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1.1 Belarus

National Olympiad, Fourth Round

Problem 10.1 Determine all real numbers a such that the function
f(x) = {ax + sinx} is periodic. Here {y} is the fractional part of y.

Solution: The solutions are a = r
π , r ∈ Q.

First, suppose a = r
π for some r ∈ Q; write r = p

q with p, q ∈ Z,
q > 0. Then

f(x + 2qπ) =
{

p

qπ
(x + 2qπ) + sin(x + 2qπ)

}
=
{

p

qπ
x + 2p + sinx

}
=
{

p

qπ
x + sinx

}
= f(x)

so f is periodic with period 2qπ.
Now, suppose f is periodic; then there exists p > 0 such that

f(x) = f(x+p) for all x ∈ R. Then {ax+sinx} = {ax+ap+sin(x+p)}
for all x ∈ R; in other words g(x) = ap+sin(x+p)−sinx is an integer
for all x. But g is continuous, so there exists k ∈ Z such that g(x) = k

for all x ∈ R. Rewriting this gives

sin(x + p)− sinx = k − ap for all x ∈ R.

Letting x = y, y + p, y + 2p, . . . , y + (n− 1)p and summing gives

sin(y + np)− sin y = n(k − ap) for all y ∈ R and n ∈ N.

Since the left hand side of this equation is bounded by 2, we conclude
that k = ap and sin(x + p) = sinx for all x ∈ R. In particular,
sin
(

π
2 + p

)
= sin

(
π
2

)
= 1 and hence p = 2mπ for some m ∈ N. Thus

a = k
p = k

2mπ = r
π with r = k

2m ∈ Q, as desired.

Problem 10.2 Prove that for any integer n > 1 the sum S of all
divisors of n (including 1 and n) satisfies the inequalities

k
√

n < S <
√

2kn,

where k is the number of divisors of n.

Solution: Let the divisors of n be 1 = d1 < d2 < · · · < dk = n;
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then didk+1−i = n for each i. Thus

S =
k∑

i=1

di =
k∑

i=1

di + dk+1−i

2
>

k∑
i=1

√
didk+1−i = k

√
n,

giving the left inequality. (The inequality is strict because equality
does not hold for d1+dk

2 ≥
√

d1dk.) For the right inequality, let
S2 =

∑k
i=1 d2

i and use the Power Mean Inequality to get

S

k
=
∑k

i=1 di

k
≤

√∑k
i=1 d2

i

k
=

√
S2

k
so S ≤

√
kS2.

Now

S2

n2
=

k∑
i=1

d2
i

n2
=

k∑
i=1

1
d2

k+1−i

≤
n∑

j=1

1
j2

<
π2

6

since d1, . . . , dk are distinct integers between 1 and n. Therefore

S ≤
√

kS2 <

√
kn2π2

6
<
√

2kn.

Problem 10.3 There is a 7 × 7 square board divided into 49 unit
cells, and tiles of three types: 3× 1 rectangles, 3-unit-square corners,
and unit squares. Jerry has infinitely many rectangles and one corner,
while Tom has only one square.

(a) Prove that Tom can put his square somewhere on the board
(covering exactly one unit cell) in such a way that Jerry can not
tile the rest of the board with his tiles.

(b) Now Jerry is given another corner. Prove that no matter where
Tom puts his square (covering exactly one unit cell), Jerry can
tile the rest of the board with his tiles.

Solution:

(a) Tom should place his square on the cell marked X in the boards
below.
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1 2 3 1 2 3 1
2 3 1 2 3 1 2
3 1 2 3 1 2 3
1 2 3 1 2 3 1
2 3 1 X 3 1 2
3 1 2 3 1 2 3
1 2 3 1 2 3 1

1 3 2 1 3 2 1
2 1 3 2 1 3 2
3 2 1 3 2 1 3
1 3 2 1 3 2 1
2 1 3 X 1 3 2
3 2 1 3 2 1 3
1 3 2 1 3 2 1

The grid on the left contains 17 1’s, 15 2’s and 16 3’s; since every
3×1 rectangle contains a 1, a 2 and a 3, Jerry’s corner must cover
a 3 and two 1’s; thus it must be oriented like a Γ. But every such
corner covers a 1, a 2 and a 3 in the right grid, as does any 3× 1
rectangle. Since the right grid also contains 17 1’s, 15 2’s and 16
3’s, Jerry cannot cover the 48 remaining squares with his pieces.

(b) The following constructions suffice.

The first figure can be rotated and placed on the 7×7 board so
that Tom’s square falls into its blank, untiled region. Similarly,
the second figure can be rotated and placed within the remaining
untiled 4 × 4 region so that Tom’s square is still uncovered;
and finally, the single corner can be rotated and placed without
overlapping Tom’s square.

Problem 10.4 A circle is inscribed in the isosceles trapezoid
ABCD. Let the circle meet diagonal AC at K and L (with K between
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A and L). Find the value of

AL ·KC

AK · LC
.

First Solution:

Lemma. Suppose we have a (not necessarily isosceles) trapezoid
ABCD circumscribed about a circle with radius r, where the circle
touches sides AB,BC, CD,DA at points P,Q,R, S, respectively. Let
line AC intersect the circle at K and L, with K between A and L.
Also write m = AP and n = CR. Then

AK · LC = mn + 2r2 −
√

(mn + 2r2)2 − (mn)2

and
AL ·KC = mn + 2r2 +

√
(mn + 2r2)2 − (mn)2.

Proof: Assume without loss of generality that AB ‖ CD, and
orient the trapezoid so that lines AB and CD are horizontal. Let
t = AK, u = KL, and v = LC; also let σ = t + v and π = tv.
By Power of a Point, we have t(t + u) = m2 and v(v + u) = n2;
multiplying these gives π(π + uσ + u2) = m2n2. Also, A and C are
separated by m+n horizontal distance and 2r vertical distance; thus
AC2 = (m + n)2 + (2r)2. Then

(m + n)2 + (2r)2 = AC2 = (t + u + v)2

m2 + 2mn + n2 + 4r2 = t(t + u) + v(v + u) + 2π + uσ + u2

m2 + 2mn + n2 + 4r2 = m2 + n2 + 2π + uσ + u2

2mn + 4r2 − π = π + uσ + u2.

Multiplying by π on both sides we have

π(2mn + 4r2 − π) = π(π + uσ + u2) = (mn)2,

a quadratic in π with solutions

π = mn + 2r2 ±
√

(mn + 2r2)2 − (mn)2.

But since m2n2 = t(t + u)v(v + u) ≥ t2v2, we must have mn ≥ π.
Therefore AK · LC = π = mn + 2r2 −

√
(mn + 2r2)2 − (mn)2. And

since (AK · AL) · (CK · CL) = m2 · n2, we have AL ·KC = m2n2

π =
mn + 2r2 +

√
(mn + 2r2)2 − (mn)2.



6 Belarus

As in the lemma, assume that AB ‖ CD and let the given circle be
tangent to sides AB, BC, CD, DA at points P,Q,R, S, respectively.
Also define m = AP = PB = AS = BQ and n = DR = RC = DS =
CQ.

Drop perpendicular AX to line CD. Then AD = m + n, DX =
|m−n|, and AX = 2r. Then by the Pythagorean Theorem on triangle
ADX, we have (m + n)2 = (m− n)2 + (2r)2 which gives mn = r2.

Using the lemma, we find that AK · LC = (3 − 2
√

2)r2 and
AL ·KC = (3 + 2

√
2)r2. Thus AL·KC

AK·LC = 17 + 12
√

2.

Second Solution: Suppose A′B′C ′D′ is a square with side length
s, and define K ′, L′ analagously to K and L. Then A′C ′ = s

√
2 and

K ′L′ = s, and A′L′ = K ′C ′ = s
√

2+1
2 and A′K ′ = L′C ′ = s

√
2−1
2 .

Thus

A′L′ ·K ′C ′

A′K ′ · L′C ′
=

(
√

2 + 1)2

(
√

2− 1)2
= (

√
2 + 1)4 = 17 + 12

√
2.

Consider an arbitrary isosceles trapezoid ABCD with inscribed
circle ω; assume AB ‖ CD. Since no three of A, B, C, D are
collinear, there is a projective transformation τ taking ABCD to
a parallelogram A′B′C ′D′. This map takes ω to a conic ω′ tangent
to the four sides of A′B′C ′D′. Let P = BC ∩ AD, and let ` be the
line through P parallel to line AB; then τ maps ` to the line at ∞.
Since ω does not intersect `, ω′ is an ellipse. Thus by composing
τ with an affine transformation (which preserves parallelograms) we
may assume that ω′ is a circle. Let W , X, Y , Z be the tangency
points of ω to sides AB, BC, CD, DA respectively, and W ′, X ′, Y ′,
Z ′ their images under τ . By symmetry line WY passes through the
intersection of lines BC and AD, and line XZ is parallel to lines AB

and CD; thus W ′Y ′ ‖ B′C ′ ‖ A′D′ and X ′Z ′ ‖ A′B′ ‖ C ′D′. But
ω′ is tangent to the parallel lines A′B′ and C ′D′ at W ′ and Y ′, so
W ′Y ′ is a diameter of ω′ and W ′Y ′ ⊥ A′B′; thus B′C ′ ⊥ A′B′ and
A′B′C ′D′ is a rectangle. Since A′B′C ′D′ has an inscribed circle it
must be a square. Thus we are in the case considered at the beginning
of the problem; if K ′ and L′ are the intersections of line A′C ′ with
ω′, with K ′ between A′ and L′, then A′L′·K′C′

A′K′·L′C′ = 17 + 12
√

2. Now
τ maps {K, L} = AC ∩ ω to {K ′, L′} = A′C ′ ∩ ω′ (but perhaps not
in that order). If τ(K) = K ′ and τ(L) = L′, then since projective
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transformations preserve cross-ratios, we would have

AL ·KC

AK · LC
=

A′L′ ·K ′C ′

A′K ′ · L′C ′
= 17 + 12

√
2.

But if instead τ(K) = L′ and τ(L) = K ′, then we would obtain
AL·KC
AK·LC = 1

17+12
√

2
< 1, impossible since AL > AK and KC > LC.

It follows that AL·KC
AK·LC = 17 + 12

√
2, as desired.

Problem 10.5 Let P and Q be points on the side AB of the triangle
ABC (with P between A and Q) such that ∠ACP = ∠PCQ =
∠QCB, and let AD be the angle bisector of ∠BAC. Line AD meets
lines CP and CQ at M and N respectively. Given that PN = CD

and 3∠BAC = 2∠BCA, prove that triangles CQD and QNB have
the same area.

Solution: Since 3∠BAC = 2∠ACB,

∠PAN = ∠NAC = ∠ACP = ∠PCQ = ∠QCD.

Let θ equal this common angle measure. Thus ACNP and ACDQ

are cyclic quadrilaterals, so

θ = ∠ANP = ∠CQD = ∠CPN.

From angle-angle-side congruency we deduce that4NAP ∼= 4CQD ∼=
4PCN. Hence CP = CQ, and by symmetry we have AP = QB.
Thus, [CQD] = [NAP ] = [NQB].

Problem 10.6 Show that the equation

{x3}+ {y3} = {z3}

has infinitely many rational non-integer solutions. Here {a} is the
fractional part of a.

Solution: Let x = 3
5 (125k + 1), y = 4

5 (125k + 1), z = 6
5 (125k + 1)

for any integer k. These are never integers because 5 does not divide
125k + 1. Moreover

125x3 = 33(125k + 1)3 ≡ 33 (mod 125),

so 125 divides 125x3−33 and x3−
(

3
5

)3 is an integer; thus {x3} = 27
125 .

Similarly {y3} = 64
125 and {z3} = 216

125 − 1 = 91
125 = 27

125 + 64
125 , and

therefore {x3}+ {y3} = {z3}.
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Problem 10.7 Find all integers n and real numbers m such that
the squares of an n× n board can be labelled 1, 2, . . . , n2 with each
number appearing exactly once in such a way that

(m− 1)aij ≤ (i + j)2 − (i + j) ≤ maij

for all 1 ≤ i, j ≤ n, where aij is the number placed in the intersection
of the ith row and jth column.

Solution: Either n = 1 and 2 ≤ m ≤ 3 or n = 2 and m = 3. It is
easy to check that these work using the constructions below.

1
1 2
3 4

Now suppose we are given a labelling of the squares {aij} which
satisfies the given conditions. By assumption a11 ≥ 1 so

m− 1 ≤ (m− 1)a11 ≤ (1 + 1)2 − (1 + 1) = 2

and m ≤ 3. On the other hand ann ≤ n2 so

4n2 − 2n = (n + n)2 − (n + n) ≤ mann ≤ mn2

and m ≥ 4n2−2n
n2 = 4 − 2

n . Thus 4 − 2
n ≤ m ≤ 3 which implies the

result.

Problem 11.1 Evaluate the product

21999∏
k=0

(
4 sin2 kπ

22000
− 3
)

.

Solution: For simplicity, write f(x) = sin
(

xπ
22000

)
.

At k = 0, the expression inside the parentheses equals −3. Recog-
nizing the triple-angle formula sin(3θ) = 4 sin3 θ− 3 sin θ at play, and
noting that f(k) 6= 0 when 1 ≤ k ≤ 21999, we can rewrite the given
product as

−3
21999∏
k=1

sin
(

3kπ
22000

)
sin
(

kπ
22000

) or − 3
21999∏
k=1

f(3k)
f(k)

. (1)
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Now

21999∏
k=1

f(3k) =

21999−2
3∏

k=1

f(3k) ·

22000−1
3∏

k= 21999+1
3

f(3k) ·
21999∏

22000+2
3

f(3k).

Since sin θ = sin(π−θ) = − sin(π+θ), we have f(x) = f(22000−x) =
−f(x− 22000). Hence, letting Si = {k | 1 ≤ k ≤ 21999, k ≡ i (mod 3)}
for i = 0, 1, 2, the last expression equals

21999−2
3∏

k=1

f(3k) ·

22000−1
3∏

k= 21999+1
3

f(22000 − 3k) ·
21999∏

22000+2
3

(
−f(3k − 22000)

)
=
∏

k∈S0

f(k) ·
∏

k∈S1

f(k) ·
∏

k∈S2

(−f(k))

= (−1)
21999+1

3

21999∏
k=1

f(k) = −
21999∏
k=1

f(k).

Combined with the expression in (1), this implies that the desired
product is (−3)(−1) = 3.

Problem 11.2 Let m and n be positive integers. Starting with the
list 1, 2, 3, . . . , we can form a new list of positive integers in two
different ways.

(i) We first erase every mth number in the list (always starting with
the first); then, in the list obtained, we erase every nth number.
We call this the first derived list.

(ii) We first erase every nth number in the list; then, in the list
obtained, we erase every mth number. We call this the second
derived list.

Now, we call a pair (m,n) good if and only if the following statement
is true: if some positive integer k appears in both derived lists, then
it appears in the same position in each.

(a) Prove that (2, n) is good for any positive integer n.

(b) Determine if there exists any good pair (m,n) such that 2 < m <

n.

Solution: Consider whether some positive integer j is in the first
derived list. If it is congruent to 1 (mod m), then j + mn is as well
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so they are both erased. If not, then suppose it is the t-th number
remaining after we’ve erased all the multiples of m. There are n

multiples of m erased between j and j + mn, so j + mn is the
(t+mn−n)-th number remaining after we’ve erased all the multiples
of m. But either t and t+mn−n are both congruent to 1 (mod n) or
both not congruent to 1 (mod n). Hence j is erased after our second
pass if and only if j + mn is as well.

A similar argument applies to the second derived list. Thus in
either derived list, the locations of the erased numbers repeat with
period mn; and also, among each mn consecutive numbers exactly
mn − (m + n − 1) remain. (In the first list, n +

(⌊
mn−n−1

n

⌋
+ 1
)

=
n +

(
m− 1 +

⌊−1
n

⌋
+ 1
)

= m + n − 1 of the first mn numbers are
erased; similarly, m + n− 1 of the first mn numbers are erased in the
second list.)

These facts imply that the pair (m,n) is good if and only if when
any k ≤ mn is in both lists, it appears at the same position.

(a) Given a pair (2, n), the first derived list (up to k = 2n) is
4, 6, 8, . . . , 2n. If n is even, the second derived list is 3, 5, . . . , n−
1, n + 2, n + 4, . . . , 2n. And if n is odd, the second derived list
is 3, 5, . . . , n − 2, n, n + 3, n + 5, . . . , 2n. In either case the first
and second lists’ common elements are the even numbers between
n + 2 and 2n inclusive. Each such 2n − i (with i < n−1

2 ) is the
(n− 1− i)-th number on both lists, showing that (2, n) is good.

(b) Such a pair exists—in fact, the simplest possible pair (m,n) =
(3, 4) suffices. The first derived list (up to k = 12) is 3, 5, 6, 9, 11, 12
and the second derived list is 3, 4, 7, 8, 11, 12. The common
elements are 3, 11, 12, and these are all in the same positions.

Problem 11.3 Let a1, a2, . . . , a100 be an ordered set of numbers.
At each move it is allowed to choose any two numbers an, am and
change them to the numbers

a2
n

am
− n

m

(
a2

m

an
− am

)
and

a2
m

an
− m

n

(
a2

n

am
− an

)
respectively. Determine if it is possible, starting with the set with
ai = 1

5 for i = 20, 40, 60, 80, 100 and ai = 1 otherwise, to obtain a
set consisting of integers only.

Solution: After transforming an to a′n = a2
n

am
− n

m

(
a2

m

an
− am

)
and
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am to a′m = a2
m

an
− m

n

(
a2

n

am
− an

)
, we have

a′n
n

+
a′m
m

=
[(

1
n
· a2

n

am
− 1

m
· a2

m

an

)
+

am

m

]
+
[(

1
m
· a2

m

an
− 1

n
· a2

n

am

)
+

an

n

]
=

an

n
+

am

m
.

Thus the quantity
∑100

i=1
ai

i is invariant under the given operation.
At the beginning, this sum equals

I1 =
99∑

i=1

ai

i
+

1
500

.

When each of the numbers a1
1 , a2

2 , . . . , a99
99 is written as a fraction in

lowest terms, none of their denominators are divisible by 125; while
125 does divide the denominator of 1

500 . Thus when written as a
fraction in lowest terms, I1 must have a denominator divisible by
125.

Now suppose by way of contradiction that we could make all the
numbers equal to integers b1, b2, . . . , b100 in that order. Then in
I2 =

∑100
i=1

bi

i , the denominator of each of the fractions bi

i is not
divisible by 125. Thus when I2 is written as a fraction in lowest
terms, its denominator is not divisible by 125 either. But then I2

cannot possibly equal I1, a contradiction. Therefore we can never
obtain a set consisting of integers only.

Problem 11.4 A circle is inscribed in the trapezoid ABCD. Let
K, L, M , N be the points of intersections of the circle with diagonals
AC and BD respectively (K is between A and L and M is between
B and N). Given that AK · LC = 16 and BM · ND = 9

4 , find the
radius of the circle.

Solution: Let the circle touch sides AB,BC, CD,DA at P,Q,R, S,
respectively, and let r be the radius of the circle. Let w = AS = AP ;
x = BP = BQ; y = CQ = CR; and z = DR = DS. As in problem
11.4, we have wz = xy = r2 and thus wxyz = r4. Also observe that
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from the lemma in problem 11.4, AK · LC depends only on r and
AP · CR; and BM ·ND depends only on r and BP ·DR.

Now draw a parallelogram A′B′C ′D′ circumscribed about the same
circle, with points P ′, Q′, R′, S′ defined analagously to P,Q,R, S, such
that A′P ′ = C ′R′ =

√
wy. Draw points K ′, L′,M ′, N ′ analagously

to K, L, M, N . Then since A′P ′ · C ′R′ = wy, by the observation
in the first paragraph we must have A′K ′ · L′C ′ = AK · LC = 16;
therefore A′K ′ = L′C ′ = 4. And as with quadrilateral ABCD, we
have A′P ′ ·B′P ′ ·C ′R′ ·D′R′ = r4 = wxyz. Thus B′P ′ ·D′R′ = xz and
again by the observation we must have B′M ′ ·N ′D′ = BM ·ND = 9

4 .
Therefore B′M ′ = N ′D′ = 3

2 .
Then if O is the center of the circle, we have A′O = 4 + r and

S′O = r. By the Pythagorean Theorem A′S′ =
√

8r + 16; similarly,
S′D′ =

√
3r + 9

4 . Since A′S′ · S′D′ = r2, we have

(8r + 16)
(

3r +
9
4

)
= r4,

which has positive solution r = 6 and, by Descartes’ rule of signs, no
other positive solutions.

Problem 11.5 Find the greatest real number k such that for any
triple of positive real numbers a, b, c such that

kabc > a3 + b3 + c3,

there exists a triangle with side legths a, b, c.

Solution: Equivalently, we want the greatest real number k such
that for any a, b, c > 0 with a + b ≤ c, we have

kabc ≤ a3 + b3 + c3.

First pick b = a and c = 2a. Then we must have

2ka3 ≤ 10a3 =⇒ k ≤ 5.

On the other hand, suppose k = 5. Then writing c = a + b + x,
expanding a3 + b3 + c3 − 5abc gives

2a3 + 2b3 − 2a2b− 2ab2 + abx + 3(a2 + b2)x + 3(a + b)x2 + x3.

But 2a3+2b3−2a2b−2ab2 ≥ 0 (either by rearrangement, by AM-GM,
or from the inequality (a + b)(a − b)2 ≥ 0); and the other terms are
nonnegative. Thus a3 + b3 + c3 − 5abc ≥ 0, as desired.
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Problem 11.6 Find all integers x and y such that

x6 + x3y = y3 + 2y2.

Solution: The only solutions are (x, y) equals (0, 0), (0,−2), and
(2, 4).

If x = 0 then y = 0 or −2; if y = 0 then x = 0. Now assume
that both x and y are nonzero, and rewrite the given equation as
x3(x3 + y) = y2(y + 2).

We first show that (x, y) = (ab, 2b3), (ab, b3), or (ab, b3

2 ) for some
integers a, b. Suppose some prime p divides y exactly m > 0 times
(that is, y is divisible by pm but not pm+1). Then since x6 =
y3 + 2y2 − x3y, p must divide x as well — say, n > 0 times.

First suppose p > 2; then it divides the right hand side y2(y + 2)
exactly 2m times. If 3n < m then p divides the left hand side
x3(x3 + y) exactly 6n times so that 6n = 2m, a contradiction. And
if 3n > m then p divides the left hand side exactly 3n + m times so
that 3n + m = 2m and 3n = m, a contradiction. Therefore 3n = m.

Now suppose p = 2. If m > 1, then 2 divides the right hand side
exactly 2m + 1 times. If 3n < m then 2 divides the left hand side 6n

times so that 6n = 2m + 1 > 2m, a contradiction. If 3n > m, then 2
divides the left hand side 3n + m times so that 3n + m = 2m + 1 and
3n = m + 1. Or finally, we could have 3n = m.

We wish to show that (x, y) = (ab, 2b3), (ab, b3), or (ab, b3

2 ). If 2
divides y only once, then from before (since 3n = m when p > 2,m >

0) we have y = 2b3 and x = ab for some a, b. And if 2 divides y

more than once, then (since 3n = m when p > 2,m > 0 and since
3n = m or m + 1 when p = 2,m > 1) we either have (x, y) = (ab, b3)
or (x, y) = (ab, b3

2 ).
Now simply plug these possibilities into the equation. We then

either have a6 +a3 = b3 +2, a6 +2a3 = 8b3 +8, or 8a6 +4a3 = b3 +4.
In the first case, if a > 1 then b3 = a6 + a3 − 2 and some algebra

verifies that (a2 + 1)3 > b3 > (a2)3, a contradiction; if a < 0 then
we have (a2)3 > b3 > (a2 − 1)3. Thus either a = 0 and x = 0 or
a = 1 and b = 0. But we’ve assumed x, y 6= 0, so this case yields no
solutions.

In the second case, if a > 0 then (a2 + 1)3 > (2b)3 > (a2)3. If
a < −2 then (a2)3 > (2b)3 > (a2− 1)3. Thus either a = −2,−1, or 0;
and these yield no solutions either.
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Finally, in the third case when a > 1 then (2a2 +1)3 > b3 > (2a2)3.
When a < −1 then (2a2)3 > b3 > (2a2 − 1)3. Thus either a = −1, 0,

or 1; this yields both (a, b) = (−1, 0) and (a, b) = (1, 2). Only the
latter gives a solution where x, y 6= 0 — namely, (x, y) = (2, 4). This
completes the proof.

Problem 11.7 Let O be the center of circle ω. Two equal chords
AB and CD of ω intersect at L such that AL > LB and DL >

LC. Let M and N be points on AL and DL respectively such that
∠ALC = 2∠MON . Prove that the chord of ω passing through M

and N is equal to AB and CD.

Solution: We work backward. Suppose that P is on minor arc ÂC

and Q is on minor arc B̂D such that PQ = AB = CD, where line PQ

hits AL at M ′ and DL at N ′. We prove that ∠ALC = 2∠M ′ON ′.
Say that the midpoints of AB, PQ, CD are T1, T2, and T3. CD is

the image of AB under the rotation about O through angle ∠T1OT3;
this angle also equals the measure of ÂC, which equals ∠ALC. Also,
by symmetry we have ∠T1OM ′ = ∠M ′OT2 and ∠T2ON ′ = ∠N ′OT3.
Therefore

∠ALC = ∠T1OT3 = ∠T1OT2 + ∠T2OT3

= 2(∠M ′OT2 + ∠T2ON ′) = 2∠M ′ON ′,

as claimed.
Now back to the original problem. Since ∠T1OT3 = ∠ALC,

∠T1OL = 1
2T1OT3 = 1

2∠ALC. Then since ∠MON = 1
2∠ALC =

∠T1OL, M must lie on T1L. Then look at the rotation about O that
sends T1 to M ; it sends A to some P on ÂC, and B to some point
Q on B̂D. Then PQ is a chord with length AB, passing through
M on AL and N ′ on DL. From the previous work, we know that
∠ALC = 2∠MON ′; and since ∠ALC = 2∠MON , we must have
N = N ′. Thus the length of the chord passing through M and N

indeed equals AB and CD, as desired.

IMO Selection Tests

Problem 1 Find all functions h : Z → Z such that

h(x + y) + h(xy) = h(x)h(y) + 1

for all x, y ∈ Z.
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Solution: There are three possible functions:

h(n) = 1;
h(2n) = 1, h(2n + 1) = 0;

h(n) = n + 1.

Plugging (x, y) = (0, 0) into the functional equation, we find that

h(0)2 − 2h(0) + 1 = 0

and hence h(0) = 1. Plugging in (x, y) = (1,−1) then yields

h(0) + h(−1) = h(1)h(−1) + 1

and
h(−1) = h(1)h(−1),

and thus either h(−1) = 0 or h(1) = 1.

First suppose that h(1) 6= 1; then h(−1) = 0. Then plugging in
(x, y) = (2,−1) and (x, y) = (−2, 1) yields h(1) + h(−2) = 1 and
h(−2) = h(−2)h(1) + 1. Substituting h(−2) = 1 − h(1) into the
second equation, we find that

1− h(1) = (1− h(1))h(1) + 1,

h(1)2 − 2h(1) = 0, and h(1)(h(1)− 2) = 0,

implying that h(1) = 0 or h(1) = 2.

Thus, h(1) = 0, 1, or 2. Plugging y = 1 into the equation for each of
these cases shows that h must be one of the three functions presented.

Problem 2 Let a, b, c ∈ Q, ac 6= 0. Given that the equation
ax2 + bxy + cy2 = 0 has a non-zero solution of the form

(x, y) = (a0 + a1
3
√

2 + a2
3
√

4, b0 + b1
3
√

2 + b2
3
√

4)

with ai, bi ∈ Q, i = 0, 1, 2, prove that it has also has a non-zero
rational solution.

Solution: Let (α, β) = (a0 + a1
3
√

2 + a2
3
√

4, b0 + b1
3
√

2 + b2
3
√

4) be
the given solution, and suppose without loss of generality that β is
non-zero. Then α

β is a root to the polynomial

at2 + bt + c = 0.
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Also, α
β is of the form c0 + c1

3
√

2 + c2
3
√

4 for some rationals c0, c1, c2.

But because it is a root to a quadratic with rational coefficients, it
must also be of the form d + e

√
f for rationals d, e, f.

Thus we have (c0 − d) + c1
3
√

2 + c2
3
√

4 = e
√

f , so the quantity(
c′0 + c1

3
√

2 + c2
3
√

4
)2

must be an integer (where we write c′0 = c0 −
d). After expanding this square, the coefficients of 3

√
2 and 3

√
4 are

2(c2
2 + c′0c1) and 2c′0c2 + c2

1, respectively; these quantities must equal
zero. From 2c′0c2 + c2

1 = 0 we have (c′0c1)2 = −2c′30 c2; and from
c2
2 + c′0c1 = 0 we have (c′0c1)2 = c4

2. Thus −2c′30 c2 = c4
2. This implies

that either c2 = 0 or c2 = − 3
√

2c′0; in the latter case, since c2 is
rational we must still have c2 = c′0 = 0.

Then c1 = 0 as well, and α
β = c0 is rational. Thus (x, y) = (α

β , 1) is
a non-zero rational solution to the given equation.

Problem 3 Suppose a and b are positive integers such that the
product of all divisors of a (including 1 and a) is equal to the product
of all divisors of b (including 1 and b). Does it follow that a = b?

Solution: Yes, it follows that a = b. Let d(n) denote the number of
divisors of n; then the product of all divisors of n is∏

k|n

k =
√∏

k|n

k ·
∏
k|n

n

k
=
√∏

k|n

n = n
d(n)

2 .

Thus the given condition implies that ad(a) and bd(b) equal the same
number N . Since N is both a perfect d(a)-th power and a perfect
d(b)-th power, it follows that it is also a perfect `-th power of some
number t, where ` = lcm(d(a), d(b)). Then a = t

`
d(a) and b = t

`
d(b) are

both powers of the same number t as well.
Now if a is a bigger power of t than b, then it must have more

divisors than b; but then t
`

d(a) < t
`

d(b) , a contradiction. Similarly a

cannot be a smaller power of t than b. Therefore a = b, as claimed.

Problem 4 Let a, b, c be positive real numbers such that a2 + b2 +
c2 = 3. Prove that

1
1 + ab

+
1

1 + bc
+

1
1 + ca

≥ 3
2
.

Solution: Using the AM-HM inequality or the Cauchy-Schwarz
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inequality, we have

1
x

+
1
y

+
1
z
≥ 9

x + y + z

for x, y, z ≥ 0. Also, notice that a2 + b2 + c2 ≥ ab + bc + ca since this
inequality is equivalent to 1

2 (a− b)2 + 1
2 (b− c)2 + 1

2 (c−a)2 ≥ 0. Thus,

1
1 + ab

+
1

1 + bc
+

1
1 + ca

≥ 9
3 + ab + bc + ca

≥ 9
3 + a2 + b2 + c2

≥ 3
2
,

as desired.

Problem 5 Suppose triangle T1 is similar to triangle T2, and the
lengths of two sides and the angle between them of T1 are proportional
to the lengths of two sides and the angle between them of T2 (but not
necessarily the corresponding ones). Must T1 be congruent to T2?

Solution: The triangles are not necessarily congruent. Say the
vertices of T1 are A,B,C with AB = 4, BC = 6, and CA = 9, and
say that ∠BCA = k∠ABC.

Then let the vertices of T2 be D,E, F where DE = 8k
3 , EF = 4k,

and FD = 6k. Triangles ABC and DEF are similar in that order, so
∠EFD = ∠BCA = k∠ABC; also, EF = k · AB and FD = k · BC.
Therefore these triangles satisfy the given conditions.

Now since AB < AC we have ∠BCA < ∠ABC and k < 1; so
DE = 8k

3 < 8
3 < AB. Thus triangles ABC and DEF are not

congruent, as desired.

Problem 6 Two real sequences x1, x2, . . . , and y1, y2, . . . , are
defined in the following way:

x1 = y1 =
√

3, xn+1 = xn +
√

1 + x2
n, yn+1 =

yn

1 +
√

1 + y2
n

for all n ≥ 1. Prove that 2 < xnyn < 3 for all n > 1.

First Solution: Let zn = 1
yn

and notice that the recursion for yn

is equivalent to

zn+1 = zn +
√

1 + z2
n.
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Also note that z2 =
√

3 = x1; since the xi and zi satisfy the same
recursion, this means that zn = xn−1 for all n > 1. Thus,

xnyn =
xn

zn
=

xn

xn−1
.

Because the xi are increasing, for n > 1 we have x2
n−1 ≥ x2

1 =

3 > 1
3 ⇒ 2xn−1 >

√
1 + x2

n−1 ⇒ 3xn−1 > xn. Also,
√

1 + x2
n−1 >

xn−1 ⇒ xn > 2xn−1. Therefore,

2 < xnyn =
xn

xn−1
< 3,

as desired.

Second Solution: Writing xn = tan an for 0◦ < an < 90◦, we have

xn+1 = tan an +
√

1 + tan2 an = tan an + sec an

=
1 + sin an

cos an
= tan

(
90◦ + an

2

)
.

Since a1 = 60◦, we have a2 = 75◦, a3 = 82.5◦, and in general
an = 90◦ − 30◦

2n−1 . Thus

xn = tan
(

90◦ − 30◦

2n−1

)
= cot

(
30◦

2n−1

)
= cot θn,

where θn = 30◦

2n−1 .

Similar calculation shows that

yn = tan 2θn =
2 tan θn

1− tan2 θn

,

implying that

xnyn =
2

1− tan2 θn

.

Since 0◦ < θn < 45◦, we have 0 < tan2 θn < 1 and xnyn > 2. And
since for n > 1 we have θn < 30◦, we also have tan2 θn < 1

3 so that
xnyn < 3.

Note: From the closed forms for xn and yn in the second solution,
we can see the relationship yn = 1

xn−1
used in the first solution.

Problem 7 Let O be the center of the excircle of triangle ABC

opposite A. Let M be the midpoint of AC, and let P be the
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intersection of lines MO and BC. Prove that if ∠BAC = 2∠ACB,

then AB = BP .

First Solution: Since O is the excenter opposite A, we know that
O is equidistant from lines AB, BC, and CA. We also know that line
AO bisects angle BAC. Thus ∠BAO = ∠OAC = ∠ACB. Letting D

be the intersection of AO and BC, we then have ∠DAC = ∠ACD

and hence DC = AD.

Consider triangles OAC and ODC. From above their altitudes from
O are equal, and their altitudes from C are also clearly equal. Thus,
OA/OD = [OAC]/[ODC] = AC/DC.

Next, because M is the midpoint of AC we have [OAM ] = [OMC]
and [PAM ] = [PMC], and hence [OAP ] = [OPC] as well. Then

OA

OD
=

[OAP ]
[ODP ]

=
[OPC]
[ODP ]

=
PC

DP
.

Thus, AC
DC = OA

OD = PC
DP , and AC

CP = DC
DP = AD

DP . By the Angle Bisector
Theorem, AP bisects ∠CAD.

It follows that ∠BAP = ∠BAD + ∠DAP = ∠ACP + ∠PAC =
∠APB, and therefore BA = BP, as desired.

Second Solution: Let R be the midpoint of the arc BC (not
containing A) of the circumcircle of triangle ABC; and let I be the
incenter of triangle ABC. We have ∠RBI = 1

2 (∠CAB + ∠ABC) =
1
2 (180◦−∠BRI). Thus RB = RI and similarly RC = RI, and hence
R is the circumcenter of triangle BIC. But since ∠IBO = 90◦ =
∠ICO, quadrilateral IBOC is cyclic and R is also the circumcenter
of triangle BCO.

Let lines AO and BC intersect at Q. Since M, O, and P are
collinear we may apply Menelaus’ Theorem to triangle AQC to get

AM

CM

CP

QP

QO

AO
= 1.

But AM
CM = 1, and therefore CP

PQ = AO
QO .

And since R lies on AO and QO, we have

AO

QO
=

AR + RO

QR + RO
=

AR + RC

CR + RQ
,

which in turn equals AC
CQ since triangles ARC and CRQ are similar;

and AC
CQ = AC

AQ since we are given that ∠BAC = 2∠ACB; i.e.,
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∠QAC = ∠QCA and CQ = AQ. Thus we have shown that CP
PQ =

AC
AQ . By the Angle-Bisector Theorem, this implies that line AP bisects
∠QAC, from which it follows that ∠BAP = 3

2∠ACB = ∠BPA and
AB = BP .

Problem 8 Let O, O1 be the centers of the incircle and the excircle
opposite A of triangle ABC. The perpendicular bisector of OO1

meets lines AB and AC at L and N respectively. Given that the
circumcircle of triangle ABC touches line LN , prove that triangle
ABC is isosceles.

Solution: Let M be the midpoint of arc B̂C not containing A.

Angle-chasing gives ∠OBM = 1
2 (∠A + ∠B) = ∠BOM and hence

MB = MO.

Since ∠OBC = ∠B
2 and ∠CBO1 = 1

2 (π − ∠B), we have ∠OBO1

is a right angle. And since we know both that M lies on line AOO1

(the angle bisector of ∠A) and that MB = MO, it follows that BM

is a median to the hypotenuse of right triangle OBO1 and thus M is
the midpoint of OO1.

Therefore, the tangent to the circumcircle of ABC at M must be
perpendicular to line AM. But this tangent is also parallel to line BC,

implying that AM, the angle bisector of ∠A, is perpendicular to line
BC. This can only happen if AB = AC, as desired.

Problem 9 Does there exist a bijection f of

(a) a plane with itself

(b) three-dimensional space with itself

such that for any distinct points A, B line AB and line f(A)f(B) are
perpendicular?

Solution:

(a) Yes: simply rotate the plane 90◦ about some axis perpendicular
to it. For example, in the xy-plane we could map each point (x, y)
to the point (y,−x).

(b) Suppose such a bijection existed. Label the three-dimensional
space with x-, y-, and z-axes; given any point P = (x0, y0, z0),
we also view it as the vector p from (0, 0, 0) to (x0, y0, z0). Then
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the given condition says that

(a− b) · (f(a)− f(b)) = 0

for any vectors a, b.
Assume without loss of generality that f maps the origin to

itself; otherwise, g(p) = f(p) − f(0) is still a bijection and still
satisfies the above equation. Plugging b = (0, 0, 0) into the
equation above we have a · f(a) = 0 for all a. Then the above
equation reduces to

a · f(b) + b · f(a) = 0.

Given any vectors a, b, c and any reals m,n we then have

m (a · f(b) + b · f(a)) = 0

n (a · f(c) + c · f(a)) = 0

a · f(mb + nc) + (mb + nc) · f(a) = 0.

Adding the first two equations and subtracting the third gives

a · (mf(b) + nf(c)− f(mb + nc)) = 0.

Since this must be true for any vector a, we must have f(mb +
nc) = mf(B)+nf(C). Therefore f is linear, and it is determined
by how it transforms the unit vectors i = (1, 0, 0), j = (0, 1, 0),
and k = (0, 0, 1). If f(i) = (a1, a2, a3), f(j) = (b1, b2, b3), and
f(k) = (c1, c2, c3), then for a vector x we have

f(x) =

 a1 b1 c1

a2 b2 c3

a3 b3 c3

x.

Applying f(a)·a = 0 with a = i, j, k, we have a1 = b2 = c3 = 0.
Then applying a ·f(b)+b ·f(a) with (a, b) = (i, j), (j,k), (j,k) we
have b1 = −a2, c1 = −a3, c2 = −b3. But then the determinant
of the array in the equation is

a2b3c1 + a3b1c2 = −a2b3a3 + a3a2b3 = 0,

so there exist constants k1, k2, k3 not all zero such that k1f(i) +
k2f(j) + k3f(k) = 0. But then f(k1, k2, k3) = 0 = f(0, 0, 0),
contradicting the assumption that f was a bijection!
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Therefore our original assumption was false, and no such bijec-
tion exists.

Problem 10 A word is a finite sequence of two symbols a and b.
The number of the symbols in the word is said to be the length of the
word. A word is called 6-aperiodic if it does not contain a subword of
the form cccccc for any word c. Prove that f(n) >

(
3
2

)n
, where f(n)

is the total number of 6-aperiodic words of length n.

Solution: Rather than attempting to count all such words, we add
some restrictions and count only some of the 6-aperiodic words. Also,
instead of working with a’s and b’s we’ll work with 0’s and 1’s.

The Thue-Morse sequence is defined by t0 = 0, t1 = 1, t2n+1 =
1− t2n, and t2n = tn. These properties can be used to show that the
only subwords of the form cc . . . c are 00 and 11.

We restrict the 6-aperiodic words in a similar spirit. Call a
word x1x2 . . . xn of length n 6-countable if it satisfies the following
conditions:

(i) x5i = xi for 1 ≤ i.

(ii) x5i−1 = 1− x5i for 1 ≤ i ≤ n
5 .

(iii) If (x5i+2, x5i+3, x5i+4) = (1, 0, 1) [or (0, 1, 0)], then (x5i+7, x5i+8,

x5i+9) 6= (0, 1, 0) [or (1, 0, 1)].

Lemma 1. Every 6-countable word is 6-aperiodic.

Proof: Suppose by way of contradiction that some 6-countable
word contains a subword of the form cccccc, where the strings c appear
in the positions xj through xj+`−1; xj+` through xj+2`−1; and so on
up to xj+5` through xj+6`−1. Pick a word with the smallest such `.

If 5 | `, then look at the indices i between j and j + ` − 1 such
that 5 | i; say they are 5i1, 5i2, . . . , 5i`/5. Then x5i1x5i2 . . . x5i`/5 ,
x5i1+`x5i2+` . . . x5i`/5+`, . . ., x5i1+5`x5i2+5` . . . x5i`/5+5` all equal the
same string c′; then (using the first condition of countability) the
subword starting at xi1 and ending on xi`/5+` is of the form c′c′c′c′c′c′.
But this contradicts the minimal choice of `; therefore, we can’t have
5 | `.

Now, suppose that in the first appearance of c some two adjacent
characters aj , aj+1 were equal. Then since 5 6 | `, one of j, j + `, j +
2`, . . . , j + 4` is 4 (mod 5) — say, j + k`. Then aj+k`, aj+k`+1 must
be the same since ajaj+1 = aj+k`aj+k`+1; but they must also be
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different from the second condition of 6-countability! Because this is
impossible, it follows that the characters in c alternate between 0 and
1.

A similar argument, though, shows that aj+`−1 and aj+` must
be different; hence c is of the form 1010 . . . 10 or 0101 . . . 01. But
this would imply that our word violated the third condition of 6-
countability—a contradiction. Therefore our original assumption was
false, and any 6-countable word is 6-aperiodic.

Lemma 2. Given a positive integer m, there are more than
(

3
2

)5m

6-countable words of length 5m.

Proof: Let αm be the number of length-5m 6-countable words.
To create a length-5m 6-countable word x1x2 . . . x5m, we can choose
each of the “three-strings” x1x2x3, x6x7x8, . . ., x5m−4x5m−3x5m−2 to
be any of the eight strings 000, 001, 010, 011, 100, 101, 110, or 111—
taking care that no two adjacent strings are 010 and 101. Some quick
counting then shows that α1 = 8 >

(
3
2

)5 and α2 = 64 − 2 = 62 >(
3
2

)10.
Let βm be the number of length-5m 6-countable words whose last

three-string is 101; by symmetry, this also equals the number of
length-5m 6-countable words whose last three-string is 010. Also let
γm be the number of length-5m 6-countable words whose last three-
string is not 101; again by symmetry, this also equals the number of
length-5m 6-countable words whose last three-string isn’t 010. Note
that αm = γm + βm.

For m ≥ 1, observe that γm = βm+1 because to any length-5m word
whose last three-string isn’t 010, we can append the three-string 101
(as well as two other pre-determined numbers); and given a length-
5(m + 1) word whose last three- string is 101, we can reverse this
construction. Similar arguing shows that γm+1 = 6(γm + βm) + γm;
the 6(γm + βm) term counts the words whose last three-string is
neither 010 nor 101, and the γm term counts the words whose last
three-string is 010. Combined, these recursions give

γm+2 = 7γm+1 + 6γm

βm+2 = 7βm+1 + 6βm

αm+2 = 7αm+1 + 6αm.
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Now if αm+1 >
(

3
2

)5m+5 and αm >
(

3
2

)5m, then

αm+2 = 7αm+1 + 6αm

>

(
3
2

)5m
(

7 ·
(

3
2

)5

+ 6

)

>

(
3
2

)5m(3
2

)10

=
(

3
2

)5(m+2)

.

Then since αm >
(

3
2

)5m is true for m = 1, 2, by induction it is true
for all positive integers m.

The lemma proves the claim for n = 5m. Now suppose we are
looking at length-(5m + i) words, where m ≥ 0 and i = 1, 2, 3,

or 4. Then given any length-5m 6-countable word, we can form a
length-(5m+i) word by choosing x5m+1, x5m+2, x5m+3 to be anything.
(For convenience, we say there is exactly α0 = 1 ≥

(
3
2

)0 length-0
6-countable word: the “empty word.”) Thus there are at least 2αm >(

3
2

)5m+1, 4αm >
(

3
2

)5m+2, 8αm >
(

3
2

)5m+3, and 8αm >
(

3
2

)5m+4

6-countable length-(5m + 1), -(5m + 2), -(5m + 3), and -(5m + 4)
words, respectively. This completes the proof.

Problem 11 Determine all positive integers n, n ≥ 2, such that(
n−k

k

)
is even for k = 1, 2, . . . , bn

2 c.

Solution: Lucas’s Theorem states that for integers

n = nrp
r + nr−1p

r−1 + · · ·+ n0

and
m = mrp

r + mr−1p
r−1 + · · ·+ m0

written in base p for a prime p, we have(
n

m

)
≡
(

nr

mr

)(
nr−1

mr−1

)
· · ·
(

n0

b0

)
(mod p).

With p = 2, the binary representation of n = 2s − 1 we have
nr = nr−1 = · · · = n0 = 1. Then for any 0 ≤ m ≤ 2s − 1 each(

ni

mi

)
= 1, and thus

(
n
m

)
≡ 1 · 1 · · · · · 1 ≡ 1 (mod 2).

This implies that n must be one less than a power of 2, or else one
of n− k will equal such a number 2s − 1 and then

(
n−k

k

)
will be odd.
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In fact, all such n = 2s − 1 do work: for k = 1, 2, . . . , bn
2 c, there

is at least one 0 in the binary representation of n − k (not counting
leading zeros, of course). And whenever there is a 0 in the binary
representation of n − k, there is a 1 in the corresponding digit of k.
Then the corresponding

(
(n−k)i

ki

)
equals 0, and by Lucas’s Theorem(

n−k
k

)
is even.

Therefore, n = 2s − 1 for integers s ≥ 2.

Problem 12 A number of n players took part in a chess tourna-
ment. After the tournament was over, it turned out that among any
four players there was one who scored differently against the other
three (i.e., he got a victory, a draw, and a loss). Prove that the
largest possible n satisfies the inequality 6 ≤ n ≤ 9.

Solution:
Let A1 ⇒ A2 ⇒ · · · ⇒ An denote “A1 beats A2, A2 beats A3, . . . ,

An−1 beats An,” and let X | Y denote “X draws with Y.”
First we show it is possible to have the desired results with n = 6:

call the players A,B,C, D, E, F . Then let

A ⇒ B ⇒ C ⇒ D ⇒ E ⇒ A,

F ⇒ A, F ⇒ B, F ⇒ C, F ⇒ D, F ⇒ E,

and have all other games end in draws. Visually, we can view this
arrangement as a regular pentagon ABCDE with F at the center.
There are three different types of groups of 4, represented by ABCD,
ABCF , and ABDF ; in these three respective cases, B (or C), A,
and A are the players who score differently from the other three.

Alternatively, let

A ⇒ B ⇒ C ⇒ D ⇒ E ⇒ F ⇒ A,

B ⇒ D ⇒ F ⇒ B, C ⇒ A ⇒ E ⇒ C,

A | D, B | E, C | F.

In this arrangement there are three different types of groups of four,
represented by {A,B, C, D}, {A,B, D, E}, and {A, B, D, F}. (If
the players are arranged in a regular hexagon, these correspond to a
trapezoid-shaped group, a rectangle-shaped group, and a diamond-
shaped group.) In these three cases, A, B (or D), and A (or D) are
the players who score differently against the other three.
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Now we show it is impossible to have the desired results with n = 10
and thus all n ≥ 10; suppose by way of contradiction it was possible.
First we prove that all players draw exactly 4 times.

To do this, draw a graph with n vertices representing the players,
and draw an edge between two vertices if they drew in their game. If
V has degree 3 or less, then look at the remaining 6 or more vertices
it is not adjacent to. By Ramsey’s Theorem, either three of them
(call them X, Y, Z) are all adjacent or all not adjacent. But then in
the group {V,X, Y, Z}, none of the players draws exactly once with
the other players, a contradiction.

Thus each vertex has degree at least 4; we now prove that every
vertex has degree exactly 4. Suppose by way of contradiction that
some vertex A was adjacent to at least 5 vertices B,C,D,E, F . None
of these vertices can be adjacent to two others; for example, if B

was adjacent to C and D then in {A,B,C, D} each vertex draws at
least twice—but some player must draw exactly once in this group.
Now in the group {B,C,D,E} some pair must draw: without loss of
generality, say B and C. In the group {C,D,E, F} some pair must
draw as well; since C can’t draw with D, E, or F from our previous
observation, assume without loss of generality that E and F draw.

Now in {A,B,C, D} vertex D must beat one of B,C and lose to
the other; without loss of generality, say D loses to B and beats C.
Looking at {A,D,E, F}, we can similarly assume that D beats E

and loses to F . Next, in {A,C,D, E} players C and E can’t draw;
without loss of generality, say C beats E. And then in {A,C,E, F},
player C must lose to F . But then in {C,D,E, F} no player scores
differently against the other three players—a contradiction.

Now suppose A were adjacent to B, C, D, E, and without loss
of generality assume B | C; then ABC is a triangle. For each J

besides A,B, C, look at the group {A,B,C, J}: J must draw with
one of A,B,C. By the Pigeonhole Principle, one of A, B, C draws
with at least three of the J and thus has degree at least 5. But this
is impossible from above.

It follows that it is impossible for n to be at least 10. But since n

can be 6, the maximum n is between 6 and 9, as desired.
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1.2 Brazil

Problem 1 Let ABCDE be a regular pentagon such that the star
region ACEBD has area 1. Let AC and BE meet at P , and let BD

and CE meet at Q. Determine [APQD].

Solution: Let R = AD ∩BE, S = AC ∩BD, T = CE ∩AD. Now
4PQR ∼ 4CAD because they are corresponding triangles in regular
pentagons QTRPS and ABCDE, and since 4CAD ∼ 4PAR as
well we have 4PQR ∼= 4PAR. Thus, [APQD] = [APQD]

[ACEBD] =
2[APR]+[PQR]+[RQT ]
5[APR]+[PQR]+2[RQT ] = 3[APR]+[RQT ]

6[APR]+2[RQT ] = 1
2 .

Problem 2 Given a 10× 10 board, we want to remove n of the 100
squares so that no 4 of the remaining squares form the corners of a
rectangle with sides parallel to the sides of the board. Determine the
minimum value of n.

Solution: The answer is 66. Consider the diagram below, in which
a colored circle represents a square that has not been removed. The
diagram demonstrates that n can be 66:

• • • •
• • •
• • •
• • •

• • •
• • •

• • •
• • • •

• • • •
• • • •

Now we proceed to show that n is at least 66. Suppose, for
contradiction, that it is possible with n = 65. Denote by ai the
number of squares left in row i (i = 1, 2, . . . , 10); in row i, there are(
ai

2

)
pairs of remaining squares. If no four remaining squares form the

corners of a rectangle, then the total number N =
∑10

i=1

(
ai

2

)
must

not exceed
(
10
2

)
= 45. But note that, with a fixed

∑10
i=1 ai = 35, the

minimum of
∑10

i=1

(
ai

2

)
is attained when and only when no two ai’s

differ by more than 1. Thus, 45 =
∑10

i=1

(
ai

2

)
≥ 5 ·

(
4
2

)
+ 5 ·

(
3
2

)
= 45,
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i.e., this minimum is attained here, implying that five of the ai’s
equal 4 and the rest equal 3. Then it is easy to see that aside from
permutations of the row and columns, the first five rows of the board
must be as follows:

• • • •
• • • •

• • • •
• • • •

• • • •

We inspect this figure and notice that it is now impossible for another
row to contain at least 3 remaining squares without forming the
vertices of a rectangle with sides parallel to the sides of the board.
This is a contradiction, since each of the remaining 5 rows is supposed
to have 3 remaining squares. Thus, it is impossible for n to be less
than 66, and we are done.

Problem 3 The planet Zork is spherical and has several cities.
Given any city A on Zork, there exists an antipodal city A′ (i.e.,
symmetric with respect to the center of the sphere). In Zork, there
are roads joining pairs of cities. If there is a road joining cities P and
Q, then there is a road joining P ′ and Q′. Roads don’t cross each
other, and any given pair of cities is connected by some sequence of
roads. Each city is assigned a value, and the difference between the
values of every pair of connected cities is at most 100. Prove that
there exist two antipodal cities with values differing by at most 100.

Solution: Let [A] denote the value assigned to city A. Name the
pairs of cities

(Z1, Z
′
1), (Z2, Z

′
2), (Z3, Z

′
3), . . . , (Zn, Z ′n)

with
0 ≤ [Zi]− [Z ′i] for all i.

Since any given pair of cities is connected by some sequence of roads,
there must exist a, b such that Za and Z ′b are connected by a single
road. Then Z ′a and Zb are also connected by a single road. Thus,
[Za]− [Z ′b] ≤ 100 and [Zb]− [Z ′a] ≤ 100. Adding, we have

[Za]− [Z ′a] + [Zb]− [Z ′b] ≤ 200.
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Hence, either 0 ≤ [Za]− [Z ′a] ≤ 100 or 0 ≤ [Zb]− [Z ′b] ≤ 100; in either
case, we are done.

Problem 4 In Tumbolia there are n soccer teams. We want to
organize a championship such that each team plays exactly once with
each other team. All games take place on Sundays, and a team
can’t play more than one game in the same day. Determine the
smallest positive integer m for which it is possible to realize such
a championship in m Sundays.

Solution: Let an be the smallest positive integer for which it is
possible to realize a championship between n soccer teams in an

Sundays. For n > 1, it is necessary that an ≥ 2dn
2 e−1; otherwise the

total number of games played would not exceed (2dn
2 e − 2) · bn

2 c ≤
(n−1)2

2 <
(
n
2

)
, a contradiction.

On the other hand, 2dn
2 e − 1 days suffice. Suppose that n = 2t + 1

or 2t + 2; number the teams from 1 to n and the Sundays from 1 to
2t + 1. On the i-th Sunday, let team i either sit out (if n is odd) or
play team 2t + 2 (if n is even); and have any other team j play with
the team k 6= 2t + 2 such that j + k ≡ 2i (mod 2t + 1). Then each
team indeed plays every other team, as desired.

Problem 5 Given a triangle ABC, show how to construct, with
straightedge and compass, a triangle A′B′C ′ with minimal area such
that A′, B′, C ′ lie on AB, BC, CA, respectively, ∠B′A′C ′ = ∠BAC,
and ∠A′C ′B′ = ∠ACB.

Solution:
All angles are directed modulo 180◦.
For convenience, call any triangle A′B′C ′ “zart” if A′, B′, C ′ lie

on lines AB, BC, CA, respectively, and 4ABC ∼ 4A′B′C ′. The
problem is, then, to construct the zart triangle with minimal area.

Suppose we have any zart triangle, and let P be the point (different
from A′) where the circumcircles of triangles AA′C ′ and BB′A′ meet.
Then

∠B′PC ′ = 360◦ − ∠A′PB′ − ∠C ′PA′

= 360◦ − (180◦ − ∠CBA)− (180◦ − ∠BAC) = 180◦ − ∠ACB,

so P also lies on the circumcircle of triangle CC ′B′.
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Next,

∠PAB = ∠PC ′A′ = ∠B′C ′A′ − ∠B′C ′P

= ∠B′CC ′ − ∠B′CP ′ = ∠PCA,

and with similar reasoning we have

∠PAB = ∠PC ′A′ = ∠PCA = ∠PB′C ′ = ∠PBC.

There is a unique point P (one of the Brocard points) satisfying
∠PAB = ∠PBC = ∠PCA, and thus P is fixed—independent of the
choice of triangle A′B′C ′. And since it is the corresponding point in
similar triangles ABC and A′B′C ′, we have

[A′B′C ′] = [ABC]
(

PA′

PA

)2

.

Thus [A′B′C ′] is minimal when PA′ is minimal, which occurs when
PA′ ⊥ AB (and analogously, when PB′ ⊥ PC and PC ′ ⊥ PA).
Thus, the zart triangle with minimal area is the pedal triangle A′B′C ′

of P to triangle ABC. This triangle is indeed similar to triangle ABC;
letting θ = ∠PAB be the Brocard angle, it is the image of triangle
ABC under a rotation through θ − 90◦, followed by a homothety of
ratio —sin θ|.

To construct this triangle, first draw the circles {X : ∠BXA =
∠BCA + ∠CAB} and {Y : ∠CY B = ∠CAB + ∠ABC} and let P ′

be their point of intersection (different from B); then we also have
∠AP ′C = ∠ABC + ∠BCA. Then

∠P ′AB = 180◦ − ∠ABP ′ − ∠BP ′A =

180◦ − (∠ABC − ∠P ′BC)− (∠BCA + ∠CAB) = ∠P ′BC,

and similarly ∠P ′BC = ∠P ′CA. Therefore P = P ′. Finally, drop
the perpendiculars from P ′ to the sides of triangle ABC to form
A′, B′, C ′. This completes the construction.
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1.3 Bulgaria

National Olympiad, Third Round

Problem 1 Find all triples (x, y, z) of natural numbers such that y

is a prime number, y and 3 do not divide z, and x3 − y3 = z2.

Solution: Rewrite the equation in the form

(x− y)(x2 + xy + y2) = z2.

Any common divisor of x − y and x2 + xy + y2 also divides both z2

and (x2 + xy + y2) − (x + 2y)(x − y) = 3y2. But z2 and 3y2 are
relatively prime by assumption, hence (x−y) and (x2 +xy+y2) must
be relatively prime as well. Therefore, both (x−y) and (x2 +xy+y2)
are perfect squares.

Now writing a =
√

x− y, we have

x2 + xy + y2 = (a2 + y)2 + (a2 + y)y + y2 = a4 + 3a2y + 3y2

and
4(x2 + xy + y2) = (2a2 + 3y)2 + 3y2.

Writing m = 2
√

x2 + xy + y2 and n = 2a2 + 3y, we have

m2 = n2 + 3y2

or
(m− n)(m + n) = 3y2,

so (m− n, m + n) = (1, 3y2), (3, y2), or (y, 3y).
In the first case, 2n = 3y2 − 1 and 4a2 = 2n− 6y = 3y2 − 6y − 1 is

a square, which is impossible modulo 3.
In the third case, n = y < 2a2 + 3y = n, a contradiction.
In the second case, we have 4a2 = 2n−6y = y2−6y−3 < (y−3)2.

And when y ≥ 10 we have y2− 6y− 3 > (y− 4)2, hence y = 2, 3, 5, or

7. In this case we have a =
√

y2−6y−3

2 , which is real only when y = 7,
a = 1, x = y + a2 = 8, and z = 13. This yields the unique solution
(x, y, z) = (8, 7, 13).

Problem 2 A convex quadrilateral ABCD is inscribed in a circle
whose center O is inside the quadrilateral. Let MNPQ be the
quadrilateral whose vertices are the projections of the intersection
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point of the diagonals AC and BD onto the sides of ABCD. Prove
that 2[MNPQ] ≤ [ABCD].

Solution: The result actually holds even when ABCD is not cyclic.
We begin by proving the following result:

Lemma. If XW is an altitude of triangle XY Z, then XW
Y Z ≤

1
2 tan

(
∠Y +∠Z

2

)
.

Proof: X lies on an arc of a circle determined by ∠Y XZ =
180◦−∠Y −∠Z. Its distance from Y Z is maximized when it is at the
center of this arc, which occurs when ∠Y = ∠Z; and at this point,
XW
Y Z = 1

2 tan
(

∠Y +∠Z
2

)
.

Suppose M,N,P, Q are on sides AB,BC, CD,DA, respectively.
Also let T be the intersection of AC and BD.

Let α = ∠ADB, β = ∠BAC, γ = ∠CAD, δ = ∠DBA. From
the lemma, MT ≤ 1

2AB · tan
(

β+δ
2

)
and QT ≤ 1

2AD · tan
(α+γ

2

)
;

also, ∠MTQ = 180◦ − ∠QAM = 180◦ − ∠DAB. Thus 2[MTQ] =
MT · QT sin∠MTQ ≤ 1

4 tan
(α+γ

2

)
tan

(
β+δ

2

)
AB · AD sin∠DAB.

But since α+γ
2 + β+δ

2 = 90◦, this last expression exactly equals
1
4AB ·AD sin∠DAB = 1

2 [ABD]. Thus, 2[MTQ] ≤ 1
2 [ABD].

Likewise, 2[NTM ] ≤ 1
2 [BCA], [PTN ] ≤ 1

2 [CDB], and [QTP ] ≤
1
2 [DAC]. Adding these four inequalities shows that 2[MNPQ] is at
most

1
2
([ABD] + [CDB]) +

1
2
([BCA] + [DAC]) = [ABCD],

as desired.

Problem 3 In a competition 8 judges marked the contestants by
pass or fail. It is known that for any two contestants, two judges
marked both with pass; two judges marked the first contestant with
pass and the second contestant with fail; two judges marked the first
contestant with fail and the second contestant with pass; and finally,
two judges marked both with fail. What is the largest possible number
of contestants?

Solution: For a rating r (either pass or fail), let r denote the
opposite rating. Also, whenever a pair of judges agree on the rating
for some contestant, call this an “agreement.” We first prove that
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any two judges share at most three agreements; suppose by way of
contradiction this were false.

Then assume without loss of generality that the judges (labeled
with numbers) mark the first four contestants (labeled with letters)
as follows in the left table:

A B C D

1 a b c d

2 a b c d

3 a b

4 a b

5 a b

6 a b

7 a b

8 a b

A B C D

1 a b c d

2 a b c d

3 a b c d

4 a b c d

5 a b

6 a b

7 a b

8 a b

A B C D

1 a b c d

2 a b c d

3 a b c d

4 a b c d

5 a b c d

6 a b c d

7 a b

8 a b

Applying the given condition to contestants A and C, judges 3 and
4 must both give C the rating c; similarly, they must both give D

the rating d. Next, applying the condition to contestants B and C,
judges 5 and 6 must both give C the rating c; similarly, they must
both give D the rating d. But now the condition fails for contestants
C and D, a contradiction.

Thus each pair of judges agrees on at most three ratings, as claimed;
thus there are at most 3 ·

(
8
2

)
= 84 agreements between all the judges.

On the other hand, for each contestant exactly four judges mark him
with pass and exactly four judges mark him with fail, hence there are(
4
2

)
+
(
4
2

)
= 12 agreements per contestant. It follows that there are

at most 84
12 = 7 contestants; and as the following table shows (with

1 representing pass and 0 representing fail), it is indeed possible to
have exactly 7 contestants:

A B C D E F G

1 1 1 1 1 1 1 1
2 1 1 1 0 0 0 0
3 1 0 0 1 1 0 0
4 1 0 0 0 0 1 1
5 0 1 0 1 0 0 1
6 0 1 0 0 1 1 0
7 0 0 1 1 0 1 0
8 0 0 1 0 1 0 1
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Problem 4 Find all pairs (x, y) of integers such that

x3 = y3 + 2y2 + 1.

Solution: When y2 + 3y > 0, (y + 1)3 > x3 > y3. Thus we must
have y2 + 3y ≤ 0, and y = −3,−2,−1, or 0 — yielding the solutions
(x, y) = (1, 0), (1,−2), and (−2,−3).

Problem 5 Let B1 and C1 be points on the sides AC and AB of
triangle ABC. Lines BB1 and CC1 intersect at point D. Prove that a
circle can be inscribed inside quadrilateral AB1DC1 if and only if the
incircles of the triangles ABD and ACD are tangent to each other.

Solution: Say the incircle of triangle ABD is tangent to AD at T1

and that the incircle of triangle ACD is tangent to AD at T2; then
DT1 = 1

2 (DA + DB −AB) and DT2 = 1
2 (DA + DC −AC).

First suppose a circle can be inscribed inside AB1DC1. Let it
be tangent to sides AB1, B1D, DC1, C1A at points E,F,G,H,
respectively. Using equal tangents, we have

AB −BD = (AH + HB)− (BF −DF )

= (AH + BF )− (BF −DF ) = AH + DF

and similarly AC − CD = AE + DG. But AH + DF = AE + DG

by equal tangents, implying that AB − BD = AC − CD and thus
DA + DB−AB = DA + DC −AC. Therefore DT1 = DT2, T1 = T2,
and the two given incircles are tangent to each other.

Next suppose the two incircles are tangent to each other. Then
DA + DB − AB = DA + DC − AC. Let ω be the incircle of
ABB1, and let D′ be the point on BB1 (different from B1) such
that line CD′ is tangent to ω. Suppose by way of contradiction
that D 6= D′. From the result in the last paragraph, we know that
the incircles of triangles ABD′ and ACD′ are tangent and hence
D′A+D′B−AB = D′A+D′C−AC. Then since DB−AB = DC−AC

and D′B−AB = D′C −AC, we must have DB−D′B = DC −D′C

by subtraction. Thus DD′ = |DB −D′B| = |DC −D′C|. But then
the triangle inequality fails in triangle DD′C, a contradiction. This
completes the proof.
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Problem 6 Each interior point of an equilateral triangle of side 1
lies in one of six congruent circles of radius r. Prove that

r ≥
√

3
10

.

Solution: From the condition, we also know that every point inside
or on the triangle lies inside or on one of the six circles.

Define R = 1
1+
√

3
. Orient the triangle so that A is at the top, B

is at the bottom-left, and C is at the bottom-right (so that BC is
horizontal). Draw point W on AB such that WA = R; then draw
point X directly below W such that WX = R. Then in triangle
WXB, WB = 1 − R =

√
3R and ∠BWX = 30◦, implying that

XB = R as well. Similarly draw Y on AC such that Y A = R, and Z

directly below Y such that Y Z = ZC = R.
In triangle AWY, ∠A = 60◦ and AW = AY = R, implying that

WY = R. This in turn implies that XZ = R and that WX = Y Z =
R
√

2.

Now suppose by way of contradiction that we could cover the
triangle with six congruent circles of radius r <

√
3

10 . The points
A,B, C, W, X, Y, Z each lie on or inside one of the circles. But any
two of these points are at least R > 2r apart, so they must lie on
or inside different circles. Thus there are at least seven circles, a
contradiction.

National Olympiad, Fourth Round

Problem 1 A rectangular parallelepiped has integer dimensions.
All of its faces of are painted green. The parallelepiped is partitioned
into unit cubes by planes parallel to its faces. Find all possible
measurements of the parallelepiped if the number of cubes without a
green face is one third of the total number of cubes.

Solution: Let the parallelepiped’s dimensions be a, b, c; they must
all be at least 3 or else every cube has a green face. Then the condition
is equivalent to

3(a− 2)(b− 2)(c− 2) = abc,

or
3 =

a

a− 2
· b

b− 2
· c

c− 2
.
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If all the dimensions are at least 7, then a
a−2 ·

b
b−2 ·

c
c−2 ≤

(
7
5

)3 =
343
125 < 3, a contradiction. Thus one of the dimensions — say, a —
equals 3, 4, 5, or 6. Assume without loss of generality that b ≤ c.

When a = 3 we have bc = (b− 2)(c− 2), which is impossible.
When a = 4, rearranging the equation yields (b − 6)(c − 6) = 24.

Thus (b, c) = (7, 30), (8, 18), (9, 14), or (10, 12).
When a = 5, rearranging the equation yields (2b− 9)(2c− 9) = 45.

Thus (b, c) = (5, 27), (6, 12), or (7, 9).
And when a = 6, rearranging the equation yields (b−4)(c−4) = 8.

Thus (b, c) = (5, 12) or (6, 8).
Therefore the parallelepiped may measure 4 × 7 × 30, 4 × 8 × 18,

4× 9× 14, 4× 10× 12, 5× 5× 27, 5× 6× 12, 5× 7× 9, or 6× 6× 8.

Problem 2 Let {an} be a sequence of integers such that for n ≥ 1

(n− 1)an+1 = (n + 1)an − 2(n− 1).

If 2000 divides a1999, find the smallest n ≥ 2 such that 2000 divides
an.

Solution: First, we note that the sequence an = 2n − 2 works.
Then writing bn = an − (2n− 2) gives the recursion

(n− 1)bn+1 = (n + 1)bn.

Some calculations show that b3 = 3b2, b4 = 6b2, b5 = 10b2 — and in
general, that bn = n(n−1)

2 b2 for n ≥ 2. Thus when n ≥ 2, the solution
to the original equation is of the form

an = 2(n− 1) +
n(n− 1)

2
c

for some constant c; plugging in n = 2 shows that c = a2 − 2 is an
integer.

Now, since 2000 | a1999 we have 2(1999− 1) + 1999·1998
2 · c ≡ 0 =⇒

−4 + 1001c ≡ 0 =⇒ c ≡ 4 (mod 2000). Then 2000 | an exactly when

2(n− 1) + 2n(n− 1) ≡ 0 (mod 2000)

⇐⇒ (n− 1)(n + 1) ≡ 0 (mod 1000).

(n−1)(n+1) is divisible by 8 exactly when n is odd; and it is divisible
by 125 exactly when either n − 1 or n + 1 is divisible by 125. The
smallest n ≥ 2 satisfying these requirements is n = 249.



1999 National Contests: Problems and Solutions 37

Problem 3 The vertices of a triangle have integer coordinates and
one of its sides is of length

√
n, where n is a square-free natural

number. Prove that the ratio of the circumradius to the inradius of
the triangle is an irrational number.

Solution: Label the triangle ABC; let r, R, K be the inradius,
circumradius, and area of the triangle; let a = BC, b = CA, c = AB

and write a = p1
√

q1, b = p2
√

q2, c = p3
√

q3 for positive integers
pi, qi with qi square-free. By Pick’s Theorem (K = I + 1

2B − 1), K

is rational. Also, R = abc
4K and r = 2K

a+b+c . Thus R
r = abc(a+b+c)

8K2 is
rational if and only if abc(a + b + c) = a2bc + ab2c + abc2 is rational.
Let this quantity equal m, and assume by way of contradiction that
m is rational.

We have a2bc = m1
√

q2q3, ab2c = m2
√

q3q1, and abc2 = m3
√

q1q2

for positive integers m1,m2,m3. Then m1
√

q2q3 + m2
√

q3q1 = m −
m3

√
q1q2. Squaring both sides, we find that

m2
1q2q3 + m2

2q3q1 + 2m1m2q3
√

q1q2 = m2 + m2
3 − 2mm3

√
q1q2.

If
√

q1q2 is not rational, then the coefficients of
√

q1q2 must be the
same on both sides; but this is impossible since 2m1m2q3 is positive
while −2mm3 is not.

Hence
√

q1q2 is rational. Since q1 and q2 are square-free, this can
only be true if q1 = q2. Similarly, q2 = q3.

Assume without loss of generality that BC =
√

n so that q1 = q2 =
q3 = n and p1 = 1. Also assume that A is at (0, 0), B is at (w, x),
and C is at (y, z). By the triangle inequality, we must have p2 = p3

and hence

w2 + x2 = y2 + z2 = p2
2n

(w − y)2 + (x− z)2 = n.

Notice that

n = (w − y)2 + (x− z)2 ≡ w2 + x2 + y2 + z2 = 2p2
2n ≡ 0 (mod 2),

so n is even. Thus w and x have the same parity; and y and z have
the same parity. Then w, x, y, z must all have the same parity since
w2 + x2 ≡ y2 + z2 (mod 4). But then n = (w − y)2 + (x − z)2 ≡
0 (mod 4), contradicting the assumption that n is square-free.
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Therefore our original assumption was false; and the ratio of the
circumradius to the inradius is indeed always irrational.

Note: Without the condition that n is square-free, the ratio can
be rational. For example, the points (i, 2j − i) form a grid of points√

2 apart. In this grid, we can find a 3
√

2-4
√

2-5
√

2 right triangle by
choosing, say, the points (0, 0), (3, 3), and (7,−1). Then q1 = q2 = q3,
and the ratio is indeed rational.

Problem 4 Find the number of all natural numbers n, 4 ≤ n ≤
1023, whose binary representations do not contain three consecutive
equal digits.

Solution: A binary string is a finite string of digits, all either 0
or 1. Call such a string (perhaps starting with zeroes) valid if it
does not contain three consecutive equal digits. Let an represent the
number of valid n-digit strings; let sn be the number of valid strings
starting with two equal digits; and let dn be the number of valid
strings starting with two different digits. Observe that an = sn + dn

for all n.
An (n+2)-digit string starting with 00 is valid if and only if its last

n digits form a valid string starting with 1; similarly, an (n + 2)-digit
string starting with 11 is valid if and only if its last n digits form a
valid string starting with 0. Thus, sn+2 = an = sn + dn.

An (n+2)-digit string starting with 01 is valid if and only if its last
n digits form a valid string starting with 00, 01, or 10; similarly, an
(n+2)-digit string starting with 10 is valid if and only if its last n digits
form a valid string starting with 11, 01, or 10. Thus, dn+2 = sn+2dn.

Solving these recursions gives

sn+4 = 3sn+2 − sn and dn+4 = 3dn+2 − dn,

which when added together yield

an+4 = 3an+2 − an.

Thus we can calculate initial values of an and then use the recursion
to find other values:

n 1 2 3 4 5 6 7 8 9 10
an 2 4 6 10 16 26 42 68 110 178
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Now of the an valid n-digit strings, only half start with 1; thus only
half are binary representations of positive numbers. Therefore exactly

1
2
(a1 + a2 + · · ·+ a10) = 231

numbers between 1 and 1023 have the desired property; and ignoring
1, 2, and 3, we find that the answer is 228.

Problem 5 The vertices A, B and C of an acute-angled triangle
ABC lie on the sides B1C1, C1A1 and A1B1 of triangle A1B1C1

such that ∠ABC = ∠A1B1C1, ∠BCA = ∠B1C1A1, and ∠CAB =
∠C1A1B1. Prove that the orthocenters of the triangle ABC and
triangle A1B1C1 are equidistant from the circumcenter of triangle
ABC.

Solution: Let H and H1 be the orthocenters of triangles ABC and
A1B1C1, respectively; and let O, OA, OB , OC be the circumcenters
of triangles ABC, A1BC, AB1C, and ABC1, respectively.

First note that ∠BA1C = ∠C1A1B1 = ∠CAB = 180◦ − ∠CHB,
showing that BA1CH is cyclic; moreover, OAA1 = BC

2 sin ∠BA1C =
CB

2 sin ∠CAB = OA so circles ABC and BA1CH have the same radius.
Similarly, CB1AH and AC1BH are cyclic with circumradius OA.
Then ∠HBC1 = 180◦ − ∠C1AH = ∠HAB1 = 180◦ − ∠B1CH =
∠HCA1; thus angles ∠HOCC1, ∠HOAA1, ∠HOBB1 are equal as
well.

Let ∠(~r1, ~r2) denote the angle between rays ~r1 and ~r2. Since OAC =
OAB = HB = HC, quadrilateral BOACH is a rhombus and hence a
parallelogram. Then

∠(−→OA,
−−−→
HOA) = ∠(−→OA,

−−→
OB) + ∠(−−→OB,

−−−→
HOA)

= 2∠ACB + ∠(−−−→COA,
−−−→
HOA)

= 2∠ACB + ∠COAH

= 2∠ACB + 2∠CBH

= 2∠ACB + 2(90◦ − ∠ACB)

= 180◦.

Similarly, ∠(−−→OB,
−−−→
HOB) = ∠(−−→OC,

−−−→
HOC) = 180◦. Combining this

result with ∠HOAA1 = ∠HOBB1 = ∠HOCC1 from above, we find
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that
∠(−→OA,

−−−→
OAA1) = ∠(−−→OB,

−−−→
OBB1) = ∠(−−→OC,

−−−→
OCC1).

Let this common angle be θ.

We now use complex numbers with the origin at O, letting p

denote the complex number representing point P . Since HBOAC is
a parallelogram we have oA = b + c and we can write a1 = b + c + xa

where x = cis θ. We also have b1 = c + a + xb and c1 = a + b + xc for
the same x. We can rewrite these relations as

a1 = a + b + c + (x− 1)a,

b1 = a + b + c + (x− 1)b,

c1 = a + b + c + (x− 1)c.

Thus the map sending z to a + b + c + (x− 1)z = h + (x− 1)z is a
spiral similarity taking triangle ABC into triangle A′B′C ′. It follows
that this map also takes H to H1, so

h1 = h + (x− 1)h = xh

and OH1 = |h1| = |x||h| = |h| = OH, as desired.

Problem 6 Prove that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions.

Solution: Observe that (m− n)3 + (m + n)3 = 2m3 + 6mn2. Now
suppose we want a general solution of the form

(x, y, z, t) = (a− b, a + b,
c

2
− d

2
,
c

2
+

d

2
)

for integers a, b and odd integers c, d. One simple solution to the
given equation is (x, y, z, t) = (10, 10,−1, 0), so try setting a = 10
and c = −1. Then

(x, y, z, t) = (10− b, 10 + b,−1
2
− d

2
,−1

2
+

d

2
)

is a solution exactly when

(2000 + 60b2)− 1 + 3d2

4
= 1999 ⇐⇒ d2 − 80b2 = 1.
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The second equation is a Pell’s equation with solution (d1, b1) =
(9, 1); and we can generate infinitely many more solutions by setting
(dn+1, bn+1) = (9dn + 80bn, 9bn + dn) for n = 1, 2, 3, . . .; this follows
from a general recursion (pn+1, qn+1) = (p1pn + q1qnD, p1qn + q1pn)
for generating solutions to p2 − Dq2 = 1 given a nontrivial solution
(p1, q1).

