The $22^{\text {nd }}$ Annual Vojtěch Jarník International Mathematical Competition Ostrava, $30^{\text {th }}$ March 2012 Category II

Problem 1 Let $f:[1, \infty) \rightarrow(0, \infty)$ be a non-increasing function such that

$$
\limsup _{n \rightarrow \infty} \frac{f\left(2^{n+1}\right)}{f\left(2^{n}\right)}<\frac{1}{2}
$$

Prove that

$$
\int_{1}^{\infty} f(x) \mathrm{d} x<\infty
$$

Solution Since

$$
\limsup _{n \rightarrow \infty} \frac{2^{n+1} f\left(2^{n+1}\right)}{2^{n} f\left(2^{n}\right)}<1
$$

then by ratio test we obtain that the series

$$
\sum_{n=1}^{\infty} 2^{n} f\left(2^{n}\right)
$$

converges. Using Cauchy condensation test we obtain that

$$
\sum_{n=1}^{\infty} f(n)
$$

converges. Now, by integral test for convergence we have

$$
\int_{1}^{\infty} f(x) \mathrm{d} x<\infty
$$

The $22^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $30^{\text {th }}$ March 2012
Category II

Problem 2 Let M be the (tridiagonal) 10×10 matrix

$$
M=\left(\begin{array}{rrrrrrr}
-1 & 3 & 0 & \cdots & \cdots & \cdots & 0 \\
3 & 2 & -1 & 0 & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & \vdots \\
\vdots & 0 & -1 & 2 & \ddots & 0 & \vdots \\
\vdots & & \ddots & \ddots & \ddots & -1 & 0 \\
\vdots & & & 0 & -1 & 2 & -1 \\
0 & \cdots & \cdots & \cdots & 0 & -1 & 2
\end{array}\right) .
$$

Show that M has exactly nine positive real eigenvalues (counted with multiplicities).
Solution Let $x^{T}=\left(0, x_{1}, \ldots, x_{9}\right)$. Then the direct calculation shows that

$$
\begin{equation*}
x^{T} M x=x_{1}^{2}+\left(x_{2}-x_{1}\right)^{2}+\cdots+\left(x_{9}-x_{8}\right)^{2}+x_{9}^{2} . \tag{1}
\end{equation*}
$$

Let $\lambda_{\text {min }}:=\min \{\lambda \mid \lambda \in \sigma(M)\}$ (recall that if a matrix M is symmetric then $\sigma(M) \subset \mathbb{R}$). Moreover, since M is symmetric, there exists an orthogonal matrix C such that $C^{T} M C=\operatorname{diag}\left\{\lambda_{\min }, \lambda_{1} \ldots, \lambda_{9}\right\}$. Hence we infer that $y^{T}\left(\lambda_{\min } I-M\right) y \leq 0$ for $y \in \mathbb{R}^{10}$. Let $y^{T}=(1,-1,0, \ldots, 0)$. Then $2 \lambda_{\min } \leq y^{T} M y=-5$. Thus $\lambda_{\min }<0$. Let $V_{1}=\left\{\left(0, x_{1}, \ldots, x_{9}\right) \mid x_{i} \in \mathbb{R}\right\} \subset \mathbb{R}^{10}$. Then, in view of (1), we have

$$
\begin{equation*}
y^{T} M y \geq 0 \tag{2}
\end{equation*}
$$

for any $y \in V_{1}$ and $y^{T} M y=0$ if and only if $y=0$.
Suppose on the contrary that M admits at least two nonpositive eigenvalues $\lambda_{1}, \lambda_{2} \in \sigma(M)$. Consequently, there exist $y_{1}, y_{2} \in \mathbb{R}^{10}$ such that $y_{1} \perp y_{2}, y_{1}^{T} y_{1}=y_{2}^{T} y_{2}=1$ and $M y_{i}=\lambda_{i} y_{i}(i=1,2)$. Put $V_{2}:=\operatorname{span}\left\{y_{1}, y_{2}\right\}$. Then for any $y=\alpha_{1} y_{1}+\alpha_{2} y_{2} \in V_{2}$ one has

$$
\begin{equation*}
y^{T} M y=\alpha_{1}^{2} \cdot \lambda_{1}+\alpha_{2}^{2} \cdot \lambda_{2} \leq 0 \tag{3}
\end{equation*}
$$

Finally, we obtain that

$$
\operatorname{dim} V_{1}+\operatorname{dim} V_{2}=9+2=11>10
$$

Therefore $V_{1} \cap V_{2} \neq\{0\}$. Take $0 \neq y \in V_{1} \cap V_{2}$. Then, in view of (2), $y^{T} M y>0$. But (3) implies that $y^{T} M y \leq 0$ - a contradiction.

The $22^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $30^{\text {th }}$ March 2012
Category II

Problem 3 Let $(A,+, \cdot)$ be a ring with unity, having the following property: for all $x \in A$ either $x^{2}=1$ or $x^{n}=0$ for some $n \in \mathbb{N}$. Show that A is a commutative ring.
Solution Denote by $U(A)$ the multiplicative group of units of the ring $A(U(A)=\{x \mid x$ is invertible $\})$. Note first that $(U(A), \cdot)$ is commutative, because if $x, y \in U(A),(x y)^{2}=1 \Rightarrow x y \cdot x y=1$, and multiplying by x to the left and by y to the right and using also the fact that $x^{2}=1=y^{2}$, we get that

$$
\begin{equation*}
x y=y x \tag{1}
\end{equation*}
$$

We now show that if

$$
x \notin U(A) \text { then } 1-x \in U(A) .
$$

Assume, by contradiction, that

$$
\begin{equation*}
\exists x \notin U(A) \text { so } y=1-x \notin U(A) . \tag{2}
\end{equation*}
$$

By hypothesis,

$$
\exists n \text { and } m \in \mathbb{N} \text { so } x^{n}=0 ; y^{m}=0
$$

and as

$$
x y=x(1-x)=x-x^{2}=(1-x) x=y x
$$

we get that

$$
(x+y)^{n+m}=\sum_{i+j=n+m} C_{n+m}^{i} x^{i} y^{j}=0
$$

Note that whenever $i+j=n+m$ we have

$$
i \geq n \text { or } j \geq m \text { and so } x^{i}=0 \text { or } y^{j}=0
$$

So

$$
1=x+y \notin U(A),
$$

which is a contradiction; thus (2) is proved.
Commutativity in A follows now from (1) and (2) with a case by case analysis: $x, y \in A$,

1. if $x \in U(A), y \in U(A)$ then $(1) \Rightarrow x y=y x$;
2. if $x \in U(A), y \notin U(A)$ then $(2) \Rightarrow 1-y \in U(A)$ and from (1) we have $x(1-y)=(1-y) x \Rightarrow x y=y x$;
3. if $x \notin U(A), y \in U(A)$ analogous to the case 2 and
4. if $x \notin U(A), y \notin U(A)$ then $(2) \Rightarrow 1-x, 1-y \in U(A)$
and using

$$
(1-x)(1-y)=(1-y)(1-x) \Leftrightarrow 1-x-y+x y=1-y-x+x y \Leftrightarrow x y=y x .
$$

Now cases $1 \rightarrow 4$ above show that A is a commutative ring.

The $22^{\text {nd }}$ Annual Vojtěch Jarník
International Mathematical Competition
Ostrava, $30^{\text {th }}$ March 2012
Category II

Problem 4 Let a, b, c, x, y, z, t be positive real numbers with $1 \leq x, y, z \leq 4$. Prove that

$$
\frac{x}{(2 a)^{t}}+\frac{y}{(2 b)^{t}}+\frac{z}{(2 c)^{t}} \geq \frac{y+z-x}{(b+c)^{t}}+\frac{z+x-y}{(c+a)^{t}}+\frac{x+y-z}{(a+b)^{t}} .
$$

Solution We will use the following variant of Schur's inequality.
Lemma 1 For arbitrary $A, B, C>0$,

$$
x(A-B)(A-C)+y(B-A)(B-C)+z(C-A)(C-B) \geq 0 .
$$

Proof Without loss of generality we can assume $A \leq B \leq C$. Let $U=B-A$ and $V=C-B$. Then

$$
L H S=x U(U+V)-y U V+z(U+V) V \geq U(U+V)-4 U V+(U+V) V=(U-V)^{2} \geq 0
$$

Lemma 2 For every $p>0$,

$$
\frac{1}{p^{k}}=\frac{1}{\Gamma(k)} \int_{0}^{\infty} t^{k-1} e^{-p t} \mathrm{~d} t
$$

Proof Substituting $u=p t$,

$$
\int_{0}^{\infty} t^{k-1} e^{-p t} \mathrm{~d} t=\frac{1}{p^{k}} \int_{0}^{\infty} u^{k-1} e^{-u} \mathrm{~d} u=\frac{\Gamma(k)}{p^{k}}
$$

Now, applying Lemma 1 to $A=e^{-a t}, B=e^{-b t}$, and $C=e^{-c t}$, the statement can be proved as

$$
\begin{aligned}
0 & \leq \int_{0}^{\infty} t^{k-1}\left(x\left(e^{-a t}-e^{-b t}\right)\left(e^{-a t}-e^{-c t}\right)+y\left(e^{-b t}-e^{-a t}\right)\left(e^{-b t}-e^{-c t}\right)+z\left(e^{-c t}-e^{-a t}\right)\left(e^{-c t}-e^{-b t}\right)\right) \mathrm{d} t \\
& =\int_{0}^{\infty} t^{k-1}\left(x e^{-2 a t}+y e^{-2 b t}+z e^{-2 c t}-(y+z-x) e^{-(b+c) t}-(z+x-y) e^{-(c+a) t}-(x+y-x) e^{-(a+b) t}\right) \mathrm{d} t \\
& =\Gamma(k)\left(\frac{x}{(2 a)^{k}}+\frac{y}{(2 b)^{k}}+\frac{z}{(2 c)^{k}}-\frac{y+z-x}{(b+c)^{k}}-\frac{z+x-y}{(c+a)^{k}}-\frac{x+y-z}{(a+b)^{k}}\right)
\end{aligned}
$$

