The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category I

Problem 1 Prove that an arbitrary integer can be written as a sum of five cube powers of integers.
Solution For each n we have

$$
6 n=(n+1)^{3}+(-n)^{3}+(-n)^{3}+(n-1)^{3} .
$$

Hence an arbitrary integer can be written in one of the following forms:

$$
\begin{aligned}
6 n+1 & =6 n+1^{3} \\
6 n+2 & =6(n-1)+2^{3} \\
6 n+3 & =6(n-4)+3^{3} \\
6 n+4 & =6(n+2)+(-2)^{3} \\
6 n+5 & =6(n+1)+(-1)^{3} \\
6 n & =(n+1)^{3}+(-n)^{3}+(-n)^{3}+(n-1)^{3}+0^{3} .
\end{aligned}
$$

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category I

Problem 2 Prove that for the roots x_{1}, x_{2} of the polynomial

$$
x^{2}-p x-\frac{1}{2 p^{2}}
$$

where $p \in \mathbb{R}$ and $p \neq 0$, the following inequality holds:

$$
x_{1}^{4}+x_{2}^{4} \geq 2+\sqrt{2}
$$

Solution According Vieta's formula we have

$$
\begin{aligned}
x_{1}+x_{2} & =p, \\
x_{1} x_{2} & =-\frac{1}{2 p^{2}} .
\end{aligned}
$$

Hence we use the relationship between the arithmetic mean and geometric mean and we get

$$
\begin{aligned}
x_{1}^{4}+x_{2}^{4} & =\left(x_{1}+x_{2}\right)^{4}-2 x_{1} x_{2}\left(2\left(x_{1}+x_{2}\right)^{2}-x_{1} x_{2}\right) \\
& =p^{4}+\frac{1}{p^{2}}\left(2 p^{2}+\frac{1}{2 p^{2}}\right)=2+p^{4}+\frac{1}{2 p^{4}} \\
& \geq 2+\sqrt{p^{4} \frac{1}{2 p^{4}}}=2+\sqrt{2} .
\end{aligned}
$$

Solution The roots of the polynomial

$$
x^{2}-p x-\frac{1}{2 p^{2}}
$$

are

$$
x_{1}=\frac{p+\sqrt{p^{2}+\frac{2}{p^{2}}}}{2} \quad \text { and } \quad x_{2}=\frac{p-\sqrt{p^{2}+\frac{2}{p^{2}}}}{2} .
$$

Hence

$$
x_{1}^{4}+x_{2}^{4}=2+p^{4}+\frac{1}{2 p^{4}} .
$$

Now we find the minimum of the function $f(x)=x^{4}+\frac{1}{2 x^{4}}$. The minimum occurs at the points $x= \pm 2^{-\frac{1}{8}}$. Hence $f\left(\pm 2^{-\frac{1}{8}}\right)=\sqrt{2}$ and we obtain

$$
x_{1}^{4}+x_{2}^{4} \geq 2+\sqrt{2}
$$

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category I

Problem 3 Prove that for all $n \in \mathbb{N}$,

$$
\prod_{i=1}^{n}\left(1+\frac{1}{2^{i}}\right)<3 .
$$

Solution We prove that

$$
\prod_{i=2}^{n}\left(1+\frac{1}{2^{i}}\right)<2 .
$$

We know that $1+x<\frac{1}{1-x}$ for $0<x<1$. Hence

$$
\left(1+\frac{1}{4}\right)\left(1+\frac{1}{8}\right) \cdots\left(1+\frac{1}{2^{n}}\right)<\frac{1}{\left(1-\frac{1}{4}\right)\left(1-\frac{1}{8}\right) \cdots\left(1-\frac{1}{2^{n}}\right)},
$$

and because $(1-x)(1-y)>1-x-y$ for $0<x, y<1$, we obtain

$$
\left(1-\frac{1}{4}\right)\left(1-\frac{1}{8}\right) \cdots\left(1-\frac{1}{2^{n}}\right)>1-\frac{1}{4}-\frac{1}{8}-\ldots-\frac{1}{2^{n}} \geq \frac{1}{2} .
$$

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category I

Problem 4 Decide whether there exists a non-constant function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
(f(x)-f(y))^{2} \leq|x-y|^{3} \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$.
Solution From (1) we get

$$
\left(\frac{f(x)-f(y)}{x-y}\right)^{2} \leq|x-y| .
$$

Thus

$$
\lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y}=0
$$

and we have $f^{\prime}(x)=0$. Hence $f(x)$ is constant.

