puzzle is the probable source of the common expression
“thinking outside the box.” The reason for this is self-explanatory.

Solving puzzles may, at times, involve the use of other forms of think-
ing. But it is the intuitive trial-and-error form that dominates. The word
puzzle, incidentally, comes from the Middle English word poselen, “to bewil-
der, confuse.” It is an apt term because, unlike the typical problems found
in mathematics textbooks, puzzles at first generate bewilderment and
confusion, at the same time that they challenge our wits. As Helene
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Hovanec has stated in her delectable book The Puzzler’s Paradise (see Fur-
ther Reading), the lure of puzzles lies in the fact that they “simultaneously
conceal the answers yet cry out to be solved,” piquing solvers to pit “their
own ingenuity against that of the constructors.”

Consider one more classic puzzle, devised by the French Jesuit poet and
scholar Claude-Gaspar Bachet de Mézirac (1581–1638)—a puzzle that he
included in his 1612 collection titled Problèmes plaisans et délectables qui se
font par les nombres (“Amusing and Delightful Number Problems”):

What is the least number of weights that can be used on a scale to
weigh any whole number of pounds of sugar from 1 to 40 inclusive,
if the weights can be placed on either of the scale pans?

We might, at first, be tempted to conclude that six weights of 1, 2, 4, 8, 16,
and 32 pounds would do the trick. The reasoning would go somewhat as
follows. We could weigh 1 pound of sugar by putting the 1-pound weight
on the left pan, pouring sugar into the right pan until both pans balance. We
could weigh 2 pounds of sugar by putting the 2-pound weight on the left
pan, pouring sugar on the right pan until the pans balance. We could weigh
3 pounds of sugar by putting the 1-pound and the 2-pound weights on the
left pan, pouring sugar on the right pan until the pans balance. And so on,
and so forth. In this way, we could weigh any number of integral (whole-
number) pounds of sugar from 1 pound to 40 pounds.
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An exponent (also called a power) is a superscript digit or letter
attached to the right of a number, indicating how many times

the number is to be multiplied by itself. For example, in 34 the
superscript digit 4 indicates that the number 3 is to be multiplied
by itself four times:

34 = 3 × 3 × 3 × 3.

The term 34 is read: “3 to the power of four” or “3 to the fourth
power.”

Exponential representation is shorthand form for repeated multi-
plication. Examples include:

21 = 2
32 = 3 × 3
53 = 5 × 5 × 5
. . .
n4 = n × n × n × n

EXPONENTS



However, since the puzzle allows us to put the weights on both pans of 
the scale, the weighing can be done—Aha!—with only four weights of 1, 3,
9, and 27 pounds. The reason for this is remarkably simple—placing a
weight on the right pan, along with the sugar, is equivalent to taking its
weight away from the total weight on the left pan. Think about this for a
moment. For example, if 2 pounds of sugar are to be weighed, we would
put the 3-pound weight on the left pan and the 1-pound weight on the right
pan. The result is that there are 2 pounds less on the right pan. We will
therefore get a balance when we pour the missing 2 pounds of sugar on the
right pan.

The four weights are, upon closer scrutiny, powers of 3:

1 = 30

3 = 31

9 = 32

27 = 33

The choice of these weights works because each of the whole numbers 
from 1 to 40 (= the required weights) turns out to be either a multiple or 
a power of 3, or else one more or less than a multiple or a power of 3. 
Thus, each of the first forty integers can be expressed with the first four
powers of 3:

1 = 30 (= 1)

2 = 31 – 30 (= 3 – 1)

3 = 31 (= 3)

4 = 31 + 30 (= 3 + 1)

5 = 32 – 31 – 30 = 32 – (31 + 30) (= 9 – 3 – 1 = 6 – 1)

. . . . . .

40 = 33 + 32 + 31 + 30 (= 27 + 9 + 3 + 1 = 39 + 1)
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Any number to the zero power is always 1, no matter what the
number is (see chapter 6). Examples include:

30 = 1
90 = 1
. . .
n0 = 1



Since the four powers of 3 represent our weights, all we have to do is “trans-
late” addition in the previous layout as the action of putting weights on the
left pan and subtraction as the action of putting weights on the right pan
(along with the sugar). The following chart gives an indication of how this
can be done. Readers may wish to complete it on their own:

TABLE 1-3: MÉZIRAC’S WEIGHT PUZZLE

Amount of Sugar Weight to Be Placed Weight Added to the Right 
to Be Weighed on the Left Pan Pan along with the Sugar

1 30 (= 1) None

2 31 (= 3) 30 (= 1)

3 31 (= 3) None

4 31 + 30 (= 3 + 1) None

5 32 (= 9) 31 + 30 (= 4)

. . . . . . . . .

40 33 + 32 + 31 + 30 None
(= 27 + 9 + 3 + 1)

Reflections

The Riddle of the Sphinx is the first example in history of a true puzzle. Its
origin in myth resonates to this day in stories composed for children. The
heroes in such stories typically face challenges that are designed to test not
only their physical mettle but also their mental ability to solve riddles. As
such narrative traditions suggest, we perceive riddles as “miniature revela-
tions” of truth. What are philosophy and science, after all, if not attempts to
answer the riddles that life poses?

Mathematical inquiry, too, seems to be guided by an inborn need to
model perplexing ideas in the form of puzzles. This is perhaps why some 
of the greatest questions of mathematical history were originally framed 
as puzzles. Solving them required a large dose of insight thinking. In 
many cases, the insight took centuries and even millennia to come to
fruition. But, eventually, it did, leading to significant progress in mathemat-
ics. It would seem that in order to enter the “Thebes” of mathematical
knowledge, we must first solve challenging riddles, not unlike the Riddle 
of the Sphinx.
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Explorations

Riddles

1. What can be thrown away when it is caught but must be kept when it
is not caught?

2. What possible creature is unlike its mother and does not resemble its
father? You should also know that it is of mingled race and incapable of
producing its own progeny.

3. I scare away my master’s foes by bearing weapons in my jaws, yet I
flee before the lashings of a little child. What am I?

4. It is something red, blue, purple, and green. Everyone can easily see it,
yet no one can touch it or even reach it. What is it?

5. Before my birth I had a name, but it changed the instant I was born. And
when I am no more, I will be called by my father’s name. In sum, I change
my name three days in a row, yet I live but one day. Who or what am I?

6. What belongs to you, which others use more than you do?

7. Create riddles based on the following words:

A. justice

B. friendship

C. love

D. time

Deductive Reasoning

8. A triangle, ABC, is inscribed in a semicircle (“half circle”), with its base,
BC, resting on the diameter. Prove that the angle opposite the base, ∠BAC,
is equal to 90 degrees. The sign ∠ stands for “angle”:
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You may want to use these facts to develop your proof:

� The sum of the three angles in a triangle is 180 degrees.

� The diameter is a straight line made up of two radii (OC and OB).

� The radii of a circle are all equal.

� An isosceles triangle is a triangle with two equal sides.

� The angles in an isosceles triangle opposite the equal sides are equal.

Inductive Reasoning

9. Multiply several numbers by 9. Add up the digits of each product. If
the result of the addition is a number that is more than one digit, add up the
digits. Keep doing this until you get a one-digit number. For example:

9 × 50 = 450

Add the digits of the product: 4 + 5 + 0 = 9

9 × 43 = 387

Add the digits of the product: 3 + 8 + 7 = 18 (two digits)

Add the digits of the sum: 1 + 8 = 9

9 × 693 = 6,237

Add the digits of the product: 6 + 2 + 3 + 7 = 18 (two digits)

Add the digits of the sum: 1 + 8 = 9

Do you detect an emerging pattern here? If so, what is it?

10. Now, use the pattern discovered in the previous problem to deter-
mine which of the following numbers is a multiple of 9:

A. 477

B. 648

C. 8,765

D. 738

E. 9,878

11. Consider the squares of the numbers from 1 to 20:

12 = 1 × 1 = 1
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22 = 2 × 2 = 4

32 = 3 × 3 = 9

42 = 4 × 4 = 16

52 = 5 × 5 = 25

. . .

202 = 20 × 20 = 400

Do you detect a pattern here? If so, what can you predict about the
square of 22 and the square of 23?

Insight Thinking

12. Recall the previous Nine-Dot Puzzle. It was solved with four lines.
Can it be solved with only three straight lines? That is, can you connect the
nine dots without lifting your pencil, using only three straight lines?

13. In the following version of the puzzle, there are twelve dots. Connect
them without lifting your pencil. What is the least number of straight lines
required to do so?

14. Finally, connect sixteen dots without lifting your pencil. What is the
least number of straight lines required this time around?
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PUZZLES ARE ADDICTIVE. Just ask anyone who does crossword puzzles on a
daily basis or belongs to a chess or Scrabble club. Cases of puzzle addic-

tion, in fact, fill the annals of clinical psychology. In 1925, a Broadway play
called Puzzles of 1925 satirized puzzle addiction in a hilarious way. The
heart of the play featured a scene in a “Crossword Sanitarium,” where peo-
ple driven insane by their obsession over crossword puzzles were confined.

One of the first puzzle addicts in history was none other than Charle-
magne (742–814), the founder of the Holy Roman Empire, who became 
so obsessed with puzzles that he hired an expert puzzle maker to create
them specifically for him. The person he selected for the job was the famous
English scholar and ecclesiastic Alcuin. The resourceful Alcuin put fifty-six
of the puzzles he invented for Charlemagne into an instructional manual,
titled Propositiones ad acuendos juvenes (“Problems to Sharpen the Young”),
in an attempt to get medieval youths interested in mathematics.

One puzzle in that anthology, known as the River-Crossing Puzzle,
qualifies as among the ten greatest of all time. Not only is it included in vir-
tually all the classic puzzle anthologies, but many mathematical historians
consider the idea pattern on which it is constructed to be the key insight
that led, centuries later, to the establishment of a branch of mathematics
known as combinatorics, which deals essentially with the structure of
arrangements. It attempts to determine how things can be grouped,
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Alcuin’s River-Crossing Puzzle

In all chaos there is a cosmos, 
in all disorder a secret order.

CARL JUNG (1875–1961)
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counted, or organized in some systematic way. Although the same idea
pattern is found in the puzzle traditions of different cultures, Alcuin’s ver-
sion became widely known to mathematicians. Remarkably, Alcuin’s sim-
ple puzzle has had important implications for the study of logic and for the
design and the operation of computers.

The Puzzle

A common rendition of the River-Crossing Puzzle is the following one:

A traveler comes to a riverbank with a wolf, a goat, and a very large
head of cabbage. To his chagrin, he notes that there is only one boat
for crossing over, which can carry no more than two—the traveler
and one of the two animals or the cabbage. As the traveler knows, if
left alone together, the goat will eat the cabbage and the wolf will eat
the goat. The wolf does not eat cabbage. How does the traveler
transport his animals and his cabbage to the other side intact, in a
minimum number of back-and-forth trips?

The traveler starts by taking the goat to the other side, leaving the wolf
with the cabbage on the original side. He rows back alone. He then takes 
the wolf across, leaving the cabbage by itself on the original side. On the
other side he leaves the wolf and rows back with the goat. On the original
side, he then leaves the goat and takes the cabbage across. He rows back

Alcuin was a renowned medieval scholar, teacher, and writer.
He studied at the cloister-school of York, the center of learning

in England during his era. Alcuin became an adviser to Emperor
Charlemagne in 782. In 796, Charlemagne made him the abbot of
St. Martin at Tours, in France. In that post, Alcuin helped to spread
the achievements of Anglo-Saxon scholarship throughout Europe,
bringing about the revival of learning known as the Carolingian
Renaissance.

Alcuin’s puzzle anthology became widely known in the
medieval world, and many of its puzzles continue to find their
way, in one version or other, into contemporary collections. All of
them require a high degree of ingenuity to solve.

ALCUIN (735–804)



Alcuin’s River-Crossing Puzzle � 29

alone, leaving the wolf and the cabbage safely together on the other side.
He picks up the goat on the original side and rows across. When he gets to
the other side, he has his wolf, goat, and cabbage intact and so can continue
on his journey. The whole process took seven back-and-forth crossings.

Here is a step-by-step modeling of the solution. The “initial-state” on
both sides of the river, before the traveler starts rowing back and forth, can
be shown as follows (W = wolf, G = goat, C = cabbage, T = traveler). This
state can be represented as a “0” step, because no rowing is involved:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

The traveler begins by transporting the goat over on the boat, leaving
the wolf and the cabbage alone on the original side without any problems.
This constitutes the first step in the solution:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

The traveler deposits the goat on the other side and then goes back
alone. This completes the first round trip, adding a second step to the
solution:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

From the original side, the traveler picks up the wolf and rows across,
leaving the cabbage by itself. This is the third step:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. C T W → G__ __ __ __ __ __ __ __ __ __



Once on the other side, the traveler cannot leave the wolf and the goat
alone, for the former would eat the latter. So, he brings the goat along for
the ride, leaving the wolf by itself. This constitutes the fourth step:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. C T W → G__ __ __ __ __ __ __ __ __ __

4. C ← T G W__ __ __ __ __ __ __ __ __ __

Back on the original side, the traveler leaves the goat and takes the cab-
bage with him over to the wolf. In this way, he avoids leaving the goat and
the cabbage together. This is the fifth step:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. C T W → G__ __ __ __ __ __ __ __ __ __

4. C ← T G W__ __ __ __ __ __ __ __ __ __

5. G   T C → W__ __ __ __ __ __ __ __ __ __

The traveler then deposits the cabbage on the other side. He goes back
alone, leaving the wolf and the cabbage safely together. This is the sixth
step:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. C T W → G__ __ __ __ __ __ __ __ __ __

4. C ← T G W__ __ __ __ __ __ __ __ __ __

5. G   T C → W__ __ __ __ __ __ __ __ __ __

6. G ← T W     C__ __ __ __ __ __ __ __ __ __
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For his last trip across to the other side, the traveler brings the goat with
him on the boat. This is the seventh step in the model:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. C T W → G__ __ __ __ __ __ __ __ __ __

4. C ← T G W__ __ __ __ __ __ __ __ __ __

5. G   T C → W__ __ __ __ __ __ __ __ __ __

6. G ← T W     C__ __ __ __ __ __ __ __ __ __

7. T G → W     C__ __ __ __ __ __ __ __ __ __

When the traveler reaches the other side, he can continue happily on his
journey with his wolf, goat, and cabbage. This is the “end-state” in the
model. Like the initial-state, “0” can be used to represent it, since no rowing
is involved. The complete solution model is given as follows:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __

2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. C T W → G__ __ __ __ __ __ __ __ __ __

4. C ← T G W__ __ __ __ __ __ __ __ __ __

5. G   T C → W__ __ __ __ __ __ __ __ __ __

6. G ← T W     C__ __ __ __ __ __ __ __ __ __

7. T G → W     C__ __ __ __ __ __ __ __ __ __

0. W G C T__ __ __ __ __ __ __ __ __ __

A slightly different seven-step solution is also possible. In this case, too,
the traveler starts by bringing over the goat first. The difference between
this and the previous solution occurs in the third, fourth, and fifth steps:

On the Original Side On the Boat On the Other Side

0. W G C T__ __ __ __ __ __ __ __ __ __

1. W      C T G →__ __ __ __ __ __ __ __ __ __
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2. W      C ← T G__ __ __ __ __ __ __ __ __ __

3. W T C → G__ __ __ __ __ __ __ __ __ __

4. W ← T G C__ __ __ __ __ __ __ __ __ __

5. G   T W → C__ __ __ __ __ __ __ __ __ __

6. G ← T W     C__ __ __ __ __ __ __ __ __ __

7. T G → W     C__ __ __ __ __ __ __ __ __ __

0. W G C T__ __ __ __ __ __ __ __ __ __

Readers who may prefer to actually carry out the previous crossings in
a concrete way can do so with, say, a box to represent the boat and four slips
of paper representing the wolf, the goat, the cabbage, and the traveler (W,
G, C, T).

An interesting version of the puzzle was devised by the Italian mathe-
matician Niccolò Tartaglia in the sixteenth century. It featured three brides
and their jealous husbands:

Three beautiful brides with their husbands come to a river. The small
boat that will take them across holds only two people. To avoid any
compromising situations, the crossings are to be so arranged that no
woman shall be left alone with a man unless her husband is present.
How can this be done, if any man or woman can be the rower?

Nine crossings are required. As we did earlier, we can easily model the
solution by letting H stand for a husband and W for a wife, using subscript
numbers to indicate who is married to whom—H1 and W1 will thus repre-
sent one husband and wife pair, H2 and W2 a second pair, and H3 and W3 a

Tartaglia was born in Venice, where he was widely known as a
scientist and a mathematician. His most notable work was the

Nova Scientia, in which he discussed the motion of heavenly bod-
ies and the trajectory of projectiles.

Tartaglia was also the first one to devise an algorithm (a step-by-
step procedure) for solving cubic equations in 1541. These are
equations in which one of the variables is raised to the power of
three: for example, x3 + 29x2 = 145. But it was his rival Girolamo
Cardano (1501–1576) who became famous for the solution,
which, as some historians claim, he probably stole from Tartaglia.

NICCOLÒ FONTANA TARTAGLIA (c. 1499–1557)
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third pair. The basic idea is to avoid having a W and an H with different
subscript numbers alone together (on the boat or on a side). Thus, for exam-
ple, a pairing such as H1 and W2 on the boat is inappropriate, since it would
constitute a pair in which a woman (W2) is alone with a man (H1) who is not
her husband—which the puzzle forbids. All other pairings are allowable.
One possible nine-step model is given as follows, without commentary.
There are others. Readers may again wish to use a box for the boat and six
pieces of paper for the people, labeling them H1, H2, H3, W1, W2, and W3,
and then physically carry out each step as shown in the model:

On the Original Side On the Boat On the Other Side

0. H1 W1 H2 W2 H3 W3___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

1. H2 W2 H3 W3 H1 W1 →___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

2. H2 W2 H3 W3 ← W1 H1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

3. H2 H3 W3 W1 W2 → H1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

4. H2 H3 W3 ←         W2 H1 W1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

5. H3 W3 H2 W2 → H1 W1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

6. H3 W3 ←         W2 H1 W1 H2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

7. H3 W2 W3 → H1 W1 H2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

8. H3 ←          W3 H1 W1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

9. H3 W3 → H1 W1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

0. H1 W1 H2 W2 H3 W3___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

More complicated versions of the River-Crossing Puzzle, involving
more people and animals, can easily be constructed. However, not all are
solvable. For instance, as the well-known puzzlists Sam Loyd (1841–1911)
and Henry E. Dudeney (1847–1930) discovered, it is impossible to arrive at
a solution under the conditions stipulated by Tartaglia’s puzzle for four
couples. In such a case, a solution is possible only if there is an island in
midstream for use as a “transit stop.” The Loyd-Dudeney puzzle is
assigned as an exploration exercise, further on.

Mathematical Annotations

A problem based on a certain arrangement of things—animals, married cou-
ples, letters of the alphabet—can be studied systematically and modeled



accurately. That is the main lesson to be learned from Alcuin’s puzzle. Math-
ematical modeling is the activity of representing all kinds of patterns—
numerical, geometrical, combinatory, and so on.

The Josephus and Kirkman School Girl Puzzles

Puzzles in arrangement abound. All require a large dose of insight
thinking to solve. Consider two other famous examples. The first one is
called the Josephus Puzzle, after the Jewish historian Josephus of the first
century A.D., who supposedly saved his own life by coming up with the cor-
rect solution. Here is a version of that puzzle:

There are fifteen tyrants (T) and fifteen helpless citizens (C) on a
ship—way too many for the size of the ship. So, it is decided that the
tyrants must be thrown overboard to prevent the ship from sinking.
A mythical beast, who cannot distinguish between tyrants and citi-
zens, has been let loose on the ship to throw people overboard. The
beast has been trained to throw over every ninth person seated in a
circle. How can the people on board be arranged in a circle so that the
beast can do the job it is expected to do?

The beast starts at the “C” at the top of the circle shown. The ninth per-
son from the start is a “T.” So he is thrown overboard. The ninth person
after that is also a “T.” He, too, is thrown overboard. And so on. The circu-
lar seating arrangement shown as follows thus guarantees that every tyrant
is thrown overboard, while all the citizens are saved, as readers can confirm
for themselves.
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Versions of the Josephus Puzzle are found in different cultures through-
out the world. The puzzle was studied by famous mathematicians, includ-
ing Leonhard Euler (whom we will meet in chapter 4), because it
constitutes, in puzzle form, a miniature model for investigating more com-
plex problems in systematic arrangement—an area of study that now goes
under the rubric of systems analysis.

The second puzzle is called Kirkman’s School Girl Puzzle, after the
notable amateur mathematician Thomas Penyngton Kirkman, who posed it
in 1847. It, too, has had important implications for the study of arrangement
and, especially, for matrix theory. A matrix in mathematics is an arrange-
ment of numbers (or symbols) distributed in columns and rows according
to some pattern:

How can fifteen girls walk in five rows of three each for seven days
so that no girl walks with any other girl in the same triplet more than
once?

The puzzle can be reformulated more prosaically as follows: How can
the first fifteen digits, from 0 to 14 (each one representing a specific girl), be
divided into seven matrices (each matrix corresponding to a day of the
week), consisting of five sets of triplets, so that no two digits appear in the
same row more than once in any of the seven matrices? This puzzle is
assigned as an exercise in the Explorations section, further on.

In sum, the River-Crossing, Josephus, and School Girl puzzles were all
important for laying down the conceptual foundations on which the science
of combinatorics was built in the nineteenth century. Combinatorics studies
the mathematical structure of arrangements.

Combinatorics

Combinatorics aims essentially to answer the following question: what
ordered arrangements of a set of objects are possible under certain condi-
tions? To grasp what this entails, let’s return to Alcuin’s puzzle, slightly
changing the conditions in it. This time, the traveler finds a boat that has
four seats in total—one seat for him and three other seats in a row, in which
he can put the wolf, the goat, and the cabbage. One trip across will suffice
this time. The question is:

In how many possible arrangements can the traveler seat the wolf,
the goat, and the cabbage in his boat?

Let’s label the three seats 1, 2, and 3. Consider the first seat. The traveler
could put any one of the three (W = wolf, G = goat, C = cabbage) in it:
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Seat 1 Seat 2 Seat 3

↓ ↓ ↓

W___ ___ ___

G___ ___ ___

C___ ___ ___

For each of the previous placements in seat 1, the traveler can put either
one of the remaining two in seat 2. For example, with W in seat 1, he can put
G or C in seat 2; with G in seat 1, he can put W or C in seat 2; and with C in
seat 1, he can put W or G in seat 2. The possible choices the traveler has for
putting the wolf, the goat, and the cabbage in the first two seats are summa-
rized as follows:

Seat 1 Seat 2 Outcome Seat 3

↓ ↓ ↓ ↓

W with G → W G__ __ __ __ __

W with C → W C__ __ __ __ __

G with W → G W__ __ __ __ __

G with C → G  C__ __ __ __ __

C with W → C W__ __ __ __ __

C with G → C  G__ __ __ __ __

Note that the total number of potential pairings so far (shown in the pre-
vious “Outcome” column)—WG, WC, GW, GC, CW, CG—is 3 × 2 = 6. This
expresses in arithmetical form the fact that for each of the three things the
traveler puts in seat 1, he can place two others in seat 2, producing a total of
six pairs.

Now, for each of these six pairs, the traveler has one choice left for
putting something in seat 3. For example, with the pair WG in seats 1 
and 2 respectively, the traveler has C left for seat 3; with WC in seats 1 and
2 respectively, he has G left for seat 3; and so on. Here is a summary of 
all the possible arrangements of the wolf, the goat, and the cabbage on 
the boat:
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Seat 1 Seat 2 Outcome Seat 3 Final Outcome

↓ ↓ ↓ ↓ ↓
W with G → W G with C → W G  C__ __ __ __ __ __ __ __

W with C → W C with G → W C  G__ __ __ __ __ __ __ __

G with W → G W with C → G W C__ __ __ __ __ __ __ __

G with C → G  C with W → G  C W__ __ __ __ __ __ __ __

C with W → C W with G → C W G__ __ __ __ __ __ __ __

C with G → C  G with W → C G W__ __ __ __ __ __ __ __

Note again that the total number of potential pairings (shown in the
previous “Final Outcome” column)—WGC, WCG, GWC, GCW, CWG, and
CGW—is 3 × 2 × 1 = 6. As before, this expresses in arithmetical form the 
fact that for each of the three things the traveler puts in seat 1, he can place
two in seat 2, and one in seat 3, producing a total of six triplet arrangements.
The arrangements are called permutations, as readers may recall from their
school mathematics. A permutation is a grouping of elements with regard
to their order. For example, the result of permuting two letters, A and B, 
is AB and BA. The pairs consist of the same two elements, but the order is
different.

Now, let’s include the traveler (T) himself in the arrangement 
planning:

In how many possible arrangements can the traveler seat himself, the
wolf, the goat, and the cabbage in the four seats on the boat?

In this case, there are 4 × 3 × 2 × 1 = 24 possible arrangements. The first digit
4 refers to the fact that any one of the four—the wolf (W), the goat (G), the
cabbage (C), or the traveler (T)—can occupy seat 1. The second digit 3 tells
us that for each of the four possibilities for seat 1, there are three ways in
which seat 2 can be occupied. This produces 4 × 3 = 12 permutations for 
the first two seats. The third digit tells us that for each of the twelve permu-
tations, there are two ways in which seat 3 can be occupied, for a total of 
4 × 3 × 2 = 24 permutations. Finally, the fourth digit indicates that for each
of the twenty-four permutations so far, there is only one way in which 
seat 4 can be occupied, for a total of 4 × 3 × 2 × 1 = 24 permutations. These
permutations are given as follows (organized, for the sake of clarity, accord-
ing to the occupant of the first seat):
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With W in Seat 1:

1. WGCT

2. WGTC

3. WCGT

4. WCTG

5. WTGC

6. WTCG

With G in Seat 1:

7. GWCT

8. GWTC

9. GCWT

10. GCTW

11. GTWC

12. GTCW

With C in Seat 1:

13. CWGT

14. CWTG

15. CGWT

16. CGTW

17. CTWG

18. CTGW

With T in Seat 1:

19. TWGC

20. TWCG

21. TGWC

22. TGCW

23. TCWG

24. TCGW

If there were five places to be occupied on the boat and five things to fill
them, there would be 5 × 4 × 3 × 2 × 1 possible arrangements, or permuta-
tions, of the things (as readers can confirm for themselves); if there were six
places and six things, there would be 6 × 5 × 4 × 3 × 2 × 1 permutations; and
so on. Do you see the pattern? If there were n places to be occupied and n
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objects to fill them, there would be n × (n – 1) × (n - 2) × . . . 1 permutations.
This is known as a factorial, and is represented by the symbol n!:

n! = n × (n – 1) × (n – 2) × . . . × 1.

This formula generalizes the fact that the first position can be filled with n
objects, the second position with one less than the total number of objects 
(n – 1), the third with two less than the total number (n – 2), and so on,
down to a single possibility for the last position. Here are some examples of
factorials:

4! = 4 × 3 × 2 × 1
5! = 5 × 4 × 3 × 2 × 1
9! = 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
. . .
n! = n × (n – 1) × (n – 2) × . . . × 1

Let’s explore the concept of permutation a little further. Suppose that
some of the objects to be arranged are the same. Here’s an example of this
kind of problem:

How many five-digit numerals can you construct using the digits 1,
1, 2, 3, and 4?

Here we have five objects (digits), two of which are indistinguishable—the
two 1s. This means that some arrangements will turn out to be exactly the
same. These must therefore be “filtered out,” so to speak. To do this, let’s
assign a subscript to the two 1s, in order to keep track of them. The five dig-
its, therefore, can be rewritten as follows:

11 , 12, 2, 3, and 4.

A total number of 120 five-digit numerals can be made:

5! = 5 × 4 × 3 × 2 × 1 = 120.

However, some of these will be indistinguishable when the subscripts
are removed, as examples 1 and 2 show:

1. 1121234 = 12,134
2. 1221134 = 12,134

Now, how many of these cases exist among the 120 numerals? There will be
2! of them. Why? Because that is how many permutations there are of the
two digits 11 and 12 when considered in isolation from their occurrence with
the other digits in the numerals. Patient readers may wish to verify this for
themselves by constructing the 120 permutations with the subscripted
numbers and then canceling out those that are indistinguishable. The
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canceling out of the indistinguishable cases is, of course, a case of division,
whereby the 2! is divided into 5!:

5!
=

5 × 4 × 3 × (2 × 1)
= 5 × 4 × 3 = 60.__ _______________

2! (2 × 1)

We can thus make sixty distinct five-digit numerals. In general, the num-
ber of distinct permutations of n objects, among which there are r indistin-
guishable cases, is

n!___
r! (r = number of indistinguishable cases).

Now, let’s consider a situation in which we have more people than posi-
tions in which to place them:

Suppose you had to choose one person to be president, one vice pres-
ident, and one secretary from a committee of ten people. In how
many ways could you fill those three positions?

Of course, ten people can be selected for the position of president; for
each of these, any one of the remaining nine can be selected for the vice
presidency; and for each of the previously selected pairs, we can choose
from among eight people to fill the remaining position of secretary. So, the
number of total permutations in this case is 10 × 9 × 8 = 720.

Can this solution be generalized? Notice that the answer to 10 × 9 × 8 is,
in effect, 10! with the last seven factors canceled from it:

10 × 9 × 8 (× 7 × 6 × 5 × 4 × 3 × 2 × 1).

This result is produced by dividing 7! (= 7 × 6 × 5 × 4 × 3 × 2 × 1) into
10!—which is shown as follows:

10!
=

10 × 9 × 8 × (7 × 6 × 5 × 4 × 3 × 2 × 1)
= 10 × 9 × 8 = 720.__ ________________________________

7! (7 × 6 × 5 × 4 × 3 × 2 × 1)

Note that the denominator 7! in the previous fraction can cleverly be rewrit-
ten as (10 – 3)! and that the 3 in parentheses stands for the number of posi-
tions to be filled. This resourceful bit of rewriting provides the relevant
insight. In general, if the numerator is n! then the denominator will be 
(n – r)! where r stands for the number of positions to be filled:

n!_____ .
(n – r)!

This formula now allows us to solve any problem that requires us to put n
objects in r positions easily. Another way to phrase it is that the formula
allows us to permute n objects taken r at a time.
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Before leaving the field of elementary combinatorics, let’s look at one
final type of arrangement pattern. Suppose we wanted to select a three-
member subcommittee from the ten candidates. Are there also 720 ways to
do this? The answer is no, because order does not matter in this case. For
example, let’s say that three of the people to be chosen are named Chris,
Lucy, and Rachel. There are 3! ways (3! = 3 × 2 × 1 = 6) to select these three
specific people to fill the three positions on the subcommittee:

President Vice President Secretary

↓ ↓ ↓
Chris Lucy Rachel

Chris Rachel Lucy

Lucy Chris Rachel

Lucy Rachel Chris

Rachel Chris Lucy

Rachel Lucy Chris

When making a subcommittee, however, the order of the selections is
irrelevant. It only matters that three are chosen. It is irrelevant, for instance,
whether the order is (1) Chris, Lucy, Rachel or (6) Rachel, Lucy, Chris. The
previous six permutations, therefore, can be reduced to a combination of
three distinct people. That is why this type of arrangement is called a com-
bination, rather than a permutation. A combination can be defined as an
arrangement that is put together with no regard to order. In the case of a
three-member subcommittee, the redundant permutations—3!—must be
eliminated from the 720 possible selections that can be made. How many of
these are there? To determine this, we simply cancel out the redundant per-
mutations from 720 through division:

720
=

720
= 120.___ ___

3! 6

The permutation of n objects: n! = n × (n – 1) × (n – 2) × . . . × 1

The permutation of n objects, in which r cases are indistinguish-
able: n! /r!

The permutation of n objects, taken r at a time: n! /(n – r )!

The combination of n objects, taken r at a time: n! /(n – r )! r!

A SUMMARY OF FORMULAS
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Note that the denominator in this case is again r!—the number of positions
to be filled. Note as well that the 720 in the numerator was produced by our
previous formula—namely, n!/(n – r)!. So, the general formula for a combi-
nation is the previous formula divided by r!:

n!________ .
(n – r)! r!

Reflections

The River-Crossing, Josephus, and School Girl puzzles are probes of combi-
natory pattern. In simple yet elegant ways, they exemplify what mathemat-
ical inquiry is all about. As the great German mathematician Gottfried
Leibniz (1646–1716) so aptly put it, mathematics is an ars combinatoria, a
“combinatory art.”

The Greek philosopher Pythagoras founded mathematics, in fact, as the
science of pattern. His greatest discovery was the theorem that bears his
name (the Pythagorean theorem). The theorem states that the square of the
hypotenuse (the side of a triangle opposite the right angle) of a right-

angled triangle (a triangle containing a 90-degree angle) is equal to the sum
of the squares of the other two sides. The hypotenuse is the side c opposite
the right angle in the figure below. More will be said about this theorem in
chapter 5.

Pythagoras is best known for discovering the theorem named
after him. Around 529 B.C., he settled in Crotona (Italy). There,

he founded a secret society among the aristocrats. People in the
inner circle were called mathematikoi, which meant “those 
trained in science.” Suspicious of the society, citizens killed most
of its members in a political uprising. Historians do not know
whether Pythagoras left the city before the outbreak of violence 
or whether he was killed in it. The Pythagorean society continued
on for a while after the slaughter, disappearing from history in the
400s B.C.

PYTHAGORAS (c. 582–500 B.C.)



The Pythagoreans firmly believed that mathematical theorems (such as
the one they themselves proved) held the secrets of the universe. The cos-
mos speaks to us in a numerical language, they claimed. For this reason, the
objective of mathematics must surely be one of the most important of all
human objectives—to decode the grammar of that language.

Explorations

Crossings, Arrangements, Pairings

15. Let’s start with a simple version of Tartaglia’s puzzle, to get the
mental engines running, so to speak, adding a slightly different twist to 
it. How many back-and-forth crossings are required for only two couples if
(1) the small boat that is to take them across holds only two people, (2) to
avoid any compromising situations, the crossings are to be so organized
that no woman shall be left with a man unless her husband is present, 
and (3) the two women can never be left alone together (on either side or on
the boat)?

16. Now, determine the number of complete back-and-forth crossings
needed for four husband-and-wife pairs if, again, the small boat that is to
take them across holds only two people, and the crossings are to be so
organized that no woman shall be left with a man unless her husband is
present. Note that the solution is possible only if there is an island in mid-
stream for people to use as a “transit stop.” Trips that involve going to the
island and doubling back from it do not count as “complete” crossings. In
this version, two or more women can be left alone together anywhere and at
any time.

17. Solve Kirkman’s puzzle: how can fifteen girls walk in five rows of
three each for seven days so that no girl walks with any other girl in the
same row (triplet) more than once?
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18. There are twenty billiard balls, ten white and ten black, in a box. After
you put a blindfold on, what is the least number of draws you must make
to be sure of having a pair of balls of matching color—that is, two white
balls or two black balls?

19. Now, what is the least number of draws you must make (always with
a blindfold on) to be sure of having a pair of balls of matching color, when
the box contains

A. ten white, ten black, and ten green balls

B. ten white, ten black, ten green, and ten yellow balls

C. ten white, ten black, ten green, ten yellow, and ten red balls?

Do you detect a pattern? If so, what is it?

