AoPS FUNCTIONAL
 EQUATION MARATHON

Adib Hasan

PROBLEMS

1. Find all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$that satisfies the following two conditions for all $x \in \mathbb{Q}_{+}$:
2. $f(x+1)=f(x)+1$
3. $f\left(x^{2}\right)=f(x)^{2}$
4. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f\left(x^{3}\right)-f\left(y^{3}\right)=\left(x^{2}+x y+y^{2}\right)(f(x)-f(y))
$$

3. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
(1+f(x) f(y)) f(x+y)=f(x)+f(y)
$$

4. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f\left(x^{3}+y^{3}\right)=x f\left(x^{2}\right)+y f\left(y^{2}\right)
$$

5. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)-f(y)=\frac{x}{y(x+y)}
$$

6. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x+y f(x))+f(x f(y)-y)=f(x)-f(y)+2 x y
$$

7. Find least possible value of $f(1998)$ where $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the following equation:

$$
f\left(n^{2} f(m)\right)=m f(n)^{2}
$$

8. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying:

$$
f(x+f(y))=f(x+y)+f(y)
$$

9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that:
(i) $f(x)+f(y)+1 \geq f(x+y) \geq f(x)+f(y)$
(ii)For all $x \in[0,1), \quad f(0) \geq f(x)$
(iii) $f(1)=-f(-1)=1$.

Find all such functions.
10. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x y+f(x))=x f(y)+f(x)
$$

11. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that $f(2 x)=2 f(x)$ and $f(x)+f\left(\frac{1}{x}\right)=1$.
12. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x f(y))+f(y f(x))=\frac{1}{2} f(2 x) f(2 y)
$$

13. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f\left(x^{5}\right)-f\left(y^{5}\right)=(f(x)-f(y))\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right)
$$

14. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x f(x)+f(y))=y+f(x)^{2}
$$

15. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x)^{2}+2 y f(x)+f(y)=f(y+f(x))
$$

16. Determine all polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with integer coefficients, which are bijective and satisfy the relation:

$$
f(x)^{2}=f\left(x^{2}\right)-2 f(x)+a
$$

where a is a fixed real.
17. Let k is a non-zero real constant.Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x y)=f(x) f(y) \quad$ and $f(x+k)=f(x)+f(k)$.
18. Find all continuous and strictly-decreasing functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$that satisfies

$$
f(x+y)+f(f(x)+f(y))=f(f(x+f(y))+f(y+f(x)))
$$

19. Find all functions $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ of two variables satisfying

$$
f(x, x)=x, f(x, y)=f(y, x),(x+y) f(x, y)=y f(x, x+y)
$$

20. Prove that for any function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x+y+x y)=f(x)+f(y)+f(x y) \Longleftrightarrow f(x+y)=f(x)+f(y)
$$

21. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(x)^{3}+f(y)^{3}+f(z)^{3}=f\left(x^{3}+y^{3}+z^{3}\right)
$$

22. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(f(x)+y)=2 x+f(f(y)-x)
$$

23. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$
f(f(n))+f(n+1)=n+2
$$

24. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that:

$$
f(x) f(y f(x))=f(x+y)
$$

25. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy this equation:

$$
f(x f(y)+f(x))=f(y f(x))+x
$$

26. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{2}+f(y)\right)=y+f(x)^{2}
$$

27. If any function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
f\left(x^{3}+y^{3}\right)=(x+y)\left(f(x)^{2}-f(x) f(y)+f(y)^{2}\right)
$$

then prove that $f(1996 x)=1996 f(x)$.
28. Find all surjective functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x-y))=f(x)-f(y)
$$

29. Find all $k \in \mathbb{R}$ for which there exists a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(1) \leq 1$ and $f(x)^{2}+f^{\prime}(x)^{2}=k$.
30. Find all $a \in \mathbb{R}$ for which there exists a non-constant function $f:(0,1] \rightarrow \mathbb{R}$ such that

$$
a+f(x+y-x y)+f(x) f(y) \leq f(x)+f(y)
$$

31. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
2 n+2009 \leq f(f(n))+f(n) \leq 2 n+2011
$$

32. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying $f(a)=1$ and

$$
f(x) f(y)+f\left(\frac{a}{x}\right) f\left(\frac{a}{y}\right)=2 f(x y)
$$

33. Determine all functions $f: \mathbb{Q} \rightarrow \mathbb{C}$ such that
(i) for any rational $x_{1}, x_{2}, \ldots, x_{2010}, f\left(x_{1}+x_{2}+\ldots+x_{2010}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{2010}\right)$ (ii) for all $x \in \mathbb{Q}, \overline{f(2010)} f(x)=f(2010) \overline{f(x)}$.
34. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y+z)=f(x)+f(y)+f(z)+3 \sqrt[3]{f(x+y) f(y+z) f(z+x)} \quad \forall x, y, z \in \mathbb{Q}
$$

35. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=\max _{y \in \mathbb{R}}(2 x y-f(y))
$$

36.
37. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y
$$

38. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying

$$
f(x)^{2}+2 y f(x)+f(y)=f(y+f(x))
$$

39. Let $k \geq 1$ be a given integer. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{k}+f(y)\right)=y+f(x)^{k}
$$

40. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
f(x y)+f(x-y) \geq f(x+y)
$$

41. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ that satisfy $f(1)=f(-1)$ and

$$
f(m)+f(n)=f(m+2 m n)+f(n-2 m n)
$$

42. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+f(y+f(z)))=f(x)+f(f(y))+f(f(f(z)))
$$

43. Let f be a real function defined on the positive half-axis for which $f(x y)=x f(y)+y f(x)$ and $f(x+1) \leq f(x)$ hold for every positive x. If $f\left(\frac{1}{2}\right)=\frac{1}{2}$, show that $f(x)+f(1-x) \geq-x \log _{2} x-(1-x) \log _{2}(1-x)$ for every $x \in(0,1)$.
44. Let a be a real number and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f(0)=\frac{1}{2}$ and $f(x+y)=f(x) f(a-y)+f(y) f(a-x)$.Prove that f is a constant function.
45. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)^{3}=-\frac{x}{12}\left(x^{2}+7 x f(x)+16 f(x)^{2}\right)
$$

46. Find all functions $f: \mathbb{R} \backslash\{0,1\} \rightarrow \mathbb{R}$ which satisfies

$$
f(x)+f\left(\frac{1}{1-x}\right)=1+\frac{1}{x(1-x)}
$$

47. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a function such that
(i) If $x<y$ then $f(x)<f(y)$
(ii) $f\left(\frac{2 x y}{x+y}\right) \geq \frac{f(x)+f(y)}{2}$

Show that $f(x)<0$ for some value of x.
48. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+f(x y)=f(x)+f(y)+f(x y+1)
$$

49.A Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
$f(x)+f(y)+f(z)+f(x+y+z)=f(x+y)+f(y+z)+f(z+x)+f(0)$
49.B Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x f(y)+f(x))=2 f(x)+x y
$$

50. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following conditions:
(i) $f(-x)=-f(x)$
(ii) $f(x+1)=f(x)+1$
(iii) $f\left(\frac{1}{x}\right)=\frac{f(x)}{x^{2}}$

Prove that $f(x)=x \forall x \in \mathbb{R}$.
51. Find all injective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfies

$$
f(f(x)) \leq \frac{f(x)+x}{2}
$$

52. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y
$$

53. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{n}+f(y)\right)=y+f(x)^{n}
$$

where $n>1$ is a fixed natural number.
54. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(x-y+f(y))=f(x)+f(y)
$$

55. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which have the property

$$
f(x) f(y)=2 f(x+y f(x))
$$

56. Find all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$with the property

$$
f(x)+f(y)+2 x y f(x y)=\frac{f(x y)}{f(x+y)}
$$

57. Determine all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
f(x+y)-f(x-y)=4 \sqrt{f(x) f(y)}
$$

58. Determine all functions $f: \mathbb{N}_{0} \rightarrow\{1,2, \ldots, 2000\}$ such that
(i)For $0 \leq n \leq 2000, \quad f(n)=n$
(ii) $f(f(m)+f(n))=f(m+n)$
59. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))=y+f(x+1)
$$

60. Let $n>m>1$ be odd integers.Let $f(x)=x^{m}+x^{n}+x+1$.Prove that $f(x)$ is irreducible over \mathbb{Z}.
61. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies the following equation:

$$
f(m+n)+f(m n-1)=f(m) f(n)+2
$$

Find all such functions.
62. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function such that $f(\sqrt{a b})=\sqrt{f(a) f(b)}$ for all $a, b \in \mathbb{R}_{+}$ satisfying $a^{2} b>2$. Prove that the equation holds for all $a, b \in \mathbb{R}_{+}$
63. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
[f(m)+f(n)] f(m-n)=[f(m)-f(n)] f(m+n)
$$