A quick check also shows that each dn is odd. Thus since there
are infinitely many solutions (bn, dn) to the Pell’s equation (and with
each dn odd), there are infinitely many integral solutions

(xn, yn, zn, tn) = (10− bn, 10 + bn,−1
2
− dn

2
,−1

2
+

dn

2
)

to the original equation.
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1.4 Canada

Problem 1 Find all real solutions to the equation 4x2−40bxc+51 =
0, where [x] denotes the greatest integer less than or equal to x.

Solution: Note that (2x − 3)(2x − 17) = 4x2 − 40x + 51 ≤
4x2 − 40bxc + 51 = 0, which gives 1.5 ≤ x ≤ 8.5 and 1 ≤ bxc ≤ 8.
Then

x =

√
40bxc − 51

2
,

so it is necessary that

bxc =

⌊√
40bxc − 51

2

⌋
.

Testing bxc ∈ {1, 2, 3, . . . , 8} into this equation, we find that only
bxc = 2, 6, 7, and 8 work. Thus the only solutions for x are√

29
2 ,

√
189
2 ,

√
229
2 ,

√
269
2 .

Problem 2 Let ABC be an equilateral triangle of altitude 1. A
circle, with radius 1 and center on the same side of AB as C, rolls
along the segment AB; as it rolls, it always intersects both AC and
BC. Prove that the length of the arc of the circle that is inside the
triangle remains constant.

Solution: Let ω be “the circle.” Let O be the center of ω. Let ω

intersect segments AC and BC at M and N , respectively. Let the
circle through O, C, and M intersect BC again at P . Now ∠PMO =
180◦ − ∠OCP = 60◦ = ∠MCO = ∠MPO, so OP = OM = 1, and
P coincides with N . Thus, ∠MON = ∠MOP = ∠MCP = 60◦.
Therefore, the angle of the arc of ω that is inside the triangle ABC

is constant, and hence the length of the arc must be constant as well.

Problem 3 Determine all positive integers n such that n = d(n)2,
where d(n) denotes the number of positive divisors of n (including 1
and n).

Solution: Label the prime numbers p1 = 2, p2 = 3, . . .. Since n is a
perfect square, we have

n =
∞∏

i=1

p2ai
i , d(n) =

∞∏
i=1

(2ai + 1).
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Then d(n) is odd and so is n, whence a1 = 0. Since d(n)√
n

= 1, we have

∞∏
i=1

2ai + 1
pai

i

= 1.

By Bernoulli’s inequality, we have pai
i ≥ (pi − 1)ai + 1 > 2ai + 1

for all primes pi ≥ 5 that divide n. Also, 3a2 ≥ 2a2 + 1 with equality
only when a2 ∈ {0, 1}. Thus, for equality to hold above, we must have
a1 = a3 = a4 = a5 = · · · = 0 and a2 ∈ {0, 1}; therefore, n ∈ {1, 9}
are the only solutions.

Problem 4 Suppose a1, a2, . . . , a8 are eight distinct integers from
the set S = {1, 2, . . . , 17}. Show that there exists an integer k > 0
such that the equation ai−aj = k has at least three different solutions.
Also, find a specific set of 7 distinct integers {b1, b2, · · · , b7} from S
such that the equation

bi − bj = k

does not have three distinct solutions for any k > 0.

Solution: For the first part of this problem, assume without loss
of generality that a1 < a2 < · · · < a8; also assume, for the purpose
of contradiction, that there does not exist an integer k > 0 such that
the equation ai − aj = k has at least three different solutions. Let
δi = ai+1 − ai for i = 1, 2, . . . , 7. Then

16 ≥ a8 − a1 = δ1 + . . . + δ7 ≥ 1 + 1 + 2 + 2 + 3 + 3 + 4 = 16

(for otherwise three of the δi’s would be equal, a contradiction). Since
equality must hold, Π = (δ1, δ2, . . . , δ7) must be a permutation of
(1, 1, 2, 2, 3, 3, 4).

Say we have a “m-n pair” if some (δi, δi+1) = (m,n) or (n, m). Note
that we cannot have any 1-1 or 1-2 pairs (δi, δi+1); otherwise we’d have
ai+2 − ai = 2 or 3, giving at least three solutions to ai − aj = 2 or 3.
Nor can we have two 1-3 pairs because then, along with δi = 4, we’d
have three solutions to ai − aj = 4. Then considering what entries
each 1 is next to, we see that we must have

Π = (1, 4, . . . , 3, 1) or (1, 4, 1, 3, . . .)

(or these lists backwards).
But now we can’t have any 2-2 pairs; otherwise, along with the 1-3

pair and the δi = 4, we’d have three solutions to ai − aj = 4. Thus
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we have either

Π = (1, 4, 2, 3, 2, 3, 1) or (1, 4, 1, 3, 2, 3, 2)

(or these lists backwards). In either case there are at least four
solutions to ai − aj = 5, a contradiction.

Thus, regardless of the {a1, a2, . . . , a8} that we choose, for some
integer k ∈ {2, 3, 4, 5} the equation ai − aj = k has at least three
different solutions.

For the second part of the problem, let (b1, b2, . . . , b7) = (1, 2, 4, 9,

14, 16, 17). Each of 1, 2, 3, 5, 7, 8, 12, 13, and 15 is the difference of
exactly two pairs of the bi, and each of 10, 14, and 16 is the difference
of exactly one pair of the bi. But no number is the difference of more
than two such pairs, and hence the set {b1, b2, . . . , b7} suffices.

Problem 5 Let x, y, z be non-negative real numbers such that

x + y + z = 1.

Prove that
x2y + y2z + z2x ≤ 4

27
.

and determine when equality occurs.

Solution: Assume without loss of generality that x = max{x, y, z}.
• If x ≥ y ≥ z, then

x2y + y2z + z2x ≤ x2y + y2z + z2x + z(xy + (x− y)(y − z))

= (x + z)2y = 4
(

1
2
− 1

2
y

)(
1
2
− 1

2
y

)
y ≤ 4

27
,

where the last inequality follows from AM-GM. Equality occurs
if and only if z = 0 (from the first inequality) and y = 1

3 , in which
case (x, y, z) =

(
2
3 , 1

3 , 0
)
.

• If x ≥ z ≥ y, then

x2y + y2z + z2x = x2z + z2y + y2x− (x− z)(z − y)(x− y)

≤ x2z + z2y + y2x ≤ 4
27

,

where the second inequality is true from the result we proved
for x ≥ y ≥ z (except with y and z reversed). Equality holds
in the first inequality only when two of x, y, z are equal; and in
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the second only when (x, z, y) =
(

2
3 , 1

3 , 0
)
. Since these conditions

can’t both be true, the inequality is actually strict in this case.

Therefore the inequality is indeed true, and equality holds when
(x, y, z) equals

(
2
3 , 1

3 , 0
)
,
(

1
3 , 0, 2

3

)
, or

(
0, 2

3 , 1
3

)
.
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1.5 China

Problem 1 Let ABC be an acute triangle with ∠C > ∠B. Let
D be a point on side BC such that ∠ADB is obtuse, and let H be
the orthocenter of triangle ABD. Suppose that F is a point inside
triangle ABC and is on the circumcircle of triangle ABD. Prove
that F is the orthocenter of triangle ABC if and only if both of the
following are true: HD ‖ CF, and H is on the circumcircle of triangle
ABC.

Solution: All angles are directed modulo 180◦. First observe that
if P is the orthocenter of triangle UV W , then

∠V PW = (90◦ − ∠PWV ) + (90◦ − ∠WV P )

= ∠WV U + ∠UWV = 180◦ − ∠V UW.

First suppose that F is the orthocenter of triangle ABC. Then

∠ACB = 180◦ − ∠AFB = 180◦ − ∠ADB = ∠AHB,

so ACHB is cyclic. And lines CF and HD are both perpendicular
to side AB, so they are parallel.

Conversely, suppose that HD ‖ CF and that H is on the circum-
circle of triangle ABC. Since AFDB and AHCB are cyclic,

∠AFB = ∠ADB = 180◦ − ∠AHB = 180◦ − ∠ACB.

Thus F is an intersection point of the circle defined by ∠AFB =
180◦ −∠ACB and the line defined by CF ⊥ AB. But there are only
two such points: the orthocenter of triangle ABC and the reflection
of C across line AB. The latter point lies outside of triangle ABC,
and hence F must indeed be the orthocenter of triangle ABC.

Problem 2 Let a be a real number. Let {fn(x)} be a sequence of
polynomials such that f0(x) = 1 and fn+1(x) = xfn(x) + fn(ax) for
n = 0, 1, 2, . . . .

(a) Prove that

fn(x) = xnfn

(
1
x

)
for n = 0, 1, 2, . . . .

(b) Find an explicit expression for fn(x).
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Solution: When a = 1, we have fn(x) = (x+1)n for all n, and part
(a) is easily checked. Now assume that a 6= 1.

Observe that fn has degree n and always has constant term 1. Write
fn(x) = c0 + c1x + · · ·+ cnxn; we prove by induction on n that

(ai − 1)ci = (an+1−i − 1)ci−1

for 0 ≤ i ≤ n (where we let c−1 = 0).
The base case n = 0 is clear. Now suppose that fn−1(x) =

b0 + b1x + · · · + bn−1x
n−1 satisfies the claim: specifically, we know

(ai − 1)bi = (an−i − 1)bi−1 and (an+1−i − 1)bi−2 = (ai−1 − 1)bi−1 for
i ≥ 1.

For i = 0, the claim states 0 = 0. For i ≥ 1, the given recursion
gives ci = bi−1 + aibi and ci−1 = bi−2 + ai−1bi−1. Then the claim is
equivalent to

(ai − 1)ci = (an+1−i − 1)ci−1

⇐⇒ (ai − 1)(bi−1 + aibi) = (an+1−i − 1)(bi−2 + ai−1bi−1)

⇐⇒ (ai − 1)bi−1 + ai(ai − 1)bi

= (an+1−i − 1)bi−2 + (an − ai−1)bi−1

⇐⇒ (ai − 1)bi−1 + ai(an−i − 1)bi−1

= (ai−1 − 1)bi−1 + (an − ai−1)bi−1

⇐⇒ (an − 1)bi−1 = (an − 1)bi−1,

so it is true.
Now by telescoping products, we have

ci =
ci

c0
=

i∏
k=1

ck

ck−1

=
i∏

k=1

an+1−k − 1
ak − 1

=

∏n
k=n+1−i(a

k − 1)∏i
k=1(ak − 1)

=

∏n
k=i+1(a

k − 1)∏n−i
k=1(ak − 1)

=
n−i∏
k=1

an+1−k − 1
ak − 1

=
n−i∏
k=1

ck

ck−1
=

cn−i

c0
= cn−i,
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giving our explicit form. Also, fn(x) = xnfn

(
1
x

)
if and only if

ci = cn−i for i = 0, 1, . . . , n, and from above this is indeed the case.
This completes the proof.

Problem 3 There are 99 space stations. Each pair of space stations
is connected by a tunnel. There are 99 two-way main tunnels, and
all the other tunnels are strictly one-way tunnels. A group of 4 space
stations is called connected if one can reach each station in the group
from every other station in the group without using any tunnels other
than the 6 tunnels which connect them. Determine the maximum
number of connected groups.

Solution: In this solution, let f(x) = x(x−1)(x−2)
6 , an extension of

the definition of
(
x
3

)
to all real numbers x.

In a group of 4 space stations, call a station troublesome if three
one-way tunnels lead toward it or three one-way tunnels lead out of it.
In each group there is at most one troublesome station of each type
for a count of at most two troublesome stations. Also, if a station is
troublesome in a group, that group is not connected.

Label the stations 1, 2, . . . , 99. For i = 1, 2, . . . , 99, let ai one-
way tunnels point into station i and bi one-way tunnels point out.
Station i is troublesome in

(
ai

3

)
+
(
bi

3

)
groups of four. Adding over all

stations, we obtain a total count of
∑198

i=1

((
ai

3

)
+
(
bi

3

))
. This equals∑198

i=1 f(xi) for nonnegative integers x1, x2, . . . , x198 with
∑198

i=1 xi =
96 ·99. Without loss of generality, say that x1, x2, . . . , xk are at least 1
and xk+1, xk+2, . . . , x198 are zero. Since f(x) is convex as a function
of x for x ≥ 1, this is at least k

(
96·99/k

2

)
. Also, mf(x) ≥ f(mx) when

m ≤ 1 and mx ≥ 2. Letting m = k/198 and mx = 96·99/198 = 48, we
find that our total count is at least 198

(
48
2

)
. Since each unconnected

group of 4 stations has at most two troublesome stations, there are
at least 99

(
48
3

)
unconnected groups of four and at most

(
99
4

)
− 99

(
48
3

)
connected groups.

All that is left to show is that this maximum can be attained.
Arrange the stations around a circle, and put a two-way tunnel
between any two adjacent stations; otherwise, place a one-way tunnel
running from station A to station B if and only if A is 3, 5, . . . ,

or 97 stations away clockwise from B. In this arrangement, every
station is troublesome 2

(
48
3

)
times. It is easy to check that under

this arrangement, no unconnected group of four stations contains
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two adjacent stations. And suppose that station A is troublesome
in a group of four stations A,B,C, D with B closest and D furthest
away clockwise from A. If one-way tunnels lead from A to the
other tunnels, three one-way tunnels must lead to D from the other
tunnels; and if one-way tunnels lead to A from the other tunnels,
three one-way tunnels must lead from B to the other tunnels. Thus
every unconnected group of four stations has exactly two troublesome
stations. Hence equality holds in the previous paragraph, and there
are indeed exactly

(
99
4

)
− 99

(
48
3

)
connected groups.

Problem 4 Let m be a positive integer. Prove that there are
integers a, b, k, such that both a and b are odd, k ≥ 0, and

2m = a19 + b99 + k · 21999.

Solution: The key observation is that if {t1, · · · , tn} equals
{1, 3, 5, . . . , 2n − 1} modulo 2n, then {ts1, · · · , tsn} does as well for any
odd positive integer s. To show this, note that for i 6= j,

tsi − tsj = (ti − tj)(ts−1
i + ts−2

i tj + · · ·+ ts−1
j ).

Since ts−1
i + ts−2

i tj + · · ·+ ts−1
j is an odd number, ti ≡ tj ⇐⇒ tsi ≡ tsj

(mod 2n).
Therefore there exists an odd number a0 such that 2m − 1 ≡ a19

0

(mod 21999). Hence if we pick a ≡ a0 (mod 21999) sufficiently negative
so that 2m− 1− a19 > 0, then

(a, b, k) =
(

a, 1,
2m− 1− a19

21999

)
is a solution to the equation.

Problem 5 Determine the maximum value of λ such that if f(x) =
x3 +ax2 + bx+ c is a cubic polynomial with all its roots nonnegative,
then

f(x) ≥ λ(x− a)3

for all x ≥ 0. Find the equality condition.

Solution: Let α, β, γ be the three roots. Without loss of generality,
suppose that 0 ≤ α ≤ β ≤ γ. We have

x− a = x + α + β + γ ≥ 0 and f(x) = (x− α)(x− β)(x− γ).
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If 0 ≤ x ≤ α, then (applying the arithmetic-mean geometric mean
inequality) to obtain the first inequality below)

−f(x) = (α− x)(β − x)(γ − x) ≤ 1
27

(α + β + γ − 3x)3

≤ 1
27

(x + α + β + γ)3 =
1
27

(x− a)3,

so that f(x) ≥ − 1
27 (x − a)3. Equality holds exactly when α − x =

β−x = γ−x in the first inequality and α+β +γ−3x = x+α+β +γ

in the second; that is, when x = 0 and α = β = γ.

If β ≤ x ≤ γ, then (again applying AM-GM to obtain the first
inequality below)

−f(x) = (x− α)(x− β)(γ − x) ≤ 1
27

(x + γ − α− β)3

≤ 1
27

(x + α + β + γ)3 =
1
27

(x− a)3,

so that again f(x) ≥ − 1
27 (x−a)3. Equality holds exactly when x−α =

x−β = γ−x in the first inequality and x+γ−α−β = x+α+β +γ;
that is, when α = β = 0 and γ = 2x.

Finally, when α < x < β or x > γ then

f(x) > 0 ≥ − 1
27

(x− a)3.

Thus, λ = − 1
27 works. From the above reasoning we can find that

λ must be at most − 1
27 or else the inequality fails for the polynomial

f(x) = x2(x − 1) at x = 1
2 . Equality occurs when either α = β = γ

and x = 0; or α = β = 0, γ any nonnegative real, and x = γ
2 .

Problem 6 A 4×4×4 cube is composed of 64 unit cubes. The faces
of 16 unit cubes are to be colored red. A coloring is called interesting
if there is exactly 1 red unit cube in every 1 × 1 × 4 rectangular
box composed of 4 unit cubes. Determine the number of interesting
colorings. (Two colorings are different even if one can be transformed
into another by a series of rotations.)

Solution: Pick one face of the cube as our bottom face. For each
unit square A on the bottom face, we consider the vertical 1× 1× 4
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rectangular box with A at its bottom. Suppose the i-th unit cube up
(counted from A) in the box is colored; then write the number i in A.

Each interesting coloring is mapped one-to-one to a 4 × 4 Latin
square on the bottom face. (In an n × n Latin square, each row
and column contains each of n symbols a1, . . . , an exactly once.)
Conversely, given a Latin square we can reverse this construction.
Therefore, to solve the problem, we only need to count the number
of distinct 4× 4 Latin squares.

Note that switching rows of a Latin square will generate another
Latin square. Thus if our four symbols are a, b, c, d, then each of the
4!·3! arrangements of the first row and column correspond to the same
number of Latin squares. Therefore there are 4! · 3! · x four-by-four
Latin squares, where x is the number of Latin squares whose first
row and column both contain the symbols a, b, c, d in that order. The
entry in the second row and second column equals either a, c, or d,

yielding the Latin squares
a b c d

b a d c

c d a b

d c b a

 ,


a b c d

b a d c

c d b a

d c a b

 ,


a b c d

b c d a

c d a b

d a b c

 ,


a b c d

b d a c

c a d b

d c b a

 .

Thus x = 4, and there are 4! · 3! · 4 = 576 four-by-four Latin squares,
and 576 interesting colorings.
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1.6 Czech and Slovak Republics

Problem 1 In the fraction
29÷ 28÷ 27÷ · · · ÷ 16
15÷ 14÷ 13÷ · · · ÷ 2

parentheses may be repeatedly placed anywhere in the numerator,
granted they are also placed on the identical locations in the denom-
inator.

(a) Find the least possible integral value of the resulting expression.

(b) Find all possible integral values of the resulting expression.

Solution:

(a) The resulting expression can always be written (if we refrain from
canceling terms) as a ratio A

B of two integers A and B satisfying

AB = (2)(3) · · · (29) = 29! = 225 ·313 ·56 ·74 ·112 ·132 ·17·19·23·29.

(To find these exponents, we could either count primes directly
factor by factor, or use the rule that⌊

n

p

⌋
+
⌊

n

p2

⌋
+
⌊

n

p3

⌋
+ · · · (1)

is the exponent of p in n!.)
The primes that have an odd exponent in the factorization

of 29! cannot “vanish” from the ratio A
B even after making any

cancellations. For this reason no integer value of the result can
be less than

H = 2 · 3 · 17 · 19 · 23 · 29 = 1, 292, 646.

On the other hand,

29÷ (28÷ 27÷ · · · ÷ 16)
15÷ (14÷ 13÷ · · · ÷ 2)

=
29 · 14
15 · 28

· (27)(26) · · · (16)
(13)(12) · · · (2)

=
29 · 142

28
· 27!
(15!)2

= 29 · 7 · 223 · 313 · 56 · 73 · 112 · 132 · 17 · 19 · 23
(211 · 36 · 53 · 72 · 11 · 13)2

= H.
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(Again it helps to count exponents in factorials using (1).) The
number H is thus the desired least value.

(b) Let’s examine the products A and B more closely. In each of the
fourteen pairs of numbers

{29, 15}, {28, 14}, . . . , {16, 2},

one of the numbers is a factor in A and the other is a factor in
B. The resulting value V can then be written as a product(

29
15

)ε1 (28
14

)ε2

· · ·
(

16
2

)ε14

,

where each εi equals ±1, and where ε1 = 1 and ε2 = −1 no matter
how the parentheses are placed. Since the fractions 27

13 , 26
12 , . . . ,

16
2 are greater than 1, the resulting value V (whether an integer
or not) has to satisfy the estimate

V ≤ 29
15

· 14
28

· 27
13

· 26
12

· . . . · 16
2

= H,

where H is number determined in part (a). It follows that H is
the only possible integer value of V !

Problem 2 In a tetrahedron ABCD we denote by E and F the
midpoints of the medians from the vertices A and D, respectively.
(The median from a vertex of a tetrahedron is the segment connecting
the vertex and the centroid of the opposite face.) Determine the ratio
of the volumes of tetrahedrons BCEF and ABCD.

Solution: Let K and L be the midpoints of the edges BC and
AD, and let A0, D0 be the centroids of triangles BCD and ABC,
respectively. Both medians AA0 and DD0 lie in the plane AKD,
and their intersection T (the centroid of the tetrahedron) divides
them in 3 : 1 ratios. T is also the midpoint of KL, since ~T =
1
4 ( ~A+ ~B + ~C + ~D) = 1

2 ( 1
2 ( ~A+ ~D)+ 1

2 ( ~B + ~C)) = 1
2 ( ~K + ~L). It follows

that ET
AT = FT

DT = 1
3 , and hence 4ATD ∼ 4ETF and EF = 1

3AD.
Since the plane BCL bisects both segments AD and EF into halves,
it also divides both tetrahedrons ABCD and BCEF into two parts
of equal volume. Let G be the midpoint of EF ; the corresponding
volumes than satisfy

[BCEF ]
[ABCD]

=
[BCGF ]
[BCLD]

=
GF

LD
· [BCG]

[BCL]
=

1
3

KG

KL
=

1
3
· 2
3

=
2
9
.
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Problem 3 Show that there exists a triangle ABC for which, with
the usual labelling of sides and medians, it is true that a 6= b and
a + ma = b + mb. Show further that there exists a number k such
that for each such triangle a + ma = b + mb = k(a + b). Finally, find
all possible ratios a : b of the sides of these triangles.

Solution: We know that

m2
a =

1
4
(2b2 + 2c2 − a2), m2

b =
1
4
(2a2 + 2c2 − b2),

so
m2

a −m2
b =

3
4
(b2 − a2).

As ma − mb = b − a 6= 0 by hypothesis, it follows that ma + mb =
3
4 (b + a). From the system of equations

ma −mb = b− a

ma + mb =
3
4
(b + a)

we find ma = 1
8 (7b− a), mb = 1

8 (7a− b), and

a + ma = b + mb =
7
8
(a + b).

Thus k = 7
8 .

Now we examine for what a 6= b there exists a triangle ABC with
sides a, b and medians ma = 1

8 (7b− a),mb = 1
8 (7a− b). We can find

all three side lengths in the triangle AB1G, where G is the centroid
of the triangle ABC and B1 is the midpoint of the side AC:

AB1 =
b

2
, AG =

2
3
ma =

2
3
· 1
8
(7b− a) =

1
12

(7b− a),

B1G =
1
3
mb =

1
3
· 1
8
(7a− b) =

1
24

(7a− b).

Examining the triangle inequalities for these three lengths, we get the
condition

1
3

<
a

b
< 3,

from which the value a
b = 1 has to be excluded by assumption.

This condition is also sufficient: once the triangle AB1G has been
constructed, it can always be completed to a triangle ABC with
b = AC,ma = AA1,mb = BB1. Then from the equality m2

a −m2
b =

3
4 (b2 − a2) we would also have a = BC.
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Problem 4 In a certain language there are only two letters, A and
B. The words of this language satisfy the following axioms:

(i) There are no words of length 1, and the only words of length 2
are AB and BB.

(ii) A sequence of letters of length n > 2 is a word if and only if
it can be created from some word of length less than n by the
following construction: all letters A in the existing word are left
unchanged, while each letter B is replaced by some word. (While
performing this operation, the B’s do not all have to be replaced
by the same word.)

Show that for any n the number of words of length n equals

2n + 2 · (−1)n

3
.

Solution: Let us call any finite sequence of letters A,B a “string.”
From here on, we let · · · denote a (possibly empty) string, while ∗ ∗ ∗
will stand for a string consisting of identical letters. (For example,
B ∗ ∗ ∗B︸ ︷︷ ︸

k

is a string of k B’s.)

We show that an arbitrary string is a word if and only if it satisfies
the following conditions: (a) the string terminates with the letter B;
and (b) it either starts with the letter A, or else starts (or even wholly
consists of) an even number of B’s.

It is clear that these conditions are necessary: they are satisfied for
both words AB and BB of length 2, and they are likewise satisfied
by any new word created by the construction described in (ii) if they
are satisfied by the words in which the B’s are replaced.

We now show by induction on n that, conversely, any string of
length n satisfying the conditions is a word. This is clearly true for
n = 1 and n = 2. If n > 2, then a string of length n satisfying the
conditions must have one of the forms

AA · · ·B, AB · · ·B, B ∗ ∗ ∗B︸ ︷︷ ︸
2k

A · · ·B, B ∗ ∗ ∗B︸ ︷︷ ︸
2k+2

,

where 2 ≤ 2k ≤ n−2. We have to show that these four types of strings
arise from the construction in (ii) in which the B’s are replaced by
strings (of lengths less than n) satisfying the condition — that is, by
words in view of the induction hypothesis.
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The word AA · · ·B arises as A(A · · ·B) from the word AB. The
word AB · · ·B arises either as A(B · · ·B) from the word AB, or as
(AB)(· · ·B) from the word BB, depending on whether its initial
letter A is followed by an even or an odd number of B’s. The word
B ∗ ∗ ∗B︸ ︷︷ ︸

2k

A · · ·B arises as (B ∗ ∗ ∗ B)(A · · ·B) from the word BB,

and the word B ∗ ∗ ∗B︸ ︷︷ ︸
2k+2

as (B ∗ ∗ ∗B︸ ︷︷ ︸
2k

)(BB) from the word BB. This

completes the proof by induction.
Now we show that the number pn of words of length n is indeed

given by the formula

pn =
2n + 2 · (−1)n

3
.

It is clearly true for n = 1 and 2 since p1 = 0 and p2 = 2; and the
formula will then follow by induction if we can show that pn+2 =
2n + pn for each n. But this recursion is obvious because each word
of length n + 2 is either of the form A · · ·B where · · · is any of 2n

strings of length n; or of the form BB · · · where · · · is any of the pn

words of length n.

Problem 5 In the plane an acute angle APX is given. Show how
to construct a square ABCD such that P lies on side BC and P lies
on the bisector of angle BAQ where Q is the intersection of ray PX

with CD.

Solution: Consider the ration by 90◦ around the point A that
maps B to D, and the points P,C,D into some points P ′, C ′, D′,
respectively. Since ∠PAP ′ = 90◦, it follows from the nature of
exterior angle bisectors that AP ′ bisects ∠QAD′. Consequently, the
point P ′ has the same distance from AD′ and AQ, equal to the side
length s of square ABCD. But this distance is also the length of
the altitude AD in triangle AQP ′; then since the altitudes from A

and P ′ in this triangle are equal, we have AQ = P ′Q. Since we
can construct P ′, we can also construct Q as the intersection of line
PX with the perpendicular bisector of the segment AP ′. The rest of
the construction is obvious, and it is likewise clear that the resulting
square ABCD has the required property.
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Problem 6 Find all pairs of real numbers a and b such that the
system of equations

x + y

x2 + y2
= a,

x3 + y3

x2 + y2
= b

has a solution in real numbers (x, y).

Solution: If the given system has a solution (x, y) for a = A, b = B,

then it clearly also has a solution (kx, ky) for a = 1
kA, b = kB, for any

k 6= 0. It follows that the existence of a solution of the given system
depends only on the value of the product ab.

We therefore begin by examining the values of the expression

P (u, v) =
(u + v)(u3 + v3)

(u2 + v2)2

where the numbers u and v are normalized by the condition u2 +v2 =
1. This condition implies that

P (u, v) = (u + v)(u3 + v3) = (u + v)2(u2 − uv + v2)

= (u2 + 2uv + v2)(1− uv) = (1 + 2uv)(1− uv).

Under the condition u2 + v2 = 1 the product uv can attain all
values in the interval [− 1

2 , 1
2 ] (if u = cos α and v = sinα, then

uv = 1
2 sin 2α). Hence it suffices to find the range of values of the

function f(t) = (1 + 2t)(1 − t) on the interval t ∈ [− 1
2 , 1

2 ]. From the
formula

f(t) = −2t2 + t + 1 = −2
(

t− 1
4

)2

+
9
8

it follows that this range of values is the closed interval with endpoints
f
(
− 1

2

)
= 0 and f

(
1
4

)
= 9

8 .

This means that if the given system has a solution, its parameters
a and b must satisfy 0 ≤ ab ≤ 9

8 , where the equality ab = 0 is possible
only if x + y = 0 (then, however, a = b = 0).

Conversely, if a and b satisfy 0 < ab ≤ 9
8 , by our proof there exist

numbers u and v such that u2 + v2 = 1 and (u + v)(u3 + v3) = ab.
Denoting a′ = u + v and b′ = u3 + v3, the equality a′b′ = ab 6= 0
implies that both ratios a′

a and b
b′ have the same value k 6= 0. But

then (x, y) = (ku, kv) is clearly a solution of the given system for the
parameter values a and b.
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1.7 France

Problem 1

(a) What is the maximum volume of a cylinder that is inside a given
cone and has the same axis of revolution as the cone? Express
your answer in terms of the radius R and height H of the cone.

(b) What is the maximum volume of a ball that is inside a given
cone? Again, express your answer in terms of R and H.

(c) Given fixed values for R and H, which of the two maxima you
found is bigger?

Solution: Let ` =
√

R2 + H2 be the slant height of the given cone;
also, orient the cone so that its base is horizontal and its tip is pointing
upward.

(a) Intuitively, the cylinder with maximum volume rests against the
base of the cone, and the center of the cylinder’s base coincides
with the center of the cone’s base. The top face of the cylinder
cuts off a smaller cone at the top of the original cone. If the
cylinder has radius r, then the smaller cone has height r · H

R and
the cylinder has height h = H − r · H

R . Then the volume of the
cylinder is

πr2h = πr2H
(
1− r

R

)
= 4πR2H

( r

2R
· r

2R
·
(
1− r

R

))
.

And by AM-GM on r
2R , r

2R , and 1− r
R this is at most

4πR2H · 1
27

( r

2R
+

r

2R
+
(
1− r

R

))3

=
4
27

πR2H,

with equality when r/2R = 1− r/R ⇐⇒ r = 2
3R.

(b) Intuitively, the sphere with maximum volume is tangent to the
base and lateral face of the cone; and its center lies on the cone’s
axis. Say the sphere has radius r.

Take a planar cross-section of the cone slicing through its axis;
this cuts off a triangle from the cone and a circle from the sphere.
The triangle’s side lengths are `, `, and 2R; and its height (from
the side of length 2R) is H. The circle has radius r and is the
incircle of this triangle.

The area K of the triangle is 1
2 (2R)(H) = RH and its

semiperimeter is s = R+ `. Then since K = rs we have r = RH
R+` ,



1999 National Contests: Problems and Solutions 59

and thus the volume of the sphere is

4
3
πr3 =

4
3
π

(
RH

R + `

)3

.

(c) We claim that when h/R =
√

3 or 2
√

6, the two volumes are
equal; when

√
3 < h/R < 2, the sphere has larger volume; and

when 0 < h/R <
√

3 or 2 < h/R, the cylinder has larger volume.

We wish to compare 4
27πR2H and 4

3π
(

RH
R+`

)3

; equivalently,
multiplying by 27

4πR2H (R + `)3, we wish to compare (R + `)3 and
9RH2 = 9R(`2 − R2). Writing φ = `/R, this is equivalent to
comparing (1 + φ)3 and 9(φ2 − 1). Now,

(1+φ)3− 9(φ2− 1) = φ3− 6φ2 +3φ+10 = (φ+1)(φ− 2)(φ− 5).

Thus when φ = 2 or 5, the volumes are equal; when 2 < φ < 5,
the sphere has larger volume; and when 1 < φ < 2 or 5 < φ, the
cylinder has larger volume. Comparing R and H instead of R

and ` yields the conditions stated before.

Problem 2 Find all integer solutions to (n + 3)n =
n+2∑
k=3

kn.

Solution: n = 2 and n = 3 are solutions to the equations; we claim
they are the only ones.

First observe that the function f(n) =
(

n+3
n+2

)n

=
(
1 + 1

n+2

)n

is an
increasing function for n > 0. To see this, note that the derivative of
ln f(n) with respect to n is ln

(
1 + 1

n+2

)
− n

(n+2)(n+3) . By the Taylor
expansion,

ln
(

1 +
1

n + 2

)
=
∞∑

j=1

1
(n + 2)2j

[
1

2j − 1
(n + 2)− 1

2j

]

>
2(n + 2)− 1
2(n + 2)2

and hence

d

dn
ln f(n) = ln

(
n + 3
n + 2

)
− n

(n + 2)(n + 3)

>
2(n + 2)− 1
2(n + 2)2

− n

(n + 2)2
=

3
2(n + 2)2

> 0.

Thus ln f(n) and therefore f(n) is indeed increasing.
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Now, notice that if f(n) > 2 then we have(
2
1

)n

>

(
3
2

)n

> · · · >
(

n + 3
n + 2

)n

> 2

so that

(n + 3)n > 2(n + 2)n > · · · > 2j(n + 3− j)n > · · · > 2n · (3)n.

Then

3n + 4n + · · ·+ (n + 2)n <

(
1
2n

+
1

2n−1
+ · · ·+ 1

2

)
(n + 3)n

=
(

1− 1
2n

)
(n + 3)n < (n + 3)n,

so the equality does not hold.
Then since 2 < f(6) < f(7) < · · ·, the equality must fail for all

n ≥ 6. Quick checks show it also fails for n = 1, 4, 5 (in each case,
one side of the equation is odd while the other is even). Therefore
the only solutions are n = 2 and n = 3.

Problem 3 For which acute-angled triangle is the ratio of the
shortest side to the inradius maximal?

Solution: Let the sides of the triangle have lengths a ≤ b ≤ c;
let the angles opposite them be A,B,C; let the semiperimeter be
s = 1

2 (a+ b+ c); and let the inradius be r. Without loss of generality
say the triangle has circumradius R = 1

2 and that a = sinA, b = sinB,
c = sinC.

The area of the triangle equals both rs = 1
2r(sinA + sinB + sin C)

and abc/4R = 1
2 sinA sinB sinC. Thus

r =
sinA sinB sinC

sinA + sinB + sinC

and
a

r
=

sinA + sinB + sinC

sinB sinC
.

Since A = 180◦−B−C, sinA = sin(B+C) = sin B cos C+cos B sinC

and we also have
a

r
= cotB + csc B + cot C + csc C.

Note that f(x) = cotx + csc x is a decreasing function along the
interval 0◦ < x < 90◦. Now there are two cases: B ≤ 60◦, or B > 60◦.
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If B ≤ 60◦, then assume that A = B; otherwise the triangle with
angles A′ = B′ = 1

2 (A + B) ≤ B and C ′ = C has a larger ratio a′/r′.
Then since C < 90◦ we have 45◦ < A ≤ 60◦. Now,

a

r
=

sinA + sinB + sinC

sinB sinC
=

2 sinA + sin(2A)
sinA sin(2A)

= 2 csc(2A) + csc A.

Now csc x has second derivative csc x(csc2 x+cot2 x), which is strictly
positive when 0◦ < x < 180◦; thus both csc x and csc(2x) are
strictly convex along the interval 0◦ < x < 90◦. Therefore g(A) =
2 csc(2A)+csc A, a convex function in A, is maximized in the interval
45◦ ≤ A ≤ 60◦ at one of the endpoints. Since g(45◦) = 2 +

√
2 <

2
√

3 = g(60◦), it is maximized when A = B = C = 60◦.
As for the case when B > 60◦, since C > B > 60◦, the triangle

with A′ = B′ = C ′ = 60◦ has a larger ratio a′/r′. Therefore the
maximum ratio is 2

√
3, attained with an equilateral triangle.

Problem 4 There are 1999 red candies and 6661 yellow candies
on a table, made indistinguishable by their wrappers. A gourmand
applies the following algorithm until the candies are gone:

(a) If there are candies left, he takes one at random, notes its color,
eats it, and goes to (b).

(b) If there are candies left, he takes one at random, notes its color,
and

(i) if it matches the last one eaten, he eats it also and returns to
(b).

(ii) if it does not match the last one eaten, he wraps it up again,
puts it back, and goes to (a).

Prove that all the candies will eventually be eaten. Find the proba-
bility that the last candy eaten is red.

Solution: If there are finitely many candies left at any point, then
at the next instant the gourmand must perform either step (a), part
(i) of step (b), or part (ii) of step (b). He eats a candy in the first two
cases; in the third case, he returns to step (a) and eats a candy. Since
there are only finitely many candies, the gourmand must eventually
eat all the candies.

We now prove by induction on the total number of candies that if
we start with r > 0 red candies and y > 0 yellow candies immediately
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before step (a), then the probability is 1
2 that the last candy eaten is

red.
Suppose that the claim is true for all smaller amounts of candy.

After the gourmand first completes steps (a) and (b) exactly once,
suppose there are r′ red candies and y′ yellow candies left; we must
have r′ + y′ < r + y. The chances that r′ = 0 is

r

r + y
· r − 1
r + y − 1

· · · · · 1
y + 1

=
1(

r+y
r

) .
Similarly, the chances that y′ = 0 is 1

(r+y
y ) = 1

(r+y
r ) . (In the case

r = y = 1, this proves the claim.)
Otherwise, the probability is 1− 2

(r+y
r ) that both r′ and y′ are still

positive. By the induction hypothesis in this case the last candy is
equally likely to be red as it is yellow. Thus the overall probability
that the last candy eaten is red is

1(
r+y

r

)︸ ︷︷ ︸
y′=0

+
1
2

(
1− 2(

r+y
r

))︸ ︷︷ ︸
r′,y′>0

=
1
2
.

This completes the inductive step, and the proof.

Problem 5 With a given triangle, form three new points by re-
flecting each vertex about the opposite side. Show that these three
new points are collinear if and only if the the distance between
the orthocenter and the circumcenter of the triangle is equal to the
diameter of the circumcircle of the triangle.

Solution: Let the given triangle be ABC and let the reflections
of A,B,C across the corresponding sides be D,E, F . Let A′, B′, C ′

be the midpoints of BC,CA, AB, and as usual let G, H,O denote
the triangle’s centroid, orthocenter, and circumcenter. Let triangle
A′′B′′C ′′ be the triangle for which A,B,C are the midpoints of
B′′C ′′, C ′′A′′, A′′B′′, respectively. Then G is the centroid and H

is the circumcenter of triangle A′′B′′C ′′. Let D′, E,′ F ′ denote the
projections of O on the lines B′′C ′′, C ′′A′′, A′′B′′, respectively.

Consider the homothety h with center G and ratio −1/2. It maps
A,B, C, A′′, B′′, C ′′ into A′, B′, C ′, A, B, C, respectively. Note that
A′D′ ⊥ BC since O is the orthocenter of triangle A′B′C ′. This implies
AD : A′D′ = 2 : 1 = GA : GA′ and ∠DAG = ∠D′A′G. We conclude
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that h(D) = D′. Similarly, h(E) = E′ and h(F ) = F ′. Thus, D,E, F

are collinear if and only if D′, E′, F ′ are collinear. Now D′, E′, F ′ are
the projections of O on the sides B′′C ′′, C ′′A′′, A′′B′′, respectively.
By Simson’s theorem, they are collinear if and only if O lies on the
circumcircle of triangle A′′B′′C ′′. Since the circumradius of triangle
A′′B′′C ′′ is 2R, O lies on its circumcircle if and only if OH = 2R.
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1.8 Hong Kong (China)

Problem 1 Let PQRS be a cyclic quadrilateral with ∠PSR = 90◦,
and let H and K be the respective feet of perpendiculars from Q to
lines PR and PS. Prove that line HK bisects QS.

First Solution: Since QK and RS are both perpendicular to PS,
QK is parallel to RS and thus ∠KQS = ∠RSQ. Since PQRS is
cyclic, ∠RSQ = ∠RPQ. Since ∠PKQ = ∠PHQ = 90◦, PKHQ is
also cyclic and it follows that ∠RPQ = ∠HPQ = ∠HKQ. Thus,
∠KQS = ∠HKQ; since triangle KQS is right, it follows that line
HK bisects QS.

Second Solution: The Simson line from Q with respect to 4PRS

goes through H, K, and the foot F of the perpendicular from Q to
←→
RS. Thus, line HK is line FK, a diagonal in rectangle SFQK, so it
bisects the other diagonal, QS.

Problem 2 The base of a pyramid is a convex nonagon. Each base
diagonal and each lateral edge is colored either black or white. Both
colors are used at least once. (Note that the sides of the base are not
colored.) Prove that there are three segments colored the same color
which form a triangle.

Solution: Let us assume the contrary. From the pigeonhole
principle, 5 of the lateral edges must be of the same color; assume they
are black, and say they are the segments from the vertex V to B1,
B2, B3, B4, and B5 where B1B2B3B4B5 is a convex pentagon (and
where the Bi’s are not necessarily adjacent vertices of the nonagon).
The BiBi+1 (where B6 = B1) cannot all be sides of the nonagon, so
without loss of generality suppose that B1B2 is colored. Then because
triangle V BiBj cannot have three sides colored black, each segment
B1B2, B2B4, B4B1 must be white; but then triangle B1B2B4 has
three sides colored white, a contradiction.

Problem 3 Let s and t be nonzero integers, and let (x, y) be any
ordered pair of integers. A move changes (x, y) to (x− t, y − s). The
pair (x, y) is good if after some (possibly zero) number of moves it
becomes a pair of integers that are not relatively prime.

(a) Determine if (s, t) is a good pair;
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(b) Prove that for any s, t there exists a pair (x, y) which is not good.

Solution:

(a) Let us assume that (s, t) is not good. Then, after one move, we
have (s−t, t−s), so we may assume without loss of generality that
s− t = 1 and t− s = −1 since these numbers must be relatively
prime. Then s + t cannot equal 0 because it is odd; also, s + t =
(s−t)+2t 6= (s−t)+0 = 1, and s+t = (t−s)+2s 6= (t−s)+0 = −1.
Hence some prime p divides s+t. After p−1 moves, (s, t) becomes
(s − (p − 1)t, t − (p − 1)s) ≡ (s + t, t + s) ≡ (0, 0) (mod p), a
contradiction. Thus (s, t) is good.

(b) Let x and y be integers which satisfy sx − ty = g, where g =
gcd(s, t). Dividing by g, we find s′x − t′y = 1, so gcd(x, y) = 1.
Now, suppose by way of contradiction that after k moves some
prime p divides both x− kt and y − ks. We then have

0 ≡ x− kt ≡ y − ks

=⇒ 0 ≡ s(x− kt) ≡ t(y − ks)

=⇒ 0 ≡ sx− ty = g (mod p).

Thus p divides g, which divides s and t, so the first equation
above becomes 0 ≡ x ≡ y (mod p); but x and y are relatively
prime, a contradiction. Thus (x, y) is not good.

Problem 4 Let f be a function defined on the positive reals with
the following properties:

(i) f(1) = 1;

(ii) f(x + 1) = xf(x);

(iii) f(x) = 10g(x),

where g(x) is a function defined on the reals satisfying

g(ty + (1− t)z) ≤ tg(y) + (1− t)g(z)

for all real y, z and any 0 ≤ t ≤ 1.

(a) Prove that

t[g(n)− g(n− 1)] ≤ g(n + t)− g(n) ≤ t[g(n + 1)− g(n)]

where n is an integer and 0 ≤ t ≤ 1.
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(b) Prove that
4
3
≤ f

(
1
2

)
≤ 4

√
2

3
.

Solution:

(a) Setting t = 1
2 in the given inequality, we find that g( 1

2 (y + z)) ≤
1
2 (g(y)+g(z)). Now fix t (perhaps not equal to 1

2 ) constant; letting
y = n − t and z = n + t in g( 1

2 (y + z)) ≤ 1
2 (g(y) + g(z)) gives

g(n) ≤ 1
2 (g(n− t) + g(n + t)), or

g(n)− g(n− t) ≤ g(n + t)− g(n). (1)

Plugging in z = n, y = n − 1 into the given inequality gives
g(t(n− 1) + (1− t)n) ≤ tg(n− 1) + (1− t)g(n), or

t[g(n)− g(n− 1)] ≤ g(n)− g(n− t).

Combining this with (1) proves the inequality on the left side.
And the inequality on the right side follows from the given
inequality with z = n, y = n + 1.

(b) From (ii), f( 3
2 ) = 1

2f( 1
2 ), and f( 5

2 ) = 3
2f( 3

2 ) = 3
4f( 1

2 ). Also,
f(2) = 1 · f(1) = 1, and f(3) = 2f(2) = 2. Now, if we
let n = 2 and t = 1

2 in the inequality in part (a), we find
1
2 [g(2) − g(1)] ≤ g

(
5
2

)
− g(2) ≤ 1

2 [g(3) − g(2)]. Exponentiating

with base 10 yields
√

f(2)
f(1) ≤

f( 5
2 )

f(2) ≤
√

f(3)
f(2) , or 1 ≤ f

(
5
2

)
≤
√

2.
Plugging in f

(
5
2

)
= 3

4f( 1
2 ) yields the desired result.
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1.9 Hungary

Problem 1 I have n ≥ 5 real numbers with the following properties:

(i) They are nonzero, but at least one of them is 1999.

(ii) Any four of them can be rearranged to form a geometric progres-
sion.

What are my numbers?

Solution: First suppose that the numbers are all nonnegative. If
x ≤ y ≤ z ≤ w ≤ v are any five of the numbers, then x, y, z, w;
x, y, z, v; x, y, w, v; x, z, w, v; and y, z, w, v must all be geometric
progressions. Comparing each two successive progressions in this list
we find that x = y = z = w = v. Thus all our numbers are equal.

If some numbers are negative in our original list, replace each
number x by |x|. The geometric progression property is preserved,
and thus from above all the values |x| are equal. Hence, each original
number was 1999 or −1999. And because n ≥ 5, some three numbers
are equal. But no geometric progression can be formed from three
−1999s and a 1999, or from three 1999s and a −1999. Therefore all
the numbers must be equal — to 1999.

Problem 2 Let ABC be a right triangle with ∠C = 90◦. Two
squares S1 and S2 are inscribed in triangle ABC such that S1 and
ABC share a common vertex C, and S2 has one of its sides on AB.
Suppose that [S1] = 441 and [S2] = 440. Calculate AC + BC.

Solution: Let S1 = CDEF and S2 = KLMN with D and K on AC

and N on BC. Let s1 = 21, s2 =
√

440 and a = BC, b = CA, c = AB.
Using ratios between similar triangles AED, ABC, EBF we get c =
AB = AE+EB = c(s1/a+s1/b) or s1(1/a+1/b) = 1. Since triangles
ABC, AKL, NBM are similar we have c = AB = AL+LM +MB =
s2(b/a + 1 + a/b) and s2 = abc/(ab + c2). Then

1
s2
2

− 1
s2
1

=
(

1
c

+
c

ab

)2

−
(

1
a

+
1
b

)2

=
(

1
c2

+
c2

a2b2
+

2
ab

)
−
(

1
a2

+
1
b2

+
2
ab

)
=

1
c2

.
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Thus c = 1/
√

1/s2
2 − 1/s2

1 = 21
√

440. Solving s2 = abc/(ab + c2) for
ab yields ab = s2c

2/(c− s2) = 212 · 22. Finally, AC + BC = a + b =
ab/s1 = 21 · 22 = 462.

Problem 3 Let O and K be the centers of the respective spheres
tangent to the faces, and the edges, of a right pyramid whose base is
a 2 by 2 square. Determine the volume of the pyramid if O and K

are equidistant from the base.

Solution: Let r, R be the spheres’ respective radii. Let the pyramid
have base ABCD, vertex P , and height h. By symmetry, O and K

lie on the altitude through P .
Take a cross-section of the pyramid with a plane perpendicular to

the base, cutting the base at a line through its center parallel to AB.
It cuts off an isosceles triangle from the pyramid with base 2 and
legs

√
h2 + 1; the triangle’s incircle is the cross-section of the sphere

centered at O and hence has radius r. On the one hand, the area
of this triangle is the product of its inradius and semiperimeter, or
1
2r(2 + 2

√
h2 + 1). On the other hand, it equals half of the product

of its base and height, or 1
2 · 2 · h. Setting these quantities equal, we

have r = (
√

h2 + 1− 1)/h.
Next, by symmetry the second sphere is tangent to AB at its

midpoint M . Then since K must be distance r from plane ABCD,
we have R2 = KM2 = r2 + 1. Furthermore, if the second sphere is
tangent to AP at N , then by equal tangents we have AN = AM = 1.

Then PN = PA− 1 =
√

h2 + 2− 1. Also, PK = h + r if K is on
the opposite side of plane ABCD as O, and it equals h− r otherwise.
Thus

PK2 = PN2 + NK2

(h± r)2 = (
√

h2 + 2− 1)2 + (r2 + 1)

± 2rh = 4− 2
√

h2 + 2.

Recalling that r = (
√

h2 + 1− 1)/h, this gives

± (
√

h2 + 1− 1) = 2−
√

h2 + 2.

This equation has the unique solution h =
√

7/3. Thus the volume
of the pyramid is 1

3 · 4 ·
√

7
3 = 4

√
7/9.
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Problem 4 For any given positive integer n, determine (as a
function of n) the number of ordered pairs (x, y) of positive integers
such that

x2 − y2 = 102 · 302n.

Further prove that the number of such pairs is never a perfect square.

Solution: Since 102·302n is even, x and y must have the same parity.
Then (x, y) is a valid solution if and only if (u, v) =

(x+y
2 , x−y

2

)
is a

pair of positive integers that satisfies u > v and uv = 52 · 302n. Now
52 · 302n = 22n · 32n · 52n+2 has exactly (2n + 1)2(2n + 3) factors;
thus without the condition u > v there are exactly (2n + 1)2(2n + 3)
such pairs (u, v). Exactly one pair has u = v, and by symmetry
half of the remaining pairs have u > v; and it follows that there are
1
2

(
(2n + 1)2(2n + 3)− 1

)
= (n + 1)(4n2 + 6n + 1) valid pairs.

Now suppose that (n + 1)(4n2 + 6n + 1) were a square. Since n + 1
and 4n2 + 6n + 1 = (4n + 2)(n + 1) − 1 are coprime, 4n2 + 6n + 1
must be a square as well; but (2n + 1)2 < 4n2 + 6n + 1 < (2n + 2)2,
a contradiction.

Problem 5 For 0 ≤ x, y, z ≤ 1, find all solutions to the equation

x

1 + y + zx
+

y

1 + z + xy
+

z

1 + x + yz
=

3
x + y + z

.

Solution: Assume x + y + z > 0, since otherwise the equation
is meaningless. (1 − z)(1 − x) ≥ 0 ⇒ 1 + zx ≥ x + z, and hence
x/(1+ y + zx) ≤ x/(x+ y + z). Doing this for the other two fractions
yields that the left hand side is at most (x + y + z)/(x + y + z) ≤
3/(x + y + z). If equality holds, we must have in particular that
x + y + z = 3 ⇒ x = y = z = 1. We then verify that this is indeed a
solution.

Problem 6 The midpoints of the edges of a tetrahedron lie on a
sphere. What is the maximum volume of the tetrahedron?

Solution: Let the sphere have center O. First let A,B,C be any
points on its surface. Then [OAB] = 1

2OA · OB sin∠AOB ≤ 1
2r2.

Likewise, the height from C to plane OAB is at most CO = r,
whence tetrahedron OABC has maximum volume r3/6. Now, if
{A,A′}, {B,B′}, {C,C ′} are pairs of antipodal points on the sphere,



70 Hungary

the octahedron ABCA′B′C ′ can be broken up into 8 such tetrahedra
with vertex O and therefore has maximum volume 4r3/3. Equality
holds for a regular octahedron.

In the situation of the problem, shrink the tetrahedron T (with
volume V ) by a factor of 1/2 about each vertex to obtain four
tetrahedra, each with volume V/8. Then the six midpoints form
an octahedron with volume V/2. Moreover, the segment connecting
two opposite vertices C and D of this octahedron has T ’s centroid P

as its midpoint. If O 6= P then line OP is a perpendicular bisector
of each segment, and then all these segments must lie in the plane
through P perpendicular to line OP ; but then V/2 = 0. Otherwise,
the midpoints form three pairs of antipodal points, whose volume is
at most 4r3/3 from the last paragraph. Therefore V ≤ 8r3/3, with
equality for a regular tetrahedron.

Problem 7 A positive integer is written in each square of an n2

by n2 chess board. The difference between the numbers in any two
adjacent squares (sharing an edge) is less than or equal to n. Prove
that at least bn/2c+ 1 squares contain the same number.

Solution: Consider the smallest and largest numbers a and b on
the board. They are separated by at most n2−1 squares horizontally
and n2 − 1 vertically, so there is a path from one to the other with
length at most 2(n2−1). Then since any two successive squares differ
by at most n, we have b− a ≤ 2(n2 − 1)n. But since all numbers on
the board are integers lying between a and b, only 2(n2 − 1)n + 1
distinct numbers can exist; and because n4 > (2(n2 − 1)n + 1)(n/2),
more than n/2 squares contain the same number, as needed.

Problem 8 One year in the 20th century, Alex noticed on his
birthday that adding the four digits of the year of his birth gave
his actual age. That same day, Bernath—who shared Alex’s birthday
but was not the same age as him—also noticed this about his own
birth year and age. That day, both were under 99. By how many
years do their ages differ?

Solution: Let c be the given year. Alex’s year of birth was either
18uv or 19uv respectively (where u and v are digits), and thus either
c = 18uv +(9+u+ v) = 1809+11u+2v or c = 19uv +(10+u+ v) =
1910 + 11u + 2v.
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Similarly, let Bernath’s year of birth end in the digits u′, v′. Alex
and Bernath could not have been born in the same century. Other-
wise, we would have 11u + 2v = 11u′ + 2v′ ⇒ 2(v − v′) = 11(u′ − u);
thus either (u, v) = (u′, v′) or else |v−v′| ≥ 11, which are both impos-
sible. Then without loss of generality say Alex was born in the 1800s,
and that 1809+11u+2v = 1910+11u′+2v′ ⇒ 11(u−u′)+2(v−v′) =
101 ⇒ u− u′ = 9, v − v′ = 1. The difference between their ages then
equals 19u′v′ − 18uv = 100 + 10(u′ − u) + (v′ − v) = 9.

Problem 9 Let ABC be a triangle and D a point on the side AB.
The incircles of the triangles ACD and CDB touch each other on
CD. Prove that the incircle of ABC touches AB at D.

Solution: Suppose that the incircle of a triangle XY Z touches sides
Y Z, ZX, XY at U, V,W . Then (using equal tangents) XY + Y Z +
ZX = (Y W + Y U) + (XW + ZU) + XZ = (2Y U) + (XZ) + XZ,
and Y U = 1

2 (XY + Y Z − ZX).
Thus if the incircles of triangles ACD and CDB touch each other

at E, then AD+DC−CA = 2DE = BD+DC−CB ⇒ AD−CA =
(AB − AD) − BC ⇒ AD = 1

2 (CA + AB − BC). But if the incircle
of ABC is tangent to AB at D′, then AD′ = 1

2 (CA + AB − BC) as
well—so D = D′, as desired.

Problem 10 Let R be the circumradius of a right pyramid with
a square base. Let r be the radius of the sphere touching the four
lateral faces and the circumsphere. Suppose that 2R = (1 +

√
2)r.

Determine the angle between adjacent faces of the pyramid.

Solution: Let P be the pyramid’s vertex, ABCD the base, and
M,N the midpoints of sides AB,CD. By symmetry, both spheres
are centered along the altitude from P . Plane PMN intersects the
pyramid in triangle PMN and meets the spheres in great circles. Let
the smaller circle have center O; it is tangent to PM , PN , and the
large circle at some points U, V,W . Again by symmetry W is lies
on the altitude from P , implying that it is diametrically opposite P

on the larger circle. Thus OP = 2R − r =
√

2r, triangle OUP is a
45◦-45◦-90◦ triangle, and ∠OPU = ∠OPV = 45◦. Therefore triangle
NPM is isosceles right, and the distance from P to plane ABCD

equals BC/2.
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Hence one can construct a cube with P as its center and ABCD as
a face; this cube can be decomposed into six pyramids congruent to
PABCD. In particular, three such pyramids have a vertex at A; so
three times the dihedral angle between faces PAB, PAD forms one
revolution, and this angle is 2π/3. Stated differently, say the three
pyramids are PABD, PADE, PAEB; let P ′ be the midpoint of AP ,
and let B′, D′, E′ be points on planes PAB, PAD, PAE such that
lines B′P ′, D′P ′, E′P ′ are all perpendicular to line AP . The desired
angle is the angle between any two of these lines. But since these
three lines all lie in one plane (perpendicular to line AP ), this angle
must be 2π/3.

Problem 11 Is there a polynomial P (x) with integer coefficients
such that P (10) = 400, P (14) = 440, and P (18) = 520?

Solution: If P exists, then by taking the remainder modulo (x −
10)(x− 14)(x− 18) we may assume P is quadratic. Writing P (x) =
ax2+bx+c, direct computation reveals P (x+4)+P (x−4)−2P (x) =
32a for all x. Plugging in x = 14 gives 40 = 32a, which is impossible
since a must be an integer. Therefore no such polynomial exists.

Problem 12 Let a, b, c be positive numbers and n ≥ 2 be an integer
such that an + bn = cn. For which k is it possible to construct an
obtuse triangle with sides ak, bk, ck?

Solution: First, a, b < c. Thus for m > n we have cm =
cm−n(an + bn) > am−nan + bm−nbn = am + bm, while for m < n

we have cm = cm−n(an + bn) < am−nan + bm−nbn = am + bm. Now,
a triangle with sides ak, bk, ck exists iff ak + bk > ck, and it is then
obtuse iff (ak)2 + (bk)2 < (ck)2, i.e. a2k + b2k < c2k. From our first
observation, these correspond to k < n and 2k > n, respectively; and
hence n/2 < k < n.

Problem 13 Let n > 1 be an arbitrary real number and k be the
number of positive primes less than or equal to n. Select k+1 positive
integers such that none of them divides the product of all the others.
Prove that there exists a number among the k + 1 chosen numbers
which is bigger than n.

Solution: Suppose otherwise; then our chosen numbers a1, . . . , ak+1

have a total of at most k distinct prime factors (i.e. the primes less
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than or equal to n). Let op(a) denote the highest value of d such
that pd | a. Also let q = a1a2 · · · ak+1. Then for each prime p,
op(q) =

∑k+1
i=1 op(ai), and it follows that there can be at most one

“hostile” value of i for which op(ai) > op(q)/2. Since there are at
most k primes which divide q, there is some i which is not hostile for
any such prime. Then 2op(ai) ≤ op(q) ⇒ op(ai) ≤ op(q/ai) for each
prime p dividing q, implying that ai | q/ai, a contradiction.

Problem 14 The polynomial x4 − 2x2 + ax + b has four distinct
real roots. Show that the absolute value of each root is smaller than√

3.

Solution: Let the roots be p, q, r, s. We have p+ q + r + s = 0, pq +
pr+ps+qr+qs+rs = −2, and hence p2+q2+r2+s2 = 02−2(−2) = 4.
But by Cauchy-Schwarz, (1+1+1)(q2 +r2 +s2) ≥ (q+r+s)2 for any
real q, r, s; furthermore, since q, r, s must be distinct, the inequality
becomes strict. Thus 4 = p2 + q2 + r2 + s2 > p2 + (−p)2/3 = 4p2/3
or |p| <

√
3, and the same argument holds for q, r, s.

Problem 15 Each side of a convex polygon has integral length and
the perimeter is odd. Prove that the area of the polygon is at least√

3/4.

Solution:

Lemma 1. If 0 ≤ x, y ≤ 1, then√
1− x2 +

√
1− y2 ≥

√
1− (x + y − 1)2.

Proof: Squaring and subtracting 2−x2−y2 from both sides gives
the equivalent inequality 2

√
(1− x2)(1− y2) ≥ −2(1 − x)(1 − y),

which is true since the left side is nonnegative and the right is at
most 0.

Lemma 2. If x1 + · · ·+xn ≤ n−1/2 and 0 ≤ xi ≤ 1 for each i, then∑n
i=1

√
1− x2

i ≥
√

3/2.

Proof: Use induction on n. In the case n = 1, the statement is
clear. If n > 1, then either min(x1, x2) ≤ 1/2 or x1 + x2 > 1. In the
first case we immediately have max(

√
1− x2

1,
√

1− x2
2) ≥

√
3/2; in

the second case we can replace x1, x2 by the single number x1 +x2−1
and use the induction hypothesis together with the previous lemma.
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Now consider our polygon. Let P,Q be vertices such that l = PQ

is maximal. The polygon consists of two paths from P to Q, each of
integer length ≥ l; these lengths are distinct since the perimeter is
odd. Then the greater of the two lengths is m ≥ l + 1. Position the
polygon in the coordinate plane with P = (0, 0), Q = (l, 0) and the
longer path in the upper half-plane. Since each side of the polygon
has integer length, we can divide this path into line segments of length
1. Let the endpoints of these segments, in order, be P0 = P, P1 =
(x1, y1), P2 = (x2, y2), . . . , Pm = Q. There exists some r such that yr

is maximal; then either r ≥ xr + 1/2 or (m − r) ≥ (` − xr) + 1/2.
Assume the former (otherwise, just reverse the choices of P and Q).
We already know that y1 ≥ 0, and by the maximal definition of l

we must have x1 ≥ 0 as well; then since the polygon is convex we
must have y1 ≤ y2 ≤ . . . ≤ yr and x1 ≤ x2 ≤ . . . ≤ xr. But
yi+1 − yi =

√
1− (xi+1 − xi)2, so

yr =
r−1∑
i=0

(yi+1 − yi) =
r−1∑
i=0

√
1− (xi+1 − xi)2 ≥

√
3/2

by the second lemma. And we must have l ≥ 1, implying that triangle
PPrQ has area at least

√
3/4. Since this triangle lies within the

polygon (by convexity), we are done.

Problem 16 Determine if there exists an infinite sequence of posi-
tive integers such that

(i) no term divides any other term;

(ii) every pair of terms has a common divisor greater than 1, but no
integer greater than 1 divides all of the terms.

Solution: The desired sequence exists. Let p0, p1, . . . be the primes
greater than 5 in order, and let q3i = 6, q3i+1 = 10, q3i+2 = 15 for
each nonnegative integer i. Then let si = piqi for all i ≥ 0. The
sequence s0, s1, s2, . . . clearly satisfies (i) since si is not even divisible
by pj for i 6= j. For the first part of (ii), any two terms have their
indices both in {0, 1}, both in {0, 2}, or both in {1, 2} (mod 3), so
they have a common divisor of 2, 3, or 5, respectively. For the second
part, we just need to check that no prime divides all the si; this holds
since 2 6 | s2, 3 6 | s1, 5 6 | s0, and no prime greater than 5 divides more
than one si.
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Problem 17 Prove that, for every positive integer n, there exists
a polynomial with integer coefficients whose values at 1, 2, . . . , n are
different powers of 2.

Solution: We may assume n ≥ 4. For each i = 1, 2, . . . , n,

write
∏n

j=1,j 6=i(i − j) = 2qimi for positive integers qi,mi with mi

odd. Let L be the least common multiple of all the qi, and let
ri = L/qi. For each i, there are infinitely many powers of 2 which
are congruent to 1 modulo |mri

i |. (Specifically, by Euler’s theorem,
2φ(|mri

i |)j ≡ 1 (mod |mri
i |) for all j ≥ 0.) Thus there are infinitely

many integers ci such that cim
ri
i + 1 is a power of 2; choose one.

Then define

P (x) =
n∑

i=1

ci

 n∏
j=1
j 6=i

(x− j)


ri

+ 2L.

For each k, 1 ≤ k ≤ n, in the sum each term
(∏n

j=1,j 6=i(x− j)
)ri

vanishes for all i 6= k. Then

P (k) = ck

 n∏
j=1
j 6=k

(k − j)


ri

+ 2L = 2L(cim
ri
i + 1),

a power of 2. Moreover, by choosing the ci appropriately, we can
guarantee that these values are all distinct, as needed.

Problem 18 Find all integers N ≥ 3 for which it is possible to
choose N points in the plane (no three collinear) such that each
triangle formed by three vertices on the convex hull of the points
contains exactly one of the points in its interior.

Solution: First, if the convex hull is a k-gon, then it can be divided
into k − 2 triangles each containing exactly one chosen point; and
since no three of the points are collinear, the sides and diagonals of
the convex hull contain no chosen points on their interiors, giving
N = 2k − 2.

Now we construct, by induction on k ≥ 3, a convex k-gon with a set
S of k−2 points inside such that each triangle formed by vertices of the
k-gon contains exactly one point of S in its interior. The case k = 3 is
easy. Now, assume we have a k-gon P1P2 . . . Pk and a set S. Certainly
we can choose Q such that P1P2 . . . PkQ is a convex (k + 1)-gon. Let
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R move along the line segment from Pk to Q. Initially (at R = Pk),
for any indices 1 ≤ i < j < k, the triangle PiPjR internally contains
a point of S by assumption; if R is moved a sufficiently small distance
dij , this point still lies inside triangle PiPjR. Now fix a position of R

such that PkR is less than the minimum dij ; P1P2 . . . PkR is a convex
(k + 1)-gon. Let P be an interior point of the triangle bounded by
lines P1Pk, RPk−1, PkR. We claim the polygon P1P2 . . . PkR and the
set S ∪ {P} satisfy our condition. If we choose three of the Pi, they
form a triangle containing a point of S by hypothesis, and no others;
any triangle PiPjR (i, j < k) contains only the same internal point
as triangle PiPjPk; and each triangle PiPkR contains only P . This
completes the induction step.
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1.10 Iran

First Round

Problem 1 Suppose that a1 < a2 < · · · < an are real numbers.
Prove that

a1a
4
2 + a2a

4
3 + · · ·+ ana4

1 ≥ a2a
4
1 + a3a

4
2 + · · ·+ a1a

4
n.

First Solution: We prove the claim by induction on n. For n = 2,

the two sides are equal; now suppose the claim is true for n− 1, i.e.,

a1a
4
2 + a2a

4
3 + · · ·+ an−1a

4
1 ≥ a2a

4
1 + a3a

4
2 + · · ·+ a1a

4
n−1.

Then the claim for n will follow from the inequality

an−1a
4
n + ana4

1 − an−1a
4
1 ≥ ana4

n−1 + a1a
4
n − a1a

4
n−1

(Notice that this is precisely the case for n = 3.) Without loss of
generality, suppose an − a1 = 1; otherwise, we can divide each of a1,

an−1, an by an− a1 > 0 without affecting the truth of the inequality.
Then by Jensen’s inequality for the convex function x4, we have

a4
1(an − an−1) + a4

n(an−1 − a1) ≥ (a1(an − an−1) + an(an−1 − a1))
4

= (an−1(an − a1))
4 = a4

n−1(an − a1),

which rearranges to yield our desired inequality.

Second Solution: We use an elementary method to prove the case
n = 3. Define

p(x, y, z) = xy4 + yz4 + zx4 − yx4 − zy4 − xz4.

We wish to prove that p(x, y, z) ≥ 0 when x ≤ y ≤ z. Since
p(x, x, z) = p(x, y, y) = p(z, y, z) = 0, we know that (y − x)(z −
y)(z − x) divides p(x, y, z). In fact,

p(x, y, z) = yz4 − zy4 + zx4 − xz4 + xy4 − yx4

= zy(z3 − y3) + xz(x3 − z3) + xy(y3 − x3)

= zy(z3 − y3) + xz(y3 − z3) + xz(x3 − y3) + xy(y3 − x3)

= z(y − x)(z3 − y3) + x(z − y)(x3 − y3)
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= (y − x)(z − y)
(
z(z2 + zy + y2)− x(x2 + xy + y2)

)
= (y − x)(z − y)

(
(z3 − x3) + y2(z − x) + y(z2 − x2)

)
= (y − x)(z − y)(z − x)

(
z2 + zx + x2 + y2 + yz + yx

)
=

1
2
(y − x)(z − y)(z − x)

(
(x + y)2 + (y + z)2 + (z + x)2

)
≥ 0,

as desired.

Problem 2 Suppose that n is a positive integer. The n-tuple
(a1, . . . , an) of positive integers is said to be good if a1 + · · ·+an = 2n

if for every k between 1 and n, no k of the n integers add up to n.
Find all n-tuples that are good.

First Solution: Call an n-tuple of positive integers proper if the
integers add up to 2n.

Without loss of generality, we suppose that a1 ≤ a2 ≤ · · · ≤ an =
M . If M ≤ 2 then a1 = · · · = an = 2 and this leads to the solution
(2, 2, . . . , 2) for odd n. Now we suppose that M ≥ 3. Since the
average of {a1, . . . , an} is 2, we must have a1 = 1. Now say we have
a proper n-tuple S = (a1, . . . , an), where

1 = a1 = · · · = ai < ai+1 ≤ ai+2 ≤ · · · ≤ an = M.

Lemma. If i ≥ max{an − ai+1, ai+1}, then S is not good.

Proof: Suppose that we have a balance and weights a1, a2, . . . , an.
We put an on the left hand side of the balance, then put an−1 on the
right hand side, and so on — adding the heaviest available weight
to the lighter side (or if the sides are balanced, we add it to the
left hand side). Before we put xi+1 on the balance, the difference
between the two sides is between 0 and xn. After we put xi+1 on
the balance, the difference between the two sides is no greater than
max{xn − xi+1, xi+1}. Now we have enough 1’s to put on the lighter
side to balance the two sides. Since the the total weight is 2n an even
number, there will have even number of 1’s left and we can split them
to balance the sides, i.e., there is a subtuple A with its sum equal to
n and thus S is not good.
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Note that

2n = a1 + · · ·+ an ≥ i + 2(n− i− 1) + M ⇐⇒ i ≥ M − 2. (1)

Now we consider the following cases:

(i) M = 3 and i = 1. Then S = (1, 2, . . . , 2︸ ︷︷ ︸
n−2

, 3). If n = 2m and

m ≥ 2, then A = (2, . . . , 2︸ ︷︷ ︸
m

) has sum 2m = n and thus S is not

good; if n = 2m + 1 and m ≥ 1, then A = (2, . . . , 2︸ ︷︷ ︸
m−1

, 3) has sum

2m + 1 = n and thus S is not good. Therefore (1, 3) is the only
good tuple for M = 3, i = 1.

(ii) M = 3 and i ≥ 2. Then ai+1 = 2 or 3 and i ≥ max{an −
ai+1, ai+1} — implying that S is not good from our lemma —
unless i = 2 and ai+1 = 3. But then S = (1, 1, 3, 3), and (1, 3)
has sum 4 = n.

(iii) M ≥ 4 and ai+1 = 2. Then from (1), i ≥ M − 2 = max{an −
ai+1, ai+1}. By the lemma S is not good.

(iv) M ≥ 4, ai+1 > 2, and i + 1 6= n. Since ai+1 6= 2 equality does
not hold in (1), and thus i ≥ M − 1 ≥ max{an − ai+1, ai+1}
(and S is not good) unless ai+1 = M . In this case, S =
(1, . . . , 1,M, . . . ,M). Note that

2n = i + (n− i)M ≥ i + 4(n− i)

so that i ≥ 2
3n. Then the remaining n− i ≥ 2 values M have sum

at most 4
3n, and hence M ≤ 2

3n. Thus

i ≥ 2n/3 ≥ M = max{an − ai+1, ai+1},

and by the lemma S is not good.

(v) M ≥ 4 and i+1 = n. Then we have the good n-tuple (1, . . . , 1, n+
1).

Therefore the only possible good n-tuples are (1, 1, . . . , 1, n+1) and
(2, 2, . . . , 2), and the second n-tuple is good if and only if n is odd.

Second Solution: Say a proper n-tuple has “subsum” m if some
k of the integers (0 ≤ k ≤ n) add up to m.
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Lemma. Every proper n-tuple besides (2, 2, . . . , 2) has subsums 0,

1, . . . , n − 1 (and possibly others). Furthermore, if a proper n-tuple
besides (2, 2, . . . , 2) contains a 2, it has subsum n as well.

Proof: If n = 1 the claim is trivial. Now assume the claims are
true for n − 1; we prove each is true for n as well. Suppose we have
an n-tuple N besides (2, 2, . . . , 2).

If there is a 2 in the n-tuple, then the other n − 1 integers form a
proper (n−1)-tuple besides (2, 2, . . . , 2). By the induction hypothesis,
this (n−1)-tuple has subsums 0, . . . , n−2. Remembering the original
2, our complete n-tuple N has subsums 0, . . . , n.

Otherwise, suppose there is no 2 in N. We prove by induction on
k < n that there is a subtuple Ak of k numbers with subsums 0, . . . , k.

Since the average value of the integers in N is 2, we must have at least
one 1 in N, proving the case for k = 1. Now assume the claim is true
for k− 1; the elements of Ak−1 are each at least 1, so they add up to
at least k − 1. Then the inequality

(k − 1)(k − n) < 0

implies

2n < (k + 1)(n− k + 1) + (k − 1),

so that the average value of N \Ak−1 is less than k + 1. Therefore at
least one of the other n− k + 1 integers x is at most k, implying that
Ak−1 ∪ (x) has subsums 0, . . . , k. This completes the inductive step
and the proof of our lemma.

From our lemma, the only possible good n-tuple with a 2 is
(2, 2, . . . , 2), and this is good if and only if n is odd. Every other
n-tuple N has a subtuple An−1 of n − 1 integers with subsums
0, . . . , n− 1. If these integers are not all 1, then the remaining integer
is at most n and N must have subsum n. Therefore, the only other
possible good n-tuple is (1, 1, . . . , 1, n + 1), which is indeed always a
good n-tuple.

Third Solution: Suppose we have a good n-tuple (a1, . . . , an), and
consider the sums a1, a1 + a2, . . . , a1 + a2 + · · · + an−1. All these
sums are between 0 and 2n exclusive; thus if any of the sums is 0
(mod n), it equals n and we have a contradiction. Also, if any two
are congruent modulo n, we can subtract these two sums to obtain
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another partial sum that equals n, a contradiction again. Therefore,
the sums must all be nonzero and distinct modulo n.

Specifically, a2 ≡ a1 + · · · + ak (mod n) for some k ≥ 1. If k > 1
then we can subtract a2 from both sides to find a partial sum that
equals n. Therefore k = 1 and a1 ≡ a2 (mod n). Similarly, all the
ai are congruent modulo n. From here, easy algebra shows that the
presented solutions are the only ones possible.

Problem 3 Let I be the incenter of triangle ABC and let AI meet
the circumcircle of ABC at D. Denote the feet of the perpendiculars
from I to BD and CD by E and F , respectively. If IE+IF = AD/2,
calculate ∠BAC.

Solution: A well-known fact we will use in this proof is that DB =
DI = DC. In fact, ∠BDI = ∠C gives ∠DIB = (∠A + ∠B)/2 while
∠IBD = (∠A + ∠B)/2. Thus DB = DI, and similarly DC = DI.

Let θ = ∠BAD. Then
1
4
ID ·AD =

1
2
ID · (IE + IF )

=
1
2
BD · IE +

1
2
CD · IF = [BID] + [DIC]

=
ID

AD
([BAD] + [DAC]) =

1
2
ID · (AB + AC) · sin θ,

whence AD
AB+AC = 2 sin θ.

Let X be the point on −−→
AB different from A such that DX = DA.

Since ∠XBD = ∠DCA and ∠DXB = ∠XAD = ∠DAC, we have
4XBD ∼= 4ACD, and BX = AC. Then 2 sin θ = AD

AB+AC =
AD

AB+BX = AD
AX = 1

2 cos θ , so that 2 sin θ cos θ = 1
2 , and ∠BAC =

2θ = 30◦ or 150◦.

Problem 4 Let ABC be a triangle with BC > CA > AB. Choose
points D on BC and E on −−→BA such that

BD = BE = AC.

The circumcircle of triangle BED intersects AC at P and the line
BP intersects the circumcircle of triangle ABC again at Q. Prove
that AQ + QC = BP .

First Solution: Except where indicated, all angles are directed
modulo 180◦.
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Let Q′ be the point on line BP such that ∠BEQ′ = ∠DEP. Then

∠Q′EP = ∠AED − ∠BEQ′ + ∠DEP = ∠BED.

Since BE = BD, ∠BED = ∠EDB; since BEPD is cyclic, ∠EDB =
∠EPB. Therefore ∠Q′EP = ∠EPB = ∠EPQ′ and Q′P = Q′E.

Since BEPD and BAQC are cyclic, we have

∠BEQ′ = ∠DEP = ∠DBP = ∠CAQ,

∠Q′BE = ∠QBA = ∠QCA.

Combining this with BE = AC yields that triangles EBQ′ and ACQ

are congruent. Thus BQ′ = QC and EQ′ = AQ. Therefore

AQ + QC = EQ′ + BQ′ = PQ′ + BQ′,

which equals BP if Q′ is between B and P.

Since E is on −−→BA and P is on −→CA, E and P are on the same side of
BC and thus BD. And since D is on −−→BC and P is on −→AC, D and P are
on the same side of BA and thus BE. Thus, BEPD is cyclic in that
order and (using undirected angles) ∠BEQ′ = ∠DEP < ∠BEP. It
follows that Q′ lies on segment BP, as desired.

