1
 1999 National Contests: Problems and Solutions

1.1 Belarus

National Olympiad, Fourth Round

Problem 10.1 Determine all real numbers a such that the function $f(x)=\{a x+\sin x\}$ is periodic. Here $\{y\}$ is the fractional part of y.

Solution: The solutions are $a=\frac{r}{\pi}, r \in \mathbb{Q}$.
First, suppose $a=\frac{r}{\pi}$ for some $r \in \mathbb{Q}$; write $r=\frac{p}{q}$ with $p, q \in \mathbb{Z}$, $q>0$. Then

$$
\begin{aligned}
& f(x+2 q \pi)=\left\{\frac{p}{q \pi}(x+2 q \pi)+\sin (x+2 q \pi)\right\} \\
& \quad=\left\{\frac{p}{q \pi} x+2 p+\sin x\right\} \\
& \quad=\left\{\frac{p}{q \pi} x+\sin x\right\}=f(x)
\end{aligned}
$$

so f is periodic with period $2 q \pi$.
Now, suppose f is periodic; then there exists $p>0$ such that $f(x)=f(x+p)$ for all $x \in \mathbb{R}$. Then $\{a x+\sin x\}=\{a x+a p+\sin (x+p)\}$ for all $x \in \mathbb{R}$; in other words $g(x)=a p+\sin (x+p)-\sin x$ is an integer for all x. But g is continuous, so there exists $k \in \mathbb{Z}$ such that $g(x)=k$ for all $x \in \mathbb{R}$. Rewriting this gives

$$
\sin (x+p)-\sin x=k-a p \quad \text { for all } x \in \mathbb{R}
$$

Letting $x=y, y+p, y+2 p, \ldots, y+(n-1) p$ and summing gives

$$
\sin (y+n p)-\sin y=n(k-a p) \quad \text { for all } y \in \mathbb{R} \text { and } n \in \mathbb{N}
$$

Since the left hand side of this equation is bounded by 2 , we conclude that $k=a p$ and $\sin (x+p)=\sin x$ for all $x \in \mathbb{R}$. In particular, $\sin \left(\frac{\pi}{2}+p\right)=\sin \left(\frac{\pi}{2}\right)=1$ and hence $p=2 m \pi$ for some $m \in \mathbb{N}$. Thus $a=\frac{k}{p}=\frac{k}{2 m \pi}=\frac{r}{\pi}$ with $r=\frac{k}{2 m} \in \mathbb{Q}$, as desired.

Problem 10.2 Prove that for any integer $n>1$ the sum S of all divisors of n (including 1 and n) satisfies the inequalities

$$
k \sqrt{n}<S<\sqrt{2 k} n
$$

where k is the number of divisors of n.

Solution: Let the divisors of n be $1=d_{1}<d_{2}<\cdots<d_{k}=n$;
then $d_{i} d_{k+1-i}=n$ for each i. Thus

$$
S=\sum_{i=1}^{k} d_{i}=\sum_{i=1}^{k} \frac{d_{i}+d_{k+1-i}}{2}>\sum_{i=1}^{k} \sqrt{d_{i} d_{k+1-i}}=k \sqrt{n}
$$

giving the left inequality. (The inequality is strict because equality does not hold for $\frac{d_{1}+d_{k}}{2} \geq \sqrt{d_{1} d_{k}}$.) For the right inequality, let $S_{2}=\sum_{i=1}^{k} d_{i}^{2}$ and use the Power Mean Inequality to get

$$
\frac{S}{k}=\frac{\sum_{i=1}^{k} d_{i}}{k} \leq \sqrt{\frac{\sum_{i=1}^{k} d_{i}^{2}}{k}}=\sqrt{\frac{S_{2}}{k}} \quad \text { so } \quad S \leq \sqrt{k S_{2}}
$$

Now

$$
\frac{S_{2}}{n^{2}}=\sum_{i=1}^{k} \frac{d_{i}^{2}}{n^{2}}=\sum_{i=1}^{k} \frac{1}{d_{k+1-i}^{2}} \leq \sum_{j=1}^{n} \frac{1}{j^{2}}<\frac{\pi^{2}}{6}
$$

since d_{1}, \ldots, d_{k} are distinct integers between 1 and n. Therefore

$$
S \leq \sqrt{k S_{2}}<\sqrt{\frac{k n^{2} \pi^{2}}{6}}<\sqrt{2 k} n
$$

Problem 10.3 There is a 7×7 square board divided into 49 unit cells, and tiles of three types: 3×1 rectangles, 3 -unit-square corners, and unit squares. Jerry has infinitely many rectangles and one corner, while Tom has only one square.
(a) Prove that Tom can put his square somewhere on the board (covering exactly one unit cell) in such a way that Jerry can not tile the rest of the board with his tiles.
(b) Now Jerry is given another corner. Prove that no matter where Tom puts his square (covering exactly one unit cell), Jerry can tile the rest of the board with his tiles.

Solution:

(a) Tom should place his square on the cell marked X in the boards below.

1	2	3	1	2	3	1								
2	3	1	2	3	1	2								
3	1	2	3	1	2	3								
1	2	3	1	2	3	1								
2	3	1	X	3	1	2								
3	1	2	3	1	2	3								
1	2	3	1	2	3	1	\quad	1	3	2	1	3	2	1
:---	:---	:---	:---	:---	:---	:---								
2	1	3	2	1	3	2								
3	2	1	3	2	1	3								
1	3	2	1	3	2	1								
2	1	3	X	1	3	2								
3	2	1	3	2	1	3								
1	3	2	1	3	2	1								

The grid on the left contains 171 's, 152 's and 163 's; since every 3×1 rectangle contains a 1 , a 2 and a 3 , Jerry's corner must cover a 3 and two 1's; thus it must be oriented like a Γ. But every such corner covers a 1 , a 2 and a 3 in the right grid, as does any 3×1 rectangle. Since the right grid also contains 171 's, 152 's and 16 3's, Jerry cannot cover the 48 remaining squares with his pieces.
(b) The following constructions suffice.

The first figure can be rotated and placed on the 7×7 board so that Tom's square falls into its blank, untiled region. Similarly, the second figure can be rotated and placed within the remaining untiled 4×4 region so that Tom's square is still uncovered; and finally, the single corner can be rotated and placed without overlapping Tom's square.

Problem 10.4 A circle is inscribed in the isosceles trapezoid $A B C D$. Let the circle meet diagonal $A C$ at K and L (with K between
A and $L)$. Find the value of

$$
\frac{A L \cdot K C}{A K \cdot L C}
$$

First Solution:

Lemma. Suppose we have a (not necessarily isosceles) trapezoid $A B C D$ circumscribed about a circle with radius r, where the circle touches sides $A B, B C, C D, D A$ at points P, Q, R, S, respectively. Let line $A C$ intersect the circle at K and L, with K between A and L. Also write $m=A P$ and $n=C R$. Then

$$
A K \cdot L C=m n+2 r^{2}-\sqrt{\left(m n+2 r^{2}\right)^{2}-(m n)^{2}}
$$

and

$$
A L \cdot K C=m n+2 r^{2}+\sqrt{\left(m n+2 r^{2}\right)^{2}-(m n)^{2}}
$$

Proof: Assume without loss of generality that $A B \| C D$, and orient the trapezoid so that lines $A B$ and $C D$ are horizontal. Let $t=A K, u=K L$, and $v=L C$; also let $\sigma=t+v$ and $\pi=t v$. By Power of a Point, we have $t(t+u)=m^{2}$ and $v(v+u)=n^{2}$; multiplying these gives $\pi\left(\pi+u \sigma+u^{2}\right)=m^{2} n^{2}$. Also, A and C are separated by $m+n$ horizontal distance and $2 r$ vertical distance; thus $A C^{2}=(m+n)^{2}+(2 r)^{2}$. Then

$$
\begin{gathered}
(m+n)^{2}+(2 r)^{2}=A C^{2}=(t+u+v)^{2} \\
m^{2}+2 m n+n^{2}+4 r^{2}=t(t+u)+v(v+u)+2 \pi+u \sigma+u^{2} \\
m^{2}+2 m n+n^{2}+4 r^{2}=m^{2}+n^{2}+2 \pi+u \sigma+u^{2} \\
2 m n+4 r^{2}-\pi=\pi+u \sigma+u^{2} .
\end{gathered}
$$

Multiplying by π on both sides we have

$$
\pi\left(2 m n+4 r^{2}-\pi\right)=\pi\left(\pi+u \sigma+u^{2}\right)=(m n)^{2}
$$

a quadratic in π with solutions

$$
\pi=m n+2 r^{2} \pm \sqrt{\left(m n+2 r^{2}\right)^{2}-(m n)^{2}}
$$

But since $m^{2} n^{2}=t(t+u) v(v+u) \geq t^{2} v^{2}$, we must have $m n \geq \pi$. Therefore $A K \cdot L C=\pi=m n+2 r^{2}-\sqrt{\left(m n+2 r^{2}\right)^{2}-(m n)^{2}}$. And since $(A K \cdot A L) \cdot(C K \cdot C L)=m^{2} \cdot n^{2}$, we have $A L \cdot K C=\frac{m^{2} n^{2}}{\pi}=$ $m n+2 r^{2}+\sqrt{\left(m n+2 r^{2}\right)^{2}-(m n)^{2}}$.

As in the lemma, assume that $A B \| C D$ and let the given circle be tangent to sides $A B, B C, C D, D A$ at points P, Q, R, S, respectively. Also define $m=A P=P B=A S=B Q$ and $n=D R=R C=D S=$ $C Q$.

Drop perpendicular $\overline{A X}$ to line $C D$. Then $A D=m+n, D X=$ $|m-n|$, and $A X=2 r$. Then by the Pythagorean Theorem on triangle $A D X$, we have $(m+n)^{2}=(m-n)^{2}+(2 r)^{2}$ which gives $m n=r^{2}$.

Using the lemma, we find that $A K \cdot L C=(3-2 \sqrt{2}) r^{2}$ and $A L \cdot K C=(3+2 \sqrt{2}) r^{2}$. Thus $\frac{A L \cdot K C}{A K \cdot L C}=17+12 \sqrt{2}$.

Second Solution: Suppose $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a square with side length s, and define K^{\prime}, L^{\prime} analagously to K and L. Then $A^{\prime} C^{\prime}=s \sqrt{2}$ and $K^{\prime} L^{\prime}=s$, and $A^{\prime} L^{\prime}=K^{\prime} C^{\prime}=s \frac{\sqrt{2}+1}{2}$ and $A^{\prime} K^{\prime}=L^{\prime} C^{\prime}=s \frac{\sqrt{2}-1}{2}$. Thus

$$
\frac{A^{\prime} L^{\prime} \cdot K^{\prime} C^{\prime}}{A^{\prime} K^{\prime} \cdot L^{\prime} C^{\prime}}=\frac{(\sqrt{2}+1)^{2}}{(\sqrt{2}-1)^{2}}=(\sqrt{2}+1)^{4}=17+12 \sqrt{2}
$$

Consider an arbitrary isosceles trapezoid $A B C D$ with inscribed circle ω; assume $A B \| C D$. Since no three of A, B, C, D are collinear, there is a projective transformation τ taking $A B C D$ to a parallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. This map takes ω to a conic ω^{\prime} tangent to the four sides of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Let $P=B C \cap A D$, and let ℓ be the line through P parallel to line $A B$; then τ maps ℓ to the line at ∞. Since ω does not intersect ℓ, ω^{\prime} is an ellipse. Thus by composing τ with an affine transformation (which preserves parallelograms) we may assume that ω^{\prime} is a circle. Let W, X, Y, Z be the tangency points of ω to sides $A B, B C, C D, D A$ respectively, and $W^{\prime}, X^{\prime}, Y^{\prime}$, Z^{\prime} their images under τ. By symmetry line $W Y$ passes through the intersection of lines $B C$ and $A D$, and line $X Z$ is parallel to lines $A B$ and $C D$; thus $W^{\prime} Y^{\prime}\left\|B^{\prime} C^{\prime}\right\| A^{\prime} D^{\prime}$ and $X^{\prime} Z^{\prime}\left\|A^{\prime} B^{\prime}\right\| C^{\prime} D^{\prime}$. But ω^{\prime} is tangent to the parallel lines $A^{\prime} B^{\prime}$ and $C^{\prime} D^{\prime}$ at W^{\prime} and Y^{\prime}, so $\overline{W^{\prime} Y^{\prime}}$ is a diameter of ω^{\prime} and $W^{\prime} Y^{\prime} \perp A^{\prime} B^{\prime}$; thus $B^{\prime} C^{\prime} \perp A^{\prime} B^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a rectangle. Since $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ has an inscribed circle it must be a square. Thus we are in the case considered at the beginning of the problem; if K^{\prime} and L^{\prime} are the intersections of line $A^{\prime} C^{\prime}$ with ω^{\prime}, with K^{\prime} between A^{\prime} and L^{\prime}, then $\frac{A^{\prime} L^{\prime} \cdot K^{\prime} C^{\prime}}{A^{\prime} K^{\prime} \cdot L^{\prime} C^{\prime}}=17+12 \sqrt{2}$. Now τ maps $\{K, L\}=A C \cap \omega$ to $\left\{K^{\prime}, L^{\prime}\right\}=A^{\prime} C^{\prime} \cap \omega^{\prime}$ (but perhaps not in that order). If $\tau(K)=K^{\prime}$ and $\tau(L)=L^{\prime}$, then since projective
transformations preserve cross-ratios, we would have

$$
\frac{A L \cdot K C}{A K \cdot L C}=\frac{A^{\prime} L^{\prime} \cdot K^{\prime} C^{\prime}}{A^{\prime} K^{\prime} \cdot L^{\prime} C^{\prime}}=17+12 \sqrt{2}
$$

But if instead $\tau(K)=L^{\prime}$ and $\tau(L)=K^{\prime}$, then we would obtain $\frac{A L \cdot K C}{A K \cdot L C}=\frac{1}{17+12 \sqrt{2}}<1$, impossible since $A L>A K$ and $K C>L C$. It follows that $\frac{A L \cdot K C}{A K \cdot L C}=17+12 \sqrt{2}$, as desired.

Problem 10.5 Let P and Q be points on the side $A B$ of the triangle $A B C$ (with P between A and Q) such that $\angle A C P=\angle P C Q=$ $\angle Q C B$, and let $\overline{A D}$ be the angle bisector of $\angle B A C$. Line $A D$ meets lines $C P$ and $C Q$ at M and N respectively. Given that $P N=C D$ and $3 \angle B A C=2 \angle B C A$, prove that triangles $C Q D$ and $Q N B$ have the same area.

Solution: Since $3 \angle B A C=2 \angle A C B$,

$$
\angle P A N=\angle N A C=\angle A C P=\angle P C Q=\angle Q C D
$$

Let θ equal this common angle measure. Thus $A C N P$ and $A C D Q$ are cyclic quadrilaterals, so

$$
\theta=\angle A N P=\angle C Q D=\angle C P N
$$

From angle-angle-side congruency we deduce that $\triangle N A P \cong \triangle C Q D \cong$ $\triangle P C N$. Hence $C P=C Q$, and by symmetry we have $A P=Q B$. Thus, $[C Q D]=[N A P]=[N Q B]$.

Problem 10.6 Show that the equation

$$
\left\{x^{3}\right\}+\left\{y^{3}\right\}=\left\{z^{3}\right\}
$$

has infinitely many rational non-integer solutions. Here $\{a\}$ is the fractional part of a.

Solution: Let $x=\frac{3}{5}(125 k+1), y=\frac{4}{5}(125 k+1), z=\frac{6}{5}(125 k+1)$ for any integer k. These are never integers because 5 does not divide $125 k+1$. Moreover

$$
125 x^{3}=3^{3}(125 k+1)^{3} \equiv 3^{3} \quad(\bmod 125)
$$

so 125 divides $125 x^{3}-3^{3}$ and $x^{3}-\left(\frac{3}{5}\right)^{3}$ is an integer; thus $\left\{x^{3}\right\}=\frac{27}{125}$. Similarly $\left\{y^{3}\right\}=\frac{64}{125}$ and $\left\{z^{3}\right\}=\frac{216}{125}-1=\frac{91}{125}=\frac{27}{125}+\frac{64}{125}$, and therefore $\left\{x^{3}\right\}+\left\{y^{3}\right\}=\left\{z^{3}\right\}$.

Problem 10.7 Find all integers n and real numbers m such that the squares of an $n \times n$ board can be labelled $1,2, \ldots, n^{2}$ with each number appearing exactly once in such a way that

$$
(m-1) a_{i j} \leq(i+j)^{2}-(i+j) \leq m a_{i j}
$$

for all $1 \leq i, j \leq n$, where $a_{i j}$ is the number placed in the intersection of the i th row and j th column.

Solution: Either $n=1$ and $2 \leq m \leq 3$ or $n=2$ and $m=3$. It is easy to check that these work using the constructions below.

$$
\begin{array}{|l|l|l|}
\hline 1 & \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array} \mathbf{| c |} \\
\hline
\end{array}
$$

Now suppose we are given a labelling of the squares $\left\{a_{i j}\right\}$ which satisfies the given conditions. By assumption $a_{11} \geq 1$ so

$$
m-1 \leq(m-1) a_{11} \leq(1+1)^{2}-(1+1)=2
$$

and $m \leq 3$. On the other hand $a_{n n} \leq n^{2}$ so

$$
4 n^{2}-2 n=(n+n)^{2}-(n+n) \leq m a_{n n} \leq m n^{2}
$$

and $m \geq \frac{4 n^{2}-2 n}{n^{2}}=4-\frac{2}{n}$. Thus $4-\frac{2}{n} \leq m \leq 3$ which implies the result.

Problem 11.1 Evaluate the product

$$
\prod_{k=0}^{2^{1999}}\left(4 \sin ^{2} \frac{k \pi}{2^{2000}}-3\right)
$$

Solution: For simplicity, write $f(x)=\sin \left(\frac{x \pi}{2^{2000}}\right)$.
At $k=0$, the expression inside the parentheses equals -3 . Recognizing the triple-angle formula $\sin (3 \theta)=4 \sin ^{3} \theta-3 \sin \theta$ at play, and noting that $f(k) \neq 0$ when $1 \leq k \leq 2^{1999}$, we can rewrite the given product as

$$
\begin{equation*}
-3 \prod_{k=1}^{2^{1999}} \frac{\sin \left(\frac{3 k \pi}{2^{2000}}\right)}{\sin \left(\frac{k \pi}{2^{2000}}\right)} \quad \text { or } \quad-3 \prod_{k=1}^{2^{1999}} \frac{f(3 k)}{f(k)} \tag{1}
\end{equation*}
$$

Now

$$
\prod_{k=1}^{2^{1999}} f(3 k)=\prod_{k=1}^{\frac{2^{1999}-2}{3}} f(3 k) \cdot \prod_{k=\frac{2^{1999}+1}{3}}^{\frac{2^{2000}-1}{3}} f(3 k) \cdot \prod_{\frac{2^{2000}+2}{3}}^{2^{1999}} f(3 k)
$$

Since $\sin \theta=\sin (\pi-\theta)=-\sin (\pi+\theta)$, we have $f(x)=f\left(2^{2000}-x\right)=$ $-f\left(x-2^{2000}\right)$. Hence, letting $S_{i}=\left\{k \mid 1 \leq k \leq 2^{1999}, k \equiv i(\bmod 3)\right\}$ for $i=0,1,2$, the last expression equals

$$
\begin{aligned}
& \prod_{k=1}^{\frac{2^{1999}-2}{3}} f(3 k) \cdot \prod_{k=\frac{2^{1999}+1}{3}}^{\frac{2^{2000}-1}{3}} f\left(2^{2000}-3 k\right) \cdot \prod_{\frac{2^{2000}+2}{3}}^{2^{1999}}\left(-f\left(3 k-2^{2000}\right)\right) \\
& \quad=\prod_{k \in S_{0}} f(k) \cdot \prod_{k \in S_{1}} f(k) \cdot \prod_{k \in S_{2}}(-f(k)) \\
& \quad=(-1)^{\frac{2^{1999}+1}{3}} \prod_{k=1}^{2^{1999}} f(k)=-\prod_{k=1}^{2^{1999}} f(k) .
\end{aligned}
$$

Combined with the expression in (1), this implies that the desired product is $(-3)(-1)=3$.

Problem 11.2 Let m and n be positive integers. Starting with the list $1,2,3, \ldots$, we can form a new list of positive integers in two different ways.
(i) We first erase every m th number in the list (always starting with the first); then, in the list obtained, we erase every nth number. We call this the first derived list.
(ii) We first erase every nth number in the list; then, in the list obtained, we erase every m th number. We call this the second derived list.

Now, we call a pair (m, n) good if and only if the following statement is true: if some positive integer k appears in both derived lists, then it appears in the same position in each.
(a) Prove that $(2, n)$ is good for any positive integer n.
(b) Determine if there exists any good pair (m, n) such that $2<m<$ n.

Solution: Consider whether some positive integer j is in the first derived list. If it is congruent to $1(\bmod m)$, then $j+m n$ is as well
so they are both erased. If not, then suppose it is the t-th number remaining after we've erased all the multiples of m. There are n multiples of m erased between j and $j+m n$, so $j+m n$ is the $(t+m n-n)$-th number remaining after we've erased all the multiples of m. But either t and $t+m n-n$ are both congruent to $1(\bmod n)$ or both not congruent to $1(\bmod n)$. Hence j is erased after our second pass if and only if $j+m n$ is as well.

A similar argument applies to the second derived list. Thus in either derived list, the locations of the erased numbers repeat with period $m n$; and also, among each $m n$ consecutive numbers exactly $m n-(m+n-1)$ remain. (In the first list, $n+\left(\left\lfloor\frac{m n-n-1}{n}\right\rfloor+1\right)=$ $n+\left(m-1+\left\lfloor\frac{-1}{n}\right\rfloor+1\right)=m+n-1$ of the first $m n$ numbers are erased; similarly, $m+n-1$ of the first $m n$ numbers are erased in the second list.)

These facts imply that the pair (m, n) is good if and only if when any $k \leq m n$ is in both lists, it appears at the same position.
(a) Given a pair $(2, n)$, the first derived list (up to $k=2 n$) is $4,6,8, \ldots, 2 n$. If n is even, the second derived list is $3,5, \ldots, n-$ $1, n+2, n+4, \ldots, 2 n$. And if n is odd, the second derived list is $3,5, \ldots, n-2, n, n+3, n+5, \ldots, 2 n$. In either case the first and second lists' common elements are the even numbers between $n+2$ and $2 n$ inclusive. Each such $2 n-i$ (with $i<\frac{n-1}{2}$) is the ($n-1-i$)-th number on both lists, showing that $(2, n)$ is good.
(b) Such a pair exists - in fact, the simplest possible pair $(m, n)=$ $(3,4)$ suffices. The first derived list (up to $k=12$) is $3,5,6,9,11,12$ and the second derived list is $3,4,7,8,11,12$. The common elements are $3,11,12$, and these are all in the same positions.

Problem 11.3 Let $a_{1}, a_{2}, \ldots, a_{100}$ be an ordered set of numbers. At each move it is allowed to choose any two numbers a_{n}, a_{m} and change them to the numbers

$$
\frac{a_{n}^{2}}{a_{m}}-\frac{n}{m}\left(\frac{a_{m}^{2}}{a_{n}}-a_{m}\right) \quad \text { and } \quad \frac{a_{m}^{2}}{a_{n}}-\frac{m}{n}\left(\frac{a_{n}^{2}}{a_{m}}-a_{n}\right)
$$

respectively. Determine if it is possible, starting with the set with $a_{i}=\frac{1}{5}$ for $i=20,40,60,80,100$ and $a_{i}=1$ otherwise, to obtain a set consisting of integers only.

Solution: After transforming a_{n} to $a_{n}^{\prime}=\frac{a_{n}^{2}}{a_{m}}-\frac{n}{m}\left(\frac{a_{m}^{2}}{a_{n}}-a_{m}\right)$ and
a_{m} to $a_{m}^{\prime}=\frac{a_{m}^{2}}{a_{n}}-\frac{m}{n}\left(\frac{a_{n}^{2}}{a_{m}}-a_{n}\right)$, we have

$$
\begin{aligned}
\frac{a_{n}^{\prime}}{n}+ & +\frac{a_{m}^{\prime}}{m} \\
= & {\left[\left(\frac{1}{n} \cdot \frac{a_{n}^{2}}{a_{m}}-\frac{1}{m} \cdot \frac{a_{m}^{2}}{a_{n}}\right)+\frac{a_{m}}{m}\right] } \\
& +\left[\left(\frac{1}{m} \cdot \frac{a_{m}^{2}}{a_{n}}-\frac{1}{n} \cdot \frac{a_{n}^{2}}{a_{m}}\right)+\frac{a_{n}}{n}\right] \\
= & \frac{a_{n}}{n}+\frac{a_{m}}{m}
\end{aligned}
$$

Thus the quantity $\sum_{i=1}^{100} \frac{a_{i}}{i}$ is invariant under the given operation. At the beginning, this sum equals

$$
I_{1}=\sum_{i=1}^{99} \frac{a_{i}}{i}+\frac{1}{500}
$$

When each of the numbers $\frac{a_{1}}{1}, \frac{a_{2}}{2}, \ldots, \frac{a_{99}}{99}$ is written as a fraction in lowest terms, none of their denominators are divisible by 125 ; while 125 does divide the denominator of $\frac{1}{500}$. Thus when written as a fraction in lowest terms, I_{1} must have a denominator divisible by 125.

Now suppose by way of contradiction that we could make all the numbers equal to integers $b_{1}, b_{2}, \ldots, b_{100}$ in that order. Then in $I_{2}=\sum_{i=1}^{100} \frac{b_{i}}{i}$, the denominator of each of the fractions $\frac{b_{i}}{i}$ is not divisible by 125 . Thus when I_{2} is written as a fraction in lowest terms, its denominator is not divisible by 125 either. But then I_{2} cannot possibly equal I_{1}, a contradiction. Therefore we can never obtain a set consisting of integers only.

Problem 11.4 A circle is inscribed in the trapezoid $A B C D$. Let K, L, M, N be the points of intersections of the circle with diagonals $A C$ and $B D$ respectively (K is between A and L and M is between B and $N)$. Given that $A K \cdot L C=16$ and $B M \cdot N D=\frac{9}{4}$, find the radius of the circle.

Solution: Let the circle touch sides $A B, B C, C D, D A$ at P, Q, R, S, respectively, and let r be the radius of the circle. Let $w=A S=A P$; $x=B P=B Q ; y=C Q=C R$; and $z=D R=D S$. As in problem 11.4, we have $w z=x y=r^{2}$ and thus $w x y z=r^{4}$. Also observe that
from the lemma in problem 11.4, $A K \cdot L C$ depends only on r and $A P \cdot C R$; and $B M \cdot N D$ depends only on r and $B P \cdot D R$.

Now draw a parallelogram $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ circumscribed about the same circle, with points $P^{\prime}, Q^{\prime}, R^{\prime}, S^{\prime}$ defined analagously to P, Q, R, S, such that $A^{\prime} P^{\prime}=C^{\prime} R^{\prime}=\sqrt{w y}$. Draw points $K^{\prime}, L^{\prime}, M^{\prime}, N^{\prime}$ analagously to K, L, M, N. Then since $A^{\prime} P^{\prime} \cdot C^{\prime} R^{\prime}=w y$, by the observation in the first paragraph we must have $A^{\prime} K^{\prime} \cdot L^{\prime} C^{\prime}=A K \cdot L C=16$; therefore $A^{\prime} K^{\prime}=L^{\prime} C^{\prime}=4$. And as with quadrilateral $A B C D$, we have $A^{\prime} P^{\prime} \cdot B^{\prime} P^{\prime} \cdot C^{\prime} R^{\prime} \cdot D^{\prime} R^{\prime}=r^{4}=w x y z$. Thus $B^{\prime} P^{\prime} \cdot D^{\prime} R^{\prime}=x z$ and again by the observation we must have $B^{\prime} M^{\prime} \cdot N^{\prime} D^{\prime}=B M \cdot N D=\frac{9}{4}$. Therefore $B^{\prime} M^{\prime}=N^{\prime} D^{\prime}=\frac{3}{2}$.

Then if O is the center of the circle, we have $A^{\prime} O=4+r$ and $S^{\prime} O=r$. By the Pythagorean Theorem $A^{\prime} S^{\prime}=\sqrt{8 r+16}$; similarly, $S^{\prime} D^{\prime}=\sqrt{3 r+\frac{9}{4}}$. Since $A^{\prime} S^{\prime} \cdot S^{\prime} D^{\prime}=r^{2}$, we have

$$
(8 r+16)\left(3 r+\frac{9}{4}\right)=r^{4}
$$

which has positive solution $r=6$ and, by Descartes' rule of signs, no other positive solutions.

Problem 11.5 Find the greatest real number k such that for any triple of positive real numbers a, b, c such that

$$
k a b c>a^{3}+b^{3}+c^{3}
$$

there exists a triangle with side legths a, b, c.
Solution: Equivalently, we want the greatest real number k such that for any $a, b, c>0$ with $a+b \leq c$, we have

$$
k a b c \leq a^{3}+b^{3}+c^{3}
$$

First pick $b=a$ and $c=2 a$. Then we must have

$$
2 k a^{3} \leq 10 a^{3} \Longrightarrow k \leq 5
$$

On the other hand, suppose $k=5$. Then writing $c=a+b+x$, expanding $a^{3}+b^{3}+c^{3}-5 a b c$ gives

$$
2 a^{3}+2 b^{3}-2 a^{2} b-2 a b^{2}+a b x+3\left(a^{2}+b^{2}\right) x+3(a+b) x^{2}+x^{3}
$$

But $2 a^{3}+2 b^{3}-2 a^{2} b-2 a b^{2} \geq 0$ (either by rearrangement, by AM-GM, or from the inequality $\left.(a+b)(a-b)^{2} \geq 0\right)$; and the other terms are nonnegative. Thus $a^{3}+b^{3}+c^{3}-5 a b c \geq 0$, as desired.

Problem 11.6 Find all integers x and y such that

$$
x^{6}+x^{3} y=y^{3}+2 y^{2}
$$

Solution: The only solutions are (x, y) equals $(0,0),(0,-2)$, and $(2,4)$.

If $x=0$ then $y=0$ or -2 ; if $y=0$ then $x=0$. Now assume that both x and y are nonzero, and rewrite the given equation as $x^{3}\left(x^{3}+y\right)=y^{2}(y+2)$.

We first show that $(x, y)=\left(a b, 2 b^{3}\right),\left(a b, b^{3}\right)$, or $\left(a b, \frac{b^{3}}{2}\right)$ for some integers a, b. Suppose some prime p divides y exactly $m>0$ times (that is, y is divisible by p^{m} but not p^{m+1}). Then since $x^{6}=$ $y^{3}+2 y^{2}-x^{3} y, p$ must divide x as well - say, $n>0$ times.

First suppose $p>2$; then it divides the right hand side $y^{2}(y+2)$ exactly $2 m$ times. If $3 n<m$ then p divides the left hand side $x^{3}\left(x^{3}+y\right)$ exactly $6 n$ times so that $6 n=2 m$, a contradiction. And if $3 n>m$ then p divides the left hand side exactly $3 n+m$ times so that $3 n+m=2 m$ and $3 n=m$, a contradiction. Therefore $3 n=m$.

Now suppose $p=2$. If $m>1$, then 2 divides the right hand side exactly $2 m+1$ times. If $3 n<m$ then 2 divides the left hand side $6 n$ times so that $6 n=2 m+1>2 m$, a contradiction. If $3 n>m$, then 2 divides the left hand side $3 n+m$ times so that $3 n+m=2 m+1$ and $3 n=m+1$. Or finally, we could have $3 n=m$.

We wish to show that $(x, y)=\left(a b, 2 b^{3}\right),\left(a b, b^{3}\right)$, or $\left(a b, \frac{b^{3}}{2}\right)$. If 2 divides y only once, then from before (since $3 n=m$ when $p>2, m>$ 0) we have $y=2 b^{3}$ and $x=a b$ for some a, b. And if 2 divides y more than once, then (since $3 n=m$ when $p>2, m>0$ and since $3 n=m$ or $m+1$ when $p=2, m>1)$ we either have $(x, y)=\left(a b, b^{3}\right)$ or $(x, y)=\left(a b, \frac{b^{3}}{2}\right)$.

Now simply plug these possibilities into the equation. We then either have $a^{6}+a^{3}=b^{3}+2, a^{6}+2 a^{3}=8 b^{3}+8$, or $8 a^{6}+4 a^{3}=b^{3}+4$.

In the first case, if $a>1$ then $b^{3}=a^{6}+a^{3}-2$ and some algebra verifies that $\left(a^{2}+1\right)^{3}>b^{3}>\left(a^{2}\right)^{3}$, a contradiction; if $a<0$ then we have $\left(a^{2}\right)^{3}>b^{3}>\left(a^{2}-1\right)^{3}$. Thus either $a=0$ and $x=0$ or $a=1$ and $b=0$. But we've assumed $x, y \neq 0$, so this case yields no solutions.

In the second case, if $a>0$ then $\left(a^{2}+1\right)^{3}>(2 b)^{3}>\left(a^{2}\right)^{3}$. If $a<-2$ then $\left(a^{2}\right)^{3}>(2 b)^{3}>\left(a^{2}-1\right)^{3}$. Thus either $a=-2,-1$, or $0 ;$ and these yield no solutions either.

Finally, in the third case when $a>1$ then $\left(2 a^{2}+1\right)^{3}>b^{3}>\left(2 a^{2}\right)^{3}$. When $a<-1$ then $\left(2 a^{2}\right)^{3}>b^{3}>\left(2 a^{2}-1\right)^{3}$. Thus either $a=-1,0$, or 1 ; this yields both $(a, b)=(-1,0)$ and $(a, b)=(1,2)$. Only the latter gives a solution where $x, y \neq 0$ - namely, $(x, y)=(2,4)$. This completes the proof.

Problem 11.7 Let O be the center of circle ω. Two equal chords $A B$ and $C D$ of ω intersect at L such that $A L>L B$ and $D L>$ $L C$. Let M and N be points on $A L$ and $D L$ respectively such that $\angle A L C=2 \angle M O N$. Prove that the chord of ω passing through M and N is equal to $A B$ and $C D$.

Solution: We work backward. Suppose that P is on minor arc $\widehat{A C}$ and Q is on minor arc $\widehat{B D}$ such that $P Q=A B=C D$, where line $P Q$ hits $\overline{A L}$ at M^{\prime} and $\overline{D L}$ at N^{\prime}. We prove that $\angle A L C=2 \angle M^{\prime} O N^{\prime}$.

Say that the midpoints of $\overline{A B}, \overline{P Q}, \overline{C D}$ are T_{1}, T_{2}, and $T_{3} . \overline{C D}$ is the image of $\overline{A B}$ under the rotation about O through angle $\angle T_{1} O T_{3}$; this angle also equals the measure of $\widehat{A C}$, which equals $\angle A L C$. Also, by symmetry we have $\angle T_{1} O M^{\prime}=\angle M^{\prime} O T_{2}$ and $\angle T_{2} O N^{\prime}=\angle N^{\prime} O T_{3}$. Therefore

$$
\begin{aligned}
& \angle A L C=\angle T_{1} O T_{3}=\angle T_{1} O T_{2}+\angle T_{2} O T_{3} \\
& =2\left(\angle M^{\prime} O T_{2}+\angle T_{2} O N^{\prime}\right)=2 \angle M^{\prime} O N^{\prime}
\end{aligned}
$$

as claimed.
Now back to the original problem. Since $\angle T_{1} O T_{3}=\angle A L C$, $\angle T_{1} O L=\frac{1}{2} T_{1} O T_{3}=\frac{1}{2} \angle A L C$. Then since $\angle M O N=\frac{1}{2} \angle A L C=$ $\angle T_{1} O L, M$ must lie on $\overline{T_{1} L}$. Then look at the rotation about O that sends T_{1} to M; it sends A to some P on $\widehat{A C}$, and B to some point Q on $\widehat{B D}$. Then $\overline{P Q}$ is a chord with length $A B$, passing through M on $\overline{A L}$ and N^{\prime} on $\overline{D L}$. From the previous work, we know that $\angle A L C=2 \angle M O N^{\prime}$; and since $\angle A L C=2 \angle M O N$, we must have $N=N^{\prime}$. Thus the length of the chord passing through M and N indeed equals $A B$ and $C D$, as desired.

IMO Selection Tests

Problem 1 Find all functions $h: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
h(x+y)+h(x y)=h(x) h(y)+1
$$

for all $x, y \in \mathbb{Z}$.

Solution: There are three possible functions:

$$
\begin{gathered}
h(n)=1 \\
h(2 n)=1, \quad h(2 n+1)=0 \\
h(n)=n+1
\end{gathered}
$$

Plugging $(x, y)=(0,0)$ into the functional equation, we find that

$$
h(0)^{2}-2 h(0)+1=0
$$

and hence $h(0)=1$. Plugging in $(x, y)=(1,-1)$ then yields

$$
h(0)+h(-1)=h(1) h(-1)+1
$$

and

$$
h(-1)=h(1) h(-1)
$$

and thus either $h(-1)=0$ or $h(1)=1$.
First suppose that $h(1) \neq 1$; then $h(-1)=0$. Then plugging in $(x, y)=(2,-1)$ and $(x, y)=(-2,1)$ yields $h(1)+h(-2)=1$ and $h(-2)=h(-2) h(1)+1$. Substituting $h(-2)=1-h(1)$ into the second equation, we find that

$$
\begin{gathered}
1-h(1)=(1-h(1)) h(1)+1 \\
h(1)^{2}-2 h(1)=0, \text { and } h(1)(h(1)-2)=0
\end{gathered}
$$

implying that $h(1)=0$ or $h(1)=2$.
Thus, $h(1)=0,1$, or 2 . Plugging $y=1$ into the equation for each of these cases shows that h must be one of the three functions presented.

Problem 2 Let $a, b, c \in \mathbb{Q}, a c \neq 0$. Given that the equation $a x^{2}+b x y+c y^{2}=0$ has a non-zero solution of the form

$$
(x, y)=\left(a_{0}+a_{1} \sqrt[3]{2}+a_{2} \sqrt[3]{4}, b_{0}+b_{1} \sqrt[3]{2}+b_{2} \sqrt[3]{4}\right)
$$

with $a_{i}, b_{i} \in \mathbb{Q}, i=0,1,2$, prove that it has also has a non-zero rational solution.

Solution: Let $(\alpha, \beta)=\left(a_{0}+a_{1} \sqrt[3]{2}+a_{2} \sqrt[3]{4}, b_{0}+b_{1} \sqrt[3]{2}+b_{2} \sqrt[3]{4}\right)$ be the given solution, and suppose without loss of generality that β is non-zero. Then $\frac{\alpha}{\beta}$ is a root to the polynomial

$$
a t^{2}+b t+c=0
$$

Also, $\frac{\alpha}{\beta}$ is of the form $c_{0}+c_{1} \sqrt[3]{2}+c_{2} \sqrt[3]{4}$ for some rationals c_{0}, c_{1}, c_{2}. But because it is a root to a quadratic with rational coefficients, it must also be of the form $d+e \sqrt{f}$ for rationals d, e, f.

Thus we have $\left(c_{0}-d\right)+c_{1} \sqrt[3]{2}+c_{2} \sqrt[3]{4}=e \sqrt{f}$, so the quantity $\left(c_{0}^{\prime}+c_{1} \sqrt[3]{2}+c_{2} \sqrt[3]{4}\right)^{2}$ must be an integer (where we write $c_{0}^{\prime}=c_{0}-$ d). After expanding this square, the coefficients of $\sqrt[3]{2}$ and $\sqrt[3]{4}$ are $2\left(c_{2}^{2}+c_{0}^{\prime} c_{1}\right)$ and $2 c_{0}^{\prime} c_{2}+c_{1}^{2}$, respectively; these quantities must equal zero. From $2 c_{0}^{\prime} c_{2}+c_{1}^{2}=0$ we have $\left(c_{0}^{\prime} c_{1}\right)^{2}=-2 c_{0}^{\prime 3} c_{2}$; and from $c_{2}^{2}+c_{0}^{\prime} c_{1}=0$ we have $\left(c_{0}^{\prime} c_{1}\right)^{2}=c_{2}^{4}$. Thus $-2 c_{0}^{\prime 3} c_{2}=c_{2}^{4}$. This implies that either $c_{2}=0$ or $c_{2}=-\sqrt[3]{2} c_{0}^{\prime}$; in the latter case, since c_{2} is rational we must still have $c_{2}=c_{0}^{\prime}=0$.
Then $c_{1}=0$ as well, and $\frac{\alpha}{\beta}=c_{0}$ is rational. Thus $(x, y)=\left(\frac{\alpha}{\beta}, 1\right)$ is a non-zero rational solution to the given equation.

Problem 3 Suppose a and b are positive integers such that the product of all divisors of a (including 1 and a) is equal to the product of all divisors of b (including 1 and b). Does it follow that $a=b$?

Solution: Yes, it follows that $a=b$. Let $d(n)$ denote the number of divisors of n; then the product of all divisors of n is

$$
\prod_{k \mid n} k=\sqrt{\prod_{k \mid n} k \cdot \prod_{k \mid n} \frac{n}{k}}=\sqrt{\prod_{k \mid n} n}=n^{\frac{d(n)}{2}} .
$$

Thus the given condition implies that $a^{d(a)}$ and $b^{d(b)}$ equal the same number N. Since N is both a perfect $d(a)$-th power and a perfect $d(b)$-th power, it follows that it is also a perfect ℓ-th power of some number t, where $\ell=\operatorname{lcm}(d(a), d(b))$. Then $a=t^{\frac{\ell}{d(a)}}$ and $b=t^{\frac{\ell}{d(b)}}$ are both powers of the same number t as well.

Now if a is a bigger power of t than b, then it must have more divisors than b; but then $t^{\frac{\ell}{d(a)}}<t^{\frac{\ell}{d(b)}}$, a contradiction. Similarly a cannot be a smaller power of t than b. Therefore $a=b$, as claimed.

Problem 4 Let a, b, c be positive real numbers such that $a^{2}+b^{2}+$ $c^{2}=3$. Prove that

$$
\frac{1}{1+a b}+\frac{1}{1+b c}+\frac{1}{1+c a} \geq \frac{3}{2} .
$$

Solution: Using the AM-HM inequality or the Cauchy-Schwarz
inequality, we have

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{x+y+z}
$$

for $x, y, z \geq 0$. Also, notice that $a^{2}+b^{2}+c^{2} \geq a b+b c+c a$ since this inequality is equivalent to $\frac{1}{2}(a-b)^{2}+\frac{1}{2}(b-c)^{2}+\frac{1}{2}(c-a)^{2} \geq 0$. Thus,

$$
\begin{aligned}
& \frac{1}{1+a b}+\frac{1}{1+b c}+\frac{1}{1+c a} \geq \frac{9}{3+a b+b c+c a} \\
& \quad \geq \frac{9}{3+a^{2}+b^{2}+c^{2}} \geq \frac{3}{2}
\end{aligned}
$$

as desired.

Problem 5 Suppose triangle T_{1} is similar to triangle T_{2}, and the lengths of two sides and the angle between them of T_{1} are proportional to the lengths of two sides and the angle between them of T_{2} (but not necessarily the corresponding ones). Must T_{1} be congruent to T_{2} ?

Solution: The triangles are not necessarily congruent. Say the vertices of T_{1} are A, B, C with $A B=4, B C=6$, and $C A=9$, and say that $\angle B C A=k \angle A B C$.

Then let the vertices of T_{2} be D, E, F where $D E=\frac{8 k}{3}, E F=4 k$, and $F D=6 k$. Triangles $A B C$ and $D E F$ are similar in that order, so $\angle E F D=\angle B C A=k \angle A B C$; also, $E F=k \cdot A B$ and $F D=k \cdot B C$. Therefore these triangles satisfy the given conditions.

Now since $A B<A C$ we have $\angle B C A<\angle A B C$ and $k<1$; so $D E=\frac{8 k}{3}<\frac{8}{3}<A B$. Thus triangles $A B C$ and $D E F$ are not congruent, as desired.

Problem 6 Two real sequences x_{1}, x_{2}, \ldots, and y_{1}, y_{2}, \ldots, are defined in the following way:

$$
x_{1}=y_{1}=\sqrt{3}, \quad x_{n+1}=x_{n}+\sqrt{1+x_{n}^{2}}, \quad y_{n+1}=\frac{y_{n}}{1+\sqrt{1+y_{n}^{2}}}
$$

for all $n \geq 1$. Prove that $2<x_{n} y_{n}<3$ for all $n>1$.
First Solution: Let $z_{n}=\frac{1}{y_{n}}$ and notice that the recursion for y_{n} is equivalent to

$$
z_{n+1}=z_{n}+\sqrt{1+z_{n}^{2}}
$$

Also note that $z_{2}=\sqrt{3}=x_{1}$; since the x_{i} and z_{i} satisfy the same recursion, this means that $z_{n}=x_{n-1}$ for all $n>1$. Thus,

$$
x_{n} y_{n}=\frac{x_{n}}{z_{n}}=\frac{x_{n}}{x_{n-1}} .
$$

Because the x_{i} are increasing, for $n>1$ we have $x_{n-1}^{2} \geq x_{1}^{2}=$ $3>\frac{1}{3} \Rightarrow 2 x_{n-1}>\sqrt{1+x_{n-1}^{2}} \Rightarrow 3 x_{n-1}>x_{n}$. Also, $\sqrt{1+x_{n-1}^{2}}>$ $x_{n-1} \Rightarrow x_{n}>2 x_{n-1}$. Therefore,

$$
2<x_{n} y_{n}=\frac{x_{n}}{x_{n-1}}<3
$$

as desired.

Second Solution: Writing $x_{n}=\tan a_{n}$ for $0^{\circ}<a_{n}<90^{\circ}$, we have

$$
\begin{aligned}
& x_{n+1}=\tan a_{n}+\sqrt{1+\tan ^{2} a_{n}}=\tan a_{n}+\sec a_{n} \\
& \quad=\frac{1+\sin a_{n}}{\cos a_{n}}=\tan \left(\frac{90^{\circ}+a_{n}}{2}\right) .
\end{aligned}
$$

Since $a_{1}=60^{\circ}$, we have $a_{2}=75^{\circ}, a_{3}=82.5^{\circ}$, and in general $a_{n}=90^{\circ}-\frac{30^{\circ}}{2^{n-1}}$. Thus

$$
x_{n}=\tan \left(90^{\circ}-\frac{30^{\circ}}{2^{n-1}}\right)=\cot \left(\frac{30^{\circ}}{2^{n-1}}\right)=\cot \theta_{n}
$$

where $\theta_{n}=\frac{30^{\circ}}{2^{n-1}}$.
Similar calculation shows that

$$
y_{n}=\tan 2 \theta_{n}=\frac{2 \tan \theta_{n}}{1-\tan ^{2} \theta_{n}}
$$

implying that

$$
x_{n} y_{n}=\frac{2}{1-\tan ^{2} \theta_{n}}
$$

Since $0^{\circ}<\theta_{n}<45^{\circ}$, we have $0<\tan ^{2} \theta_{n}<1$ and $x_{n} y_{n}>2$. And since for $n>1$ we have $\theta_{n}<30^{\circ}$, we also have $\tan ^{2} \theta_{n}<\frac{1}{3}$ so that $x_{n} y_{n}<3$.

Note: From the closed forms for x_{n} and y_{n} in the second solution, we can see the relationship $y_{n}=\frac{1}{x_{n-1}}$ used in the first solution.

Problem 7 Let O be the center of the excircle of triangle $A B C$ opposite A. Let M be the midpoint of $\overline{A C}$, and let P be the
intersection of lines $M O$ and $B C$. Prove that if $\angle B A C=2 \angle A C B$, then $A B=B P$.

First Solution: Since O is the excenter opposite A, we know that O is equidistant from lines $A B, B C$, and $C A$. We also know that line $A O$ bisects angle $B A C$. Thus $\angle B A O=\angle O A C=\angle A C B$. Letting D be the intersection of $\overline{A O}$ and $\overline{B C}$, we then have $\angle D A C=\angle A C D$ and hence $D C=A D$.

Consider triangles $O A C$ and $O D C$. From above their altitudes from O are equal, and their altitudes from C are also clearly equal. Thus, $O A / O D=[O A C] /[O D C]=A C / D C$.

Next, because M is the midpoint of $\overline{A C}$ we have $[O A M]=[O M C]$ and $[P A M]=[P M C]$, and hence $[O A P]=[O P C]$ as well. Then

$$
\frac{O A}{O D}=\frac{[O A P]}{[O D P]}=\frac{[O P C]}{[O D P]}=\frac{P C}{D P}
$$

Thus, $\frac{A C}{D C}=\frac{O A}{O D}=\frac{P C}{D P}$, and $\frac{A C}{C P}=\frac{D C}{D P}=\frac{A D}{D P}$. By the Angle Bisector Theorem, $\overline{A P}$ bisects $\angle C A D$.

It follows that $\angle B A P=\angle B A D+\angle D A P=\angle A C P+\angle P A C=$ $\angle A P B$, and therefore $B A=B P$, as desired.

Second Solution: Let R be the midpoint of the arc $B C$ (not containing A) of the circumcircle of triangle $A B C$; and let I be the incenter of triangle $A B C$. We have $\angle R B I=\frac{1}{2}(\angle C A B+\angle A B C)=$ $\frac{1}{2}\left(180^{\circ}-\angle B R I\right)$. Thus $R B=R I$ and similarly $R C=R I$, and hence R is the circumcenter of triangle $B I C$. But since $\angle I B O=90^{\circ}=$ $\angle I C O$, quadrilateral $I B O C$ is cyclic and R is also the circumcenter of triangle $B C O$.

Let lines $A O$ and $B C$ intersect at Q. Since M, O, and P are collinear we may apply Menelaus' Theorem to triangle $A Q C$ to get

$$
\frac{A M}{C M} \frac{C P}{Q P} \frac{Q O}{A O}=1
$$

But $\frac{A M}{C M}=1$, and therefore $\frac{C P}{P Q}=\frac{A O}{Q O}$.
And since R lies on $\overline{A O}$ and $\overline{Q O}$, we have

$$
\frac{A O}{Q O}=\frac{A R+R O}{Q R+R O}=\frac{A R+R C}{C R+R Q}
$$

which in turn equals $\frac{A C}{C Q}$ since triangles $A R C$ and $C R Q$ are similar; and $\frac{A C}{C Q}=\frac{A C}{A Q}$ since we are given that $\angle B A C=2 \angle A C B$; i.e.,
$\angle Q A C=\angle Q C A$ and $C Q=A Q$. Thus we have shown that $\frac{C P}{P Q}=$ $\frac{A C}{A Q}$. By the Angle-Bisector Theorem, this implies that line $A P$ bisects $\angle Q A C$, from which it follows that $\angle B A P=\frac{3}{2} \angle A C B=\angle B P A$ and $A B=B P$.

Problem 8 Let O, O_{1} be the centers of the incircle and the excircle opposite A of triangle $A B C$. The perpendicular bisector of $\overline{O O_{1}}$ meets lines $A B$ and $A C$ at L and N respectively. Given that the circumcircle of triangle $A B C$ touches line $L N$, prove that triangle $A B C$ is isosceles.

Solution: Let M be the midpoint of arc $\widehat{B C}$ not containing A. Angle-chasing gives $\angle O B M=\frac{1}{2}(\angle A+\angle B)=\angle B O M$ and hence $M B=M O$.

Since $\angle O B C=\frac{\angle B}{2}$ and $\angle C B O_{1}=\frac{1}{2}(\pi-\angle B)$, we have $\angle O B O_{1}$ is a right angle. And since we know both that M lies on line $A O O_{1}$ (the angle bisector of $\angle A$) and that $M B=M O$, it follows that $\overline{B M}$ is a median to the hypotenuse of right triangle $O B O_{1}$ and thus M is the midpoint of $\overline{O O_{1}}$.

Therefore, the tangent to the circumcircle of $A B C$ at M must be perpendicular to line $A M$. But this tangent is also parallel to line $B C$, implying that $A M$, the angle bisector of $\angle A$, is perpendicular to line $B C$. This can only happen if $A B=A C$, as desired.

Problem 9 Does there exist a bijection f of
(a) a plane with itself
(b) three-dimensional space with itself
such that for any distinct points A, B line $A B$ and line $f(A) f(B)$ are perpendicular?