64. Find all polynomials which satisfy

$$
P(x+1)=P(x)+2 x+1
$$

65. A rational function f (i.e. a function which is a quotient of two polynomials) has the property that $f(x)=f\left(\frac{1}{x}\right)$. Prove that f is a function in the variable $x+\frac{1}{x}$.
66. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-y)=f(x+y) f(y)
$$

67. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y)=f(x)+f(y)+f(x y)-2
$$

68. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}_{0}$ such that
(i) $f(-x)=-f(x)$
(ii) $f\left(\frac{1}{x+y}\right)=f\left(\frac{1}{x}\right)+f\left(\frac{1}{y}\right)+2(x y-1000)$ for all $x, y \in \mathbb{R}_{0}$ such that
$x+y \in \mathbb{R}_{0}$, too.
69. Let $f(n)$ be defined on the set of positive integers by the rules: $f(1)=2$ and

$$
f(n+1)=f(n)^{2}-f(n)+1
$$

Prove that for all integers $n>1$, we have

$$
1-\frac{1}{2^{2^{n-1}}}<\frac{1}{f(1)}+\frac{1}{f(2)}+\ldots+\frac{1}{f(n)}<1-\frac{1}{2^{2^{n}}}
$$

70. Determine all functions f defined on the set of positive integers that have the property

$$
f(x f(y)+y)=y f(x)+f(y)
$$

and $f(p)$ is a prime for any prime p.
71. Determine all functions $f: \mathbb{R}-\{0,1\} \rightarrow \mathbb{R}$ such that

$$
f(x)+f\left(\frac{1}{1-x}\right)=\frac{2(1-2 x)}{x(1-x)}
$$

72. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+f(x-y)=2 f(x) f(y)
$$

and $|f(x)| \geq 1 \quad \forall x \in \mathbb{R}$
73. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{3}+2 y\right)+f(x+y)=g(x+2 y)
$$

74. For each positive integer n let $f(n)=\frac{1}{\sqrt[3]{n^{2}+2 n+1}+\sqrt[3]{n^{2}-1}+\sqrt[3]{n^{2}-2 n+1}}$. Determine the largest value of $f(1)+f(3)+\ldots+f(999997)+f(999999)$.
75. Find all strictly monotone functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x)+y)=f(x+y)+f(0)
$$

76. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)}
$$

77. find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x f(x)-y f(y)=(x-y) f(x+y)
$$

78. For each positive integer n let $f(n)=\lfloor 2 \sqrt{n}\rfloor-\lfloor\sqrt{n+1}+\sqrt{n-1}\rfloor$.Determine all values of n for which $f(n)=1$.
79. Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be an injective function and $f(x)=x^{n}-2 x$.If $n \geq 3$, find all natural odd values of n.
80. Find all continuous, strictly increasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- $f(0)=0, f(1)=1$
- $\lfloor f(x+y)\rfloor=\lfloor f(x)\rfloor+\lfloor f(y)\rfloor$ for all $x, y \in \mathbb{R}$ such that $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor$.

81. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)
$$

82. Find All Functions $f: \mathbb{N} \rightarrow \mathbb{N}$

$$
f(m+f(n))=n+f(m+k)
$$

where k is fixed natural number.
83. Let f be a function defined for all real numbers and taking real numbers as its values. Suppose that, for all real numbers x, y the function satisfies

$$
f(2 x)=f\left(\sin \left(\frac{\pi x}{2}+\frac{\pi y}{2}\right)\right)+f\left(\sin \left(\frac{\pi x}{2}-\frac{\pi y}{2}\right)\right)
$$

and

$$
f\left(x^{2}-y^{2}\right)=(x+y) f(x-y)+(x-y) f(x+y) .
$$

Show that these conditions uniquely determine $f(1990+\sqrt[2]{1990}+\sqrt[3]{1990})$ and give its value.
84. Find all polynomials $P(x)$ Such that

$$
x P(x-1)=(x-15) P(x)
$$

85. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y f(x)-1)=x^{2} f(y)-f(x)
$$

86. Prove that there is no function like $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that: $f(x+y)>y\left(f(x)^{2}\right)$.
87. Let f be a function de fined for positive integers with positive integral values satisfying the conditions:
(i) $f(a b)=f(a) f(b)$,
(ii) $f(a)<f(b)$ if $a<b$,
(iii) $f(3) \geq 7$

Find the minimum value for $f(3)$.
88. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies
(i) $f(a b)=f(a) f(b)$ whenever the gcd of a and b is 1 ,
(ii) $f(p+q)=f(p)+f(q)$ for all prime numbers p and q.

Show that $f(2)=2, f(3)=3$ and $f(1999)=1999$.
89. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x+y)=f(x)+f(y)+f(x y)
$$

90.A Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right)=f(3 a b c)
$$

90.B Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right)=a \cdot f\left(a^{2}\right)+b \cdot f\left(b^{2}\right)+c \cdot f\left(c^{2}\right)
$$

91. Let f be a bijection from \mathbb{N} into itself. Prove that one can always find three natural numbers a, b, c such that $a<b<c$ and $f(a)+f(c)=2 f(b)$.
92. Suppose two functions $f(x)$ and $g(x)$ are defined for all x such that $2<x<4$ and satisfy $2<f(x)<4,2<g(x)<4, f(g(x))=g(f(x))=x$ and $f(x) \cdot g(x)=x^{2}$, for all such values of x.Prove that $f(3)=g(3)$.
93. Determine all monotone functions $f: \mathbb{R} \rightarrow \mathbb{Z}$ such that $f(x)=x, \forall x \in \mathbb{Z}$ and $f(x+y) \geq f(x)+f(y)$
94. Find all monotone functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(4 x)-f(3 x)=2 x$.
95.A Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x))=x^{2}-2
$$

95.B Do there exist the real coefficients a, b, c such that the following functional equation $f(f(x))=a x^{2}+b x+c$ has at least one root?
96. Let $n \in \mathbb{N}$, such that $\sqrt{n} \notin \mathbb{N}$ and $A=\left\{a+b \sqrt{n} \mid a, b \in \mathbb{N}, a^{2}-n b^{2}=1\right\}$. Prove that the function $f: A \rightarrow \mathbb{N}$, such that $f(x)=[x]$ is injective but not surjective.
97. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(m)+f(n))=m+n$.
98. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
f\left(x^{2}+y^{2}\right)=f(x y)
$$

99. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that:
(i) $f(1)=f(-1)$
(ii) $f(x)+f(y)=f(x+2 x y)+f(y-2 x y)$.
100. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y) \leq f(x)+f(y)$ and $f(x) \leq e^{x}-1$.
101. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x y)+f(x-y) \geq f(x+y)$. Prove that $f(x) \geq 0$.
102. Find all continuous functions $f:(0,+\infty) \rightarrow(0,+\infty)$, such that $f(x)=f\left(\sqrt{2 x^{2}-2 x+1}\right)$, for each $x>0$.
103. Determine all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that $f\left(a^{2}-b^{2}\right)=f^{2}(a)-f^{2}(b)$, for all $a, b \in \mathbb{N}_{0}, a \geq b$.
104. Find all continues functions $f: R \longrightarrow R$ for each two real numbers x, y : $f(x+y)=f(x+f(y))$
105. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- $f(f(x) y+x)=x f(y)+f(x)$, for all real numbers x, y and
- the equation $f(t)=-t$ has exactly one root.

106. Find all functions $f: \mathbb{X} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+f(x y-1)=(f(x)+1)(f(y)+1)
$$

for all $x, y \in \mathbb{X}$, if a) $\mathbb{X}=\mathbb{Z}$. b) $\mathbb{X}=\mathbb{Q}$.

