
Baltic Way 2001

Hamburg, November 4, 2001

Problems

1. A set of 8 problems was prepared for an examination. Each student was
given 3 of them. No two students received more than one common problem.
What is the largest possible number of students?

2. Let n > 2 be a positive integer. Find whether there exist n pairwise
nonintersecting nonempty subsets of {1, 2, 3, . . .} such that each positive
integer can be expressed in a unique way as a sum of at most n integers,
all from different subsets.

3. The numbers 1, 2, . . . , 49 are placed in a 7× 7 array, and the sum of the
numbers in each row and in each column is computed. Some of these 14
sums are odd while others are even. Let A denote the sum of all the odd
sums and B the sum of all even sums. Is it possible that the numbers were
placed in the array in such a way that A = B ?

4. Let p and q be two different primes. Prove that

⌊p

q

⌋

+
⌊2p

q

⌋

+
⌊3p

q

⌋

+ . . .+
⌊ (q − 1)p

q

⌋

=
1

2
(p− 1)(q − 1) .

(Here bxc denotes the largest integer not greater than x .)

5. Let 2001 given points on a circle be colored either red or green. In one
step all points are recolored simultaneously in the following way: If both
direct neighbors of a point P have the same color as P , then the color of P
remains unchanged, otherwise P obtains the other color. Starting with the
first coloring F1 , we obtain the colorings F2, F3, . . . after several recoloring
steps. Prove that there is a number n0 6 1000 such that Fn0

= Fn0+2 . Is
the assertion also true if 1000 is replaced by 999?

6. The points A , B , C , D , E lie on the circle c in this order and satisfy
AB ‖ EC and AC ‖ ED . The line tangent to the circle c at E meets the
line AB at P . The lines BD and EC meet at Q . Prove that |AC| = |PQ| .

1



7. Given a parallelogram ABCD . A circle passing through A meets the line
segments AB , AC and AD at inner points M , K , N , respectively. Prove
that

|AB| · |AM |+ |AD| · |AN | = |AK| · |AC| .

8. Let ABCD be a convex quadrilateral, and let N be the midpoint of BC .
Suppose further that 6 AND = 135◦ . Prove that

|AB|+ |CD|+ 1√
2
· |BC| > |AD| .

9. Given a rhombus ABCD , find the locus of the points P lying inside the
rhombus and satisfying 6 APD + 6 BPC = 180◦ .

10. In a triangle ABC , the bisector of 6 BAC meets the side BC at the point
D . Knowing that |BD| · |CD| = |AD|2 and 6 ADB = 45◦ , determine the
angles of triangle ABC .

11. The real-valued function f is defined for all positive integers. For any
integers a > 1, b > 1 with d = gcd(a, b) , we have

f(ab) = f(d) ·
(

f
(a

d

)

+ f
( b

d

)

)

,

Determine all possible values of f(2001).

12. Let a1, a2, . . . , an be positive real numbers such that

n
∑

i=1

a3
i = 3 and

n
∑

i=1

a5
i = 5. Prove that

n
∑

i=1

ai >
3

2
.

13. Let a0, a1, a2, . . . be a sequence of real numbers satisfying a0 = 1 and
an = ab7n/9c + abn/9c for n = 1, 2, . . . . Prove that there exists a positive

integer k with ak <
k

2001!
.

(Here bxc denotes the largest integer not greater than x .)

14. There are 2n cards. On each card some real number x , 1 6 x 6 2, is
written (there can be different numbers on different cards). Prove that
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the cards can be divided into two heaps with sums s1 and s2 so that
n

n+ 1
6
s1
s2

6 1.

15. Let a0, a1, a2, . . . be a sequence of positive real numbers satisfying
i · a2

i > (i + 1) · ai−1ai+1 for i = 1, 2, . . . . Furthermore, let x and y
be positive reals, and let bi = xai + yai−1 for i = 1, 2, . . . . Prove that the
inequality i · b2i > (i+1) · bi−1bi+1 holds for all integers i > 2.

16. Let f be a real-valued function defined on the positive integers satisfying
the following condition: For all n > 1 there exists a prime divisor p of n
such that

f(n) = f
(n

p

)

− f(p) .

Given that f(2001) = 1, what is the value of f(2002)?