Second Solution: Since BEPD and BAQC are cyclic, we have

∠PED = ∠PBD = ∠QBC = ∠QAC

and
∠EPD = π − ∠DBE = π − ∠CBA = ∠AQC,

which together imply 4PED ∼ 4QAC. Then

AC · EP

DE
= AQ

and
AC · PD

DE
= QC.

As in the first solution, BEPD is cyclic in that order, so Ptolemy’s
Theorem implies that

BD · EP + BE · PD = BP ·DE.

Substituting BD = BE = AC we have

AC · EP

DE
+

AC · PD

DE
= BP,
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or AQ + QC = BP, as desired.

Problem 5 Suppose that n is a positive integer and let

d1 < d2 < d3 < d4

be the four smallest positive integer divisors of n. Find all integers n

such that
n = d2

1 + d2
2 + d2

3 + d2
4.

Solution: The answer is n = 130. Note that x2 ≡ 0 (mod 4) when
x is even, and 1 (mod 4) when x is odd.

If n is odd, then all the di are odd and n ≡ d2
1 + d2

2 + d2
3 + d2

4 ≡
1 + 1 + 1 + 1 ≡ 0 (mod 4), a contradiction. Thus 2 | n.

If 4 | n then d1 = 1 and d2 = 2, and n ≡ 1 + 0 + d2
3 + d2

4 6≡ 0 (mod
4), a contradiction. Thus 4 6 | n.

Therefore {d1, d2, d3, d4} = {1, 2, p, q} or {1, 2, p, 2p} for some odd
primes p, q. In the first case n ≡ 3 (mod 4), a contradiction. Thus
n = 5(1 + p2) and 5 | n, so p = d3 = 5 and n = 130.

Problem 6 Suppose that A = (a1, a2, . . . , an) and B = (b1, b2, . . . ,

bn) are two 0-1 sequences. The difference d(A,B) between A and B is
defined to be the number of i’s for which ai 6= bi (1 ≤ i ≤ n). Suppose
that A, B, C are three 0-1 sequences and that d(A,B) = d(A,C) =
d(B,C) = d.

(a) Prove that d is even.

(b) Prove that there exists an 0-1 sequence D such that

d(D,A) = d(D,B) = d(D,C) =
d

2
.

Solution:

(a) Modulo 2, we have

d(A,B) = (a1 − b1) + (a2 − b2) + · · ·+ (an − bn)

≡ (a1 + a2 + · · ·+ an) + (b1 + b2 + · · ·+ bn).

Thus,

3d ≡ d(A,B) + d(B,C) + d(C,A) = 2(
∑

ai +
∑

bi +
∑

ci),

so d must be divisible by 2.
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(b) Define D as follows: for each i, if ai = bi = ci, then let di = ai =
bi = ci. Otherwise, two of ai, bi, ci are equal; let di equal that
value. We claim this sequence D satisfies the requirements.

Let α be the number of i for which ai 6= bi and ai 6= ci (that
is, for which ai is “unique”). Define β and γ similarly, and note
that d(A,D) = α, d(B,D) = β, and d(C,D) = γ. We also have

d = d(A,B) = α + β

d = d(B,C) = β + γ

d = d(C,A) = γ + α.

Thus, α = β = γ = d
2 , as desired.

Second Round

Problem 1 Define the sequence {xn}n≥0 by x0 = 0 and

xn =


xn−1 +

3r+1 − 1
2

, if n = 3r(3k + 1),

xn−1 −
3r+1 + 1

2
, if n = 3r(3k + 2),

where k and r are nonnegative integers. Prove that every integer
appears exactly once in this sequence.

First Solution: We prove by induction on t ≥ 1 that

(i) {x0, x1, . . . , x3t−2} =
{
− 3t−3

2 ,− 3t−1
2 , . . . , 3t−1

2

}
.

(ii) x3t−1 = − 3t−1
2 .

These claims imply the desired result, and they are easily verified
for t = 1. Now supposing they are true for t, we show they are true
for t + 1.

For any positive integer m, write m = 3r(3k + s) for nonnegative
integers r, k, s, with s ∈ {1, 2}; and define rm = r and sm = s.

Then for m < 3t, observe that

rm = rm+3t = rm+2·3t

sm = sm+3t = rm+2·3t ,

so that

xm − xm−1 = x3t+m − x3t+m−1 = x2·3t+m − x2·3t+m−1.
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Adding these equations from m = 1 to m = k < 3t, we have

xk = x3t+k − x3t

xk = x2·3t+k − x2·3t .

Now, setting n = 3t in the recursion and using (ii) from the
induction hypothesis, we have x3t = 3t — and

{x3t , . . . , x2·3t−2} =
{

3t+3
2 , . . . , 3t+1−1

2

}
x2·3t−1 = 3t+1

2 .

Then setting n = 2 · 3t in the recursion we have x2·3t = −3t — giving

{x2·3t , . . . , x3t+1−2} =
{
− 3t+1−3

2 , . . . ,− 3t+1
2

}
x2·3t+1−1 = − 3t+1−1

2 .

Combining this with (i) and (ii) from the induction hypothesis proves
the claims for t + 1. This completes the proof.

Second Solution: For ni ∈ {−1, 0, 1}, let the number

[nmnm−1 · · ·n0]

in “base 3̄” equal
∑m

i=0 ni · 3i. It is simple to prove by induction on k

that the base 3̄ numbers with at most k digits equal{
−3k − 1

2
,−3k − 3

2
, . . . ,

3k − 1
2

}
,

which implies every integer has a unique representation in base 3̄.

Now we prove by induction on n that if n = amam−1 . . . a0 in base
3, then xn = [bmbm−1 . . . b0] in base 3̄, where bi = −1 if ai = 2 and
bi = ai for all other cases.

For the base case, x0 = 0 = [0]. Now assume the claim is true for
n− 1. First suppose that n = 3r(3k + 1). Then

n = amam−1 . . . ai 1 0 0 . . . 0︸ ︷︷ ︸
r

3r+1 − 1
2

= 1 1 . . . 1︸ ︷︷ ︸
r+1

= [1 1 . . . 1︸ ︷︷ ︸
r+1

]

n− 1 = amam−1 . . . ai 0 2 2 . . . 2︸ ︷︷ ︸
r
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xn−1 = [bmbm−1 . . . bi 0 −1−1 . . . −1︸ ︷︷ ︸
r

],

so that

xn = [bmbm−1 . . . bi 0 −1−1 . . . −1︸ ︷︷ ︸
r

] + [1 1 . . . 1︸ ︷︷ ︸
r+1

]

= [bmbm−1 . . . bi 1 0 0 . . . 0︸ ︷︷ ︸
r

].

Now suppose that n = 3r(3k + 2). Then

n = amam−1 . . . ai 2 0 0 . . . 0︸ ︷︷ ︸
r

n− 1 = amam−1 . . . ai 1 2 2 . . . 2︸ ︷︷ ︸
r

xn−1 = [bmbm−1 . . . bi 1 −1−1 . . . −1︸ ︷︷ ︸
r

].

Also,

−3r+1 + 1
2

= −(1 1 . . . 1︸ ︷︷ ︸
r

2)

= −3r − 3r−1 − · · · − 3− 2

= −3r+1 + 3r + 3r−1 + · · ·+ 3 + 1

= [−1 1 1 . . . 1︸ ︷︷ ︸
r+1

].

Therefore

xn = [bmbm−1 . . . bi 1 −1−1 . . . −1︸ ︷︷ ︸
r

] + [−1 1 1 . . . 1︸ ︷︷ ︸
r+1

]

= [bmbm−1 . . . bi −1 0 0 . . . 0︸ ︷︷ ︸
r

].

In either case, the claim is true for n, completing the induction.
And since all integers appear exactly once in base 3̄, they appear

exactly once in {xn}n≥0, as desired.

Problem 2 Suppose that n(r) denotes the number of points with
integer coordinates on a circle of radius r > 1. Prove that

n(r) < 6 3
√

πr2.
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Solution: Consider a circle of radius r containing n lattice points;
we must prove that n < 6 3

√
πr2.

Since r > 1 and 6 3
√

π > 8, we may assume n > 8. Label the n

lattice points on the circle P1, P2, . . . , Pn in counterclockwise order.
Since the sum of the (counterclockwise) arcs P1P3, P2P4, PnP2 is 4π,

one of the arcs PiPi+2 has measure at most 4π
n ; assume without loss

of generality it is arc P1P3.

Consider a triangle ABC inscribed in an arc of angle 4π
n ; clearly

its area is maximized by moving A and C to the endpoints of the arc
and then moving B to the midpoint (where the distance to line AC

is greatest). Then ∠CAB = ∠BCA = π
n and ∠ABC = 180◦− 2π

n , so

[ABC] =
abc

4r
=

(2r sin π
n )(2r sin 2π

n )(2r sin π
n )

4r

≤
(2r π

n )(2r 2π
n )(2r π

n )
4r

=
4r2π3

n3
.

Since triangle P1P2P3 is inscribed in an arc of measure 4π
n , by the

preceding argument, [P1P2P3] ≤ 4r2π3

n3 . But since P1, P2, and P3 are
lattice points, the area [P1P2P3] is at least 1

2 (this can be proven by
either Pick’s Formula K = I + 1

2B − I or the “determinant formula”
K = 1

2 |x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3|). Therefore,

1
2
≤ [P1P2P3] ≤

4r2π3

n3

=⇒ n3 ≤ 8r2π3

=⇒ n ≤ 3
√

8r2π3 = 2π
3
√

r2 < 6 3
√

πr2,

as desired.

Problem 3 Find all functions f : R → R satisfying

f(f(x) + y) = f(x2 − y) + 4f(x)y

for all x, y ∈ R.

Solution: Let (x, y) = (x, x2). Then

f(f(x) + x2) = f(0) + 4x2f(x). (1)
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Let (x, y) = (x,−f(x)). Then

f(0) = f(x2 + f(x))− 4f(x)2. (2)

Adding (1) and (2) gives 4f(x)(f(x) − x2) = 0. This implies that
for each individual x, either f(x) = 0 or f(x) = x2. (Alternatively,
plugging y = x2−f(x)

2 into the original equation also yields this result.)
Clearly f(x) = 0 and f(x) = x2 satisfy the given equation; we now
show that f cannot equal some combination of the two functions.

Suppose that there is an a 6= 0 such that f(a) = 0. Plugging in
x = a into the original equation, we have

f(y) = f(a2 − y).

If y 6= a2

2 , then y2 6= (a2−y)2 so f(y) = f(a2−y) = 0. Thus f(y) = 0
for all y 6= a2

2 . And by choosing x = 2a or some other value in the
original equation, we can similarly show that f(a2

2 ) = 0.

Therefore f(x) = 0 for all x or f(x) = x2 for all x, as claimed.

Problem 4 In triangle ABC, the angle bisector of ∠BAC meets
BC at D. Suppose that ω is the circle which is tangent to BC at D

and passes through A. Let M be the second point of intersection of
ω and AC. Let P be the second point of intersection of ω and BM .
Prove that P lies on a median of triangle ABD.

Solution: Extend AP to meet BD at E. We claim that BE = ED

and thus AP is a median of triangle ABD, as desired. In fact,

BE = ED ⇐⇒ BE2 = ED2 = EP · EA

⇐⇒ 4BEP ∼ 4AEB ⇐⇒ ∠EBP = ∠BAE.

Let N be the second intersection of ω with AB. Using directed angles
and arc measures, since AD bisects the angle between lines AN and
AC, we have D̂M = N̂D and

∠BAE = ∠NAP =
N̂D − P̂D

2
=

D̂M − P̂D

2
= ∠DBM = ∠EBP,

as desired.

Problem 5 Let ABC be a triangle. If we paint the points of the
plane in red and green, prove that either there exist two red points
which are one unit apart or three green points forming a triangle
congruent to ABC.
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First Solution: We call a polygon or a segment green (red) if the
vertices of the polygon or the segment are all green (red).

Suppose that there is no red unit segment. We prove that there
is a green triangle congruent to triangle ABC. If the whole plane is
green, the proof is trivial.

Now we further suppose that there is a red point R on the plane. We
claim that there is a green equilateral triangle with unit side length.
In fact, let ω be the circle with center R and radius

√
3. Then ω is not

all red, since otherwise we could find a red unit segment. Let G be
a green point on ω. Let ω1 and ω2 be two unit circles centered at R

and G, respectively, and let ω1 and ω2 meet at P and Q. Then both
P and Q must be green and triangle PQG is a green unit equilateral
triangle.

Let G1G2G3 be a green unit equilateral triangle. Construct a
triangle G1X1Y1 that is congruent to triangle ABC. If both X1 and
Y1 are green, we are done. Without loss of generality, we assume that
X1 Y1 is red. Translate triangle G1G2G3 by −−−→G1Y1 to obtain triangle
Y1Y2Y3. Then both Y2 and Y3 are green. Similarly, translate triangle
G1G2G3 by −−−→

G1X1 to obtain triangle X1X2X3. Then at least one
of X2 and X3 is green (since X2X3 cannot be a red unit segment).
Without loss of generality, say X2 is green. Now triangle G2X2Y2

is a green triangle and congruent to triangle G1X1Y1 (translated by
−−−→
G1G2) and thus congruent to triangle ABC, as desired.

Second Solution: Suppose by way of contradiction there were no
such red or green points, and say the sides of triangle ABC are a, b,

and c.

First we prove no red segment has length a. If XY were a red
segment of length a, then the unit circles around X and Y must be
completely green. Now draw Z so that 4XY Z ∼= 4ABC; the unit
circle around Z must be completely red, or else it would form an
illegal triangle with the corresponding points around X and Y. But
on this unit circle we can find a red unit segment, a contradiction.

Now, the whole plane cannot be green so there must be some red
point R. The circle ω around R with radius a must be completely
green. Then pick two points D, E on ω with DE = a, and construct
F outside ω so that 4DEF ∼= 4ABC (we can do this since a ≤ b, c);
F must be red. Thus if we rotate DE around R, F forms a completely
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red circle of radius greater than a — and on this circle we can find
two red points distance a apart, a contradiction.

Third Round

Problem 1 Suppose that S = {1, 2, . . . , n} and that A1, A2, . . . , Ak

are subsets of S such that for every 1 ≤ i1, i2, i3, i4 ≤ k, we have

|Ai1 ∪Ai2 ∪Ai3 ∪Ai4 | ≤ n− 2.

Prove that k ≤ 2n−2.

Solution: For a set T , let |T | denote the numbers of elements in
T . We call a set T ⊂ S 2-coverable if T ⊆ Ai ∪ Aj for some i and
j (not necessarily distinct). Among the subsets of S that are not
2-coverable, let A be a subset with minimum |A|.

Consider the family of sets S1 = {A ∩ A1, A ∩ A2, . . . , A ∩ Ak}.
(A∩Ai might equal A∩Aj , but we ignore any duplicate sets.) Since
A is not 2-coverable, if X ∈ S1, then A−X 6∈ S1. Thus at most half
the subsets of |A| are in S1, and |S1| ≤ 2|A|−1.

On the other hand, let B = S − A and consider the family of sets
S2 = {B ∩ A1, B ∩ A2, . . . , B ∩ Ak}. We claim that if X ∈ S2, then
B −X 6∈ S2. Suppose on the contrary that both X, B −X ∈ S2 for
some X = B ∩ A` and B −X = B ∩ A`′ . By the minimal definiton
of A there are Ai and Aj such that Ai ∪ Aj = A \ {m} for some i, j,

and m. Then
|A` ∪A`′ ∪Ai ∪Aj | = n− 1,

a contradiction. Thus we assumption is false and |S2| ≤ 2|B| − 1 =
2n−|A|−1.

Since every set Ai is uniquely determined by its intersection with
sets A and B = S −A, it follows that |A| ≤ |B| · |C| ≤ 2n−2.

Problem 2 Let ABC be a triangle and let ω be a circle passing
through A and C. Sides AB and BC meet ω again at D and E,
respectively. Let γ be the incircle of the circular triangle EBD and let
S be its center. Suppose that γ touches the arc DE at M . Prove that
the angle bisector of ∠AMC passes through the incenter of triangle
ABC.

First Solution: We work backward. Let I be the incenter of
triangle ABC. Let N be the midpoint of arc AC on ω that is opposite
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to B, and let −→NI meet with ω again at M ′. Then M ′N bisects
∠AM ′C. We claim that γ is tangent to ω at M ′, and our desired
results follows.

To prove our claim, we are going to do some heavy trigonometry
calculations. Let ` be the line tangent to ω at M ′, and let ` meet AB

and AC at P and Q, respectively. Let ω′ be the incircle of triangle
PBQ. We are reduced to proving that ω′ is tangent to PQ at M ′.

Let ∠IAM ′ = a,∠M ′AB = x,∠M ′CI = b, ∠BCM ′ = y. Then
∠CAI = ∠IAB = x + a and ∠ICA = ∠BCI = y + b. Since PM ′

is tangent to ω, we have ∠PM ′A = ∠M ′CA = 2b + y and thus
∠BPQ = ∠PM ′A+∠M ′AP = 2b+x+ y. Applying the law of sines
to triangle PAM ′, we have

PM ′

sinx
=

AM ′

sin(2b + x + y)
⇐⇒ PM ′ =

AM ′ sinx

sin(2b + x + y)
. (1)

Similarly,

M ′Q =
M ′C sin y

sin(2a + x + y)
. (2)

And, applying the law of sines to triangle AM ′C gives

AM ′

sin(2b + y)
=

M ′C

sin(2a + x)
. (3)

Combining (1), (2), and (3) we have

PM ′

M ′Q
=

sinx sin (2b + y) sin (2a + x + y)
sin y sin (2a + x) sin (2b + x + y)

. (4)

Now, observe that for a triangle XY Z with inradius r, and with
incircle Γ touching XY at T, we have

XT

TY
=

r cot ∠X
2

r cot ∠Y
2

=
cot ∠X

2

cot ∠Y
2

.

Thus it suffices to prove that PM ′

M ′Q = cot ∠BPQ
cot ∠BQP , or equivalently

(from (4)) any of the following statements:

sinx sin (2b + y) sin (2a + x + y)
sin y sin (2a + x) sin (2b + x + y)

=
cot 2b+x+y

2

cot 2a+x+y
2

sinx sin (2b + y) sin 2a+x+y
2 cos 2a+x+y

2

sin y sin (2a + x) sin 2b+x+y
2 cos 2b+x+y

2

=
cos 2b+x+y

2 sin 2a+x+y
2

cos 2a+x+y
2 sin 2b+x+y

2
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sinx sin (2b + y) cos2
2a + x + y

2
= sin y sin (2a + x) cos2

2b + x + y

2

sinx sin (2b + y) (cos (2a + x + y) + 1)

= sin y sin (2a + x) (cos (2b + x + y) + 1) ,

or equivalently that L = R where

R = sinx sin (2b + y) cos (2a + x + y)

− sin y sin (2a + x) cos (2b + x + y),

L = sin y sin (2a + x)− sinx sin (2b + y).

Note that

R = 1/2[ sinx (sin (2b + 2y + x + 2a) + sin (2b− 2a− x)) ]

−1/2[ sin y (sin (2b + 2x + y + 2a) + sin (2a− 2b− y)) ]

= −1/4[ cos (2a + 2b + 2x + 2y)− cos (2a + 2b + 2y)

+ cos (2b− 2a)− cos (2b− 2a− 2x)

− cos (2a + 2b + 2x + 2y) + cos (2b + 2a + 2x)

− cos (2b− 2a) + cos (2a− 2b− 2y) ]

= −1/4[ cos (2a + 2b + 2x)− cos (2b− 2a− 2x)

+ cos (2a− 2b− 2y)− cos (2a + 2b + 2y) ]

= 1/2[ sin(2b) sin (2a + 2x)− sin(2a) sin (2b + 2y) ]

= 2[ sin b sin (a + x)︸ ︷︷ ︸
(i)

cos b cos (a + x)

− sin a sin (b + y)︸ ︷︷ ︸
(ii)

cos a cos (b + y) ].

To simplify this expression, note that MI, AI, and CI meet at I

and that ∠IMA = ∠IMC. Then the trigonometric form of Ceva’s
Theorem gives

sin∠IMA sin∠IAC sin∠ICM

sin∠IAM sin∠ICA sin∠IMC
= 1

⇐⇒ sin a sin (b + y) = sin b sin (a + x).
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Swapping quantities (i) and (ii) above thus yields

R = 2 (sin a sin (b + y) cos b cos (a + x)

− sin b sin (a + x) cos a cos (b + y))

= cos b sin (b + y)[sin (2a + x)− sinx]

− sin b cos (b + y)[sin (2a + x) + sinx]

= sin (2a + x)[ sin (b + y) cos b− sin b cos (b + y) ]

− sinx[ sin (b + y) cos b + sin b cos (b + y) ]

= sin (2a + x) sin y − sinx sin (2b + y) = L,

as desired.

Second Solution: Let O and R be the center and radius of ω, r be
the radius of γ, and I be the incenter of triangle ABC. Extend lines
AI and CI to hit ω at MA and MC respectively; also let line AD be
tangent to γ at F, and let line CE be tangent to γ at G. Finally, let
d be the length of the exterior tangent from MA to ω. Notice that
since line AMA bisects ∠DAC, we have DMA = MAC; similarly,
EMC = MCA.

Applying Generalized Ptolemy’s Theorem to the “circles” MA, C,

D, and γ externally tangent to ω gives

CG ·DMA = MAC ·DF + d · CD

d2 = MAC2
(

CG−DF
CD

)2
.

Note that d2 equals the power of MA with respect to γ, so d2 =
MAS2 − r2.

By Stewart’s Theorem on cevian MAM in triangle SOMA, we also
have

MAS2 ·OM + MAO2 ·MS = MAM2 · SO + SM ·MO · SO

MAS2 ·R + R2 · r = MAM2 · (R + r) + r ·R · (R + r)

MAM2(R + r) = (MAS2 − r2)R = d2R,

Combining the two equations involving d2, we find

MAC2

(
CG−DF

CD

)2

=
MAM2(R + r)

R
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(
MAM

MAC

)2

=
(

R

R + r

)(
CG−DF

CD

)2

.

Similarly, (
MCM

MCA

)2

=
(

R

R + r

)(
AF − EG

AE

)2

.

But

CG−DF = (CG + GB)− (DF + FB) = CB −DB

and similarly

AF − EG = (AF + FB)− (EG + GB) = AB −BE.

Furthermore, because ACDE is cyclic some angle-chasing gives
∠BDC = ∠AEC and ∠DCB = ∠BAE, so 4CBD ∼ 4ABE and

CG−DF

CD
=

CB −DB

CD
=

AB −BE

EA
=

AF − EG

AE
.

Therefore we have MAM
MAC = MCM

MCA =⇒ sin ∠MAMA

sin ∠MAAC = sin ∠MCCM
sin ∠ACMC

. But
by the trigonometric form of Ceva’s theorem in triangle AMC applied
to lines AMA, CMC , and MI, we have

sin∠MAMA

sin∠MAAC
· sin∠ACMC

sin∠MCCM
· sin∠CMI

sin∠IMA
= 1

so that

sin∠CMI = sin∠IMA =⇒ ∠CMI = ∠IMA

since ∠AMC < 180◦. Therefore, line MI bisects ∠AMC, so the angle
bisector of ∠AMC indeed passes through the incenter I of triangle
ABC.

Problem 3 Suppose that C1, C2, . . . , Cn are circles of radius 1 in
the plane such that no two of them are tangent and the subset of the
plane formed by the union of these circles is connected (i.e., for any
partition of {1, 2, . . . , n} into nonempty subsets A and B,

⋃
a∈A Ca

and
⋃

b∈B Cb are not disjoint). Prove that |S| ≥ n, where

S =
⋃

1≤i<j≤n

Ci ∩ Cj ,

the intersection points of the circles. (Each circle is viewed as the set
of points on its circumference, not including its interior.)
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Solution: Let T = {C1, C2, . . . , Cn}. For every s ∈ S and C ∈ T

define
f(s, C) =

{
0, if s 6∈ C,
1
k , if s ∈ C,

where k is the number of circles passing through s (including C).
Thus ∑

C∈T

f(s, C) = 1

for every s ∈ S.
On the other hand, for a fixed circle C ∈ T let s0 ∈ S ∩ C be a

point such that

f(s0, C) = min{f(s, C) | s ∈ S ∩ C}.

Suppose that C,C2, . . . Ck be the circles which pass through s0. Then
C meets C2, . . . , Ck again in distinct points s2, . . . , sk. Therefore∑

s∈C

f(s, C) ≥ 1
k

+
k − 1

k
= 1.

We have

|S| =
∑
s∈S

∑
C∈T

f(s, C) =
∑
C∈T

∑
s∈S

f(s, C) ≥ n,

as desired.

Problem 4 Suppose that −1 ≤ x1, x2, . . . , xn ≤ 1 are real numbers
such that x1+x2+. . .+xn = 0. Prove that there exists a permutation
σ of {1, 2, . . . , n} such that, for every 1 ≤ p ≤ q ≤ n,

|xσ(p) + · · ·+ xσ(q)| < 2− 1
n

.

Also prove that the expression on the right hand side cannot be
replaced by 2− 4

n .

Solution: If n = 1 then x1 = 0, and the permutation σ(1) = 1
suffices; if n = 2 then |x1|, |x2| ≤ 1 and |x1 + x2| = 0, and the
permutation (σ(1), σ(2)) = (1, 2) suffices. Now assume n ≥ 3.

View the xi as vectors; the problem is equivalent to saying that
if we start at a point on the number line, we can travel along the n

vectors x1, x2, . . . , xn in some order so that we stay within an interval
(m,m + 2− 1

n ].



96 Iran

Call xi “long” if |xi| ≥ 1− 1
n and call it “short” otherwise. Also call

xi “positive” if xi ≥ 0 and “negative” if xi < 0. Suppose without loss
of generality that there are at least as many long positive vectors as
long negative vectors — otherwise, we could replace each xi by −xi.

We make our trip in two phases:

(i) First, travel alternating along long positive vectors and long
negative vectors until no long negative vectors remain. Suppose
at some time we are at a point P. Observe that during this leg
of our trip, traveling along a pair of vectors changes our position
by at most 1

n in either direction. Thus if we travel along 2t ≤ n

vectors after P, we stay within t
n ≤ 1

2 of P ; and if we travel along
2t + 1 vectors after P, we stay within t

n + 1 ≤ 3
2 < 2 − 1

n of P.

Therefore, during this phase, we indeed stay within an interval
I =

(
m,m + 2− 1

n

]
of length 2− 1

n .

(ii) After phase (i), we claim that as long as vectors remain unused
and we are inside I, there is an unused vector we can travel along
while remaining in I; this implies we can finish the trip while
staying in I.

If there are no positive vectors, then we can travel along any
negative vector, and vice versa. Thus assume there are positive
and negative vectors remaining; since all the long negative vectors
were used in phase (i), only short negative vectors remain.

Now if we are to the right of m + 1− 1
n , we can travel along a

short negative vector without reaching or passing m. And if we
are on or to the left of m + 1− 1

n , we can travel along a positive
vector (short or long) without passing m + 2− 1

n .

Therefore it is possible to complete our journey, and it follows that
the desired permutation σ indeed exists.

However, suppose 1
n is changed to 4

n . This bound is never attainable
for n = 1, and it is not always attainable when n = 2 (when x1 = 1,

x2 = −1, for example).
And if n = 2k + 1 ≥ 3 or 2k + 2 ≥ 4, suppose that x1 = x2 = · · · =

xk = 1 and xk+1 = xk+2 = · · · = x2k+1 = − k
k+1 — if n is even, we

can let xn = 0 and ignore this term in the permutation.
If two adjacent numbers in the permutation are equal then their

sum is either 2 ≥ 2 − 4
n or −2 · k

k+1 ≤ −2 + 4
n . Therefore in the

permutation, the vectors must alternate between− k
k+1 and 1, starting
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and ending with − k
k+1 .

But then the outer two vectors add up to −2 · k
k+1 , so the middle

2k− 1 vectors add up to 2 · k
k+1 ≥ 2− 4

n , a contradiction. Therefore,
1
n cannot be replaced by 4

n .

Problem 5 Suppose that r1, . . . , rn are real numbers. Prove that
there exists S ⊆ {1, 2, . . . , n} such that

1 ≤ |S ∩ {i, i + 1, i + 2}| ≤ 2,

for 1 ≤ i ≤ n− 2, and ∣∣∣∣∣∑
i∈S

ri

∣∣∣∣∣ ≥ 1
6

n∑
i=1

|ri|.

Solution: Let S =
∑n

i=1 |ri| and for i = 0, 1, 2, define

si =
∑

rj≥0, j≡i

rj ,

ti =
∑

rj<0, j≡i

rj ,

where congruences are taken modulo 3. Then we have S = s1 + s2 +
s3 − t1 − t2 − t3, and 2S equals

(s1 + s2) + (s2 + s3) + (s3 + s1)− (t1 + t2)− (t2 + t3)− (t3 + t1).

Therefore there are i1 6= i2 such that either si1 + si2 ≥ s/3 or
ti1 + ti2 ≤ −s/3 or both. Without loss of generality, we assume that
si1 +si2 ≥ s/3 and |si1 +si2 | ≥ |ti1 +ti2 |. Thus si1 +si2 +ti1 +ti2 ≥ 0.

We have

[si1 + si2 + ti1 ] + [si1 + si2 + ti2 ] ≥ si1 + si2 ≥ s/3.

Therefore at least one of si1 + si2 + ti1 and si1 + si2 + ti2 is bigger or
equal to s/6 and we are done.
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1.11 Ireland

Problem 1 Find all the real values of x which satisfy

x2

(x + 1−
√

x + 1)2
<

x2 + 3x + 18
(x + 1)2

.

Solution: We must have x ∈ (−1, 0) ∪ (0,∞) for the quantities
above to be defined. Make the substitution y =

√
x + 1, so that

y ∈ (0, 1) ∪ (1,∞) and x = y2 − 1. Then the inequality is equivalent
to

(y2 − 1)2

(y2 − y)2
<

(y2 − 1)2 + 3(y2 − 1) + 18
y4

⇐⇒ (y + 1)2

y2
<

y4 + y2 + 16
y4

⇐⇒ (y + 1)2y2 < y4 + y2 + 16

⇐⇒ 2y3 < 16,

so the condition is satisfied exactly when y < 2; i.e., exactly when
y ∈ (0, 1) ∪ (1, 2), which is equivalent to x ∈ (−1, 0) ∪ (0, 3).

Problem 2 Show that there is a positive number in the Fibonacci
sequence which is divisible by 1000.

Solution: In fact, for any natural number n, there exist infinitely
many positive Fibonacci numbers divisible by n.

The Fibonacci sequence is defined thus: F0 = 0, F1 = 1, and
Fk+2 = Fk+1 + Fk for all k ≥ 0. Consider ordered pairs of
consecutive Fibonacci numbers (F0, F1), (F1, F2), . . . taken modulo n.
Since the Fibonacci sequence is infinite and there are only n2 possible
ordered pairs of integers modulo n, two such pairs (Fj , Fj+1) must be
congruent: Fi ≡ Fi+m and Fi+1 ≡ Fi+m+1 (mod n) for some i and
m.

If i ≥ 1 then Fi−1 ≡ Fi+1−Fi ≡ Fi+m+1−Fi+m ≡ Fi+m−1 (mod n);
similarly Fi+2 ≡ Fi+1 + Fi ≡ Fi+m+1 + Fi+m ≡ Fi+2+m (mod n).
Continuing similarly, we have Fj ≡ Fj+m (mod n) for all j ≥ 0. In
particular, 0 = F0 ≡ Fm ≡ F2m ≡ · · · (mod n), so the numbers Fm,
F2m, . . . are all positive Fibonacci numbers divisible by n. Applying
this to n = 1000, we are done. (In fact, the smallest such m is 750.)
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Problem 3 Let D, E, F be points on the sides BC, CA, AB,
respectively, of triangle ABC such that AD ⊥ BC, AF = FB,
and BE is the angle bisector of ∠B. Prove that AD, BE, CF are
concurrent if and only if

a2(a− c) = (b2 − c2)(a + c),

where a = BC, b = CA, c = AB.

Solution: By Ceva’s Theorem, the cevians AD, BE, CF in 4ABC

are concurrent if and only if (using directed line segments)

AF

FB
· BD

DC
· CE

EA
= 1.

In this problem, AF
FB = 1, and CE

EA = a
c . Thus AD, BE, CF are

concurrent if and only if BD
DC = c

a .

This in turn is true if and only if BD = ac
a+c and DC = a2

a+c .

Because AB2 −BD2 = BD2 = AC2 − CD2, this last condition hold
exactly when the following equations are true:

AB2 −
(

ac

a + c

)2

= AC2 −
(

a2

a + c

)2

(a + c)2c2 − a2c2 = (a + c)2b2 − a4

a4 − a2c2 = (b2 − c2)(a + c)2

a2(a− c) = (b2 − c2)(a + c).

Therefore the three lines concur if and only if the given equation
holds, as desired.

Alternatively, applying the law of cosines gives

BD

DC
=

c cos B

b cos C
=

c

b
· a2 + c2 − b2

2ac
· 2ab

a2 + b2 − c2
=

a2 + c2 − b2

a2 + b2 − c2
.

Again, this equals c
a exactly when the given equation holds.

Problem 4 A 100 by 100 square floor is to be tiled. The only
available tiles are rectangular 1 by 3 tiles, fitting exactly over three
squares of the floor.

(a) If a 2 by 2 square is removed from the center of the floor, prove
that the remaining part of the floor can be tiled with available
tiles.
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(b) If, instead, a 2 by 2 square is removed from the corner, prove that
the remaining part of the floor cannot be tiled with the available
tiles.

Solution: Choose a coordinate system so that the corners of the
square floor lie along the lattice points {(x, y) | 0 ≤ x, y ≤ 100, x, y ∈
Z}. Denote the rectanglar region {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} by
[(a, c)− (b, d)].

(a) It is evident that any rectangle with at least one dimension
divisible by 3 can be tiled. First tile the four rectangles

[(0, 0)− (48, 52)], [(0, 52)− (52, 100)],

[(52, 48)− (100, 100)], and [(48, 0)− (100, 52)].

The only part of the board left untiled is [(48, 48) − (52, 52)].
But recall that the central region [(49, 49) − (51, 51)] has been
removed. It is obvious that the remaining portion can be tiled.

(b) Assume without loss of generality that [(0, 0) − (2, 2)] is the 2
by 2 square which is removed. Label each remaining square
[(x, y) − (x + 1, y + 1)] with the number L(x, y) ∈ {0, 1, 2} such
that L(x, y) ≡ x + y (mod 3). There are 3333 squares labeled 0,
3331 squares labeled 1, and 3332 squares labeled 2. However,
each 1 by 3 tile covers an equal number of squares of each label.
Therefore, the floor cannot be tiled.

Problem 5 Define a sequence un, n = 0, 1, 2, . . . as follows: u0 = 0,
u1 = 1, and for each n ≥ 1, un+1 is the smallest positive integer such
that un+1 > un and {u0, u1, . . . , un+1} contains no three elements
which are in arithmetic progression. Find u100.

Solution: Take any nonnegative integer n (e.g., 100) and express
it in base-2 (e.g., 100 = 11001002). Now interpret that sequence of
1’s and 0’s as an integer in base-3 (e.g., 11001003 = 981). Call that
integer tn (e.g., t100 = 981).

We now prove that tn = un by strong induction on n. It is obvious
that t0 = u0 and that t1 = u1. Now assume that tk = uk for all
k < n. We shall show that tn = un.

First we show that un ≤ tn by proving that, in the sequence
t0, t1, t2, . . . , tn, no three numbers form an arithmetic progression.
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Pick any three numbers 0 ≤ α < β < γ ≤ n, and consider tα, tβ , and
tγ in base-3. In the addition of tα and tγ , since both tα and tγ consist
of only 1’s and 0’s, no carrying can occur. But tα 6= tγ , so they must
differ in at least one digit. In that digit in the sum tα + tγ must lie a
“1.” On the other hand, tβ consists of only 1’s and 0’s, so 2tβ consists
of only 2’s and 0’s. Thus, the base-3 representations of tα + tγ and
2tβ are different: the former contains a “1” while the latter does not.
Thus, tα+tγ 6= 2tβ for any choice of α, β, γ, so among t0, t1, t2, . . . , tn,
no three numbers are in arithmetic progression. Hence un ≤ tn.

Next we show that un ≥ tn by showing that for all k ∈ {tn−1 + 1,

tn−1+2, . . . , tn−1}, there exist numbers a and b such that ta+k = 2tb.
First note that k must contain a 2 in its base-3 representation, because
the ti are the only nonnegative integers consisting of only 1’s and
0’s in base-3. Therefore, we can find two numbers a and b with
0 ≤ ta < tb < k such that:

• whenever k has a “0” or a “1” in its base-3 representation, ta and
tb each also have the same digit in the corresponding positions in
their base-3 representations;

• whenever k has a “2” in its base-3 representation, ta has a “0” in
the corresponding position in its base-3 representation, but tb has
a “1” in the corresponding position in its base-3 representation.

The ta and tb, thus constructed, satisfy ta < tb < k while ta +k = 2tb,
so ta, tb, k form an arithmetic progression. Thus, un ≥ tn. Putting
this together with the previous result, we have forced un = tn; hence
u100 = t100 = 981.

Problem 6 Solve the system of equations

y2 − (x + 8)(x2 + 2) = 0

y2 − (8 + 4x)y + (16 + 16x− 5x2) = 0.

Solution: We first check that the solutions (x, y) = (−2,−6) and
(−2, 6) both work and are the only solutions with x = −2.

We substitute y2 = (x+8)(x2+2) into y2+16+16x−5x2 = 4(x+2)y
to get 4(x+2)y = x3 +3x2 +18x+32 = (x+2)(x2 +x+16). The case
x = −2 has already been finished, so to deal with the case x 6= −2,
we write

4y = x2 + x + 16.



102 Ireland

Squaring both sides, we have

16y2 = x4 + 2x3 + 33x2 + 32x + 256,

but from the first original equation we have

16y2 = 16x3 + 128x2 + 32x + 256;

subtracting these two equations, we have x4 − 14x3 − 95x2 = 0, or
x2(x + 5)(x − 19) = 0. Thus, x ∈ {0,−5, 19}. We use the equation
4y = x2 + x + 16 to find the corresponding y’s.

In this way we find that the only solutions (x, y) are (−2,−6),
(−2, 6), (0, 4), (−5, 9), and (19, 99); it can be checked that each of
these pairs works.

Problem 7 A function f : N → N satisfies

(i) f(ab) = f(a)f(b) whenever the greatest common divisor of a and
b is 1;

(ii) f(p + q) = f(p) + f(q) for all prime numbers p and q.

Prove that f(2) = 2, f(3) = 3, and f(1999) = 1999.

Solution: Let us agree on the following notation: we shall write
(i)a,b when we plug (a, b) (where a and b are relatively prime) into (i),
and (ii)p,q when we plug (p, q) (where p and q are primes) into (ii).

First we find f(1), f(2), and f(4). By (i)1,b we find f(1) = 1. By
(i)2,3 we find f(6) = f(2)f(3); by (ii)3,3 we get f(6) = 2f(3); thus,

f(2) = 2.

Now by (ii)2,2 we have
f(4) = 4.

Next we find some useful facts. From (ii)3,2 and (ii)5,2, respectively,
we obtain

f(5) = f(3) + 2, f(7) = f(5) + 2 = f(3) + 4.

Now we can find f(3). By (ii)5,7 we have f(12) = f(5) + f(7) =
2f(3)+6; from (i)4,3 we have f(12) = 4f(3); we solve for f(3) to find

f(3) = 3.

Then using the facts from the previous paragraph, we find

f(5) = 5, f(7) = 7.



1999 National Contests: Problems and Solutions 103

We proceed to find f(13) and f(11). By (i)3,5, we have f(15) = 15.
From (ii)13,2 and (ii)11,2, respectively, we find

f(13) = f(15)− f(2) = 13, f(11) = f(13)− f(2) = 11.

Finally, we can calculate f(1999). By using (i) repeatedly with 2, 7,
11, and 13, we find f(2002) = f(2 ·7 ·11 ·13) = f(2)f(7)f(11)f(13) =
2002. Noting that 1999 is a prime number; from (ii)1999,3 we obtain

f(1999) = f(2002)− f(3) = 1999,

and we have finished.

Problem 8 Let a, b, c, d be positive real numbers whose sum is 1.
Prove that

a2

a + b
+

b2

b + c
+

c2

c + d
+

d2

d + a
≥ 1

2

with equality if and only if a = b = c = d = 1/4.

Solution: Apply the Cauchy-Schwarz inequality to find [(a + b) +
(b+c)+(c+d)+(d+a)]

(
a2

a+b + b2

b+c + c2

c+d + d2

d+a

)
≥ (a+b+c+d)2,

which is equivalent to

a2

a + b
+

b2

b + c
+

c2

c + d
+

d2

d + a
≥ 1

2
(a + b + c + d) =

1
2
,

with equality if and only if a+b
a = b+c

b = c+d
d = d+a

a , i.e., if and only
if a = b = c = d = 1

4 .

Problem 9 Find all positive integers m such that the fourth power
of the number of positive divisors of m equals m.

Solution: If the given condition holds for some integer m, then
m must be a perfect fourth power and we may write its prime
factorization as m = 24a234a354a574a7 · · · for nonnegative integers
a2, a3, a5, a7, . . . . Now the number of positive divisors of m equals
(4a2 + 1)(4a3 + 1)(4a5 + 1)(4a7 + 1) · · ·; this is odd, so m is odd and
a2 = 0. Thus,

1 =
4a3 + 1

3a3
· 4a5 + 1

5a5
· 4a7 + 1

7a7
· · · · = x3x5x7 · · · ,

where we write xp = 4ap+1
pap for each p.
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When a3 = 1, x3 = 5
3 ; when a3 = 0 or 2, x3 = 1. And by Bernoulli’s

inequality, when a3 > 2 we have

3a
3 = (8 + 1)a3/2 > 8(a3/2) + 1 = 4a3 + 1

so that x3 < 1.
When a5 = 0 or 1, x5 = 1; and by Bernoulli’s inequality, when

a5 ≥ 2 we have

5a5 = (24 + 1)a5/2 ≥ 24a5/2 + 1 = 12a5 + 1

so that x5 ≤ 4a5+1
12a5+1 ≤

9
25 .

Finally, for any p > 5 when ap = 0 we have xp = 1; when ap = 1
we have pap = p > 5 = 4ap + 1 so that xp < 1; and when ap > 0 then
again by Bernoulli’s inequality we have

pap > 5ap > 12ap + 1

so that as above xp < 9
25 .

Now if a3 6= 1 then we have xp ≤ 1 for all p; but since 1 = x2x3x5 · · ·
we must actually have xp = 1 for all p. This means that a3 ∈ {0, 2},
a5 ∈ {0, 1}, and a7 = a11 = · · · = 0; so that m = 14, (32)4, 54, or
(32 · 5)4.

Otherwise, if a3 = 1 then 3 | m = 54(4a5 + 1)4(4a7 + 1)4 · · ·. Then
for some prime p′ ≥ 5, 3 | 4ap′ + 1 so that ap′ ≥ 2; from above we
have xp′ ≤ 9

25 . But then x3x5x7 · · · ≤ 5
3

9
27 < 1, a contradiction.

Thus the only solutions are 1, 54, 38, and 38 · 54; and these can be
easily verified by inspection.

Problem 10 Let ABCDEF be a convex hexagon such that AB =
BC, CD = DE, EF = FA, and

∠ABC + ∠CDE + ∠EFA = 360◦.

Prove that the respective perpendiculars from A,C, E to FB, BD,

DF are concurrent.

First Solution: The result actually holds even without the given
angle condition. Let C1 be the circle with center B and radius
AB = BC, C2 the circle with center D and radius CD = DE, and C3

the circle with center F and radius EF = FA. The line through A

and perpendicular to line FB is the radical axis of circles C3 and C1,
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the line through C and perpendicular to line BD is the radical axis
of circles C1 and C2, and the line through E and perpendicular to line
DF is the radical axis of circles C2 and C3. The result follows because
these three radical axes meet at the radical center of the three circles.

Second Solution: We first establish two lemmas:

Lemma 1. Given points W 6= Y and X 6= Z, lines WY and XZ are
perpendicular if and only if

XW 2 −WZ2 = XY 2 − Y Z2. (∗)

Proof: Introduce Cartesian coordinates such that W = (0.0),
X = (1, 0), Y = (x1, y1), and Z = (x2, y2). Then (*) becomes

x2
1 + y2

1 − x2
2 − y2

2 = (x1 − 1)2 + y2
1 − (x2 − 1)2 − y2

2 ,

which upon cancellation yields x1 = x2. This is true if and only if line
Y Z is perpendicular to the x-axis WX.

If P is the intersection of the perpendiculars from A and C to lines
FB and BD, respectively, then the lemma implies that

PF 2 − PB2 = AF 2 −AB2

and
PB2 − PD2 = CB2 − CD2.

From the given isosceles triangles, we have EF = FA, AB = BC,

and CD = DE. Subtracting the first equation from the second then
gives

PD2 − PF 2 = ED2 − EF 2.

Hence line PE is also perpendicular to line DF, which completes the
proof.
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1.12 Italy

Problem 1 Given a rectangular sheet with sides a and b, with
a > b, fold it along a diagonal. Determine the area of the triangle
that passes over the edge of the paper.

Solution: Let ABCD be a rectangle with AD = a and AB = b. Let
D′ be the reflection of D across line AC, and let E = AD′ ∩BC. We
wish to find [CD′E]. Since AB = CD′, ∠ABE = ∠CD′E = 90◦, and
∠BEA = ∠D′EC, triangles ABE and CD′E are congruent. Thus
AE = EC and CE2 = AE2 = AB2 + BE2 = b2 + (a− CE)2. Hence
CE = a2+b2

2a . It follows that

[CD′E] = [ACD′]− [ACE] =
ab

2
− b

2
· CE =

b(a2 − b2)
4a

.

Problem 2 A positive integer is said to be balanced if the number
of its decimal digits equals the number of its distinct prime factors
(for instance 15 is balanced, while 49 is not). Prove that there are
only finitely many balanced numbers.

Solution: For n > 15, consider the product of the first n primes.
The first sixteen primes have product

(2·53)(3·47)(5·43)(7·41)·11·13·17·19·23·29·31·37 > 1004 ·108 = 1016,

while the other n− 16 primes are each at least 10. Thus the product
of the first n primes is greater than 10n.

Then if x has n digits and is balanced, then it it as at least the
product of the first n primes. If n ≥ 16 then from the previous
paragraph x would be greater than 10n and would have at least n+1
digits, a contradiction. Thus x can have at most 15 digits, implying
that the number of balanced numbers is finite.

Problem 3 Let ω, ω1, ω2 be three circles with radii r, r1, r2, respec-
tively, with 0 < r1 < r2 < r. The circles ω1 and ω2 are internally
tangent to ω at two distinct points A and B and meet in two distinct
points. Prove that AB contains an intersection point of ω1 and ω2 if
and only if r1 + r2 = r.

Solution: Let O be the center of ω, and note that the centers C,D

of ω1, ω2 lie on OA and OB, respectively. Let E be a point on AB
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such that CE ‖ OB. Then 4ACE ∼ 4AOB. Hence AE = CE and
E is on ω1. We need to prove that r = r1 + r2 if and only if E is on
ω2.

Note that r = r1 + r2 is equivalent to

OD = OB −BD = r − r2 = r1 = AC,

that is CEDO is a parallelogram or DE ‖ AO. Hence r = r1 + r2 if
and only if 4BDO ∼ 4BOA or BD = DE, that is, E is on ω2.

Problem 4 Albert and Barbara play the following game. On a
table there are 1999 sticks: each player in turn must remove from the
table some sticks, provided that the player removes at least one stick
and at most half of the sticks remaining on the table. The player who
leaves just one stick on the table loses the game. Barbara moves first.
Determine for which of the players there exists a winning strategy.

Solution: Call a number k hopeless if a player faced with k sticks
has no winning strategy. If k is hopeless, then so is 2k + 1: a player
faced with 2k + 1 sticks can only leave a pile of k + 1, k + 2, . . . , or
2k sticks, from which the other player can leave k sticks. Then since
2 is hopeless, so are 5, 11, . . . , 3 · 2n − 1 for all n ≥ 0. Conversely, if
3 · 2n − 1 < k < 3 · 2n+1 − 1, then given k sticks a player can leave
3 ·2n−1 sticks and force a win. Since 1999 is not of the form 3 ·2n−1,
it is not hopeless and hence Barbara has a winning strategy.

Problem 5 On a lake there is a village of pile-built dwellings, set
on the nodes of an m × n rectangular array. Each dwelling is an
endpoint of exactly p bridges which connect the dwelling with one or
more of the adjacent dwellings (here adjacent means with respect to
the array, hence diagonal connection is not allowed). Determine for
which values of m, n, p it is possible to place the bridges so that from
any dwelling one can reach any other dwelling. (Clearly, two adjacent
dwellings can be connected by more than one bridge).

Solution: Suppose it is possible to place the bridges in this manner,
and set the villages along the lattice points {(a, b) | 1 ≤ a ≤ m, 1 ≤
b ≤ n}. Color the dwellings cyan and magenta in a checkerboard
fashion, so that every bridge connects a cyan dwelling with a magenta
dwelling. Since each dwelling is at the end of the same number of
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bridges (exactly p of them), the number of cyan dwellings must equal
the number of magenta dwellings; thus 2 | mn.

Obviously mn = 2 works for all values of p. And for p = 1, we
cannot have mn > 2 because otherwise if any two dwellings A and B

are connected, then they cannot be connected to any other dwellings.
Similarly, if m = 1, n > 2 (or n = 1,m > 2) then p bridges must
connect (1, 1) and (1, 2) (or (1, 1) and (2, 1)); but then neither of
these dwellings is connected to any other dwellings, a contradiction.

Now assume that 2 | mn with m,n > 1 and p > 1; assume without
loss of generality that 2 | m. Build a sequence of bridges starting at
(1, 1), going up to (1, n), right to (m,n), down to (m, 1), and left to
(m− 1, 1); and then weaving back to (1, 1) by repeatedly going from
(k, 1) up to (k, n− 1) left to (k− 1, n− 1) down to (k− 1, 1) and left
to (k−2, 1) for k = m−1,m−3, . . . , 3. (The sideways E below shows
this construction for m = 6, n = 4.)

So far we have built two bridges leading out of every dwelling, and any
dwelling can be reached from any other dwelling. For the remaining
p−2 bridges needed for each dwelling, note that our sequence contains
exactly mn bridges, an even number; so if we build every other bridge
in our sequence, and do this p− 2 times, then exactly p bridges come
out of every dwelling.

Thus either mn = 2 and p equals any value; or 2 | mn with
m,n, p > 1.

Problem 6 Determine all triples (x, k, n) of positive integers such
that

3k − 1 = xn.

Solution: (3k − 1, k, 1) for all positive integers k, and (2, 2, 3).
The case of n = 1 is obvious. Now, n cannot be even because then

3 could not divide 3k =
(
x

n
2
)2 + 1 (since no square is congruent to 2

modulo 3); and also, we must have x 6= 1.
Assume that n > 1 is odd and x ≥ 2. Then 3k = (x+1)

∑n−1
i=0 (−x)i

implying that both x+1 and
∑n−1

i=0 (−x)i are powers of 3. Then since
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x + 1 ≤ x2 − x + 1 ≤
∑n−1

i=0 (−x)i, we must have 0 ≡
∑n−1

i=0 (−x)i ≡
n (mod x + 1), so that x + 1 | n. Specifically, this means that 3 | n.

Writing x′ = x
n
3 , we have 3k = x′3 + 1 = (x′ + 1)(x′2 − x′ + 1).

As before x′ + 1 must equal some power of 3, say 3t. But then
3k = (3t−1)3 +1 = 33t−32t+1 +3t+1, which is strictly between 33t−1

and 33t for t > 1. Therefore we must have t = 1, x′ = 2, and k = 2,
giving the solution (x, k, n) = (2, 2, 3).

Problem 7 Prove that for each prime p the equation

2p + 3p = an

has no integer solutions (a, n) with a, n > 1.

Solution: When p = 2 we have an = 13, which is impossible. When
p is odd, then 5 | 2p +3p; then since n > 1, we must have 25 | 2p +3p.
Then

2p+(5−2)p ≡ 2p+
((

p

1

)
5 · (−2)p−1 + (−2)p

)
≡ 5p·2p−1 (mod 25),

so 5 | p. Thus we must have p = 5, but then an = 25 + 35 = 52 · 11
has no solutions.

Problem 8 Points D and E are given on the sides AB and AC of
triangle ABC such that DE ‖ BC and DE is tangent to the incircle
of ABC. Prove that

DE ≤ AB + BC + CA

8
.

Solution: Let BC = a, CA = b, AB = c. Also let h = 2[ABC]
a be

the distance from A to line BC and let r = 2[ABC]
a+b+c the inradius of

triangle ABC; note that h−2r
h = b+c−a

a+b+c .
Let x = b + c− a, y = c + a− b, z = a + b− c. Then

(x + y + z)2 ≥ (2
√

x(y + z))2 = 4x(y + z)

by AM-GM, which implies that (a + b + c)2 ≥ 8(b + c− a)a, or

b + c− a

a + b + c
· a ≤ a + b + c

8
=⇒ h− 2r

h
·BC ≤ AB + BC + CA

8
.

But since DE ‖ BC, we have DE
BC = h−2r

h ; substituting this into the
above inequality gives the desired result.
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Problem 9

(a) Find all the strictly monotonic functions f : R → R such that

f(x + f(y)) = f(x) + y, for all x, y ∈ R.

(b) Prove that for every integer n > 1 there do not exist strictly
monotonic functions f : R → R such that

f(x + f(y)) = f(x) + yn, for all x, y ∈ R.

Solution:

(a) The only such functions are f(x) = x and f(x) = −x. Setting x =
y = 0 gives f(f(0)) = f(0), while setting x = −f(0), y = 0 gives
f(−f(0)) = f(0). Since f is strictly monotonic it is injective,
so f(0) = −f(0) and thus f(0) = 0. Next, setting x = 0 gives
f(f(y)) = y for all y.

Suppose f is increasing. If f(x) > x then x = f(f(x)) >

f(x), a contradiction; if f(x) < x then x = f(f(x)) < f(x), a
contradiction. Thus f(x) = x for all x.

Next suppose that f is decreasing. Plugging in x = −f(t),
y = t, and then x = 0, y = −t shows that f(−f(t)) = f(f(−t)) =
−t, so f(t) = −f(−t) for all t. Now given x, if f(x) < −x

then x = f(f(x)) > f(−x) = −f(x), a contradiction. And if
f(x) > −x then x = f(f(x)) < f(−x) = −f(x), a contradiction.
Hence we must have f(x) = −x for all x.

Therefore either f(x) = x for all x or f(x) = −x for all x; and
it is easy to check that these two functions work.

(b) Since f is strictly monotonic, it is injective. Then for y 6= 0 we
have f(y) 6= f(−y) so that f(x+f(y)) 6= f(x+f(−y)) and hence
f(x) + yn 6= f(x) + (−y)n; thus, n can’t be even.

Now suppose there is such an f for odd n; then by arguments
similar to those in part (a), we find that f(0) = 0 and f(f(y)) =
yn. Specifically, f(f(1)) = 1. If f is increasing then as in part (a)
we have f(1) = 1; then f(2) = f(1 + f(1)) = f(1) + 1n = 2 and
2n = f(f(2)) = f(2) = 2, a contradiction. If f is decreasing, then
as in part (a) we have f(1) = −1; then f(2) = f(1 + f(−1)) =
f(1) + (−1)n = −2 and 2n = f(f(2)) = f(−2) = −f(2) = 2, a
contradiction.
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Problem 10 Let X be a set with |X| = n, and let A1, A2, . . . , Am

be subsets of X such that

(a) |Ai| = 3 for i = 1, 2, . . . ,m.

(b) |Ai ∩Aj | ≤ 1 for all i 6= j.

Prove that there exists a subset of X with at least b
√

2nc elements,
which does not contain Ai for i = 1, 2, . . . ,m.

Solution: Let A be a subset of X containing no Ai, and having
the maximum number of elements subject to this condition. Let k

be the size of A. By assumption, for each x ∈ X − A, there exists
i(x) ∈ {1, . . . ,m} such that Ai(x) ⊆ A∪{x}. Let Lx = A∩Ai(x), which
by the previous observation must have 2 elements. Since |Ai∩Aj | ≤ 1
for i 6= j, the Lx must all be distinct. Now there are

(
k
2

)
2-element

subsets of A, so there can be at most
(
k
2

)
sets Lx. Thus n− k ≤

(
k
2

)
or k2 + k ≥ 2n. It follows that

k ≥ 1
2
(−1 +

√
1 + 8n) >

√
2n− 1,

that is, k ≥ b
√

2nc.
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1.13 Japan

Problem 1 You can place a stone at each of 1999 × 1999 squares
on a grid pattern. Find the minimum number of stones you must
place such that, when an arbitrary blank square is selected, the total
number of stones placed in the corresponding row and column is at
least 1999.

Solution: Place stones in a checkerboard pattern on the grid, so
that stones are placed on the four corner squares. This placement
satisfies the condition and contains 1000×1000+999×999 = 1998001
stones. We now prove this number is minimal.

Suppose the condition is satisfied. Assume without loss of gener-
ality that the j-th column contains k stones, and every other row or
column also contains at least k stones. For each of the k stones in
the j-th column, the row containing that stone must contain at least
k stones by our minimal choice of k. And for each of the 1999 − k

blank squares in the j-th column, to satisfy the given condition there
must be at least 1999 − k stones in the row containing that square.
Thus total number of stones is at least

k2 + (1999− k)2 = 2
(

k − 1999
2

)2

+
19992

2
≥ 19992

2
= 1998000.5,

and it follows that there indeed must be at least 1998001 stones.

Problem 2 Let f(x) = x3+17. Prove that for each natural number
n, n ≥ 2, there is a natural number x for which f(x) is divisible by
3n but not by 3n+1.

Solution: We prove the result by induction on n. If n = 2, then
x = 1 suffices. Now suppose that the claim is true for n ≥ 2 — that
is, there is a natural number y such that y3 +17 is divisible by 3n but
not 3n+1. We prove that the claim is true for n + 1.

Suppose we have integers a,m such that a is not divisible by 3 and
m ≥ 2. Then a2 ≡ 1 (mod 3) and thus 3ma2 ≡ 3m (mod 3m+1). Also,
since m ≥ 2 we have 3m− 3 ≥ 2m− 1 ≥ m + 1. Hence

(a+3m−1)3 ≡ a3 +3ma2 +32m−1a+33m−3 ≡ a3 +3m (mod 3m+1).

Since y3+17 is divisible by 3n, it is congruent to either 0, 3n, or 2·3n

modulo 3n+1. Since 3 does not divide 17, 3 cannot divide y either.
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Hence applying our result from the previous paragraph twice — once
with (a,m) = (y, n) and once with (a,m) = (y + 3n−1, n) — we find
that 3n+1 must divide either (y + 3n−1)3 + 17 or (y + 2 · 3n−1)3 + 17.

Hence there exists a natural number x′ not divisible by 3 such
that 3n+1 | x′3 + 17. If 3n+2 does not divide x′3 + 17, we are done.
Otherwise, we claim the number x = x′ + 3n suffices. Since x =
x′ + 3n−1 + 3n−1 + 3n−1, the result from two paragraphs ago tells us
that x3 ≡ x′3 +3n +3n +3n ≡ x′3 (mod 3n+1). Thus 3n+1 | x3 +17 as
well. On the other hand, since x = x′+3n, we have x3 ≡ x′3+3n+1 6≡
x′3 (mod 3n+2). It follows that 3n+2 does not divide x3+17, as desired.
This completes the inductive step.

Problem 3 From a set of 2n + 1 weights (where n is a natural
number), if any one weight is excluded, then the remaining 2n weights
can be divided into two sets of n weights that balance each other.
Prove that all the weights are equal.

Solution: Label the weights a1, a2, . . . , a2n+1. Then for each j,
1 ≤ j ≤ 2n, we have

c
(j)
1 a1 + c

(j)
2 a2 + · · ·+ c

(j)
2n a2n = a2n+1

where c
(j)
j = 0, n of the other c

(j)
i equal 1, and the remaining c

(j)
i

equal −1.
Thus we have 2n equations in the variables a1, a2, . . . , a2n. Clearly

(a1, a2, . . . , a2n) = (a2n+1, a2n+1, . . . , a2n+1) is a solution to this
system of equations. By Kramer’s Rule, this solution is unique if
and only if the determinant of the matrix

c
(1)
1 c

(1)
2 · · · c

(1)
2n

c
(2)
1 c

(2)
2 · · · c

(2)
2n

...
...

. . .
...

c
(2n)
1 c

(2n)
2 · · · c

(2n)
2n


is nonzero. We show this is true by proving that this determinant is
odd.

If we add an integer m to any single integer in the matrix, its
determinant changes by m multiplied by the corresponding cofactor.
Specifically, if m is even then the parity of the determinant does not
change. Thus the parity of the presented determinant is the same as
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the parity of the determinant∣∣∣∣∣∣∣∣∣
0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

∣∣∣∣∣∣∣∣∣ .
This matrix has eigenvector (1, 1, . . . , 1) corresponding to the eigen-
value 2n − 1; and eigenvectors (1,−1, 0, . . . , 0, 0), (0, 1,−1, . . . , 0, 0),
. . . , (0, 0, 0, . . . , 1,−1) corresponding to eigenvalue −1. These 2n

eigenvectors are linearly independent, so the matrix’s characteristic
polynomial is p(x) = (x− (2n−1))(x+1)2n−1. Hence its determinant
p(0) = −(2n− 1) is odd, as desired.

Problem 4 Prove that

f(x) = (x2 + 12)(x2 + 22)(x2 + 32) · · · (x2 + n2) + 1

cannot be expressed as a product of two integral-coefficient polyno-
mials with degree greater than 0.

Solution: The claim is obvious when n = 1. Now assume n ≥ 2
and suppose by way of contradiction that f(x) could be expressed as
such a product g(x)h(x) with

g(x) = a0 + a1x + · · ·+ a`x
`,

h(x) = b0 + b1x + · · ·+ b`′x
`′ ,

where `, `′ > 0 and the coefficients ai and bi are integers.
For m = ±1,±2, . . . ,±n, since (mi)2 + m2 = 0 we have 1 =

f(mi) = g(mi)h(mi). But since g and h have integer coefficients,
g(mi) equals either 1,−1, i, or −i. Moreover, since the imaginary
part of

g(mi) = (a0 − a2m
2 + a4m

4 − · · ·) + m(a1 − a3m
2 + a5m

4 − · · ·)i

is a multiple of m, g(mi) must equal ±1 for m 6= ±1. Going further,
since 1 = g(mi)h(mi) we have g(mi) = h(mi) = ±1 for m 6= ±1.

Then by the factor theorem,

g(x)− h(x) = (x2 + 22)(x2 + 32) · · · (x2 + n2)k(x)
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for some integer-coefficient polynomial k(x) with degree at most 1.
Since (g(i), h(i)) equals (1,−1), (−1, 1), (i,−i), or (−i, i), we have

2 ≥ |g(i)− h(i)| = (−1 + 22)(−1 + 32) · · · (−1 + n2)|k(i)|,

and hence we must have k(i) = 0. Since k(x) has degree at most
1, this implies that k(x) = 0 for all x and that g(x) = h(x) for all
x. But then a2

0 = g(0)h(0) = f(0) = (12)(22) · · · (n2) + 1, which is
impossible.

Problem 5 For a convex hexagon ABCDEF whose side lengths
are all 1, let M and m be the maximum and minimum values of the
three diagonals AD,BE, and CF . Find all possible values of m and
M .

Solution: We claim that the possible values are
√

3 ≤ M ≤ 3 and
1 ≤ m ≤ 2.

First we show all such values are attainable. Continuously trans-
form ABCDEF from an equilateral triangle ACE of side length 2,
into a regular hexagon of side length 1, and finally into a segment of
length 3 (say, by enlarging the diagonal AD of the regular hexagon
while bringing B,C,E, F closer to line AD). Then M continuously
varies from

√
3 to 2 to 3. Similarly, by continuously transforming

ABCDEF from a 1 × 2 rectangle into a regular hexagon, we can
make m vary continuously from 1 to 2.

Now we prove no other values are attainble. First, we have AD ≤
AB + BC + CD = 3, and similarly BE,CF ≤ 3 so that M ≤ 3.

Next, suppose by way of contradiction that m < 1 and say without
loss of generality that AD < 1. Since AD < AB = BC = CD = 1,

∠DCA < ∠DAC, ∠ABD < ∠ADB,

∠CBD = ∠CDB, ∠BCA = ∠BAC.

Therefore,

∠CDA + ∠BAD = ∠CDB + ∠BDA + ∠BAC + ∠CAD

> ∠CBD + ∠DBA + ∠BCA + ∠ACD = ∠CBA + ∠BCD.

Consequently ∠CDA + ∠BAD > 180◦ and likewise ∠EDA +
∠FAD > 180◦. But then

∠CDE + ∠BAF = ∠CDA + ∠EDA + ∠BAD + ∠FAD > 360◦,
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which is impossible since ABCDEF is convex. Hence m ≥ 1.
Next we demonstrate that M ≥

√
3 and m ≤ 2. Since the sum of

the six interior angles in ABCDEF is 720◦, some pair of adjacent
angles has sum greater than or equal to 240◦ and some pair has sum
less than or equal to 240◦. Thus it suffices to prove that CF ≥

√
3

when ∠A + ∠B ≥ 240◦, and that CF ≤ 2 when ∠A + ∠B ≤ 240◦.
Suppose by way of contradiction that ∠A + ∠B ≥ 240◦ and CF <√
3. By the law of cosines, CF 2 = BC2+BF 2−2BC ·BF cos ∠FBC.

Thus if we fix A,B, F and decrease ∠ABC, we decrease ∠FBC and
CF ; similarly, by fixing A,B, C and decreasing ∠BAF , we decrease
CF . Therefore, it suffices to prove that

√
3 ≥ CF when ∠A + ∠B =

240◦. And likewise, it suffices to prove that CF ≤ 2 when ∠A+∠B =
240◦.

Now suppose that ∠A+∠B does equal 240◦. Let lines AF and BC

intersect at P , and set x = PA and y = PB. Since ∠A+∠B = 240◦,
∠P = 60◦. Then applying the law of cosines to triangles PAB and
PCF yields

1 = AB2 = x2 + y2 − xy

and

CF 2 = (x + 1)2 + (y + 1)2 − (x + 1)(y + 1) = 2 + x + y.

Therefore, we need only find the possible values of x + y given that
x2 +y2−xy = 1 and x, y ≥ 0. These conditions imply that (x+y)2 +
3(x− y)2 = 4, x + y ≥ 0, and |x− y| ≤ x + y. Hence

1 =
1
4
(x + y)2 +

3
4
(x− y)2 ≤ (x + y)2 ≤ (x + y)2 + 3(x− y)2 = 4,

so 1 ≤ x + y ≤ 2 and
√

3 ≤ CF ≤ 2. This completes the proof.



1999 National Contests: Problems and Solutions 117

1.14 Korea

Problem 1 Let R and r be the circumradius and inradius of triangle
ABC respectively, and let R′ and r′ be the circumradius and inradius
of triangle A′B′C ′ respectively. Prove that if ∠C = ∠C ′ and Rr′ =
R′r, then the triangles are similar.

Solution: Let ω be the circumcircle of triangle ABC. By scaling,
rotating, and translating, we may assume that A = A′, B = B′,
R = R′, r = r′ and that C, C ′ lie on the same arc ÂB of ω. If the
triangles were similar before these transformations, they still remain
similar; so it suffices to prove they are now congruent.

Since r = 1
2 (AC + BC − AB) cot(∠C) and r′ = 1

2 (A′C ′ + B′C ′ −
A′B′) cot(∠C ′) = 1

2 (A′C ′+B′C ′−AB) cot(∠C), we must have AC +
BC = A′C ′+B′C ′ and hence AB +BC +CA = A′B′+B′C ′+C ′A′.
Then the area of triangle ABC is 1

2r(AB + BC + CA), which thus
equals the area of triangle A′B′C ′, 1

2r′(A′B′ + B′C ′ + C ′A′). Since
these triangles share the same base AB, we know that the altitudes
from C and C ′ to AB are equal. This implies that4ABC is congruent
to either 4A′B′C ′ or 4B′A′C ′, as desired.

Problem 2 Suppose f : Q → R is a function satisfying

|f(m + n)− f(m)| ≤ n

m

for all positive rational numbers n and m. Show that for all positive
integers k,

k∑
i=1

|f(2k)− f(2i)| ≤ k(k − 1)
2

.

Solution: It follows from the condition |f(m+n)−f(m)| ≤ n
m that

∣∣f(2i+1)− f(2i)
∣∣ ≤ 2i+1 − 2i

2i
= 1.

Therefore, for k > i,

∣∣f(2k)− f(2i)
∣∣ ≤ k−1∑

j=i

∣∣f(2j+1)− f(2j)
∣∣ ≤ k − i.
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From the above inequality, we obtain
k∑

i=1

∣∣f(2k)− f(2i)
∣∣ = k−1∑

i=1

∣∣f(2k)− f(2i)
∣∣ ≤ k−1∑

i=1

(k − i) =
k(k − 1)

2
.

This completes the proof.

Problem 3 Find all positive integers n such that 2n−1 is a multiple
of 3 and 2n−1

3 is a divisor of 4m2 + 1 for some integer m.

Solution: The answer is all 2k where k = 1, 2, . . ..
First, it is easy to conclude (using Fermat’s Little Theorem, or by

simple observation) that if 3 | 2n − 1, then n must be even.
Suppose by way of contradiction that ` ≥ 3 is a positive odd divisor

of n. Then 2`−1 is not divisible by 3 but it is a divisor of 2n−1, so it
is a divisor of 4m2 +1 as well. On the other hand, 2`− 1 has a prime
divisor p of the form 4r + 3. Then (2m)2 ≡ −1 (mod 4r + 3); but a
standard number theory result states that a square cannot equal −1
modulo a prime of the form 4r + 3.

Therefore n is indeed of the form 2k for k ≥ 1. For such n, we have

2n − 1
3

= (221
+ 1)(222

+ 1)(223
+ 1) · · · (22k−1

+ 1).

The factors on the right side are all relatively prime to 2 since they
are all odd. They are also Fermat numbers, and another result from
number theory states that they are relatively prime. (Suppose that
some prime p divided both 22a

+ 1 and 22b

+ 1 for a < b. Then
22a ≡ 22b ≡ −1 (mod p). But then −1 ≡ 22b

=
(
22a)2b−a

≡(
(−1)2

)2b−a−1

≡ 1 (mod p), implying that p = 2; again, this is
impossible.) Therefore by the Chinese Remainder Theorem, there
is a positive integer c simultaneously satisfying

c ≡ 22i−1
(mod 22i

+ 1) for all i = 1, 2, . . . , k − 1

and c ≡ 0 (mod 2). Putting c = 2m, 4m2 + 1 is a multiple of 2n−1
3 ,

as desired.

Problem 4 Suppose that for any real x with |x| 6= 1, a function
f(x) satisfies

f

(
x− 3
x + 1

)
+ f

(
3 + x

1− x

)
= x.

Find all possible f(x).
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Solution: Set t = x−3
x+1 so that x = 3+t

1−t . Then the given equation
can be rewritten as

f(t) + f

(
t− 3
t + 1

)
=

3 + t

1− t
.

Similarly, set t = 3+x
1−x so that x = t−3

t+1 and x−3
x+1 = 3+t

1−t . Again we can
rewrite the given equation, this time as

f

(
3 + t

1− t

)
+ f(t) =

t− 3
t + 1

.

Adding these two equations we have

8t

1− t2
= 2f(t) + f

(
t− 3
t + 1

)
+ f

(
3 + t

1− t

)
= 2f(t) + t,

so that
f(t) =

4t

1− t2
− t

2
,

and some algebra verifies that this solution works.

Problem 5 Consider a permutation (a1, a2, . . . , a6) of 1, 2, . . . , 6
such that the minimum number of transpositions needed to transform
(a1, a2, a3, a4, a5, a6) to (1, 2, 3, 4, 5, 6) is four. Find the number of
such permutations.

Solution: Given distinct numbers b1, b2, . . . , bk between 1 and n, in
a k-cycle with these numbers b1 is mapped to one of the other k − 1
numbers; its image is mapped to one of the k−2 remaining numbers;
and so on until the remaining number is mapped to b1. Hence there
are (k − 1)(k − 2) · · · (1) = (k − 1)! cycles of length k involving these
numbers.

Any permutation which can be achieved with four transpositions is
even, so a permutation satisfying the given conditions must be either
(i) the identity permutation, (ii) a composition of two transpositions,
(iii) a 3-cycle, (iv) a composition of a 2-cycle and a 4-cycle, (v) a
composition of two 3-cycles, or (vi) a 5-cycle. Permutations of type
(i), (ii), and (iii) can be attained with fewer transpositions from our
observations above. Conversely, any even permutation that can be
achieved with zero or two transpositions is of these three types. Hence
the permutations described in the problem statement are precisely
those of types (iv), (v), and (vi). For type-(iv) permutations, there
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are
(
6
2

)
= 15 ways to assign which cycle each of 1, 2, . . . , 6 belongs;

and there are (2 − 1)!(4 − 1)! = 6 ways to rearrange them within
the cycles, for a total of 15 · 6 = 90 permutations. For type-(v)
permutations, there are 1

2

(
6
3

)
= 10 ways to assign which cycle each

number belongs to (since
(
6
3

)
counts each such permutation twice,

once in the form (a b c)(d e f) and again in the form (d e f)(a b c)).
And there are (3 − 1)!(3 − 1)! = 4 ways to rearrange the numbers
within these two cycles for a total of 10·4 = 40 type-(v) permutations.
Finally, for type-(v) permutations there are

(
6
5

)
= 6 ways to choose

which five numbers are cycled, and (5 − 1)! = 24 different cycles
among any five numbers. This gives a total of 6 · 24 = 144 type-(v)
permutations, and altogether

90 + 40 + 144 = 274

permutations which can be attained with four permutations, but no
less.

Problem 6 Let a1, a2, · · · , a1999 be nonnegative real numbers sat-
isfying the following two conditions:

(a) a1 + a2 + · · ·+ a1999 = 2;

(b) a1a2 + a2a3 + · · ·+ a1998a1999 + a1999a1 = 1.

Let S = a2
1 + a2

2 + · · · + a2
1999. Find the maximum and minimum

possible values of S.

Solution: Without loss of generality assume that a1999 is the
minimum ai. We may also assume that a1 > 0. From the given
equations we have

4 = (a1 + a2 + · · ·+ a1999)2

≥ (a1 + a2 + · · ·+ a1999)2 − (a1 − a2 + a3 − · · · − a1998 + a1999)2

= 4(a1 + a3 + · · ·+ a1999)(a2 + a4 + · · ·+ a1998)

≥ 4(a1a2 + a2a3 + · · ·+ a1998a1999)

+4(a1a4 + a2a5 + · · ·+ a1996a1999)

+4a1(a6 + a8 + · · ·+ a1998)

= 4(1− a1999a1) + 4(a1a4 + a2a5 · · ·+ a1996a1999)

+4a1(a6 + a8 + · · ·+ a1998)
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= 4 + 4(a1a4 + a2a5 + · · ·+ a1996a1999)

+4a1(a6 + a8 + · · ·+ a1998 − a1999)

≥ 4.

Hence equality must hold in the first and third inequality. Thus we
must have

(i) a1 + a3 + · · ·+ a1999 = a2 + a4 + · · ·+ a1998 = 1

(ii) a1a4 = a2a5 = · · · = a1996a1999 = 0

(iii) a6 + a8 + · · ·+ a1998 = a1999.

Condition (ii) implies a4 = 0; from (iii) we get a6 = a8 = · · · =
a1998 = 0. Thus from (i), we have a2 = 1, and from (b), we have
a1 + a3 = 1. Applying these to the first given condition (a), we have

a4 + a5 + · · ·+ a1999 = 0,

so that a4 = a5 = · · · = a1999 = 0. Therefore

S = a2
1 + a2

2 + a2
3

= a2
1 + 1 + (1− a1)2 since a2 = a1 + a3 = 1

= 2(a2
1 − a1 + 1)

= 2
(

a1 −
1
2

)2

+
3
2
.

Thus S has maximum value 2 attained when a1 = 1, and minimum
value 3

2 when a1 = 1
2 .
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1.15 Poland

Problem 1 Let D be a point on side BC of triangle ABC such
that AD > BC. Point E on side AC is defined by the equation

AE

EC
=

BD

AD −BC
.

Show that AD > BE.

First Solution: Fix the points B,C,D and the distance AD, and
let A vary; its locus is a circle with center D. From the equation,
the ratio AE

EC is fixed; therefore, λ = EC
AC is also fixed. Since E is the

image of A under a homothety about C with ratio λ, the locus of
all points E is the image of the locus of A under this homothety —
a circle centered on BC. Then BE has its unique maximum when
E is the intersection of the circle with line BC farther from B. If
we show that AD = BE in this case then we are done (the original
inequality AD > BE will be strict because equality can only hold in
this degenerate case). Indeed, in this case the points B,D,C,E,A

are collinear in that order; our equation gives

AE · (AC −BD) = AE · (AD −BC) = EC ·BD

⇒ AE ·AC = (AE + EC) ·BD = AC ·BD

⇒ AE = BD ⇒ AD = BE.

Second Solution: Let F be the point on AD such that FA = BC,

and let line BF hit side AC at E′. By the law of sines we have
AE′ = FA · sin ∠AFE′

sin ∠FE′A = CB · sin ∠DFB
sin ∠CE′F and E′C = CB · sin ∠E′BC

sin ∠CE′B =
CB · sin ∠FBD

sin ∠CE′F . Hence AE′

E′C = sin ∠DFB
sin ∠FBD = DB

FD = BD
AD−BC = AE

EC , and
E′ = E.