SOLUTIONS

1. Find all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$that satisfies the following two conditions for all $x \in \mathbb{Q}_{+}$:

$$
\text { 1. } f(x+1)=f(x)+1
$$

$$
\text { 2. } f\left(x^{2}\right)=f(x)^{2}
$$

Solution: From (1) we can easily find by induction that for all $n \in \mathbb{N}$,

$$
f(x+n)=f(x)+n
$$

Therefore by (2), we have

$$
\begin{gathered}
f\left((x+n)^{2}\right)=f(x+n)^{2} \Leftrightarrow f\left(x^{2}+2 n x+n^{2}\right)=(f(x)+n)^{2} \\
\Longleftrightarrow f\left(x^{2}+2 n x\right)+n^{2}=f(x)^{2}+2 f(x) n+n^{2} \Leftrightarrow f\left(x^{2}+2 n x\right)=f(x)^{2}+2 n f(x)
\end{gathered}
$$

Now let's put $x=\frac{p}{q} \quad p, q \in \mathbb{N}_{0}$ and let $n \rightarrow q$.

$$
\Longrightarrow f\left(\frac{p^{2}}{q^{2}}\right)+2 p=f\left(\frac{p^{2}}{q^{2}}\right)+2 q f\left(\frac{p}{q}\right)
$$

So $f\left(\frac{p}{q}\right)=\frac{p}{q} \quad \forall x \in \mathbb{Q}_{+}$which satisfies the initial equation.
2. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f\left(x^{3}\right)-f\left(y^{3}\right)=\left(x^{2}+x y+y^{2}\right)(f(x)-f(y))
$$

Solution: WLOG we may assume that $f(0)=0$.(Otherwise let $F(x)=f(x)-$ $f(0)$.It's easy to see F also follows the given equation.)
Now putting $y=0$ we get $f\left(x^{3}\right)=x^{2} f(x)$.Substituting in the main equation we get $f(x)=x f(1)$.So all the functions are $f(x)=a x+b$ where $a, b \in \mathbb{R}$
3. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
(1+f(x) f(y)) f(x+y)=f(x)+f(y)
$$

Solution: If $f(0)$ is not 0 , then $P(0,0)$ gives $1+f(0)^{2}=2 \Longrightarrow f(0)=1,-1$.
$P(0, x)$ gives $f(x)= \pm 1$ each time and so by continuity we get $f(x)=1$ or $f(x)=-1$.

- If $f(0)=0$
$P(x,-x)$ gives $f(-x)=-f(x)$ if $f(u)=0$ with $u \neq 0$ then $f(x+u)=f(x)$
$f\left(\frac{u}{2}\right)=-f\left(-\frac{u}{2}\right)=-f\left(\frac{u}{2}\right) \Longrightarrow f\left(\frac{u}{2}\right)=0$
we also have $f(2 u)=0$ (and also $f(n u)=0$ by induction)
so $f\left(\frac{n}{2^{k}} u\right)=0$ for every $n, k \in \mathbb{N}$ so $f(x)=0$ for every $x \in \mathbb{R}$. (Take limits and use continuity)
- If $f(u)=0$ only for $u=0$
now suppose there exist an a : $f(a) \geq 1$ so there is x_{0} for which we have $f\left(x_{0}\right)=1$ now let $x=y=0.5 x_{0}$ so $f\left(x_{0} / 2\right)=1$ by $\left[f\left(0.5 x_{0}\right)-1\right]^{2}=0$ and because of continuity $f(0)=1$
or $f(0)=-1$ by the same argument.
So $|f(x)|<1$ for every x now let $f(x)=\tanh (g(x))$ (this may be done, by the domain of tanh)
so $g(x+y)=g(x)+g(y)$ so $g(x)=c x$ so $f(x)=\tanh (c x)$.

4. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f\left(x^{3}+y^{3}\right)=x f\left(x^{2}\right)+y f\left(y^{2}\right)
$$

Solution: Let $P(x, y)$ be the assertion.The following things can be proved easily: $f(0)=0 ; f\left(x^{3}\right)=x f\left(x^{2}\right) ; f(x+y)=f(x)+f(y) \forall(x, y) \in \mathbb{R}^{2}$ $f\left((x+y)^{3}\right)=(x+y) f\left((x+y)^{2}\right)=(x+y)\left(f\left(x^{2}\right)+2 f(x y)+f\left(y^{2}\right)\right)$ $f\left((x+y)^{3}\right)=f\left(x^{3}\right)+f\left(y^{3}\right)+3 f(x y(x+y))$
Comparing these two we find that

$$
\begin{gathered}
x f(y)+y f(x)+2(x+y) f(x y)=3 f(x y(x+y)) \\
\Longrightarrow f\left(x^{2}\right)=\frac{x f(1)+(2 x-1) f(x)}{2}
\end{gathered}
$$

So $f\left(x^{6}\right)=\frac{x^{3} f(1)+\left(2 x^{3}-1\right) x f\left(x^{2}\right)}{2}$
Also notice $f\left(x^{6}\right)=x^{2} f\left(x^{4}\right)=x^{2}\left(\frac{x^{2} f(1)+\left(2 x^{2}-1\right) f\left(x^{2}\right)}{2}\right)$
From these two, we get

$$
(x-1) f\left(x^{2}\right)=(x-1) x^{2} f(1)
$$

Let's assume $x \neq 1$.So $f\left(x^{2}\right)=x^{2} f(1)$.The last formula also works for $x=1$. So $f\left(x^{3}\right)=x f\left(x^{2}\right)=x^{3} f(1) \forall x \in \mathbb{R}$. So the only function satisfying $P(x, y)$ is $f(x)=c x \forall x \in \mathbb{R}$ where c is a fixed real.
5. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)-f(y)=\frac{x}{y(x+y)}
$$

Solution: WLOG we may assume that $f(1)=-1$. (Otherwise let $F(x)=f(x)-$ $f(1)-1$.It's easy to see $F(1)=-1$ and F also follows the given equation.)Now let

$$
P(x, y) \Longrightarrow f(x+y)-f(y)=\frac{x}{y(x+y)}
$$

$P(x, 1)$ gives $f(x)=-\frac{1}{x}$. So all the functions are $f(x)=-\frac{1}{x}+c$ where $c \in \mathbb{R}$.
6. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x+y f(x))+f(x f(y)-y)=f(x)-f(y)+2 x y
$$

Solution: Let $P(x, y) \Longrightarrow f(x+y f(x))+f(x f(y)-y)=f(x)-f(y)+2 x y$.
$P(0,0) \Longrightarrow f(0)=0$ $P(0, x) \Longrightarrow f(-x)=-f(x)$
Suppose $f(a)=0$.Then $P(a, a) \Longrightarrow 0=2 a^{2} \Longrightarrow a=0$.So $f(x)=0 \Longleftrightarrow x=0$.Now let $x \neq 0$.

$$
P\left(x, \frac{x+y}{f(x)}\right)+P\left(\frac{x+y}{f(x)},-x\right) \Longrightarrow f(2 x+y)=2 f(x)+f(y)
$$

It is obviously true for $x=0$. Now make a new assertion $Q(x, y) \Longrightarrow f(2 x+y)=$ $2 f(x)+f(y)$
for all $x, y \in \mathbb{R} . Q(x, 0) \Longrightarrow f(2 x)=2 f(x)$ and so $f(2 x+y)=f(2 x)+f(y)$.Therefore $f(x+y)=f(x)+f(y) \forall x, y \in \mathbb{R}$ and the function is aditive.

$$
\begin{gathered}
P(y, x) \Longrightarrow f(y+x f(y))+f(y f(x)-x)=f(y)-f(x)+2 x y \\
\Longrightarrow-f(-y+x(-f(y))-f(y(-f(x))+x)=-f(x)-(-f(y))+2 x y
\end{gathered}
$$

So if $f(x)$ is a solution then $-f(x)$ is also a solution. Hence wlog we may consider $f(1) \geq 0$.
Now using aditive property the original assertion becomes

$$
R(x, y): f(x f(y))+f(y f(x))=2 x y
$$

$R\left(x, \frac{1}{2}\right) \Longrightarrow f$ is surjective.So $\exists b$ such that $f(b)=1$.Then $R(a, a) \Longrightarrow a^{2}=1 \Longrightarrow$ $a=1$.
(Remember that we assumed $f(1) \geq 0$ i.e. $f(-1) \leq 0$)
$R(x, 1) \Longrightarrow f(x)+f(f(x))=2 x$ hence f is injective.
$R(x, x) \Longrightarrow f(x f(x))=x^{2}$ and so $f\left(x^{2}\right)=f(f(x f(x)))$.Now $R(x f(x), 1)$ gives

$$
f\left(x^{2}\right)+x^{2}=2 x f(x)
$$

So $f\left((x+y)^{2}\right)+(x+y)^{2}=2(x+y) f(x+y) \Longrightarrow f(x y)+x y=x f(y)+y f(x)$.So we have the
following properties:

$$
\begin{align*}
& R(x, y) \Longrightarrow f(x f(y))+f(y f(x))=2 x y \\
& A(x, y) \Longrightarrow f(x y)=x f(y)+y f(x)-x y \\
& B(x) \Longrightarrow f(f(x))=2 x-f(x) \text {.So } \\
& R(x, x) \Longrightarrow f(x f(x))=x^{2} \quad \ldots \tag{1}\\
& A(x, f(x)) \Longrightarrow f(x f(x))=x f(f(x))+f(x)^{2}-x f(x) \quad \ldots \tag{2}\\
& B(x) \Longrightarrow f(f(x))=2 x-f(x) \quad \ldots \quad \ldots \tag{3}\\
& \text { So }-(1)+(2)+x(3) \Longrightarrow 0=x^{2}+f(x)^{2}-2 x f(x) \Longrightarrow(f(x)-x)^{2}=0 \Longrightarrow f(x)=x
\end{align*}
$$