Solution:

(a) Yes: simply rotate the plane 90° about some axis perpendicular to it. For example, in the $x y$-plane we could map each point (x, y) to the point $(y,-x)$.
(b) Suppose such a bijection existed. Label the three-dimensional space with x-, y-, and z-axes; given any point $P=\left(x_{0}, y_{0}, z_{0}\right)$, we also view it as the vector p from $(0,0,0)$ to $\left(x_{0}, y_{0}, z_{0}\right)$. Then
the given condition says that

$$
(a-b) \cdot(f(a)-f(b))=0
$$

for any vectors a, b.
Assume without loss of generality that f maps the origin to itself; otherwise, $g(p)=f(p)-f(0)$ is still a bijection and still satisfies the above equation. Plugging $b=(0,0,0)$ into the equation above we have $a \cdot f(a)=0$ for all a. Then the above equation reduces to

$$
a \cdot f(b)+b \cdot f(a)=0
$$

Given any vectors a, b, c and any reals m, n we then have

$$
\begin{gathered}
m(a \cdot f(b)+b \cdot f(a))=0 \\
n(a \cdot f(c)+c \cdot f(a))=0 \\
a \cdot f(m b+n c)+(m b+n c) \cdot f(a)=0 .
\end{gathered}
$$

Adding the first two equations and subtracting the third gives

$$
a \cdot(m f(b)+n f(c)-f(m b+n c))=0
$$

Since this must be true for any vector a, we must have $f(m b+$ $n c)=m f(B)+n f(C)$. Therefore f is linear, and it is determined by how it transforms the unit vectors $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0)$, and $\mathbf{k}=(0,0,1)$. If $f(\mathbf{i})=\left(a_{1}, a_{2}, a_{3}\right), f(\mathbf{j})=\left(b_{1}, b_{2}, b_{3}\right)$, and $f(\mathbf{k})=\left(c_{1}, c_{2}, c_{3}\right)$, then for a vector x we have

$$
f(x)=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{3} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] x .
$$

Applying $f(a) \cdot a=0$ with $a=\mathbf{i}, \mathbf{j}, \mathbf{k}$, we have $a_{1}=b_{2}=c_{3}=0$. Then applying $a \cdot f(b)+b \cdot f(a)$ with $(a, b)=(\mathbf{i}, \mathbf{j}),(\mathbf{j}, \mathbf{k}),(\mathbf{j}, \mathbf{k})$ we have $b_{1}=-a_{2}, c_{1}=-a_{3}, c_{2}=-b_{3}$. But then the determinant of the array in the equation is

$$
a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}=-a_{2} b_{3} a_{3}+a_{3} a_{2} b_{3}=0,
$$

so there exist constants k_{1}, k_{2}, k_{3} not all zero such that $k_{1} f(\mathbf{i})+$ $k_{2} f(\mathbf{j})+k_{3} f(\mathbf{k})=0$. But then $f\left(k_{1}, k_{2}, k_{3}\right)=0=f(0,0,0)$, contradicting the assumption that f was a bijection!

Therefore our original assumption was false, and no such bijection exists.

Problem 10 A word is a finite sequence of two symbols a and b. The number of the symbols in the word is said to be the length of the word. A word is called 6 -aperiodic if it does not contain a subword of the form $c c c c c c$ for any word c. Prove that $f(n)>\left(\frac{3}{2}\right)^{n}$, where $f(n)$ is the total number of 6 -aperiodic words of length n.

Solution: Rather than attempting to count all such words, we add some restrictions and count only some of the 6 -aperiodic words. Also, instead of working with a 's and b 's we'll work with 0's and 1's.

The Thue-Morse sequence is defined by $t_{0}=0, t_{1}=1, t_{2 n+1}=$ $1-t_{2 n}$, and $t_{2 n}=t_{n}$. These properties can be used to show that the only subwords of the form $c c \ldots c$ are 00 and 11 .

We restrict the 6 -aperiodic words in a similar spirit. Call a word $x_{1} x_{2} \ldots x_{n}$ of length $n 6$-countable if it satisfies the following conditions:
(i) $x_{5 i}=x_{i}$ for $1 \leq i$.
(ii) $x_{5 i-1}=1-x_{5 i}$ for $1 \leq i \leq \frac{n}{5}$.
(iii) If $\left(x_{5 i+2}, x_{5 i+3}, x_{5 i+4}\right)=(1,0,1)$ [or $\left.(0,1,0)\right]$, then $\left(x_{5 i+7}, x_{5 i+8}\right.$, $\left.x_{5 i+9}\right) \neq(0,1,0)[$ or $(1,0,1)]$.
Lemma 1. Every 6-countable word is 6-aperiodic.
Proof: Suppose by way of contradiction that some 6-countable word contains a subword of the form cccccc, where the strings c appear in the positions x_{j} through $x_{j+\ell-1} ; x_{j+\ell}$ through $x_{j+2 \ell-1}$; and so on up to $x_{j+5 \ell}$ through $x_{j+6 \ell-1}$. Pick a word with the smallest such ℓ.

If $5 \mid \ell$, then look at the indices i between j and $j+\ell-1$ such that $5 \mid i$; say they are $5 i_{1}, 5 i_{2}, \ldots, 5 i_{\ell / 5}$. Then $x_{5 i_{1}} x_{5 i_{2}} \ldots x_{5 i_{\ell / 5}}$, $x_{5 i_{1}+\ell} x_{5 i_{2}+\ell} \ldots x_{5 i_{\ell / 5}+\ell} \ldots, x_{5 i_{1}+5 \ell} x_{5 i_{2}+5 \ell} \ldots x_{5 i_{\ell / 5}+5 \ell}$ all equal the same string c^{\prime}; then (using the first condition of countability) the subword starting at $x_{i_{1}}$ and ending on $x_{i_{\ell / 5}+\ell}$ is of the form $c^{\prime} c^{\prime} c^{\prime} c^{\prime} c^{\prime} c^{\prime}$. But this contradicts the minimal choice of ℓ; therefore, we can't have $5 \mid \ell$.

Now, suppose that in the first appearance of c some two adjacent characters a_{j}, a_{j+1} were equal. Then since $5 \not \backslash \ell$, one of $j, j+\ell, j+$ $2 \ell, \ldots, j+4 \ell$ is $4(\bmod 5)-$ say, $j+k \ell$. Then $a_{j+k \ell}, a_{j+k \ell+1}$ must be the same since $a_{j} a_{j+1}=a_{j+k \ell} a_{j+k \ell+1}$; but they must also be
different from the second condition of 6-countability! Because this is impossible, it follows that the characters in c alternate between 0 and 1.

A similar argument, though, shows that $a_{j+\ell-1}$ and $a_{j+\ell}$ must be different; hence c is of the form $1010 \ldots 10$ or $0101 \ldots 01$. But this would imply that our word violated the third condition of 6 -countability-a contradiction. Therefore our original assumption was false, and any 6 -countable word is 6 -aperiodic.
Lemma 2. Given a positive integer m, there are more than $\left(\frac{3}{2}\right)^{5 m}$ 6 -countable words of length 5 m .

Proof: Let α_{m} be the number of length- $5 m$ 6-countable words. To create a length-5m 6-countable word $x_{1} x_{2} \ldots x_{5 m}$, we can choose each of the "three-strings" $x_{1} x_{2} x_{3}, x_{6} x_{7} x_{8}, \ldots, x_{5 m-4} x_{5 m-3} x_{5 m-2}$ to be any of the eight strings $000,001,010,011,100,101,110$, or $111-$ taking care that no two adjacent strings are 010 and 101. Some quick counting then shows that $\alpha_{1}=8>\left(\frac{3}{2}\right)^{5}$ and $\alpha_{2}=64-2=62>$ $\left(\frac{3}{2}\right)^{10}$.

Let β_{m} be the number of length- $5 m 6$-countable words whose last three-string is 101 ; by symmetry, this also equals the number of length- $5 m 6$-countable words whose last three-string is 010 . Also let γ_{m} be the number of length- $5 m$ 6-countable words whose last threestring is not 101; again by symmetry, this also equals the number of length- $5 m 6$-countable words whose last three-string isn't 010. Note that $\alpha_{m}=\gamma_{m}+\beta_{m}$.

For $m \geq 1$, observe that $\gamma_{m}=\beta_{m+1}$ because to any length- $5 m$ word whose last three-string isn't 010, we can append the three-string 101 (as well as two other pre-determined numbers); and given a length$5(m+1)$ word whose last three- string is 101 , we can reverse this construction. Similar arguing shows that $\gamma_{m+1}=6\left(\gamma_{m}+\beta_{m}\right)+\gamma_{m}$; the $6\left(\gamma_{m}+\beta_{m}\right)$ term counts the words whose last three-string is neither 010 nor 101, and the γ_{m} term counts the words whose last three-string is 010. Combined, these recursions give

$$
\begin{aligned}
\gamma_{m+2} & =7 \gamma_{m+1}+6 \gamma_{m} \\
\beta_{m+2} & =7 \beta_{m+1}+6 \beta_{m} \\
\alpha_{m+2} & =7 \alpha_{m+1}+6 \alpha_{m}
\end{aligned}
$$

Now if $\alpha_{m+1}>\left(\frac{3}{2}\right)^{5 m+5}$ and $\alpha_{m}>\left(\frac{3}{2}\right)^{5 m}$, then

$$
\begin{aligned}
\alpha_{m+2} & =7 \alpha_{m+1}+6 \alpha_{m} \\
> & \left(\frac{3}{2}\right)^{5 m}\left(7 \cdot\left(\frac{3}{2}\right)^{5}+6\right) \\
\quad> & \left(\frac{3}{2}\right)^{5 m}\left(\frac{3}{2}\right)^{10}=\left(\frac{3}{2}\right)^{5(m+2)} .
\end{aligned}
$$

Then since $\alpha_{m}>\left(\frac{3}{2}\right)^{5 m}$ is true for $m=1,2$, by induction it is true for all positive integers m.

The lemma proves the claim for $n=5 \mathrm{~m}$. Now suppose we are looking at length- $(5 m+i)$ words, where $m \geq 0$ and $i=1,2,3$, or 4 . Then given any length- $5 m 6$-countable word, we can form a length- $(5 m+i)$ word by choosing $x_{5 m+1}, x_{5 m+2}, x_{5 m+3}$ to be anything. (For convenience, we say there is exactly $\alpha_{0}=1 \geq\left(\frac{3}{2}\right)^{0}$ length- 0 6 -countable word: the "empty word.") Thus there are at least $2 \alpha_{m}>$ $\left(\frac{3}{2}\right)^{5 m+1}, 4 \alpha_{m}>\left(\frac{3}{2}\right)^{5 m+2}, 8 \alpha_{m}>\left(\frac{3}{2}\right)^{5 m+3}$, and $8 \alpha_{m}>\left(\frac{3}{2}\right)^{5 m+4}$ 6 -countable length- $(5 m+1)$, $-(5 m+2),-(5 m+3)$, and $-(5 m+4)$ words, respectively. This completes the proof.

Problem 11 Determine all positive integers $n, n \geq 2$, such that $\binom{n-k}{k}$ is even for $k=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$.

Solution: Lucas's Theorem states that for integers

$$
n=n_{r} p^{r}+n_{r-1} p^{r-1}+\cdots+n_{0}
$$

and

$$
m=m_{r} p^{r}+m_{r-1} p^{r-1}+\cdots+m_{0}
$$

written in base p for a prime p, we have

$$
\binom{n}{m} \equiv\binom{n_{r}}{m_{r}}\binom{n_{r-1}}{m_{r-1}} \cdots\binom{n_{0}}{b_{0}} \quad(\bmod p) .
$$

With $p=2$, the binary representation of $n=2^{s}-1$ we have $n_{r}=n_{r-1}=\cdots=n_{0}=1$. Then for any $0 \leq m \leq 2^{s}-1$ each $\binom{n_{i}}{m_{i}}=1$, and thus $\binom{n}{m} \equiv 1 \cdot 1 \cdots \cdot 1 \equiv 1 \quad(\bmod 2)$.

This implies that n must be one less than a power of 2 , or else one of $n-k$ will equal such a number $2^{s}-1$ and then $\binom{n-k}{k}$ will be odd.

In fact, all such $n=2^{s}-1$ do work: for $k=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, there is at least one 0 in the binary representation of $n-k$ (not counting leading zeros, of course). And whenever there is a 0 in the binary representation of $n-k$, there is a 1 in the corresponding digit of k. Then the corresponding $\binom{(n-k)_{i}}{k_{i}}$ equals 0 , and by Lucas's Theorem $\binom{n-k}{k}$ is even.

Therefore, $n=2^{s}-1$ for integers $s \geq 2$.
Problem 12 A number of n players took part in a chess tournament. After the tournament was over, it turned out that among any four players there was one who scored differently against the other three (i.e., he got a victory, a draw, and a loss). Prove that the largest possible n satisfies the inequality $6 \leq n \leq 9$.

Solution:

Let $A_{1} \Rightarrow A_{2} \Rightarrow \cdots \Rightarrow A_{n}$ denote " A_{1} beats A_{2}, A_{2} beats A_{3}, \ldots, A_{n-1} beats A_{n}," and let $X \mid Y$ denote " X draws with Y."

First we show it is possible to have the desired results with $n=6$: call the players A, B, C, D, E, F. Then let

$$
\begin{gathered}
A \Rightarrow B \Rightarrow C \Rightarrow D \Rightarrow E \Rightarrow A \\
F \Rightarrow A, F \Rightarrow B, F \Rightarrow C, F \Rightarrow D, F \Rightarrow E
\end{gathered}
$$

and have all other games end in draws. Visually, we can view this arrangement as a regular pentagon $A B C D E$ with F at the center. There are three different types of groups of 4 , represented by $A B C D$, $A B C F$, and $A B D F$; in these three respective cases, B (or C), A, and A are the players who score differently from the other three.

Alternatively, let

$$
\begin{gathered}
A \Rightarrow B \Rightarrow C \Rightarrow D \Rightarrow E \Rightarrow F \Rightarrow A \\
B \Rightarrow D \Rightarrow F \Rightarrow B, \quad C \Rightarrow A \Rightarrow E \Rightarrow C \\
A|D, B| E, C \mid F
\end{gathered}
$$

In this arrangement there are three different types of groups of four, represented by $\{A, B, C, D\},\{A, B, D, E\}$, and $\{A, B, D, F\}$. (If the players are arranged in a regular hexagon, these correspond to a trapezoid-shaped group, a rectangle-shaped group, and a diamondshaped group.) In these three cases, A, B (or D), and A (or D) are the players who score differently against the other three.

Now we show it is impossible to have the desired results with $n=10$ and thus all $n \geq 10$; suppose by way of contradiction it was possible. First we prove that all players draw exactly 4 times.

To do this, draw a graph with n vertices representing the players, and draw an edge between two vertices if they drew in their game. If V has degree 3 or less, then look at the remaining 6 or more vertices it is not adjacent to. By Ramsey's Theorem, either three of them (call them X, Y, Z) are all adjacent or all not adjacent. But then in the group $\{V, X, Y, Z\}$, none of the players draws exactly once with the other players, a contradiction.

Thus each vertex has degree at least 4 ; we now prove that every vertex has degree exactly 4 . Suppose by way of contradiction that some vertex A was adjacent to at least 5 vertices B, C, D, E, F. None of these vertices can be adjacent to two others; for example, if B was adjacent to C and D then in $\{A, B, C, D\}$ each vertex draws at least twice-but some player must draw exactly once in this group. Now in the group $\{B, C, D, E\}$ some pair must draw: without loss of generality, say B and C. In the group $\{C, D, E, F\}$ some pair must draw as well; since C can't draw with D, E, or F from our previous observation, assume without loss of generality that E and F draw.

Now in $\{A, B, C, D\}$ vertex D must beat one of B, C and lose to the other; without loss of generality, say D loses to B and beats C. Looking at $\{A, D, E, F\}$, we can similarly assume that D beats E and loses to F. Next, in $\{A, C, D, E\}$ players C and E can't draw; without loss of generality, say C beats E. And then in $\{A, C, E, F\}$, player C must lose to F. But then in $\{C, D, E, F\}$ no player scores differently against the other three players-a contradiction.

Now suppose A were adjacent to B, C, D, E, and without loss of generality assume $B \mid C$; then $A B C$ is a triangle. For each J besides A, B, C, look at the group $\{A, B, C, J\}: J$ must draw with one of A, B, C. By the Pigeonhole Principle, one of A, B, C draws with at least three of the J and thus has degree at least 5 . But this is impossible from above.

It follows that it is impossible for n to be at least 10. But since n can be 6 , the maximum n is between 6 and 9 , as desired.

1.2 Brazil

Problem 1 Let $A B C D E$ be a regular pentagon such that the star region $A C E B D$ has area 1. Let $A C$ and $B E$ meet at P, and let $B D$ and $C E$ meet at Q. Determine $[A P Q D]$.

Solution: Let $R=A D \cap B E, S=A C \cap B D, T=C E \cap A D$. Now $\triangle P Q R \sim \triangle C A D$ because they are corresponding triangles in regular pentagons $Q T R P S$ and $A B C D E$, and since $\triangle C A D \sim \triangle P A R$ as well we have $\triangle P Q R \cong \triangle P A R$. Thus, $[A P Q D]=\frac{[A P Q D]}{[A C E B D]}=$ $\frac{2[A P R]+[P Q R]+[R Q T]}{5[A P R]+[P Q R]+2[R Q T]}=\frac{3[A P R]+[R Q T]}{6[A P R]+2[R Q T]}=\frac{1}{2}$.

Problem 2 Given a 10×10 board, we want to remove n of the 100 squares so that no 4 of the remaining squares form the corners of a rectangle with sides parallel to the sides of the board. Determine the minimum value of n.

Solution: The answer is 66 . Consider the diagram below, in which a colored circle represents a square that has not been removed. The diagram demonstrates that n can be 66 :

Now we proceed to show that n is at least 66. Suppose, for contradiction, that it is possible with $n=65$. Denote by a_{i} the number of squares left in row $i(i=1,2, \ldots, 10)$; in row i, there are $\binom{a_{i}}{2}$ pairs of remaining squares. If no four remaining squares form the corners of a rectangle, then the total number $N=\sum_{i=1}^{10}\binom{a_{i}}{2}$ must not exceed $\binom{10}{2}=45$. But note that, with a fixed $\sum_{i=1}^{10} a_{i}=35$, the minimum of $\sum_{i=1}^{10}\binom{a_{i}}{2}$ is attained when and only when no two a_{i} 's differ by more than 1. Thus, $45=\sum_{i=1}^{10}\binom{a_{i}}{2} \geq 5 \cdot\binom{4}{2}+5 \cdot\binom{3}{2}=45$,
i.e., this minimum is attained here, implying that five of the a_{i} 's equal 4 and the rest equal 3 . Then it is easy to see that aside from permutations of the row and columns, the first five rows of the board must be as follows:

We inspect this figure and notice that it is now impossible for another row to contain at least 3 remaining squares without forming the vertices of a rectangle with sides parallel to the sides of the board. This is a contradiction, since each of the remaining 5 rows is supposed to have 3 remaining squares. Thus, it is impossible for n to be less than 66 , and we are done.

Problem 3 The planet Zork is spherical and has several cities. Given any city A on Zork, there exists an antipodal city A^{\prime} (i.e., symmetric with respect to the center of the sphere). In Zork, there are roads joining pairs of cities. If there is a road joining cities P and Q, then there is a road joining P^{\prime} and Q^{\prime}. Roads don't cross each other, and any given pair of cities is connected by some sequence of roads. Each city is assigned a value, and the difference between the values of every pair of connected cities is at most 100. Prove that there exist two antipodal cities with values differing by at most 100 .

Solution: Let $[A]$ denote the value assigned to city A. Name the pairs of cities

$$
\left(Z_{1}, Z_{1}^{\prime}\right),\left(Z_{2}, Z_{2}^{\prime}\right),\left(Z_{3}, Z_{3}^{\prime}\right), \ldots,\left(Z_{n}, Z_{n}^{\prime}\right)
$$

with

$$
0 \leq\left[Z_{i}\right]-\left[Z_{i}^{\prime}\right] \text { for all } i
$$

Since any given pair of cities is connected by some sequence of roads, there must exist a, b such that Z_{a} and Z_{b}^{\prime} are connected by a single road. Then Z_{a}^{\prime} and Z_{b} are also connected by a single road. Thus, $\left[Z_{a}\right]-\left[Z_{b}^{\prime}\right] \leq 100$ and $\left[Z_{b}\right]-\left[Z_{a}^{\prime}\right] \leq 100$. Adding, we have

$$
\left[Z_{a}\right]-\left[Z_{a}^{\prime}\right]+\left[Z_{b}\right]-\left[Z_{b}^{\prime}\right] \leq 200
$$

Hence, either $0 \leq\left[Z_{a}\right]-\left[Z_{a}^{\prime}\right] \leq 100$ or $0 \leq\left[Z_{b}\right]-\left[Z_{b}^{\prime}\right] \leq 100$; in either case, we are done.

Problem 4 In Tumbolia there are n soccer teams. We want to organize a championship such that each team plays exactly once with each other team. All games take place on Sundays, and a team can't play more than one game in the same day. Determine the smallest positive integer m for which it is possible to realize such a championship in m Sundays.

Solution: Let a_{n} be the smallest positive integer for which it is possible to realize a championship between n soccer teams in a_{n} Sundays. For $n>1$, it is necessary that $a_{n} \geq 2\left\lceil\frac{n}{2}\right\rceil-1$; otherwise the total number of games played would not exceed $\left(2\left\lceil\frac{n}{2}\right\rceil-2\right) \cdot\left\lfloor\frac{n}{2}\right\rfloor \leq$ $\frac{(n-1)^{2}}{2}<\binom{n}{2}$, a contradiction.

On the other hand, $2\left\lceil\frac{n}{2}\right\rceil-1$ days suffice. Suppose that $n=2 t+1$ or $2 t+2$; number the teams from 1 to n and the Sundays from 1 to $2 t+1$. On the i-th Sunday, let team i either sit out (if n is odd) or play team $2 t+2$ (if n is even); and have any other team j play with the team $k \neq 2 t+2$ such that $j+k \equiv 2 i(\bmod 2 t+1)$. Then each team indeed plays every other team, as desired.

Problem 5 Given a triangle $A B C$, show how to construct, with straightedge and compass, a triangle $A^{\prime} B^{\prime} C^{\prime}$ with minimal area such that $A^{\prime}, B^{\prime}, C^{\prime}$ lie on $A B, B C, C A$, respectively, $\angle B^{\prime} A^{\prime} C^{\prime}=\angle B A C$, and $\angle A^{\prime} C^{\prime} B^{\prime}=\angle A C B$.

Solution:

All angles are directed modulo 180°.
For convenience, call any triangle $A^{\prime} B^{\prime} C^{\prime}$ "zart" if $A^{\prime}, B^{\prime}, C^{\prime}$ lie on lines $A B, B C, C A$, respectively, and $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. The problem is, then, to construct the zart triangle with minimal area.
Suppose we have any zart triangle, and let P be the point (different from A^{\prime}) where the circumcircles of triangles $A A^{\prime} C^{\prime}$ and $B B^{\prime} A^{\prime}$ meet. Then

$$
\begin{gathered}
\angle B^{\prime} P C^{\prime}=360^{\circ}-\angle A^{\prime} P B^{\prime}-\angle C^{\prime} P A^{\prime} \\
=360^{\circ}-\left(180^{\circ}-\angle C B A\right)-\left(180^{\circ}-\angle B A C\right)=180^{\circ}-\angle A C B,
\end{gathered}
$$

so P also lies on the circumcircle of triangle $C C^{\prime} B^{\prime}$.

Next,

$$
\begin{gathered}
\angle P A B=\angle P C^{\prime} A^{\prime}=\angle B^{\prime} C^{\prime} A^{\prime}-\angle B^{\prime} C^{\prime} P \\
=\angle B^{\prime} C C^{\prime}-\angle B^{\prime} C P^{\prime}=\angle P C A
\end{gathered}
$$

and with similar reasoning we have

$$
\angle P A B=\angle P C^{\prime} A^{\prime}=\angle P C A=\angle P B^{\prime} C^{\prime}=\angle P B C
$$

There is a unique point P (one of the Brocard points) satisfying $\angle P A B=\angle P B C=\angle P C A$, and thus P is fixed-independent of the choice of triangle $A^{\prime} B^{\prime} C^{\prime}$. And since it is the corresponding point in similar triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, we have

$$
\left[A^{\prime} B^{\prime} C^{\prime}\right]=[A B C]\left(\frac{P A^{\prime}}{P A}\right)^{2}
$$

Thus $\left[A^{\prime} B^{\prime} C^{\prime}\right]$ is minimal when $P A^{\prime}$ is minimal, which occurs when $P A^{\prime} \perp A B$ (and analogously, when $P B^{\prime} \perp P C$ and $P C^{\prime} \perp P A$). Thus, the zart triangle with minimal area is the pedal triangle $A^{\prime} B^{\prime} C^{\prime}$ of P to triangle $A B C$. This triangle is indeed similar to triangle $A B C$; letting $\theta=\angle P A B$ be the Brocard angle, it is the image of triangle $A B C$ under a rotation through $\theta-90^{\circ}$, followed by a homothety of ratio $-\sin \theta \mid$.

To construct this triangle, first draw the circles $\{X: \angle B X A=$ $\angle B C A+\angle C A B\}$ and $\{Y: \angle C Y B=\angle C A B+\angle A B C\}$ and let P^{\prime} be their point of intersection (different from B); then we also have $\angle A P^{\prime} C=\angle A B C+\angle B C A$. Then

$$
\begin{gathered}
\angle P^{\prime} A B=180^{\circ}-\angle A B P^{\prime}-\angle B P^{\prime} A= \\
180^{\circ}-\left(\angle A B C-\angle P^{\prime} B C\right)-(\angle B C A+\angle C A B)=\angle P^{\prime} B C,
\end{gathered}
$$

and similarly $\angle P^{\prime} B C=\angle P^{\prime} C A$. Therefore $P=P^{\prime}$. Finally, drop the perpendiculars from P^{\prime} to the sides of triangle $A B C$ to form $A^{\prime}, B^{\prime}, C^{\prime}$. This completes the construction.

1.3 Bulgaria

National Olympiad, Third Round

Problem 1 Find all triples (x, y, z) of natural numbers such that y is a prime number, y and 3 do not divide z, and $x^{3}-y^{3}=z^{2}$.

Solution: Rewrite the equation in the form

$$
(x-y)\left(x^{2}+x y+y^{2}\right)=z^{2}
$$

Any common divisor of $x-y$ and $x^{2}+x y+y^{2}$ also divides both z^{2} and $\left(x^{2}+x y+y^{2}\right)-(x+2 y)(x-y)=3 y^{2}$. But z^{2} and $3 y^{2}$ are relatively prime by assumption, hence $(x-y)$ and $\left(x^{2}+x y+y^{2}\right)$ must be relatively prime as well. Therefore, both $(x-y)$ and $\left(x^{2}+x y+y^{2}\right)$ are perfect squares.

Now writing $a=\sqrt{x-y}$, we have

$$
x^{2}+x y+y^{2}=\left(a^{2}+y\right)^{2}+\left(a^{2}+y\right) y+y^{2}=a^{4}+3 a^{2} y+3 y^{2}
$$

and

$$
4\left(x^{2}+x y+y^{2}\right)=\left(2 a^{2}+3 y\right)^{2}+3 y^{2}
$$

Writing $m=2 \sqrt{x^{2}+x y+y^{2}}$ and $n=2 a^{2}+3 y$, we have

$$
m^{2}=n^{2}+3 y^{2}
$$

or

$$
(m-n)(m+n)=3 y^{2}
$$

so $(m-n, m+n)=\left(1,3 y^{2}\right),\left(3, y^{2}\right)$, or $(y, 3 y)$.
In the first case, $2 n=3 y^{2}-1$ and $4 a^{2}=2 n-6 y=3 y^{2}-6 y-1$ is a square, which is impossible modulo 3 .

In the third case, $n=y<2 a^{2}+3 y=n$, a contradiction.
In the second case, we have $4 a^{2}=2 n-6 y=y^{2}-6 y-3<(y-3)^{2}$. And when $y \geq 10$ we have $y^{2}-6 y-3>(y-4)^{2}$, hence $y=2,3,5$, or 7. In this case we have $a=\frac{\sqrt{y^{2}-6 y-3}}{2}$, which is real only when $y=7$, $a=1, x=y+a^{2}=8$, and $z=13$. This yields the unique solution $(x, y, z)=(8,7,13)$.

Problem 2 A convex quadrilateral $A B C D$ is inscribed in a circle whose center O is inside the quadrilateral. Let $M N P Q$ be the quadrilateral whose vertices are the projections of the intersection
point of the diagonals $A C$ and $B D$ onto the sides of $A B C D$. Prove that $2[M N P Q] \leq[A B C D]$.

Solution: The result actually holds even when $A B C D$ is not cyclic. We begin by proving the following result:
Lemma. If $\overline{X W}$ is an altitude of triangle $X Y Z$, then $\frac{X W}{Y Z} \leq$ $\frac{1}{2} \tan \left(\frac{\angle Y+\angle Z}{2}\right)$.
Proof: $\quad X$ lies on an arc of a circle determined by $\angle Y X Z=$ $180^{\circ}-\angle Y-\angle Z$. Its distance from $\overline{Y Z}$ is maximized when it is at the center of this arc, which occurs when $\angle Y=\angle Z$; and at this point, $\frac{X W}{Y Z}=\frac{1}{2} \tan \left(\frac{\angle Y+\angle Z}{2}\right)$.

Suppose M, N, P, Q are on sides $A B, B C, C D, D A$, respectively. Also let T be the intersection of $\overline{A C}$ and $\overline{B D}$.

Let $\alpha=\angle A D B, \beta=\angle B A C, \gamma=\angle C A D, \delta=\angle D B A$. From the lemma, $M T \leq \frac{1}{2} A B \cdot \tan \left(\frac{\beta+\delta}{2}\right)$ and $Q T \leq \frac{1}{2} A D \cdot \tan \left(\frac{\alpha+\gamma}{2}\right)$; also, $\angle M T Q=180^{\circ}-\angle Q A M=180^{\circ}-\angle D A B$. Thus $2[M T Q]=$ $M T \cdot Q T \sin \angle M T Q \leq \frac{1}{4} \tan \left(\frac{\alpha+\gamma}{2}\right) \tan \left(\frac{\beta+\delta}{2}\right) A B \cdot A D \sin \angle D A B$. But since $\frac{\alpha+\gamma}{2}+\frac{\beta+\delta}{2}=90^{\circ}$, this last expression exactly equals $\frac{1}{4} A B \cdot A D \sin \angle D A B=\frac{1}{2}[A B D]$. Thus, $2[M T Q] \leq \frac{1}{2}[A B D]$.

Likewise, $2[N T M] \leq \frac{1}{2}[B C A],[P T N] \leq \frac{1}{2}[C D B]$, and $[Q T P] \leq$ $\frac{1}{2}[D A C]$. Adding these four inequalities shows that $2[M N P Q]$ is at most

$$
\frac{1}{2}([A B D]+[C D B])+\frac{1}{2}([B C A]+[D A C])=[A B C D]
$$

as desired.

Problem 3 In a competition 8 judges marked the contestants by pass or fail. It is known that for any two contestants, two judges marked both with pass; two judges marked the first contestant with pass and the second contestant with fail; two judges marked the first contestant with fail and the second contestant with pass; and finally, two judges marked both with fail. What is the largest possible number of contestants?

Solution: For a rating r (either pass or fail), let \bar{r} denote the opposite rating. Also, whenever a pair of judges agree on the rating for some contestant, call this an "agreement." We first prove that
any two judges share at most three agreements; suppose by way of contradiction this were false.

Then assume without loss of generality that the judges (labeled with numbers) mark the first four contestants (labeled with letters) as follows in the left table:

	A	B	C	D		A	B	C	D		A	B	C	D	
1	a	b	c	d		1	a	b	c	d		1	a	b	c
2	a	b	c	d		2	a	b	c	d					
3	a	\bar{b}				3	a	\bar{b}	\bar{c}	\bar{d}		3	a	b	a
b	\bar{b}	\bar{c}	\bar{d}												
4	a	\bar{b}				4	a	\bar{b}	\bar{c}	\bar{d}		4	a	\bar{b}	\bar{c}
5	\bar{d}														
5	\bar{a}	\bar{b}				5	\bar{a}	\bar{b}				5	\bar{a}	\bar{b}	c
6	\bar{a}	\bar{b}				6	\bar{a}	\bar{b}				6	\bar{a}	\bar{b}	c
7	\bar{a}	b				7	\bar{a}	b				7	\bar{a}	b	
8	\bar{a}	b				8	\bar{a}	b				8	\bar{a}	b	

Applying the given condition to contestants A and C, judges 3 and 4 must both give C the rating \bar{c}; similarly, they must both give D the rating \bar{d}. Next, applying the condition to contestants B and C, judges 5 and 6 must both give C the rating c; similarly, they must both give D the rating d. But now the condition fails for contestants C and D, a contradiction.

Thus each pair of judges agrees on at most three ratings, as claimed; thus there are at most $3 \cdot\binom{8}{2}=84$ agreements between all the judges. On the other hand, for each contestant exactly four judges mark him with pass and exactly four judges mark him with fail, hence there are $\binom{4}{2}+\binom{4}{2}=12$ agreements per contestant. It follows that there are at most $\frac{84}{12}=7$ contestants; and as the following table shows (with 1 representing pass and 0 representing fail), it is indeed possible to have exactly 7 contestants:

	A	B	C	D	E	F	G
1	1	1	1	1	1	1	1
2	1	1	1	0	0	0	0
3	1	0	0	1	1	0	0
4	1	0	0	0	0	1	1
5	0	1	0	1	0	0	1
6	0	1	0	0	1	1	0
7	0	0	1	1	0	1	0
8	0	0	1	0	1	0	1

Problem 4 Find all pairs (x, y) of integers such that

$$
x^{3}=y^{3}+2 y^{2}+1
$$

Solution: When $y^{2}+3 y>0,(y+1)^{3}>x^{3}>y^{3}$. Thus we must have $y^{2}+3 y \leq 0$, and $y=-3,-2,-1$, or $0-$ yielding the solutions $(x, y)=(1,0),(1,-2)$, and $(-2,-3)$.

Problem 5 Let B_{1} and C_{1} be points on the sides $A C$ and $A B$ of triangle $A B C$. Lines $B B_{1}$ and $C C_{1}$ intersect at point D. Prove that a circle can be inscribed inside quadrilateral $A B_{1} D C_{1}$ if and only if the incircles of the triangles $A B D$ and $A C D$ are tangent to each other.

Solution: Say the incircle of triangle $A B D$ is tangent to $\overline{A D}$ at T_{1} and that the incircle of triangle $A C D$ is tangent to $\overline{A D}$ at T_{2}; then $D T_{1}=\frac{1}{2}(D A+D B-A B)$ and $D T_{2}=\frac{1}{2}(D A+D C-A C)$.

First suppose a circle can be inscribed inside $A B_{1} D C_{1}$. Let it be tangent to sides $A B_{1}, B_{1} D, D C_{1}, C_{1} A$ at points E, F, G, H, respectively. Using equal tangents, we have

$$
\begin{gathered}
A B-B D=(A H+H B)-(B F-D F) \\
=(A H+B F)-(B F-D F)=A H+D F
\end{gathered}
$$

and similarly $A C-C D=A E+D G$. But $A H+D F=A E+D G$ by equal tangents, implying that $A B-B D=A C-C D$ and thus $D A+D B-A B=D A+D C-A C$. Therefore $D T_{1}=D T_{2}, T_{1}=T_{2}$, and the two given incircles are tangent to each other.

Next suppose the two incircles are tangent to each other. Then $D A+D B-A B=D A+D C-A C$. Let ω be the incircle of $A B B_{1}$, and let D^{\prime} be the point on $\overline{B B_{1}}$ (different from B_{1}) such that line $C D^{\prime}$ is tangent to ω. Suppose by way of contradiction that $D \neq D^{\prime}$. From the result in the last paragraph, we know that the incircles of triangles $A B D^{\prime}$ and $A C D^{\prime}$ are tangent and hence $D^{\prime} A+D^{\prime} B-A B=D^{\prime} A+D^{\prime} C-A C$. Then since $D B-A B=D C-A C$ and $D^{\prime} B-A B=D^{\prime} C-A C$, we must have $D B-D^{\prime} B=D C-D^{\prime} C$ by subtraction. Thus $D D^{\prime}=\left|D B-D^{\prime} B\right|=\left|D C-D^{\prime} C\right|$. But then the triangle inequality fails in triangle $D D^{\prime} C$, a contradiction. This completes the proof.

Problem 6 Each interior point of an equilateral triangle of side 1 lies in one of six congruent circles of radius r. Prove that

$$
r \geq \frac{\sqrt{3}}{10}
$$

Solution: From the condition, we also know that every point inside or on the triangle lies inside or on one of the six circles.

Define $R=\frac{1}{1+\sqrt{3}}$. Orient the triangle so that A is at the top, B is at the bottom-left, and C is at the bottom-right (so that $\overline{B C}$ is horizontal). Draw point W on $\overline{A B}$ such that $W A=R$; then draw point X directly below W such that $W X=R$. Then in triangle $W X B, W B=1-R=\sqrt{3} R$ and $\angle B W X=30^{\circ}$, implying that $X B=R$ as well. Similarly draw Y on $\overline{A C}$ such that $Y A=R$, and Z directly below Y such that $Y Z=Z C=R$.

In triangle $A W Y, \angle A=60^{\circ}$ and $A W=A Y=R$, implying that $W Y=R$. This in turn implies that $X Z=R$ and that $W X=Y Z=$ $R \sqrt{2}$.

Now suppose by way of contradiction that we could cover the triangle with six congruent circles of radius $r<\frac{\sqrt{3}}{10}$. The points A, B, C, W, X, Y, Z each lie on or inside one of the circles. But any two of these points are at least $R>2 r$ apart, so they must lie on or inside different circles. Thus there are at least seven circles, a contradiction.

National Olympiad, Fourth Round

Problem 1 A rectangular parallelepiped has integer dimensions. All of its faces of are painted green. The parallelepiped is partitioned into unit cubes by planes parallel to its faces. Find all possible measurements of the parallelepiped if the number of cubes without a green face is one third of the total number of cubes.

Solution: Let the parallelepiped's dimensions be a, b, c; they must all be at least 3 or else every cube has a green face. Then the condition is equivalent to

$$
3(a-2)(b-2)(c-2)=a b c
$$

or

$$
3=\frac{a}{a-2} \cdot \frac{b}{b-2} \cdot \frac{c}{c-2} .
$$

If all the dimensions are at least 7 , then $\frac{a}{a-2} \cdot \frac{b}{b-2} \cdot \frac{c}{c-2} \leq\left(\frac{7}{5}\right)^{3}=$ $\frac{343}{125}<3$, a contradiction. Thus one of the dimensions - say, a equals $3,4,5$, or 6 . Assume without loss of generality that $b \leq c$.

When $a=3$ we have $b c=(b-2)(c-2)$, which is impossible.
When $a=4$, rearranging the equation yields $(b-6)(c-6)=24$. Thus $(b, c)=(7,30),(8,18),(9,14)$, or $(10,12)$.

When $a=5$, rearranging the equation yields $(2 b-9)(2 c-9)=45$. Thus $(b, c)=(5,27),(6,12)$, or $(7,9)$.

And when $a=6$, rearranging the equation yields $(b-4)(c-4)=8$. Thus $(b, c)=(5,12)$ or $(6,8)$.

Therefore the parallelepiped may measure $4 \times 7 \times 30,4 \times 8 \times 18$, $4 \times 9 \times 14,4 \times 10 \times 12,5 \times 5 \times 27,5 \times 6 \times 12,5 \times 7 \times 9$, or $6 \times 6 \times 8$.

Problem 2 Let $\left\{a_{n}\right\}$ be a sequence of integers such that for $n \geq 1$

$$
(n-1) a_{n+1}=(n+1) a_{n}-2(n-1)
$$

If 2000 divides a_{1999}, find the smallest $n \geq 2$ such that 2000 divides a_{n}.

Solution: First, we note that the sequence $a_{n}=2 n-2$ works. Then writing $b_{n}=a_{n}-(2 n-2)$ gives the recursion

$$
(n-1) b_{n+1}=(n+1) b_{n} .
$$

Some calculations show that $b_{3}=3 b_{2}, b_{4}=6 b_{2}, b_{5}=10 b_{2}-$ and in general, that $b_{n}=\frac{n(n-1)}{2} b_{2}$ for $n \geq 2$. Thus when $n \geq 2$, the solution to the original equation is of the form

$$
a_{n}=2(n-1)+\frac{n(n-1)}{2} c
$$

for some constant c; plugging in $n=2$ shows that $c=a_{2}-2$ is an integer.

Now, since 2000 $\mid a_{1999}$ we have $2(1999-1)+\frac{1999 \cdot 1998}{2} \cdot c \equiv 0 \Longrightarrow$ $-4+1001 c \equiv 0 \Longrightarrow c \equiv 4(\bmod 2000)$. Then $2000 \mid a_{n}$ exactly when

$$
\begin{aligned}
2(n-1)+2 n(n-1) & \equiv 0 \quad(\bmod 2000) \\
\Longleftrightarrow(n-1)(n+1) & \equiv 0 \quad(\bmod 1000)
\end{aligned}
$$

$(n-1)(n+1)$ is divisible by 8 exactly when n is odd; and it is divisible by 125 exactly when either $n-1$ or $n+1$ is divisible by 125 . The smallest $n \geq 2$ satisfying these requirements is $n=249$.

Problem 3 The vertices of a triangle have integer coordinates and one of its sides is of length \sqrt{n}, where n is a square-free natural number. Prove that the ratio of the circumradius to the inradius of the triangle is an irrational number.

Solution: Label the triangle $A B C$; let r, R, K be the inradius, circumradius, and area of the triangle; let $a=B C, b=C A, c=A B$ and write $a=p_{1} \sqrt{q_{1}}, b=p_{2} \sqrt{q_{2}}, c=p_{3} \sqrt{q_{3}}$ for positive integers p_{i}, q_{i} with q_{i} square-free. By Pick's Theorem $\left(K=I+\frac{1}{2} B-1\right), K$ is rational. Also, $R=\frac{a b c}{4 K}$ and $r=\frac{2 K}{a+b+c}$. Thus $\frac{R}{r}=\frac{a b c(a+b+c)}{8 K^{2}}$ is rational if and only if $a b c(a+b+c)=a^{2} b c+a b^{2} c+a b c^{2}$ is rational. Let this quantity equal m, and assume by way of contradiction that m is rational.

We have $a^{2} b c=m_{1} \sqrt{q_{2} q_{3}}, a b^{2} c=m_{2} \sqrt{q_{3} q_{1}}$, and $a b c^{2}=m_{3} \sqrt{q_{1} q_{2}}$ for positive integers m_{1}, m_{2}, m_{3}. Then $m_{1} \sqrt{q_{2} q_{3}}+m_{2} \sqrt{q_{3} q_{1}}=m-$ $m_{3} \sqrt{q_{1} q_{2}}$. Squaring both sides, we find that

$$
m_{1}^{2} q_{2} q_{3}+m_{2}^{2} q_{3} q_{1}+2 m_{1} m_{2} q_{3} \sqrt{q_{1} q_{2}}=m^{2}+m_{3}^{2}-2 m m_{3} \sqrt{q_{1} q_{2}}
$$

If $\sqrt{q_{1} q_{2}}$ is not rational, then the coefficients of $\sqrt{q_{1} q_{2}}$ must be the same on both sides; but this is impossible since $2 m_{1} m_{2} q_{3}$ is positive while $-2 m m_{3}$ is not.

Hence $\sqrt{q_{1} q_{2}}$ is rational. Since q_{1} and q_{2} are square-free, this can only be true if $q_{1}=q_{2}$. Similarly, $q_{2}=q_{3}$.

Assume without loss of generality that $B C=\sqrt{n}$ so that $q_{1}=q_{2}=$ $q_{3}=n$ and $p_{1}=1$. Also assume that A is at $(0,0), B$ is at (w, x), and C is at (y, z). By the triangle inequality, we must have $p_{2}=p_{3}$ and hence

$$
\begin{aligned}
& w^{2}+x^{2}=y^{2}+z^{2}=p_{2}^{2} n \\
& (w-y)^{2}+(x-z)^{2}=n
\end{aligned}
$$

Notice that
$n=(w-y)^{2}+(x-z)^{2} \equiv w^{2}+x^{2}+y^{2}+z^{2}=2 p_{2}^{2} n \equiv 0 \quad(\bmod 2)$,
so n is even. Thus w and x have the same parity; and y and z have the same parity. Then w, x, y, z must all have the same parity since $w^{2}+x^{2} \equiv y^{2}+z^{2}(\bmod 4)$. But then $n=(w-y)^{2}+(x-z)^{2} \equiv$ $0(\bmod 4)$, contradicting the assumption that n is square-free.

Therefore our original assumption was false; and the ratio of the circumradius to the inradius is indeed always irrational.

Note: Without the condition that n is square-free, the ratio can be rational. For example, the points $(i, 2 j-i)$ form a grid of points $\sqrt{2}$ apart. In this grid, we can find a $3 \sqrt{2}-4 \sqrt{2}-5 \sqrt{2}$ right triangle by choosing, say, the points $(0,0),(3,3)$, and $(7,-1)$. Then $q_{1}=q_{2}=q_{3}$, and the ratio is indeed rational.

Problem 4 Find the number of all natural numbers $n, 4 \leq n \leq$ 1023, whose binary representations do not contain three consecutive equal digits.

Solution: A binary string is a finite string of digits, all either 0 or 1. Call such a string (perhaps starting with zeroes) valid if it does not contain three consecutive equal digits. Let a_{n} represent the number of valid n-digit strings; let s_{n} be the number of valid strings starting with two equal digits; and let d_{n} be the number of valid strings starting with two different digits. Observe that $a_{n}=s_{n}+d_{n}$ for all n.
An $(n+2)$-digit string starting with 00 is valid if and only if its last n digits form a valid string starting with 1 ; similarly, an ($n+2$)-digit string starting with 11 is valid if and only if its last n digits form a valid string starting with 0 . Thus, $s_{n+2}=a_{n}=s_{n}+d_{n}$.

An $(n+2)$-digit string starting with 01 is valid if and only if its last n digits form a valid string starting with 00,01 , or 10 ; similarly, an $(n+2)$-digit string starting with 10 is valid if and only if its last n digits form a valid string starting with 11,01 , or 10 . Thus, $d_{n+2}=s_{n}+2 d_{n}$.

Solving these recursions gives

$$
s_{n+4}=3 s_{n+2}-s_{n} \quad \text { and } \quad d_{n+4}=3 d_{n+2}-d_{n}
$$

which when added together yield

$$
a_{n+4}=3 a_{n+2}-a_{n} .
$$

Thus we can calculate initial values of a_{n} and then use the recursion to find other values:

n	1	2	3	4	5	6	7	8	9	10
a_{n}	2	4	6	10	16	26	42	68	110	178

Now of the a_{n} valid n-digit strings, only half start with 1 ; thus only half are binary representations of positive numbers. Therefore exactly

$$
\frac{1}{2}\left(a_{1}+a_{2}+\cdots+a_{10}\right)=231
$$

numbers between 1 and 1023 have the desired property; and ignoring 1,2 , and 3 , we find that the answer is 228 .

Problem 5 The vertices A, B and C of an acute-angled triangle $A B C$ lie on the sides $B_{1} C_{1}, C_{1} A_{1}$ and $A_{1} B_{1}$ of triangle $A_{1} B_{1} C_{1}$ such that $\angle A B C=\angle A_{1} B_{1} C_{1}, \angle B C A=\angle B_{1} C_{1} A_{1}$, and $\angle C A B=$ $\angle C_{1} A_{1} B_{1}$. Prove that the orthocenters of the triangle $A B C$ and triangle $A_{1} B_{1} C_{1}$ are equidistant from the circumcenter of triangle $A B C$.

Solution: Let H and H_{1} be the orthocenters of triangles $A B C$ and $A_{1} B_{1} C_{1}$, respectively; and let O, O_{A}, O_{B}, O_{C} be the circumcenters of triangles $A B C, A_{1} B C, A B_{1} C$, and $A B C_{1}$, respectively.

First note that $\angle B A_{1} C=\angle C_{1} A_{1} B_{1}=\angle C A B=180^{\circ}-\angle C H B$, showing that $B A_{1} C H$ is cyclic; moreover, $O_{A} A_{1}=\frac{B C}{2 \sin \angle B A_{1} C}=$ $\frac{C B}{2 \sin \angle C A B}=O A$ so circles $A B C$ and $B A_{1} C H$ have the same radius. Similarly, $C B_{1} A H$ and $A C_{1} B H$ are cyclic with circumradius $O A$. Then $\angle H B C_{1}=180^{\circ}-\angle C_{1} A H=\angle H A B_{1}=180^{\circ}-\angle B_{1} C H=$ $\angle H C A_{1}$; thus angles $\angle H O_{C} C_{1}, \angle H O_{A} A_{1}, \angle H O_{B} B_{1}$ are equal as well.

Let $\angle\left(\vec{r}_{1}, \vec{r}_{2}\right)$ denote the angle between rays \vec{r}_{1} and \vec{r}_{2}. Since $O_{A} C=$ $O_{A} B=H B=H C$, quadrilateral $B O_{A} C H$ is a rhombus and hence a parallelogram. Then

$$
\begin{aligned}
& \angle\left(\overrightarrow{O A}, \overrightarrow{H O_{A}}\right)=\angle(\overrightarrow{O A}, \overrightarrow{O B})+\angle\left(\overrightarrow{O B}, \overrightarrow{H O_{A}}\right) \\
& \quad=2 \angle A C B+\angle\left(\overrightarrow{C O_{A}}, \overrightarrow{H O_{A}}\right) \\
& \quad=2 \angle A C B+\angle C O_{A} H \\
& \quad=2 \angle A C B+2 \angle C B H \\
& \quad=2 \angle A C B+2\left(90^{\circ}-\angle A C B\right) \\
& \quad=180^{\circ}
\end{aligned}
$$

Similarly, $\angle\left(\overrightarrow{O B}, \overrightarrow{H O_{B}}\right)=\angle\left(\overrightarrow{O C}, \overrightarrow{H O_{C}}\right)=180^{\circ}$. Combining this result with $\angle H O_{A} A_{1}=\angle H O_{B} B_{1}=\angle H O_{C} C_{1}$ from above, we find
that

$$
\angle\left(\overrightarrow{O A}, \overrightarrow{O_{A} A_{1}}\right)=\angle\left(\overrightarrow{O B}, \overrightarrow{O_{B} B_{1}}\right)=\angle\left(\overrightarrow{O C}, \overrightarrow{O_{C} C_{1}}\right)
$$

Let this common angle be θ.
We now use complex numbers with the origin at O, letting p denote the complex number representing point P. Since $H B O_{A} C$ is a parallelogram we have $o_{A}=b+c$ and we can write $a_{1}=b+c+x a$ where $x=\operatorname{cis} \theta$. We also have $b_{1}=c+a+x b$ and $c_{1}=a+b+x c$ for the same x. We can rewrite these relations as

$$
\begin{aligned}
& a_{1}=a+b+c+(x-1) a \\
& b_{1}=a+b+c+(x-1) b \\
& c_{1}=a+b+c+(x-1) c
\end{aligned}
$$

Thus the map sending z to $a+b+c+(x-1) z=h+(x-1) z$ is a spiral similarity taking triangle $A B C$ into triangle $A^{\prime} B^{\prime} C^{\prime}$. It follows that this map also takes H to H_{1}, so

$$
h_{1}=h+(x-1) h=x h
$$

and $O H_{1}=\left|h_{1}\right|=|x||h|=|h|=O H$, as desired.
Problem 6 Prove that the equation

$$
x^{3}+y^{3}+z^{3}+t^{3}=1999
$$

has infinitely many integral solutions.
Solution: Observe that $(m-n)^{3}+(m+n)^{3}=2 m^{3}+6 m n^{2}$. Now suppose we want a general solution of the form

$$
(x, y, z, t)=\left(a-b, a+b, \frac{c}{2}-\frac{d}{2}, \frac{c}{2}+\frac{d}{2}\right)
$$

for integers a, b and odd integers c, d. One simple solution to the given equation is $(x, y, z, t)=(10,10,-1,0)$, so try setting $a=10$ and $c=-1$. Then

$$
(x, y, z, t)=\left(10-b, 10+b,-\frac{1}{2}-\frac{d}{2},-\frac{1}{2}+\frac{d}{2}\right)
$$

is a solution exactly when

$$
\left(2000+60 b^{2}\right)-\frac{1+3 d^{2}}{4}=1999 \quad \Longleftrightarrow \quad d^{2}-80 b^{2}=1
$$

The second equation is a Pell's equation with solution $\left(d_{1}, b_{1}\right)=$ $(9,1)$; and we can generate infinitely many more solutions by setting $\left(d_{n+1}, b_{n+1}\right)=\left(9 d_{n}+80 b_{n}, 9 b_{n}+d_{n}\right)$ for $n=1,2,3, \ldots$; this follows from a general recursion $\left(p_{n+1}, q_{n+1}\right)=\left(p_{1} p_{n}+q_{1} q_{n} D, p_{1} q_{n}+q_{1} p_{n}\right)$ for generating solutions to $p^{2}-D q^{2}=1$ given a nontrivial solution $\left(p_{1}, q_{1}\right)$.