20. Would the same pattern apply if the number of balls varied: for
example, ten white, eight black, and four green?

21. If there are six pairs of black gloves and six pairs of white gloves in a
box, all mixed up, what is the least number of draws you must make, with
a blindfold on, to be sure of having a matching pair of black or white
gloves?

22. Perhaps the most ingenious of all the puzzles in this genre is the one
devised by Lewis Carroll (1832–1898), the great puzzlist and the author of
the classic children’s books Alice’s Adventures in Wonderland (1865) and
Through the Looking-Glass (1872). A bag contains one counter, which is either
white or black. A white counter is put in, the bag is shaken, and a counter
drawn out, which proves to be white. What are the chances of drawing a
white counter?

Combinatorics

23. If there are three different routes from Sarah’s to Bill’s house and four
different routes from Bill’s to Shirley’s house, how many routes are there
from Sarah’s to Shirley’s house that go through Bill’s house?

24. A club has twenty members. It is electing a president and a vice pres-
ident. How many different outcomes of the election are possible? What if
only two candidates, call them Brenda and Heather, are allowed to be
elected president?

25. Alex wants to make soup with exactly five different vegetables. If he
has twelve vegetables from which to choose, how many different soups can
he make?
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TODAY WE OFTEN REFER to the medieval European era as the “Dark Ages,”
even though, as it turns out, it was a much more “enlightened” period

of science than we commonly think. Indeed, significant discoveries in
physics, chemistry, and astronomy were made by medieval scholars,
despite considerable resistance to their efforts by the ruling religious oli-
garchy of the era.

But in one area of medieval knowledge, the expression “Dark Ages” may
be an appropriate one, after all. Until the early thirteenth century, little
progress had been made in mathematics—not because of any opposition
from religious authorities, and certainly not for any lack of ingenuity, but
because such progress was likely hampered by the cumbersome and ineffi-
cient numeration system in use at the time—the Roman numeral one—
which was based on seven alphabet letters, having specific numerical values:

I = one

V = five

X = ten

L = fifty

C = one hundred

D = five hundred

M = one thousand

� 47 �

Fibonacci’s Rabbit Puzzle

The more we know the more fantastic the world becomes
and the profounder the surrounding darkness.

ALDOUS HUXLEY (1894–1963)

3
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To grasp how unwieldy that system was, consider how the numeral
“two thousand two hundred fifty-three” was put together:

MMCCLIII = two thousand two hundred fifty-three.

Now, compare the Roman numeral with the one we use today:

2,253 = two thousand two hundred fifty-three.

Ours is clearly much easier to read, because the principle that is used to
construct it is simple—the position of each digit in the numeral indicates its
value as a power of ten. This is why our system is called “decimal” (from
Latin decem, “ten”). Here is how the decimal numeral 2,253 is read—note
that “one thousand” can be represented by 103 (because 103 = 10 × 10 × 10 =
1,000), “one hundred” by 102 (because 102 = 10 × 10 = 100), “ten” by 101, and
“one” by 100 (see the sidebar on exponents in chapter 1):

2 2 5 3
↓ ↓ ↓ ↓

two thousand two hundred fifty three
↓ ↓ ↓ ↓

2 × 103 2 × 102 5 × 101 3 × 100.

Now, imagine trying to carry out a simple arithmetical task, such as
adding 2,253 + 1,337, with Roman numerals. Here’s how it would look on
paper:

MMCCLIII + MCCCXXXVII = MMMDXC.

The task is daunting, as readers can confirm for themselves. It is further
complicated by the fact that a smaller numeral appearing before a larger
one indicates that the smaller one is to be subtracted from the larger one. To
wit: the numeral for “ninety” is represented by XC (“one hundred minus
ten”).

The abacus is an ancient device that was used in China and
other countries to facilitate arithmetical computation. It is

made with a frame containing columns of beads strung on wires or
narrow wooden rods attached to the frame. The beads represent
numbers.

A typical Chinese abacus has columns of beads separated by 
a crossbar. Each column has two beads above the crossbar and 
five below it. The first column on the right represents the “ones”
column; the second, the “tens” column; the third, the “hundreds”
column; and so on.

THE ABACUS
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Clearly, it would take quite an effort to carry out the addition, keeping track
of all the letter-to-number values, especially when we compare it to the
minimal effort expended in performing addition with decimal numerals:

2,253
+ 1,337______

3,590 .

As mentioned, the superiority of the decimal system over the Roman
one lies in the fact that it is based on the “abacus principle,” whereby the
position of a digit indicates its value in terms of a power of ten. The 0 digit
in this system makes it possible to differentiate between numbers such as
“eleven” (= 11) “one hundred and one” (= 101) and “one thousand and one”
(= 1,001), without the use of additional numerals. The 0 digit in a numeral
tells us, simply, that the position is “void” or “empty,” since multiplying
any number by 0 always yields 0:

11 = eleven

1 1
↓ ↓

ten one
↓ ↓

1 × 101 1 × 100,

101 = one hundred and one

1 0 1
↓ ↓ ↓

one hundred void one
↓ ↓ ↓

1 × 102 0 × 101 1 × 100,

1,001 = one thousand and one

1 0 0 1
↓ ↓ ↓ ↓

one thousand void void one
↓ ↓ ↓ ↓

1 × 103 0 × 102 0 × 101 1 × 100.

No wonder, then, that the numeration system in use in the world today
is the decimal one. It was first developed by the Hindus in India in the third
century B.C., and was then introduced into the Arabic world around the sev-
enth or eighth century A.D. The Hindu-Arabic system first reached Europe
in the year 1000 through the efforts of Pope Sylvester II. But it hardly got
noticed at the time. It was reintroduced in a much more practical way to
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medieval Europeans a few cen-
turies later by an Italian business-
man named Leonardo da Pisa,
Figlio di Bonacci (“Leonard from
Pisa, Son of Bonacci”), known
more commonly as Leonardo
Fibonacci.

With the publication in 1202 of
his textbook, titled appropriately
the Liber Abaci (“The Book of the
Abacus”), Fibonacci succeeded in
convincing his fellow Europeans
that the decimal system was far
superior to the Roman one. He did
this essentially by devising a
series of puzzles and practical
problems that could easily be
solved with it. Shortly after its
publication, mathematics literally
“took off,” becoming a thriving
science throughout Europe, no
doubt influencing and animating
the revival of learning known as

the Renaissance, which began in Italy in the early 1300s.
It is in the Liber Abaci that the Rabbit Puzzle appears. Like Alcuin’s River-

Crossing Puzzle, it highlights the fact that mathematics is essentially a study
of patterns. The solution to the puzzle produces a sequence of numbers that
contains so many hidden patterns that to this day, people continue to flesh
them out. And, if this were not enough, the “Fibonacci sequence,” as it is
now called, has been found to occur in nature and human affairs! Clearly, if
any puzzle should make the top ten list, it is Fibonacci’s Rabbit Puzzle.

The Puzzle

The puzzle is found in the third section of the Liber Abaci:

A certain man put a pair of rabbits, male and female, in a very large
cage. How many pairs of rabbits will be produced in that cage in a
year if every month each pair produces one and only one new pair,
consisting again of a male and a female, which, from the second
month of its existence on, also is productive? It is assumed that none
of the rabbits die in that year.

Born in Pisa, Fibonacci traveled
all over the Byzantine Empire.

During his trips, he learned about
the decimal system that was used in
the Arabic world. Upon his return
to Pisa in 1202, he published the
Liber Abaci to illustrate the practi-
cality and the efficiency of that
numeral system to a European
audience.

Fibonacci was so taken by 
Arabic culture that he wrote many
things in his book from right to left,
in imitation of the Arabic writing
style. For example, he wrote the
numerals in descending order (10,
9, 8, 7, 6, 5, 4, 3, 2, 1, 0), and he
put fractions before whole numbers
(
1–24 instead of 4

1–2 ).

LEONARDO FIBONACCI 
(c. 1170–1240)



At the start, there is only one pair of rabbits in the cage—the original
pair. At the end of the first month, there is still that one pair in the cage,
because the puzzle states that a pair becomes productive only “from the
second month of its existence on.” During the second month, the pair will
produce its first offspring pair. Thus, at the end of the second month, a total
of two pairs—the original one and its first offspring pair—are in the cage.
Let’s summarize:

At the start

A pair is put into the cage.

Let’s name the pair F1, for “Fibonacci rabbit pair number 1.”

After the first month

Total number of pairs in the cage: F1 = 1 pair.

After the second month

F1 has produced its first pair of offspring.

Let’s name the new pair F2.

Total number of pairs in the cage: F1 + F2 = 2 pairs.

During the third month, only the original pair, F1 (now fully productive),
gives birth to another new pair. According to the condition set down by the
puzzle (a pair becomes productive from the second month of its existence),
F2 must wait a month before it, too, becomes productive. So, at the end of
the third month, there are three pairs in total in the cage: the one initial pair,
and the two offspring pairs that the original pair has thus far produced:

After the third month

F1 has produced another pair of offspring.

Let’s call it F3.

F2 has not yet produced a pair, because it has been in the cage only one
month.

Total number of pairs in the cage: F1 + F2 + F3 = 3 pairs.

Now, consider what happens during the fourth month. The original pair
F1 produces yet another pair. F2 now produces its own first pair. F3 has not
started producing yet. Therefore, at the end of the month, a total of two
newborn pairs of rabbits are added to the cage—one from F1 and one from
F2. Altogether, at the end of the month there are the previous three pairs
plus the two newborn ones, making a total of five pairs in the cage:
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After the fourth month

F1 has produced another pair of offspring.

Let’s call it F4.

F2 has produced its first pair.

Let’s call it F5.

F3 has not produced a pair, because it has been in the cage for only one
month.

Total number of pairs in the cage: F1 + F2 + F3 + F4 + F5 = 5 pairs.

During the fifth month, F1 produces another pair, as does F2 (now fully
productive). F3 has been in the cage for a month; so it now also becomes
productive, giving birth to its first pair of offspring. The other two rabbit
pairs in the cage, F4 and F5, are not yet productive. So, at the end of the fifth
month, three newborn pairs have been added to the five pairs that were
previously in the cage, making the total number of pairs in it: 5 + 3 = 8:

After the fifth month

F1 has produced another pair of offspring.

Let’s call it F6.

F2 has also produced another pair.

Let’s call it F7.

F3 has produced its first pair of rabbits.

Let’s call it F8.

F4 and F5 have not produced pairs, because both have been in the cage
for only one month (F4 was produced by F1 and F5 by F2).

Total number of pairs in the cage: F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 =
8 pairs.

The remainder of the solution proceeds in a similar fashion. It is left as
an exercise to the patient reader. By the end of the twelve-month period, 233
pairs will be in the cage. A month-by-month summary of the cumulative
rabbit pairs in the cage is given as follows:

After How Long? How Many Pairs in the Cage?

the start 1 pair

1 month 1 pair

2 months 2 pairs

3 months 3 pairs

4 months 5 pairs
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After How Long? How Many Pairs in the Cage?

5 months 8 pairs

6 months 13 pairs

7 months 21 pairs

8 months 34 pairs

9 months 55 pairs

10 months 89 pairs

11 months 144 pairs

12 months 233 pairs

So, the answer to Fibonacci’s puzzle is that there will be 233 pairs in the
cage after twelve months. The solution is hardly interesting in itself. But the
kinds of surprising patterns it harbors within it are of enormous interest.
The first can easily be discerned by putting the successive number of pairs
in the cage at the end of each month in a linear sequence, as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233.

Each number in the sequence is equal to the sum of the previous two num-
bers—for example, 2 (the third number) = 1 + 1 (the sum of the previous
two); 3 (the fourth number) = 1 + 2 (the sum of the previous two); and so on.
This “hidden formula” in the sequence allows us to extend it, ad infinitum.
To get the number after 233, all we have to do is add 233 and 144, which
equals 377; to get the one after 377, we add 377 and 233, which equals 610;
and so on, ad infinitum:

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . }.

In mathematics, a sequence or series is enclosed by brackets. The num-
bers in the series are called terms. The three dots indicate that an infinite
number of terms follow the ones that are written. The Fibonacci sequence is
thus an infinite series, in mathematical terminology, meaning it’s an
ordered succession of numbers or other quantities that goes on ad infini-
tum. The natural numbers is an example of an infinite series, since there is
no last number in it {1, 2, 3, 4, 5, . . . }. If we denote the general term of the
series as Fn (for Fibonacci number), then the formula that generates each
term can be represented as follows:

Fn = Fn – 1 + Fn – 2.

This is a shorthand way of indicating that any number in the Fibonacci
sequence, Fn, can be determined by adding the one before it, Fn – 1, to the one
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before that, Fn – 2. For readers who may have difficulty in reading such sym-
bols, consider a concrete example. Let’s choose n = 6. This refers to the
“sixth” number in the previous Fibonacci sequence (reading it from left to
right). This is the number 8. So, in this case:

Fn = F6 = 8.

Consequently, Fn – 1 (the number just before), refers to the fifth number in the
sequence. And, as readers can see for themselves, that number is 5:

Fn – 1= F6 – 1 = F5 = 5.

Fn – 2 refers to the fourth number in the sequence. That number is 3:

Fn – 2 = F6 – 2 = F4 = 3.

In summary, when n = 6, the formula Fn = Fn – 1 + Fn – 2 translates into:

F6 = F5 + F4
8 = 5 + 3.

Primes
An integer (a whole number) is called a prime number if its only fac-
tors are 1 and itself. A factor is a smaller number that divides into a
larger number. The larger number is thus made up of smaller factors,
which, when multiplied together, produce it. A prime is, in effect, a
number that cannot be decomposed into factors. Examples are

3 = 3 × 1

5 = 5 × 1

19 = 19 × 1

Note that the number 1 is not defined as prime.

Composites
An integer is called a composite number if it is composed of differ-
ent factors. Note that in their lowest form, the factors of composite
numbers are all prime. Examples include

4 = 2 × 2

12 = 2 × 6 = 2 × (2 × 3) = 2 × 2 × 3

20 = 2 × 10 = 2 × (2 × 5) = 2 × 2 × 5

The primes are clearly the “building blocks” of our number 
system.

PRIMES VS. COMPOSITES



Over the years, the properties of the Fibonacci numbers have been
extensively studied, resulting in considerable literature. The basic pattern
hidden in this series was studied formally by the French-born mathemati-
cian Albert Girard (1595?–1632?) in 1632. In 1753, the Scottish mathematician
Robert Simson (1687–1768) noted that as the numbers increased in magni-
tude, the ratio between succeeding numbers approached the Golden 
Ratio. However, it was the French mathematician and puzzlist Edouard
Lucas, whom we will encounter in chapter 6, who detected all kinds of 
hidden patterns in the Fibonacci numbers and who named it the Fibonacci

sequence, which is a series of numbers starting with 1 in which each 
successive number is the sum of the previous two numbers. Lucas also cre-
ated his own version of the Fibonacci sequence, known as the Lucas

sequence. It is exactly like the Fibonacci sequence except that it starts with
the number 2.

{2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . . }.

They have found, for instance, that it provides key insights on prime
numbers. In 1962, Vern Emil Hoggart (1921–1981) and Brother Alfred
Brousseau (1907–1988) founded a Fibonacci Society for the sole purpose of
studying the sequence and the patterns it conceals—and there seem to be an
infinitude of them! The society started publication of a periodical, called the
Fibonacci Quarterly, the year after (1963). It is still being published.

Mathematical Annotations

The number of patterns that can be found in the Fibonacci sequence is
mind-boggling. Why would the solution to a simple puzzle contain so
many? To the best of my knowledge, no answer exists to that question. All
that can be said is that the derivation of the sequence from a simple puzzle
gives some substance to the Pythagorean belief that numbers may, after all,
constitute the secret language of the universe.

Patterns in the Fibonacci Sequence

Let’s take a look at some of the patterns that the Fibonacci sequence con-
ceals. If we take the ratio of two consecutive Fibonacci numbers, it
approaches the unending decimal 0.6180339 . . . :

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . }.

Ratios of two consecutive numbers in the Fibonacci sequence include:
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5__
8

= 0.625

8__
13

= 0.615384

13__
21

= 0.619047

21__
34

= 0.617647

. . .

610___
987

= 0.6180344

Etc.

This ratio turns out to be the Golden Ratio—a ratio discovered by the Greeks
that has been recognized as a standard of aesthetic judgment ever since (see
the sidebar). The Fibonacci sequence has so many such patterns in it that one
could literally spend a lifetime sifting them out. Here are a few others:

� The sequence that results from taking the difference between two con-
secutive Fibonacci numbers (for example, 3 – 2 = 1, 8 – 5 = 3, etc.) produces
the original sequence:

Also known as the Golden Section, the Golden Ratio is a pro-
portion produced when a line is divided so that the ratio of the

length of the longer line segment (AC, in the following figure) to
the length of the entire line (AB) is equal to the ratio of the length
of the shorter line segment (CB) to the length of the longer line seg-
ment (AC). The ratio is the unending number 0.6180339 . . .

AC/AB = CB/AC = 0.6180339 . . .

Since antiquity, philosophers, artists, and mathematicians have
been intrigued by this ratio, which Renaissance writers called the
“divine proportion.” It is widely accepted that any form con-
structed with this ratio exhibits a special beauty. It has also been
found to occur mysteriously in nature.

THE GOLDEN RATIO
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{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . }.

Differences between consecutive numbers in the sequence include:

2 – 1     = 1

3 – 2     = 1

5 – 3     = 2

8 – 5     = 3

13 – 8   = 5

21 – 13 = 8

. . .        = . . .

↑
Fibonacci sequence (read from the top down)

� The sum of the squares of two consecutive Fibonacci numbers is a
Fibonacci number. Note: if Fn is any Fibonacci number, then Fn + 1 is the num-
ber after it. Note also that the symbols Fn

2 and Fn + 1
2 represent the squares

of the consecutive numbers Fn and Fn + 1:

TABLE 3-1: FIBONACCI NUMBERS

F
n

F
n + 1 → F

n

2 + F
n + 1

2 = Fibonacci Number

2 3 → 4 (= 22) + 9 (= 32) = 13

3 5 → 9 (= 32) + 25 (= 52) = 34

5 8 → 25 (= 52) + 64 (= 82) = 89

8 13 → 64 (= 82) + 169 (= 132) = 233

13 21 → 169 (= 132) + 441 (= 212) = 610

21 34 → 441 (= 212) + 1,156 (= 342) = 1,597

. . . . . . . . . . . . . . . . . . . . . . . .

� The third number is 2, and every third number after 2 is a multiple of 2
(= 8, 34, 144, . . . ); the fourth number is 3, and every fourth number after 3
is a multiple of 3 (= 21, 144, 987, . . . ); the fifth number is 5, and every fifth
number after 5 is a multiple of 5 (= 55, 610, . . . ); and so on. In general, if the
nth number in the sequence is x, then every nth number after x turns out to
be a multiple of x.

One of the most intriguing discoveries related to the Fibonacci sequence
is the unexpected relation that it has to Pascal’s triangle, named after the
French philosopher and mathematician Blaise Pascal (1623–1662), a founder
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of the modern theory of probability. The triangle consists of a triangular
arrangement of numbers, whereby a number in a given row is the sum of
two numbers immediately above it in the triangle. Here is a section of the
triangle:

For example, the first 3 in the fourth row from the top is equal to the sum 
of the two numbers immediately above it (1 + 2). Similarly, the 6 in the 
fifth row is equal to the sum of the two numbers immediately above it 
(3 + 3). As it turns out, the diagonal sums of the numbers in Pascal’s trian-
gle correspond to the numbers in the Fibonacci sequence {1, 1, 2, 3, 5, 8, 13,
21, 34, . . . }:

Why do Pascal and Fibonacci numbers correspond in this way? No
answer has ever been given to this question, to the best of my knowledge.
The correspondence remains a mystery to this day.

Let’s now look at a less spectacular, albeit nonetheless fascinating, pat-
tern in the Fibonacci sequence. We start by adding up the first ten consecu-
tive numbers:

1. 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143.
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The sum turns out to be divisible by 11 (143 ÷ 11 = 13). Now, amazingly, the
same result holds for the sum of any ten consecutive Fibonacci numbers.
Take, for example, the ten numbers that start with 55 in the sequence:

2. 55 + 89 + 144 + 233 + 377 + 610 + 987 + 1,597 + 2,584 + 4,181 =
10,857

and

10,857 ÷ 11 = 987.

If one examines these two cases more closely, it turns out that the sum of 
the ten consecutive numbers is equal to 11 times the seventh number in 
the chosen ten-digit sequence. In example 1, the seventh number is 13, 
and 13 × 11 = 143; and in example 2, the seventh number is 987, and 987 ×
11 = 10,857.

The reader may ask at this point: Why search for such patterns? Do they
lead anywhere? Ah, there’s the rub, as Shakespeare would have said.
Fibonacci numbers seem to rule the universe. There have, in fact, been innu-
merable applications of Fibonacci numbers to the study of functions, to
computer-programming techniques, and to many other areas of mathemat-
ics. And, as will be pointed out briefly in the Reflections section, Fibonacci
numbers manifest themselves in nature and in all kinds of human affairs.
Such remarkable serendipities raise the same question that came to the
mind of Paul Dirac (1902–1984), a founder of quantum mechanics, when he
was contemplating the discovery that the strength of the electromagnetic
force between two electrons yields a constant value of  

1__
137. He considered

this finding so amazing that he has been quoted as saying that upon arrival
to heaven, he would ask God one question only: why

1__
137? To Dirac’s ques-

tion, one could add: “why Fibonacci numbers?”
As mathematicians began to see Fibonacci numbers appear in the most

unexpected places and in surprising ways, they grew interested in finding
an efficient method to calculate any Fibonacci number. In principle, this is
not a problem. To identify the 100th Fibonacci number, for instance, all we
have to do is add the 98th and 99th numbers together. However, this still
means we have to identify all the numbers up to the 98th, which can prove
to be quite tedious. So, in the middle of the nineteenth century, the French
mathematician Jacques Binet (1786–1856) elaborated a formula, based on
earlier calculations of Leonhard Euler (1707–1856) and Abraham de Moivre
(1667–1754). It allows us to find any Fibonacci number, if its position in the
sequence, n, is known. The Binet formula is given as follows:
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It is beyond the objective of this chapter to explain how Binet arrived at the
formula. Suffice it to say that it relies entirely on the Golden Ratio. Readers
can check the validity of the formula for themselves by plugging various
values for n into it.

Sequences and Series

The Fibonacci sequence is, technically, a series—a sequence of numbers,
called terms, that is generated by some rule. Note: a negative number is one
that is placed to the left of zero on a number line:

Negative numbers are used, for example, to refer to the weather. In this
case, the negative value is said to be “below zero,” rather than to “the left
of zero” (as shown in the previous figure). This is because the number 
line on the thermometer is usually read vertically, from top to bottom—not
horizontally, from left to right.

Integers
Integers include the following three groups:

Natural numbers: {1, 2, 3, 4, 5, 6, . . . }
Zero: {0}
Negative numbers: {–1, –2, –3, –4, . . . }

Fractions
Examples of fractions are:

{1_
2,

–2__
3 ,

7_
9,

14__
23, . . . }

Integers and fractions together make up the so-called rational
numbers.

Irrational Numbers
Irrational numbers (also known as radical numbers) are numbers
that cannot be expressed as an integer or as a ratio between two
integers. Examples include:

{√2, √5, √19 , √23, . . . }
Rational and irrational numbers together make up the real numbers.

There are also transfinite and complex numbers in the real num-
ber system. The former will be discussed in chapter 6; the latter are
beyond the scope of this book.

NUMBERS



The following are examples of series:

1. –5, –10, –15, –20, –25, . . .

2. 5, 10, 20, 40, 80, . . .

3. 1, 3, 5, 7, 9, . . .

4. 22, 24, 26, 28, . . .

In series 1, each term differs from the preceding one by –5. In series 2, each
term differs from the preceding one by a ratio of 2; that is, each term is pro-
duced by multiplying the one before it by 2. In series 3, each term differs
from the preceding one by 2. In series 4, the consecutive terms differ by a
factor of 22; that is, each term is produced by multiplying the previous one
by 22. Series 1 and 3 are called arithmetical, and series 2 and 4 are geomet-

ric. These will be discussed in chapter 6.
Among the first to study series systematically was the great German

mathematician Karl Friedrich Gauss (1777–1855). The story goes that Gauss
was only ten years old when he purportedly dazzled his math teacher, after
the teacher had asked the class to cast the sum of all the numbers from 1 to
100: 1 + 2 + 3 + 4 + . . . + 100 = ? Gauss raised his hand within seconds, giv-
ing the correct response of 5,050. When his teacher asked little Karl how he
was able to come up with the answer so quickly, he is said to have replied
(more or less) as follows:

I laid out the numbers in order, removing from the layout the middle
number, 50, and the last number, 100: {1, 2, 3, . . . , 97, 98, 99}. In this lay-
out, there are forty-nine pairs of numbers that add up to 100. The pairs
are made up as follows: the first and last numbers in the layout (1 + 99
= 100), the second and second-last numbers (2 + 98 = 100), the third
and third-last (3 + 97 = 100), and so on. That makes 4,900, of course.
Adding to this the 50 and 100 that were removed gives 5,050.

In effect, Gauss had discovered and proven how to sum an arithmetical
series: {1, 2, 3, . . . 100}. The problem given to Gauss and his classmates can
be expressed more generally as follows: what is the sum of n consecutive
numbers: {1 + 2 + 3 + . . . + n}? The answer is: n(n + 1)/2. Plugging 100 into
n produces the answer:

n(n + 1)
=

100(100 + 1)
=

(100)(101)
=

10,100
= 5,050._______ __________ _________ _______

2 2 2 2

To grasp how the formula was devised, let’s put on paper what Gauss did
more or less in his head, with a few slight modifications. First, lay out the
terms in numerical order and then in reverse order, putting one under the
other:
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(1) 1 2 3 . . . 100

↓↑ ↓↑ ↓↑ ↓↑

(2) 100 99 98 . . . 1.

Next, add the two numbers in each column together:

(1) 1 2 3 . . . 100
+ + + + +

(2) 100 99 98 . . . 1___________________ ____
Sum 101 101 101 . . . 101.

Notice that the sum in each case is the same—101. How many times do we
get this sum? Since there are 100 columns, that sum occurs 100 times. Thus,
the overall sum of the columns is: 100 × 101 = 10,100. Now, this is twice the
sum of all the integers from 1 to 100. Why? Because we added two series
together—the top is the initial series in numerical order and the bottom is
the same series in reverse order. So, all we have to do is divide the overall
sum in half: 10,100/2 = 5,050. The previous computations can be summa-
rized arithmetically as follows:

Sum of the first 100 numbers = 100 × 101 = 5,050.________
2

Now, let’s generalize this arithmetical form. Notice that 101 is 1 more
than the number of terms in the series, 100. Thus, if n is the number of terms
in a series, (n + 1) stands for 1 more than n:

n (n + 1)
↓ ↓

Sum of the first 100 numbers =
100 × 101

= 5,050._________
2

Sum of the first n numbers =
n × (n + 1)

._________
2

The formula is written more commonly as S(n) = n (n + 1)/2. Let’s try it
out with n = 15, which produces the sum of the first fifteen numbers {1, 2, 3,
4, + . . . + 15}:

S(n) = n (n + 1)/2 = 15 (15 + 1)/2 = (15) (16)/2 = 240/2 = 120.

We will return to the topic of series in chapter 6. Here, it is sufficient to
note that the study of series was made possible in the first place because of
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the decimal system. As mentioned earlier, its introduction into mathemat-
ics was due largely to the efforts of Fibonacci. The Fibonacci sequence itself
would hardly reveal its many hidden and intriguing patterns so readily if
it were not written with decimal numerals.

Reflections

The apparently infinite numerical patterns that are present in the Fibonacci
sequence, which mathematicians continue to extract from it, are not all
there is to the story of this truly remarkable series. For some mysterious rea-
son, Fibonacci numbers surface in nature. Daisies tend to have 21, 34, 55, or
89 petals (= the eighth, ninth, tenth, and eleventh numbers in the sequence);
trilliums, wild roses, bloodroots, columbines, lilies, and irises also have
petals in consecutive Fibonacci numbers. In general, if we start near the
bottom of a stalk and count up, the number of sequences of leaves turns 
out to coincide with some stretch of consecutive numbers within the
Fibonacci sequence. And that is not all—Fibonacci numbers also constantly
appear in human forms and affairs. A major chord in Western music, 
for instance, is made up of the third, fifth, and octave tones of the scale—
that is, of tones corresponding to the fourth, fifth, and sixth terms in the
Fibonacci sequence.

Basically, if one knows how to look, one will find Fibonacci numbers in
plants, poems, symphonies, art forms, computers, the solar system, and the
stock market. Myriads of books and articles have been written on this topic.
It truly boggles the mind to contemplate that all these “unexplained discov-
eries” can be traced back, ultimately, to a simple puzzle that was designed
to illustrate the practicality of the Hindu-Arabic numeral system! The
Pythagorean belief that mathematics is the secret language of the cosmos
certainly seems to be substantiated by the serendipitous appearance of the
Fibonacci sequence in human history. The word serendipity was coined by
the English writer Horace Walpole (1717–1797) in 1754, from the title of the
Persian fairy tale The Three Princes of Serendip, whose heroes made many for-
tunate discoveries accidentally.

Incidentally, the same type of observations can be made about the
Golden Ratio, also known by the Greek letter phi. The ratio describes the
spiraling form of seashells, pine cones, and other symmetries of nature. It is
said to have been incorporated by Leonardo da Vinci and Michelangelo into
their masterpieces of visual art. And it is apparently found in the propor-
tions used to build the Egyptian pyramids and the Greek Parthenon. As the
Pythagoreans suspected, phi may provide an important clue to how the uni-
verse works, as might the Fibonacci sequence, for that matter.
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Explorations

Pattern Detection

26. An infinitude of patterns exists in the Fibonacci sequence. Many are
still awaiting discovery. How many patterns can you spot?

27. Let’s construct a series in which every number is the sum of the pre-
vious three, starting with 1, 2, 3:

{1, 2, 3, 6, 11, 20, 37, 68, 125, 230, 423, 778, . . . }.

Do you detect any patterns in this sequence?

Miscellaneous Puzzles

Fibonacci’s objective was to introduce the decimal number system to a
European audience by means of puzzles and practical problems. The fol-
lowing are tricky puzzles that nevertheless bring out the capability of this
system to make computation easy.

28. Tim finally came to the realization that smoking is harmful and just
plain foolish. So, he decided to quit smoking, as soon as he finished the
twenty-seven cigarettes he had left in his pocket. Tim habitually smoked
only two-thirds of a cigarette at a time. It was also his habit to reroll the
butts into new cigarettes and then smoke them. If he smoked only once
each day, how many days went by before he finally quit his bad habit?

29. There are between fifty and sixty people at a party. Jane was counting
them, one at a time, when she noticed that if she counted them three at a
time, there would be two left over in her calculation method. If, however,
she counted them five at a time, there would be four left over. How many
people were at the party?

30. There are two containers on a table, A and B. B is twice the size of A.
A is half full of wine, and B one-quarter full of wine. Both containers are
then filled with water, and the contents are poured into a third container, C.
What portion of container C’s mixture is wine?

31. During a warehouse fire, a firefighter stood on the middle rung of a
ladder, pumping water into the burning warehouse. A minute later, she
stepped up three rungs and continued directing water at the building from
her new position. A few minutes after that, she stepped down five rungs
and, from her new position, continued to pump water into the building.
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Half an hour later, she climbed up seven rungs and pumped water from her
new position until the fire was extinguished. She then climbed the remain-
ing seven rungs up to the roof of the warehouse to look over the scene from
there. How many rungs were on the ladder?

Series

32. As discussed in this chapter, the sum of an arithmetical series is given
by the formula: S(n) = n (n + 1)/2. As we also saw, there is a second main
type of series, called a geometric series, which is defined as a series where
each successive term differs from the previous one by a constant ratio. For
example, in the following series, each term differs from the previous one by
a ratio of 2: that is, each term in the series is generated by multiplying the
previous one by 2:

{2, 4, 8, 16, 32, 64, 128, . . . }.

Underlying “structure” of the series:

1st term 2nd term 3rd term 4th term . . . nth term_______ ________ ________ ________ ________ .
2 4 = 2 × 2 8 = 4 × 2 16 = 8 × 2 . . . ?

Can you derive a formula for the general term of this series?

33. What if Gauss’s teacher had asked the class to sum up only the even
numbers from 1 to 100? Can you figure out a way to do this task quickly?
How would you find the sum of all the odd numbers from 1 to 100?
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AS ONE OF THE GREATEST AND MOST prolific mathematicians of history,
Leonhard Euler surely had no time to waste on trivial things. So, the

fact that he created puzzles to examine or model mathematical ideas speaks
volumes. For example, he devised his famous Thirty-Six Officers Puzzle in
1779 to study the properties of numbers arranged in rows and columns—an
idea pattern that led shortly thereafter to the concept of matrix in algebra. A
matrix is defined as an array of numbers or algebraic symbols that can be
used for manipulating the numbers or symbols for some specific mathemat-
ical purpose such as an arithmetical operation.

However, Euler’s most important puzzle is, arguably, his Königsberg
Bridges Puzzle, which he formulated in a famous 1736 paper titled “The
Seven Bridges of Königsberg.” He no doubt suspected that the puzzle bore
implications for mathematics. But even he could not possibly have imag-
ined that it contained so many revolutionary insights—insights that would
eventually lead to the establishment of two autonomous branches, known
today as graph theory and topology. For this reason, and because it never
fails to intrigue people who come across it for the first time, Euler’s puzzle
ranks, clearly, as one of the top ten of all time.
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Euler’s Königsberg 
Bridges Puzzle

If I were to wish for anything, I should not wish for
wealth and power, but for the passionate sense of the
potential, for the eye which, ever young and ardent, 

sees the possible. Pleasure disappoints, possibility never.
And what wine is so sparkling, what so fragrant, 

what so intoxicating, as possibility!

SØREN KIERKEGAARD (1813–1855)

4



The Puzzle

In the German town of Königsberg runs the Pregel River. In the river are
two islands, which in Euler’s time were connected with the mainland and
with each other by seven bridges. The residents of the town often debated
whether it was possible to take a walk from any point in the town, cross
each bridge once and only once, and return to the starting point. No one
had found a way to do it, but, on the other hand, no one could explain why
it seemed to be impossible. Euler became intrigued by the debate, turning
it into one of the greatest puzzles of all time:

In the town of Königsberg, is it possible to cross each of its seven
bridges over the Pregel River, which connect two islands and the
mainland, without crossing over any bridge twice?

In the following schematic map of the area, the land regions are repre-
sented by capital letters (A, B, C, D) and the bridges by lower-case letters 
(a, b, c, d, e, f, g):
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Euler was born in Basel, Switzerland. He studied under Johann
Bernoulli (1667–1748), an important figure in the development

of the calculus. From 1727 to 1766, he worked as a professor of
both mathematics and physics at institutions in St. Petersburg and
Berlin. Euler’s major contributions were to number theory, a field
that he helped to found.

