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When is ( xy + 1){ yz + 1){ zx + 1) a Square?

KIRAN S. KEDLAYA

Princeton University
Princeton, NJ 08544

To cut the suspense, let’s start with the surprising answer to the title question.

Theorem. If x, y, z are positive integers, then (xy + 1 yz + 1 zx + 1) is a perfect
square if and only if xy + 1, yz + 1, and zx + 1 are all perfect squares.

The purpose of this note is to prove this result using Fermat’s method of infinite
descent, to provide historical context, and to investigate (and eventually refute) a
possible generalization.

For ¢ a positive integer, a P,-set is a set of positive integers, the product of any two
distinct elements of which is ¢ less than a perfect square. (The positivity restriction is
sometimes relaxed, but we will impose it throughout.) Classical examples of P,-sets
include the Py g-set {1,33,68, 105} found by Diophantos and the P;-set {1, 3,8, 120}
found by Fermat.

A sizable literature exists addressing the existence or nonexistence of P,-sets of
certain forms; some early examples are chronicled in [3, Chap. XIX, pp. 513-520]. A
little experimentation shows that P,-sets become nontrivial to construct when they
must have four or more elements; Euler found a general construction of four-element
P,-sets which includes Fermat’s example. Since this construction is essential for the
proof of the theorem, we state it as a lemma (following [5]).

Lemma. If {p,q,r}is a P,-set, then so is {p,q,r,s} for

s=p+q+r+2pqri—2\/(pq+l)(qr+1)(rp+1), (1)

as long as s > 0. (Note that s is necessarily an im‘eger.)

Proof. The values of s defined in (1) are the roots of the quadratic equation
pi+qi+ri+st—2(pg+pr+qr+ps+qs+rs) —dpgrs—4=0, (2)

which can be rewritten in the following ways:

(p+q—r—s)2=4(pq+1)(rs+1)
(p+r—q—s)2=4(pr+ 1)(gs+1)
(p+s—q—r)2=4(qr+ 1)(ps+1).

Since s+ 1 is an integer which is the quotient of two perfect squares, it is also a
square, as are ps + 1 and gs + 1 by the same argument. Thus {p, g, 7, s} is a P,-set.

Not surprisingly, constructing five-element P,-sets is substantially harder. Euler
gave a general construction, and a number of additional examples are also known;
however, it is not known whether there exist infinitely many five-element P,-sets for
any particular values of ¢, or whether there exist any at all for ¢ = 1.

The first significant nonexistence result for P,-sets is due to Baker and Davenport
[1]; using Baker’s theory of linear forms in logarithms of algebraic numbers, they
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showed that Fermat’s P-set {1,3,8} can only be extended by adding 120. Their
method was later refined by Grinstead [4] and Brown [2] and applied to other P,-sets.
An elementary approach to such questions is given by Kangasabapathy and Ponnudu-
rai [6] and by Mohanty and Ramasamy [8]; a systematic presentation and a more
complete bibliography appear in [7].

The above theorem does not directly apply to studying the existence or nonexis-
tence of P-sets, but it does give an interesting characterization of three-element
P,-sets; after the proof, we will see that this phenomenon is (almost) unique to the
case t = 1.

Proof of the Theorem. Suppose there exist triples p, g, r of positive integers (where
we might as well assume p < g <r) such that (pg + 1)(gr + 1)(rp + 1) is a perfect
square, but not all of pg+1, gr+1, rp+1 are squares. Choose a triple that
minimizes p + ¢ +r, and define s as in (1) using the negative square root. We will
show that 0 <s <r and that (pg + 1)(gs + 1)(sp + 1) is a square, but that not all of
pq +1, gs+ 1, sp + 1 are squares, contradicting the minimality of p +¢q + r.

By the equivalent forms of (2), we know that

16( pg + 1)*(pr+1)(gs + 1)(gr+ 1)( ps + 1)
=(pg+ 1) (p+r—q—s)(p+s—q—r)

is a perfect square; since (pg + 1Xgr + 1)(rp + 1) is a square, so then is (pg + 1Xgs
+ 1)(sp + 1). Moreover, ps + 1 is a square if and only if gr+1 is a square, and
pr+ 1is a square if and only if gs + 1 is a square, so not all of pg+ 1, gs + 1, sp +1
are squares.

We also have

(p+qg=r—s)°
rs+ 1 >0
4(pg+1)
and so s > —1/r. Note that r =1 implies (by our assumption that p < ¢ <r) that

p =q =r=1, in which case (pg + 1)(gr + 1)(rp + 1) is not a square, a contradiction.
Hence > 1 and so s > 0. Moreover, if s =0, then we have

Apg+1)=(p+q—r)", 4(qgr+1)=(q+r—p)°, 4mp+1)=(r+p—q)°

contradicting the assumption that not all of pg + 1, gr+ 1, and rp + 1 are squares.
Therefore s is a positive integer.

If s' is the other root of (2) (which is to say, s" satisfies (1) using the positive square
root), then we have

ss’=p2+q2+r2—2pq—2pr-—2qr—4
<r*=p2r-p)—q@r-q)
<r2

Since s is the smaller of the two roots, s < ss" and so we conclude s < r, yielding the
desired contradiction. n

Does an analogous characterization of P,-sets exist for ¢ >1? In other words, is
(pg +t)gr +t)Xrp +1t) a square if and only if pg +¢, gr +t, rp + 1t are all squares?
The proof above does not work in general; the natural analogue of (2) would be

t(p®+q>+r>+s*)—2t(pq +pr+qr+ps+qs+rs) —4pgrs —4t> =0, (3)



VOL. 71, NO. 1, FEBRUARY 1998 63

whose equivalent forms are

4(;mq+t)(rs+t)=t(p+q—r—s)2

and so on, but two obstructions arise. If ¢ is not a perfect square, then {p, g, r} can be
a counterexample even if {p, g, s} is not. Even if ¢ is a perfect square, though, if
¢t > 4, we cannot ensure that s is an integer.

Neither obstruction arises for ¢t =4, and indeed the reader may check that the
natural analogue of the theorem holds in this case with essentially the same proof.
However, we will now show that this analogue does not hold for ¢ # 1,4.

We first construct a counterexample {p, g, r} where ¢ is not a perfect square. Put
p =1, q=a>—t, where q is not a perfect square (which certainly holds if ¢ < 2a + 1);
we shall find r such that r +¢ =tb?, gr +t =tc®, which is equivalent to solving

c?—gb®=1-gq.

Indeed, b =c =1 is a solution, but it yields r =0, which is not a positive integer.
Nonetheless it is useful! To produce a nontrivial solution, let (u, v) be a solution in
positive integers of the Pell equation

u? —qu=1,

and put

(c+b\/—q-)=(1+\/§)(u+u\/5).

Now r = ¢t[(u 4+ v)* — 1] yields a counterexample. For example, if t =a = ¢ = 2, the
solution (3,2) of the Pell equation gives the set {p, g, r} = {1, 2,48}.

On the other hand, if ¢ = d* for d > 2, we can write ¢t = a*> — p? for some positive
a,p, and a similar argument starting from the bogus counterexample p, p,r (r
arbitrary) yields an actual counterexample.

Acknowledgment. Thanks to George Berzsenyi for providing ideas for my entry in the 1992 Westinghouse
Science Talent Search, where the above result first appeared.
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