17. Let n be a positive integer. Prove that at least 2n−1+ n numbers can be
chosen from the set {1, 2, 3, . . . , 2n} such that for any two different chosen
numbers x and y , x+ y is not a divisor of x · y .

18. Let a be an odd integer. Prove that a2n

+ 22n

and a2m

+ 22m

are relatively
prime for all positive integers n and m with n 6= m .

19. What is the smallest positive odd integer having the same number of positive
divisors as 360?

20. From a sequence of integers (a, b, c, d) each of the sequences

(c, d, a, b), (b, a, d, c), (a+nc, b+nd, c, d), (a+nb, b, c+nd, d) ,

for arbitrary integer n can be obtained by one step. Is it possible to obtain
(3, 4, 5, 7) from (1, 2, 3, 4) through a sequence of such steps?

Solutions

1. Answer: 8.

Denote the problems by A , B , C , D , E , F , G , H , then 8 possible
problem sets are ABC , ADE , AFG , BDG , BFH , CDH , CEF , EGH .
Hence, there could be 8 students.
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Suppose that some problem (e.g., A) was given to 4 students. Then each
of these 4 students should receive 2 different “supplementary” problems,
and there should be at least 9 problems — a contradiction. Therefore each
problem was given to at most 3 students, and there were at most 8 · 3 = 24
“awardings” of problems. As each student was “awarded” 3 problems, there
were at most 8 students.

2. Answer: yes.

Let A1 be the set of positive integers whose only non-zero digits may be
the 1-st, the (n+1)-st, the (2n+1)-st etc. from the end; A2 be the set of
positive integers whose only non-zero digits may be the 2-nd, the (n+ 2)-
nd, the (2n+2)-nd etc. from the end, and so on. The sets A1, A2, . . . , An
have the required property.

Remark. This problem is quite similar to problem 18 from Baltic Way 1997.

3. Answer: no.

If this were possible, then 2 · (1 + . . .+ 49) = A+B = 2B . But B is even
since it is the sum of even numbers, whereas 1 + . . .+ 49 = 25 · 49 is odd.
This is a contradiction.

4. The line y =
p

q
x contains the diagonal of the rectangle with vertices (0, 0),

(q, 0), (q, p) and (0, p) and passes through no points with integer coordi-
nates in the interior of that rectangle. For k = 1, 2, . . . , q−1 the summand
⌊kp

q

⌋

counts the number of interior points of the rectangle lying below the

diagonal y =
p

q
x and having x -coordinate equal to k . Therefore the sum

in consideration counts all interior points with integer coordinates below
the diagonal, which is exactly half the number of all points with integer

coordinates in the interior of the rectangle, i.e.
1

2
· (p− 1)(q − 1).

Remark. The integers p and q need not be primes: in the solution we only
used the fact that they are coprime.

5. Answer: no.

Let the points be denoted by 1, 2, . . . , 2001 such that i, j are neighbors if
|i − j| = 1 or {i, j} = {1, 2001} . We say that k points form a monochro-

matic segment of length k if the points are consecutive on the circle and if
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they all have the same color. For a coloring F let d(F ) be the maximum
length of a monochromatic segment. Note that d(Fn) > 1 for all n since
2001 is odd. If d(F1) = 2001 then all points have the same color, hence
F1 = F2 = F3 = . . . and we can choose n0 = 1. Thus, let 1 < d(F1) < 2001.
Below we shall prove the following implications:

If 3 < d(Fn) < 2001, then d(Fn+1) = d(Fn)− 2 ; (1)

If d(Fn) = 3, then d(Fn+1) = 2 ; (2)

If d(Fn) = 2, then d(Fn+1) = d(Fn) and Fn+2 = Fn ; (3)

From (1) and (2) it follows that d(F1000) 6 2, hence by (3) we have
F1000 = F1002 . Moreover, if F1 is the coloring where 1 is colored
red and all other points are colored green, then d(F1) = 2000 and
thus d(F1) > d(F2) > . . . > d(F1000) = 2 which shows that, for all
n < 1000, Fn 6= Fn+2 and thus 1000 cannot be replaced by 999.