So all the functions are $f(x)=x \forall x \in \mathbb{R}$ and $f(x)=-x \forall x \in \mathbb{R}$.
7. Find least possible value of $f(1998)$ where $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the following
equation:

$$
f\left(n^{2} f(m)\right)=m f(n)^{2}
$$

Solution: Denote $f(1)=a$, and put $m=n=1$, therefore $f(f(k))=a^{2} k$ and $f\left(a k^{2}\right)=f^{2}(k), \forall k \in \mathbb{N}$
Thus now, we have: $f^{2}(x) f^{2}(y)=f^{2}(x) f\left(a y^{2}\right)=f\left(x^{2} f\left(f\left(a y^{2}\right)\right)\right)=f\left(x^{2} a^{3} y^{2}\right)=$ $f\left(a(a x y)^{2}\right)=f^{2}(a x y)$
$\Longleftrightarrow f(a x y)=f(x) f(y) \Rightarrow f(a x)=a f(x)$
$\Longleftrightarrow a f(x y)=f(x) f(y), \forall x, y \in \mathbb{N}$.
Now we can easily prove that $f(x)$ is divisible by a for each x, more likely we have that $f^{k}(x)=a^{k-1} \cdot f\left(x^{k}\right)$ is divisible by a^{k-1}.
For proving the above asertion we consider p^{α} and p^{β} the exact powers of a prime p that tivide $f(x)$ and a respectively, therefore $k \alpha \geq(k-1) \beta, \forall k \in \mathbb{N}$, therefore $\alpha \geq \beta$, so $f(x)$ is divisible by a.
Now we just consider the function $g(x)=\frac{f(x)}{a}$. Thus: $g(1)=1, g(x y)=g(x) g(y)$, $g(g(x))=x$. Since $g(x)$ respects the initial condition of the problem and $g(x) \leq f(x)$, we claim that it is enough to find the least value of $g(1998)$.
Since $g(1998)=g\left(2 \cdot 3^{3} \cdot 37\right)=g(2) \cdot g^{3}(3) \cdot g(37)$, and $g(2), g(3), g(37)$ are disting prime numbers (the proof follows easily), we have that $g(1998)$, is not smaller than $2^{3} \cdot 3 \cdot 5=120$. But g beeing a bijection, the value 120 , is obtained for any g, so we have that $g(2)=3, g(3)=2, g(5)=37, g(37)=5$, therefore the answer is 120 .
8. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying:

$$
f(x+f(y))=f(x+y)+f(y)
$$

Solution: Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying:

$$
f(x+f(y))=f(x+y)+f(y)
$$

For any positive real numbers z, we have that

$$
\begin{gathered}
f(x+f(y))+z=f(x+y)+f(y)+z \\
\Longleftrightarrow f(f(x+f(y))+z)=f(f(x+y)+f(y)+z) \\
\Longleftrightarrow f(x+f(y)+z)+f(x+f(y)=f(x+y+f(y)+z)+f(x+y) \\
\Longleftrightarrow f(x+y+z)+f(y)+f(x+y)+f(y)=f(x+2 y+z)+f(y)+f(x+y) \\
\Longleftrightarrow f(x+y+z)+f(y)=f(x+2 y+z)
\end{gathered}
$$

So $f(a)+f(b)=f(a+b)$ and by Cauchy in positive reals, then $f(x)=\alpha x$ for all $x \in(0, \infty)$. Now it's easy to see that $\alpha=2$, then $f(x)=2 x \forall x \in \mathbb{R}_{+}$.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that:
(i) $f(x)+f(y)+1 \geq f(x+y) \geq f(x)+f(y)$
(ii)For all $x \in[0,1), \quad f(0) \geq f(x)$
(iii) $f(1)=-f(-1)=1$.

Find all such functions.

Solution: No complete solution was found.

10. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x y+f(x))=x f(y)+f(x)
$$

Solution: Let $P(x, y)$ be the assertion $f(x y+f(x))=x f(y)+f(x)$
$f(x)=0 \forall x$ is a solution and we'll consider from now that $\exists a$ such that $f(a) \neq 0$.
Suppose $f(0) \neq 0$. Then $P(x, 0) \Longrightarrow f(f(x))=x f(0)+f(x)$ and so $f\left(x_{1}\right)=f\left(x_{2}\right)$ $\Longrightarrow x_{1}=x_{2}$ and $f(x)$ is injective. Then $P(0,0) \Longrightarrow f(f(0))=f(0)$ and, since $f(x)$ is injective, $f(0)=0$, so contradiction. So $f(0)=0$ and $P(x, 0) \Longrightarrow f(f(x))=f(x)$ $P(f(a),-1) \Longrightarrow 0=f(a)(f(-1)+1)$ and so $f(-1)=-1$
Let $g(x)=f(x)-x$
Suppose now $\exists b$ such that $f(b) \neq b$
$P\left(\frac{x}{f(b)-b}, b\right) \Longrightarrow f\left(b \frac{x}{f(b)-b}+f\left(\frac{x}{f(b)-b}\right)\right)=\frac{x}{f(b)-b} f(b)+f\left(\frac{x}{f(b)-b}\right)$
and so $f\left(b \frac{x}{f(b)-b}+f\left(\frac{x}{f(b)-b}\right)\right)-\left(b \frac{x}{f(b)-b}+f\left(\frac{x}{f(b)-b}\right)\right)=x$
and so $g\left(b \frac{x}{f(b)-b}+f\left(\frac{x}{f(b)-b}\right)\right)=x$ and $g(\mathbb{R})=\mathbb{R}$
but $P(x,-1) \Longrightarrow f(f(x)-x)=f(x)-x$ and so $f(x)=x \forall x \in g(\mathbb{R})$
And it's immediate to see that this indeed is a solution.
So we got two solutions :
$f(x)=0 \forall x$
$f(x)=x \forall x$
11. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that $f(2 x)=2 f(x)$ and $f(x)+f\left(\frac{1}{x}\right)=1$.

Solution: Inductively $f\left(2^{n} x\right)=2^{n} x$ from the first equation for all integer n.Since $2 f(1)=1 \Longrightarrow f(1)=\frac{1}{2}$. We get $f\left(2^{n}\right)=2^{n-1}$, hence $f\left(2^{-n}\right)=1-$ 2^{n-1}. But also $f\left(2^{-n}\right)=2^{-n-1}$.
Then $1-2^{n-1}=2^{-n-1}$, which is obviously not true for any positive integer n. Hence there is no such function.
12. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x f(y))+f(y f(x))=\frac{1}{2} f(2 x) f(2 y)
$$

Solution: In this proof, we'll show that when f is not constant, it is bijective on the separate domains $(-\infty, 0]$ and $[0, \infty)$, (not necessarily on \mathbb{R}) and then find all solutions on those domains. Then we get all functions f, by joining any two functions from the separate domains and checking they work. I mentioned some of the solutions in an earlier post.
Assume f is not constant and let $P(x, y) \Longrightarrow f(x f(y))+f(y f(x))=$ $\frac{1}{2} f(2 x) f(2 y)$.
$P(0,0): 4 f(0)=f(0)^{2} \Longrightarrow f(0)=0$ or $4 \ldots \quad \ldots$

Injectivity

As $f(x)=|x|$ is a solution, we cannot prove that f is injective on \mathbb{R}, instead we show it is injective on the domains $(-\infty, 0]$ and $[0, \infty)$. So suppose there were two reals $a \neq b$ such that $f(a)=f(b)$, then we have
$\frac{1}{4} f(2 a)^{2}+\frac{1}{4} f(2 b)^{2}=f(a f(a))+f(b f(b))=f(a f(b))+f(b f(a))=$ $\frac{1}{2} f(2 a) f(2 b)$
Which implies $\frac{1}{4}[f(2 a)-f(2 b)]^{2}=0 \Longrightarrow f(2 a)=f(2 b)$
Moreover,

$$
\begin{aligned}
& f(a f(x))+f(x f(a))=\frac{1}{2} f(2 a) f(2 x) \\
= & \frac{1}{2} f(2 b) f(2 x)=f(b f(x))+f(x f(b))
\end{aligned}
$$