A quick check also shows that each d_{n} is odd. Thus since there are infinitely many solutions $\left(b_{n}, d_{n}\right)$ to the Pell's equation (and with each d_{n} odd), there are infinitely many integral solutions

$$
\left(x_{n}, y_{n}, z_{n}, t_{n}\right)=\left(10-b_{n}, 10+b_{n},-\frac{1}{2}-\frac{d_{n}}{2},-\frac{1}{2}+\frac{d_{n}}{2}\right)
$$

to the original equation.

1.4 Canada

Problem 1 Find all real solutions to the equation $4 x^{2}-40\lfloor x\rfloor+51=$ 0 , where $[x]$ denotes the greatest integer less than or equal to x.

Solution: Note that $(2 x-3)(2 x-17)=4 x^{2}-40 x+51 \leq$ $4 x^{2}-40\lfloor x\rfloor+51=0$, which gives $1.5 \leq x \leq 8.5$ and $1 \leq\lfloor x\rfloor \leq 8$. Then

$$
x=\frac{\sqrt{40\lfloor x\rfloor-51}}{2}
$$

so it is necessary that

$$
\lfloor x\rfloor=\left\lfloor\frac{\sqrt{40\lfloor x\rfloor-51}}{2}\right\rfloor .
$$

Testing $\lfloor x\rfloor \in\{1,2,3, \ldots, 8\}$ into this equation, we find that only $\lfloor x\rfloor=2,6,7$, and 8 work. Thus the only solutions for x are $\frac{\sqrt{29}}{2}, \frac{\sqrt{189}}{2}, \frac{\sqrt{229}}{2}, \frac{\sqrt{269}}{2}$.

Problem 2 Let $A B C$ be an equilateral triangle of altitude 1. A circle, with radius 1 and center on the same side of $A B$ as C, rolls along the segment $A B$; as it rolls, it always intersects both $\overline{A C}$ and $\overline{B C}$. Prove that the length of the arc of the circle that is inside the triangle remains constant.

Solution: Let ω be "the circle." Let O be the center of ω. Let ω intersect segments $\overline{A C}$ and $\overline{B C}$ at M and N, respectively. Let the circle through O, C, and M intersect $\overline{B C}$ again at P. Now $\angle P M O=$ $180^{\circ}-\angle O C P=60^{\circ}=\angle M C O=\angle M P O$, so $O P=O M=1$, and P coincides with N. Thus, $\angle M O N=\angle M O P=\angle M C P=60^{\circ}$. Therefore, the angle of the arc of ω that is inside the triangle $A B C$ is constant, and hence the length of the arc must be constant as well.

Problem 3 Determine all positive integers n such that $n=d(n)^{2}$, where $d(n)$ denotes the number of positive divisors of n (including 1 and n).

Solution: Label the prime numbers $p_{1}=2, p_{2}=3, \ldots$. Since n is a perfect square, we have

$$
n=\prod_{i=1}^{\infty} p_{i}^{2 a_{i}}, \quad d(n)=\prod_{i=1}^{\infty}\left(2 a_{i}+1\right)
$$

Then $d(n)$ is odd and so is n, whence $a_{1}=0$. Since $\frac{d(n)}{\sqrt{n}}=1$, we have

$$
\prod_{i=1}^{\infty} \frac{2 a_{i}+1}{p_{i}^{a_{i}}}=1
$$

By Bernoulli's inequality, we have $p_{i}^{a_{i}} \geq\left(p_{i}-1\right) a_{i}+1>2 a_{i}+1$ for all primes $p_{i} \geq 5$ that divide n. Also, $3^{a_{2}} \geq 2 a_{2}+1$ with equality only when $a_{2} \in\{0,1\}$. Thus, for equality to hold above, we must have $a_{1}=a_{3}=a_{4}=a_{5}=\cdots=0$ and $a_{2} \in\{0,1\}$; therefore, $n \in\{1,9\}$ are the only solutions.

Problem 4 Suppose $a_{1}, a_{2}, \ldots, a_{8}$ are eight distinct integers from the set $\mathcal{S}=\{1,2, \ldots, 17\}$. Show that there exists an integer $k>0$ such that the equation $a_{i}-a_{j}=k$ has at least three different solutions. Also, find a specific set of 7 distinct integers $\left\{b_{1}, b_{2}, \cdots, b_{7}\right\}$ from \mathcal{S} such that the equation

$$
b_{i}-b_{j}=k
$$

does not have three distinct solutions for any $k>0$.
Solution: For the first part of this problem, assume without loss of generality that $a_{1}<a_{2}<\cdots<a_{8}$; also assume, for the purpose of contradiction, that there does not exist an integer $k>0$ such that the equation $a_{i}-a_{j}=k$ has at least three different solutions. Let $\delta_{i}=a_{i+1}-a_{i}$ for $i=1,2, \ldots, 7$. Then

$$
16 \geq a_{8}-a_{1}=\delta_{1}+\ldots+\delta_{7} \geq 1+1+2+2+3+3+4=16
$$

(for otherwise three of the δ_{i} 's would be equal, a contradiction). Since equality must hold, $\Pi=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{7}\right)$ must be a permutation of $(1,1,2,2,3,3,4)$.

Say we have a " m - n pair" if some $\left(\delta_{i}, \delta_{i+1}\right)=(m, n)$ or (n, m). Note that we cannot have any 1-1 or 1-2 pairs $\left(\delta_{i}, \delta_{i+1}\right)$; otherwise we'd have $a_{i+2}-a_{i}=2$ or 3 , giving at least three solutions to $a_{i}-a_{j}=2$ or 3 . Nor can we have two 1-3 pairs because then, along with $\delta_{i}=4$, we'd have three solutions to $a_{i}-a_{j}=4$. Then considering what entries each 1 is next to, we see that we must have

$$
\Pi=(1,4, \ldots, 3,1) \quad \text { or } \quad(1,4,1,3, \ldots)
$$

(or these lists backwards).
But now we can't have any 2-2 pairs; otherwise, along with the 1-3 pair and the $\delta_{i}=4$, we'd have three solutions to $a_{i}-a_{j}=4$. Thus
we have either

$$
\Pi=(1,4,2,3,2,3,1) \quad \text { or } \quad(1,4,1,3,2,3,2)
$$

(or these lists backwards). In either case there are at least four solutions to $a_{i}-a_{j}=5$, a contradiction.

Thus, regardless of the $\left\{a_{1}, a_{2}, \ldots, a_{8}\right\}$ that we choose, for some integer $k \in\{2,3,4,5\}$ the equation $a_{i}-a_{j}=k$ has at least three different solutions.

For the second part of the problem, let $\left(b_{1}, b_{2}, \ldots, b_{7}\right)=(1,2,4,9$, $14,16,17)$. Each of $1,2,3,5,7,8,12,13$, and 15 is the difference of exactly two pairs of the b_{i}, and each of 10,14 , and 16 is the difference of exactly one pair of the b_{i}. But no number is the difference of more than two such pairs, and hence the set $\left\{b_{1}, b_{2}, \ldots, b_{7}\right\}$ suffices.

Problem 5 Let x, y, z be non-negative real numbers such that

$$
x+y+z=1
$$

Prove that

$$
x^{2} y+y^{2} z+z^{2} x \leq \frac{4}{27}
$$

and determine when equality occurs.
Solution: Assume without loss of generality that $x=\max \{x, y, z\}$.

- If $x \geq y \geq z$, then

$$
\begin{aligned}
& x^{2} y+y^{2} z+z^{2} x \leq x^{2} y+y^{2} z+z^{2} x+z(x y+(x-y)(y-z)) \\
& \quad=(x+z)^{2} y=4\left(\frac{1}{2}-\frac{1}{2} y\right)\left(\frac{1}{2}-\frac{1}{2} y\right) y \leq \frac{4}{27},
\end{aligned}
$$

where the last inequality follows from AM-GM. Equality occurs if and only if $z=0$ (from the first inequality) and $y=\frac{1}{3}$, in which case $(x, y, z)=\left(\frac{2}{3}, \frac{1}{3}, 0\right)$.

- If $x \geq z \geq y$, then

$$
\begin{aligned}
& x^{2} y+y^{2} z+z^{2} x=x^{2} z+z^{2} y+y^{2} x-(x-z)(z-y)(x-y) \\
& \quad \leq x^{2} z+z^{2} y+y^{2} x \leq \frac{4}{27}
\end{aligned}
$$

where the second inequality is true from the result we proved for $x \geq y \geq z$ (except with y and z reversed). Equality holds in the first inequality only when two of x, y, z are equal; and in
the second only when $(x, z, y)=\left(\frac{2}{3}, \frac{1}{3}, 0\right)$. Since these conditions can't both be true, the inequality is actually strict in this case.
Therefore the inequality is indeed true, and equality holds when (x, y, z) equals $\left(\frac{2}{3}, \frac{1}{3}, 0\right),\left(\frac{1}{3}, 0, \frac{2}{3}\right)$, or $\left(0, \frac{2}{3}, \frac{1}{3}\right)$.

1.5 China

Problem 1 Let $A B C$ be an acute triangle with $\angle C>\angle B$. Let D be a point on side $B C$ such that $\angle A D B$ is obtuse, and let H be the orthocenter of triangle $A B D$. Suppose that F is a point inside triangle $A B C$ and is on the circumcircle of triangle $A B D$. Prove that F is the orthocenter of triangle $A B C$ if and only if both of the following are true: $H D \| C F$, and H is on the circumcircle of triangle $A B C$.

Solution: All angles are directed modulo 180°. First observe that if P is the orthocenter of triangle $U V W$, then

$$
\begin{gathered}
\angle V P W=\left(90^{\circ}-\angle P W V\right)+\left(90^{\circ}-\angle W V P\right) \\
=\angle W V U+\angle U W V=180^{\circ}-\angle V U W .
\end{gathered}
$$

First suppose that F is the orthocenter of triangle $A B C$. Then

$$
\angle A C B=180^{\circ}-\angle A F B=180^{\circ}-\angle A D B=\angle A H B
$$

so $A C H B$ is cyclic. And lines $C F$ and $H D$ are both perpendicular to side $A B$, so they are parallel.

Conversely, suppose that $H D \| C F$ and that H is on the circumcircle of triangle $A B C$. Since $A F D B$ and $A H C B$ are cyclic,

$$
\angle A F B=\angle A D B=180^{\circ}-\angle A H B=180^{\circ}-\angle A C B .
$$

Thus F is an intersection point of the circle defined by $\angle A F B=$ $180^{\circ}-\angle A C B$ and the line defined by $C F \perp A B$. But there are only two such points: the orthocenter of triangle $A B C$ and the reflection of C across line $A B$. The latter point lies outside of triangle $A B C$, and hence F must indeed be the orthocenter of triangle $A B C$.

Problem 2 Let a be a real number. Let $\left\{f_{n}(x)\right\}$ be a sequence of polynomials such that $f_{0}(x)=1$ and $f_{n+1}(x)=x f_{n}(x)+f_{n}(a x)$ for $n=0,1,2, \ldots$.
(a) Prove that

$$
f_{n}(x)=x^{n} f_{n}\left(\frac{1}{x}\right)
$$

for $n=0,1,2, \ldots$.
(b) Find an explicit expression for $f_{n}(x)$.

Solution: When $a=1$, we have $f_{n}(x)=(x+1)^{n}$ for all n, and part (a) is easily checked. Now assume that $a \neq 1$.

Observe that f_{n} has degree n and always has constant term 1. Write $f_{n}(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$; we prove by induction on n that

$$
\left(a^{i}-1\right) c_{i}=\left(a^{n+1-i}-1\right) c_{i-1}
$$

for $0 \leq i \leq n$ (where we let $c_{-1}=0$).
The base case $n=0$ is clear. Now suppose that $f_{n-1}(x)=$ $b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}$ satisfies the claim: specifically, we know $\left(a^{i}-1\right) b_{i}=\left(a^{n-i}-1\right) b_{i-1}$ and $\left(a^{n+1-i}-1\right) b_{i-2}=\left(a^{i-1}-1\right) b_{i-1}$ for $i \geq 1$.

For $i=0$, the claim states $0=0$. For $i \geq 1$, the given recursion gives $c_{i}=b_{i-1}+a^{i} b_{i}$ and $c_{i-1}=b_{i-2}+a^{i-1} b_{i-1}$. Then the claim is equivalent to

$$
\begin{aligned}
& \left(a^{i}-1\right) c_{i}=\left(a^{n+1-i}-1\right) c_{i-1} \\
& \Longleftrightarrow\left(a^{i}-1\right)\left(b_{i-1}+a^{i} b_{i}\right)=\left(a^{n+1-i}-1\right)\left(b_{i-2}+a^{i-1} b_{i-1}\right) \\
& \Longleftrightarrow\left(a^{i}-1\right) b_{i-1}+a^{i}\left(a^{i}-1\right) b_{i} \\
& \quad=\left(a^{n+1-i}-1\right) b_{i-2}+\left(a^{n}-a^{i-1}\right) b_{i-1} \\
& \Longleftrightarrow\left(a^{i}-1\right) b_{i-1}+a^{i}\left(a^{n-i}-1\right) b_{i-1} \\
& \quad=\left(a^{i-1}-1\right) b_{i-1}+\left(a^{n}-a^{i-1}\right) b_{i-1} \\
& \Longleftrightarrow\left(a^{n}-1\right) b_{i-1}=\left(a^{n}-1\right) b_{i-1}
\end{aligned}
$$

so it is true.
Now by telescoping products, we have

$$
\begin{aligned}
c_{i} & =\frac{c_{i}}{c_{0}}=\prod_{k=1}^{i} \frac{c_{k}}{c_{k-1}} \\
& =\prod_{k=1}^{i} \frac{a^{n+1-k}-1}{a^{k}-1}=\frac{\prod_{k=n+1-i}^{n}\left(a^{k}-1\right)}{\prod_{k=1}^{i}\left(a^{k}-1\right)} \\
& =\frac{\prod_{k=i+1}^{n}\left(a^{k}-1\right)}{\prod_{k=1}^{n-i}\left(a^{k}-1\right)}=\prod_{k=1}^{n-i} \frac{a^{n+1-k}-1}{a^{k}-1} \\
& =\prod_{k=1}^{n-i} \frac{c_{k}}{c_{k-1}}=\frac{c_{n-i}}{c_{0}}=c_{n-i}
\end{aligned}
$$

giving our explicit form. Also, $f_{n}(x)=x^{n} f_{n}\left(\frac{1}{x}\right)$ if and only if $c_{i}=c_{n-i}$ for $i=0,1, \ldots, n$, and from above this is indeed the case. This completes the proof.

Problem 3 There are 99 space stations. Each pair of space stations is connected by a tunnel. There are 99 two-way main tunnels, and all the other tunnels are strictly one-way tunnels. A group of 4 space stations is called connected if one can reach each station in the group from every other station in the group without using any tunnels other than the 6 tunnels which connect them. Determine the maximum number of connected groups.

Solution: In this solution, let $f(x)=\frac{x(x-1)(x-2)}{6}$, an extension of the definition of $\binom{x}{3}$ to all real numbers x.

In a group of 4 space stations, call a station troublesome if three one-way tunnels lead toward it or three one-way tunnels lead out of it. In each group there is at most one troublesome station of each type for a count of at most two troublesome stations. Also, if a station is troublesome in a group, that group is not connected.
Label the stations $1,2, \ldots, 99$. For $i=1,2, \ldots, 99$, let a_{i} oneway tunnels point into station i and b_{i} one-way tunnels point out. Station i is troublesome in $\binom{a_{i}}{3}+\binom{b_{i}}{3}$ groups of four. Adding over all stations, we obtain a total count of $\sum_{i=1}^{198}\left(\binom{a_{i}}{3}+\binom{b_{i}}{3}\right)$. This equals $\sum_{i=1}^{198} f\left(x_{i}\right)$ for nonnegative integers $x_{1}, x_{2}, \ldots, x_{198}$ with $\sum_{i=1}^{198} x_{i}=$ 96.99. Without loss of generality, say that $x_{1}, x_{2}, \ldots, x_{k}$ are at least 1 and $x_{k+1}, x_{k+2}, \ldots, x_{198}$ are zero. Since $f(x)$ is convex as a function of x for $x \geq 1$, this is at least $k\binom{96 \cdot 99 / k}{2}$. Also, $m f(x) \geq f(m x)$ when $m \leq 1$ and $m x \geq 2$. Letting $m=k / 198$ and $m x=96 \cdot 99 / 198=48$, we find that our total count is at least $198\binom{48}{2}$. Since each unconnected group of 4 stations has at most two troublesome stations, there are at least $99\binom{48}{3}$ unconnected groups of four and at most $\binom{99}{4}-99\binom{48}{3}$ connected groups.

All that is left to show is that this maximum can be attained. Arrange the stations around a circle, and put a two-way tunnel between any two adjacent stations; otherwise, place a one-way tunnel running from station A to station B if and only if A is $3,5, \ldots$, or 97 stations away clockwise from B. In this arrangement, every station is troublesome $2\binom{48}{3}$ times. It is easy to check that under this arrangement, no unconnected group of four stations contains
two adjacent stations. And suppose that station A is troublesome in a group of four stations A, B, C, D with B closest and D furthest away clockwise from A. If one-way tunnels lead from A to the other tunnels, three one-way tunnels must lead to D from the other tunnels; and if one-way tunnels lead to A from the other tunnels, three one-way tunnels must lead from B to the other tunnels. Thus every unconnected group of four stations has exactly two troublesome stations. Hence equality holds in the previous paragraph, and there are indeed exactly $\binom{99}{4}-99\binom{48}{3}$ connected groups.

Problem 4 Let m be a positive integer. Prove that there are integers a, b, k, such that both a and b are odd, $k \geq 0$, and

$$
2 m=a^{19}+b^{99}+k \cdot 2^{1999}
$$

Solution: The key observation is that if $\left\{t_{1}, \cdots, t_{n}\right\}$ equals $\left\{1,3,5, \ldots, 2^{n}-1\right\}$ modulo 2^{n}, then $\left\{t_{1}^{s}, \cdots, t_{n}^{s}\right\}$ does as well for any odd positive integer s. To show this, note that for $i \neq j$,

$$
t_{i}^{s}-t_{j}^{s}=\left(t_{i}-t_{j}\right)\left(t_{i}^{s-1}+t_{i}^{s-2} t_{j}+\cdots+t_{j}^{s-1}\right)
$$

Since $t_{i}^{s-1}+t_{i}^{s-2} t_{j}+\cdots+t_{j}^{s-1}$ is an odd number, $t_{i} \equiv t_{j} \Longleftrightarrow t_{i}^{s} \equiv t_{j}^{s}$ $\left(\bmod 2^{n}\right)$.
Therefore there exists an odd number a_{0} such that $2 m-1 \equiv a_{0}^{19}$ $\left(\bmod 2^{1999}\right)$. Hence if we pick $a \equiv a_{0}\left(\bmod 2^{1999}\right)$ sufficiently negative so that $2 m-1-a^{19}>0$, then

$$
(a, b, k)=\left(a, 1, \frac{2 m-1-a^{19}}{2^{1999}}\right)
$$

is a solution to the equation.
Problem 5 Determine the maximum value of λ such that if $f(x)=$ $x^{3}+a x^{2}+b x+c$ is a cubic polynomial with all its roots nonnegative, then

$$
f(x) \geq \lambda(x-a)^{3}
$$

for all $x \geq 0$. Find the equality condition.
Solution: Let α, β, γ be the three roots. Without loss of generality, suppose that $0 \leq \alpha \leq \beta \leq \gamma$. We have

$$
x-a=x+\alpha+\beta+\gamma \geq 0 \quad \text { and } \quad f(x)=(x-\alpha)(x-\beta)(x-\gamma) .
$$

If $0 \leq x \leq \alpha$, then (applying the arithmetic-mean geometric mean inequality) to obtain the first inequality below)

$$
\begin{aligned}
& -f(x)=(\alpha-x)(\beta-x)(\gamma-x) \leq \frac{1}{27}(\alpha+\beta+\gamma-3 x)^{3} \\
& \quad \leq \frac{1}{27}(x+\alpha+\beta+\gamma)^{3}=\frac{1}{27}(x-a)^{3},
\end{aligned}
$$

so that $f(x) \geq-\frac{1}{27}(x-a)^{3}$. Equality holds exactly when $\alpha-x=$ $\beta-x=\gamma-x$ in the first inequality and $\alpha+\beta+\gamma-3 x=x+\alpha+\beta+\gamma$ in the second; that is, when $x=0$ and $\alpha=\beta=\gamma$.

If $\beta \leq x \leq \gamma$, then (again applying AM-GM to obtain the first inequality below)

$$
\begin{aligned}
& -f(x)=(x-\alpha)(x-\beta)(\gamma-x) \leq \frac{1}{27}(x+\gamma-\alpha-\beta)^{3} \\
& \quad \leq \frac{1}{27}(x+\alpha+\beta+\gamma)^{3}=\frac{1}{27}(x-a)^{3},
\end{aligned}
$$

so that again $f(x) \geq-\frac{1}{27}(x-a)^{3}$. Equality holds exactly when $x-\alpha=$ $x-\beta=\gamma-x$ in the first inequality and $x+\gamma-\alpha-\beta=x+\alpha+\beta+\gamma$; that is, when $\alpha=\beta=0$ and $\gamma=2 x$.

Finally, when $\alpha<x<\beta$ or $x>\gamma$ then

$$
f(x)>0 \geq-\frac{1}{27}(x-a)^{3} .
$$

Thus, $\lambda=-\frac{1}{27}$ works. From the above reasoning we can find that λ must be at most $-\frac{1}{27}$ or else the inequality fails for the polynomial $f(x)=x^{2}(x-1)$ at $x=\frac{1}{2}$. Equality occurs when either $\alpha=\beta=\gamma$ and $x=0$; or $\alpha=\beta=0, \gamma$ any nonnegative real, and $x=\frac{\gamma}{2}$.

Problem 6 A $4 \times 4 \times 4$ cube is composed of 64 unit cubes. The faces of 16 unit cubes are to be colored red. A coloring is called interesting if there is exactly 1 red unit cube in every $1 \times 1 \times 4$ rectangular box composed of 4 unit cubes. Determine the number of interesting colorings. (Two colorings are different even if one can be transformed into another by a series of rotations.)

Solution: Pick one face of the cube as our bottom face. For each unit square A on the bottom face, we consider the vertical $1 \times 1 \times 4$
rectangular box with A at its bottom. Suppose the i-th unit cube up (counted from A) in the box is colored; then write the number i in A.

Each interesting coloring is mapped one-to-one to a 4×4 Latin square on the bottom face. (In an $n \times n$ Latin square, each row and column contains each of n symbols a_{1}, \ldots, a_{n} exactly once.) Conversely, given a Latin square we can reverse this construction. Therefore, to solve the problem, we only need to count the number of distinct 4×4 Latin squares.

Note that switching rows of a Latin square will generate another Latin square. Thus if our four symbols are a, b, c, d, then each of the $4!\cdot 3$! arrangements of the first row and column correspond to the same number of Latin squares. Therefore there are $4!\cdot 3!\cdot x$ four-by-four Latin squares, where x is the number of Latin squares whose first row and column both contain the symbols a, b, c, d in that order. The entry in the second row and second column equals either a, c, or d, yielding the Latin squares

$$
\begin{array}{llll}
{\left[\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right],} & {\left[\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & b & a \\
d & c & a & b
\end{array}\right],} \\
{\left[\begin{array}{llll}
a & b & c & d \\
b & c & d & a \\
c & d & a & b \\
d & a & b & c
\end{array}\right],} & {\left[\begin{array}{llll}
a & b & c & d \\
b & d & a & c \\
c & a & d & b \\
d & c & b & a
\end{array}\right] .}
\end{array}
$$

Thus $x=4$, and there are $4!\cdot 3!\cdot 4=576$ four-by-four Latin squares, and 576 interesting colorings.

1.6 Czech and Slovak Republics

Problem 1 In the fraction

$$
\frac{29 \div 28 \div 27 \div \cdots \div 16}{15 \div 14 \div 13 \div \cdots \div 2}
$$

parentheses may be repeatedly placed anywhere in the numerator, granted they are also placed on the identical locations in the denominator.
(a) Find the least possible integral value of the resulting expression.
(b) Find all possible integral values of the resulting expression.

Solution:

(a) The resulting expression can always be written (if we refrain from canceling terms) as a ratio $\frac{A}{B}$ of two integers A and B satisfying $A B=(2)(3) \cdots(29)=29!=2^{25} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29$.
(To find these exponents, we could either count primes directly factor by factor, or use the rule that

$$
\begin{equation*}
\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots \tag{1}
\end{equation*}
$$

is the exponent of p in $n!$.)
The primes that have an odd exponent in the factorization of 29 ! cannot "vanish" from the ratio $\frac{A}{B}$ even after making any cancellations. For this reason no integer value of the result can be less than

$$
H=2 \cdot 3 \cdot 17 \cdot 19 \cdot 23 \cdot 29=1,292,646
$$

On the other hand,

$$
\begin{aligned}
& \frac{29 \div(28 \div 27 \div \cdots \div 16)}{15 \div(14 \div 13 \div \cdots \div 2)} \\
& \quad=\frac{29 \cdot 14}{15 \cdot 28} \cdot \frac{(27)(26) \cdots(16)}{(13)(12) \cdots(2)} \\
& =\frac{29 \cdot 14^{2}}{28} \cdot \frac{27!}{(15!)^{2}} \\
& =29 \cdot 7 \cdot \frac{2^{23} \cdot 3^{13} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23}{\left(2^{11} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13\right)^{2}}=H .
\end{aligned}
$$

(Again it helps to count exponents in factorials using (1).) The number H is thus the desired least value.
(b) Let's examine the products A and B more closely. In each of the fourteen pairs of numbers

$$
\{29,15\},\{28,14\}, \ldots,\{16,2\},
$$

one of the numbers is a factor in A and the other is a factor in B. The resulting value V can then be written as a product

$$
\left(\frac{29}{15}\right)^{\epsilon_{1}}\left(\frac{28}{14}\right)^{\epsilon_{2}} \cdots\left(\frac{16}{2}\right)^{\epsilon_{14}}
$$

where each ϵ_{i} equals ± 1, and where $\epsilon_{1}=1$ and $\epsilon_{2}=-1$ no matter how the parentheses are placed. Since the fractions $\frac{27}{13}, \frac{26}{12}, \ldots$, $\frac{16}{2}$ are greater than 1 , the resulting value V (whether an integer or not) has to satisfy the estimate

$$
V \leq \frac{29}{15} \cdot \frac{14}{28} \cdot \frac{27}{13} \cdot \frac{26}{12} \cdot \ldots \cdot \frac{16}{2}=H
$$

where H is number determined in part (a). It follows that H is the only possible integer value of V !

Problem 2 In a tetrahedron $A B C D$ we denote by E and F the midpoints of the medians from the vertices A and D, respectively. (The median from a vertex of a tetrahedron is the segment connecting the vertex and the centroid of the opposite face.) Determine the ratio of the volumes of tetrahedrons $B C E F$ and $A B C D$.

Solution: Let K and L be the midpoints of the edges $B C$ and $A D$, and let A_{0}, D_{0} be the centroids of triangles $B C D$ and $A B C$, respectively. Both medians $A A_{0}$ and $D D_{0}$ lie in the plane $A K D$, and their intersection T (the centroid of the tetrahedron) divides them in $3: 1$ ratios. T is also the midpoint of $\overline{K L}$, since $\vec{T}=$ $\frac{1}{4}(\vec{A}+\vec{B}+\vec{C}+\vec{D})=\frac{1}{2}\left(\frac{1}{2}(\vec{A}+\vec{D})+\frac{1}{2}(\vec{B}+\vec{C})\right)=\frac{1}{2}(\vec{K}+\vec{L})$. It follows that $\frac{E T}{A T}=\frac{F T}{D T}=\frac{1}{3}$, and hence $\triangle A T D \sim \triangle E T F$ and $E F=\frac{1}{3} A D$. Since the plane $B C L$ bisects both segments $A D$ and $E F$ into halves, it also divides both tetrahedrons $A B C D$ and $B C E F$ into two parts of equal volume. Let G be the midpoint of $\overline{E F}$; the corresponding volumes than satisfy

$$
\frac{[B C E F]}{[A B C D]}=\frac{[B C G F]}{[B C L D]}=\frac{G F}{L D} \cdot \frac{[B C G]}{[B C L]}=\frac{1}{3} \frac{K G}{K L}=\frac{1}{3} \cdot \frac{2}{3}=\frac{2}{9} .
$$

Problem 3 Show that there exists a triangle $A B C$ for which, with the usual labelling of sides and medians, it is true that $a \neq b$ and $a+m_{a}=b+m_{b}$. Show further that there exists a number k such that for each such triangle $a+m_{a}=b+m_{b}=k(a+b)$. Finally, find all possible ratios $a: b$ of the sides of these triangles.

Solution: We know that

$$
m_{a}^{2}=\frac{1}{4}\left(2 b^{2}+2 c^{2}-a^{2}\right), \quad m_{b}^{2}=\frac{1}{4}\left(2 a^{2}+2 c^{2}-b^{2}\right)
$$

so

$$
m_{a}^{2}-m_{b}^{2}=\frac{3}{4}\left(b^{2}-a^{2}\right) .
$$

As $m_{a}-m_{b}=b-a \neq 0$ by hypothesis, it follows that $m_{a}+m_{b}=$ $\frac{3}{4}(b+a)$. From the system of equations

$$
\begin{gathered}
m_{a}-m_{b}=b-a \\
m_{a}+m_{b}=\frac{3}{4}(b+a)
\end{gathered}
$$

we find $m_{a}=\frac{1}{8}(7 b-a), m_{b}=\frac{1}{8}(7 a-b)$, and

$$
a+m_{a}=b+m_{b}=\frac{7}{8}(a+b) .
$$

Thus $k=\frac{7}{8}$.
Now we examine for what $a \neq b$ there exists a triangle $A B C$ with sides a, b and medians $m_{a}=\frac{1}{8}(7 b-a), m_{b}=\frac{1}{8}(7 a-b)$. We can find all three side lengths in the triangle $A B_{1} G$, where G is the centroid of the triangle $A B C$ and B_{1} is the midpoint of the side $A C$:

$$
\begin{gathered}
A B_{1}=\frac{b}{2}, \quad A G=\frac{2}{3} m_{a}=\frac{2}{3} \cdot \frac{1}{8}(7 b-a)=\frac{1}{12}(7 b-a) \\
B_{1} G=\frac{1}{3} m_{b}=\frac{1}{3} \cdot \frac{1}{8}(7 a-b)=\frac{1}{24}(7 a-b)
\end{gathered}
$$

Examining the triangle inequalities for these three lengths, we get the condition

$$
\frac{1}{3}<\frac{a}{b}<3
$$

from which the value $\frac{a}{b}=1$ has to be excluded by assumption. This condition is also sufficient: once the triangle $A B_{1} G$ has been constructed, it can always be completed to a triangle $A B C$ with $b=A C, m_{a}=A A_{1}, m_{b}=B B_{1}$. Then from the equality $m_{a}^{2}-m_{b}^{2}=$ $\frac{3}{4}\left(b^{2}-a^{2}\right)$ we would also have $a=B C$.

Problem 4 In a certain language there are only two letters, A and B. The words of this language satisfy the following axioms:
(i) There are no words of length 1 , and the only words of length 2 are $A B$ and $B B$.
(ii) A sequence of letters of length $n>2$ is a word if and only if it can be created from some word of length less than n by the following construction: all letters A in the existing word are left unchanged, while each letter B is replaced by some word. (While performing this operation, the B 's do not all have to be replaced by the same word.)
Show that for any n the number of words of length n equals

$$
\frac{2^{n}+2 \cdot(-1)^{n}}{3}
$$

Solution: Let us call any finite sequence of letters A, B a "string." From here on, we let \cdots denote a (possibly empty) string, while $* * *$ will stand for a string consisting of identical letters. (For example, $\underbrace{B * * * B}_{k}$ is a string of $k B$'s.)

We show that an arbitrary string is a word if and only if it satisfies the following conditions: (a) the string terminates with the letter B; and (b) it either starts with the letter A, or else starts (or even wholly consists of) an even number of B 's.

It is clear that these conditions are necessary: they are satisfied for both words $A B$ and $B B$ of length 2, and they are likewise satisfied by any new word created by the construction described in (ii) if they are satisfied by the words in which the B 's are replaced.

We now show by induction on n that, conversely, any string of length n satisfying the conditions is a word. This is clearly true for $n=1$ and $n=2$. If $n>2$, then a string of length n satisfying the conditions must have one of the forms

$$
A A \cdots B, A B \cdots B, \underbrace{B * * * B}_{2 k} A \cdots B, \underbrace{B * * * B}_{2 k+2}
$$

where $2 \leq 2 k \leq n-2$. We have to show that these four types of strings arise from the construction in (ii) in which the B 's are replaced by strings (of lengths less than n) satisfying the condition - that is, by words in view of the induction hypothesis.

The word $A A \cdots B$ arises as $A(A \cdots B)$ from the word $A B$. The word $A B \cdots B$ arises either as $A(B \cdots B)$ from the word $A B$, or as $(A B)(\cdots B)$ from the word $B B$, depending on whether its initial letter A is followed by an even or an odd number of B 's. The word $\underbrace{B * * * B}_{2 k} A \cdots B$ arises as $(B * * * B)(A \cdots B)$ from the word $B B$, and the word $\underbrace{B * * * B}_{2 k+2}$ as $(\underbrace{B * * * B}_{2 k})(B B)$ from the word $B B$. This completes the proof by induction.
Now we show that the number p_{n} of words of length n is indeed given by the formula

$$
p_{n}=\frac{2^{n}+2 \cdot(-1)^{n}}{3}
$$

It is clearly true for $n=1$ and 2 since $p_{1}=0$ and $p_{2}=2$; and the formula will then follow by induction if we can show that $p_{n+2}=$ $2^{n}+p_{n}$ for each n. But this recursion is obvious because each word of length $n+2$ is either of the form $A \cdots B$ where \cdots is any of 2^{n} strings of length n; or of the form $B B \cdots$ where \cdots is any of the p_{n} words of length n.

Problem 5 In the plane an acute angle $A P X$ is given. Show how to construct a square $A B C D$ such that P lies on side $B C$ and P lies on the bisector of angle $B A Q$ where Q is the intersection of ray $P X$ with $C D$.

Solution: Consider the ration by 90° around the point A that maps B to D, and the points P, C, D into some points $P^{\prime}, C^{\prime}, D^{\prime}$, respectively. Since $\angle P A P^{\prime}=90^{\circ}$, it follows from the nature of exterior angle bisectors that $A P^{\prime}$ bisects $\angle Q A D^{\prime}$. Consequently, the point P^{\prime} has the same distance from $\overline{A D^{\prime}}$ and $\overline{A Q}$, equal to the side length s of square $A B C D$. But this distance is also the length of the altitude $A D$ in triangle $A Q P^{\prime}$; then since the altitudes from A and P^{\prime} in this triangle are equal, we have $A Q=P^{\prime} Q$. Since we can construct P^{\prime}, we can also construct Q as the intersection of line $P X$ with the perpendicular bisector of the segment $A P^{\prime}$. The rest of the construction is obvious, and it is likewise clear that the resulting square $A B C D$ has the required property.

Problem 6 Find all pairs of real numbers a and b such that the system of equations

$$
\frac{x+y}{x^{2}+y^{2}}=a, \quad \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=b
$$

has a solution in real numbers (x, y).
Solution: If the given system has a solution (x, y) for $a=A, b=B$, then it clearly also has a solution $(k x, k y)$ for $a=\frac{1}{k} A, b=k B$, for any $k \neq 0$. It follows that the existence of a solution of the given system depends only on the value of the product $a b$.

We therefore begin by examining the values of the expression

$$
P(u, v)=\frac{(u+v)\left(u^{3}+v^{3}\right)}{\left(u^{2}+v^{2}\right)^{2}}
$$

where the numbers u and v are normalized by the condition $u^{2}+v^{2}=$ 1. This condition implies that

$$
\begin{aligned}
& P(u, v)=(u+v)\left(u^{3}+v^{3}\right)=(u+v)^{2}\left(u^{2}-u v+v^{2}\right) \\
& =\left(u^{2}+2 u v+v^{2}\right)(1-u v)=(1+2 u v)(1-u v)
\end{aligned}
$$

Under the condition $u^{2}+v^{2}=1$ the product $u v$ can attain all values in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (if $u=\cos \alpha$ and $v=\sin \alpha$, then $\left.u v=\frac{1}{2} \sin 2 \alpha\right)$. Hence it suffices to find the range of values of the function $f(t)=(1+2 t)(1-t)$ on the interval $t \in\left[-\frac{1}{2}, \frac{1}{2}\right]$. From the formula

$$
f(t)=-2 t^{2}+t+1=-2\left(t-\frac{1}{4}\right)^{2}+\frac{9}{8}
$$

it follows that this range of values is the closed interval with endpoints $f\left(-\frac{1}{2}\right)=0$ and $f\left(\frac{1}{4}\right)=\frac{9}{8}$.

This means that if the given system has a solution, its parameters a and b must satisfy $0 \leq a b \leq \frac{9}{8}$, where the equality $a b=0$ is possible only if $x+y=0$ (then, however, $a=b=0$).

Conversely, if a and b satisfy $0<a b \leq \frac{9}{8}$, by our proof there exist numbers u and v such that $u^{2}+v^{2}=1$ and $(u+v)\left(u^{3}+v^{3}\right)=a b$. Denoting $a^{\prime}=u+v$ and $b^{\prime}=u^{3}+v^{3}$, the equality $a^{\prime} b^{\prime}=a b \neq 0$ implies that both ratios $\frac{a^{\prime}}{a}$ and $\frac{b}{b^{\prime}}$ have the same value $k \neq 0$. But then $(x, y)=(k u, k v)$ is clearly a solution of the given system for the parameter values a and b.

1.7 France

Problem 1

(a) What is the maximum volume of a cylinder that is inside a given cone and has the same axis of revolution as the cone? Express your answer in terms of the radius R and height H of the cone.
(b) What is the maximum volume of a ball that is inside a given cone? Again, express your answer in terms of R and H.
(c) Given fixed values for R and H, which of the two maxima you found is bigger?

Solution: Let $\ell=\sqrt{R^{2}+H^{2}}$ be the slant height of the given cone; also, orient the cone so that its base is horizontal and its tip is pointing upward.
(a) Intuitively, the cylinder with maximum volume rests against the base of the cone, and the center of the cylinder's base coincides with the center of the cone's base. The top face of the cylinder cuts off a smaller cone at the top of the original cone. If the cylinder has radius r, then the smaller cone has height $r \cdot \frac{H}{R}$ and the cylinder has height $h=H-r \cdot \frac{H}{R}$. Then the volume of the cylinder is

$$
\pi r^{2} h=\pi r^{2} H\left(1-\frac{r}{R}\right)=4 \pi R^{2} H\left(\frac{r}{2 R} \cdot \frac{r}{2 R} \cdot\left(1-\frac{r}{R}\right)\right) .
$$

And by AM-GM on $\frac{r}{2 R}, \frac{r}{2 R}$, and $1-\frac{r}{R}$ this is at most

$$
4 \pi R^{2} H \cdot \frac{1}{27}\left(\frac{r}{2 R}+\frac{r}{2 R}+\left(1-\frac{r}{R}\right)\right)^{3}=\frac{4}{27} \pi R^{2} H
$$

with equality when $r / 2 R=1-r / R \Longleftrightarrow r=\frac{2}{3} R$.
(b) Intuitively, the sphere with maximum volume is tangent to the base and lateral face of the cone; and its center lies on the cone's axis. Say the sphere has radius r.

Take a planar cross-section of the cone slicing through its axis; this cuts off a triangle from the cone and a circle from the sphere. The triangle's side lengths are ℓ, ℓ, and $2 R$; and its height (from the side of length $2 R$) is H. The circle has radius r and is the incircle of this triangle.

The area K of the triangle is $\frac{1}{2}(2 R)(H)=R H$ and its semiperimeter is $s=R+\ell$. Then since $K=r s$ we have $r=\frac{R H}{R+\ell}$,
and thus the volume of the sphere is

$$
\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{R H}{R+\ell}\right)^{3}
$$

(c) We claim that when $h / R=\sqrt{3}$ or $2 \sqrt{6}$, the two volumes are equal; when $\sqrt{3}<h / R<2$, the sphere has larger volume; and when $0<h / R<\sqrt{3}$ or $2<h / R$, the cylinder has larger volume. We wish to compare $\frac{4}{27} \pi R^{2} H$ and $\frac{4}{3} \pi\left(\frac{R H}{R+\ell}\right)^{3}$; equivalently, multiplying by $\frac{27}{4 \pi R^{2} H}(R+\ell)^{3}$, we wish to compare $(R+\ell)^{3}$ and $9 R H^{2}=9 R\left(\ell^{2}-R^{2}\right)$. Writing $\phi=\ell / R$, this is equivalent to comparing $(1+\phi)^{3}$ and $9\left(\phi^{2}-1\right)$. Now,

$$
(1+\phi)^{3}-9\left(\phi^{2}-1\right)=\phi^{3}-6 \phi^{2}+3 \phi+10=(\phi+1)(\phi-2)(\phi-5) .
$$

Thus when $\phi=2$ or 5 , the volumes are equal; when $2<\phi<5$, the sphere has larger volume; and when $1<\phi<2$ or $5<\phi$, the cylinder has larger volume. Comparing R and H instead of R and ℓ yields the conditions stated before.

Problem 2 Find all integer solutions to $(n+3)^{n}=\sum_{k=3}^{n+2} k^{n}$.
Solution: $n=2$ and $n=3$ are solutions to the equations; we claim they are the only ones.

First observe that the function $f(n)=\left(\frac{n+3}{n+2}\right)^{n}=\left(1+\frac{1}{n+2}\right)^{n}$ is an increasing function for $n>0$. To see this, note that the derivative of $\ln f(n)$ with respect to n is $\ln \left(1+\frac{1}{n+2}\right)-\frac{n}{(n+2)(n+3)}$. By the Taylor expansion,

$$
\begin{aligned}
& \ln \left(1+\frac{1}{n+2}\right)=\sum_{j=1}^{\infty} \frac{1}{(n+2)^{2 j}}\left[\frac{1}{2 j-1}(n+2)-\frac{1}{2 j}\right] \\
& \quad>\frac{2(n+2)-1}{2(n+2)^{2}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \frac{d}{d n} \ln f(n)=\ln \left(\frac{n+3}{n+2}\right)-\frac{n}{(n+2)(n+3)} \\
& \quad>\frac{2(n+2)-1}{2(n+2)^{2}}-\frac{n}{(n+2)^{2}}=\frac{3}{2(n+2)^{2}}>0
\end{aligned}
$$

Thus $\ln f(n)$ and therefore $f(n)$ is indeed increasing.

Now, notice that if $f(n)>2$ then we have

$$
\left(\frac{2}{1}\right)^{n}>\left(\frac{3}{2}\right)^{n}>\cdots>\left(\frac{n+3}{n+2}\right)^{n}>2
$$

so that

$$
(n+3)^{n}>2(n+2)^{n}>\cdots>2^{j}(n+3-j)^{n}>\cdots>2^{n} \cdot(3)^{n}
$$

Then

$$
\begin{aligned}
3^{n} & +4^{n}+\cdots+(n+2)^{n}<\left(\frac{1}{2^{n}}+\frac{1}{2^{n-1}}+\cdots+\frac{1}{2}\right)(n+3)^{n} \\
& =\left(1-\frac{1}{2^{n}}\right)(n+3)^{n}<(n+3)^{n}
\end{aligned}
$$

so the equality does not hold.
Then since $2<f(6)<f(7)<\cdots$, the equality must fail for all $n \geq 6$. Quick checks show it also fails for $n=1,4,5$ (in each case, one side of the equation is odd while the other is even). Therefore the only solutions are $n=2$ and $n=3$.

Problem 3 For which acute-angled triangle is the ratio of the shortest side to the inradius maximal?

Solution: Let the sides of the triangle have lengths $a \leq b \leq c$; let the angles opposite them be A, B, C; let the semiperimeter be $s=\frac{1}{2}(a+b+c)$; and let the inradius be r. Without loss of generality say the triangle has circumradius $R=\frac{1}{2}$ and that $a=\sin A, b=\sin B$, $c=\sin C$.

The area of the triangle equals both $r s=\frac{1}{2} r(\sin A+\sin B+\sin C)$ and $a b c / 4 R=\frac{1}{2} \sin A \sin B \sin C$. Thus

$$
r=\frac{\sin A \sin B \sin C}{\sin A+\sin B+\sin C}
$$

and

$$
\frac{a}{r}=\frac{\sin A+\sin B+\sin C}{\sin B \sin C}
$$

Since $A=180^{\circ}-B-C, \sin A=\sin (B+C)=\sin B \cos C+\cos B \sin C$ and we also have

$$
\frac{a}{r}=\cot B+\csc B+\cot C+\csc C
$$

Note that $f(x)=\cot x+\csc x$ is a decreasing function along the interval $0^{\circ}<x<90^{\circ}$. Now there are two cases: $B \leq 60^{\circ}$, or $B>60^{\circ}$.

If $B \leq 60^{\circ}$, then assume that $A=B$; otherwise the triangle with angles $A^{\prime}=B^{\prime}=\frac{1}{2}(A+B) \leq B$ and $C^{\prime}=C$ has a larger ratio a^{\prime} / r^{\prime}. Then since $C<90^{\circ}$ we have $45^{\circ}<A \leq 60^{\circ}$. Now,

$$
\frac{a}{r}=\frac{\sin A+\sin B+\sin C}{\sin B \sin C}=\frac{2 \sin A+\sin (2 A)}{\sin A \sin (2 A)}=2 \csc (2 A)+\csc A
$$

Now $\csc x$ has second derivative $\csc x\left(\csc ^{2} x+\cot ^{2} x\right)$, which is strictly positive when $0^{\circ}<x<180^{\circ}$; thus both $\csc x$ and $\csc (2 x)$ are strictly convex along the interval $0^{\circ}<x<90^{\circ}$. Therefore $g(A)=$ $2 \csc (2 A)+\csc A$, a convex function in A, is maximized in the interval $45^{\circ} \leq A \leq 60^{\circ}$ at one of the endpoints. Since $g\left(45^{\circ}\right)=2+\sqrt{2}<$ $2 \sqrt{3}=g\left(60^{\circ}\right)$, it is maximized when $A=B=C=60^{\circ}$.

As for the case when $B>60^{\circ}$, since $C>B>60^{\circ}$, the triangle with $A^{\prime}=B^{\prime}=C^{\prime}=60^{\circ}$ has a larger ratio a^{\prime} / r^{\prime}. Therefore the maximum ratio is $2 \sqrt{3}$, attained with an equilateral triangle.

Problem 4 There are 1999 red candies and 6661 yellow candies on a table, made indistinguishable by their wrappers. A gourmand applies the following algorithm until the candies are gone:
(a) If there are candies left, he takes one at random, notes its color, eats it, and goes to (b).
(b) If there are candies left, he takes one at random, notes its color, and
(i) if it matches the last one eaten, he eats it also and returns to (b).
(ii) if it does not match the last one eaten, he wraps it up again, puts it back, and goes to (a).
Prove that all the candies will eventually be eaten. Find the probability that the last candy eaten is red.

Solution: If there are finitely many candies left at any point, then at the next instant the gourmand must perform either step (a), part (i) of step (b), or part (ii) of step (b). He eats a candy in the first two cases; in the third case, he returns to step (a) and eats a candy. Since there are only finitely many candies, the gourmand must eventually eat all the candies.

We now prove by induction on the total number of candies that if we start with $r>0$ red candies and $y>0$ yellow candies immediately
before step (a), then the probability is $\frac{1}{2}$ that the last candy eaten is red.

Suppose that the claim is true for all smaller amounts of candy. After the gourmand first completes steps (a) and (b) exactly once, suppose there are r^{\prime} red candies and y^{\prime} yellow candies left; we must have $r^{\prime}+y^{\prime}<r+y$. The chances that $r^{\prime}=0$ is

$$
\frac{r}{r+y} \cdot \frac{r-1}{r+y-1} \cdots \cdots \frac{1}{y+1}=\frac{1}{\binom{r+y}{r}}
$$

Similarly, the chances that $y^{\prime}=0$ is $\frac{1}{\binom{r+y}{y}}=\frac{1}{\binom{r+y}{r}}$. (In the case $r=y=1$, this proves the claim.)

Otherwise, the probability is $1-\frac{2}{\binom{r+y}{r}}$ that both r^{\prime} and y^{\prime} are still positive. By the induction hypothesis in this case the last candy is equally likely to be red as it is yellow. Thus the overall probability that the last candy eaten is red is

$$
\underbrace{\frac{1}{\binom{r+y}{r}}}_{y^{\prime}=0}+\frac{1}{2} \underbrace{\left(1-\frac{2}{\binom{r+y}{r}}\right)}_{r^{\prime}, y^{\prime}>0}=\frac{1}{2} .
$$

This completes the inductive step, and the proof.
Problem 5 With a given triangle, form three new points by reflecting each vertex about the opposite side. Show that these three new points are collinear if and only if the the distance between the orthocenter and the circumcenter of the triangle is equal to the diameter of the circumcircle of the triangle.

Solution: Let the given triangle be $A B C$ and let the reflections of A, B, C across the corresponding sides be D, E, F. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of $\overline{B C}, \overline{C A}, \overline{A B}$, and as usual let G, H, O denote the triangle's centroid, orthocenter, and circumcenter. Let triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ be the triangle for which A, B, C are the midpoints of $B^{\prime \prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime \prime}, A^{\prime \prime} B^{\prime \prime}$, respectively. Then G is the centroid and H is the circumcenter of triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Let $D^{\prime}, E,{ }^{\prime} F^{\prime}$ denote the projections of O on the lines $B^{\prime \prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime \prime}, A^{\prime \prime} B^{\prime \prime}$, respectively.

Consider the homothety h with center G and ratio $-1 / 2$. It maps $A, B, C, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ into $A^{\prime}, B^{\prime}, C^{\prime}, A, B, C$, respectively. Note that $A^{\prime} D^{\prime} \perp B C$ since O is the orthocenter of triangle $A^{\prime} B^{\prime} C^{\prime}$. This implies $A D: A^{\prime} D^{\prime}=2: 1=G A: G A^{\prime}$ and $\angle D A G=\angle D^{\prime} A^{\prime} G$. We conclude
that $h(D)=D^{\prime}$. Similarly, $h(E)=E^{\prime}$ and $h(F)=F^{\prime}$. Thus, D, E, F are collinear if and only if $D^{\prime}, E^{\prime}, F^{\prime}$ are collinear. Now $D^{\prime}, E^{\prime}, F^{\prime}$ are the projections of O on the sides $B^{\prime \prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime \prime}, A^{\prime \prime} B^{\prime \prime}$, respectively. By Simson's theorem, they are collinear if and only if O lies on the circumcircle of triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Since the circumradius of triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is $2 R, O$ lies on its circumcircle if and only if $O H=2 R$.

1.8 Hong Kong (China)

Problem 1 Let $P Q R S$ be a cyclic quadrilateral with $\angle P S R=90^{\circ}$, and let H and K be the respective feet of perpendiculars from Q to lines $P R$ and $P S$. Prove that line $H K$ bisects $\overline{Q S}$.

First Solution: Since $\overline{Q K}$ and $\overline{R S}$ are both perpendicular to $\overline{P S}$, $\overline{Q K}$ is parallel to $\overline{R S}$ and thus $\angle K Q S=\angle R S Q$. Since $P Q R S$ is cyclic, $\angle R S Q=\angle R P Q$. Since $\angle P K Q=\angle P H Q=90^{\circ}, P K H Q$ is also cyclic and it follows that $\angle R P Q=\angle H P Q=\angle H K Q$. Thus, $\angle K Q S=\angle H K Q$; since triangle $K Q S$ is right, it follows that line $H K$ bisects $\overline{Q S}$.