It remains to prove (1)–(3). Let (i + 1, . . . , i + k) be a longest monochro-
matic segment for Fn (considering the labels of the points modulo 2001).
Then (i + 2, . . . , i + k − 1) is a monochromatic segment for Fn+1 and
thus d(Fn+1) > d(Fn) − 2. Moreover, if (i + 1, . . . , i + k) is a longest
monochromatic segment for Fn+1 where k > 3, then (i, . . . , i+ k+1) is a
monochromatic segment for Fn . From this and Fn+1 > 1 the implications
(1) and (2) clearly follow. For proof of (3) note that if d(Fn) 6 2 then
Fn+1 is obtained from Fn by changing the colour of all points.

PSfrag replacements

A B

C

D

E
Q

P

Figure 1

6. The arcs BC and AE are of equal length (see Figure 1). Also, since
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AB ‖ EC and ED ‖ AC , we have 6 CAB = 6 DEC and the arcs DC
and BC are of equal length. Since PE is tangent to c and |AE| = |DC| ,
then 6 PEA = 6 DBC = 6 QBC . As ABCD is inscribed in c , we have
6 QCB = 180◦− 6 EAB = 6 PAE . Also, ABCD is an isosceles trapezium,
whence |AE| = |BC| . So the triangles APE and CQB are congruent, and
|QC| = |PA| . Now PACQ is a quadrilateral with a pair of opposite sides
equal and parallel. So PACQ is a parallelogram, and |PQ| = |AC| .

7. Let X be the point on segment AC such that 6 ADX = 6 AKN , then

6 AXD = 6 ANK = 180◦ − 6 AMK

(see Figure 2). Triangles NAK and XAD are similar, having two pairs of

equal angles, hence |AX| = |AN | · |AD|
|AK| . Since triangles MAK and XCD

are also similar, we have |CX| = |AM | · |CD|
|AK| =

|AM | · |AB|
|AK| and

|AM | · |AB|+|AN | · |AD|=(|AX|+|CX|) · |AK|= |AC| · |AK| .

PSfrag replacements
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P
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Figure 2

8. Let X be the point symmetric to B with respect to AN , and let Y be the
point symmetric to C with respect to DN (see Figure 3). Then

6 XNY = 180◦ − 2 · (180◦ − 135◦) = 90◦

and |NX| = |NY | = |BC|
2

. Therefore, |XY | = |BC|√
2

. Moreover, we have
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|AX| = |AB| and |DY | = |DC| . Consequently,

|AD| 6 |AX|+ |XY |+ |Y D| = |AB|+ |BC|√
2

+ |DC| .

A

B N C

D

X
Y

Figure 3

9. Answer: the locus of the points P is the union of the diagonals AC and
BD .

Let Q be a point such that PQCD is a parallelogram (see Figure 4). Then
ABQP is also a parallelogram. From the equality 6 APD+ 6 BPC = 180◦

it follows that 6 BQC + 6 BPC = 180◦ , so the points B , Q , C , P lie
on a common circle. Therefore, 6 PBC = 6 PQC = 6 PDC , and since
|BC| = |CD| , we obtain that 6 CPB = 6 CPD or 6 CPB+ 6 CPD = 180◦ .
Hence, the point P lies on the segment AC or on the segment BD .

PSfrag replacements
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E
Q

P
A
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P Q

Q

Figure 4

Conversely, any point P lying on the diagonal AC satisfies the equation
6 BPC = 6 DPC . Therefore, 6 APD + 6 BPC = 180◦ . Analogously, we
show that the last equation holds if the point P lies on the diagonal BD .

10. Answer: 6 BAC = 60◦ , 6 ABC = 105◦ and 6 ACB = 15◦ .

Suppose the line AD meets the circumcircle of triangle ABC at A and E
(see Figure 5). Let M be the midpoint of BC and O the circumcentre of
triangle ABC . Since the arcs BE and EC are equal, then the points O ,
M , E are collinear and OE is perpendicular to BC . From the equality
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6 CDE = 6 ADB = 45◦ it follows that 6 AEO = 45◦ . Since |AO| = |EO| ,
we have 6 AOE = 90◦ and AO ‖ DM .

From the equality |BD| · |CD| = |AD|2 we obtain |AD| = |DE| , which im-
plies that |OM | = |ME| . Therefore |BO| = |BE| and also |BO| = |EO| .
Hence the triangle BOE is equilateral. This gives 6 BAE = 30◦ , so
6 BAC = 60◦ . Summing up the angles of the triangle ABD we obtain
6 ABC = 105◦ and from this 6 ACB = 15◦ .