In his Introduction to the Analysis of Infinities (1748), Euler gave
the first full treatment of the basic principles and the methods of
algebra, trigonometry, and analytical geometry. Although chiefly a
mathematician, he also made contributions to astronomy, mechan-
ics, optics, and acoustics.

LEONHARD EULER (1707–1783)



Euler went on to prove that it is impossible to trace a path over the
bridges without crossing at least one of them twice. He started by reducing
the map of the area to outline form, known as a graph, and restating the puz-
zle as follows:

Is it possible to draw the following graph without lifting pencil from
paper and without tracing any edge twice?

As Euler realized, the graph version of the puzzle provides a more manage-
able depiction of the situation because it disregards the distracting shapes
of the land masses and the bridges, reducing them to points or vertices and
portraying the bridges as paths or edges. This is called a network in contem-
porary graph theory.

In order to grasp Euler’s solution, it is helpful to look at a few simple
networks with different even and odd vertices. An even vertex is one where
an even number of paths converge, and an odd vertex is one where an odd
number of paths converge.
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In network 1, an even number of linear paths (two) converge at each of its
four vertices. Starting at any vertex, this network can be easily traversed
without having to double back over any path. In network 2, an even num-
ber of paths (four—two linear and two curved) converge at each of its four
vertices. Again, by tracing the network with a pencil, the reader will be able
to see that this one, too, can be easily traversed, without having to double
back over a path already traced. In network 3, an odd number of linear
paths (three) meet at each of the four outer vertices (J, K, L, M), and an even
number (four) meet at the inner vertex, N. Tracing this network, without
doubling back, turns out to be impossible. In network 4, the top vertex, O,
is even, with four curved paths converging there; the one right below it, P,
is odd, with one linear and four curved paths meeting there; the bottom
vertex, R, is even, with four curved paths converging there; and the vertex
Q, to the right, is odd, with two curved paths and one linear path meeting
there. In total, there are two odd and two even vertices. Network 4 can be
traversed without doubling back over any path (as readers can verify for
themselves).

Is there any hidden pattern here? Creating more complex networks,
with more and more paths and vertices in them, will show that it is not pos-
sible to traverse a network that has more than two odd vertices in it with-
out having to double back over some of its paths. Euler proved this very
fact in a remarkably simple way:

� A network can have any number of even paths in it, because all the
paths that converge at an even vertex are “used up” without having to dou-
ble back on any one of them. For example, at a vertex with just two paths,
one path is used to get to the vertex and another one to leave it. Both paths
are thus used up without our having to double back over either one of
them. Take, as another example, a vertex with four paths: one path gets us
to the vertex, and a second one gets us out. Then, a third path brings us
back to the vertex, and a fourth one gets us out. All paths are once again
used up. The same reasoning applies to any even vertex.

� At an odd vertex, on the other hand, there will always be one path that
is not used up. For example, at a vertex with three paths, one path is used
to get to the vertex and another one to leave it. But the third path can only
be used to go back to the vertex. To get out, we must double back over one
of the three paths. The same reasoning applies to any odd vertex.

� Therefore, a network can have, at most, two odd vertices in it. And these
must be the starting and ending vertices. Why? Let’s label one odd vertex
A and the other B. Being an odd vertex, at A there will be one path not used
up. Similarly, at B there will also be one path not used up. However, if one
of these paths is used to start off and the other to get us to the end, the two
will be, in effect, used up.
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� If there is any other odd vertex in the network, however, there will be a
path or paths over which we will have to double back.

Now, let’s apply this principle to the previous Königsberg graph. The
network has four vertices in it. Each one is odd, as readers can confirm for
themselves: A = 3, B = 5, C = 3, D = 3. This means that the network cannot
be traced by one continuous stroke of a pencil without having to double
back over paths that have already been traced. So, with his ingenious proof,
Euler resolved the debate over the Königsberg bridges, once and for all.

Mathematical Annotations

It is impossible to deal in any detailed way with the implications of Euler’s
puzzle for modern graph theory, topology, and the mathematical study of
impossibility. That would take a huge volume, in itself. The discussion here
will thus be limited to an examination of basic notions in these areas.

Graph Theory and Topology

Graph theory has had a great impact on mathematical method, bringing
together areas that were previously thought to be separate. Graph theory is
now a branch of mathematics that deals with the description of graphs of all
kinds. A graph is any diagram consisting of nodes (also known as vertices)
that can or cannot be connected by lines (also known as edges). Higher-
dimensional graphs are called planar and nonplanar. A path that traverses
every edge of a graph exactly once is called Eulerian. The path D-E-A-B-C-

F-E-B-F-D-C in the following graph is Eulerian, as readers can confirm for
themselves:
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A well-known example of a graph that may or may not be Eulerian is the
Hamiltonian circuit, named after the Irish mathematician William Rowan
Hamilton (1805–1865). Formally, it is a path traced on a graph that visits
each vertex on the graph only once, except possibly for the start and the fin-
ish, which may be on the same vertex. Hamilton presented it as a game in
1857 called Around the World. The object of the game is to travel around the
world, along the edges of the following map, visiting each of the twenty
cities exactly once:

Hamiltonian circuits must be examined individually, and finding a Eulerian
path—if one exists—is a matter of trial and error, insight, and luck! Readers
may wish to play Hamilton’s game, finding out for themselves if the map
can be traversed as stipulated.

Several decades after Euler’s proof of the Königsberg problem, mathe-
maticians began to study figures that retained their structural features after
being deformed. The observation of such figures led, over time, to the study
of shapes and their properties, developing gradually into an independent
branch of mathematics called topology. The first comprehensive treatment of
the field, titled Theory of Elementary Relationships, was published in 1863. It
was written by the German mathematician Augustus Möbius (1790–1868),
the inventor of a truly enigmatic figure called the Möbius strip.

To make such a figure, start by drawing a dotted line down the middle
of a flat rectangular strip of paper. Give the strip a half-twist (through 180
degrees) and then join the ends. Readers are invited to carry out these
instructions to create such a strip for themselves:
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Now, how many sides does this strip have? Running a pencil along the
dotted line brings us right back to where we started:

It would appear that the strip has only one side, although the original
unjoined strip had two! Even more perplexing is the fact that if one cuts the
Möbius strip in two along the pencil line, it does not come apart. As if by
magic, two strips linked together into one are produced—as readers can
verify for themselves. That strip, made of the two strips, is twice as long
and half as wide as the original strip!

The German mathematician Felix Klein (1849–1925) became so capti-
vated by the Möbius strip that in 1882 he invented a “bottle version” of it—
known appropriately as the Klein bottle:

The bottle is a one-sided closed shape with no ends. Yet it has no inside!
Indeed, if water were poured into it, the water would come out of the same
hole into which it was poured. If cut in two lengthwise, the bottle forms two
Möbius strips. Now, how could Klein have made his sense-defying bottle?
Its basic construction principle is actually quite straightforward. Take a rub-
ber tube and then puncture a hole in it so that one end can be inserted
within it as shown:
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The resulting surface is a closed one with no break. If we start a path any-
where that cuts the surface at any point, we will end up at the point from
which we started. No matter where we penetrate the surface, we are still
outside of it.

Now, the reader may ask: as intriguing as they are, of what use are 
such topological oddities? It would take a large tome to answer this ques-
tion. Suffice it to say here that not only have such bizarre shapes been
important to the development of topology, they have also had many 
applications and implications—conveyor belts and audio tapes designed 
as Möbius strips wear equally on both sides and thus can be used for 
much longer periods of time; DNA has a Möbius structure; the universe,
too, is thought by many scientists to have this very structure, and the list
could go on and on.

Topology concerns itself with determining such things as the insideness
or the outsideness of shapes. A circle, for instance, divides a flat plane into
two regions, an inside and an outside. A point outside the circle cannot be
connected to a point inside it by a continuous path in the plane without
crossing the circle’s circumference. If the plane is deformed, it may no
longer be flat or smooth, and the circle may become a crinkly curve, but it
will continue to divide the surface into an inside and an outside. That is its
defining structural feature. Topologists study all kinds of figures. They
investigate, for example, knots that can be twisted, stretched, or otherwise
deformed, but not torn. Two knots are equivalent if one can be deformed
into the other; otherwise, they are distinct.

Euler himself discovered several fundamental topological properties
about figures. In the case of a three-dimensional figure, for instance, he
found that if we subtract the number of edges (e) from the number of ver-
tices (v) and then add the number of faces (f), we will always get 2 as a
result:

v – e + f = 2.

Take, for example, a cube:
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How many vertices (sharp corners) does it have? The answer is eight. How
many edges does it have? The answer is twelve. How many faces (flat sides)
does it have? The answer is six. Now, inserting these values in the formula,
you can see that the relation it stipulates holds:

v – e + f = 2
8 – 12 + 6 = 2.

Now, let’s try out this formula on a tetrahedron (pyramid):

As can be seen, there are four vertices, six edges, and four faces in this case.
Thus:

v – e + f = 2
4 – 6 + 4 = 2.

Euler also proved that for plane figures, the value of v – e + f is 1, rather
than 2. A rectangle, for instance, has four vertices, four edges, and one face:
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Therefore:

v – e + f = 1
4 – 4 + 1 = 1.

The Königsberg Bridges graph, being a planar graph, also possesses this
property. It has four vertices, seven edges, and four faces. Therefore:

v – e + f = 1
4 – 7 + 4 = 1.

Take, as one last example, the following graph:

The number of vertices (A, B, C, D, E, F, G) is seven, the number of edges
(AD, DE, AB, BE, BC, CF, EF, FG, EG, DG) is ten, and the number of faces
is four (rectangles ADEB, BEFC, and triangles DEG, EFG). Thus:

v – e + f = 1
7 – 10 + 4 = 1.

Euler proved this relation with a remarkably simple procedure. Take, 
for example, the following rectangle with a diagonal in it. In graph terms: 
v = 4, e = 5, and f = 2:

Thus:

v – e + f = 1
4 – 5 + 2 = 1.

If we remove the diagonal, which is an edge, we also decrease the
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number of faces by one, because the graph becomes a rectangle. Since the
number of vertices remains unchanged, the relation holds:

v – e + f = 1
4 – 4 + 1 = 1.

In general, if we remove an edge from a graph, we are simultaneously
removing a face from it. This leaves the value of the relation unaltered.
Now, if we eliminate a vertex, we are also removing the edge that goes into
it, of course. This reduces v and e by one but leaves the formula again
unchanged in value.

Impossibility

The Königsberg Bridges Puzzle not only provided the basic insights that led
to the establishment of two new branches of mathematics—graph theory
and topology—but also held significant implications for the study of
mathematical impossibility. Euler’s demonstration that the Königsberg net-
work was impossible to trace without having to double back on at least one
of the paths showed how the question of impossibility can be approached
systematically.

As another example of how something can be shown to be impossible,
consider the following problem:

Find five consecutive odd numbers that add up to 64.

Let’s start by considering the sum of the first five odd numbers in
sequence:

1 + 3 + 5 + 7 + 9 = 25.

If we continue adding sets of five consecutive odd numbers, we will find
that the sum turns out to be constantly odd—as readers can confirm for
themselves. It would seem, therefore, that it is impossible for five consecu-
tive odd numbers to add up to an even sum, such as 64.

Is there any way to prove this? As discussed in the answer to Explo-
ration number 11 (chapter 1), the formula (2n + 1) stands for any odd whole
number. Since two consecutive odd numbers differ by 2—for example, 

Euler’s Königsberg Bridges Puzzle � 77



1 and 3 differ by 2, 5 and 7 also differ by 2, and so on—then if the first one
in a sequence of five consecutive odd numbers is represented by (2n + 1),
the one after it can be represented with the expression (2n + 3), the third
with (2n + 5), the fourth with (2n + 7), and the fifth with (2n + 9). Adding up
these five consecutive odd numbers yields the following result:

(2n + 1) + (2n + 3) + (2n + 5) + (2n + 7) + (2n + 9) = (10n + 25).

Now, consider the expression (10n + 25). In it, the term 10n is a number
ending in 0 because any number n multiplied by 10 will invariably produce
a digit ending in 0: 1 × 10 = 10, 2 × 10 = 20, 15 × 10 = 150, and so on. The
second term in the expression is 25. It is to be added to the previous digit
ending in 0. This means that the result will always end in the digit 5: 10 +
25 = 35, 20 + 25 = 45, 150 + 25 = 175, and so on. So, the expression (10n + 25)
represents an odd digit, no matter what n is.

The ancient Greeks grappled constantly with the concept of impossibil-
ity, wondering why, for example, it was seemingly impossible to trisect an
angle with a compass and a ruler, given that bisection was such a simple
procedure. To bisect an angle, such as the following figure, ∠AOC, place
the compass on point O and draw an arc that intersects the sides of the
angle at points X and Y. Then extend the width of the compass to a length
greater than half the distance from X to Y. Now, place the compass on X,
and draw an arc in the interior of ∠AOC. Repeat the last procedure with the
compass on Y. Label the point of intersection P. Finally, draw the line OP.
This line bisects ∠AOC:

For years, mathematicians attempted trisection with a compass and a
ruler, but always to no avail. The demonstration that it was impossible 
had to await the development and the spread of Descartes’ method of
converting every problem in geometry into a problem in algebra. The proof 
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that trisection was impossible was based on this method. It came in the
nineteenth century, after mathematicians had established that the equation
that corresponds to trisection must be of degree 3—that is, it must be an
equation in which one of its variables is to the power of 3: for example, 
x3 – 2x2 + x = 0. A construction carried out with a compass and a ruler trans-
lates, on the other hand, into an equation to the second degree: for example,
x2 – 14 = 0. Thus, trisection with a compass and a ruler is impossible. The
formal proof was published by the mathematician Pierre Laurent Wantzel
(1814–1848) in 1837.

To conclude the discussion of impossibility, I cannot help but mention
the Fifteen Puzzle—devised in 1878 by none other than Sam Loyd, one of
the cleverest puzzlists of all time (whom we will meet in chapter 7). As a
mass-produced gadget, it became a craze that swept across America and
Europe. Employers in many states even put up notices that prohibited play-
ing the game during office hours. In France, it was decried as a greater
scourge than alcohol or tobacco. It is still popular and is being sold through-
out the world.

Loyd put fifteen consecutively numbered sliding blocks in a square plas-
tic tray large enough to hold sixteen such blocks. The blocks are arranged in
numerical sequence, except for the last two, fourteen and fifteen, which are
in reverse order. The object of the puzzle is to arrange the blocks into
numerical sequence from 1 to 15, by sliding them, one at a time, into an
empty square, without lifting any block out of the frame:

The puzzle, as it turns out, is impossible to solve, but it made the wily
Loyd a considerable amount of money nonetheless. People simply cannot
ignore a challenge, no matter what the costs are in time and energy. Inciden-
tally, Loyd offered a prize of $1,000 for the first correct solution, knowing
full well that the puzzle could never be solved.

Notice that when the blocks are in numerical order, each one is followed
by a block that is exactly one digit higher (1 is followed by 2, 2 is followed
by 3, and so on):
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In any other arrangement, some blocks will be followed by blocks that are
numerically lower (for example, 2 followed by 1, 4 followed by 3, etc.).
Every instance of a block followed by one that is lower than itself can 
be called an inversion. If the sum of all the inversions in a given arrange-
ment is even, a solution is possible. If the sum is odd, it is impossible. For
instance, the following sequence of blocks can be rearranged into numeri-
cal order because the sum of the values of the inversions is 6—an even
number (2 is followed by 1, 4 is followed by 3, 6 is followed by 5, 8 is fol-
lowed by 7, 10 is followed by 9, 12 is followed by 11):

Loyd’s game has only one inversion (15 is followed by 14). This is an odd
number, and thus it is impossible to rearrange the blocks in numerical
order.

Reflections

Graph theory and topology did not come into their own as branches of
mathematics until the middle part of the nineteenth century, but unques-
tionably, their foundation was laid by Euler’s puzzle. And, as we saw in this
chapter, the method Euler used to solve his puzzle also laid the groundwork
for systematically investigating the mathematical notion of “impossibility.”

All of this reveals, in microcosm, how mathematical progress unfolds.
At first, an insight comes (generally, from a puzzle). This then leads to the
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development of a series of conjectures, which become theorems once they
are proved. The proofs are based on definitions, previously proved theo-
rems, and logical reasoning. These subsequently enable mathematicians not
only to understand the original insight better, but also to see relationships
among ideas and facts that were previously considered to be separate or
unrelated but that, in effect, turn out to have a common structure.

Explorations

Graphs and Networks

34. Let’s start with a few simple exploratory exercises. The following two
graphs are Eulerian. Find a Eulerian path through each one:

A.

B.

35. Indicate which of the following paths are Eulerian and which are not:

A.
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B.

C.

D.

36. Construct any two graphs: a Eulerian and a non-Eulerian one. This
will allow you to explore the basic themes of this chapter, directly and
creatively.

37. Test the validity of the Eulerian relationship v – e + f = 2 on an octa-
hedron (an eight-sided three-dimensional figure):

38. Test the validity of the Eulerian relationship v – e + f = 1 on the follow-
ing plane figures:
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A. a triangle

B. a square

C. a pentagon

D. a hexagon

Do you detect any pattern?

39. A rectangle is a Eulerian graph, since it can be traversed once without
our having to retrace any of its edges (sides):

One Eulerian path is A-C-D-B-A. Now, if we add diagonals to the rec-
tangle, we would produce a non-Eulerian graph, because each of the four
vertices becomes odd—since now three edges converge at each one. The
only even vertex would be the point of intersection, E, of the diagonals—
where four edges converge:
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Can you transform the above graph into a Eulerian one?

Impossibility

40. The reader is encouraged to make a model of Loyd’s puzzle with sim-
ple equipment and then arrange the blocks in such a way as to make the
puzzle solvable. Here is one possible “solvable” arrangement:

41. Can you find two consecutive odd numbers whose product is 316?
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FROM THE DAWN OF HISTORY, people have made maps to help them locate
places, measure distances, plan trips, and in general to find their way

around the earth. Pilots of ships have used maps to navigate and explore
the world.

The art of map making requires, above all else, accuracy in representa-
tion. This often involves the use of different tints to make regions on maps
visibly unique. It is, in fact, from coloring maps distinctively that one of the
greatest puzzles of all time came into being in the middle part of the nine-
teenth century. Already in antiquity, map makers noticed that four tints
seemed to be sufficient to color any map, so that no two contiguous (touch-
ing) regions would share a color. For example, the following eight states,
which cluster around each other as shown, can be colored distinctively with
just four colors, as follows: (1) one color for Illinois, Tennessee, and Virginia,
(2) a second color for Missouri and Ohio, (3) a third for Indiana and West
Virginia, and (4) a fourth for Kentucky. In this way, no two bordering states
share the same color:
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Guthrie’s Four-Color
Problem

There never comes a point where a theory can be said to
be true. The most that one can claim for any theory is

that it has shared the successes of all its rivals and that it
has passed at least one test which they have failed.

A. J. AYER (1910–1989)
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In 1852, a young mathematician at University College, London, named
Francis Guthrie (1831–1899), was coloring maps when he realized that four
tints were seemingly sufficient to color any map in such a way that adjacent
regions (that is, those sharing a common boundary segment, not just a
point) would show different colors. Not able to figure out a way to prove
this himself, he asked his brother Frederick if he knew of any principle or
theorem that proved it. Frederick passed his sibling’s query on to the
famous mathematician Augustus De Morgan (1806–1871), who, unaware of
any existing proof, immediately grasped the mathematical implications
that Guthrie’s question held. Word of the problem spread quickly. Thus was
born the Four-Color Problem.

It is not a puzzle in the traditional sense, since it arose initially from the
observations of map makers. Nevertheless, it has all the structural features
of a true puzzle. Indeed, it required a large dose of insight thinking to solve.
However, although seemingly solved, its demonstration leaves many math-
ematicians wary. Proof of the “Four-Color theorem” is so different from tra-
ditional proofs that it has, in fact, led to a debate on the foundations of
mathematical method. For this reason, the Four-Color Problem belongs on
the list of the top ten puzzles of all time.

The Puzzle

Although there is evidence that Augustus Möbius (whom we met in 
the previous chapter) had discussed the Four-Color Problem in a lecture 
to his students in 1840, Guthrie’s version, as related to De Morgan, made
the problem famous. In its simplest form, the Four-Color Problem reads 
as follows:
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What is the minimum number of tints needed to color the regions of
any map distinctively? (If two regions touch at a single point, the
point is not considered a common border.)

It may be useful to provide a slightly different formulation of the same
problem, for the sake of clarity:

What is the least possible number of colors needed to fill in any map,
so that neighboring countries are always colored differently?

To discuss the essential quality of the problem and the challenges it
poses, it is useful to start by looking at specific cases. In map 1, there are two
touching regions (that is, regions that have a common border); and in map
2, there are three touching regions. In the first map, two colors are needed
to keep the regions distinct; and in the second, three are required. Note that
numbers are used to represent colors:

1.

2.

In the next map, there are four regions. Each region shares boundaries
with each of the other three: 1 touches 2, 3, and 4; 2 touches 1, 3, and 4; 3
touches 1, 2, and 4; and 4 touches 1, 2, and 3. As shown, four colors (1, 2, 3,
4) will do the job of ensuring that no two regions share a boundary of the
same color:
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The following map has five touching regions. How many colors are
required in this case to make sure that no two regions share a boundary of the
same color? As can be seen, three colors (1, 2, 3) are sufficient to do the job:

Finally, the next map has nineteen regions. As can be seen, four colors (1,
2, 3, 4) are once again sufficient to color it distinctively:
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One might think that as maps become more and more complicated, with
more regions, an increasing number of colors will be required to differenti-
ate the regions. But as the example of the nineteen-region map suggests,
four colors always seem to do the job nicely. The challenge is to prove this
very supposition—namely, that four colors are sufficient to color any map,
no matter how many regions it has.

After De Morgan made the Four-Color conjecture widely known,
mathematicians started in earnest trying to prove it with the traditional
“Euclidean” methods of proof. But their efforts consistently proved to be
fruitless.

We encountered two of these methods in chapter 1, when we proved
that the vertically opposite angles that are formed when two straight lines
intersect are equal and when we showed that the sum of the angles in a
polygon is equal to (n – 2) 180°. Such methods were introduced into general
practice by the great Greek mathematician Euclid. They have been accepted
ever since to be the only valid and authoritative ones for proving any new
theorem. Incidentally, Euclid ended each proof with the phrase “Which
proves what we wanted to demonstrate,” a phrase abbreviated in Roman
times to QED, for Quod erat demonstrandum (“Which was to be demon-
strated”). This abbreviation became the stamp of authority in mathemat-
ics—remaining so to this very day.

When the Four-Color Problem was announced, mathematicians
assumed that it could be proved in standard “Euclidean” fashion. Eminent
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Among the first to establish mathematics as a theoretical enter-
prise based on methods of proof was the Greek mathematician

Euclid. In his textbook called the Elements, Euclid began with
accepted or self-evident truths called axioms (for example, two
straight lines intersect at only one point, not two or more) and pos-
tulates (a statement that requires no proof). From them, he derived
theorems.

The place and the date of Euclid’s birth are uncertain. It is
known that he taught mathematics at the Museum, an institute in
Alexandria, Egypt. Euclid probably studied in Athens and came to
Alexandria in 300 B.C. at the invitation of the Egyptian ruler
Ptolemy I. It is said that when Ptolemy asked him whether there
was a shorter way to learn geometry than the Elements, Euclid
replied ironically, “There is no royal road to geometry.”

EUCLID (c. 330–270 B.C.)



mathematicians such as De Morgan, Arthur Cayley (1821–1895), Arthur
Bray Kempe (1849–1922), David Birkhoff (1844–1944), Percy John Heawood
(1861–1955), and Philip Franklin (1898–1965) all tried their hand at coming
up with the proof. Years passed, but the relevant proof remained elusive.

Then, seemingly out of nowhere, in 1976, two distinguished mathemati-
cians at the University of Illinois, Wolfgang Haken (1928–) and Kenneth
Appel (1932– ), claimed to have “solved” the Four-Color Problem, not with
any of the traditional Euclidean methods of proof but, alas, with a computer
program that, they maintained, could “litmus test” any map for the Four-
Color conjecture. So far, the program has found no map that requires more
than four tints to color distinctively. Haken and Appel wrote a computer
program that exhaustedly proved the four-color hypothesis for a critical
subset of maps and this, in turn, has been used to imply the hypothesis for
all maps. However, many mathematicians are uncomfortable with the
Haken-Appel “proof.” If accepted as authoritative by one and all, it will
have truly altered the face of mathematics. This is perhaps why it is still
being debated today.

Mathematical Annotations

The details of the Haken-Appel program and the mathematical principles
on which it is based are far too complex to be discussed here. Readers who
are interested in them can consult the sources listed in the Further Reading
section—particularly the thorough and accessible explanation of the pro-
gram, as well as the background mathematics needed to understand it, in
Robin Wilson’s Four Colors Suffice. What is pertinent to discuss here is the
nature of Euclidean methods and why the Four-Color Problem has had
such a profound impact on mathematics.

The Euclidean Method

Proof by deduction has always epitomized mathematical method because of
its special capability to demonstrate that some relation or observation holds
for the general case, an argument or a line of reasoning that refers to a whole
category or to every member of a class or a category—to all points, to all
angles, to all numbers, and so on. For example, if you measured the angles
of different kinds of triangles with a protractor, you would soon start sus-
pecting that the sum is always 180 degrees. But you cannot be sure that the
angles in absolutely every triangle will add up to 180 degrees. Proof by
deduction allows you to establish this without exception. Here’s how. Draw
a triangle ABC and label its angles a, b, c. Extend its base on both sides, and
draw a line parallel to the base, going through the top vertex. Lines parallel
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to each other are shown with “arrowheads.” Note that ABC represents any
triangle. You could modify it any way you wish (you could make it obtuse-
angled, right-angled, bigger, smaller, etc.), but the reasoning that follows
would still be valid.

A previously proved theorem of geometry states that when a line crosses
two parallel lines, the angles on opposite sides of that line (called a trans-

versal) are equal. In our diagram, there are two transversals—AB and AC.
The equal angles that they produce are the one opposite b and the one
opposite c. Mark these on the diagram:

Now, notice that the angle segments a, b, c at vertex A are components of a
straight angle. Therefore, a + b + c = 180°. Notice that the three angles in the
triangle are also a, b, and c. We have just established that a + b + c = 180°, so
we can conclude that the sum of the angles in the triangle is 180 degrees:
since a, b, and c can have any value (under 90 degrees, of course), and since
the triangle chosen was not given specific dimensions, this demonstration
is true under all circumstances. We have thus established beyond a shadow
of a doubt that the sum of the angles in any triangle will always add up to
180 degrees—QED.

Needless to say, even the Greeks realized that not all theorems in math-
ematics could be proved by the deductive method. Early on, another
method, called reductio ad absurdum (literally, “reduced to the absurd”),
came to be used in a complementary fashion. This establishes the truth of
something by showing that its contradiction is either false or inconsistent.

Actually, this time it was not Euclid, but Zeno of Elea (whom we will
meet in chapter 8), who introduced this method into logic. However, Euclid
used it ingeniously to prove various theorems, such as the theorem that the
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set of prime numbers is infinite. As discussed in chapter 3, the integers are
divided into primes and composites. The former have no factors that divide
into them (other than 1 and themselves); the latter do. The numbers 12, 42,
and 169, for instance, are composite. Their factors are

12 = 2 × 2 × 3
42 = 7 × 2 × 3
169 = 13 × 13

All composite numbers can be expressed as products of prime factors in 
this way. Any prime factor of a composite number will thus divide evenly
into it.

The first ten primes are: {2, 3, 5, 7, 9, 11, 13, 17, 19, 23}. Even a cursory
glance at the set of whole numbers—{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . }—
reveals that there are fewer and fewer primes as the numbers increase.
Thus, it seems logical to assume that the primes must come to an end at
some point. Euclid proved that this is not so.

He started with the assumption that they may indeed come to an end.
This means that there is a largest prime. He called it pn:

The complete set of primes = {2, 3, 5, 7, . . . , pn}.

Euclid then asked, What kind of number would result from multiplying
all the primes in the set?

{2 × 3 × 5 × . . . × pn} = ?

As it stands, the number would, of course, be a composite one, made up of
all the primes as factors. Any one of them would divide into it. This is a triv-
ial result. So, to make things interesting, Euclid added the number 1 to the
product:

{2 × 3 × 5 × . . . × pn} + 1 = ?

That pesky 1 gave Euclid all he needed to shoot down the idea of a largest
prime. Why? There are two possibilities for the number that the previous
expression represents—it is either prime or composite. Let’s assume that it
is prime (P):

{2 × 3 × 5 × . . . × pn} + 1 = P (a prime number).

P is a number that is, clearly, larger than any in the set {2, 3, 5, . . . pn}, since
it is produced by multiplying “all” of them. It is a “new” prime, and it is
much greater than pn, which turns out, therefore, not to be the largest prime,
as originally assumed.

The second possibility is, as mentioned, that the expression yields a
composite number (C):
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{2 × 3 × 5 × . . . × pn} + 1 = C (a composite number).

As a composite number, C is made up of prime factors that will divide into
it. But none of the available primes—{2, 3, 5, . . . pn}—will divide into it,
because if we take any one of them and divide it into C, that irksome 1 will
always be left over as a remainder. So, C must have a prime factor that is not
in the set. Again, it is a “new” prime and is greater than any prime in the
set. This time, too, it turns out that pn, the number assumed to be the largest
prime, is not the largest one after all. In this way, Euclid proved that the
primes never end. He did it by showing that assuming a largest prime pro-
duces an “absurdity.”

People who tackled the Four-Color Problem at first did so assuming that
it could be proved in accordance with such traditional methods of proof.
But all efforts to do this turned out to be futile. Haken and Appel’s proof is
peculiar because it breaks with tradition. The computer program written by
Haken and Appel essentially checks to see if a map can be colored by more
than four tints. It has convinced many mathematicians that the Four-Color
theorem has finally been proved and that it constitutes an important radi-
cal innovation in mathematical method. However, as I read the current state
of affairs, there continues to be a sense of great unease with accepting
Haken and Appel’s computer program as “proof,” because, technically, it is
not really a proof.
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A right-angled triangle is one in which one of the angles is 90
degrees:

An acute-angled triangle is one in which all three angles are less
than 90 degrees:
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Proof

Among the first to use proof as a way to demonstrate something as being
true in general was Pythagoras (chapter 2), who proved that the square of
the hypotenuse of any right-angled triangle is equal in area to the squares
of the other two sides together, or, in notational form:

c2 = a2 + b2.

In this equation, c is the length of the hypotenuse and a and b the lengths of
the other two sides. For example, if the length of a is 3, then the length of b
is 4, and the length of c is 5:

52 = 32 + 42

25 = 9 + 16.

The following figure shows this relation in a visual way:
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An obtuse-angled triangle is one in which one of the angles is
greater than 90 degrees:



Many cultures throughout the ancient world knew of this relation. His-
tory records, however, that Pythagoras was probably the first one to prove
that it holds for all right-angled triangles, even though he left no written
version of it.

The Pythagorean theorem, as it came to be called, was arguably the criti-
cal event that established mathematical method on the technique of proof—a
technique that produced insights and results that made it possible to explore
other theorems. Sometimes the results even led to unexpected discoveries.
The Pythagoreans themselves noticed that their very own theorem, when
applied to an isosceles right-triangle with its two sides equal to 1 (the unit
length), produced a very strange number for the length of the hypotenuse:

c2 = 12 + 12 = 1 + 1 = 2.

Therefore:

c2 = 2.

And thus:

c = √2 .

As it turned out, the number √2 cannot be written as a fraction or a ratio. It
is a repeating decimal (1.4142136 . . . ). For this reason, it came to be called
irrational.

The Pythagoreans were very uncomfortable with their unwitting dis-
covery of irrationals, because of their philosophical beliefs. Euclid, on the
other hand, saw irrationals as legitimate numbers. But in order to include
them in the growing encyclopedia of mathematical knowledge at the time,
he had to prove that they were, in fact, different from rationals. To do so, he
used a type of proof that was different from proof by deduction or by reduc-
tio ad absurdum. It is called proof by contradiction.
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Euclid started by noting that the general form of a rational number is
p_
q . An

integer is defined as a member of the set of positive whole numbers (1, 2, 3,
. . . ), negative whole numbers (–1, –2, –3, . . . ), and zero. In the case of the
integers, the denominator q is always 1—for example, 4 is really

4_
1 . Note 

that q cannot equal 0. Division by zero is not defined. The reason for this
will be discussed in chapter 8. Euclid proved simply that √2 could not be
written in the form

p_
q . He did this by assuming that it could be written in

that form and then showing that this would lead to a contradiction.
In order to eliminate the square root sign, Euclid first squared both sides

of the relevant equation:

√2 =
p_
q

(√2 )
2

=
p 2

.__
q2

Therefore:

2 =
p2

.__
q2
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As discussed in previous chapters, an even number is repre-
sented with the formula 2n. This indicates that if we take any

number (n = 1, 2, 3, . . . ) and multiply it by 2, we will always get
an even number.

The expression 2q2 also represents an even number. In this case
the n in 2n has simply been replaced by q2.

When we square 2n, we get 4n2: (2n)(2n) = 4n2.
The expression 4n2 is itself an even number because 2n divides

into it. This proves, in effect, that squaring any even number yields
a product that is itself an even number.

Simplified Fractions
Some fractions can be simplified (or reduced): for example, the
fraction

5__
10 can be simplified to 

1_
2 because 5 will divide into both

the numerator and the denominator. Similarly,
4_
6 =

2_
3 because 2 will

divide into both the numerator and the denominator. Of course,
some fractions, such as

2_
3 , cannot be simplified, because there is

no factor that will divide into both the numerator and the denomi-
nator. When a fraction can no longer be simplified, it is said to be
in its “lowest” or “reduced” form.

4n
2



He then multiplied both sides by q2, thus eliminating the cumbersome
denominator on the right side of the equation:

2q2 = p2.

Now, p2 is an even number because it equals 2q2, which has the form of an
even number. It can thus also be concluded that p itself is even. Now, if p is
even, we can rewrite it with the general formula for an even number,
namely, p = 2n, plugging this into the previous equation:

2q2 = p2.

Since p = 2n:

2q2 = (2n)2 = (2n) (2n) = 4n2.

Therefore:

2q2 = 4n2.

Now, this equation can be simplified by dividing both sides by 2:

q2 = 2n2.

This equation shows that q2 is an even number and thus that q itself is an
even number and can be written as 2m (to distinguish it from 2n): that is, 
q = 2m. Now, Euclid went right back to his original assumption—namely,
that √2 was a rational number:

√2 =
p

._
q

In this equation he substituted what he had just proved, namely, that p = 2n
and q = 2m:

√2 =
2n

.__
2m

The fraction (a numerical expression that indicates the quotient of two
quantities, expressed in general form as  

p_
q ) on the right side can be simpli-

fied to
n_
m (since the common factor 2 can be divided into the numerator and

the denominator:

√2 =
n

._
m

Now, the problem is that we find ourselves back to where we started. We
have simply ended up replacing  

p_
q with

n_
m. We could, clearly, continue on in

this way, always coming up with a fraction with different numerators and
denominators (

a_
b ,

x_
y , . . . ), ad infinitum. But fractions cannot be simplified
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forever. We have thus reached a contradiction. What caused it? The fact that
√2 was assumed to have the form

p_
q . It obviously does not. Thus, by contra-

diction, Euclid proved that √2 is not a rational number.

