International Mathematical Olympiad 1997
Hong Kong Team Selection Test 1

1. Prove that for positive real numbers x, y, z, 
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2. ABCDEF is a hexagon inscribed in a circle. Show that the diagonals AD, BE, CF are concurrent if and only if 
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3. Prove that there are infinitely many positive integers n such that 
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 is divisible by n. Find all such n’s that are prime numbers.

4. Let x1, x2, x3, … be a sequence of nonzero real numbers satisfying 
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 for n = 3, 4, 5,…
Find all pairs (x1, x2) such that xn is an integer for infinitely many n.

5. One may perform the following two operations on a positive integer:


(a)
multiply it by any positive integer; and


(b)
delete zeros in its decimal representation.
Prove that for every positive integer X, one can perform a sequence of these operations that will transform X to a one-digit number.
[Hint:
You may want to reduce the problem to the case where X has only 1’s in its 


decimal representation]
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