Problem 11788

(American Mathematical Monthly, Vol.121, June-July 2014)

Proposed by S. P. Andriopoulos (Greece).

Let n be a positive integer, and suppose that $0 < y_i \le x_i < 1$ for $1 \le i \le n$. Prove that

$$\frac{\ln x_1 + \dots + \ln x_n}{\ln y_1 + \dots + \ln y_n} \le \sqrt{\frac{1 - x_1}{1 - y_1} + \dots + \frac{1 - x_n}{1 - y_n}}.$$

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

We show by induction on n that a more general inequality holds: if $0 < y_i \le x_i < 1$ for $1 \le i \le n$ and $t \in [0, 1]$ then

$$\frac{\ln x_1 + \dots + \ln x_n}{\ln y_1 + \dots + \ln y_n} \le \left(\frac{1 - x_1}{1 - y_1} + \dots + \frac{1 - x_n}{1 - y_n}\right)^t.$$

For n=1, since $0 < y_1 < 1$ then $\ln y_1 < 0$ and the inequality is equivalent to

$$\frac{\ln x_1}{(1-x_1)^t} \ge \frac{\ln y_1}{(1-y_1)^t}$$

which holds because the map $x \to (\ln x)/(1-x)^t$ is increasing in (0,1):

$$D_x\left(\frac{\ln x}{(1-x)^t}\right) = \frac{1}{x(1-x)^t} + \frac{t\ln x}{(1-x)^{t+1}} = \frac{(1/x) - 1 - t\ln(1/x)}{(1-x)^{t+1}} > 0$$

where we used the fact that $1 < \ln s < s - 1$ for s > 1.

Now we prove the induction step. Since $0 < y_n y_{n+1} \le x_n x_{n+1} < 1$, by the inductive hypothesis,

$$\frac{\ln x_1 + \dots + \ln x_n + \ln x_{n+1}}{\ln y_1 + \dots + \ln y_n + \ln y_{n+1}} = \frac{\ln x_1 + \dots + \ln (x_n x_{n+1})}{\ln y_1 + \dots + \ln (y_n y_{n+1})} \le \left(\frac{1 - x_1}{1 - y_1} + \dots + \frac{1 - x_n x_{n+1}}{1 - y_n y_{n+1}}\right)^t.$$

Since $x \to x^t$ is increasing in $[0, +\infty)$, it suffices to show that

$$\frac{1 - x_n x_{n+1}}{1 - y_n y_{n+1}} \le \frac{1 - x_n}{1 - y_n} + \frac{1 - x_{n+1}}{1 - y_{n+1}}$$

which holds because the linear map

$$x \to \frac{1-x_n}{1-y_n} + \frac{1-x}{1-y_{n+1}} - \frac{1-x_nx}{1-y_ny_{n+1}} = \frac{1-x_n}{1-y_n} + \frac{y_{n+1}(1-y_n)}{(1-y_{n+1})(1-y_ny_{n+1})} - x \cdot \frac{(1-x_n) + y_{n+1}(x_n-y_n)}{(1-y_ny_{n+1})(1-y_ny_{n+1})} + \frac{y_{n+1}(x_n-y_n)}{(1-y_ny_{n+1})(1-y_ny_{n+1})} + \frac{y_{n+1}(x_n-y_n)}{(1-y_$$

is decreasing in $[y_{n+1}, 1]$ and positive at 1.