Problem 11754

(American Mathematical Monthly, Vol.121, February 2014)

Proposed by D. Beckwith (USA).

When a fair coin is tossed n times, let $P(n)$ be the probability that the lengths of all runs (maximal constant strings) in the resulting sequence are of the same parity as n. Prove that

$$
P(n)= \begin{cases}(1 / 2)^{n / 2} & \text { if } n \text { is even } \\ (1 / 2)^{n-1} F_{n} & \text { if } n \text { is odd }\end{cases}
$$

where F_{n} is the nth Fibonacci number.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, 00133 Roma, Italy.

Assume first that n is even. Then the strings which start with Head and have d runs all of even lengths are counted by the solutions of the equation

$$
2 x_{1}+2 x_{2}+\cdots+2 x_{d}=n
$$

where each x_{i} is a positive integer. The number of such solutions is $\binom{n / 2-1}{d}$ and thus

$$
P(n)=\frac{2}{2^{n}} \sum_{d=1}^{n / 2}\binom{n / 2-1}{d-1}=\frac{2^{n / 2-1}}{2^{n-1}}=(1 / 2)^{n / 2}
$$

Assume now that n is odd. Then the strings which start with Head and have d runs all of odd lengths are counted by the solutions of the equation

$$
\left(2 x_{1}-1\right)+\left(2 x_{2}-1\right)+\cdots+\left(2 x_{d}-1\right)=n
$$

where each x_{i} is a positive integer. The number of such solutions is $\binom{(n+d) / 2-1}{d-1}$ when d is odd and it is zero otherwise. Thus, by setting $d=2 j+1$, we obtain

$$
P(n)=\frac{2}{2^{n}} \sum_{j=0}^{(n-1) / 2}\binom{(n+(2 j+1)) / 2-1}{2 j}=\frac{1}{2^{n-1}} \sum_{j=0}^{(n-1) / 2}\binom{(n-1) / 2+j}{2 j}=(1 / 2)^{n-1} F_{n}
$$

where the last equality is due to the following fact. If $A(t)=\sum_{k \geq 0} a_{k} t^{k}$ then

$$
\sum_{j=0}^{m}\binom{m+j}{2 j} a_{k}=\left[t^{m}\right] \frac{1}{1-t} A\left(\frac{t}{(1-t)^{2}}\right)
$$

Hence for $A(t)=1 /(1-t)$, we obtain

$$
\sum_{j=0}^{m}\binom{m+j}{2 j}=\left[t^{m}\right] \frac{1-t}{1-3 t+t^{2}}=\left[t^{2 m}\right] \frac{F(t)-F(-t)}{2 t}=F_{2 m+1}
$$

where $F(t)=1 /\left(1-t-t^{2}\right)=\sum_{k \geq 0} F_{k} t^{k}$.