This then implies $f(a f(x))=f(b f(x))$ for all $x \in \mathbb{R} \quad(\star)$.
-Case 1: $f(0)=0$
First we will show that f is injective on $[0, \infty)$. So for the sake of contradiction assume there existed $a>b>0$ such that $f(a)=f(b)$. Since $f(x)$ is continuous and not constant when $x>0$, there must be some interval $\left[0, c_{1}\right]$ or $\left[-c_{1}, 0\right]$ such that f is surjective onto that interval. wlog that interval is $\left[0, c_{1}\right]$. So, motivated by (\star) we define a strictly decreasing sequence $u_{0} \in\left[0, c_{1}\right], u_{n+1}=\frac{b}{a} u_{n}$. We find that $u_{n} \in\left[0, c_{1}\right]$ for all n and therefore $f\left(a u_{0}\right)=f\left(b u_{0}\right)=f\left(a u_{1}\right)=\ldots=f\left(a u_{n}\right)$.
Now $\lim _{n \rightarrow \infty} u_{n} \rightarrow 0$, so by the continuity of f we have

$$
\lim _{n \rightarrow \infty} f\left(a u_{n}\right)=f\left(\lim _{n \rightarrow \infty} a u_{n}\right)=f(0)=0
$$

. This implies that $f\left(a u_{0}\right)=0$ for all $u_{0} \in\left[0, c_{1}\right]$, and therefore $f(x)=0$ when $x \in[0$, $a c_{1}$.
But then for any $x \in\left[0, a c_{1}\right]$ we have $P(x, x) \Longrightarrow 0=f(x f(x))=\frac{1}{4} f(2 x)^{2}$, hence $f(2 x)=0$. Inductively we find that $f(x)=0$ for all $x \in \mathbb{R}^{+}$. Contradicting the assumption that f was not constant on that domain. Hence f is injective on the domain $[0, \infty)$.
As for the domain $(-\infty, 0]$, simply alter the original assumption to $a<b<0$ such that $f(a)=f(b)$ and the same proof applies. Hence f is injective on $(-\infty, 0]$ and $[0, \infty)$
-Case 2: $f(0)=4$
Again we will consider the case $x \in[0, \infty)$. Assume there exists $a>b>0$ such that $f(a)=f(b)$.

$$
P\left(\frac{x}{2}, 0\right) \Longrightarrow f(2 x)+4=2 f(x) \Longleftrightarrow f(2 x)-4=2[f(x)-4]
$$

and inductively $f\left(2^{n} x\right)-4=2^{n}[f(x)-4]$. So assuming there exists atleast one value such that $f(x)-4 \neq 0$, we will have $f\left(2^{n}\right) \rightarrow \pm \infty$. And since f is continuous, f will also be surjective onto at least one of: $[4, \infty)$ or $(-\infty, 4]$. wlog, we will assume it $[4, \infty)$

Similar to the previous case we define the increasing sequence $u_{0} \in\left[4, \frac{a}{b} 4\right]$ and $u_{n+1}=$ $\frac{a}{b} u_{n}$. Again $u_{n} \in[4, \infty)$ and therefore $f\left(b u_{0}\right)=f\left(a u_{0}\right)=f\left(b u_{1}\right)=\ldots=f\left(b u_{n}\right)$.
Now for any $y \in[4, \infty)$ there must exists a $u_{0} \in\left[4, \frac{a}{b} 4\right]$, such that $y=b u_{n}=b \frac{a^{n}}{b^{n}} u_{0}$ for some n. Hence for any value, v in the range of f, there exists some value in $x \in[4 b$, $4 a]$ such that $f(x)=v$.
But f is continuous on the domain $[4 b, 4 a]$ therefore achieves a (finite) maximum. This contradicts the fact that f is surjective on $[4, \infty)$, hence our assumption is false and $f(x)$ is injective on the domain $[0, \infty)$.
We handle the negative domain ($\infty, 0$] by changing the assumption to $a<b<0$ and $f(a)=f(b)$. Therefore $f(x)$ is injective on both domains $x \in(-\infty, 0]$ and $[0, \infty)$. (in fact, it is bijective)
Surjectivity We already know that $f(x)$ is surjective on either $(-\infty, 4]$ or $[4, \infty)$ when $f(0)=4$, so consider, $f(0)=0$. We know that there exists some interval $\left[-c_{1}, 0\right]$ or $[0$, c_{1}] such that f is surjective onto that range and f is monotonic increasing/decreasing (following from f being injective and continuous), so we consider two cases.

Case 1: f is surjective on $\left[0, c_{1}\right]$

Suppose f is bounded above, let $\lim _{x \rightarrow \infty} f(x) \rightarrow L_{1}$. Then when $f(y)>00$ we have $P(\infty, y): L_{1}+f\left(L_{1} y\right)=\frac{L_{1}}{2} f(2 y)$.
So let $y=u_{0}>0$, and $u_{n+1}=\frac{u_{n}}{L}$, and as we send $n \rightarrow \infty$, by the continuity of f we have: $L_{1}+f(0)=\frac{L_{1}}{2} f(0) \Longrightarrow L_{1}=0$.
But this implies f is constant, and contradicts that f is surjective on $\left[0, c_{1}\right]$, hence f is not bounded above, and must be surjective onto $[0, \infty)$.
Case 2: f is surjective on $\left[-c_{1}, 0\right]$
Suppose f is bounded below, let $\lim _{n \rightarrow \infty} f(x) \rightarrow L_{2}$, then when $f(y)<0$ we have
$P(\infty, y): L_{2}+f\left(L_{1} y\right)=\frac{L_{1}}{2} f(2 y)$. By a similar argument to case 1 , we find $L_{2}=0$, contradicting that f is not constant. Hence $f(x)$ has no lower bound and must be surjective onto $[0,-\infty)$

Conclusion

functions when $f(0)=0$
When $f(0)=0$, we know that there exists $2 c \in \mathbb{R}$ such that $f(2 c)=4$, hence
$f(c f(c))=\frac{1}{4} f(2 c)^{2}=4=f(2 c)$ So by the fact that f is injective $c f(c)=2 c \Rightarrow$ $f(c)=2$.
$P(x, c): f(2 x)+f(c f(x))=\frac{1}{2} f(2 c) f(2 x)=2 f(2 x), \Longrightarrow f(c f(x))=f(2 x)$ $\Longrightarrow f(x)=\frac{2}{c} x$
Since c can be any real value, let $\frac{2}{c}=k$ we have $f(x)=k x(\star \star)$.
functions when $f(0)=4$
When $f(0)=4$ the above doesn't work because $c=0$. But we do know that $f\left(2^{n} x\right)=4+2^{n}[f(x)-4]$. So let $f(x)=g(x)+4$ so that $g\left(2^{n} x\right)=2^{n} g(x) \quad$ (2).
Now $P(x, x) \Longrightarrow f(x f(x))=\frac{1}{4} f(2 x)^{2}=(f(x)-2)^{2} \Longleftrightarrow g(x g(x)+4 x)=$ $g(x)^{2}+4 g(x)$.
Applying (2) gives $g\left(2^{n} x g(x)+x\right)=2^{n} g(x)^{2}+g(x)$, which holds for all $n \in \mathbb{Z}, x \in \mathbb{R}^{+}$

Now there must exist $c \in \mathbb{R}$ such that $f(c)=1$, so, letting $x=c$ gives: $g\left(2^{n} c+c\right)=$ $2^{n}+1$ and applying (2) gives $f\left(2^{n+m} c+2^{m}\right)=2^{n+m}+2^{m} \quad$ (3) which also holds for all $n, m \in \mathbb{Z}$ and $x \in \mathbb{R}$.
So now we will define a sequence that has a limit at any positive real number we choose, let that limit be $a \in \mathbb{R}^{+}$, and show that $g(a c)=a$, it will follow that $g(c x)=x$ for all $x \in \mathbb{R}^{+}$.
So pick two integers $k, \ell \in \mathbb{Z}$ such that $2^{k}+2^{\ell}<a$, and let $u_{0}=2^{k}+2^{\ell}$.
Now the next term in the sequence is defined by $u_{n+1}=2^{k_{n+1}} u_{n}^{2}+u_{n}$, where k_{n+1} is the largest possible integer such that $u_{n+1}<a$. Then the limit of this sequence as $n \rightarrow \infty$ is a.
But from (3) we have $g\left(c u_{n}\right)=u_{n}$ for all $n \in \mathbb{N}$, so by the continuity of g, $\lim _{n \rightarrow \infty} g\left(c u_{n}\right)=g\left(\lim _{n \rightarrow \infty} c u_{n}\right)=g(c a)=a$.
This is true for all real $a \in \mathbb{R}^{+}$, so we have $g(x)=\frac{x}{c}$ or $f(x)=\frac{x}{c}+4$, for some $c \neq 0$. so let $\frac{1}{c}=k$ and $f(x)=k x+4 \quad(* * *)$
All the solutions of f
$f(x)=k x \quad k \in \mathbb{R}$
$f(x)=k x+4 \quad k \in \mathbb{R}$
And when when $k_{1} \leq 0, k_{2} \geq 0$, we also have

$$
\begin{gathered}
f(x)= \begin{cases}k_{1} x & x<0 \\
k_{2} x & x \geq 0\end{cases} \\
f(x)= \begin{cases}k_{1} x+4 & x<0 \\
k_{2} x+4 & x \geq 0\end{cases}
\end{gathered}
$$

13. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f\left(x^{5}\right)-f\left(y^{5}\right)=(f(x)-f(y))\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right)
$$

Solution: WLOG assume $f(0)=0$. (Otherwise let $F(x)=f(x)-f(0)$. Then you can easily see F works in equation!).
Define $P(x, y) \Longrightarrow f\left(x^{5}\right)-f\left(y^{5}\right)=(f(x)-f(y))\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right)$.
$P(x, 0) \Longrightarrow f\left(x^{5}\right)=x^{4} f(x)$. Now rewrite $P(x, 1)$ to get

$$
f(x)\left(x^{3}+x^{2}+x+1\right)=\left(x^{3}+x^{2}+x+1\right) f(1) x
$$

Now suppose $x \neq-1$. Then $f(x)=x f(1)$. Now use $P(2,-1)$ to prove $f(-1)=-f(1)$. So all the functions are $f(x)=x f(1)+f(0)$.
14. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x f(x)+f(y))=y+f(x)^{2}
$$

Solution: Let $P(x, y) \Longrightarrow f(x f(x)+f(y))=y+f(x)^{2}$ $P\left(x,-f(x)^{2}\right) \Longrightarrow$ there exists an a such that $f(a)=0$.
$P(a, x) \Longrightarrow f(f(x))=x$. So the function is injective.Now comparing $P(x, y)$ and $P(f(x), y)$
we find $f(x)^{2}=x^{2}$.So $f(x)=x$ or $-x$ at each point. Then $f(0)=0$. Suppose $\exists a, b$ such that
$f(a)=a$ and $f(b)=-b$ and $a, b \neq 0 \cdot P(a, b) \Longrightarrow f\left(a^{2}-b\right)=b+a^{2}$. We know that $f\left(a^{2}-b\right)=a^{2}-b$ or $b-a^{2}$. But none of them is equal to $b+a^{2}$ for non-zero a, b.Hence such a, b can't exist.So all the functions are $f(x)=x \forall x \in \mathbb{R}$ and $f(x)=-x \forall x \in \mathbb{R}$.
15. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x)^{2}+2 y f(x)+f(y)=f(y+f(x))
$$

Solution: Let $P(x, y)$ be the assertion $f(x)^{2}+2 y f(x)+f(y)=f(y+f(x))$ $f(x)=0 \forall x$ is a solution. So we'll look from now for non all-zero solutions.
Let $f(a) \neq 0: P\left(a, \frac{u-f(a)^{2}}{2 f(a)}\right) \Longrightarrow u=f$ (something) $-f$ (something else) and so any real may be written as a difference $f(v)-f(w)$.
$P(w,-f(w)) \Longrightarrow-f(w)^{2}+f(-f(w))=f(0)$
$P(v,-f(w)) \Longrightarrow f(v)^{2}-2 f(v) f(w)+f(-f(w))=f(f(v)-f(w))$
Subtracting the first from the second implies

$$
f(v)^{2}-2 f(v) f(w)+f(w)^{2}=f(f(v)-f(w))-f(0)
$$

Therefore $f(f(v)-f(w))=(f(v)-f(w))^{2}+f(0)$
And so $f(x)=x^{2}+f(0) \forall x \in \mathbb{R}$ which indeed is a solution.
Hence the two solutions : $f(x)=0 \forall x f(x)=x^{2}+a \forall x$
16. Determine all polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with integer coefficients, which are bijective and satisfy the relation:

$$
f(x)^{2}=f\left(x^{2}\right)-2 f(x)+a
$$

where a is a fixed real.
Solution:Let $g(x)=f(x)+1$. The equation can be written as $g(x)^{2}=g\left(x^{2}\right)+a$ and so
$g\left(x^{2}\right)=g(-x)^{2}$ and there are two cases:

- $g(x)$ is odd:

So $g(0)=0$ and so $a=0$. Thus we get $g(x)^{2}=g\left(x^{2}\right)$.It's easy to see that if $\rho e^{i \theta}$ is a root of $g(x)$,
then so is $\sqrt{\rho e^{i \theta}}$. So only roots may be 0 and 1 . Since 1 does not fit, only odd polynomials matching $g(x)^{2}=g\left(x^{2}\right)$ are $g(x)=0$ and $g(x)=x^{2 n+1}$.

$\bullet g(x)$ is even:

Then,
(i)Either $g(x)=c \in \mathbb{Z}$ such that $c^{2}-c=a$.
(ii)Or $g(x)=h\left(x^{2}\right)$ and the equation becomes $h\left(x^{2}\right)^{2}=h\left(x^{4}\right)+a$ and so $h(x)^{2}=h\left(x^{2}\right)+a$ (remember these are polynomials)
By the same argument as before the conclution is the only solutions are $g(x)=c$ and $g(x)=x^{2 n}$.
So all the solutions for $f(x)$ are:

1. If $\nexists c \in \mathbb{Z}$ such that $c^{2}-c=a$, then no solution.
2. If $\exists c \in \mathbb{Z}$ such that $c^{2}-c=a$, then $f(x)=c-1$.
3. $a=0$, then $f(x)=x^{n}-1$.
4. Let k is a non-zero real constant.Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x y)=f(x) f(y)$ and $f(x+k)=f(x)+f(k)$.

Solution: $f(y) f(x)+f(y) f(k)=f(y) f(x+k)$

$$
f(x y)+f(k y)=f(x y+y k)
$$

Now we are going to prove $f(x+k y)=f(x)+f(k y)$. If $y=0$, it's easy since $f(0)=0$. If $y \neq 0$, then we can put $\frac{x}{y}$ in x of $f(x y)+f(k y)=f(x y+y k)$. So $f(x+k y)=f(x)+f(k y)$. Now, since k isn't 0 , we can put $\frac{y}{k}$ in y of $f(x+k y)=f(x)+f(k y)$. So $f(x+y)=f(x)+f(y)$. Since is an Cauchy equation, we can know that for some constant c, that $f(q)=c q$ when q is an rational number. But because of $f(x y)=f(x) f(y), c$ is 0 or 1 . If $c=0$, then we can easily know that $f(x)=0$ for all real number x. If $c=1$, then $f(q)=q$. Now let's prove $f(x)=x$. Since $f(x y)=f(x) f(y), f\left(x^{2}\right)=(f(x))^{2}$. So if $x>0$, then $f(x)>0$ since $f(x) \neq 0$. But $f(-x)=-f(x)$. So if $x<0$, then $f(x)<0$. Now let a a constant that satisfies $f(a)>a$. Then if we let $f(a)=b$, there is a rational number p that satisfies $b>p>a$. So, $f(p-a)+f(a)=f(p)=p$. So, $f(p-a)=p-f(a)=p-b<0$. But, $p-a>0$. So a contradiction! So we can know that $f(x) \leq x$. With a similar way, we can know that $f(x) \geq x$. So $f(x)=x$. We can conclude that possible functions are $f(x)=0$ and $f(x)=x$.
18. Find all continuous and strictly-decreasing functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$that satisfies

$$
f(x+y)+f(f(x)+f(y))=f(f(x+f(y))+f(y+f(x)))
$$

Solution: No complete solution was found.