PSfrag replacements

A
B
C
D
E
Q

P
A
B
C
D
M
N
K
X
A
B
C
D
P
Q

A

B C
D

E

O

M

Figure 5

11. Answer: 0 and
1

2
.

Obviously the constant functions f(n) = 0 and f(n) =
1

2
provide solutions.

We show that there are no other solutions. Assume f(2001) 6= 0. Since
2001 = 3 · 667 and gcd(3, 667) = 1, then

f(2001) = f(1) · (f(3) + f(667)) ,

and f(1) 6= 0. Since gcd(2001, 2001) = 2001 then

f(20012) = f(2001)(2 · f(1)) 6= 0 .

Also gcd(2001, 20013) = 2001, so

f(20014)=f(2001) · (f(1) + f(20012))=f(1)f(2001)(1 + 2f(2001)) .

On the other hand, gcd(20012, 20012) = 20012 and

f(20014)=f(20012) · (f(1)+f(1))=2f(1)f(20012)=4f(1)2f(2001) .

So 4f(1) = 1 + 2f(2001) and f(2001) = 2f(1) − 1

2
. Exactly the same
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argument starting from f(20012) 6= 0 instead of f(2001) shows that

f(20012) = 2f(1)− 1

2
. So

2f(1)− 1

2
= 2f(1)

(

2f(1)− 1

2

)

.

Since 2f(1) − 1

2
= f(2001) 6= 0, we have f(1) =

1

2
, which implies

f(2001) = 2f(1)− 1

2
=

1

2
.

12. By Hölder’s inequality,

n
∑

i=1

a3 =

n
∑

i=1

(ai · a2
i ) 6

( n
∑

i=1

a
5/3
i

)3/5

·
( n
∑

i=1

(a2
i )

5/2

)2/5

.

We will show that

n
∑

i=1

a
5/3
i 6

( n
∑

i=1

ai

)5/3

. (4)

Let S =

n
∑

i=1

ai , then (4) is equivalent to

n
∑

i=1

(ai
S

)5/3

6 1 =

n
∑

i=1

ai
S
,

which holds since 0 <
ai
S

6 1 and
5

3
> 1 yield

(ai
S

)5/3

6
ai
S
. So,

n
∑

i=1

a3
i 6

( n
∑

i=1

ai

)

·
( n
∑

i=1

a5
i

)2/5

,

which gives

n
∑

i=1

ai >
3

52/5
>

3

2
, since 25 > 52 and hence 2 > 52/5 .

13. Consider the equation

(7

9

)x

+
(1

9

)x

= 1 .
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It has a root
1

2
< α < 1, because

√

7

9
+

√

1

9
=

√
7 + 1

3
> 1 and

7

9
+

1

9
< 1.

We will prove that an 6 M · nα for some M > 0 — since
nα

n
will be

arbitrarily small for large enough n , the claim follows from this immediately.
We choose M so that the inequality an 6 M · nα holds for 1 6 n 6 8;
since for n > 9 we have 1 < [7n/9] < n and 1 6 [n/9] < n , it follows by
induction that

an = a[7n/9] + a[n/9] 6 M ·
[7n

9

]α

+M ·
[n

9

]α

6

6 M ·
(7n

9

)α

+M ·
(n

9

)α

=M · nα ·
(

(7

9

)α

+
(1

9

)α
)

=M · nα .

14. Let the numbers be x1 6 x2 6 . . . 6 x2n−1 6 x2n . We will show that the
choice s1 = x1 + x3 + x5 + · · ·+ x2n−1 and s2 = x2 + x4 + · · ·+ x2n solves

the problem. Indeed, the inequality
s1
s2

6 1 is obvious and we have

s1
s2

=
x1 + x3 + x5 + . . .+ x2n−1

x2 + x4 + x6 + . . .+ x2n
=

(x3 + x5 + . . .+ x2n−1) + x1

(x2 + x4 + . . .+ x2n−2) + x2n
>

>
(x3 + x5 + . . .+ x2n−1) + 1

(x2 + x4 + . . .+ x2n−2) + 2
>

(x2 + x4 + . . .+ x2n−2) + 1

(x2 + x4 + . . .+ x2n−2) + 2
=

= 1− 1

(x2 + x4 + . . .+ x2n−2) + 2
> 1− 1

(n− 1) + 2
=

n

n+ 1
.