To conclude the discussion on proof, it is necessary to mention a fourth
type accepted by mathematicians, because it is particularly relevant in any
discussion of the Haken-Appel proof of the Four-Color conjecture. It is
called proof by induction.

To grasp how this type of proof proceeds, let’s return to the formula for
summing a sequence that was discussed in chapter 3:

Sum(n) =
n (n + 1)________ .

2

How can this formula be proved? We start by showing that the formula
works for the first case, that is, for n = 1:

Sum(n) =
n (n + 1)________

2

Sum(1) =
1 × (1 + 1)

=
1 × 2

= 1._________ _____
2 2

This shows that it holds for the first case, because by summing 1, we get 1.
The next step is to show that the formula can be applied to a series consist-
ing of one more term after the last. Since the last term is n, the term after it
is (n + 1). We label the series Sum(n + 1). The sum of (n + 1) terms can be deter-
mined by simply adding the extra term (n + 1) to Sum(n):
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Deduction. This shows that something follows necessarily from a
set of premises.

Reductio ad Absurdum. This disproves a proposition by showing
the absurdity of its inevitable conclusion.

Contradiction. This shows that an original assumption leads to a
contradiction and can thus be discarded.

Induction. This shows that something can be established as true if
it can be proved for the (n + 1)th case.

METHODS OF PROOF



Sum(n + 1) = Sum(n) + (n + 1).

Since

Sum(n) =
n (n + 1)________

2

therefore:

Sum(n + 1) =
n (n + 1)

+
(n + 1)

._________ _______
2                     1 

This can be expressed as follows:

Sum(n + 1) =
(n + 1) [(n + 1) + 1]__________________ .

2

The form of this equation is identical to the form of the one for Sum(n). Why?
Because every appearance of n in Sum(n) has been replaced by (n + 1), as
readers can check for themselves. In other words, we have just shown that
the formula is true for (n + 1). Since we can choose n to be as large as we
want, we have in effect shown that the formula can be applied to any series.
Why? Because we can apply the summation formula not only to the series
containing the term after n, but to one containing the term after that, and so
on, ad infinitum. Proof by induction can be compared to the “domino
effect,” whereby a row of dominoes stood on end will fall in succession if
the first one is knocked over.

Now, let’s go back to the Haken-Appel proof of the Four-Color theorem.
Essentially, their program checks to see if any map under consideration can
be colored with more than four colors. Their “proof” is thus not a real proof
in the traditional sense of the word. It is a set of computer instructions. How
can we be sure that the instructions devised by Haken and Appel will apply
to all maps ad infinitum? In traditional mathematical terms, how can we be
sure that their “proof” entails the domino effect, in the same way that proof
by induction does?

In my view, the Four-Color Problem remains a true puzzle for many
(maybe most) mathematicians. Its solution in traditional mathematical
terms is probably still “out there” and will hinge on some “Aha!” insight
that has not as yet come about. Originally, the Pythagorean theorem was a
conjecture—something that could be shown to hold in specific cases with-
out ever finding an exception. It became a true “theorem” the instant that it
could be shown to hold for the general case. The Four-Color Problem will
continue probably to bother many mathematicians until some simple proof
of the general case is found. However, as the great American philosopher
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Charles S. Peirce (1839–1914), who came under its spell, so aptly put it in a
lecture he delivered at Harvard in the 1860s, the problem is so infuriating
precisely because it appears to be so simple to prove, and yet no mathemati-
cian has ever found a proof for it with the traditional methods of logic and
mathematics.

Reflections

The Four-Color Problem has opened up a veritable “can of worms” in
mathematical circles. If the Haken-Appel proof is accepted as is, then it con-
stitutes a true innovation in mathematical method. However, since the
proof cannot be examined in the same way that proofs have been examined
traditionally, many mathematicians feel very uneasy about it. Certainly, it
fails to conform to the Greek ideal of certain, absolute proof. The most we
can say is that it is “probably” true, like the theories of physicists.

Maybe some day the insight leading to the elusive simple proof that
Peirce referred to may still emerge. As Haken and Appel themselves have
admitted (from Appel and Haken, 2002, in Further Reading): “One can
never rule out the chance that a short proof of the Four-Color theorem
might some day be found, perhaps by the proverbial bright high-school stu-
dent.” My sense is that many mathematicians are still waiting for that stu-
dent to step forward!

Explorations

Coloring Problems

42. What is the least number of colors necessary to completely fill in each
of the following maps? Any two neighboring regions must be filled in with
different colors.

A.
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B.

C.

D.

43. What is the least number of colors necessary to color a Möbius strip
and a Klein bottle (chapter 4)?

Proof

44. Prove by the method of contradiction that if one of the angles 
is greater than 90 degrees in a triangle, then the other two must each be less 
than 90 degrees.

45. Prove that a cube is a network to which the formula for three-
dimensional graphs, v – e + f = 2, can be applied (chapter 4).

46. Prove that the exterior angle of a triangle, angle x, in the following
figure, is equal to the sum of the internal opposite angles, y and z.
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47. How many colors are needed to color the following figure? Can this
be proved to be the case, without actually having to color it?
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GAMES PLAYED ACCORDING TO RULES, and involving equipment such as
boards, counters, sticks, stones, coins, and the like, have intrigued

and entertained people of all ages from time immemorial. Speculation
abounds as to why they were invented in the first place. But the question of
their purpose has never been satisfactorily answered.

Mathematicians, too, have always been intrigued by games, because
many of these can be constructed on the basis of mathematical principles
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Lucas’s Towers of 
Hanoi Puzzle

There is no more steely barb than that of the Infinite.

CHARLES BAUDELAIRE (1821–1867)

6

Lucas was educated at the École Normale in Amiens. During the
Franco-Prussian War (1870–1871), he served as an artillery offi-

cer. After the war, he was hired to teach mathematics at the Lycée
Saint Louis in Paris. Lucas later taught at the Lycée Charlemagne,
also in Paris. He died as the result of a freak accident at a banquet,
when a plate was dropped and a piece flew up and cut his cheek,
lethally infecting it.

Lucas is best known for his work in number theory. As we saw
in chapter 3, he studied the Fibonacci sequence and the implica-
tions it had for mathematics.

FRANÇOIS ANATOLE LUCAS 
(1842–1891)



and thus used as “test devices” for modeling those very principles. One of
the most famous and fascinating of all such mathematically designed
games is known as the Towers of Hanoi Puzzle. It was invented as a toy for
children in 1883 by the French mathematician François Edouard Anatole
Lucas, whom we encountered in chapter 3, although the idea pattern it
embodies goes back considerably in time and is found in cultures through-
out the world. The puzzle is, in effect, a “toy model” of the concept of geo-
metric series. Given its simplicity and ingenuity, and the fact that it
continues to intrigue us to this day, it qualifies as one of the ten greatest
puzzles of all time. Even now, a simplified version of the puzzle can be
found in toy stores everywhere:

Before getting to the puzzle itself, it is useful to revisit briefly the concept
of series. As discussed in chapter 3, a series in mathematics is defined as an
ordered succession of numbers:

1. {2, 4, 6, 8, 10, 12, 14, 16, . . . }
2. {2, 4, 8, 16, 32, 64, 128, . . . }

In series 1, known as an arithmetical series, each term is greater by 2 than
the one just before it. Let’s now generalize the construction of such a series.
If we use a to represent the initial term of the series and d to stand for the
constant difference between two successive terms, then the general form of
an arithmetic series can be set up as follows:

{a, a + d, a + 2d, a + 3d, . . . , a + (n – 1)d}.

In series 1, a = 2 and d = 2. Plugging these values into the successive
terms of the general form will yield the actual terms of our series:
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First Term Second Term Third Term Fourth Term . . .

↓ ↓ ↓ ↓
a a + d a + 2d a + 3d . . .

↓ ↓ ↓ ↓
2 2 + 2 = 4 2 + (2 × 2) = 6 2 + (3 × 2) = 8 . . .

The expression a + (n – 1)d indicates that any term in an arithmetical series
is constructed with the initial term a plus the constant difference (n – 1)d,
where n is the positional number (1st, 2nd, 3rd, . . . ) of a term in the series:

TABLE 6-1: THE GENERAL TERM OF AN ARITHMETICAL SERIES

Term Form Method of Construction

1st a a + (1 – 1)d = a + (0)d = a

2nd a + d a + (2 – 1)d = a + (1)d = a + d

3rd a + 2d a + (3 – 1)d = a + (2)d = a + 2d

4th a + 3d a + (4 – 1)d = a + (3)d = a + 3d

. . . . . . . . .

nth a + (n – 1)d a + (n – 1)d

In series 2, known as a geometric series, each term is formed by multiply-
ing the one just before it by 2, called the common ratio. Let’s generalize the
structure of this type of series as well. If we use a again to represent the ini-
tial term of the series and r to stand for the common ratio, then the general
form of a geometric series can be set up as follows:

{a, ar, ar 2, ar3, ar 4, . . . , arn–1}.

In series 2, a = 2 and r = 2. Plugging these values into the successive terms
of the general form will yield the actual terms in series 2:

First Term Second Term Third Term Fourth Term . . .

↓ ↓ ↓ ↓ . . .

a ar ar 2 ar 3 . . .

↓ ↓ ↓ ↓
2 2 × 21 = 4 2 × 22 = 8 2 × 23 = 16 . . .

The expression arn–1 represents the general term of a geometric series. It
indicates that any term in the series is constructed with the initial term a
multiplied by rn–1 , where n is the positional number (1st, 2nd, 3rd, . . . ) of
a term in the series:
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TABLE 6-2: THE GENERAL TERM OF A GEOMETRIC SERIES

Term Form Method of Construction

1st a ar1 – 1 = ar0 = a

2nd ar ar2 – 1 = ar1 = ar

3rd ar 2 ar3 – 1 = ar 2

4th ar 3 ar4 – 1 = ar3

. . . . . . . . .

nth ar n – 1 arn – 1

The basic ideas in the foregoing discussion will come in handy in grasp-
ing the nature of Lucas’s puzzle.
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Multiplication
Multiplying the same digits with exponents is equivalent to adding
their exponents, as in these examples:

34 × 35 = 34 + 5 = 39

712 × 720 = 712 + 20 = 732

Why? Take the first example:

34 × 35

↓ ↓
(3 × 3 × 3 × 3) × (3 × 3 × 3 × 3 × 3).

The exponents tell us, in effect, how many factors are involved in
the multiplication. Counting the number of factors, you will get
9—which is the same number as adding up the number of expo-
nents (4 + 5 = 9).

So, in general:

an × am = an + m.

Division
Dividing the same digits with exponents is equivalent to subtract-
ing their exponents. For example:

35 ÷ 33 = 35 – 3 = 32

715 ÷ 75 = 715 – 5 = 710

EXPONENTS



The Puzzle

As mentioned, the Towers of Hanoi Puzzle appeared in 1883. Lucas 
probably got the idea for it from a similar problem included in the 1550
edition of De Subtililate, by the Italian mathematician Girolamo Cardano
(1501–1576):

A monastery in Hanoi has a golden board with three wooden pegs
on it. The first of the pegs holds sixty-four gold disks in descending
order of size—the largest at the bottom, the smallest at the top. The
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Why? Take the first example. Again, the exponents tell us how
many factors are involved in the division:

35 = (3 × 3 × 3) × 3 × 3 .____________________
33 = (3 × 3 × 3)

Canceling out the factors in parentheses, we get

(3 × 3 × 3) × 3 × 3 ._______________
(3 × 3 × 3)

This leaves 3 × 3, or 32—which is the same number as subtracting
the two exponents (5 – 3 = 2).

So, in general:

an ÷ am = an – m.

n
0 = 1

Any number raised to the power of 0 is equal to 1.
Why? Take two identical digits that have the same exponent and

divide them: 35 ÷ 35.
We know from the previous examples that 35 ÷ 35 = 35 – 5 = 30.
But the result of dividing 35 by 35 is 1:

35 = 3 × 3 × 3 × 3 × 3 .__________________
35 = 3 × 3 × 3 × 3 × 3

So, 35 ÷ 35 = 1.
Since 35 ÷ 35 equals 30, we have thus proved that 30 = 1.
In general:

n0 = 1.



monks have orders from God to move all the disks to the third peg
while keeping them in descending order, one at a time. A larger disk
must never sit on a smaller one. All three pegs can be used. When the
monks move the last disk, the world will end. Why?

The world would end because it would take the monks 264 – 1 moves to
accomplish the task of moving the disks as stipulated. Even at one move
per second (and no mistakes), the task would require 5.82 × 1011, or
582,000,000,000, years to accomplish! Before explaining this, it is useful to
briefly introduce the concept of exponents.

Consider multiplying 3 by itself fourteen times:

3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3.

This layout of the multiplication is clearly cumbersome and thus inefficient
to work with. To make multiplication more “economical,” mathematicians
have come up with the concept of exponent. The previous multiplication
can be represented more efficiently as 314, where 3 is called the base or root,
and the superscript “14” the exponent or power. The exponent tells us the
number of times that the base is to be multiplied by itself. In general, nm

indicates that n is to be multiplied by itself m times. In 28, for example, 
n = 2 and m = 8:

28 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2.

Note that a number to the zero power is equal to 1, no matter what it is:

20 = 1, 40 = 1, 130 = 1, and so on.
(For proof of this, see the sidebar on page 109.)

Exponents are particularly useful for representing terms in a geometric
series. For example, in a series consisting of terms that are successive pow-
ers of 2, the last term would be 2n:

{20, 21, 22, 23, 24, 25, . . . , 2n}.

The term just before 2n would, of course, be 2n – 1, and the one before
that, 2n – 2:

{20, 21, 22, 23, 24, 25, . . . , 2n – 2, 2n – 1, 2n}.

Now, we are ready to tackle the Towers of Hanoi Puzzle. We start with
the simplest version of the puzzle—one in which two disks are to be moved
from the first peg to the third one, keeping them in descending order, that
is, without a larger disk ever sitting on a smaller one. To keep track of the
moves, it is useful to number the disks:

1 = the smaller disk

2 = the larger disk
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We start by moving disk 1 to peg B:

Now, we can move disk 2 on A over to C:

Finally, we move disk 1 to peg C on top of 2, at which point the two
disks have been transferred to C, with the smaller one on top, as required:
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It took three moves to accomplish the task. Note that this result can 
be represented as 22 – 1, because 22 – 1 = 4 – 1 = 3. Note as well that the
exponent “2” in 22 – 1 stands for the number of disks in the game.

Now, consider a three-disk version of the game. We start by numbering
the disks 1, 2, and 3:

The moves (given without diagrams) are as follows. Readers who may
have difficulty envisioning each move should make a physical model of the
game, reproducing the moves on the model. You can also use commercially
available toy versions of the game:

1. Move disk 1 from A to C.

2. Move disk 2 from A to B.

3. Move disk 1 from C to B on top of 2.

4. Move disk 3 from A to C (which is now empty).

5. Move disk 1 from B to A (which is now empty).

6. Move disk 2 from B to C on top of 3.

7. Move disk 1 from A to C on top of 2, which is itself on top of 3.

This time, it took seven moves to accomplish the task. Note that this result
can be represented as 23 – 1, because 23 – 1 = 8 – 1 = 7. As in the previous
two-disk version, note as well that the exponent “3” stands for the number
of disks in the game.

It is already obvious that a general pattern is probably involved. If we
were to play the Towers of Hanoi game with four, five, and higher numbers
of disks, we would in fact find that the number of moves increases accord-
ing to the general formula 2n – 1. In that formula, n represents the number
of disks. In Lucas’s puzzle, the number of disks is n = 64, so the number of
moves needed to accomplish the task of transferring the disks from the first
to the third peg would be 2n – 1 = 264 – 1 which, as mentioned earlier, is an
astronomical figure.

Here is a summary of the sixty-four versions of the game—that is, of
versions of the game played with one, two, three, and so on, up to sixty-
four disks:
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TABLE 6-3: TOWERS OF HANOI—SIXTY-FOUR VERSIONS

Number of Moves Required
2n – 1

Disks (n = number of disks)

1 2n – 1 = 21 – 1 = (2 – 1) = 1

2 2n – 1 = 22 – 1 = (4 – 1) = 3

3 2n – 1 = 23 – 1 = (8 – 1) = 7

4 2n – 1 = 24 – 1 = (16 – 1) = 15

5 2n – 1 = 25 – 1 = (32 – 1) = 31

6 2n – 1 = 26 – 1 = (64 – 1) = 63

7 2n – 1 = 27 – 1 = (128 – 1) = 127

. . . . . .

64 2n – 1 = 264 – 1 = a very large number!

To put it in strict mathematical terms, each of the moves required in suc-
cessive versions of the game turns out to be a successive term in a geomet-
ric series with the final term (2n – 1):

{(21 – 1), (22 – 1), (23 – 1), (24 – 1), . . . , (2n – 1)} = {1, 3, 7, 15, 31, . . . }.

As can be seen, Lucas’s puzzle is a simple, albeit “dramatic,” illustration
of the enormity of “exponential” growth.

Mathematical Annotations

The notion of exponential growth has captured the fancy of many puzzlists
throughout history. In 1256, the Arab mathematician Ibn Kallikan cleverly
used a chessboard to illustrate it. His puzzle is paraphrased as follows:

How many grains of wheat are needed on the last square of a sixty-
four-square chessboard if one grain is to be put on the first square of
the board, two on the second, four on the third, eight on the fourth,
and so on in this fashion?

Like Lucas’s puzzle, this one also produces a geometric series: {20, 21, 22,
23, 24, . . . , 263}. Each term stands for the number of grains on each succes-
sive square of the chessboard:

On the first square: 1 grain = 20 grains

On the second square: 2 grains = 21 grains

On the third square: 4 grains = 22 grains
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On the fourth square: 8 grains = 23 grains

On the fifth square: 16 grains = 24 grains

. . .

On the sixty-fourth square: = 263 grains

Here is what the chessboard would look like with grains up to the eighth
square (27 = 128):

If we use n to represent the number of a term in the series, then the last
(sixty-fourth) term is (2n – 1). This indicates that the power of the term rep-
resenting the square on the chessboard is one less than the number of the
square. The value of 263 is so large that it boggles the mind to think of what
kind of chessboard could hold so many grains, not to mention where so
much wheat could be found. The sixty-fourth square would contain about
1.84 × 1019 grains. This figure amounts to some 3 × 1013 bushels, which is
several times the world’s annual crop of wheat!

Perfect Numbers and Mersenne Primes

Ibn Kallikan’s puzzle conceals some truly intriguing patterns. For example,
if a second chessboard is placed next to the first, then the pile on the 
last square (128th square) of the second board contains 2127 grains. If we
subtract the number 1 from this, (2127 – 1) we get the following result:
170,141,183,460,231,731,687,303,715,884,105,727. Incredibly, this is a prime
number!

You may have noticed that subtracting one from the number of grains
on any of the chessboard squares is equivalent to representing the square
with the Towers of Hanoi formula: (2n – 1). This very formula has an
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interesting history behind it. It was used, for instance, by Euclid to generate
so-called perfect numbers.

A perfect number is defined as an integer that equals the sum of all its
divisors except itself. The smallest perfect number is 6, which has three
divisors, 1, 2, and 3 (6 = 1 × 2 × 3), and these add up to 6 (= 1 + 2 + 3). The
next perfect number is 28, whose divisors (1, 2, 4, 7, 14) add up to 28 (= 1 +
2 + 4 + 7 + 14). Perfect numbers have fascinated people throughout the ages.
In his City of God, St. Augustine (354–430) argued that God took six days to
create the world, resting on the seventh, because 6, as a perfect number,
symbolized the perfection of creation. Incidentally, the next three perfect
numbers after 6 are: 28 (as we have just seen), 496, and 8,128. It took nearly
1,400 years after their discovery in ancient Greece before the fifth one was
discovered. It is 33,550,336. To the best of my knowledge, only seventeen
perfect numbers have so far been discovered. The last one has 1,373 digits
and would fill this page if written out.

Euclid claimed that the formula [2n – 1 (2n – 1)] would generate all the
perfect numbers. But, as it turns out, it generates only even perfect numbers
when the expression (2n – 1) in it is a prime number—a fact proved by Leon-
hard Euler two millennia later. For example, if n = 2, then (2n – 1) = (22 – 1)
= (4 – 1) = 3. Since this is a prime number, we can now use Euclid’s formula
to generate a perfect number:

[2n – 1(2n – 1)] = [22 – 1 (22 – 1)] = [21 (4 – 1)] = (2) (3) = 6.

No odd perfect numbers have ever been found. They probably do not
exist.

Now, let’s take a closer look at Ibn Kallikan’s chessboard through the 
template of Euclid’s formula. Recall that the successive numbers of 
grains on each square can be represented with the formula 2n, starting 
with n = 0:
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If we then take away one grain from each square, the result would be, as men-
tioned, (2n – 1). As it turns out, this formula can be used to test the primality
of each square. For example, the fourth square has 23 or 8 grains on it. If we
take one away from it, (23 – 1), we get 7, which is a prime number. Primes
derived in this way are called Mersenne primes, also known as Mersenne

numbers, after the French mathematician Marin Mersenne (1588–1648), who
used the formula (2n – 1) as a test of primality. Applied to Ibn Kallikan’s chess-
board, the formula produces prime numbers on the squares shaded above:

Mersenne Value

Square Value of Square of the Square Prime Value

3rd 22 = 4 (2n – 1) = 22 – 1 3

4th 23 = 8 (2n – 1) = 23 – 1 7

6th 25 = 32 (2n – 1) = 25 – 1 31

8th 27 = 128 (2n – 1) = 27 – 1 127

Etc.

The Mersenne test of primality has been used to determine large primes. In
1978, for instance, two high school students in California, Laura Nickel and
Curt Landon Noll, found that (221,701 – 1) was prime, using computer tech-
niques. It was the twenty-fifth Mersenne prime to have been discovered. It has
6,533 digits. In 1996, a loose international Internet alliance of prime number
aficionados, founded by the computer programmer George Woltman in
Florida, known as GIMPS (the Great Internet Mersenne Prime Search Project),
determined that (23,021,377 – 1) was prime. It was the thirty-seventh Mersenne
prime discovered. It has 909,526 digits. In 1999, the group discovered another
Mersenne prime, (26,972,593 – 1), a number that has 2,098,960 digits. Interested
readers should note the Internet address of GIMPS: www.mersenne.org.

Infinity

The search for larger and larger primes raises the question of mathematical
infinity. The ancient Greeks certainly knew about the value of studying
infinity, as we shall see in chapter 8. But it was the German mathematician
Georg Cantor who made the study a branch of mathematics at the thresh-
old of the twentieth century.

The great Italian scientist Galileo Galilei (1564–1642) suspected that
mathematical infinity posed a serious challenge to common sense. In his
1632 Dialogue Concerning the Two Chief World Systems, he noted that the set
of square integers can be compared, one by one, with all the whole numbers
(positive integers), leading to the preposterous possibility that there may be
as many square integers as there are numbers (even though the squares are
themselves only a part of the set of integers).
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How can this be, in view of the fact that there are numbers that are not
squares, as the following comparison of the two sets seems to show?

Integers: 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Squares: 1 — — 4 — — — — 9 — — — . . .

As one would expect, this comparison makes it obvious that there are many
more “blanks” in the bottom set (the set of square integers), given that it is
a subset of the top set (the set of whole numbers). Common sense would
lead us to conclude that the set of whole numbers has thus many more
members in it than the set of square numbers does. But it does not. In 1872,
Cantor revisited Galileo’s insight and showed that it was accurate after
all—the two sets have the same number of elements. This can be shown
simply by eliminating the blanks in the previous layout and putting the
square integers in a direct one-to-one correspondence with the complete set
of whole numbers. The result shows that there are no “leftovers,” no mat-
ter how far we extend the comparison. Every whole number can be
matched with exactly one square number, and vice versa:

Integers: 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Squares: 1 4 9 16 25 36 49 64 81 100 121 144 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
12 22 32 42 52 62 72 82 92 102 112 122 . . .

Now, what is even more bizarre is the fact that the same one-to-one cor-
respondence can be set up between the whole numbers and numbers raised
to any power:

Integers: 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Powers: 1n 2n 3n 4n 5n 6n 7n 8n 9n 10n 11n 12n . . .

This simple but brilliant comparison technique puts a “fly in the logical
ointment of common sense,” so to speak. Cantor’s argument was, in fact,
earth-shattering in mathematical circles when he first made it public. Its
aftershocks are still being felt today.
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Cantor was born in Saint Petersburg (Russia) of German parents.
His early work with series led to his development of set theory

(the study of the properties of sets), upon which modern mathemat-
ical analysis is based. His work on infinite series shook the founda-
tions of mathematics, and they are still trembling somewhat.
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The study of mathematical infinity is filled with paradoxes. For exam-
ple, a one-to-one correspondence can be set up between the set of “counting
numbers” and any of its subsets. Two cases in point are the even and the
odd numbers:

Integers: 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Even Integers: 2 4 6 8 10 12 14 16 18 20 22 24 . . .

Integers: 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Odd Integers: 1 3 5 7 9 11 13 15 17 19 21 23 . . .

Because the counting numbers are also called cardinal numbers (posi-
tive integers), any set of numbers that can be put in a one-to-one correspon-
dence with them is said to have the same cardinality. Cantor used this
notion to investigate all kinds of sets. Consider the set of rational numbers.
As we saw in the previous chapter, these are numbers that can be written in
the form 

p_
q where p and q are integers (and q ≠ 0). Thus, for instance, 

2_
3,

–5_
8 ,

5, and 
4_
7 are rational numbers. The cardinal numbers are, themselves, a sub-

set of the rationals—every integer p can be written in the form 
p_
1 . Terminat-

ing decimal numbers are also rational, because a number such as 3.579 can
be written in 

p_
q form as 3,579/1,000. Finally, all repeating decimal numbers 

are rational, although the proof of this is beyond the scope of the present
discussion. For example, 0.3333333. . . can be written as 

1_
3.

Amazingly, Cantor demonstrated that the rationals also have the same
cardinality as the counting numbers. His method of proof is, again, unex-
pectedly elegant and simple. First, he arranged the set of all rational num-
bers as shown in the following array:
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In each row, the successive denominators (q) are the integers {1, 2, 3, 4, 5, 6,
. . . }. The numerator (p) of all the numbers in the first row is 1; of all those
in the second row, 2; of all those in the third row, 3; and so on. In this way,
all numbers of the form

p_
q are covered in the previous array. Cantor enclosed

in parentheses every fraction in which the numerator and the denominator
have a common factor. If these fractions are deleted, then every rational
number appears once and only once in the array. Now, Cantor set up a one-
to-one correspondence between the integers and the numbers in the array
as follows: he let the cardinal number 1 correspond to 

1_
1 at the top left-hand

corner of the array; 2 to the number below 
2_
1; following the arrow, he let 3

correspond to 
1_
2; following the arrow, he let 4 correspond to 

1_
3; and so on, ad

infinitum. The path indicated by the arrows therefore allows us to set up a
one-to-one correspondence between the cardinal numbers and all the
rational numbers (eliminating the numbers in parentheses):

Integers: 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Array
1_
1

2_
1

1_
2

1_
3

3_
1

4_
1

3_
2

2_
3

1_
4

1_
5

5_
1

6_
1

5_
2 . . .

Numbers:

Conclusion? There are as many rational numbers as there are whole
numbers! One cannot help but be impressed by the elegant and simple way
in which Cantor constructed this mind-boggling demonstration. In effect,
once the simplicity inherent in the principles of Cantor’s overall theory is
understood, they cease to look like the products of the overactive imagina-
tion of a mathematical eccentric.

Cantor classified numbers with the same cardinality as belonging to the
set “aleph null,” or ℵ0 (ℵ is the first letter of the Hebrew alphabet). He
called ℵ0 a transfinite number (a number that is greater than any finite
number). Amazingly, Cantor found that there are other transfinite numbers.
These are sets of numbers with a greater cardinality than the integers. He
labeled each successively larger transfinite number with increasing sub-
scripts {ℵ0 , ℵ1, ℵ2, . . . }.

Now, the reader may ask: how can there be different transfinite num-
bers? Cantor’s proof is again remarkable for its simplicity. Suppose we take
all the possible numbers that exist between 0 and 1 on the number line and
lay them out in decimal form. Let’s label each number {N1, N2, . . . }. Note
that there are so many possible numbers of the form

p_
q between 0 and 1 that

we could not possibly put them in any order. So, the numbers given here
are just a sampling:

N1 = .4225896 . . .
N2 = .7166932 . . .
N3 = .7796419 . . .
. . .
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How could we possibly construct a number that is not on that list? Here’s
how. Let’s call it C. To create it, do the following: (1) for its first digit after
the decimal point, choose a number that is greater by 1 than the first digit
in the first place of N1; (2) for its second digit, choose a number that is
greater by 1 than the second number in the second place of N2; (3) for its
third digit, choose a number that is greater by 1 than the third number in
the third place of N3; (4) and so on:

N1 = 4225896 . . .

The constructed number, C, would start with 5, rather than 4, after the
decimal:

C = .5 . . .
N2 = .7166932 . . .

The constructed number would have 2, rather than 1:

C = .52 . . .
N3 = .7796419 . . .

The constructed number would have 0, rather than 9

C = .520 . . .
Etc.

Now, the number C = .520 . . . is different from N1, N2 , N3 , and so on, because
its first digit is different from the first digit in N1; its second digit is different
from the second digit in N2; its third digit is different from the third digit in
N3; and so on, ad infinitum. We have in fact just constructed a different trans-
finite number than ℵ0. It appears nowhere in the previous list.

Reflections

The study of infinity is truly intriguing and mind-boggling and yet so sim-
ple. The Towers of Hanoi Puzzle can also be used in a simple way as an
imaginary model of mathematical infinity. This can be done by imagining
the number of pegs, their relative lengths, and the extension of the base-
board on which they are placed as having no limits. The game would thus
go on ad infinitum.

There is something mystical about the concept of an eternal game—a con-
cept found as well in Das Glasperlenspiel (1943, translated as Magister Ludi,
1949), the last novel written by the great German writer Hermann Hesse
(1877–1962). In that novel, the meaning of life is revealed gradually to the
master of a bead game—a game that involves making repeating patterns ad
infinitum. There is no evidence to suggest that Hesse knew of Lucas’s game,
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nor certainly that even if he did, it influenced him to write his masterpiece.
But the idea that life is an eternal game played according to simple rules is
captured brilliantly by both the puzzle and the novel. The appeal of Lucas’s
puzzle would seem to be as much metaphorical as it is mathematical.

Explorations

The Lucas and Ibn Kallikan Games

48. Here is a card version of the Towers of Hanoi game. Take four cards
of the same suit, say, spades, in numerical order—an ace, a 2, a 3, and a 4.
Put the cards in a space, calling it A. Set up two empty spaces, B and C, right
next to the cards:

The object is to relocate the cards to space C in accordance with the same
rules: (1) a larger-valued card may never be placed on top of a smaller-
valued card; (2) only one card at a time can be moved to a new space.

49. Recall that the Mersenne formula (2n – 1) generates primes when
applied to certain squares on Ibn Kallikan’s chessboard.

Value of Mersenne Mersenne 

Square Value of n Square Formula Prime

3rd 2 22 = 4 (2n – 1) = 22 – 1 3

4th 3 23 = 8 (2n – 1) = 23 – 1 7

6th 5 25 = 32 (2n – 1) = 25 – 1 31

Etc.
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The values of n for the nine Mersenne primes on the chessboard are

Square Value of n (in 2n)

3rd 2

4th 3

6th 5

8th 7

14th 13

18th 17

20th 19

32nd 31

62nd 61

Do you detect a pattern?

50. What would happen if the conditions of Ibn Kallikan’s puzzle were
changed as follows?

� The number of grains on each even square is produced by multiplying
the number of grains on the previous odd square by 2n.

� The number of grains on each odd square is produced by halving the
number of grains on the previous (even) square.

Again, we start with one grain on the first square. Do you detect any pattern
to the sequence generated in this way?

51. The chessboard has been the source of all kinds of puzzles that
explored mathematical ideas, ever since it came into use centuries ago. One
that finds its way into virtually every puzzle anthology because of its
apparent difficulty, yet deceptively simple solution, is the following:

If two opposite corners of a checkerboard are removed, can the
checkerboard be covered by dominoes? Assume that the size of each
domino is the size of two adjacent squares of the checkerboard. The
dominoes cannot be placed on top of each other and must lie flat.
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Infinity

52. Show that the whole numbers can be put in a one-to-one correspon-
dence with

A. the set of multiples of 10

B. the subset of fractions with a constant numerator 1 and numerically
ordered denominators, starting with 1 and increasing ad infinitum

53. Take the first transfinite number, ℵ0:

A. What happens when you add 1 to it?

ℵ0 + 1 = ?

B. What happens when you add any number, n, to it?

ℵ0 + n = ?

C. What happens if you double it?

ℵ0 + ℵ0 = 2ℵ0 = ?
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THE SHREWDEST PUZZLIST OF ALL TIME was, without question, the American
engineer Sam Loyd. As we saw in chapter 4, he was the one who

devised the Fifteen Puzzle, which turned out to be the first true worldwide
“puzzle craze.” Loyd invented a host of similarly clever puzzles and games
that continue to baffle and entertain people to this day. Many of them sus-
pend belief temporarily, producing the same mystifying effect that magic
tricks do.

One of his “magic-inducing” puzzle gadgets, which never fails to bewil-
der people who come across it for the first time, is the Get Off the Earth
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Whenever, therefore, people are deceived and form
opinions wide of the truth, it is clear that the error 
has slid into their minds through the medium of 

certain resemblances to that truth.

SOCRATES (469–399 B.C.)

7

Sam Loyd was born in Philadelphia. He studied engineering.
However, after becoming the problem editor of the magazine

Chess Monthly in 1860, he realized that he could make a comfort-
able living from puzzles alone.

Working out of a small, dusty office in New York City, Loyd pro-
duced over ten thousand puzzles in his lifetime. Most of them are
extremely challenging, thus enticing “puzzle addicts” to spend
countless hours trying to figure them out.

SAM LOYD (1841–1911)



Puzzle. But like the Fifteen Puzzle, it, too, is not just an exercise in 
mental sleight of hand. As it turns out, the puzzle puts the spotlight on
several important mathematical questions related to geometrical construc-
tion, and it is used by math teachers to emphasize to students the impor-
tance of examining all facts and all results, not just assuming them to be
true. As such, it therefore qualifies as one of the ten greatest puzzles of 
all time.

The Puzzle

Loyd’s puzzle is an ingenious “cut-and-slide” trick. The idea underlying its
construction probably goes back to a puzzle included in a 1774 book titled
Rational Recreations, by a certain William Hooper. Loyd created his version
by fastening a smaller paper circle to a larger one with a pin so that it could
spin around. Then, with appropriate artwork on both circles, he made the
figure look like the earth, with thirteen Chinese warriors on it. Loyd
patented his puzzle in 1897. It sold more than 10 million units:

When the smaller circle is turned slightly, shown as follows, the thirteen
warriors turn mysteriously into twelve. Where did the thirteenth warrior go?
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The Chinese warriors are made as assemblages of smaller pieces repre-
senting arms, legs, bodies, heads, and swords. When the earth is rotated,
the pieces are rearranged in such a way that each Chinese warrior gains a
sliver from his neighbor. For example, at the lower left, two warriors are
next to each other. The top one is missing a foot. When the earth is rotated,
he gains a foot from his neighbor on the right. That neighbor gains two feet
(since he lost one) and one small piece of a leg. As a result of the rotation,
one of the warriors will “lose” all his parts, making it seem that he has
“disappeared.”