19. Find all functions $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ of two variables satisfying

$$
f(x, x)=x, f(x, y)=f(y, x),(x+y) f(x, y)=y f(x, x+y)
$$

Solution: Substituting $f(x, y)=\frac{x y}{g(x, y)}$ we get $g(x, x)=x, g(x, y)=g(y, x), g(x$, $y)=g(x, x+y)$. Putting $z \rightarrow x+y$, the last condition becomes $g(x, z)=g(x, z-x)$ for $z>x$. With $g(x, x)=x$ and symmetry, it is now obvious, by Euclidean algorithm, that $g(x, y)=\operatorname{gcd}(x, y)$, therefore $f(x, y)=\operatorname{lcm}(x, y)$.
20. Prove that for any function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x+y+x y)=f(x)+f(y)+f(x y) \Longleftrightarrow f(x+y)=f(x)+f(y)
$$

Solution: Let $P(x, y)$ be the assertion $f(x+y+x y)=f(x)+f(y)+f(x y)$

1) $f(x+y)=f(x)+f(y) \Longrightarrow P(x, y)$

Trivial.
2) $P(x, y) \Longrightarrow f(x+y)=f(x)+f(y) \forall x, y$
$P(x, 0) \Longrightarrow f(0)=0 P(x,-1) \Longrightarrow f(-x)=-f(x)$
2.1) new assertion $R(x, y): f(x+y)=f(x)+f(y) \forall x, y: x+y \neq-2$

Let x, y such that $x+y \neq-2$

$$
\begin{aligned}
& P\left(\frac{x+y}{2}, \frac{x-y}{x+y-2}\right) \Longrightarrow f(x)=f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{x+y-2}\right)+f\left(\frac{x^{2}-y^{2}}{x+y-2}\right) \\
& P\left(\frac{x+y}{2}, \frac{y-x}{x+y-2}\right) \Longrightarrow f(y)=f\left(\frac{x+y}{2}\right)-f\left(\frac{x-y}{x+y-2}\right)-f\left(\frac{x^{2}-y^{2}}{x+y-2}\right)
\end{aligned}
$$

Adding these two lines gives new assertion $Q(x, y): f(x)+f(y)=2 f\left(\frac{x+y}{2}\right) \forall x, y$ such that $x+y \neq-2$
$Q(x+y, 0) \Longrightarrow f(x+y)=2 f\left(\frac{x+y}{2}\right)$ and so $f(x+y)=f(x)+f(y)$
2.2) $f(x+y)=f(x)+f(y) \forall x, y$ such that $x+y=-2$

If $x=-2$, then $y=0$ and $f(x+y)=f(x)+f(y)$ If $x \neq-2$, then $(x+2)+(-2) \neq-2$ and then $R(x+2,-2) \Longrightarrow f(x)=f(x+2)+f(-2)$ and so $f(x)+f(-2-x)=$ $f(-2)$ and so $f(x)+f(y)=f(x+y)$.
21. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(x)^{3}+f(y)^{3}+f(z)^{3}=f\left(x^{3}+y^{3}+z^{3}\right)
$$

22. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(f(x)+y)=2 x+f(f(y)-x)
$$

23. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that:

$$
f(f(n))+f(n+1)=n+2
$$

24. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that:

$$
f(x) f(y f(x))=f(x+y)
$$

25. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy this equation:

$$
f(x f(y)+f(x))=f(y f(x))+x
$$

26. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{2}+f(y)\right)=y+f(x)^{2}
$$

27. If any function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
f\left(x^{3}+y^{3}\right)=(x+y)\left(f(x)^{2}-f(x) f(y)+f(y)^{2}\right)
$$

then prove that $f(1996 x)=1996 f(x)$.
28. Find all surjective functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x-y))=f(x)-f(y)
$$

29. Find all $k \in \mathbb{R}$ for which there exists a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(1) \leq 1$ and $f(x)^{2}+f^{\prime}(x)^{2}=k$.
30. Find all $a \in \mathbb{R}$ for which there exists a non-constant function $f:(0,1] \rightarrow \mathbb{R}$ such that $a+f(x+y-x y)+f(x) f(y) \leq f(x)+f(y)$.
31. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
2 n+2009 \leq f(f(n))+f(n) \leq 2 n+2011
$$

32. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying $f(a)=1$ and

$$
f(x) f(y)+f\left(\frac{a}{x}\right) f\left(\frac{a}{y}\right)=2 f(x y)
$$

33. Determine all functions $f: \mathbb{Q} \rightarrow \mathbb{C}$ such that
(i) for any rational $x_{1}, x_{2}, \ldots, x_{2010}, f\left(x_{1}+x_{2}+\ldots+x_{2010}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{2010}\right)$
(ii)for all $x \in \mathbb{Q}, \overline{f(2010)} f(x)=f(2010) \overline{f(x)}$.
34. Find all functions $f: \mathbb{Q} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y+z)=f(x)+f(y)+f(z)+3 \sqrt[3]{f(x+y) f(y+z) f(z+x)} \quad \forall x, y, z \in \mathbb{Q}
$$

35. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=\max _{y \in \mathbb{R}}(2 x y-f(y))
$$

36.
37. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y
$$

38. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$satisfying

$$
f(x)^{2}+2 y f(x)+f(y)=f(y+f(x))
$$

39. Let $k \geq 1$ be a given integer. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{k}+f(y)\right)=y+f(x)^{k}
$$

40. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
f(x y)+f(x-y) \geq f(x+y)
$$

41. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ that satisfy $f(1)=f(-1)$ and

$$
f(m)+f(n)=f(m+2 m n)+f(n-2 m n)
$$

42. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+f(y+f(z)))=f(x)+f(f(y))+f(f(f(z)))
$$

43. Let f be a real function defined on the positive half-axis for which $f(x y)=x f(y)+y f(x)$ and $f(x+1) \leq f(x)$ hold for every positive x. If $f\left(\frac{1}{2}\right)=\frac{1}{2}$, show that $f(x)+f(1-x) \geq-x \log _{2} x-(1-x) \log _{2}(1-x)$ for every $x \in(0,1)$.
44. Let a be a real number and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function satisfying $f(0)=\frac{1}{2}$ and $f(x+y)=f(x) f(a-y)+f(y) f(a-x)$. Prove that f is a constant function.

Solution:

Let $P(x, y)$ be the assertion $f(x+y)=f(x) f(a-y)+f(y) f(a-x)$.
$P(0,0) \Longrightarrow f(a)=\frac{1}{2}$
$P(x, 0) \Longrightarrow f(x)=f(a-x)$.So $P(x, y)$ can also be written as

$$
Q(x, y) \Longrightarrow f(x+y)=2 f(x) f(y)
$$

$Q(a,-x) \Longrightarrow f(a-x)=f(-x)$.Hence $f(x)=f(-x)$.Then comparing $Q(x, y)$ and $Q(x,-y)$ gives $f(x+y)=f(x-y)$. Choose $x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$. So $f(u)=f(v)$ and f is a constant function.
45. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)^{3}=-\frac{x}{12}\left(x^{2}+7 x f(x)+16 f(x)^{2}\right)
$$

46. Find all functions $f: \mathbb{R} \backslash\{0,1\} \rightarrow \mathbb{R}$ which satisfies

$$
f(x)+f\left(\frac{1}{1-x}\right)=1+\frac{1}{x(1-x)}
$$

47. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a function such that
(i) If $x<y$ then $f(x)<f(y)$
(ii) $f\left(\frac{2 x y}{x+y}\right) \geq \frac{f(x)+f(y)}{2}$

Show that $f(x)<0$ for some value of x.
48. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+f(x y)=f(x)+f(y)+f(x y+1)
$$

49.A Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)+f(y)+f(z)+f(x+y+z)=f(x+y)+f(y+z)+f(z+x)+f(0)
$$

49.B Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x f(y)+f(x))=2 f(x)+x y
$$

50. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following conditions:
(i) $f(-x)=-f(x)$
(ii) $f(x+1)=f(x)+1$
(iii) $f\left(\frac{1}{x}\right)=\frac{f(x)}{x^{2}}$

Prove that $f(x)=x \forall x \in \mathbb{R}$.
51. Find all injective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfies

$$
f(f(x)) \leq \frac{f(x)+x}{2}
$$

52. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y
$$

53. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{n}+f(y)\right)=y+f(x)^{n}
$$

where $n>1$ is a fixed natural number.
54. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(x-y+f(y))=f(x)+f(y)
$$

55. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$which have the property

$$
f(x) f(y)=2 f(x+y f(x))
$$

56. Find all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$with the property

$$
f(x)+f(y)+2 x y f(x y)=\frac{f(x y)}{f(x+y)}
$$

57. Determine all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
f(x+y)-f(x-y)=4 \sqrt{f(x) f(y)}
$$

58. Determine all functions $f: \mathbb{N}_{0} \rightarrow\{1,2, \ldots, 2000\}$ such that
(i)For $0 \leq n \leq 2000, \quad f(n)=n$
(ii) $f(f(m)+f(n))=f(m+n)$
59. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))=y+f(x+1)
$$