Second Solution: The Simson line from Q with respect to $\triangle P R S$
 $R S$. Thus, line $H K$ is line $F K$, a diagonal in rectangle $S F Q K$, so it bisects the other diagonal, $\overline{Q S}$.

Problem 2 The base of a pyramid is a convex nonagon. Each base diagonal and each lateral edge is colored either black or white. Both colors are used at least once. (Note that the sides of the base are not colored.) Prove that there are three segments colored the same color which form a triangle.

Solution: Let us assume the contrary. From the pigeonhole principle, 5 of the lateral edges must be of the same color; assume they are black, and say they are the segments from the vertex V to B_{1}, B_{2}, B_{3}, B_{4}, and B_{5} where $B_{1} B_{2} B_{3} B_{4} B_{5}$ is a convex pentagon (and where the B_{i} 's are not necessarily adjacent vertices of the nonagon). The $\overline{B_{i} B_{i+1}}$ (where $B_{6}=B_{1}$) cannot all be sides of the nonagon, so without loss of generality suppose that $B_{1} B_{2}$ is colored. Then because triangle $V B_{i} B_{j}$ cannot have three sides colored black, each segment $B_{1} B_{2}, B_{2} B_{4}, B_{4} B_{1}$ must be white; but then triangle $B_{1} B_{2} B_{4}$ has three sides colored white, a contradiction.

Problem 3 Let s and t be nonzero integers, and let (x, y) be any ordered pair of integers. A move changes (x, y) to $(x-t, y-s)$. The pair (x, y) is good if after some (possibly zero) number of moves it becomes a pair of integers that are not relatively prime.
(a) Determine if (s, t) is a good pair;
(b) Prove that for any s, t there exists a pair (x, y) which is not good.

Solution:

(a) Let us assume that (s, t) is not good. Then, after one move, we have $(s-t, t-s)$, so we may assume without loss of generality that $s-t=1$ and $t-s=-1$ since these numbers must be relatively prime. Then $s+t$ cannot equal 0 because it is odd; also, $s+t=$ $(s-t)+2 t \neq(s-t)+0=1$, and $s+t=(t-s)+2 s \neq(t-s)+0=-1$. Hence some prime p divides $s+t$. After $p-1$ moves, (s, t) becomes $(s-(p-1) t, t-(p-1) s) \equiv(s+t, t+s) \equiv(0,0)(\bmod p), \mathrm{a}$ contradiction. Thus (s, t) is good.
(b) Let x and y be integers which satisfy $s x-t y=g$, where $g=$ $\operatorname{gcd}(s, t)$. Dividing by g, we find $s^{\prime} x-t^{\prime} y=1$, so $\operatorname{gcd}(x, y)=1$. Now, suppose by way of contradiction that after k moves some prime p divides both $x-k t$ and $y-k s$. We then have

$$
\begin{aligned}
0 & \equiv x-k t \equiv y-k s \\
& \Longrightarrow 0 \equiv s(x-k t) \equiv t(y-k s) \\
& \Longrightarrow 0 \equiv s x-t y=g \quad(\bmod p)
\end{aligned}
$$

Thus p divides g, which divides s and t, so the first equation above becomes $0 \equiv x \equiv y(\bmod p)$; but x and y are relatively prime, a contradiction. Thus (x, y) is not good.

Problem 4 Let f be a function defined on the positive reals with the following properties:
(i) $f(1)=1$;
(ii) $f(x+1)=x f(x)$;
(iii) $f(x)=10^{g(x)}$,
where $g(x)$ is a function defined on the reals satisfying

$$
g(t y+(1-t) z) \leq t g(y)+(1-t) g(z)
$$

for all real y, z and any $0 \leq t \leq 1$.
(a) Prove that

$$
t[g(n)-g(n-1)] \leq g(n+t)-g(n) \leq t[g(n+1)-g(n)]
$$

where n is an integer and $0 \leq t \leq 1$.
(b) Prove that

$$
\frac{4}{3} \leq f\left(\frac{1}{2}\right) \leq \frac{4 \sqrt{2}}{3}
$$

Solution:

(a) Setting $t=\frac{1}{2}$ in the given inequality, we find that $g\left(\frac{1}{2}(y+z)\right) \leq$ $\frac{1}{2}(g(y)+g(z))$. Now fix t (perhaps not equal to $\frac{1}{2}$) constant; letting $y=n-t$ and $z=n+t$ in $g\left(\frac{1}{2}(y+z)\right) \leq \frac{1}{2}(g(y)+g(z))$ gives $g(n) \leq \frac{1}{2}(g(n-t)+g(n+t))$, or

$$
\begin{equation*}
g(n)-g(n-t) \leq g(n+t)-g(n) \tag{1}
\end{equation*}
$$

Plugging in $z=n, y=n-1$ into the given inequality gives $g(t(n-1)+(1-t) n) \leq t g(n-1)+(1-t) g(n)$, or

$$
t[g(n)-g(n-1)] \leq g(n)-g(n-t)
$$

Combining this with (1) proves the inequality on the left side. And the inequality on the right side follows from the given inequality with $z=n, y=n+1$.
(b) From (ii), $f\left(\frac{3}{2}\right)=\frac{1}{2} f\left(\frac{1}{2}\right)$, and $f\left(\frac{5}{2}\right)=\frac{3}{2} f\left(\frac{3}{2}\right)=\frac{3}{4} f\left(\frac{1}{2}\right)$. Also, $f(2)=1 \cdot f(1)=1$, and $f(3)=2 f(2)=2$. Now, if we let $n=2$ and $t=\frac{1}{2}$ in the inequality in part (a), we find $\frac{1}{2}[g(2)-g(1)] \leq g\left(\frac{5}{2}\right)-g(2) \leq \frac{1}{2}[g(3)-g(2)]$. Exponentiating with base 10 yields $\sqrt{\frac{f(2)}{f(1)}} \leq \frac{f\left(\frac{5}{2}\right)}{f(2)} \leq \sqrt{\frac{f(3)}{f(2)}}$, or $1 \leq f\left(\frac{5}{2}\right) \leq \sqrt{2}$. Plugging in $f\left(\frac{5}{2}\right)=\frac{3}{4} f\left(\frac{1}{2}\right)$ yields the desired result.

1.9 Hungary

Problem 1 I have $n \geq 5$ real numbers with the following properties:
(i) They are nonzero, but at least one of them is 1999.
(ii) Any four of them can be rearranged to form a geometric progression.
What are my numbers?
Solution: First suppose that the numbers are all nonnegative. If $x \leq y \leq z \leq w \leq v$ are any five of the numbers, then x, y, z, w; $x, y, z, v ; \quad x, y, w, v ; \quad x, z, w, v$; and y, z, w, v must all be geometric progressions. Comparing each two successive progressions in this list we find that $x=y=z=w=v$. Thus all our numbers are equal.

If some numbers are negative in our original list, replace each number x by $|x|$. The geometric progression property is preserved, and thus from above all the values $|x|$ are equal. Hence, each original number was 1999 or -1999 . And because $n \geq 5$, some three numbers are equal. But no geometric progression can be formed from three -1999 s and a 1999, or from three 1999s and a -1999 . Therefore all the numbers must be equal - to 1999.

Problem 2 Let $A B C$ be a right triangle with $\angle C=90^{\circ}$. Two squares S_{1} and S_{2} are inscribed in triangle $A B C$ such that S_{1} and $A B C$ share a common vertex C, and S_{2} has one of its sides on $A B$. Suppose that $\left[S_{1}\right]=441$ and $\left[S_{2}\right]=440$. Calculate $A C+B C$.

Solution: Let $S_{1}=C D E F$ and $S_{2}=K L M N$ with D and K on $\overline{A C}$ and N on $\overline{B C}$. Let $s_{1}=21, s_{2}=\sqrt{440}$ and $a=B C, b=C A, c=A B$. Using ratios between similar triangles $A E D, A B C, E B F$ we get $c=$ $A B=A E+E B=c\left(s_{1} / a+s_{1} / b\right)$ or $s_{1}(1 / a+1 / b)=1$. Since triangles $A B C, A K L, N B M$ are similar we have $c=A B=A L+L M+M B=$ $s_{2}(b / a+1+a / b)$ and $s_{2}=a b c /\left(a b+c^{2}\right)$. Then

$$
\begin{aligned}
& \frac{1}{s_{2}^{2}}-\frac{1}{s_{1}^{2}}=\left(\frac{1}{c}+\frac{c}{a b}\right)^{2}-\left(\frac{1}{a}+\frac{1}{b}\right)^{2} \\
& =\left(\frac{1}{c^{2}}+\frac{c^{2}}{a^{2} b^{2}}+\frac{2}{a b}\right)-\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{2}{a b}\right)=\frac{1}{c^{2}}
\end{aligned}
$$

Thus $c=1 / \sqrt{1 / s_{2}^{2}-1 / s_{1}^{2}}=21 \sqrt{440}$. Solving $s_{2}=a b c /\left(a b+c^{2}\right)$ for $a b$ yields $a b=s_{2} c^{2} /\left(c-s_{2}\right)=21^{2} \cdot 22$. Finally, $A C+B C=a+b=$ $a b / s_{1}=21 \cdot 22=462$.

Problem 3 Let O and K be the centers of the respective spheres tangent to the faces, and the edges, of a right pyramid whose base is a 2 by 2 square. Determine the volume of the pyramid if O and K are equidistant from the base.

Solution: Let r, R be the spheres' respective radii. Let the pyramid have base $A B C D$, vertex P, and height h. By symmetry, O and K lie on the altitude through P.

Take a cross-section of the pyramid with a plane perpendicular to the base, cutting the base at a line through its center parallel to $\overline{A B}$. It cuts off an isosceles triangle from the pyramid with base 2 and legs $\sqrt{h^{2}+1}$; the triangle's incircle is the cross-section of the sphere centered at O and hence has radius r. On the one hand, the area of this triangle is the product of its inradius and semiperimeter, or $\frac{1}{2} r\left(2+2 \sqrt{h^{2}+1}\right)$. On the other hand, it equals half of the product of its base and height, or $\frac{1}{2} \cdot 2 \cdot h$. Setting these quantities equal, we have $r=\left(\sqrt{h^{2}+1}-1\right) / h$.

Next, by symmetry the second sphere is tangent to $\overline{A B}$ at its midpoint M. Then since K must be distance r from plane $A B C D$, we have $R^{2}=K M^{2}=r^{2}+1$. Furthermore, if the second sphere is tangent to $\overline{A P}$ at N, then by equal tangents we have $A N=A M=1$.

Then $P N=P A-1=\sqrt{h^{2}+2}-1$. Also, $P K=h+r$ if K is on the opposite side of plane $A B C D$ as O, and it equals $h-r$ otherwise. Thus

$$
\begin{gathered}
P K^{2}=P N^{2}+N K^{2} \\
(h \pm r)^{2}=\left(\sqrt{h^{2}+2}-1\right)^{2}+\left(r^{2}+1\right) \\
\pm 2 r h=4-2 \sqrt{h^{2}+2}
\end{gathered}
$$

Recalling that $r=\left(\sqrt{h^{2}+1}-1\right) / h$, this gives

$$
\pm\left(\sqrt{h^{2}+1}-1\right)=2-\sqrt{h^{2}+2}
$$

This equation has the unique solution $h=\sqrt{7} / 3$. Thus the volume of the pyramid is $\frac{1}{3} \cdot 4 \cdot \frac{\sqrt{7}}{3}=4 \sqrt{7} / 9$.

Problem 4 For any given positive integer n, determine (as a function of n) the number of ordered pairs (x, y) of positive integers such that

$$
x^{2}-y^{2}=10^{2} \cdot 30^{2 n}
$$

Further prove that the number of such pairs is never a perfect square.
Solution: Since $10^{2} \cdot 30^{2 n}$ is even, x and y must have the same parity. Then (x, y) is a valid solution if and only if $(u, v)=\left(\frac{x+y}{2}, \frac{x-y}{2}\right)$ is a pair of positive integers that satisfies $u>v$ and $u v=5^{2} \cdot 30^{2 n}$. Now $5^{2} \cdot 30^{2 n}=2^{2 n} \cdot 3^{2 n} \cdot 5^{2 n+2}$ has exactly $(2 n+1)^{2}(2 n+3)$ factors; thus without the condition $u>v$ there are exactly $(2 n+1)^{2}(2 n+3)$ such pairs (u, v). Exactly one pair has $u=v$, and by symmetry half of the remaining pairs have $u>v$; and it follows that there are $\frac{1}{2}\left((2 n+1)^{2}(2 n+3)-1\right)=(n+1)\left(4 n^{2}+6 n+1\right)$ valid pairs.

Now suppose that $(n+1)\left(4 n^{2}+6 n+1\right)$ were a square. Since $n+1$ and $4 n^{2}+6 n+1=(4 n+2)(n+1)-1$ are coprime, $4 n^{2}+6 n+1$ must be a square as well; but $(2 n+1)^{2}<4 n^{2}+6 n+1<(2 n+2)^{2}$, a contradiction.

Problem 5 For $0 \leq x, y, z \leq 1$, find all solutions to the equation

$$
\frac{x}{1+y+z x}+\frac{y}{1+z+x y}+\frac{z}{1+x+y z}=\frac{3}{x+y+z}
$$

Solution: Assume $x+y+z>0$, since otherwise the equation is meaningless. $(1-z)(1-x) \geq 0 \Rightarrow 1+z x \geq x+z$, and hence $x /(1+y+z x) \leq x /(x+y+z)$. Doing this for the other two fractions yields that the left hand side is at most $(x+y+z) /(x+y+z) \leq$ $3 /(x+y+z)$. If equality holds, we must have in particular that $x+y+z=3 \Rightarrow x=y=z=1$. We then verify that this is indeed a solution.

Problem 6 The midpoints of the edges of a tetrahedron lie on a sphere. What is the maximum volume of the tetrahedron?

Solution: Let the sphere have center O. First let A, B, C be any points on its surface. Then $[O A B]=\frac{1}{2} O A \cdot O B \sin \angle A O B \leq \frac{1}{2} r^{2}$. Likewise, the height from C to plane $O A B$ is at most $C O=r$, whence tetrahedron $O A B C$ has maximum volume $r^{3} / 6$. Now, if $\left\{A, A^{\prime}\right\},\left\{B, B^{\prime}\right\},\left\{C, C^{\prime}\right\}$ are pairs of antipodal points on the sphere,
the octahedron $A B C A^{\prime} B^{\prime} C^{\prime}$ can be broken up into 8 such tetrahedra with vertex O and therefore has maximum volume $4 r^{3} / 3$. Equality holds for a regular octahedron.

In the situation of the problem, shrink the tetrahedron T (with volume V) by a factor of $1 / 2$ about each vertex to obtain four tetrahedra, each with volume $V / 8$. Then the six midpoints form an octahedron with volume $V / 2$. Moreover, the segment connecting two opposite vertices C and D of this octahedron has T 's centroid P as its midpoint. If $O \neq P$ then line $O P$ is a perpendicular bisector of each segment, and then all these segments must lie in the plane through P perpendicular to line $O P$; but then $V / 2=0$. Otherwise, the midpoints form three pairs of antipodal points, whose volume is at most $4 r^{3} / 3$ from the last paragraph. Therefore $V \leq 8 r^{3} / 3$, with equality for a regular tetrahedron.

Problem 7 A positive integer is written in each square of an n^{2} by n^{2} chess board. The difference between the numbers in any two adjacent squares (sharing an edge) is less than or equal to n. Prove that at least $\lfloor n / 2\rfloor+1$ squares contain the same number.

Solution: Consider the smallest and largest numbers a and b on the board. They are separated by at most $n^{2}-1$ squares horizontally and $n^{2}-1$ vertically, so there is a path from one to the other with length at most $2\left(n^{2}-1\right)$. Then since any two successive squares differ by at most n, we have $b-a \leq 2\left(n^{2}-1\right) n$. But since all numbers on the board are integers lying between a and b, only $2\left(n^{2}-1\right) n+1$ distinct numbers can exist; and because $n^{4}>\left(2\left(n^{2}-1\right) n+1\right)(n / 2)$, more than $n / 2$ squares contain the same number, as needed.

Problem 8 One year in the 20th century, Alex noticed on his birthday that adding the four digits of the year of his birth gave his actual age. That same day, Bernath-who shared Alex's birthday but was not the same age as him-also noticed this about his own birth year and age. That day, both were under 99. By how many years do their ages differ?

Solution: Let c be the given year. Alex's year of birth was either $18 \underline{u v}$ or $19 \underline{u v}$ respectively (where u and v are digits), and thus either $c=18 \underline{u v}+(9+u+v)=1809+11 u+2 v$ or $c=19 \underline{u v}+(10+u+v)=$ $1910+11 u+2 v$.

Similarly, let Bernath's year of birth end in the digits u^{\prime}, v^{\prime}. Alex and Bernath could not have been born in the same century. Otherwise, we would have $11 u+2 v=11 u^{\prime}+2 v^{\prime} \Rightarrow 2\left(v-v^{\prime}\right)=11\left(u^{\prime}-u\right)$; thus either $(u, v)=\left(u^{\prime}, v^{\prime}\right)$ or else $\left|v-v^{\prime}\right| \geq 11$, which are both impossible. Then without loss of generality say Alex was born in the 1800s, and that $1809+11 u+2 v=1910+11 u^{\prime}+2 v^{\prime} \Rightarrow 11\left(u-u^{\prime}\right)+2\left(v-v^{\prime}\right)=$ $101 \Rightarrow u-u^{\prime}=9, v-v^{\prime}=1$. The difference between their ages then equals $19 \underline{u^{\prime} v^{\prime}}-18 \underline{u v}=100+10\left(u^{\prime}-u\right)+\left(v^{\prime}-v\right)=9$.

Problem 9 Let $A B C$ be a triangle and D a point on the side $A B$. The incircles of the triangles $A C D$ and $C D B$ touch each other on $\overline{C D}$. Prove that the incircle of $A B C$ touches $\overline{A B}$ at D.

Solution: Suppose that the incircle of a triangle $X Y Z$ touches sides $Y Z, Z X, X Y$ at U, V, W. Then (using equal tangents) $X Y+Y Z+$ $Z X=(Y W+Y U)+(X W+Z U)+X Z=(2 Y U)+(X Z)+X Z$, and $Y U=\frac{1}{2}(X Y+Y Z-Z X)$.

Thus if the incircles of triangles $A C D$ and $C D B$ touch each other at E, then $A D+D C-C A=2 D E=B D+D C-C B \Rightarrow A D-C A=$ $(A B-A D)-B C \Rightarrow A D=\frac{1}{2}(C A+A B-B C)$. But if the incircle of $A B C$ is tangent to $\overline{A B}$ at D^{\prime}, then $A D^{\prime}=\frac{1}{2}(C A+A B-B C)$ as well-so $D=D^{\prime}$, as desired.

Problem 10 Let R be the circumradius of a right pyramid with a square base. Let r be the radius of the sphere touching the four lateral faces and the circumsphere. Suppose that $2 R=(1+\sqrt{2}) r$. Determine the angle between adjacent faces of the pyramid.

Solution: Let P be the pyramid's vertex, $A B C D$ the base, and M, N the midpoints of sides $A B, C D$. By symmetry, both spheres are centered along the altitude from P. Plane $P M N$ intersects the pyramid in triangle $P M N$ and meets the spheres in great circles. Let the smaller circle have center O; it is tangent to $\overline{P M}, \overline{P N}$, and the large circle at some points U, V, W. Again by symmetry W is lies on the altitude from P, implying that it is diametrically opposite P on the larger circle. Thus $O P=2 R-r=\sqrt{2} r$, triangle $O U P$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, and $\angle O P U=\angle O P V=45^{\circ}$. Therefore triangle $N P M$ is isosceles right, and the distance from P to plane $A B C D$ equals $B C / 2$.

Hence one can construct a cube with P as its center and $A B C D$ as a face; this cube can be decomposed into six pyramids congruent to $P A B C D$. In particular, three such pyramids have a vertex at A; so three times the dihedral angle between faces $P A B, P A D$ forms one revolution, and this angle is $2 \pi / 3$. Stated differently, say the three pyramids are $P A B D, P A D E, P A E B$; let P^{\prime} be the midpoint of $\overline{A P}$, and let $B^{\prime}, D^{\prime}, E^{\prime}$ be points on planes $P A B, P A D, P A E$ such that lines $B^{\prime} P^{\prime}, D^{\prime} P^{\prime}, E^{\prime} P^{\prime}$ are all perpendicular to line $A P$. The desired angle is the angle between any two of these lines. But since these three lines all lie in one plane (perpendicular to line $A P$), this angle must be $2 \pi / 3$.

Problem 11 Is there a polynomial $P(x)$ with integer coefficients such that $P(10)=400, P(14)=440$, and $P(18)=520$?

Solution: If P exists, then by taking the remainder modulo ($x-$ $10)(x-14)(x-18)$ we may assume P is quadratic. Writing $P(x)=$ $a x^{2}+b x+c$, direct computation reveals $P(x+4)+P(x-4)-2 P(x)=$ $32 a$ for all x. Plugging in $x=14$ gives $40=32 a$, which is impossible since a must be an integer. Therefore no such polynomial exists.

Problem 12 Let a, b, c be positive numbers and $n \geq 2$ be an integer such that $a^{n}+b^{n}=c^{n}$. For which k is it possible to construct an obtuse triangle with sides a^{k}, b^{k}, c^{k} ?

Solution: First, $a, b<c$. Thus for $m>n$ we have $c^{m}=$ $c^{m-n}\left(a^{n}+b^{n}\right)>a^{m-n} a^{n}+b^{m-n} b^{n}=a^{m}+b^{m}$, while for $m<n$ we have $c^{m}=c^{m-n}\left(a^{n}+b^{n}\right)<a^{m-n} a^{n}+b^{m-n} b^{n}=a^{m}+b^{m}$. Now, a triangle with sides a^{k}, b^{k}, c^{k} exists iff $a^{k}+b^{k}>c^{k}$, and it is then obtuse iff $\left(a^{k}\right)^{2}+\left(b^{k}\right)^{2}<\left(c^{k}\right)^{2}$, i.e. $a^{2 k}+b^{2 k}<c^{2 k}$. From our first observation, these correspond to $k<n$ and $2 k>n$, respectively; and hence $n / 2<k<n$.

Problem 13 Let $n>1$ be an arbitrary real number and k be the number of positive primes less than or equal to n. Select $k+1$ positive integers such that none of them divides the product of all the others. Prove that there exists a number among the $k+1$ chosen numbers which is bigger than n.

Solution: Suppose otherwise; then our chosen numbers a_{1}, \ldots, a_{k+1} have a total of at most k distinct prime factors (i.e. the primes less
than or equal to n). Let $o_{p}(a)$ denote the highest value of d such that $p^{d} \mid a$. Also let $q=a_{1} a_{2} \cdots a_{k+1}$. Then for each prime p, $o_{p}(q)=\sum_{i=1}^{k+1} o_{p}\left(a_{i}\right)$, and it follows that there can be at most one "hostile" value of i for which $o_{p}\left(a_{i}\right)>o_{p}(q) / 2$. Since there are at most k primes which divide q, there is some i which is not hostile for any such prime. Then $2 o_{p}\left(a_{i}\right) \leq o_{p}(q) \Rightarrow o_{p}\left(a_{i}\right) \leq o_{p}\left(q / a_{i}\right)$ for each prime p dividing q, implying that $a_{i} \mid q / a_{i}$, a contradiction.

Problem 14 The polynomial $x^{4}-2 x^{2}+a x+b$ has four distinct real roots. Show that the absolute value of each root is smaller than $\sqrt{3}$.

Solution: Let the roots be p, q, r, s. We have $p+q+r+s=0, p q+$ $p r+p s+q r+q s+r s=-2$, and hence $p^{2}+q^{2}+r^{2}+s^{2}=0^{2}-2(-2)=4$. But by Cauchy-Schwarz, $(1+1+1)\left(q^{2}+r^{2}+s^{2}\right) \geq(q+r+s)^{2}$ for any real q, r, s; furthermore, since q, r, s must be distinct, the inequality becomes strict. Thus $4=p^{2}+q^{2}+r^{2}+s^{2}>p^{2}+(-p)^{2} / 3=4 p^{2} / 3$ or $|p|<\sqrt{3}$, and the same argument holds for q, r, s.

Problem 15 Each side of a convex polygon has integral length and the perimeter is odd. Prove that the area of the polygon is at least $\sqrt{3} / 4$.

Solution:

Lemma 1. If $0 \leq x, y \leq 1$, then

$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}} \geq \sqrt{1-(x+y-1)^{2}}
$$

Proof: Squaring and subtracting $2-x^{2}-y^{2}$ from both sides gives the equivalent inequality $2 \sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)} \geq-2(1-x)(1-y)$, which is true since the left side is nonnegative and the right is at most 0 .
Lemma 2. If $x_{1}+\cdots+x_{n} \leq n-1 / 2$ and $0 \leq x_{i} \leq 1$ for each i, then $\sum_{i=1}^{n} \sqrt{1-x_{i}^{2}} \geq \sqrt{3} / 2$.

Proof: Use induction on n. In the case $n=1$, the statement is clear. If $n>1$, then either $\min \left(x_{1}, x_{2}\right) \leq 1 / 2$ or $x_{1}+x_{2}>1$. In the first case we immediately have $\max \left(\sqrt{1-x_{1}^{2}}, \sqrt{1-x_{2}^{2}}\right) \geq \sqrt{3} / 2$; in the second case we can replace x_{1}, x_{2} by the single number $x_{1}+x_{2}-1$ and use the induction hypothesis together with the previous lemma.

Now consider our polygon. Let P, Q be vertices such that $l=P Q$ is maximal. The polygon consists of two paths from P to Q, each of integer length $\geq l$; these lengths are distinct since the perimeter is odd. Then the greater of the two lengths is $m \geq l+1$. Position the polygon in the coordinate plane with $P=(0,0), Q=(l, 0)$ and the longer path in the upper half-plane. Since each side of the polygon has integer length, we can divide this path into line segments of length 1. Let the endpoints of these segments, in order, be $P_{0}=P, P_{1}=$ $\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right), \ldots, P_{m}=Q$. There exists some r such that y_{r} is maximal; then either $r \geq x_{r}+1 / 2$ or $(m-r) \geq\left(\ell-x_{r}\right)+1 / 2$. Assume the former (otherwise, just reverse the choices of P and Q). We already know that $y_{1} \geq 0$, and by the maximal definition of l we must have $x_{1} \geq 0$ as well; then since the polygon is convex we must have $y_{1} \leq y_{2} \leq \ldots \leq y_{r}$ and $x_{1} \leq x_{2} \leq \ldots \leq x_{r}$. But $y_{i+1}-y_{i}=\sqrt{1-\left(x_{i+1}-x_{i}\right)^{2}}$, so

$$
y_{r}=\sum_{i=0}^{r-1}\left(y_{i+1}-y_{i}\right)=\sum_{i=0}^{r-1} \sqrt{1-\left(x_{i+1}-x_{i}\right)^{2}} \geq \sqrt{3} / 2
$$

by the second lemma. And we must have $l \geq 1$, implying that triangle $P P_{r} Q$ has area at least $\sqrt{3} / 4$. Since this triangle lies within the polygon (by convexity), we are done.

Problem 16 Determine if there exists an infinite sequence of positive integers such that
(i) no term divides any other term;
(ii) every pair of terms has a common divisor greater than 1 , but no integer greater than 1 divides all of the terms.

Solution: The desired sequence exists. Let p_{0}, p_{1}, \ldots be the primes greater than 5 in order, and let $q_{3 i}=6, q_{3 i+1}=10, q_{3 i+2}=15$ for each nonnegative integer i. Then let $s_{i}=p_{i} q_{i}$ for all $i \geq 0$. The sequence $s_{0}, s_{1}, s_{2}, \ldots$ clearly satisfies (i) since s_{i} is not even divisible by p_{j} for $i \neq j$. For the first part of (ii), any two terms have their indices both in $\{0,1\}$, both in $\{0,2\}$, or both in $\{1,2\}(\bmod 3)$, so they have a common divisor of 2,3 , or 5 , respectively. For the second part, we just need to check that no prime divides all the s_{i}; this holds since $2 \backslash s_{2}, 3 \backslash s_{1}, 5 \nmid s_{0}$, and no prime greater than 5 divides more than one s_{i}.

Problem 17 Prove that, for every positive integer n, there exists a polynomial with integer coefficients whose values at $1,2, \ldots, n$ are different powers of 2 .

Solution: We may assume $n \geq 4$. For each $i=1,2, \ldots, n$, write $\prod_{j=1, j \neq i}^{n}(i-j)=2^{q_{i}} m_{i}$ for positive integers q_{i}, m_{i} with m_{i} odd. Let L be the least common multiple of all the q_{i}, and let $r_{i}=L / q_{i}$. For each i, there are infinitely many powers of 2 which are congruent to 1 modulo $\left|m_{i}^{r_{i}}\right|$. (Specifically, by Euler's theorem, $2^{\phi\left(\left|m_{i}^{r_{i}}\right|\right) j} \equiv 1\left(\bmod \left|m_{i}^{r_{i}}\right|\right)$ for all $j \geq 0$.) Thus there are infinitely many integers c_{i} such that $c_{i} m_{i}^{r_{i}}+1$ is a power of 2 ; choose one. Then define

$$
P(x)=\sum_{i=1}^{n} c_{i}\left(\prod_{\substack{j=1 \\ j \neq i}}^{n}(x-j)\right)^{r_{i}}+2^{L}
$$

For each $k, 1 \leq k \leq n$, in the sum each term $\left(\prod_{j=1, j \neq i}^{n}(x-j)\right)^{r_{i}}$ vanishes for all $i \neq k$. Then

$$
P(k)=c_{k}\left(\prod_{\substack{j=1 \\ j \neq k}}^{n}(k-j)\right)^{r_{i}}+2^{L}=2^{L}\left(c_{i} m_{i}^{r_{i}}+1\right)
$$

a power of 2. Moreover, by choosing the c_{i} appropriately, we can guarantee that these values are all distinct, as needed.

Problem 18 Find all integers $N \geq 3$ for which it is possible to choose N points in the plane (no three collinear) such that each triangle formed by three vertices on the convex hull of the points contains exactly one of the points in its interior.

Solution: First, if the convex hull is a k-gon, then it can be divided into $k-2$ triangles each containing exactly one chosen point; and since no three of the points are collinear, the sides and diagonals of the convex hull contain no chosen points on their interiors, giving $N=2 k-2$.

Now we construct, by induction on $k \geq 3$, a convex k-gon with a set S of $k-2$ points inside such that each triangle formed by vertices of the k-gon contains exactly one point of S in its interior. The case $k=3$ is easy. Now, assume we have a k-gon $P_{1} P_{2} \ldots P_{k}$ and a set S. Certainly we can choose Q such that $P_{1} P_{2} \ldots P_{k} Q$ is a convex $(k+1)$-gon. Let
R move along the line segment from P_{k} to Q. Initially (at $R=P_{k}$), for any indices $1 \leq i<j<k$, the triangle $P_{i} P_{j} R$ internally contains a point of S by assumption; if R is moved a sufficiently small distance $d_{i j}$, this point still lies inside triangle $P_{i} P_{j} R$. Now fix a position of R such that $P_{k} R$ is less than the minimum $d_{i j} ; P_{1} P_{2} \ldots P_{k} R$ is a convex $(k+1)$-gon. Let P be an interior point of the triangle bounded by lines $P_{1} P_{k}, R P_{k-1}, P_{k} R$. We claim the polygon $P_{1} P_{2} \ldots P_{k} R$ and the set $S \cup\{P\}$ satisfy our condition. If we choose three of the P_{i}, they form a triangle containing a point of S by hypothesis, and no others; any triangle $P_{i} P_{j} R(i, j<k)$ contains only the same internal point as triangle $P_{i} P_{j} P_{k}$; and each triangle $P_{i} P_{k} R$ contains only P. This completes the induction step.

1.10 Iran

First Round

Problem 1 Suppose that $a_{1}<a_{2}<\cdots<a_{n}$ are real numbers.
Prove that

$$
a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n} a_{1}^{4} \geq a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{1} a_{n}^{4}
$$

First Solution: We prove the claim by induction on n. For $n=2$, the two sides are equal; now suppose the claim is true for $n-1$, i.e.,

$$
a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n-1} a_{1}^{4} \geq a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{1} a_{n-1}^{4}
$$

Then the claim for n will follow from the inequality

$$
a_{n-1} a_{n}^{4}+a_{n} a_{1}^{4}-a_{n-1} a_{1}^{4} \geq a_{n} a_{n-1}^{4}+a_{1} a_{n}^{4}-a_{1} a_{n-1}^{4}
$$

(Notice that this is precisely the case for $n=3$.) Without loss of generality, suppose $a_{n}-a_{1}=1$; otherwise, we can divide each of a_{1}, a_{n-1}, a_{n} by $a_{n}-a_{1}>0$ without affecting the truth of the inequality. Then by Jensen's inequality for the convex function x^{4}, we have
$a_{1}^{4}\left(a_{n}-a_{n-1}\right)+a_{n}^{4}\left(a_{n-1}-a_{1}\right) \geq\left(a_{1}\left(a_{n}-a_{n-1}\right)+a_{n}\left(a_{n-1}-a_{1}\right)\right)^{4}$
$=\left(a_{n-1}\left(a_{n}-a_{1}\right)\right)^{4}=a_{n-1}^{4}\left(a_{n}-a_{1}\right)$,
which rearranges to yield our desired inequality.
Second Solution: We use an elementary method to prove the case $n=3$. Define

$$
p(x, y, z)=x y^{4}+y z^{4}+z x^{4}-y x^{4}-z y^{4}-x z^{4} .
$$

We wish to prove that $p(x, y, z) \geq 0$ when $x \leq y \leq z$. Since $p(x, x, z)=p(x, y, y)=p(z, y, z)=0$, we know that $(y-x)(z-$ $y)(z-x)$ divides $p(x, y, z)$. In fact,

$$
\begin{aligned}
& p(x, y, z)=y z^{4}-z y^{4}+z x^{4}-x z^{4}+x y^{4}-y x^{4} \\
& \quad=z y\left(z^{3}-y^{3}\right)+x z\left(x^{3}-z^{3}\right)+x y\left(y^{3}-x^{3}\right) \\
& \quad=z y\left(z^{3}-y^{3}\right)+x z\left(y^{3}-z^{3}\right)+x z\left(x^{3}-y^{3}\right)+x y\left(y^{3}-x^{3}\right) \\
& \quad=z(y-x)\left(z^{3}-y^{3}\right)+x(z-y)\left(x^{3}-y^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(y-x)(z-y)\left(z\left(z^{2}+z y+y^{2}\right)-x\left(x^{2}+x y+y^{2}\right)\right) \\
& =(y-x)(z-y)\left(\left(z^{3}-x^{3}\right)+y^{2}(z-x)+y\left(z^{2}-x^{2}\right)\right) \\
& =(y-x)(z-y)(z-x)\left(z^{2}+z x+x^{2}+y^{2}+y z+y x\right) \\
& =\frac{1}{2}(y-x)(z-y)(z-x)\left((x+y)^{2}+(y+z)^{2}+(z+x)^{2}\right) \geq 0
\end{aligned}
$$

as desired.

Problem 2 Suppose that n is a positive integer. The n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers is said to be good if $a_{1}+\cdots+a_{n}=2 n$ if for every k between 1 and n, no k of the n integers add up to n. Find all n-tuples that are good.

First Solution: Call an n-tuple of positive integers proper if the integers add up to $2 n$.

Without loss of generality, we suppose that $a_{1} \leq a_{2} \leq \cdots \leq a_{n}=$ M. If $M \leq 2$ then $a_{1}=\cdots=a_{n}=2$ and this leads to the solution $(2,2, \ldots, 2)$ for odd n. Now we suppose that $M \geq 3$. Since the average of $\left\{a_{1}, \ldots, a_{n}\right\}$ is 2 , we must have $a_{1}=1$. Now say we have a proper n-tuple $S=\left(a_{1}, \ldots, a_{n}\right)$, where

$$
1=a_{1}=\cdots=a_{i}<a_{i+1} \leq a_{i+2} \leq \cdots \leq a_{n}=M .
$$

Lemma. If $i \geq \max \left\{a_{n}-a_{i+1}, a_{i+1}\right\}$, then S is not good.
Proof: Suppose that we have a balance and weights $a_{1}, a_{2}, \ldots, a_{n}$. We put a_{n} on the left hand side of the balance, then put a_{n-1} on the right hand side, and so on - adding the heaviest available weight to the lighter side (or if the sides are balanced, we add it to the left hand side). Before we put x_{i+1} on the balance, the difference between the two sides is between 0 and x_{n}. After we put x_{i+1} on the balance, the difference between the two sides is no greater than $\max \left\{x_{n}-x_{i+1}, x_{i+1}\right\}$. Now we have enough 1's to put on the lighter side to balance the two sides. Since the the total weight is $2 n$ an even number, there will have even number of 1's left and we can split them to balance the sides, i.e., there is a subtuple A with its sum equal to n and thus S is not good.

Note that

$$
\begin{equation*}
2 n=a_{1}+\cdots+a_{n} \geq i+2(n-i-1)+M \Longleftrightarrow i \geq M-2 \tag{1}
\end{equation*}
$$

Now we consider the following cases:
(i) $M=3$ and $i=1$. Then $S=(1, \underbrace{2, \ldots, 2}_{n-2}, 3)$. If $n=2 m$ and $m \geq 2$, then $A=(\underbrace{2, \ldots, 2}_{m})$ has sum $2 m=n$ and thus S is not good; if $n=2 m+1$ and $m \geq 1$, then $A=(\underbrace{2, \ldots, 2}_{m-1}, 3)$ has sum $2 m+1=n$ and thus S is not good. Therefore $(1,3)$ is the only good tuple for $M=3, i=1$.
(ii) $M=3$ and $i \geq 2$. Then $a_{i+1}=2$ or 3 and $i \geq \max \left\{a_{n}-\right.$ $\left.a_{i+1}, a_{i+1}\right\}$ - implying that S is not good from our lemma unless $i=2$ and $a_{i+1}=3$. But then $S=(1,1,3,3)$, and $(1,3)$ has sum $4=n$.
(iii) $M \geq 4$ and $a_{i+1}=2$. Then from (1), $i \geq M-2=\max \left\{a_{n}-\right.$ $\left.a_{i+1}, a_{i+1}\right\}$. By the lemma S is not good.
(iv) $M \geq 4, a_{i+1}>2$, and $i+1 \neq n$. Since $a_{i+1} \neq 2$ equality does not hold in (1), and thus $i \geq M-1 \geq \max \left\{a_{n}-a_{i+1}, a_{i+1}\right\}$ (and S is not good) unless $a_{i+1}=M$. In this case, $S=$ $(1, \ldots, 1, M, \ldots, M)$. Note that

$$
2 n=i+(n-i) M \geq i+4(n-i)
$$

so that $i \geq \frac{2}{3} n$. Then the remaining $n-i \geq 2$ values M have sum at most $\frac{4}{3} n$, and hence $M \leq \frac{2}{3} n$. Thus

$$
i \geq 2 n / 3 \geq M=\max \left\{a_{n}-a_{i+1}, a_{i+1}\right\}
$$

and by the lemma S is not good.
(v) $M \geq 4$ and $i+1=n$. Then we have the good n-tuple ($1, \ldots, 1, n+$ 1).

Therefore the only possible good n-tuples are $(1,1, \ldots, 1, n+1)$ and $(2,2, \ldots, 2)$, and the second n-tuple is good if and only if n is odd.

Second Solution: Say a proper n-tuple has "subsum" m if some k of the integers $(0 \leq k \leq n)$ add up to m.

Lemma. Every proper n-tuple besides (2, 2, ..., 2) has subsums 0, $1, \ldots, n-1$ (and possibly others). Furthermore, if a proper n-tuple besides $(2,2, \ldots, 2)$ contains a 2 , it has subsum n as well.
Proof: If $n=1$ the claim is trivial. Now assume the claims are true for $n-1$; we prove each is true for n as well. Suppose we have an n-tuple N besides $(2,2, \ldots, 2)$.

If there is a 2 in the n-tuple, then the other $n-1$ integers form a proper ($n-1$)-tuple besides $(2,2, \ldots, 2)$. By the induction hypothesis, this $(n-1)$-tuple has subsums $0, \ldots, n-2$. Remembering the original 2 , our complete n-tuple N has subsums $0, \ldots, n$.
Otherwise, suppose there is no 2 in N. We prove by induction on $k<n$ that there is a subtuple A_{k} of k numbers with subsums $0, \ldots, k$. Since the average value of the integers in N is 2 , we must have at least one 1 in N, proving the case for $k=1$. Now assume the claim is true for $k-1$; the elements of A_{k-1} are each at least 1 , so they add up to at least $k-1$. Then the inequality

$$
(k-1)(k-n)<0
$$

implies

$$
2 n<(k+1)(n-k+1)+(k-1)
$$

so that the average value of $N \backslash A_{k-1}$ is less than $k+1$. Therefore at least one of the other $n-k+1$ integers x is at most k, implying that $A_{k-1} \cup(x)$ has subsums $0, \ldots, k$. This completes the inductive step and the proof of our lemma.

From our lemma, the only possible good n-tuple with a 2 is $(2,2, \ldots, 2)$, and this is good if and only if n is odd. Every other n-tuple N has a subtuple A_{n-1} of $n-1$ integers with subsums $0, \ldots, n-1$. If these integers are not all 1 , then the remaining integer is at most n and N must have subsum n. Therefore, the only other possible good n-tuple is $(1,1, \ldots, 1, n+1)$, which is indeed always a good n-tuple.

Third Solution: Suppose we have a good n-tuple (a_{1}, \ldots, a_{n}), and consider the sums $a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{n-1}$. All these sums are between 0 and $2 n$ exclusive; thus if any of the sums is 0 $(\bmod n)$, it equals n and we have a contradiction. Also, if any two are congruent modulo n, we can subtract these two sums to obtain
another partial sum that equals n, a contradiction again. Therefore, the sums must all be nonzero and distinct modulo n.

Specifically, $a_{2} \equiv a_{1}+\cdots+a_{k}(\bmod n)$ for some $k \geq 1$. If $k>1$ then we can subtract a_{2} from both sides to find a partial sum that equals n. Therefore $k=1$ and $a_{1} \equiv a_{2}(\bmod n)$. Similarly, all the a_{i} are congruent modulo n. From here, easy algebra shows that the presented solutions are the only ones possible.

Problem 3 Let I be the incenter of triangle $A B C$ and let $A I$ meet the circumcircle of $A B C$ at D. Denote the feet of the perpendiculars from I to $B D$ and $C D$ by E and F, respectively. If $I E+I F=A D / 2$, calculate $\angle B A C$.

Solution: A well-known fact we will use in this proof is that $D B=$ $D I=D C$. In fact, $\angle B D I=\angle C$ gives $\angle D I B=(\angle A+\angle B) / 2$ while $\angle I B D=(\angle A+\angle B) / 2$. Thus $D B=D I$, and similarly $D C=D I$.

Let $\theta=\angle B A D$. Then

$$
\begin{aligned}
& \frac{1}{4} I D \cdot A D=\frac{1}{2} I D \cdot(I E+I F) \\
& \quad=\frac{1}{2} B D \cdot I E+\frac{1}{2} C D \cdot I F=[B I D]+[D I C] \\
& \quad=\frac{I D}{A D}([B A D]+[D A C])=\frac{1}{2} I D \cdot(A B+A C) \cdot \sin \theta
\end{aligned}
$$

whence $\frac{A D}{A B+A C}=2 \sin \theta$.
Let X be the point on $\overrightarrow{A B}$ different from A such that $D X=D A$. Since $\angle X B D=\angle D C A$ and $\angle D X B=\angle X A D=\angle D A C$, we have $\triangle X B D \cong \triangle A C D$, and $B X=A C$. Then $2 \sin \theta=\frac{A D}{A B+A C}=$ $\frac{A D}{A B+B X}=\frac{A D}{A X}=\frac{1}{2 \cos \theta}$, so that $2 \sin \theta \cos \theta=\frac{1}{2}$, and $\angle B A C=$ $2 \theta=30^{\circ}$ or 150°.

Problem 4 Let $A B C$ be a triangle with $B C>C A>A B$. Choose points D on $\overline{B C}$ and E on $\overrightarrow{B A}$ such that

$$
B D=B E=A C
$$

The circumcircle of triangle $B E D$ intersects $\overline{A C}$ at P and the line $B P$ intersects the circumcircle of triangle $A B C$ again at Q. Prove that $A Q+Q C=B P$.

First Solution: Except where indicated, all angles are directed modulo 180°.

Let Q^{\prime} be the point on line $B P$ such that $\angle B E Q^{\prime}=\angle D E P$. Then

$$
\angle Q^{\prime} E P=\angle A E D-\angle B E Q^{\prime}+\angle D E P=\angle B E D
$$

Since $B E=B D, \angle B E D=\angle E D B$; since $B E P D$ is cyclic, $\angle E D B=$ $\angle E P B$. Therefore $\angle Q^{\prime} E P=\angle E P B=\angle E P Q^{\prime}$ and $Q^{\prime} P=Q^{\prime} E$.

Since $B E P D$ and $B A Q C$ are cyclic, we have

$$
\begin{gathered}
\angle B E Q^{\prime}=\angle D E P=\angle D B P=\angle C A Q \\
\angle Q^{\prime} B E=\angle Q B A=\angle Q C A
\end{gathered}
$$

Combining this with $B E=A C$ yields that triangles $E B Q^{\prime}$ and $A C Q$ are congruent. Thus $B Q^{\prime}=Q C$ and $E Q^{\prime}=A Q$. Therefore

$$
A Q+Q C=E Q^{\prime}+B Q^{\prime}=P Q^{\prime}+B Q^{\prime}
$$

which equals $B P$ if Q^{\prime} is between B and P.
Since E is on $\overrightarrow{B A}$ and P is on $\overrightarrow{C A}, E$ and P are on the same side of $\overline{B C}$ and thus $\overline{B D}$. And since D is on $\overrightarrow{B C}$ and P is on $\overrightarrow{A C}, D$ and P are on the same side of $\overline{B A}$ and thus $\overline{B E}$. Thus, $B E P D$ is cyclic in that order and (using undirected angles) $\angle B E Q^{\prime}=\angle D E P<\angle B E P$. It follows that Q^{\prime} lies on segment $B P$, as desired.

Second Solution: Since $B E P D$ and $B A Q C$ are cyclic, we have

$$
\angle P E D=\angle P B D=\angle Q B C=\angle Q A C
$$

and

$$
\angle E P D=\pi-\angle D B E=\pi-\angle C B A=\angle A Q C
$$

which together imply $\triangle P E D \sim \triangle Q A C$. Then

$$
\frac{A C \cdot E P}{D E}=A Q
$$

and

$$
\frac{A C \cdot P D}{D E}=Q C
$$

As in the first solution, $B E P D$ is cyclic in that order, so Ptolemy's Theorem implies that

$$
B D \cdot E P+B E \cdot P D=B P \cdot D E
$$

Substituting $B D=B E=A C$ we have

$$
\frac{A C \cdot E P}{D E}+\frac{A C \cdot P D}{D E}=B P
$$

or $A Q+Q C=B P$, as desired.
Problem 5 Suppose that n is a positive integer and let

$$
d_{1}<d_{2}<d_{3}<d_{4}
$$

be the four smallest positive integer divisors of n. Find all integers n such that

$$
n=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}
$$

Solution: The answer is $n=130$. Note that $x^{2} \equiv 0(\bmod 4)$ when x is even, and $1(\bmod 4)$ when x is odd.

If n is odd, then all the d_{i} are odd and $n \equiv d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2} \equiv$ $1+1+1+1 \equiv 0(\bmod 4)$, a contradiction. Thus $2 \mid n$.

If $4 \mid n$ then $d_{1}=1$ and $d_{2}=2$, and $n \equiv 1+0+d_{3}^{2}+d_{4}^{2} \not \equiv 0(\bmod$ 4), a contradiction. Thus $4 \nmid n$.

Therefore $\left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}=\{1,2, p, q\}$ or $\{1,2, p, 2 p\}$ for some odd primes p, q. In the first case $n \equiv 3(\bmod 4)$, a contradiction. Thus $n=5\left(1+p^{2}\right)$ and $5 \mid n$, so $p=d_{3}=5$ and $n=130$.

Problem 6 Suppose that $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, b_{2}, \ldots\right.$, $\left.b_{n}\right)$ are two $0-1$ sequences. The difference $d(A, B)$ between A and B is defined to be the number of i 's for which $a_{i} \neq b_{i}(1 \leq i \leq n)$. Suppose that A, B, C are three $0-1$ sequences and that $d(A, B)=d(A, C)=$ $d(B, C)=d$.
(a) Prove that d is even.
(b) Prove that there exists an 0-1 sequence D such that

$$
d(D, A)=d(D, B)=d(D, C)=\frac{d}{2}
$$

Solution:

(a) Modulo 2, we have

$$
\begin{aligned}
& d(A, B)=\left(a_{1}-b_{1}\right)+\left(a_{2}-b_{2}\right)+\cdots+\left(a_{n}-b_{n}\right) \\
& \equiv\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\left(b_{1}+b_{2}+\cdots+b_{n}\right)
\end{aligned}
$$

Thus,

$$
3 d \equiv d(A, B)+d(B, C)+d(C, A)=2\left(\sum a_{i}+\sum b_{i}+\sum c_{i}\right)
$$

so d must be divisible by 2 .
(b) Define D as follows: for each i, if $a_{i}=b_{i}=c_{i}$, then let $d_{i}=a_{i}=$ $b_{i}=c_{i}$. Otherwise, two of a_{i}, b_{i}, c_{i} are equal; let d_{i} equal that value. We claim this sequence D satisfies the requirements.

Let α be the number of i for which $a_{i} \neq b_{i}$ and $a_{i} \neq c_{i}$ (that is, for which a_{i} is "unique"). Define β and γ similarly, and note that $d(A, D)=\alpha, d(B, D)=\beta$, and $d(C, D)=\gamma$. We also have

$$
\begin{aligned}
& d=d(A, B)=\alpha+\beta \\
& d=d(B, C)=\beta+\gamma \\
& d=d(C, A)=\gamma+\alpha
\end{aligned}
$$

Thus, $\alpha=\beta=\gamma=\frac{d}{2}$, as desired.

Second Round

Problem 1 Define the sequence $\left\{x_{n}\right\}_{n \geq 0}$ by $x_{0}=0$ and

$$
x_{n}= \begin{cases}x_{n-1}+\frac{3^{r+1}-1}{2}, & \text { if } n=3^{r}(3 k+1) \\ x_{n-1}-\frac{3^{r+1}+1}{2}, & \text { if } n=3^{r}(3 k+2)\end{cases}
$$

where k and r are nonnegative integers. Prove that every integer appears exactly once in this sequence.

First Solution: We prove by induction on $t \geq 1$ that
(i) $\left\{x_{0}, x_{1}, \ldots, x_{3^{t}-2}\right\}=\left\{-\frac{3^{t}-3}{2},-\frac{3^{t}-1}{2}, \ldots, \frac{3^{t}-1}{2}\right\}$.
(ii) $x_{3^{t}-1}=-\frac{3^{t}-1}{2}$.

These claims imply the desired result, and they are easily verified for $t=1$. Now supposing they are true for t, we show they are true for $t+1$.

For any positive integer m, write $m=3^{r}(3 k+s)$ for nonnegative integers r, k, s, with $s \in\{1,2\}$; and define $r_{m}=r$ and $s_{m}=s$.

Then for $m<3^{t}$, observe that

$$
\begin{gathered}
r_{m}=r_{m+3^{t}}=r_{m+2 \cdot 3^{t}} \\
s_{m}=s_{m+3^{t}}=r_{m+2 \cdot 3^{t}}
\end{gathered}
$$

so that

$$
x_{m}-x_{m-1}=x_{3^{t}+m}-x_{3^{t}+m-1}=x_{2 \cdot 3^{t}+m}-x_{2 \cdot 3^{t}+m-1} .
$$

Adding these equations from $m=1$ to $m=k<3^{t}$, we have

$$
\begin{gathered}
x_{k}=x_{3^{t}+k}-x_{3^{t}} \\
x_{k}=x_{2 \cdot 3^{t}+k}-x_{2 \cdot 3^{t}} .
\end{gathered}
$$

Now, setting $n=3^{t}$ in the recursion and using (ii) from the induction hypothesis, we have $x_{3^{t}}=3^{t}-$ and

$$
\begin{gathered}
\left\{x_{3^{t}}, \ldots, x_{2 \cdot 3^{t}-2}\right\}=\left\{\frac{3^{t}+3}{2}, \ldots, \frac{3^{t+1}-1}{2}\right\} \\
x_{2 \cdot 3^{t}-1}=\frac{3^{t}+1}{2}
\end{gathered}
$$

Then setting $n=2 \cdot 3^{t}$ in the recursion we have $x_{2 \cdot 3^{t}}=-3^{t}-$ giving

$$
\begin{gathered}
\left\{x_{2 \cdot 3^{t}}, \ldots, x_{3^{t+1}-2}\right\}=\left\{-\frac{3^{t+1}-3}{2}, \ldots,-\frac{3^{t}+1}{2}\right\} \\
x_{2 \cdot 3^{t+1}-1}=-\frac{3^{t+1}-1}{2}
\end{gathered}
$$

Combining this with (i) and (ii) from the induction hypothesis proves the claims for $t+1$. This completes the proof.

