Problem 11781
(American Mathematical Monthly, Vol.121, May 2014)

Proposed by R. Tauraso (Ttalia).

For n > 2, call a positive integer n-smooth if none of its prime factors is larger than n. Let S,
be the set of all n-smooth positive integers. Let C' be a finite, nonempty set of the nonnegative
integers, and let a and d be positive integers. Let M be the set of all positive integers of the form
m = ZZ:l cpsk where ¢, € C and s, € S, for k = 1,...,d. Prove that there are infinitely many

primes p such that p® ¢ M.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universita di Roma “Tor
Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

If M is finite then the property trivially holds. Let us assume that M is infinite and let m; < mgy <
ms < --- be the sequence of positive integers of its elements. It suffices to show that for o > 0,
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In fact, if pf; € M for any k > kg , where py, is the kth prime, then, for & = 1/a, we get a contradiction
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Let f(z) = |M N[1,z]| then f(z) is a non-decreasing function such that
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and therefore
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