International Mathematical Olympiad 2000

Hong Kong Team Training

Test 1

Time allowed: 3 hours.

1. Refering to the accompanying figure, let AB = AC, let D be a point on AB and let E be a point on AC produced such that DE = AC. Suppose DE meet the circumcircle of triangle ABC at T. Let P be a point on AT produced. Prove that 
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 if and only if P is on the circumcircle of triangle ADE.
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2. Let 
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 be a polynomial with integer coefficients, and let 
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 be integers. Suppose for every integer n, 
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 is divisible by one of 
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. Prove that there exists 
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such that 
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 for all integer n.

3. Given a triangle ABC with 
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. Let D, E be respectively the mid-point of AB, AC. Let G be the centroid of triangle ABC, and let I be the incenter of triangle ABC. Prove that GI touches the circumcircle of triangle ADE.

~ End of Test ~
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