Second Solution: For $n_{i} \in\{-1,0,1\}$, let the number

$$
\left[n_{m} n_{m-1} \cdots n_{0}\right]
$$

in "base $\overline{3}$ " equal $\sum_{i=0}^{m} n_{i} \cdot 3^{i}$. It is simple to prove by induction on k that the base $\overline{3}$ numbers with at most k digits equal

$$
\left\{-\frac{3^{k}-1}{2},-\frac{3^{k}-3}{2}, \ldots, \frac{3^{k}-1}{2}\right\}
$$

which implies every integer has a unique representation in base $\overline{3}$.
Now we prove by induction on n that if $n=a_{m} a_{m-1} \ldots a_{0}$ in base
3 , then $x_{n}=\left[b_{m} b_{m-1} \ldots b_{0}\right]$ in base $\overline{3}$, where $b_{i}=-1$ if $a_{i}=2$ and $b_{i}=a_{i}$ for all other cases.

For the base case, $x_{0}=0=[0]$. Now assume the claim is true for $n-1$. First suppose that $n=3^{r}(3 k+1)$. Then

$$
\begin{aligned}
& n=a_{m} a_{m-1} \ldots a_{i} 1 \underbrace{00 \ldots 0}_{r} \\
& \frac{3^{r+1}-1}{2}=\underbrace{11 \ldots 1}_{r+1}=[\underbrace{11 \ldots 1}_{r+1}] \\
& n-1=a_{m} a_{m-1}^{1 \ldots a_{i}} 0 \underbrace{22 \ldots 2}_{r}
\end{aligned}
$$

$$
x_{n-1}=[b_{m} b_{m-1} \ldots b_{i} 0 \underbrace{-1-1 \ldots-1}_{r}] \text {, }
$$

so that

$$
\begin{aligned}
& x_{n}=[b_{m} b_{m-1} \ldots b_{i} 0 \underbrace{-1-1 \ldots-1}_{r}]+[\underbrace{11 \ldots 1}_{r+1}] \\
& =[b_{m} b_{m-1} \ldots b_{i} 1 \underbrace{00 \ldots 0}_{r} .
\end{aligned}
$$

Now suppose that $n=3^{r}(3 k+2)$. Then

$$
\begin{gathered}
n=a_{m} a_{m-1} \ldots a_{i} 2 \underbrace{0 \ldots 0}_{r} \\
n-1=a_{m} a_{m-1} \ldots a_{i} 1 \underbrace{22 \ldots 2}_{r} \\
x_{n-1}=[b_{m} b_{m-1} \ldots b_{i} 1 \underbrace{-1-1 \ldots-1}_{r}] .
\end{gathered}
$$

Also,

$$
\begin{aligned}
- & \frac{3^{r+1}+1}{2}=-(\underbrace{11 \ldots 1}_{r} 2) \\
& =-3^{r}-3^{r-1}-\cdots-3-2 \\
& =-3^{r+1}+3^{r}+3^{r-1}+\cdots+3+1 \\
& =[-1 \underbrace{1 \ldots 1}_{r+1}] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
x_{n} & =[b_{m} b_{m-1} \ldots b_{i} 1 \underbrace{-1-1 \ldots-1}_{r}]+[-1 \underbrace{11 \ldots 1}_{r+1}] \\
& =[b_{m} b_{m-1} \ldots b_{i}-1 \underbrace{00 \ldots 0}_{r}] .
\end{aligned}
$$

In either case, the claim is true for n, completing the induction.
And since all integers appear exactly once in base $\overline{3}$, they appear exactly once in $\left\{x_{n}\right\}_{n \geq 0}$, as desired.

Problem 2 Suppose that $n(r)$ denotes the number of points with integer coordinates on a circle of radius $r>1$. Prove that

$$
n(r)<6 \sqrt[3]{\pi r^{2}}
$$

Solution: Consider a circle of radius r containing n lattice points; we must prove that $n<6 \sqrt[3]{\pi r^{2}}$.

Since $r>1$ and $6 \sqrt[3]{\pi}>8$, we may assume $n>8$. Label the n lattice points on the circle $P_{1}, P_{2}, \ldots, P_{n}$ in counterclockwise order. Since the sum of the (counterclockwise) arcs $P_{1} P_{3}, P_{2} P_{4}, P_{n} P_{2}$ is 4π, one of the $\operatorname{arcs} P_{i} P_{i+2}$ has measure at most $\frac{4 \pi}{n}$; assume without loss of generality it is arc $P_{1} P_{3}$.

Consider a triangle $A B C$ inscribed in an arc of angle $\frac{4 \pi}{n}$; clearly its area is maximized by moving A and C to the endpoints of the arc and then moving B to the midpoint (where the distance to line $A C$ is greatest). Then $\angle C A B=\angle B C A=\frac{\pi}{n}$ and $\angle A B C=180^{\circ}-\frac{2 \pi}{n}$, so

$$
\begin{aligned}
& {[A B C]=\frac{a b c}{4 r}=\frac{\left(2 r \sin \frac{\pi}{n}\right)\left(2 r \sin \frac{2 \pi}{n}\right)\left(2 r \sin \frac{\pi}{n}\right)}{4 r}} \\
& \quad \leq \frac{\left(2 r \frac{\pi}{n}\right)\left(2 r \frac{2 \pi}{n}\right)\left(2 r \frac{\pi}{n}\right)}{4 r} \\
& \quad=\frac{4 r^{2} \pi^{3}}{n^{3}}
\end{aligned}
$$

Since triangle $P_{1} P_{2} P_{3}$ is inscribed in an arc of measure $\frac{4 \pi}{n}$, by the preceding argument, $\left[P_{1} P_{2} P_{3}\right] \leq \frac{4 r^{2} \pi^{3}}{n^{3}}$. But since P_{1}, P_{2}, and P_{3} are lattice points, the area $\left[P_{1} P_{2} P_{3}\right]$ is at least $\frac{1}{2}$ (this can be proven by either Pick's Formula $K=I+\frac{1}{2} B-I$ or the "determinant formula" $\left.K=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{1}-x_{1} y_{3}\right|\right)$. Therefore,

$$
\begin{aligned}
& \frac{1}{2} \leq\left[P_{1} P_{2} P_{3}\right] \leq \frac{4 r^{2} \pi^{3}}{n^{3}} \\
& \quad \Longrightarrow n^{3} \leq 8 r^{2} \pi^{3} \\
& \Longrightarrow n \leq \sqrt[3]{8 r^{2} \pi^{3}}=2 \pi \sqrt[3]{r^{2}}<6 \sqrt[3]{\pi r^{2}}
\end{aligned}
$$

as desired.
Problem 3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(f(x)+y)=f\left(x^{2}-y\right)+4 f(x) y
$$

for all $x, y \in \mathbb{R}$.
Solution: Let $(x, y)=\left(x, x^{2}\right)$. Then

$$
\begin{equation*}
f\left(f(x)+x^{2}\right)=f(0)+4 x^{2} f(x) \tag{1}
\end{equation*}
$$

Let $(x, y)=(x,-f(x))$. Then

$$
\begin{equation*}
f(0)=f\left(x^{2}+f(x)\right)-4 f(x)^{2} \tag{2}
\end{equation*}
$$

Adding (1) and (2) gives $4 f(x)\left(f(x)-x^{2}\right)=0$. This implies that for each individual x, either $f(x)=0$ or $f(x)=x^{2}$. (Alternatively, plugging $y=\frac{x^{2}-f(x)}{2}$ into the original equation also yields this result.) Clearly $f(x)=0$ and $f(x)=x^{2}$ satisfy the given equation; we now show that f cannot equal some combination of the two functions.

Suppose that there is an $a \neq 0$ such that $f(a)=0$. Plugging in $x=a$ into the original equation, we have

$$
f(y)=f\left(a^{2}-y\right)
$$

If $y \neq \frac{a^{2}}{2}$, then $y^{2} \neq\left(a^{2}-y\right)^{2}$ so $f(y)=f\left(a^{2}-y\right)=0$. Thus $f(y)=0$ for all $y \neq \frac{a^{2}}{2}$. And by choosing $x=2 a$ or some other value in the original equation, we can similarly show that $f\left(\frac{a^{2}}{2}\right)=0$.

Therefore $f(x)=0$ for all x or $f(x)=x^{2}$ for all x, as claimed.
Problem 4 In triangle $A B C$, the angle bisector of $\angle B A C$ meets $B C$ at D. Suppose that ω is the circle which is tangent to $B C$ at D and passes through A. Let M be the second point of intersection of ω and $A C$. Let P be the second point of intersection of ω and $B M$. Prove that P lies on a median of triangle $A B D$.

Solution: Extend $\overline{A P}$ to meet $\overline{B D}$ at E. We claim that $B E=E D$ and thus $\overline{A P}$ is a median of triangle $A B D$, as desired. In fact,

$$
\begin{gathered}
B E=E D \Longleftrightarrow B E^{2}=E D^{2}=E P \cdot E A \\
\Longleftrightarrow \triangle B E P \sim \triangle A E B \Longleftrightarrow \angle E B P=\angle B A E
\end{gathered}
$$

Let N be the second intersection of ω with $A B$. Using directed angles and arc measures, since $\overline{A D}$ bisects the angle between lines $A N$ and $A C$, we have $\widehat{D M}=\widehat{N D}$ and
$\angle B A E=\angle N A P=\frac{\widehat{N D}-\widehat{P D}}{2}=\frac{\widehat{D M}-\widehat{P D}}{2}=\angle D B M=\angle E B P$, as desired.

Problem 5 Let $A B C$ be a triangle. If we paint the points of the plane in red and green, prove that either there exist two red points which are one unit apart or three green points forming a triangle congruent to $A B C$.

First Solution: We call a polygon or a segment green (red) if the vertices of the polygon or the segment are all green (red).

Suppose that there is no red unit segment. We prove that there is a green triangle congruent to triangle $A B C$. If the whole plane is green, the proof is trivial.

Now we further suppose that there is a red point R on the plane. We claim that there is a green equilateral triangle with unit side length. In fact, let ω be the circle with center R and radius $\sqrt{3}$. Then ω is not all red, since otherwise we could find a red unit segment. Let G be a green point on ω. Let ω_{1} and ω_{2} be two unit circles centered at R and G, respectively, and let ω_{1} and ω_{2} meet at P and Q. Then both P and Q must be green and triangle $P Q G$ is a green unit equilateral triangle.

Let $G_{1} G_{2} G_{3}$ be a green unit equilateral triangle. Construct a triangle $G_{1} X_{1} Y_{1}$ that is congruent to triangle $A B C$. If both X_{1} and Y_{1} are green, we are done. Without loss of generality, we assume that $X_{1} Y_{1}$ is red. Translate triangle $G_{1} G_{2} G_{3}$ by $\overrightarrow{G_{1} Y_{1}}$ to obtain triangle $Y_{1} Y_{2} Y_{3}$. Then both Y_{2} and Y_{3} are green. Similarly, translate triangle $G_{1} G_{2} G_{3}$ by $\overrightarrow{G_{1} X_{1}}$ to obtain triangle $X_{1} X_{2} X_{3}$. Then at least one of X_{2} and X_{3} is green (since $X_{2} X_{3}$ cannot be a red unit segment). Without loss of generality, say X_{2} is green. Now triangle $G_{2} X_{2} Y_{2}$ is a green triangle and congruent to triangle $G_{1} X_{1} Y_{1}$ (translated by $\overrightarrow{G_{1} G_{2}}$) and thus congruent to triangle $A B C$, as desired.

Second Solution: Suppose by way of contradiction there were no such red or green points, and say the sides of triangle $A B C$ are a, b, and c.

First we prove no red segment has length a. If $X Y$ were a red segment of length a, then the unit circles around X and Y must be completely green. Now draw Z so that $\triangle X Y Z \cong \triangle A B C$; the unit circle around Z must be completely red, or else it would form an illegal triangle with the corresponding points around X and Y. But on this unit circle we can find a red unit segment, a contradiction.

Now, the whole plane cannot be green so there must be some red point R. The circle ω around R with radius a must be completely green. Then pick two points D, E on ω with $D E=a$, and construct F outside ω so that $\triangle D E F \cong \triangle A B C$ (we can do this since $a \leq b, c$); F must be red. Thus if we rotate $D E$ around R, F forms a completely
red circle of radius greater than a - and on this circle we can find two red points distance a apart, a contradiction.

Third Round

Problem 1 Suppose that $S=\{1,2, \ldots, n\}$ and that $A_{1}, A_{2}, \ldots, A_{k}$ are subsets of S such that for every $1 \leq i_{1}, i_{2}, i_{3}, i_{4} \leq k$, we have

$$
\left|A_{i_{1}} \cup A_{i_{2}} \cup A_{i_{3}} \cup A_{i_{4}}\right| \leq n-2 .
$$

Prove that $k \leq 2^{n-2}$.

Solution: For a set T, let $|T|$ denote the numbers of elements in T. We call a set $T \subset S$ 2-coverable if $T \subseteq A_{i} \cup A_{j}$ for some i and j (not necessarily distinct). Among the subsets of S that are not 2 -coverable, let A be a subset with minimum $|A|$.

Consider the family of sets $S_{1}=\left\{A \cap A_{1}, A \cap A_{2}, \ldots, A \cap A_{k}\right\}$. ($A \cap A_{i}$ might equal $A \cap A_{j}$, but we ignore any duplicate sets.) Since A is not 2-coverable, if $X \in S_{1}$, then $A-X \notin S_{1}$. Thus at most half the subsets of $|A|$ are in S_{1}, and $\left|S_{1}\right| \leq 2^{|A|-1}$.

On the other hand, let $B=S-A$ and consider the family of sets $S_{2}=\left\{B \cap A_{1}, B \cap A_{2}, \ldots, B \cap A_{k}\right\}$. We claim that if $X \in S_{2}$, then $B-X \notin S_{2}$. Suppose on the contrary that both $X, B-X \in S_{2}$ for some $X=B \cap A_{\ell}$ and $B-X=B \cap A_{\ell^{\prime}}$. By the minimal definiton of A there are A_{i} and A_{j} such that $A_{i} \cup A_{j}=A \backslash\{m\}$ for some i, j, and m. Then

$$
\left|A_{\ell} \cup A_{\ell^{\prime}} \cup A_{i} \cup A_{j}\right|=n-1
$$

a contradiction. Thus we assumption is false and $\left|S_{2}\right| \leq 2^{|B|}-1=$ $2^{n-|A|-1}$.

Since every set A_{i} is uniquely determined by its intersection with sets A and $B=S-A$, it follows that $|A| \leq|B| \cdot|C| \leq 2^{n-2}$.

Problem 2 Let $A B C$ be a triangle and let ω be a circle passing through A and C. Sides $A B$ and $B C$ meet ω again at D and E, respectively. Let γ be the incircle of the circular triangle $E B D$ and let S be its center. Suppose that γ touches the arc $D E$ at M. Prove that the angle bisector of $\angle A M C$ passes through the incenter of triangle $A B C$.

First Solution: We work backward. Let I be the incenter of triangle $A B C$. Let N be the midpoint of $\operatorname{arc} A C$ on ω that is opposite
to B, and let $\overrightarrow{N I}$ meet with ω again at M^{\prime}. Then $\overline{M^{\prime} N}$ bisects $\angle A M^{\prime} C$. We claim that γ is tangent to ω at M^{\prime}, and our desired results follows.

To prove our claim, we are going to do some heavy trigonometry calculations. Let ℓ be the line tangent to ω at M^{\prime}, and let ℓ meet $A B$ and $A C$ at P and Q, respectively. Let ω^{\prime} be the incircle of triangle $P B Q$. We are reduced to proving that ω^{\prime} is tangent to $\overline{P Q}$ at M^{\prime}.

Let $\angle I A M^{\prime}=a, \angle M^{\prime} A B=x, \angle M^{\prime} C I=b, \angle B C M^{\prime}=y$. Then $\angle C A I=\angle I A B=x+a$ and $\angle I C A=\angle B C I=y+b$. Since $P M^{\prime}$ is tangent to ω, we have $\angle P M^{\prime} A=\angle M^{\prime} C A=2 b+y$ and thus $\angle B P Q=\angle P M^{\prime} A+\angle M^{\prime} A P=2 b+x+y$. Applying the law of sines to triangle $P A M^{\prime}$, we have

$$
\begin{equation*}
\frac{P M^{\prime}}{\sin x}=\frac{A M^{\prime}}{\sin (2 b+x+y)} \Longleftrightarrow P M^{\prime}=\frac{A M^{\prime} \sin x}{\sin (2 b+x+y)} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
M^{\prime} Q=\frac{M^{\prime} C \sin y}{\sin (2 a+x+y)} \tag{2}
\end{equation*}
$$

And, applying the law of sines to triangle $A M^{\prime} C$ gives

$$
\begin{equation*}
\frac{A M^{\prime}}{\sin (2 b+y)}=\frac{M^{\prime} C}{\sin (2 a+x)} \tag{3}
\end{equation*}
$$

Combining (1), (2), and (3) we have

$$
\begin{equation*}
\frac{P M^{\prime}}{M^{\prime} Q}=\frac{\sin x \sin (2 b+y) \sin (2 a+x+y)}{\sin y \sin (2 a+x) \sin (2 b+x+y)} \tag{4}
\end{equation*}
$$

Now, observe that for a triangle $X Y Z$ with inradius r, and with incircle Γ touching $X Y$ at T, we have

$$
\frac{X T}{T Y}=\frac{r \cot \frac{\angle X}{2}}{r \cot \frac{\angle Y}{2}}=\frac{\cot \frac{\angle X}{2}}{\cot \frac{\angle Y}{2}}
$$

Thus it suffices to prove that $\frac{P M^{\prime}}{M^{\prime} Q}=\frac{\cot \angle B P Q}{\cot \angle B Q P}$, or equivalently (from (4)) any of the following statements:

$$
\begin{gathered}
\frac{\sin x \sin (2 b+y) \sin (2 a+x+y)}{\sin y \sin (2 a+x) \sin (2 b+x+y)}=\frac{\cot \frac{2 b+x+y}{2}}{\cot \frac{2 a+x+y}{2}} \\
\frac{\sin x \sin (2 b+y) \sin \frac{2 a+x+y}{2} \cos \frac{2 a+x+y}{2}}{\sin y \sin (2 a+x) \sin \frac{2 b+x+y}{2} \cos \frac{2 b+x+y}{2}}=\frac{\cos \frac{2 b+x+y}{2} \sin \frac{2 a+x+y}{2}}{\cos \frac{2 a+x+y}{2} \sin \frac{2 b+x+y}{2}}
\end{gathered}
$$

$$
\begin{gathered}
\sin x \sin (2 b+y) \cos ^{2} \frac{2 a+x+y}{2}=\sin y \sin (2 a+x) \cos ^{2} \frac{2 b+x+y}{2} \\
\quad \sin x \sin (2 b+y)(\cos (2 a+x+y)+1) \\
=\sin y \sin (2 a+x)(\cos (2 b+x+y)+1),
\end{gathered}
$$

or equivalently that $L=R$ where

$$
\begin{aligned}
R= & \sin x \sin (2 b+y) \cos (2 a+x+y) \\
& -\sin y \sin (2 a+x) \cos (2 b+x+y) \\
L= & \sin y \sin (2 a+x)-\sin x \sin (2 b+y) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
R= & 1 / 2[\sin x(\sin (2 b+2 y+x+2 a)+\sin (2 b-2 a-x))] \\
& -1 / 2[\sin y(\sin (2 b+2 x+y+2 a)+\sin (2 a-2 b-y))] \\
= & -1 / 4[\cos (2 a+2 b+2 x+2 y)-\cos (2 a+2 b+2 y) \\
& \quad+\cos (2 b-2 a)-\cos (2 b-2 a-2 x) \\
& -\cos (2 a+2 b+2 x+2 y)+\cos (2 b+2 a+2 x) \\
& \quad-\cos (2 b-2 a)+\cos (2 a-2 b-2 y)] \\
= & -1 / 4[\cos (2 a+2 b+2 x)-\cos (2 b-2 a-2 x) \\
\quad & \quad+\cos (2 a-2 b-2 y)-\cos (2 a+2 b+2 y)] \\
= & 1 / 2\left[\begin{array}{l}
\sin (2 b) \sin (2 a+2 x)-\sin (2 a) \sin (2 b+2 y)] \\
=
\end{array}\right][\underbrace{\sin b \sin (a+x)}_{(i)} \cos b \cos (a+x) \\
& -\underbrace{\sin a \sin (b+y)}_{(i i)} \cos a \cos (b+y)] .
\end{aligned}
$$

To simplify this expression, note that $\overline{M I}, \overline{A I}$, and $\overline{C I}$ meet at I and that $\angle I M A=\angle I M C$. Then the trigonometric form of Ceva's Theorem gives

$$
\begin{aligned}
& \frac{\sin \angle I M A \sin \angle I A C \sin \angle I C M}{\sin \angle I A M \sin \angle I C A \sin \angle I M C}=1 \\
& \Longleftrightarrow \sin a \sin (b+y)=\sin b \sin (a+x)
\end{aligned}
$$

Swapping quantities (i) and (ii) above thus yields

$$
\begin{aligned}
R= & 2(\sin a \sin (b+y) \cos b \cos (a+x) \\
& \quad-\sin b \sin (a+x) \cos a \cos (b+y)) \\
= & \cos b \sin (b+y)[\sin (2 a+x)-\sin x] \\
& \quad-\sin b \cos (b+y)[\sin (2 a+x)+\sin x] \\
= & \sin (2 a+x)[\sin (b+y) \cos b-\sin b \cos (b+y)] \\
& -\sin x[\sin (b+y) \cos b+\sin b \cos (b+y)] \\
= & \sin (2 a+x) \sin y-\sin x \sin (2 b+y)=L
\end{aligned}
$$

as desired.
Second Solution: Let O and R be the center and radius of ω, r be the radius of γ, and I be the incenter of triangle $A B C$. Extend lines $A I$ and $C I$ to hit ω at M_{A} and M_{C} respectively; also let line $A D$ be tangent to γ at F, and let line $C E$ be tangent to γ at G. Finally, let d be the length of the exterior tangent from M_{A} to ω. Notice that since line $A M_{A}$ bisects $\angle D A C$, we have $D M_{A}=M_{A} C$; similarly, $E M_{C}=M_{C} A$.

Applying Generalized Ptolemy's Theorem to the "circles" M_{A}, C, D, and γ externally tangent to ω gives

$$
\begin{gathered}
C G \cdot D M_{A}=M_{A} C \cdot D F+d \cdot C D \\
d^{2}=M_{A} C^{2}\left(\frac{C G-D F}{C D}\right)^{2} .
\end{gathered}
$$

Note that d^{2} equals the power of M_{A} with respect to γ, so $d^{2}=$ $M_{A} S^{2}-r^{2}$.

By Stewart's Theorem on cevian $M_{A} M$ in triangle $S O M_{A}$, we also have

$$
\begin{gathered}
M_{A} S^{2} \cdot O M+M_{A} O^{2} \cdot M S=M_{A} M^{2} \cdot S O+S M \cdot M O \cdot S O \\
M_{A} S^{2} \cdot R+R^{2} \cdot r=M_{A} M^{2} \cdot(R+r)+r \cdot R \cdot(R+r) \\
M_{A} M^{2}(R+r)=\left(M_{A} S^{2}-r^{2}\right) R=d^{2} R
\end{gathered}
$$

Combining the two equations involving d^{2}, we find

$$
M_{A} C^{2}\left(\frac{C G-D F}{C D}\right)^{2}=\frac{M_{A} M^{2}(R+r)}{R}
$$

$$
\left(\frac{M_{A} M}{M_{A} C}\right)^{2}=\left(\frac{R}{R+r}\right)\left(\frac{C G-D F}{C D}\right)^{2}
$$

Similarly,

$$
\left(\frac{M_{C} M}{M_{C} A}\right)^{2}=\left(\frac{R}{R+r}\right)\left(\frac{A F-E G}{A E}\right)^{2}
$$

But

$$
C G-D F=(C G+G B)-(D F+F B)=C B-D B
$$

and similarly

$$
A F-E G=(A F+F B)-(E G+G B)=A B-B E
$$

Furthermore, because $A C D E$ is cyclic some angle-chasing gives $\angle B D C=\angle A E C$ and $\angle D C B=\angle B A E$, so $\triangle C B D \sim \triangle A B E$ and

$$
\frac{C G-D F}{C D}=\frac{C B-D B}{C D}=\frac{A B-B E}{E A}=\frac{A F-E G}{A E} .
$$

Therefore we have $\frac{M_{A} M}{M_{A} C}=\frac{M_{C} M}{M_{C} A} \Longrightarrow \frac{\sin \angle M A M_{A}}{\sin \angle M_{A} A C}=\frac{\sin \angle M_{C} C M}{\sin \angle A C M_{C}}$. But by the trigonometric form of Ceva's theorem in triangle $A M C$ applied to lines $A M_{A}, C M_{C}$, and $M I$, we have

$$
\frac{\sin \angle M A M_{A}}{\sin \angle M_{A} A C} \cdot \frac{\sin \angle A C M_{C}}{\sin \angle M_{C} C M} \cdot \frac{\sin \angle C M I}{\sin \angle I M A}=1
$$

so that

$$
\sin \angle C M I=\sin \angle I M A \quad \Longrightarrow \quad \angle C M I=\angle I M A
$$

since $\angle A M C<180^{\circ}$. Therefore, line $M I$ bisects $\angle A M C$, so the angle bisector of $\angle A M C$ indeed passes through the incenter I of triangle $A B C$.

Problem 3 Suppose that $C_{1}, C_{2}, \ldots, C_{n}$ are circles of radius 1 in the plane such that no two of them are tangent and the subset of the plane formed by the union of these circles is connected (i.e., for any partition of $\{1,2, \ldots, n\}$ into nonempty subsets A and $B, \bigcup_{a \in A} C_{a}$ and $\bigcup_{b \in B} C_{b}$ are not disjoint). Prove that $|S| \geq n$, where

$$
S=\bigcup_{1 \leq i<j \leq n} C_{i} \cap C_{j}
$$

the intersection points of the circles. (Each circle is viewed as the set of points on its circumference, not including its interior.)

Solution: Let $T=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$. For every $s \in S$ and $C \in T$ define

$$
f(s, C)= \begin{cases}0, & \text { if } s \notin C \\ \frac{1}{k}, & \text { if } s \in C\end{cases}
$$

where k is the number of circles passing through s (including C). Thus

$$
\sum_{C \in T} f(s, C)=1
$$

for every $s \in S$.
On the other hand, for a fixed circle $C \in T$ let $s_{0} \in S \cap C$ be a point such that

$$
f\left(s_{0}, C\right)=\min \{f(s, C) \mid s \in S \cap C\}
$$

Suppose that $C, C_{2}, \ldots C_{k}$ be the circles which pass through s_{0}. Then C meets C_{2}, \ldots, C_{k} again in distinct points s_{2}, \ldots, s_{k}. Therefore

$$
\sum_{s \in C} f(s, C) \geq \frac{1}{k}+\frac{k-1}{k}=1
$$

We have

$$
|S|=\sum_{s \in S} \sum_{C \in T} f(s, C)=\sum_{C \in T} \sum_{s \in S} f(s, C) \geq n
$$

as desired.
Problem 4 Suppose that $-1 \leq x_{1}, x_{2}, \ldots, x_{n} \leq 1$ are real numbers such that $x_{1}+x_{2}+\ldots+x_{n}=0$. Prove that there exists a permutation σ of $\{1,2, \ldots, n\}$ such that, for every $1 \leq p \leq q \leq n$,

$$
\left|x_{\sigma(p)}+\cdots+x_{\sigma(q)}\right|<2-\frac{1}{n}
$$

Also prove that the expression on the right hand side cannot be replaced by $2-\frac{4}{n}$.

Solution: If $n=1$ then $x_{1}=0$, and the permutation $\sigma(1)=1$ suffices; if $n=2$ then $\left|x_{1}\right|,\left|x_{2}\right| \leq 1$ and $\left|x_{1}+x_{2}\right|=0$, and the permutation $(\sigma(1), \sigma(2))=(1,2)$ suffices. Now assume $n \geq 3$.

View the x_{i} as vectors; the problem is equivalent to saying that if we start at a point on the number line, we can travel along the n vectors $x_{1}, x_{2}, \ldots, x_{n}$ in some order so that we stay within an interval ($m, m+2-\frac{1}{n}$].

Call x_{i} "long" if $\left|x_{i}\right| \geq 1-\frac{1}{n}$ and call it "short" otherwise. Also call x_{i} "positive" if $x_{i} \geq 0$ and "negative" if $x_{i}<0$. Suppose without loss of generality that there are at least as many long positive vectors as long negative vectors - otherwise, we could replace each x_{i} by $-x_{i}$. We make our trip in two phases:
(i) First, travel alternating along long positive vectors and long negative vectors until no long negative vectors remain. Suppose at some time we are at a point P. Observe that during this leg of our trip, traveling along a pair of vectors changes our position by at most $\frac{1}{n}$ in either direction. Thus if we travel along $2 t \leq n$ vectors after P, we stay within $\frac{t}{n} \leq \frac{1}{2}$ of P; and if we travel along $2 t+1$ vectors after P, we stay within $\frac{t}{n}+1 \leq \frac{3}{2}<2-\frac{1}{n}$ of P. Therefore, during this phase, we indeed stay within an interval $I=\left(m, m+2-\frac{1}{n}\right]$ of length $2-\frac{1}{n}$.
(ii) After phase (i), we claim that as long as vectors remain unused and we are inside I, there is an unused vector we can travel along while remaining in I; this implies we can finish the trip while staying in I.

If there are no positive vectors, then we can travel along any negative vector, and vice versa. Thus assume there are positive and negative vectors remaining; since all the long negative vectors were used in phase (i), only short negative vectors remain.

Now if we are to the right of $m+1-\frac{1}{n}$, we can travel along a short negative vector without reaching or passing m. And if we are on or to the left of $m+1-\frac{1}{n}$, we can travel along a positive vector (short or long) without passing $m+2-\frac{1}{n}$.
Therefore it is possible to complete our journey, and it follows that the desired permutation σ indeed exists.

However, suppose $\frac{1}{n}$ is changed to $\frac{4}{n}$. This bound is never attainable for $n=1$, and it is not always attainable when $n=2$ (when $x_{1}=1$, $x_{2}=-1$, for example).

And if $n=2 k+1 \geq 3$ or $2 k+2 \geq 4$, suppose that $x_{1}=x_{2}=\cdots=$ $x_{k}=1$ and $x_{k+1}=x_{k+2}=\cdots=x_{2 k+1}=-\frac{k}{k+1}$ - if n is even, we can let $x_{n}=0$ and ignore this term in the permutation.

If two adjacent numbers in the permutation are equal then their sum is either $2 \geq 2-\frac{4}{n}$ or $-2 \cdot \frac{k}{k+1} \leq-2+\frac{4}{n}$. Therefore in the permutation, the vectors must alternate between $-\frac{k}{k+1}$ and 1 , starting
and ending with $-\frac{k}{k+1}$.
But then the outer two vectors add up to $-2 \cdot \frac{k}{k+1}$, so the middle $2 k-1$ vectors add up to $2 \cdot \frac{k}{k+1} \geq 2-\frac{4}{n}$, a contradiction. Therefore, $\frac{1}{n}$ cannot be replaced by $\frac{4}{n}$.

Problem 5 Suppose that r_{1}, \ldots, r_{n} are real numbers. Prove that there exists $S \subseteq\{1,2, \ldots, n\}$ such that

$$
1 \leq|S \cap\{i, i+1, i+2\}| \leq 2
$$

for $1 \leq i \leq n-2$, and

$$
\left|\sum_{i \in S} r_{i}\right| \geq \frac{1}{6} \sum_{i=1}^{n}\left|r_{i}\right|
$$

Solution: Let $S=\sum_{i=1}^{n}\left|r_{i}\right|$ and for $i=0,1,2$, define

$$
\begin{aligned}
s_{i} & =\sum_{r_{j} \geq 0, j \equiv i} r_{j} \\
t_{i} & =\sum_{r_{j}<0, j \equiv i} r_{j}
\end{aligned}
$$

where congruences are taken modulo 3 . Then we have $S=s_{1}+s_{2}+$ $s_{3}-t_{1}-t_{2}-t_{3}$, and $2 S$ equals

$$
\left(s_{1}+s_{2}\right)+\left(s_{2}+s_{3}\right)+\left(s_{3}+s_{1}\right)-\left(t_{1}+t_{2}\right)-\left(t_{2}+t_{3}\right)-\left(t_{3}+t_{1}\right)
$$

Therefore there are $i_{1} \neq i_{2}$ such that either $s_{i_{1}}+s_{i_{2}} \geq s / 3$ or $t_{i_{1}}+t_{i_{2}} \leq-s / 3$ or both. Without loss of generality, we assume that $s_{i_{1}}+s_{i_{2}} \geq s / 3$ and $\left|s_{i_{1}}+s_{i_{2}}\right| \geq\left|t_{i_{1}}+t_{i_{2}}\right|$. Thus $s_{i_{1}}+s_{i_{2}}+t_{i_{1}}+t_{i_{2}} \geq 0$. We have

$$
\left[s_{i_{1}}+s_{i_{2}}+t_{i_{1}}\right]+\left[s_{i_{1}}+s_{i_{2}}+t_{i_{2}}\right] \geq s_{i_{1}}+s_{i_{2}} \geq s / 3
$$

Therefore at least one of $s_{i_{1}}+s_{i_{2}}+t_{i_{1}}$ and $s_{i_{1}}+s_{i_{2}}+t_{i_{2}}$ is bigger or equal to $s / 6$ and we are done.

1.11 Ireland

Problem 1 Find all the real values of x which satisfy

$$
\frac{x^{2}}{(x+1-\sqrt{x+1})^{2}}<\frac{x^{2}+3 x+18}{(x+1)^{2}} .
$$

Solution: We must have $x \in(-1,0) \cup(0, \infty)$ for the quantities above to be defined. Make the substitution $y=\sqrt{x+1}$, so that $y \in(0,1) \cup(1, \infty)$ and $x=y^{2}-1$. Then the inequality is equivalent to

$$
\begin{aligned}
& \frac{\left(y^{2}-1\right)^{2}}{\left(y^{2}-y\right)^{2}}<\frac{\left(y^{2}-1\right)^{2}+3\left(y^{2}-1\right)+18}{y^{4}} \\
& \quad \Longleftrightarrow \frac{(y+1)^{2}}{y^{2}}<\frac{y^{4}+y^{2}+16}{y^{4}} \\
& \quad \Longleftrightarrow(y+1)^{2} y^{2}<y^{4}+y^{2}+16 \\
& \quad \Longleftrightarrow 2 y^{3}<16,
\end{aligned}
$$

so the condition is satisfied exactly when $y<2$; i.e., exactly when $y \in(0,1) \cup(1,2)$, which is equivalent to $x \in(-1,0) \cup(0,3)$.

Problem 2 Show that there is a positive number in the Fibonacci sequence which is divisible by 1000 .

Solution: In fact, for any natural number n, there exist infinitely many positive Fibonacci numbers divisible by n.
The Fibonacci sequence is defined thus: $F_{0}=0, F_{1}=1$, and $F_{k+2}=F_{k+1}+F_{k}$ for all $k \geq 0$. Consider ordered pairs of consecutive Fibonacci numbers $\left(F_{0}, F_{1}\right),\left(F_{1}, F_{2}\right), \ldots$ taken modulo n. Since the Fibonacci sequence is infinite and there are only n^{2} possible ordered pairs of integers modulo n, two such pairs $\left(F_{j}, F_{j+1}\right)$ must be congruent: $F_{i} \equiv F_{i+m}$ and $F_{i+1} \equiv F_{i+m+1}(\bmod n)$ for some i and m.

If $i \geq 1$ then $F_{i-1} \equiv F_{i+1}-F_{i} \equiv F_{i+m+1}-F_{i+m} \equiv F_{i+m-1}(\bmod n)$; similarly $F_{i+2} \equiv F_{i+1}+F_{i} \equiv F_{i+m+1}+F_{i+m} \equiv F_{i+2+m}(\bmod n)$. Continuing similarly, we have $F_{j} \equiv F_{j+m}(\bmod n)$ for all $j \geq 0$. In particular, $0=F_{0} \equiv F_{m} \equiv F_{2 m} \equiv \cdots(\bmod n)$, so the numbers F_{m}, $F_{2 m}, \ldots$ are all positive Fibonacci numbers divisible by n. Applying this to $n=1000$, we are done. (In fact, the smallest such m is 750 .)

Problem 3 Let D, E, F be points on the sides $B C, C A, A B$, respectively, of triangle $A B C$ such that $A D \perp B C, A F=F B$, and $B E$ is the angle bisector of $\angle B$. Prove that $A D, B E, C F$ are concurrent if and only if

$$
a^{2}(a-c)=\left(b^{2}-c^{2}\right)(a+c)
$$

where $a=B C, b=C A, c=A B$.
Solution: By Ceva's Theorem, the cevians $A D, B E, C F$ in $\triangle A B C$ are concurrent if and only if (using directed line segments)

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

In this problem, $\frac{A F}{F B}=1$, and $\frac{C E}{E A}=\frac{a}{c}$. Thus $A D, B E, C F$ are concurrent if and only if $\frac{B D}{D C}=\frac{c}{a}$.

This in turn is true if and only if $B D=\frac{a c}{a+c}$ and $D C=\frac{a^{2}}{a+c}$. Because $A B^{2}-B D^{2}=B D^{2}=A C^{2}-C D^{2}$, this last condition hold exactly when the following equations are true:

$$
\begin{gathered}
A B^{2}-\left(\frac{a c}{a+c}\right)^{2}=A C^{2}-\left(\frac{a^{2}}{a+c}\right)^{2} \\
(a+c)^{2} c^{2}-a^{2} c^{2}=(a+c)^{2} b^{2}-a^{4} \\
a^{4}-a^{2} c^{2}=\left(b^{2}-c^{2}\right)(a+c)^{2} \\
a^{2}(a-c)=\left(b^{2}-c^{2}\right)(a+c) .
\end{gathered}
$$

Therefore the three lines concur if and only if the given equation holds, as desired.

Alternatively, applying the law of cosines gives

$$
\frac{B D}{D C}=\frac{c \cos B}{b \cos C}=\frac{c}{b} \cdot \frac{a^{2}+c^{2}-b^{2}}{2 a c} \cdot \frac{2 a b}{a^{2}+b^{2}-c^{2}}=\frac{a^{2}+c^{2}-b^{2}}{a^{2}+b^{2}-c^{2}}
$$

Again, this equals $\frac{c}{a}$ exactly when the given equation holds.
Problem 4 A 100 by 100 square floor is to be tiled. The only available tiles are rectangular 1 by 3 tiles, fitting exactly over three squares of the floor.
(a) If a 2 by 2 square is removed from the center of the floor, prove that the remaining part of the floor can be tiled with available tiles.
(b) If, instead, a 2 by 2 square is removed from the corner, prove that the remaining part of the floor cannot be tiled with the available tiles.

Solution: Choose a coordinate system so that the corners of the square floor lie along the lattice points $\{(x, y) \mid 0 \leq x, y \leq 100, x, y \in$ $\mathbb{Z}\}$. Denote the rectanglar region $\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ by $[(a, c)-(b, d)]$.
(a) It is evident that any rectangle with at least one dimension divisible by 3 can be tiled. First tile the four rectangles

$$
\begin{array}{cl}
{[(0,0)-(48,52)],} & {[(0,52)-(52,100)]} \\
{[(52,48)-(100,100)],} & \text { and }[(48,0)-(100,52)] .
\end{array}
$$

The only part of the board left untiled is $[(48,48)-(52,52)]$. But recall that the central region $[(49,49)-(51,51)]$ has been removed. It is obvious that the remaining portion can be tiled.
(b) Assume without loss of generality that $[(0,0)-(2,2)]$ is the 2 by 2 square which is removed. Label each remaining square $[(x, y)-(x+1, y+1)]$ with the number $L(x, y) \in\{0,1,2\}$ such that $L(x, y) \equiv x+y(\bmod 3)$. There are 3333 squares labeled 0 , 3331 squares labeled 1, and 3332 squares labeled 2. However, each 1 by 3 tile covers an equal number of squares of each label. Therefore, the floor cannot be tiled.

Problem 5 Define a sequence $u_{n}, n=0,1,2, \ldots$ as follows: $u_{0}=0$, $u_{1}=1$, and for each $n \geq 1, u_{n+1}$ is the smallest positive integer such that $u_{n+1}>u_{n}$ and $\left\{u_{0}, u_{1}, \ldots, u_{n+1}\right\}$ contains no three elements which are in arithmetic progression. Find u_{100}.

Solution: Take any nonnegative integer n (e.g., 100) and express it in base-2 (e.g., $100=1100100_{2}$). Now interpret that sequence of 1 's and 0 's as an integer in base- 3 (e.g., $1100100{ }_{3}=981$). Call that integer t_{n} (e.g., $t_{100}=981$).

We now prove that $t_{n}=u_{n}$ by strong induction on n. It is obvious that $t_{0}=u_{0}$ and that $t_{1}=u_{1}$. Now assume that $t_{k}=u_{k}$ for all $k<n$. We shall show that $t_{n}=u_{n}$.

First we show that $u_{n} \leq t_{n}$ by proving that, in the sequence $t_{0}, t_{1}, t_{2}, \ldots, t_{n}$, no three numbers form an arithmetic progression.

Pick any three numbers $0 \leq \alpha<\beta<\gamma \leq n$, and consider t_{α}, t_{β}, and t_{γ} in base-3. In the addition of t_{α} and t_{γ}, since both t_{α} and t_{γ} consist of only 1 's and 0 's, no carrying can occur. But $t_{\alpha} \neq t_{\gamma}$, so they must differ in at least one digit. In that digit in the sum $t_{\alpha}+t_{\gamma}$ must lie a "1." On the other hand, t_{β} consists of only 1's and 0 's, so $2 t_{\beta}$ consists of only 2 's and 0 's. Thus, the base- 3 representations of $t_{\alpha}+t_{\gamma}$ and $2 t_{\beta}$ are different: the former contains a " 1 " while the latter does not. Thus, $t_{\alpha}+t_{\gamma} \neq 2 t_{\beta}$ for any choice of α, β, γ, so among $t_{0}, t_{1}, t_{2}, \ldots, t_{n}$, no three numbers are in arithmetic progression. Hence $u_{n} \leq t_{n}$.

Next we show that $u_{n} \geq t_{n}$ by showing that for all $k \in\left\{t_{n-1}+1\right.$, $\left.t_{n-1}+2, \ldots, t_{n}-1\right\}$, there exist numbers a and b such that $t_{a}+k=2 t_{b}$. First note that k must contain a 2 in its base- 3 representation, because the t_{i} are the only nonnegative integers consisting of only 1 's and 0 's in base- 3 . Therefore, we can find two numbers a and b with $0 \leq t_{a}<t_{b}<k$ such that:

- whenever k has a " 0 " or a " 1 " in its base- 3 representation, t_{a} and t_{b} each also have the same digit in the corresponding positions in their base-3 representations;
- whenever k has a " 2 " in its base- 3 representation, t_{a} has a " 0 " in the corresponding position in its base- 3 representation, but t_{b} has a " 1 " in the corresponding position in its base-3 representation.
The t_{a} and t_{b}, thus constructed, satisfy $t_{a}<t_{b}<k$ while $t_{a}+k=2 t_{b}$, so t_{a}, t_{b}, k form an arithmetic progression. Thus, $u_{n} \geq t_{n}$. Putting this together with the previous result, we have forced $u_{n}=t_{n}$; hence $u_{100}=t_{100}=981$.

Problem 6 Solve the system of equations

$$
\begin{array}{r}
y^{2}-(x+8)\left(x^{2}+2\right)=0 \\
y^{2}-(8+4 x) y+\left(16+16 x-5 x^{2}\right)=0
\end{array}
$$

Solution: We first check that the solutions $(x, y)=(-2,-6)$ and $(-2,6)$ both work and are the only solutions with $x=-2$.

We substitute $y^{2}=(x+8)\left(x^{2}+2\right)$ into $y^{2}+16+16 x-5 x^{2}=4(x+2) y$ to get $4(x+2) y=x^{3}+3 x^{2}+18 x+32=(x+2)\left(x^{2}+x+16\right)$. The case $x=-2$ has already been finished, so to deal with the case $x \neq-2$, we write

$$
4 y=x^{2}+x+16
$$

Squaring both sides, we have

$$
16 y^{2}=x^{4}+2 x^{3}+33 x^{2}+32 x+256
$$

but from the first original equation we have

$$
16 y^{2}=16 x^{3}+128 x^{2}+32 x+256
$$

subtracting these two equations, we have $x^{4}-14 x^{3}-95 x^{2}=0$, or $x^{2}(x+5)(x-19)=0$. Thus, $x \in\{0,-5,19\}$. We use the equation $4 y=x^{2}+x+16$ to find the corresponding y 's.

In this way we find that the only solutions (x, y) are $(-2,-6)$, $(-2,6),(0,4),(-5,9)$, and $(19,99)$; it can be checked that each of these pairs works.

Problem 7 A function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies
(i) $f(a b)=f(a) f(b)$ whenever the greatest common divisor of a and b is 1 ;
(ii) $f(p+q)=f(p)+f(q)$ for all prime numbers p and q.

Prove that $f(2)=2, f(3)=3$, and $f(1999)=1999$.
Solution: Let us agree on the following notation: we shall write (i) $)_{a, b}$ when we plug (a, b) (where a and b are relatively prime) into (i), and (ii) $)_{p, q}$ when we plug (p, q) (where p and q are primes) into (ii).

First we find $f(1), f(2)$, and $f(4)$. By (i) $)_{1, b}$ we find $f(1)=1$. By $(\mathrm{i})_{2,3}$ we find $f(6)=f(2) f(3)$; by (ii) $)_{3,3}$ we get $f(6)=2 f(3)$; thus,

$$
f(2)=2
$$

Now by (ii) $2_{2,2}$ we have

$$
f(4)=4
$$

Next we find some useful facts. From (ii) $3_{3,2}$ and (ii) $)_{5,2}$, respectively, we obtain

$$
f(5)=f(3)+2, f(7)=f(5)+2=f(3)+4
$$

Now we can find $f(3)$. By (ii $)_{5,7}$ we have $f(12)=f(5)+f(7)=$ $2 f(3)+6$; from (i) $)_{4,3}$ we have $f(12)=4 f(3)$; we solve for $f(3)$ to find

$$
f(3)=3
$$

Then using the facts from the previous paragraph, we find

$$
f(5)=5, f(7)=7
$$

We proceed to find $f(13)$ and $f(11)$. By $(\mathrm{i})_{3,5}$, we have $f(15)=15$. From (ii) ${ }_{13,2}$ and (ii) ${ }_{11,2}$, respectively, we find

$$
f(13)=f(15)-f(2)=13, f(11)=f(13)-f(2)=11
$$

Finally, we can calculate $f(1999)$. By using (i) repeatedly with 2,7 , 11, and 13, we find $f(2002)=f(2 \cdot 7 \cdot 11 \cdot 13)=f(2) f(7) f(11) f(13)=$ 2002. Noting that 1999 is a prime number; from (ii) $)_{1999,3}$ we obtain

$$
f(1999)=f(2002)-f(3)=1999
$$

and we have finished.
Problem 8 Let a, b, c, d be positive real numbers whose sum is 1 .
Prove that

$$
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+d}+\frac{d^{2}}{d+a} \geq \frac{1}{2}
$$

with equality if and only if $a=b=c=d=1 / 4$.
Solution: Apply the Cauchy-Schwarz inequality to find $[(a+b)+$ $(b+c)+(c+d)+(d+a)]\left(\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+d}+\frac{d^{2}}{d+a}\right) \geq(a+b+c+d)^{2}$, which is equivalent to

$$
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+d}+\frac{d^{2}}{d+a} \geq \frac{1}{2}(a+b+c+d)=\frac{1}{2}
$$

with equality if and only if $\frac{a+b}{a}=\frac{b+c}{b}=\frac{c+d}{d}=\frac{d+a}{a}$, i.e., if and only if $a=b=c=d=\frac{1}{4}$.

Problem 9 Find all positive integers m such that the fourth power of the number of positive divisors of m equals m.

Solution: If the given condition holds for some integer m, then m must be a perfect fourth power and we may write its prime factorization as $m=2^{4 a_{2}} 3^{4 a_{3}} 5^{4 a_{5}} 7^{4 a_{7}} \ldots$ for nonnegative integers $a_{2}, a_{3}, a_{5}, a_{7}, \ldots$ Now the number of positive divisors of m equals $\left(4 a_{2}+1\right)\left(4 a_{3}+1\right)\left(4 a_{5}+1\right)\left(4 a_{7}+1\right) \cdots$; this is odd, so m is odd and $a_{2}=0$. Thus,

$$
1=\frac{4 a_{3}+1}{3^{a_{3}}} \cdot \frac{4 a_{5}+1}{5^{a_{5}}} \cdot \frac{4 a_{7}+1}{7^{a_{7}}} \cdots=x_{3} x_{5} x_{7} \cdots
$$

where we write $x_{p}=\frac{4 a_{p}+1}{p^{a_{p}}}$ for each p.

When $a_{3}=1, x_{3}=\frac{5}{3}$; when $a_{3}=0$ or $2, x_{3}=1$. And by Bernoulli's inequality, when $a_{3}>2$ we have

$$
3_{3}^{a}=(8+1)^{a_{3} / 2}>8\left(a_{3} / 2\right)+1=4 a_{3}+1
$$

so that $x_{3}<1$.
When $a_{5}=0$ or $1, x_{5}=1$; and by Bernoulli's inequality, when $a_{5} \geq 2$ we have

$$
5^{a_{5}}=(24+1)^{a_{5} / 2} \geq 24 a_{5} / 2+1=12 a_{5}+1
$$

so that $x_{5} \leq \frac{4 a_{5}+1}{12 a_{5}+1} \leq \frac{9}{25}$.
Finally, for any $p>5$ when $a_{p}=0$ we have $x_{p}=1$; when $a_{p}=1$ we have $p^{a_{p}}=p>5=4 a_{p}+1$ so that $x_{p}<1$; and when $a_{p}>0$ then again by Bernoulli's inequality we have

$$
p^{a_{p}}>5^{a_{p}}>12 a_{p}+1
$$

so that as above $x_{p}<\frac{9}{25}$.
Now if $a_{3} \neq 1$ then we have $x_{p} \leq 1$ for all p; but since $1=x_{2} x_{3} x_{5} \cdots$ we must actually have $x_{p}=1$ for all p. This means that $a_{3} \in\{0,2\}$, $a_{5} \in\{0,1\}$, and $a_{7}=a_{11}=\cdots=0$; so that $m=1^{4},\left(3^{2}\right)^{4}, 5^{4}$, or $\left(3^{2} \cdot 5\right)^{4}$.

Otherwise, if $a_{3}=1$ then $3 \mid m=5^{4}\left(4 a_{5}+1\right)^{4}\left(4 a_{7}+1\right)^{4} \cdots$. Then for some prime $p^{\prime} \geq 5,3 \mid 4 a_{p^{\prime}}+1$ so that $a_{p^{\prime}} \geq 2$; from above we have $x_{p^{\prime}} \leq \frac{9}{25}$. But then $x_{3} x_{5} x_{7} \cdots \leq \frac{5}{3} \frac{9}{27}<1$, a contradiction.

Thus the only solutions are $1,5^{4}, 3^{8}$, and $3^{8} \cdot 5^{4}$; and these can be easily verified by inspection.

Problem 10 Let $A B C D E F$ be a convex hexagon such that $A B=$ $B C, C D=D E, E F=F A$, and

$$
\angle A B C+\angle C D E+\angle E F A=360^{\circ}
$$

Prove that the respective perpendiculars from A, C, E to $F B, B D$, $D F$ are concurrent.

