Problem 11788
(American Mathematical Monthly, Vol.121, June-July 2014)

Proposed by S. P. Andriopoulos (Greece).

Let n be a positive integer, and suppose that 0 < y; < x; < 1 for 1 <i < n. Prove that
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Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We show by induction on n that a more general inequality holds: if 0 < y; < z; <1for1 <i<n
and ¢ € [0,1] then
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For n =1, since 0 < y; < 1 then Iny; < 0 and the inequality is equivalent to
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which holds because the map z — (Inz)/(1 — z)* is increasing in (0,1):
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where we used the fact that 1 <Ilns < s—1 for s > 1.
Now we prove the induction step. Since 0 < Yn¥Yn+1 < TpZpy1 < 1, by the inductive hypothesis,
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Since z — z' is increasing in [0, +00), it suffices to show that
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which holds because the linear map
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is decreasing in [y,+1, 1] and positive at 1. O



