Problem 11800. [AMM, October 2014]. Proposed by O. Klurman, Montreal, Canada. Let f be
a continuous function from [0, 1] into R*. Prove that

/01 f(:v)dx—exp[/ollogf(:v)dx} < max (m_m)z

= 0<zy<1

Solution by Borislav Karaivanov, Lexington, SC, and Tzvetalin S. Vassilev, Nipissing University,
North Bay, Ontario, Canada. Let x;, = % and yr = f(xg) for K =0,1,...,n. Using the uniform
continuity of f on [0,1], we find
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where M = maxi<j<p Yr and m = minj<y<y, yx. Therefore, it suffices to show that
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Regarding the left-hand side of (1) as a function of {/y; for any one of the y;’s, we obtain a

function of the form g(t) = 1t" — At + B with A > 0. Since ¢/(t) = t"~' — A, we conclude that g
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attains its global maximum on [{/m, v/ M] at one of the endpoints. Hence, the left-hand side of
(1) is majorized by w — VMFkmn—k for some 0 < k < n, and it suffices to prove that
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for any 0 < k < n, or equivalently
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where a := % €10,1] and ¢ := % > 1. Denoting the left-hand side of (2) by h(t), we find
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for the last two factors are non-negative when a > 1/2 and non-positive when a < 1/2. Therefore,
h is non-decreasing for ¢ > 1 and h(t) > h(1) = 0 which proves (2). O