Let ` be the line passing through A parallel to side BC. Draw
G on ray BC such that BG = AD and CG = FD; and let lines
GE and ` intersect at H. Triangles ECG and EAH are similar, so
AH = CG · AE

EC = FD · AE
EC .

By Menelaus’ Theorem applied to triangle CAD and line EFB, we
have

CE ·AF ·DB

EA · FD ·BC
= 1.
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Thus AH = FD · AE
EC = FD · AF ·DB

FD·BC = DB · AF
BC = DB, implying

that quadrilateral BDAH is a parallelogram and that BH = AD. It
follows that triangle BHG is isosceles with BH = BG = AD; and
since BE in a cevian in this triangle, we must have BE < AD, as
desired.

Problem 2 Given are nonnegative integers a1 < a2 < · · · < a101

smaller than 5050. Show that one can choose four distinct integers
ak, al, am, an such that

5050 | (ak + al − am − an).

Solution: First observe that the ai are all distinct modulo 5050 since
they are all between 0 and 5050. Now consider all sums ai +aj , i < j;
there are

(
101
2

)
= 5050 such sums. If any two such sums, ak + al and

am + an, are congruent mod 5050, we are done. (In this case, all
four indices would indeed be distinct: if, for example, k = m, then
we would also have l = n since all ai are different mod 5050, but
we chose the pairs {k, l} and {m,n} to be distinct.) The only other
possibility is that these sums occupy every possible congruence class
mod 5050. Then, adding all such sums gives 100(a1+a2+· · ·+a101) ≡
0 + 1 + · · ·+ 5049 = 2525 · 5049 (mod 5050). Since the number on the
left side is even but 2525 · 5049 is odd, we get a contradiction.

Problem 3 For a positive integer n, let S(n) denote the sum of
its digits. Prove that there exist distinct positive integers {ni}1≤i≤50

such that

n1 + S(n1) = n2 + S(n2) = · · · = n50 + S(n50).

Solution: We show by induction on k that there exist positive
integers n1, . . . , nk with the desired property. For k = 1 the statement
is obvious. For k > 1, we have (by induction) numbers m1 < · · · <

mk−1 with the desired property. Note that we can make all mi

arbitrarily large, e.g. by adding some large power of 10 to all of them
(which preserves our property). Then, choose m with 1 ≤ m ≤ 9
and m ≡ m1 + 1 (mod 9); recall that S(x) ≡ x (mod 9). Then we
have m1 − m + S(m1) − S(m) + 11 = 9` for some integer `; by
choosing the mi large enough we can ensure 10` > mk−1. Now let
ni = 10`+1 +mi for i < k and nk = m+10`+1−10. Now it is obvious
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that ni + S(ni) = nj + S(nj) for i, j < k, and

n1 + S(n1) = (10l+1 + m1) + (1 + S(m1))

= (m1 + S(m1) + 1) + 10l+1

= (9` + S(m) + m− 10) + 10`+1

= (m + 10l+1 − 10) + (9` + S(m))

= nk + S(nk),

as needed.

Problem 4 Find all integers n ≥ 2 for which the system of
equations

x2
1 + x2

2 + 50 = 16x1 + 12x2

x2
2 + x2

3 + 50 = 16x2 + 12x3

. . . . . . . . .

x2
n−1 + x2

n + 50 = 16xn−1 + 12xn

x2
n + x2

1 + 50 = 16xn + 12x1

has a solution in integers (x1, x2, . . . , xn).

Solution: Answer: 3 | n.
We rewrite the equation x2 + y2 + 50 = 16x + 12y as (x − 8)2 +

(y − 6)2 = 50, whose integer solutions are

(7,−1), (7, 13), (9,−1), (9, 13), (3, 1), (3, 11)

(13, 1), (13, 11), (1, 5), (1, 7), (15, 5), (15, 7).

Thus every pair (xi, xi+1) (where xn+1 = x1) must be one of these.
If 3 | n then just let x3i = 1, x3i+1 = 7, x3i+2 = 13 for each
i. Conversely, if a solution exists, consider the pairs (xi, xi+1)
which occur; every pair’s first coordinate is the second coordinate
of another pair, and vice versa, which reduces the above possibilities
to (1, 7), (7, 13), (13, 1). It follows that the xi must form a repeating
sequence 1, 7, 13, 1, 7, 13, . . . , which is only possible when 3 | n.

Problem 5 Let a1, a2, . . . , an, b1, b2, . . . , bn be integers. Prove that∑
1≤i<j≤n

(|ai − aj |+ |bi − bj |) ≤
∑

1≤i,j≤n

|ai − bj |.
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Solution: Define f{a,b}(x) = 1 if either a ≤ x < b or b ≤ x < a, and
0 otherwise. Observe that when a, b are integers, |a−b| =

∑
x f{a,b}(x)

where the sum is over all integers (the sum is valid since only finitely
many terms are nonzero). Now suppose a≤ is the number of values
of i for which ai ≤ x, and a>, b≤, b> are defined analogously. We
have (a≤ − b≤) + (a> − b>) = (a≤ + a>)− (b≤ + b>) = n− n = 0 ⇒
(a≤ − b≤)(a> − b>) ≤ 0. Thus a≤a> + b≤b> ≤ a≤b> + a>b≤. But
a≤a> =

∑
i<j f{ai,aj}(x) since both sides count the same set of pairs,

and the other terms reduce similarly, giving∑
1≤i<j≤n

f{ai,aj}(x) + f{bi,bj}(x) ≤
∑

1≤i,j≤n

f{ai,bj}(x).

Now summing over all integers x and using our first observation, we
get the desired inequality. Equality holds iff the above inequality is
an equality for all x, which is true precisely when the ai equal the bi

in some order.

Problem 6 In a convex hexagon ABCDEF , ∠A+∠C+∠E = 360◦

and
AB · CD · EF = BC ·DE · FA.

Prove that AB · FD · EC = BF ·DE · CA.

First Solution: Construct point G so that triangle GBC is similar
to triangle FBA (and with the same orientation). Then ∠DCG =
360◦ − (∠GCB + ∠BCD) = ∠DEF and GC

CD = FA·BC
AB

CD = FE
ED , so

triangles DCG,DEF are similar.
Now AB

BF = CB
BG by similar triangles, and ∠ABC = ∠ABF +

∠FBC = ∠CBG + ∠FBC = ∠FBG; thus 4ABC ∼ 4FBG, and
likewise 4EDC ∼ 4FDG. Then

AB

CA
· EC

DE
· FD

BF
=

FB

GF
· FG

DF
· FD

BF
= 1

as needed.

Second Solution: Invert about F with some radius r. The original
equality becomes

A′B′ · r2

A′F ·B′F
· C ′D′ · r2

C ′F ·D′F
· r2

E′F
=

B′C ′ · r2

B′F · C ′F
· D′E′ · r2

D′F · E′F
· r2

A′F
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or A′B′

B′C′ = E′D′

D′C′ . The original angle condition is ∠FAB + ∠BCF +
∠FCD + ∠DEF = 360◦; using directed angles, this turns into
∠A′B′F + ∠FB′C ′ + ∠C ′D′F + ∠FD′E′ = 360◦, or ∠A′B′C ′ =
∠E′D′C ′. Thus triangles A′B′C ′, E′D′C ′ are similar, giving A′B′

A′C′ =
E′D′

E′C′ or, equivalently,

A′B′ · r2

A′F ·B′F
· r2

D′F
· E′C ′ · r2

C ′F · E′F
=

r2

B′F
· D′E′ · r2

D′F · E′F
· C ′A′ · r2

A′F · C ′F
.

Inverting back, we see that we are done.

Third Solution: Position the hexagon in the complex plane and
let a = B − A, b = C − B, . . . , f = A − F. The product identity
implies that |ace| = |bdf |, and the angle equality implies −b

a · −d
c · −f

e

is positive real; hence ace = −bdf . Also a + b + c + d + e + f = 0;
Multiplying this by ad and adding ace + bdf = 0 gives

a2d + abd + acd + ad2 + ade + adf + ace + bdf = 0

which factors to a(d + e)(c + d) + d(a + b)(f + a) = 0. Thus
|a(d + e)(c + d)| = |d(a + b)(f + a)|, which is what we wanted.
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1.16 Romania

National Olympiad

Problem 7.1 Determine the side lengths of a right triangle if they
are integers and the product of the leg lengths is equal to three times
the perimeter.

Solution: One of the leg lengths must be divisible by 3; let the legs
have lengths 3a and b and let the hypotenuse have length c, where
a, b, and c are positive integers. From the given condition we have
3ab = 3(3a+ b+ c), or c = ab− 3a− b. By the Pythagorean theorem,
we have (3a)2 + b2 = c2 = (ab− 3a− b)2, which simplifies to

ab[(a− 2)(b− 6)− 6] = 0.

Since a, b > 0, we have (a, b) ∈ {(3, 12), (4, 9), (5, 8), (8, 7)}, and there-
fore the side lengths of the triangle are either (9, 12, 15), (8, 15, 17),
or (7, 24, 25).

Problem 7.2 Let a, b, c be nonzero integers, a 6= c, such that

a

c
=

a2 + b2

c2 + b2
.

Prove that a2 + b2 + c2 cannot be a prime number.

Solution: Cross-multiplying and factoring, we have (a − c)(b2 −
ac) = 0. Since a 6= c, we have ac = b2. Now, a2 + b2 + c2 =
a2 +(2ac−b2)+c2 = (a+c)2−b2 = (a+b+c)(a−b+c). Also, |a|, |c|
cannot both be 1. Then a2+b2+c2 > |a|+|b|+|c| ≥ |a+b+c|, |a−b+c|,
whence a2 + b2 + c2 cannot be a prime number.

Problem 7.3 Let ABCD be a convex quadrilateral with ∠BAC =
∠CAD and ∠ABC = ∠ACD. Rays AD and BC meet at E and rays
AB and DC meet at F . Prove that

(a) AB ·DE = BC · CE;

(b) AC2 < 1
2 (AD ·AF + AB ·AE).

Solution:

(a) Because ∠BAC + ∠CBA = ∠ECA, we have ∠ECD = ∠BAC.
Then 4CDE ∼ 4ACE, and CE

DE = AE
CE . But since AC is the
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angle bisector of ∠A in triangle ABE, we also have AE
CE = AB

BC .
Thus CE

DE = AB
BC , whence AB ·DE = BC · CE.

(b) Note that AC is an angle bisector of both triangle ADF and
triangle AEB. Thus it is enough to prove that if XL is an angle
bisector in an arbitrary triangle XY Z, then XL2 < XY · XZ.
Let M be the intersection of −−→XL and the circumcircle of triangle
XY Z. Because 4XY L ∼ 4XMZ, we have XL2 < XL ·XM =
XY ·XZ, as desired.

Problem 7.4 In triangle ABC, D and E lie on sides BC and AB,
respectively, F lies on side AC such that EF ‖ BC, G lies on side
BC such that EG ‖ AD. Let M and N be the midpoints of AD and
BC, respectively. Prove that

(a)
EF

BC
+

EG

AD
= 1;

(b) the midpoint of FG lies on line MN .

Solution:

(a) Since EF ‖ BC, 4AEF ∼ 4ABC and EF
BC = AE

AB . Similarly,
since EG ‖ AD, 4BEG ∼ 4BAD and EG

AD = EB
AB . Hence

EF
BC + EG

AD = 1.

(b) Let lines AN,EF intersect at point P , and let Q be the point
on line BC such that PQ ‖ AD. Since BC ‖ EF and N is the
midpoint of BC, P is the midpoint of EF . Then vector EP

equals both vectors PF and GQ, and PFQG is a parallelogram.
Thus the midpoint X of FG must also be the midpoint of PQ.
But then since M is the midpoint of AD and AD ‖ PQ, points
M,X, N must be collinear.

Problem 8.1 Let p(x) = 2x3 − 3x2 + 2, and let

S = {p(n) | n ∈ N, n ≤ 1999},

T = {n2 + 1 | n ∈ N},

U = {n2 + 2 | n ∈ N}.

Prove that S ∩ T and S ∩ U have the same number of elements.

Solution: Note that |S ∩ T | is the number of squares of the form
2n3 − 3n2 + 1 = (n − 1)2(2n + 1) where n ∈ N, n ≤ 1999. And for
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n ≤ 1999, (n− 1)2(2n + 1) is a square precisely when either n = 1 or
when n ∈ { 1

2 (k2 − 1) | k = 1, 3, 5, . . . , 63}. Thus, |S ∩ T | = 33.
Next, |S ∩ U | is the number of squares of the form 2n3 − 3n2 =

n2(2n − 3) where n ∈ N, n ≤ 1999. And for n ≤ 1999, n2(2n − 3) is
a square precisely when either n = 0 or when n ∈ { 1

2 (k2 + 3) | k =
1, 3, 5, . . . , 63}. Thus |S ∩ U | = 33 as well, and we are done.

Problem 8.2

(a) Let n ≥ 2 be a positive integer and

x1, y1, x2, y2, . . . , xn, yn

be positive real numbers such that

x1 + x2 + · · ·+ xn ≥ x1y1 + x2y2 + · · ·+ xnyn.

Prove that

x1 + x2 + · · ·+ xn ≤
x1

y1
+

x2

y2
+ · · ·+ xn

yn
.

(b) Let a, b, c be positive real numbers such that

ab + bc + ca ≤ 3abc.

Prove that
a3 + b3 + c3 ≥ a + b + c.

Solution:

(a) Applying the Cauchy-Schwarz inequality and then the given
inequality, we have(

n∑
i=1

xi

)2

≤
n∑

i=1

xiyi ·
n∑

i=1

xi

yi
≤

n∑
i=1

xi ·
n∑

i=1

xi

yi
.

Dividing both sides by
∑n

i=1 xi yields the desired inequality.

(b) By the AM-HM inequality on a, b, c we have

a + b + c ≥ 9abc

ab + bc + ca
≥ 9abc

3abc
= 3.

Then, since the given condition is equivalent to 1
a + 1

b + 1
c ≤ 3, we

have a + b + c ≥ 1
a + 1

b + 1
c . Hence setting x1 = a, x2 = b, x3 = c

and y1 = 1
a2 , y2 = 1

b2 , y3 = 1
c2 in the result from part (a) gives

a + b + c ≤ a3 + b3 + c3, as desired.
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Problem 8.3 Let ABCDA′B′C ′D′ be a rectangular box, let E

and F be the feet of perpendiculars from A to lines A′D and A′C

respectively, and let P and Q be the feet of perpendiculars from B′

to lines A′C ′ and A′C respectively. Prove that

(a) planes AEF and B′PQ are parallel;

(b) triangles AEF and B′PQ are similar.

Solution:

(a) Let (P1P2 . . . Pk) denote the plane containing points P1, P2, . . . , Pk.

First observe that quadrilateral A′B′CD is a parallelogram and
thus lies in a single plane.

We are given that AE ⊥ A′D. Also, line AE is contained in
plane (ADD′A), which is perpendicular to line CD. Hence AE ⊥
CD as well, and therefore AE ⊥ (A′B′CD) and AE ⊥ A′C.

And since we know that A′C ⊥ AF, we have A′C ⊥ (AEF ) and
A′C ⊥ EF.

Likewise, B′Q ⊥ A′C. And since lines EF,B′Q, and A′C all lie
in plane (A′B′CD), it follows that EF ‖ B′Q. In a similar way
we deduce that AF ‖ PQ. Hence the planes (AEF ) and (B′PQ)
are parallel, as desired.

(b) Since EF ‖ B′Q and FA ‖ QP, we have ∠EFA = ∠PQB′.

Furthermore, from above AE ⊥ EF and likewise B′P ⊥ PQ,

implying that ∠AEF = ∠B′PQ = 90◦ as well. Therefore
4AEF ∼ 4B′PQ, as desired.

Problem 8.4 Let SABC be a right pyramid with equilateral base
ABC, let O be the center of ABC, and let M be the midpoint of BC.
If AM = 2SO and N is a point on edge SA such that SA = 25SN ,
prove that planes ABP and SBC are perpendicular, where P is the
intersection of lines SO and MN .

Solution: Let AB = BC = CA = s. Then some quick calculations
show that AO =

√
3

3 s, AM =
√

3
2 s, AS = 5√

48
s, and AN = 24

5
√

48
s.

Then AO · AM = AN · AS = 1
2s2, whence MONS is a cyclic

quadrilateral. Thus, ∠MNS = 90◦, and P is the orthocenter of
triangle AMS. Let Q be the intersection of lines AP and MS.
Note that ∠AMB = ∠AQM = ∠QMB = 90◦. From repeated
applications of the Pythagorean theorem, we have AB2 = AM2 +
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MB2 = AQ2 + QM2 + MB2 = AQ2 + QB2, whence ∠AQB = 90◦.
Now AQ ⊥ QB and AQ ⊥ QM , so line AQ must be perpendicular to
plane SBC. Then since plane ABP contains line AQ, planes ABP

and SBC must be perpendicular.

Problem 9.1 Let ABC be a triangle with angle bisector AD. One
considers the points M,N on rays AB and AC respectively, such that
∠MDA = ∠ABC and ∠NDA = ∠BCA. Lines AD and MN meet
at P . Prove that

AD3 = AB ·AC ·AP.

Solution: Since 4ADB ∼ 4AMD, AD
AB = AM

AD . Also, ∠MAN +
∠NDM = π, whence AMDN is cyclic. Since ∠DCA = ∠ADN =
∠AMN , 4ADC ∼ 4APM , and AD

AP = AC
AM . Therefore,

AD

AB

AD

AC

AD

AP
=

AM

AD

AD

AC

AC

AM
= 1.

Problem 9.2 For a, b > 0, denote by t(a, b) the positive root of the
equation

(a + b)x2 − 2(ab− 1)x− (a + b) = 0.

Let M = {(a, b) | a 6= b, t(a, b) ≤
√

ab}. Determine, for (a, b) ∈ M ,
the minimum value of t(a, b).

Solution: Consider the polynomial P (x) = (a+ b)x2−2(ab−1)x−
(a + b) = 0. Since a + b 6= 0, the product of its roots is −a+b

a+b = −1.
Hence P must have a unique positive root t(a, b) and a unique negative
root. Since the leading coefficient of P (x) is positive, the graph of
P (x) is positive for x > t(a, b) and negative for 0 ≤ x < t(a, b) (since
in the latter case, x is between the two roots). Thus, the condition
t(a, b) ≤

√
ab is equivalent to P (

√
ab) ≥ 0, or

(ab− 1)(a + b− 2
√

ab) ≥ 0.

But a + b > 2
√

ab by AM-GM, where the inequality is sharp since
a 6= b. Thus t(a, b) ≤

√
ab exactly when ab ≥ 1.

Now using the quadratic formula, we find that

t(a, b) =
ab− 1
a + b

+

√(
ab− 1
a + b

)2

+ 1.

Thus given ab ≥ 1, we have t(a, b) ≥ 1 with equality when ab = 1.
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Problem 9.3 In the convex quadrilateral ABCD the bisectors of
angles A and C meet at I. Prove that there exists a circle inscribed
in ABCD if and only if

[AIB] + [CID] = [AID] + [BIC].

Solution: It is well known that a circle can be inscribed in a
convex quadrilateral ABCD if and only if AB + CD = AD + BC.
The bisector of angle A consists of those points lying inside ∠BAD

equidistant from lines AB and AD; similarly, the bisector of angle
C consists of those points lying inside ∠BCD equidistant from lines
BC and BD.

Suppose ABCD has an incircle. Then its center is equidistant from
all four sides of the quadrilateral, so it lies on both bisectors and hence
equals I. If we let r denote the radius of the incircle, then we have

[AIB] + [CID] = r(AB + CD) = r(AD + BC) = [AID] + [BIC].

Conversely, suppose that [AIB] + [CID] = [AID] + [BIC]. Let
d(I, `) denote the distance from I to any line `, and write x =
d(I,AB) = d(I,AD) and y = d(I, BC) = d(I, CD). Then

[AIB] + [CID] = [AID] + [BIC]

AB · x + CD · y = AD · x + BC · y

x (AB −AD) = y (BC − CD).

If AB = AD, then BC = CD and it follows that AB + CD =
AD + BC. Otherwise, suppose that AB > AD; then BC > CD

as well. Consider the points A′ ∈ AB and C ′ ∈ BC such that
AD = AA′ and CD = CC ′. By SAS, we have 4AIA′ ∼= 4AID and
4DCI ∼= 4C ′IC. Hence IA′ = ID = IC ′. Furthermore, subtracting
[AIA′] + [DCI] = [AID] + [C ′IC] from both sides of our given
condition, we have [A′IB] = [C ′IB] or IA′ · IB · sin∠A′IB = IC ′ ·
IB · sin∠CIB. Thus ∠A′IB = ∠C ′IB, and hence 4A′IB ∼= C ′IB

by SAS.
Thus ∠IBA′ = ∠IBC ′, implying that I lies on the angle bisector

of ∠ABC. Therefore x = d(I,AB) = d(I,BC) = y, and the circle
centered at I with radius x = y is tangent to all four sides of the
quadrilateral.

Problem 9.4
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(a) Let a, b ∈ R, a < b. Prove that a < x < b if and only if there
exists 0 < λ < 1 such that x = λa + (1− λ)b.

(b) The function f : R → R has the property:

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y)

for all x, y ∈ R, x 6= y, and all 0 < λ < 1. Prove that one cannot
find four points on the function’s graph that are the vertices of a
parallelogram.

Solution:

(a) No matter what x is, there is a unique value λ = b−x
b−a such that

x = λa + (1 − λ)b; and 0 < b−x
b−a < 1 ⇐⇒ a < x < b, which

proves the claim.

(b) The condition is Jensen’s inequality and shows that the function
f is strictly convex. Stated geometrically, whenever x < t < y

the point (t, f(t)) lies strictly below the line joining (x, f(x)) and
(y, f(y)). Suppose there were a parallelogram on the graph of
f whose vertices, from left to right, have x-coordinates a, b, d, c.
Then either (b, f(d)) or (d, f(d)) must lie on or above the line
joining (a, f(a)) and (c, f(c)), a contradiction.

Problem 10.1 Find all real numbers x and y satisfying

1
4x

+
1

27y
=

5
6

log27 y − log4 x ≥ 1
6

27y − 4x ≤ 1.

Solution: First, for the second equation to make sense we must
have x, y > 0 and thus 27y > 1. Now from the third equation we
have

1
27y

≥ 1
4x + 1

,

which combined with the first equation gives

1
4x

+
1

4x + 1
≤ 5

6
,
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whence x ≥ 1
2 . Similarly, the first and third equations also give

5
6
≤ 1

27y − 1
+

1
27y

,

whence y ≤ 1
3 . If either x > 1

2 or y < 1
3 , we would have log27 y −

log4 x < 1
6 , contradicting the second given equation. Thus, the only

solution is (x, y) =
(

1
2 , 1

3

)
, which indeed satisfies all three equations.

Problem 10.2 A plane intersects edges AB, BC, CD, DA of the
regular tetrahedron ABCD at points M,N,P, Q, respectively. Prove
that

MN ·NP · PQ ·QM ≥ AM ·BN · CP ·DQ.

Solution: By the law of cosines in triangle MBN , we have

MN2 = MB2 + BN2 −MB ·BN ≥ MB ·BN.

Similarly, NP 2 ≥ CN ·CP, PN2 ≥ DP ·DQ, and MQ2 ≥ AQ ·AM.

Multiplying these inequalities yields

(MN ·NP · PQ ·MQ)2 ≥

(BM · CN ·DP ·AQ) · (AM ·BN · CP ·DQ) .

Now the given plane is different from plane (ABC) and (ADC).
Thus if it intersects line AC at some point T, then points M,N, T

must be collinear—because otherwise, the only plane containing
M,N, T would be plane (ABC). Therefore it intersects line AC at
most one point T, and by Menelaus’ Theorem applied to triangle
ABC and line MNT we have

AM ·BN · CT

MB ·NC · TA
= 1.

Similarly, P,Q, T are collinear and

AQ ·DP · CT

QD · PC · TA
= 1.

Equating these two fractions and cross-multiplying, we find that

AM ·BN · CP ·DQ = BM · CN ·DP ·AQ.

This is true even if the plane does not actually intersect line AC: in
this case, we must have MN ‖ AC and PQ ‖ AC, in which case
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ratios of similar triangles show that AM · BN = BM · CN and
CP ·DQ = DP ·AQ.

Combining this last equality with the inequality from the first
paragraph, we find that

(MN ·NP · PQ ·QM)2 ≥ (AM ·BN · CP ·DQ)2,

which implies the desired result.

Problem 10.3 Let a, b, c (a 6= 0) be complex numbers. Let z1 and
z2 be the roots of the equation az2 + bz + c = 0, and let w1 and w2

be the roots of the equation

(a + c)z2 + (b + b)z + (a + c) = 0.

Prove that if |z1|, |z2| < 1, then |w1| = |w2| = 1.

Solution: We begin by proving that Re (b)2 ≤ |a+ c|2. If z1 = z2 =
0, then b = 0 and the claim is obvious. Otherwise, write a = m + ni

and c = r + si; and write z1 = x + yi where t = |z1| =
√

x2 + y2 < 1.

Also note that

r2 + s2 = |c|2 = |az1z2|2 < |a|2|z1|2 = (m2 + n2)t2. (1)

Assume WLOG that z1 6= 0. Then |Re (b)| = |Re (−b)| =
|Re (az1 + c/z1)| = |Re (az1) + Re (c/z1)|; that is,

|Re (b)| = |(mx− ny) + (rx + sy)/t2|

= |x(m + r/t2) + y(s/t2 − n)|

≤
√

x2 + y2
√

(m + r/t2)2 + (s/t2 − n)2

= t
√

(m + r/t2)2 + (s/t2 − n)2,

where the inequality follows from Cauchy-Schwarz. Proving our claim
then reduces to showing that

t2
(
(m + r/t2)2 + (s/t2 − n)2

)
≤ (m + r)2 + (n− s)2

⇐⇒ (mt2 + r)2 + (st2 − n)2 ≤ t2
(
(m + r)2 + (n− s)2

)
⇐⇒ (r2 + s2)(1− t2) < (m2 + n2)(t4 − t2)

⇐⇒ (1− t2)
(
(m2 + n2)t2 − (r2 + s2)

)
.
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But 1− t2 > 0 by assumption, and (m2 + n2)t2 − (r2 + s2) > 0 from
(1); therefore our claim is true.

Now since |c/a| = |z1z2| < 1, we have |c| < |a| and a + c 6= 0. Then
by the quadratic equation, the roots to (a+c)z2+(b+b)z+(a+c) = 0
are given by

−(b + b)±
√

(b + b)2 − 4(a + c)(a + c)

2(a + c)
,

or (dividing the numerator and denominator by 2)

−Re (b)±
√

Re (b)2 − |a + c|2
a + c

=
−Re (b)± i

√
|a + c|2 − Re (b)2

a + c
.

When evaluating either root, the absolute value of the numerator is√
Re (b)2 + (|a + c|2 − Re (b)2) = |a + c|; and the absolute value of

the denominator is clearly |a + c| as well. Therefore indeed |w1| =
|w2| = 1, as desired.

Problem 10.4

(a) Let x1, y1, x2, y2, . . . , xn, yn be positive real numbers such that

(i) x1y1 < x2y2 < · · · < xnyn;

(ii) x1 + x2 + · · ·+ xk ≥ y1 + y2 + · · ·+ yk for all k = 1, 2, . . . , n.

Prove that
1
x1

+
1
x2

+ · · ·+ 1
xn

≤ 1
y1

+
1
y2

+ · · ·+ 1
yn

.

(b) Let A = {a1, a2, . . . , an} ⊂ N be a set such that for all distinct
subsets B,C ⊆ A,

∑
x∈B

x 6=
∑
x∈C

x. Prove that

1
a1

+
1
a2

+ · · ·+ 1
an

< 2.

Solution:

(a) Let πi = 1
xiyi

, δi = xi − yi for all 1 ≤ i ≤ n. We are given that
π1 > π2 > · · · > πn > 0 and that

∑k
i=1 δi ≥ 0 for all 1 ≤ k ≤ n.

Note that
n∑

k=1

(
1
yk

− 1
xk

)
=

n∑
k=1

πkδk
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= πn

n∑
i=1

δi +
n−1∑
k=1

(πk − πk+1) (δ1 + δ2 + · · ·+ δk) ≥ 0,

as desired.

(b) Assume without loss of generality that a1 < a2 < · · · < an, and
let yi = 2i−1 for all i. Clearly,

a1y1 < a2y2 < · · · < anyn.

For any k, the 2k − 1 sums made by choosing at least one of the
numbers a1, a2, . . . , ak are all distinct. Hence the largest of them,∑k

i=1 ai, must be at least 2k − 1. Thus for all k = 1, 2, . . . , n we
have

a1 + a2 + · · ·+ ak ≥ 2k − 1 = y1 + y2 + · · ·+ yk.

Then by part (a), we must have

1
a1

+
1
a2

+ · · ·+ 1
an

<
1
y1

+
1
y2

+ · · ·+ 1
yn

= 2− 1
2n−1

< 2,

as desired.

IMO Selection Tests

Problem 1

(a) Show that out of any 39 consecutive positive integers, it is possible
to choose one number with the sum of its digits divisible by 11.

(b) Find the first 38 consecutive positive integers, none with the sum
of its digits divisible by 11.

Solution: Call an integer “deadly” if its sum of digits is divisible
by 11, and let d(n) equal the sum of the digits of a positive integer n.

If n ends in a 0, then the numbers n, n + 1, . . . , n + 9 differ only
in their units digits, which range from 0 to 9; hence d(n), d(n +
1), . . . , d(n + 9) is an arithmetic progression with common difference
1. Thus if d(n) 6≡ 1 (mod 11), then one of these numbers is deadly.

Next suppose that if n ends in k ≥ 0 nines. Then d(n + 1) =
d(n) + 1− 9k: the last k digits of n + 1 are 0’s instead of 9’s, and the
next digit to the left is 1 greater than the corresponding digit in n.

Finally, suppose that n ends in a 0 and that d(n) ≡ d(n + 10) ≡
1 (mod 11). Since d(n) ≡ 1 (mod 11), we must have d(n + 9) ≡
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10 (mod 11). If n+9 ends in k 9’s, then we have 2 ≡ d(n+10)−d(n+
9) ≡ 1− 9k =⇒ k ≡ 6 (mod 11).

(a) Suppose we had 39 consecutive integers, none of them deadly.
One of the first ten must end in a 0: call it n. Since none of
n, n + 1, . . . , n + 9 are deadly, we must have d(n) ≡ 1 (mod 11).
Similarly, d(n + 10) ≡ 1 (mod 11) and d(n + 20) ≡ 1 (mod 11).
From our third observation above, this implies that both n + 9
and n + 19 must end in at least six 9’s. But this is impossible,
because n+10 and n+20 can’t both be multiples of one million!

(b) Suppose we have 38 consecutive numbers N,N + 1, . . . , N + 37,

none of which is deadly. By an analysis similar to that in part
(a), none of the first nine can end in a 0; hence, N + 9 must
end in a 0, as must N + 19 and N + 29. Then we must have
d(N + 9) ≡ d(N + 19) ≡ 1 (mod 11). Therefore d(N + 18) ≡
10 (mod 11); and furthermore, if N+18 ends in k 9’s we must have
k ≡ 6 (mod 11). The smallest possible such number is 999999,
yielding the 38 consecutive numbers 999981, 999982, . . . , 1000018.

And indeed, none of these numbers is deadly: their sums of digits
are congruent to 1, 2, . . . , 10, 1, 2, . . . , 10, 1, 2, . . . , 10, 2, 3, . . . , 9,

and 10 (mod 11), respectively.

Problem 2 Let ABC be an acute triangle with angle bisectors BL

and CM . Prove that ∠A = 60◦ if and only if there exists a point K

on BC (K 6= B,C) such that triangle KLM is equilateral.

Solution: Let I be the intersection of lines BL and CM . Then
∠BIC = 180◦ − ∠ICB − ∠CBI = 180◦ − 1

2 (∠C + ∠B) = 180◦ −
1
2 (180◦ − ∠A) = 90◦ + ∠A, and thus ∠BIC = 120◦ if and only if
∠A = 60◦.

For the “only if” direction, suppose that ∠A = 60◦. Then let K

be the intersection of BC and the internal angle bisector of ∠BIC;
we claim that triangle KLM is equilateral. Since ∠BIC = 120◦,
we know that ∠MIB = ∠KIB = 60◦. And since ∠IBM = ∠IBK

and IB = IB, by ASA congruency we have 4IBM ∼= 4IBK; in
particular, IM = IK. Similarly, IL = IK; and since ∠KIL =
∠LIM = ∠MIK = 120◦, we know that triangle KLM is equilateral.

For the “if” direction, suppose that K is on BC and triangle
KLM is equilateral. Consider triangles BLK and BLM : BL = BL,
LM = LK, and ∠MBL = ∠KBL. There is no SSA congruency, but
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we do then know that either ∠LKB + ∠BML = 180◦ or ∠LKB =
∠BML. But since ∠KBM < 90◦ and ∠MLK = 60◦, we know
that ∠LKB + ∠BML > 210◦. Thus ∠LKB = ∠BML, whence
4BLK ∼= 4BLM , and BK = BM . It follows that IK = IM .
Similarly, IL = IK, and I is the circumcenter of triangle KLM .
Thus ∠LIM = 2∠LKM = 120◦, giving ∠BIC = ∠LIM = 120◦ and
∠A = 60◦.

Problem 3 Show that for any positive integer n, the number

Sn =
(

2n + 1
0

)
· 22n +

(
2n + 1

2

)
· 22n−2 · 3 + · · ·+

(
2n + 1

2n

)
· 3n

is the sum of two consecutive perfect squares.

Solution: Let α = 1+
√

3, β = 1−
√

3, and Tn = 1
2

(
α2n+1 + β2n+1

)
.

Note that αβ = −2, α2

2 = 2 +
√

3, and β2

2 = 2−
√

3. Also, applying
the binomial expansion to (1 +

√
3)n and (1 −

√
3)n, we find that

Tn =
∑n

k=0

(
2n+1
2k

)
3k—which is an integer for all n.

Applying the binomial expansion to (2+
√

3)2n+1 and (2−
√

3)2n+1

instead, we find that

Sn =

(
α2

2

)2n+1

+
(

β2

2

)2n+1

4

=
α4n+2 + β4n+2

22n+3

=
α4n+2 + 2(αβ)2n+1 + β4n+2

22n+3
+

1
2

=

(
α2n+1 + β2n+1

)2
22n+3

+
1
2

=
T 2

n

22n+1
+

1
2
.

Thus 22n+1Sn = T 2
n + 22n. Then 22n | T 2

n but 22n+1 6 | T 2
n , and hence

Tn ≡ 2n (mod 2n+1). Therefore

Sn =
T 2

n

22n+1
+

1
2

=
(

Tn − 2n

2n+1

)2

+
(

Tn + 2n

2n+1

)2

is indeed the sum of two consecutive perfect squares.
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Problem 4 Show that for all positive real numbers x1, x2, · · · , xn

such that
x1x2 · · ·xn = 1,

the following inequality holds:

1
n− 1 + x1

+
1

n− 1 + x2
+ · · ·+ 1

n− 1 + xn
≤ 1.

First Solution: Let a1 = n
√

x1, a2 = n
√

x2, . . . , an = n
√

xn. Then
a1a2 · · · an = 1 and

1
n− 1 + xk

=
1

n− 1 + an
k

=
1

n− 1 + an−1
k

a1···ak−1ak+1···an

≤ 1

n− 1 + (n−1)an−1
k

an−1
1 +···+an−1

k−1+an−1
k+1 +···+an−1

n

by the AM-GM Inequality. It follows that

1
n− 1 + xk

≤
an−1
1 + · · ·+ an−1

k−1 + an−1
k+1 + · · ·+ an−1

n

(n− 1)(an−1
1 + an−1

2 + · · ·+ an−1
n )

.

Summing up yields
∑n

k=1
1

n−1+xk
≤ 1, as desired.

Second Solution: Let f(x) = 1
n−1−x ; we wish to prove that∑n

i=1 f(xi) ≤ 1. Note that

f(y) + f(z) =
2(n− 1) + y + z

(n− 1)2 + yz + (y + z)(n− 1)
.

Suppose that any of our xi does not equal 1; then we have xj <

1 < xk for some j, k. If f(xj)+ f(xk) ≤ 1
n−1 , then all the other f(xi)

are less than 1
n−1 . But then

∑n
i=1 f(xi) < 1 and we are done.

Otherwise, f(xj) + f(xk) > 1
n−1 . Now set x′j = 1 and x′k = xjxk;

then x′jx
′
k = xjxk, while xj < 1 < xk ⇒ (1− xj)(xk − 1) > 0 ⇒ xj +

xk > x′j +x′k. Let a = 2(n−1), b = (n−1)2 +xjxk = (n−1)2 +x′jx
′
k,

and c = 1
n−1 ; also let m = xj + xk and m′ = x′j + x′k. Then we have

f(xj) + f(xk) =
a + cm

b + m
and f(x′j) + f(x′k) =

a + cm′

b + m′
.

Now a+cm
b+m > c ⇒ a + cm > (b + m)c ⇒ a

b > c; and from here,

(a− bc)(m−m′) > 0 ⇒ a + cm′

b + m′
>

a + cm

b + m
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⇒ f(x′j) + f(x′k) = f(xj) + f(xk).

Hence as long as no pair f(xj)+f(xk) ≤ 1
n−1 and the xi do not all

equal 1, we can continually replace pairs xj and xk (neither equal to
1) by 1 and xjxk. This keeps the product x1x2 · · ·xn equal to 1 while
increasing

∑n
i=1 f(xi). Then eventually our new

∑n
i=1 f(xi) ≤ 1,

which implies that our original
∑n

i=1 f(xi) was also at most 1. This
completes the proof.

Third Solution: Suppose, for the sake of contradiction, that
1

n− 1 + x1
+

1
n− 1 + x2

+· · ·+ 1
n− 1 + xn

> 1. Letting yi = xi/(n−1)

for i = 1, 2, . . . , n, we have

1
1 + y1

+
1

1 + y2
+ · · ·+ 1

1 + yn
> n− 1

and hence
1

1 + y1
>

(
1− 1

1 + y2

)
+
(

1− 1
1 + y3

)
+ · · ·+

(
1− 1

1 + yn

)
=

y2

1 + y2
+

y3

1 + y3
+ · · ·+ yn

1 + yn

> (n− 1) n−1

√
y2y3 · · · yn

(1 + y2)(1 + y3) · · · (1 + yn)
.

We have analagous inequalities with 1
1+y2

, 1
1+yn

, . . . , 1
1+yn

on the left
hand side; multiplying these n inequalities together gives

n∏
k=1

1
1 + yk

> (n− 1)n y1y2 · · · yn

(1 + y1)(1 + y2) · · · (1 + yn)

1 > ((n− 1)y1)((n− 1)y2) · · · ((n− 1)yn) = x1x2 · · ·xn,

a contradiction.

Problem 5 Let x1, x2, . . . , xn be distinct positive integers. Prove
that

x2
1 + x2

2 + · · ·+ x2
n ≥

(2n + 1)(x1 + x2 + · · ·+ xn)
3

.

Solution: Assume without loss of generality that x1 < x2 < · · · <

xn. We will prove that 3x2
k ≥ 2(x1 + x2 + · · · + xk−1) + (2k + 1)xk;

then, summing this inequality over k = 1, 2, . . . , n, we will have the
desired inequality.
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First, x1 + x2 + · · ·+ xk−1 ≤ (xk − (k− 1)) + (xk − (k− 2)) + · · ·+
(xk − 1) = (k − 1)xk − k(k−1)

2 . Thus,

2(x1 + x2 + · · ·+ xk−1) + (2k + 1)xk ≤ (4k − 1)xk − k(k − 1).

Now

3x2
k − [(4k − 1)xk − k(k − 1)] = xk(3xk − 4k + 1) + k(k − 1),

which is minimized at xk = 2
3k. Then since xk ≥ k,

xk(3xk − 4k + 1) + k(k − 1) ≥ k(3k − 4k + 1) + k(k − 1) = 0

so

3x2
k ≥ (4k − 1)xk − k(k − 1) ≥ 2(x1 + x2 + · · ·+ xk−1) + (2k + 1)xk,

and we have finished.

Problem 6 Prove that for any integer n, n ≥ 3, there exist
n positive integers a1, a2, . . . , an in arithmetic progression, and n

positive integers b1, b2, . . . , bn in geometric progression, such that

b1 < a1 < b2 < a2 < · · · < bn < an.

Give one example of such progressions a1, a2, . . . , an and b1, b2, . . . , bn

each having at least 5 terms.

Solution: Our strategy is to find progressions where bn = an−1 + 1
and bn−1 = an−2 + 1. Write d = an−1 − an−2. Then for all
2 ≤ i, j ≤ n − 1 we have bi+1 − bi ≤ bn − bn−1 = d, so that
bj = bn +

∑n−1
i=j (bi − bi+1) > an−1 + (n− j)d = aj−1.

And if we ensure that b1 < a1, then bj = b1 +
∑j−1

i=1 (bi+1 − bi) ≤
a1 + (j − 1)d = aj for all j, so the chain of inequalities is satisfied.

Let b1, b2, . . . , bn equal kn−1, kn−2(k + 1), . . . , k0(k + 1)n−1, where
k is a value to be determined later. Also set an−1 = bn − 1 and
an−2 = bn−1 − 1, and define the other ai accordingly. Then d =
an−an−1 = bn−bn−1 = (k+1)n−2, and a1 = (k+1)n−2(k+3−n)−1.

Thus, we need only pick k such that

(k + 1)n−2(k + 3− n)− 1− kn−1 > 0.

Viewing the left hand side as a polynomial in k, the coefficient of
kn−1 is zero but the coefficient of kn−2 is 1. Therefore, it is positive
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for sufficiently large k and we can indeed find satisfactory sequences
a1, a2, . . . , an and b1, b2, . . . , bn.

For n = 5, we seek k such that

(k + 1)3(k − 2)− 1− k4 > 0.

Computation shows that k = 5 works, yielding

625 < 647 < 750 < 863 < 900 < 1079 < 1080 < 1295 < 1296 < 1511.

Problem 7 Let a be a positive real number and {xn} (n ≥ 1) be a
sequence of real numbers such that x1 = a and

xn+1 ≥ (n + 2)xn −
n−1∑
k=1

kxk,

for all n ≥ 1. Show that there exists a positive integer n such that
xn > 1999!.

Solution: We will prove by induction on n ≥ 1 that

xn+1 >

n∑
k=1

kxk > a · n!.

For n = 1, we have x2 ≥ 3x1 > x1 = a.

Now suppose that the claim holds for all values up through n. Then

xn+2 ≥ (n + 3)xn+1 −
n∑

k=1

kxk

= (n + 1)xn+1 + 2xn+1 −
n∑

k=1

kxk

> (n + 1)xn+1 + 2
n∑

k=1

kxk −
n∑

k=1

kxk =
n+1∑
k=1

kxk,

as desired. Furthermore, x1 > 0 by definition and x2, x3, . . . , xn are
also positive by the induction hypothesis; thus xn+2 > (n+1)xn+1 >

(n + 1) (a · n!) = a · (n + 1)!. This completes the inductive step.
Therefore for sufficiently large n, we have xn+1 > n! · a > 1999!.

Problem 8 Let O, A,B,C be variable points in the plane such that
OA = 4, OB = 2

√
3 and OC =

√
22. Find the maximum possible

area of triangle ABC.
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Solution: We first look for a tetrahedron MNPQ with the following
properties: (i) if H is the foot of the perpendicular from M to plane
(NPQ), then HN = 4, HP = 2

√
3, and HQ =

√
22; and (ii) lines

MN,MP, MQ are pairwise perpendicular.
If such a tetrahedron exists, then let O = H and draw triangle ABC

in plane (NPQ). We have MA =
√

MO2 + OA2 =
√

MH2 + HN2 =
MN, and similarly MB = MP and MC = MQ. Hence

[ABCM ] ≤ 1
3
[ABM ] ·MC ≤ 1

3
·
(

1
2
MA ·MB

)
·MC

=
1
3
·
(

1
2
MN ·MP

)
·MQ = [MNPQ],

and therefore the maximum possible area of triangle [ABC] is [NPQ].
It remains to find tetrahedron MNPQ. Let x = MH; then

MN =
√

x2 + 16, MP =
√

x2 + 12, and MQ =
√

x2 + 22. By the
Pythagorean Theorem on triangle MHN, we have NH = 4. Next
let lines NH and PQ intersect at R; then in similar right triangles
MHN and MRN, we have MR = MH · MN

NH = 1
4 (x2 + 16).

Since MN ⊥ (MPQ) we have MN ⊥ PQ; and since MH ⊥
(NPQ) we have MH ⊥ PQ as well. Hence PQ ⊥ (MNHR),
so that MR is an altitude in the right triangle MPQ. Therefore
MR · PQ = 2[MPQ] = MP ·MQ, or (after squaring both sides)√

(x2 + 16)2

16
− (x2 + 16)

√
x2 + 12 + x2 + 22 =

√
x2 + 12

√
x2 + 22.

Setting 4y = x2 + 16 and squaring both sides, we obtain

(y2 − 4y)(8y + 2) = (4y − 4)(4y + 6)(y − 6)(4y2 + y − 2) = 0.

Since y = 1
4 (x2 + 16) > 4, the only solution is y = 6 =⇒ x =

√
8.

Then by taking MN =
√

24,MP =
√

20, MQ =
√

30, we get the
required tetrahedron.

Then [MNPQ] equals both 1
3MH · [MPQ] and 1

6MN ·MP ·MQ.

Setting these two expressions equal, we find that the maximum area
of [ABC] is

[NPQ] =
MN ·MP ·MQ

2 ·MH
= 15

√
2.

Problem 9 Let a, n be integers and let p be a prime such that
p > |a|+ 1. Prove that the polynomial f(x) = xn + ax + p cannot be
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represented as a product of two nonconstant polynomials with integer
coefficients.

Solution: Let z be a complex root of the polynomial. We shall
prove that |z| > 1. Suppose |z| ≤ 1. Then, zn + az = −p, we deduce
that

p = |zn + az| = |z||zn−1 + a| ≤ |zn−1|+ |a| ≤ 1 + |a|,

which contradicts the hypothesis.
Now, suppose f = gh is a decomposition of f into nonconstant

polynomials with integer coefficients. Then p = f(0) = g(0)h(0), and
either |g(0)| = 1 or |h(0)| = 1. Assume without loss of generality that
|g(0)| = 1. If z1, z2, . . . , zk are the roots of g then they are also roots
of f. Therefore

1 = |g(0)| = |z1z2 · · · zk| = |z1||z2| · · · |zk| > 1,

a contradiction.

Problem 10 Two circles meet at A and B. Line ` passes through
A and meets the circles again at C and D respectively. Let M and N

be the midpoints of arcs B̂C and B̂D, which do not contain A, and
let K be the midpoint of CD. Prove that ∠MKN = 90◦.

Solution: All angles are directed modulo 180◦. Let M ′ be the
reflection of M across K. Then triangles MKC and M ′KD are
congruent in that order, and M ′D = MC. Because M is the midpoint
of B̂C, we have M ′D = MC = MB; and similarly, because N

is the midpoint of B̂D we have BN = DN . Next, ∠MBN =
(180◦−∠ABM)+(180◦−∠NBA) = ∠MCA+∠ADN = ∠M ′DA+
∠ADN = ∠M ′DN . Hence 4M ′DN ∼= 4MBN , and MN = M ′N .
Therefore NK is the median to the base of isosceles triangle MNM ′,
so it is also an altitude and NK ⊥ MK.

Problem 11 Let n ≥ 3 and A1, A2, . . . , An be points on a circle.
Find the greatest number of acute triangles having vertices in these
points.

Solution: Without loss of generality assume the points A1, A2, . . . , An

are ordered in that order counterclockwise; also, take indices modulo
n os that An+1 = A1, An+2 = A2, and so on. Denote by AiAj
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the arc of the circle starting from Ai and ending in Aj in the
counterclockwise direction; let m(AiAj) denote the angle measure of
the arc; and call an arc AiAj obtuse if m(AiAj) ≥ 180◦. Obviously,
m(AiAj) + m(AjAi) = 360◦, and thus at least one of the arcs AiAj

and AjAi is obtuse. Let xs be the number of obtuse arcs each having
exactly s− 1 points along their interiors. If s 6= n

2 , then for each i at
least one of the arcs AiAi+s or Ai+sAi is obtuse; summing over all i,

we deduce that
xs + xn−s ≥ n (1)

for every s 6= n
2 ; and similar reasoning shows that this inequality also

holds even when s = n
2 . For all s, equality holds if and only if there

are no diametrically opposite points Ai, Ai+s.
The number of non-acute triangles AiAjAk equals the number of

non-acute angles ∠AiAjAk. And for each obtuse arc AiAk containing
s−1 points in its interior, there are n−s−1 non-acute angles AiAjAk:
namely, with those Aj in the interior of arc AkAi. It follows that the
number N of non-acute triangles is

N = x1(n− 2) + x2(n− 3) + . . . + xn−3 · 2 + xn−2 · 1 + xn−1 · 0.

By regrouping terms and using (1) we obtain

N ≥

n−1
2∑

s=1

(s− 1) · (xn−s + xs)

≥ n

(
1 + 2 + · · ·+ n− 3

2

)
=

n(n− 1)(n− 3)
8

if n is odd, and

N ≥

n−2
2∑

s=1

(s− 1) · (xn−s + xs) +
n− 2

2
xn/2

≥ n

(
1 + 2 + · · ·+ n− 4

2

)
+

n− 2
2

· n

2
=

n(n− 2)2

8

if n is even.
Equality is obtained when there are no diametrically opposite

points, and when xk = 0 for k < n
2 . When n is odd, for instance, this

happens when the points form a regular n-gon; and when n is even,
equality occurs when m(A1A2) = m(A2A3) = · · · = m(An−1An) =
360◦

n + ε where 0 < ε < 360◦

n2 .
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Finally, note that the total number of triangles having vertices in
the n points is

(
n
3

)
= n(n−1)(n−2)

6 . Subtracting the minimum values
of N found above, we find that the maximum number of acute angles
is (n−1)n(n+1)

24 if n is odd, and (n−2)n(n+2)
24 if n is even.

Problem 12 The scientists at an international conference are either
native or foreign. Each native scientist sends exactly one message to a
foreign scientist and each foreign scientist sends exactly one message
to a native scientist, although at least one native scientist does not
receive a message. Prove that there exists a set S of native scientists
and a set T of foreign scientists such that the following conditions
hold: (i) the scientists in S sent messages to exactly those foreign
scientists who were not in T (that is, every foreign scientist not in T

received at least one message from somebody in S, but none of the
scientists in T received any messages from scientists in S); and (ii)
the scientists in T sent messages to exactly those native scientists not
in S.

Solution: Let A be the set of native scientists and B be the set
of foreign scientists. Let f : A → B and g : B → A be the functions
defined as follows: f(a) is the foreign scientist receiving a message
from a, and g(b) is the native scientist receiving a message from b. If
such subsets S, T exist we must have T = B−f(S); hence we have to
prove that there exists a subset S ⊆ A such that A−S = g(B−f(S)).

For each subset X ⊆ A, let h(X) = A−g(B−f(X)). If X ⊆ Y , then
f(X) ⊆ f(Y ) =⇒ B − f(Y ) ⊆ B − f(X) =⇒ g(B − f(Y )) ⊆ g(B −
f(X)) =⇒ A− g(B − f(X)) ⊆ A− g(B − f(Y )) =⇒ h(X) ⊆ h(Y ).

Let M = {X ⊆ A | h(X) ⊆ X}. The set M is nonempty, since
A ∈ M . Furthermore, it is given that g is not surjective, so that
some native scientist a0 is never in g(B − f(X)) and thus always in
h(X) for all X ⊆ A. Thus every subset in M contains a0, so that
S =

⋂
X∈M X is nonempty.

From the definition of S we have h(S) ⊆ S. And from the monotony
of h it follows that h(h(S)) ⊆ h(S); thus, h(S) ∈ M and S ⊂ h(S).
Combining these results, we have S = h(S), as desired.

Problem 13 A polyhedron P is given in space. Determine whether
there must exist three edges of P that can be the sides of a triangle.
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Solution: The answer is “yes.” Assume, for the purpose of
contradiction, that there exists a polyhedron P in which no three
edges can form the sides of a triangle. Let the edges of P be
E1, E2, E3, . . . , En, in non-increasing order of length; let ei be the
length of Ei. Consider the two faces that share E1: for each of those
faces, the sum of the lengths of all its edges except E1 is greater than
e1. Therefore,

e2 + e3 + · · ·+ en > 2e1.

But, since we are assuming that no three edges of P can form the
sides of a triangle, we have ei+1 + ei+2 ≤ ei for i = 1, 2, . . . , n − 2.
Hence,

2(e2 + e3 + · · ·+ en)

= e2 + (e2 + e3) + (e3 + e4) + · · ·+ (en−1 + en) + en

≤ e2 + (e1) + (e2) + · · ·+ (en−2) + en,

so

e2 + e3 + · · ·+ en ≤ e1 + e2 − en−1 < e1 + e1 + 0 = 2e1,

a contradiction. Thus, our assumption was incorrect and some three
edges can be the sides of a triangle.
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1.17 Russia

Fourth round

Problem 8.1 A father wishes to take his two sons to visit their
grandmother, who lives 33 kilometers away. He owns a motorcycle
whose maximum speed is 25 km/h. With one passenger, its maximum
speed drops to 20 km/h. (He cannot carry two passengers.) Each
brother walks at a speed of 5 km/h. Show that all three of them can
reach the grandmother’s house in 3 hours.

Solution: Have the father drive his first son 24 kilometers, which
takes 6

5 hours; then drive back to meet his second son 9 kilometers
from home, which takes 3

5 hours; and finally drive his second son 6
5

more hours.
Each son spends 6

5 hours riding 24 kilometers, and 9
5 hours walking

9 kilometers. Thus they reach their grandmother’s house in exactly
3 hours — as does the father, who arrives at the same time as his
second son.

Problem 8.2 The natural number A has the following property:
the sum of the integers from 1 to A, inclusive, has decimal expansion
equal to that of A followed by three digits. Find A.

Solution: We know that

k = (1 + 2 + · · ·+ A)− 1000A

=
A(A + 1)

2
− 1000A = A

(
A + 1

2
− 1000

)
is between 0 and 999, inclusive. If A < 1999 then k is negative. If
A ≥ 2000 then A+1

2 − 1000 ≥ 1
2 and k ≥ 1000. Therefore A = 1999,

and indeed 1 + 2 + · · ·+ 1999 = 1999000.

Problem 8.3 On sides BC, CA, AB of triangle ABC lie points A1,
B1, C1 such that the medians A1A2, B1B2, C1C2 of triangle A1B1C1

are parallel to AB, BC, CA, respectively. Determine in what ratios
the points A1, B1, C1 divide the sides of ABC.

1 Problems are numbered as they appeared in the contests. Problems that

appeared more than once in the contests are only printed once in this book.
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First Solution: A1, B1, C1 divide sides BC, CA, AB in 1 : 2 ratios
(so that BA1

A1C = 1
2 , and so on).

Lemma. In any triangle XY Z, the medians can be translated to form
a triangle. Furthermore, the medians of this new triangle are parallel
to the sides of triangle XY Z.

Proof: Let x, y, z denote the vectors −−→Y Z,
−−→
ZX,

−−→
XY respectively;

then x + y + z = −→0 . Also, the vectors representing the medians of
triangle XY Z are mx = z+ x

2 , my = x+ y
2 , mz = y+ z

2 . These vectors
add up to 3

2 (x + y + z) = −→0 , so the medians indeed form a triangle.
Furthermore, the vectors representing the medians of the new

triangle are mx + my

2 = x + y + z − 3
4y = − 3

4y, and similarly − 3
4z

and− 3
4x. Therefore, these medians are parallel to XZ, Y X, and ZY.

Let D, E, F be the midpoints of sides BC, CA, AB, and let l1, l2,

l3 be the segments A1A2, B1B2, C1C2.

Since l1, l2, l3 are parallel to AB, BC, CA, the medians of the
triangle formed by l1, l2, l3 are parallel to CF, AD, BE. But from
the lemma, they are also parallel to B1C1, C1A1, A1B1.

Therefore, BE ‖ A1B1, and hence 4BCE ∼ 4A1CB1. Then

B1C

AC
=

1
2
· B1C

EC
=

1
2
· A1C

BC
=

1
2

(
1− A1B

CB

)
.

Similarly

C1A

BA
=

1
2

(
1− B1C

AC

)
A1B

CB
=

1
2

(
1− C1A

BA

)
.

Solving these three equations gives

B1C

AC
=

C1A

BA
=

A1B

CB
=

1
3
,

as claimed; and it is straightforward to verify with the above equations
that these ratio indeed work.

Second Solution: As above, we know that A1B1 ‖ BE, B1C1 ‖
AD, C1A1 ‖ CF.

Let A′, B′, C ′ be the points dividing the sides BC, CA,AB in 1 : 2
ratios — since CA′

CB = CB′
1
2 CA

, we know A′B′ ‖ BE ‖ A1B1, and so on.
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Suppose by way of contradiction that A1 were closer to B than A′.

Then since A1B1 ‖ A′B′, B1 is farther from C than B′. Similarly,
C1 is closer to A than C ′, and A1 is farther from B than A′ — a
contradiction.

Likewise, A1 cannot be farther from B than A′. Thus A1 = A′,

B1 = B′, and C1 = C ′.

Problem 8.4 We are given 40 balloons, the air pressure inside each
of which is unknown and may differ from balloon to balloon. It is
permitted to choose up to k of the balloons and equalize the pressure
in them (to the arithmetic mean of their respective original pressures).
What is the smallest k for which it is always possible to equalize the
pressures in all of the balloons?

Solution: k = 5 is the smallest such value.
First suppose that k = 5. Note that we can equalize the pressure in

any 8 balloons: first divide them into two groups of four {A,B,C, D}
and {E,F,G,H} and equalize the pressure in each group; then
equalize the pressure in {A,B,E, F} and {C,D,G, H}.

Then divide the 40 balloons into eight “5-groups” of five and
equalize the pressure in each group. Then form five new groups of
eight — containing one balloon from each “5-group” — and equalize
the pressure in each of these new groups.

Now suppose that k ≤ 4. Let b1, b2, . . . , b40 denote the original
air pressures inside the balloons. It is simple to verify that the
pressure in each balloon can always be written as a linear combination
a1b1 + · · ·+ a40b40, where the ai are rational with denominators not
divisible by any primes except 2 and 3. Thus if we the bj are linearly
independent over the rationals (say, if bj = ej), we can never obtain

1
40

b1 +
1
40

b2 + · · ·+ 1
40

b40

in a balloon. In this case, we can never equalize the pressures in all
40 balloons.

Problem 8.5 Show that the numbers from 1 to 15 cannot be
divided into a group A of 2 numbers and a group B of 13 numbers in
such a way that the sum of the numbers in B is equal to the product
of the numbers in A.

Solution: Suppose by way of contradiction this were possible, and
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let a and b be the two numbers in A. Then we have

(1 + 2 + · · ·+ 15)− a− b = ab

120 = ab + a + b

121 = (a + 1)(b + 1),

Since a and b are integers between 1 and 15, the only possible solution
to this equation is (a, b) = (10, 10). But a and b must be distinct, a
contradiction.

Problem 8.6 Given an acute triangle ABC, let A1 be the reflection
of A across the line BC, and let C1 be the reflection of C across the
line AB. Show that if A1, B, C1 lie on a line and C1B = 2A1B, then
∠CA1B is a right angle.

Solution: By the given reflections, we have 4ABC ∼= 4ABC1
∼=

4A1BC.

Since ∠B is acute, C1 and A lie on the same side of BC. Thus C1

and A1 lie on opposite sides of BC as well.
Then since C1, B, A1 lie on a line we have

180◦ = ∠C1BA + ∠ABC + ∠CBA1

= ∠ABC + ∠ABC + ∠ABC,

so that ∠ABC = 60◦. Also we know that

C1B = 2A1B =⇒ CB = 2AB,

implying that triangle ABC is a 30◦-60◦-90◦ triangle and ∠CA1B =
∠BAC = 90◦.

Problem 8.7 In a box lies a complete set of 1×2 dominoes. (That
is, for each pair of integers i, j with 0 ≤ i ≤ j ≤ n, there is one
domino with i on one square and j on the other.) Two players take
turns selecting one domino from the box and adding it to one end of
an open (straight) chain on the table, so that adjacent dominoes have
the same numbers on their adjacent squares. (The first player’s move
may be any domino.) The first player unable to move loses. Which
player wins with correct play?

Solution: The first player has a winning strategy. If n = 0, this
is clear. Otherwise, have the first player play the domino (0, 0) and
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suppose the second player plays (0, a); then have the first player play
(a, a).

At this point, the second player faces a chain whose ends are either
0 or a; also, the domino (0, k) is on the table if and only if the domino
(a, k) is on the table. In such a “good” situation, if the second player
plays (0, k) the first player can play (k, a) next to it; and if the second
player plays (a, k) the first player can play (k, 0). In both cases, the
same conditions for a “good” situation occur.

Therefore the first player can always play a domino with this
strategy, forcing the second player to lose.

Problem 8.8 An open chain of 54 squares of side length 1 is made
so that each pair of consecutive squares is joined at a single vertex,
and each square is joined to its two neighbors at opposite vertices. Is
it possible to cover the surface of a 3× 3× 3 cube with this chain?

Solution: It is not possible; suppose by way of contradiction it
were.

Create axes so that the cube has corners at (3i, 3j, 3k) for i, j, k ∈
{0, 1}, and place the chain onto the cube. Imagine that every two
adjacent squares in the chain are connected by pivots, and also let
the start and end vertices of the chain be “pivots.”

Consider some pivot P at (x, y, z); then the next pivot Q in the
chain is either at (x, y± 1, z± 1), (x± 1, y, z± 1), or (x± 1, y± 1, z).
In any case, the sum of the coordinates of P has the same parity as
the sum of the coordinates of Q — and hence all the pivots’ sums of
coordinates have the same parity. Suppose without loss of generality
the sums are even.

Form a graph whose vertices are the lattice points on the cube with
even sums of coordinates; and join two vertices with an edge if the
two lattice points are opposite corners of a unit square. Every square
in our chain contains one of these edges — but since there are exactly
54 such edges (one across each unit square on the cube’s surface),
and 54 squares in our chain, every edge is used exactly once. Then as
we travel from pivot to pivot along our chain, we create an Eulerian
path visiting all the edges. But four vertices — at (0, 0, 0), (0, 1, 1),
(1, 0, 1), and (1, 1, 0) — have odd degree 3, so this is impossible.

Problem 9.1 Around a circle are written all of the positive integers
from 1 to N , N ≥ 2, in such a way that any two adjacent integers



154 Russia

have at least one common digit in their decimal expansions. Find the
smallest N for which this is possible.

Solution: N = 29. Since 1 must be adjacent to two numbers, we
must have N ≥ 11. But then 9 must be adjacent to two numbers,
and the next smallest numbers containing 9 as a digit are 19 and 29.

Therefore N ≥ 29, and indeed N = 29 suffices:

19, 9, 29, 28, 8, 18, 17, 7, 27, . . . , 13, 3, 23, 2, 22, 21, 20, 12, 11, 10, 1.

Problem 9.2 In triangle ABC, points D and E are chosen on side
CA such that AB = AD and BE = EC (E lying between A and D).
Let F be the midpoint of the arc BC of the circumcircle of ABC.
Show that B,E,D, F lie on a circle.

Solution: Let I be the incenter of triangle ABC, and notice that

∠BIC = 180◦ − ∠ICB − ∠CBI

= 180◦ − ∠B

2
− ∠C

2

= 90◦ +
∠A

2
.

Also, since AD = AB we have ∠ADB = 90◦ − ∠A
2 and ∠BDC =

180◦ − ∠ADB = 90◦ + ∠A
2 . Therefore, BIDC is cyclic.

Some angle-chasing shows that that B, I, and C lie on a circle with
center F. Thus D lies on this circle, FD = FC, and ∠FDC = ∠DCF.

Also, since BE = EC, we have ∠CBE = ∠C. Combining these
facts, we have

180◦ − ∠EDF = ∠FDC

= ∠DCF

= ∠ACF

= ∠C +
∠A

2
= ∠CBE + ∠FBC

= ∠FBE.

Therefore BEDF is cyclic, as desired.
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Problem 9.3 The product of the positive real numbers x, y, z is 1.
Show that if

1
x

+
1
y

+
1
z
≥ x + y + z,

then
1
xk

+
1
yk

+
1
zk

≥ xk + yk + zk

for all positive integers k.

First Solution: Write x = a
b , y = b

c , z = c
a for some positive

numbers a, b, c. (For example, we could take a = 1, b = 1
x , c = 1

xy .)
The given equation becomes

b

a
+

c

b
+

a

c
≥ a

b
+

b

c
+

c

a

⇐⇒ a2b + b2c + c2a ≥ ab2 + bc2 + ca2

⇐⇒ 0 ≥ (a− b)(b− c)(c− a).

For any positive integer k, write A = ak, B = bk, C = ck. Then
a > b ⇐⇒ A > B and a < b ⇐⇒ A < B, and so on. Thus we also
know that 0 ≥ (A−B)(B − C)(C −A), and

0 ≥ (A−B)(B − C)(C −A)

⇐⇒ B

A
+

C

B
+

A

C
≥ A

B
+

B

C
+

C

A

⇐⇒ 1
xk

+
1
yk

+
1
zk

≥ xk + yk + zk,

as desired.

Second Solution: The inequality

0 ≥ (a− b)(b− c)(c− a)

might spark this realization: dividing through by abc we have

0 ≥ (x− 1)(y − 1)(z − 1).

Indeed,

(x− 1)(y − 1)(z − 1) = xyz + x + y + z − xy − yz − zx− 1

= x + y + z − 1
z
− 1

x
− 1

y
≤ 0.



156 Russia

Therefore, we have

(x− 1)(y − 1)(z − 1) ≤ 0

⇒ (xk − 1)(yk − 1)(zk − 1) ≤ 0

⇒ xk + yk + zk ≥ 1
xk

+
1
yk

+
1
zk

,

as desired.

Problem 9.4 A maze consists of an 8 × 8 grid, in each 1 × 1 cell
of which is drawn an arrow pointing up, down, left or right. The top
edge of the top right square is the exit from the maze. A token is
placed on the bottom left square, and then is moved in a sequence of
turns. On each turn, the token is moved one square in the direction
of the arrow. Then the arrow in the square the token moved from is
rotated 90◦ clockwise. If the arrow points off of the board (and not
through the exit), the token stays put and the arrow is rotated 90◦

clockwise. Prove that sooner or later the token will leave the maze.

Solution: Suppose by way of contradiction the token did not leave
the maze. Let position denote the set-up of the board, including both
the token’s location and the directions of all the arrows. Since the
token moves infinitely many times inside the maze, and there are only
finitely many positions, some position must repeat.

During the “cycle time” between two occurrences of this position,
suppose the token visits some square S. Then the arrow on S must
make at least four 90◦ rotations: thus at some point during the cycle
time, the token must visit all the squares adjacent to S. It follows
that the token visits all the squares on the board during the cycle
time.

Specifically, the token visits the upper-right square during the cycle
time; but at some point, this square’s arrow will point out of the
maze. Then when the token lands on this square it will exit — a
contradiction.

Problem 9.5 Each square of an infinite grid is colored in one of 5
colors, in such a way that every 5-square (Greek) cross contains one
square of each color. Show that every 1 × 5 rectangle also contains
one square of each color.
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Solution: Label the centers of the grid squares with coordinates,
and suppose that square (0, 0) is colored maroon. The Greek cross
centered at (1, 1) must contain a maroon-colored square. However,
the squares (0, 1), (1, 0), and (1, 1) cannot be maroon because each
of these squares is in a Greek cross with (0, 0). Thus either (1, 2) or
(2, 1) is maroon — without loss of generality, say (1, 2).

Then by a similar analysis on square (1, 2) and the Greek cross
centered at (2, 1), one of the squares (2, 0) and (3, 1) must be maroon.
(2, 0) is in a Greek cross with (0, 0) though, so (3, 1) is maroon.

Repeating the analysis on square (2, 0) shows that (2,−1) is ma-
roon; and spreading outward, every square of the form (i+2j, 2i− j)
is maroon. But since these squares are the centers of Greek crosses
that tile the plane, no other squares can be maroon. And since no
two of these squares are in the same 1× 5 rectangle, no two maroon
squares can be in the same 1× 5 rectangle.

The same argument applies to all the other colors — lavender,
tickle-me-pink, green, neon orange. Therefore the five squares in each
1× 5 rectangle have distinct colors, as desired.

Problem 9.7 Show that each natural number can be written as the
difference of two natural numbers having the same number of prime
factors.

Solution: If n is even, then we can write it as (2n)− (n).
Now suppose n is odd, and let d be the smallest odd prime that

does not divide n. Then write n = (dn)− ((d− 1)n) . The number dn

contains exactly one more prime factor than n. As for (d− 1)n, it is
divisible by 2 since d−1 is even; but its odd factors are less than d so
they all divide n. Therefore (d − 1)n also contains exactly one more
prime factor than n, and dn and (d − 1)n have the same number of
prime factors.

Problem 9.8 In triangle ABC, with AB > BC, points K and M

are the midpoints of sides AB and CA, and I is the incenter. Let P

be the intersection of the lines KM and CI, and Q the point such
that QP ⊥ KM and QM ‖ BI. Prove that QI ⊥ AC.

Solution: Draw point S on ray CB such that CS = CA. Let P ′ be
the midpoint of AS. Since triangle ACS is isosceles, P ′ lies on CI;
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and since P ′ and M are midpoints of AS and AC, we have P ′M ‖ SC.

It follows that P = P ′.

Let the incircle touch BC, CA,AB at D,E, F respectively. Writing
a = BC, b = CA, c = AB, and s = 1

2 (a + b + c), we have

SD = SC −DC = b− (s− c) =
1
2
(b + c− a) = FA,

BF = s− b = DB,

AP = PS.

Therefore
SD

DB

BF

FA

AP

PS
= 1,

and by Menelaus’ Theorem applied to triangle ABS, P lies on line
DF.

Then triangle PDE is isosceles, and ∠DEP = ∠PDE = ∠FEA =
90◦ − ∠A

2 while ∠CED = 90◦ − ∠C
2 . Therefore

∠PEA = 180◦ − ∠DEP − ∠CED = 90◦ − ∠B

2
.

Now let Q′ be the point such that Q′I ⊥ AC, Q′M ‖ BI. Then
∠Q′EP = 90◦ − ∠PEA = ∠B

2 .

But we also know that ∠Q′MP = ∠IBC (from parallel lines
BC ‖ MP and IB ‖ Q′M), and ∠IBC = ∠B

2 as well. Therefore
∠Q′MP = ∠Q′EP, quadrilateral Q′EMP is cyclic, and ∠Q′PM =
∠Q′EM = 90◦. Therefore Q = Q′, and QI is indeed perpendicular
to AC.

Problem 10.2 In the plane is given a circle ω, a point A inside ω,
and a point B not equal to A. Consider all possible triangles BXY

such that X and Y lie on ω and A lies on the chord XY . Show that
the circumcenters of these triangles all lie on a line.

Solution: We use directed distances. Let O be the circumcenter
and R be the circumradius of triangle BXY. Drop the perpendicular
OO′ to line AB.

The power of A with respect to circle BXY equals both AX · AY

and AO2 −R2. Therefore

BO′ −O′A =
BO′2 −O′A2

BO′ + O′A
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=
(BO2 −O′O2)− (OA2 −OO′2)

AB

=
XA ·AY

AB

which is constant since AX · AY also equals the power of A with
respect to ω.

Since BO′−O′A and BO′+O′A = AB are constant, BO′ and O′A

are constant as well. Thus O′ is fixed regardless of the choice of X

and Y. Therefore O lies on the line through O′ perpendicular to AB,

as desired.

Problem 10.3 In space are given n points in general position (no
three points are collinear and no four are coplanar). Through any
three of them is drawn a plane. Show that for any n − 3 points in
space, there exists one of the drawn planes not passing through any
of these points.

Solution: Call the given n points given and the n−3 points random,
and call all these points “level-0.” Since there are more given points
than random points, one of the given points is not random: say, A.

Draw a plane not passing through A, and for each of the other points
P let (P ) be the intersection of AP with this plane. Call these points
(P ) level-1.

Since no four given points were coplanar, no three of the level-1
given points map to collinear points on this plane; and since no three
given points were collinear, no two of the level-1 given points map to
the same point on this plane. Thus we have n−1 level-1 given points
and at most n− 3 level-1 random points.

Now perform a similar operation — since there are more level-1
given points than random points, one of them is not random: say,
(B). Draw a line not passing through (B), and for each of the other
points (P ) let ((P )) be the intersection of B(P ) with this plane. Call
these points ((P )) level-2.

Since no three level-1 given points were collinear, all of the level-2
given points are distinct. Thus we have n− 2 level-2 given points but
at most n − 3 level-2 random points. Therefore one of these given
points ((C)) is not random.
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Consider the drawn plane ABC. If it contained some level-0 random
point — say, Q — then (Q) would be collinear with (B) and (C), and
thus ((Q)) = ((C)), a contradiction. Therefore plane ABC does not
pass through any of the level-0 random points, as desired.

Problem 10.5 Do there exist 10 distinct integers, the sum of any
9 of which is a perfect square?

Solution: Yes, there do exist 10 such integers. Write S = a1 + · · ·+
a10, and consider the linear system of equations

S − a1 = 9 · 12

S − a2 = 9 · 22

...

S − a10 = 9 · 102.

Adding all these gives

9S = 9 · (12 + 22 + · · ·+ 102)

so that
ai = S − 9i2 = 12 + 22 + · · ·+ 102 − 9i2.

Then all the ai’s are distinct integers, and any nine of them add up
to perfect square.

Problem 10.6 The incircle of triangle ABC touches sides BC, CA,

AB at A1, B1, C1, respectively. Let K be the point on the circle
diametrically opposite C1, and D the intersection of the lines B1C1

and A1K. Prove that CD = CB1.

Solution: Draw D′ on B1C1 such that CD′ ‖ AB. Then
∠D′CB1 = ∠C1AB1 and ∠CD′B1 = ∠AC1B1, implying that
4AB1C1 ∼ 4CB1D

′.

Thus triangle CB1D
′ is isosceles and CD′ = CB1. But CB1 =

CA1, so that triangle CA1D
′ is isosceles also. And since ∠D′CA1 =

180◦ − ∠B, we have ∠CA1D
′ = ∠B

2 .

But note that

∠CA1K = ∠A1C1K

= 90◦ − ∠C1KA1
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= 90◦ − ∠C1A1B

=
∠B

2
also. Therefore D′ lies on A1K and by definition it lies on B1C1.

Hence D′ = D.

But from before CD′ = CB1; thus CD = CB1, as desired.

Problem 10.7 Each voter in an election marks on a ballot the
names of n candidates. Each ballot is placed into one of n + 1 boxes.
After the election, it is observed that each box contains at least one
ballot, and that for any n + 1 ballots, one in each box, there exists a
name which is marked on all of these ballots. Show that for at least
one box, there exists a name which is marked on all ballots in the
box.

Solution: Suppose by way of contradiction that in every box, no
name is marked on all the ballots. Label the boxes 1, 2, . . . , n, and
look at an arbitrary ballot from the first box.

Suppose it has n “chosen” names Al, Bob, . . . , Zed. By assumption,
some ballot in the second box does not have the name Al on it; some
ballot in the third box does not have the name Bob on it; and so on,
so some ballot in the (i + 1)-th box does not have the i-th chosen
name on it. But then on these n+1 ballots, one from each box, there
is no name marked on all the ballots — a contradiction.

Problem 10.8 A set of natural numbers is chosen so that among
any 1999 consecutive natural numbers, there is a chosen number.
Show that there exist two chosen numbers, one of which divides the
other.

Solution: Draw a large table with 1999 columns and 2000 rows. In
the first row write 1, 2, . . . , 1999.

Define the entries in future rows recursively as follows: suppose
the entries in row i are k + 1, k + 2, . . . , k + 1999, and that their
product is M. Then fill row i + 1 with M + k + 1, M + k + 2, . . . ,

M +k+1999. All the entries in row i+1 are bigger than the entries in
row i; furthermore, every entry divides the entry immediately below
it (and therefore all the entries directly below it).

In each row there are 1999 consecutive numbers, and hence each
row contains a chosen number. Then since we have 2000 rows, there
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are two chosen numbers in the same column — and one of them
divides another, as desired.

Problem 11.1 The function f(x) is defined on all real numbers. It
is known that for all a > 1, the function f(x) + f(ax) is continuous.
Show that f(x) is continuous.

First Solution: We know that for a > 1, the functions

P (x) = f(x) + f(ax),

Q(x) = f(x) + f(a2x),

P (ax) = f(ax) + f(a2x)

are all continuous. Thus the function
1
2

(P (x) + Q(x)− P (ax)) = f(x)

is continuous as well.

Problem 11.3 In a class, each boy is friends with at least one girl.
Show that there exists a group of at least half of the students, such
that each boy in the group is friends with an odd number of the girls
in the group.

Solution: We perform strong induction on the total number of
students. The base case of zero students is obvious.

Now suppose that we know the claim is true for any number of
students less than n (where n > 0), and we wish to prove it for n.
Since there must be at least one girl, pick any girl from the n students.
We now partition the class into three subsets: A = this girl, B = this
girl’s male friends, and C = everybody else.

Because we are using strong induction, the induction hypothesis
states that there must be a subset C ′ of C, with at least |C|2 students,
such that any boy in C ′ is friends with an odd number of girls in C ′.

