
The 4th Annual Vojtěch Jarník
International Mathematical Competition

Ostrava, 6th April 1994
Category I

Problem 1 Prove that an arbitrary integer can be written as a sum of five cube powers of integers.

Solution For each n we have

6n = (n+ 1)3 + (−n)3 + (−n)3 + (n− 1)3 .

Hence an arbitrary integer can be written in one of the following forms:

6n+ 1 = 6n+ 13

6n+ 2 = 6(n− 1) + 23

6n+ 3 = 6(n− 4) + 33

6n+ 4 = 6(n+ 2) + (−2)3

6n+ 5 = 6(n+ 1) + (−1)3

6n = (n+ 1)3 + (−n)3 + (−n)3 + (n− 1)3 + 03 .
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Problem 2 Prove that for the roots x1, x2 of the polynomial

x2 − px− 1

2p2
,

where p ∈ R and p 6= 0, the following inequality holds:

x41 + x42 ≥ 2 +
√
2 .

Solution According Vieta’s formula we have

x1 + x2 = p ,

x1x2 = − 1

2p2
.

Hence we use the relationship between the arithmetic mean and geometric mean and we get

x41 + x42 = (x1 + x2)
4 − 2x1x2(2(x1 + x2)

2 − x1x2)

= p4 +
1

p2
(2p2 +

1

2p2
) = 2 + p4 +

1

2p4

≥ 2 +

√
p4

1

2p4
= 2 +

√
2 .

�

Solution The roots of the polynomial

x2 − px− 1

2p2

are

x1 =
p+

√
p2 + 2

p2

2
and x2 =

p−
√
p2 + 2

p2

2
.

Hence

x41 + x42 = 2 + p4 +
1

2p4
.

Now we find the minimum of the function f(x) = x4 + 1
2x4 . The minimum occurs at the points x = ±2− 1

8 .

Hence f(±2− 1
8 ) =

√
2 and we obtain

x41 + x42 ≥ 2 +
√
2 .
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Problem 3 Prove that for all n ∈ N,
n∏

i=1

(
1 +

1

2i

)
< 3 .

Solution We prove that
n∏

i=2

(
1 +

1

2i

)
< 2 .

We know that 1 + x < 1
1−x for 0 < x < 1. Hence(

1 +
1

4

)(
1 +

1

8

)
· · ·
(
1 +

1

2n

)
<

1

(1− 1
4 )(1−

1
8 ) · · · (1−

1
2n )

,

and because (1− x)(1− y) > 1− x− y for 0 < x, y < 1, we obtain(
1− 1

4

)(
1− 1

8

)
· · ·
(
1− 1

2n

)
> 1− 1

4
− 1

8
− . . .− 1

2n
≥ 1

2
.
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Problem 4 Decide whether there exists a non-constant function f : R→ R satisfying(
f(x)− f(y)

)2 ≤ |x− y|3 (1)

for all x, y ∈ R.

Solution From (1) we get

(
f(x)− f(y)

x− y
)2 ≤ |x− y| .

Thus

lim
y→x

f(x)− f(y)
x− y

= 0

and we have f ′(x) = 0. Hence f(x) is constant. �
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Problem 1 Find a triple of integers x, y, z, each greater then 50 and satisfying

x2 + y2 + z2 = 3xyz . (1)

Solution Let x ≤ y ≤ z. If (x, y, z) is a solution of the equation (1) then it is easy to check that (y, z, 3yz− x)
and (x, z, 3xz − y) solve the equation too. The triple (1, 1, 1) solve the same equation and hence is easy to find
the triple (x, y, z) greater then 50 which solve the equation (1). �
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Problem 2 Prove that for an arbitrary n ∈ N, the number(3 +√17
2

)n
+
(3−√17

2

)n
is an odd integer.

Solution The numbers λ1,2 = 3±
√
17

2 are the solutions of the equation x2−3x−2 = 0, which is the characteristic
equation of the recurrence yn+2 = 3yn+1 + 2yn. We have a0 = 2 and a1 = 3. Then for n ≥ 1

an+2 = 3an+1 + 2an ≡ 1an+1 + 0an = an+1 (mod 2) .

Hence for all n ≥ 1 the number

an =
(3 +√17

2

)n
+
(3−√17

2

)n
is an odd integer. �
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Problem 3 Let the function f : R→ R satisfy

f(xy) =
f(x) + f(y)

x+ y
(1)

for all x, y ∈ R, x+ y 6= 0. Is there x ∈ R such that f(x) 6= 0?

Solution For y = 1 we have

f(x) =
f(x) + f(1)

x+ 1
(x 6= −1) (2)

and for y = 0 we have

f(0) =
f(x) + f(0)

x
(x 6= 0) . (3)

From this equation we obtain f(x) = f(0)(x− 1) and for x = 1 we get f(1) = 0. From (2) we obtain xf(x) = 0
and we have f(x) = 0 for all x 6= 0,−1. Now if we put x = 2, y = 0 into (1) we get f(0) = 0 and for x = 0, y = −1
we obtain f(−1) = 0. �
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Problem 4 How many real roots does the polynomial

1 + x+
x2

2
+
x3

3
+ . . .+

xn

n

have?

Solution Let

f(x) = 1 + x+
x2

2
+
x3

3
+ . . .+

xn

n
.

We have two possibilities.

1. For n odd it is easy to check that f ′(x) > 0 for all x ∈ (−∞,∞). The function f(x) is continuous and
limx→−∞ f(x) = −∞ and limx→∞ f(x) =∞, so we have one root.

2. For n even we obtain that f ′(x) < 0 for x ∈ (−∞,−1), f ′(x) = 0 for x = −1 and f ′(x) > 0 for x ∈ (−1,∞).
The function f(x) has a minimum at the point x = −1, but f(−1) > 0 so f(x) has no roots.

Hence the function f(x) has at most one real root. �


