Problem 11814
(American Mathematical Monthly, Vol.122, January 2015)

Proposed by C. Lupu (USA).

Let ¢ be a continuously differentiable function from [0,1] into R, with ¢(0) = 0 and ¢(1) = 1, and
suppose that ¢’( ) 7é 0 for 0 <z < 1. Let f be a continuous function from [0,1] into R, such that

fo x)dr = fo (x) dw. Show that there exists t with 0 < t < 1 such that fg é(z)f(x)dz = 0.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
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(note that by Rolle’s theorem ¢(s) # 0 for s € (0,1)).
The function g is continuous in [0, 1] because
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then G(0) = 0 and
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Therefore, by Rolle’s theorem, there exists ¢ € (0,1) such that G’(¢t) = g(t) = 0. Since ¢(¢) # 0 and
¢'(t) # 0 for ¢t € (0,1), it follows that
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