Let BO be the set of boys in B who are friends with an odd number
of girls in C ′, and let BE be the set of boys in B who are friends with
an even number of girls in C ′. Then there are two possible cases:

(i) |BO| ≥ |A∪B|
2 .

The set S = BO ∪ C ′ will realize the claim, i.e., S will have at
least n

2 elements, and each boy in S will be friends with an odd
number of girls in S.
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(ii) |A ∪BE | ≥ |A∪B|
2 .

The set T = A ∪ BE ∪ C ′ will realize the claim. T will have
at least n

2 elements; each boy in C ′ will be friends with an odd
number of girls in C ′ but not the girl in A; and each boy in BE

will be friends with an even number of girls in C ′ and the girl in
A — making a total of an odd number of girls.

Thus the induction is complete.

Note: With a similar proof, it is possible to prove a slightly stronger
result: suppose each boy in a class is friends with at least one girl,
and that every boy has a parity, either “even” or “odd.” Then there
is a group of at least half the students, such that each boy in the
group is friends with the same parity of girls as his own parity. (By
letting all the boys’ parity be “odd,” we have the original result.)

Problem 11.4 A polyhedron is circumscribed about a sphere. We
call a face big if the projection of the sphere onto the plane of the
face lies entirely within the face. Show that there are at most 6 big
faces.

Solution:

Lemma. Given a sphere of radius R, let a “slice” of the sphere be a
portion cut off by two parallel planes. The surface area of the sphere
contained in this slice is 2πRW , where W is the distance between the
planes.

Proof: Orient the sphere so that the slice is horizontal. Take an
infinitesimal horizontal piece of this slice, shaped like a frustrum (a
small sliver from the bottom of a radially symmetric cone). Say it has
width w, radius r, and slant height `; then its lateral surface area (for
infinitesimal w) is 2πr`. But if the side of the cone makes an angle
θ with the horizontal, then we have ` sin θ = w and R sin θ = r so
that the surface area also equals 2πRw. Adding over all infinitesimal
pieces, the complete slice has lateral surface area 2πRW , as desired.

Say that the inscribed sphere has radius R and center O. For each
big face F in the polyhedron, project the sphere onto F to form
a circle k. Then connect k with O to form a cone. Because these
cones don’t share any volume, they hit the sphere’s surface in several
non-overlapping circular regions.
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Each circular region is a slice of the sphere with width R(1− 1
2

√
2),

and it contains 2πR2(1 − 1
2

√
2) > 1

7 (4πR2) of the sphere’s surface
area. Thus each circular region takes up more than 1

7 of the surface
area of the sphere, implying there must be less than 7 such regions
and therefore at most six big faces.

Problem 11.5 Do there exist real numbers a, b, c such that for all
real numbers x, y,

|x + a|+ |x + y + b|+ |y + c| > |x|+ |x + y|+ |y|?

Solution: No such numbers exist; suppose they did. Let y = −b−x.

Then for all real x we have

|x + a|+ |−b− x + c| > |x|+ |−b|+ |−b− x|.

If we pick x sufficiently negative, this gives

(−x− a) + (−b− x + c) > (−x) + |b|+ (−b− x)

⇒ −a + c > |b| ≥ 0,

so c > a. On the other hand, if we pick x sufficiently positive, this
gives

(x + a) + (b + x− c) > (x) + |b|+ (b + x)

⇒ a− c > |b| ≥ 0,

so c < a as well — a contradiction.

Problem 11.6 Each cell of a 50 × 50 square is colored in one of
four colors. Show that there exists a cell which has cells of the same
color directly above, directly below, directly to the left, and directly
to the right of it (though not necessarily adjacent to it).

Solution: By the pigeonhole principle, at least one-quarter of the
squares (625) are the same color: say, red.

Of these red squares, at most 50 are the topmost red squares of
their columns, and at most 50 are the bottommost red squares of
their columns. Similarly, at most 50 are the leftmost red squares in
their rows and at most 50 are the rightmost red squares in their rows.
This gives at most 200 squares; the remaining 425 or more red squares
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then have red squares directly above, directly below, directly to the
left, and directly to the right of them.

Problem 11.8 A polynomial with integer coefficients has the prop-
erty that there exist infinitely many integers which are the value of
the polynomial evaluated at more than one integer. Prove that there
exists at most one integer which is the value of the polynomial at
exactly one integer.

Solution: First observe that the polynomial cannot be constant.
Now let P (x) = cnxn + cn−1x

n−1 + · · · + c0 be the polynomial with
cn 6= 0. The problem conditions imply that n is even and at least 2,

and we can assume without loss of generality that cn > 0.

Since P (x) has positive leading coefficient and it is not constant,
there exists a value N such that P (x) is decreasing for all x < N.

Also consider the pairs of integers (s, t) with s < t and P (s) = P (t);
since there are infinitely many pairs, there must be infinitely many
with s < N.

Now for any integer k, look at the polynomial P (x) − P (k − x).
Some algebra shows that the coefficient of xn is zero and that the
coefficient of xn−1 is f(k) = 2cn−1 + cn(nk).

Let K be the largest integer such that f(K) < 0 (such an integer
exists because from assumptions made above, cn · n > 0). Then for
sufficiently large t we have

P (t) < P (K − t) < P (K − 1− t) < · · ·

and

P (t) ≥ P (K + 1− t) > P (K + 2− t) > P (K + 3− t) > · · · > P (N).

Therefore we must have s = K +1− t and P (t)−P (K +1− t) = 0 for
infinitely many values of t. But since P has finite degree, this implies
that P (x)− P (K + 1− x) is identically zero.

Then if P (a) = b for some integers a, b, we also have P (K+1−a) =
b. Therefore there is at most one value b that could possibly be the
value of P (x) at exactly one integer x — specifically, b = P (K+1

2 ).

Fifth round

Problem 9.1 In the decimal expansion of A, the digits occur in
increasing order from left to right. What is the sum of the digits of
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9A?

Solution: Write A = a1a2 . . . ak. Then since 9A = 10A − A, by
performing the subtraction

a1 a2 a3 · · · ak 0
− a1 a2 · · · ak−1 ak

we find that the digits of 9A are

a1, a2 − a1, a3 − a2, . . . , ak−1 − ak−2, ak − ak−1 − 1, 10− ak,

and that these digits add up to 10− 1 = 9.

Problem 9.3 Let S be the circumcircle of triangle ABC. Let A0

be the midpoint of the arc BC of S not containing A, and C0 the
midpoint of the arc AB of S not containing C. Let S1 be the circle
with center A0 tangent to BC, and let S2 be the circle with center C0

tangent to AB. Show that the incenter I of ABC lies on a common
external tangent to S1 and S2.

Solution: We prove a more general result: I lies on a common
external tangent to S1 and S2, parallel to AC.

Drop the perpendicular from A0 to BC, hitting at P, and drop the
perpendicular from A0 to AC, hitting circle S1 at Q (with Q closer
to AC than A0).

Note that A, I, and A0 are collinear. Then

∠CIA0 = ∠CAI + ∠ICA =
∠A + ∠C

2
= ∠A0CI,

so that IA0 = CA0.

Next, from circle S1 we know that A0Q = A0P.

Finally,

∠IA0Q = ∠AA0Q = 90◦ − ∠CAA0 =
1
2
(180◦ − ∠CAB) = ∠CA0P .

Thus, triangles IA0Q and CA0P are congruent. Then

∠IQA0 = ∠CPA0 = 90◦,

so that IQ is tangent to S1 at Q. Furthermore, since A0Q is perpen-
dicular to both IQ and AC, we have IQ ‖ AC.
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Therefore, the line through I parallel to AC is tangent to S1; by a
similar argument it is tangent to S2; and thus it is a common external
tangent to S1 and S2, as claimed.

Problem 9.4 The numbers from 1 to 1000000 can be colored black
or white. A permissible move consists of selecting a number from 1
to 1000000 and changing the color of that number and each number
not relatively prime to it. Initially all of the numbers are black. Is it
possible to make a sequence of moves after which all of the numbers
are colored white?

First Solution: It is possible. We begin by proving the following
lemma:

Lemma. Given a set S of positive integers, there is a subset T ⊆ S

such that every element of S divides an odd number of elements in T.

Proof: We prove the claim by induction on |S|, the number of
elements in S. If |S| = 1 then let T = S.

If |S| > 1, then say the smallest element of S is a. Look at the
set S′ = S \ {a} — the set of the largest |S| − 1 elements in S. By
induction there is a subset T ′ ⊆ S′ such that every element in S′

divides an odd number of elements in T ′.

If a also divides an odd number of elements in T ′, then the set
T = T ′ suffices. Otherwise, the set T = T ′∪{a} suffices: a divides an
odd number of elements in T ; the other elements are bigger than a and
can’t divide it, and therefore still divide an odd number of elements
in T. This completes the induction and the proof of the lemma.

Now, write each number n > 1 in its prime factorization

pa1
1 pa2

2 · · · pak

k

for distinct primes pi and positive integers ai. Then notice that the
color of n will always be the same as the color of P (n) = p1p2 · · · pk.

Apply the lemma to the set S =
⋃1000000

i=2 P (i) to find a subset
T ⊆ S such that every element of S divides an odd number of elements
in T. For each q ∈ S, let t(q) equal the number of elements in T that
q divides, and let u(q) equal the number of primes dividing q.

Select all the numbers in T, and consider how the color of a number
n > 1 changes. The number of elements in T not relatively prime to
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n equals ∑
q|P (n), q>1

(−1)u(q)+1t(q)

by the Inclusion-Exclusion Principle: if q | P (n) is divisible by exactly
m > 0 primes, then it is counted

(
m
1

)
−
(
m
2

)
+
(
m
3

)
− · · · = 1 time in

the sum. (For example, if n = 6 then the number of elements in T

divisible by 2 or 3 equals t(2) + t(3)− t(6).)
But by the definition of T, each of the values t(q) is odd. Then

since there are 2k−1 divisors q > 1 of P (n), the above quantity is the
sum of 2k−1 odd numbers and is odd itself. Therefore after selecting
T, every number n > 1 will switch color an odd number of times and
will turn white.

Finally, select 1 to turn 1 white, and we are done.

Note: In fact, a slight modification of the above proof shows that T

is unique, which with some work implies that there is exactly one
way to make all the numbers white by only selecting square-free
numbers at most once each (other methods are different only trivially,
either by selecting a number twice or by selecting numbers that aren’t
square-free).

Second Solution: Yes, it is possible. We prove a more general
statement, where we replace 1000000 in the problem by some arbi-
trary positive integer m, and where we focus on the numbers divisible
by just a few primes instead of all the primes.

Lemma. For a finite set of distinct primes S = {p1, p2, . . . , pn},
let Qm(S) be the set of numbers between 2 and m divisible only by
primes in S. The elements of Qm(S) can be colored black or white;
a permissible move consists of selecting a number in Qm(S) and
changing the color of that number and each number not relatively
prime to it. Then it is possible to reverse the coloring of Qm(S) by
selecting several numbers in a subset Rm(S) ⊆ Qm(S).

Proof: We prove the lemma by induction on n. If n = 1, then
selecting p1 suffices. Now suppose n > 1, and assume without loss of
generality that the numbers are all black to start with.

Let T = {p1, p2, . . . , pn−1}, and define t to be the largest integer
such that tpn ≤ m. We can assume t ≥ 1 because otherwise we could
ignore pn and just use use the smaller set T, and we’d be done by our
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induction hypothesis.
Now select the numbers in Rm(T ), Rt(T ), and pnRt(T ) = {pnx |

x ∈ Rt(T )}, and consider the effect of this action on a number y:

• y is not a multiple of pn. Selecting the numbers in Rm(T ) makes
y white. Then if selecting x ∈ Rt(T ) changes y’s color, selecting
xpn will change it back so that y will become white.

• y is a power of pn. Selecting the numbers in Rm(T ) and Rt(T )
has no effect on y, but each of the |Rt(T )| numbers in xRt(T )
changes y’s color.

• pn | y but y is not a power of pn. Selecting the numbers in Rm(T )
makes y white. Since y 6= pi

n, it is divisible by some prime in T

so selecting the numbers in Rt(T ) makes y black again. Finally,
each of the |Rt(T )| numbers in xRt(T ) changes y’s color.

Therefore, all the multiples of pn are the same color (black if |Rt(T )|
is even, white if |Rt(T )| is odd), while all the other numbers in Qm(S)
are white. If the multiples of pn are still black, we can select pn to
make them white, and we are done.

Now back to the original problem: set m = 1000000 and let S

be the set of all primes under 1000000. Then from the lemma, we
can select numbers between 2 and 1000000 so that all the numbers
2, 3, . . . , 1000000 are white. And finally, we finish off by selecting 1.

Problem 9.5 An equilateral triangle of side length n is drawn with
sides along a triangular grid of side length 1. What is the maximum
number of grid segments on or inside the triangle that can be marked
so that no three marked segments form a triangle?

Solution: The grid is made up of n(n+1)
2 small equilateral triangles

of side length 1. In each of these triangles, at most 2 segments can be
marked so we can mark at most 2

3 ·
3n(n+1)

2 = n(n + 1) segments in
all. Every segment points in one of three directions, so we can achieve
the maximum n(n + 1) by marking all the segments pointing in two
of the directions.
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Problem 9.6 Let {x} = x − bxc denote the fractional part of x.
Prove that for every natural number n,

n2∑
k=1

{
√

k} ≤ n2 − 1
2

.

Solution: We prove the claim by induction on n. For n = 1, we
have 0 ≤ 0. Now supposing that the claim is true for n, we prove it
is true for n + 1.

Each of the numbers
√

n2 + 1,
√

n2 + 2, . . . ,
√

n2 + 2n is between
n and n + 1, and thus

{
√

n2 + i} =
√

n2 + i− n

<

√
n2 + i +

i2

4n2
− n

=
i

2n
.

Therefore we have
(n+1)2∑

k=1

{
√

k} =
n2∑

k=1

{
√

k}+
(n+1)2∑
k=n2+1

{
√

k}

<
n2 − 1

2
+

1
2n

2n∑
i=1

i + 0

=
n2 − 1

2
+

2n + 1
2

=
(n + 1)2 − 1

2
,

completing the inductive step and the proof.

Problem 9.7 A circle passing through vertices A and B of triangle
ABC intersects side BC again at D. A circle passing through vertices
B and C intersects side AB again at E, and intersects the first circle
again at F . Suppose that the points A,E, D, C lie on a circle centered
at O. Show that ∠BFO is a right angle.

Solution: Since AEDC is cyclic with O as its center,

∠COA = 2∠CDA = ∠CDA + ∠CEA

= (180◦ − ∠ADB) + (180◦ − ∠BEC).
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Since BDFA and BEFC are cyclic, ∠ADB = ∠AFB and ∠BEC =
∠BFC. Hence

∠COA = 360◦ − ∠AFB − ∠BFC = ∠CFA.

Hence AFOC is cyclic. Therefore

∠OFA = 180◦ − ∠ACO = 180◦ − 180◦ − ∠COA

2
= 90◦ + ∠CDA.

Since ABDF is cyclic,

∠OFA + ∠AFB = 90◦ + ∠CDA + ∠ADB = 270◦.

Hence ∠BFO = 90◦, as desired.

Problem 9.8 A circuit board has 2000 contacts, any two of which
are connected by a lead. The hooligans Vasya and Petya take turns
cutting leads: Vasya (who goes first) always cuts one lead, while Petya
cuts either one or three leads. The first person to cut the last lead
from some contact loses. Who wins with correct play?

Solution: Petya wins with correct play; arrange the contacts in a
circle and label them 1, 2, . . . , 2000, and let (x, y) denote the lead
between contacts x and y (where labels are taken modulo 2000).

If Vasya disconnects (a, 1000 + a), Petya can disconnect (500 +
a, 1500 + a); otherwise, if Vasya disconnects (a, b), Petya can dis-
connect the three leads (a + 500, b + 500), (a + 1000, b + 1000), and
(a+1500, b+1500). Notice that in each case, Petya and Vasya tamper
with different contacts.

Using this strategy, after each of Petya’s turns the circuit board is
symmetrical under 90◦, 180◦, and 270◦ rotations, ensuring that he can
always make the above moves — for example, if (a + 1500, b + 1500)
were already disconnected during Petya’s turn, then (a, b) must have
been as well before Vasya’s turn.

Also, Petya can never lose, because if he disconnected the last
lead (x, y) from some contact x, then Vasya must have already
disconnected the last lead (x− 1500, y − 1500), (x− 1000, y − 1000),
or (x− 500, y − 500) from some other contact, a contradiction.

Problem 10.1 Three empty bowls are placed on a table. Three
players A, B, C, whose order of play is determined randomly, take
turns putting one token into a bowl. A can place a token in the first
or second bowl, B in the second or third bowl, and C in the third or
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first bowl. The first player to put the 1999th token into a bowl loses.
Show that players A and B can work together to ensure that C will
lose.

Solution: Suppose A plays only in the first bowl until it contains
1998 tokens, then always plays in the second bowl; and suppose B
plays only in the third bowl until it contains 1998 tokens, then always
plays in the second bowl as well.

Suppose by way of contradiction that C doesn’t lose. Without loss
of generality, say the first bowl fills up to 1998 tokens before the third
bowl does — call this point in time the “critical point.”

First suppose the third bowl never contains 1998 tokens. Then at
most 999 round pass after the critical point since during each round,
the third bowl gains 2 tokens (one from B, one from C). But then A
plays at most 999 tokens into the second bowl and doesn’t lose; thus
nobody loses, a contradiction.

Thus the third bowl does contain 1998 tokens some k ≤ 999 more
rounds after the critical point. After this k-th round A has played
at most k tokens into the second bowl, and B has possibly played at
most one token into the second bowl during the k-th round; so the
second bowl has at most 1000 tokens. However, the first and third
bowls each have 1998 tokens, so during the next round C will lose.

Problem 10.2 Find all infinite bounded sequences a1, a2, . . . of
positive integers such that for all n > 2,

an =
an−1 + an−2

gcd(an−1, an−2)
.

Solution: The only such sequence is 2, 2, 2, . . . .

Let gn = gcd(an, an+1). Then gn+1 divides both an+1 and an+2, so
it divides gnan+2 − an+1 = an as well. Thus gn+1 divides both an

and an+1, and it divides their greatest common divisor gn.

Therefore, the gi form a nonincreasing sequence of positive integers
and eventually equal some positive constant g. At this point, the ai

satisfy the recursion

gan = an−1 + an−2.

If g = 1, then an = an−1+an−2 > an−1 so the sequence is increasing
and unbounded.
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If g ≥ 3, then an = an−1+an−2
g <

an−1+an−2
2 ≤ max{an−1, an−2}.

Similarly, an+1 < max{an−1, an} ≤ max{an−2, an−1}, so that
max{an, an+1} < max{an−2, an−1}. Therefore the maximum values
of successive pairs of terms form an infinite decreasing sequence of
positive integers, a contradiction.

Thus g = 2 and eventually we have 2an = an−1 + an−2 or an −
an−1 = − 1

2 (an−1 − an−2). This implies that ai − ai−1 converges
to 0 and that the ai are eventually constant as well. From 2an =
an−1 + an−2, this constant must be 2.

Now if an = an+1 = 2 for n > 1, then gcd(an−1, an) = gcd(an−1, 2)
either equals 1 or 2. Since

2 = an+1 =
an−1 + an

gcd(an−1, 2)
,

this either implies an−1 = 0 — which is impossible — or an−1 = 2.

Therefore all the ai equal 2, and this sequence indeed works.

Problem 10.3 The incircle of triangle ABC touches sides AB, BC,
CA at K, L, M , respectively. For each two of the incircles of AMK,
BKL, CLM is drawn the common external tangent not lying along
a side of ABC. Show that these three tangents pass through a single
point.

Solution: Let D, E, F be the midpoints of minor arcs MK, KL,

LM of the incircle, respectively; and let S1, S2, S3 be the incircles of
triangles AMK, BKL, and CLM, respectively.

Since AK is tangent to the incircle, ∠AKD = ∠KLD = ∠KMD =
∠DKM ; similarly, ∠AMD = ∠DMK. Thus, D is the incenter of
AMK and the center of S1.

Likewise, E is center of S2 and F is the center of S3. By the result
proved in Problem 9.3, the incenter I of triangle KLM lies on a
common external tangent to S1 and S2. But it does not lie on AB,

so it must lie on the other external tangent. Similarly, the common
external tangent to S2 and S3 (not lying on BC) passes through I, as
does the common external tangent to S3 and S1 (not lying on CA);
so the three tangents all pass through I, as desired.

Problem 10.4 An n×n square is drawn on an infinite checkerboard.
Each of the n2 cells contained in the square initially contains a
token. A move consists of jumping a token over an adjacent token
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(horizontally or vertically) into an empty square; the token jumped
over is removed. A sequence of moves is carried out in such a way
that at the end, no further moves are possible. Show that at least n2

3

moves have been made.

Solution: At the end of the game no two adjacent squares contain
tokens: otherwise (since no more jumps are possible) they would have
to be in an infinitely long line of tokens, which is not allowed. Then
during the game, each time a token on square A jumps over another
token on square B, imagine putting a 1×2 domino over squares A and
B. At the end, every tokenless square on the checkerboard is covered
by a tile; so no two uncovered squares are adjacent. We now prove
there must be at least n2

3 dominoes, implying that at least n2

3 moves
have been made:

Lemma. If an n × n square board is covered with 1 × 2 rectangular
dominoes (possibly overlapping, and possibly with one square off the
board) in such a way that no two uncovered squares are adjacent, then
at least n2

3 tiles are on the board.

Proof: Call a pair of adjacent squares on the checkerboard a “tile.”
If a tile contains two squares on the border of the checkerboard, call
it an “outer tile”; otherwise, call it an “inner tile.”

Now for each domino D, consider any tile it partly covers. If this
tile is partly covered by exactly m dominoes, say D destroys 1

m of
that tile. Adding over all the tiles that D lies on, we find the total
quantity a of outer tiles that D destroys, and the total quantity b of
inner tiles that D destroys. Then say that D scores 1.5a + b points.

Consider a vertical domino D wedged in the upper-left corner of
the chessboard; it partly destroys two horizontal tiles. But one of
the two squares immediately to D’s right must be covered; so if D

destroys all of one horizontal tile, it can only destroy at most half of
the other.

Armed with this type of analysis, some quick checking shows that
any domino scores at most 6 points; and that any domino scoring 6
points must lie completely on the board, not be wedged in a corner,
not overlap any other dominoes, and not have either length-1 edge
hit another domino.

Now in a valid arrangement of dominoes, every tile is destroyed
completely; since there are 4(n−1) outer tiles and 2(n−1)(n−2) inner
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tiles, this means that a total of 1.5·4(n−1)+2(n−1)(n−2) = 2(n2−1)
points are scored. Therefore, there must be at least d 2(n2−1)

6 e =
dn2−1

3 e dominoes.
Suppose by way of contradiction that we have exactly n2−1

3 domi-
noes. First, for this to be an integer 3 cannot divide n. Second, the
restrictions described two paragraphs ago must hold for every domino.

Suppose we have any horizontal domino not at the bottom of the
chessboard; one of the two squares directly below it must be covered.
But to satisfy our restrictions, it must be covered by a horizontal
domino (not a vertical one). Thus we can find a chain of horizontal
dominoes stretching to the bottom of the board, and similarly we can
follow this chain to the top of the board.

Similarly, if there is any vertical domino then some chain of vertical
dominoes stretches across the board. But we can’t have both a
horizontal and a vertical chain, so all the dominoes must have the
same orientation: say, horizontal.

Now to cover the tiles in any given row while satisfying the re-
strictions, we must alternate between blank squares and horizontal
dominoes. In the top row, since no dominoes are wedged in a
corner we must start and end with blank squares; thus we must have
n ≡ 1 (mod 3). But then in the second row, we must start with
a horizontal domino (to cover the top-left vertical tiles); then after
alternating between dominoes and blank squares, the end of the row
will contain two blank squares—a contradiction. Thus it is impossible
to cover the chessboard with exactly n2−1

3 dominoes, and indeed at
least n2

3 dominoes are needed.

Note: When n is even, there is a simpler proof of the main
result: split the n2 squares of the board into 2× 2 mini-boards, each
containing four (overlapping) 1 × 2 tiles. At the end of the game,
none of these n2 tiles can contain two checkers (since no two checkers
can be adjacent at the end of the game). But any jump removes a
checker from at most three full tiles; therefore, there must be at least
n2

3 moves.
Sadly, a similar approach for odd n yields a lower bound of only

n2−n−1
3 moves. For large enough n though, we can count the number

of tokens that end up completely outside the (n + 2) × (n + 2) area
around the checkerboard — each made a jump that freed at most two
full tiles, and from here we can show that n2

3 moves are necessary.
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Problem 10.5 The sum of the decimal digits of the natural number
n is 100, and that of 44n is 800. What is the sum of the digits of 3n?

Solution: The sum of the digits of 3n is 300.
Let S(x) denote the sum of the digits of x. Then S(a + b) equals

S(a) + S(b), minus nine times the number of carries in the addition
a+ b. Therefore, S(a+ b) ≤ S(a)+S(b); applying this repeatedly, we
have S(a1 + · · ·+ ak) ≤ S(a1) + · · ·+ S(ak).

Also note that for a digit d ≤ 2 we have S(44d) = 8d; for d = 3 we
have S(8d) = 6 < 8d; and for d ≥ 4, 44d ≤ 44(9) has at most 3 digits
so its sum is at most 27 < 8d.

Now write n =
∑

ni · 10i, so that the ni are the digits of n in base
10. Then∑

8ni = S(44n) ≤
∑

S(44ni · 10i) =
∑

S(44ni) ≤
∑

8ni,

so equality must occur in the second inequality — that is, each of the
ni must equal 0, 1, or 2. But then each digit of 3n is simply three
times the corresponding digit of n, and S(3n) = 3S(n) = 300, as
claimed.

Problem 10.7 The positive real numbers x and y satisfy

x2 + y3 ≥ x3 + y4.

Show that x3 + y3 ≤ 2.

Solution: Equivalently we can prove that if x3 + y3 > 2, then

x2 + y3 < x3 + y4.

First notice that
√

x2+y2

2 ≤ 3

√
x3+y3

2 by the Power-Mean Inequality,
implying that

x2 + y2 ≤ (x3 + y3)2/3 · 21/3

< (x3 + y3)2/3(x3 + y3)1/3

= x3 + y3,

or x2−x3 < y3− y2. But 0 ≤ y2(y− 1)2 ⇒ y3− y2 ≤ y4− y3, so that

x2 − x3 < y4 − y3

⇒ x2 + y3 < x3 + y4,
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as desired.

Problem 10.8 In a group of 12 people, among every 9 people one
can find 5 people, any two of whom know each other. Show that there
exist 6 people in the group, any two of whom know each other.

Solution: Suppose by way of contradiction that no 6 people know
each other. Draw a complete graph with twelve vertices corresponding
to the people, labeling the people (and their corresponding vertices)
A,B, . . . , L. Color the edge between two people red if they know each
other, and blue otherwise. Then among every nine vertices there is
at least one red K5; and among any six vertices there is at least one
blue edge.

We prove that there are no blue cycles of odd length in this graph.
Suppose, for sake of contradiction, that there is a blue cycle of length
(i) 3 or 5, (ii) 7, (iii) 9, or (iv) 11.

(i) First suppose there is a blue 3-cycle (say, ABC) or a blue 5-cycle
(without loss of generality, ABCDE). In the first case, there is a
blue edge among DEFGHI (sat, DE); then any red K5 contains
at most one vertex from {A,B, C} and at most one vertex from
{D,E}. In the second case, any K5 still contains at most two
vertices from {A,B, C, D, E}.

Now, FGHIJK contains some other blue edge: without loss of
generality, say FG is blue. Now for each edge V1V2 in HIJKL,
there must be a red K5 among ABCDEFGV1V2. From before,
this K5 can contain at most two vertices from {A,B,C, D, E};
and it contains at most one vertex from each of {F,G}, {V1},
and {V2}. Therefore V1 and V2 must be connected by a red
edge, so HIJKL is a red K5. Now FHIJKL cannot be a red
K6, so without loss of generality suppose FH is blue. Similarly,
GHIJKL cannot be a red K6, so without loss of generality either
GH or GI is blue. In either case, ABCDEFGHI must contain
some red K5. If GH is blue then this K5 contains at most four
vertices, two from {A,B,C, D, E} and one from each of {F,G, H}
and {I}; and if GI is blue then this K5 again contains at most four
vertices, two from {A,B,C, D, E} and one from each of {F,H}
and {G, I}. Either possibility yields a contradiction.
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(ii) If there is some blue 7-cycle, say without loss of generality it is
ABCDEFG. As before, any K5 contains at most three vertices
from {A,B, . . . , G}, so HIJKL must be a red K5. Now for each
of the

(
5
2

)
= 10 choices of pairs {V1, V2} ⊂ {H, I, J, K,L}, there

must be a red K5 among ABCDEFGV1V2; so for each edge in
HIJKL, some red triangle in ABCDEFG forms a red K5 with
that edge. But ABCDEFG contains at most 7 red triangles:
ACE, BDF, . . . , and GBD. Thus some triangle corresponds to
two edges. Without loss of generality, either ACE corresponds
to both HI and HJ ; or ACE corresponds to both HI and JK.
In either case, ACEHIJ is a red K6, a contradiction.

(iii) Next suppose that there is some blue 9-cycle; then among these
nine vertices there can be no red K5, a contradiction.

(iv) Finally, suppose that there is some blue 11-cycle; without loss of
generality, say it is ABCDEFGHIJK. There is a red K5 among
{A,B, C, D, E, F,G, H, I}, which must be ACEGI. Likewise,
DFHJA must be a red K5, so AC, AD, . . . , AH are all red.
Similarly, every edge in ABCDEFGHI is red except for those
in the blue 11-cycle.

Now among {A,B,C, D, E, F,G, H,L} there is some red K5,
either ACEGL or BDFHL. Without loss of generality, assume
the former. Then since ACEGLI and ACEGLJ can’t be red
6-cycles, AI and AJ must be blue. But then AIJ is a blue
3-cycle, a contradiction.

Thus there are indeed no blue cycles of odd length, so the blue edges
form a bipartite graph: that is, the twelve vertices can be partitioned
into two groups G1 and G2 containing no blue edges. One of these
groups, say G1, has at least 6 vertices; but then G1 is a red K6, a
contradiction. Therefore our original assumption was false; there is
some red K6, so some six people do indeed know each other.

Problem 11.1 Do there exist 19 distinct natural numbers which
add to 1999 and which have the same sum of digits?

Solution: No such integers exist; suppose by way of contradiction
they did.

The average of the numbers is 1999
19 < 106, so one number is at most

105 and has digit sum at most 18.
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Every number is congruent to its digit sum modulo 9, so all
the numbers and their digit sums are congruent modulo 9 — say,
congruent to k. Then 19k ≡ 1999 ⇒ k ≡ 1 (mod 9), so the common
digit sum is either 1 or 10.

If it is 1 then all the numbers equal 1, 10, 100, or 1000 so that some
two are equal — which is not allowed. Thus the common digit sum
is 10. Note that the twenty smallest numbers with digit sum 10 are:

19, 28, 37, . . . , 91, 109, 118, 127, . . . , 190, 208.

The sum of the first nine numbers is (10 + 20 + · · ·+ 90) + (9 + 8 +
· · ·+ 1) = 450 + 45 = 495, while the sum of the next nine numbers is
(900)+(10+20+· · ·+80)+(9+8+7+· · ·+1) = 900+360+45 = 1305,

so the first eighteen numbers add up to 1800.
Since 1800 + 190 6= 1999, the largest number among the nineteen

must be at least 208. But then the smallest eighteen numbers add
up to at least 1800, giving a total sum of at least 2028 > 1999, a
contradiction.

Problem 11.2 At each rational point on the real line is written an
integer. Show that there exists a segment with rational endpoints,
such that the sum of the numbers at the endpoints does not exceed
twice the number at the midpoint.

First Solution: Let f : Q → Z be the function that maps each
rational point to the integer written at that point. Suppose by way
of contradiction that for all q, r ∈ Q,

f(q) + f(r) > 2f

(
q + r

2

)
.

For i ≥ 0, let ai = 1
2i and bi = − 1

2i . We shall prove that for some
k, f(ak) and f(bk) are both less than f(0). Suppose that for some i,

f(ai) ≥ f(0). Now we apply the condition:

f(ai+1) <
f(ai) + f(0)

2
≤ f(ai).

Since the range of f is the integers, f(ai+1) ≤ f(ai) − 1 as long as
f(ai) ≥ f(0). Therefore, there exists some m such that f(am) < f(0).
Then

f(am+1) <
f(am) + f(0)

2
<

2f(0)
2

,

so f(ai) < f(0) for i ≥ m.
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Similarly, there exists n such that f(bi) < f(0) for i ≥ n. Now if
we just take k = max{m,n}, we have a contradiction:

f(ak) + f(bk) < 2f(0).

Second Solution: Define f as in the first solution, and suppose
by way of contradiction that there was no such segment; rewrite the
inequality in the first solution as

f(p)− f

(
p + q

2

)
> f

(
p + q

2

)
− f(q).

For a continuous function, this would be equivalent to saying that
f is strictly convex; however, f is not continuous. But we can still
show a similar result for the set F =

{
i
2j | i, j ∈ Z, j ≥ 0

}
, fractions

whose denominators are powers of 2. For convenience, write Px to
represent (x, f(x)) on the graph of f in the xy-plane. Then we have
the following result:

Lemma. For all a, b, c ∈ F with b between a and c, Pb is below the
segment connecting Pa and Pc.

Proof: Equivalently we can prove that the average rate of change
of f in the interval [a, b] is smaller than the average rate of change of
f in the interval [b, c] — that is,

f(b)− f(a)
b− a

<
f(c)− f(b)

c− a
.

Partition [a, b] and [b, c] into sub-intervals of equal length δ. For
example, if a = α

2j , b = β
2j , and c = γ

2j , we could use δ = 1
2j .

Let ∆x = f(x+δ)−f(x)
δ , the average rate of change of f in the interval

[x, x + δ]. Then apply our inequality to find that

∆a < ∆a+δ < · · · < ∆c−δ.

Thus,

f(b)− f(a)
b− a

≤ max {∆a,∆a+δ, . . . ,∆b−δ}

= ∆b−δ

< ∆b

= min {∆b,∆b+δ, . . . ,∆c−δ}
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≤ f(c)− f(b)
c− b

,

as desired.

Now consider all numbers x ∈ F between 0 and 1. Since Px

lies below the segment connecting P0 and P1, we have f(x) ≤
max{f(0), f(1)}.

Pick some number k ∈ F between 0 and 1. For k < x < 1, Px

must lie above the line connecting P0 and Pk; otherwise, Pk would be
above the segment connecting P0 and Px, contradicting our lemma.
Similarly, for 0 < x < k, Px must lie above the line connecting Pk

and P1.

Since there are infinitely many values x ∈ F in the interval (0, 1)
but f(x) is bounded from above and below in this interval, some three
points have the same y-coordinate – contradicting our lemma. There-
fore our original assumption was false and the segment described in
the problem does exist.

Problem 11.3 A circle inscribed in quadrilateral ABCD touches
sides DA, AB, BC, CD at K, L, M , N , respectively. Let S1,
S2, S3, S4 be the incircles of triangles AKL, BLM , CMN , DNK,
respectively. The common external tangents to S1 and S2, to S2 and
S3, to S3 and S4, and to S4 and S1, not lying on the sides of ABCD,
are drawn. Show that the quadrilateral formed by these tangents is
a rhombus.

Solution: Let P be the intersection of the two common external
tangents involving S1, and let Q, R, S be the intersections of the pairs
of tangents involving S2, S3, S4, respectively.

As in problem 10.3, the centers of S1, S2, S3, S4 are the midpoints
of arcs KL, LM, MN, NK, respectively. AB does not pass through
the incenter I of triangle KLM, so by the result proved in problem 9.3
the other external tangent PQ must pass through I and be parallel
to KM. Likewise, RS ‖ KM so we have PQ ‖ RS.

Similarly, QR ‖ LN ‖ SP, so PQRS is a parallelogram.
Let 〈X | ω〉 denote the length of the tangent from point X to circle

ω, and let 〈ω1 | ω2〉 denote the length of the external tangent to circles
ω1 and ω2. Then we also know

AB = 〈A | S1〉+ 〈S1 | S2〉+ 〈S2 | B〉
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= 〈A | S1〉+ 〈S1 | P 〉+ PQ + 〈Q | S2〉+ 〈S2 | B〉

and three analogous equations. Substituting these into AB + CD =
BC +DA, which is true since ABCD is circumscribed about a circle,
we find that PQ + RS = QR + SP.

But since PQRS is a parallelogram, PQ = RS and QR = SP,

implying that PQ = QR = RS = SP and that PQRS is a rhombus.

Problem 11.5 Four natural numbers have the property that the
square of the sum of any two of the numbers is divisible by the product
of the other two. Show that at least three of the four numbers are
equal.

Solution: Suppose by way of contradiction four such numbers
did exist, and pick a counterexample a, b, c, d with minimum sum
a+b+c+d. If some prime p divided both a and b, then from a | (b+c)2

and a | (b + d)2 we know that p divides c and d as well: but then a
p ,

b
p , c

p , d
p are a counter-example with smaller sum. Therefore, the four

numbers are pairwise relatively prime.
Suppose that some prime p > 2 divided a. Then since a divides

each of (b + c)2, (c + d)2, (d + b)2, we know that p divides b + c, c + d,

d + b. Hence p divides (b + c) + (c + d) + (d + b) and thus b + c + d.

Therefore p | (b + c + d)− (b + c) = d, and similarly p | c and p | b, a
contradiction.

Thus each of a, b, c, d are powers of 2. But since they are pairwise
relatively prime, three of them must equal 1 — a contradiction.
Therefore our original assumption was false, and no such counterex-
ample exists.

Problem 11.6 Show that three convex polygons in the plane
cannot be intersected by a single line if and only if for each of the
polygons, there exists a line intersecting none of the polygons, such
that the given polygon lies on the opposite side of the line from the
other two.

Solution: In this proof, “polygon” refers to both the border and
interior of a polygon – the problem statement is not affected by this
assumption, because a line hitting the interior of a polygon must hit
its border as well.

Suppose that some line ` intersects all three polygons; orient the
figure to make ` horizontal, and say it hits the polygons (from left to
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right) at A, B, and C. Any line m not hitting any of the polygons is
either parallel to `; hits ` to the left of B; or hits ` to the right of B.

In all of these cases, m does not separate B from both A and C, so m

cannot separate the polygon containing B from the other polygons.
(In the first two cases B and C are not separated; and in the first and
third cases A and B are not separated.)

To prove the other direction, we begin by proving an intuitively
obvious but nontrivial lemma:

Lemma. Given two non-intersecting polygons, there is a line that
separates them.

Let V be the convex hull of the two polygons. If all its vertices are in
one polygon, then this polygon contains the other — a contradiction.
Also, for any four vertices A, B, C, D in that order on V (not
necessarily adjacent), since AC and BD intersect we cannot have
A and C in one polygon and B and D in the other. Thus one run of
adjacent vertices V1, . . . , Vm is in one polygon P ; and the remaining
vertices W1, . . . ,Wn are in the other polygon Q.

Then V1Vm is contained in polygon P, so line V1Vm does not
intersect Q; therefore we can simply choose a line extremely close
to V1Vm that doesn’t hit P, and separates P and Q.

Now call the polygons T, U, V, and suppose no line intersects all
three. Then every two polygons are disjoint — if M was in T ∪U and
N 6= M was in V, then the line MN hits all three polygons.

Triangulate the convex hull H of T and U (that is, divide it into
triangles whose vertices are vertices of H). If V intersects H at some
point M, then M is on or inside of these triangles, XY Z. Without loss
of generality say X ∈ T and Y, Z ∈ U (otherwise both triangle XY Z

and M are inside either T or U, so this polygon intersects V ). Then
line XM intersects both T and V ; and since it hits Y Z, it intersects
U as well – a contradiction.

Thus H is disjoint from V, and from the lemma we can draw a
line separating the two — and thus separating T and U from V, as
desired. We can repeat this construction for T and U, so we are done.

Problem 11.7 Through vertex A of tetrahedron ABCD passes a
plane tangent to the circumscribed sphere of the tetrahedron. Show
that the lines of intersection of the plane with the planes ABC, ACD,
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ABD form six equal angles if and only if

AB · CD = AC ·BD = AD ·BC.

Solution: Perform an inversion about A with arbitrary radius r.

Since the given plane P is tangent to the circumscribed sphere of
ABCD, the sphere maps to a plane parallel to P containing B′, C ′,

D′, the images of B, C, D under inversion. Planes P, ABC, ACD,

and ABD stay fixed under the inversion since they all contain A.

Now, since C ′D′ is in a plane parallel to P, plane ACD = AC ′D′

intersects P in a line parallel to C ′D′. More rigorously, complete
parallelogram C ′D′AX. Then X is both in plane AC ′D′ = ACD and
in plane P (since PX ‖ C ′D′), so the intersection of ACD and P is
the line PX, parallel to C ′D′.

Similarly, plane ADB intersects P in a line parallel to D′B′, and
plane ABC intersects P in a line parallel to B′C ′. These lines form
six equal angles if and only if C ′D′, D′B′, B′C ′ form equal angles:
that is, if triangle C ′D′B′ is equilateral and C ′D′ = D′B′ = B′C ′.

Under the inversion distance formula, this is true if and only if

CD · r2

AC ·AD
=

DB · r2

AD ·AB
=

BC · r2

AB ·AC
,

which (multiplying by AB·AC·AD
r2 ) is equivalent to

AB · CD = AC ·BD = AD ·BC,

as desired.
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1.18 Slovenia

Problem 1 The sequence of real numbers a1, a2, a3, . . . satisfies the
initial conditions a1 = 2, a2 = 500, a3 = 2000 as well as the relation

an+2 + an+1

an+1 + an−1
=

an+1

an−1

for n = 2, 3, 4, . . . . Prove that all the terms of this sequence are
positive integers and that 22000 divides the number a2000.

Solution: From the recursive relation it follows that an+2an−1 =
a2

n+1 for n = 2, 3, . . . . No term of our sequence can equal 0, and hence
it is possible to write

an+2

an+1an
=

an+1

anan−1

for n = 2, 3, . . . . It follows by induction that the value of the
expression an+1

anan−1
is constant, namely equal to a3

a2a1
= 2. Thus

an+2 = 2anan+1 and all terms of the sequence are positive integers.
From this new relation, we also know that an+1

an
is an even integer

for all positive integers n. Write a2000 = a2000
a1999

a1999
a1998

· · · a2
a1
· a1. In this

product each of the 1999 fractions is divisible by 2, and a1 = 2 is even
as well. Thus a2000 is indeed divisible by 22000.

Problem 2 Find all functions f : R → R that satisfy the condition

f(x− f(y)) = 1− x− y

for all x, y ∈ R.

Solution: For x = 0, y = 1 we get f(−f(1)) = 0. For y = −f(1) it
follows that f(x) = 1+f(1)−x. Writing a = 1+f(1) and f(x) = a−x,
we have

1− x− y = f(x− f(y)) = a− x + f(y) = 2a− x− y

so that a = 1
2 . And indeed, the function f(x) = 1

2 − x satisfies the
functional equation.

Problem 3 Let E be the intersection of the diagonals in cyclic
quadrilateral ABCD, and let F and G be the midpoints of sides AB

and CD, respectively. Prove that the three lines through G, F, E

perpendicular to AC, BD, AD, respectively, intersect at one point.
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Solution: All angles are directed modulo 180◦. Drop perpendicular
GP to diagonal AC and perpendicular FQ to diagonal BD. Let R

be the intersection of lines PG and FQ, and let H be the foot of the
perpendicular from E to side AD. We wish to prove that H,E, R are
collinear.

Since F and G are midpoints of corresponding sides in similar
triangles DEC and ABE (with opposite orientations), triangles DPE

and AQE are similar with opposite orientations as well. Thus
∠DPE = ∠EQA and therefore AQPD is a cyclic quadrilateral. And
because ∠EQR = 90◦ = ∠EPR, the quadrilateral EQRP is cyclic,
too. So

∠ADQ = ∠APQ = ∠EPQ = ∠ERQ.

It follows that ∠DEH = 90◦ − ∠ADQ = 90◦ − ∠ERQ = ∠QER;
and since D,E,Q are collinear then H,E, R must be as well.

Problem 4 Three boxes with at least one marble in each are given.
In a step we choose two of the boxes, doubling the number of marbles
in one of the boxes by taking the required number of marbles from
the other box. Is it always possible to empty one of the boxes after a
finite number of steps?

Solution: Without loss of generality suppose that the number of
marbles in the boxes are a, b, and c with a ≤ b ≤ c. Write b = qa + r

where 0 ≤ r < a and q ≥ 1. Then express q in binary:

q = m0 + 2m1 + · · ·+ 2kmk,

where each mi ∈ {0, 1} and mk = 1. Now for each i = 0, 1, . . . , k, add
2ia marbles to the first box: if mi = 1 take these marbles from the
second box; otherwise take them from the third box. In this way we
take at most (2k − 1)a < qa ≤ b ≤ c marbles from the third box and
exactly qa marbles from the second box altogether.

In the second box there are now r < a marbles left. Thus the box
with the least number of marbles now contains less than a marbles.
Then by repeating the described procedure, we will eventually empty
one of the boxes.
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1.19 Taiwan

Problem 1 Determine all solutions (x, y, z) of positive integers such
that

(x + 1)y+1 + 1 = (x + 2)z+1.

Solution: Let a = x + 1, b = y + 1, c = z + 1. Then a, b, c ≥ 2 and

ab + 1 = (a + 1)c

((a + 1)− 1)b + 1 = (a + 1)c.

Taking either equation mod (a + 1) yields (−1)b + 1 ≡ 0, so b is odd.
Then taking the second equation mod (a + 1)2 after applying the
binomial expansion yields(

b

1

)
(a + 1)(−1)b−1 + (−1)b + 1 ≡ 0 (mod (a + 1)2)

so a + 1 | b and a is even.
On the other hand, taking the first equation mod a2 after applying

the binomial expansion yields

1 ≡
(

c

1

)
a + 1 (mod a2)

so c is divisible by a and is even as well. Write a = 2a1 and c = 2c1.
Then

2bab
1 = ab = (a + 1)c − 1 = ((a + 1)c1 − 1)((a + 1)c1 + 1).

It follows that gcd((a + 1)c1 − 1, (a + 1)c1 + 1) = 2. Therefore, using
the fact that 2a1 is a divisor of (a + 1)c1 − 1, we may conclude that

(a + 1)c1 − 1 = 2ab
1

(a + 1)c1 + 1 = 2b−1.

We must have 2b−1 > 2ab
1 ⇒ a1 = 1. Then these equations give c1 = 1

and b = 3, and therefore the only solution is (x, y, z) = (1, 2, 1).

Problem 2 There are 1999 people participating in an exhibition.
Out of any 50 people, at least 2 do not know each other. Prove that
we can find at least 41 people who each know at most 1958 other
people.
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Solution: Let Y be the set of people who know at least 1959 other
people, and let N(p) denote the set of people whom p knows. Assume
by way of contradiction that less than 41 people each know at most
1958 people; then |Y | ≥ 1959. We now show that some 50 people all
know each other, a contradiction.

Pick a person y1 ∈ Y and write B1 = N(y1) with |B1| ≥ 1959.

Then |B1|+ |Y | > 1999, and there is a person y2 ∈ B1 ∩ Y .
Now write B2 = N(y1)∩N(y2) with |B2| = |B1|+ |N(y2)| − |B1 ∪

N(y2)| ≥ 1959+1959− 1999 = 1999− 40 · 2. Then |B2|+ |Y | > 1999,
and there is a person y3 ∈ B2 ∩ Y .

Now continue similarly: suppose we have j ≤ 48 different people
y1, y2, . . . , yj in Y who all know each other; and suppose that Bj =
N(y1)∩N(y2)∩· · ·∩N(yj) has at least 1999−40j ≥ 79 > 40 elements.
Then |Bj | + |Y | > 1999, and there is a person yj+1 ∈ Bj ∩ Y ; and
Bj+1 = Bj ∩N(yj+1) has at least |Bj |+ |N(yj+1)|− |Bj ∪N(yj+1)| ≥
(1999− 40j) + 1959− 1999 = 1959− 40(j + 1) > 0 elements, and we
can continue onward.

Thus we can find 49 people y1, y2, . . . , y49 such that B49 = N(y1)∩
N(y2) ∩ · · · ∩N(y49) is nonempty. Thus there is a person y50 ∈ B49;
but then any two people from y1, y2, . . . , y50 know each other, a
contradiction.

Problem 3 Let P ∗ denote all the odd primes less than 10000, and
suppose p ∈ P ∗. For each subset S = {p1, p2, · · · , pk} of P ∗, with
k ≥ 2 and not including p, there exists a q ∈ P ∗ \ S such that

q + 1 | (p1 + 1)(p2 + 1) · · · (pk + 1).

Find all such possible values of p.

Solution: A “Mersenne prime” is a prime of the form 2n − 1 for
some positive integer n. Notice that if 2n−1 is prime then n > 1 and
n is prime because otherwise we could either write (if n were even)
n = 2m and 2n − 1 = (2m − 1)(2m + 1), or (if n were odd) n = ab for
odd a, b and 2n − 1 = (2a − 1)(2(b−1)a + 2(b−2)a + · · ·+ 2a + 1). Then
some calculations show that the set T of Mersenne primes less than
10000 is

{M2,M3,M5,M7,M13} = {3, 7, 31, 127, 8191},
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where Mp = 2p−1. (211−1 is not prime: it equals 23 ·89.) We claim
this is the set of all possible values of p.

If some prime p is not in T , then look at the set S = T . Then there
must be some prime q 6∈ S less than 10000 such that

q + 1 | (M2 + 1)(M3 + 1)(M5 + 1)(M7 + 1)(M13 + 1) = 230.

Thus, q +1 is a power of 2 and q is a Mersenne prime less than 10000
— and therefore q ∈ T = S, a contradiction.

On the other hand, suppose p is in T . Suppose we have a set
S = {p1, p2, . . . , pk} ⊂ P ∗ not including p, with k ≥ 2 and p1 < p2 <

· · · < pk. Suppose by way of contradiction that for all q ∈ P ∗ such
that q + 1 | (p1 + 1) · · · (pk + 1), we have q ∈ S. Then

4 | (p1 + 1)(p2 + 1) =⇒ M2 ∈ S

8 | (M2 + 1)(p2 + 1) =⇒ M3 ∈ S

32 | (M2 + 1)(M3 + 1) =⇒ M5 ∈ S

128 | (M2 + 1)(M5 + 1) =⇒ M7 ∈ S

8192 | (M3 + 1)(M5 + 1)(M7 + 1) =⇒ M13 ∈ S.

Then p, a Mersenne prime under 10000, must be in S — a contra-
diction. Therefore there is some prime q < 10000 not in S with
q + 1 | (p1 + 1) · · · (pk + 1), as desired. This completes the proof.

Problem 4 The altitudes through the vertices A, B, C of an acute-
angled triangle ABC meet the opposite sides at D, E, F , respectively,
and AB > AC. The line EF meets BC at P , and the line through D

parallel to EF meets the lines AC and AB at Q and R, respectively.
Let N be a point on the side BC such that ∠NQP +∠NRP < 180◦.
Prove that BN > CN .

Solution: Let M be the midpoint of BC. We claim that P,Q,M,R

are concyclic. Given this, we would have

∠MQP + ∠MRP = 180◦ > ∠NQP + ∠NRP.

This can only be true if N is between M and C; then BN > CN , as
desired.

Since ∠BEC = ∠BFC = 90◦, we observe that the points
B,C,E, F are concyclic and thus PB · PC = PE · PF . Also, the
points D,E, F, M lie on the nine-point circle of triangle ABC so that
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PE · PF = PD · PM . (Alternatively, it’s easy to show that DEFM

is cyclic with some angle-chasing). These two equations yield

PB · PC = PD · PM. (1)

On the other hand, since 4AEF ∼ 4ABC and QR ‖ EF , we have
∠RBC = ∠AEF = ∠CQR. Thus CQBR is cyclic and

DQ ·DR = DB ·DC. (2)

Now let MB = MC = a, MD = d, MP = p. Then we have
PB = p + a, DB = a + d, PC = p − a, CD = a − d, DP = p − d.
Then equation (1) implies

(p + a)(p− a) = (p− d)p

=⇒ a2 = dp

=⇒ (a + d)(a− d) = (p− d)d,

or equivalently
DB ·DC = DP ·DM. (3)

Combining (2) and (3) yields DQ ·DR = DP ·DM , so that the points
P,Q,M,R are concyclic, as claimed.

Problem 5 There are 8 different symbols designed on n different
T-shirts, where n ≥ 2. It is known that each shirt contains at least
one symbol, and for any two shirts, the symbols on them are not all
the same. Also, for any k symbols, 1 ≤ k ≤ 7, the number of shirts
containing at least one of the k symbols is even. Find the value of n.

Solution: Let X be the set of 8 different symbols, and call a subset
S of X “stylish” if some shirt contains exactly those symbols in S.
Look at a stylish set A with the minimal number of symbols |A| ≥ 1;
since n ≥ 2, we must have |A| ≤ 7. Then all the other n − 1 stylish
sets contain at least one of the k = 8− |A| symbols in X \A, so n− 1
is even and n is odd.

Observe that any nonempty subset S ⊆ X contains an odd number
of stylish subsets: For S = X this number is n; and for |S| ≤ 7, an
even number t of stylish sets contain some element of X \ S, so the
remaining odd number n− t of stylish sets are contained in S.

Then every nonempty subset of X is stylish. Otherwise, pick a
minimal non-stylish subset S ⊆ X. Its only stylish subsets are its
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2|S|−2 proper subsets, which are all stylish by the minimal definition
of S; but this is an even number, which is impossible. Thus there
must be 28 − 1 = 255 T-shirts; and indeed, given any k symbols
(1 ≤ k ≤ 7), an even number 28 − 28−k of T-shirts contain at least
one of these k symbols.
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1.20 Turkey

Problem 1 Let ABC be an isosceles triangle with AB = AC. Let
D be a point on BC such that BD = 2DC, and let P be a point on
AD such that ∠BAC = ∠BPD. Prove that

∠BAC = 2∠DPC.

Solution: Draw X on BP such that BX = AP. Then ∠ABX =
∠ABP = ∠DPB − ∠PAB = ∠CAB − ∠PAB = ∠CAP. And since
AB = CA and BX = AP, by SAS we have 4ABX ∼= 4CAP.

Hence [ABX] = [CAP ], and also ∠DPC = 180◦ − ∠CPA = 180◦ −
∠AXB = ∠PXA.

Next, since BD = 2CD, the distance from B to line AD is twice
the distance from C to line AD. Therefore [ABP ] = 2[CAP ] =⇒
[ABX] + [AXP ] = 2[ABX]. Hence [AXP ] = [ABX] and XP =
BX = AP. Hence ∠PXA = ∠XAP, and ∠BAC = ∠BPD =
∠PXA + ∠XAP = 2∠PXA = 2∠DPC, as desired.

Problem 2 Prove that

(a + 3b)(b + 4c)(c + 2a) ≥ 60abc

for all real numbers 0 ≤ a ≤ b ≤ c.

Solution: By AM-GM we have a + b + b ≥ 3 3
√

ab2; multiplying this
and the analagous inequalities yields (a+2b)(b+2c)(c+2a) ≥ 27abc.
Then

(a + 3b)(b + 4c)(c + 2a)

≥
(

a +
1
3
a +

8
3
b

)(
b +

2
3
b +

10
3

c

)
(c + 2a)

=
20
9

(a + 2b)(b + 2c)(c + 2a) ≥ 60abc,

as desired.

Problem 3 The points on a circle are colored in three different
colors. Prove that there exist infinitely many isosceles triangles with
vertices on the circle and of the same color.
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First Solution: Partition the points on the circle into infinitely
many regular 13-gons. In each 13-gon, by the Pigeonhole Principle
there are at least 5 vertices of the same color: say, red. Later
we use some extensive case analysis to show that among these 5
vertices, some three form an isosceles triangle. Then for each 13-gon
there is a monochrome isosceles triangle; so there are infinitely many
monochrome isosceles triangles, as desired.

It suffices now to prove the following claim:

Claim Suppose 5 vertices of a regular 13-gon are colored red. Then
some three red vertices form an isosceles triangle.

Proof: Suppose none of these 5 vertices did form an isosceles
triangle. Label the vertices P0, . . . , P12 (with indices taken modulo
13); first we prove that Pi and Pi+2 cannot both be red. Assume they
could be, and say without loss of generality that P12 and P1 were red;
then P10, P0, and P3 cannot be red. Furthermore, at most one vertex
from each pair (P11, P4), (P4, P7), and (P7, P8) is red since each of
these pairs forms an isosceles triangle with P1. Similarly, at most
one vertex from each pair (P2, P9), (P9, P6), and (P6, P5) is red. Now
three vertices from {P11, P4, P7, P8}∪{P2, P9, P6, P5} are red; assume
without loss of generality that two vertices from {P11, P4, P7, P8} are.
Vertices P4 and P8 can’t both be red because they form an isosceles
triangle with P12; so vertices P11 and P7 must be red. But then
any remaining vertex forms an isosceles triangle with some two of
P1, P7, P11, P12, so we can’t have five red vertices, a contradiction.

Next we prove that Pi and Pi+1 can’t be red. If so, suppose
without loss of generality that P6 and P7 are red. Then P4, P5,

P8, and P9 cannot be red from the result in the last paragraph. P0

cannot be red either, because triangle P0P6P7 is isosceles. Now each
pair (P3, P11) and (P11, P1) contains at most one red vertex because
triangles P3P7P11 and P1P6P11 are isosceles. Also, P1 and P3 can’t
both be red from the result in the last paragraph. Thus at most one
of {P1, P3, P11} can be red; similarly, at most one of {P12, P10, P2}
can be red. But then we have at most four red vertices, again a
contradiction.

Thus if Pi is red then Pi−2, Pi−1, Pi+1, Pi+2 cannot be red; but then
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we can have at most four red vertices, a contradiction.

Second Solution: Suppose we have k ≥ 1 colors and a number
n ≥ 3. Then Van der Warden’s theorem states that we can find N

such that for any coloring of the numbers 1, 2, . . . , N in the k colors,
there are n numbers in arithmetic progression which are colored the
same. Apply this theorem with k = n = 3 to find such an N, and
partition the points on the circle into infinitely many regular N -gons
rather than 13-gons. For each N -gon P1P2 . . . PN , there exist i, j, k

(between 1 and N) in arithmetic progression such that Pi, Pj , Pk are
all the same color. Hence triangle PiPjPk is a monochrome isosceles
triangle. It follows that since we have infinitely many such N -gons,
there are infinitely many monochrome isosceles triangles.

Problem 4 Let ∠XOY be a given angle, and let M and N be two
points on the rays OX and OY , respectively. Determine the locus of
the midpoint of MN as M and N varies along the rays OX and OY

such that OM + ON is constant.

Solution: Let x̂ and ŷ be the unit vectors pointing along rays OX

and OY . Suppose we want OM + ON to equal the constant k; then
when OM = c we have ON = k − c, and thus the midpoint of MN

is 1
2 (cx̂ + (k − c)ŷ). As c varies from 0 to k, this traces out the line

segment connecting 1
2kx̂ with 1

2kŷ; that is, the segment M ′N ′ where
OM ′ = ON ′ = 1

2k, M ′ ∈ −−→OX, and N ′ ∈ −−→OY .

Problem 5 Some of the vertices of the unit squares of an n × n

chessboard are colored such that any k × k square formed by these
unit squares has a colored point on at least one of its sides. If l(n)
denotes the minimum number of colored points required to ensure the
above condition, prove that

lim
n→∞

l(n)
n2

=
2
7
.

Solution: For each colored point P , consider any 1 × 1 square of
the board it lies on. If this square contains m colored points, say that
P gains 1

m points from that square. Adding over all the 1×1 squares
that P lies on, we find the total number of points that P accrues.
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Any colored point on the edge of the chessboard gains at most 2
points. As for a colored point P on the chessboard’s interior, the
2×2 square centered at P must have a colored point Q on its border.
Then P and Q both lie on some unit square, which P gains at most
half a point from; thus P accrues at most 7

2 points.
Therefore any colored point collects at most 7

2 points, and l(n)
colored points collectively accrue at most 7

2 l(n) points. But for the
given condition to hold, the total number of points accrued must be
n2. It follows that 7

2 l(n) ≥ n2 and thus l(n)
n2 ≥ 2

7 .
Now, given some n× n board, embed it as the corner of an n′ × n′

board where 7 | n′ + 1 and n ≤ n′ ≤ n + 6. To each 7 × 7 grid of
vertices on the n′ × n′ board, color the vertices as below:

• ◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ •
◦ • ◦ • ◦ ◦ ◦
• ◦ ◦ ◦ ◦ • ◦
◦ ◦ • ◦ • ◦ ◦
◦ • ◦ ◦ ◦ ◦ •
◦ ◦ ◦ • ◦ • ◦

Then any k × k square on the chessboard has a colored point on at
least one of its sides. Since we color 2

7 (n′+1)2 vertices in this coloring,
we have

l(n) ≤ 2
7
(n′ + 1)2 ≤ 2

7
(n + 7)2

so that
l(n)
n2

≤ 2
7

(
n + 7

n

)2

.

As n →∞, the right hand side becomes arbitrarily close to 2
7 . Since

from before l(n)
n2 ≥ 2

7 for all n, this implies that limn→∞
l(n)
n2 exists

and equals 2
7 .

Problem 6 Let ABCD be a cyclic quadrilateral, and let L and N

be the midpoints of diagonals AC and BD, respectively. Suppose
that BD bisects ∠ANC. Prove that AC bisects ∠BLD.

Solution: Suppose we have any cyclic quadrilateral ABCD where L

and N are the midpoints of AC and BD. Perform an inversion about
B with arbitrary radius; A,D, C map to collinear points A′, D′, C ′,
while N maps to the point N ′ such that D′ is the midpoint of BN ′.
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There are only two points X on line A′D′ such that ∠BXN ′ =
∠BA′N ′: the point A′ itself, and the reflection of A′ across D′.
Then ∠ANB = ∠BNC ⇐⇒ ∠BA′N ′ = ∠BC ′N ′ ⇐⇒ A′D′ =
D′C ′ ⇐⇒ AD

BA·BD = DC
BD·BC ⇐⇒ AD ·BC = BA ·DC.

Similarly, ∠BLA = ∠DLA ⇐⇒ AD · BC = BA ·DC. Therefore
∠ANB = ∠BNC ⇐⇒ ∠BLA = ∠DLA; that is, BD bisects ∠ANC

if and only if AC bisects ∠BLD, which implies the claim.

Problem 7 Determine all functions f : R → R such that the set{
f(x)

x
| x ∈ R and x 6= 0

}
is finite and

f(x− 1− f(x)) = f(x)− x− 1

for all x ∈ R.

Solution: First we show that the set {x − f(x) | x ∈ R} is finite.
If not, there exist infinitely many k 6= 1 such that for some xk,
xk − f(xk) = k. But then

f(k − 1)
k − 1

=
f(xk − 1− f(xk))

k − 1
=

f(xk)− xk − 1
k − 1

= −1− 2
k − 1

.

Since k takes on infinitely many values, f(k−1)
k−1 does as well—a

contradiction.
Now choose x0 so that |x− f(x)| is maximal for x = x0. Then for

y = x0 − 1− f(x0) we have

y − f(y) = y − (f(x0)− x0 − 1) = 2(x0 − f(x0)).

Then because of the maximal definition of x0, we must have y−f(y) =
x0−f(x0) = 0. Therefore f(x) = x for all x, and this function indeed
satisfies the given conditions.

Problem 8 Let the area and the perimeter of a cyclic quadrilateral
C be AC and PC , respectively. If the area and the perimeter of the
quadrilateral which is tangent to the circumcircle of C at the vertices
of C are AT and PT , respectively, prove that

AC

AT
≥
(

PC

PT

)2

.
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Solution: Let the outer quadrilateral be EFGH with angles ∠E =
2α1, ∠F = 2α2, ∠G = 2α3, ∠H = 2α4; also let the circumcircle of
C have radius r and center O. Say that sides EF,FG, GH,HE are
tangent to C at I, J,K,L.

In right triangle EIO, we have IO = r and ∠OEI = α1 so that
EI = r cot α1. After finding IF, FJ, . . . , LE similarly, we find that
PT = 2r

∑4
i=1 cot αi. Also, [EFO] = 1

2EF · IO = 1
2EF · r; finding

[FGO], [GHO], [HEO] similarly shows that AT = 1
2PT · r.

As for quadrilateral IJKL, note that IJ = 2r sin∠IKJ =
2r sin∠FIJ = 2r sin(90◦−α2) = 2r cos α2. After finding JK,KL,LI

in a similar manner we have PC = 2r
∑4

i=1 cos αi. Also note
that ∠IOJ = 180◦ − ∠JFI = 180◦ − 2α2, and hence [IOJ ] =
1
2OI · OJ sin∠IOJ = 1

2r2 sin(2α2) = r2 sinα2 cos α2. Adding this
to the analogous expressions for [JOK], [KOL], [LOI], we find that
AC = r2

∑4
i=1 sinαi cos αi.

Therefore the inequality we wish to prove is

AC · P 2
T ≥ AT · P 2

C

⇐⇒ r2
4∑

i=1

sinαi cos αi · P 2
T ≥

(
1
2
PT · r

)
· 4r2

(
4∑

i=1

cos αi

)2

⇐⇒ PT ·
4∑

i=1

sinαi cos αi ≥ 2r ·

(
4∑

i=1

cos αi

)2

⇐⇒
4∑

i=1

cot αi ·
4∑

i=1

sinαi cos αi ≥

(
4∑

i=1

cos αi

)2

.

But this is true by the Cauchy-Schwarz inequality
∑

a2
i

∑
b2
i ≥

(
∑

aibi)
2 applied with each ai =

√
cot αi and bi =

√
sinαi cos αi.

Problem 9 Prove that the plane is not a union of the inner regions
of finitely many parabolas. (The outer region of a parabola is the
union of the lines on the plane not intersecting the parabola. The
inner region of a parabola is the set of points on the plane that do
not belong to the outer region of the parabola.)

Solution: Suppose by way of contradiction we could cover the plane
with the inner regions of finitely many parabolas — say, n of them.
Choose some fixed positive acute angle θ <

(
360
2n

)◦.
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Take any of the parabolas and (temporarily) choose a coordinate
system so that it satisfies the equation y = ax2 with a ≥ 0 (and where
our coordinates are chosen to scale, so that one unit along the y-axis
has the same length as one unit along the x-axis). Draw the tangents
to the parabola at x = ± cot θ

2a ; these lines have slopes 2ax = ± cot θ.
These lines meet on the y-axis at an angle of 2θ, forming a V-shaped
region in the plane that contains the inner region of the parabola.

Performing the above procedure with all the parabolas, we obtain
n V-shaped regions covering the entire plane. Again choose an x-axis,
and say the rays bordering these regions make angles φj and φj + 2θ

with the positive x-axis (with angles taken modulo 360◦). Then
since 2nθ < 360◦, there is some angle φ′ not in any of the intervals
[φj , φj + 2θ]. Then consider the line passing through the origin and
making angle of φ′ with the positive x-axis; far enough out, the points
on this line cannot lie in any of the V-shaped regions, a contradiction.
Thus our original assumption was false, and we cannot cover the plane
with the inner regions of finitely many parabolas.
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1.21 Ukraine

Problem 1 Let P (x) be a polynomial with integer coefficients. The
sequence {xn}n≥1 satisfies the conditions x1 = x2000 = 1999, and
xn+1 = P (xn) for n ≥ 1. Calculate

x1

x2
+

x2

x3
+ · · ·+ x1999

x2000
.

Solution: Write ai = xi−xi−1 for each i, where we take subscripts
(of both the xi and ai) modulo 1999. Since c−d divides P (c)−P (d) for
integers c and d, we have that ai = xi−xi−1 divides P (xi)−P (xi−1) =
ai+1 for all i.

First suppose that all the ai 6= 0. Then |ai+1| ≥ |ai| for all i but
also |a1| = |a2000|; hence all the |ai| equal the same value m > 0. But
if n of the a1, a2, . . . , a1999 equal m 6= 0 and the other 1999− n equal
−m, then their sum 0 = x1999 − x0 = a1 + a2 + · · · + a1999 equals
m(2n− 1999) 6= 0, a contradiction.

Thus for some k we have ak = 0; then since ak divides ak+1, we
have ak+1 = 0 and similarly ak+2 = 0, and so on. Thus all the xi are
equal and the given expression equals 1999.

Problem 2 For real numbers 0 ≤ x1, x2, . . . , x6 ≤ 1 prove the
inequality

x3
1

x5
2 + x5

3 + x5
4 + x5

5 + x5
6 + 5

+
x3

2

x5
1 + x5

3 + x5
4 + x5

5 + x5
6 + 5

+ · · ·+ x3
6

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 + 5

≤ 3
5
.

Solution: The condition 0 ≤ x1, x2, . . . , x6 ≤ 1 implies that the left
hand side of the inequality is at most

6∑
i=1

x3
i

x5
1 + x5

2 + · · ·+ x5
6 + 4

=
x3

1 + x3
2 + · · ·+ x3

6

x5
1 + x5

2 + · · ·+ x5
6 + 4

.

For t ≥ 0 we have t5+t5+t5+1+1
5 ≥ t3 by AM-GM. Adding up the six

resulting inequalities for t = x1, x2, . . . , x6 and dividing by (x5
1 +x5

2 +
· · ·+ x5

6 + 4) shows that the above expression is at most 3
5 .

Problem 3 Let AA1, BB1, CC1 be the altitudes of an acute triangle
ABC, and let O be an arbitrary point inside the triangle A1B1C1.
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Let M, N, P, Q, R, S be the orthogonal projections of O onto lines
AA1, BC, BB1, CA, CC1, AB, respectively. Prove that lines MN ,
PQ, RS are concurrent.

Solution: Observe that three lines passing through different vertices
of a triangle are concurrent if and only if their reflections across the
corresponding angle bisectors are also concurrent; this is easily proved
using the trigonometric form of Ceva’s Theorem.

Let A0, B0, C0 be the centers of rectangles OMA1N, OPB1Q,

OSC1R, respectively. Under the homothety with center O and ratio
1
2 , triangle A1B1C1 maps to triangle A0B0C0. Then since lines
AA1, BB1, CC1 are the angle bisectors of triangle A1B1C1 (easily
proved with angle-chasing), the angle bisectors of triangle A0B0C0

are parallel to lines AA1, BB1, CC1.

Because OMA1N is a rectangle, diagonals OA1 and MN are
reflections of each across the line through A0 parallel to line AA1.

From above, this line is precisely the angle bisector of ∠C0A0B0

in triangle A0B0C0. Similarly, lines OB1 and OC1 are reflections of
lines PQ and RS across the other angle bisectors. Then since lines
OA1, OB1, OC1 concur at O, from our initial observation lines MN,

PQ, RS concur as well.
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1.22 United Kingdom

Problem 1 I have four children. The age in years of each child
is a positive integer between 2 and 16 inclusive and all four ages
are distinct. A year ago the square of the age of the oldest child
was equal to sum of the squares of the ages of the other three. In
one year’s time the sum of the squares of the ages of the oldest and
the youngest children will be equal to the sum of the squares of the
other two children. Decide whether this information is sufficient to
determine their ages uniquely, and find all possibilities for their ages.

Solution: Let the children’s present ages be a + 1, b + 1, c + 1, and
d + 1. We are given that 1 ≤ a < b < c < d ≤ 15; note that b ≤ 13 so
that b− a ≤ 12. We are also given

d2 = a2 + b2 + c2 (1)

and
(d + 2)2 + (a + 2)2 = (b + 2)2 + (c + 2)2. (2)

Subtracting (1) from (2) gives 4(a + d) + a2 = 4(b + c)− a2, or

a2 = 2(b + c− a− d). (3)

Then a must be even since its square is even. Furthermore, since
d > c,

a2 = 2(b− a + (c− d)) < 2(b− a) < 24,

and hence either a = 2 and a = 4.

If a = 4 then, since a2 < 2(b − a), we have 2b > a2 + 2a = 24 so
that b > 12. This forces b = 13, c = 14, and d = 15, which contradicts
the given conditions.

Thus a = 2. Equation (3) gives b + c− d = 4, so substituting a = 2
and d = b + c− 4 into (1) and simplifying yields

(b− 4)(c− 4) = 10 = 1 · 10 = 2 · 5.

Therefore we have (b, c) = (5, 14) or (6, 9), in which cases d = 15 and
d = 11 respectively.

Hence the only possible solutions are (a, b, c, d) = (2, 5, 14, 15) or
(2, 6, 9, 11), and these indeed satisfy (1) and (2). It follows that there
is no unique solution, and it is not possible to determine the childrens’
ages.
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Problem 2 A circle has diameter AB and X is a fixed point on the
segment AB. A point P , distinct from A and B, lies on the circle.
Prove that, for all possible positions of P ,

tan∠APX

tan∠PAX

is a constant.

Solution: Let Q be the projection of X onto AP . Note that
∠APB = 90◦, and thus tan∠PAX = PB

PA . Also, XQ ‖ PB so
4AQX ∼ 4APB. Therefore,

tan∠APX =
QX

QP
=

AX·BP
AB

BX·AP
AB

=
AX ·BP

BX ·AP
,

and
tan∠APX

tan∠PAX
=

AX

BX

is fixed.

Problem 3 Determine a positive constant c such that the equation

xy2 − y2 − x + y = c

has exactly three solutions (x, y) in positive integers.

Solution: When y = 1 the left hand side is 0. Thus we can rewrite
our equation as

x =
y(y − 1) + c

(y + 1)(y − 1)
.

The numerator is congruent to −1(−2)+c modulo y+1, and it is also
congruent to c modulo y−1. Hence we must have c ≡ −2 (mod y+1)
and c ≡ 0 (mod y − 1). Since c = y − 1 satisfies these congruences,
we must have c ≡ y − 1 (mod lcm(y − 1, y + 1)). When y is even,
lcm(y−1, y+1) = y2−1; when y is odd, lcm(y−1, y+1) = 1

2 (y2−1).
Then for y = 2, 3, 11 we have c ≡ 1 (mod 3), c ≡ 2 (mod 4),

c ≡ 10 (mod 60). Hence, we try setting c = 10. For x to be an
integer we must have y − 1 | 10 ⇒ y = 2, 3, 6, or 11; these values give
x = 4, 2, 2

7 , and 1 respectively. Thus there are exactly three solutions
in positive integers, namely (x, y) = (4, 2), (2, 3), and (1, 11).

Problem 4 Any positive integer m can be written uniquely in base
3 form as a string of 0’s, 1’s and 2’s (not beginning with a zero). For
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example,
98 = 81 + 9 + 2× 3 + 2× 1 = (10122)3.

Let c(m) denote the sum of the cubes of the digits of the base 3 form
of m; thus, for instance

c(98) = 13 + 03 + 13 + 23 + 23 = 18.

Let n be any fixed positive integer. Define the sequence {ur} as

u1 = n, and ur = c(ur−1) for r ≥ 2.

Show that there is a positive integer r such that ur = 1, 2, or 17.

Solution: If m has d ≥ 5 digits then we have m ≥ 3d−1 =
(80 + 1)(d−1)/4 ≥ 80 · d−1

4 + 1 > 8d by Bernoulli’s inequality. Thus
m > c(m).

If m > 32 has 4 digits in base 3, then c(m) ≤ 23 + 23 + 23 + 23 =
32 < m. And if 27 ≤ m ≤ 32, then m starts with the digits 10 in
base 3 and c(m) < 13 + 03 + 23 + 23 = 17 < m.

Therefore 0 < c(m) < m for all m ≥ 27, and hence eventually we
have some positive us < 27. Since us has at most three digits, us+1

can only equal 8, 16, 24, 1, 9, 17, 2, 10, or 3. If it equals 1, 2, or 17 we
are already done; if it equals 3 or 9 then us+2 = 1; and otherwise a
simple check shows that ur will eventually equal 2:

8 = (22)3
24 = (220)3

}
→ 16 = (121)3 → 10 = (101)3 → 2.

Problem 5 Consider all functions f : N → N such that

(i) for each positive integer m, there is a unique positive integer n

such that f(n) = m;

(ii) for each positive integer n, f(n+1) is either 4f(n)−1 or f(n)−1.

Find the set of positive integers p such that f(1999) = p for some
function f with properties (i) and (ii).

Solution: Imagine hopping along a sidewalk whose blocks are
marked from left to right with the positive integers, where at time n

we stand on the block marked f(n). Note that if f(n)− f(n + 1) > 0
then f(n) − f(n + 1) = 1; that is, whenever we move to the left we
move exactly one block. And whenever we move to the right from
f(n) we must move to 4f(n)− 1.
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Then suppose that we are at block f(a) and that f(a) − 1 is
unvisited; if we move to the right (that is, if f(a + 1) > f(a)) then at
some point we must pass through block f(a) to reach block f(a)− 1
again— which is not allowed. Thus we must have f(a+1) = f(a)−1.

Therefore our path is completely determined by the value of f(1):
because whenever we are at f(n), if f(n) − 1 > 0 is unvisited we
must have f(n + 1) = f(n) − 1. And otherwise, we must have
f(n + 1) = 4f(n)− 1.

If f(1) = 1 then consider the function f defined as follows: when-
ever 2k ≤ n < 2k+1, set f(n) = (3 ·2k−1)−n. It is bijective since for
n = 2k, 2k +1, . . . , 2k+1−1 we have f(n) = 2k+1−1, 2k+1−2, . . . , 2k;
and a quick check shows it satisfies condition (ii) as well. Thus from
the previous paragraph this is the only function with f(1) = 1, and in
this case sice 210 ≤ 1999 < 211 we have f(1999) = (3·210−1)−1999 =
1072.