15. Let i > 2. We are given the inequalities

(i− 1) · a2
i−1 > i · aiai−2 (5)

and

i · a2
i > (i+ 1) · ai+1ai−1 . (6)

Multiplying both sides of (6) by x2 , we obtain

i · x2 · a2
i > (i+ 1) · x2 · ai+1ai−1 . (7)
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By (5),

a2
i−1

aiai−2
>

i

i− 1
= 1 +

1

i− 1
> 1 +

1

i
=
i+ 1

i
,

which implies

i · y2 · a2
i−1 > (i+ 1) · y2 · aiai−2 . (8)

Multiplying (5) and (6), and dividing both sides of the resulting inequality
by iaiai−1 , we get

(i− 1) · aiai−1 > (i+ 1) · ai+1ai−2 .

Adding (i + 1)aiai−1 to both sides of the last inequality and multiplying
both sides of the resulting inequality by xy gives

i · 2xy · aiai−1 > (i+ 1) · xy · (ai+1ai−2 + aiai−1) . (9)

Finally, adding up (7), (8) and (9) results in

i · (xai + yai−1)
2 > (i+ 1) · (xai+1 + yai)(xai−1 + yai−2) ,

which is equivalent to the claim.

16. Answer: 2.

For any prime p we have f(p) = f(1) − f(p) and thus f(p) =
f(1)

2
.

If n is a product of two primes p and q , then f(n) = f(p) − f(q) or
f(n) = f(q)− f(p) , so f(n) = 0. By the same reasoning we find that if n
is a product of three primes, then there is a prime p such that

f(n) = f
(n

p

)

− f(p) = −f(p) = −f(1)
2

.

By simple induction we can show that if n is the product of k primes,

then f(n) = (2 − k) · f(1)
2

. In particular, f(2001) = f(3 · 23 · 29) = 1 so

f(1) = −2. Therefore, f(2002) = f(2 · 7 · 11 · 13) = −f(1) = 2.

17. We choose the numbers 1, 3, 5, . . . , 2n − 1 and 2, 4, 8, 16, . . . , 2n , i.e. all
odd numbers and all powers of 2. Consider the three possible cases.
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(1) If x = 2a−1 and y = 2b−1, then x+y = (2a−1)+(2b−1) = 2(a+b−1)
is even and does not divide xy = (2a− 1)(2b− 1) which is odd.

(2) If x = 2k and y = 2m where k < m , then x + y = 2k(2m−k + 1) has

an odd divisor greater than 1 and hence does not divide xy = 2a+b .

(3) If x = 2k and y = 2b− 1, then x+ y = 2k + (2b− 1) > (2b− 1) is odd

and hence does not divide xy = 2k(2b− 1) which has 2b− 1 as its largest
odd divisor.

18. Rewriting a2n

+ 22n

= a2n − 22n

+ 2 · 22n

and making repeated use of the
identity

a2n − 22n

= (a2n−1 − 22n−1

) · (a2n−1

+ 22n−1

)

we get

a2n

+ 22n

= (a2n−1

+ 22n−1

) · (a2n−2

+ 22n−2

) · . . . · (a2m

+ 22m

) · . . .

. . . · (a2 + 22) · (a+ 2) · (a− 2) + 2 · 22n

.

For n > m , assume that a2n

+ 22n

and a2m

+ 22m

have a common divisor

d > 1. Then an odd integer d divides 2 · 22n

, a contradiction.

19. Answer: 31185.

An integer with the prime factorization pr11 ·pr22 · . . . ·prk

k (where p1 , p2 , . . . ,
pk are distinct primes) has precisely (r1 +1) · (r2 +1) · . . . · (rk+1) distinct

positive divisors. Since 360 = 23 · 32 · 5, it follows that 360 has 4 · 3 · 2 = 24
positive divisors. Since 24 = 3 · 2 · 2 · 2, it is easy to check that the smallest
odd number with 24 positive divisors is 32 · 5 · 7 · 11 = 31185.

20. Answer: no.

Under all transformations (a, b, c, d)→ (a′, b′, c′, d′) allowed in the problem
we have |ad− bc| = |a′d′ − b′c′| , but |1 · 4− 2 · 3| = 2 6= 1 = |3 · 7− 4 · 5| .

Remark. The transformations allowed in the problem are in fact the ele-
mentary transformations of the determinant
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

and the invariant |ad − bc| is the absolute value of the determinant which
is preserved under these transformations.
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