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category II

Problem 1 Find a triple of integers x, y, z, each greater then 50 and satisfying

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=3 x y z . \tag{1}
\end{equation*}
$$

Solution Let $x \leq y \leq z$. If (x, y, z) is a solution of the equation (1) then it is easy to check that $(y, z, 3 y z-x)$ and $(x, z, 3 x z-y)$ solve the equation too. The triple $(1,1,1)$ solve the same equation and hence is easy to find the triple (x, y, z) greater then 50 which solve the equation (1).

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category II

Problem 2 Prove that for an arbitrary $n \in \mathbb{N}$, the number

$$
\left(\frac{3+\sqrt{17}}{2}\right)^{n}+\left(\frac{3-\sqrt{17}}{2}\right)^{n}
$$

is an odd integer.
Solution The numbers $\lambda_{1,2}=\frac{3 \pm \sqrt{17}}{2}$ are the solutions of the equation $x^{2}-3 x-2=0$, which is the characteristic equation of the recurrence $y_{n+2}=3 y_{n+1}+2 y_{n}$. We have $a_{0}=2$ and $a_{1}=3$. Then for $n \geq 1$

$$
a_{n+2}=3 a_{n+1}+2 a_{n} \equiv 1 a_{n+1}+0 a_{n}=a_{n+1} \quad(\bmod 2) .
$$

Hence for all $n \geq 1$ the number

$$
a_{n}=\left(\frac{3+\sqrt{17}}{2}\right)^{n}+\left(\frac{3-\sqrt{17}}{2}\right)^{n}
$$

is an odd integer.

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category II

Problem 3 Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy

$$
\begin{equation*}
f(x y)=\frac{f(x)+f(y)}{x+y} \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}, x+y \neq 0$. Is there $x \in \mathbb{R}$ such that $f(x) \neq 0$?
Solution For $y=1$ we have

$$
\begin{equation*}
f(x)=\frac{f(x)+f(1)}{x+1} \quad(x \neq-1) \tag{2}
\end{equation*}
$$

and for $y=0$ we have

$$
\begin{equation*}
f(0)=\frac{f(x)+f(0)}{x} \quad(x \neq 0) . \tag{3}
\end{equation*}
$$

From this equation we obtain $f(x)=f(0)(x-1)$ and for $x=1$ we get $f(1)=0$. From (2) we obtain $x f(x)=0$ and we have $f(x)=0$ for all $x \neq 0,-1$. Now if we put $x=2, y=0$ into (1) we get $f(0)=0$ and for $x=0, y=-1$ we obtain $f(-1)=0$.

The $4^{\text {th }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $6^{\text {th }}$ April 1994
Category II

Problem 4 How many real roots does the polynomial

$$
1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{x^{n}}{n}
$$

have?

Solution Let

$$
f(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{x^{n}}{n} .
$$

We have two possibilities.

1. For n odd it is easy to check that $f^{\prime}(x)>0$ for all $x \in(-\infty, \infty)$. The function $f(x)$ is continuous and $\lim _{x \rightarrow-\infty} f(x)=-\infty$ and $\lim _{x \rightarrow \infty} f(x)=\infty$, so we have one root.
2. For n even we obtain that $f^{\prime}(x)<0$ for $x \in(-\infty,-1), f^{\prime}(x)=0$ for $x=-1$ and $f^{\prime}(x)>0$ for $x \in(-1, \infty)$. The function $f(x)$ has a minimum at the point $x=-1$, but $f(-1)>0$ so $f(x)$ has no roots.

Hence the function $f(x)$ has at most one real root.