To grasp the clever idea underlying the puzzle, consider a parallel van-
ishing trick. A rectangle, ABCD, that contains ten straight equidistant par-
allel lines within it is crossed by a dotted diagonal:

As can be seen, the diagonal touches the top point of line 10 and the bottom
point of line 1. Readers should draw this rectangular figure on a piece of
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paper, making sure that the ten perpendicular lines are equal in length, par-
allel, and equidistant from one another. The dotted diagonal must be made
to touch the top of line 10 and the bottom of line 1. Several drafts may be
needed to come up with the correct figure. But it is crucial to do so; other-
wise, the vanishing trick will not work.

We now cut the rectangle along the dotted line, producing an upper and
a lower piece:

Next, we erase the numbers on the lines and the letters designating the
rectangle. Then, we slide the lower piece down and to the left, only to the
extent that the linear segments in the lower piece are “in sync” with the lin-
ear segments in the upper piece (see the following figure). In this way, we
have seemingly preserved the internal lines in the rectangle. Two “protrud-
ing lines” are produced, however, as readers can confirm for themselves on
their own paper versions:
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Let’s cut out the two protruding lines. This produces a new and slightly
smaller rectangular figure:

If we number the lines in the new figure and use letters to designate the
new rectangle, we notice that there are now only nine internal lines in the
rectangle:

What happened to the tenth line? Nothing. Because of the slide, it has
become coincident with side DC of the rectangle. It is, in effect, “hidden” by
that side.
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Let’s analyze our “vanishing trick.” Lines 1 and 10 remain the same after
the cut, while the remaining eight lines (2 to 9) are sliced into two segments
each. When we slide the lower piece, we produce new internal lines. Each
one is now made up of its upper segment aligned with a lower segment that
was previously part of the line to the immediate right (as we look at the dia-
gram). The tenth line is still there, but it is now coincident with side BC of
the new rectangle. Indeed, if we slide the lower part back up again, the
tenth line will reappear.

This type of “cut-and-slide” trick was used by Loyd to create his mysti-
fying Get Off the Earth Puzzle. When Loyd’s smaller circle is turned, the
body parts of the warriors, like the lines in our rectangle, are realigned, mak-
ing it seem that one of the warriors, like our tenth line, has disappeared.

Mathematical Annotations

Constructing and dissecting figures with two instruments—the ruler (or
straightedge) and the compass—have always constituted “concrete” tech-
niques for investigating the properties of certain figures and for deducing
theorems about them. As we saw here, Loyd’s puzzle conceals within it a
simple dissection technique, which never fails to stupefy people who are
unaware of how Loyd used it to create his illusion.

Dissection

Loyd’s puzzle really belongs to a genre of tricks based on dissection. Con-
sider the following well-known puzzle. The original version appeared in
1868 (according to W. W. Rouse Ball, in Further Reading). Sam Loyd
included it in his Cyclopedia of Tricks and Puzzles of 1914.

Start by dividing a square piece of paper into sixty-four smaller squares,
as in a chessboard. The result is, of course, an 8 × 8 square:
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Cut up the chessboard into two trapezoids (figures 1 and 2) and two tri-
angles (figures 3 and 4), as shown. A trapezoid is a four-sided plane figure
with two opposite sides parallel to each other:

Finally, rearrange the four figures into a rectangle, shown as follows:

Now, count the small squares in the rectangle. There are 5 × 13, or 65, of
them. But wait! That is one more than the sixty-four that were in the origi-
nal square we used to make the rectangle! How did the extra small square
get in there? The truth is that the edges of the four figures we cut out do not
actually coincide along the diagonal. A close inspection will show that the
diagonal is really a long and very narrow parallelogram that can barely be
noticed. In the following drawing, it has been blackened to show where it is:
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But this is not the end of the matter. If we subtract the area of the previous
rectangle—5 × 13 = 65—and subtract the area of the original square 82 = 64,
we get, of course, the difference of 1—which represents the area of the miss-
ing square. Let’s write this out as follows:

Area of rectangle: 5 × 13

Area of original square: 82

Difference between the two areas: (5 × 13) – 82 = 1

Now, look closely at the actual digits in the last expression. As it turns out,
the digits—5, 8, and 13—are three consecutive numbers in the Fibonacci
sequence (chapter 3)!

{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . }.

And there is more. If we dissect squares of dimensions 32, 212, and 552 in
the same way that we dissected our 82 square, we will produce rectangles of
dimensions 5 × 2, 13 × 3, and 34 × 89 by rearrangement. Notice that all the
digits in these expressions belong to the Fibonacci sequence. In each case,
an extra little square unit is produced in the rearrangement process.
Remarkably, subtracting the rectangles from the original squares in the
same way that we did earlier also produces three consecutive Fibonacci
numbers:

5 × 2 – 32 = 1 → . . . 2, 3, 5 . . . (in the Fibonacci sequence)

13 × 34 – 212 = 1 → . . . 13, 21, 34 . . . (in the Fibonacci sequence)

34 × 89 – 552 = 1 → . . . 34, 55, 89 . . . (in the Fibonacci sequence)

Etc.

This result boggles the mind. It brings out once again that mathematics is 
all about the study of patterns, even if such study may, at times, have no
practical application. The connection between Fibonacci numbers and a
puzzle in dissection is one of those things that seems to lead nowhere but,
nonetheless, seems to harbor a hidden significance that has not as yet been
ascertained.

Dissection puzzles belong to the realm of the geometrical imagination.
The term geometry—which derives from the ancient Greek geo, “earth,”
and metrein, “to measure”—describes what the early geometers did. They
measured the size of fields, laid out accurate right angles for the corners 
of buildings, and calculated other practical things. And they used diagrams
to represent their measurements and their layouts. More specifically,
geometry is the branch of mathematics that deals with the construction,
properties, and relationships of points, lines, angles, curves, shapes, and
solids. Solving problems and puzzles in geometry requires, in fact, knowl-
edge of how to draw and interpret diagrams correctly, as in the following
classic puzzle:
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Given the dimensions of the radius in inches, as shown in the follow-
ing diagram, can you calculate the length of the rectangle’s diagonal
that goes from A to B?

The puzzle seems to defy a solution. The insight comes from examining
the diagram fully. Recall from high school geometry that the two diagonals
of a rectangle equal each other in length. That, in fact, is the insight required
to solve the puzzle. Go ahead and draw the other diagonal:

The diagonal that has just been drawn is, in effect, a radius of the circle.
Since the latter is equal to 6 inches plus 4 inches, or 10 inches in total, and
the radii of a circle are equal, the diagonal that was just drawn is also 10
inches long. And since the diagonals of a rectangle are equal, the length of
the diagonal AB is thus 10 inches.

Loyd’s Get Off the Earth Puzzle � 133



Optical Illusions, Ambiguous Figures, 
and Impossible Figures

Among other things, Loyd’s puzzle constitutes a simple, albeit indirect,
introduction to the world of optical illusions. These are figures that we
interpret incorrectly. The topic of optical illusions is interesting psycholog-
ically and mathematically, having received extensive treatment in both
fields. For the present purposes, it is sufficient to note that optical illusions

trick the eye into interpreting some figure in an erroneous way. For
instance, most people typically see the following line AB as longer than CD,
even though the two are equal in length.

The illusion is called the Müller-Lyer Illusion, after the German physiolo-
gist Johannes Müller (1801–1858), who discovered it in 1840. The source of
the illusion is, clearly, the different orientation of the two arrowheads.
Readers should draw two equal parallel lines and then add arrowheads to
them in a similar way, watching the “illusion effect” take place firsthand.

Following is another classic optical illusion, devised by the psychologist
Johann Zöllner (1834–1882). The lines do not look parallel, but they are.
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The lines appear slanted because the oblique little lines fool our eyes into
interpreting them in that way. Again, readers should draw several equal
vertical parallel lines and then add the slanted little lines to them in a simi-
lar way, watching the illusion effect take place firsthand.

Some figures are called ambiguous by psychologists, because they
induce our eyes into perceiving them as something at one time, yet as some-
thing else at another. Perhaps the most famous of all ambiguous figures is
the following one. It is found in virtually every introductory textbook on
the psychology of perception:

We perceive the figure at one time as a vase and at another as the faces of
two people looking at each other. Both of these perceptions come in flashes.
Neither one can be maintained for very long. The illusion was devised by
the Dutch psychologist Edgar Rubin around 1910. The cause of the ambigu-
ity is, no doubt, the use of different shades. They produce a chiaroscuro

effect, whereby at one time we cannot help but focus on the dark part of the
figure and at another on the light part. Chiaroscuro is the term used by artists
to refer to the distribution and the contrast of light and shade in a painting
or a drawing. The term is derived from the Italian chiaro (“light”) and oscuro
(“dark”) and generally refers to a technique that contrasts bright illumina-
tion with areas of dense shadow.

There is a third type of visual ruse worth mentioning here. It is known
as an impossible figure. It is the product of a painting technique that
dupes our eyes into viewing a two-dimensional drawing in a three-
dimensional way—a technique developed by Renaissance artists such as
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Filippo Brunelleschi (1377–1446) and Albrecht Dürer (1471–1528). The tech-
nique, known as perspective drawing, can be used, of course, to draw
things like “cubes” on a two-dimensional surface, such as a piece of paper.
But it can also be used cleverly to dupe our eyes into seeing figures as
impossible. As an example, look at the following staircase:

The staircase appears to be going up and down, defying common sense—it
does not seem to have a highest or lowest step! If one starts “climbing” at
D, moving counterclockwise, one ends up back at D, having apparently
moved upward with each step and yet ending no higher than D. Similarly,
if one moves clockwise, descending from D, one ends up, again, at D. The
staircase thus appears to contradict all the principles of physics.

One of the most prolific producers of this kind of illusion is the Swedish
artist and art historian Oscar Reutersvärd (1915–). His drawings have cap-
tured the attention of mathematicians and psychologists alike. Here is his
“devil’s triangle.” It bears this name because it produces a jarring sense of
distortion and surreal unease in the viewer. This particular version was
actually created by the British biologist L. S. Penrose and his son the physi-
cist Roger Penrose:
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The artist who excelled at drawing such figures was Maurits Cornelis
Escher (1898–1972). Escher’s pictures explore the complex relationship
between perception and representation. His interlocking figures; mirror
images of cones, spheres, and cubes; connecting rings; and continuous spi-
rals produce truly mind-boggling effects.

Reflections

Loyd’s Get Off the Earth Puzzle warns us to be wary of how things appear
on the surface. This was probably not the roguish Loyd’s incentive for cre-
ating his money-making puzzle. But it turned out to be a perfect antidote
for, and a way to counteract the naïve tendency of, accepting the evidence
of the senses as accurate and trustworthy.

Optical illusions, ambiguous figures, and impossible figures also cau-
tion us to be careful about what our eyes tell us. They make it obvious that
perception is not governed just by the physiology of vision. Rather, it is also
the product of culturally based inferences operating at an unconscious
level that we have learned to make about figures. These influence how our
eyes interpret figures that are drawn on surfaces.

Explorations

Dissection and Rearrangement Puzzles

54. How can the following rectangle, with its two tabs, be cut into two
pieces to make a complete rectangle?

55. Look at the following figure:
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Readers can make it themselves by pasting a sheet of graph paper on a
piece of cardboard, defining the boundary of the square as 7 × 7, and then
drawing the internal lines as shown. Readers should then cut along the
lines to make five pieces. When these are rearranged, in the following man-
ner, a hole will appear in the center of the square!

But that is not all. The original square had forty-nine smaller squares in 
it, whereas the square obtained through rearrangement of the parts has
only forty-eight smaller squares. Which small square vanished and where
did it go?

56. Look at the next drawing, in which there are six lightly colored pen-
cils and seven darkly colored ones.
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Now cut along the lines, reversing the lower left with the lower right parts.
What happens?

Optical Illusions and Ambiguous Figures

57. Do you see two figures in the following drawing? What are they?

58. Which of the two pencils is longer? Measure them and find out.

59. The following circle is made up of rings. One is not shaded. The
radius of the large circle is 5, and the radius of each successive inner circle
is 1, 2, 3, and 4. Which of the two shaded areas is larger?
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IN THE FIFTH CENTURY B.C., a host of intriguing debates broke out in Greece
over the nature and the function of logic in science and mathematics.

Prominent participants were the philosopher Parmenides (c. 510 B.C.) and
his disciple Zeno of Elea. The latter became famous for a series of clever
arguments that seemed to defy common sense. The arguments came to be
known as paradoxes (meaning, literally, “conflicting with expectation”).

A group of traveling teachers, called the Sophists (from Greek sophos,
“clever”), sided with Zeno, arguing that paradoxes exposed logical think-
ing as essentially deceptive. The great philosopher Aristotle (384–322 B.C.),
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The way of paradoxes is the way of truth. To test 
Reality we must see it on the tight-rope. When the 

Verities become acrobats we can judge them.
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Little is known of Zeno’s life, other than that he lived in the
Greek colony of Elea in southern Italy.
With his ingenious paradoxes, Zeno showed that a purely logi-

cal approach to a description of reality would force us to conclude
that motion is impossible. Despite their iconoclastic intent, the
ideas built into the paradoxes led gradually to the establishment of
the calculus and to a reconsideration of the logical foundations of
mathematics.

ZENO OF ELEA (C. 489–435 B.C.)



on the other hand, dismissed Zeno’s paradoxes as exercises in specious rea-
soning. The central characteristic of the human mind, Aristotle insisted, was
its ability to think logically. He then proceeded to give logic a formal struc-
ture, called syllogistic.

Here is an example of an Aristotelian syllogism:

Major premise: All humans are mortal.

Minor premise: Socrates is human.

Conclusion: Therefore, Socrates is mortal.

The major premise states that a category has (or does not have) a certain
characteristic and the minor premise says that a certain thing is (or is not) a
member of that category. The conclusion then affirms (or negates) that the
thing in question has that characteristic. As clever as they were, Aristotle
asserted, paradoxes were ultimately inconsequential because they did not
impugn the validity of the syllogism. But Aristotle’s response was not the
end of the matter. On the contrary, the history of logic and mathematics
recounts a poetic vindication of Zeno’s stand.

Paradoxes are essentially puzzles in logic. The story goes that during the
debates, Protagoras (c. 480–411 B.C.) concocted one of the most vexing of all
paradoxes. Protagoras was the first philosopher to call himself a Sophist.
The paradox has come to be known as the Liar Paradox. Its most famous
articulation has, however, been attributed to a Cretan named Epimenides in
the sixth century B.C. Almost nothing is known about his life, other than the
fact that he was a celebrated poet and a prophet of Crete. The Liar Paradox
belongs on the list of the top ten greatest puzzles of all time, not only
because it continues to astound people to this day but also because it has
had many repercussions for the study of logic. Some of these will be dis-
cussed in this chapter.

The Puzzle

Before dealing with the Liar Paradox, it is useful to briefly consider a simi-
lar kind of paradox that virtually everyone knows:

Which came first, the chicken or the egg?

If you said that the chicken came first, then someone could counter that
such a thing would be impossible because the chicken had to hatch first
from an egg. If you say that the egg came first, then someone could again
counter by saying that such a thing would also be impossible because the
egg had to be laid first by a chicken. The question of which came first—the
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chicken or the egg—seems intractable. Answering it only produces an
exchange that will go around and around in circles forever!

The Liar Paradox evokes the exact same kind of “circularity.” It has
come down to us more or less in the following form:

The Cretan philosopher Epimenides once said: “All Cretans are
liars.” Did Epimenides speak the truth?

Let’s assume that Epimenides spoke the truth. Thus, his statement “All Cre-
tans are liars” is a true statement. However, from this, we must deduce that
Epimenides, being a Cretan, is also a liar. But this is a contradiction. Obvi-
ously, we must discard our assumption. Let’s assume the opposite—
namely, that Epimenides is in fact a liar. But, then, if he is a liar, the
statement he just made—“All Cretans are liars”—is true. But this is again a
contradiction—liars do not make true statements. Obviously, we are con-
fronted with a circularity, not unlike that of the chicken and the egg.

The British mathematician P. E. B. Jourdain invented an interesting ver-
sion of the Liar Paradox in 1913, which brings out its essential nature in a
concrete way:

The following is printed on one side of a card: “The statement on the
other side of this card is true.” But on the card’s other side, the state-
ment reads: “The statement on the other side of this card is false.”
What do you make of the card?

The card makes you go back and forth, from one side to the other, scratch-
ing your head. The reader may, at this point, wonder what the Liar Paradox
has to do with mathematics. The answer is that mathematics has always
been thought to be free of logical circularity. But it is not. This is why the
Liar Paradox has fascinated mathematicians throughout history, becoming,
over time, one in a series of clever paradoxes that has brought about revo-
lutionary changes in mathematics.

Mathematical Annotations

The dream of mathematicians has always been to provide a firm logical
foundation to mathematics that would be free of circularity. But paradoxes
have always stood in the way of this master plan. They expose logic as
problematic. For this reason they have, paradoxically (no pun intended),
played a crucial role in the history of mathematics. Attempts to resolve the
issues that they raise have, in fact, led to significant debates and subsequent
discoveries and developments.
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Undecidability

The source of the circularity in the Liar Paradox is, of course, the fact that it
was Epimenides, a Cretan, who made the statement “All Cretans are liars.”
It is an example of the logical problems that arise from self-referentiality.
This refers to the fact that the maker of a statement includes himself or her-
self in the statement. The English philosopher Bertrand Russell (1872–1970)
found the paradox to be especially troubling, feeling that it threatened the
very foundations of logic and mathematics.

To examine the nature of self-referentiality more precisely, Russell for-
mulated his own version of the Liar Paradox, called the Barber Paradox:

The village barber shaves all and only those villagers who do not
shave themselves. So, shall he shave himself?

The barber is “damned if he does and damned if he doesn’t,” as the collo-
quial expression goes. Let’s say he decides to shave himself. He would end
up being shaved, of course, but the person he would have shaved is him-
self. And that contravenes the requirement that the village barber shave “all
and only those villagers who do not shave themselves.” The barber has, in
effect, just shaved someone who shaves himself! So, let’s assume that the
barber decides not to shave himself. But, then, he would end up being an
unshaved villager. Again, this goes contrary to the stipulation that he, the
barber, shave “all and only those villagers who do not shave themselves”—
including himself! It is not possible, therefore, for the barber to decide
whether or not to shave himself. Russell argued that such “undecidability”
arises because the barber is himself a member of the village. If the barber
were from a different village, the paradox would not arise.

Like the German philosopher Gottlob Frege (1848–1925), Russell sought
to find a system of logical argumentation that would exclude self-referen-
tiality. Using a notion developed two millennia earlier by Chrysippus of
Soli (c. 280–206 B.C.), Frege claimed that circularity could be avoided from
statements such as the Liar Paradox by considering their form separately
from their content. In this way, one could examine the consistency of state-
ments, known more technically in logic as propositions, without having
them correspond to anything (such as barbers, villages, Cretans, etc.).
Frege’s approach was developed further by the Cambridge logician Lud-
wig Wittgenstein (1889–1951), who used symbols, rather than words, to
ensure that the form of a proposition could be examined in itself for logical
consistency, separate from any content to which it could be applied. If 
the statement “It is raining” is represented by the symbol p and the state-
ment “It is sunny” by q, then the proposition “It is either raining or it is
sunny” can be assigned the general symbolic form p ∨ q (with ∨ = “or”). A
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proposition in which the quantifier “all” occurs would be shown with an
inverted ∀. So, the statement “All Cretans are liars” would be represented
as ∀p. If the form held up to logical scrutiny, then that was the end of the
matter. The problem, Wittgenstein affirmed, is that we expect logic to inter-
pret reality for us. But that is expecting way too much from it. Wittgen-
stein’s system came to be known as “symbolic logic”—a system of
representation prefigured by none other than the puzzlist Lewis Carroll in
his ingenious book The Game of Logic (reprinted in 1958).

Russell joined forces with Alfred North Whitehead (1861–1947) to pro-
duce a system of symbolic logic called the Principia Mathematica (“The Prin-
ciples of Mathematics”) in 1913. The objective of the two philosophers was
to solve the problem of undecidability, such as the one faced by the village
barber, by separating the form of propositions completely from their refer-
ence to “real-world” content. At first thought, Russell and Whitehead’s pro-
posal would seem to make a lot of sense. After all, in music the form of a
melody is all that really counts, no matter what emotions it may evoke. As
long as it is consistent with harmonic practices, it is a valid melody. But,
alas, it became obvious after publication of the Principia Mathematica that
the forms of the propositions themselves led to unexpected problems. To
solve these, Russell introduced the notion of “types,” whereby certain types
of propositions would be classified into different levels (more and more
abstract) and thus considered separately from other types. This seemed to
avoid the problems—for a while, anyhow.

The Polish mathematician Alfred Tarski (1902–1983) developed Russell’s
idea of types further by naming each increasing level of abstract statements
a metalanguage. A metalanguage is, essentially, a statement about another
statement. At the bottom of the metalanguage hierarchy are straightfor-
ward statements about things, such as “Earth has one moon.” Now, if you
say “The statement that earth has one moon is true,” you are using a differ-
ent type of language, because it constitutes a statement about a previous
statement. It is a metalanguage. The problem with this whole approach is,
of course, that more and more abstract metalanguages are needed to evalu-
ate lower-level statements. And this can go on ad infinitum. In effect,
Tarski’s system only postpones making final decisions about “what is
what.” Consider, for example, the following two statements:

1. The next sentence is false.

2. The previous sentence is true.

Statement 1 refers to another statement (2). So, it belongs to some metalan-
guage. Now, statement 2, which is the target of statement 1, also says some-
thing about statement 1. So, it, too, belongs to some metalanguage. But,
wait! This means that it belongs to two levels at once! It would seem that
Tarski’s system itself produces self-referentiality among metalanguages!
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This whole line of investigation was finally (and mercifully, some would
claim) brought to an abrupt end in 1931 by the German logician Kurt Gödel
(1906–1978). While at Princeton, Gödel showed why self-referentiality is a
fact of human life, no matter how hard we try to eliminate it from our logi-
cal systems. Before Gödel, it was taken for granted that every proposition
within a logical system could be either proved or disproved within that sys-
tem. But Gödel startled the academic world by showing that this was not
the case! He argued that a logical system invariably contains a proposition
within it that is “true” but “unprovable.” Gödel’s argument is far too tech-
nical to discuss here in an in-depth manner. For our present purposes, it can
be paraphrased as follows:

Consider a mathematical system T that is both correct—in the sense
that no false statement is provable in it—and that contains a state-
ment, S, that asserts its own unprovability in the system. S can be for-
mulated simply as: “I am not provable in system T.” What is the truth
status of S? If it is false, then its opposite is true, which means that S
is provable in system T. But this goes contrary to our assumption that
no false statement is provable in the system. Therefore, we conclude
that S must be true, from which it follows that S is unprovable in T,
as S asserts. Thus, S is true but not provable in the system.

The American puzzlist Raymond Smullyan (see Smullyan’s 1997 book,
listed in Further Reading) provides a clever puzzle version of Gödel’s argu-
ment, as follows:

Let us define a logician to be accurate if everything he can prove is
true; he never proves anything false.

One day, an accurate logician visited the Island of Knights and
Knaves, in which each inhabitant is either a knight or a knave, and
knights make only true statements and knaves make only false ones.
The logician met a native who made a statement from which it fol-
lows that the native must be a knight, but the logician can never
prove that he is!

What was the statement?

The “Gödelian” statement is: You cannot prove that I am a knight. The speaker
is either a knave or a knight. Let’s assume that he is a mendacious knave. In
that case, the statement would, of course, be false. Its opposite would be
true—namely, You can prove that I am a knight. But the speaker is not a
knight; he is a knave. Since the puzzle asserts that an accurate logician is
incapable of proving anything false, he cannot prove therefore that the
native is a knight in this case as the mendacious speaker asserted! 
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Therefore, the speaker is not a knave. Let’s assume that he is a knight
instead. This means that the statement You cannot prove that I am a knight is
true, since our speaker is now a truthful person. But if it is true, then the
logician cannot prove again that the native is a knight—the statement
declares as much. So, even though the native is a knight, the logician will
never be able to prove it!

Gödel’s demonstration showed, once and for all, that logical systems are
“faulty,” because they invariably contain a statement (“I am not provable”)
that is undecidable in them. Its repercussions are being felt throughout math-
ematics and philosophy to this day. Perhaps the most appropriate way to
eliminate self-referentiality is to simply outlaw it. The “technique” of pro-
hibition has, in fact, already been used by mathematicians with regard to
division by 0. Why? Because it would lead to contradictory results (see con-

tradiction, in the glossary), as the following demonstration shows:

1. Assume that a = b.

2. Multiply both sides of the equation by a: a2 = ab.

3. Subtract b2 from both sides: a2 – b2 = ab – b2.

4. Factor both sides: (a + b) (a – b) = b (a – b).

5. Divide both sides by (a – b): a + b = b.

6. Since a = b, from (1), (5) can be rewritten as: b + b = b.

7. Therefore: 2b = b.

8. Dividing both sides by the common factor b, we get: 2 = 1.

We have thus proven that 2 = 1, or have we?
This anomaly arises because we started off by assuming that a = b, which

means that (a – b) = 0:

a = b.

Subtract b from both sides:

(a – b) = (b – b)
(a – b) = 0.

Thus, when we divided the equation (a + b) (a – b) = b (a – b) by (a – b), we
were in effect dividing it by 0. The reason for prohibiting division by 0 is,
clearly, a practical one—it is better to retain a system of numeration that has
proven to be highly useful in everyday life, than to throw it completely out
because one of the numbers within it is problematic. Mathematical life goes
on without division by zero. So, too, logical life will go on without self-
referential statements.

In their 1986 book The Liar (see Further Reading), a mathematician
named Jon Barwise and a philosopher named John Etchemendy adopted a
similar “practical” view of the Liar Paradox. As they assert, the paradox
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arises only because we allow it to arise. When Epimenides says, “All Cre-
tans are liars,” he may be doing so simply to confound his interlocutors. His
statement may also be the result of a slip of the tongue. Whatever the case,
the intent of Epimenides’ statement can be determined only by assessing
the context in which it was uttered, along with Epimenides’ reasons for say-
ing it. Once such factors are determined, no paradox arises.

Incidentally, Gödel’s basic argument may shed light on why some prob-
lems may not be solvable with logic alone. They may, in effect, be “undecid-
able” within our systems of logic. We have encountered one of these in the
Four-Color Problem, discussed in chapter 5. Another is Goldbach’s Conjec-
ture. In a letter to Euler in 1742, the mathematician Christian Goldbach
(1690–1764) conjectured that every even integer greater than 2 could be
written as a sum of two primes:

4 = 2 + 2

6 = 3 + 3

8 = 5 + 3

10 = 7 + 3

12 = 7 + 5

14 = 11 + 3

16 = 11 + 5

18 = 11 + 7

Etc.

No exception is known to Goldbach’s Conjecture, but there still is no
valid proof of it. Goldbach also conjectured that any number greater than 5
could be written as the sum of three primes:

6 = 2 + 2 + 2

8 = 2 + 3 + 3

7 = 2 + 2 + 3

9 = 3 + 3 + 3

10 = 2 + 3 + 5

11 = 3 + 3 + 5

Etc.

Maybe the conjecture is one of those things that is undecidable within
our systems of logic. From a practical perspective, an “explanation” for the
conjecture may be unnecessary anyhow, for it would probably not change
the world in any significant way. But, for some reason, we continue to
search for a proof, as if impelled by our ancient Theban Sphinx to do so—
no matter what the cost!

148 � The Liar Paradox and the Towers of Hanoi



Limits

Paradoxes have not only had a great impact on the study of logic, they have
also led to the crystallization of a host of mathematical notions. One of these
is the notion of limits (the boundary number or point that is approached by
a function), which can be traced back to Zeno’s famous paradox of the run-
ner, by which he argued that a runner would never be able to reach a finish
line, if one used logical argumentation. He argued his case as follows. The
runner must first traverse half the distance to the finish line. Then, from
mid-position, the runner would face a new, but similar, task—he must tra-
verse half of the remaining distance between himself and the finish line. But
from the new position, the runner would face a similar task—he must once
more cover half of the new remaining distance between himself and the finish
line. Although the successive half distances between himself and the finish
line would become increasingly (indeed, infinitesimally) small, the wily
Zeno concluded that the runner would come very close to the finish line but
would never cross it. The successive distances that the runner must cover
form an infinite geometric series, each term of which is half of the one
before: {

1_
2,

1_
4,

1_
8,

1__
16 , . . . }. The sum of the terms in this sequence will never

reach 1, the whole distance to be covered:

The English scientist Sir Isaac Newton (1642–1727) and the German
philosopher and mathematician Gottfried Wilhelm Leibniz (1646–1716)
were probably contemplating Zeno’s runner paradox when they came 
up, independently, with an ingenious, yet remarkably simple, solution to it.
They simply asserted that the sum to which the series {

1_
2,

1_
4,

1_
8,

1__
16 , . . . } 

converges as it approaches infinity is the distance between the starting line
and the finish line. Thus, the limit of the runner’s movement is, in fact, the
unit distance of 1. This notion became the basis for establishing a new
branch of mathematics, known as the calculus, which is concerned with
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such concepts as the rate of change, the slope of a curve at a particular
point, and the calculation of an area bounded by curves. It is beyond the
scope of this book to discuss the historical roots of calculus. Suffice it to say,
calculus led to a radical reconsideration of philosophical and mathematical
ideas about the world. Indeed, when the calculus was first proposed, it met
with acerbic criticism from philosophers and religious leaders. The Irish
prelate and philosopher George Berkeley (1685–1753), for instance, charged
that it was a useless science because it dealt with small, meaningless quan-
tities. But the calculus easily survived such attacks, for the simple reason
that it provided a powerful conceptual framework for answering the clas-
sical unsolved problems of physics and the paradoxes of Zeno.

The idea of limits was not unknown before Newton and Leibniz. In an
ancient Egyptian manuscript titled the Ahmes Papyrus, after the Egyptian
scribe Ahmes who copied it, or the Rhind Papyrus, after the Scottish lawyer
and antiquarian A. Henry Rhind (1833–1863), who purchased it in 1858
while vacationing in Egypt, one finds this very idea. It is used to estimate
the value of π, or pi. The original manuscript was written nearly four thou-
sand years ago, during the same period in which another famous document
of Egyptian mathematics, the Moscow Papyrus (named after its current loca-
tion), was written. The papyrus contains eighty-four challenging mathe-
matical problems. Its estimation of the value of π—the ratio of the
circumference of a circle to its diameter, which is approximately 22/7 or, to
five decimal places, 3.14159—is found in problem 48:

What is the area of a circle inscribed in a square that is 9 units on its
side?
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Notice that the diameter of the circle is also 9 units, as shown in the dia-
gram. The clever Ahmes (or whoever the real author of the Rhind Papyrus
was) solved it by a method that foreshadowed the technique of limits. He
asked, essentially, What if the circle is transformed into a polygon? He then
proceeded to do exactly that by trisecting each side of the square, as shown
in the following diagram, thus producing nine smaller squares within it
(each 3 × 3). He also drew the diagonals in the corner squares, as shown.
With such modifications to the diagram, Ahmes produced an octagon,
which he assumed to be close enough in area to the circle for the practical
purposes of the problem at hand:

Now, the area of the octagon can be computed easily, because it is made up
of seven smaller squares (all equal in area)—namely, the five inner squares
(I, II, III, IV, V), plus half the four small corner squares, which is equivalent,
of course, to two squares. The area of one small square is 3 × 3 = 9 square
units. The total area of seven such squares is, therefore, 9 × 7 = 63 square
units. With a bit of convenient cheating, the resourceful Ahmes assumed the
octagon’s area, and hence the circle’s area, to be 64. He then estimated the
value of π as follows. Recall that the diameter of the circle is 9:

Area of circle: πr 2 = 64

Diameter: 9

Radius (r):
9_
2

So, r2 = (9_
2)2

= 20.25
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Thus, since πr 2 = 64, and r 2 = 20.25: 20.25π = 64. Dividing both sides by
20.25: π = 64/20.25. This is equivalent to: π = 3.16049 . . .

A strikingly similar insight was used over one thousand years later by
the great Sicilian mathematician Archimedes (c. 287–212 B.C.). Archimedes
inscribed a regular polygon in a circle. The difference between the perime-
ter of a polygon and the circumference of a circle, he argued, could be made
as small as one desired by progressively increasing the number of sides of
the polygon. The limiting figure of such an incremental procedure was the
circle, and the limiting area of the “infinite-sided” polygon, therefore, the
area of the circle. One will never be able to calculate the circle’s area exactly,
Archimedes observed, but one can clearly approximate it as accurately as
one wishes. From this approximation, one can thus deduce a value for π. A
world in which π is not known is, of course, conceivable. But what we now
know about circular objects in the world, like the sun and the tides, would
be much more rudimentary. Our ability to describe natural phenomena
would be reduced to rudimentary conceptual dimensions.
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The term function is used in mathematics to indicate the rela-
tionship between two or more variables.

For the function y = f (n) (read as “y is a function of n”), let’s
assume that f (n) = 1/n. Thus: y = f (n) = 1/n.

Now, we can always determine a value for y by simply specify-
ing a value for n.
Examples:

When n = 2,

y = f (n) = 1 = 1 .__ __
n 2

When n = 3,

y = f (n) = 1 = 1 .__ __
n 3

When n = 1,000,000,

y = f (n) = 1 = 1 .__ _________
n 1,000,000

Because the value of y depends on the value of f (n), y is called
the dependent variable and f (n) the independent variable.

FUNCTIONS



The value of π, to which Archimedes’ inscribed polygon calculations
converged, is a perfect example of a limit. One can approach the limit of 
π = 3.14159 . . . closer and closer by increasing the number of polygons ad
infinitum.

Limits indicate the ways in which functions behave (see the sidebar).
The following formula says in symbols that the limit of the function (1/n)
approaches 0 as n gets to be bigger and bigger:

The previous formula is read as follows: “The limit of the function 
(1/n) as n approaches infinity (n → ∞)—that is, as it gets bigger and
bigger—is 0.”

The calculus is, in effect, a way of computing limits as measures of
changing events (speeds, movements, etc.): How fast does a stone fall two
seconds after it has been dropped from a cliff? What is its speed at any point
in time? It tries to find a quantity by figuring out the rate at which it is
changing.

Reflections

Despite all the radical implications it has had for the development of math-
ematics, the Liar Paradox ultimately does not invalidate the use of logic in
everyday life. In our three-dimensional world, if it is true, for instance, 
that building A is higher than building B, and that building C is 
higher than building A, then we can conclude, without any shadow 
of a doubt, that building C is higher than building B. Nevertheless, the Liar
Paradox continues to warn us against believing that logic is the only path to
knowledge. Hunches and experience are probably just as important, if not
more so, for grasping the meaning of things.

