International Mathematical Olympiad 1997

Hong Kong Team Selection Test 2

1. For a positive integer n, let 
[image: image1.wmf])

(

n

f

 be the largest k such that 2k divides n and 
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 be the sum of the digits of the binary representation of n. Prove that for any positive integers n,
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(ii) 4 divides 
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 if and only if n is not a power of 2.

2. Let the angle bisectors of A, B, C of ABC intersect the circumcircle of ABC at P, Q, R respectively. Prove that 
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3. Let Z denote the integers. Find all functions 
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 for all integers x, y.

4. Start with some positive integer. The following operation is performed on the number: its unit digit is split off and multiplied by 4, then this product is added to the remaining number. (For example, 1997 is changed to 
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.) The operation is performed again and again. Prove that if the sequence of numbers obtained contains 1001, then none of the numbers in the sequence can be a prime number.
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