If f(1) = 2 then consider instead the function f defined as follows:
whenever 4k ≤ n < 3 · 4k, set f(n) = (4k+1 − 1) − n; and if
3 · 4k ≤ n < 4k+1 set f(n) = (7 · 4k − 1) − n. Again, we can check
that this function satisfies the conditions; and again, this must be the
only function with f(1) = 2. In this case since 45 ≤ 1999 < 3 · 45, we
have f(1999) = (46 − 1)− 1999 = 2096.

Finally, suppose that f(1) ≥ 3; first we must visit f(1)− 1, f(1)−
2, . . . , 1. It follows that f(n) = 3 and f(n + 2) = 1 for some n. But
then f(n + 3) = 4 · 1− 1 = 3 = f(n), a contradiction.

Therefore the only possible values of f(1999) are 1072 and 2096.

Problem 6 For each positive integer n, let Sn = {1, 2, . . . , n}.
(a) For which values of n is it possible to express Sn as the union of

two non-empty disjoint subsets so that the elements in the two
subsets have equal sum?

(b) For which values of n is it possible to express Sn as the union
of three non-empty disjoint subsets so that the elements in the
three subsets have equal sum?

Solution:

(a) Let σ(T ) denote the sum of the elements in a set T . For the
condition to hold σ(Sn) = n(n+1)

2 must be even, and hence we
must have n = 4k − 1 or 4k where k ∈ N. For such n, let
A consist of the second and third elements of each of the sets
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{n, n− 1, n− 2, n− 3}, {n− 4, n− 5, n− 6, n− 7}, . . . , {4, 3, 2, 1}
(or if n = 4k − 1, the last set in this grouping will be {3, 2, 1});
and let B = Sn \A. Then σ(A) = σ(B), as desired.

(b) For the condition to hold, σ(Sn) = n(n+1)
2 must be divisible by

3; furthermore, the construction is impossible for n = 3. Thus n

must be of the form 3k + 2 or 3k + 3 where k ∈ N. We prove all
such n work by induction on n. We have S5 = {5}∪{1, 4}∪{2, 3},
S6 = {1, 6}∪ {2, 5}∪ {3, 4}, S8 = {8, 4}∪ {7, 5}∪ {1, 2, 3, 6}, and
S9 = {9, 6} ∪ {8, 7} ∪ {1, 2, 3, 4, 5}. Now suppose that we can
partition Sn−6 into A ∪ B ∪ C with σ(A) = σ(B) = σ(C); then
σ(A∪{n− 5, n}) = σ(B ∪{n− 4, n− 1}) = σ(C ∪{n− 3, n− 2}),
completing the inductive step and the proof of our claim.

Problem 7 Let ABCDEF be a hexagon which circumscribes a
circle ω. The circle ω touches sides AB,CD,EF at their respective
midpoints P,Q,R. Let ω touch sides BC, DE, FA at X, Y, Z respec-
tively. Prove that lines PY,QZ, RX are concurrent.

Solution: Let O be the center of ω. Since P is the midpoint of
AB, AP = PB; then by equal tangents, ZA = AP = PB = BX.

Thus ∠ZOA = ∠AOP = ∠POB = ∠BOX. It follows that ∠ZOP =
∠POX, and hence ∠ZY P = ∠PY X. Therefore line Y P is the angle
bisector of ∠XY Z. Similarly lines XR and ZQ are the angle bisectors
of ∠ZXY and ∠Y ZX, and therefore lines PY,QZ, RX meet at the
incenter of triangle XY Z.

Problem 8 Some three non-negative real numbers p, q, r satisfy

p + q + r = 1.

Prove that
7(pq + qr + rp) ≤ 2 + 9pqr.

Solution: Given a function f of three variables, let
∑

cyc f(p, q, r)
denote the “cyclic sum” f(p, q, r) + f(q, r, p) + f(r, p, q); for example,∑

cyc(pqr + p) = 3pqr + p + q + r. Since p + q + r = 1 the inequality
is equivalent to

7(pq + qr + rp)(p + q + r) ≤ 2(p + q + r)3 + 9pqr

⇐⇒ 7
∑
cyc

(
p2q + pq2 + pqr

)
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≤ 9pqr +
∑
cyc

(
2p3 + 6p2q + 6pq2 + 4pqr

)
⇐⇒

∑
cyc

p2q +
∑
cyc

pq2 ≤
∑
cyc

2p3 =
∑
cyc

2p3 + q3

3
+
∑
cyc

p3 + 2q3

3
,

and this last inequality is true by weighted AM-GM.

Problem 9 Consider all numbers of the form 3n2 + n + 1, where n

is a positive integer.

(a) How small can the sum of the digits (in base 10) of such a number
be?

(b) Can such a number have the sum of its digits (in base 10) equal
to 1999?

Solution:

(a) Let f(n) = 3n2 + n + 1. When n = 8, the sum of the digits
of f(8) = 201 is 3. Suppose that some f(m) had a smaller sum
of digits; then the last digit of f(m) must be either 0, 1, or 2.
However, for any n, f(n) = n(n + 3) + 1 ≡ 1 (mod 2); thus f(m)
must have units digit 1.

Because f(n) can never equal 1, this means we must have
3m2+m+1 = 10k+1 for some positive integer k, and m(3m+1) =
10k. Since m and 3m+1 are relatively prime, and m < 3m+1, we
must either have (m, 3m+1) = (1, 10k)—which is impossible—or
(m, 3m + 1) = (2k, 5k). For k = 1, 5k 6= 3 · 2k + 1; and for k > 1,
we have 5k = 5k−2 · 25 > 2k−2 · (12 + 1) ≥ 3 · 2k + 1. Therefore,
f(m) can’t equal 10k + 1, and 3 is indeed the minimum value for
the sum of digits.

(b) Consider n = 10222 − 1. f(n) = 3 · 10444 − 6 · 10222 + 3 + 10222.
Thus, its decimal expansion is

2 9 . . . 9︸ ︷︷ ︸
221

5 0 . . . 0︸ ︷︷ ︸
221

3,

and the sum of the digits in f(10222 − 1) is 1999.
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1.23 United States of America

Problem 1 Some checkers placed on an n×n checkerboard satisfy
the following conditions:

(i) every square that does not contain a checker shares a side with
one that does;

(ii) given any pair of squares that contain checkers, there is a sequence
of squares containing checkers, starting and ending with the given
squares, such that every two consecutive squares of the sequence
share a side.

Prove that at least n2−2
3 checkers have been placed on the board.

Solution: It suffices to show that if m checkers are placed so as to
satisfy condition (b), then the number of squares they either cover or
are adjacent to is at most 3m+2. But this is easily seen by induction:
it is obvious for m = 1, and if m checkers are so placed, some checker
can be removed so that the remaining checkers still satisfy (b); they
cover at most 3m−1 squares, and the new checker allows us to count at
most 3 new squares (since the square it occupies was already counted,
and one of its neighbors is occupied).

Note. The exact number of checkers required is known for m × n

checkerboards with m small, but only partial results are known in the
general case. Contact the authors for more information.

Problem 2 Let ABCD be a convex cyclic quadrilateral. Prove that

|AB − CD|+ |AD −BC| ≥ 2|AC −BD|.

First Solution: Let E be the intersection of AC and BD. Then
the triangles ABE and DCE are similar, so if we let x = AE, y =
BE, z = AB, then there exists k such that kx = DE, ky = CE, kz =
CD. Now

|AB − CD| = |k − 1|z

and

|AC −BD| = |(kx + y)− (ky + x)| = |k − 1| · |x− y|.
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Since |x−y| ≤ z by the triangle inequality, we conclude |AB−CD| ≥
|AC − BD|, and similarly |AD − BC| ≥ |AC − BD|. These two
inequalities imply the desired result.

Second Solution: Let 2α, 2β, 2γ, 2δ be the measures of the arcs
subtended by AB,BC, CD,DA, respectively, and take the radius of
the circumcircle of ABCD to be 1. Assume without loss of generality
that β ≤ δ. Then α + β + γ + δ = π, and (by the Extended Law of
Sines)

|AB − CD| = 2 |sinα− sin γ| = 4
∣∣∣∣sin α− γ

2

∣∣∣∣ ∣∣∣∣cos
α + γ

2

∣∣∣∣
and

|AC −BD| = 2 |sin(α + β)− sin(β + γ)|

= 4
∣∣∣∣sin α− γ

2

∣∣∣∣ ∣∣∣∣cos
(

α + γ

2
+ β

)∣∣∣∣ .
Since 0 ≤ 1

2 (α + γ) ≤ 1
2 (α + γ) + β ≤ π

2 (by the assumption
β ≤ δ) and the cosine function is nonnegative and decreasing on
[0, π

2 ], we conclude that |AB − CD| ≥ |AC − BD|, and similarly
|AD −BC| ≥ |AC −BD|.

Problem 3 Let p > 2 be a prime and let a, b, c, d be integers not
divisible by p, such that{

ra

p

}
+
{

rb

p

}
+
{

rc

p

}
+
{

rd

p

}
= 2

for any integer r not divisible by p. Prove that at least two of the
numbers a+ b, a+ c, a+ d, b+ c, b+ d, c+ d are divisible by p. Here,
for real numbers x, {x} = x− bxc denotes the fractional part of x.

Solution: For convenience, we write [x] for the unique integer in
{0, . . . , p − 1} congruent to x modulo p. In this notation, the given
condition can be written

[ra] + [rb] + [rc] + [rd] = 2p for all r not divisible by p. (1)

The conditions of the problem are preserved by replacing a, b, c, d

with ma,mb, mc, md for any integer m relatively prime to p. If we
choose m so that ma ≡ 1 (mod p) and then replace a, b, c, d with
[ma], [mb], [mc], [md], respectively, we end up in the case a = 1 and
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b, c, d ∈ {1, . . . , p−1}. Applying (1) with r = 1, we see moreover that
a + b + c + d = 2p.

Now observe that

[(r + 1)x]− [rx] =
{

[x] [rx] < p− [x]
−p + [x] [rx] ≥ p− [x].

Comparing (1) applied to two consecutive values of r and using the
observation, we see that for each r = 1, . . . , p−2, two of the quantities

p− a− [ra], p− b− [rb], p− c− [rc], p− d− [rd]

are positive and two are negative. We say that a pair (r, x) is positive
if [rx] < p− [x] and negative otherwise; then for each r < p− 1, (r, 1)
is positive, so exactly one of (r, b), (r, c), (r, d) is also positive.

Lemma. If r1, r2, x ∈ {1, . . . , p − 1} have the property that (r1, x)
and (r2, x) are negative but (r, x) is positive for all r1 < r < r2, then

r2 − r1 =
⌊ p

x

⌋
or r2 − r1 =

⌊ p

x

⌋
+ 1.

Proof: Note that (r′, x) is negative if and only if {r′x + 1, r′x +
2, . . . , (r′ + 1)x} contains a multiple of p. In particular, exactly one
multiple of p lies in {r1x, r1x + 1, . . . , r2x}. Since [r1x] and [r2x] are
distinct elements of {p− [x], . . . , p− 1}, we have

p− x + 1 < r2x− r1x < p + x− 1,

from which the lemma follows.

[rx] 9 10 0 1 2 3 4 5 6 7 8 9 10 0
is (r, x) + or –? − + + + −

r 3 4 5 6 7

(The above diagram illustrates the meanings of positive and negative in

the case x = 3 and p = 11. Note that the difference between 7 and 3 here

is b p
x
c+ 1. The next r such that (r, x) is negative is r = 10; 10− 7 = b p

x
c.)

Recall that exactly one of (1, b), (1, c), (1, d) is positive; we may as
well assume (1, b) is positive, which is to say b < p

2 and c, d > p
2 . Put

s1 = bp
b c, so that s1 is the smallest positive integer such that (s1, b)

is negative. Then exactly one of (s1, c) and (s1, d) is positive, say the
former. Since s1 is also the smallest positive integer such that (s1, c)
is positive, or equivalently such that (s1, p − c) is negative, we have
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s1 = b p
p−cc. The lemma states that consecutive values of r for which

(r, b) is negative differ by either s1 or s1 + 1. It also states (when
applied with x = p− c) that consecutive values of r for which (r, c) is
positive differ by either s1 or s1 + 1. From these observations we will
show that (r, d) is always negative.

r 1 s1 s1 + 1 s′ s′ + 1 s s + 1 ?= t

(r, b) + − + − + − −?

(r, c) − . . . + − . . . + − . . . − +?

(r, d) − − − − − + −?

Indeed, if this were not the case, there would exist a smallest
positive integer s > s1 such that (s, d) is positive; then (s, b) and
(s, c) are both negative. If s′ is the last integer before s such that
(s′, b) is negative (possibly equal to s1), then (s′, d) is negative as
well (by the minimal definition of s). Also,

s− s′ = s1 or s− s′ = s1 + 1.

Likewise, if t were the next integer after s′ such that (t, c) were
positive, then

t− s′ = s1 or t− s′ = s1 + 1.

From these we deduce that |t− s| ≤ 1. However, we can’t have t 6= s

because then both (s, b) and (t, b) would be negative—and any two
values of r for which (r, b) is negative differ by at least s1 ≥ 2, a
contradiction. (The above diagram shows the hypothetical case when
t = s+1.) But nor can we have t = s because we already assumed that
(s, c) is negative. Therefore we can’t have |t − s| ≤ 1, contradicting
our findings and thus proving that (r, d) is indeed always negative.

Now if d 6= p − 1, then the unique s ∈ {1, . . . , p − 1} such that
[ds] = 1 is not equal to p − 1; and (s, d) is positive, a contradiction.
Thus d = p− 1 and a + d and b + c are divisible by p, as desired.

Problem 4 Let a1, a2, . . . , an (n > 3) be real numbers such that

a1 + a2 + · · ·+ an ≥ n and a2
1 + a2

2 + · · ·+ a2
n ≥ n2.

Prove that max(a1, a2, . . . , an) ≥ 2.

Solution: Let bi = 2 − ai, and let S =
∑

bi and T =
∑

b2
i . Then
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the given conditions are that

(2− b1) + · · ·+ (2− bn) ≥ n

and
(4− 4b1 + b2

1) + · · ·+ (4− 4bn + b2
n) ≥ n2,

which is to say S ≤ n and T ≥ n2 − 4n + 4S.
From these inequalities, we obtain

T ≥ n2 − 4n + 4S ≥ (n− 4)S + 4S = nS.

On the other hand, if bi > 0 for i = 1, . . . , n, then certainly bi <∑
bi = S ≤ n, and so

T = b2
1 + · · ·+ b2

n < nb1 + · · ·+ nbn = nS.

Thus we cannot have bi > 0 for i = 1, . . . , n, so bi ≤ 0 for some i;
then ai ≥ 2 for that i, proving the claim.

Note: The statement is false when n ≤ 3. The example a1 = a2 =
· · · = an−1 = 2, an = 2−n shows that the bound cannot be improved.
Also, an alternate approach is to show that if ai ≤ 2 and

∑
ai ≥ n,

then
∑

a2
i ≤ n2 (with the equality case just mentioned), by noticing

that replacing a pair ai, aj with 2, ai + aj − 2 increases the sum of
squares.

Problem 5 The Y2K Game is played on a 1× 2000 grid as follows.
Two players in turn write either an S or an O in an empty square.
The first player who produces three consecutive boxes that spell SOS
wins. If all boxes are filled without producing SOS then the game is
a draw. Prove that the second player has a winning strategy.

Solution: Call a partially filled board stable if there is no SOS and
no single move can produce an SOS; otherwise call it unstable. For a
stable board call an empty square bad if either an S or an O played
in that square produces an unstable board. Thus a player will lose
if the only empty squares available to him are bad, but otherwise he
can at least be guaranteed another turn with a correct play.

Claim: A square is bad if and only if it is in a block of 4 consecutive
squares of the form S – – S.
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Proof: If a square is bad, then an O played there must give an
unstable board. Thus the bad square must have an S on one side and
an empty square on the other side. An S played there must also give
an unstable board, so there must be another S on the other side of
the empty square.

From the claim it follows that there are always an even number
of bad squares. Thus the second player has the following winning
strategy:

(a) If the board is unstable at any time, play the winning move;
otherwise continue as below.

(b) On the first move, play an S at least four squares away from either
end and at least seven squares from the first player’s first move.
(The board is long enough that this is possible.)

(c) On the second move, play an S three squares away from the second
player’s first move, so that the squares in between are empty and
so that the board remains stable. (Regardless of the first player’s
second move, this must be possible on at least one side.) This
produces two bad squares; whoever plays in one of them first will
lose. Thus the game will not be a draw.

(d) On any subsequent move, play in a square which is not bad—
keeping the board stable, of course. Such a square will always
exist because if the board is stable, there will be an odd number
of empty squares and an even number of bad squares.

Since there exist bad squares after the second player’s second move,
the game cannot end in a draw; and since the second player can
always leave the board stable, the first player cannot win. Therefore
eventually the second player will win.

Note: Some other names for the S – – S block, from submitted
solutions, included arrangement, combo, configuration, formation,
pattern, sandwich, segment, situation, and trap. (Thanks to Alexan-
der Soifer and Zvezdelina Stankova-Frenkel for passing these along.)

Problem 6 Let ABCD be an isosceles trapezoid with AB ‖ CD.
The inscribed circle ω of triangle BCD meets CD at E. Let F be a
point on the (internal) angle bisector of ∠DAC such that EF ⊥ CD.
Let the circumscribed circle of triangle ACF meet line CD at C and
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G. Prove that the triangle AFG is isosceles.

Solution: We will show that FA = FG. Let H be the center of
the escribed circle of triangle ACD opposite vertex A. Then H lies
on the angle bisector AF . Let K be the point where this escribed
circle touches CD. By a standard computation using equal tangents,
we see that CK = 1

2 (AD + CD − AC). By a similar computation
in triangle BCD, we see that CE = 1

2 (BC + CD − BD) = CK.
Therefore E = K and F = H.

Since F is now known to be an excenter, we have that FC is the
external angle bisector of ∠DCA = ∠GCA. Therefore

∠GAF = ∠GCF =
π

2
− 1

2
∠GCA =

π

2
− 1

2
∠GFA.

We conclude that the triangle GAF is isosceles with FA = FG, as
desired.
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1.24 Vietnam

Problem 1 Solve the system of equations

(1 + 42x−y) · 51−2x+y = 1 + 22x−y+1

y3 + 4x + 1 + ln(y2 + 2x) = 0.

Solution: The only solution is (x, y) = (0,−1).
First solve the first equation for t = 2x−y. Multiplying the equation

by 5t−1 yields

(1− 5t−1) + 4(4t−1 − 10t−1) = 0.

This has the obvious solution t = 1. There are no other solutions: if
t > 1 then both 1− 5t−1 and 4t−1 − 10t−1 are negative; and if t < 1
then both these terms are positive. Therefore, 2x− y = 1.

Substitute 2x = y + 1 into the second equation to get

y3 + 2y + 3 + ln(y2 + y + 1) = 0.

This has the not-so-obvious solution y = −1. To prove this is the only
solution, it suffices to show that f(y) = y3 + 2y + 3 + ln(y2 + y + 1)
is always increasing. Its derivative is

f ′(y) = 3y2 + 2 +
2y + 1

y2 + y + 1
.

But we know that

2(y + 1)2 + 1 > 0

⇒ 2y + 1 > −2(y2 + y + 1)

⇒ 2y + 1
y2 + y + 1

> −2,

where we can safely divide by y2 + y + 1 = (y + 1
2 )2 + 3

4 > 0. Thus
f ′(y) > 3y2 > 0 for all y, as desired.

Problem 2 Let A′, B′, C ′ be the respective midpoints of the arcs
BC, CA, AB, not containing points A, B, C, respectively, of the
circumcircle of the triangle ABC. The sides BC, CA, AB meet the
pairs of segments

{C ′A′, A′B′}, {A′B′, B′C ′}, {B′C ′, C ′A′}
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at the pairs of points

{M,N}, {P,Q}, {R,S},

respectively. Prove that MN = PQ = RS if and only if the triangle
ABC is equilateral.

Solution: If ABC is equilateral then MN = PQ = RS by
symmetry.

Now suppose that MN = PQ = RS. Observe that ∠NMA′ =
∠BMS = 1

2 (B̂C ′ + ĈA′) = 1
2 (∠C + ∠A) and similarly ∠C ′SR =

∠MSB = 1
2 (∠A + ∠C). Furthermore, ∠A′B′C ′ = ∠A′B′B +

∠BB′C ′ = 1
2 (∠A + ∠C) as well.

Thus MB = SB, and also 4C ′RS ∼ 4C ′A′B′ ∼ 4NA′M . Next,
by the law of sines in triangles C ′SB and A′MB we have

C ′S = SB · sin∠C ′BS

sin∠SC ′B
= SB ·

sin ∠C
2

sin ∠A
2

and

MA′ = MB · sin∠A′BM

sin∠MA′B
= MB ·

sin ∠A
2

sin ∠C
2

,

giving C′S
MA′ =

(
sin ∠C

2

sin ∠A
2

)2

.

Next, because 4C ′RS ∼ 4C ′A′B′ we have RS = A′B′ · C′S
C′B′ ; and

because 4NA′M ∼ 4C ′A′B′ we have MN = B′C ′ · MA′

B′A′ . Therefore
since RS = MN we have

A′B′ · C ′S

C ′B′
= B′C ′ · MA′

B′A′

=⇒ C ′S

MA′
=
(

B′C ′

A′B′

)2

=

(
sin 1

2 (∠B + ∠C)

sin 1
2 (∠B + ∠A)

)2

=

(
cos ∠A

2

cos ∠C
2

)2

=⇒

(
sin ∠C

2

sin ∠A
2

)2

=

(
cos ∠A

2

cos ∠C
2

)2

=⇒
(

sin
∠C

2
cos

∠C

2

)2

=
(

sin
∠A

2
cos

∠A

2

)2

=⇒ 1
4

sin2 ∠C =
1
4

sin2 ∠A

=⇒ sin∠C = sin∠A.
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Since ∠A+∠C < 180◦, we must have ∠A = ∠C. Similarly ∠A = ∠B,
and therefore triangle ABC is equilateral.

Problem 3 For n = 0, 1, 2, . . ., let {xn} and {yn} be two sequences
defined recursively as follows:

x0 = 1, x1 = 4, xn+2 = 3xn+1 − xn;

y0 = 1, y1 = 2, yn+2 = 3yn+1 − yn.

(a) Prove that x2
n − 5y2

n + 4 = 0 for all non-negative integers n.

(b) Suppose that a, b are two positive integers such that a2−5b2+4 =
0. Prove that there exists a non-negative integer k such that
xk = a and yk = b.

Solution: We first prove by induction on k that for k ≥ 0, we
have (xk+1, yk+1) = ( 3xk+5yk

2 , xk+3yk

2 ). For k = 0 we have (4, 2) =
( 3+5

2 , 1+3
2 ), and for k = 1 we have (11, 5) = ( 12+10

2 , 4+6
2 ). Now

assuming it’s true for k and k + 1, we know that

(xk+3, yk+3) = (3xk+2 − xk+1, 3yk+2 − yk+1).

Substituting the expressions for xk+2, xk+1, yk+2, yk+1 from the in-
duction hypothesis, this equals(

3(3xk+1 − xk) + 5(3yk+1 − yk)
2

,
(3xk+1 − xk) + 3(3yk+1 − yk)

2

)
=
(

3xk+2 + 5yk+2

2
,
xk+2 + 3yk+2

2

)
,

completing the induction and the proof of our claim.

(a) We prove the claim by induction; for n = 0 we have 1−5+4 = 0.

Now assuming it is true for n, we prove (with the help of our
above observation) that it is true for n + 1:

x2
n+1 − 5y2

n+1

=
(

3xn + 5yn

2

)2

− 5
(

xn + 3yn

2

)2

=
9x2

n + 30xnyn + 25y2
n

4
− 5 · x2

n + 6xnyn + 9y2
n

4

=
4x2

n − 20y2
n

4
= x2

n − 5y2
n = −4,
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as desired.

(b) Suppose by way of contradiction that a2−5b2 +4 = 0 for integers
a, b > 0, and that there did not exist k such that (xk, yk) = (a, b).
Choose a counterexample that minimizes a + b.

Note that 0 ≡ a2−5b2+4 ≡ a−b (mod 2). Next, a2 = 5b2−4 <

9b2 ⇒ a < 3b. And there are no counterexamples with a = 1 or 2;
thus a2 > 5 and 0 = 5a2−25b2+20 < 5a2−25b2+4a2 ⇒ 3a > 5b.

Therefore a′ = 3a−5b
2 and b′ = 3b−a

2 are positive integers. Then
since a2−5b2 = −4, some quick algebra shows that a′2−5b′2 = −4
as well; but a′ + b′ = 3a−5b

2 + 3b−a
2 = a − b < a + b. It follows

from the minimal definition of (a, b) that there must exist some
(ak, bk) equal to (a′, b′).

But then it is easy to verify that (a, b) = ( 3a′+5b′

2 , a′+3b′

2 ) =
(ak+1, bk+1), a contradiction! This completes the proof.

Problem 4 Let a, b, c be real numbers such that abc + a + c = b.
Determine the greatest possible value of the expression

P =
2

a2 + 1
− 2

b2 + 1
+

3
c2 + 1

.

Solution: The condition is equivalent to b = a+c
1−ac , which suggests

making the substitutions A = Tan−1a and C = Tan−1c; then we have
b = tan(A + C) and

P =
2

tan2 A + 1
− 2

tan2(A + C) + 1
+

3
tan2 C + 1

= 2 cos2 A− 2 cos2(A + C) + 3 cos2 C

= (2 cos2 A− 1)− (2 cos2(A + C)− 1) + 3 cos2 C

= cos(2A)− cos(2A + 2C) + 3 cos2 C

= 2 sin(2A + C) sinC + 3 cos2 C.

Letting u = | sinC|, this expression is at most

2u + 3(1− u2) = −3u2 + 2u + 3

= −3
(

u− 1
3

)2

+
10
3
≤ 10

3
.
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Equality can be achieved when sin(2A+C) = 1 and sinC = 1
3 , which

gives (a, b, c) = (
√

2
2 ,

√
2,
√

2
4 ). Thus the maximum value of P is 10

3 .

Problem 5 In the three-dimensional space let Ox,Oy, Oz, Ot be
four nonplanar distinct rays such that the angles between any two of
them have the same measure.

(a) Determine this common measure.

(b) Let Or be another ray different from the above four rays. let
α, β, γ, δ be the angles formed by Or with Ox,Oy, Oz,Ot, re-
spectively. Put

p = cos α + cos β + cos γ + cos δ,

q = cos2 α + cos2 β + cos2 γ + cos2 δ.

Prove that p and q remain constant as Or rotates about the point
O.

Solution: Put O at the origin, and say the four rays hit the unit
sphere at A, B, C, D. Then ABCD is a regular tetrahedron, and
(letting X also represent the vector −−→OX) we have A+B +C +D = 0.

(a) Say the common angle is φ. Then

0 = A · (A + B + C + D) = A ·A + A · (B + C + D) = 1 + 3 cos φ,

so φ = cos−1
(
− 1

3

)
.

(b) Without loss of generality say that Or hits the unit sphere at
U = (1, 0, 0); also write A = (x1, y1, z1), and so on. Then

p = U ·A + U ·B + U · C + U ·D

= U · (A + B + C + D)

= U ·~0 = 0,

a constant. Also, (x1, x2, x3, x4) = (cos α, cos β, cos γ, cos δ) and
q =

∑
x2

i . The following lemma then implies that q will always
equal 4

3 :

Lemma. Suppose we are given a regular tetrahedron T inscribed
in the unit sphere and with vertices (xi, yi, zi) for 1 ≤ i ≤ 4.

Then we have
∑

x2
i =

∑
y2

i =
∑

z2
i = 4

3 and
∑

xiyi =
∑

yizi =∑
zixi = 0.
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Proof: This is easily verified when the vertices are at

A0 = (0, 0, 1), B0 = (2
√

2
3 , 0,− 1

3 ),

C0 = (−
√

2
3 ,
√

6
3 ,− 1

3 ), D0 = (−
√

2
3 ,−

√
6

3 ,− 1
3 ).

Now assume these equations are true for a tetrahedron ABCD,

and rotate it about the z-axis through an angle θ. Then each
(xi, yi, zi) becomes (x′i, y

′
i, z
′
i) = (xi cos θ − yi sin θ, xi sin θ +

yi cos θ, zi), and∑
x′2i = cos2 θ

∑
x2

i − 2 sin θ cos θ
∑

xiyi + sin2 θ
∑

y2
i =

4
3∑

y′2i = sin2 θ
∑

x2
i + 2 sin θ cos θ

∑
xiyi + cos2 θ

∑
y2

i =
4
3∑

z′2i =
∑

z2
i =

4
3∑

x′iy
′
i = sin θ cos θ

∑
(x2

i − y2
i ) + (cos2 θ − sin2 θ)

∑
xiyi = 0∑

y′iz
′
i = sin θ

∑
xizi + cos θ

∑
yizi = 0∑

z′ix
′
i = cos θ

∑
zixi − sin θ

∑
ziyi = 0.

Similarly, the equations remain true after rotating ABCD

about the y- and z-axes.
Now, first rotate our given tetrahedron T about the z-axis until

one vertex is in the yz-plane; next rotate it about the x-axis until
this vertex is at (0, 0, 1); and finally rotate it about the z-axis
again until the tetrahedron corresponds with the initial tetra-
hedron A0B0C0D0 described above. Since we know the above
equations are true for A0B0C0D0, if we reverse the rotations to
return to T the equations will remain true, as claimed.

Problem 6 Let S = {0, 1, 2, . . . , 1999} and T = {0, 1, 2, . . .}. Find
all functions f : T → S such that

(i) f(s) = s for all s ∈ S.

(ii) f(m + n) = f(f(m) + f(n)) for all m,n ∈ T .

Solution: Suppose that f(2000) = 2000−t, where 1 ≤ t ≤ 2000. We
prove by induction on n that for all n ≥ 2000, we have f(n) = f(n−t).
By assumption it is true for n = 2000. Then assuming it is true for
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n, we have

f(n + 1) = f(f(n) + f(1)) = f(f(n− t) + f(1)) = f(n− t + 1),

completing the inductive step. Therefore the function is completely
determined by the value of f(2000), and it follows that there are at
most 2000 such functions.

Conversely, given any c = 2000− t ∈ S, let f be the function such
that f(s) = s for all s ∈ S while f(n) = f(n− t) for all n ≥ 2000. We
prove by induction on m+n that condition (ii) holds. If m+n ≤ 2000
then m,n ∈ S and the claim is obvious. Otherwise, m + n > 2000.
Again, if m,n ∈ S the claim is obvious; otherwise assume without
loss of generality that n ≥ 2000. Then

f(m + n) = f(m + n− t) = f(f(m) + f(n− t)) = f(f(m) + f(n)),

where the first and third equalities come from our periodic definition
of f , and the second equality comes from the induction hypothesis.
Therefore there are exactly 2000 functions f .

Problem 7 For n = 1, 2, . . ., let {un} be a sequence defined by

u1 = 1, u2 = 2, un+2 = 3un+1 − un.

Prove that

un+2 + un ≥ 2 +
u2

n+1

un

for all n.

Solution: We first prove by induction that for n ≥ 1, we have
unun+2 = u2

n+1 + 1. Since u3 = 5, for n = 1 we have 1 · 5 = 22 + 1, as
desired.

Now assuming our claim is true for n, we have

u2
n+2 + 1 = un+2(3un+1 − un) + 1

= 3un+1un+2 − (unun+2 − 1)

= 3un+1un+2 − u2
n+1

= un+1(3un+2 − un+1) = un+1un+3,

so it is true for n + 1 as well and thus all n ≥ 1.
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Therefore, for all n ≥ 1 we have

un+2 + un =
u2

n+1 + 1
un

+ un =
u2

n+1

un
+
(

un +
1
un

)
≥

u2
n+1

un
+ 2,

where un + 1
un

≥ 2 by AM-GM. This proves the inequality.

Problem 8 Let ABC be a triangle inscribed in circle ω. Construct
all points P in the plane (ABC) and not lying on ω, with the property
that the lines PA, PB, PC meet ω again at points A′, B′, C ′ such
that A′B′ ⊥ A′C ′ and A′B′ = A′C ′.

Solution: All angles are directed modulo 180◦. We solve a more
general problem: suppose we have some fixed triangle DEF and we
want to find all points P such that when A′ = PA∩ω, B′ = PB ∩ω,
C ′ = PC ∩ ω then triangles A′B′C ′ and DEF are similar with the
same orientations. (In other words, we want ∠B′C ′A′ = ∠EFD and
∠C ′A′B′ = ∠FDE.)

Given X, Y on ω, let ∠X̂Y denote the angle ∠XZY for any other
point Z on ω. Now given a point P , we have ∠BPA = ∠B̂A +
∠B̂′A′ = ∠BCA+∠B′C ′A′ and ∠CPB = ∠ĈB+∠Ĉ ′B′ = ∠CAB+
∠C ′A′B′. Thus ∠B′C ′A′ = ∠EFD if and only if ∠BPA = ∠BCA+
∠EFD, while ∠C ′A′B′ = ∠FDE if and only if ∠CPB = ∠CAB +
∠FDE. Therefore our desired point P is the intersection point,
different than B, of the two circles {P ′ | ∠BP ′A = ∠BCA+∠EFD}
and {P ′ | ∠CP ′B = ∠CAB + ∠FDE}.

Now back to our original problem: we wish to find P such that
triangle A′B′C ′ is a 45◦-45◦-90◦ triangle with ∠C ′A′B′ = 90◦.
Because our angles are directed, there are two possible orientations
for such a triangle: either ∠A′B′C ′ = 45◦ or ∠A′B′C ′ = −45◦.
Applying the above construction twice with triangle DEF defined
appropriately yields the two desired possible locations of P .

Problem 9 Consider real numbers a, b such that a 6= 0, a 6= b and
all roots of the equation

ax3 − x2 + bx− 1 = 0

are real and positive. Determine the smallest possible value of the
expression

P =
5a2 − 3ab + 2

a2(b− a)
.



222 Vietnam

Solution: When the roots of the equation are all
√

3, we have
a = 1

3
√

3
, b =

√
3, and P = 12

√
3. We prove that 12

√
3 is minimal.

Say the roots to ax3 − x2 + bx − 1 are p = tanA, q = tanB, and
r = tan C with 0 < A, B,C < 90◦. Then

ax3 − x2 + bx− 1 = a(x− p)(x− q)(x− r)

= ax3 − a(p + q + r)x2 + a(pq + qr + rp)x− a(pqr).

Thus a = 1
p+q+r = 1

pqr > 0 and p + q + r = pqr. Then

r =
p + q

pq − 1

= − tan(A + B)

= tan(180◦ −A−B),

so A + B + C = 180◦. Then since tanx is convex for 0 < x < 90◦, we
have

1
a

= tan A + tanB + tanC ≥ 3 tan 60◦ = 3
√

3,

so a ≤ 1
3
√

3
.

Also notice that

b

a
= pq + qr + rp ≥ 3 3

√
p2q2r2 = 3 3

√
1
a2

≥ 9 > 1,

so b > a. Thus the denominator of P is always positive and is an
increasing function of b, while the numerator of P is a decreasing
function of b. Therefore, for a constant a, P is a decreasing function
of b.

Furthermore,

(p− q)2 + (q − r)2 + (r − p)2 ≥ 0

=⇒ (p + q + r)2 ≥ 3(pq + qr + rp)

=⇒ 1
a2

≥ 3b

a
=⇒ b ≤ 1

3a
,

and

P ≥
5a2 − 3a( 1

3a ) + 2

a2( 1
3a − a)

=
5a2 + 1
a
3 − a3

.
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Thus for 0 < a ≤ 1
3
√

3
, it suffices to show that

5a2 + 1 ≥ 12
√

3
(a

3
− a3

)
= 4

√
3a− 12

√
3a3

⇐⇒ 12
√

3a3 + 5a2 − 4
√

3a + 1 ≥ 0

⇐⇒ 3
(

a− 1
3
√

3

)
(4
√

3a2 + 3a−
√

3) ≥ 0

⇐⇒ 4
√

3a2 + 3a−
√

3 ≤ 0.

But the last quadratic has one positive root

−3 +
√

57
8
√

3
≥ −3 + 7

8
√

3
=

1
2
√

3
>

1
3
√

3
,

so it is indeed negative when 0 < a ≤ 1
3
√

3
. This completes the proof.

Problem 10 Let f(x) be a continuous function defined on [0, 1]
such that

(i) f(0) = f(1) = 0;

(ii) 2f(x) + f(y) = 3f

(
2x + y

3

)
for all x, y ∈ [0, 1].

Prove that f(x) = 0 for all x ∈ [0, 1].

Solution: We prove by induction on k that f
(

m
3k

)
= 0 for all

integers k ≥ 0 and all integers 0 ≤ m ≤ 3k. The given conditions
show this claim is true for k = 0; now assuming it is true for k − 1,

we prove it is true for k.

If m ≡ 0 (mod 3) then f
(

m
3k

)
= f

(
m
3

3k−1

)
= 0 by the induction

hypothesis.
If m ≡ 1 (mod 3), then 1 ≤ m ≤ 3k − 2 and

3f
(m

3k

)
= 2f

(
m−1

3

3k−1

)
+ f

(
m+2

3

3k−1

)
= 0 + 0 = 0.

Thus f
(

m
3k

)
= 0.

And if m ≡ 2 (mod 3), then 2 ≤ m ≤ 3k − 1 and

3f
(m

3k

)
= 2f

(
m+1

3

3k−1

)
+ f

(
m−2

3

3k−1

)
= 0 + 0 = 0.

Hence f
(

m
3k

)
= 0, finishing our induction.
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Now, for any x ∈ [0, 1] we can form a sequence of numbers of the
form m

3k whose limit is x; then since f is continuous, it follows that
f(x) = 0 for all x ∈ [0, 1], as desired.

Problem 11 The base side and the altitude of a right regular
hexagonal prism ABCDEF − A′B′C ′D′E′F ′ are equal to a and h

respectively.

(a) Prove that six planes

(AB′F ′), (CD′B′), (EF ′D′), (D′EC), (F ′AE), (B′CA)

touch the same sphere.

(b) Determine the center and the radius of the sphere.

Solution:

(a) Let O be the center of the prism. (AB′F ′) is tangent to a unique
sphere centered at O. Now the other five planes are simply
reflections and rotations of (AB′F ′) with respect to O; and since
the sphere remains fixed under these transformations, it follows
that all six planes are tangent to this same sphere.

(b) From part (a), the center of the sphere is the center O of the
prism. Let P be the midpoint of AE and let P ′ be the midpoint
of A′E′. Also let Q be the midpoint of PF ′, and let OR be the
perpendicular from O to line PF ′. Note that P, P ′, Q,R, O, F ′

all lie in one plane.
It is straightforward to calculate that F ′P ′ = a

2 and QO = 3a
4 .

Also, since QO ‖ F ′P ′ we have ∠RQO = ∠PF ′P ′; combined
with ∠ORQ = ∠PP ′F ′ = 90◦, this gives 4ORQ ∼ 4PP ′F ′.
Hence the radius of the sphere is

OR = PP ′ · OQ

PF ′
= h ·

3a
4√(

a
2

)2 + h2

=
3ah

2
√

a2 + 4h2
.

Problem 12 For n = 1, 2, . . ., two sequences {xn} and {yn} are
defined recursively by

x1 = 1, y1 = 2, xn+1 = 22yn − 15xn, yn+1 = 17yn − 12xn.

(a) Prove that xn and yn are not equal to zero for all n = 1, 2, . . . .
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(b) Prove that each sequence contains infinitely many positive terms
and infinitely many negative terms.

(c) For n = 19991945, determine whether xn and yn are divisible by
7 or not.

Solution:

(a) The recursive equation for xn+1 gives yn = 1
22 (15xn + xn+1)

and thus also yn+1 = 1
22 (15xn+1 + xn+2). Substituting these

expressions into the other recursive equation gives

xn+2 = 2xn+1 − 9xn

and similarly we can also find

yn+2 = 2yn+1 − 9yn.

Quick computation gives x2 = 29 and y2 = 22. Then x1, x2

are odd, and if xn, xn+1 are odd then xn+2 must be as well; thus
all the xn are odd and hence nozero. Similarly, all the yn are
congruent to 2 (mod 4) and thus nonzero as well.

(b) Note that xn+3 = 2(2xn+1 − 9xn) − 9xn+1 = −5xn+1 − 18xn.
Thus if xn, xn+1 are positive (or negative) then xn+3 is negative
(or positive). Hence among every four consecutive terms xn there
is some positive number and some negative number. Therefore
there are infinitely many positive terms and infinitely many
negative terms in this sequence; and a similar proof holds for
the yn.

(c) All congruences are taken modulo 7 unless stated otherwise. Note
that x1 ≡ x2 ≡ 1. Now if xn ≡ xn+1 and xn 6≡ 0, then we
have (xn+2, xn+3, xn+4, xn+5) ≡ (0, 5xn, 3xn, 3xn) and 5xn 6≡ 0,

3xn 6≡ 0. This implies that x3, x7, x11, . . . are all divisible by 7 but
no other xn are. Since 19991945 ≡ 31945 ≡ 3 ·91944/2 ≡ 3 (mod 4),
we indeed have 7 | xn when n = 19991945.

Now suppose by way of contradiction that 7 | yn′ for some n′,
and choose the minimal such n′. From the recursion for yn, we
have yn ≡ yn+1 + 3yn+2. Now if n′ ≥ 5 then yn′−2 ≡ yn′−1,
yn′−3 ≡ 4yn′−1, and yn′−4 ≡ 0 — contradicting the minimal
choice of n′. Thus we have n′ ≤ 4, but we have (y1, y2, y3, y4) ≡
(2, 1, 5, 1). Therefore no term is divisible by 7; and specifically,
7 6 | yn when n = 19991945.
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2 Asian Pacific Mathematical Olympiad

1.1 Asian Pacific Mathematical

Olympiad

Problem 1 Find the smallest positive integer n with the following
property: There does not exist an arithmetic progression of 1999 real
numbers containing exactly n integers.

Solution: Look at the 1999-term arithmetic progression with
common difference 1

q and beginning term p
q , where p and q are

integers with 1 < q < 1999; without loss of generality assume that
1 ≤ p ≤ q. When p = 1, the progression contains the integers
1, 2, . . . ,

⌊
1999

q

⌋
; when p = q, the progression contains the integers

1, 2, . . . , 1 +
⌊

1998
q

⌋
. Since 1999 is prime, q does not divide 1999 and

hence
⌊

1999
q

⌋
=
⌊

1998
q

⌋
. Thus the progression contains either

⌊
1999

q

⌋
or
⌊

1999
q

⌋
+ 1 integers, and any k of this form can be attained. Call

such numbers good.
Conversely, suppose we have an arithmetic progression containing

exactly k integers, where 1 < k < 1999; without loss of generality, say
its common difference is positive and say it contains 0 as its t-th term.
Its common difference cannot be irrational, so it is of the form p

q for
some positive, relatively prime integers p, q. And since 1 < k < 1999,
1 < q < 1999. But then look at the arithmetic progression with
common difference 1

q and 0 as its t-th term. It, too, contains exactly
k integers; so from our previous argument, k is good.

Now, for q ≥ 32 we have 1999 < 2q(q + 1) =⇒ 1999
q − 1999

q+1 < 2.
Since

⌊
1999
32

⌋
= 62 and

⌊
1999
1998

⌋
= 1, this implies that every integer k

between 1 and 63 is good. Also,⌊
1999
31

⌋
= 64,

⌊
1999
30

⌋
= 66,

⌊
1999
29

⌋
= 68,⌊

1999
q

⌋
≤ 62 when q ≥ 32,

⌊
1999
q

⌋
≥ 71 when q ≤ 28.

Thus 70 is the smallest integer that k cannot equal, and n = 70.

Problem 2 Let a1, a2, . . . be a sequence of real numbers satisfying

ai+j ≤ ai + aj
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for all i, j = 1, 2, . . . . Prove that

a1 +
a2

2
+
a3

3
+ · · ·+ an

n
≥ an

for all positive integers n.

Solution:

Lemma. If m,n are positive integers with m ≥ n, then a1 + a2 +
· · ·+ an ≥ n(n+1)

2m · am.

Proof: The result for m = n comes from adding the inequalities
a1 + an−1 ≥ an, a2 + an−2 ≥ an, . . . , an−1 + a1 ≥ an, 2an ≥
2an, and then dividing by two. Now for positive integers j, write
βj = a1+a2+···+aj

1+2+···+j . Then the inequality for m = n = j = k + 1 is
equivalent to both βj ≥ aj

j and βk ≥ βk+1; so when m ≥ n we have
βn ≥ βn+1 ≥ · · · ≥ βm ≥ am

m , as desired.

The desired inequality now follows from expressing a1+ a2
2 +· · ·+ an

n

as an Abel sum and then applying the lemma multiple times:

a1 +
a2

2
+ · · ·+ an

n

=
1
n

(a1 + a2 + · · ·+ an) +
n−1∑
j=1

(
1
j
− 1
j + 1

)
(a1 + a2 + · · ·+ aj)

≥ 1
n

n(n+ 1)
2n

an +
n−1∑
j=1

1
j(j + 1)

· j(j + 1)
2n

an

= an,

as desired.

Problem 3 Let ω1 and ω2 be two circles intersecting at P and Q.
The common tangent, closer to P , of ω1 and ω2, touches ω1 at A
and ω2 at B. The tangent to ω1 at P meets ω2 again at C, and
the extension of AP meets BC at R. Prove that the circumcircle of
triangle PQR is tangent to BP and BR.

Solution: We shall use directed angles. Using tangents and cyclic
quadrilaterals, we have ∠QAR = ∠QAP = ∠QPC = ∠QBC =
∠QBR, so QABR is cyclic.

Since ∠BPR is an exterior angle to triangle ABP , we have
∠BPR = ∠BAP + ∠PBA. Then again using tangents and cyclic
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quadrilaterals, we have ∠BAP + ∠PBA = ∠BAR + ∠PCB =
∠BQR + ∠PQB = ∠PQR. Thus ∠BPR = ∠PQR, which implies
that line BP is tangent to the circumcircle of triangle PQR.

Next, ∠PRB is an exterior angle to triangle CRP so ∠PRB =
∠PCR + ∠RPC. We know that ∠PCR = ∠PCB = ∠PQB; and
letting T be the intersection of lines CP and AB, we have ∠RPC =
∠APT = ∠AQP = ∠BAP = ∠BAR = ∠BQR. Therefore ∠PRB =
∠PQB + ∠BQR = ∠PQR, which implies that line BR is tangent to
the circumcircle of triangle PQR as well.

Problem 4 Determine all pairs (a, b) of integers for which the
numbers a2 + 4b and b2 + 4a are both perfect squares.

Solution: If a = 0 then b must be a perfect square, and vice versa.
Now assume both a and b are nonzero. Also observe that a2 +4b and
a2 have the same parity, and similarly b2 + 4a and b2 have the same
parity.

If b is positive then a2+4b ≥ (|a|+2)2 = a2+4|a|+4 so |b| ≥ |a|+1.
If b is negative then a2 +4b ≤ (|a|−2)2 = a2−4|a|+4 so |b| ≥ |a|−1.
Similarly, a > 0 =⇒ |a| ≥ |b|+ 1 and a < 0 =⇒ |a| ≥ |b| − 1.

Assume without loss of generality that b > a. If a and b are positive,
then from the last paragraph we have b ≥ a + 1 and a ≥ b + 1, a
contradiction.

If a and b are negative, then we have either a = b or a = b − 1.
For b ≥ −5, only (a, b) = (−4,−4) and (−6,−5) work. Otherwise, we
have (b+ 4)2 < b2 + 4a < (b+ 2)2, a contradiction.

Finally, if a is negative and b is positive, then we have both |b| ≥
|a|+ 1 and |a| ≥ |b| − 1. Then we must have |b| = |a|+ 1 and hence
a + b = 1. Any such pair works, since then a2 + 4b = (a − 2)2 and
b2 + 4a = (b− 2)2 are both perfect squares.

Therefore the possible pairs (a, b) are (−4,−4), (−6,−5), (−5,−6);
and (0, n2), (n2, 0), and (n, 1− n) where n is any integer.

Problem 5 Let S be a set of 2n+1 points in the plane such that no
three are collinear and no four concyclic. A circle will be called good
if it has 3 points of S on its circumference, n−1 points in its interior,
and n − 1 in its exterior. Prove that the number of good circles has
the same parity as n.

Solution:
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Lemma. Suppose we have 2n ≥ 1 given points in the plane with no
three collinear, and one distinguished point A among them. Call a
line “good” if it passes through A and one other given point, and if
it separates the remaining 2n − 2 points: that is, half of them lie on
one side of the line, and the other half lie on the other. Then there
are an odd number of good lines.

Proof: We prove the claim by induction. It is trivial for n = 1;
now assuming it is true for n− 1, we prove it is true for n.

Without loss of generality, arrange the 2n−1 points different from A

on a circle centered at A. From those 2n−1 points, choose two points,
B and C, that are the greatest distance apart. Then if P 6= A,B,C is
a given point, B and C lie on different sides of line AP . Thus line AP
is good if and only if it separates the other 2n− 3 points; and by the
induction hypothesis, there are an odd number of such lines. Finally,
line AB is good if and only if line AC is good — adding either 0 or
2 good lines to our count, so that our total count remains odd. This
completes the inductive step.

Suppose we have a pair of points {A,B} in S. Perform an inversion
about A with arbitrary radius. B and the other 2n − 1 points
C1, C2, . . . , C2n−1 map to 2n distinct points B′, C ′1, C

′
2, . . . , C

′
2n−1 (no

three collinear); and the circle passing through A,B,Ck is good if and
only if the corresponding line B′C ′k separates the other C ′i. By the
lemma, there are an odd number of such lines; so an odd number of
good circles pass through any pair of given points.

For each pair of points count the number of good circles passing
through these points; each good circle is counted three times in this
manner, so if there are k good circles then our count will be 3k. And
there are

(
2n+1

2

)
= n(2n+1) pairs of points, each contributing an odd

amount to our count. Therefore 3k ≡ n(2n + 1) =⇒ k ≡ n (mod 2),
as desired.
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1.2 Austrian-Polish

Mathematics Competition

Problem 1 Let n be a positive integer and M = {1, 2, . . . , n}. Find
the number of ordered 6-tuples (A1, A2, A3, A4, A5, A6) which satisfy
the following two conditions:

(a) A1, A2, A3, A4, A5, A6 (not necessarily distinct) are subsets of
M ;

(b) each element of M belongs to either 0, 3, or 6 of the sets A1, A2,
A3, A4, A5, A6.

Solution: Given k ∈M , there are
(
6
0

)
ways to put k into exactly 0

of the 6 sets;
(
6
3

)
ways to put k into exactly 3 of the sets; and

(
6
6

)
ways

to put k into all 6 sets. This adds up to 1 + 20 + 1 = 22 ways to put
k into the sets. Every admissible 6-tuple is uniquely determined by
where each k is placed; therefore, there are 22n possible distributions.

Problem 2 Find the largest real number C1 and the smallest real
number C2 such that for all positive real numbers a, b, c, d, e the
following inequalities hold:

C1 <
a

a+ b
+

b

b+ c
+

c

c+ d
+

d

d+ e
+

e

e+ a
< C2.

Solution: Let f(a, b, c, d, e) = a
a+b + · · · + e

e+a . Note that
f(e, d, c, b, a) = 5− f(a, b, c, d, e). Hence f(a, b, c, d, e) can attain the
value x if and only if it can attain the value 5 − x. Thus if we find
C1, then C2 = 5− C1.

If a = ε4, b = ε3, c = ε2, d = ε, e = 1, then

f(a, b, c, d, e) =
4ε

1 + ε
+

1
1 + ε4

,

which for small ε can become arbitrarily close to 1. We now prove
that f(a, b, c, d, e) is always bigger than 1. Since f is homogenous,
we may assume without loss of generality that a+ b+ c+ d+ e = 1.
Now g(x) = 1

x is convex for all positive x; so by Jensen’s inequality,
ag(x1) + bg(x2) + · · ·+ eg(x5) ≥ g(ax1 + bx2 + · · ·+ ex5). Applying
this inequality with x1 = a + b, x2 = b + c, . . ., x5 = e + a, we find
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that

f(a, b, c, d, e) ≥ 1∑
cyc a(a+ b)

=
(a+ b+ c+ d+ e)2∑

cyc a(a+ b)
>

∑
cyc a(a+ 2b)∑
cyc a(a+ b)

> 1,

as desired. (Here
∑

cyc h(a, b, c, d, e) means h(a, b, c, d, e)+h(b, c, d, e, a)+
. . . + h(e, a, b, c, d).) Hence C1 = 1; and from our initial arguments,
C2 = 4.

Problem 3 Let n ≥ 2 be a given integer. Determine all systems of
n functions (f1, . . . , fn) where fi : R → R, i = 1, 2, . . . , n, such that
for all x, y ∈ R the following equalities hold:

f1(x)− f2(x)f2(y) + f1(y) = 0

f2(x2)− f3(x)f3(y) + f2(y2) = 0

...

fn−1(xn−1)− fn(x)fn(y) + fn−1(yn−1) = 0

fn(xn)− f1(x)f1(y) + fn(yn) = 0.

Solution: Setting x = y into the k-th equation gives 2fk(xk) =
fk+1(x)2 (where we write fn+1 = f1). Thus if fk(x) = 0 for all
x ∈ R, then fk+1(x) is also always zero; and similarly, all the fi’s are
identically zero. Now assume that no fk is identically zero.

For odd k, given any real value r let x = k
√
r. Then 2fk(r) =

2fk(xk) = fk+1(x)2 ≥ 0 for all r. Similarly, for even k, fk(r) ≥ 0
whenever r ≥ 0. Also observe that for even k, we cannot have some
fk(x) < 0 and some fk(y) > 0 because then we’d have fk−1(xk−1)−
fk(x)fk(y) + fk−1(yk−1) > 0, contradicting the (k − 1)-th equation.
And since fk+1(x) 6= 0 for some x, we have fk(xk) = 1

2fk+1(x)2 > 0.
Therefore, we must have fk(x) ≥ 0 for all x and for all k.

We now prove by induction on k that fk is a constant function. For
k = 1, plugging in f2(x) =

√
2f1(x) and f2(y) =

√
2f1(y) into the

first equation gives f1(x)− 2
√
f1(x)f1(y)+ f1(y) = 0 for all x, y ∈ R.

By the arithmetic mean-geometric mean inequality, this is true only
when f1(x) = f1(y) for all x, y ∈ R.
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Now assume that fk(x) = fk(y) for all x, y. Then fk+1(x) =√
2fk(xk) =

√
2fk(yk) = fk+1(y) for any x, y ∈ R, completing the

inductive step.
Writing fk(x) = ck (where we write cn+1 = c1), observe that

ck = 1
2c

2
k+1 for all k; since fk(x) ≥ 0 for all x but fk is not identically

zero, each ck is positive. If 0 < ck+1 < 2, then 0 < ck < ck+1 < 2.
Thus cn > cn−1 > · · · > c1 > cn, a contradiction. Similarly, if
ck+1 > 2 then ck > ck+1 > 2; so that cn < cn−1 < · · · < c1 < cn, a
contradiction. Hence, we must have ck = 2 for all k.

Therefore, the only possible functions are fk(x) = 0 for all x, k;
and fk(x) = 2 for all x, k.

Problem 4 Three straight lines k, l, and m are drawn through
some fixed point P inside a triangle ABC such that:

(a) k meets the lines AB and AC in A1 and A2 (A1 6= A2) respec-
tively and PA1 = PA2;

(b) l meets the lines BC and BA in B1 and B2 (B1 6= B2) respectively
and PB1 = PB2;

(c) m meets the lines CA and CB in C1 and C2 (C1 6= C2)
respectively and PC1 = PC2.

Prove that the lines k, l, m are uniquely determined by the above
conditions. Find the point P (and prove that there exists exactly one
such point) for which the triangles AA1A2, BB1B2, and CC1C2 have
the same area.

Solution: Let ` be the reflection of line AB about P ; since A1

and A2 are also mirror images of each other across P, A2 must lie
on `. Thus A2 must be the intersection of ` and line AC, and this
intersection point is unique since lines AB and AC are not parallel.
Therefore k must be the line passing through P and this point, and
conversely this line satisfies condition (a). Similarly, lines l and m are
also uniquely determined.

Now suppose that triangles AA1A2 and BB1B2 have the same area.
Let Q be the midpoint of AA1; then since P is the midpoint of A1A2,

we have [AQP ] = 1
2 [AA1P ] = 1

4 [AA1A2]. Similarly, let R be the
midpoint of BB2; then [BRP ] = 1

2 [BB2P ] = 1
4 [BB1B2]. Therefore

[AQP ] = [BRP ]; and since the heights from P in triangles AQP and
BRP are equal, we must have AQ = BR.
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Now since P and Q are the midpoints of A1A2 and A1A, we have
PQ ‖ AA2 and hence PQ ‖ AC. This implies that Q lies between
A and B. Similarly, R lies between A and B as well. Then since
AQ = BR, Q and R are equidistant from the midpoint C ′ of AB.
Therefore the homothety about C ′ that maps A to Q also maps B to
R. This homothety also maps line AC to QP since AC ‖ QP ; and
it maps line BC to RP. Hence it maps C to P, so that C ′, P, C are
collinear and P lies on the median from C in triangle ABC.

Similarly, P must lie on the medians from A and B in triangle
ABC, so it must be the centroid G of triangle ABC. And conversely,
if P = G then k, l,m are parallel to lines BC,CA,AB respectively,
and [AA1A2] = [BB1B2] = [CC1C2] = 4

9 [ABC].

Problem 5 A sequence of integers {an}n≥1 satisfies the following
recursive relation

an+1 = a3
n + 1999 for n = 1, 2, . . . .

Prove that there exists at most one n for which an is a perfect square.

Solution: Consider the possible values of (an, an+1) modulo 4:

an 0 1 2 3
an+1 3 0 3 2

No matter what a1 is, the terms a3, a4, . . . are all 2 or 3 (mod 4);
but all perfect squares are 0 or 1 (mod 4), so at most two terms (a1

and a2) can be perfect squares. But if a1 and a2 are both perfect
squares, then writing a1 = a2, a2 = b2 we have a6 + 1999 = b2 or
1999 = b2−(a3)2 = (b+a3)(b−a3). But since 1999 is prime, b−a3 = 1
and b + a3 = 1999. Thus a3 = 1999−1

2 = 999, which is impossible.
Hence at most one term of the sequence is a perfect square.

Problem 6 Find all real numbers x0, x1, x2, . . . , x1998 ≥ 0 which
satisfy

x2
i+1 + xi+1xi + x4

i = 1

for i = 0, 1, . . . , 1998, where x1999 = x0.

Solution: Let R be the positive real root of x4 +2x2−1 = 0, found
using the quadratic formula:

R2 =
−2 +

√
8

2
= −1 +

√
2 =⇒ R =

√
−1 +

√
2.
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If xn, xn+1 ≥ R then 1 = x2
n+1 +xn+1xn +x4

n ≥ R2 +R2 +R4 = 1,
with equality when xn = xn+1 = R. Similarly, if xn, xn+1 ≤ R

then we must have xn = xn+1 = R. Hence either xn = xn+1 = R,

xn < R < xn+1, or xn > R > xn+1.

Now if x0 < R then x1 > R, x2 < R, . . ., x0 = x1999 > R, a
contradiction. Similarly, we cannot have x0 > R. Therefore x0 = R

and the only solution is

x0 = x1 = · · · = x1999 = R =
√
−1 +

√
2.

Problem 7 Find all pairs (x, y) of positive integers such that

xx+y = yy−x.

Solution: Let gcd(x, y) = c, and write a = x
c , b = y

c . Then the
equation becomes

(ac)c(a+b) = (bc)c(b−a)

(ac)a+b = (bc)b−a

aa+bc2a = bb−a.

Thus aa+b | bb−a; then since gcd(a, b) = 1, a must equal 1. Therefore

bb−1 = c2

is a perfect square. This is true exactly when b is odd, or when b is a
perfect square. If b = 2n + 1 then c = (2n + 1)n; and if b = n2 then
c = nn2−1. Therefore (x, y) equals either

((2n+ 1)n, (2n+ 1)n+1) or (nn2−1, nn2+1)

for some positive integer n, and any such pair indeed satisfies the
given equations.

Problem 8 Let ` be a given straight line and let the points P and
Q lie on the same side of the line `. The points M , N lie on the
line ` and satisfy PM ⊥ ` and QN ⊥ `. The point S lies between
the lines PM and QN such that PM = PS and QN = QS. The
perpendicular bisectors of SM and SN meet at R. Let T be the
second intersection of the line RS and the circumcircle of triangle
PQR. Prove that RS = ST .
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Solution: All angles are directed modulo 180◦. Let T ′ be the
reflection of R across S; we wish to prove that PRQT ′ is cyclic.

Since RM = RS = RN , ∠RMN = ∠MNR = x. Note that
PMRS is a kite which is symmetric with respect to line PR. Hence
∠PRM = ∠SRP = y, ∠MPR = ∠RPS = z, and ∠PSR =
∠RMP = 90◦ + x. Similarly, ∠QRS = ∠NRQ = u, ∠SQR =
∠RQN = v, and ∠RSQ = ∠QNR = 90◦ + x. In triangle MNR,
2(x+ y+u) = 180◦. In triangle PMR, y+ z+90◦+x = 180◦ so that
2(x+ y + z) = 180◦. Hence 2u = 2z.

Orient our diagram so that line MN is horizontal and so that P
and Q are above line MN. From the given information, S is above
line MN and between lines PM and QN. Also, since since R is the
circumcenter of triangle MSN, R lies below between lines PM and
QN and below S. This information allows us to safely conclude that
u = z, or ∠SPR = ∠SRQ.

Similarly, y = v and ∠PRS = ∠SQR. Thus 4PSR ∼ 4RSQ.
Let A and B be the midpoints of PR and QR, respectively. Then
SA and SB are corresponding medians in similar triangles PRS and
RQS. Hence 4ASR ∼ 4BSQ. It follows that

∠ASB = ∠ASR+ ∠RSB = ∠BSQ+ ∠RSB = ∠RSQ = 90◦ + x.

Thus ∠ASB + ∠ARB = ∠ASB + ∠PRQ = 90◦ + x + y + z = 180◦

and ASRB is cyclic. Since PRQT ′ is the image of ARBS under a
homothety about R with ratio 2, it follows that PQRT ′ is cyclic as
well.

Problem 9 Consider the following one player game. On the plane,
a finite set of selected lattice points and segments is called a position
in this game if the following hold:

(i) the endpoints of each selected segment are lattice points;

(ii) each selected segment is parallel to a coordinate axis, or to the
line y = x, or to the line y = −x;

(iii) each selected segment contains exactly 5 lattice points and all of
them are selected;

(iv) any two selected segments have at most one common point.

A move in this game consists of selecting a new lattice point and
a new segment such that the new set of selected lattice points and
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segments is a position. Prove or disprove that there exists an initial
position such that the game has infinitely many moves.

Solution: There exists no position so that the game can last for
infinitely many moves.

Given any segment, let its “extreme point” be its leftmost, upper-
leftmost, highest, or upper-rightmost point (depending on whether
the segment is parallel to y = 0, y = −x, x = 0, or y = x); let its other
four lattice points form the segment’s “mini-segment.” Observe that
no two mini-segments pointing in the same direction can intersect.

Also, given any position, call a lattice point a “missing point” if it
is the extreme point of a selected segment in one direction, but does
not lie on any other selected segment pointing in the same direction.
(Notice that during the game, a lattice point might switch between
being missing and not-missing.)

Lemma. Given an integer N > 0, if the game continues forever then
at some point at least N missing points will exist at the same time.

Proof: Suppose we have k lines that contain at least one selected
segment. Some dk

4 e of them must point in the same direction; then
each of these lines contains at least one different missing point: its
leftmost, upper-leftmost, highest, or upper- rightmost extreme point.
Therefore it is enough to show that k gets arbitrarily large.

For sake of contradiction, suppose that k is bounded. Then all the
selected segments will lie on some finite number of lines; these lines
have only a finite set S of t intersection points, so from some position
onward no new selected point will be in S. At this point say we have
s selected segments, and p selected points outside of S.

After n more moves there will be s + n mini-segments, and p + n

selected points outside of S. Each mini-segment contains 4 points for
a total count of 4(s+n). On the other hand, each of the t points lies
on at most 4 mini-segments; and each of the p + n other points lies
on at most 1 mini-segment, for a total count of at most 4t+ (p+ n).
Thus 4(s + n) ≤ 4t + (p + n), but this is false for large enough n —
a contradiction.

Now suppose in our original position we have s selected segments
and p selected points. From the lemma, eventually we will have more
than 4(p − s) missing points. Say this happens after n moves, when
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we have s + n selected segments and p + n selected points. Then as
in the lemma, we will have s + n mini-segments each containing 4
points—for a total count of 4(s + n). On the other hand, each of
the missing points lies on at most 3 mini-segments; and all the other
selected points lie on at most 4 mini-segments each. Thus our total
count is less than 3 · 4(p − s) + 4 · (p + n − 4(p − s)) = 4(s + n), a
contradiction. This completes the proof.



14 Balkan Mathematical Olympiad

1.3 Balkan Mathematical Olympiad

Problem 1 Given an acute-angled triangle ABC, let D be the
midpoint of minor arc B̂C of circumcircle ABC. Let E and F be the
respective images of D under reflections about BC and the center of
the circumcircle. Finally, let K be the midpoint of AE. Prove that:

(a) the circle passing through the midpoints of the sides of the
triangle ABC also passes through K.

(b) the line passing through K and the midpoint of BC is perpen-
dicular to AF .

Solution:

(a) Let M , B1, and C1 denote the midpoints of sides BC, CA, and
AB, respectively; then4ABC ∼ 4MB1C1 and ∠C1MB1 = ∠A.
Also, BECD is a rhombus, with ∠BEC = ∠CDB = 180◦−∠A.
The homothety centered at A with ratio 1

2 maps triangle BEC to
triangle C1KB1. Thus, ∠C1KB1 + ∠C1MB1 = ∠BEC + ∠A =
180◦, so MC1KB1 is cyclic.

(b) Since ED = 2EM and EA = 2EK, MK ‖ AD. But DF is a
diameter, so AD ⊥ AF . Hence also MK ⊥ AF .

Problem 2 Let p > 2 be a prime number such that 3 | (p− 2). Let

S = {y2 − x3 − 1 | x and y are integers, 0 ≤ x, y ≤ p− 1}.

Prove that at most p elements of S are divisible by p.

Solution:

Lemma. Given a prime p and a positive integer k > 1, if k and p−1
are relatively prime then xk ≡ yk ⇒ x ≡ y (mod p) for all x, y.

Proof: If y ≡ 0 (mod p) the claim is obvious. Otherwise, note
that xk ≡ yk =⇒ (xy−1)k ≡ 1 (mod p), so it suffices to prove that
ak ≡ 1 =⇒ a ≡ 1 (mod p).

Since gcd(p − 1, k) = 1, there exist integers b and c such that
b(p−1)+ck = 1. Thus, ak ≡ 1 =⇒ ac ≡ 1 =⇒ a1−b(p−1) ≡ 1 (mod p).
If a = 0 this is impossible; otherwise, by Fermat’s Little Theorem,
(a−b)p−1 ≡ 1 (mod p) so that a ≡ 1 (mod p), as desired.

Alternatively, again note that clearly a 6≡ 1 (mod p). Then let d be
the order of a, the smallest positive integer such that ad ≡ 1 (mod p);



1999 Regional Contests: Problems and Solutions 15

we have d | k. Take the set {1, a, a2, . . . , ad−1}; if it does not contain
all of 1, 2, . . . , p− 1 then pick some other element b and consider the
set {b, ba, ba2, . . . , bad−1}. These two sets are disjoint, since otherwise
bai ≡ aj ⇒ b ≡ aj−1 (mod p), a contradiction. Continuing similarly,
we can partition {1, 2, . . . , p − 1} into d-element subsets, and hence
d | p− 1. But since d | k and gcd(k, p− 1) = 1, we must have d = 1.
Therefore a ≡ ad ≡ 1 (mod p), as desired.

Since 3 | p − 2, gcd(3, p − 1) = 1. Then from the claim, it follows
that the set of elements {13, 23, . . . , p3} equals {1, 2, . . . , p} modulo
p. Hence, for each y with 0 ≤ y ≤ p − 1, there is exactly one x

between 0 and p−1 such that x3 ≡ y2−1 (mod p): that is, such that
p | y2 − x3 − 1. Therefore S contains at most p elements divisible by
p, as desired.

Problem 3 Let ABC be an acute triangle, and let M , N , and P

be the feet of the perpendiculars from the centroid to the three sides.
Prove that

4
27

<
[MNP ]
[ABC]

≤ 1
4
.

Solution: We begin by proving that 9[MNP ]
[ABC] = sin2A + sin2B +

sin2 C. Let G be the centroid of triangle ABC, and let M , N , and P
be on sides BC, AC, and AB, respectively. Also let AB = c, BC = a,
CA = b, and K = [ABC].

We have [ABG] = K
3 = 1

2c · GP =⇒ GP = 2K
3c . Similarly,

GN = 2K
3b , so

[PGN ] =
1
2
GP ·GN sinA =

2K2 sinA
9bc

=
K2a2

9Rabc
.

Summing this formula with the analogous ones for [NGM ] and
[MGP ] yields

[MNP ] =
K2(a2 + b2 + c2)

9Rabc
.

Dividing this by [ABC] = K and then substituting K = abc
4R ,

a = 2R sinA, b = 2R sinB, and c = 2R sinC on the right yields
[MNP ]
[ABC] = 1

9

(
sin2A+ sin2B + sin2 C

)
, as desired.

Hence the problem reduces to proving 4
3 < sin2A+sin2B+sin2 C ≤

9
4 . Assume without loss of generality that A ≥ B ≥ C.
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To prove the right inequality, first note that A < π
2 ⇒ B > π

4 .
The function sin2 x is concave on [π

4 ,
π
2 ]; applying Jensen’s Inequality

gives sin2A + sin2B ≤ 2 sin2
(

A
2 + B

2

)
= 2 cos2

(
C
2

)
. Thus it suffices

to prove 2 cos2
(

C
2

)
+sin2 C ≤ 9

4 ⇐⇒ 1+cosC+1−cos2 C ≤ 9
4 ⇐⇒

−(cosC + 1
2 )2 ≤ 0, which is true.

For the left inequality, note that sin2 x is an increasing function on
[0, π

2 ]. We have B ≥ π−A
2 , so sin2A + sin2B + sin2 C > sin2A +

cos2
(

A
2

)
= − cos2A + 1

2 cosA + 3
2 . But since A is the largest angle,

we have π
2 > A ≥ π

3 so 1
2 ≥ cosA > 0; then − cos2A+ 1

2 cosA+ 3
2 ≥

3
2 >

4
3 , as desired.

Problem 4 Let {xn}n≥0 be a nondecreasing sequence of nonneg-
ative integers such that for every k ≥ 0 the number of terms of the
sequence which are less than or equal to k is finite; let this number
be yk. Prove that for all positive integers m and n,

n∑
i=0

xi +
m∑

j=0

yj ≥ (n+ 1)(m+ 1).

Solution: Under the given construction, ys ≤ t if and only if xt > s.
But this condition is equivalent to saying that ys > t if and only if
xt ≤ s. Thus the sequences {xi} and {yj} are dual, meaning that
applying the given algorithm to {yj} will restore the original {xi}.

To find
∑n

i=0 xi, note that among x0, x1, . . . , xn there are exactly
y0 terms equal to 0, y1 − y0 terms equal to 1, . . . , and yxn−1 − yxn−2

terms equal to xn−1; and the remaining n+1−xn−1 terms equal xn.
Hence,

n∑
i=0

xi = 0 · (y0) + 1 · (y1 − y0) + · · ·

+ (xn − 1) · (yxn−1 − yxn−2) + xn · (n+ 1− yxn−1)

= −y0 − y1 − · · · − yxn−1 + (n+ 1)xn.

First suppose that xn−1 ≥ m, and write xn−1 = m+k for k ≥ 0.
Since xn > m + k, from our initial observations we have ym+k ≤ n.
But then n+ 1 ≥ ym+k ≥ ym+k−1 ≥ · · · ≥ ym, so

n∑
i=0

xi +
m∑

j=0

yj = (n+ 1)xn −

xn−1∑
j=0

yj −
m∑

i=0

yi


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= (n+ 1)xn −
m+k∑

i=m+1

yi

≥ (n+ 1)(m+ k + 1)− k · (n+ 1)

= (n+ 1)(m+ 1),

as desired.
Next suppose that xn − 1 < m. Then xn ≤ m =⇒ ym > n =⇒

ym − 1 ≥ n. Since {xi} and {yj} are dual, we may therefore apply
the same argument with the roles of the two sequences reversed. This
completes the proof.
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1.4 Czech and Slovak Match

Problem 1 For arbitrary positive numbers a, b, c, prove the
inequality

a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b
≥ 1.

First Solution: Set x = b + 2c, y = c + 2a, z = a + 2b. Then
a = 1

9 (4y + z − 2x), b = 1
9 (4z + x − 2y), c = 1

9 (4x + y − 2z), so the
desired inequality becomes

4y + z − 2x
9x

+
4z + x− 2y

9y
+

4x+ y − 2z
9z

≥ 1,

which is equivalent to(
x

y
+
y

x

)
+
(
y

z
+
z

y

)
+
( z
x

+
x

z

)
+ 3 ·

(
y

x
+
z

y
+
x

z

)
≥ 15.

But this is true because by AM-GM, the quantities in parentheses are
at least 2, 2, 2, and 3, respectively; or alternatively, it is true by the
AM-GM inequality on all 15 fractions of the form x

y on the left-hand

side (where 3 ·
(

y
x + x

z + z
y

)
contributes nine such fractions).

Second Solution: By the Cauchy-Schwarz inequality

(u1v1 + u2v2 + u3v3)2 ≤ (u2
1 + u2

2 + u2
3)(v

2
1 + v2

2 + v2
3),

the quantity (a+ b+ c)2 is at most(
a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b

)
[a(b+ 2c) + b(c+ 2a) + c(a+ 2b)].

On the other hand, from the inequality (a−b)2+(b−c)2+(c−a)2 ≥ 0
we have

a(b+ 2c) + b(c+ 2a) + c(a+ 2b) ≤ (a+ b+ c)2.

Combining these gives

a(b+ 2c) + b(c+ 2a) + c(a+ 2b)

≤
(

a

b+ 2c
+

b

c+ 2a
+

c

a+ 2b

)
[a(b+ 2c) + b(c+ 2a) + c(a+ 2b)],

which yields our desired inequality upon division by the (positive)
expression a(b+ 2c) + b(c+ 2a) + c(a+ 2b).
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Problem 2 Let ABC be a nonisosceles acute triangle with altitudes
AD, BE, and CF . Let ` be the line through D parallel to line EF .
Let P =

←→
BC ∩

←→
EF , Q = `∩

←→
AC, and R = `∩

←→
AB. Prove that the

circumcircle of triangle PQR passes through the midpoint of BC.

Solution: Let M be the midpoint of BC. Without loss of generality
we may assume that AB > AC. Then the order of the points in
question on line BC is B,M,D,C, P . Since ∠BEC = ∠BFC = 90◦,
BCEF is cyclic so that ∠QCB = 180◦−∠BCE = ∠EFB = ∠QRB.
Thus RCQB is cyclic as well and

DB ·DC = DQ ·DR.

Quadrilateral MRPQ is cyclic if and only if DM · DP = DQ ·
DR, so it remains to prove that DB · DC = DP · DM . Since
the points B,C,E, F are concyclic, we have PB · PC = PE · PF .
The circumcircle of triangle DEF (the so-called nine-point circle
of triangle ABC) also passes through the midpoints of the sides of
triangle ABC, which implies that PE · PF = PD · PM . Comparing
both equalities shows that PB · PC = PD · PM . Denoting MB =
MC = u, MD = d, MP = p, the last equality reads (p+ u)(p− u) =
(p − d)p ⇐⇒ u2 = dp ⇐⇒ (u + d)(u − d) = (p − d)d ⇐⇒
DB ·DC = DP ·DM . This completes the proof.

Problem 3 Find all positive integers k for which there exists a
ten-element set M of positive numbers such that there are exactly
k different triangles whose side lengths are three (not necessarily
distinct) elements of M . (Triangles are considered different if they
are not congruent.)

Solution: Given any 10-element set M of positive integers, there
are exactly

(
12
3

)
triples x, y, z (x ≤ y ≤ z) chosen from the numbers in

M ; thus, we must have k ≤
(
12
3

)
= 220. On the other hand, for each

of the
(
11
2

)
pairs x, y from M (with x ≤ y) we can form the triangle

with side lengths x, y, y; hence k ≥
(
11
2

)
= 55. Then applying the

following lemma, the possible values of k are then 55, 56, . . . , 220.

Lemma. Suppose we have some positive integers n and k, with(
n+ 1

2

)
≤ k ≤

(
n+ 2

3

)
.
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Then there exists an n-element set M of positive numbers, such
that there are exactly k triangles whose side lengths are three (not
necessarily distinct) elements of M .

Furthermore, there exists an n-element set Sn with numbers x1 <

x2 < · · · < xn such that xn < 2x1 and such that all the
(
n+1

2

)
pairwise

sums

xi + xj (1 ≤ i ≤ j ≤ n)

are distinct. Exactly
(
n+2

3

)
triangles can be formed from the elements

of Sn.

Proof: We prove the claim by induction on n; it clearly holds for
n = 1. Now suppose the claim is true for n and that

(
n+2

2

)
≤ k ≤(

n+3
3

)
.