First Solution: The result actually holds even without the given angle condition. Let \mathcal{C}_{1} be the circle with center B and radius $A B=B C, \mathcal{C}_{2}$ the circle with center D and radius $C D=D E$, and \mathcal{C}_{3} the circle with center F and radius $E F=F A$. The line through A and perpendicular to line $F B$ is the radical axis of circles \mathcal{C}_{3} and \mathcal{C}_{1},
the line through C and perpendicular to line $B D$ is the radical axis of circles \mathcal{C}_{1} and \mathcal{C}_{2}, and the line through E and perpendicular to line $D F$ is the radical axis of circles \mathcal{C}_{2} and \mathcal{C}_{3}. The result follows because these three radical axes meet at the radical center of the three circles.

Second Solution: We first establish two lemmas:
Lemma 1. Given points $W \neq Y$ and $X \neq Z$, lines $W Y$ and $X Z$ are perpendicular if and only if

$$
\begin{equation*}
X W^{2}-W Z^{2}=X Y^{2}-Y Z^{2} \tag{*}
\end{equation*}
$$

Proof: Introduce Cartesian coordinates such that $W=(0.0)$, $X=(1,0), Y=\left(x_{1}, y_{1}\right)$, and $Z=\left(x_{2}, y_{2}\right)$. Then $\left({ }^{*}\right)$ becomes

$$
x_{1}^{2}+y_{1}^{2}-x_{2}^{2}-y_{2}^{2}=\left(x_{1}-1\right)^{2}+y_{1}^{2}-\left(x_{2}-1\right)^{2}-y_{2}^{2}
$$

which upon cancellation yields $x_{1}=x_{2}$. This is true if and only if line $Y Z$ is perpendicular to the x-axis $W X$.

If P is the intersection of the perpendiculars from A and C to lines $F B$ and $B D$, respectively, then the lemma implies that

$$
P F^{2}-P B^{2}=A F^{2}-A B^{2}
$$

and

$$
P B^{2}-P D^{2}=C B^{2}-C D^{2}
$$

From the given isosceles triangles, we have $E F=F A, A B=B C$, and $C D=D E$. Subtracting the first equation from the second then gives

$$
P D^{2}-P F^{2}=E D^{2}-E F^{2}
$$

Hence line $P E$ is also perpendicular to line $D F$, which completes the proof.

1.12 Italy

Problem 1 Given a rectangular sheet with sides a and b, with $a>b$, fold it along a diagonal. Determine the area of the triangle that passes over the edge of the paper.

Solution: Let $A B C D$ be a rectangle with $A D=a$ and $A B=b$. Let D^{\prime} be the reflection of D across line $A C$, and let $E=A D^{\prime} \cap B C$. We wish to find $\left[C D^{\prime} E\right]$. Since $A B=C D^{\prime}, \angle A B E=\angle C D^{\prime} E=90^{\circ}$, and $\angle B E A=\angle D^{\prime} E C$, triangles $A B E$ and $C D^{\prime} E$ are congruent. Thus $A E=E C$ and $C E^{2}=A E^{2}=A B^{2}+B E^{2}=b^{2}+(a-C E)^{2}$. Hence $C E=\frac{a^{2}+b^{2}}{2 a}$. It follows that

$$
\left[C D^{\prime} E\right]=\left[A C D^{\prime}\right]-[A C E]=\frac{a b}{2}-\frac{b}{2} \cdot C E=\frac{b\left(a^{2}-b^{2}\right)}{4 a}
$$

Problem 2 A positive integer is said to be balanced if the number of its decimal digits equals the number of its distinct prime factors (for instance 15 is balanced, while 49 is not). Prove that there are only finitely many balanced numbers.

Solution: For $n>15$, consider the product of the first n primes. The first sixteen primes have product

$$
(2 \cdot 53)(3 \cdot 47)(5 \cdot 43)(7 \cdot 41) \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37>100^{4} \cdot 10^{8}=10^{16}
$$

while the other $n-16$ primes are each at least 10 . Thus the product of the first n primes is greater than 10^{n}.
Then if x has n digits and is balanced, then it it as at least the product of the first n primes. If $n \geq 16$ then from the previous paragraph x would be greater than 10^{n} and would have at least $n+1$ digits, a contradiction. Thus x can have at most 15 digits, implying that the number of balanced numbers is finite.

Problem 3 Let $\omega, \omega_{1}, \omega_{2}$ be three circles with radii r, r_{1}, r_{2}, respectively, with $0<r_{1}<r_{2}<r$. The circles ω_{1} and ω_{2} are internally tangent to ω at two distinct points A and B and meet in two distinct points. Prove that $\overline{A B}$ contains an intersection point of ω_{1} and ω_{2} if and only if $r_{1}+r_{2}=r$.

Solution: Let O be the center of ω, and note that the centers C, D of ω_{1}, ω_{2} lie on $\overline{O A}$ and $\overline{O B}$, respectively. Let E be a point on $\overline{A B}$
such that $C E \| O B$. Then $\triangle A C E \sim \triangle A O B$. Hence $A E=C E$ and E is on ω_{1}. We need to prove that $r=r_{1}+r_{2}$ if and only if E is on ω_{2}.

Note that $r=r_{1}+r_{2}$ is equivalent to

$$
O D=O B-B D=r-r_{2}=r_{1}=A C
$$

that is $C E D O$ is a parallelogram or $D E \| A O$. Hence $r=r_{1}+r_{2}$ if and only if $\triangle B D O \sim \triangle B O A$ or $B D=D E$, that is, E is on ω_{2}.

Problem 4 Albert and Barbara play the following game. On a table there are 1999 sticks: each player in turn must remove from the table some sticks, provided that the player removes at least one stick and at most half of the sticks remaining on the table. The player who leaves just one stick on the table loses the game. Barbara moves first. Determine for which of the players there exists a winning strategy.

Solution: Call a number k hopeless if a player faced with k sticks has no winning strategy. If k is hopeless, then so is $2 k+1$: a player faced with $2 k+1$ sticks can only leave a pile of $k+1, k+2, \ldots$, or $2 k$ sticks, from which the other player can leave k sticks. Then since 2 is hopeless, so are $5,11, \ldots, 3 \cdot 2^{n}-1$ for all $n \geq 0$. Conversely, if $3 \cdot 2^{n}-1<k<3 \cdot 2^{n+1}-1$, then given k sticks a player can leave $3 \cdot 2^{n}-1$ sticks and force a win. Since 1999 is not of the form $3 \cdot 2^{n}-1$, it is not hopeless and hence Barbara has a winning strategy.

Problem 5 On a lake there is a village of pile-built dwellings, set on the nodes of an $m \times n$ rectangular array. Each dwelling is an endpoint of exactly p bridges which connect the dwelling with one or more of the adjacent dwellings (here adjacent means with respect to the array, hence diagonal connection is not allowed). Determine for which values of m, n, p it is possible to place the bridges so that from any dwelling one can reach any other dwelling. (Clearly, two adjacent dwellings can be connected by more than one bridge).

Solution: Suppose it is possible to place the bridges in this manner, and set the villages along the lattice points $\{(a, b) \mid 1 \leq a \leq m, 1 \leq$ $b \leq n\}$. Color the dwellings cyan and magenta in a checkerboard fashion, so that every bridge connects a cyan dwelling with a magenta dwelling. Since each dwelling is at the end of the same number of
bridges (exactly p of them), the number of cyan dwellings must equal the number of magenta dwellings; thus $2 \mid m n$.

Obviously $m n=2$ works for all values of p. And for $p=1$, we cannot have $m n>2$ because otherwise if any two dwellings A and B are connected, then they cannot be connected to any other dwellings. Similarly, if $m=1, n>2$ (or $n=1, m>2$) then p bridges must connect $(1,1)$ and $(1,2)$ (or $(1,1)$ and $(2,1)$); but then neither of these dwellings is connected to any other dwellings, a contradiction.

Now assume that $2 \mid m n$ with $m, n>1$ and $p>1$; assume without loss of generality that $2 \mid m$. Build a sequence of bridges starting at $(1,1)$, going up to $(1, n)$, right to (m, n), down to $(m, 1)$, and left to ($m-1,1$); and then weaving back to $(1,1)$ by repeatedly going from $(k, 1)$ up to $(k, n-1)$ left to $(k-1, n-1)$ down to $(k-1,1)$ and left to $(k-2,1)$ for $k=m-1, m-3, \ldots, 3$. (The sideways E below shows this construction for $m=6, n=4$.)

So far we have built two bridges leading out of every dwelling, and any dwelling can be reached from any other dwelling. For the remaining $p-2$ bridges needed for each dwelling, note that our sequence contains exactly $m n$ bridges, an even number; so if we build every other bridge in our sequence, and do this $p-2$ times, then exactly p bridges come out of every dwelling.

Thus either $m n=2$ and p equals any value; or $2 \mid m n$ with $m, n, p>1$.

Problem 6 Determine all triples (x, k, n) of positive integers such that

$$
3^{k}-1=x^{n}
$$

Solution: $\left(3^{k}-1, k, 1\right)$ for all positive integers k, and $(2,2,3)$.
The case of $n=1$ is obvious. Now, n cannot be even because then 3 could not divide $3^{k}=\left(x^{\frac{n}{2}}\right)^{2}+1$ (since no square is congruent to 2 modulo 3); and also, we must have $x \neq 1$.

Assume that $n>1$ is odd and $x \geq 2$. Then $3^{k}=(x+1) \sum_{i=0}^{n-1}(-x)^{i}$ implying that both $x+1$ and $\sum_{i=0}^{n-1}(-x)^{i}$ are powers of 3 . Then since
$x+1 \leq x^{2}-x+1 \leq \sum_{i=0}^{n-1}(-x)^{i}$, we must have $0 \equiv \sum_{i=0}^{n-1}(-x)^{i} \equiv$ $n(\bmod x+1)$, so that $x+1 \mid n$. Specifically, this means that $3 \mid n$.

Writing $x^{\prime}=x^{\frac{n}{3}}$, we have $3^{k}=x^{\prime 3}+1=\left(x^{\prime}+1\right)\left(x^{\prime 2}-x^{\prime}+1\right)$. As before $x^{\prime}+1$ must equal some power of 3 , say 3^{t}. But then $3^{k}=\left(3^{t}-1\right)^{3}+1=3^{3 t}-3^{2 t+1}+3^{t+1}$, which is strictly between $3^{3 t-1}$ and $3^{3 t}$ for $t>1$. Therefore we must have $t=1, x^{\prime}=2$, and $k=2$, giving the solution $(x, k, n)=(2,2,3)$.

Problem 7 Prove that for each prime p the equation

$$
2^{p}+3^{p}=a^{n}
$$

has no integer solutions (a, n) with $a, n>1$.
Solution: When $p=2$ we have $a^{n}=13$, which is impossible. When p is odd, then $5 \mid 2^{p}+3^{p}$; then since $n>1$, we must have $25 \mid 2^{p}+3^{p}$. Then
$2^{p}+(5-2)^{p} \equiv 2^{p}+\left(\binom{p}{1} 5 \cdot(-2)^{p-1}+(-2)^{p}\right) \equiv 5 p \cdot 2^{p-1} \quad(\bmod 25)$, so $5 \mid p$. Thus we must have $p=5$, but then $a^{n}=2^{5}+3^{5}=5^{2} \cdot 11$ has no solutions.

Problem 8 Points D and E are given on the sides $A B$ and $A C$ of triangle $A B C$ such that $D E \| B C$ and $\overline{D E}$ is tangent to the incircle of $A B C$. Prove that

$$
D E \leq \frac{A B+B C+C A}{8}
$$

Solution: Let $B C=a, C A=b, A B=c$. Also let $h=\frac{2[A B C]}{a}$ be the distance from A to line $B C$ and let $r=\frac{2[A B C]}{a+b+c}$ the inradius of triangle $A B C$; note that $\frac{h-2 r}{h}=\frac{b+c-a}{a+b+c}$.

Let $x=b+c-a, y=c+a-b, z=a+b-c$. Then

$$
(x+y+z)^{2} \geq(2 \sqrt{x(y+z)})^{2}=4 x(y+z)
$$

by AM-GM, which implies that $(a+b+c)^{2} \geq 8(b+c-a) a$, or

$$
\frac{b+c-a}{a+b+c} \cdot a \leq \frac{a+b+c}{8} \Longrightarrow \frac{h-2 r}{h} \cdot B C \leq \frac{A B+B C+C A}{8}
$$

But since $D E \| B C$, we have $\frac{D E}{B C}=\frac{h-2 r}{h}$; substituting this into the above inequality gives the desired result.

Problem 9

(a) Find all the strictly monotonic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))=f(x)+y, \quad \text { for all } x, y \in \mathbb{R}
$$

(b) Prove that for every integer $n>1$ there do not exist strictly monotonic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))=f(x)+y^{n}, \quad \text { for all } x, y \in \mathbb{R} .
$$

Solution:

(a) The only such functions are $f(x)=x$ and $f(x)=-x$. Setting $x=$ $y=0$ gives $f(f(0))=f(0)$, while setting $x=-f(0), y=0$ gives $f(-f(0))=f(0)$. Since f is strictly monotonic it is injective, so $f(0)=-f(0)$ and thus $f(0)=0$. Next, setting $x=0$ gives $f(f(y))=y$ for all y.

Suppose f is increasing. If $f(x)>x$ then $x=f(f(x))>$ $f(x)$, a contradiction; if $f(x)<x$ then $x=f(f(x))<f(x)$, a contradiction. Thus $f(x)=x$ for all x.

Next suppose that f is decreasing. Plugging in $x=-f(t)$, $y=t$, and then $x=0, y=-t$ shows that $f(-f(t))=f(f(-t))=$ $-t$, so $f(t)=-f(-t)$ for all t. Now given x, if $f(x)<-x$ then $x=f(f(x))>f(-x)=-f(x)$, a contradiction. And if $f(x)>-x$ then $x=f(f(x))<f(-x)=-f(x)$, a contradiction. Hence we must have $f(x)=-x$ for all x.

Therefore either $f(x)=x$ for all x or $f(x)=-x$ for all x; and it is easy to check that these two functions work.
(b) Since f is strictly monotonic, it is injective. Then for $y \neq 0$ we have $f(y) \neq f(-y)$ so that $f(x+f(y)) \neq f(x+f(-y))$ and hence $f(x)+y^{n} \neq f(x)+(-y)^{n}$; thus, n can't be even.

Now suppose there is such an f for odd n; then by arguments similar to those in part (a), we find that $f(0)=0$ and $f(f(y))=$ y^{n}. Specifically, $f(f(1))=1$. If f is increasing then as in part (a) we have $f(1)=1$; then $f(2)=f(1+f(1))=f(1)+1^{n}=2$ and $2^{n}=f(f(2))=f(2)=2$, a contradiction. If f is decreasing, then as in part (a) we have $f(1)=-1$; then $f(2)=f(1+f(-1))=$ $f(1)+(-1)^{n}=-2$ and $2^{n}=f(f(2))=f(-2)=-f(2)=2$, a contradiction.

Problem 10 Let X be a set with $|X|=n$, and let $A_{1}, A_{2}, \ldots, A_{m}$ be subsets of X such that
(a) $\left|A_{i}\right|=3$ for $i=1,2, \ldots, m$.
(b) $\left|A_{i} \cap A_{j}\right| \leq 1$ for all $i \neq j$.

Prove that there exists a subset of X with at least $\lfloor\sqrt{2 n}\rfloor$ elements, which does not contain A_{i} for $i=1,2, \ldots, m$.

Solution: Let A be a subset of X containing no A_{i}, and having the maximum number of elements subject to this condition. Let k be the size of A. By assumption, for each $x \in X-A$, there exists $i(x) \in\{1, \ldots, m\}$ such that $A_{i(x)} \subseteq A \cup\{x\}$. Let $L_{x}=A \cap A_{i(x)}$, which by the previous observation must have 2 elements. Since $\left|A_{i} \cap A_{j}\right| \leq 1$ for $i \neq j$, the L_{x} must all be distinct. Now there are $\binom{k}{2} 2$-element subsets of A, so there can be at most $\binom{k}{2}$ sets L_{x}. Thus $n-k \leq\binom{ k}{2}$ or $k^{2}+k \geq 2 n$. It follows that

$$
k \geq \frac{1}{2}(-1+\sqrt{1+8 n})>\sqrt{2 n}-1
$$

that is, $k \geq\lfloor\sqrt{2 n}\rfloor$.

1.13 Japan

Problem 1 You can place a stone at each of 1999×1999 squares on a grid pattern. Find the minimum number of stones you must place such that, when an arbitrary blank square is selected, the total number of stones placed in the corresponding row and column is at least 1999.

Solution: Place stones in a checkerboard pattern on the grid, so that stones are placed on the four corner squares. This placement satisfies the condition and contains $1000 \times 1000+999 \times 999=1998001$ stones. We now prove this number is minimal.

Suppose the condition is satisfied. Assume without loss of generality that the j-th column contains k stones, and every other row or column also contains at least k stones. For each of the k stones in the j-th column, the row containing that stone must contain at least k stones by our minimal choice of k. And for each of the $1999-k$ blank squares in the j-th column, to satisfy the given condition there must be at least $1999-k$ stones in the row containing that square. Thus total number of stones is at least

$$
k^{2}+(1999-k)^{2}=2\left(k-\frac{1999}{2}\right)^{2}+\frac{1999^{2}}{2} \geq \frac{1999^{2}}{2}=1998000.5
$$

and it follows that there indeed must be at least 1998001 stones.
Problem 2 Let $f(x)=x^{3}+17$. Prove that for each natural number $n, n \geq 2$, there is a natural number x for which $f(x)$ is divisible by 3^{n} but not by 3^{n+1}.

Solution: We prove the result by induction on n. If $n=2$, then $x=1$ suffices. Now suppose that the claim is true for $n \geq 2$ - that is, there is a natural number y such that $y^{3}+17$ is divisible by 3^{n} but not 3^{n+1}. We prove that the claim is true for $n+1$.

Suppose we have integers a, m such that a is not divisible by 3 and $m \geq 2$. Then $a^{2} \equiv 1(\bmod 3)$ and thus $3^{m} a^{2} \equiv 3^{m}\left(\bmod 3^{m+1}\right)$. Also, since $m \geq 2$ we have $3 m-3 \geq 2 m-1 \geq m+1$. Hence
$\left(a+3^{m-1}\right)^{3} \equiv a^{3}+3^{m} a^{2}+3^{2 m-1} a+3^{3 m-3} \equiv a^{3}+3^{m} \quad\left(\bmod 3^{m+1}\right)$.
Since $y^{3}+17$ is divisible by 3^{n}, it is congruent to either $0,3^{n}$, or $2 \cdot 3^{n}$ modulo 3^{n+1}. Since 3 does not divide 17, 3 cannot divide y either.

Hence applying our result from the previous paragraph twice - once with $(a, m)=(y, n)$ and once with $(a, m)=\left(y+3^{n-1}, n\right)$ - we find that 3^{n+1} must divide either $\left(y+3^{n-1}\right)^{3}+17$ or $\left(y+2 \cdot 3^{n-1}\right)^{3}+17$.

Hence there exists a natural number x^{\prime} not divisible by 3 such that $3^{n+1} \mid x^{\prime 3}+17$. If 3^{n+2} does not divide $x^{13}+17$, we are done. Otherwise, we claim the number $x=x^{\prime}+3^{n}$ suffices. Since $x=$ $x^{\prime}+3^{n-1}+3^{n-1}+3^{n-1}$, the result from two paragraphs ago tells us that $x^{3} \equiv x^{\prime 3}+3^{n}+3^{n}+3^{n} \equiv x^{\prime 3}\left(\bmod 3^{n+1}\right)$. Thus $3^{n+1} \mid x^{3}+17$ as well. On the other hand, since $x=x^{\prime}+3^{n}$, we have $x^{3} \equiv x^{\prime 3}+3^{n+1} \not \equiv$ $x^{\prime 3}\left(\bmod 3^{n+2}\right)$. It follows that 3^{n+2} does not divide $x^{3}+17$, as desired. This completes the inductive step.

Problem 3 From a set of $2 n+1$ weights (where n is a natural number), if any one weight is excluded, then the remaining $2 n$ weights can be divided into two sets of n weights that balance each other. Prove that all the weights are equal.

Solution: Label the weights $a_{1}, a_{2}, \ldots, a_{2 n+1}$. Then for each j, $1 \leq j \leq 2 n$, we have

$$
c_{1}^{(j)} a_{1}+c_{2}^{(j)} a_{2}+\cdots+c_{2 n}^{(j)} a_{2 n}=a_{2 n+1}
$$

where $c_{j}^{(j)}=0, n$ of the other $c_{i}^{(j)}$ equal 1 , and the remaining $c_{i}^{(j)}$ equal -1 .

Thus we have $2 n$ equations in the variables $a_{1}, a_{2}, \ldots, a_{2 n}$. Clearly $\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)=\left(a_{2 n+1}, a_{2 n+1}, \ldots, a_{2 n+1}\right)$ is a solution to this system of equations. By Kramer's Rule, this solution is unique if and only if the determinant of the matrix

$$
\left[\begin{array}{cccc}
c_{1}^{(1)} & c_{2}^{(1)} & \cdots & c_{2 n}^{(1)} \\
c_{1}^{(2)} & c_{2}^{(2)} & \cdots & c_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
c_{1}^{(2 n)} & c_{2}^{(2 n)} & \cdots & c_{2 n}^{(2 n)}
\end{array}\right]
$$

is nonzero. We show this is true by proving that this determinant is odd.

If we add an integer m to any single integer in the matrix, its determinant changes by m multiplied by the corresponding cofactor. Specifically, if m is even then the parity of the determinant does not change. Thus the parity of the presented determinant is the same as
the parity of the determinant

$$
\left|\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right|
$$

This matrix has eigenvector $(1,1, \ldots, 1)$ corresponding to the eigenvalue $2 n-1$; and eigenvectors $(1,-1,0, \ldots, 0,0),(0,1,-1, \ldots, 0,0)$, $\ldots,(0,0,0, \ldots, 1,-1)$ corresponding to eigenvalue -1 . These $2 n$ eigenvectors are linearly independent, so the matrix's characteristic polynomial is $p(x)=(x-(2 n-1))(x+1)^{2 n-1}$. Hence its determinant $p(0)=-(2 n-1)$ is odd, as desired.

Problem 4 Prove that

$$
f(x)=\left(x^{2}+1^{2}\right)\left(x^{2}+2^{2}\right)\left(x^{2}+3^{2}\right) \cdots\left(x^{2}+n^{2}\right)+1
$$

cannot be expressed as a product of two integral-coefficient polynomials with degree greater than 0 .

Solution: The claim is obvious when $n=1$. Now assume $n \geq 2$ and suppose by way of contradiction that $f(x)$ could be expressed as such a product $g(x) h(x)$ with

$$
\begin{aligned}
& g(x)=a_{0}+a_{1} x+\cdots+a_{\ell} x^{\ell} \\
& h(x)=b_{0}+b_{1} x+\cdots+b_{\ell^{\prime}} x^{\ell^{\prime}}
\end{aligned}
$$

where $\ell, \ell^{\prime}>0$ and the coefficients a_{i} and b_{i} are integers.
For $m= \pm 1, \pm 2, \ldots, \pm n$, since $(m i)^{2}+m^{2}=0$ we have $1=$ $f(m i)=g(m i) h(m i)$. But since g and h have integer coefficients, $g(m i)$ equals either $1,-1, i$, or $-i$. Moreover, since the imaginary part of

$$
g(m i)=\left(a_{0}-a_{2} m^{2}+a_{4} m^{4}-\cdots\right)+m\left(a_{1}-a_{3} m^{2}+a_{5} m^{4}-\cdots\right) i
$$

is a multiple of $m, g(m i)$ must equal ± 1 for $m \neq \pm 1$. Going further, since $1=g(m i) h(m i)$ we have $g(m i)=h(m i)= \pm 1$ for $m \neq \pm 1$.

Then by the factor theorem,

$$
g(x)-h(x)=\left(x^{2}+2^{2}\right)\left(x^{2}+3^{2}\right) \cdots\left(x^{2}+n^{2}\right) k(x)
$$

for some integer-coefficient polynomial $k(x)$ with degree at most 1. Since $(g(i), h(i))$ equals $(1,-1),(-1,1),(i,-i)$, or $(-i, i)$, we have

$$
2 \geq|g(i)-h(i)|=\left(-1+2^{2}\right)\left(-1+3^{2}\right) \cdots\left(-1+n^{2}\right)|k(i)|,
$$

and hence we must have $k(i)=0$. Since $k(x)$ has degree at most 1, this implies that $k(x)=0$ for all x and that $g(x)=h(x)$ for all x. But then $a_{0}^{2}=g(0) h(0)=f(0)=\left(1^{2}\right)\left(2^{2}\right) \cdots\left(n^{2}\right)+1$, which is impossible.

Problem 5 For a convex hexagon $A B C D E F$ whose side lengths are all 1 , let M and m be the maximum and minimum values of the three diagonals $A D, B E$, and $C F$. Find all possible values of m and M.

Solution: We claim that the possible values are $\sqrt{3} \leq M \leq 3$ and $1 \leq m \leq 2$.
First we show all such values are attainable. Continuously transform $A B C D E F$ from an equilateral triangle $A C E$ of side length 2, into a regular hexagon of side length 1 , and finally into a segment of length 3 (say, by enlarging the diagonal $A D$ of the regular hexagon while bringing B, C, E, F closer to line $A D$). Then M continuously varies from $\sqrt{3}$ to 2 to 3 . Similarly, by continuously transforming $A B C D E F$ from a 1×2 rectangle into a regular hexagon, we can make m vary continuously from 1 to 2 .

Now we prove no other values are attainble. First, we have $A D \leq$ $A B+B C+C D=3$, and similarly $B E, C F \leq 3$ so that $M \leq 3$.

Next, suppose by way of contradiction that $m<1$ and say without loss of generality that $A D<1$. Since $A D<A B=B C=C D=1$,

$$
\begin{aligned}
& \angle D C A<\angle D A C, \angle A B D<\angle A D B, \\
& \angle C B D=\angle C D B, \angle B C A=\angle B A C .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \angle C D A+\angle B A D=\angle C D B+\angle B D A+\angle B A C+\angle C A D \\
& \quad>\angle C B D+\angle D B A+\angle B C A+\angle A C D=\angle C B A+\angle B C D .
\end{aligned}
$$

Consequently $\angle C D A+\angle B A D>180^{\circ}$ and likewise $\angle E D A+$ $\angle F A D>180^{\circ}$. But then

$$
\angle C D E+\angle B A F=\angle C D A+\angle E D A+\angle B A D+\angle F A D>360^{\circ},
$$

which is impossible since $A B C D E F$ is convex. Hence $m \geq 1$.
Next we demonstrate that $M \geq \sqrt{3}$ and $m \leq 2$. Since the sum of the six interior angles in $A B C D E F$ is 720°, some pair of adjacent angles has sum greater than or equal to 240° and some pair has sum less than or equal to 240°. Thus it suffices to prove that $C F \geq \sqrt{3}$ when $\angle A+\angle B \geq 240^{\circ}$, and that $C F \leq 2$ when $\angle A+\angle B \leq 240^{\circ}$.

Suppose by way of contradiction that $\angle A+\angle B \geq 240^{\circ}$ and $C F<$ $\sqrt{3}$. By the law of cosines, $C F^{2}=B C^{2}+B F^{2}-2 B C \cdot B F \cos \angle F B C$. Thus if we fix A, B, F and decrease $\angle A B C$, we decrease $\angle F B C$ and $C F$; similarly, by fixing A, B, C and decreasing $\angle B A F$, we decrease $C F$. Therefore, it suffices to prove that $\sqrt{3} \geq C F$ when $\angle A+\angle B=$ 240°. And likewise, it suffices to prove that $C F \leq 2$ when $\angle A+\angle B=$ 240°.

Now suppose that $\angle A+\angle B$ does equal 240°. Let lines $A F$ and $B C$ intersect at P, and set $x=P A$ and $y=P B$. Since $\angle A+\angle B=240^{\circ}$, $\angle P=60^{\circ}$. Then applying the law of cosines to triangles $P A B$ and $P C F$ yields

$$
1=A B^{2}=x^{2}+y^{2}-x y
$$

and

$$
C F^{2}=(x+1)^{2}+(y+1)^{2}-(x+1)(y+1)=2+x+y .
$$

Therefore, we need only find the possible values of $x+y$ given that $x^{2}+y^{2}-x y=1$ and $x, y \geq 0$. These conditions imply that $(x+y)^{2}+$ $3(x-y)^{2}=4, x+y \geq 0$, and $|x-y| \leq x+y$. Hence

$$
1=\frac{1}{4}(x+y)^{2}+\frac{3}{4}(x-y)^{2} \leq(x+y)^{2} \leq(x+y)^{2}+3(x-y)^{2}=4
$$

so $1 \leq x+y \leq 2$ and $\sqrt{3} \leq C F \leq 2$. This completes the proof.

1.14 Korea

Problem 1 Let R and r be the circumradius and inradius of triangle $A B C$ respectively, and let R^{\prime} and r^{\prime} be the circumradius and inradius of triangle $A^{\prime} B^{\prime} C^{\prime}$ respectively. Prove that if $\angle C=\angle C^{\prime}$ and $R r^{\prime}=$ $R^{\prime} r$, then the triangles are similar.

Solution: Let ω be the circumcircle of triangle $A B C$. By scaling, rotating, and translating, we may assume that $A=A^{\prime}, B=B^{\prime}$, $R=R^{\prime}, r=r^{\prime}$ and that C, C^{\prime} lie on the same $\operatorname{arc} \widehat{A B}$ of ω. If the triangles were similar before these transformations, they still remain similar; so it suffices to prove they are now congruent.

Since $r=\frac{1}{2}(A C+B C-A B) \cot (\angle C)$ and $r^{\prime}=\frac{1}{2}\left(A^{\prime} C^{\prime}+B^{\prime} C^{\prime}-\right.$ $\left.A^{\prime} B^{\prime}\right) \cot \left(\angle C^{\prime}\right)=\frac{1}{2}\left(A^{\prime} C^{\prime}+B^{\prime} C^{\prime}-A B\right) \cot (\angle C)$, we must have $A C+$ $B C=A^{\prime} C^{\prime}+B^{\prime} C^{\prime}$ and hence $A B+B C+C A=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} A^{\prime}$. Then the area of triangle $A B C$ is $\frac{1}{2} r(A B+B C+C A)$, which thus equals the area of triangle $A^{\prime} B^{\prime} C^{\prime}, \frac{1}{2} r^{\prime}\left(A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+C^{\prime} A^{\prime}\right)$. Since these triangles share the same base $\overline{A B}$, we know that the altitudes from C and C^{\prime} to $\overline{A B}$ are equal. This implies that $\triangle A B C$ is congruent to either $\triangle A^{\prime} B^{\prime} C^{\prime}$ or $\triangle B^{\prime} A^{\prime} C^{\prime}$, as desired.

Problem 2 Suppose $f: \mathbb{Q} \rightarrow \mathbb{R}$ is a function satisfying

$$
|f(m+n)-f(m)| \leq \frac{n}{m}
$$

for all positive rational numbers n and m. Show that for all positive integers k,

$$
\sum_{i=1}^{k}\left|f\left(2^{k}\right)-f\left(2^{i}\right)\right| \leq \frac{k(k-1)}{2}
$$

Solution: It follows from the condition $|f(m+n)-f(m)| \leq \frac{n}{m}$ that

$$
\left|f\left(2^{i+1}\right)-f\left(2^{i}\right)\right| \leq \frac{2^{i+1}-2^{i}}{2^{i}}=1
$$

Therefore, for $k>i$,

$$
\left|f\left(2^{k}\right)-f\left(2^{i}\right)\right| \leq \sum_{j=i}^{k-1}\left|f\left(2^{j+1}\right)-f\left(2^{j}\right)\right| \leq k-i
$$

From the above inequality, we obtain

$$
\sum_{i=1}^{k}\left|f\left(2^{k}\right)-f\left(2^{i}\right)\right|=\sum_{i=1}^{k-1}\left|f\left(2^{k}\right)-f\left(2^{i}\right)\right| \leq \sum_{i=1}^{k-1}(k-i)=\frac{k(k-1)}{2}
$$

This completes the proof.
Problem 3 Find all positive integers n such that $2^{n}-1$ is a multiple of 3 and $\frac{2^{n}-1}{3}$ is a divisor of $4 m^{2}+1$ for some integer m.

Solution: The answer is all 2^{k} where $k=1,2, \ldots$.
First, it is easy to conclude (using Fermat's Little Theorem, or by simple observation) that if $3 \mid 2^{n}-1$, then n must be even.

Suppose by way of contradiction that $\ell \geq 3$ is a positive odd divisor of n. Then $2^{\ell}-1$ is not divisible by 3 but it is a divisor of $2^{n}-1$, so it is a divisor of $4 m^{2}+1$ as well. On the other hand, $2^{\ell}-1$ has a prime divisor p of the form $4 r+3$. Then $(2 m)^{2} \equiv-1(\bmod 4 r+3)$; but a standard number theory result states that a square cannot equal -1 modulo a prime of the form $4 r+3$.

Therefore n is indeed of the form 2^{k} for $k \geq 1$. For such n, we have

$$
\frac{2^{n}-1}{3}=\left(2^{2^{1}}+1\right)\left(2^{2^{2}}+1\right)\left(2^{2^{3}}+1\right) \cdots\left(2^{2^{k-1}}+1\right)
$$

The factors on the right side are all relatively prime to 2 since they are all odd. They are also Fermat numbers, and another result from number theory states that they are relatively prime. (Suppose that some prime p divided both $2^{2^{a}}+1$ and $2^{2^{b}}+1$ for $a<b$. Then $2^{2^{a}} \equiv 2^{2^{b}} \equiv-1(\bmod p) . \quad$ But then $-1 \equiv 2^{2^{b}}=\left(2^{2^{a}}\right)^{2^{b-a}} \equiv$ $\left((-1)^{2}\right)^{2^{b-a-1}} \equiv 1(\bmod p)$, implying that $p=2$; again, this is impossible.) Therefore by the Chinese Remainder Theorem, there is a positive integer c simultaneously satisfying

$$
c \equiv 2^{2^{i-1}} \quad\left(\bmod 2^{2^{i}}+1\right) \quad \text { for all } i=1,2, \ldots, k-1
$$

and $c \equiv 0(\bmod 2)$. Putting $c=2 m, 4 m^{2}+1$ is a multiple of $\frac{2^{n}-1}{3}$, as desired.

Problem 4 Suppose that for any real x with $|x| \neq 1$, a function $f(x)$ satisfies

$$
f\left(\frac{x-3}{x+1}\right)+f\left(\frac{3+x}{1-x}\right)=x
$$

Find all possible $f(x)$.

Solution: Set $t=\frac{x-3}{x+1}$ so that $x=\frac{3+t}{1-t}$. Then the given equation can be rewritten as

$$
f(t)+f\left(\frac{t-3}{t+1}\right)=\frac{3+t}{1-t}
$$

Similarly, set $t=\frac{3+x}{1-x}$ so that $x=\frac{t-3}{t+1}$ and $\frac{x-3}{x+1}=\frac{3+t}{1-t}$. Again we can rewrite the given equation, this time as

$$
f\left(\frac{3+t}{1-t}\right)+f(t)=\frac{t-3}{t+1}
$$

Adding these two equations we have

$$
\frac{8 t}{1-t^{2}}=2 f(t)+f\left(\frac{t-3}{t+1}\right)+f\left(\frac{3+t}{1-t}\right)=2 f(t)+t
$$

so that

$$
f(t)=\frac{4 t}{1-t^{2}}-\frac{t}{2}
$$

and some algebra verifies that this solution works.
Problem 5 Consider a permutation $\left(a_{1}, a_{2}, \ldots, a_{6}\right)$ of $1,2, \ldots, 6$ such that the minimum number of transpositions needed to transform $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ to $(1,2,3,4,5,6)$ is four. Find the number of such permutations.

Solution: Given distinct numbers $b_{1}, b_{2}, \ldots, b_{k}$ between 1 and n, in a k-cycle with these numbers b_{1} is mapped to one of the other $k-1$ numbers; its image is mapped to one of the $k-2$ remaining numbers; and so on until the remaining number is mapped to b_{1}. Hence there are $(k-1)(k-2) \cdots(1)=(k-1)$! cycles of length k involving these numbers.

Any permutation which can be achieved with four transpositions is even, so a permutation satisfying the given conditions must be either (i) the identity permutation, (ii) a composition of two transpositions, (iii) a 3-cycle, (iv) a composition of a 2 -cycle and a 4 -cycle, (v) a composition of two 3 -cycles, or (vi) a 5 -cycle. Permutations of type (i), (ii), and (iii) can be attained with fewer transpositions from our observations above. Conversely, any even permutation that can be achieved with zero or two transpositions is of these three types. Hence the permutations described in the problem statement are precisely those of types (iv), (v), and (vi). For type-(iv) permutations, there
are $\binom{6}{2}=15$ ways to assign which cycle each of $1,2, \ldots, 6$ belongs; and there are $(2-1)!(4-1)!=6$ ways to rearrange them within the cycles, for a total of $15 \cdot 6=90$ permutations. For type-(v) permutations, there are $\frac{1}{2}\binom{6}{3}=10$ ways to assign which cycle each number belongs to (since $\binom{6}{3}$ counts each such permutation twice, once in the form $(a b c)(d e f)$ and again in the form $(d e f)(a b c))$. And there are $(3-1)!(3-1)!=4$ ways to rearrange the numbers within these two cycles for a total of $10 \cdot 4=40$ type-(v) permutations. Finally, for type-(v) permutations there are $\binom{6}{5}=6$ ways to choose which five numbers are cycled, and $(5-1)!=24$ different cycles among any five numbers. This gives a total of $6 \cdot 24=144$ type-(v) permutations, and altogether

$$
90+40+144=274
$$

permutations which can be attained with four permutations, but no less.

Problem 6 Let $a_{1}, a_{2}, \cdots, a_{1999}$ be nonnegative real numbers satisfying the following two conditions:
(a) $a_{1}+a_{2}+\cdots+a_{1999}=2$;
(b) $a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{1998} a_{1999}+a_{1999} a_{1}=1$.

Let $S=a_{1}^{2}+a_{2}^{2}+\cdots+a_{1999}^{2}$. Find the maximum and minimum possible values of S.

Solution: Without loss of generality assume that a_{1999} is the minimum a_{i}. We may also assume that $a_{1}>0$. From the given equations we have

$$
\begin{aligned}
& 4=\left(a_{1}+a_{2}+\cdots+a_{1999}\right)^{2} \\
& \geq\left(a_{1}+a_{2}+\cdots+a_{1999}\right)^{2}-\left(a_{1}-a_{2}+a_{3}-\cdots-a_{1998}+a_{1999}\right)^{2} \\
&= 4\left(a_{1}+a_{3}+\cdots+a_{1999}\right)\left(a_{2}+a_{4}+\cdots+a_{1998}\right) \\
& \geq 4\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{1998} a_{1999}\right) \\
& \quad+4\left(a_{1} a_{4}+a_{2} a_{5}+\cdots+a_{1996} a_{1999}\right) \\
& \quad+4 a_{1}\left(a_{6}+a_{8}+\cdots+a_{1998}\right) \\
&=4(1-\left.a_{1999} a_{1}\right)+4\left(a_{1} a_{4}+a_{2} a_{5} \cdots+a_{1996} a_{1999}\right) \\
& \quad+4 a_{1}\left(a_{6}+a_{8}+\cdots+a_{1998}\right)
\end{aligned}
$$

$$
\begin{aligned}
=4+4 & \left(a_{1} a_{4}+a_{2} a_{5}+\cdots+a_{1996} a_{1999}\right) \\
& +4 a_{1}\left(a_{6}+a_{8}+\cdots+a_{1998}-a_{1999}\right)
\end{aligned}
$$

≥ 4.

Hence equality must hold in the first and third inequality. Thus we must have
(i) $a_{1}+a_{3}+\cdots+a_{1999}=a_{2}+a_{4}+\cdots+a_{1998}=1$
(ii) $a_{1} a_{4}=a_{2} a_{5}=\cdots=a_{1996} a_{1999}=0$
(iii) $a_{6}+a_{8}+\cdots+a_{1998}=a_{1999}$.

Condition (ii) implies $a_{4}=0$; from (iii) we get $a_{6}=a_{8}=\cdots=$ $a_{1998}=0$. Thus from (i), we have $a_{2}=1$, and from (b), we have $a_{1}+a_{3}=1$. Applying these to the first given condition (a), we have

$$
a_{4}+a_{5}+\cdots+a_{1999}=0
$$

so that $a_{4}=a_{5}=\cdots=a_{1999}=0$. Therefore

$$
\begin{aligned}
S & =a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \\
& =a_{1}^{2}+1+\left(1-a_{1}\right)^{2} \quad \text { since } a_{2}=a_{1}+a_{3}=1 \\
& =2\left(a_{1}^{2}-a_{1}+1\right) \\
& =2\left(a_{1}-\frac{1}{2}\right)^{2}+\frac{3}{2} .
\end{aligned}
$$

Thus S has maximum value 2 attained when $a_{1}=1$, and minimum value $\frac{3}{2}$ when $a_{1}=\frac{1}{2}$.

1.15 Poland

Problem 1 Let D be a point on side $B C$ of triangle $A B C$ such that $A D>B C$. Point E on side $A C$ is defined by the equation

$$
\frac{A E}{E C}=\frac{B D}{A D-B C}
$$

Show that $A D>B E$.

First Solution: Fix the points B, C, D and the distance $A D$, and let A vary; its locus is a circle with center D. From the equation, the ratio $\frac{A E}{E C}$ is fixed; therefore, $\lambda=\frac{E C}{A C}$ is also fixed. Since E is the image of A under a homothety about C with ratio λ, the locus of all points E is the image of the locus of A under this homothety a circle centered on $\overline{B C}$. Then $B E$ has its unique maximum when E is the intersection of the circle with line $B C$ farther from B. If we show that $A D=B E$ in this case then we are done (the original inequality $A D>B E$ will be strict because equality can only hold in this degenerate case). Indeed, in this case the points B, D, C, E, A are collinear in that order; our equation gives

$$
\begin{gathered}
A E \cdot(A C-B D)=A E \cdot(A D-B C)=E C \cdot B D \\
\Rightarrow A E \cdot A C=(A E+E C) \cdot B D=A C \cdot B D \\
\Rightarrow A E=B D \Rightarrow A D=B E .
\end{gathered}
$$

Second Solution: Let F be the point on $\overline{A D}$ such that $F A=B C$, and let line $B F$ hit side $A C$ at E^{\prime}. By the law of sines we have $A E^{\prime}=F A \cdot \frac{\sin \angle A F E^{\prime}}{\sin \angle F E^{\prime} A}=C B \cdot \frac{\sin \angle D F B}{\sin \angle C E^{\prime} F}$ and $E^{\prime} C=C B \cdot \frac{\sin \angle E^{\prime} B C}{\sin \angle C E^{\prime} B}=$ $C B \cdot \frac{\sin \angle F B D}{\sin \angle C E^{\prime} F}$. Hence $\frac{A E^{\prime}}{E^{\prime} C}=\frac{\sin \angle D F B}{\sin \angle F B D}=\frac{D B}{F D}=\frac{B D}{A D-B C}=\frac{A E}{E C}$, and $E^{\prime}=E$.

Let ℓ be the line passing through A parallel to side $B C$. Draw G on ray $B C$ such that $B G=A D$ and $C G=F D$; and let lines $G E$ and ℓ intersect at H. Triangles $E C G$ and $E A H$ are similar, so $A H=C G \cdot \frac{A E}{E C}=F D \cdot \frac{A E}{E C}$.

By Menelaus' Theorem applied to triangle $C A D$ and line $E F B$, we have

$$
\frac{C E \cdot A F \cdot D B}{E A \cdot F D \cdot B C}=1 .
$$

Thus $A H=F D \cdot \frac{A E}{E C}=F D \cdot \frac{A F \cdot D B}{F D \cdot B C}=D B \cdot \frac{A F}{B C}=D B$, implying that quadrilateral $B D A H$ is a parallelogram and that $B H=A D$. It follows that triangle $B H G$ is isosceles with $B H=B G=A D$; and since $\overline{B E}$ in a cevian in this triangle, we must have $B E<A D$, as desired.

Problem 2 Given are nonnegative integers $a_{1}<a_{2}<\cdots<a_{101}$ smaller than 5050. Show that one can choose four distinct integers $a_{k}, a_{l}, a_{m}, a_{n}$ such that

$$
5050 \mid\left(a_{k}+a_{l}-a_{m}-a_{n}\right)
$$

Solution: First observe that the a_{i} are all distinct modulo 5050 since they are all between 0 and 5050 . Now consider all sums $a_{i}+a_{j}, i<j$; there are $\binom{101}{2}=5050$ such sums. If any two such sums, $a_{k}+a_{l}$ and $a_{m}+a_{n}$, are congruent mod 5050, we are done. (In this case, all four indices would indeed be distinct: if, for example, $k=m$, then we would also have $l=n$ since all a_{i} are different $\bmod 5050$, but we chose the pairs $\{k, l\}$ and $\{m, n\}$ to be distinct.) The only other possibility is that these sums occupy every possible congruence class $\bmod 5050$. Then, adding all such sums gives $100\left(a_{1}+a_{2}+\cdots+a_{101}\right) \equiv$ $0+1+\cdots+5049=2525 \cdot 5049(\bmod 5050)$. Since the number on the left side is even but $2525 \cdot 5049$ is odd, we get a contradiction.

Problem 3 For a positive integer n, let $S(n)$ denote the sum of its digits. Prove that there exist distinct positive integers $\left\{n_{i}\right\}_{1 \leq i \leq 50}$ such that

$$
n_{1}+S\left(n_{1}\right)=n_{2}+S\left(n_{2}\right)=\cdots=n_{50}+S\left(n_{50}\right)
$$

Solution: We show by induction on k that there exist positive integers n_{1}, \ldots, n_{k} with the desired property. For $k=1$ the statement is obvious. For $k>1$, we have (by induction) numbers $m_{1}<\cdots<$ m_{k-1} with the desired property. Note that we can make all m_{i} arbitrarily large, e.g. by adding some large power of 10 to all of them (which preserves our property). Then, choose m with $1 \leq m \leq 9$ and $m \equiv m_{1}+1(\bmod 9)$; recall that $S(x) \equiv x(\bmod 9)$. Then we have $m_{1}-m+S\left(m_{1}\right)-S(m)+11=9 \ell$ for some integer ℓ; by choosing the m_{i} large enough we can ensure $10^{\ell}>m_{k-1}$. Now let $n_{i}=10^{\ell+1}+m_{i}$ for $i<k$ and $n_{k}=m+10^{\ell+1}-10$. Now it is obvious
that $n_{i}+S\left(n_{i}\right)=n_{j}+S\left(n_{j}\right)$ for $i, j<k$, and

$$
\begin{aligned}
n_{1} & +S\left(n_{1}\right)=\left(10^{l+1}+m_{1}\right)+\left(1+S\left(m_{1}\right)\right) \\
& =\left(m_{1}+S\left(m_{1}\right)+1\right)+10^{l+1} \\
& =(9 \ell+S(m)+m-10)+10^{\ell+1} \\
& =\left(m+10^{l+1}-10\right)+(9 \ell+S(m)) \\
& =n_{k}+S\left(n_{k}\right)
\end{aligned}
$$

as needed.
Problem 4 Find all integers $n \geq 2$ for which the system of equations

$$
\left.\begin{array}{rl}
x_{1}^{2}+x_{2}^{2}+50 & =16 x_{1}+12 x_{2} \\
x_{2}^{2}+x_{3}^{2}+50 & =16 x_{2}+12 x_{3} \\
\ldots \ldots
\end{array}\right) .
$$

has a solution in integers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Solution: Answer: $3 \mid n$.
We rewrite the equation $x^{2}+y^{2}+50=16 x+12 y$ as $(x-8)^{2}+$ $(y-6)^{2}=50$, whose integer solutions are

$$
\begin{aligned}
& (7,-1),(7,13),(9,-1),(9,13),(3,1),(3,11) \\
& (13,1),(13,11),(1,5),(1,7),(15,5),(15,7)
\end{aligned}
$$

Thus every pair $\left(x_{i}, x_{i+1}\right)$ (where $x_{n+1}=x_{1}$) must be one of these. If $3 \mid n$ then just let $x_{3 i}=1, x_{3 i+1}=7, x_{3 i+2}=13$ for each i. Conversely, if a solution exists, consider the pairs $\left(x_{i}, x_{i+1}\right)$ which occur; every pair's first coordinate is the second coordinate of another pair, and vice versa, which reduces the above possibilities to $(1,7),(7,13),(13,1)$. It follows that the x_{i} must form a repeating sequence $1,7,13,1,7,13, \ldots$, which is only possible when $3 \mid n$.

Problem 5 Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be integers. Prove that

$$
\sum_{1 \leq i<j \leq n}\left(\left|a_{i}-a_{j}\right|+\left|b_{i}-b_{j}\right|\right) \leq \sum_{1 \leq i, j \leq n}\left|a_{i}-b_{j}\right|
$$

Solution: Define $f_{\{a, b\}}(x)=1$ if either $a \leq x<b$ or $b \leq x<a$, and 0 otherwise. Observe that when a, b are integers, $|a-b|=\sum_{x} f_{\{a, b\}}(x)$ where the sum is over all integers (the sum is valid since only finitely many terms are nonzero). Now suppose a_{\leq}is the number of values of i for which $a_{i} \leq x$, and $a_{>}, b_{\leq}, b_{>}$are defined analogously. We have $\left(a_{\leq}-b_{\leq}\right)+\left(a_{>}-b_{>}\right)=\left(a_{\leq}+a_{>}\right)-\left(b_{\leq}+b_{>}\right)=n-n=0 \Rightarrow$ $\left(a_{\leq}-b_{\leq}\right)\left(a_{>}-b_{>}\right) \leq 0$. Thus $\bar{a}_{\leq} a_{>}+b_{\leq} b_{>} \leq a_{\leq} b_{>}+a_{>} b_{\leq}$. But $a_{\leq a_{>}}=\sum_{i<j} f_{\left\{a_{i}, a_{j}\right\}}(x)$ since both sides count the same set of pairs, and the other terms reduce similarly, giving

$$
\sum_{1 \leq i<j \leq n} f_{\left\{a_{i}, a_{j}\right\}}(x)+f_{\left\{b_{i}, b_{j}\right\}}(x) \leq \sum_{1 \leq i, j \leq n} f_{\left\{a_{i}, b_{j}\right\}}(x) .
$$

Now summing over all integers x and using our first observation, we get the desired inequality. Equality holds iff the above inequality is an equality for all x, which is true precisely when the a_{i} equal the b_{i} in some order.

Problem 6 In a convex hexagon $A B C D E F, \angle A+\angle C+\angle E=360^{\circ}$ and

$$
A B \cdot C D \cdot E F=B C \cdot D E \cdot F A
$$

Prove that $A B \cdot F D \cdot E C=B F \cdot D E \cdot C A$.
First Solution: Construct point G so that triangle $G B C$ is similar to triangle $F B A$ (and with the same orientation). Then $\angle D C G=$ $360^{\circ}-(\angle G C B+\angle B C D)=\angle D E F$ and $\frac{G C}{C D}=\frac{F A \cdot \frac{B C}{A B}}{C D}=\frac{F E}{E D}$, so triangles $D C G, D E F$ are similar.

