Problem 11795

(American Mathematical Monthly, Vol.121, August-September 2014)

Proposed by M. Merca (Romania).

Let p be the partition counting function and let g be the function given by $g(n)=\frac{1}{2}\lceil n / 2\rceil\lceil(3 n+1) / 2\rceil$. Let $A(n)$ be the set of non-negative integer triples (i, j, k) such that $g(i)+j+k=n$. Prove that for $n \geq 1$,

$$
p(n)=\frac{1}{n} \sum_{(i, j, k) \in A(n)}(-1)^{\lceil i / 2\rceil-1} g(i) p(j) p(k) .
$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

By the pentagonal number theorem

$$
G(x):=\prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{n=0}^{\infty}(-1)^{\lceil n / 2\rceil} x^{g(n)} .
$$

Let P be the generating function for $p(n)$, then

$$
P(x)=\sum_{n=1}^{\infty} p(n) x^{n}=\frac{1}{G(x)},
$$

Moreover,

$$
x G^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{\lceil n / 2\rceil} g(n) x^{g(n)}=-G(x) \sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}
$$

and

$$
x P^{\prime}(x)=\sum_{n=1}^{\infty} n p(n) x^{n}=\frac{1}{G(x)} \sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}
$$

Hence $x P^{\prime}(x)=-x G^{\prime}(x)(P(x))^{2}$ and by extracting the coefficient of x^{n} for $n \geq 1$, we obtain

$$
n p(n)=-\sum_{(i, j, k) \in A(n)}(-1)^{\lceil i / 2\rceil} g(i) p(j) p(k) .
$$

where

$$
A(n):=\left\{(i, j, k) \in \mathbb{N}^{3}: g(i)+j+k=n\right\}
$$

Note that in the original statement

$$
A(n):=\left\{(i, j, k) \in\left(\mathbb{N}^{+}\right)^{3}: g(i)+j+k=n\right\}
$$

but in this case the formula does not work because j and k do not assume the value 0 (recall that $p(0)=1)$.