60. Let $n>m>1$ be odd integers.Let $f(x)=x^{m}+x^{n}+x+1$.Prove that $f(x)$ is irreducible over \mathbb{Z}.
61. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies the following equation:

$$
f(m+n)+f(m n-1)=f(m) f(n)+2
$$

Find all such functions.
62. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a function such that $f(\sqrt{a b})=\sqrt{f(a) f(b)}$ for all $a, b \in \mathbb{R}_{+}$ satisfying $a^{2} b>2$. Prove that the equation holds for all $a, b \in \mathbb{R}_{+}$
63. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
[f(m)+f(n)] f(m-n)=[f(m)-f(n)] f(m+n)
$$

64. Find all polynomials which satisfy

$$
P(x+1)=P(x)+2 x+1
$$

65. A rational function f (i.e. a function which is a quotient of two polynomials) has the property that $f(x)=f\left(\frac{1}{x}\right)$.Prove that f is a function in the variable $x+\frac{1}{x}$.
66. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-y)=f(x+y) f(y)
$$

67. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y)=f(x)+f(y)+f(x y)-2
$$

68. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}_{0}$ such that
(i) $f(-x)=-f(x)$
(ii) $f\left(\frac{1}{x+y}\right)=f\left(\frac{1}{x}\right)+f\left(\frac{1}{y}\right)+2(x y-1000)$ for all $x, y \in \mathbb{R}_{0}$ such that $x+y \in \mathbb{R}_{0}$, too.
69. Let $f(n)$ be defined on the set of positive integers by the rules: $f(1)=2$ and

$$
f(n+1)=f(n)^{2}-f(n)+1
$$

Prove that for all integers $n>1$, we have

$$
1-\frac{1}{2^{2^{n-1}}}<\frac{1}{f(1)}+\frac{1}{f(2)}+\ldots+\frac{1}{f(n)}<1-\frac{1}{2^{2^{n}}}
$$

70. Determine all functions f defined on the set of positive integers that have the property $f(x f(y)+y)=y f(x)+f(y)$ and $f(p)$ is a prime for any prime p.
71. Determine all functions $f: \mathbb{R}-\{0,1\} \rightarrow \mathbb{R}$ such that

$$
f(x)+f\left(\frac{1}{1-x}\right)=\frac{2(1-2 x)}{x(1-x)}
$$

72. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+f(x-y)=2 f(x) f(y)
$$

and $|f(x)| \geq 1 \quad \forall x \in \mathbb{R}$
73. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{3}+2 y\right)+f(x+y)=g(x+2 y)
$$

74. For each positive integer n let $f(n)=\frac{1}{\sqrt[3]{n^{2}+2 n+1}+\sqrt[3]{n^{2}-1}+\sqrt[3]{n^{2}-2 n+1}}$. Determine the largest value of $f(1)+f(3)+\ldots+f(999997)+f(999999)$.
75. Find all strictly monotone functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x)+y)=f(x+y)+f(0)
$$

76. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)}
$$

77. find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x f(x)-y f(y)=(x-y) f(x+y)
$$

78. For each positive integer n let $f(n)=\lfloor 2 \sqrt{n}\rfloor-\lfloor\sqrt{n+1}+\sqrt{n-1}\rfloor$. Determine all values of n for which $f(n)=1$.
79. Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ be an injective function and $f(x)=x^{n}-2 x$.If $n \geq 3$, find all natural odd values of n.
80. Find all continuous, strictly increasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- $f(0)=0, f(1)=1$
- $\lfloor f(x+y)\rfloor=\lfloor f(x)\rfloor+\lfloor f(y)\rfloor$ for all $x, y \in \mathbb{R}$ such that $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor$.

81. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(x-y) f(x+y)-(x+y) f(x-y)=4 x y\left(x^{2}-y^{2}\right)
$$

82. Find All Functions $f: \mathbb{N} \rightarrow \mathbb{N}$

$$
f(m+f(n))=n+f(m+k)
$$

where k is fixed natural number.
83. Let f be a function defined for all real numbers and taking real numbers as its values. Suppose that, for all real numbers x, y the function satisfies

$$
f(2 x)=f\left(\sin \left(\frac{\pi x}{2}+\frac{\pi y}{2}\right)\right)+f\left(\sin \left(\frac{\pi x}{2}-\frac{\pi y}{2}\right)\right)
$$

and

$$
f\left(x^{2}-y^{2}\right)=(x+y) f(x-y)+(x-y) f(x+y)
$$

Show that these conditions uniquely determine $f(1990+\sqrt[2]{1990}+\sqrt[3]{1990})$ and give its value.
84. Find all polynomials $P(x)$ Such that

$$
x P(x-1)=(x-15) P(x)
$$

85. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y f(x)-1)=x^{2} f(y)-f(x)
$$

86. Prove that there is no function like $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that : $f(x+y)>y\left(f(x)^{2}\right)$.
87. Let f be a function de fined for positive integers with positive integral values satisfying the conditions:
(i) $f(a b)=f(a) f(b)$,
(ii) $f(a)<f(b)$ if $a<b$,
(iii) $f(3) \geq 7$

Find the minimum value for $f(3)$.
88. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies
(i) $f(a b)=f(a) f(b)$ whenever the gcd of a and b is 1 ,
(ii) $f(p+q)=f(p)+f(q)$ for all prime numbers p and q.

Show that $f(2)=2, f(3)=3$ and $f(1999)=1999$.
89. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x+y)=f(x)+f(y)+f(x y)
$$

90.A Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right)=f(3 a b c)
$$

90.B Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(a^{3}\right)+f\left(b^{3}\right)+f\left(c^{3}\right)=a \cdot f\left(a^{2}\right)+b \cdot f\left(b^{2}\right)+c \cdot f\left(c^{2}\right)
$$

91. Let f be a bijection from \mathbb{N} into itself. Prove that one can always find three natural numbers a, b, c such that $a<b<c$ and $f(a)+f(c)=2 f(b)$.
92. Suppose two functions $f(x)$ and $g(x)$ are defined for all x such that $2<x<4$ and satisfy $2<f(x)<4,2<g(x)<4, f(g(x))=g(f(x))=x$ and $f(x) \cdot g(x)=x^{2}$, for all such values of x. Prove that $f(3)=g(3)$.
93. Determine all monotone functions $f: \mathbb{R} \rightarrow \mathbb{Z}$ such that $f(x)=x, \forall x \in \mathbb{Z}$ and $f(x+y) \geq f(x)+f(y)$
94. Find all monotone functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(4 x)-f(3 x)=2 x$.
95.A Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x))=x^{2}-2
$$

95.B Do there exist the real coefficients a, b, c such that the following functional equation $f(f(x))=a x^{2}+b x+c$ has at least one root?
96. Let $n \in \mathbb{N}$, such that $\sqrt{n} \notin \mathbb{N}$ and $A=\left\{a+b \sqrt{n} \mid a, b \in \mathbb{N}, a^{2}-n b^{2}=1\right\}$. Prove that the function $f: A \rightarrow \mathbb{N}$, such that $f(x)=[x]$ is injective but not surjective.
97. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(m)+f(n))=m+n$.
98. Find all functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that

$$
f\left(x^{2}+y^{2}\right)=f(x y)
$$

99. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that:
(i) $f(1)=f(-1)$
(ii) $f(x)+f(y)=f(x+2 x y)+f(y-2 x y)$.
100. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y) \leq f(x)+f(y)$ and $f(x) \leq e^{x}-1$.
101. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x y)+f(x-y) \geq f(x+y)$.

Prove that $f(x) \geq 0$.
102. Find all continuous functions $f:(0,+\infty) \rightarrow(0,+\infty)$, such that $f(x)=f\left(\sqrt{2 x^{2}-2 x+1}\right)$, for each $x>0$.
103. Determine all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that $f\left(a^{2}-b^{2}\right)=f^{2}(a)-f^{2}(b)$, for all $a, b \in \mathbb{N}_{0}, a \geq b$.
104. Find all continues functions $f: R \longrightarrow R$ for each two real numbers x, y : $f(x+y)=f(x+f(y))$
105. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- $f(f(x) y+x)=x f(y)+f(x)$, for all real numbers x, y and
- the equation $f(t)=-t$ has exactly one root.

106. Find all functions $f: \mathbb{X} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+f(x y-1)=(f(x)+1)(f(y)+1)
$$

for all $x, y \in \mathbb{X}$, if a) $\mathbb{X}=\mathbb{Z}$. b) $\mathbb{X}=\mathbb{Q}$.