Incidentally, it is relevant to note that the very concept of “logic” itself
does not originate in the world of mathematics but in a more mystical
domain. It was in sixth-century B.C. Greece that the philosopher Heraclitus
asserted that the world was governed by the Logos, a divine force that
produces order in the flux of nature. Shortly thereafter, Logos came to be
viewed as a rational divine power that directed the universe. Through 
the faculty of reason, all human beings were thought to share in it. Even 
the Gospel according to John identifies Logos (“the Word”) as a spiritual
force: “In the beginning was the Word, and the Word was with God.” Only
much later was Logos viewed to be the power of human intellect to reason
things out.

lim ( / ) .
n

n
→∞

=1 0
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Explorations

Logic

The following puzzles are designed to allow the reader to directly explore
the nature of logical thinking. All are versions of classic logic puzzles and
paradoxes.

60. The following is written on a piece of paper: “This sentence is false.”
Is the sentence true?

61. A gold coin is in one of the following three boxes, each of which has
an inscription written on it as follows:

Can you tell where the coin is if, at most, only one of the inscriptions is true?

62. A jewelry box bears the following inscription:

Did a truth-teller or a liar make the box?

63. Let’s assume that x + y = y. Now, let’s assign some values to x and y
as follows.

If x = 0 and y = 1, we get:

x + y = y

0 + 1 = 1, which is, of course, correct.

If x =1 and y = 2, we get:

x + y = y

1 + 2 = 2, which is incorrect.

How is this so?

64. Is the following sentence true? “This sentence has seven words.”
What is its negative version? Is that true?
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65. A man is looking at a photo: “Brothers and sisters have I none, but
this man’s son is my father’s son.” Who is the person in the photo?

66. The first customer in a Milwaukee bookstore gave the salesclerk a $10
bill for a $3 book. The salesclerk, having no change, took the $10 bill across
the street to a record store to get it broken down into ten $1 bills. The sales-
clerk then gave the customer the book worth $3 and seven $1 bills as
change.

An hour later the record-store salesclerk returned the $10 bill and
demanded her money back, claiming that the bill was counterfeit. To avoid
quarreling, the bookstore salesclerk decided to give her ten good $1 bills,
taking back the counterfeit. This means that the bookstore salesclerk was
out $3 (= cost of the book), plus the $10 bills he gave to the record-store
salesclerk. Altogether, he lost $13. But only $10 were used in the whole
transaction! Can you explain this?

67. Before they are blindfolded, three women are told that each one will
have either a red or a blue cross painted on her forehead. When the blind-
folds are removed, each woman is then supposed to raise her hand only if
she sees a red cross and to drop her hand when she figures out the color of
her own cross. Now, here’s what actually happens. The three women are
blindfolded and a red cross is drawn on each of their foreheads. The blind-
folds are removed. After looking at each other, the three women raise their
hands simultaneously. After a short time, one woman lowers her hand and
says, “My cross is red.” How did she figure it out?

68. Three women decide to go on a holiday to a Florida resort. They share
a room at a hotel that is charging 1920s rates as a promotional gimmick. The
women are charged only $10 each, or $30 in all. After going through his
guest list, the manager discovers that he has made a mistake and has actu-
ally overcharged the three vacationers. The room the three are in costs only
$25. So, he gives a bellhop $5 to return to them. The duplicitous bellhop
knows that he cannot divide $5 into three equal amounts. Therefore, he
pockets $2 for himself and returns only $1 to each woman.

Now, here’s the conundrum. Each woman paid $10 originally and got
back $1. So, in fact, each woman paid $9 for the room. The three of them
together thus paid $9 × 3, or $27 in total. If we add this amount to the $2 that
the bellhop dishonestly pocketed, we get a total of $29. Yet the women paid
out $30 originally! Where is the other dollar?

Limits

69. Take the ratio of successive pairs of Fibonacci numbers. Express in
limit notation what the ratio approaches:
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{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . }.

70. Draw any two equal intersecting lines, so that they bisect each other.
Label the equal line segments r:

Keep on adding lines to the diagram that are of equal length to the original
two, passing through the point of intersection. Each line drawn should itself
be bisected into two parts of length r:

What figure does this technique, if continued indefinitely, approach? Can
you prove it?
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ARRANGING THE FIRST NINE INTEGERS in a square pattern so that the sum of
the numbers in each row, column, and diagonal is the same is called

Lo Shu in China. This “magical” pattern was discovered four thousand
years ago. The Chinese have always perceived it to have mystical proper-
ties. To this day, it is thought to provide protection against the evil eye when
placed over the entrance to a dwelling or a room. Every fortune-teller uses
it to cast fortunes. Amulets and talismans are commonly designed with Lo
Shu inscribed in them.

Known appropriately as the magic square in English, Lo Shu spread
from China to other parts of the world in the second century A.D. Around
1300, the Greek mathematician Emanuel Moschopoulos introduced it to
Europe. Devising different kinds of magic squares became a veritable craze
shortly thereafter. Like the Chinese, medieval astrologers perceived occult
properties in them, using them to cast horoscopes. They also saw them as
concealing coded cosmic messages. The eminent astrologer Cornelius
Agrippa (1486–1535), for example, believed that a magic square of one cell
(a square containing the single digit 1) represented the eternal perfection of
God. Agrippa also took the fact that it is impossible to construct a 2 × 2
magic square to be proof of the imperfection of the four elements: air, earth,
fire, and water.

� 159 �

The Lo Shu Magic Square

Nobody before the Pythagoreans had thought that
mathematical relations held the secret of the universe.

Twenty-five centuries later, Europe is still blessed 
and cursed with their heritage.

ARTHUR KOESTLER (1905–1983)

9



But the significance of Lo Shu is not only found in the realm of the mys-
tical. Magic squares have provided many insights into the nature of
numbers and the design of mathematical techniques. The notion of algo-
rithm stands out as particularly important in this regard. An algorithm is a
technique that aims to “regularize” the solution of some specific problem or
set of problems. Thus, given its importance to this area of mathematical
method, Lo Shu, being the original magic square, surely belongs on the list
of the ten greatest puzzles of all time.

The Puzzle

One version of the story of Lo Shu goes somewhat as follows. In ancient
China, there was a huge flood. The people offered sacrifices to the god of
the Lo River, to calm his anger. However, only one thing happened each
time: a turtle appeared, crawling out of the river to walk nonchalantly
around each sacrifice. The people saw the turtle as a sign from the river god
who, they thought, kept rejecting their sacrifices. One day a child noticed a
square on the shell of the turtle. In it were the first nine digits, arranged in
three rows and columns. The child also noticed that the numbers along the
rows, the columns, and the two diagonals consistently added up to 15.
From this, the people realized the number of sacrifices that the river god
required of them before he would be appeased.

Another version of the Lo Shu story has Emperor Yu the Great walking
along the banks of the Lo River, when he saw a mysterious turtle crawl
from the river. On its shell was a square arrangement of the first nine inte-
gers. Like the child, Yu noticed that the numbers in the square formed the
pattern described previously, and he perceived the arrangement to consti-
tute a message from the gods.

Whatever the truth of the mat-
ter, the original Lo Shu was a
square made up of the first nine
whole numbers, {1, 2, 3, 4, 5, 6, 7,
8, 9}, distributed in such a way
that the numbers in the three
rows, the three columns, and the
two diagonals add up to 15. This
is known as the magic square

constant. Lo Shu is shown in this
figure in its original form with
figurate numbers (lines, dots, and
circles):
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With decimal numbers, it looks like this:

Rows Columns Diagonals

8 + 3 + 4 = 15 8 + 1 + 6 = 15 8 + 5 + 2 = 15

1 + 5 + 9 = 15 3 + 5 + 7 = 15 4 + 5 + 6 = 15

6 + 7 + 2 = 15 4 + 9 + 2 = 15

Lo Shu is known, more specifically, as a magic square of “order 3,” a
term indicating the number of cells in the square (3 × 3). A 4 × 4 square is
called an “order 4” magic square, a 5 × 5 square an “order 5” magic square,
and so on. In general, an n × n (= n 2) square is called an “order n” magic
square.

The digits of Lo Shu can be arranged in several other ways to produce
the magic square constant of 15. Here are two such arrangements:

Is there a method to the construction of magic squares? Or is it just a
matter of trial and error? First and foremost, it would certainly be helpful if
we had a general formula for determining what the magic square constant
is. A magic square is made from a series of consecutive integers arranged
into a square pattern. The last integer in the series is thus n2, which is the
order of the square. For example, Lo Shu consists of the consecutive inte-
gers from 1 to 9—{1, 2, 3, 4, 5, 6, 7, 8, 9}. The last digit is 9 or 32, which is the
order of the square since it is called a 3 × 3 or “order 3” magic square.
Similarly, in an “order 4” magic square, the last number is 42 (= 16); in an
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“order 5” magic square, it is 52 (= 25); and so on. In an “order n” magic
square, therefore, the last number is n2. With our summation technique
(chapter 3), we can now set up an appropriate formula for the sum of the
numbers in a magic square:

Sum of n numbers:
n (n + 1)________

2
↓

Sum of n2 numbers in a magic square:
n2 (n2 + 1)_________

2

What we have done, in effect, is to replace n in the general formula with n2:

S(n) (Sum of n numbers):
n (n + 1)_________

  2
  
↓ ↓

S(n)
2 (Sum of n2 numbers):

n2 (n2 + 1)_________
2

Let’s simplify this formula (see the sidebar, if you have forgotten your
high school math):

n2 (n2 + 1)
=

(n4 + n2)
._________ _______

2 2

Now, let’s apply this to Lo Shu, where n = 3:

(n4 + n2)
=

(34 + 32)
=

90
= 45._______ _______ __

2 2 2

This is the sum of the integers in a 3 × 3 square. If we divide this sum (45)
by 3, we will get the magic square constant: 45 ÷ 3 = 15. In general, we get
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When (n2 + 1) is multiplied by n2, the result is (n4 + n2):
n2 (n2 + 1) = (n4 + n2).

Here’s how the multiplication is carried out, step-by-step:

1. n2 is multiplied by the first term in the expression (n2 + 1).
This term is n2. The result is: n2 × n2 = n4.

2. n2 is then multiplied by the second term in the expression 
(n2 + 1). This term is 1. The result is: n2 × 1 = n2.

3. The two results, n4 and n2, are added together: (n4 + n2).

n
2(n2 + 1)



the magic square constant by dividing the sum of the numbers in the
square by n:

Sum of the numbers in a magic square:
n2 (n2 + 1)__________.

2

Dividing by n: we get:
n2 (n2 + 1)_________.

2n

This can be simplified as follows:

n2(n2 + 1)
=

n × n(n2 + 1)
=

n(n2 + 1) 
.________ ___________ ________

2n 2n 2

We now have our general formula. Let’s see if it works with Lo Shu. Substi-
tuting n = 3, we get:

n(n2 + 1)
=

3(32 + 1)
=

3(10)
=

30
= 15.________ _______ _____ __

2 2 2 2

As can be seen, it does indeed generate the magic square constant. Is there
anything else that can facilitate the construction process? Consider Lo Shu
again. Note that it is an “odd order” square—it is a square constructed with
an odd number of integers. All odd order squares have a middle cell. And
the number that fills that cell can be determined by figuring out on how
many rows, columns, and diagonals it occurs in the square. In the case of Lo
Shu, it occurs on one row, one column, and the two diagonals (four in total).

Now, there are eight possible number triplets (made up with the first
nine integers) that add up to 15. These are the rows, the columns, and the
diagonals of the square:

9 + 5 + 1 = 15

9 + 4 + 2 = 15

8 + 6 + 1 = 15

8 + 5 + 2 = 15

8 + 4 + 3 = 15

7 + 6 + 2 = 15
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7 + 5 + 3 = 15

6 + 5 + 4 = 15

We established that the middle number appears in four such triplets.
The only one that appears four times in the previous list is 5:

9 + 5 + 1 = 15

8 + 5 + 2 = 15

7 + 5 + 3 = 15

6 + 5 + 4 = 15

In this way, we have identified the middle number. A similar line of reason-
ing can be applied to magic squares of increasing odd order.

Mathematical Annotations

Although the square is the oldest and most common one, magic figures of
different shapes have been devised. Magic cubes, for instance, are con-
structed with the numbers arranged in cubical form so that each row of
numbers running parallel with any of the edges, and also with any of the
four great diagonals, will have the same magic constant. In the following
magic cube, that constant is 42, as readers can confirm for themselves:
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Magic figures put the spotlight on numerical pattern, in and of itself. As
such, they are exercises in “pure” mathematical thinking.

“Magical” Number Patterns

In order to see what magic squares hold in store, let’s look at one of the most
famous of all time—the Dürer magic square—a square that has caught the
attention of so many mathematicians that it would take several pages just to
name them. It is named after its constructor, the great German Reformation
artist Albrecht Dürer. Dürer put the square in his famous 1514 engraving
Melancholia. Nearly two centuries after that, the Swiss mathematician Leon-
hard Euler (chapter 4) became so mesmerized by it that he constructed forty-
eight versions of the square himself. Dürer’s square is an “order 4” square,
consisting of the first sixteen numbers. Its magic square constant is 34.

The magic square constant formula (given earlier):

n (n2 + 1)________
2

n = 4.

Therefore:

n (n2 + 1)
=

4 (42 +1)
=

4 (16 + 1)
=

4 (17)
= 34._________ _______ ________ _____

2 2 2 2

The square has many “magical” properties. For example, in addition to
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three-dimensional form. For this reason, he is considered one of
the founders of perspective painting.
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appearing in each row, column, and diagonal, the magic square constant of
34 also appears as follows:

� in the sum of the digits in the four corners (16 + 13 + 4 + 1 = 34)

� in the sum of the four digits in the center (10 + 11 + 6 + 7 = 34)

� in the sum of the digits 15 and 14 in the bottom row and the digits 3 and
2 facing them in the top row (15 + 14 + 3 + 2 = 34)

� in the sum of the digits 12 and 8 in the right-hand column and of 9 and
5 facing them in the left-hand column (12 + 8 + 9 + 5 = 34)

� in the sum of the digits of each of the four squares in the corners 
(16 + 3 + 5 + 10 = 34; 2 + 13 + 11 + 8 = 34; 9 + 6 + 4 + 15 = 34; 7 + 12 + 
14 + 1 = 34)

The square contains many other interesting patterns. It would take a
treatise of its own to discuss them. Dürer’s square is not the first 4th-order
square to have been devised. Archaeologists have found one in an inscrip-
tion at Khajuraho, India, from the twelfth century:

It is known as a “diabolic” square because it retains its magical properties
even if the bottom row is shifted from one side to another. Incidentally,
there are a mind-boggling 880 ways to construct a 4th-order magic square.

A magic square of order 5 (which has a magic square constant of 65) has
many more possible arrangements—275,305,224 in all! Here is one of them:

Perhaps the most extraordinary of all magic squares was the order 8
magic square devised by Benjamin Franklin (1706–1790), the great Ameri-
can public official, writer, scientist, and printer:
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Constructed with the first sixty-four integers, Franklin’s square contains a
host of astonishing numerical oddities, such as the following:

� Its magic square constant is 260; and exactly half this number, 130, is the
magic square constant of each of the four 4 × 4 squares that are quad-
rants of the larger square.

� The sum of any four numbers equidistant from the center is also 130.

� The sum of the numbers in the four corners plus the sum of the four cen-
ter numbers is 260.

� The sum of the four numbers forming any little 2 × 2 square within the
main square is 130.

� There are many more.

It is truly perplexing to contemplate how Franklin ever could have
devised this masterpiece. Incidentally, Leonhard Euler came up with his
own truly magical version of an order 8 square. The four quadrant squares
within it have the magic square constant of 130, as in Franklin’s square. But
the unique property of Euler’s square is that if you take the knight chess
piece—which moves on the chessboard in an L-pattern—and start at 1 in
the top left corner of the square, you will land on every number, from 1 to
64, once and only once!
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Algorithms

The study of magic squares has had a significant impact on the develop-
ment of the concept of algorithm. This is defined as a step-by-step method
for solving specific kinds of problems. Constructing magic squares is
largely a matter of trial and error. However, for some cases, an algorithm
can be derived. At the very least, it can be tried out to see whether it gener-
ates a magic square or not.

Here is an algorithm for a 4th-order square. First, we draw intersecting
lines through the diagonals:

Next, put in the numbers as if they were consecutive, leaving blank
those that are crossed out by the intersecting lines. Start with 1 in the upper-
left corner cell. Since it is crossed, leave it blank. Pass on to the next one to
the right. Since it is empty, put the next number in it, 2. The third cell is also
empty, so put 3 in it. The fourth cell is crossed, so leave it empty. Proceed in
this fashion until you reach the last cell in the bottom right-hand corner.
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An algorithm is a systematic technique used for solving a
problem that involves a sequence of steps.

Here’s an algorithm for putting on shoes and socks:

1. Put on the socks in any order and on either foot.

2. Put on the two shoes in symmetrical fashion: the left shoe
on the left foot, the right shoe on the right foot.

3. Steps 1 and 2 cannot be reversed.

ALGORITHMS



Now, begin at the lower-right corner, and move across the rows left-
ward, recording only the numbers in the cells cut by the diagonal lines. So,
start by putting 1 in the right-hand corner. The next two are filled. When
you reach the bottom-left corner, put in the next number, which is 4, since 2
and 3 have already been used. And so on.

This same algorithm can be used to generate an order 8 magic square. Con-
structing such a square is left as an exercise in the Explorations section.

Another algorithm for constructing an odd order square (a square of
order 3, 5, 7, etc.) is attributed to the mathematician Simon de la Loubère
(1642–1729) in 1693, although he probably learned about it during his trav-
els to Asia. Let’s use his algorithm on an order 5 magic square—a square
consisting of the first twenty-five numbers, with a magic square constant of
65:

1. Place 1 in the central upper cell:

2. Proceed diagonally upward to the right and place the next digit, 2, in an
imaginary square outside the actual square. Because the 2 is outside the
square, bring it to the bottom of the column in alignment with it:
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3. Put the next digit, 3, diagonally upward to the right of 2:

4. Using the same upward right diagonal movement, insert the 4 in the
imaginary cell to the right of 3 and, subsequently, at the opposite end of 
the row.

5. Insert 5 diagonally upward to the right of 4:

6. The same movement pattern cannot be followed to insert the 6 because
the cell that is diagonally upward to the right of 5 is already occupied. The
6 is therefore written below the 5.
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7. Proceed in this fashion to complete the square (readers are invited to do
so by themselves):

Incidentally, we can start by putting the 1 in any cell. However, this will
generate a square that is magic in the rows and the columns only—not in
the diagonals.

Reflections

Even though they may have no practical applications, magic squares are
nevertheless interesting in themselves, because they impel us to think about
number patterns in “pure” terms. And who knows, some day we may find
magic squares cropping up in nature and human affairs, as the Fibonacci
numbers do.

Magic squares provide a clue about why the early histories of mathe-
matics and magic overlap considerably. In their origins, both sought to do
the same thing—unravel hidden patterns. In antiquity, no distinction was
made between numeration and numerology (the science that studied the
purported divinatory properties of numbers). Numerology started with 
the Pythagoreans, who taught that numbers were the language of the
cosmos (as discussed previously). The ancient Israelites held a similar
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belief, establishing the art of gematria on the view that the letters of any
word or name could be interpreted as digits and rearranged to form a num-
ber that contained a secret message. The earliest recorded use of gematria,
actually, was in the eighth century B.C. by King Sargon II of Babylon, who
built the wall of the city of Khorsbad exactly 16,283 cubits long because this
was the numerological value of his name.

As it turns out, the Lo Shu square also has hidden properties that impart
a true numerological aura to it. For instance, if the successive terms of the
Fibonacci series starting at 3 and ending with 144—{3, 5, 8, 13, 21, 34, 55, 89,
144}—are matched in order with the integers in the Lo Shu square, a new
square is formed, as shown:

Original Magic Square Number Replaced with Fibonacci Number

1 3

2 5

3 8

4 13

5 21

6 34

7 55

8 89

9 144

The new square has the following property: the sum of the products of
the three rows equals the sum of the products of the three columns:

Row Products Column Products

89 × 3 × 34 = 9,078 89 × 8 × 13 = 9,256

8 × 21 × 55 = 9,240 3 × 21 × 144 = 9,072

13 × 144 × 5 = 9,360 34 × 55 × 5 = 9,350______ ______
Sum: 27,678 Sum: 27,678

Whatever the significance of this amazing result, it imbues Lo Shu with
even more mystical power than it already is perceived to have. Incidentally,
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only after the Renaissance was numerology relegated to the status of a
pseudoscience. Paradoxically, the Renaissance at first encouraged interest
in the ancient occult art and its relation to mathematical inquiry. The Roman
Catholic Church and the new Protestantism, however, turned sharply
against it in the fifteenth and sixteenth centuries. As a result, mathematics
was no longer enshrouded in mystical symbolism, as it had been in the
ancient world.

But the connection between magic, symbolism, and mathematics has
hardly been severed. Mathematical patterns continue to cast a “magical
spell” over us. A thick volume could be written about the many meanings
ascribed to specific numbers across the world and across history. People
tend to think of certain things, such as dates, street addresses, or certain
specific numbers, as having great significance. Human beings seem to pos-
sess the basic Pythagorean notion that the world itself is a magical pattern
of small numbers arranged in patterns.

Explorations

Magic Squares

71. Can you arrange the first nine even numbers, {2, 4, 6, 8, 10, 12, 14, 16,
18} into an order 3 magic square? What is its magic square constant?

72. Can you arrange the following nine consecutive numbers {4, 5, 6, 7, 
8, 9, 10, 11, 12} into an order 3 magic square? What is its magic square 
constant?

73. Can you arrange the following nine consecutive decimals {0.25, 0.50,
0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25} into an order 3 magic square? The
magic square constant is 3.75. The central cell is 1.25.
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74. The following tough nut is due to none other than the great British
puzzlist Henry E. Dudeney. Can you arrange the following nine prime
numbers {1, 7, 13, 31, 37, 43, 61, 67, 73} into an order 3 magic square? The
magic square constant is 111.

75. The following puzzle is due to another great puzzlist, Lewis Carroll,
who used the postal values of his day to challenge puzzle enthusiasts. In
Victorian times, postage values were expressed in half units. Can you
arrange the following postage stamps {1d, 1

1_
2d, 2d, 2

1_
2d, 3d, 3

1_
2d, 4d, 4

1_
2d, 5d}

into an order 3 magic square? What is its magic square constant?

76. Now, try your hand at constructing a 4th-order magic square, with a
magic square constant of 102. This is a difficult puzzle. Ignore it if you get
too bogged down. To help you, some of the cells have been filled in. More-
over, note that the smallest number is 1 and the largest is 71 and that all the
numbers (except 1) are prime.
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Algorithms

77. Construct an 8th-order square, using the algorithm described in this
chapter for an order 4 square.

78. Can you derive an algorithm for an order 3 magic square, using the
ideas discussed in this chapter?
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IF WE WERE TO GO INSIDE THE BURIAL chambers of the ancient pyramids, such as
the one at Giza in Egypt, we could not help but be overwhelmed by the

intricate system of intertwining passages within them. Undoubtedly, the
architecture of such tombs was designed to challenge a dead person’s soul
to find “the one true path” to the afterlife. Buildings designed in such a way
were called labyrinths. While the mysticism may have faded, to this day
the labyrinth concept (also known as maze in English) nevertheless contin-
ues to be used to provide challenges of various sorts. Psychologists, for
instance, use mazes to evaluate problem-solving skills in animals and
humans alike. And toy mazes are among the most popular types of games
given to children today, mainly because they are thought to sharpen logical
skills, while at the same time providing recreation.

The first known labyrinth was a prison built on the island of Crete.
According to legend, the prison was constructed by the Athenian craftsman
Daedalus for King Minos of Crete as an “architectural puzzle.” Minos had
the dungeon built to avenge the death of his son Androgeus at the hands of
a group of unknown Athenians. Adding to his woe was the fact that his
wife, Pasiphae, had fallen in love with a bull and given birth to a half-
human, half-bull beast called the Minotaur (literally, “the bull of Minos”).
Shamed by this event and aching to exact his revenge on Athens, Minos
sent seven young Athenian men and women every year into the prison. At
its center he put the voracious Minotaur, who was eager to destroy anyone
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who ventured there. Theseus, the son of King Aegeus of Athens, offered to
go as one of those to be sacrificed. Ironically, Minos’s clever daughter, Ari-
adne, had fallen in love with Theseus. So, she gave her beloved a sword
with which to kill the Minotaur and a thread to mark his path through the
labyrinth. Theseus slew the Minotaur and emerged to reunite with Ariadne,
finding his way back simply by following the path marked by the thread.
Aegeus had instructed Theseus to raise a white sail on his ship after he had
accomplished his mission. But Theseus forgot to do so, and, as legend has
it, when his father saw the ship returning with black sails, he threw himself
into the sea, which was thereafter called the Aegean. Archaeologists have
discovered a palace located in the Cretan city of Knossos that may have
been the site of the mythical labyrinth, because it has many passageways
like those described in the legendary account of Minos’s prison.

Now, what possible connection to mathematics does the Cretan
Labyrinth have, the reader may ask? The labyrinth is essentially a puzzle in
topology. As such, it is an overarching idea pattern that mathematicians
have used throughout the ages to study the nature of various topological
structures. For this reason, the very first labyrinth of history belongs on the
list of the top ten puzzles of all time.

The Puzzle

No one really knows what the Cretan Labyrinth actually looked like. Its
most likely shape is found on ancient coins discovered at Knossos, the prob-
able site of the Cretan Labyrinth:

178 � The Liar Paradox and the Towers of Hanoi



The solution to the Cretan Labyrinth is straightforward. By entering at the
opening and following its single winding path, you will reach the center.
The Cretan Labyrinth is called a unicursal Eulerian graph (chapter 4)—a
graph with one path through it. Mazes with alternative paths pose a much
greater challenge, because there is no algorithm for solving them. However,
some useful suggestions have been put forward by mathematicians over
the years. The following are paraphrased from Edouard Lucas (whom we
encountered in chapter 6):

� As you go through the maze, constantly keep looking ahead along a
path to see if it ends up being a “dead end”; if so, avoid it and take
another one at some juncture.

� Whenever you come to a new juncture, look ahead to scrutinize the path
as open or dead.

� If on a path you come to an old juncture or a dead end, turn and go back
the way you came.

� Never enter a path marked on both sides.

Consider the following maze. The objective is to start at the opening at
the bottom and find a path to the area marked by the large dot. As readers
can confirm for themselves, the previous guidelines are indeed useful. The
path shown on the following page is the solution.
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The Cretan Labyrinth has appealed to rulers, philosophers, mathemati-
cians, artists, and writers alike. The later Roman emperors had copies of it
embroidered on their robes. It has been found etched on the walls of many
early Christian churches.

The labyrinth concept is universal. One of the oldest labyrinthine
designs is found carved in the stone wall of a five-thousand-year-old grave
in Sicily. Similar carvings have been discovered throughout the world.
Labyrinths have been used throughout history and across cultures to ward
off evil, invoke supernatural powers, and test the intelligence of heroes. As
mentioned, the Egyptians designed their pyramids as labyrinths. They also
constructed some of their buildings as labyrinths. The largest one was the
Great Labyrinth, a huge building constructed around 2000 B.C. in northern
Egypt, with three thousand rooms. The ancient city of Troy was also
designed with labyrinthine paths, providing protection against invaders by
confusing them. In Java, Sumatra, and India, the labyrinth design has been
used from time immemorial as a symbol of inner peace. The Navajo people
in the United States have always considered the labyrinth to be a represen-
tation of how the world was created. The floors of many medieval churches
had labyrinthine designs in them, to symbolize the tortuous journey of indi-
viduals toward salvation. One of the largest can be found at Chartres in
France. From the Renaissance onward, many European gardens were
designed as mazes walled by clipped hedges. Two of the best known were
built in the seventeenth century—at Hampton Court in London and in the
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Palace of Versailles, which is adorned with thirty-nine fountains and
various statues depicting characters from Aesop’s fables.

Mathematical Annotations

The concept of the labyrinth has been used to study the structure of graphs,
given that the idea behind the construction of a labyrinth is to identify the
optimal path in a network. Ultimately, all geometric figures are graphs and
can be analyzed as such. One of the most important developments related
to the concept of graphs is coordinate geometry, as will be discussed briefly
in the next section.

Coordinate Geometry

A slew of problems in geometry require finding an optimal path. Here is a
typical one:

The length of a small rectangular floor is twice its width. The area of
the floor is 32 square feet. A bug in the lower left corner wants to get
to the opposite corner. What is the shortest path for the bug? What is
the length of that path?

First, draw the rectangular floor. On it, let x stand for its width and 2x for
its length. The latter expression simply indicates that the length is twice the
width.

The optimal path for the bug is the diagonal path to the opposite corner:
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The diagonal is the hypotenuse of the right-angled triangle DBC, with sides
of two lengths, x and 2x feet. So, if we can determine what these lengths are,
we could then use the Pythagorean theorem (chapter 5) to establish the
length of the diagonal. How do we do this?

We are told that the area of the floor is 32 square feet. From school geom-
etry, recall that the area of a rectangle is the product of the length times the
width. In this case, the length is 2x and the width is x. Multiplying these
together, we get

Area of floor:
(2x) (x) = 32
2x2 = 32

Dividing both sides of the equation by 2:
x2 = 16

Taking the square root:
x = 4

We now know that the width is 4 feet. Since the length is twice this, it is 8
feet. These are the lengths of the sides of our right-angled triangle DBC:

We can now use the Pythagorean theorem to determine the length of its
hypotenuse, DB:

DB2 = 42 + 82

DB2 = 16 + 64

DB2 = 80

DB = √80 = 8.94

Thus, the optimal path for our bug is 8.94 feet long. A more challenging
version of this problem is called the Spider and the Fly Puzzle. It is assigned
as an exercise in the Explorations section.

The study of optimal paths brings out the fact that arithmetic, algebra,
and geometry are interrelated. This was known to the ancient mathemati-
cians. However, the formal amalgamation of these disciplines had to await
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the work of the French mathematician and philosopher René Descartes
(1596–1650). He called his amalgamation analytic geometry (the branch of
mathematics that studies geometric figures and properties by converting
them into algebraic form). The basic notion in analytic geometry is that of
intersecting “number lines.” A number line, in fact, is itself a rudimentary
geometric representation that shows the continuity between positive and
negative numbers and a one-to-one correspondence between a specific
number and a specific “point” on the line:

Descartes simply drew two number lines intersecting at right angles. He
called the horizontal line the “x-axis,” the vertical one the “y-axis,” and
their point of intersection the “origin.” This system of two perpendicular
intersecting number lines is now called the Cartesian plane, in honor of
Descartes.
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It is also called a coordinate system, because the plane can now be con-
ceived as a system of points that are determined by their positions in rela-
tion to the two axes, called “coordinates.” For example, the paired
coordinates for point A in the following figure are (2,1). This means that
point A is two units to the right of the y-axis, and one unit directly above the
x-axis. In addition, the figure shows several other points—B, C, and D—and
their coordinates:

With this system of assigning coordinates, an equation such as 2x + y =
2 can be plotted to reveal its underlying “geometric form,” which turns out
to be a line. Note that we can plot the points that the line goes through by
determining the solutions to the equation in coordinate terms (x,y). Some of
the solutions are (–2, 6), (–1, 4), (0, 2), (1, 0), and (2, –2). These are obtained
as follows:

2x + y = 2.

Subtracting 2x from both sides:

y = 2 – 2x.

Therefore:

If x = –2 then y = 6

If x = –1 then y = 4

If x = 0 then y = 2
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If x = 1 then y = 0

If x = 2 then y = –2

If you plot these points on a coordinate system and then connect them with
a smooth line, you will see that they lie on a straight line:

Any point that lies on the line has coordinates that satisfy the equation 2x +
y = 2, and any pair of numbers (x,y) that satisfies the equation will be a point
on the line. Clearly, analytic geometry allows us to relate a type of equation
to a type of geometrical figure. The equation x2 + y2 = 25, for instance, turns
out to be the equation of a circle, as readers can confirm for themselves by
assigning values to x and y and then plotting them on graph paper:
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Analytic geometry has become the basis for making maps, for analyzing
functions of all kinds, for developing theorems, for determining optimal
paths—and the list could go on and on.

The Pythagoreans

The discussion of mazes, optimal paths, and analytic geometry takes us—
in a labyrinthine fashion, no less—to the core of what mathematics is all
about: the study of pattern. The Pythagoreans founded mathematics as the
science of pattern. They were a truly extraordinary group. During a time
when women were largely excluded from mathematics and philosophy, 
the Pythagoreans welcomed women as equals, providing them with a rare
opportunity to participate in the fields of philosophy and mathematics.
Pythagoras’s wife, Theano, became an accomplished cosmologist and
healer. She and her daughters, although persecuted, spread the
Pythagorean philosophy throughout ancient Greece and Egypt.

The Pythagoreans claimed that mathematics was the language by which
the world could be interpreted. They also noticed the relation between
numbers and geometric figures, long before Descartes did. For example,
they defined triangular numbers as those that showed a triangular pattern
and square numbers as those that showed a square pattern. The numbers
1, 3, 6, and 10 are triangular, and 1, 4, 9, and 16 are square, because they can
be represented as follows:

This Pythagorean insight was extended by later Greek mathematicians
to argue that all numbers had analogues in the geometric domain. For
example, they showed that the sum of two numbers (a + b) corresponded to
the addition of line segments and subtraction (a – b) to the subtraction of
line segments:
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The first figure shows that addition corresponds to the joining up of two
line segments, a and b, to produce the line (a + b). The second figure shows
that if a line with the length a is segmented into two parts, one of which has
the length b, the remaining part will have the length (a – b)—which repre-
sents the length left over when b is removed from a.

Of all the patterns discovered by the Pythagoreans that show a relation
between numbers and geometric figures, none is probably more important
than the so-called Pythagorean triples—sets of three numbers, {a, b, c}, for
which the relation c2 = a2 + b2 is true. This relation reflects, of course, the fact
that the square of the hypotenuse of a right triangle (c) is equal to the sum
of the squares of the other two sides (a, b).

For the sake of historical accuracy, it should be mentioned that this relation
was known far and wide before it was proved by Pythagoras. And virtually
all the ancient builders probably had a practical knowledge of it. Clay tablets
dating back to nearly 2000 B.C., for instance, reveal that the ancient Babyloni-
ans knotted ropes to make “3-4-5” right triangles—because 52 = 32 + 42. They
clearly had a practical knowledge of the Pythagorean theorem, and they were
also familiar with many Pythagorean triples—3, 4, 5 (32 + 42 = 52); 6, 8, 10 (62

+ 82 = 102); 5, 12, 13 (52 + 122 = 132); 8, 15, 17 (82 + 152 = 172); and so on.

Reflections

As a final reflection, I would like to emphasize one last time that puzzles are
not only enjoyable in themselves, they also have the ability to illustrate
basic notions of mathematics. I hope that the reader will come away from
this book with a new perspective on puzzles and their relation to mathe-
matical discovery. If I have done nothing more than to show this, writing
the book will have been worthwhile.

Explorations

Labyrinths

79. Here is a much more difficult version of the Cretan Labyrinth. Or is
it? Find out.
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80. Can you find a path through the following maze?