If
(
n+2

2

)
≤ k ≤

(
n+2

3

)
+ (n + 1), then first find the n-element set

M ′ = {x1, x2, . . . , xn} from which exactly k− (n+1) triangles can be
formed. Choose xn+1 > 2 ·max{M ′}, and write M = M ′ ∪ {xn+1}.
Then exactly k triangles can be formed from the elements of M :
k − (n + 1) triangles from {x1, x2, . . . , xn}; and an additional n + 1
triangles with side lengths xi, xn+1, xn+1 for i = 1, 2, . . . , n+ 1.

Otherwise k =
(
n+2

3

)
+ n + 1 + q, where q ∈ {1, 2, . . . ,

(
n+1

2

)
}. To

the set Sn described in the lemma, add an element xn+1 which is
greater than xn but smaller than precisely q of the

(
n+1

2

)
original

pairwise sums from Sn. This gives a set M from which exactly k

triangles can be formed:
(
n+2

3

)
triangles from {x1, x2, . . . , xn}; n+ 1

additional triangles with side lengths xi, xn+1, xn+1; and exactly q

more triangles with side lengths xi, xj , xn+1 (where i, j 6= n+ 1).
None of the numbers xi + xn+1 equals any of the original pairwise

sums. Thus we can construct Sn+1, completing the proof of the
lemma.

Problem 4 Find all positive integers k for which the following
assertion holds: if F (x) is a polynomial with integer coefficients which
satisfies 0 ≤ F (c) ≤ k for all c ∈ {0, 1, . . . , k + 1}, then

F (0) = F (1) = · · · = F (k + 1).

Solution: The claim is false for k < 4; we have the counterexamples
F (x) = x(2 − x) for k = 1, F (x) = x(3 − x) for k = 2, and
F (x) = x(4− x)(x− 2)2 for k = 3.
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Now suppose k ≥ 4 is fixed and that F (x) has the described
property. First of all F (k + 1) − F (0) = 0, because it is a multiple
of k + 1 whose absolute value is at most k. Hence F (x) − F (0) =
x(x − k − 1)G(x), where G(x) is another polynomial with integer
coefficients. Then we have

k ≥ |F (c)− F (0)| = c(k + 1− c)|G(c)|

for each c = 1, 2, . . . , k. If 2 ≤ c ≤ k − 1 (such numbers c exist since
k ≥ 4) then

c(k + 1− c) = 2(k − 1) + (c− 2)(k − 1− c) ≥ 2(k − 1) > k,

which in view of our first inequality means that |G(c)| < 1 =⇒ G(c) =
0. Thus 2, 3, . . . , k − 1 are roots of the polynomial G(x), so

F (x)− F (0) = x(x− 2)(x− 3) · · · (x− k + 1)(x− k − 1)H(x),

where H(x) is again a polynomial with integer coefficients. It remains
to explain why H(1) = H(k) = 0. But this is easy: both values c = 1
and c = k satisfy k ≥ |F (c) − F (0)| = (k − 2)! · k · |H(c)|; and since
(k − 2)! > 1, we must have H(1) = H(k) = 0.

Problem 5 Find all functions f : (1,∞) → R such that

f(x)− f(y) = (y − x)f(xy)

for all x, y > 1.

Solution: For every t > 1 we use the equation in turn for (x, y) =
(t, 2), (t, 4) and (2t, 2):

f(t)− f(2) = (2− t)f(2t),

f(t)− f(4) = (4− t)f(4t),

f(2t)− f(2) = (2− 2t)f(4t).

We eliminate f(t) by subtracting the second equation from the first,
and then substitute for f(2t) from the third. This yields the equality

f(4) + (t− 3)f(2) = t(2t− 5)f(4t)

for any t > 1. Taking t = 5
2 we get f(4) = 1

2f(2), and feeding this
back gives (

t− 5
2

)
f(2) = t(2t− 5)f(4t).
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It follows that for any t > 1, t 6= 5
2 ,

f(4t) =
f(2)
2t

,

so by the middle of the three equations in the beginning of this
solution we obtain

f(t) = f(4) + (4− t)f(4t) =
1
2
f(2) +

(4− t)f(2)
2t

=
2f(2)
t

.

This formula for f(t) holds even for t = 5
2 , as can now be checked

directly by applying the original equation to x = 5
2 and y = 2 (and

using f(5) = 2f(2)
5 ). Setting c = 2f(2), we must have

f(x) =
c

x

for all x; and this function has the required property for any choice
of the real constant c.

Problem 6 Show that for any positive integer n ≥ 3, the least
common multiple of the numbers 1, 2, . . . , n is greater than 2n−1.

Solution: Since for any n ≥ 3 we have

2n−1 =
n−1∑
k=0

(
n− 1
k

)
<

n−1∑
k=0

(
n− 1
bn−1

2 c

)
= n ·

(
n− 1
bn−1

2 c

)
,

it suffices to show that the number n·
( n−1
bn−1

2 c

)
divides the least common

multiple of 1, 2, . . . , n. Using a prime factorization argument, we will
prove the more general assertion that for each k < n the least common
multiple of the numbers n, n− 1, . . . , n− k is divisible by n ·

(
n−1

k

)
.

Let k and n be fixed natural numbers with k < n, and let p ≤ n

be an arbitrary prime. Let pα be the highest power of p which
divides lcm(n, n − 1, . . . , n − k), where pα | n − ` for some `. Then
for each i ≤ α, we know that pi | n − `. Thus exactly

⌊
`
pi

⌋
of

{n − ` + 1, n − ` + 2, . . . , n} and exactly
⌊

k−`
pi

⌋
of {n − ` − 1, n −

` − 2, . . . , n − k} are multiples of pi, so pi divides
⌊

`
pi

⌋
+
⌊

k−`
pi

⌋
≤⌊

k
pi

⌋
of the remaining k numbers — that is, at most the number of

multiples of pi between 1 and k. It follows that p divides n ·
(
n−1

k

)
=

n(n−1)···(n−`+1)(n−`−1)···(n−k)
k! · (n− `) at most α times, so that indeed

n ·
(
n−1

k

)
| lcm(n, n− 1, . . . , n− k).
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1.5 Hungary-Israel Binational

Mathematical Competition

Individual Round

Problem 1 Let S be the set of all partitions (a1, a2, . . . , ak) of the
number 2000, where 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak and a1 + a2 + · · ·+ ak =
2000. Compute the smallest value that k + ak attains over all such
partitions.

Solution: AM-GM gives

k + ak ≥ 2
√
kak ≥ 2(

√
2000) > 89.

Thus since k + ak is an integer, it must be at least 90. And 90 is
attainable, since k + ak = 90 for the partition (40, 40, · · · , 40︸ ︷︷ ︸

50

).

Problem 2 Prove or disprove the following claim: For any positive
integer k, there exists a positive integer n > 1 such that the binomial
coefficient

(
n
i

)
is divisible by k for any 1 ≤ i ≤ n− 1.

First Solution: The statement is false. To prove this, take k = 4
and assume by contradiction that there exists a positive integer n > 1
for which

(
n
i

)
is divisible by 4 for every 1 ≤ i ≤ n− 1. Then

0 ≡
n−1∑
i=1

(
n

i

)
= 2n − 2 ≡ −2 (mod 4),

a contradiction.

Second Solution: The claim is obviously true for k = 1; we
prove that the set of positive integers k > 1 for which the claim
holds is exactly the set of primes. First suppose that k is prime;
then express n in base k, writing n = n0 + n1k + · · · + nmk

m

where 0 ≤ n0, n1, . . . , nm ≤ k − 1 and nm 6= 0. Also suppose we
have 1 ≤ i ≤ n − 1, and write i = i0 + i1k + · · · + imk

m where
0 ≤ i0, i1, . . . , im ≤ k−1 (although perhaps im = 0). Lucas’s Theorem
states that (

n

i

)
≡

m∏
j=0

(
nj

ij

)
(mod k).
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Now if n = km, then n0 = n1 = · · · = nm−1 = 0; and 1 ≤ i ≤ n− 1
so that im = 0 but some other ij′ is nonzero. Then

(nj′
ij′

)
= 0, and

indeed
(
n
i

)
≡ 0 (mod k) for all 1 ≤ i ≤ n− 1.

However, suppose that n 6= km. If nm > 1 then letting i = km < n

we have
(
n
i

)
≡ (nm)(1)(1) · · · (1) ≡ nm 6≡ 0 (mod k). Otherwise,

some other nj′ 6= 0; but then setting i = nj′k
j′ < n we have(

n
i

)
≡ (1)(1) · · · (1) ≡ 1 6≡ 0 (mod k). Therefore the claim holds

for prime k exactly when n = km.

Now suppose the claim holds for some k > 1 with the number
n. If some prime p divides k, the claim must also hold for p with
the number n. Thus n must equal a prime power pm where m ≥ 1.
Then k = pr for some r ≥ 1 as well, because if two primes p and q

divided k then n would equal a perfect power of both p and q, which
is impossible.

Choose i = pm−1. Kummer’s Theorem then states that pt |
(
n
i

)
if and only if t is less than or equal to the number of carries in the
addition (n−i)+i in base p. But there is only one such carry, between
the pm−1 and pm places:

1

1 0 0 . . . 0
+ p− 1 0 0 . . . 0

1 0 0 0 . . . 0

Thus, we must have r ≤ 1 and k must be prime, as claimed.
(Alternatively, for n = pm and i = pm−1 we have(

n

i

)
=

pm−1−1∏
j=0

pm − j

pm−1 − j
.

When j = 0 then pm−j
pm−1−j

= p. Otherwise, 0 < j < pm−1 so that if
pt < pm−1 is the highest power of p dividing j, then it is also the
highest power of p dividing both pm − j and pm−1 − j. Therefore

pm−j
pm−1−j

contributes one factor of p to
(
n
i

)
when j = 0 and zero factors

of p when j > 0. Thus p2 6 |
(
n
i

)
, and hence again r ≤ 1.)

Problem 3 Let ABC be a non-equilateral triangle with its incircle
touching BC,CA, and AB at A1, B1, and C1, respectively, and let
H1 be the orthocenter of triangle A1B1C1. Prove that H1 is on the
line passing through the incenter and circumcenter of triangle ABC.
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First Solution: Let ω1, I, ω2, and O be the incircle, incenter,
circumcircle, and circumcenter of triangle ABC, respectively. Since
I 6= O, line IO is well defined.

Let T be the center of the homothety with positive ratio that sends
ω1 to ω2 and hence I to O. Also let A2, B2, C2 be the midpoints
of the arcs BC, CA, AB of ω2 not containing A,B,C, respectively.
Since rays IA1 and OA2 point in the same direction, T must send A1

to A2 and similarly B1 to B2 and C1 to C2.
Also, because the measures of arcs AC2 and A2B2 add up to

180◦, we know that AA2 ⊥ C2B2. Similarly, BB2 ⊥ C2A2 and
CC2 ⊥ A2B2. Then since lines AA2, BB2, CC2 intersect at I, I is the
orthocenter of triangle A2B2C2. Hence I is the image of H1 under the
defined homothety. Therefore T,H1, I are collinear; and from before
T, I,O are collinear. It follows that H1, I, O are collinear, as desired.

Second Solution: Define ω1, I, ω2, and O as before. Let ω3 be the
nine-point circle of triangle A1B1C1, and let S be its center. Since I
is the circumcenter of triangle A1B1C1, S is the midpoint of IH1 and
I,H1, S are collinear.

Now invert the figure with respect to ω1. The midpoints of
A1B1, B1C1, C1A1 are mapped to C,A,B, and thus ω3 is mapped
to ω2. Thus I,O, S are collinear; and so I,H1, O, S are collinear, as
desired.

Problem 4 Given a set X, define

X ′ = {s− t | s, t ∈ X, s 6= t}.

Let S = {1, 2, . . . , 2000}. Consider two sets A,B ⊆ S, such that
|A||B| ≥ 3999. Prove that A′ ∩B′ 6= ∅.

Solution: Consider all |A|·|B| ≥ 3999 sums, not necessarily distinct,
of the form a+ b where a ∈ A, b ∈ B. If both 2 and 4000 are of this
form, then both A and B contain 1 and 2000 so that 2000−1 ∈ A′∩B′.
Otherwise, each sum a+ b takes on one of at most 3998 values either
between 2 and 3999, or between 3 and 4000. Thus by the pigeonhole
principle, two of our |A| · |B| sums a1 + b1 and a2 + b2 are equal
with a1, a2 ∈ A, b1, b2 ∈ B, and (a1, b1) 6= (a2, b2). Then a1 6= a2

(since otherwise we would have b1 = b2 and (a1, b1) = (a2, b2)), and
therefore A′ ∩B′ is nonempty because it contains a1 − a2 = b2 − b1.
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Problem 5 Given an integer d, let

S = {m2 + dn2 | m,n ∈ Z}.

Let p, q ∈ S be such that p is a prime and r = q
p is an integer. Prove

that r ∈ S.

Solution: Note that

(x2 + dy2)(u2 + dv2) = (xu± dyv)2 + d(xv ∓ yu)2.

Write q = a2+db2 and p = x2+dy2 for integers a, b, x, y. Reversing the
above construction yields the desired result. Indeed, solving for u and
v after setting a = xu+dyv, b = xv−yu and a = xu−dyv, b = xv+yu
gives

u1 =
ax− dby

p
, v1 =

ay + bx

p
, u2 =

ax+ dby

p
, v2 =

ay − bx

p
.

Note that

(ay + bx)(ay − bx) = (a2 + db2)y2 − (x2 + dy2)b2 ≡ 0 (mod p).

Hence p divides one of ay+bx, ay−bx so that one of v1, v2 is an integer.
Without loss of generality, assume that v1 is an integer. Then since
r = u2

1 + dv2
1 is an integer and u1 is rational, u1 is an integer as well

and r ∈ S, as desired.

Problem 6 Let k and ` be two given positive integers, and let aij ,
1 ≤ i ≤ k and 1 ≤ j ≤ `, be k` given positive numbers. Prove that if
q ≥ p > 0 then

∑̀
j=1

(
k∑

i=1

ap
ij

) q
p


1
q

≤

 k∑
i=1

∑̀
j=1

aq
ij


p
q


1
p

.

First Solution: Define

bj =
k∑

i=1

ap
ij ,
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and denote the left hand side of the required inequality by L and its
right hand side by R. Then

Lq =
∑̀
j=1

b
q
p

j =
∑̀
j=1

(
b

q−p
p

j

(
k∑

i=1

ap
ij

))
=

k∑
i=1

∑̀
j=1

b
q−p

p

j ap
ij

 .

Using Hölder’s inequality it follows that

Lq ≤
k∑

i=1


∑̀

j=1

(
b

q−p
p

j

) q
q−p


q−p

q
∑̀

j=1

(
ap

ij

) q
p


p
q



=
k∑

i=1


∑̀

j=1

b
q
p

j


q−p

q
∑̀

j=1

aq
ij


p
q



=

∑̀
j=1

b
q
p

j


q−p

q

·

 k∑
i=1

∑̀
j=1

aq
ij


p
q

 = Lq−pRp.

The inequality L ≤ R follows by dividing both sides of Lq ≤ Lq−pRp

by Lq−p and taking the p-th root.

Second Solution: Let r = q
p , cij = ap

ij . Then r ≥ 1, and the given
inequality is equivalent to the following inequality:∑̀

j=1

(
k∑

i=1

cij

)r
 1

r

≤
k∑

i=1

∑̀
j=1

crij

 1
r

We shall prove this inequality by induction on k. For k = 1, we have
equality. For k = 2, the inequality becomes Minkowski’s inequality.

Suppose that k ≥ 3 and the inequality holds for k − 1. Then by
the induction assumption for k − 1 we have

k−1∑
i=1

∑̀
j=1

crij

 1
r

+

∑̀
j=1

crkj

 1
r

≥

∑̀
j=1

(
k−1∑
i=1

cij

)r
 1

r

+

∑̀
j=1

crkj

 1
r

Using Minkowski’s inequality with c̃1j =
∑k−1

i=1 cij , c̃2j = ckj , we have∑̀
j=1

(
k−1∑
i=1

cij

)r
 1

r

+

∑̀
j=1

crkj

 1
r

≥

∑̀
j=1

(
k∑

i=1

cij

)r
 1

r

,
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completing the inductive step.

Team Round

Problem 1 Let ABC be a triangle and let P1 be a point inside
triangle ABC.

(a) Prove that the lines obtained by reflecting lines P1A, P1B, P1C

through the angle bisectors of ∠A, ∠B, ∠C, respectively, meet
at a common point P2.

(b) Let A1, B1, C1 be the feet of the perpendiculars from P1 to sides
BC, CA and AB, respectively. Let A2, B2, C2 be the feet of the
perpendiculars from P2 to sides BC, CA and AB, respectively.
Prove that these six points A1, B1, C1, A2, B2, C2 lie on a circle.

(c) Prove that the circle in part (b) touches the nine point circle
(Feuerbach’s circle) of triangle ABC if and only if P1, P2, and
the circumcenter of triangle ABC are collinear.

First Solution:

(a) By the trigonometric form of Ceva’s Theorem, we have

sin∠ABP1 sin∠BCP1 sin∠CAP1

sin∠P1BC sin∠P1CA sin∠P1AB
= 1.

Now suppose that the given reflections of lines P1A,P1B,P1C

meet sides BC,CA,AB at points D,E, F , respectively. Then
∠ABE = ∠P1BC, ∠EBC = ∠ABP1, and so on; thus

sin∠EBC sin∠FCA sin∠DAB
sin∠BCF sin∠CAD sin∠ABE

= 1

as well. Therefore, again by the trigonometric form of Ceva’s
Theorem, the three new lines also concur.

(b) Note that P1A1CB1 and P2A2CB2 are both cyclic quadrilaterals
because they each have two right angles opposite each other.
Since ∠P1CB1 = ∠A2CP2, we have ∠B1P1C = ∠CP2A2, and,
by the previous statement, that implies ∠B1A1C = ∠CB2A2,
whence A1, A2, B1, B2 are concyclic. For similar reasons, A1, A2,

C1, C2 are concyclic. Then all six points A1, B1, C1, A2, B2, C2

must be concyclic, or else the radical axes of circles A1A2B1B2,

B1B2C1C2, C1C2A1A2 would not concur, contradicting the rad-
ical axis theorem.
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Problem 2 An ant is walking inside the region bounded by the
curve whose equation is x2 + y2 + xy = 6. Its path is formed by
straight segments parallel to the coordinate axes. It starts at an
arbitrary point on the curve and takes off inside the region. When
reaching the boundary, it turns by 90◦ and continues its walk inside
the region. When arriving at a point on the boundary which it has
already visited, or where it cannot continue its walk according to the
given rule, the ant stops. Prove that, sooner or later, and regardless
of the starting point, the ant will stop.

First Solution: If the ant moves from (a, b) to (c, b), then a and c
are the roots to f(t) = t2 + bt+ b2− 6. Thus c = −a− b. Similarily, if
the ant moves from (a, b) in a direction parallel to the y-axis, it meets
the curve at (a,−a− b).

Let (a, b) be the starting point of the ant, and assume that the ant
starts walking in a direction parallel to the x-axis; the case when it
starts walking parallel to the y-axis is analogous. If after five moves
the ant is still walking, then it will return to its original position after
six moves:

(a, b) → (−a− b, b) → (−a− b, a) → (b, a)

→ (b,−a− b) → (a,−a− b) → (a, b).

Therefore, the ant stops moving after at most six steps.

Second Solution: Rotate the curve by 45◦, where (x, y) is on our
new curve C1 when 1√

2
(x− y, x+ y) is on the original curve. The

equation of the image of the curve under the rotation is

3x2 + y2 = 12.

Hence the curve is an ellipse, while the new directions of the ant’s
motion are inclined by ±45◦ with respect to the x-axis. Next apply
an affine transformation so that (x, y) is on our new curve C2 when
(x,

√
3y) is on C1. The ant’s curve then becomes

x2 + y2 = 4,

a circle with radius 2, and the directions of the ant’s paths are now
inclined by ±30◦ with respect to the x-axis.
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Thus if the ant moves from P1 to P2 to P3, then ∠P1P2P3 will
either equal 0◦, 60◦, or 120◦. Thus as long as it continues moving,
every two moves the ant travels to the other end of an arc measuring
0◦, 120◦, or 240◦ along the circle; thus after at most six moves, he
must return to a position he visited earlier.

Problem 3

(a) In the plane, we are given a circle ω with unknown center, and
an arbitrary point P . Is it possible to construct, using only a
straightedge, the line through P and the center of the circle?

(b) In the plane, we are given a circle ω with unknown center, and
a point Q on the circle. Construct the tangent to ω at the point
Q, using only a straightedge.

(c) In the plane, we are given two circles ω1 and ω2 with unknown
centers. Construct, with a straightedge only, the line through
their centers when:

(i) the two circles intersect;

(ii) the two circles touch each other, and their point of contact
T is marked;

(iii) the two circles have no common point. This is an open
question, and the construction might even be impossible; the
problem does not belong to the official team contest, but any
progress will be appreciated.

Solution:

(a) It is not possible. First we prove that given a circle with unknown
center O, it is impossible to construct its center using only a
straightedge. Assume by contradiction that this construction is
possible; then perform a projective transformation on the figure,
taking O to O′ and ω to another circle ω′. The drawn lines remain
lines, and thus they still yield the point O′. On the other hand,
those lines compose a construction which gives the center of ω′.
But O is not mapped to the center of ω′, a contradiction.

Then the described construction must also be impossible. Oth-
erwise, given a circle ω with unknown center O, we could mark a
point P1 and draw the line P1O; and then mark another point P2

not on `1, and draw the line P2O. Then the intersection of these
lines would yield O, which is impossible from above.
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(b) Given a point A not on ω, suppose line `1 passes through A and
hits ω at B1 and C1; and suppose another line `2 also passes
through A and hits ω at B2 and C2. Then the line connecting
B1B2 ∩ C1C2 and B1C2 ∩ C1B2 is the pole of A with respect to
ω. Conversely, given any line ` we can pick two points on it that
are not on ω, and construct the poles of these two points. If `
passes through the center of ω then these two poles are parallel;
otherwise, they intersect at the polar of `.

Now given ω and Q, mark another point R on the circle and
then construct the polar T of line QR. (If the polar is the point
at infinity, pick another point for R.) But then line TQ is the
pole of Q—and this pole is tangent to ω at Q. Hence line QT is
our desired line.

(c) (i) Draw the lines tangent to ω1 at P and Q; they intersect at
a point X1, which by symmetry must lie on our desired line.
Next draw the lines tangent to ω2 at P and Q; they also
intersect at a point X2 that lies on our desired line. Then
line X1X2 passes through both circles’ centers, as desired.

(ii)

Lemma. Suppose we have a trapezoid ABCD with AB ‖
CD. Suppose that lines AD and BC intersect at M and
that lines AC and BD intersect at N . Then line MN passes
through the midpoints of AB and CD.
Proof: Let line MN hit lines AB and CD at Y1 and Y2,
respectively. Perform an affine transformation that sends
ABCD into isosceles trapezoid A′B′C ′D′ (with A′D′ =
B′C ′) and sends points M,N, Y1, Y2 to M ′, N ′, Y ′1 , Y

′
2 . Then

line M ′N ′ still passes through Y ′1 and Y ′2 , and by symmetry
these points are the midpoints of A′B′ and C ′D′. But
since (using directed lengths) AY1

Y1B = A′Y ′
1

Y ′
1B′ , Y1 must be the

midpoint of AB; and similarly, Y2 is the midpoint of CD.

Now construct a line through T intersecting ω1 at A and
ω2 at C; construct a different line through T hitting ω1 at
B and ω2 at D. Under the homothety about T that maps
ω1 to ω2, segment AB gets mapped to segment CD; thus,
AB ‖ CD. If lines AD and BC are parallel, pick different
A and C; otherwise, using the construction in the lemma we
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can find the midpoint F1 of CD. Next, from the construction
described in part (b), we can find the polar F2 of line CD;
then line F1F2 passes through the center O2 of ω2.
Similarly, we can find a different line G1G2 passing through
O2; and hence O2 is the intersection of lines F1F2 and G1G2.
We can likewise find the center O1 of ω1; then drawing the
line O1O2, we are done.
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1.6 Iberoamerican Math Olympiad

Problem 1 Find all positive integers n less than 1000 such that n2

is equal to the cube of the sum of n’s digits.

Solution: In order for n2 to be a cube, n must be a cube itself; and
since n < 1000 we must have n = 13, 23, . . ., or 93. Quick checks show
that n = 1 and n = 27 work while n = 8, 64, and 125 don’t. And for
n ≥ 63 = 216, we have n2 ≥ 66 > 273; but since the sum of n’s digits
is at most 9 + 9 + 9 = 27, this implies that no n ≥ 63 works. Thus
n = 1, 27 are the only answers.

Problem 2 Given two circles ω1 and ω2, we say that ω1 bisects ω2 if
they intersect and their common chord is a diameter of ω2. (If ω1 and
ω2 are identical, we still say that they bisect each other.) Consider
two non-concentric fixed circles ω1 and ω2.

(a) Show that there are infinitely many circles ω that bisect both ω1

and ω2.

(b) Find the locus of the center of ω.

Solution:
Suppose we have any circle ω with center O and radius r. Then we

show that given any point P , there is a unique circle centered at P
bisecting ω; and that the radius of this circle is

√
r2 +OP 2. If O = P

the claim is obvious; otherwise, let AB be the diameter perpendicular
to OP , so that PA = PB =

√
r2 +OP 2.

Since PA = PB, there is a circle centered at P and passing through
both A and B; this circle indeed bisects ω. Conversely, if circle Γ
centered at P bisects ω along diameter A′B′, then both O and P lie
on the perpendicular bisector of A′B′. Thus A′B′ ⊥ OP , and we
must have AB = A′B′ and hence indeed PA′ = PB′ = PA = PB =√
r2 +OP 2.
Now back to the original problem. Set up a coordinate system

where ω1 is centered at the origin O1 = (0, 0) with radius r1; and ω2

is centered at O2 = (a, 0) with radius r2. Given any point P = (x, y),
the circle centered at P bisecting ω1 is the same as the circle centered
at P bisecting ω2 if and only if

√
r21 +O1P 2 =

√
r22 +O2P 2; that is,
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if and only if

r21 + x2 + y2 = r22 + (x− a)2 + y2

2ax = r22 − r21 + a2.

Therefore given any point P along the line x = r2
2−r2

1+a2

2a , some
circle ω centered at P bisects both ω1 and ω2. Since there are infinitely
many such points, there are infinitely many such circles.

And conversely, from above if ω does bisect both circles then it must
be centered at a point on the given line—which is a line perpendicular
to the line passing through the centers of ω1 and ω2. In fact, recall
that the radical axis of ω1 and ω2 is the line 2a(a−x) = r22 − r21 +a2;
therefore the desired locus is the radical axis of ω1 and ω2, reflected
across the perpendicular bisector of the segment joining the centers
of the circles.

Problem 3 Let P1, P2, . . . , Pn (n ≥ 2) be n distinct collinear points.
Circles with diameter PiPj (1 ≤ i < j ≤ n) are drawn and each circle
is colored in one of k given colors. All points that belong to more than
one circle are not colored. Such a configuration is called a (n, k)-cover.
For any given k, find all n such that for any (n, k)-cover there exist
two lines externally tangent to two circles of the same color.

Solution: Without loss of generality label the points so that
P1, P2, . . . , Pn lie on the line in that order from left to right. If
n ≤ k + 1 points, then color any circle PiPj (1 ≤ i < j ≤ n) with
the i-th color. Then any two circles sharing the same i-th color are
internally tangent at Pi, so there do not exist two lines externally
tangent to them.

However, if n ≥ k + 2 then some two of the circles with diameters
P1P2, P2P3, . . ., Pk+1Pk+2 must have the same color. Then there do
exist two lines externally tangent to them. Therefore the solution is
n ≥ k + 2.

Problem 4 Let n be an integer greater than 10 such that each of
its digits belongs to the set S = {1, 3, 7, 9}. Prove that n has some
prime divisor greater than or equal to 11.

Solution: Note that any product of any two numbers from
{1, 3, 7, 9} taken modulo 20 is still in {1, 3, 7, 9}. Therefore any finite
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product of such numbers is still in this set; specifically, any number
of the form 3j7k is congruent to 1, 3, 7, or 9 (mod 20).

Now if all the digits of n ≥ 10 are in S, then its tens digit is odd
and we cannot have n ≡ 1, 3, 7, or 9 (mod 20). Thus, n cannot be of
the form 3j7k. Nor can n be divisible by 2 or 5 (otherwise, its last
digit would not be 1, 3, 7, or 9); so it must be divisible by some prime
greater than or equal to 11, as desired.

Problem 5 Let ABC be an acute triangle with circumcircle ω

centered at O. Let AD, BE, and CF be the altitudes of ABC.
Let line EF meet ω at P and Q.

(a) Prove that AO ⊥ PQ.

(b) If M is the midpoint of BC, prove that

AP 2 = 2AD ·OM.

Solution: Let H be the orthocenter of triangle ABC, so that
AEHF , BFHD, CDHE are cyclic. Then ∠AFE = ∠AHE =
∠DHB = 90◦ − ∠HBD = 90◦ − ∠EBC = ∠BCE = C, while
∠OAF = ∠OAB = 90◦ − C. Therefore AO ⊥ EF and thus
AO ⊥ PQ, as desired.

Say the circumradius of triangle ABC is R. Draw diameter
AA′ perpendicular to PQ, intersecting PQ at T . Then AT =
AF cos(90◦−C) = AF sinC = AC cosA sinC = 2R cosA sinB sinC.
By symmetry, PT = TQ; then by Power of a Point, PT 2 =
PT · TQ = AT · TA′ = AT (2R − AT ). Thus AP 2 = AT 2 + PT 2 =
AT 2 +AT (2R−AT ) = 2R ·AT = 4R2 cosA sinB sinC.

On the other hand, AD = AC sinC = 2R sinB sinC, while OM =
OC sin∠OCM = R sin(90◦ −A) = R cosA. Thus

AP 2 = 4R2 cosA sinB sinC = 2AD ·OM,

as desired.

Problem 6 Let AB be a segment and C a point on its perpendicular
bisector. Construct C1, C2, . . . , Cn, . . . as follows: C1 = C, and for
n ≥ 1, if Cn is not on AB, then Cn+1 is the circumcenter of triangle
ABCn. Find all points C such that the sequence {Cn}n≥1 is well
defined for all n and such that the sequence eventually becomes
periodic.
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Solution: All angles are directed modulo 180◦ unless otherwise
indicated. Then Cn is uniquely determined by θn = ∠ACnB; and
furthermore, we have θn+1 = 2θn for all n. For this to be eventually
periodic we must have θj+1 = θk+1 or 2jθ1 = 2kθ1 for some j, k; that
is, 180◦ must divide (2k − 2j)θ for some k and (not using directed
angles) 180◦ · r = (2k − 2j)θ1 for some integers p, k.

Therefore θ1 = 180◦ · r
2k−2j must be a rational multiple p

q ·180◦ with
p, q relatively prime. And for the sequence to be well-defined, q must
not be a power of two; because if q = 2n then θn+1 = 180◦ · p = 180◦,
which we cannot have.

Conversely, suppose we have such an angle p
q · 180◦ where p, q are

relatively prime and q is not a power of 2. First, the sequence of points
is well-defined because 2np

q will always have a nontrivial odd divisor
in its denominator; so it will never be an integer and θn+1 = 2np

q ·180◦

will never equal 180◦.
Next write q = 2jt for odd t, and let k = φ(t) + j. Then since

t | 2φ(t) − 1 we have

θk+1 = 2k · θ1 = 2φ(t)+j · p
q
· 180◦ = 2φ(t) · p

t
· 180◦ ≡ p

t
· 180◦,

while
θj+1 ≡ 2j p

q
· 180◦ =

p

t
· 180◦.

Thus θj+1 ≡ θk+1, so the sequence is indeed periodic.
Therefore the set of valid points C is all points C such that ∠ACB

(no longer directed) equals p
q · 180◦ for relatively prime positive

integers p, q, where q is not a power of 2.
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1.7 Olimpiada de mayo

Problem 1 Find the smallest positive integer n such that the 73
fractions

19
n+ 21

,
20

n+ 22
,

21
n+ 23

, · · · , 91
n+ 93

are all irreducible.

Solution: Note that the difference between the numerator and
denominator of each fraction is n+ 2. Then n+ 2 must be relatively
prime to each of the integers from 19 to 91. Since this list contains
a multiple of each prime p less than or equal to 91, n + 2 must only
have prime factors greater than 91. The smallest such number is 97,
so n = 95.

Problem 2 Let ABC be a triangle with ∠A = 90◦. Construct
point P on BC such that if Q is the foot of the perpendicular from
P to AC then PQ2 = PB · PC.

Solution: Draw D on ray AB such that AB = BD, and draw E

on ray AC such that AC = CE. Next draw F on DE such that
∠FBD = ∠BCA. Finally, draw the line through F perpendicular to
AC; we claim that it intersects BC and AC at our desired points P
and Q.

Since BD ‖ FQ we have ∠BFQ = ∠FBD = ∠BCA = ∠BCQ, so
BFCQ is cyclic. And since BD = BA and DA ‖ FQ, we have PF =
PQ. Thus by Power of a Point, we have PB ·PC = PF ·PQ = PQ2,
as desired.

Problem 3 There are 1999 balls in a row. Each ball is colored
either red or blue. Underneath each ball we write a number equal to
the sum of the number of red balls to its right and blue balls to its
left. Exactly three numbers each appear on an odd number of balls;
determine these three numbers.

First Solution: Call of a coloring of 4n−1 balls “good” if exactly 3
numbers each appear on an odd number of balls; we claim that these
three numbers will then be 2n − 2, 2n − 1, and 2n. Let b1, b2, . . .
represent the ball colors (either B or R), and let x1, x2, . . . represent
the numbers under the respective balls. Then xk+1 − xk = 1 if
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bk = bk+1 = B; xk+1 − xk = −1 if bk = bk+1 = R; and xk = xk+1 if
bk 6= bk+1. Now, when n = 1, the only good colorings are RRR and
BBB, which both satisfy the claim. For the sake of contradiction, let
n0 > 1 be the least n for which the claim no longer holds. Now, let
a “couple” be a pair of adjacent, different-colored balls; then for our
coloring of n0 balls, one of the following cases is true:

(i) There exist two or more disjoint couples in the coloring. Remov-
ing the two couples decreases all the other xi by exactly 2, while
the numbers originally on the four removed balls are removed in
pairs. Thus we have constructed a good coloring of 4(n0 − 1)− 1
balls for which the claim does not hold, a contradiction.

(ii) The balls are colored RR · · ·RBRR · · ·R or BB · · ·BRBB · · ·B.
Then {xi} is a nondecreasing series, with equality only under the
balls BRB or RBR. Then (4n0 − 1)− 2 numbers appear an odd
number of times, but this cannot equal 3.

(iii) There exists exactly one couple in the coloring. Suppose, without
loss of generality, that we have a string of m blue balls followed by
a string of n red balls. It is trivial to check that m and n cannot
equal 1. Then by removing the final two blue balls and the first
two red balls, we construct an impossible coloring of 4(n0−1)−1
balls as in case (i).

(iv) All the balls are of the same color. We then have 4n0 − 1 > 3
distinct numbers, a contradiction.

Thus, all good colorings satisfy our claim; so for n0 = 500, we find
that the three numbers must be 998, 999, and 1000.

Second Solution: If a ball has the number m on it, call it an
“m-ball.” Also let x1, x2, . . . , x1999 represent both the balls and the
numbers written on them; and let 〈i, j〉 denote the i-th through j-th
balls, inclusive.

Read from left to right, the numbers on the balls increase by 1
when two blue balls are adjacent, decrease by 1 when two red balls
are adjacent, and otherwise remain constant. This implies that when
viewed from left to right, the m-balls in our line alternate in color.
Also, if m < xi (or m > xi) then the first m-ball after xi must
be red (or blue) while the last m-ball before it must be blue (or
red). It follows that in 〈i, j〉, there are an odd number of m-balls
if min(xi, xj) < m < max(xi, xj), and an even number of m-balls if
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m < min(xi, xj) or m > max(xi, xj).
This result implies that the three given numbers are consecutive:

say they are k−1, k, k+1. Without loss of generality say that x1 ≤ k,
and suppose that xr is the rightmost (k + 1)-ball. If any xj ≤ k + 1
for j > r then in 〈1, j〉 there are an even number of (k + 1)-balls, a
contradiction.

Then in 〈1, r − 1〉, for m 6= k − 1, k there are an even number of
m-balls so that the number of red m-balls equals the number of blue
m-balls. As for m = k − 1, k, there are an odd number of m-balls in
〈1, r − 1〉 and the last such m-ball is blue. It follows that there must
be r+2

2 blue balls and r−2
2 red balls in 〈1, r − 1〉.

And in 〈r+ 1, 1999〉, the number of red m-balls equals the number
of blue m-balls for all m; this is because there are no such m-balls
for m ≤ k + 1, and for m ≥ k + 2 an even number of m-balls are in
〈1, r− 1〉 so in 〈r+ 1, 1999〉 an even number of m-balls must remain.
Thus there are 1998−r

2 blue balls and 1998−r
2 red balls in 〈r, 1999〉.

Hence k+ 1 = xr = r+2
2 + 1998−r

2 = 1000, and the three numbers are
998, 999, and 1000.

Problem 4 Let A be a number with six digits, three of which are
colored and are equal to 1, 2, 4. Prove that it is always possible to
obtain a multiple of 7 by doing one of the following:

(1) eliminate the three colored numbers;

(2) write the digits of A in a different order.

Solution: Note that modulo 7, the six numbers 421, 142, 241, 214,
124, 412 are congruent to 1, 2, 3, 4, 5, 6, respectively. Let the other
digits besides 1, 2, and 4 be x, y, and z, appearing in that order
from left to right. If the 3-digit number xyz is divisible by 7, we
may eliminate the three colored numbers. If not, the 6-digit number
xyz000 is also not divisible by 7, and we may add the appropriate
permutation abc of 124 to xyz000 to make xyzabc divisible by 7.

Problem 5 Consider a square of side length 1. Let S be a set of
finitely many points on the sides of the square. Prove that there is a
vertex of the square such that the arithmetic mean of the squares of
the distances from the vertex to all the points in S is no less than 3

4 .



40 Olimpiada de mayo

Solution: Let the four vertices of the square be V1, V2, V3, and V4,
and let the set of points be {P1, P2, . . . , Pn}. For a given Pk, we may
assume without loss of generality that Pk lies on side V1V2. Writing
x = PkV1, we have
4∑

i=1

PkV
2
i = x2+(1−x)2+(1+x2)+(1+(1−x)2) = 4

(
x− 1

2

)2

+3 ≥ 3.

Hence
∑4

i=1

∑n
j=1 PjV

2
i ≥ 3n, or

∑4
i=1

(
1
n

∑n
j=1 PjV

2
i

)
≥ 3. Thus

the average of 1
n

∑n
j=1 PjV

2
i (for i = 1, 2, 3, 4) is at least 3

4 ; so if we
select the Vi for which 1

n

∑n
j=1 PjV

2
i is maximized, we are guaranteed

it will be at least 3
4 .

Problem 6 An ant crosses a circular disc of radius r and it advances
in a straight line, but sometimes it stops. Whenever it stops, it turns
60◦, each time in the opposite direction. (If the last time it turned
60◦ clockwise, this time it will turn 60◦ counterclockwise, and vice
versa.) Find the maximum length of the ant’s path.

Solution: Suppose the ant begins its path at P0, stops at P1,

P2, . . . , Pn−1 and ends at Pn. Note that all the segments P2iP2i+1

are parallel to each other and that all the segments P2i+1P2i+2 are
parallel to each other. We may then translate all the segments so as
to form two segments P0Q and QPn where ∠P0QPn = 120◦. Then
P0Pn ≤ 2r, and the length of the initial path is equal to P0Q+QPn.
Let P0Pn = c, P0Q = a, and QPn = b. Then

(2r)2 ≥ c2 = a2 + b2 + ab = (a+ b)2 − ab ≥ (a+ b)2 − 1
4
(a+ b)2,

so 4√
3
r ≥ a + b with equality iff a = b. The maximum is therefore

4√
3
r; this can be attained with the path where P0P2 is a diameter of

the circle, and P0P1 = P1P2 = 2√
3
r.
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1.8 St. Petersburg City

Mathematical Olympiad (Russia)

Problem 9.1 Let x0 > x1 > · · · > xn be real numbers. Prove that

x0 +
1

x0 − x1
+

1
x1 − x2

+ · · ·+ 1
xn−1 − xn

≥ xn + 2n.

Solution: For i = 0, 1, . . . , n− 1, we have xi − xi+1 > 0 so that by
AM-GM,

(xi − xi+1) +
1

(xi − xi+1)
≥ 2.

Adding up these inequalities for i = 0, 1, . . . , n − 1 gives the desired
result.

Problem 9.2 Let f(x) = x2 +ax+ b be a quadratic trinomial with
integral coefficients and |b| ≤ 800. It is known also that f(120) is
prime. Prove that f(x) = 0 has no integer roots.

Solution: Suppose by way of contradiction f(x) had an integer root
r1; then writing f(x) = (x − r1)(x − r2), we see that its other root
must be r2 = −a− r1, also an integer.

Since f(120) = (120− r1)(120− r2) is prime, one of |120− r1| and
|120− r2| equals 1, and the other equals some prime p.

Without loss of generality say |120 − r1| = 1, so that r1 = 119 or
121, and |r1| ≥ 119. Then |120 − r2| is a prime, but the numbers
114, 115, . . . , 126 are all composite: 119 = 7 · 17, and all the other
numbers are clearly divisible by 2, 3, 5, or 11. Therefore |r2| ≥ 7, and
|b| = |r1r2| ≥ |119 · 7| > 800, a contradiction.

Problem 9.3 The vertices of a regular n-gon (n ≥ 3) are labeled
with distinct integers from {1, 2, . . . , n}. For any three vertices A, B,
C with AB = AC, the number at A is either larger than the numbers
at B and C, or less than both of them. Find all possible values of n.

Solution: Suppose that n = 2st, where t ≥ 3 is odd. Look at the
regular t-gon P1 · · ·Pt formed by every 2s-th point. In this t-gon, some

1 Problems are numbered as they appeared in the contests. Problems that
appeared more than once in the contests are only printed once in this book.
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vertex A has the second-smallest number, and some vertex B has the
smallest number. But then at the third vertex C with AB = AC

(which exists since t is odd), the number must also be smaller than
A’s number — a contradiction.

Alternatively, if P1 has a bigger number than Pt and P2, then P2

has a smaller number than P3, P3 has a bigger number than P4, and
so on around the circle — so that Pt has a bigger number than P1, a
contradiction.

Now we prove by induction on s ≥ 0 that we can satisfy the
conditions for n = 2s. For s = 1, label the single point 1. And
if we can label a regular 2s-gon with the numbers a1, . . . , a2s in
that order, then we can label a regular 2s+1-gon with the numbers
a1, a1 + 2s, a2, a2 + 2s, . . . , a2s , a2s + 2s, as desired.

(Alternatively, when n = 2s one could label the vertices as follows.
For i = 1, 2, . . . , 2s, reverse each digit of the s-bit binary expansion
of i− 1 and then add 1 to the result. Label the i-th vertex with this
number.)

Problem 9.4 PointsA1, B1, C1 are chosen on the sidesBC,CA,AB
of an isosceles triangle ABC (AB = BC). It is known that
∠BC1A1 = ∠CA1B1 = ∠A. Let BB1 and CC1 meet at P . Prove
that AB1PC1 is cyclic.

Solution: All angles are directed modulo 180◦.
Let the circumcircles of triangles AB1C1 and A1B1C intersect at

P ′, so that AB1P
′C1 and CB1P

′A1 are cyclic. Then

∠A1P
′C1 = (180◦ − ∠C1P

′B1) + (180◦ − ∠B1P
′A1)

= ∠B1AC1 + ∠A1CB1 = ∠CAB + ∠BCA

= 180◦ − ∠ABC = 180◦ − ∠C1BA1,

so BA1P
′C1 is cyclic as well.

Now, ∠BC1A1 = ∠A = ∠C implies that 4BC1A1 ∼ 4BCA, so
BC1 · BA = BA1 · BC. Thus B has equal power with respect to the
circumcircles of triangles AB1C1 and A1B1C, so it lies on their radical
axis B1P

′.

Similarly, ∠CA1B1 = ∠A implies that 4ABC ∼ 4A1B1C, so
CA · CB1 = CB · CA1. Thus C has equal power with respect to
the circumcircles of triangles B1AC1 and A1BC1, so it lies on their
radical axis C1P

′.
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Then P ′ lies on both CC1 and BB1, so it must equal P. Therefore
AB1PC1 is indeed cyclic, as desired.

Problem 9.5 Find the set of possible values of the expression

f(x, y, z) =
{

xyz

xy + yz + zx

}
,

for positive integers x, y, z. Here {x} = x− bxc is the fractional part
of x.

Solution: Clearly f(x, y, z) must be a nonnegative rational number
below 1; we claim all such numbers are in the range of f. Suppose we
have nonnegative integers p and q with p < q; let x1 = y1 = 2(q − 1)
and let z1 = 1. Then

f (x1, y1, z1) =
{

4(q − 1)2

4(q − 1)2 + 4(q − 1)

}
=
q − 1
q

.

Writing X = xyz
xy+yz+zx , notice that for any nonzero integer k we have

f(kx, ky, kz) = { kX } = { kbXc+ k{X} } = { k · f(x, y, z) } .

Then f (p (q − 1) · x1, p (q − 1) · y1, p (q − 1) · z1) = p
q , so every non-

negative rational p
q < 1 is indeed in the range of f.

Problem 9.6 Let AL be the angle bisector of triangle ABC.
Parallel lines `1 and `2 equidistant from A are drawn through B and
C respectively. Points M and N are chosen on `1 and `2 respectively
such that lines AB and AC meet lines LM and LN at the midpoints
of LM and LN respectively. Prove that LM = LN .

Solution: Let A,B,C also represent the angles at those points in
triangle ABC.

Let line ` pass through A perpendicular to AL. Next, draw M ′ and
N ′ on ` so that ∠ALM ′ = ∠ALN ′ = A

2 (with M ′ and N ′ on the
same sides of line AL as B and C, respectively). Finally, let ` hit `1
at Q.

We claim that M ′ lies on `1. Orient the figure so that `1 and `2
are vertical, and let x = ∠QBA. Note that AM ′ = AL tan∠ALM ′ =
AL tan A

2 , so the horizontal distance between A and M ′ is

AM ′ sin(180◦ − ∠AQB)
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= AL tan
A

2
· sin(∠QBA+ ∠BAQ)

= AL tan
A

2
· sin

(
x+ 90◦ − A

2

)
= AL tan

A

2
· cos

(
A

2
− x

)
.

On the other hand, the horizontal distance between A and `1 is
AB sinx. Thus we need only prove that

AB sinx = AL tan
A

2
· cos

(
A

2
− x

)
.

By the law of sines on triangle ABL, we know that AL sin
(

A
2 +B

)
=

AB sinB. Hence we must prove

sin
(
A

2
+B

)
· sinx = sinB · tan

A

2
· cos

(
A

2
− x

)
⇐⇒ sin

(
A

2
+B

)
· cos

A

2
· sinx = sinB · sin A

2
· cos

(
A

2
− x

)
⇐⇒ (sin(A+B) + sinB) · sinx = sinB · (sin(A− x) + sinx)

⇐⇒ sinC · sinx = sinB · sin(A− x)

⇐⇒ AB sinx = AC sin(A− x).

But AB sinx is the distance between A and `1, and AC sin(A − x)
is the distance between A and `2 — and these distances are equal.
Therefore, M ′ indeed lies on `1.

Now say that lines AB and LM ′ intersect at P. Then since ∠LAP =
∠PLA = A

2 , AP is the median to the hypotenuse of right triangle
M ′AL. Thus line AB hits the midpoint of LM ′, so M = M ′.

Similarly, N = N ′. But then ∠LMN = 90◦ − A
2 = ∠LNM, so

LM = LN, as desired.

Problem 9.7 A corner is the figure resulted by removing 1 unit
square from a 2× 2 square. Prove that the number of ways to cut a
998× 999 rectangle into corners, where two corners can form a 2× 3
rectangle, does not exceed the number of ways to cut a 1998 × 2000
rectangle into corners, so that no two form a 2× 3 rectangle.
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Solution: Take any tiling of a 998×999 rectangle with corners, and
add a 2× 999 block underneath also tiled with corners:

· · ·

Next, enlarge this 1000 × 999 board to twice its size, and replace
each large corner by four normal-sized corners as follows:

→ x x

x

For each corner in the tiling of the 1000×999 board, none of the four
new corners can be half of a 2×3 rectangle. Also, the “central” corners
(like the one marked with x’s above) have the same orientations as
the original corners tiling the 1000× 999 rectangle.

Thus, different tilings of a 998 × 999 rectangle turn into different
tilings of a 2000 × 1998 board where no two corners form a 2 × 3
rectangle — which implies the desired result.

Problem 9.8 A convex n−gon (n > 3) is divided into triangles by
non-intersecting diagonals. Prove that one can mark n− 1 segments
among these diagonals and sides of the polygon so that no set of
marked segments forms a closed polygon and no vertex belongs to
exactly two segments.

Solution: After we mark some segments, let the degree d(V ) of a
vertex V be the number of marked segments it is on. Also, say we
mark up a triangulated n-gon with respect to side AB if we mark
n−1 segments, no marked segments form a closed polygon, and none
of the n− 2 vertices besides A and B have degree 2.

Lemma. Given any triangulated convex n-gon (n ≥ 3) and any two
adjacent vertices A and B, we can mark up the n-gon with respect to
side AB in three ways (i), (ii), (iii), each satisfying the corresponding
condition from the following list:

(i) AB is marked, and d(A) ≥ 2.

(ii) AB is marked, and d(A) 6= 2.

(iii) (d(A), d(B)) 6= (1, 1) or (2, 2).
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Proof: For n = 3, given a triangle ABC we can mark sides AB
and (i) AC, (ii) BC, and (iii) AC. Now suppose that n ≥ 4 and that
the claims are true for all smaller n; we prove that they are true for
n as well.
AB must be part of some triangle ABC of drawn segments. Then

either (a) AC is a side of the polygon but BC is not; (b) BC is a side
but AC is not; or (c) neither AC nor BC is a side.

(a) Let P be the (n− 1)-gon formed by the vertices not including A.

(i) Apply (ii) to P so that d(C) 6= 2 and BC is marked; then
unmark BC, and mark AC and AB.

(ii) Apply (ii) to P so that d(C) 6= 2 and BC is marked; then
mark AB.

(iii) Apply (i) to P so that d(B) ≥ 2 and BC is marked. If
d(C) 6= 2, then mark AB; otherwise mark AC.

(b) Let P be the (n− 1)-gon formed by the vertices besides B.

(i) Apply (ii) to P so that d(C) 6= 2 and AC is marked; then
mark AB.

(ii) Apply (ii) to P so that d(C) 6= 2 and AC is marked. If
d(A) = 2, then mark AB; otherwise unmark AC and mark
AB and BC.

(iii) Repeat the construction in (i).

(c) Let P be the polygon formed by A, C, and the vertices in between
(not on the same side of line AC as B); and let Q be the polygon
formed by B, C, and the vertices in between (not on the same
side of line BC as A).

(i) Apply (i) to P and Q so that d(C) ≥ 2 + 2 = 4 and AC, BC
are marked; then unmark BC and mark AB.

(ii) Apply (i) to P and Q so that d(C) ≥ 2 + 2 = 4 and AC,

BC are marked. If d(A) = 2, unmark BC and mark AB;
otherwise, unmark AC and mark AB.

(iii) Repeat the construction in (ii).

Now to the main result. Since there are n ≥ 4 sides but only n− 2
triangles, some triangle contains two adjacent sides XY and Y Z. Let
P be the (n − 1)-gon formed by the vertices not including Y, and
apply (iii) to P and vertices X,Z.
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Then if d(X) or d(Z) equals 2, mark XY or Y Z, respectively.
Otherwise, if d(X) or d(Z) equals 1, mark Y Z or XY , respectively.
Otherwise, both d(X) and d(Z) are at least 3, and we can mark either
XY or Y Z to finish off.

Problem 10.1 The sequence {xn} of positive integers is formed by
the following rule: x1 = 10999 + 1, and for every n ≥ 2, the number
xn is obtained from the number 11xn−1 by rubbing out its first digit.
Is the sequence bounded?

Solution: If xn−1 has k digits, then xn−1 < 10k so that 11xn−1 <

11 ·10k = 1100 . . . 0. Thus if 11xn−1 has k+2 digits, its first two digits
are 1 and 0; and rubbing out its first digit leaves xn with at most k
digits. Otherwise, 11xn−1 has at most k+1 digits, so rubbing out its
first digit still leaves xn with at most k digits. Therefore the number
of digits in each xn is bounded, so the xn are bounded as well.

Problem 10.2 Prove that any positive integer less than n! can be
represented as a sum of no more than n positive integer divisors of
n!.

Solution: Fix n, and write ak = n!
k! for each k = 1, 2, . . . , n. Suppose

we have some number m with ak ≤ m < ak−1 where 2 ≤ k ≤ n. Then
consider the number d = ak

⌊
m
ak

⌋
. We have 0 ≤ m − d < ak; and

furthermore, since s =
⌊

m
ak

⌋
<

ak−1
ak

= k, we know that n!
d = k!

s is an
integer. Thus from m we can subtract d, a factor of n!, to obtain a
number less than ak.

Then if we start with any positive integer m < n! = a1, then by
subtracting at most one factor of n! from m we can obtain an integer
less than a2; by subtracting at most one more factor of n! we can
obtain an integer less than a3; and so on, so that we can represent m
as the sum of at most n− 1 positive integer divisors of n!.

Problem 10.5 How many 10-digit numbers divisible by 66667 are
there whose decimal representation contains only the digits 3, 4, 5,
and 6?

Solution: Suppose that 66667n had 10 digits, all of which were 3,
4, 5, and 6. Then

3333333333 ≤ 66667n ≤ 66666666666 ⇒ 50000 ≤ n ≤ 99999.
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Now consider the following cases:

(i) n ≡ 0 (mod 3). Then

66667n =
2
3
n · 105 +

1
3
n,

the five digits of 2 · n
3 followed by the five digits of n

3 . These digits
are all 3, 4, 5, or 6 if and only if n

3 = 33333 and n = 99999.

(ii) n ≡ 1 (mod 3). Then

66667n =
2
3
(n− 1) · 105 +

1
3
(n+ 2) + 66666,

the five digits of 2
3 (n− 1) followed by the five digits of 1

3 (n+2)+
66666. But 1

3 (n+ 2) + 66666 must be between 66667 and 99999,
so its digits cannot all be 3, 4, 5, or 6. Therefore there are no
satisfactory n ≡ 1 (mod 3).

(iii) n ≡ 2 (mod 3). Let a = 1
3 (n− 2). Then

66667n =
(

2
3
(n− 2) + 1

)
· 105 +

1
3
(n− 2) + 33334,

the five digits of x = 2a + 1 followed by the five digits of y =
a+ 33334. The units digits in x and y are between 3 and 6 if and
only if the units digit in a is 1 or 2; then the other digits in x and
y are all between 3 and 6 if and only if the other digits in a are
2 or 3. Thus there are thirty-two satisfactory a — we can choose
each of its five digits from two options — and each a corresponds
to a satisfactory n = 3a+ 2.

Therefore there is exactly one satisfactory n ≡ 0 (mod 3), and
thirty-two satisfactory n ≡ 2 (mod 3) — making a total of thirty-three
values of n and thirty-three ten-digit numbers.

Problem 10.6 The numbers 1, 2, . . . , 100 are arranged in the
squares of a 10×10 table in the following way: the numbers 1, . . . , 10
are in the bottom row in increasing order, numbers 11, . . . , 20 are in
the next row in increasing order, and so on. One can choose any num-
ber and two of its neighbors in two opposite directions (horizontal,
vertical, or diagonal). Then either the number is increased by 2 and
its neighbors are decreased by 1, or the number is decreased by 2 and
its neighbors are increased by 1. After several such operations the
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table again contains all the numbers 1, 2, . . . , 100. Prove that they
are in the original order.

Solution: Label the table entries a11, a12, . . . , with aij in the ith
row and jth column, where the bottom-left corner is in the first row
and first column. Also, let bij = 10(i−1)+j be the number originally
in the ith row and jth column.

Observe that

P =
10∑

i,j=1

aijbij

is invariant — this is because every time entries amn, apq, ars are
changed (with m+ r = 2p and n+ s = 2q), P increases or decreases
by bmn − 2bpq + brs, or

10 ((m− 1) + (r − 1)− 2(p− 1)) + (n+ s− 2q) = 0.

(For example, if entries a35, a46, a57 are changed then P changes by
±(35− 2 · 46 + 57) = 0.)

At first, P =
∑10

i,j=1 bijbij ; at the end, the entries aij equal the
bij in some order, and we now have P =

∑10
i,j=1 aijbij . By the

rearrangement inequality, this is at least
∑10

i,j=1 bijbij , with equality
only when each aij = bij .

But we know equality does occur since P is invariant. Therefore
the aij do indeed equal the bij in the same order, and thus the entries
1, 2, . . . , 100 appear in their original order.

Problem 10.7 Quadrilateral ABCD is inscribed in circle ω cen-
tered at O. The bisector of ∠ABD meets AD and ω at points K and
M respectively. The bisector of ∠CBD meets CD and ω at points
L and N respectively. Suppose that KL ‖ MN . Prove that the
circumcircle of triangle MON goes through the midpoint of BD.

Solution: All angles are directed modulo 180◦. Let P, Q, R be
the midpoints of DB, DA, DC respectively. Points M and N are
the midpoints of arcs AD and DC, respectively; so M, Q, O and N,
R, O are collinear, so that ∠MON = ∠QOR. But since ∠DQO =
∠DRO = 90◦, DQOR is cyclic and ∠QOR = 180◦ − ∠RDQ =
180◦ − ∠CDA = ∠ABC.
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In addition, ∠QPR = ∠QPD + ∠DPR = ∠ABD + ∠DBC =
∠ABC. Then to prove our claim, it suffices to show that 4PQM ∼
4PRN (with the same orientation) since then

∠MPN = ∠QPR−∠QPM+∠RPN = ∠QPR = ∠ABC = ∠MON

so that MPON would be cyclic. (Alternatively, it is possible that
triangles PQM and PRN are both degenerate.)

Now, let a = AB, b = BC, c = CD, D = DA, e = AC, and
f = BD. Suppose line MN hits lines AD and CD at E and F ,
respectively. Then

∠DEF =
1
2

(
D̂N + ÂM

)
=

1
2

(
N̂C + M̂D

)
= ∠EFD,

so DE = DF. Then since KL ‖ EF, we have DK = DL. And by the
Angle Bisector Theorem on triangles ABD and CBD, DK = d · f

a+f

and DL = c · f
b+f , so that

d(b+ f) = c(a+ f)

(c− d)f = bd− ac. (1)

If c = d then we must have bd = ac, so a = b. But then BD is
a diameter of ω so P = O and the claim is obvious. Otherwise
c− d, bd− ac 6= 0, and f = bd−ac

c−d .

Now we prove that 4PQM ∼ 4PRN. Observe that

∠PQM = ∠PQD + ∠DQM = ∠BAD + 90◦

= ∠BCD + 90◦ = ∠PRD + ∠DRN = ∠PRN,

and also note that ∠PQM and ∠PRN are both obtuse.
So, we need only prove that

PQ

QM
=
PR

RN

⇐⇒
BA
2

AQ tan∠MAQ
=

BC
2

CR tan∠RCN

⇐⇒
BA
2

AD
2 tan∠MCD

=
BC
2

CD
2 tan∠DAN
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⇐⇒ a

d tan∠ACM
=

b

c tan∠NAC
. (2)

Since lines CM, AN are angle bisectors of ∠ACD, ∠DAC, they
intersect at the incenter I of triangle ACD. Also, let T be the point
where the incircle of triangle ACD hits AC. Then tan∠ACM =
IT
TC = IT

1
2 (e+c−d)

and tan ∠NAC = IT
TA = IT

1
2 (e+d−c)

, so tan ∠ACM
tan ∠NAC =

e+d−c
e+c−d . Thus (2) is equivalent to

ac(e+ c− d) = bd(e+ d− c)

⇐⇒ e =
(ac+ bd)(c− d)

bd− ac
.

But by Ptolemy’s Theorem and (1), we have

e =
ac+ bd

f
=

(ac+ bd)(c− d)
bd− ac

,

as desired. Therefore triangle PQM is similar to triangle PRN,

∠MPN = ∠MON, and MPON is indeed cyclic!

Problem 11.1 There are 150 red, 150 blue, and 150 green balls
flying under the big top in the circus. There are exactly 13 green
balls inside every blue one, and exactly 5 blue balls and 19 green balls
inside every red one. (A ball is considered to be “inside” another ball
even if it is not immediately inside it; for example, if a green ball
is inside a blue ball and that blue ball is inside a red ball, then the
green ball is also inside the red ball.) Prove that some green ball is
not contained in any of the other 449 balls.

Solution: Suppose by way of contradiction that every green ball
were in some other ball. Notice that no red ball is inside a blue ball,
since then the blue ball would contain at least 19 green balls.

Look at the red balls that are not inside any other red balls — say
there are m of them, and throw them away along with all the balls
they contain. Then we throw all the red balls and anything inside a
red ball, including 19m green balls. Also, since no red ball is inside
a blue ball, there are still exactly 13 green balls inside each of the
remaining blue balls.

Now look at the blue balls left that are not inside any other blue
balls — say there are n of them, and throw them away along with all
the balls they contain. Then we throw away all the remaining blue
balls and the 13n more green balls inside.
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At this point, all the green balls are gone and hence we must have
150 = 19m + 13n. Taking this equation modulo 13, we find that
7 ≡ 6m ⇒ m ≡ 12 (mod 13). Then m ≥ 12 and 150 = 19m+ 13n ≥
19·12 = 228, a contradiction. Thus our original assumption was false,
and some green ball is contained in no other ball.

Problem 11.3 Let {an} be an arithmetic sequence of positive
integers. For every n, let pn be the largest prime divisor of an. Prove
that the sequence {an

pn
} is unbounded.

Solution: Let d be the common difference of the arithmetic
sequence and N be an arbitrary number. Choose primes p < q bigger
than N and relatively prime to d; then there is some term ak divisible
by pq. Since pk ≥ q > p, we have p | ak

pk
so that

ak

pk
≥ p > N.

Thus for any N, there exists k such that ak

pk
> N, so the sequence

{an

pn
} is unbounded.

Problem 11.4 All positive integers not exceeding 100 are written
on both sides of 50 cards (each number is written exactly once). The
cards are put on a table so that Vasya only knows the numbers on
the top side of each card. Vasya can choose several cards, turn them
upside down, and then find the sum of all 50 numbers now on top.
What is the maximum sum Vasya can be sure to obtain or beat?

Solution: The answer is 2525 = 1
2 (1+ 2+ 3+ · · ·+100). Vasya can

always obtain or beat this: if the 50 numbers on top add to this or
more, he is done; otherwise, if they add to less, Vasya can flip all of
them.

Sadly, this might be the best Vasya can do. Suppose that Vasya
has horrible luck and the numbers on top are 26, 27, 28, . . . , 75,
with sum 2525; and that the numbers on the cards he flips over
are, in order, 1, 2, . . . , 25, 76, 77, . . . , 100 (although of course he
might not flip over all of the cards). If he flips over 0 through 25
cards, his sum decreases; and if he flips over more, his sum is at most
1+2+ · · ·+25+76+77+ · · ·+100 = 2525. Either way, Vasya cannot
obtain a sum of more than 2525, as claimed.
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Problem 11.5 Two players play the following game. They in turn
write on a blackboard different divisors of 100! (except 1). A player
loses if after his turn, the greatest common divisor of the all the
numbers written becomes 1. Which of the players has a winning
strategy?

Solution: The second player has a winning strategy. Notice that
every prime p < 100 divides an even number of factors of 100!: the
factors it divides can be split into disjoint pairs (k, 97k) — or, if
p = 97, into the pairs (k, 89k). (Note that none of these factors is 1,
since 1 is not divisible by p.)

If the first player writes down a prime p, the second player can
write down any other number divisible by p; if the first player writes
down a composite number, the second player can write down a prime
p dividing that number. Either way, from now on the players can
write down a new number q | 100! without losing if and only if it is
divisible by p. Since there are an even number of such q, the second
player will write down the last acceptable number and the first player
will lose.

Problem 11.7 A connected graph G has 500 vertices, each with
degree 1, 2, or 3. We call a black-and-white coloring of these vertices
interesting if more than half of the vertices are white but no two white
vertices are connected. Prove that it is possible to choose several
vertices of G so that in any interesting coloring, more than half of the
chosen vertices are black.

Solution: We first give an algorithm to (temporarily) erase edges
from G so that our graph consists of “chains” of vertices—sequences
of vertices V1, . . . , Vn where each Vi is adjacent to Vi+1—and possibly
one leftover vertex.

First, as long as G still contains any cycle erase an edge from that
cycle; this eventually makes G a tree (a connected graph with no
cycles). Look at the leaves (vertices with degree 1) that are not part
of a chain yet. If all of them are adjacent to a degree-3 vertex, then
we must have exactly four unchained vertices left with one central
vertex adjacent to the other 3; remove one of the edges, and we are
done. Otherwise, one of the leaves is not adjacent to a degree-3
vertex. Travel along the graph from this vertex until we reach a
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degree-3 vertex V , and erase the edge going into V. This creates
a new chain, while leaving all the unchained vertices in a smaller,
still-connected tree; we can then repeat the algorithm on this tree
until we are finished.

Besides our lone vertex, every vertex is in an “odd chain” (a chain
with an odd number of vertices) or an “even chain” (a chain with an
even number of vertices). For our chosen vertices, in each odd chain
pick one vertex adjacent to one of the ends. Even with all the original
edges back in place, for any interesting coloring observe that in any of
our chains at most every other vertex can be white. Thus in any even
chain, at most half the vertices are white. Furthermore, if a chosen
vertex is white, then in its odd chain there is at least one more black
vertex than white; and if a chosen vertex is black, then there is at
most one more white vertex than black.

Suppose there are b odd chains with a black chosen vertex, and w

odd chains with a white chosen vertex. If there is a lone vertex, there
are at most 1 + b − w more white vertices than black in our graph
so that 1 + b − w > 0. But we know 1 + b − w must be even since
1+ b+w ≡ 500 (mod 2). Then 1+ b−w ≥ 2 and b−w ≥ 1, implying
that we have more black chosen vertices than white.

And if there is no lone vertex, then there are at most b − w more
white vertices than black in our graph. Thus b − w > 0 and we still
have more black chosen vertices than white. Therefore either way, for
every interesting coloring we have more black chosen vertices than
white, as desired.

Problem 11.8 Three conjurers show a trick. They give a spectator
a pack of cards with numbers 1, 2, . . . , 2n+ 1 (n > 6). The spectator
takes one card and arbitrarily distributes the rest evenly between the
first and the second conjurers. Without communicating with each
other, these conjurers study their cards, each chooses an ordered pair
of their cards, and gives these pairs to the third conjurer. The third
conjurer studies these four cards and announces which card is taken
by the spectator. Explain how such a trick can be done.

Solution: We will have each of the first two conjurers use their
ordered pairs to communicate the sums of their card values modulo
2n+1. With this information, the third conjurer can simply subtract



1999 Regional Contests: Problems and Solutions 55

these two sums from 1 + 2 + · · · + (2n + 1) = (2n + 1)(n + 1) ≡
0 (mod 2n+ 1) to determine the remaining card.

From now on, all entries of ordered pairs are taken modulo 2n+ 1;
also, let (a, b)k denote the ordered pair (a + k, b + k) and say its
“difference” is b− a (taken modulo 2n+ 1 between 1 and 2n).

Let (0, 2n)k, (0, 1)k, (n, 2)k, (n, 2n−1)k, (4, n+1)k, and (2n−3, n+
1)k all represent the sum k (mod 2n+1). These pairs’ differences are
2n, 1, n+3, n− 1, n− 3, n+5; because n > 5, these differences are all
distinct.

If n is odd then let (1, 2n)k, (2, 2n − 1)k, . . ., (n − 1, n + 2)k also
represent the sum k (mod 2n+1). These pairs’ differences are all odd:
2n− 1, 2n− 3, . . . , 3. Furthermore, they are all different from the one
odd difference, 1, that we found in the last paragraph.

Similarly, if n is even then let (2n, 1)k, (2n−1, 2)k, . . ., (n+2, n−1)k

represent the sum k (mod 2n+1). These pairs’ differences are all even:
2, 4, . . . , 2n−2; and they are all different from the one even difference,
2n, that we found two paragraphs ago.

Note that if two of the assigned pairs (a1, b1)k1 and (a2, b2)k2

are equal, then their differences must be equal and we must have
b1 − a1 ≡ b2 − a2 (mod 2n + 1). But because we found that the
differences b − a are distinct, we must have (a1, b1) = (a2, b2) and
therefore k1 = k2 as well. Thus any pair (a, b) is assigned to at most
one sum, and our choices are well-defined.

Now, say that one of the first two conjurers has cards whose values
sum to k (mod 2n + 1); suppose by way of contradiction that he
could not give any pair (a, b)k described above. Then, letting Sk =
{s+k | s ∈ S}, he has at most one card from each of the three triples
{0, 1, 2n}k, {2, n, 2n−1}k, {4, n+1, 2n−3}k; and he has at most one
card from each of the n−4 pairs {3, 2n−2}k, {5, 2n−4}k, {6, 2n−5}k,
. . ., {n − 1, n + 2}k. But these sets partition all of {0, 1, 2, . . . , 2n},
so the magician must then have at most 3 + (n− 4) = n− 1 cards—a
contradiction. Thus our assumption was false, and both conjurers
can indeed communicate the desired sums. This completes the proof.
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2.1 Belarus

Problem 1 Find all pairs of positive integers (m,n) which satisfy
the equality

(m− n)2(n2 −m) = 4m2n.

Problem 2 Let M be the intersection point of the diagonals AC
and BD of a convex quadrilateral ABCD. The bisector of angle ACD
hits ray BA at K. If MA ·MC +MA ·CD = MB ·MD, prove that
∠BKC = ∠CDB.

Problem 3 An equilateral triangle of side n is divided into n2

equilateral triangles of side 1 by lines parallel to the sides of the
triangle. Each point that is a vertex of at least one of these unit
triangles is labeled with a number; exactly one of these points is
labeled with −1, all the others with 1’s. On each move one can
choose a line passing through the side of one of the small triangles
and change the signs of the numbers at all the labeled points on this
line. Determine all possible initial arrangements (the value of n and
the position of the −1) from which one can obtain an arrangement of
all 1’s using the described operations.

Problem 4 Tom and Jerry play the following game. They alternate
putting pawns onto empty squares of an initially empty 25 × 25
chessboard, with Tom going first. A player wins if after his move,
some four pawns are the vertices of a rectangle with sides parallel to
the sides of the board. Which player has a winning strategy?

Problem 5

(a) We are given a rectangle ABCD. Prove that for any point X in
the plane, some three of the segments XA, XB, XC, and XD

could be the sides of a triangle.

(b) Is the previous statement for any parallelogram ABCD?

Problem 6 Pit and Bill play the following game. Pit writes a
number a on a blackboard, then Bill writes a number b, and finally
Pit writes a number c. Can Pit choose his numbers so that the three
polynomials x3 +ax2 + bx+ c, x3 + bx2 + cx+a, and x3 + cx2 +ax+ b

have

(a) a common real root?

(b) a common negative root?
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Problem 7 How many pairs (n, q) satisfy {q2} =
{

n!
2000

}
, where n

is a positive integer and q is a nonintegral rational number between
0 and 2000?

Problem 8 Let n ≥ 5 be a positive integer. Define a sign-sequence
to be a sequence of n numbers all equal to 1 or −1, and let a move
consist of changing the signs of any five consecutive terms of a sign-
sequence. Two sign-sequences are said to be similar if one of them
can be obtained from the other with a finite number of moves. Find
the maximum number m such that there exist m sign-sequences, no
two of which are similar to each other.

Problem 9 A line ` intersects the lateral sides and diagonals of a
trapezoid. It is known that the portion of ` between the lateral sides
is divided by the diagonals into three equal parts. Does it follow that
the line ` is parallel to the bases of the trapezoid?

Problem 10 Nine points are marked on a plane, no three of them
collinear. Each pair of marked points is connected with a segment. Is
it possible to color each segment with one of twelve colors, such that
the segments of each color form a triangle?

Problem 11 A vertex of a tetrahedron is called perfect if one could
construct a triangle with the edges from this vertex as its sides. Find
all n such that some tetrahedron has exactly n perfect vertices.

Problem 12

(a) Find all positive integers n such that the equation (aa)n = bb has
at least one solution in integers a, b > 1.

(b) Find all positive integers a and b which satisfy (aa)5 = bb.

Problem 13 The sides of scalene triangle ABC have lengths a, b,
and c, measured in meters. Its angles, measured in radians, are α, β,
and γ. The set {a, b, c, α, β, γ} contains exactly n distinct elements.
Find the minimum possible value of n.

Problem 14 On a 5×7 board, we call two squares adjacent if they
are distinct and share one common side. Find the minimum number
of squares on the board that must be painted so that any unpainted
square has exactly one adjacent square which is painted.
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Problem 15 We are given triangle ABC with ∠C = 90◦. Let M
be the midpoint of the hypotenuse AB, H be the foot of the altitude
CH, and P be a point inside the triangle such that AP = AC. Prove
that PM bisects angle BPH if and only if ∠A = 60◦.

Problem 16 Does there exist a function f : N → N such that

f(f(n− 1)) = f(n+ 1)− f(n)

for all n ≥ 2?

Problem 17 Five points A,B,C,D,E lie on a sphere of diameter 1,
and that AB = BC = CD = DE = EA = `. Prove that ` ≤ sin 72◦.

Problem 18 In a convex polyhedron with m triangular faces,
exactly four edges meet at each vertex. Find the minimum possible
value of m.

Problem 19 We call two lattice points (a1, b1) and (a2, b2) in the
Cartesian plane connected if either (a1, b1) = (−a2, b2±1) or (a1, b1) =
(a2±1,−b2). Prove that it is possible to construct an infinite sequence
(m1, n1), (m2, n2), . . . of lattice points such that any two consecutive
points of the sequence are connected, and each lattice point in the
plane appears exactly once in this sequence.

Problem 20 In triangle ABC, a 6= b where a = BC and b = AC.

Points E and F are on the sides AC and BC, respectively, such that
AE = BF = ab

a+b . Let M be the midpoint of AB, N be the midpoint
of EF, and P be the intersection point of EF and the bisector of
angle ACB. Find [CPMN ]

[ABC] .

Problem 21 In triangle ABC, let ma and mb be the lengths of the
medians from the vertices A and B, respectively. Find all real λ such
that ma + λBC = mb + λAC implies that BC = AC.

Problem 22

(a) Prove that {n
√

3} > 1
n
√

3
for every positive integer n, where {x}

denotes the fractional part of x.

(b) Does there exist a constant c > 1 such that {n
√

3} > c
n
√

3
for

every positive integer n?



2000 National Contests: Problems 61

Problem 23 A graph has 15 vertices and n edges. Each edge of
the graph is colored either red or blue such that no three vertices A,
B, C are connected pairwise with edges of the same color. Determine
the largest possible value of n.

Problem 24 Find all functions f, g, h : R → R such that

f(x+ y3) + g(x3 + y) = h(xy)

for all x, y ∈ R.

Problem 25 Let M = {1, 2, . . . , 40}. Find the smallest positive
integer n for which it is possible to partition M into n disjoint subsets
such that whenever a, b, and c (not necessarily distinct) are in the
same subset, a 6= b+ c.

Problem 26 A positive integer is called monotonic if its digits in
base 10, read from left to right, are in nondecreasing order. Prove
that for each n ∈ N, there exists an n-digit monotonic number which
is a perfect square.

Problem 27 Given a pair (~a,~b) of vectors in the plane, a move
consists of choosing a nonzero integer k and then changing (~a,~b) to
either (i) (~a+2k~b,~b) or (ii) (~a,~b+2k~a). A game consists of applying a
finite sequence of moves, alternating between moves of types (i) and
(ii), to some initial pair of vectors.

(a) Is it possible to obtain the pair ((1, 0), (2, 1)) during a game with
initial pair ((1, 0), (0, 1)), if our first move is of type (i)?

(b) Find all pairs ((a, b), (c, d)) that can be obtained during a game
with initial pair ((1, 0), (0, 1)), where our first move can be of
either type.

Problem 28 Prove that
a3

x
+
b3

y
+
c3

z
≥ (a+ b+ c)3

3(x+ y + z)

for all positive real numbers a, b, c, x, y, z.

Problem 29 Let P be the intersection point of the diagonals AC
and BD of the convex quadrilateral ABCD in which AB = AC =
BD. Let O and I be the circumcenter and incenter of triangle ABP,
respectively. Prove that if O 6= I, then lines OI and CD are
perpendicular.
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2.2 Bulgaria

Problem 1 Let F = x3y + xy3 for some real numbers x and y. If
x2 + xy + y2 = 1,

(a) prove that F ≥ −2;

(b) find the greatest possible value of F .

Problem 2 A line ` is drawn through the orthocenter of acute
triangle ABC. Prove that the reflections of ` across the sides of the
triangle are concurrent.

Problem 3 There are 2000 white balls in a box. There are also
unlimited supplies of white, green, and red balls, initially outside the
box. During each turn, we can replace two balls in the box with one
or two balls as follows: two whites with a green, two reds with a
green, two greens with a white and red, a white and green with a red,
or a green and red with a white.

(a) After finitely many of the above operations there are three balls
left in the box. Prove that at least one of them is a green ball.

(b) Is it possible after finitely many operations to have only one ball
left in the box?

Problem 4 Solve the equation
√
x + 3

√
x+ 7 = 4

√
x+ 80 in real

numbers.