Now $\frac{A B}{B F}=\frac{C B}{B G}$ by similar triangles, and $\angle A B C=\angle A B F+$ $\angle F B C=\angle C B G+\angle F B C=\angle F B G$; thus $\triangle A B C \sim \triangle F B G$, and likewise $\triangle E D C \sim \triangle F D G$. Then

$$
\frac{A B}{C A} \cdot \frac{E C}{D E} \cdot \frac{F D}{B F}=\frac{F B}{G F} \cdot \frac{F G}{D F} \cdot \frac{F D}{B F}=1
$$

as needed.
Second Solution: Invert about F with some radius r. The original equality becomes

$$
\frac{A^{\prime} B^{\prime} \cdot r^{2}}{A^{\prime} F \cdot B^{\prime} F} \cdot \frac{C^{\prime} D^{\prime} \cdot r^{2}}{C^{\prime} F \cdot D^{\prime} F} \cdot \frac{r^{2}}{E^{\prime} F}=\frac{B^{\prime} C^{\prime} \cdot r^{2}}{B^{\prime} F \cdot C^{\prime} F} \cdot \frac{D^{\prime} E^{\prime} \cdot r^{2}}{D^{\prime} F \cdot E^{\prime} F} \cdot \frac{r^{2}}{A^{\prime} F}
$$

or $\frac{A^{\prime} B^{\prime}}{B^{\prime} C^{\prime}}=\frac{E^{\prime} D^{\prime}}{D^{\prime} C^{\prime}}$. The original angle condition is $\angle F A B+\angle B C F+$ $\angle F C D+\angle D E F=360^{\circ}$; using directed angles, this turns into $\angle A^{\prime} B^{\prime} F+\angle F B^{\prime} C^{\prime}+\angle C^{\prime} D^{\prime} F+\angle F D^{\prime} E^{\prime}=360^{\circ}$, or $\angle A^{\prime} B^{\prime} C^{\prime}=$ $\angle E^{\prime} D^{\prime} C^{\prime}$. Thus triangles $A^{\prime} B^{\prime} C^{\prime}, E^{\prime} D^{\prime} C^{\prime}$ are similar, giving $\frac{A^{\prime} B^{\prime}}{A^{\prime} C^{\prime}}=$ $\frac{E^{\prime} D^{\prime}}{E^{\prime} C^{\prime}}$ or, equivalently,

$$
\frac{A^{\prime} B^{\prime} \cdot r^{2}}{A^{\prime} F \cdot B^{\prime} F} \cdot \frac{r^{2}}{D^{\prime} F} \cdot \frac{E^{\prime} C^{\prime} \cdot r^{2}}{C^{\prime} F \cdot E^{\prime} F}=\frac{r^{2}}{B^{\prime} F} \cdot \frac{D^{\prime} E^{\prime} \cdot r^{2}}{D^{\prime} F \cdot E^{\prime} F} \cdot \frac{C^{\prime} A^{\prime} \cdot r^{2}}{A^{\prime} F \cdot C^{\prime} F}
$$

Inverting back, we see that we are done.
Third Solution: Position the hexagon in the complex plane and let $a=B-A, b=C-B, \ldots, f=A-F$. The product identity implies that $|a c e|=|b d f|$, and the angle equality implies $\frac{-b}{a} \cdot \frac{-d}{c} \cdot \frac{-f}{e}$ is positive real; hence ace $=-b d f$. Also $a+b+c+d+e+f=0$; Multiplying this by $a d$ and adding $a c e+b d f=0$ gives

$$
a^{2} d+a b d+a c d+a d^{2}+a d e+a d f+a c e+b d f=0
$$

which factors to $a(d+e)(c+d)+d(a+b)(f+a)=0$. Thus $|a(d+e)(c+d)|=|d(a+b)(f+a)|$, which is what we wanted.

1.16 Romania

National Olympiad

Problem 7.1 Determine the side lengths of a right triangle if they are integers and the product of the leg lengths is equal to three times the perimeter.

Solution: One of the leg lengths must be divisible by 3 ; let the legs have lengths $3 a$ and b and let the hypotenuse have length c, where a, b, and c are positive integers. From the given condition we have $3 a b=3(3 a+b+c)$, or $c=a b-3 a-b$. By the Pythagorean theorem, we have $(3 a)^{2}+b^{2}=c^{2}=(a b-3 a-b)^{2}$, which simplifies to

$$
a b[(a-2)(b-6)-6]=0
$$

Since $a, b>0$, we have $(a, b) \in\{(3,12),(4,9),(5,8),(8,7)\}$, and therefore the side lengths of the triangle are either $(9,12,15),(8,15,17)$, or $(7,24,25)$.

Problem 7.2 Let a, b, c be nonzero integers, $a \neq c$, such that

$$
\frac{a}{c}=\frac{a^{2}+b^{2}}{c^{2}+b^{2}} .
$$

Prove that $a^{2}+b^{2}+c^{2}$ cannot be a prime number.
Solution: Cross-multiplying and factoring, we have $(a-c)\left(b^{2}-\right.$ $a c)=0$. Since $a \neq c$, we have $a c=b^{2}$. Now, $a^{2}+b^{2}+c^{2}=$ $a^{2}+\left(2 a c-b^{2}\right)+c^{2}=(a+c)^{2}-b^{2}=(a+b+c)(a-b+c)$. Also, $|a|,|c|$ cannot both be 1 . Then $a^{2}+b^{2}+c^{2}>|a|+|b|+|c| \geq|a+b+c|,|a-b+c|$, whence $a^{2}+b^{2}+c^{2}$ cannot be a prime number.

Problem 7.3 Let $A B C D$ be a convex quadrilateral with $\angle B A C=$ $\angle C A D$ and $\angle A B C=\angle A C D$. Rays $A D$ and $B C$ meet at E and rays $A B$ and $D C$ meet at F. Prove that
(a) $A B \cdot D E=B C \cdot C E$;
(b) $A C^{2}<\frac{1}{2}(A D \cdot A F+A B \cdot A E)$.

Solution:

(a) Because $\angle B A C+\angle C B A=\angle E C A$, we have $\angle E C D=\angle B A C$. Then $\triangle C D E \sim \triangle A C E$, and $\frac{C E}{D E}=\frac{A E}{C E}$. But since $\overline{A C}$ is the
angle bisector of $\angle A$ in triangle $A B E$, we also have $\frac{A E}{C E}=\frac{A B}{B C}$. Thus $\frac{C E}{D E}=\frac{A B}{B C}$, whence $A B \cdot D E=B C \cdot C E$.
(b) Note that $\overline{A C}$ is an angle bisector of both triangle $A D F$ and triangle $A E B$. Thus it is enough to prove that if $\overline{X L}$ is an angle bisector in an arbitrary triangle $X Y Z$, then $X L^{2}<X Y \cdot X Z$. Let M be the intersection of $\overrightarrow{X L}$ and the circumcircle of triangle $X Y Z$. Because $\triangle X Y L \sim \triangle X M Z$, we have $X L^{2}<X L \cdot X M=$ $X Y \cdot X Z$, as desired.

Problem 7.4 In triangle $A B C, D$ and E lie on sides $B C$ and $A B$, respectively, F lies on side $A C$ such that $E F \| B C, G$ lies on side $B C$ such that $E G \| A D$. Let M and N be the midpoints of $\overline{A D}$ and $\overline{B C}$, respectively. Prove that
(a) $\frac{E F}{B C}+\frac{E G}{A D}=1$;
(b) the midpoint of $\overline{F G}$ lies on line $M N$.

Solution:

(a) Since $E F \| B C, \triangle A E F \sim \triangle A B C$ and $\frac{E F}{B C}=\frac{A E}{A B}$. Similarly, since $E G \| A D, \triangle B E G \sim \triangle B A D$ and $\frac{E G}{A D}=\frac{E B}{A B}$. Hence $\frac{E F}{B C}+\frac{E G}{A D}=1$.
(b) Let lines $A N, E F$ intersect at point P, and let Q be the point on line $B C$ such that $P Q \| A D$. Since $B C \| E F$ and N is the midpoint of $\overline{B C}, P$ is the midpoint of $\overline{E F}$. Then vector $E P$ equals both vectors $P F$ and $G Q$, and $P F Q G$ is a parallelogram. Thus the midpoint X of $\overline{F G}$ must also be the midpoint of $\overline{P Q}$. But then since M is the midpoint of $\overline{A D}$ and $A D \| P Q$, points M, X, N must be collinear.

Problem 8.1 Let $p(x)=2 x^{3}-3 x^{2}+2$, and let

$$
\begin{aligned}
& S=\{p(n) \mid n \in \mathbb{N}, n \leq 1999\} \\
& T=\left\{n^{2}+1 \mid n \in \mathbb{N}\right\} \\
& U=\left\{n^{2}+2 \mid n \in \mathbb{N}\right\}
\end{aligned}
$$

Prove that $S \cap T$ and $S \cap U$ have the same number of elements.
Solution: Note that $|S \cap T|$ is the number of squares of the form $2 n^{3}-3 n^{2}+1=(n-1)^{2}(2 n+1)$ where $n \in \mathbb{N}, n \leq 1999$. And for
$n \leq 1999,(n-1)^{2}(2 n+1)$ is a square precisely when either $n=1$ or when $n \in\left\{\left.\frac{1}{2}\left(k^{2}-1\right) \right\rvert\, k=1,3,5, \ldots, 63\right\}$. Thus, $|S \cap T|=33$.

Next, $|S \cap U|$ is the number of squares of the form $2 n^{3}-3 n^{2}=$ $n^{2}(2 n-3)$ where $n \in \mathbb{N}, n \leq 1999$. And for $n \leq 1999, n^{2}(2 n-3)$ is a square precisely when either $n=0$ or when $n \in\left\{\left.\frac{1}{2}\left(k^{2}+3\right) \right\rvert\, k=\right.$ $1,3,5, \ldots, 63\}$. Thus $|S \cap U|=33$ as well, and we are done.

Problem 8.2

(a) Let $n \geq 2$ be a positive integer and

$$
x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}
$$

be positive real numbers such that

$$
x_{1}+x_{2}+\cdots+x_{n} \geq x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Prove that

$$
x_{1}+x_{2}+\cdots+x_{n} \leq \frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}+\cdots+\frac{x_{n}}{y_{n}} .
$$

(b) Let a, b, c be positive real numbers such that

$$
a b+b c+c a \leq 3 a b c
$$

Prove that

$$
a^{3}+b^{3}+c^{3} \geq a+b+c
$$

Solution:

(a) Applying the Cauchy-Schwarz inequality and then the given inequality, we have

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i} y_{i} \cdot \sum_{i=1}^{n} \frac{x_{i}}{y_{i}} \leq \sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} \frac{x_{i}}{y_{i}}
$$

Dividing both sides by $\sum_{i=1}^{n} x_{i}$ yields the desired inequality.
(b) By the AM-HM inequality on a, b, c we have

$$
a+b+c \geq \frac{9 a b c}{a b+b c+c a} \geq \frac{9 a b c}{3 a b c}=3
$$

Then, since the given condition is equivalent to $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq 3$, we have $a+b+c \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Hence setting $x_{1}=a, x_{2}=b, x_{3}=c$ and $y_{1}=\frac{1}{a^{2}}, y_{2}=\frac{1}{b^{2}}, y_{3}=\frac{1}{c^{2}}$ in the result from part (a) gives $a+b+c \leq a^{3}+b^{3}+c^{3}$, as desired.

Problem 8.3 Let $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a rectangular box, let E and F be the feet of perpendiculars from A to lines $A^{\prime} D$ and $A^{\prime} C$ respectively, and let P and Q be the feet of perpendiculars from B^{\prime} to lines $A^{\prime} C^{\prime}$ and $A^{\prime} C$ respectively. Prove that
(a) planes $A E F$ and $B^{\prime} P Q$ are parallel;
(b) triangles $A E F$ and $B^{\prime} P Q$ are similar.

Solution:

(a) Let $\left(P_{1} P_{2} \ldots P_{k}\right)$ denote the plane containing points $P_{1}, P_{2}, \ldots, P_{k}$. First observe that quadrilateral $A^{\prime} B^{\prime} C D$ is a parallelogram and thus lies in a single plane.

We are given that $A E \perp A^{\prime} D$. Also, line $A E$ is contained in plane $\left(A D D^{\prime} A\right)$, which is perpendicular to line $C D$. Hence $A E \perp$ $C D$ as well, and therefore $A E \perp\left(A^{\prime} B^{\prime} C D\right)$ and $A E \perp A^{\prime} C$. And since we know that $A^{\prime} C \perp A F$, we have $A^{\prime} C \perp(A E F)$ and $A^{\prime} C \perp E F$.

Likewise, $B^{\prime} Q \perp A^{\prime} C$. And since lines $E F, B^{\prime} Q$, and $A^{\prime} C$ all lie in plane $\left(A^{\prime} B^{\prime} C D\right)$, it follows that $E F \| B^{\prime} Q$. In a similar way we deduce that $A F \| P Q$. Hence the planes $(A E F)$ and $\left(B^{\prime} P Q\right)$ are parallel, as desired.
(b) Since $E F \| B^{\prime} Q$ and $F A \| Q P$, we have $\angle E F A=\angle P Q B^{\prime}$. Furthermore, from above $A E \perp E F$ and likewise $B^{\prime} P \perp P Q$, implying that $\angle A E F=\angle B^{\prime} P Q=90^{\circ}$ as well. Therefore $\triangle A E F \sim \triangle B^{\prime} P Q$, as desired.

Problem 8.4 Let $S A B C$ be a right pyramid with equilateral base $A B C$, let O be the center of $A B C$, and let M be the midpoint of $\overline{B C}$. If $A M=2 S O$ and N is a point on edge $S A$ such that $S A=25 S N$, prove that planes $A B P$ and $S B C$ are perpendicular, where P is the intersection of lines $S O$ and $M N$.

Solution: Let $A B=B C=C A=s$. Then some quick calculations show that $A O=\frac{\sqrt{3}}{3} s, A M=\frac{\sqrt{3}}{2} s, A S=\frac{5}{\sqrt{48}} s$, and $A N=\frac{24}{5 \sqrt{48}} s$. Then $A O \cdot A M=A N \cdot A S=\frac{1}{2} s^{2}$, whence $M O N S$ is a cyclic quadrilateral. Thus, $\angle M N S=90^{\circ}$, and P is the orthocenter of triangle $A M S$. Let Q be the intersection of lines $A P$ and $M S$. Note that $\angle A M B=\angle A Q M=\angle Q M B=90^{\circ}$. From repeated applications of the Pythagorean theorem, we have $A B^{2}=A M^{2}+$
$M B^{2}=A Q^{2}+Q M^{2}+M B^{2}=A Q^{2}+Q B^{2}$, whence $\angle A Q B=90^{\circ}$. Now $A Q \perp Q B$ and $A Q \perp Q M$, so line $A Q$ must be perpendicular to plane $S B C$. Then since plane $A B P$ contains line $A Q$, planes $A B P$ and $S B C$ must be perpendicular.

Problem 9.1 Let $A B C$ be a triangle with angle bisector $\overline{A D}$. One considers the points M, N on rays $A B$ and $A C$ respectively, such that $\angle M D A=\angle A B C$ and $\angle N D A=\angle B C A$. Lines $A D$ and $M N$ meet at P. Prove that

$$
A D^{3}=A B \cdot A C \cdot A P
$$

Solution: Since $\triangle A D B \sim \triangle A M D, \frac{A D}{A B}=\frac{A M}{A D}$. Also, $\angle M A N+$ $\angle N D M=\pi$, whence $A M D N$ is cyclic. Since $\angle D C A=\angle A D N=$ $\angle A M N, \triangle A D C \sim \triangle A P M$, and $\frac{A D}{A P}=\frac{A C}{A M}$. Therefore,

$$
\frac{A D}{A B} \frac{A D}{A C} \frac{A D}{A P}=\frac{A M}{A D} \frac{A D}{A C} \frac{A C}{A M}=1
$$

Problem 9.2 For $a, b>0$, denote by $t(a, b)$ the positive root of the equation

$$
(a+b) x^{2}-2(a b-1) x-(a+b)=0
$$

Let $M=\{(a, b) \mid a \neq b, t(a, b) \leq \sqrt{a b}\}$. Determine, for $(a, b) \in M$, the minimum value of $t(a, b)$.

Solution: Consider the polynomial $P(x)=(a+b) x^{2}-2(a b-1) x-$ $(a+b)=0$. Since $a+b \neq 0$, the product of its roots is $-\frac{a+b}{a+b}=-1$. Hence P must have a unique positive root $t(a, b)$ and a unique negative root. Since the leading coefficient of $P(x)$ is positive, the graph of $P(x)$ is positive for $x>t(a, b)$ and negative for $0 \leq x<t(a, b)$ (since in the latter case, x is between the two roots). Thus, the condition $t(a, b) \leq \sqrt{a b}$ is equivalent to $P(\sqrt{a b}) \geq 0$, or

$$
(a b-1)(a+b-2 \sqrt{a b}) \geq 0
$$

But $a+b>2 \sqrt{a b}$ by AM-GM, where the inequality is sharp since $a \neq b$. Thus $t(a, b) \leq \sqrt{a b}$ exactly when $a b \geq 1$.

Now using the quadratic formula, we find that

$$
t(a, b)=\frac{a b-1}{a+b}+\sqrt{\left(\frac{a b-1}{a+b}\right)^{2}+1}
$$

Thus given $a b \geq 1$, we have $t(a, b) \geq 1$ with equality when $a b=1$.

Problem 9.3 In the convex quadrilateral $A B C D$ the bisectors of angles A and C meet at I. Prove that there exists a circle inscribed in $A B C D$ if and only if

$$
[A I B]+[C I D]=[A I D]+[B I C]
$$

Solution: It is well known that a circle can be inscribed in a convex quadrilateral $A B C D$ if and only if $A B+C D=A D+B C$. The bisector of angle A consists of those points lying inside $\angle B A D$ equidistant from lines $A B$ and $A D$; similarly, the bisector of angle C consists of those points lying inside $\angle B C D$ equidistant from lines $B C$ and $B D$.

Suppose $A B C D$ has an incircle. Then its center is equidistant from all four sides of the quadrilateral, so it lies on both bisectors and hence equals I. If we let r denote the radius of the incircle, then we have

$$
[A I B]+[C I D]=r(A B+C D)=r(A D+B C)=[A I D]+[B I C]
$$

Conversely, suppose that $[A I B]+[C I D]=[A I D]+[B I C]$. Let $d(I, \ell)$ denote the distance from I to any line ℓ, and write $x=$ $d(I, A B)=d(I, A D)$ and $y=d(I, B C)=d(I, C D)$. Then

$$
\begin{aligned}
{[A I B]+[C I D] } & =[A I D]+[B I C] \\
A B \cdot x+C D \cdot y & =A D \cdot x+B C \cdot y \\
x(A B-A D) & =y(B C-C D)
\end{aligned}
$$

If $A B=A D$, then $B C=C D$ and it follows that $A B+C D=$ $A D+B C$. Otherwise, suppose that $A B>A D$; then $B C>C D$ as well. Consider the points $A^{\prime} \in \overline{A B}$ and $C^{\prime} \in \overline{B C}$ such that $A D=A A^{\prime}$ and $C D=C C^{\prime}$. By SAS, we have $\triangle A I A^{\prime} \cong \triangle A I D$ and $\triangle D C I \cong \triangle C^{\prime} I C$. Hence $I A^{\prime}=I D=I C^{\prime}$. Furthermore, subtracting $\left[A I A^{\prime}\right]+[D C I]=[A I D]+\left[C^{\prime} I C\right]$ from both sides of our given condition, we have $\left[A^{\prime} I B\right]=\left[C^{\prime} I B\right]$ or $I A^{\prime} \cdot I B \cdot \sin \angle A^{\prime} I B=I C^{\prime}$. $I B \cdot \sin \angle C I B$. Thus $\angle A^{\prime} I B=\angle C^{\prime} I B$, and hence $\triangle A^{\prime} I B \cong C^{\prime} I B$ by SAS.

Thus $\angle I B A^{\prime}=\angle I B C^{\prime}$, implying that I lies on the angle bisector of $\angle A B C$. Therefore $x=d(I, A B)=d(I, B C)=y$, and the circle centered at I with radius $x=y$ is tangent to all four sides of the quadrilateral.

Problem 9.4

(a) Let $a, b \in \mathbb{R}, a<b$. Prove that $a<x<b$ if and only if there exists $0<\lambda<1$ such that $x=\lambda a+(1-\lambda) b$.
(b) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property:

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

for all $x, y \in \mathbb{R}, x \neq y$, and all $0<\lambda<1$. Prove that one cannot find four points on the function's graph that are the vertices of a parallelogram.

Solution:

(a) No matter what x is, there is a unique value $\lambda=\frac{b-x}{b-a}$ such that $x=\lambda a+(1-\lambda) b$; and $0<\frac{b-x}{b-a}<1 \Longleftrightarrow a<x<b$, which proves the claim.
(b) The condition is Jensen's inequality and shows that the function f is strictly convex. Stated geometrically, whenever $x<t<y$ the point $(t, f(t))$ lies strictly below the line joining $(x, f(x))$ and $(y, f(y))$. Suppose there were a parallelogram on the graph of f whose vertices, from left to right, have x-coordinates a, b, d, c. Then either $(b, f(d))$ or $(d, f(d))$ must lie on or above the line joining $(a, f(a))$ and $(c, f(c))$, a contradiction.

Problem 10.1 Find all real numbers x and y satisfying

$$
\begin{aligned}
\frac{1}{4^{x}}+\frac{1}{27^{y}} & =\frac{5}{6} \\
\log _{27} y-\log _{4} x & \geq \frac{1}{6} \\
27^{y}-4^{x} & \leq 1
\end{aligned}
$$

Solution: First, for the second equation to make sense we must have $x, y>0$ and thus $27^{y}>1$. Now from the third equation we have

$$
\frac{1}{27^{y}} \geq \frac{1}{4^{x}+1}
$$

which combined with the first equation gives

$$
\frac{1}{4^{x}}+\frac{1}{4^{x}+1} \leq \frac{5}{6}
$$

whence $x \geq \frac{1}{2}$. Similarly, the first and third equations also give

$$
\frac{5}{6} \leq \frac{1}{27^{y}-1}+\frac{1}{27^{y}}
$$

whence $y \leq \frac{1}{3}$. If either $x>\frac{1}{2}$ or $y<\frac{1}{3}$, we would have $\log _{27} y-$ $\log _{4} x<\frac{1}{6}$, contradicting the second given equation. Thus, the only solution is $(x, y)=\left(\frac{1}{2}, \frac{1}{3}\right)$, which indeed satisfies all three equations.

Problem 10.2 A plane intersects edges $A B, B C, C D, D A$ of the regular tetrahedron $A B C D$ at points M, N, P, Q, respectively. Prove that

$$
M N \cdot N P \cdot P Q \cdot Q M \geq A M \cdot B N \cdot C P \cdot D Q
$$

Solution: By the law of cosines in triangle $M B N$, we have

$$
M N^{2}=M B^{2}+B N^{2}-M B \cdot B N \geq M B \cdot B N
$$

Similarly, $N P^{2} \geq C N \cdot C P, P N^{2} \geq D P \cdot D Q$, and $M Q^{2} \geq A Q \cdot A M$. Multiplying these inequalities yields

$$
\begin{aligned}
& (M N \cdot N P \cdot P Q \cdot M Q)^{2} \geq \\
& \quad(B M \cdot C N \cdot D P \cdot A Q) \cdot(A M \cdot B N \cdot C P \cdot D Q)
\end{aligned}
$$

Now the given plane is different from plane $(A B C)$ and $(A D C)$. Thus if it intersects line $A C$ at some point T, then points M, N, T must be collinear-because otherwise, the only plane containing M, N, T would be plane $(A B C)$. Therefore it intersects line $A C$ at most one point T, and by Menelaus' Theorem applied to triangle $A B C$ and line $M N T$ we have

$$
\frac{A M \cdot B N \cdot C T}{M B \cdot N C \cdot T A}=1
$$

Similarly, P, Q, T are collinear and

$$
\frac{A Q \cdot D P \cdot C T}{Q D \cdot P C \cdot T A}=1
$$

Equating these two fractions and cross-multiplying, we find that

$$
A M \cdot B N \cdot C P \cdot D Q=B M \cdot C N \cdot D P \cdot A Q
$$

This is true even if the plane does not actually intersect line $A C$: in this case, we must have $M N \| A C$ and $P Q \| A C$, in which case
ratios of similar triangles show that $A M \cdot B N=B M \cdot C N$ and $C P \cdot D Q=D P \cdot A Q$.

Combining this last equality with the inequality from the first paragraph, we find that

$$
(M N \cdot N P \cdot P Q \cdot Q M)^{2} \geq(A M \cdot B N \cdot C P \cdot D Q)^{2}
$$

which implies the desired result.
Problem 10.3 Let $a, b, c(a \neq 0)$ be complex numbers. Let z_{1} and z_{2} be the roots of the equation $a z^{2}+b z+c=0$, and let w_{1} and w_{2} be the roots of the equation

$$
(a+\bar{c}) z^{2}+(b+\bar{b}) z+(\bar{a}+c)=0
$$

Prove that if $\left|z_{1}\right|,\left|z_{2}\right|<1$, then $\left|w_{1}\right|=\left|w_{2}\right|=1$.
Solution: We begin by proving that $\operatorname{Re}(b)^{2} \leq|a+\bar{c}|^{2}$. If $z_{1}=z_{2}=$ 0 , then $b=0$ and the claim is obvious. Otherwise, write $a=m+n i$ and $c=r+s i$; and write $z_{1}=x+y i$ where $t=\left|z_{1}\right|=\sqrt{x^{2}+y^{2}}<1$. Also note that

$$
\begin{equation*}
r^{2}+s^{2}=|c|^{2}=\left|a z_{1} z_{2}\right|^{2}<|a|^{2}\left|z_{1}\right|^{2}=\left(m^{2}+n^{2}\right) t^{2} \tag{1}
\end{equation*}
$$

Assume WLOG that $z_{1} \neq 0$. Then $|\operatorname{Re}(b)|=|\operatorname{Re}(-b)|=$ $\left|\operatorname{Re}\left(a z_{1}+c / z_{1}\right)\right|=\left|\operatorname{Re}\left(a z_{1}\right)+\operatorname{Re}\left(c / z_{1}\right)\right|$; that is,

$$
\begin{aligned}
& |\operatorname{Re}(b)|=\left|(m x-n y)+(r x+s y) / t^{2}\right| \\
& \quad=\left|x\left(m+r / t^{2}\right)+y\left(s / t^{2}-n\right)\right| \\
& \quad \leq \sqrt{x^{2}+y^{2}} \sqrt{\left(m+r / t^{2}\right)^{2}+\left(s / t^{2}-n\right)^{2}} \\
& \quad=t \sqrt{\left(m+r / t^{2}\right)^{2}+\left(s / t^{2}-n\right)^{2}},
\end{aligned}
$$

where the inequality follows from Cauchy-Schwarz. Proving our claim then reduces to showing that

$$
\begin{aligned}
t^{2} & \left(\left(m+r / t^{2}\right)^{2}+\left(s / t^{2}-n\right)^{2}\right) \leq(m+r)^{2}+(n-s)^{2} \\
& \Longleftrightarrow\left(m t^{2}+r\right)^{2}+\left(s t^{2}-n\right)^{2} \leq t^{2}\left((m+r)^{2}+(n-s)^{2}\right) \\
& \Longleftrightarrow\left(r^{2}+s^{2}\right)\left(1-t^{2}\right)<\left(m^{2}+n^{2}\right)\left(t^{4}-t^{2}\right) \\
& \Longleftrightarrow\left(1-t^{2}\right)\left(\left(m^{2}+n^{2}\right) t^{2}-\left(r^{2}+s^{2}\right)\right)
\end{aligned}
$$

But $1-t^{2}>0$ by assumption, and $\left(m^{2}+n^{2}\right) t^{2}-\left(r^{2}+s^{2}\right)>0$ from (1); therefore our claim is true.

Now since $|c / a|=\left|z_{1} z_{2}\right|<1$, we have $|c|<|a|$ and $a+\bar{c} \neq 0$. Then by the quadratic equation, the roots to $(a+\bar{c}) z^{2}+(b+\bar{b}) z+(\bar{a}+c)=0$ are given by

$$
\frac{-(b+\bar{b}) \pm \sqrt{(b+\bar{b})^{2}-4(a+\bar{c})(\bar{a}+c)}}{2(a+\bar{c})}
$$

or (dividing the numerator and denominator by 2)

$$
\frac{-\operatorname{Re}(b) \pm \sqrt{\operatorname{Re}(b)^{2}-|a+\bar{c}|^{2}}}{a+\bar{c}}=\frac{-\operatorname{Re}(b) \pm i \sqrt{|a+\bar{c}|^{2}-\operatorname{Re}(b)^{2}}}{a+\bar{c}}
$$

When evaluating either root, the absolute value of the numerator is $\sqrt{\operatorname{Re}(b)^{2}+\left(|a+\bar{c}|^{2}-\operatorname{Re}(b)^{2}\right)}=|a+\bar{c}|$; and the absolute value of the denominator is clearly $|a+\bar{c}|$ as well. Therefore indeed $\left|w_{1}\right|=$ $\left|w_{2}\right|=1$, as desired.

Problem 10.4

(a) Let $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$ be positive real numbers such that
(i) $x_{1} y_{1}<x_{2} y_{2}<\cdots<x_{n} y_{n}$;
(ii) $x_{1}+x_{2}+\cdots+x_{k} \geq y_{1}+y_{2}+\cdots+y_{k}$ for all $k=1,2, \ldots, n$.

Prove that

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} \leq \frac{1}{y_{1}}+\frac{1}{y_{2}}+\cdots+\frac{1}{y_{n}}
$$

(b) Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{N}$ be a set such that for all distinct subsets $B, C \subseteq A, \sum_{x \in B} x \neq \sum_{x \in C} x$. Prove that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}<2
$$

Solution:

(a) Let $\pi_{i}=\frac{1}{x_{i} y_{i}}, \delta_{i}=x_{i}-y_{i}$ for all $1 \leq i \leq n$. We are given that $\pi_{1}>\pi_{2}>\cdots>\pi_{n}>0$ and that $\sum_{i=1}^{k} \delta_{i} \geq 0$ for all $1 \leq k \leq n$. Note that

$$
\sum_{k=1}^{n}\left(\frac{1}{y_{k}}-\frac{1}{x_{k}}\right)=\sum_{k=1}^{n} \pi_{k} \delta_{k}
$$

$$
=\pi_{n} \sum_{i=1}^{n} \delta_{i}+\sum_{k=1}^{n-1}\left(\pi_{k}-\pi_{k+1}\right)\left(\delta_{1}+\delta_{2}+\cdots+\delta_{k}\right) \geq 0
$$

as desired.
(b) Assume without loss of generality that $a_{1}<a_{2}<\cdots<a_{n}$, and let $y_{i}=2^{i-1}$ for all i. Clearly,

$$
a_{1} y_{1}<a_{2} y_{2}<\cdots<a_{n} y_{n}
$$

For any k, the $2^{k}-1$ sums made by choosing at least one of the numbers $a_{1}, a_{2}, \ldots, a_{k}$ are all distinct. Hence the largest of them, $\sum_{i=1}^{k} a_{i}$, must be at least $2^{k}-1$. Thus for all $k=1,2, \ldots, n$ we have

$$
a_{1}+a_{2}+\cdots+a_{k} \geq 2^{k}-1=y_{1}+y_{2}+\cdots+y_{k}
$$

Then by part (a), we must have

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}<\frac{1}{y_{1}}+\frac{1}{y_{2}}+\cdots+\frac{1}{y_{n}}=2-\frac{1}{2^{n-1}}<2,
$$

as desired.

IMO Selection Tests

Problem 1

(a) Show that out of any 39 consecutive positive integers, it is possible to choose one number with the sum of its digits divisible by 11.
(b) Find the first 38 consecutive positive integers, none with the sum of its digits divisible by 11 .

Solution: Call an integer "deadly" if its sum of digits is divisible by 11 , and let $d(n)$ equal the sum of the digits of a positive integer n.

If n ends in a 0 , then the numbers $n, n+1, \ldots, n+9$ differ only in their units digits, which range from 0 to 9 ; hence $d(n), d(n+$ $1), \ldots, d(n+9)$ is an arithmetic progression with common difference 1. Thus if $d(n) \not \equiv 1(\bmod 11)$, then one of these numbers is deadly.

Next suppose that if n ends in $k \geq 0$ nines. Then $d(n+1)=$ $d(n)+1-9 k$: the last k digits of $n+1$ are 0 's instead of 9 's, and the next digit to the left is 1 greater than the corresponding digit in n.

Finally, suppose that n ends in a 0 and that $d(n) \equiv d(n+10) \equiv$ $1(\bmod 11)$. Since $d(n) \equiv 1(\bmod 11)$, we must have $d(n+9) \equiv$
$10(\bmod 11)$. If $n+9$ ends in $k 9$'s, then we have $2 \equiv d(n+10)-d(n+$ $9) \equiv 1-9 k \Longrightarrow k \equiv 6(\bmod 11)$.
(a) Suppose we had 39 consecutive integers, none of them deadly. One of the first ten must end in a 0 : call it n. Since none of $n, n+1, \ldots, n+9$ are deadly, we must have $d(n) \equiv 1(\bmod 11)$. Similarly, $d(n+10) \equiv 1(\bmod 11)$ and $d(n+20) \equiv 1(\bmod 11)$. From our third observation above, this implies that both $n+9$ and $n+19$ must end in at least six 9 's. But this is impossible, because $n+10$ and $n+20$ can't both be multiples of one million!
(b) Suppose we have 38 consecutive numbers $N, N+1, \ldots, N+37$, none of which is deadly. By an analysis similar to that in part (a), none of the first nine can end in a 0 ; hence, $N+9$ must end in a 0 , as must $N+19$ and $N+29$. Then we must have $d(N+9) \equiv d(N+19) \equiv 1(\bmod 11)$. Therefore $d(N+18) \equiv$ $10(\bmod 11)$; and furthermore, if $N+18$ ends in $k 9$'s we must have $k \equiv 6(\bmod 11)$. The smallest possible such number is 999999 , yielding the 38 consecutive numbers $999981,999982, \ldots, 1000018$. And indeed, none of these numbers is deadly: their sums of digits are congruent to $1,2, \ldots, 10,1,2, \ldots, 10,1,2, \ldots, 10,2,3, \ldots, 9$, and $10(\bmod 11)$, respectively.

Problem 2 Let $A B C$ be an acute triangle with angle bisectors $\overline{B L}$ and $\overline{C M}$. Prove that $\angle A=60^{\circ}$ if and only if there exists a point K on $\overline{B C}(K \neq B, C)$ such that triangle $K L M$ is equilateral.

Solution: Let I be the intersection of lines $B L$ and $C M$. Then $\angle B I C=180^{\circ}-\angle I C B-\angle C B I=180^{\circ}-\frac{1}{2}(\angle C+\angle B)=180^{\circ}-$ $\frac{1}{2}\left(180^{\circ}-\angle A\right)=90^{\circ}+\angle A$, and thus $\angle B I C=120^{\circ}$ if and only if $\angle A=60^{\circ}$.

For the "only if" direction, suppose that $\angle A=60^{\circ}$. Then let K be the intersection of $\overline{B C}$ and the internal angle bisector of $\angle B I C$; we claim that triangle $K L M$ is equilateral. Since $\angle B I C=120^{\circ}$, we know that $\angle M I B=\angle K I B=60^{\circ}$. And since $\angle I B M=\angle I B K$ and $I B=I B$, by ASA congruency we have $\triangle I B M \cong \triangle I B K$; in particular, $I M=I K$. Similarly, $I L=I K$; and since $\angle K I L=$ $\angle L I M=\angle M I K=120^{\circ}$, we know that triangle $K L M$ is equilateral.

For the "if" direction, suppose that K is on $\overline{B C}$ and triangle $K L M$ is equilateral. Consider triangles $B L K$ and $B L M: B L=B L$, $L M=L K$, and $\angle M B L=\angle K B L$. There is no SSA congruency, but
we do then know that either $\angle L K B+\angle B M L=180^{\circ}$ or $\angle L K B=$ $\angle B M L$. But since $\angle K B M<90^{\circ}$ and $\angle M L K=60^{\circ}$, we know that $\angle L K B+\angle B M L>210^{\circ}$. Thus $\angle L K B=\angle B M L$, whence $\triangle B L K \cong \triangle B L M$, and $B K=B M$. It follows that $I K=I M$. Similarly, $I L=I K$, and I is the circumcenter of triangle $K L M$. Thus $\angle L I M=2 \angle L K M=120^{\circ}$, giving $\angle B I C=\angle L I M=120^{\circ}$ and $\angle A=60^{\circ}$.

Problem 3 Show that for any positive integer n, the number

$$
S_{n}=\binom{2 n+1}{0} \cdot 2^{2 n}+\binom{2 n+1}{2} \cdot 2^{2 n-2} \cdot 3+\cdots+\binom{2 n+1}{2 n} \cdot 3^{n}
$$

is the sum of two consecutive perfect squares.
Solution: Let $\alpha=1+\sqrt{3}, \beta=1-\sqrt{3}$, and $T_{n}=\frac{1}{2}\left(\alpha^{2 n+1}+\beta^{2 n+1}\right)$. Note that $\alpha \beta=-2, \frac{\alpha^{2}}{2}=2+\sqrt{3}$, and $\frac{\beta^{2}}{2}=2-\sqrt{3}$. Also, applying the binomial expansion to $(1+\sqrt{3})^{n}$ and $(1-\sqrt{3})^{n}$, we find that $T_{n}=\sum_{k=0}^{n}\binom{2 n+1}{2 k} 3^{k}$-which is an integer for all n.

Applying the binomial expansion to $(2+\sqrt{3})^{2 n+1}$ and $(2-\sqrt{3})^{2 n+1}$ instead, we find that

$$
\begin{aligned}
S_{n} & =\frac{\left(\frac{\alpha^{2}}{2}\right)^{2 n+1}+\left(\frac{\beta^{2}}{2}\right)^{2 n+1}}{4} \\
& =\frac{\alpha^{4 n+2}+\beta^{4 n+2}}{2^{2 n+3}} \\
& =\frac{\alpha^{4 n+2}+2(\alpha \beta)^{2 n+1}+\beta^{4 n+2}}{2^{2 n+3}}+\frac{1}{2} \\
& =\frac{\left(\alpha^{2 n+1}+\beta^{2 n+1}\right)^{2}}{2^{2 n+3}}+\frac{1}{2} \\
& =\frac{T_{n}^{2}}{2^{2 n+1}}+\frac{1}{2}
\end{aligned}
$$

Thus $2^{2 n+1} S_{n}=T_{n}^{2}+2^{2 n}$. Then $2^{2 n} \mid T_{n}^{2}$ but $2^{2 n+1} \not \backslash T_{n}^{2}$, and hence $T_{n} \equiv 2^{n}\left(\bmod 2^{n+1}\right)$. Therefore

$$
S_{n}=\frac{T_{n}^{2}}{2^{2 n+1}}+\frac{1}{2}=\left(\frac{T_{n}-2^{n}}{2^{n+1}}\right)^{2}+\left(\frac{T_{n}+2^{n}}{2^{n+1}}\right)^{2}
$$

is indeed the sum of two consecutive perfect squares.

Problem 4 Show that for all positive real numbers $x_{1}, x_{2}, \cdots, x_{n}$ such that

$$
x_{1} x_{2} \cdots x_{n}=1
$$

the following inequality holds:

$$
\frac{1}{n-1+x_{1}}+\frac{1}{n-1+x_{2}}+\cdots+\frac{1}{n-1+x_{n}} \leq 1
$$

First Solution: Let $a_{1}=\sqrt[n]{x_{1}}, a_{2}=\sqrt[n]{x_{2}}, \ldots, a_{n}=\sqrt[n]{x_{n}}$. Then $a_{1} a_{2} \cdots a_{n}=1$ and

$$
\begin{aligned}
& \frac{1}{n-1+x_{k}}=\frac{1}{n-1+a_{k}^{n}}=\frac{1}{n-1+\frac{a_{k}^{n-1}}{a_{1} \cdots a_{k-1} a_{k+1} \cdots a_{n}}} \\
& \quad \leq \frac{1}{n-1+\frac{(n-1) a_{k}^{n-1}}{a_{1}^{n-1}+\cdots+a_{k-1}^{n-1}+a_{k+1}^{n-1}+\cdots+a_{n}^{n-1}}}
\end{aligned}
$$

by the AM-GM Inequality. It follows that

$$
\frac{1}{n-1+x_{k}} \leq \frac{a_{1}^{n-1}+\cdots+a_{k-1}^{n-1}+a_{k+1}^{n-1}+\cdots+a_{n}^{n-1}}{(n-1)\left(a_{1}^{n-1}+a_{2}^{n-1}+\cdots+a_{n}^{n-1}\right)}
$$

Summing up yields $\sum_{k=1}^{n} \frac{1}{n-1+x_{k}} \leq 1$, as desired.
Second Solution: Let $f(x)=\frac{1}{n-1-x}$; we wish to prove that $\sum_{i=1}^{n} f\left(x_{i}\right) \leq 1$. Note that

$$
f(y)+f(z)=\frac{2(n-1)+y+z}{(n-1)^{2}+y z+(y+z)(n-1)} .
$$

Suppose that any of our x_{i} does not equal 1 ; then we have $x_{j}<$ $1<x_{k}$ for some j, k. If $f\left(x_{j}\right)+f\left(x_{k}\right) \leq \frac{1}{n-1}$, then all the other $f\left(x_{i}\right)$ are less than $\frac{1}{n-1}$. But then $\sum_{i=1}^{n} f\left(x_{i}\right)<1$ and we are done.

Otherwise, $f\left(x_{j}\right)+f\left(x_{k}\right)>\frac{1}{n-1}$. Now set $x_{j}^{\prime}=1$ and $x_{k}^{\prime}=x_{j} x_{k}$; then $x_{j}^{\prime} x_{k}^{\prime}=x_{j} x_{k}$, while $x_{j}<1<x_{k} \Rightarrow\left(1-x_{j}\right)\left(x_{k}-1\right)>0 \Rightarrow x_{j}+$ $x_{k}>x_{j}^{\prime}+x_{k}^{\prime}$. Let $a=2(n-1), b=(n-1)^{2}+x_{j} x_{k}=(n-1)^{2}+x_{j}^{\prime} x_{k}^{\prime}$, and $c=\frac{1}{n-1}$; also let $m=x_{j}+x_{k}$ and $m^{\prime}=x_{j}^{\prime}+x_{k}^{\prime}$. Then we have

$$
f\left(x_{j}\right)+f\left(x_{k}\right)=\frac{a+c m}{b+m} \quad \text { and } \quad f\left(x_{j}^{\prime}\right)+f\left(x_{k}^{\prime}\right)=\frac{a+c m^{\prime}}{b+m^{\prime}}
$$

Now $\frac{a+c m}{b+m}>c \Rightarrow a+c m>(b+m) c \Rightarrow \frac{a}{b}>c$; and from here,

$$
(a-b c)\left(m-m^{\prime}\right)>0 \Rightarrow \frac{a+c m^{\prime}}{b+m^{\prime}}>\frac{a+c m}{b+m}
$$

$$
\Rightarrow f\left(x_{j}^{\prime}\right)+f\left(x_{k}^{\prime}\right)=f\left(x_{j}\right)+f\left(x_{k}\right)
$$

Hence as long as no pair $f\left(x_{j}\right)+f\left(x_{k}\right) \leq \frac{1}{n-1}$ and the x_{i} do not all equal 1 , we can continually replace pairs x_{j} and x_{k} (neither equal to 1) by 1 and $x_{j} x_{k}$. This keeps the product $x_{1} x_{2} \cdots x_{n}$ equal to 1 while increasing $\sum_{i=1}^{n} f\left(x_{i}\right)$. Then eventually our new $\sum_{i=1}^{n} f\left(x_{i}\right) \leq 1$, which implies that our original $\sum_{i=1}^{n} f\left(x_{i}\right)$ was also at most 1 . This completes the proof.

Third Solution: Suppose, for the sake of contradiction, that $\frac{1}{n-1+x_{1}}+\frac{1}{n-1+x_{2}}+\cdots+\frac{1}{n-1+x_{n}}>1$. Letting $y_{i}=x_{i} /(n-1)$ for $i=1,2, \ldots, n$, we have

$$
\frac{1}{1+y_{1}}+\frac{1}{1+y_{2}}+\cdots+\frac{1}{1+y_{n}}>n-1
$$

and hence

$$
\begin{aligned}
& \frac{1}{1+y_{1}}>\left(1-\frac{1}{1+y_{2}}\right)+\left(1-\frac{1}{1+y_{3}}\right)+\cdots+\left(1-\frac{1}{1+y_{n}}\right) \\
& \quad=\frac{y_{2}}{1+y_{2}}+\frac{y_{3}}{1+y_{3}}+\cdots+\frac{y_{n}}{1+y_{n}} \\
& \quad>(n-1) \sqrt[n-1]{\frac{y_{2} y_{3} \cdots y_{n}}{\left(1+y_{2}\right)\left(1+y_{3}\right) \cdots\left(1+y_{n}\right)}}
\end{aligned}
$$

We have analagous inequalities with $\frac{1}{1+y_{2}}, \frac{1}{1+y_{n}}, \ldots, \frac{1}{1+y_{n}}$ on the left hand side; multiplying these n inequalities together gives

$$
\begin{aligned}
& \prod_{k=1}^{n} \frac{1}{1+y_{k}}>(n-1)^{n} \frac{y_{1} y_{2} \cdots y_{n}}{\left(1+y_{1}\right)\left(1+y_{2}\right) \cdots\left(1+y_{n}\right)} \\
& 1>\left((n-1) y_{1}\right)\left((n-1) y_{2}\right) \cdots\left((n-1) y_{n}\right)=x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

a contradiction.
Problem 5 Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct positive integers. Prove that

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \geq \frac{(2 n+1)\left(x_{1}+x_{2}+\cdots+x_{n}\right)}{3}
$$

Solution: Assume without loss of generality that $x_{1}<x_{2}<\cdots<$ x_{n}. We will prove that $3 x_{k}^{2} \geq 2\left(x_{1}+x_{2}+\cdots+x_{k-1}\right)+(2 k+1) x_{k}$; then, summing this inequality over $k=1,2, \ldots, n$, we will have the desired inequality.

First, $x_{1}+x_{2}+\cdots+x_{k-1} \leq\left(x_{k}-(k-1)\right)+\left(x_{k}-(k-2)\right)+\cdots+$ $\left(x_{k}-1\right)=(k-1) x_{k}-\frac{k(k-1)}{2}$. Thus,

$$
2\left(x_{1}+x_{2}+\cdots+x_{k-1}\right)+(2 k+1) x_{k} \leq(4 k-1) x_{k}-k(k-1) .
$$

Now

$$
3 x_{k}^{2}-\left[(4 k-1) x_{k}-k(k-1)\right]=x_{k}\left(3 x_{k}-4 k+1\right)+k(k-1),
$$

which is minimized at $x_{k}=\frac{2}{3} k$. Then since $x_{k} \geq k$,

$$
x_{k}\left(3 x_{k}-4 k+1\right)+k(k-1) \geq k(3 k-4 k+1)+k(k-1)=0
$$

so
$3 x_{k}^{2} \geq(4 k-1) x_{k}-k(k-1) \geq 2\left(x_{1}+x_{2}+\cdots+x_{k-1}\right)+(2 k+1) x_{k}$, and we have finished.

Problem 6 Prove that for any integer $n, n \geq 3$, there exist n positive integers $a_{1}, a_{2}, \ldots, a_{n}$ in arithmetic progression, and n positive integers $b_{1}, b_{2}, \ldots, b_{n}$ in geometric progression, such that

$$
b_{1}<a_{1}<b_{2}<a_{2}<\cdots<b_{n}<a_{n} .
$$

Give one example of such progressions $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ each having at least 5 terms.

Solution: Our strategy is to find progressions where $b_{n}=a_{n-1}+1$ and $b_{n-1}=a_{n-2}+1$. Write $d=a_{n-1}-a_{n-2}$. Then for all $2 \leq i, j \leq n-1$ we have $b_{i+1}-b_{i} \leq b_{n}-b_{n-1}=d$, so that $b_{j}=b_{n}+\sum_{i=j}^{n-1}\left(b_{i}-b_{i+1}\right)>a_{n-1}+(n-j) d=a_{j-1}$.

And if we ensure that $b_{1}<a_{1}$, then $b_{j}=b_{1}+\sum_{i=1}^{j-1}\left(b_{i+1}-b_{i}\right) \leq$ $a_{1}+(j-1) d=a_{j}$ for all j, so the chain of inequalities is satisfied.

Let $b_{1}, b_{2}, \ldots, b_{n}$ equal $k^{n-1}, k^{n-2}(k+1), \ldots, k^{0}(k+1)^{n-1}$, where k is a value to be determined later. Also set $a_{n-1}=b_{n}-1$ and $a_{n-2}=b_{n-1}-1$, and define the other a_{i} accordingly. Then $d=$ $a_{n}-a_{n-1}=b_{n}-b_{n-1}=(k+1)^{n-2}$, and $a_{1}=(k+1)^{n-2}(k+3-n)-1$. Thus, we need only pick k such that

$$
(k+1)^{n-2}(k+3-n)-1-k^{n-1}>0 .
$$

Viewing the left hand side as a polynomial in k, the coefficient of k^{n-1} is zero but the coefficient of k^{n-2} is 1 . Therefore, it is positive
for sufficiently large k and we can indeed find satisfactory sequences $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$.

For $n=5$, we seek k such that

$$
(k+1)^{3}(k-2)-1-k^{4}>0
$$

Computation shows that $k=5$ works, yielding

$$
625<647<750<863<900<1079<1080<1295<1296<1511
$$

Problem 7 Let a be a positive real number and $\left\{x_{n}\right\}(n \geq 1)$ be a sequence of real numbers such that $x_{1}=a$ and

$$
x_{n+1} \geq(n+2) x_{n}-\sum_{k=1}^{n-1} k x_{k}
$$

for all $n \geq 1$. Show that there exists a positive integer n such that $x_{n}>1999$!.

Solution: We will prove by induction on $n \geq 1$ that

$$
x_{n+1}>\sum_{k=1}^{n} k x_{k}>a \cdot n!
$$

For $n=1$, we have $x_{2} \geq 3 x_{1}>x_{1}=a$.
Now suppose that the claim holds for all values up through n. Then

$$
\begin{aligned}
& x_{n+2} \geq(n+3) x_{n+1}-\sum_{k=1}^{n} k x_{k} \\
& \quad=(n+1) x_{n+1}+2 x_{n+1}-\sum_{k=1}^{n} k x_{k} \\
& \quad>(n+1) x_{n+1}+2 \sum_{k=1}^{n} k x_{k}-\sum_{k=1}^{n} k x_{k}=\sum_{k=1}^{n+1} k x_{k},
\end{aligned}
$$

as desired. Furthermore, $x_{1}>0$ by definition and $x_{2}, x_{3}, \ldots, x_{n}$ are also positive by the induction hypothesis; thus $x_{n+2}>(n+1) x_{n+1}>$ $(n+1)(a \cdot n!)=a \cdot(n+1)!$. This completes the inductive step.

Therefore for sufficiently large n, we have $x_{n+1}>n!\cdot a>1999$!.
Problem 8 Let O, A, B, C be variable points in the plane such that $O A=4, O B=2 \sqrt{3}$ and $O C=\sqrt{22}$. Find the maximum possible area of triangle $A B C$.

Solution: We first look for a tetrahedron $M N P Q$ with the following properties: (i) if H is the foot of the perpendicular from M to plane $(N P Q)$, then $H N=4, H P=2 \sqrt{3}$, and $H Q=\sqrt{22}$; and (ii) lines $M N, M P, M Q$ are pairwise perpendicular.

If such a tetrahedron exists, then let $O=H$ and draw triangle $A B C$ in plane $(N P Q)$. We have $M A=\sqrt{M O^{2}+O A^{2}}=\sqrt{M H^{2}+H N^{2}}=$ $M N$, and similarly $M B=M P$ and $M C=M Q$. Hence

$$
\begin{aligned}
& {[A B C M] \leq \frac{1}{3}[A B M] \cdot M C \leq \frac{1}{3} \cdot\left(\frac{1}{2} M A \cdot M B\right) \cdot M C} \\
& \quad=\frac{1}{3} \cdot\left(\frac{1}{2} M N \cdot M P\right) \cdot M Q=[M N P Q]
\end{aligned}
$$

and therefore the maximum possible area of triangle $[A B C]$ is $[N P Q]$.
It remains to find tetrahedron $M N P Q$. Let $x=M H$; then $M N=\sqrt{x^{2}+16}, M P=\sqrt{x^{2}+12}$, and $M Q=\sqrt{x^{2}+22}$. By the Pythagorean Theorem on triangle $M H N$, we have $N H=4$. Next let lines $N H$ and $P Q$ intersect at R; then in similar right triangles $M H N$ and $M R N$, we have $M R=M H \cdot \frac{M N}{N H}=\frac{1}{4}\left(x^{2}+16\right)$.