81. Here is a more difficult version of the same type of maze design. Can
you find a path through it?
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82. Now try your hand at a truly difficult maze, invented by Lewis
Carroll. Can you find a path to its diamond-shaped center?
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Geometry

83. As mentioned earlier, there is a much more tricky version of the bug
problem, from the pen of Henry E. Dudeney. In a room 30 feet long, 12 feet
wide, and 12 feet high, a spider sits in the center of one of the smaller walls,
1 foot from the ceiling; and a fly clings to the middle of the opposite wall, 1
foot from the floor. What is the shortest possible route along which the spi-
der may crawl to reach its prey?

84. The first four triangular numbers are, as discussed earlier, 1, 3, 6, and
10. What is the twelfth? Do you detect any pattern?

85. The first four square numbers are, again as discussed previously, 1, 4,
9, and 16. Do you detect any pattern?

Further Reading

Boob, P. The Idea of the Labyrinth. Ithaca N.Y.: Cornell University Press, 1990.

Fisher, Adrian, and Georg Gerster. The Art of the Maze. London: Seven Dials,
2000.

Mathews, W. H. Mazes and Labyrinths: Their History and Development. New
York: Dover, 1970.

Meehan, A. Maze Patterns. New York: Thames and Hudson, 1993.
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The Riddle of the Sphinx
1.

ANSWER

Fleas

EXPLANATION

If you “catch” fleas on your body, you can, of course, “throw them away.”
However, if you cannot “catch” them, then you must resign yourself to
“keeping” them.

2.

ANSWER

A mule

EXPLANATION

A mule is of “mingled race.” It is a “half donkey” and “half horse.” More
specifically, it is the sterile offspring either of a male donkey and a mare or
of a female donkey and a stallion. Thus, the mule is “unlike its mother” and
“does not resemble its father.” Because it is sterile, the mule “is incapable of
producing its own progeny.”

3.

ANSWER

A dog

EXPLANATION

In common parlance, a dog is said to have a “master,” whose “foes” it does
indeed “scare away” by bearing the “weapons” (sharp teeth or fangs) in its
jaws. However, if lashed by even a child, it flees.

1
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4.

ANSWER

A rainbow

EXPLANATION

Red, blue, purple, and green are the colors of the rainbow. Everyone can see
a rainbow, but no one can ever reach it or touch it.

5.

ANSWER

Today

EXPLANATION

To grasp the answer, assume that today is Tuesday. Before it was born, or
came to be, Tuesday did indeed have a different name—tomorrow. Why?
Because the day before its birth was Monday. And on Monday, we would
have referred to Tuesday as “tomorrow.” And when Tuesday is “no more,”
it takes on a new name—yesterday. Why? Because when Tuesday ends,
Wednesday comes into being. And on Wednesday, we would refer to Tues-
day as “yesterday.” Thus, though it lasts only one day, today does indeed
change its name three days in a row—yesterday, today, and tomorrow.

6.

ANSWER

Your name

EXPLANATION

The answer is self-explanatory.

7.

ANSWERS

Only one illustrative riddle for each word is given here. Readers will
undoubtedly have come up with many others of their own.

A. “I can be weighed and I am blind, but I am neither substance nor
human. What am I?” 

B. “I can blossom and grow, but I am neither plant nor tree. What am I?”

C. “I can be bitter or sweet, but I am neither food nor drink. What am I?”

D. “It flies but has no wings. What is it?”

EXPLANATIONS

Justice is something that we conceive as a substance that can be weighed
(the scales of justice, weighing evidence) or as something that is blind (justice is
blind).
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We commonly say that friendship is something that blossoms and some-
thing that can grow, like a plant or a tree.

Love is something that we perceive as having a taste, as can be seen in
expressions such as love is sweet or love is bitter.

The common saying Time flies! is the basis for the last riddle.

8.

PROOF

Start by joining vertex A of the triangle ABC to the center of the circle O,
producing the straight line AO:

Notice that AO is a radius of the circle. So, too, are OB and OC. These
lines are thus all equal to each other. This fact can be shown with a small
stroke on each of the lines:

In the semicircle, there are now two isosceles triangles—AOB and AOC

(as the strokes make obvious). The angles opposite the equal sides of an
isosceles triangle are equal. The equal angles in triangle AOB can be labeled
x, and those in triangle AOC can be labeled y:
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Now, consider the original triangle ABC. In terms of x and y, its three
angles can be represented as follows:

1. ∠BAC = (x + y)

2. ∠CBA = x

3. ∠BCA = y

The sum of the angles in any triangle is equal to 180 degrees. Therefore,
the sum of the angles in triangle ABC can be represented by the following
equation:

(x + y) + x + y = 180°.

Simplifying the left side of the equation, we get

2x + 2y = 180°.

Dividing both sides by 2, the equation simplifies further to

x + y = 90°.

Now, x + y is the total number of degrees in the angle at vertex A, namely,
∠BAC. Since we have just proven that x + y is equal to 90 degrees, we can
conclude that ∠BAC is equal to 90 degrees.

9.

PATTERN

The digits in the product of any number multiplied by 9 add up to 9 or to a
multiple of 9 (18, 27, 36, etc.). The digits in any multiple of 9 also add up to
9 (or to a multiple of 9): 1 + 8 = 9, 2 + 7 = 9, 3 + 6 = 9, and so on:

9 × 9 = 81 → 8 + 1 = 9

9 × 7 = 63 → 6 + 3 = 9

9 × 12 = 108 → 10 + 8 = 18 → 1 + 8 = 9

9 × 100 = 900 → 9 + 0 + 0 = 9

9 × 4,579 = 41,211 → 4 + 1 + 2 + 1 + 1 = 9

and so on.

194 � Answers and Explanations



10.

ANSWERS

A. 477 is a multiple of 9: 4 + 7 + 7 = 18 → 1 + 8 = 9

B. 648 is a multiple of 9: 6 + 4 + 8 = 18 → 1 + 8 = 9

C. 8,765 is not a multiple of 9: 8 + 7 + 6 + 5 = 26 → 2 + 6 = 8 (not 9)

D. 738 is a multiple of 9: 7 + 3 + 8 = 18 → 1 + 8 = 9

E. 9,878 is not a multiple of 9: 9 + 8 + 7 + 8 = 32 → 3 + 2 = 5 (not 9)

11.

PATTERN

The square of an even number is even. The square of an odd number is odd.
Thus, the square of 22, being an even number, will be even: 222 = 484. And
the square of 23, being an odd number, will be odd: 232 = 529.

EXPLANATION

The formula for an even number is 2n. This generalizes the fact that multi-
plying any number, n, by 2 will always yield an even number:

n 2n

0 2 × 0 = 0

1 2 × 1 = 2

2 2 × 2 = 4

3 2 × 3 = 6

4 2 × 4 = 8

5 2 × 5 = 10

. . . 

Now, let’s square the formula:

(2n)2 = 4n2.

Is 4n2 also an even number? If so, we have just shown that the square of an
even number is even. Notice that it can be factored as follows:

4n2 = 2(2n2).

The expression 2(2n2) consists of (2n2) multiplied by 2. It thus represents an
even number.

The formula for an odd number is 2n + 1. This generalizes the fact that
multiplying any number, n, by 2 and then adding 1 to the result will always
yield an odd number:
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n 2n + 1

0 2 × 0 + 1 = 1

1 2 × 1 + 1 = 3

2 2 × 2 + 1 = 5

3 2 × 3 + 1 = 7

4 2 × 4 + 1 = 9

5 2 × 5 + 1 = 11

. . . 

Now, let’s square the formula:

(2n + 1)2 = 4n2 + 4n + 1.

Is the result, 4n2 + 4n + 1, an odd number? If so, we have just shown that the
square of an odd number is odd. The expression can be written equivalently
as (4n2 + 4n) + 1. Now, let’s factor it:

(4n2 + 4n) + 1 = 2(2n2 + 2n) + 1.

The result, 2(2n2 + 2n) + 1, represents an odd number. If you do not see this,
replace (2n2 + 2n) in 2(2n2 + 2n) + 1 with any letter, say, m. The expression
then becomes 2(m) + 1 or 2m + 1. This is, of course, the formula for any odd
number.

For readers who may have forgotten their school algebra, the procedure
for squaring (2n + 1) is as follows:

(2n + 1)2 = (2n + 1) (2n + 1).

Multiply the first two terms in each expression:

(2n + 1) (2n + 1) = 4n2 + . . . 

Multiply the inner terms and outer terms, adding the products to the pre-
vious result:

(2n+ 1) (2n + 1) = 4n2 + 2n + 2n . . . = 4n2 + 4n + . . . 

Multiply the last two terms, adding the product to the previous result:

(2n + 1) (2n + 1) = 4n2 + 4n + 1.
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12.

ANSWER

EXPLANATION

The three lines do not have to go through the center of all the dots; they can
just graze some of them, as shown. That is the relevant insight required for
this version of the puzzle.

13.

ANSWER

Five lines are needed to solve this version of the puzzle.

14.

ANSWER

Six lines are needed for this version of the puzzle.
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Alcuin’s River-Crossing Puzzle
15.

ANSWER

Five crossings are required (H1 and W1 = first husband-and-wife pair; H2

and W2 = second husband-and-wife pair):

On the Original Side On the Boat On the Other Side

0. H1 W1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

1. H2 W2 H1 W1 →___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

2. H2 W2 ← W1 H1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

3. W1 H2 W2 → H1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

4. W1 ← H1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

5. H1 W1 → H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___  

0. H1 W1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 

16.

ANSWER

Twelve complete crossings are required. A complete crossing goes from one
side to the other. A transit stop at the island, followed by a doubling back,
is not considered a complete crossing. Following is one possible modeling

2
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of the four-couple version of Tartaglia’s puzzle (H1 and W1 = first husband-
and-wife pair; H2 and W2 = second husband-and-wife pair; H3 and W3 =
third husband-and-wife pair; H4 and W4 = fourth husband-and-wife pair):

On the Original Side On the Boat On the Island On the Boat On the Other Side

0. H1 W1 H2 W2 H3 W3 H4 W4___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

1. H1 H2 H3 W3 H4 W4 W1 W2 → W1 W2 →
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

2. H1 H2 H3 W3 H4 W4 ←  W2 ← W2 W1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

3. H1 H2 H3 H4 W4 W2 W3 → (stop) W1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

←  W2 W3___ ___ ___ ___

(double back)

4. H1 H3 H4 W4 H2 W2 → W3 H2 W2 → W1___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

5. H1 H3 H4 W4 ← W1 W3 ← W1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

6. H3 H4 W4 H1 W1 → W3 H1 W1 → H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

7. H3 H4 W4 ← W3 W1 ← W1 H1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(change)

8. H4 W4 H3 W3 → W1 H3 W3 → H1 H2 W2___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

9. H4 W4 ← W3 W1 ← W3 H1 H2 W2 H3___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

10. H4 W3 W4 → W1 W3 W4 → H1 H2 W2 H3___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

11. H4 ← W4 W1 ← W4 H1 H2 W2 H3 W3___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

12. H4 W4 → W1 H4 W4 → H1 H2 W2 H3 W3___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(bypass)

W1 ← H1 H2 W2 H3 W3 H4 W4___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

H1 W1 → H2 W2 H3 W3 H4 W4___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

(double back)

0. H1 W1 H2 W2 H3 W3 H4 W4___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
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17.

ANSWER

One solution to Kirkman’s puzzle is given as follows:

18.

ANSWER

The number of draws needed is three.

EXPLANATION

Suppose we draw out a white ball first. If we are lucky, the next ball we
draw out will also be white, and the game is over. But we cannot assume
this. We must, on the contrary, assume a “worst-case scenario”—namely,
that the second ball that we will draw out is black, because the puzzle
requires us to be “sure” to have a pair of balls of matching color. So, after
two draws, we will have one white and one black ball. Obviously, we could
have drawn out a black ball first and a white one second. The end result
would have been the same: one white and one black ball.

Now, the next ball drawn from the box will, of course, be either white or
black. No matter what color the third ball is, it will match the color of one of
the two already drawn out. We will thus have a pair of balls of matching
color. So, the least number of balls we will need to draw from the box in
order to ensure a pair of matching balls is three.

19.

ANSWERS

A. For ten white, ten black, and ten green balls, the number of draws
required is four. Assuming the worst-case scenario of drawing out
one white, one black, and one green ball, in whatever order, the
matching ball comes on the fourth draw because it will be a color of
one of the three previously drawn balls.

B. For ten white, ten black, ten green, and ten yellow balls, the number
of draws required is five. The reason is the same. After having
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drawn out four differently colored balls (the worst-case scenario),
the fifth ball will match one of them.

C. For ten white, ten black, ten green, ten yellow, and ten red balls, the
number of draws required is six. Again, the reasoning is the same.
After having drawn out five differently colored balls (the worst-case
scenario), the sixth ball will match one of them.

EXPLANATION

The pattern that is involved is that one more draw than the number of col-
ors is required to ensure that a pair of balls of matching color is drawn out.

TABLE A-1: SOLUTION TO DRAWING PUZZLE

Number of Draws
Number of Required to Obtain
Colors in a Pair of Balls of
the Box Matching Color Pattern

2 3 One more draw than the number of colors

3 4 One more draw than the number of colors

4 5 One more draw than the number of colors

5 6 One more draw than the number of colors

. . . . . . . . . 

n n + 1 One more draw than the number of colors

20.

ANSWER

It certainly matters if the balls varied.

EXPLANATION

When the number of balls is the same (for example, ten white and ten black,
or five white and five black, and so on), then each ball has the same proba-
bility of being drawn. However, if one increases the number of balls in a
specific color to, say, fifteen black, while keeping the number of balls in the
other colors the same, then the chances of drawing out a black ball increase
on each draw. Determining the probability of each ball would now enter
into the solution, changing the nature of the puzzle.

21.

ANSWER

The least number of draws you would have to make is thirteen.
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EXPLANATION

There is a total of twenty-four gloves in the box.

six pairs of black gloves = twelve black gloves

six pairs of white gloves = twelve white gloves

Of the twenty-four, half are right-handed and half are left-handed. In a
worst-case scenario, we might pick all twelve left-handed gloves (six of
which are black and six white) or all twelve right-handed gloves (six of
which are black and six white). The thirteenth glove drawn will match one
of the previous twelve.

Assume that we have drawn out the twelve left-handed gloves—six
black and six white. The thirteenth draw can produce only a right-handed
glove because there are no more left-handed gloves left in the box. And it
will be black or white. In either case, it will be a matching color.

22.

ANSWER

The chances are two out of three.

EXPLANATION

Let B stand for the black counter that might be in the bag at the start and W1

for the white counter that might be in the bag at the start. Let W2 stand for
the white counter added to the bag.

Let’s assume first that a white counter, W1, was in the bag at the 
start. When the white counter W2 is added to the bag, it will contain two
white counters—W1 and W2. So, the white counter that is drawn out is
either W1, the original counter in the bag, or W2 , the counter that was 
added to it.

Let’s assume instead that the black counter, B, was in the bag at the start.
When the white counter W2 is added to the bag, it will contain a black and
a white counter—B and W2. So, the white counter that is drawn out is the
one that was added to it, W2.

Let’s summarize the three scenarios in chart form:

Inside the Bag Counter Added Counter Drawn Out

Scenario 1: W1 W1 W2 W1

Scenario 2: W1 W1 W2 W2

Scenario 3: B B W2 W2

In scenarios 1 and 2, only a white ball can be drawn. However, in scenario
3 either a white or a black ball could have been drawn (even though a white
one was actually the one that was drawn). Thus, of the three scenarios, two
assure us that a white ball will be drawn. The chances of drawing a white
ball are, thus, two out of three.
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23.

ANSWER

There are twelve routes.

EXPLANATION

There are three different ways to go from Sarah’s to Bill’s house. Once we
are at Bill’s house, there are four different ways to get to Shirley’s house. So,
for each route taken from Sarah’s house to get to Bill’s house, four routes
can be taken to get to Shirley’s house. There are thus 3 × 4 = 12 different
ways altogether to get to Shirley’s house from Sarah’s house.

The routes can be shown in schematic form as follows. First, we repre-
sent the three possible routes from Sarah’s house to Bill’s house as B1, B2,
and B3 and the four routes from Bill’s house to Shirley’s house as S1, S2, S3,
and S4. The twelve possible routes to Shirley’s house are as follows:

From B1 to Shirley’s House

B1 – S1

B1 – S2

B1 – S3

B1 – S4

From B2 to Shirley’s House

B2 – S1

B2 – S2

B2 – S3

B2 – S4

From B3 to Shirley’s House

B3 – S1

B3 – S2

B3 – S3

B3 – S4

24.

ANSWER

There are 380 possible outcomes to the election. If only two specific mem-
bers are to be elected for the presidency, there are only thirty-eight out-
comes to the election.
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EXPLANATION

Once a president is chosen, there are nineteen members left who can be cho-
sen as vice president. So, there are 20 × 19 = 380 possible outcomes to the
election. This is an example of the permutation of n objects taken r at a time:
n!/(n – r)! In this case, n = 20 and r = 2:

n!/(n – r)! = 20!/(20 – 2)! = 20!/18! = 20 × 19 = 380.

If only Brenda and Heather can be selected for the presidency, the choice
for that position is restricted to: 2! = 2 × 1 = 2. Now, for each one of these,
there are nineteen members left (including either Brenda or Heather) for the
vice president position. So, in this case, the number of possible election
pairs is 2 × 19 = 38.

25.

ANSWER

Alex can make 792 different kinds of soup.

EXPLANATION

If he used all twelve vegetables, he could, of course, produce 12! kinds of
soup. However, he is restricting the number to five. So, in total, he has 
12 × 11 × 10 × 9 × 8 = 95,040 possible choices. The order in which these are
chosen, moreover, is irrelevant. How many redundant choices are there
among these? There are 5! = 5 × 4 × 3 × 2 × 1 = 120 of them. So, he can make
95,040 ÷ 120 = 792 different kinds of soup.

Fibonacci’s Rabbit Puzzle
26.

ANSWER

It would be a gargantuan task to list all the patterns that have so far been
documented. Here is one more:

Starting with 2, the number after every sixty numbers ends in 1: for
instance, the sixtieth number after 2 is 4,052,739,537,881 (which ends
in 1); the sixtieth number after that one is 14,028,366,653,498,915,
298,923,761 (which also ends in 1); and so on.

Readers who are interested in more patterns can consult the sources pro-
vided in Further Readings.

3
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27.

ANSWER

Among several others, I have found the following interesting patterns,
which hold as far as I had the patience to check:

� Starting at 6, the ratio of two consecutive terms appears to be relatively
constant at 0.54 (6/11 = 0.545, 11/20 = 0.55, 20/37 = 0.540, 37/68 = 0.544,
68/125 = 0.544, etc.)

� Every number in an even position in the sequence is itself even: for
instance, 2 is in the second position, 6 in the fourth, 20 in the sixth, and
so on.

� Every number in an odd position in the sequence is itself odd: for
instance, 1 is in the first position, 3 in the third, 11 in the fifth, and so on.

28.

ANSWER

40 days

EXPLANATION

Since Tim smokes only two-thirds of a cigarette, he leaves a butt equal to
one-third of a cigarette. This means that he can piece together a new ciga-
rette from every three cigarettes smoked. He has twenty-seven cigarettes.
With these, he produced twenty-seven butts. From these butts, Tim was
able to make nine new cigarettes: 27 ÷ 3 = 9. Now, with the “new” ciga-
rettes, he produced nine more butts. From these butts, he was able to piece
together three other cigarettes: 9 ÷ 3 = 3. Finally, with those bonus three cig-
arettes, he produced three more butts. From these butts, he could make one
last cigarette. In total, therefore, he smoked 27 + 9 + 3 + 1 = 40 cigarettes.
Since Tim smoked one cigarette per day, forty days went by before he quit
his bad habit.

29.

ANSWER

There were fifty-nine people at the party.

EXPLANATION

Counting things (people, objects, letters, etc.) by ones, twos, threes, and so
on, is equivalent to dividing them into sets—that is, into units, pairs,
triplets, and so on. For example, if we count the twenty-six letters of the
alphabet by twos, we are actually dividing the letters in half: 26 ÷ 2 = 13.
There are thus thirteen pairs of letters in the alphabet, with none left over.
If we count them by threes, we are actually dividing them in thirds: 26 ÷ 3.
In this case, the answer is eight letter triples, with two left over. “Left over”
means, of course, that two is the “remainder” left when 26 is divided by 3.
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This insight opens up the solution to our puzzle. First, we divide the
numbers between 50 and 60 by 3, identifying the numbers that leave a
remainder of 2. This procedure translates into arithmetic the statement 
that if the people were counted “three at a time, there would be two left
over”:

50 ÷ 3 = 16, remainder = 2

51 ÷ 3 = 17, remainder = 0

52 ÷ 3 = 17, remainder = 1

53 ÷ 3 = 17, remainder = 2

54 ÷ 3 = 18, remainder = 0

55 ÷ 3 = 18, remainder = 1

56 ÷ 3 = 18, remainder = 2

57 ÷ 3 = 19, remainder = 0

58 ÷ 3 = 19, remainder = 1

59 ÷ 3 = 19, remainder = 2

60 ÷ 3 = 20, remainder = 0

With this procedure, we have identified the numbers 50, 53, 56, and 59 as
those that leave a remainder of 2. Now, we need to find the number among
these four that leaves as well a remainder of 4 when divided by 5. This pro-
cedure translates into arithmetic the statement that if the people were
counted “five at a time, there would be four left over”:

50 ÷ 5 = 10, remainder = 0

53 ÷ 5 = 10, remainder = 3

56 ÷ 5 = 11, remainder = 1

59 ÷ 5 = 11, remainder = 4

As readers can see, that number is 59. In sum, the number 59 is the only one
between 50 and 60 that meets the two arithmetical requirements of the puz-
zle: (1) if it is divided by 3, it leaves a remainder of 2; and (2) if divided by
5, it leaves a remainder of 4.

30.

ANSWER

It contains one-third wine.

EXPLANATION

The puzzle tells us that container B is twice the size of A. So, let’s proceed
to draw the two containers, making B twice the size of A:
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We are told that A is half filled with wine and that B is one-quarter filled
with wine. With wine in them, therefore, the containers look like this:

Notice that in actual fact, the same amount of wine is in the two containers.
Why? Because if we calibrate the two containers into equal parts, A will
have two parts and B will have four parts. The parts are all equal, because
B is twice A—any one of the four parts in B is the same as any one of the two
parts in A.

Now let’s fill the remaining parts of the two containers with water, but
without showing them “mixed up” into a solution. In reality, this is not a
correct representation of what happens. It is only a convenient one:
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As can now be seen, A has two equal portions of wine and water, and B has
three equal portions of water and one of wine. As just argued, all portions
in the two containers are equal. So, between the two containers, there are six
equal parts in total—two of which are wine and four water. Logically, a
mixture of these two containers will contain two parts wine and four parts
water. That is, in fact, what container C will have in it:

The wine and the water in container C will, of course, be blended, not 
separated neatly, as was shown in the previous diagram. But in that
solution, wine will make up two parts out of its six, or

2_
6; and water will

make up four parts out of its six, or 
4_
6. In conclusion, C’s mixture will have

2_
6 =

1_
3 wine in it.

31.

ANSWER

The ladder has twenty-five rungs.

EXPLANATION

At the start, we do not know what rung the firefighter is on, except that it is
the middle one. So, let’s draw a model of the ladder, labeling her starting
rung “0,” as if it were the zero point on a number line. Each rung above and
below “0” can then be compared to a digit above or below the “0” point.
Obviously, since “0” is the middle rung, there will be as many rungs above
it as there are below it.

We are first told that the firefighter went up three rungs from the “0”
rung:
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We are then told that she stepped down five rungs. So, from rung 3
above “0,” she went down five rungs, ending up at rung 2 below the start-
ing point:

Next, the puzzle tells us that the firefighter climbed up seven rungs.
Starting from rung 2 below “0” and climbing up seven rungs from there
means that she will end up at rung 5 above the middle rung:

Finally, the puzzle tells us that the firefighter climbed up another seven
rungs to the roof. So from rung 5 above “0,” she climbed up another seven
rungs to rung 12.
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Rung 12 is thus the last rung of the ladder. Now, let’s complete the 
ladder. We know that it has twelve rungs above the “0” rung. Since the “0”
rung is the middle rung, the ladder will also have twelve rungs below the
“0” rung:
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As readers can see, the ladder has twelve rungs above the “0” rung, twelve
below it, and the “0” rung itself. This makes twenty-five rungs in total.

32.

ANSWER

2 (2n – 1)

EXPLANATION

Since they are, in effect, powers of 2, let’s rewrite the terms of the series as
follows:

{2, 4, 8, 16, 32, 64, 128, . . . }

First term: 2 = 2 (20 )

Second term: 4 = 2 (21 )

Third term: 8 = 2 (22 )

Fourth term: 16 = 2 (23)

. . . 

nth term: ?

Note that the first term is repeated in each of the successive terms, while the
ratio increases by successive powers of 2. Let’s rewrite the exponent in the
ratio in terms of the number of the term, n. Notice in the previous example
that the exponent of a particular term is one less than the number (or the
position) of the term. We can now rewrite the terms of our series as follows:

First term: 2 = 2 (20 ) = 2 (21 – 1)

Second term: 4 = 2 (21) = 2 (22 – 1)

Third term: 8 = 2 (22) = 2 (23 – 1)

Fourth term: 16 = 2 (23) = 2 (24 – 1)

. . . 

nth term: = 2 (2n – 1)

Since this pattern defines all geometric series, we can also derive a gen-
eral formula for the nth term of any geometric series. We do this simply by
representing the first term with the letter a and the ratio with r:

nth term
2 (2n – 1)
↓ ↓
a (rn – 1).

The general term of a geometric series is arn – 1.
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33.

ANSWER

The sum of all the even numbers in the first 100 numbers is 2,550. The
answer is not half of 5,050, or 2,525, as some readers may have assumed.

EXPLANATION

In this case, the series is

{2, 4, 6, 8, 10, 12, 14, . . . , 100}.

Line up the series with its reversed form—{100, 98, 96, 94, 92, 90, 88, 
. . . , 2}—under it, and then add the columns:

(1) 2 4 6 . . . 100
+ + + + +

(2) 100 98 96 . . . 2____________ ___
Sum 102 102 102 . . . 102.

The relevant question now becomes: how many even numbers are there
in the first 100? There are, of course, 50 even numbers—half of 100. So, the
sum of the numbers in the series is 50 times 102 divided by 2:

Sum: = (50) (102)/2 = 2,550.

To get the sum of the odd numbers, one could, of course, use this
method again. However, since we know that the sum of all the numbers
from 1 to 100 is 5,050 and that the sum of all the even numbers in it is 2,550,
to compute the sum of the odd numbers, all we have to do is subtract the
even number sum from the sum of all the numbers:

Sum of all Sum of the Sum of the 
the numbers even numbers odd numbers

5,050 – 2,550 = 2,500.

Euler’s Königsberg Bridges Puzzle

34.

ANSWERS

Eulerian paths other than the ones given here are possible:

A. A-F-E-B-A-D-F-C-B-D-E-C-A

B. A-B-C-E-B-D-E-H-D-G-H-I-E-F-I-J-F-C-A

4
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35.

ANSWERS

A. The graph is Eulerian because it has only two odd vertices, F and H, at
which three paths converge. One or the other can be a starting or an ending
vertex. Here is one possible Eulerian path, with H as a starting vertex: H-G-
D-E-H-I-F-E-B-D-A-B-C-F.

B. The graph is not Eulerian because it has more than two odd vertices:
B (= 3), D (= 3), H (= 3), F (= 3).

C. The graph is not Eulerian because it, too, has more than two odd ver-
tices: B (= 5), D (= 5), H (= 5), F (= 5).

D. The graph is Eulerian because it has only two odd vertices, F and G,
at which five paths converge. One or the other can be a starting or an end-
ing vertex. Here is one possible Eulerian path: F-C-A-F-H-G-F-D-G-E-B-D-
A-B-G.

36.

ANSWER

There are many possibilities. For a graph to be Eulerian, it can have at most
two odd vertices.

37.

ANSWER

As can be seen, the octahedron has six vertices, twelve edges, and eight
faces. Thus:

v – e + f = 2
6 – 12 + 8 = 2.

38.

ANSWER

A. A triangle has three edges (sides), three vertices, and one face:

v – e + f = 1
3 – 3 + 1 = 1.

B. A square has four edges (sides), four vertices, and one face:

v – e + f = 1
4 – 4 + 1 = 1.

C. A pentagon has five edges (sides), five vertices, and one face:

v – e + f = 1
5 – 5 + 1 = 1.

D. A hexagon has six edges (sides), six vertices, and one face:
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v – e + f = 1
6 – 6 + 1 = 1.

In plane figures, the number of vertices equals the number of edges. And
all such figures have only one face.

39.

ANSWER

One possible way to transform it into a Eulerian graph is to draw two edges
externally, as shown in the following figure. These will make both A and C

even (with four edges converging at each one) and thus transform a non-
Eulerian graph into a Eulerian one, since it now has only two odd vertices
(B and D):

One Eulerian path through it is the following: B-A-F-C-E-B-D-E-A-C-D

40.

ANSWER

Only when there is an even number of inversions can the puzzle be solved.
Readers must thus ensure that any arrangement they make of the blocks is
such that the sum of the inversions is even.

41.

ANSWER

It is impossible for the product of two consecutive odd numbers to be an
even number, such as 316.

EXPLANATION

The reason for this can be shown by multiplying the formulae for two
consecutive odd integers. As discussed, the formula for an odd number is
(2n + 1). So the next odd number is (2n + 3). Multiply these two:

(2n + 1) (2n + 3) = 4n2 + 8n + 3.

Group the terms of the product as follows:

(4n2 + 8n) + 3.

Factor 2 out:

2(2n2 + 4n) + 3.

214 � Answers and Explanations



The term 2(2n2 + 4n) represents an even number, because any number mul-
tiplied by 2 will be even. When 3 is added to it, therefore, an odd digit will
result.

Guthrie’s Four-Color Problem
42.

ANSWERS

(Other color arrangements are possible.)

A. Four colors

B. Three colors

C. Four colors

5
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D. Three colors

43.

ANSWER

Recall that both the Möbius strip and the Klein bottle have one continuing
surface. Thus, only one color is required in each case.

44.

PROOF

Recall that the angles of a triangle add up to 180 degrees. If two angles in a
triangle are greater than 90 degrees, then when we add them together, even
without the third one, we will get a sum that is larger than 180 degrees. This
goes contrary to the fact that the angles of a triangle add up to 180 degrees.
Therefore, only one of the angles of a triangle can be greater than 90 degrees.

45.

PROOF

The cube has eight vertices, twelve edges and six faces. Inserting these
values into the formula shows the relation to hold true:

v – e + f = 2
8 – 12 + 6 = 2.

In order to prove this, we would have to argue that it holds for all cubes. In
effect, we have already done this. Why? Because the very definition of a
cube is one that has eight vertices, twelve edges, and six faces. So, we were
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dealing with the general case from the outset. There is no exception; other-
wise, the figure would not be a cube.

46.

PROOF

In order to prove that x = y + z, you can use already-established facts (theo-
rems, propositions, etc.). Recall that the angles on the opposite side of a
transversal are equal. With that knowledge, draw a line parallel to the base
through vertex A:

Now, we have made ∠EAB equal to angle y, because, as mentioned,
angles on the opposite side of a transversal (AB, in this case) are equal.
Label the angle appropriately:

Now look at the other transversal line in the diagram, AC. This has made
angle EAC equal to x. Since EAC = y + z, we have just proved that x = y + z
and thus that the exterior angle of a triangle is equal to the sum of the inter-
nal opposite angles.
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47.

ANSWER

Three colors are needed.

PROOF

Notice that there are four vertices (A-O-B-C), eight edges (lines AO, AC,
OC, OB, CB and arcs AC, CB, AB), and five faces (1, 1, 2, 2, 3) in this graph.
Thus:

v – e + f = 1
4 – 8 + 5 = 1.

The five faces can be conceived to be “map regions” and the eight edges
“map borders.” Notice that the difference between the two is 3. This Euler-
ian analysis suggests that the difference between e and f on a map will indi-
cate the number of colors required. Readers should check for themselves
whether this is indeed a consistent finding, by using different types of
graphs. If so, the finding would be more an example of a simple induction
than it would a true proof.

Lucas’s Towers of Hanoi Puzzle
48.

ANSWER

This is, of course, the equivalent of a four-disk version of the Tower of
Hanoi game. So, it will take (24 – 1) or 15 moves to play. Here is a run-down
of the possible moves (ace = 1, two = 2, three = 3, four = 4), which readers
can verify for themselves by getting four cards and actually playing the
game:

6
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49.

PATTERN

The value of n is itself prime.

50.

PATTERN

Let’s tabulate what will happen with the two given rules:

1. Rule 1 (R1) applies to an even square. It says that we must multiply
the number of grains that are on the previous odd square by 2n.

2. Rule 2 (R2) applies to an odd square. It says that the grains on the
previous (even) square must be halved:

First square → = 1

Second square (n = 2) R1 applies → 1 × 22 = 4

Third square R2 applies → 4 ×
1_
2 = 2

Fourth square (n = 4) R1 applies → 2 × 24 = 32

Fifth square R2 applies → 32 ×
1_
2 = 16

Sixth square (n = 6) R1 applies → 16 × 26 = 1,024

Seventh square R2 applies → 1,024 ×
1_
2 = 512

Eighth square (n = 8) R1 applies → 512 × 28 = 131,072

Ninth square R2 applies → 131,072 ×
1_
2 = 65,536

Etc.

The products on each successive square turn out to be powers of 2:

First square → 1 = 20

Second square → 4 = 22

Third square → 2 = 21

Fourth square → 32 = 25

Fifth square → 16 = 24

Sixth square → 1,024 = 210

Seventh square → 512 = 29

Eighth square → 131,072 = 217

Ninth square → 65,536 = 216

Etc.

The exponent on each odd square is one less than the exponent on the
previous even square:
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Second square → 22

Third square → 21

Fourth square → 25

Fifth square → 24

Sixth square → 210

Seventh square → 29

Eighth square → 217

Ninth square → 216

Readers may have detected other patterns as well.

51.

ANSWER

It is not possible to cover the checkerboard, for the simple reason that the
two squares that were removed from it are of the same color—both white.
A domino placed on the checkerboard always covers a white and a black
square. With two white squares removed, the board will have more black
squares on it than white squares. It does not have, therefore, an equal num-
ber of black and white squares for all the dominoes to cover.

52.

ANSWER

A.

Integers 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Multiples of 10 10 20 30 40 50 60 70 80 90 100 110 120 . . .

B.

Integers 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓

Fractions
1_
1

1_
2

1_
3

1_
4

1_
5

1_
6

1_
7

1_
8

1_
9

1__
10

1__
11

1__
12

1__
13 . . .

53.

ANSWERS

A. ℵ0 + 1 = ℵ0

B. ℵ0 + n = ℵ0

C. ℵ0 + ℵ0 = 2ℵ0 = ℵ0
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EXPLANATION

ℵ0 represents the set of the cardinal numbers. If you add 1 to it, you are sim-
ply going one number farther down the number line. Indeed, no matter
how many numbers, n, you add to the number line, you will never go past
it or beyond it. You will thus always end up on the number line. Similarly,
you can double the line, whatever that means in infinite terms, but in so
doing, you will not go past it or beyond it. The line is infinite and will
always have the same cardinality, no matter what arithmetical operation
you perform on ℵ0.