Problem 5 The incircle of the isosceles triangle ABC touches the
legs AC and BC at points M and N respectively. A line t is drawn
tangent to minor arc M̂N, intersecting NC and MC at points P and
Q, respectively. Let T be the intersection point of lines AP and BQ.

(a) Prove that T lies on MN ;

(b) Prove that the sum of the areas of triangles ATQ and BTP is
smallest when t is parallel to line AB.

Problem 6 We are given n ≥ 4 points in the plane such that the
distance between any two of them is an integer. Prove that at least
1
6 of these distances are divisible by 3.

Problem 7 In triangle ABC, CH is an altitude, and cevians CM
and CN bisect angles ACH and BCH, respectively. The circumcen-
ter of triangle CMN coincides with the incenter of triangle ABC.
Prove that [ABC] = AN ·BM

2 .



2000 National Contests: Problems 63

Problem 8 Let a1, a2, . . . be a sequence such that a1 = 43, a2 =
142, and an+1 = 3an + an−1 for all n ≥ 2. Prove that

(a) an and an+1 are relatively prime for all n ≥ 1;

(b) for every natural number m, there exist infinitely many natural
numbers n such that an − 1 and an+1 − 1 are both divisible by
m.

Problem 9 In convex quadrilateral ABCD, ∠BCD = ∠CDA.
The bisector of angle ABC intersects CD at point E. Prove that
∠AEB = 90◦ if and only if AB = AD +BC.

Problem 10 Prove that for any two real numbers a and b there
exists a real number c ∈ (0, 1) such that∣∣∣∣ac+ b+

1
c+ 1

∣∣∣∣ > 1
24
.

Problem 11 Find all sets S of four distinct points in the plane such
that if any two circles k1 and k2 have diameters whose endpoints are
in S, then k1 and k2 intersect at a point in S.

Problem 12 In the coordinate plane, a set of 2000 points {(x1, y1),
(x2, y2), . . . , (x2000, y2000)} is called good if 0 ≤ xi ≤ 83, 0 ≤ yi ≤ 1
for i = 1, 2, . . . , 2000 and xi 6= xj when i 6= j. Find the largest positive
integer n such that, for any good set, some unit square contains at
least n of the points in the set.

Problem 13 We are given the acute triangle ABC.

(a) Prove that there exist unique points A1, B1, and C1 on BC, CA,
and AB, respectively, with the following property: If we project
any two of the points onto the corresponding side, the midpoint
of the projected segment is the third point.

(b) Prove that triangle A1B1C1 is similar to the triangle formed by
the medians of triangle ABC.

Problem 14 Let p ≥ 3 be a prime number and a1, a2, . . . , ap−2 be
a sequence of positive integers such that p does not divide either ak

or ak
k − 1 for all k = 1, 2, . . . , p − 2. Prove that the product of some

terms of the sequence is congruent to 2 modulo p.

Problem 15 Find all polynomials P (x) with real coefficients such
that

P (x)P (x+ 1) = P (x2)
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for all real x.

Problem 16 Let D be the midpoint of base AB of the isosceles
acute triangle ABC. Choose a point E on AB, and let O be
the circumcenter of triangle ACE. Prove that the line through D

perpendicular to DO, the line through E perpendicular to BC, and
the line through B parallel to AC are concurrent.

Problem 17 Let n be a positive integer. A binary sequence of
length n is a sequence of n integers, all equal to 0 or 1. Let A be
the set of all such sequences, and let 0 ∈ A be the sequence of all
zeroes. The sequence c = c1, c2, . . . , cn is called the sum a + b of
a = a1, a2, . . . , an and b = b1, b2, . . . , bn if ci = 0 when ai = bi and
ci = 1 when ai 6= bi. Let f : A → A be a function with f(0) = 0
such that whenever the sequences a and b differ in exactly k terms,
the sequences f(a) and f(b) also differ in exactly k terms. Prove that
if a, b, and c are sequences from A such that a + b + c = 0, then
f(a) + f(b) + f(c) = 0.
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2.3 Canada

Problem 1 At 12:00 noon, Anne, Beth, and Carmen begin running
laps around a circular track of length three hundred meters, all
starting from the same point on the track. Each jogger maintains a
constant speed in one of the two possible directions for an indefinite
period of time. Show that if Anne’s speed is different from the other
two speeds, then at some later time Anne will be at least one hundred
meters from each of the other runners. (Here, distance is measured
along the shorter of the two arcs separating two runners.)

Problem 2 Given a permutation (a1, a2, . . . , a100) of the integers
1901, 1902, . . . , 2000, we form the sequence of partial sums

s1 = a1, s2 = a1 + a2, . . . , s100 = a1 + a2 + · · ·+ a100.

For how many such permutations will no terms of the corresponding
sequence s1, s2, . . . , s100 be divisible by three?

Problem 3 Let a1, a2, . . . , a2000 be a sequence of integers each lying
in the interval [−1000, 1000]. Suppose that

∑1000
i=1 ai = 1. Show that

the terms in some nonempty subsequence of a1, a2, . . . , a2000 sum to
zero.

Problem 4 Let ABCD be a quadrilateral with ∠CBD = 2∠ADB,
∠ABD = 2∠CDB, and AB = CB. Prove that AD = CD.

Problem 5 Suppose that the real numbers a1, a2, . . . , a100 satisfy
(i) a1 ≥ a2 ≥ · · · ≥ a100 ≥ 0, (ii) a1 + a2 ≤ 100, and (iii) a3 +
a4 + · · · + a100 ≤ 100. Determine the maximum possible value of
a2
1 +a2

2 + · · ·+a2
100, and find all possible sequences a1, a2, . . . , a100 for

which this maximum is achieved.
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2.4 China

Problem 1 In triangle ABC, BC ≤ CA ≤ AB. Let R and r be
the circumradius and inradius, respectively, of triangle ABC. As a
function of ∠C, determine whether BC + CA − 2R − 2r is positive,
negative, or zero.

Problem 2 Define the infinite sequence a1, a2, . . . recursively as
follows: a1 = 0, a2 = 1, and

an =
1
2
nan−1 +

1
2
n(n− 1)an−2 + (−1)n

(
1− n

2

)
for all n ≥ 3. Find an explicit formula for

fn = an + 2
(
n

1

)
an−1 + 3

(
n

2

)
an−2 + · · ·+ n

(
n

n− 1

)
a1.

Problem 3 A table tennis club wishes to organize a doubles tour-
nament, a series of matches where in each match one pair of players
competes against a pair of two different players. Let a player’s
match number for a tournament be the number of matches he or
she participates in. We are given a set A = {a1, a2, . . . , ak} of
distinct positive integers all divisible by 6. Find with proof the
minimal number of players among whom we can schedule a doubles
tournament such that

(i) each participant belongs to at most 2 pairs;

(ii) any two different pairs have at most 1 match against each other;

(iii) if two participants belong to the same pair, they never compete
against each other; and

(iv) the set of the participants’ match numbers is exactly A.

Problem 4 We are given an integer n ≥ 2. For any ordered n-tuple
of real numbers A = (a1, a2, . . . , an), let A’s domination score be the
number of values k ∈ {1, 2, . . . , n} such that ak > aj for all 1 ≤ j ≤ k.

Consider all permutations A = (a1, a2, . . . , an) of (1, 2, . . . , n) with
domination score 2. Find with proof the arithmetic mean of the first
elements a1 of these permutations.

Problem 5 Find all positive integers n such that there exist integers
n1, n2, . . . , nk ≥ 3 with

n = n1n2 · · ·nk = 2
1
2k (n1−1)(n2−1)···(nk−1) − 1.
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Problem 6 An exam paper consists of 5 multiple-choice questions,
each with 4 different choices; 2000 students take the test, and each
student chooses exactly one answer per question. Find the least
possible value of n such that among any n of the students’ answer
sheets, there exist 4 of them among which no two have exactly the
same answers chosen.
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2.5 Czech and Slovak Republics

Problem 1 Determine all real numbers p for which the system of
equations

(x− y)2 = p2

x3 − y3 = 16

has precisely one solution in real numbers x, y.

Problem 2 Cevians AK, BL, and CM of triangle ABC intersect
at a point U inside the triangle. Prove that if [AMU ] = [KCU ] = P

and [MBU ] = [CLU ] = Q, then P = Q.

Problem 3 Find the smallest natural number k such that among
any k distinct numbers from the set {1, 2, 3, . . . , 2000}, there exist
two whose sum or difference equals 667.

Problem 4 Let P (x) be a quadratic polynomial with P (−2) = 0.
Find all roots of the equation

P (x2 + 4x− 7) = 0,

given that the equation has at least one double root.

Problem 5 An isosceles trapezoid UV ST is given in which 3ST <

2UV. Show how to construct an isosceles triangle ABC with base AB
so that the points B,C lie on the line V S; the point U lies on the
line AB; and the point T is the centroid of the triangle ABC.

Problem 6 Show that

3

√
a

b
+ 3

√
b

a
≤ 3

√
2(a+ b)

(
1
a

+
1
b

)
for all positive real numbers a and b, and determine when equality
occurs.

Problem 7 Find all convex quadrilaterals ABCD for which there
exists a point E inside the quadrilateral with the following property:
Any line which passes through E and intersects sides AB and CD

divides the quadrilateral ABCD into two parts of equal area.
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Problem 8 An isosceles triangle ABC is given with base AB and
altitude CD. Let E be the intersection of line AP with side BC,

and let F be the intersection of line BP with side AC. Point P is
chosen on CD so that the incircles of triangle ABP and quadrilateral
PECF are congruent. Show that the incircles of the triangles ADP
and BCP are also congruent.

Problem 9 In the plane are given 2000 congruent triangles of area
1, which are images of a single triangle under different translations.
Each of these triangles contains the centroids of all the others. Show
that the area of the union of these triangles is less than 22

9 .

Problem 10 For which quadratic functions f(x) does there exist a
quadratic function g(x) such that the equation g(f(x)) = 0 has four
distinct roots in arithmetic progression, which are also real roots of
the equation f(x)g(x) = 0?

Problem 11 Monica constructed a paper model of a triangular
pyramid, the base of which was a right triangle. When she cut the
model along the two legs of the base and along a median of one of
the faces, upon unfolding it into the plane she obtained a square with
side a. Determine the volume of the pyramid.



70 Estonia

2.6 Estonia

Problem 1 Five real numbers are given such that, no matter which
three of them we choose, the difference between the sum of these three
numbers and the sum of the remaining two numbers is positive. Prove
that the product of all these 10 differences (corresponding to all the
possible triples of chosen numbers) is less than or equal to the product
of the squares of these five numbers.

Problem 2 Prove that it is not possible to divide any set of 18
consecutive positive integers into two disjoint sets A and B, such
that the product of elements in A equals the product of elements in
B.

Problem 3 Let M, N, and K be the points of tangency of the
incircle of triangle ABC with the sides of the triangle, and let Q be
the center of the circle drawn through the midpoints of MN, NK,

and KM. Prove that the incenter and circumcenter of triangle ABC
are collinear with Q.

Problem 4 Find all functions f : Z+ → Z+ such that

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ Z+.

Problem 5 In a triangle ABC we have AC 6= BC. Take a point X
in the interior of this triangle and let α = ∠A, β = ∠B, φ = ∠ACX,
and ψ = ∠BCX. Prove that

sinα sinβ
sin(α− β)

=
sinφ sinψ
sin(φ− ψ)

if and only if X lies on the median of triangle ABC drawn from the
vertex C.

Problem 6 We call an infinite sequence of positive integers an
F -sequence if every term of this sequence (starting from the third
term) equals the sum of the two preceding terms. Is it possible to
decompose the set of all positive integers into

(a) a finite;

(b) an infinite

number of F -sequences having no common members?
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2.7 Georgia

Problem 1 Do there exist positive integers x and y such that
x3 +2xy+x+2y+1 and y3 +2xy+y+2x+1 are both perfect cubes?

Problem 2 The positive numbers a, b, c satisfy the inequality abc ≥
1
64 . Prove that

a2 + b2 + c2 +
1
4
(a+ b+ c) ≥ 1

4

(√
a+

√
b+

√
c
)
,

and determine when equality occurs.

Problem 3 For any positive integer n, let a(n) denote the product
of all its positive divisors.

(a) Prove that a(400) > 1019.

(b) Find all solutions of the equation a(n3) = n60 which do not exceed
100.

(c) Find all solutions of the equation a(n2) = (a(n))9 which do not
exceed 2000.

Problem 4 From a point P lying outside a circle ω the tangents
PA1 and PA2 are drawn. Let K be a point inside ω with PK = PA1.

Chords A1B1 and A2B2 are drawn in ω through K. Prove that B1B2

is a diameter of ω.
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2.8 Hungary

Problem 1 Let H be a set consisting of positive and negative real
numbers, with 2000 elements in all. LetN be the number of 4-element
subsets of H whose elements have a negative product. How many
negative elements should H have in order to maximize N?

Problem 2 In the scalene triangle ABC, let C1, A1, and B1 be the
midpoints of sides AB, BC, and CA, respectively. Let B2 denote the
midpoint of the broken-line path leading from A to B to C; define
points A2 and C2 similarly. Prove that A1A2, B1B2, and C1C2 are
concurrent.

Problem 3 Let an denote the closest integer to
√
n. Determine the

value of 1
a1

+ 1
a2

+ · · ·+ 1
ak
, where k = 1999 · 2000.

Problem 4 Find all positive primes p for which there exist positive
integers n, x, y such that pn = x3 + y3.

Problem 5 In the tetrahedron ABCP, edges PA, PB, PC are
pairwise perpendicular. Let S be a sphere such that the circumcircle
of ABC is a great circle on S, and let XY be the diameter of S
perpendicular to plane (ABC). Let S′ be the ellipsoid which passes
through X and Y, is symmetric about axis XY , and intersects plane
(ABC) in a circle of diameter XY/

√
2. Prove that P lies on S′.

Problem 6 Is there a polynomial f of degree 1999 with integer
coefficients, such that f(n), f(f(n)), f(f(f(n))), . . . are pairwise rela-
tively prime for any integer n?

Problem 7 Let p be a polynomial with odd degree and integer
coefficients. Prove that there are only finitely many pairs of integers
a, b such that the points (a, p(a)) and (b, p(b)) are an integral distance
apart.

Problem 8 The feet of the angle bisectors of triangle ABC are X,
Y, and Z. The circumcircle of triangle XY Z cuts off three segments
from lines AB, BC, and CA. Prove that two of these segments’ lengths
add up to the third segment’s length.

Problem 9 Let k and t be relatively prime integers greater than 1.
Starting from the permutation (1, 2, . . . , n) of the numbers 1, 2, . . . , n,
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we may swap two numbers if their difference is either k or t. Prove
that we can get any permutation of 1, 2, . . . , n with such steps if and
only if n ≥ k + t− 1.

Problem 10 For any positive integer k, let e(k) denote the number
of positive even divisors of k, and let o(k) denote the number of
positive odd divisors of k. For all n ≥ 1, prove that

∑n
k=1 e(k) and∑n

k=1 o(k) differ by at most n.

Problem 11 Given a triangle in the plane, show how to construct
a point P inside the triangle which satisfies the following condition:
if we drop perpendiculars from P to the sides of the triangle, the feet
of the perpendiculars determine a triangle whose centroid is P.

Problem 12 Given a natural number k and more than 2k different
integers, prove that a set S of k+ 2 of these numbers can be selected
such that for any positive integer m ≤ k+2, all the m-element subsets
of S have different sums of elements.
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2.9 India

Problem 1 Let ABC be a nonequilateral triangle. Suppose there
is an interior point P such that the three cevians through P all have
the same length λ where λ < min{AB,BC,CA}. Show that there is
another interior point P ′ 6= P such that the three cevians through P ′

also are of equal length.

Problem 2 Find all ordered pairs of prime numbers (p, q) such that
p | 5q + 1 and q | 5p + 1.

Problem 3 Determine whether or not it is possible to label each
vertex of a cube with a natural number such that two vertices
are connected by an edge of the cube if and only if one of their
corresponding labels a divides the other label b.

Problem 4 Let ABC be an acute triangle and let AD be the
altitude from A. Let the internal bisectors of angles B and C meet
AD at E and F , respectively. If BE = CF , prove that AB = AC.

Problem 5 Let n, k be positive integers such that n is not divisible
by 3 and k ≥ n. Prove that there exists an integer m which is divisible
by n and whose digits have sum k.

Problem 6 Let a1 ≤ a2 ≤ · · · ≤ an be n real numbers such that∑n
j=1 aj = 0. Show that

na1an +
n∑

j=1

a2
j ≤ 0.

Problem 7 Let p > 3 be a prime number. Let E be the set of
all (p − 1)-tuples (x1, x2, . . . , xp−1) such that each xi ∈ {0, 1, 2} and
x1 + 2x2 + · · ·+ (p− 1)xp−1 is divisible by p. Show that the number
of elements in E is (3p−1 + p− 1)/p.

Problem 8 Let m,n be positive integers such that m ≤ n2/4 and
every prime divisor of m is less than or equal to n. Show that m
divides n!.

Problem 9 Determine whether there exists a sequence x1, x2, . . . of
distinct positive real numbers such that xn+2 = √

xn+1 −
√
xn for all

positive integers n.
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Problem 10 Let G be a graph with n ≥ 4 vertices and m edges. If
m > n(

√
4n− 3 + 1)/4 show that G has a 4-cycle.

Problem 11 Suppose f : Q → {0, 1} is a function with the property
that for x, y ∈ Q, if f(x) = f(y) then f(x) = f((x+ y)/2) = f(y). If
f(0) = 0 and f(1) = 1 show that f(q) = 1 for all rational numbers q
greater than or equal to 1.

Problem 12 Let n ≥ 1 be an integer. A Catalan path from (0, 0) to
(n, n) in the xy-plane is a sequence of unit moves either to the right
(a move denoted by E) or upwards (a move denoted by N), where
the path never crosses above the line y = x. A step in a Catalan path
is the occurrence of two consecutive unit moves of the form EN . For
1 ≤ s ≤ n, show that the number of Catalan paths from (0, 0) to
(n, n) that contain exactly s steps is

1
s

(
n− 1
s− 1

)(
n

s− 1

)
.
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2.10 Iran

Problem 1 Does there exist a natural number N which is a power
of 2 whose digits (in base 10) can be permuted to form a different
power of 2?

Problem 2 Call two circles in three-dimensional space pairwise
tangent at a point P if they both pass through P and the lines tangent
to each circle at P coincide. Three circles not all lying in a plane are
pairwise tangent at three distinct points. Prove that there exists a
sphere which passes through the three circles.

Problem 3 We are given a sequence c1, c2, . . . of natural numbers.
For any natural numbers m,n with 1 ≤ m ≤

∑n
i=1 ci, we can choose

natural numbers a1, a2, . . . , an such that

m =
n∑

i=1

ci
ai
.

For each n, find the maximum value of cn.

Problem 4 Circles C1 and C2 with centers O1 and O2, respectively,
meet at points A and B. Lines O1B and O2B intersect C2 and C1 at
F and E, respectively. The line parallel to EF through B meets C1

and C2 at M and N. Prove MN = AE +AF.

Problem 5 Two trianglesABC andA′B′C ′ lie in three-dimensional
space. The sides of triangle ABC have lengths greater than or equal
to a, and the sides of triangle A′B′C ′ have lengths greater than or
equal to a′. Prove that one can select one vertex from triangle ABC
and one vertex from triangle A′B′C ′ such that the distance between
them is at least

√
a2+a′2

3 .

Problem 6 The function f : N → N is defined recursively with
f(1) = 1 and

f(n+ 1) =
{
f(n+ 2) if n = f(f(n)− n+ 1)
f(n) + 1 otherwise.

for all n ≥ 1.

(a) Prove that f(f(n)− n+ 1) ∈ {n, n+ 1}.
(b) Find an explicit formula for f.
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Problem 7 Let H equal {(x, y) | y > 0}, the upper half of the
xy-plane. A semi-line is a curve in H which equals C ∩H for some
circle C centered on the x-axis; in other words, it is any semi-circle
whose “center” is on the x-axis, with its endpoints removed. Let the
interior of a semi-line S denote the set of points in the interior of the
corresponding circle C which are also in H. Given two semi-lines S1

and S2 which intersect at a point A, the tangents to S1 and S2 at
A form an angle α. Then the bisector of S1 and S2 is the semi-line
S3 passing through A such that the tangent to S3 at A bisects α and
passes through the region common to the interiors of S1 and S2. Prove
that if three different semi-lines intersect pairwise, then the bisectors
of the three pairs of semi-lines pass through a common point.

Problem 8 Find all functions f : N → N such that

(i) f(m) = 1 if and only if m = 1;

(ii) if d = gcd(m,n), then f(mn) = f(m)f(n)
f(d) ; and

(iii) for every m ∈ N, we have f2000(m) = m.

Problem 9 On a circle are given n points, and nk+1 of the chords
between these points are drawn where 2k + 1 < n. Prove that it is
possible to select k+1 of the chords such that no two of them intersect.

Problem 10 The n tennis players, A1, A2, . . . , An, participate in
a tournament. Any two players play against each other at most
once, and k ≤ n(n−1)

2 matches take place. No draws occur, and
in each match the winner adds 1 point to his tournament score
while the loser adds 0. For nonnegative integers d1, d2, . . . , dn, prove
that it is possible for A1, A2, . . . , An to obtain the tournament scores
d1, d2, . . . , dn, respectively, if and only if the following conditions are
satisfied:

(i)
∑n

i=1 di = k.

(ii) For every subset X ⊆ {A1, . . . , An}, the number of matches
taking place among the players in X is at most

∑
Aj∈X dj .

Problem 11 Isosceles triangles A3A1O2 and A1A2O3 are con-
structed externally along the sides of a triangle A1A2A3 with O2A3 =
O2A1 and O3A1 = O3A2. Let O1 be a point on the opposite side
of line A2A3 as A1 with ∠O1A3A2 = 1

2∠A1O3A2 and ∠O1A2A3 =
1
2∠A1O2A3, and let T be the foot of the perpendicular from O1 to
A2A3. Prove that A1O1 ⊥ O2O3 and that A1O1

O2O3
= 2 O1T

A2A3
.
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Problem 12 Given a circle Γ, a line d is drawn not intersecting
Γ. M,N are two points varying on line d such that the circle with
diameter MN is tangent to Γ. Prove that there exists a point P in
the plane such that for any such segment MN, ∠MPN is constant.

Problem 13 Let n be a positive integer. S is a set containing
ordered n-tuples of nonnegative integers such that if (a1, . . . , an) ∈ S,
then every (b1, . . . , bn) for which bi ≤ ai (1 ≤ i ≤ n) is also in S.

Let hm(S) be the number of n-tuples in S whose sum of components
equals m. Show that for some N, hm is a polynomial in m for all
m ≥ N.

Problem 14 Suppose that a, b, c are real numbers such that for any
positive real numbers x1, x2, . . . , xn, we have(∑n

i=1 xi

n

)a

·
(∑n

i=1 x
2
i

n

)b

·
(∑n

i=1 x
3
i

n

)c

≥ 1.

Prove that the vector (a, b, c) can be represented in the form p(−2, 1, 0)+
q(1,−2, 1) for nonnegative real numbers p and q.
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2.11 Ireland

Problem 1 The sequence of real numbers a1, a2, . . . , an is called a
weak arithmetic progression of length n if there exist real numbers c
and d such that c+ (k − 1)d ≤ ak < c+ kd for k = 1, 2, . . . , n.

(a) Prove that if a1 < a2 < a3 then a1, a2, a3 is a weak arithmetic
progression of length 3.

(b) Let A be a subset of {0, 1, 2, 3, . . . , 999} with at least 730 mem-
bers. Prove that some ten elements of A form a weak arithmetic
progression of length 10.

Problem 2 Let x ≥ 0, y ≥ 0 be real numbers with x+y = 2. Prove
that

x2y2(x2 + y2) ≤ 2.

Problem 3 For each positive integer n, determine with proof all
positive integers m such that there exist positive integers x1 < x2 <

· · · < xn with 1
x1

+ 2
x2

+ 3
x3

+ · · ·+ n
xn

= m.

Problem 4 Prove that in each set of ten consecutive integers there
is one which is relatively prime to each of the other integers.

Problem 5 Let p(x) = a0 + a1x + · · · + anx
n be a polynomial

with non-negative real coefficients. Suppose that p(4) = 2 and
that p(16) = 8. Prove that p(8) ≤ 4 and find with proof all such
polynomials with p(8) = 4.
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2.12 Israel

Problem 1 Define f(n) = n!. Let

a = 0.f(1)f(2)f(3) . . . .

In other words, to obtain the decimal representation of a write the
decimal representations of f(1), f(2), f(3), . . . in a row. Is a rational?

Problem 2 ABC is a triangle whose vertices are lattice points.
Two of its sides have lengths which belong to the set {

√
17,

√
1999,√

2000}. What is the maximum possible area of triangle ABC?

Problem 3

(a) Do there exist three positive integers a, b, d such that

a3 + b3

a3 + d3
=

2000
1999

?

(b) Do there exist four positive integers a, b, c, d such that

a3 + b3

c3 + d3
=

2000
999

?

Problem 4 The points A,B,C,D,E, F lie on a circle, and the lines
AD, BE, CF concur. Let P,Q,R be the midpoints of AD, BE, CF ,
respectively. Two chords AG,AH are drawn such that AG ‖ BE and
AH ‖ CF. Prove that triangles PQR and DGH are similar.

Problem 5 A square ABCD is given. A triangulation of the square
is a partition of the square into triangles such that any two triangles
are either disjoint, share only a common vertex, or share only a
common side. A good triangulation of the square is a triangulation in
which all the triangles are acute.

(a) Give an example of a good triangulation of the square.

(b) What is the minimal number of triangles required for a good
triangulation?
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2.13 Italy

Problem 1 Three odd numbers a < b < c are called consecutive
if c − b = b − a = 2. A positive integer is called special if its digits
in base 10 are all equal and if it is the sum of the squares of three
consecutive odd integers.

(a) Determine all special numbers with 4 digits.

(b) Are there any special numbers with 2000 digits?

Problem 2 Let ABCD be a convex quadrilateral, and write α =
∠DAB; β = ∠ADB; γ = ∠ACB; δ = ∠DBC; and ε = ∠DBA.
Assuming that α < 90◦, β + γ = 90◦, and δ + 2ε = 180◦, prove that

(DB +BC)2 = AD2 +AC2.

Problem 3 Given a fixed integer n > 1, Alberto and Barbara play
the following game, starting with the first step and then alternating
between the second and third:

• Alberto chooses a positive integer.

• Barbara picks an integer greater than 1 which is a multiple or
divisor of Alberto’s number, possibly choosing Alberto’s number
itself.

• Alberto adds or subtracts 1 from Barbara’s number.

Barbara wins if she succeeds in picking n by her fiftieth move. For
which values of n does she have a winning strategy?

Problem 4 Let p(x) be a polynomial with integer coefficients such
that p(0) = 0 and 0 ≤ p(1) ≤ 107, and such that there exist integers
a, b satisfying p(a) = 1999 and p(b) = 2001. Determine the possible
values of p(1).
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2.14 Japan

Problem 1 Let O be the origin (0, 0) and A be the point (0, 1
2 )

in the coordinate plane. Prove there is no finite sequence of points
P1, P2, . . . , Pn in the plane, each of whose x- and y- coordinates are
both rational numbers, such that

OP1 = P1P2 = P2P3 = · · · = Pn−1Pn = PnA = 1.

Problem 2 We shuffle a line of cards labeled a1, a2, . . . , a3n from
left to right by rearranging the cards into the new order

a3, a6, . . . , a3n, a2, a5, . . . , a3n−1, a1, a4, · · · , a3n−2.

For example, if six cards are labeled 1, 2, . . . , 6 from left to right, then
shuffling them twice changes their order as follows:

1, 2, 3, 4, 5, 6 −→ 3, 6, 2, 5, 1, 4 −→ 2, 4, 6, 1, 3, 5.

Starting with 192 cards labeled 1, 2, . . . , 192 from left to right, is it
possible to obtain the order 192, 191, . . . , 1 after a finite number of
shuffles?

Problem 3 In the plane are given distinct points A,B,C, P,Q, no
three of which are collinear. Prove that

AB +BC + CA+ PQ < AP +AQ+BP +BQ+ CP + CQ.

Problem 4 Given a natural number n ≥ 3, prove that there exists
a set An with the following two properties:

(i) An consists of n distinct natural numbers.

(ii) For any a ∈ An, the product of all the other elements in An has
remainder 1 when divided by a.

Problem 5 We are given finitely many lines in the plane. Let an
intersection point be a point where at least two of these lines meet,
and let a good intersection point be a point where exactly two of these
lines meet. Given that there are at least two intersection points, find
the minimum number of good intersection points.
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2.15 Korea

Problem 1 Show that given any prime p, there exist integers
x, y, z, w satisfying x2 + y2 + z2 − wp = 0 and 0 < w < p.

Problem 2 Find all functions f : R → R satisfying

f(x2 − y2) = (x− y) (f(x) + f(y))

for all x, y ∈ R.

Problem 3 For a quadrilateral ABCD inscribed in a circle with
center O, let P, Q, R, S be the intersections of the exterior angle
bisectors of ∠ABD and ∠ADB, ∠DAB and ∠DBA, ∠ACD and
∠ADC, ∠DAC and ∠DCA, respectively. Show that the four points
P,Q,R, S are concyclic.

Problem 4 Let p be a prime number such that p ≡ 1 (mod 4).
Evaluate

p−1∑
k=1

(⌊
2k2

p

⌋
− 2

⌊
k2

p

⌋)
.

Problem 5 Consider the following L-shaped figures, each made of
four unit squares:

Let m and n be integers greater than 1. Prove that an m × n

rectangular region can be tiled with such figures if and only if mn
is a multiple of 8.

Problem 6 The real numbers a, b, c, x, y, z satisfy a ≥ b ≥ c > 0
and x ≥ y ≥ z > 0. Prove that

a2x2

(by + cz)(bz + cy)
+

b2y2

(cz + ax)(cx+ az)
+

c2z2

(ax+ by)(ay + bx)

is at least 3
4 .
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2.16 Lithuania

Problem 1 In the triangle ABC, D is the midpoint of side AB.
Point E divides BC in the ratio BE : EC = 2 : 1. Given that
∠ADC = ∠BAE, determine ∠BAC.

Problem 2 A competition consisting of several tests has been
organized for the three pilots K, L, and M, including a reaction-time
test and a running test. In each test, no ties can occur; the first-place
pilot in the test is awarded A points, the second-place pilot B points,
and the third-place pilot C points for some fixed positive integers
A > B > C. During the competition, K scores 22 points, and L and
M each gather 9 points. If L won the reaction-time test, who took
second place in the running test?

Problem 3 Find all functions f : R → R which satisfy the equality

(x+ y)(f(x)− f(y)) = f(x2)− f(y2)

for all x, y ∈ R.

Problem 4 Prove that infinitely many 4-tuples (x, y, z, u) of posi-
tive integers satisfy the equation x2 + y2 + z2 + u2 = xyzu+ 6.
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2.17 Mongolia

Problem 1 Let rad(1) = 1, and for k > 1 let rad(k) equal the
product of the prime divisors of k. A sequence of natural numbers
a1, a2, . . . with arbitrary first term a1 is defined recursively by the
relation an+1 = an+rad(an). Show that for any positive integerN, the
sequence a1, a2, . . . contains some N consecutive terms in arithmetic
progression.

Problem 2 The circles ω1, ω2, ω3 in the plane are pairwise exter-
nally tangent to each other. Let P1 be the point of tangency between
circles ω1 and ω3, and let P2 be the point of tangency between circles
ω2 and ω3. A and B, both different from P1 and P2, are points on ω3

such that AB is a diameter of ω3. Line AP1 intersects ω1 again at X,
line BP2 intersects ω2 again at Y, and lines AP2 and BP1 intersect
at Z. Prove that X, Y, and Z are collinear.

Problem 3 A function f : R → R satisfies the following conditions:

(i) |f(a)− f(b)| ≤ |a− b| for any real numbers a, b ∈ R.
(ii) f(f(f(0))) = 0.

Prove that f(0) = 0.

Problem 4 Given a natural number n, find the number of quadru-
ples (x, y, u, v) of natural numbers such that the eight numbers x, y,
u, v, v + x − y, x + y − u, u + v − y, and v + x − u are all integers
between 1 and n inclusive.

Problem 5 The bisectors of angles A,B,C of a triangle ABC

intersect its sides at points A1, B1, C1. Prove that if the quadrilateral
BA1B1C1 is cyclic, then

BC

AC +AB
=

AC

AB +BC
− AB

BC +AC
.

Problem 6 Which integers can be represented in the form (x+y+z)2

xyz

where x, y, and z are positive integers?

Problem 7 In a country with n towns the cost of travel from the
i-th town to the j-th town is xij . Suppose that the total cost of
any route passing through each town exactly once and ending at its
starting point does not depend on which route is chosen. Prove that
there exist numbers a1, . . . , an and b1, . . . , bn such that xij = ai + bj
for all integers i, j with 1 ≤ i < j ≤ n.
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2.18 Poland

Problem 1 Given an integer n ≥ 2 find the number of solutions of
the system of equations

x1 + x2
n = 4xn

x2 + x2
1 = 4x1

...

xn + x2
n−1 = 4xn−1

in nonnegative reals x1, x2, . . . , xn.

Problem 2 The sides AC and BC of a triangle ABC have equal
length. Let P be a point inside triangle ABC such that ∠PAB =
∠PBC and let M be the midpoint of AB. Prove that ∠APM +
∠BPC = 180◦.

Problem 3 A sequence p1, p2, . . . of prime numbers satisfies the
following condition: for n ≥ 3, pn is the greatest prime divisor of
pn−1 + pn−2 + 2000. Prove that the sequence is bounded.

Problem 4 For an integer n ≥ 3 consider a pyramid with vertex S
and the regular n-gon A1A2 . . . An as a base, such that all the angles
between lateral edges and the base equal 60◦. Points B2, B3, . . . lie
on A2S,A3S, . . . , AnS, respectively, such that A1B2 + B2B3 + · · ·+
Bn−1Bn +BnA1 < 2A1S. For which n is this possible?

Problem 5 Given a natural number n ≥ 2, find the smallest integer
k with the following property: Every set consisting of k cells of an
n × n table contains a nonempty subset S such that in every row
and in every column of the table, there is an even number of cells
belonging to S.

Problem 6 Let P be a polynomial of odd degree satisfying the
identity

P (x2 − 1) = P (x)2 − 1.

Prove that P (x) = x for all real x.
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2.19 Romania

Problem 1 The sequence x1, x2, . . . is defined recursively by setting
x1 = 3 and setting xn+1 = bxn

√
2c for every n ≥ 1. Find all n for

which xn, xn+1, and xn+2 are in arithmetic progression.

Problem 2 Two nonzero complex numbers a and b satisfy

a · 2|a| + b · 2|b| = (a+ b) · 2|a+b|.

Prove that a6 = b6.

Problem 3 Let f be a third-degree polynomial with rational coef-
ficients, having roots x1, x2, and x3. Prove that if there exist nonzero
rational numbers a and b such that ax1 + bx2 is rational, then x3 is
also a rational number.

Problem 4 A function f : R2 → R is called olympic if it has
the following property: given n ≥ 3 distinct points A1, A2, . . . ,

An ∈ R2, if f(A1) = f(A2) = · · · = f(An) then the points A1,

A2, . . . , An are the vertices of a convex polygon. Let P ∈ C[X] be
a non-constant polynomial. Prove that the function f : R2 → R,
defined by f(x, y) = |P (x+ iy)|, is olympic if and only if all the roots
of P are equal.

Problem 5 Let n ≥ 2 be a positive integer. Find the number of
functions f : {1, 2, . . . , n} → {1, 2, 3, 4, 5} which have the following
property: |f(k + 1)− f(k)| ≥ 3 for k = 1, 2, . . . , n− 1.

Problem 6 Let n ≥ 1 be a positive integer and x1, x2, . . . , xn be
real numbers such that |xk+1 − xk| ≤ 1 for k = 1, 2, . . . , n− 1. Show
that

n∑
k=1

|xk| −

∣∣∣∣∣
n∑

k=1

xk

∣∣∣∣∣ ≤ n2 − 1
4

.

Problem 7 Let n, k be arbitrary positive integers. Show that there
exist positive integers a1 > a2 > a3 > a4 > a5 > k such that

n = ±
(
a1

3

)
±
(
a2

3

)
±
(
a3

3

)
±
(
a4

3

)
±
(
a5

3

)
,

where
(
a
3

)
= a(a−1)(a−2)

6 .
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Problem 8 Let P1P2 · · ·Pn be a convex polygon in the plane.
Assume that for any pair of vertices Pi, Pj , there exists a vertex V of
the polygon such that ∠PiV Pj = 60◦. Show that n = 3.

Problem 9 Show that there exist infinitely many 4-tuples of posi-
tive integers (x, y, z, t) such that the four numbers’ greatest common
divisor is 1 and such that

x3 + y3 + z2 = t4.

Problem 10 Consider the following figure, made of three unit
squares:

Determine all pairs m,n of positive integers such that a m × n

rectangle can be tiled with such pieces.

Problem 11 Find the least positive integer n such that for all odd
integers a, 22000 is a divisor of an − 1.

Problem 12 Let ABC be an acute triangle and let M be the
midpoint of segment BC. Consider the interior point N such that
∠ABN = ∠BAM and ∠ACN = ∠CAM. Prove that ∠BAN =
∠CAM.

Problem 13 Let S be the set of interior points of a unit sphere, and
let C be the set of interior points of a unit circle. Find, with proof,
whether there exists a function f : S → C such that the distance
between f(A) and f(B) is greater than or equal to AB for all points
A and B in S.

Problem 14 Let n ≥ 3 be an odd integer and m ≥ n2 − n + 1 be
an integer. The sequence of polygons P1, P2, . . . , Pm is defined as
follows:

(i) P1 is a regular polygon with n vertices.

(ii) For k > 1, Pk is the regular polygon whose vertices are the
midpoints of the sides of Pk−1.

Find, with proof, the maximum number of colors which can be used
such that for every coloring of the vertices of these polygons, one can
find four vertices A, B, C, D which have the same color and form an
isosceles trapezoid.
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Problem 15 Prove that if p and q are monic polynomials with
complex coefficients such that p(p(x)) = q(q(x)), then p(x) and q(x)
are equal.
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2.20 Russia

Problem 1 Sasha tries to determine some positive integerX ≤ 100.
He can choose any two positive integers M and N that are less than
100 and ask the question, “What is the greatest common divisor of
the numbers X + M and N?” Prove that Sasha can determine the
value of X after 7 questions.

Problem 2 Let I be the center of the incircle ω of an acute-angled
triangle ABC. The circle ω1 with center K passes through the points
A, I, C and intersects sides AB and BC at points M and N . Let L
be the reflection of K across line MN . Prove that BL ⊥ AC.

Problem 3 There are several cities in a state and a set of roads,
each road connecting two cities. It is known that at least 3 roads go
out of every city. Prove that there exists a cyclic path (that is, a path
where the last road ends where the first road begins) such that the
number of roads in the path is not divisible by 3.

Problem 4 Let x1, x2, . . . , xn be real numbers, satisfying the con-
ditions −1 < x1 < x2 < · · · < xn < 1 and

x13
1 + x13

2 + · · ·+ x13
n = x1 + x2 + · · ·+ xn.

Prove that

x13
1 y1 + x13

2 y2 + · · ·+ x13
n yn < x1y1 + x2y2 + · · ·+ xnyn

for any real numbers y1 < y2 < · · · < yn.

Problem 5 Let AA1 and CC1 be the altitudes of an acute-angled
nonisosceles triangle ABC. The bisector of the acute angle between
lines AA1 and CC1 intersects sides AB and BC at P and Q, respec-
tively. Let H be the orthocenter of triangle ABC and let M be the
midpoint of AC; and let the bisector of ∠ABC intersect HM at R.
Prove that PBQR is cyclic.

Problem 6 Five stones which appear identical all have different
weights; Oleg knows the weight of each stone. Given any stone x, let
m(x) denote its weight. Dmitrii tries to determine the order of the
weights of the stones. He is allowed to choose any three stones A,B,C
and ask Oleg the question, “Is it true that m(A) < m(B) < m(C)?”
Oleg then responds “yes” or “no.” Can Dmitrii determine the order
of the weights with at most nine questions?
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Problem 7 Find all functions f : R → R that satisfy the inequality

f(x+ y) + f(y + z) + f(z + x) ≥ 3f(x+ 2y + 3z)

for all x, y, z ∈ R.

Problem 8 Prove that the set of all positive integers can be
partitioned into 100 nonempty subsets such that if three positive
integers a, b, c satisfy a + 99b = c, then two of them belong to the
same subset.

Problem 9 Let ABCDE be a convex pentagon on the coordinate
plane. Each of its vertices are lattice points. The five diagonals of
ABCDE form a convex pentagon A1B1C1D1E1 inside of ABCDE.
Prove that this smaller pentagon contains a lattice point on its
boundary or within its interior.

Problem 10 Let a1, a2, . . . , an be a sequence of nonnegative real
numbers. For 1 ≤ k ≤ n, let

mk = max
1≤i≤k

ak−i+1 + ak−i+2 + · · ·+ ak

i
.

Prove that for any α > 0, the number of integers k which satisfy
mk > α is less than a1+a2+···+an

α .

Problem 11 Let a1, a2, a3, . . . be a sequence with a1 = 1 satisfying
the recursion

an+1 =
{
an − 2 if an − 2 6∈ {a1, a2, . . . , an} and an − 2 > 0
an + 3 otherwise.

Prove that for every positive integer k, we have an = k2 = an−1 + 3
for some n.

Problem 12 There are black and white checkers on some squares
of a 2n×2n board, with at most one checker on each square. First, we
remove every black checker that is in the same column as any white
checker. Next, we remove every white checker that is in the same row
as any remaining black checker. Prove that for some color, at most
n2 checkers of this color remain.

Problem 13 Let E be a point on the median CD of triangle ABC.
Let S1 be the circle passing through E and tangent to line AB at A,
intersecting side AC again at M ; let S2 be the circle passing through
E and tangent to line AB at B, intersecting side BC again at N .
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Prove that the circumcircle of triangle CMN is tangent to circles S1

and S2.

Problem 14 One hundred positive integers, with no common divi-
sor greater than one, are arranged in a circle. To any number, we can
add the greatest common divisor of its neighboring numbers. Prove
that using this operation, we can transform these numbers into a new
set of pairwise coprime numbers.

Problem 15 M is a finite set of real numbers such that given three
distinct elements from M , we can choose two of them whose sum also
belongs to M . What is the largest number of elements that M can
have?

Problem 16 A positive integer n is called perfect if the sum of all
its positive divisors, excluding n itself, equals n. For example, 6 is
perfect since 6 = 1 + 2 + 3. Prove that

(a) if a perfect number larger than 6 is divisible by 3, then it is also
divisible by 9.

(b) if a perfect number larger than 28 is divisible by 7, then it is also
divisible by 49.

Problem 17 Circles ω1 and ω2 are internally tangent at N . The
chords BA and BC of ω1 are tangent to ω2 at K and M , respectively.
Let Q and P be the midpoints of the arcs AB and BC not containing
the point N . Let the circumcircles of triangles BQK and BPM

intersect at B and B1. Prove that BPB1Q is a parallelogram.

Problem 18 There is a finite set of congruent square cards, placed
on a rectangular table with their sides parallel to the sides of the
table. Each card is colored in one of k colors. For any k cards of
different colors, it is possible to pierce some two of them with a single
pin. Prove that all the cards can be pierced by 2k − 2 pins.

Problem 19 Prove the inequality

sinn(2x) + (sinn x− cosn x)2 ≤ 1.

Problem 20 The circle ω is inscribed in the quadrilateral ABCD,
and O is the intersection point of the lines AB and CD. The circle
ω1 is tangent to side BC at K and is tangent to lines AB and CD

at points lying outside ABCD; the circle ω2 is tangent to side AD
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at L and is also tangent to lines AB and CD at points lying outside
ABCD. If O,K,L are collinear, prove that the midpoint of side BC,
the midpoint of side AD, and the center of ω are collinear.

Problem 21 Every cell of a 100× 100 board is colored in one of 4
colors so that there are exactly 25 cells of each color in every column
and in every row. Prove that one can choose two columns and two
rows so that the four cells where they intersect are colored in four
different colors.

Problem 22 The non-zero real numbers a, b satisfy the equation

a2b2(a2b2 + 4) = 2(a6 + b6).

Prove that a and b are not both rational.

Problem 23 In a country, each road either connects two towns or
starts from a town and goes out of the country. Some of the roads
are colored in one of three colors. For every town, exactly three of
the roads that go out of this town are colored, and the colors of these
roads are different. If exactly three of the colored roads go out of the
country, prove that the colors of these roads are different.

Problem 24 Find the smallest odd integer n such that some n-gon
(not necessarily convex) can be partitioned into parallelograms whose
interiors do not overlap.

Problem 25 Two pirates divide their loot, consisting of two sacks
of coins and one diamond. They decide to use the following rules.
On each turn, one pirate chooses a sack and takes 2m coins from it,
keeping m for himself and putting the rest into the other sack. The
pirates alternate taking turns until no more moves are possible; the
pirate who makes the last move takes the diamond. For what initial
amounts of coins can the first pirate guarantee that he will obtain the
diamond?

Problem 26 The coefficients a and b of an equation x2 +ax+b = 0
and its roots c and d are four different numbers. Given a, b, c, d in
some order, is it possible to determine which is a and which is b?

Problem 27 Do there exist coprime integers a, b, c > 1 such that
2a + 1 is divisible by b, 2b + 1 is divisible by c, and 2c + 1 is divisible
by a?
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Problem 28 2n + 1 segments are marked on a line. Each of the
segments intersects at least n other segments. Prove that one of these
segments intersects all the other segments.

Problem 29 The circles S1 and S2 intersect at points M and N .
Let A and D be points on S1 and S2 such that lines AM and AN

intersect S2 at B and C, lines DM and DN intersect S1 at E and F ,
and the triples A,E, F and D,B,C lie on opposite sides of line MN .
Prove that there is a fixed point O such that for any points A and
D that satisfy the condition AB = DE, the quadrilateral AFCD is
cyclic.

Problem 30 Let the set M consist of the 2000 numbers 101 +
1, 102 + 1, . . . , 102000 + 1. Prove that at least 99% of the elements of
M are not prime.

Problem 31 There are 2 counterfeit coins among 5 coins that look
identical. Both counterfeit coins have the same weight and the other
three real coins have the same weight. The five coins do not all weight
the same, but it is unknown whether the weight of each counterfeit
coin is more or less than the weight of each real coin. Find the
minimal number of weighings needed to find at least one real coin,
and describe how to do so. (The balance scale reports the difference
between the weights of the objects in two pans.)

Problem 32 Let ABCD be a parallelogram with ∠A = 60◦. Let O
be the circumcenter of triangle ABD. Line AO intersects the external
angle bisector of angle BCD at K. Find the value AO

OK .

Problem 33 Find the smallest integer n such that an n×n square
can be partitioned into 40× 40 and 49× 49 squares, with both types
of squares present in the partition.

Problem 34 Prove that there exist 10 distinct real numbers a1, a2,

. . . , a10 such that the equation

(x− a1)(x− a2) · · · (x− a10) = (x+ a1)(x+ a2) · · · (x+ a10)

has exactly 5 different real roots.

Problem 35 We are given a cylindrical region in space, whose
altitude is 1 and whose base has radius 1. Find the minimal number
of balls of radius 1 needed to cover this region.
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Problem 36 The sequence a1, a2, . . . , a2000 of real numbers satisfies
the condition

a3
1 + a3

2 + · · ·+ a3
n = (a1 + a2 + · · ·+ an)2

for all n, 1 ≤ n ≤ 2000. Prove that every element of the sequence is
an integer.

(The balance scale reports the difference between the weights of
the objects in two pans.)

Problem 37 The bisectors AD and CE of a triangle ABC intersect
at I. Let `1 be the reflection of line AB across line CE, and let `2 be
the reflection of line BC across line AD. If lines `1 and `2 intersect
at K, prove that KI ⊥ AC.

Problem 38 There are 2000 cities in a country, some pairs of which
are connected by a direct airplane flight. For every city A the number
of cities connected with A by direct flights equals 1, 2, 4, . . . , or 1024.
Let S(A) be the number of routes from A to other cities (different
from A) with at most one intermediate landing. Prove that the sum
of S(A) over all 2000 cities A cannot be equal to 10000.

Problem 39 A heap of balls consists of one thousand 10-gram balls
and one thousand 9.9-gram balls. We wish to pick out two heaps of
balls with equal numbers of balls in them but different total weights.
What is the minimal number of weighings needed to do this?

Problem 40 Let D be a point on side AB of triangle ABC. The
circumcircle of triangle BCD intersects line AC at C and M , and
the circumcircle of triangle CMN intersects line BC at C and N .
Let O be the center of the circumcircle of triangle CMN . Prove that
OD ⊥ AB.

Problem 41 Every cell of a 200 × 200 table is colored black or
white. The difference between the number of black and white cells is
404. Prove that some 2× 2 square contains an odd number of white
cells.

Problem 42 Is there a function f : R → R such that

|f(x+ y) + sinx+ sin y| < 2

for all x, y ∈ R?
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Problem 43 For any integer a0 > 5, consider the sequence
a0, a1, a2, . . . , where

an+1 =
{
a2

n − 5 if an is odd
an

2 if an is even

for all n ≥ 0. Prove that this sequence is not bounded.

Problem 44 Let `a, `b, `c, and `d be the external angle bisectors
of angles DAB, ABC, BCD, and CDA, respectively. The pairs of
lines `a and `b, `b and `c, `c and `d, `d and `a intersect at points
K,L,M,N , respectively. Suppose that the perpendiculars to line
AB passing through K, to line BC passing through L, and to line
CD passing through M are concurrent. Prove that ABCD can be
inscribed in a circle.

Problem 45 There are 2000 cities in a country, and each pair of
cities is connected by either no roads or exactly one road. A cyclic
path is a collection of roads such that each city is at the end of either
0 or 2 roads in the path. For every city, there at most N cyclic paths
which both pass through this city and contain an odd number of
roads. Prove that the country can be separated into 2N +2 republics
such that any two cities from the same republic are not connected by
a road.

Problem 46 Prove the inequality
1√

1 + x2
+

1√
1 + y2

≤ 2√
1 + xy

for 0 ≤ x, y ≤ 1.

Problem 47 The incircle of triangle ABC touches side AC at K.
A second circle S with the same center intersects all the sides of the
triangle. Let E and F be the intersection points on AB and BC

closer to B; let B1 and B2 be the intersection points on AC with B1

closer to A. Finally, let P be the intersection point of segments B2E

and B1F . Prove that points B,K,P are collinear.

Problem 48 Each of the numbers 1, 2, . . . , N is colored black or
white. We are allowed to simultaneously change the colors of any
three numbers in arithmetic progression. For which numbers N can
we always make all the numbers white?
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2.21 Taiwan

Problem 1 Find all possible pairs (x, y) of positive integers such
that

yx2
= xy+2.

Problem 2 In an acute triangle ABC, AC > BC and M is the
midpoint of AB. Let altitudes AP and BQ meet at H, and let lines
AB and PQ meet at R. Prove that the two lines RH and CM are
perpendicular.

Problem 3 Let S = {1, 2, . . . , 100}, and let P denote the family of
all 49-element subsets T of S. Each set T in P is labeled with some
number from S. Show that there exists a 50-element subset M of S
such that for each x ∈M, the set M \ {x} is not labeled with x.

Problem 4 Let φ(k) denote the number of positive integers n

satisfying gcd(n, k) = 1 and n ≤ k. Suppose that φ(5m − 1) = 5n − 1
for some positive integers m,n. Prove that gcd(m,n) > 1.

Problem 5 Let A = {1, 2, . . . , n}, where n is a positive integer. A
subset of A is connected if it is a nonempty set which consists of one
element or of consecutive integers. Determine the greatest integer k
for which A contains k distinct subsets A1, A2, . . . , Ak such that the
intersection of any two distinct sets Ai and Aj is connected.

Problem 6 Let f : N → N∪{0} be defined recursively by f(1) = 0
and

f(n) = max
1≤j≤bn

2 c
{f(j) + f(n− j) + j}

for all n ≥ 2. Determine f(2000).
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2.22 Turkey

Problem 1 Find the number of ordered quadruples (x, y, z, w) of
integers with 0 ≤ x, y, z, w ≤ 36 such that

x2 + y2 ≡ z3 + w3 (mod 37).

Problem 2 Given a circle with center O, the two tangent lines from
a point S outside the circle touch the circle at points P and Q. Line
SO intersects the circle at A and B, with B closer to S. Let X be an
interior point of minor arc PB, and let line OS intersect lines QX
and PX at C and D, respectively. Prove that

1
AC

+
1
AD

=
2
AB

.

Problem 3 For any two positive integers n and p, prove that there
are exactly (p+ 1)n+1 − pn+1 functions

f : {1, 2, . . . , n} → {−p,−p+ 1, . . . , p}

such that |f(i)− f(j)| ≤ p for all i, j ∈ {1, 2, . . . , n}.

Problem 4 Find all sequences a1, a2, . . . , a2000 of real numbers such
that

∑2000
n=1 an = 1999 and such that 1

2 < an < 1 and an+1 =
an(2− an) for all n ≥ 1.

Problem 5 In an acute triangle ABC with circumradius R, alti-
tudes AD, BE, CF have lengths h1, h2, h3, respectively. If t1, t2,
t3 are the lengths of the tangents from A, B, C, respectively, to the
circumcircle of triangle DEF, prove that

3∑
i=1

(
ti√
hi

)2

≤ 3
2
R.

Problem 6

(a) Prove that for each positive integer n, the number of ordered pairs
(x, y) of integers satisfying

x2 − xy + y2 = n

is finite and divisible by 6.

(b) Find all ordered pairs (x, y) of integers satisfying

x2 − xy + y2 = 727.
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Problem 7 Given a triangle ABC, the internal and external bisec-
tors of angle A intersect line BC at points D and E, respectively.
Let F be the point (different from A) where line AC intersects the
circle ω with diameter DE. Finally, draw the tangent at A to the
circumcircle of triangle ABF , and let it hit ω at A and G. Prove that
AF = AG.

Problem 8 Let P (x) = x + 1 and Q(x) = x2 + 1. We form all
sequences of ordered pairs (x1, y1), (x2, y2), . . . with (x1, y1) = (1, 3)
and

(xk+1, yk+1) ∈ {(P (xk), Q(yk)), (Q(xk), P (yk))}

for each positive integer k. Find all positive integers n such that
xn = yn in at least one of these sequences.

Problem 9 Show that it is possible to cut any triangular prism of
infinite length with a plane such that the resulting intersection is an
equilateral triangle.

Problem 10 Given a square ABCD, the points M,N,K,L are
chosen on sides AB,BC,CD,DA, respectively, such that lines MN

and LK are parallel and such that the distance between lines MN

and LK equals AB. Show that the circumcircles of triangles ALM
and NCK intersect each other, while those of triangles LDK and
MBN do not.

Problem 11 Let f : R → R be a function such that |f(x +
y) − f(x) − f(y)| ≤ 1 for all x, y ∈ R. Show that there exists a
function g : R → R with |f(x) − g(x)| ≤ 1 for all x ∈ R, and with
g(x+ y) = g(x) + g(y) for all x, y ∈ R.
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2.23 Ukraine

Problem 1 Let n numbers greater than 1 be given. During each
step, we replace any two numbers a, b with the number ab

√
2

a+b . Prove
that after n− 1 steps, the remaining number is at least 1√

n
.

Problem 2 Acute triangle PNK is inscribed in a circle with
diameter NM. Let A be the intersection point of MN and PK, and
let H be a point on minor arc PN. The circumcircle of triangle PAH
intersects lines MN and PN again at points B and D, respectively;
the circle with diameter BN intersects lines PN and NK at points F
and Q, respectively. Let C be the intersection point of lines MN and
FQ, and let E be the intersection point different from D of line CD
with the circumcircle of triangle PAH. Prove that the points H,E,N
are collinear.

Problem 3 Let AA1, BB1, CC1 be the altitudes of acute triangle
ABC. Let A2, B2, C2 be the tangency points of the incircle of triangle
A1B1C1 with sides B1C1, C1A1, A1B1, respectively. Prove that the
lines AA2, BB2, CC2 are concurrent.

Problem 4 Do there exist positive integers m,n such that m2+1
n2−1 is

an integer?
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2.24 United Kingdom

Problem 1 Two intersecting circles C1 and C2 have a common
tangent which touches C1 at P and C2 at Q. The two circles intersect
at M and N. Prove that the triangles MNP and MNQ have equal
areas.

Problem 2 Given that x, y, z are positive real numbers satisfying
xyz = 32, find the minimum value of

x2 + 4xy + 4y2 + 2z2.

Problem 3 Find positive integers a and b such that(
3
√
a+ 3

√
b− 1

)2

= 49 + 20 3
√

6.

Problem 4

(a) Find a set A of ten positive integers such that no six distinct
elements of A have a sum which is divisible by 6.

(b) Is it possible to find such a set if “ten” is replaced by “eleven”?
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2.25 United States of America

Problem 1 Call a real-valued function f very convex if

f(x) + f(y)
2

≥ f

(
x+ y

2

)
+ |x− y|

holds for all real numbers x and y. Prove that no very convex function
exists.

Problem 2 Let S be the set of all triangles ABC for which

5
(

1
AP

+
1
BQ

+
1
CR

)
− 3

min{AP,BQ,CR}
=

6
r
,

where r is the inradius and P,Q,R are the points of tangency of the
incircle with sides AB,BC,CA, respectively. Prove that all triangles
in S are isosceles and similar to one another.

Problem 3 A game of solitaire is played with R red cards, W white
cards, and B blue cards. A player plays all the cards one at a time.
With each play he accumulates a penalty. If he plays a blue card, then
he is charged a penalty which is the number of white cards still in his
hand. If he plays a white card, then he is charged a penalty which
is twice the number of red cards still in his hand. If he plays a red
card, then he is charged a penalty which is three times the number of
blue cards still in his hand. Find, as a function of R,W, and B, the
minimal total penalty a player can amass and all the ways in which
this minimum can be achieved.

Problem 4 Find the smallest positive integer n such that if n unit
squares of a 1000×1000 unit-square board are colored, then there will
exist three colored unit squares whose centers form a right triangle
with legs parallel to the edges of the board.

Problem 5 Let A1A2A3 be a triangle and let ω1 be a circle in its
plane passing through A1 and A2. Suppose there exist circles ω2, ω3,

. . . , ω7 such that for k = 2, 3, . . . , 7, ωk is externally tangent to ωk−1

and passes through Ak and Ak+1, where An+3 = An for all n ≥ 1.
Prove that ω7 = ω1.
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Problem 6 Let a1, b1, a2, b2, . . . , an, bn be nonnegative real num-
bers. Prove that

n∑
i,j=1

min{aiaj , bibj} ≤
n∑

i,j=1

min{aibj , ajbi}.
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2.26 Vietnam

Problem 1 Given a real number c > 2, a sequence x1, x2, . . . of real
numbers is defined recursively by x1 = 0 and

xn+1 =
√
c−

√
c+ xn

for all n ≥ 1. Prove that the sequence x1, x2, . . . is defined for all n
and has a finite limit.

Problem 2 Two circles ω1 and ω2 are given in the plane, with
centers O1 and O2, respectively. Let M ′1 and M ′2 be two points on ω1

and ω2, respectively, such that the lines O1M
′
1 and O2M

′
2 intersect.

Let M1 and M2 be points on ω1 and ω2, respectively, such that when
measured clockwise the angles ∠M ′1OM1 and ∠M ′2OM2 are equal.

(a) Determine the locus of the midpoint of M1M2.

(b) Let P be the point of intersection of lines O1M1 and O2M2.
The circumcircle of triangle M1PM2 intersects the circumcircle
of triangle O1PO2 at P and another point Q. Prove that Q is
fixed, independent of the locations of M1 and M2.

Problem 3 Given the polynomial

P (x) = x3 − 9x2 + 24x− 97,

prove that for each positive integer n there exists a positive integer
an for which P (an) is divisible by 3n.

Problem 4 Given an angle α ∈ (0, π), find a quadratic polynomial
of the form f(x) = x2 + ax + b such that for every n ≥ 3, the
polynomial

Pn(x) = xn sinα− x sinnα+ sin (n− 1)α

is divisible by f(x).

Problem 5 Suppose that all circumcircles of the four faces of a
tetrahedron have congruent radii. Show that any two opposite edges
of the tetrahedron are congruent.

Problem 6 Determine all functions f : R → R satisfying

x2f(x) + f(1− x) = 2x− x4

for all x ∈ R.
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Problem 7 Two circles C1 and C2 intersect at two points P and Q.
The common tangent of C1 and C2 closer to P than to Q touches C1

and C2 at A and B, respectively. The tangent to C1 at P intersects
C2 at E (distinct from P ) and the tangent to C2 at P intersects C1

at F (distinct from P ). Let H and K be two points on the rays AF
and BE, respectively, such that AH = AP,BK = BP . Prove that
the five points A,H,Q,K,B lie on the same circle.

Problem 8 Given a positive integer k, let x1 = 1 and define the
sequence x1, x2, . . . of positive integers recursively as follows: for each
integer n ≥ 1, let xn+1 be the smallest positive integer not belonging
to the set {x1, x2, . . . , xn, x1 + k, x2 + 2k, . . . , xn + nk}. Show that
there exists a real number a such that

xn = banc

for all n = 1, 2, . . . .

Problem 9 Let a, b, c be pairwise relatively prime positive integers.
The positive integer n is said to be stubborn if it cannot be written
in the form

n = bcx+ cay + abz

for any positive integers x, y, z. Determine, as a function of a, b, and
c, the number of stubborn integers.

Problem 10 Let R+ denote the set of positive real numbers, and
let a, r > 1 be real numbers.

(a) Suppose that f : R+ → R is a function satisfying the following
conditions:

(i) f(f(x)) ≤ axrf
(

x
a

)
for all x > 0.

(ii) f(x) < 22000 for all x <
1

22000
.

Prove that f(x) ≤ xra1−r for all x > 0.

(b) Construct a function f : R+ → R satisfying condition (i) such
that f(x) > xra1−r for all x > 0.
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3.1 Asian Pacific Mathematical

Olympiad

Problem 1 Compute the sum

S =
101∑
i=0

x3
i

1− 3xi + 3x2
i

where xi = i
101 for i = 0, 1, . . . , 101.

Problem 2 We are given an arrangement of nine circular slots along
three sides of a triangle: one slot at each corner, and two more along
each side. Each of the numbers 1, 2, . . . , 9 is to be written into exactly
one of these circles, so that

(i) the sums of the four numbers on each side of the triangle are
equal;

(ii) the sums of the squares of the four numbers on each side of the
triangle are equal.

Find all ways in which this can be done.

Problem 3 Let ABC be a triangle with median AM and angle
bisector AN . Draw the perpendicular to line NA through N , hitting
lines MA and BA at Q and P , respectively. Also let O be the point
where the perpendicular to line BA through P meets line AN . Prove
that QO ⊥ BC.

Problem 4 Let n, k be positive integers with n > k. Prove that

1
n+ 1

· nn

kk(n− k)n−k
<

n!
k!(n− k)!

<
nn

kk(n− k)n−k
.

Problem 5 Given a permutation (a0, a1, . . . , an) of the sequence
0, 1, . . . , n, a transposition of ai with aj is called legal if ai = 0, i > 0,
and ai−1+1 = aj . The permutation (a0, a1, . . . , an) is called regular if
after finitely many legal transpositions it becomes (1, 2, . . . , n, 0). For
which numbers n is the permutation (1, n, n− 1, . . . , 3, 2, 0) regular?
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3.2 Austrian-Polish

Mathematics Competition

Problem 1 Determine all polynomials P (x) with real coefficients
such that for some positive integer n, the equality

2n+1∑
k=1

(−1)k

⌊
k

2

⌋
P (x+ k) = 0

holds for infinitely many real numbers x.

Problem 2 We are given a 1× 1× 1 unit cube with opposite faces
ABCD and EFGH, where AE, BF , CG, and DH are edges of the
cube. X is a point on the incircle of square ABCD, and Y is a point
on the circumcircle of triangle BDG. Find the minimum possible
value of XY.

Problem 3 For each positive integer n ≥ 3, find all n-tuples
(x1, x2, . . . , xn) of real numbers that satisfy the following system of
equations:

x3
n = x1 + x2 + 1

x3
1 = x2 + x3 + 1

...

x3
n−1 = xn + x1 + 1.

Problem 4 Find all positive integers N whose only prime divisors
are 2 and 5, such that the number N + 25 is a perfect square.

Problem 5 For which integers n ≥ 5 is it possible to color the
vertices of a regular n-gon using at most 6 colors such that any 5
consecutive vertices have different colors?

Problem 6 Let the 3-cross be the solid made up of one central
unit cube with six other unit cubes attached to its faces, such as
the solid made of the seven unit cubes centered at (0, 0, 0), (±1, 0, 0),
(0,±1, 0), and (0, 0,±1). Prove or disprove that the space can be tiled
with 3-crosses in such a way that no two of them share any interior
points.
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Problem 7 In the plane the triangle A0B0C0 is given. Consider
all triangles ABC satisfying the following conditions: (i) lines AB,
BC, and CA pass through points C0, A0, and B0, respectively; (ii)
∠ABC = ∠A0B0C0, ∠BCA = ∠B0C0A0, and ∠CAB = ∠C0A0B0.

Find the locus of the circumcenter of all such triangles ABC.

Problem 8 We are given a set of 27 distinct points in the plane, no
three collinear. Four points from this set are vertices of a unit square;
the other 23 points lie inside this square. Prove that there exist three
distinct points X,Y, Z in this set such that [XY Z] ≤ 1

48 .

Problem 9 For all real numbers a, b, c ≥ 0 such that a+ b+ c = 1,
prove that

2 ≤ (1− a2)2 + (1− b2)2 + (1− c2)2 ≤ (1 + a)(1 + b)(1 + c)

and determine when equality occurs for each of the two inequalities.
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3.3 Balkan Mathematical Olympiad

Problem 1 Let E be a point inside nonisosceles acute triangle ABC
lying on median AD, and drop perpendicular EF to line BC. Let
M be an arbitrary point on segment EF , and let N and P be the
orthogonal projections of M onto lines AC and AB, respectively.
Prove that the angle bisectors of ∠PMN and ∠PEN are parallel.

Problem 2 Find the maximum number of 1× 10
√

2 rectangles one
can remove from a 50 × 90 rectangle by using cuts parallel to the
edges of the original rectangle.

Problem 3 Call a positive integer r a perfect power if it is of the
form r = ts for some integers s, t greater than 1. Show that for any
positive integer n there exists a set S of n distinct perfect powers,
such that for any nonempty subset T of S, the arithmetic mean of
the elements in T is also a perfect power.
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3.4 Czech-Slovak Match

Problem 1 A triangle ABC with incircle k is given. Circle ka

passes through B and C and is orthogonal to k; circles kb and kc

are defined similarly. (Two circles are said to be orthogonal if they
intersect and their tangents at any common point are perpendicular.)
Let ka and kb intersect again at C ′, and define A′ and B′ similarly.
Show that the circumradius of triangle A′B′C ′ equals half the radius
of k.

Problem 2 Let P (x) be a polynomial with integer coefficients.
Show that the polynomial

Q(x) = P (x4)P (x3)P (x2)P (x) + 1

has no integer roots.

Problem 3 Let ABCD be an isosceles trapezoid with bases AB
and CD. The incircle of the triangle BCD touches side CD at a
point E. Let F be the point on the internal bisector of ∠DAC such
that EF ⊥ CD. The circumcircle of triangle ACF intersects the line
CD at two points C and G. Show that triangle AFG is isosceles.
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3.5 Mediterranean Mathematical

Competition

Problem 1 We are given n different positive numbers a1, a2, . . . , an

and the set {σ1, σ2, . . . , σn}, where each σi ∈ {−1, 1}. Prove that
there exist a permutation (b1, b2, . . . , bn) of (a1, a2, . . . , an) and a
set {β1, β2, . . . , βn} where each βi ∈ {−1, 1}, such that the sign of∑i

j=1 βjbj equals the sign of σi for all 1 ≤ i ≤ n.

Problem 2 In the convex quadrilteral ABCD, AC = BD. Out-
wards along its sides are constructed equilateral triangles WAB,

XBC, Y CD, ZDA with centroids S1, S2, S3, S4, respectively. Prove
that S1S3 ⊥ S2S4 if and only if AC ⊥ BD.

Problem 3 For a positive integer n ≥ 2, let c1, . . . , cn and b1, . . . , bn
be positive real numbers. Prove that the equation

n∑
i=1

ci
√
xi − bi =

1
2

n∑
i=1

xi

has exactly one solution if and only if
n∑

i=1

c2i =
n∑

i=1

bi.

Problem 4 P, Q, R, S are the midpoints of sides BC, CD, DA,
AB, respectively, of convex quadrilateral ABCD. Prove that

4(AP 2 +BQ2 + CR2 +DS2) ≤ 5(AB2 +BC2 + CD2 +DA2).



114 Nordic Mathematical Contest

3.6 Nordic Mathematical Contest

Problem 1 In how many ways can the number 2000 be written as
a sum of three positive integers a1 ≤ a2 ≤ a3?

Problem 2 People P1, P2, . . . , Pn, sitting around a table in that
order, have m+ n− 1, m+ n− 2, . . . , m coins, respectively. Pi gives
Pi+1 exactly i coins for i = 1, 2, . . . in that order (where Pi+n = Pi

for all i) until one person no longer has enough coins to continue. At
this moment, it turns out that some person has exactly five times as
many coins as one of his neighbors. Determine m and n.

Problem 3 In triangle ABC, internal angle bisectors AD and CE
meet at I. If ID = IE, prove that either triangle ABC is isosceles or
∠ABC = 60◦.

Problem 4 The function f : [0, 1] → R satisfies f(0) = 0, f(1) = 1,
and

1
2
≤ f(z)− f(y)
f(y)− f(x)

≤ 2

for all 0 ≤ x < y < z ≤ 1 with z − y = y − x. Prove that

1
7
≤ f

(
1
3

)
≤ 4

7
.
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3.7 St. Petersburg City

Mathematical Olympiad (Russia)

Problem 1 Do there exist four quadratic polynomials such that if
you put them in any order, there exists a number such that the values
of the polynomials at that number, in the chosen order, are strictly
increasing?

Problem 2 Let S1 and S2 be two nonintersecting circles. A
common external tangent meets S1 and S2 at A and B, respectively.
Let S3 be a circle passing through A and B, and let C and D be its
second intersections with S1 and S2, respectively. Let K be the point
where the tangents to S1 and S2 at C and D, respectively, meet.
Prove that KC = KD.

Problem 3 On a 1001× 1001 checkerboard, call two (unit) squares
adjacent if they share an edge. Several squares are chosen, no two
adjacent, such that the number of squares adjacent to chosen squares
is less than the number of chosen squares. How many squares have
been chosen?

Problem 4 Let S be a set of 1000 positive integers. For each
nonempty subset A of B, let g(A) be the greatest common divisor
of the elements in A. Is it possible that g(A1) 6= g(A2) for any two
distinct subsets A1, A2 of B?

Problem 5 Let AA1, BB1, CC1 be the altitudes of an acute triangle
ABC. The points A2 and C2 on line A1C1 are such that line CC1

bisects A2B1 and line AA1 bisects C2B1. Lines A2B1 and AA1 meet
at K, and lines C2B1 and CC1 meet at L. Prove that lines KL and
AC are parallel.

Problem 6 One hundred points are chosen in the coordinate plane.
Show that at most 2025 = 452 rectangles with vertices among these
points have sides parallel to the axes.

Problem 7 Find all pairs of distinct positive integers a, b such that
b2 + a | a2 + b and b2 + a is a power of a prime.

Problem 8 In a country of 2000 airports, there are initially no
airlines. Two airlines take turns introducing new nonstop flights,
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and given any two cities only one airline may offer flights between
them. Each airline attempts to introduce enough flights so that if
any airport is shut down, it can still offer trips from any airport to
any other airport, possibly with transfers. Which airline can ensure
that it achieves this goal first?

Problem 9 We are given several monic quadratic polynomials, all
with the same discriminant. The sum of any two of the polynomials
has distinct real roots. Show that the sum of all of the polynomials
also has distinct real roots.

Problem 10 Let a and b be distinct positive integers greater than
1 such that a2 + b− 1 is divisible by b2 + a− 1. Prove that b2 + a− 1
has at least two distinct prime factors.

Problem 11 On an infinite checkerboard are placed 111 nonover-
lapping corners, L-shaped figures made of 3 unit squares. The
collection has the following property: for any corner, the 2×2 square
containing it is entirely covered by the corners. Prove that one can
remove between 1 and 110 of the corners so that the property will be
preserved.

Problem 12 We are given distinct positive integers a1, a2, . . . , a20.

The set of pairwise sums {ai + aj | 1 ≤ i ≤ j ≤ 20} contains 201
elements. What is the smallest possible number of elements in the
set {|ai − aj | | 1 ≤ i < j ≤ 20}, the set of (positive) differences
between the integers?

Problem 13 Let ABCD be an isoceles trapezoid with bases AD
and BC. An arbitrary circle tangent to lines AB and AC intersects
BC at M and N . Let X and Y be the intersections closer to D of
the incircle of triangle BCD with DM and DN , respectively. Show
that line XY is parallel to line AD.

Problem 14 In each square of a chessboard is written a positive
real number such that the sum of the numbers in each row is 1. It is
known that for any eight squares, no two in the same row or column,
the product of the numbers in these squares is no greater than the
product of the numbers on the main diagonal. Prove that the sum of
the numbers on the main diagonal is at least 1.
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Problem 15 Is it possible to draw finitely many segments in
three-dimensional space such that any two segments either share
an endpoint or do not intersect, any endpoint of a segment is the
endpoint of exactly two other segments, and any closed polygon made
from these segments has at least 30 sides?

Problem 16 Does there exist a quadratic polynomial f with pos-
itive coefficients such that for every positive real number x, the
equality bf(x)c = f(bxc) holds?

Problem 17 What is the smallest number of weighings on a balance
scale needed to identify the individual weights of a set of objects
known to weigh 1, 3, 32, . . . , 326 in some order? (The balance scale
reports the difference between the weights of the objects in two pans.)

Problem 18 The line ` is tangent to the circumcircle of acute
triangle ABC at B. Let K be the projection of the orthocenter
of ABC onto `, and let L be the midpoint of side AC. Show that
triangle BKL is isosceles.

Problem 19 Two points move within a vertical 1× 1 square at the
same constant speed. Each travels in a straight path except when it
hits a wall, in which case it reflects off the wall so that its angle of
incidence equals its angle of reflection. Show that a spider, moving
at the same speed as the balls, can descend straight down on a string
from the top edge of the square to the bottom so that while the spider
is within in the square, neither the spider nor its string is touching
one of the balls.

Problem 20 Let n ≥ 3 be an integer. Prove that for positive
numbers x1 ≤ x2 ≤ · · · ≤ xn,

xnx1

x2
+
x1x2

x3
+ · · ·+ xn−1xn

x1
≥ x1 + x2 + · · ·+ xn.

Problem 21 In the plane is given a convex n-gon P with area less
than 1. For each point X in the plane, let F (X) denote the area of
the union of all segments joining X to points of P. Show that the set
of points X such that F (X) = 1 is a convex polygon with at most 2n
sides.

Problem 22 What is the smallest number of unit segments that
can be erased from the interior of a 2000 × 3000 rectangular grid so
that no smaller rectangle remains intact?



118 St. Petersburg City Mathematical Olympiad (Russia)

Problem 23 Let x, y, z, t be pairwise relatively prime positive in-
tegers such that xy+yz+ zt = xt. Prove that the sum of the squares
of some two of these numbers equals twice the sum of the squares of
the other two.

Problem 24 Let AA1 and CC1 be altitudes of acute triangle ABC.
The line through the incenters of triangles AA1C and AC1C meets
lines AB and BC at X and Y , respectively. Prove that BX = BY .

Problem 25 Does there exist a 30-digit number such that the
number obtained by taking any five of its consecutive digits is divisible
by 13?

Problem 26 One hundred volleyball teams play in a round-robin
tournament, where each pair of teams plays against each other exactly
once. Each game of the tournament is played at a different time, and
no game ends in a draw. It turns out that in each match, the two
teams playing the match have the same number of victories up to
that point. If the minimum number of games won by any team is m,
find all possible values of m.

Problem 27 Let ABCD be a convex quadrilateral, and M and N
the midpoints of AD and BC, respectively. Suppose A,B,M,N lie
on a circle such that AB is tangent to the circumcircle of triangle
BMC. Prove that AB is also tangent to the circumcircle of triangle
AND.

Problem 28 Let n ≥ 3 be a positive integer. For all positive
numbers a1, a2, . . . , an, show that

a1+a2
2

a2+a3
2 · · · an+a1

2 ≤ a1+a2+a3

2
√

2

a2+a3+a4

2
√

2
· · · an+a1+a2

2
√

2
.

Problem 29 A connected graph is said to be 2-connected if after
removing any single vertex, the graph remains connected. Prove that
given any 2-connected graph in which the degree of every vertex is
greater than 2, it is possible to remove a vertex (and all edges adjacent
to that vertex) so that the remaining graph is still 2-connected.

Problem 30 Let m be a positive integer. Prove that there exist
infinitely many prime numbers p such that m+ p3 is composite.

Problem 31 The perpendicular bisectors of sides AB and BC of
nonequilateral triangle ABC meet lines BC and AB at A1 and C1,
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respectively. Let the bisectors of angles A1AC and C1CA meet at B′,
and define C ′ and A′ analogously. Prove that the points A′, B′, C ′ lie
on a line passing through the circumcenter of triangle ABC.

Problem 32 Is it possible to select 102 17-element subsets of a
102-element set, such that the intersection of any two of the subsets
has at most 3 elements?
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