Solutions to IMO Test 1

1. Prove that for any integer n, 
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 is divisible by 46410.

Solution: 

We factorize the expression 
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. It suffices to prove 
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2. (a)   Let a, n, k be positive integers. Prove that 
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digits in their decimal representations.

(b) Find the first digit of the decimal representation of the number


[image: image15.wmf]1999

1999

1999

9

7

2

+

+

.

Solution:

(a) We are asked to prove 
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(b) Since 
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So the first digit of the number is 0.

3. Let ABC be an acute triangle. Suppose a circle 
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Solution:
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Let L, M, N be respectively the feet of perpendicular from A, B, C to the segments BC, FH, EG. Note that L, M, N are points lied on the sides of 
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, and LA, MH, NG are lines through L, M, N which perpendicular to the sides of 
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. We want to prove LA, MH, NG are concurrent, by Carnot Theorem, it is equivalent to
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Note that 
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. Similarly we have
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Compare (1) and (2), it remains to prove 
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Denote 
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 (recall that c denote the length of AB). Similarly 
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Hence, the lines LA, MH, NG are concurrent at a point. This point is P and follows that 
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4. Let 
[image: image47.wmf]r

n

m

l

d

c

b

a

,

,

,

,

,

,

,

 be given (fixed) positive numbers. Suppose 
[image: image48.wmf]w

z

y

x

,

,

,

 are positive numbers satisfying 
[image: image49.wmf]2

=

+

+

+

dw

cz

by

ax

. Determine the minimum of


[image: image50.wmf]w

r

z

n

y

m

x

l

F

+

+

+

=

.

Solution:

By Cauchy-Schwarz Inequality,
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Equality holds when 
[image: image53.wmf]d

r

c

n

b

m

a

l

w

z

y

x

:

:

:

:

:

:

=

. With the given condition 
[image: image54.wmf]2

=

+

+

+

dw

cz

by

ax

, we can solve for the corresponding values of 
[image: image55.wmf]w

z

y

x

,

,

,

.

In fact, these values are
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Hence, the minimum value of F is 
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5. For a graph G, 
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(a) Prove that for any simple connected graph G, 
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(b) A regular graph is a graph that every vertex has the same degree. Prove that if a simple connected graph G is not regular, then 
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Solution:

(a) We are going to prove there is a 
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Assume the statement is true for a positive integer 
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Now, consider a graph G with 
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 vertices. We may choose an arbitrary vertex v and then remove it from the graph (of course, we remove the edges incident with v at the same time). This gives a new graph 
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). Then we put back the vertex v to the graph, it adjacent with at most 
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 vertices and there must be a suitable color that we can assign this color to the vertex v. This gives a 
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By principle of mathematical induction, any simple graph G has a 
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(b)       Similar to part (a), we need to prove there is a 
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With the same notation as part (a), we use induction on n.
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Assume the statement is true for a positive integer 
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Now, consider a graph G with 
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 vertices. Since the graph G is not regular, we may choose a vertex v from the graph with 
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Next, we put back the vertex v to the graph, it adjacent with at most 
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By principle of mathematical induction, any simple non-regular graph G has a 
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~ The End ~
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