Loyd’s Get Off the Earth Puzzle
54.

ANSWER

The idea is to design two detached parts, A and B, which, when moved, will
fit together to form a rectangle. This can be achieved by cutting up the orig-
inal figure in a “zig-zag” fashion, shown as follows. The length of each cut
must be equal to the length of the top right flat edge (the one jutting out). In
this way, A and B will be produced as interlocking parts. By sliding A up or
B down, the parts will interlock to produce a rectangle:

7
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55.

ANSWER

When the two largest pieces (2 and 3) are switched, each small square that
is cut by the diagonal line becomes a trifle higher than it is wide. This means
that the large square is no longer a perfect square. It has increased in height
by an area that is exactly equal to the area of the hole:

56.

ANSWER

The light- and dark-colored pencils change in number—there are seven
light-colored pencils and six dark-colored ones after the reversal:
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57.

ANSWER

A duck and a rabbit

58.

ANSWER

The two pencils are equal in length. This is a version of the Zöllner illusion.

59.

ANSWER

They are equal.

EXPLANATION

The radius of the largest circle is 5 units. The length of the inner radius,
including everything but the outer shaded ring, is 4 units, of which 3 make
up the radius of the shaded part. The area of a circle is expressed as πr2, if
you have forgotten your school geometry. Using this formula on the inner
circle with a radius of 3, the area is π r2 = π32 = 9π. The area of the complete
circle with a radius of 5 is πr2 = π52 = 25π. Now, to figure out the area of the
outer shaded ring, we subtract this area from the area of the remainder,
which has a radius of 4: πr2 = π42 = 16π. The area of the ring is thus 25π – 16π
= 9π. This proves that the two areas are equal, despite what our eyes tell us.

Epimenides’ Liar Paradox
60.

ANSWER

The sentence leads to a circularity.

EXPLANATION

If the sentence is assumed to be true, then what it says—“This sentence is
false”—must be factually true. But, if this is so, then the sentence is false (as
it asserts). This would mean that the sentence is both true and false, which
is logically contradictory.

So, let’s assume the opposite premise—namely, that the sentence is
false. What’s the upshot of this new assumption? Well, if the sentence is
indeed false, then the opposite of what it says must be true. But then again,
this would mean that it is both false and true.

61.

ANSWER

The coin is in B.

8
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EXPLANATION

Let’s assume that the inscription on A is true:

Now, we can quickly ascertain that B’s inscription is also true—if the
coin is in A, then, as B’s inscription proclaims, it is certainly not in B. But
this is contrary to the condition that at most, one inscription is true. Here we
have two true statements, instead. So, we can reject scenario 1. In the
process, however, we have discovered that A’s inscription is necessarily
false—the coin is not in A. That makes C’s inscription true, since it merely
confirms that the coin is not in A.

Since, at most, only one of the inscriptions is true, then B’s inscription
has to be false. This completes scenario 2:

B’s inscription reads: “The coin is not in here.” According to scenario 2, this
is a false statement. Thus the opposite is true—the coin is in B, contrary to
what B’s inscription says.

62.

ANSWER

It is not possible to determine who made the box.
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EXPLANATION

Assume that the person who made the box was a truth-teller. Then, the
inscription is false—since it says that the box was not made by a truth-teller:

But that cannot be, because a truth-teller would not make a false inscrip-
tion. So, the person who made the box must be a liar. If this is so, then the
inscription is true.

But the statement now turns out to be true, and a liar would not make such
a truthful statement. So, it is not possible to determine who made the box.

63.

ANSWER

Only x = 0 works, because that is the only value that x can have in the
equation.

EXPLANATION

Solving the equation x + y = y for x, we get x = 0:

x + y = y.

Subtract y from both sides:

x + (y – y) = (y – y)
x + 0 = 0
x = 0.

Any other value assigned to x makes the equation impossible.
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64.

ANSWER

The sentence has only five words. So, it is false. However, if we make it neg-
ative, “This sentence does not have seven words,” then it does have seven
words, contrary to what it says.

65.

ANSWER

The man’s father

EXPLANATION

Let’s call the man looking at the photo the “looker.” The looker is an only
child, since he has no brothers or sisters. Now, he tells us that the man in the
photo has a son, who is the son of his own father. Since the looker is an only
child, then he is the only possible “son” of his own father. That’s who the
man in the photo is.

66.

ANSWER

The bookstore salesclerk was out the $3 book and $7 from his pocket—$10
in total.

EXPLANATION

First, the bookstore salesclerk received nothing for the $3 book, since the
counterfeit $10 bill was worth nothing. So, at this point, he was out $3. Now,
consider what happened next. The bookstore salesclerk received ten gen-
uine $1 bills from the record-store salesclerk, who got the counterfeit bill.
When the bookstore salesclerk returned to his store, he gave $7 of the ten
good bills to the customer and put the remaining good $3 in his pocket.

When the record-store salesclerk asked for her $10 back, the bookstore
salesclerk still had the $3 in his pocket left over from the good $10—the
other $7 went to the customer. So, he gave her back her $3 and made up the
$7 difference from his own pocket. In total, therefore, the bookstore sales-
clerk was out the $3 book and the $7 from his pocket—$10 in total.

67.

ANSWER

For the sake of clarity, let’s call the three women A, B, and C. Let’s assume
that A is the one who figured out the color of the cross on her head. How did
she do it? A looks at B and C and sees that they both have red crosses. So, she
puts up her hand, as she was instructed to do. Similarly, B also sees two red
crosses. So, she, too, raises her hand. C likewise sees two red crosses; and, of
course, she also raises her hand. At that point, A reasons as follows:
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Let me assume that I have a blue cross on my forehead. If that is so,
then one of the other two women, say B, would know that she
doesn’t have a blue cross because otherwise C, seeing two blue
crosses—mine and B’s—would not have put up her hand. But she
has. So, B and C cannot determine their color. This means that I, too,
have a red cross.

68.

ANSWER

The women paid $27 dollars, of which the hotel got $25 and the bellhop $2.

EXPLANATION

Originally, the women paid out $30 for the room. That’s how much money
was in the hands of the hotel manager when he realized that he had over-
charged them. He kept $25 of the $30 and gave $5 to the bellhop to return
to the women.

Now, let’s focus our attention on the women. They each got back $1.
This means, in effect, that they had paid $9 each for the room. Thus, alto-
gether they paid out $27, which is $2 more than they should have paid for
the room—namely, $25. As we know, these $2 were the ones pilfered by our
devious bellhop!

In sum, there is no missing dollar. The women paid $27, of which the
hotel got $25 and the bellhop $2.

69.

ANSWER

Recall that this is the Golden Ratio (chapter 3).

EXPLANATION

Here are the ratios of a few consecutive Fibonacci pairs, in increasing order:

1/2 = 0.5

3/5 = 0.6

5/8 = 0.625 . . .

13/21 = 0.619 . . . 

34/55 = 0.618 . . .

89/144 = 0.618 . . .

233/377 = 0.618 . . .

. . .

The ratio approaches 0.618 . . .

lim / .
n

n nF F
→∞ + =1 0 618 . . .
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Recall that if Fn is any number in the Fibonacci sequence, then the symbol
Fn + 1 stands for the number right after it.

70.

ANSWER

If you put compasses at the point of intersection and measure off the length
of any one of the half lines, you can draw a circle passing through the ends
of the lines.

EXPLANATION

The main condition that defines a circle is, in fact, that all radii are equal.
Since the lines emanating from the point of intersection are drawn equal
(having been bisected), then that point is really the center of a circle with a
radius of r.

The Lo Shu Magic Square
71.

ANSWER

The magic square constant is 30.

72.

ANSWER

The magic square constant is 24.

9

Answers and Explanations � 229



73.

ANSWER

The magic square constant is 3.75.

74.

ANSWER

The magic square constant is 111.

75.

ANSWER

The magic square constant is 9d.

76.

ANSWER

The magic square constant is 102.
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77.

ANSWER

EXPLANATION

Note that an order 8 magic square is to be considered as made up of four
smaller order 4 squares. Thus, the diagonals drawn in this case are in each
of the four quadrants. After you have done this, proceed according to the
algorithm.

78.

ANSWER

1. Determine the magic constant (15).

2. Determine which eight number triplets, consisting of the first nine num-
bers, add up to 15, because these are the triplets to be included in the eight
rows, columns, and diagonals that make up an order 3 magic square:

9 + 5 + 1 = 15

9 + 4 + 2 = 15

8 + 6 + 1 = 15

8 + 5 + 2 = 15

8 + 4 + 3 = 15

7 + 6 + 2 = 15

7 + 5 + 3 = 15

6 + 5 + 4 = 15

3. From these, identify the number that occurs the most times, for this is
the one to be put in the middle cell (5).
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4. Now, with some trial and error, distribute the triplets, starting from the
middle cell in a “radiating” pattern from that cell:

There are, of course, various ways to complete the square.

The Cretan Labyrinth
79.

ANSWER

The solution is actually quite easy. This maze has a horizontal “spoke” on
the left-hand side, running from the fifth line from the outer edge to the sec-
ond line from the center. If you draw a corresponding spoke on the right-
hand side (from the second line from the center to the fifth line from the
outer edge), the maze is reduced to a single path.

10
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80.

ANSWER

81.

ANSWER
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82.

ANSWER

83.

ANSWER

The shortest route is 40 feet.

EXPLANATION

Unfolding the room (which is a cube) will show four possible routes (A, B,
C, and D). Readers can do this by making a model of the room with paper
and then unfolding it in the four ways, as shown:
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Clearly, route D is the best route. It is the hypotenuse of a right-angled
triangle:

84.

ANSWER

The twelfth triangular number is 78.

EXPLANATION

Here is the pattern:

First triangular number: 1 = 1

Second triangular number: 3 = 1 + 2

Third triangular number: 6 = 1 + 2 + 3

Fourth triangular number: 10 = 1 + 2 + 3 + 4

. . .

nth triangular number: . . . = 1 + 2 + 3 + 4 + . . . n

As can be seen, each successive triangular number is produced by summing
the consecutive integers in order: for example, the third triangular number
is the sum of the first three integers; the seventh triangular number is the
sum of the first seven integers; and so on.

So the twelfth triangular number is equal to the sum of the first twelve
integers. We can now use the summation formula as follows to show that
the number is 78:

Sum(n) =
n (n + 1)_______

2

n = 12

Sum(12) =
12 (12 + 1) 

= 78._________
2

85.

ANSWER

The pattern is that each square number is produced by summing the
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consecutive odd numbers in order: for example, the third square number is
the sum of the first three odd numbers; the ninth square number is the sum
of the first nine odd numbers; and so on:

First square number: 12 = 1

Second square number: 22 = 4 = 1 + 3

Third square number: 32 = 9 = 1 + 3 + 5

Fourth square number: 42 = 16 = 1 + 3 + 5 + 7

. . . 

Ninth square number: 92 = 81 = 1 + 3 + 5 + 7 + 9 + 11+ 13 + 15 + 17
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abacus A device used for showing the positional value of numerals, invented in
ancient China.

acute-angled triangle A triangle in which all three angles are less than 90 degrees.
algebra A generalization of arithmetic in which symbols, usually letters of the

alphabet, represent numbers or members of a specified set of numbers.
algorithm A regularized procedure for solving problems that can be used over

and over again.
ambiguous figure A figure that at one time appears as something and at another

as something else.
analytic geometry The study of geometric figures and properties principally by

algebraic operations on variables defined in terms of position coordinates.
arithmetic The study of all types of numbers under addition, subtraction, multi-

plication, and division.
arithmetical series A series, such as {1, 3, 5, 7, . . . }, in which each term is formed

by adding a constant to the preceding term.
axiom A self-evident or universally recognized truth (“two lines intersect at one

and only one point”).
base The number that is raised to various powers (the 3 in 32, the 4 in 45, and so

on).
calculus The mathematical study of such concepts as the rate of change, the slope

of a curve at a particular point, and the calculation of an area bounded by
curves.

cardinality A term referring to the use of the cardinal numbers (positive integers)
to count an infinite set.

cardinal number A number, such as 4, 15, or 948, used in counting to indicate
quantity but not order.

Cartesian plane A plane having all points described by coordinates or points
defined by two intersecting perpendicular lines.

chiaroscuro The technique of using light and shade in pictorial representation.
combination A grouping of elements taken from a larger set without regard to the

order of the elements in each group; for example, taking two elements at a time
from a set of four objects (A, B, C, and D) creates six combinations of objects: AB,
AC, AD, BC, BD, CD.

combinatorics A branch of mathematics that involves the study of counting,
grouping, and the arrangement of finite sets of elements.

commutativity A property of addition and multiplication by which changing the
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order of the numbers does not change the result: a + b = b + a (e.g., 2 + 3 = 3 + 2);
a × b = b × a (e.g., 2 × 3 = 3 × 2).

composite number An integer (whole number) composed of factors: for example,
4 = 2 × 2.

contradiction Disproof of a proposition by showing that its inevitable conclusion
leads to contradictory results or an inconsistency.

coordinate system A system of points in the plane defined by two intersecting axes.
decimal numeral A numeral constructed with ten digits (including 0), in which

each digit stands for a power of ten: for example, the digit 2 stands for “two” in
2, “twenty” in 25, and “two hundred” in 250.

deduction The process of reasoning whereby a conclusion follows necessarily
from the stated premises; inference by reasoning from the general to the specific;
the application of general or previous knowledge to a specific problem.

dependent variable A mathematical variable whose value is determined by the
value assumed by an independent variable.

equation A statement asserting the equality of two expressions, usually written as
a linear array of symbols that is separated into left and right sides and joined by
an equal sign (x + 3 = 4).

Eulerian path A path that traverses every edge of a graph exactly once. 
exponent A small superscript number indicating the number of times that a

quantity is to be multiplied by itself: n4 = n × n × n × n.
factor One of two or more quantities that divides a given quantity without a

remainder: for example, 2 and 3 are factors of 6, because 6 = 2 × 3.
factorial The product of all the positive integers from 1 to a given number (writ-

ten in reverse order): for example, 4! = 4 × 3 × 2 × 1 = 24.
Fibonacci number A number in the Fibonacci sequence.
Fibonacci sequence A sequence of numbers, {1, 1, 2, 3, 5, 8, 13, . . . } in which each

successive number is equal to the sum of the two preceding numbers.
fraction An expression that indicates the quotient of two quantities: 

1_
2,

2_
3,

3_
4, and 

so on.
function A variable so related to another that for each value assumed by one,

there is a value determined for the other: For example, in 2x = y, for each value
assumed by x, there is one and only one value for y; y is thus a function of 2x.

gematria An ancient craft whose basic claim was that the sum of the numerical
values of letters in a name could be used to foretell such things as a person’s
destiny.

general case The case that refers to the whole category or to every member of a
class or a category—to all points, to all angles, to all numbers, and so on.

geometric series A series, such as {1, 3, 9, 27, 81, . . . }, in which each term is mul-
tiplied by the same factor in order to obtain the next term.

geometry The study of the properties and relationships of points, lines, angles,
surfaces, and solids.

Golden Ratio (Also known as the Golden Section and divine proportion); the unend-
ing number 0.6180339 . . .

graph A figure consisting of vertices, edges, and faces.
graph theory The branch of mathematics that studies graphs.
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Hamiltonian circuit A path traced out on a graph that visits each vertex in the
graph only once, except possibly for the start and finish, which may be on the
same vertex.

hypotenuse The side of a right-angled triangle opposite the right angle.
impossible figure A figure that appears to defy common sense.
independent variable A variable whose value determines the value of other

variables.
induction A process of proving that something can be established as true if it can

be proved for the first and (n + 1)th cases; reasoning from particular facts to a
general conclusion.

infinite series A series that has no final member or end value.
insight thinking A flash of insight that comes from mulling over the various

aspects of a puzzle in the imagination.
integer A member of the set of positive whole numbers {1, 2, 3, . . . }, negative

whole numbers {–1, –2, –3, . . . }, and zero (0).
irrational number (Also known as radical) any number that cannot be expressed

as an integer or as a ratio between two integers, p/q (q ≠ 0); for example, √2.
Klein bottle A one-sided surface having no inside or outside, formed by inserting

the small open end of a tapered tube through the side of the tube and making it
contiguous with the larger open end.

labyrinth An intricate structure of interconnecting passages or paths through
which it is difficult to find one’s way.

limit A number or a point that is approached by a function.
logos The faculty of mind that allows people to reason and think reflectively, con-

sidered by the ancient Greeks to be the basis of rationality and language.
Lucas sequence A sequence of numbers starting with the number 2 {2, 1, 3, 4, 

7, . . . }, in which each number is the sum of the preceding two numbers.
magic square A square that contains numbers arranged in equal rows and

columns in such a way that the sum of the numbers in each row, column, and
diagonal is the same.

magic square constant The sum of the numbers in each row, column, and diago-
nal of a magic square.

matrix An arrangement of symbols in columns and rows.
Mersenne number A number that is produced by the formula (2n – 1).
metalanguage A language used to describe other languages.
Möbius strip A continuous one-sided surface that can be formed from a rectangu-

lar strip by rotating one end 180 degrees and attaching it to the other end.
negative number A number whose value is less than zero.
nonplanar graph A multi-dimensional graph.
obtuse-angled triangle A triangle in which one of the angles is greater than 90

degrees.
optical illusion A visually perceived image that is deceptive or misleading.
paradox An assertion that leads to a contradiction, though based on a valid

deduction from acceptable premises.
Pascal’s triangle A triangular arrangement of integers whereby a number in a row

is the sum of two numbers immediately above it in the triangle.
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perfect number A positive integer that is equal to the sum of its integral factors;
for example, 6 is a perfect number because its three divisors, 1, 2, and 3 (6 = 1 ×
2 × 3), add up to 6 (6 = 1 + 2 + 3).

permutation A grouping of elements taken from a larger set with regard to the
order of the elements; for example, in making permutations of two objects from
a set of four objects (A, B, C, and D), there would be four candidates to choose
from for the first selection and three left over to choose from for the second
selection, or twelve permutations in all.

perspective drawing The technique by which three-dimensional space can be
convincingly portrayed on a two-dimensional surface.

planar graph A two-dimensional graph.
polygon A closed plane figure bounded by three or more lines (a triangle, a

quadrilateral, a pentagon, a hexagon, etc.).
positive number A number whose value is greater than zero.
postulate Any statement that requires no proof since it is either self-evident or

simply put forward as an hypothesis.
power A synonym for exponent.
primality testing A way of determining whether a number is prime or not with

some procedure.
prime number An integer (whole number) with no factors other than 1 and itself;

for example, 1, 3, 5, 7, 19, and so on.
proposition Something that is expressed in a statement.
puzzle A problem that challenges us to seek a nonobvious answer.
puzzlemath An approach to the study of fundamental mathematical ideas

through the use of puzzles.
Pythagorean theorem The square on the hypotenuse (c) of a right-angled triangle

is equal to the sum of the squares on the other two sides (a, b): c2 = a2 + b2.
Pythagorean triple A set of three numbers, such as 3, 4, and 5, related to one

another in terms of the Pythagorean theorem (52 = 32 + 42 ).
rational number A number that is capable of being expressed as an integer or as

a quotient of integers, excluding zero as a denominator; its general form is p/q

(q ≠ 0).
reductio ad absurdum Disproof of a proposition by showing the absurdity of its

inevitable conclusion.
right-angled triangle A triangle in which one of the angles is 90 degrees.
Roman numeral A numeral constructed from seven alphabet letters, each one

having a specific numerical value: I = one, V = five, X = ten, L = fifty, C = one
hundred, D = five hundred, M = one thousand.

root The number that is raised to various powers (the 3 in 32, the 4 in 45, and so
on); also called base.

self-referentiality Reference of something to itself.
series A sequence of numbers, called terms, that is generated by some rule; for

example, {2, 4, 6, 8, . . . } is a series in which each term is generated by adding 2
to the previous one.

set theory The study of the properties of sets.
square number Any number that can be represented as a square figure (1, 4, 9, 

16, . . . ).
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syllogism A form of deductive reasoning consisting of a major premise, a minor
premise, and a conclusion; for example, “All human beings are mortal” is the
major premise; “I am a human being” is the minor premise; “Therefore, I am
mortal” is the conclusion.

systems analysis The study of a procedure to determine the desired end and the
most efficient method of obtaining this end.

theorem A statement that has been or is to be proved on the basis of explicit
assumptions (“When two straight lines intersect, the vertically opposite angles
that are formed are equal”).

topology The branch of mathematics that studies the properties of graphs or fig-
ures that remain unaltered when they are bent, twisted, stretched, or deformed
in some way.

transfinite number A number that is greater than any finite number.
transversal A line that intersects other sets of lines.
triangular number Any number that can be represented as a triangular figure 

(1, 3, 6, 10, . . . ).
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abacus, described, 48
abacus principle, 49
Aegeus (king of Athens), 178
Aesop’s fables, 181
Agrippa, Cornelius, 159
Ahmes (Egyptian scribe), 150–151
Alcuin, 27, 28
Alcuin’s River-Crossing Puzzle,

27–45
answers and explanations,

198–204
explorations, 43–44
mathematical annotations, 33–42
puzzle, 28–33
reflections, 42–43

algebra
geometry and, 78–79
matrix, 67

algorithms, Lo Shu Magic Square,
168–171, 174–175

ambiguous figures, Loyd’s Get Off
the Earth Puzzle, 135, 139

analytic geometry, Cretan Labyrinth,
183

Appel, Kenneth, 90, 93, 98, 99–100
Archimedes, 152–153
Ariadne, 178
Aristotle, 141–142
arithmetical series, 61. See also series
Augustine, Saint, 115
axioms, Euclidian methods, 89
Ayer, A. J., 85

Ball, W. W. Rouse, 3, 130
Barwise, Jon, 147–148
base, exponents, 110

Baudelaire, Charles, 105
Berkeley, George, 150
Bernoulli, Johann, 68
Binet, Jacques, 59–60
Birkhoff, David, 90
Brousseau, Alfred, 55
Brunelleschi, Filippo, 136

calculus, 68, 149–150
Cantor, Georg, 116–120
Cardano, Girolamo, 32, 109–110
cardinal numbers, infinity, 118
Carroll, Lewis, 44, 189
Cartesian plane, 183
Cayley, Arthur, 90
Charlemagne (Holy Roman

Emperor), 27, 28
Chartres Cathedral (France), 180
chiaroscuro effect, 135
Chrysippus of Soli, 144
combination, combinatorics, 41–42
combinatorics

Alcuin’s River-Crossing Puzzle,
35–42

mathematics, 27–28
problems in, 44

commutativity property, 14
complex number, number types,

60
composite numbers

Euclidian method, 92–93
mathematics, 54

computer proofs, 90, 93
contradiction

methods of proof, 98
paradox, 147
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coordinate geometry, Cretan
Labyrinth, 181–186

Cretan Labyrinth, 177–190
answers and explanations,

233–236
explorations, 187–190
mathematical annotations,

181–187
puzzle, 178–181
reflections, 187

“cut-and-slide” trick, Loyd’s Get Off
the Earth Puzzle, 126–130

Daedalus, 177
“Dark Ages,” 47
decimal system, advantages of, 48–49
deductive reasoning

Euclidian method, 90
methods of proof, 98
problem-solving, 9–10, 21–22

De Morgan, Augustus, 86, 89, 90
dependent variable, 152
Descartes, René, 78, 183
Devlin, Keith, 1
“diabolic” square, 166
Dirac, Paul, 59
dissection, Loyd’s Get Off the Earth

Puzzle, 130–133, 137–139
division, exponents, 108–109
Dudeney, Henry E., 33
Dürer, Albrecht, 136, 165–166

Epimenides, 142, 143, 148
Epimenides’ Liar Paradox, 141–157

answers and explanations,
225–230

explorations, 154–156
mathematical annotations,

143–153
puzzle, 142–143
reflections, 153

equation, defined, 3
Escher, Maurits Cornelis, 137
Etchemendy, John, 147–148
Euclid, 89, 91, 92, 96–97, 115
Euclidian method, 89, 90–100

Euler, Leonhard, 35, 59, 67, 68, 69, 71,
72, 74, 76, 165, 167, 179

Euler’s Königsberg Bridges Puzzle,
67–84

answers and explanations,
213–215

explorations, 81–84
mathematical annotations, 71–80
puzzle, 68–71
reflections, 80–81

Euler’s Thirty-Six Officers Puzzle, 67
even numbers, 4n2, 96
even vertex, networks, 69–70
exponents

Lucas’s Towers of Hanoi Puzzle,
108–113

terms of, 18–19

Fibonacci, Leonardo, 50
Fibonacci number, 53, 55, 155–156
Fibonacci sequence, 55–63, 105, 132,

172
Fibonacci’s Rabbit Puzzle, 47–66

answers and explanations,
205–213

explorations, 64–65
mathematical annotations, 55–63
puzzle, 50–55
reflections, 63

Fifteen Puzzle (Loyd), 79–80, 125, 126
Four-Color Problem. See Guthrie’s

Four-Color Problem
4n2, even numbers, 96
fractions

Euclidian method, 96–99
number types, 60
simplified, 96

Franklin, Benjamin, 8, 166–167
Franklin, Philip, 90
Frege, Gottlob, 144
function, term of, 152

Galileo Galilei, 116
games, popularity of, 105–106
Gardner, Martin, 3
Gauss, Karl Friedrich, 61
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gematria, 172
general case, deductive reasoning, 90
geometric series, 61
geometry

algebra and, 78–79
Cretan Labyrinth, 181–187, 190
dissection puzzles, 132–133
Euclidian method, 90–91

Get Off the Earth Puzzle. See Loyd’s
Get Off the Earth Puzzle

GIMPS (Great Internet Mersenne
Prime Search Project), 116

Girard, Albert, 55
Gödel, Kurt, 146–147, 148
Goldbach’s Conjecture, 148
Golden Ratio, 55, 56, 60, 63
graph, defined, 71
graph theory, Euler’s Königsberg

Bridges Puzzle, 69, 71–80, 81–84
Great Internet Mersenne Prime

Search Project (GIMPS), 116
Great Labyrinth (ancient Egypt), 180
Great Sphinx (Giza, Egypt),

described, 5
Guthrie, Francis, 86
Guthrie, Frederick, 86
Guthrie’s Four-Color Problem, 85–103

answers and explanations,
215–219

explorations, 100–102
map making, 85–86
mathematical annotations, 90–100
puzzle, 86–90
reflections, 100

Haken, Wolfgang, 90, 93, 98, 99–100
Hamilton, William Rowan, 72
Hamiltonian circuit, 72
Hampton Court (London, England),

180
Heawood, Percy John, 90
Heraclitus, 153
Hesse, Hermann, 120–121
Hindu-Arabic system, 49–50, 63
Hiram (biblical king), 8
Hoggart, Vern Emil, 55

Hooper, William, 126
Hovanec, Helene, 17–18
Huxley, Aldous, 47

impossibility, Euler’s Königsberg
Bridges Puzzle, 77–80, 84

impossible figure, 135–136
independent variable, 152
inductive reasoning

methods of proof, 98
problem-solving, 9, 11–15, 22–23

infinite series, mathematics, 53
infinity, prime numbers, 116–120, 123
insight thinking, problem-solving, 9,

15–20, 23
integers

defined, 96
number types, 60

irrational numbers, number types, 60

Jocasta (queen of Thebes), 6
Josephus Puzzle, 34–35, 42
Jourdain, P. E. B., 143

Kallikan, Ibn, 113–115, 121–122
Kempe, Arthur Bray, 90
Kierkegaard, Søren, 67
Kirkman, Thomas Penyngton, 35
Kirkman’s School Girl Puzzle, 35, 42,

43, 200
Klein, Felix, 73
Klein bottle, 73–74
Koestler, Arthur, 159
Königsberg Bridges Puzzle. See

Euler’s Königsberg Bridges
Puzzle

labyrinth, 177–178. See also Cretan
Labyrinth

Laius (king of Thebes), 6
Leibniz, Gottfried Wilhelm, 42, 149,

150
Leonardo da Vinci, 63
Liar Paradox. See Epimenides’ Liar

Paradox
limits, paradox, 149–153, 155–156
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logic
concept of, 153
propositions, 144
puzzles, 154–155

Lo Shu Magic Square, 159–175
answers and explanations,

230–233
explorations, 173–175
mathematical annotations,

164–171
puzzle, 160–164
reflections, 171–173

Loubère, Simon de la, 169
Loyd, Sam, 33, 79–80, 125, 130
Loyd’s Fifteen Puzzle, 79–80, 125, 126
Loyd’s Get Off the Earth Puzzle,

125–140
answers and explanations, 223–225
explorations, 137–139
mathematical annotations,

130–133
optical illusions, 134–137
puzzle, 126–130
reflections, 137

Lucas, Edouard Anatole, 55, 105, 106,
113

Lucas sequence, 55
Lucas’s Towers of Hanoi Puzzle,

105–123
answers and explanations,

219–223
explorations, 121–123
mathematical annotations, 113–120
puzzle, 108–113
reflections, 120–121
series concept, 106–108

“magical” number patterns, 165–167
Magic Square. See Lo Shu Magic

Square
magic square constant, 160–161
map making, Guthrie’s Four-Color

Problem, 85–86
mathematical annotations

Alcuin’s River-Crossing Puzzle,
33–42

Cretan Labyrinth, 181–187
Epimenides’ Liar Paradox,

143–153
Euler’s Königsberg Bridges 

Puzzle, 71–80
explained, 3
Fibonacci’s Rabbit Puzzle, 55–63
Guthrie’s Four-Color Problem,

90–100
Lo Shu Magic Square, 164–171
Loyd’s Get Off the Earth Puzzle,

130–133
Lucas’s Towers of Hanoi Puzzle,

113–120
Riddle of the Sphinx, 9–15

matrix
algebra, 67
Kirkman’s School Girl Puzzle, 35

mazes, 179. See also Cretan Labyrinth
Mersenne, Marin, 116
Mersenne primes, Kallikan’s puzzle,

116, 121–122
metalanguage, 145–146
Mézirac, Claude-Gaspar Bachet de,

18–20
Michelangelo, 63
mime charade, 9
Minos (king of Crete), 177, 178
Minotaur, 177
Möbius, Augustus, 72, 86
Möbius strip, 72–73
Moschopoulos, Emanuel, 159
Müller, Johannes, 134
Müller-Lyer Illusion, 134–135
multiplication, exponents, 108

Navajo people, 180
negative numbers, 60
networks, Euler’s Königsberg

Bridges Puzzle, 69–71, 81–84
Newton, Isaac, 149, 150
Nickel, Laura, 116
Noll, Curt Landon, 116
nonplanar graph, defined, 71
n2(n2 + 1) formula, 162
numbers, types of, 60
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numeration, numerology and,
171–173

numerology, numeration and,
171–173

odd vertex, networks, 69–70
Oedipus, 6–7, 9
optical illusions, Loyd’s Get Off the

Earth Puzzle, 134–137, 139
Ortega y Gasset, José, 177

paradox, Zeno of Elea, 141–142
Pascal, Blaise, 57–58
Pascal’s triangle, 57–58
Pasiphae, 177
Peirce, Charles S., 100
Penrose, L. S., 136
Penrose, Roger, 136
perfect numbers, Kallikan’s puzzle,

114–116
permutations, combinatorics, 37–41
perspective drawing, 136
planar graph, defined, 71
points, Euler’s Königsberg Bridges

Puzzle, 69
Polybus (king of Corinth), 6
polygons, formula development for,

11–15
postulates, Euclidian methods, 89
power. See exponents
prime numbers

Euclidian method, 92
infinity, 116–120, 123
mathematics, 54–55
Mersenne primes, 116

printing press, 8
probability theory, 58
problem-solving, methods and 

strategies in, 9–20
proofs

computer, 90
Euclidian methods, 89, 90
methods of, 98
theorems, 11

propositions, logic, 144
Protagoras, 142

Ptolemy I (king of Egypt), 89
puzzle

defined, 1
origin of word, 17
Riddle of the Sphinx, 6–9

Pythagoras, 42–43, 63, 94, 173
Pythagoreans, Cretan Labyrinth,

186–187
Pythagorean theorem, 42–43

Cretan Labyrinth, 182
Four-Color Problem, 99–100
triangles, 42–43, 94–95

Pythagorean triples, Cretan
Labyrinth, 187

quantum mechanics, 59

Rabbit Puzzle. See Fibonacci’s Rabbit
Puzzle

radical number, number types, 60
rational numbers, number types, 60
real number, number types, 60
rearrangement puzzles, 137–139
reductio ad absurdum

Euclidian method, 91
methods of proof, 98

Reutersvärd, Oscar, 136
Rhind, A. Henry, 150
Rhind Papyrus, 150–151
Riddle of the Sphinx, 5–25

answers and explanations,
191–198

explorations, 21–23
mathematical annotations, 9–15
puzzle, 6–9
reflections, 20

riddles, popularity of, 8–9
River-Crossing Puzzle (Alcuin). See

Alcuin’s River-Crossing Puzzle
Roman numerals, 47–49
root, exponents, 110
Russell, Bertrand, 144

Samson (biblical figure), 7
Sanders, Richard (Benjamin

Franklin), 8
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Sargon II (king of Babylon), 172
School Girl Puzzle (Kirkman), 35, 42,

43, 200
self-referentiality, paradox, 144, 147
sequence, Fibonacci sequence, 55–63
serendipity, 63
series

Lo Shu Magic Square, 172
Lucas’s Towers of Hanoi Puzzle,

106–108
mathematics, 53
sequences and, 60–63

set theory, 117
simplified fractions, 96
Simson, Robert, 55
Smullyan, Raymond, 3, 146
Socrates, 125, 142
Solomon (biblical king), 8
Sophists, 141–142
Sophocles, 7
Sphinx. See Riddle of the Sphinx
Spider and the Fly Puzzle, 182
square numbers, 186
syllogism, Aristotle, 142
Sylvester II (pope of Rome), 49
systems analysis, Josephus Puzzle, 35

Tarski, Alfred, 145
Tartaglia, Niccolò Fontana, 32–33, 43,

199
terms, mathematics, 53
Theano, 186
Thebes, 6–7
theorem, proofs, 11
Theseus, 178
Thirty-Six Officers Puzzle (Euler), 67
topology, Euler’s Königsberg Bridges

Puzzle, 71–80

Towers of Hanoi Puzzle. See Lucas’s
Towers of Hanoi Puzzle

transfinite number
infinity, 119
number types, 60

transversal, Euclidian method, 91
triangles

Cretan Labyrinth, 186–187
Euclidian method, 90–91, 93
Pythagorean theorem, 42–43,

94–95
triangular numbers, 186
trisection, geometry, 78–79
Twain, Mark, 5

undecidability, Epimenides’ Liar
Paradox, 144–148

unicursal Eulerian graph, 179

Versailles Palace (France), 181
vertices, Euler’s Königsberg Bridges

Puzzle, 69
Voltaire, 8

Walpole, Horace, 63
weight puzzles, 18–20
Whitehead, Alfred North, 145
Wilde, Oscar, 141
Wilson, Robin, 90
Wittgenstein, Ludwig, 144–145
Woltman, George, 116

Yu the Great (emperor of China), 
160

Zeno of Elea, 91, 141–142, 149, 150
Zöllner, Johann, 134, 225
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