Since $M N \perp(M P Q)$ we have $M N \perp P Q$; and since $M H \perp$ $(N P Q)$ we have $M H \perp P Q$ as well. Hence $P Q \perp(M N H R)$, so that $\overline{M R}$ is an altitude in the right triangle $M P Q$. Therefore $M R \cdot P Q=2[M P Q]=M P \cdot M Q$, or (after squaring both sides)
$\sqrt{\frac{\left(x^{2}+16\right)^{2}}{16}-\left(x^{2}+16\right)} \sqrt{x^{2}+12+x^{2}+22}=\sqrt{x^{2}+12} \sqrt{x^{2}+22}$.
Setting $4 y=x^{2}+16$ and squaring both sides, we obtain

$$
\left(y^{2}-4 y\right)(8 y+2)=(4 y-4)(4 y+6)(y-6)\left(4 y^{2}+y-2\right)=0
$$

Since $y=\frac{1}{4}\left(x^{2}+16\right)>4$, the only solution is $y=6 \Longrightarrow x=\sqrt{8}$. Then by taking $M N=\sqrt{24}, M P=\sqrt{20}, M Q=\sqrt{30}$, we get the required tetrahedron.

Then $[M N P Q]$ equals both $\frac{1}{3} M H \cdot[M P Q]$ and $\frac{1}{6} M N \cdot M P \cdot M Q$. Setting these two expressions equal, we find that the maximum area of $[A B C]$ is

$$
[N P Q]=\frac{M N \cdot M P \cdot M Q}{2 \cdot M H}=15 \sqrt{2}
$$

Problem 9 Let a, n be integers and let p be a prime such that $p>|a|+1$. Prove that the polynomial $f(x)=x^{n}+a x+p$ cannot be
represented as a product of two nonconstant polynomials with integer coefficients.

Solution: Let z be a complex root of the polynomial. We shall prove that $|z|>1$. Suppose $|z| \leq 1$. Then, $z^{n}+a z=-p$, we deduce that

$$
p=\left|z^{n}+a z\right|=|z|\left|z^{n-1}+a\right| \leq\left|z^{n-1}\right|+|a| \leq 1+|a|
$$

which contradicts the hypothesis.
Now, suppose $f=g h$ is a decomposition of f into nonconstant polynomials with integer coefficients. Then $p=f(0)=g(0) h(0)$, and either $|g(0)|=1$ or $|h(0)|=1$. Assume without loss of generality that $|g(0)|=1$. If $z_{1}, z_{2}, \ldots, z_{k}$ are the roots of g then they are also roots of f. Therefore

$$
1=|g(0)|=\left|z_{1} z_{2} \cdots z_{k}\right|=\left|z_{1}\right|\left|z_{2}\right| \cdots\left|z_{k}\right|>1
$$

a contradiction.
Problem 10 Two circles meet at A and B. Line ℓ passes through A and meets the circles again at C and D respectively. Let M and N be the midpoints of arcs $\widehat{B C}$ and $\widehat{B D}$, which do not contain A, and let K be the midpoint of $\overline{C D}$. Prove that $\angle M K N=90^{\circ}$.

Solution: All angles are directed modulo 180°. Let M^{\prime} be the reflection of M across K. Then triangles $M K C$ and $M^{\prime} K D$ are congruent in that order, and $M^{\prime} D=M C$. Because M is the midpoint of $\widehat{B C}$, we have $M^{\prime} D=M C=M B$; and similarly, because N is the midpoint of $\widehat{B D}$ we have $B N=D N$. Next, $\angle M B N=$ $\left(180^{\circ}-\angle A B M\right)+\left(180^{\circ}-\angle N B A\right)=\angle M C A+\angle A D N=\angle M^{\prime} D A+$ $\angle A D N=\angle M^{\prime} D N$. Hence $\triangle M^{\prime} D N \cong \triangle M B N$, and $M N=M^{\prime} N$. Therefore $\overline{N K}$ is the median to the base of isosceles triangle $M N M^{\prime}$, so it is also an altitude and $N K \perp M K$.

Problem 11 Let $n \geq 3$ and $A_{1}, A_{2}, \ldots, A_{n}$ be points on a circle. Find the greatest number of acute triangles having vertices in these points.

Solution: Without loss of generality assume the points $A_{1}, A_{2}, \ldots, A_{n}$ are ordered in that order counterclockwise; also, take indices modulo n os that $A_{n+1}=A_{1}, A_{n+2}=A_{2}$, and so on. Denote by $A_{i} A_{j}$
the arc of the circle starting from A_{i} and ending in A_{j} in the counterclockwise direction; let $m\left(A_{i} A_{j}\right)$ denote the angle measure of the arc; and call an arc $A_{i} A_{j}$ obtuse if $m\left(A_{i} A_{j}\right) \geq 180^{\circ}$. Obviously, $m\left(A_{i} A_{j}\right)+m\left(A_{j} A_{i}\right)=360^{\circ}$, and thus at least one of the $\operatorname{arcs} A_{i} A_{j}$ and $A_{j} A_{i}$ is obtuse. Let x_{s} be the number of obtuse arcs each having exactly $s-1$ points along their interiors. If $s \neq \frac{n}{2}$, then for each i at least one of the $\operatorname{arcs} A_{i} A_{i+s}$ or $A_{i+s} A_{i}$ is obtuse; summing over all i, we deduce that

$$
\begin{equation*}
x_{s}+x_{n-s} \geq n \tag{1}
\end{equation*}
$$

for every $s \neq \frac{n}{2}$; and similar reasoning shows that this inequality also holds even when $s=\frac{n}{2}$. For all s, equality holds if and only if there are no diametrically opposite points A_{i}, A_{i+s}.

The number of non-acute triangles $A_{i} A_{j} A_{k}$ equals the number of non-acute angles $\angle A_{i} A_{j} A_{k}$. And for each obtuse $\operatorname{arc} A_{i} A_{k}$ containing $s-1$ points in its interior, there are $n-s-1$ non-acute angles $A_{i} A_{j} A_{k}$: namely, with those A_{j} in the interior of $\operatorname{arc} A_{k} A_{i}$. It follows that the number N of non-acute triangles is

$$
N=x_{1}(n-2)+x_{2}(n-3)+\ldots+x_{n-3} \cdot 2+x_{n-2} \cdot 1+x_{n-1} \cdot 0
$$

By regrouping terms and using (1) we obtain

$$
\begin{aligned}
N & \geq \sum_{s=1}^{\frac{n-1}{2}}(s-1) \cdot\left(x_{n-s}+x_{s}\right) \\
& \geq n\left(1+2+\cdots+\frac{n-3}{2}\right)=\frac{n(n-1)(n-3)}{8}
\end{aligned}
$$

if n is odd, and

$$
\begin{aligned}
N & \geq \sum_{s=1}^{\frac{n-2}{2}}(s-1) \cdot\left(x_{n-s}+x_{s}\right)+\frac{n-2}{2} x_{n / 2} \\
& \geq n\left(1+2+\cdots+\frac{n-4}{2}\right)+\frac{n-2}{2} \cdot \frac{n}{2}=\frac{n(n-2)^{2}}{8}
\end{aligned}
$$

if n is even.
Equality is obtained when there are no diametrically opposite points, and when $x_{k}=0$ for $k<\frac{n}{2}$. When n is odd, for instance, this happens when the points form a regular n-gon; and when n is even, equality occurs when $m\left(A_{1} A_{2}\right)=m\left(A_{2} A_{3}\right)=\cdots=m\left(A_{n-1} A_{n}\right)=$ $\frac{360^{\circ}}{n}+\epsilon$ where $0<\epsilon<\frac{360^{\circ}}{n^{2}}$.

Finally, note that the total number of triangles having vertices in the n points is $\binom{n}{3}=\frac{n(n-1)(n-2)}{6}$. Subtracting the minimum values of N found above, we find that the maximum number of acute angles is $\frac{(n-1) n(n+1)}{24}$ if n is odd, and $\frac{(n-2) n(n+2)}{24}$ if n is even.

Problem 12 The scientists at an international conference are either native or foreign. Each native scientist sends exactly one message to a foreign scientist and each foreign scientist sends exactly one message to a native scientist, although at least one native scientist does not receive a message. Prove that there exists a set S of native scientists and a set T of foreign scientists such that the following conditions hold: (i) the scientists in S sent messages to exactly those foreign scientists who were not in T (that is, every foreign scientist not in T received at least one message from somebody in S, but none of the scientists in T received any messages from scientists in S); and (ii) the scientists in T sent messages to exactly those native scientists not in S.

Solution: Let A be the set of native scientists and B be the set of foreign scientists. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be the functions defined as follows: $f(a)$ is the foreign scientist receiving a message from a, and $g(b)$ is the native scientist receiving a message from b. If such subsets S, T exist we must have $T=B-f(S)$; hence we have to prove that there exists a subset $S \subseteq A$ such that $A-S=g(B-f(S))$.

For each subset $X \subseteq A$, let $h(X)=A-g(B-f(X))$. If $X \subseteq Y$, then $f(X) \subseteq f(Y) \Longrightarrow B-f(Y) \subseteq B-f(X) \Longrightarrow g(B-f(Y)) \subseteq g(B-$ $f(X)) \Longrightarrow A-g(B-f(X)) \subseteq A-g(B-f(Y)) \Longrightarrow h(X) \subseteq h(Y)$.

Let $M=\{X \subseteq A \mid h(X) \subseteq X\}$. The set M is nonempty, since $A \in M$. Furthermore, it is given that g is not surjective, so that some native scientist a_{0} is never in $g(B-f(X))$ and thus always in $h(X)$ for all $X \subseteq A$. Thus every subset in M contains a_{0}, so that $S=\bigcap_{X \in M} X$ is nonempty.

From the definition of S we have $h(S) \subseteq S$. And from the monotony of h it follows that $h(h(S)) \subseteq h(S)$; thus, $h(S) \in M$ and $S \subset h(S)$. Combining these results, we have $S=h(S)$, as desired.

Problem 13 A polyhedron P is given in space. Determine whether there must exist three edges of P that can be the sides of a triangle.

Solution: The answer is "yes." Assume, for the purpose of contradiction, that there exists a polyhedron P in which no three edges can form the sides of a triangle. Let the edges of P be $E_{1}, E_{2}, E_{3}, \ldots, E_{n}$, in non-increasing order of length; let e_{i} be the length of E_{i}. Consider the two faces that share E_{1} : for each of those faces, the sum of the lengths of all its edges except E_{1} is greater than e_{1}. Therefore,

$$
e_{2}+e_{3}+\cdots+e_{n}>2 e_{1}
$$

But, since we are assuming that no three edges of P can form the sides of a triangle, we have $e_{i+1}+e_{i+2} \leq e_{i}$ for $i=1,2, \ldots, n-2$. Hence,

$$
\begin{aligned}
& 2\left(e_{2}+e_{3}+\cdots+e_{n}\right) \\
& \quad=e_{2}+\left(e_{2}+e_{3}\right)+\left(e_{3}+e_{4}\right)+\cdots+\left(e_{n-1}+e_{n}\right)+e_{n} \\
& \quad \leq e_{2}+\left(e_{1}\right)+\left(e_{2}\right)+\cdots+\left(e_{n-2}\right)+e_{n}
\end{aligned}
$$

so

$$
e_{2}+e_{3}+\cdots+e_{n} \leq e_{1}+e_{2}-e_{n-1}<e_{1}+e_{1}+0=2 e_{1},
$$

a contradiction. Thus, our assumption was incorrect and some three edges can be the sides of a triangle.

1.17 Russia

Fourth round

Problem 8.1 A father wishes to take his two sons to visit their grandmother, who lives 33 kilometers away. He owns a motorcycle whose maximum speed is $25 \mathrm{~km} / \mathrm{h}$. With one passenger, its maximum speed drops to $20 \mathrm{~km} / \mathrm{h}$. (He cannot carry two passengers.) Each brother walks at a speed of $5 \mathrm{~km} / \mathrm{h}$. Show that all three of them can reach the grandmother's house in 3 hours.

Solution: Have the father drive his first son 24 kilometers, which takes $\frac{6}{5}$ hours; then drive back to meet his second son 9 kilometers from home, which takes $\frac{3}{5}$ hours; and finally drive his second son $\frac{6}{5}$ more hours.

Each son spends $\frac{6}{5}$ hours riding 24 kilometers, and $\frac{9}{5}$ hours walking 9 kilometers. Thus they reach their grandmother's house in exactly 3 hours - as does the father, who arrives at the same time as his second son.

Problem 8.2 The natural number A has the following property: the sum of the integers from 1 to A, inclusive, has decimal expansion equal to that of A followed by three digits. Find A.

Solution: We know that

$$
\begin{aligned}
& k=(1+2+\cdots+A)-1000 A \\
& \quad=\frac{A(A+1)}{2}-1000 A=A\left(\frac{A+1}{2}-1000\right)
\end{aligned}
$$

is between 0 and 999, inclusive. If $A<1999$ then k is negative. If $A \geq 2000$ then $\frac{A+1}{2}-1000 \geq \frac{1}{2}$ and $k \geq 1000$. Therefore $A=1999$, and indeed $1+2+\cdots+1999=1999000$.

Problem 8.3 On sides $B C, C A, A B$ of triangle $A B C$ lie points A_{1}, B_{1}, C_{1} such that the medians $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ of triangle $A_{1} B_{1} C_{1}$ are parallel to $A B, B C, C A$, respectively. Determine in what ratios the points A_{1}, B_{1}, C_{1} divide the sides of $A B C$.

[^0]First Solution: $\quad A_{1}, B_{1}, C_{1}$ divide sides $B C, C A, A B$ in 1:2 ratios (so that $\frac{B A_{1}}{A_{1} C}=\frac{1}{2}$, and so on).
Lemma. In any triangle $X Y Z$, the medians can be translated to form a triangle. Furthermore, the medians of this new triangle are parallel to the sides of triangle $X Y Z$.

Proof: Let x, y, z denote the vectors $\overrightarrow{Y Z}, \overrightarrow{Z X}, \overrightarrow{X Y}$ respectively; then $x+y+z=\overrightarrow{0}$. Also, the vectors representing the medians of triangle $X Y Z$ are $m_{x}=z+\frac{x}{2}, m_{y}=x+\frac{y}{2}, m_{z}=y+\frac{z}{2}$. These vectors add up to $\frac{3}{2}(x+y+z)=\overrightarrow{0}$, so the medians indeed form a triangle.

Furthermore, the vectors representing the medians of the new triangle are $m_{x}+\frac{m_{y}}{2}=x+y+z-\frac{3}{4} y=-\frac{3}{4} y$, and similarly $-\frac{3}{4} z$ and $-\frac{3}{4} x$. Therefore, these medians are parallel to $X Z, Y X$, and $Z Y$.

Let D, E, F be the midpoints of sides $B C, C A, A B$, and let l_{1}, l_{2}, l_{3} be the segments $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$.

Since l_{1}, l_{2}, l_{3} are parallel to $A B, B C, C A$, the medians of the triangle formed by l_{1}, l_{2}, l_{3} are parallel to $C F, A D, B E$. But from the lemma, they are also parallel to $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$.

Therefore, $B E \| A_{1} B_{1}$, and hence $\triangle B C E \sim \triangle A_{1} C B_{1}$. Then

$$
\frac{B_{1} C}{A C}=\frac{1}{2} \cdot \frac{B_{1} C}{E C}=\frac{1}{2} \cdot \frac{A_{1} C}{B C}=\frac{1}{2}\left(1-\frac{A_{1} B}{C B}\right)
$$

Similarly

$$
\begin{aligned}
\frac{C_{1} A}{B A} & =\frac{1}{2}\left(1-\frac{B_{1} C}{A C}\right) \\
\frac{A_{1} B}{C B} & =\frac{1}{2}\left(1-\frac{C_{1} A}{B A}\right)
\end{aligned}
$$

Solving these three equations gives

$$
\frac{B_{1} C}{A C}=\frac{C_{1} A}{B A}=\frac{A_{1} B}{C B}=\frac{1}{3},
$$

as claimed; and it is straightforward to verify with the above equations that these ratio indeed work.

Second Solution: As above, we know that $A_{1} B_{1}\left\|B E, B_{1} C_{1}\right\|$ $A D, C_{1} A_{1} \| C F$.
Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points dividing the sides $B C, C A, A B$ in 1:2 ratios - since $\frac{C A^{\prime}}{C B}=\frac{C B^{\prime}}{\frac{1}{2} C A}$, we know $A^{\prime} B^{\prime}\|B E\| A_{1} B_{1}$, and so on.

Suppose by way of contradiction that A_{1} were closer to B than A^{\prime}. Then since $A_{1} B_{1} \| A^{\prime} B^{\prime}, B_{1}$ is farther from C than B^{\prime}. Similarly, C_{1} is closer to A than C^{\prime}, and A_{1} is farther from B than A^{\prime} - a contradiction.

Likewise, A_{1} cannot be farther from B than A^{\prime}. Thus $A_{1}=A^{\prime}$, $B_{1}=B^{\prime}$, and $C_{1}=C^{\prime}$.

Problem 8.4 We are given 40 balloons, the air pressure inside each of which is unknown and may differ from balloon to balloon. It is permitted to choose up to k of the balloons and equalize the pressure in them (to the arithmetic mean of their respective original pressures). What is the smallest k for which it is always possible to equalize the pressures in all of the balloons?

Solution: $k=5$ is the smallest such value.
First suppose that $k=5$. Note that we can equalize the pressure in any 8 balloons: first divide them into two groups of four $\{A, B, C, D\}$ and $\{E, F, G, H\}$ and equalize the pressure in each group; then equalize the pressure in $\{A, B, E, F\}$ and $\{C, D, G, H\}$.

Then divide the 40 balloons into eight " 5 -groups" of five and equalize the pressure in each group. Then form five new groups of eight - containing one balloon from each " 5 -group" - and equalize the pressure in each of these new groups.

Now suppose that $k \leq 4$. Let $b_{1}, b_{2}, \ldots, b_{40}$ denote the original air pressures inside the balloons. It is simple to verify that the pressure in each balloon can always be written as a linear combination $a_{1} b_{1}+\cdots+a_{40} b_{40}$, where the a_{i} are rational with denominators not divisible by any primes except 2 and 3 . Thus if we the b_{j} are linearly independent over the rationals (say, if $b_{j}=e^{j}$), we can never obtain

$$
\frac{1}{40} b_{1}+\frac{1}{40} b_{2}+\cdots+\frac{1}{40} b_{40}
$$

in a balloon. In this case, we can never equalize the pressures in all 40 balloons.

Problem 8.5 Show that the numbers from 1 to 15 cannot be divided into a group A of 2 numbers and a group B of 13 numbers in such a way that the sum of the numbers in B is equal to the product of the numbers in A.

Solution: Suppose by way of contradiction this were possible, and
let a and b be the two numbers in A. Then we have

$$
\begin{gathered}
(1+2+\cdots+15)-a-b=a b \\
120=a b+a+b \\
121=(a+1)(b+1)
\end{gathered}
$$

Since a and b are integers between 1 and 15 , the only possible solution to this equation is $(a, b)=(10,10)$. But a and b must be distinct, a contradiction.

Problem 8.6 Given an acute triangle $A B C$, let A_{1} be the reflection of A across the line $B C$, and let C_{1} be the reflection of C across the line $A B$. Show that if A_{1}, B, C_{1} lie on a line and $C_{1} B=2 A_{1} B$, then $\angle C A_{1} B$ is a right angle.

Solution: By the given reflections, we have $\triangle A B C \cong \triangle A B C_{1} \cong$ $\triangle A_{1} B C$.

Since $\angle B$ is acute, C_{1} and A lie on the same side of $B C$. Thus C_{1} and A_{1} lie on opposite sides of $B C$ as well.

Then since C_{1}, B, A_{1} lie on a line we have

$$
\begin{gathered}
180^{\circ}=\angle C_{1} B A+\angle A B C+\angle C B A_{1} \\
=\angle A B C+\angle A B C+\angle A B C
\end{gathered}
$$

so that $\angle A B C=60^{\circ}$. Also we know that

$$
C_{1} B=2 A_{1} B \Longrightarrow C B=2 A B
$$

implying that triangle $A B C$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and $\angle C A_{1} B=$ $\angle B A C=90^{\circ}$.

Problem 8.7 In a box lies a complete set of 1×2 dominoes. (That is, for each pair of integers i, j with $0 \leq i \leq j \leq n$, there is one domino with i on one square and j on the other.) Two players take turns selecting one domino from the box and adding it to one end of an open (straight) chain on the table, so that adjacent dominoes have the same numbers on their adjacent squares. (The first player's move may be any domino.) The first player unable to move loses. Which player wins with correct play?

Solution: The first player has a winning strategy. If $n=0$, this is clear. Otherwise, have the first player play the domino $(0,0)$ and
suppose the second player plays $(0, a)$; then have the first player play (a, a).

At this point, the second player faces a chain whose ends are either 0 or a; also, the domino $(0, k)$ is on the table if and only if the domino (a, k) is on the table. In such a "good" situation, if the second player plays $(0, k)$ the first player can play (k, a) next to it; and if the second player plays (a, k) the first player can play $(k, 0)$. In both cases, the same conditions for a "good" situation occur.

Therefore the first player can always play a domino with this strategy, forcing the second player to lose.

Problem 8.8 An open chain of 54 squares of side length 1 is made so that each pair of consecutive squares is joined at a single vertex, and each square is joined to its two neighbors at opposite vertices. Is it possible to cover the surface of a $3 \times 3 \times 3$ cube with this chain?

Solution: It is not possible; suppose by way of contradiction it were.

Create axes so that the cube has corners at $(3 i, 3 j, 3 k)$ for $i, j, k \in$ $\{0,1\}$, and place the chain onto the cube. Imagine that every two adjacent squares in the chain are connected by pivots, and also let the start and end vertices of the chain be "pivots."

Consider some pivot P at (x, y, z); then the next pivot Q in the chain is either at $(x, y \pm 1, z \pm 1),(x \pm 1, y, z \pm 1)$, or $(x \pm 1, y \pm 1, z)$. In any case, the sum of the coordinates of P has the same parity as the sum of the coordinates of Q - and hence all the pivots' sums of coordinates have the same parity. Suppose without loss of generality the sums are even.

Form a graph whose vertices are the lattice points on the cube with even sums of coordinates; and join two vertices with an edge if the two lattice points are opposite corners of a unit square. Every square in our chain contains one of these edges - but since there are exactly 54 such edges (one across each unit square on the cube's surface), and 54 squares in our chain, every edge is used exactly once. Then as we travel from pivot to pivot along our chain, we create an Eulerian path visiting all the edges. But four vertices - at $(0,0,0),(0,1,1)$, $(1,0,1)$, and $(1,1,0)$ - have odd degree 3 , so this is impossible.

Problem 9.1 Around a circle are written all of the positive integers from 1 to $N, N \geq 2$, in such a way that any two adjacent integers
have at least one common digit in their decimal expansions. Find the smallest N for which this is possible.

Solution: $N=29$. Since 1 must be adjacent to two numbers, we must have $N \geq 11$. But then 9 must be adjacent to two numbers, and the next smallest numbers containing 9 as a digit are 19 and 29 . Therefore $N \geq 29$, and indeed $N=29$ suffices:

$$
19,9,29,28,8,18,17,7,27, \ldots, 13,3,23,2,22,21,20,12,11,10,1
$$

Problem 9.2 In triangle $A B C$, points D and E are chosen on side $C A$ such that $A B=A D$ and $B E=E C(E$ lying between A and $D)$. Let F be the midpoint of the arc $B C$ of the circumcircle of $A B C$. Show that B, E, D, F lie on a circle.

Solution: Let I be the incenter of triangle $A B C$, and notice that

$$
\begin{aligned}
& \angle B I C=180^{\circ}-\angle I C B-\angle C B I \\
& =180^{\circ}-\frac{\angle B}{2}-\frac{\angle C}{2} \\
& =90^{\circ}+\frac{\angle A}{2}
\end{aligned}
$$

Also, since $A D=A B$ we have $\angle A D B=90^{\circ}-\frac{\angle A}{2}$ and $\angle B D C=$ $180^{\circ}-\angle A D B=90^{\circ}+\frac{\angle A}{2}$. Therefore, $B I D C$ is cyclic.

Some angle-chasing shows that that B, I, and C lie on a circle with center F. Thus D lies on this circle, $F D=F C$, and $\angle F D C=\angle D C F$.

Also, since $B E=E C$, we have $\angle C B E=\angle C$. Combining these facts, we have

$$
\begin{aligned}
& 180^{\circ}-\angle E D F=\angle F D C \\
& =\angle D C F \\
& =\angle A C F \\
& =\angle C+\frac{\angle A}{2} \\
& =\angle C B E+\angle F B C \\
& =\angle F B E .
\end{aligned}
$$

Therefore $B E D F$ is cyclic, as desired.

Problem 9.3 The product of the positive real numbers x, y, z is 1 . Show that if

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq x+y+z
$$

then

$$
\frac{1}{x^{k}}+\frac{1}{y^{k}}+\frac{1}{z^{k}} \geq x^{k}+y^{k}+z^{k}
$$

for all positive integers k.
First Solution: Write $x=\frac{a}{b}, y=\frac{b}{c}, z=\frac{c}{a}$ for some positive numbers a, b, c. (For example, we could take $a=1, b=\frac{1}{x}, c=\frac{1}{x y}$.) The given equation becomes

$$
\begin{aligned}
\frac{b}{a} & +\frac{c}{b}+\frac{a}{c} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \\
& \Longleftrightarrow a^{2} b+b^{2} c+c^{2} a \geq a b^{2}+b c^{2}+c a^{2} \\
& \Longleftrightarrow 0 \geq(a-b)(b-c)(c-a)
\end{aligned}
$$

For any positive integer k, write $A=a^{k}, B=b^{k}, C=c^{k}$. Then $a>b \Longleftrightarrow A>B$ and $a<b \Longleftrightarrow A<B$, and so on. Thus we also know that $0 \geq(A-B)(B-C)(C-A)$, and

$$
\begin{aligned}
0 & \geq(A-B)(B-C)(C-A) \\
& \Longleftrightarrow \frac{B}{A}+\frac{C}{B}+\frac{A}{C} \geq \frac{A}{B}+\frac{B}{C}+\frac{C}{A} \\
& \Longleftrightarrow \frac{1}{x^{k}}+\frac{1}{y^{k}}+\frac{1}{z^{k}} \geq x^{k}+y^{k}+z^{k}
\end{aligned}
$$

as desired.
Second Solution: The inequality

$$
0 \geq(a-b)(b-c)(c-a)
$$

might spark this realization: dividing through by $a b c$ we have

$$
0 \geq(x-1)(y-1)(z-1)
$$

Indeed,

$$
\begin{aligned}
& (x-1)(y-1)(z-1)=x y z+x+y+z-x y-y z-z x-1 \\
& \quad=x+y+z-\frac{1}{z}-\frac{1}{x}-\frac{1}{y} \leq 0 .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& (x-1)(y-1)(z-1) \leq 0 \\
\Rightarrow & \left(x^{k}-1\right)\left(y^{k}-1\right)\left(z^{k}-1\right) \leq 0 \\
\Rightarrow & x^{k}+y^{k}+z^{k} \geq \frac{1}{x^{k}}+\frac{1}{y^{k}}+\frac{1}{z^{k}},
\end{aligned}
$$

as desired.

Problem 9.4 A maze consists of an 8×8 grid, in each 1×1 cell of which is drawn an arrow pointing up, down, left or right. The top edge of the top right square is the exit from the maze. A token is placed on the bottom left square, and then is moved in a sequence of turns. On each turn, the token is moved one square in the direction of the arrow. Then the arrow in the square the token moved from is rotated 90° clockwise. If the arrow points off of the board (and not through the exit), the token stays put and the arrow is rotated 90° clockwise. Prove that sooner or later the token will leave the maze.

Solution: Suppose by way of contradiction the token did not leave the maze. Let position denote the set-up of the board, including both the token's location and the directions of all the arrows. Since the token moves infinitely many times inside the maze, and there are only finitely many positions, some position must repeat.

During the "cycle time" between two occurrences of this position, suppose the token visits some square S. Then the arrow on S must make at least four 90° rotations: thus at some point during the cycle time, the token must visit all the squares adjacent to S. It follows that the token visits all the squares on the board during the cycle time.
Specifically, the token visits the upper-right square during the cycle time; but at some point, this square's arrow will point out of the maze. Then when the token lands on this square it will exit - a contradiction.

Problem 9.5 Each square of an infinite grid is colored in one of 5 colors, in such a way that every 5 -square (Greek) cross contains one square of each color. Show that every 1×5 rectangle also contains one square of each color.

Solution: Label the centers of the grid squares with coordinates, and suppose that square $(0,0)$ is colored maroon. The Greek cross centered at $(1,1)$ must contain a maroon-colored square. However, the squares $(0,1),(1,0)$, and $(1,1)$ cannot be maroon because each of these squares is in a Greek cross with $(0,0)$. Thus either $(1,2)$ or $(2,1)$ is maroon - without loss of generality, say $(1,2)$.

Then by a similar analysis on square $(1,2)$ and the Greek cross centered at $(2,1)$, one of the squares $(2,0)$ and $(3,1)$ must be maroon. $(2,0)$ is in a Greek cross with $(0,0)$ though, so $(3,1)$ is maroon.

Repeating the analysis on square $(2,0)$ shows that $(2,-1)$ is maroon; and spreading outward, every square of the form $(i+2 j, 2 i-j)$ is maroon. But since these squares are the centers of Greek crosses that tile the plane, no other squares can be maroon. And since no two of these squares are in the same 1×5 rectangle, no two maroon squares can be in the same 1×5 rectangle.

The same argument applies to all the other colors - lavender, tickle-me-pink, green, neon orange. Therefore the five squares in each 1×5 rectangle have distinct colors, as desired.

Problem 9.7 Show that each natural number can be written as the difference of two natural numbers having the same number of prime factors.

Solution: If n is even, then we can write it as $(2 n)-(n)$.
Now suppose n is odd, and let d be the smallest odd prime that does not divide n. Then write $n=(d n)-((d-1) n)$. The number $d n$ contains exactly one more prime factor than n. As for $(d-1) n$, it is divisible by 2 since $d-1$ is even; but its odd factors are less than d so they all divide n. Therefore $(d-1) n$ also contains exactly one more prime factor than n, and $d n$ and $(d-1) n$ have the same number of prime factors.

Problem 9.8 In triangle $A B C$, with $A B>B C$, points K and M are the midpoints of sides $A B$ and $C A$, and I is the incenter. Let P be the intersection of the lines $K M$ and $C I$, and Q the point such that $Q P \perp K M$ and $Q M \| B I$. Prove that $Q I \perp A C$.

Solution: Draw point S on ray $C B$ such that $C S=C A$. Let P^{\prime} be the midpoint of $A S$. Since triangle $A C S$ is isosceles, P^{\prime} lies on $C I$;
and since P^{\prime} and M are midpoints of $A S$ and $A C$, we have $P^{\prime} M \| S C$. It follows that $P=P^{\prime}$.

Let the incircle touch $B C, C A, A B$ at D, E, F respectively. Writing $a=B C, b=C A, c=A B$, and $s=\frac{1}{2}(a+b+c)$, we have

$$
\begin{gathered}
S D=S C-D C=b-(s-c)=\frac{1}{2}(b+c-a)=F A \\
B F=s-b=D B \\
A P=P S
\end{gathered}
$$

Therefore

$$
\frac{S D}{D B} \frac{B F}{F A} \frac{A P}{P S}=1
$$

and by Menelaus' Theorem applied to triangle $A B S, P$ lies on line $D F$.

Then triangle $P D E$ is isosceles, and $\angle D E P=\angle P D E=\angle F E A=$ $90^{\circ}-\frac{\angle A}{2}$ while $\angle C E D=90^{\circ}-\frac{\angle C}{2}$. Therefore

$$
\angle P E A=180^{\circ}-\angle D E P-\angle C E D=90^{\circ}-\frac{\angle B}{2}
$$

Now let Q^{\prime} be the point such that $Q^{\prime} I \perp A C, Q^{\prime} M \| B I$. Then $\angle Q^{\prime} E P=90^{\circ}-\angle P E A=\frac{\angle B}{2}$.

But we also know that $\angle Q^{\prime} M P=\angle I B C$ (from parallel lines $B C \| M P$ and $\left.I B \| Q^{\prime} M\right)$, and $\angle I B C=\frac{\angle B}{2}$ as well. Therefore $\angle Q^{\prime} M P=\angle Q^{\prime} E P$, quadrilateral $Q^{\prime} E M P$ is cyclic, and $\angle Q^{\prime} P M=$ $\angle Q^{\prime} E M=90^{\circ}$. Therefore $Q=Q^{\prime}$, and $Q I$ is indeed perpendicular to $A C$.

Problem 10.2 In the plane is given a circle ω, a point A inside ω, and a point B not equal to A. Consider all possible triangles $B X Y$ such that X and Y lie on ω and A lies on the chord $X Y$. Show that the circumcenters of these triangles all lie on a line.

Solution: We use directed distances. Let O be the circumcenter and R be the circumradius of triangle $B X Y$. Drop the perpendicular $O O^{\prime}$ to line $A B$.

The power of A with respect to circle $B X Y$ equals both $A X \cdot A Y$ and $A O^{2}-R^{2}$. Therefore

$$
B O^{\prime}-O^{\prime} A=\frac{B O^{\prime 2}-O^{\prime} A^{2}}{B O^{\prime}+O^{\prime} A}
$$

$$
\begin{aligned}
& =\frac{\left(B O^{2}-O^{\prime} O^{2}\right)-\left(O A^{2}-O O^{2}\right)}{A B} \\
& =\frac{X A \cdot A Y}{A B}
\end{aligned}
$$

which is constant since $A X \cdot A Y$ also equals the power of A with respect to ω.

Since $B O^{\prime}-O^{\prime} A$ and $B O^{\prime}+O^{\prime} A=A B$ are constant, $B O^{\prime}$ and $O^{\prime} A$ are constant as well. Thus O^{\prime} is fixed regardless of the choice of X and Y. Therefore O lies on the line through O^{\prime} perpendicular to $A B$, as desired.

Problem 10.3 In space are given n points in general position (no three points are collinear and no four are coplanar). Through any three of them is drawn a plane. Show that for any $n-3$ points in space, there exists one of the drawn planes not passing through any of these points.

Solution: Call the given n points given and the $n-3$ points random, and call all these points "level-0." Since there are more given points than random points, one of the given points is not random: say, A. Draw a plane not passing through A, and for each of the other points P let (P) be the intersection of $A P$ with this plane. Call these points (P) level-1.

Since no four given points were coplanar, no three of the level-1 given points map to collinear points on this plane; and since no three given points were collinear, no two of the level-1 given points map to the same point on this plane. Thus we have $n-1$ level- 1 given points and at most $n-3$ level -1 random points.

Now perform a similar operation - since there are more level-1 given points than random points, one of them is not random: say, (B). Draw a line not passing through (B), and for each of the other points (P) let $((P))$ be the intersection of $B(P)$ with this plane. Call these points $((P))$ level- 2 .

Since no three level-1 given points were collinear, all of the level-2 given points are distinct. Thus we have $n-2$ level- 2 given points but at most $n-3$ level- 2 random points. Therefore one of these given points $((C))$ is not random.

Consider the drawn plane $A B C$. If it contained some level- 0 random point - say, Q - then (Q) would be collinear with (B) and (C), and thus $((Q))=((C))$, a contradiction. Therefore plane $A B C$ does not pass through any of the level-0 random points, as desired.

Problem 10.5 Do there exist 10 distinct integers, the sum of any 9 of which is a perfect square?

Solution: Yes, there do exist 10 such integers. Write $S=a_{1}+\cdots+$ a_{10}, and consider the linear system of equations

$$
\begin{aligned}
& S-a_{1}=9 \cdot 1^{2} \\
& S-a_{2}=9 \cdot 2^{2} \\
& \vdots \\
& S-a_{10}=9 \cdot 10^{2}
\end{aligned}
$$

Adding all these gives

$$
9 S=9 \cdot\left(1^{2}+2^{2}+\cdots+10^{2}\right)
$$

so that

$$
a_{i}=S-9 i^{2}=1^{2}+2^{2}+\cdots+10^{2}-9 i^{2} .
$$

Then all the a_{i} 's are distinct integers, and any nine of them add up to perfect square.

Problem 10.6 The incircle of triangle $A B C$ touches sides $B C, C A$, $A B$ at A_{1}, B_{1}, C_{1}, respectively. Let K be the point on the circle diametrically opposite C_{1}, and D the intersection of the lines $B_{1} C_{1}$ and $A_{1} K$. Prove that $C D=C B_{1}$.

Solution: Draw D^{\prime} on $B_{1} C_{1}$ such that $C D^{\prime} \| A B$. Then $\angle D^{\prime} C B_{1}=\angle C_{1} A B_{1}$ and $\angle C D^{\prime} B_{1}=\angle A C_{1} B_{1}$, implying that $\triangle A B_{1} C_{1} \sim \triangle C B_{1} D^{\prime}$.

Thus triangle $C B_{1} D^{\prime}$ is isosceles and $C D^{\prime}=C B_{1}$. But $C B_{1}=$ $C A_{1}$, so that triangle $C A_{1} D^{\prime}$ is isosceles also. And since $\angle D^{\prime} C A_{1}=$ $180^{\circ}-\angle B$, we have $\angle C A_{1} D^{\prime}=\frac{\angle B}{2}$.

But note that

$$
\begin{gathered}
\angle C A_{1} K=\angle A_{1} C_{1} K \\
=90^{\circ}-\angle C_{1} K A_{1}
\end{gathered}
$$

$$
\begin{aligned}
& =90^{\circ}-\angle C_{1} A_{1} B \\
& =\frac{\angle B}{2}
\end{aligned}
$$

also. Therefore D^{\prime} lies on $A_{1} K$ and by definition it lies on $B_{1} C_{1}$. Hence $D^{\prime}=D$.

But from before $C D^{\prime}=C B_{1}$; thus $C D=C B_{1}$, as desired.
Problem 10.7 Each voter in an election marks on a ballot the names of n candidates. Each ballot is placed into one of $n+1$ boxes. After the election, it is observed that each box contains at least one ballot, and that for any $n+1$ ballots, one in each box, there exists a name which is marked on all of these ballots. Show that for at least one box, there exists a name which is marked on all ballots in the box.

Solution: Suppose by way of contradiction that in every box, no name is marked on all the ballots. Label the boxes $1,2, \ldots, n$, and look at an arbitrary ballot from the first box.

Suppose it has n "chosen" names Al, Bob, ..., Zed. By assumption, some ballot in the second box does not have the name Al on it; some ballot in the third box does not have the name Bob on it; and so on, so some ballot in the $(i+1)$-th box does not have the i-th chosen name on it. But then on these $n+1$ ballots, one from each box, there is no name marked on all the ballots - a contradiction.

Problem 10.8 A set of natural numbers is chosen so that among any 1999 consecutive natural numbers, there is a chosen number. Show that there exist two chosen numbers, one of which divides the other.

Solution: Draw a large table with 1999 columns and 2000 rows. In the first row write $1,2, \ldots, 1999$.

Define the entries in future rows recursively as follows: suppose the entries in row i are $k+1, k+2, \ldots, k+1999$, and that their product is M. Then fill row $i+1$ with $M+k+1, M+k+2, \ldots$, $M+k+1999$. All the entries in row $i+1$ are bigger than the entries in row i; furthermore, every entry divides the entry immediately below it (and therefore all the entries directly below it).

In each row there are 1999 consecutive numbers, and hence each row contains a chosen number. Then since we have 2000 rows, there
are two chosen numbers in the same column - and one of them divides another, as desired.

Problem 11.1 The function $f(x)$ is defined on all real numbers. It is known that for all $a>1$, the function $f(x)+f(a x)$ is continuous. Show that $f(x)$ is continuous.

First Solution: We know that for $a>1$, the functions

$$
\begin{gathered}
P(x)=f(x)+f(a x) \\
Q(x)=f(x)+f\left(a^{2} x\right) \\
P(a x)=f(a x)+f\left(a^{2} x\right)
\end{gathered}
$$

are all continuous. Thus the function

$$
\frac{1}{2}(P(x)+Q(x)-P(a x))=f(x)
$$

is continuous as well.
Problem 11.3 In a class, each boy is friends with at least one girl. Show that there exists a group of at least half of the students, such that each boy in the group is friends with an odd number of the girls in the group.

Solution: We perform strong induction on the total number of students. The base case of zero students is obvious.

Now suppose that we know the claim is true for any number of students less than n (where $n>0$), and we wish to prove it for n. Since there must be at least one girl, pick any girl from the n students. We now partition the class into three subsets: $A=$ this girl, $B=$ this girl's male friends, and $C=$ everybody else.

Because we are using strong induction, the induction hypothesis states that there must be a subset C^{\prime} of C, with at least $\frac{|C|}{2}$ students, such that any boy in C^{\prime} is friends with an odd number of girls in C^{\prime}.

Let B_{O} be the set of boys in B who are friends with an odd number of girls in C^{\prime}, and let B_{E} be the set of boys in B who are friends with an even number of girls in C^{\prime}. Then there are two possible cases:
(i) $\left|B_{O}\right| \geq \frac{|A \cup B|}{2}$.

The set $S=B_{O} \cup C^{\prime}$ will realize the claim, i.e., S will have at least $\frac{n}{2}$ elements, and each boy in S will be friends with an odd number of girls in S.
(ii) $\left|A \cup B_{E}\right| \geq \frac{|A \cup B|}{2}$.

The set $T=A \cup B_{E} \cup C^{\prime}$ will realize the claim. T will have at least $\frac{n}{2}$ elements; each boy in C^{\prime} will be friends with an odd number of girls in C^{\prime} but not the girl in A; and each boy in B_{E} will be friends with an even number of girls in C^{\prime} and the girl in A - making a total of an odd number of girls.
Thus the induction is complete.
Note: With a similar proof, it is possible to prove a slightly stronger result: suppose each boy in a class is friends with at least one girl, and that every boy has a parity, either "even" or "odd." Then there is a group of at least half the students, such that each boy in the group is friends with the same parity of girls as his own parity. (By letting all the boys' parity be "odd," we have the original result.)

Problem 11.4 A polyhedron is circumscribed about a sphere. We call a face big if the projection of the sphere onto the plane of the face lies entirely within the face. Show that there are at most 6 big faces.

Solution:

Lemma. Given a sphere of radius R, let a "slice" of the sphere be a portion cut off by two parallel planes. The surface area of the sphere contained in this slice is $2 \pi R W$, where W is the distance between the planes.

Proof: Orient the sphere so that the slice is horizontal. Take an infinitesimal horizontal piece of this slice, shaped like a frustrum (a small sliver from the bottom of a radially symmetric cone). Say it has width w, radius r, and slant height ℓ; then its lateral surface area (for infinitesimal w) is $2 \pi r \ell$. But if the side of the cone makes an angle θ with the horizontal, then we have $\ell \sin \theta=w$ and $R \sin \theta=r$ so that the surface area also equals $2 \pi R w$. Adding over all infinitesimal pieces, the complete slice has lateral surface area $2 \pi R W$, as desired.

Say that the inscribed sphere has radius R and center O. For each big face F in the polyhedron, project the sphere onto F to form a circle k. Then connect k with O to form a cone. Because these cones don't share any volume, they hit the sphere's surface in several non-overlapping circular regions.

Each circular region is a slice of the sphere with width $R\left(1-\frac{1}{2} \sqrt{2}\right)$, and it contains $2 \pi R^{2}\left(1-\frac{1}{2} \sqrt{2}\right)>\frac{1}{7}\left(4 \pi R^{2}\right)$ of the sphere's surface area. Thus each circular region takes up more than $\frac{1}{7}$ of the surface area of the sphere, implying there must be less than 7 such regions and therefore at most six big faces.

Problem 11.5 Do there exist real numbers a, b, c such that for all real numbers x, y,

$$
|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y| ?
$$

Solution: No such numbers exist; suppose they did. Let $y=-b-x$. Then for all real x we have

$$
|x+a|+|-b-x+c|>|x|+|-b|+|-b-x|
$$

If we pick x sufficiently negative, this gives

$$
\begin{aligned}
& (-x-a)+(-b-x+c)>(-x)+|b|+(-b-x) \\
& \quad \Rightarrow-a+c>|b| \geq 0
\end{aligned}
$$

so $c>a$. On the other hand, if we pick x sufficiently positive, this gives

$$
\begin{aligned}
& (x+a)+(b+x-c)>(x)+|b|+(b+x) \\
& \quad \Rightarrow a-c>|b| \geq 0
\end{aligned}
$$

so $c<a$ as well - a contradiction.
Problem 11.6 Each cell of a 50×50 square is colored in one of four colors. Show that there exists a cell which has cells of the same color directly above, directly below, directly to the left, and directly to the right of it (though not necessarily adjacent to it).

Solution: By the pigeonhole principle, at least one-quarter of the squares (625) are the same color: say, red.

Of these red squares, at most 50 are the topmost red squares of their columns, and at most 50 are the bottommost red squares of their columns. Similarly, at most 50 are the leftmost red squares in their rows and at most 50 are the rightmost red squares in their rows. This gives at most 200 squares; the remaining 425 or more red squares
then have red squares directly above, directly below, directly to the left, and directly to the right of them.

Problem 11.8 A polynomial with integer coefficients has the property that there exist infinitely many integers which are the value of the polynomial evaluated at more than one integer. Prove that there exists at most one integer which is the value of the polynomial at exactly one integer.

Solution: First observe that the polynomial cannot be constant. Now let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be the polynomial with $c_{n} \neq 0$. The problem conditions imply that n is even and at least 2 , and we can assume without loss of generality that $c_{n}>0$.

Since $P(x)$ has positive leading coefficient and it is not constant, there exists a value N such that $P(x)$ is decreasing for all $x<N$. Also consider the pairs of integers (s, t) with $s<t$ and $P(s)=P(t)$; since there are infinitely many pairs, there must be infinitely many with $s<N$.

Now for any integer k, look at the polynomial $P(x)-P(k-x)$. Some algebra shows that the coefficient of x^{n} is zero and that the coefficient of x^{n-1} is $f(k)=2 c_{n-1}+c_{n}(n k)$.

Let K be the largest integer such that $f(K)<0$ (such an integer exists because from assumptions made above, $\left.c_{n} \cdot n>0\right)$. Then for sufficiently large t we have

$$
P(t)<P(K-t)<P(K-1-t)<\cdots
$$

and

$$
P(t) \geq P(K+1-t)>P(K+2-t)>P(K+3-t)>\cdots>P(N)
$$

Therefore we must have $s=K+1-t$ and $P(t)-P(K+1-t)=0$ for infinitely many values of t. But since P has finite degree, this implies that $P(x)-P(K+1-x)$ is identically zero.

Then if $P(a)=b$ for some integers a, b, we also have $P(K+1-a)=$ b. Therefore there is at most one value b that could possibly be the value of $P(x)$ at exactly one integer x - specifically, $b=P\left(\frac{K+1}{2}\right)$.

Fifth round

Problem 9.1 In the decimal expansion of A, the digits occur in increasing order from left to right. What is the sum of the digits of
$9 A$?
Solution: Write $A=\underline{a_{1} a_{2} \ldots a_{k}}$. Then since $9 A=10 A-A$, by performing the subtraction

$$
\begin{array}{cccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{k} & 0 \\
- & a_{1} & a_{2} & \cdots & a_{k-1} & a_{k} \\
\hline
\end{array}
$$

we find that the digits of $9 A$ are

$$
a_{1}, a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{k-1}-a_{k-2}, a_{k}-a_{k-1}-1,10-a_{k},
$$

and that these digits add up to $10-1=9$.
Problem 9.3 Let S be the circumcircle of triangle $A B C$. Let A_{0} be the midpoint of the arc $B C$ of S not containing A, and C_{0} the midpoint of the arc $A B$ of S not containing C. Let S_{1} be the circle with center A_{0} tangent to $B C$, and let S_{2} be the circle with center C_{0} tangent to $A B$. Show that the incenter I of $A B C$ lies on a common external tangent to S_{1} and S_{2}.

Solution: We prove a more general result: I lies on a common external tangent to S_{1} and S_{2}, parallel to $A C$.

Drop the perpendicular from A_{0} to $B C$, hitting at P, and drop the perpendicular from A_{0} to $A C$, hitting circle S_{1} at Q (with Q closer to $A C$ than $\left.A_{0}\right)$.

Note that A, I, and A_{0} are collinear. Then

$$
\angle C I A_{0}=\angle C A I+\angle I C A=\frac{\angle A+\angle C}{2}=\angle A_{0} C I
$$

so that $I A_{0}=C A_{0}$.
Next, from circle S_{1} we know that $A_{0} Q=A_{0} P$.
Finally,
$\angle I A_{0} Q=\angle A A_{0} Q=90^{\circ}-\angle C A A_{0}=\frac{1}{2}\left(180^{\circ}-\angle C A B\right)=\angle C A_{0} P$.
Thus, triangles $I A_{0} Q$ and $C A_{0} P$ are congruent. Then

$$
\angle I Q A_{0}=\angle C P A_{0}=90^{\circ},
$$

so that $I Q$ is tangent to S_{1} at Q. Furthermore, since $A_{0} Q$ is perpendicular to both $I Q$ and $A C$, we have $I Q \| A C$.

Therefore, the line through I parallel to $A C$ is tangent to S_{1}; by a similar argument it is tangent to S_{2}; and thus it is a common external tangent to S_{1} and S_{2}, as claimed.

Problem 9.4 The numbers from 1 to 1000000 can be colored black or white. A permissible move consists of selecting a number from 1 to 1000000 and changing the color of that number and each number not relatively prime to it. Initially all of the numbers are black. Is it possible to make a sequence of moves after which all of the numbers are colored white?

First Solution: It is possible. We begin by proving the following lemma:
Lemma. Given a set S of positive integers, there is a subset $T \subseteq S$ such that every element of S divides an odd number of elements in T.

Proof: We prove the claim by induction on $|S|$, the number of elements in S. If $|S|=1$ then let $T=S$.

If $|S|>1$, then say the smallest element of S is a. Look at the set $S^{\prime}=S \backslash\{a\}$ - the set of the largest $|S|-1$ elements in S. By induction there is a subset $T^{\prime} \subseteq S^{\prime}$ such that every element in S^{\prime} divides an odd number of elements in T^{\prime}.

If a also divides an odd number of elements in T^{\prime}, then the set $T=T^{\prime}$ suffices. Otherwise, the set $T=T^{\prime} \cup\{a\}$ suffices: a divides an odd number of elements in T; the other elements are bigger than a and can't divide it, and therefore still divide an odd number of elements in T. This completes the induction and the proof of the lemma.

Now, write each number $n>1$ in its prime factorization

$$
p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}
$$

for distinct primes p_{i} and positive integers a_{i}. Then notice that the color of n will always be the same as the color of $P(n)=p_{1} p_{2} \cdots p_{k}$.

Apply the lemma to the set $S=\bigcup_{i=2}^{1000000} P(i)$ to find a subset $T \subseteq S$ such that every element of S divides an odd number of elements in T. For each $q \in S$, let $t(q)$ equal the number of elements in T that q divides, and let $u(q)$ equal the number of primes dividing q.

Select all the numbers in T, and consider how the color of a number $n>1$ changes. The number of elements in T not relatively prime to
n equals

$$
\sum_{q \mid P(n), q>1}(-1)^{u(q)+1} t(q)
$$

by the Inclusion-Exclusion Principle: if $q \mid P(n)$ is divisible by exactly $m>0$ primes, then it is counted $\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\cdots=1$ time in the sum. (For example, if $n=6$ then the number of elements in T divisible by 2 or 3 equals $t(2)+t(3)-t(6)$.)
But by the definition of T, each of the values $t(q)$ is odd. Then since there are $2^{k}-1$ divisors $q>1$ of $P(n)$, the above quantity is the sum of $2^{k}-1$ odd numbers and is odd itself. Therefore after selecting T, every number $n>1$ will switch color an odd number of times and will turn white.

Finally, select 1 to turn 1 white, and we are done.

Note: In fact, a slight modification of the above proof shows that T is unique, which with some work implies that there is exactly one way to make all the numbers white by only selecting square-free numbers at most once each (other methods are different only trivially, either by selecting a number twice or by selecting numbers that aren't square-free).

Second Solution: Yes, it is possible. We prove a more general statement, where we replace 1000000 in the problem by some arbitrary positive integer m, and where we focus on the numbers divisible by just a few primes instead of all the primes.
Lemma. For a finite set of distinct primes $S=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, let $Q_{m}(S)$ be the set of numbers between 2 and m divisible only by primes in S. The elements of $Q_{m}(S)$ can be colored black or white; a permissible move consists of selecting a number in $Q_{m}(S)$ and changing the color of that number and each number not relatively prime to it. Then it is possible to reverse the coloring of $Q_{m}(S)$ by selecting several numbers in a subset $R_{m}(S) \subseteq Q_{m}(S)$.

Proof: We prove the lemma by induction on n. If $n=1$, then selecting p_{1} suffices. Now suppose $n>1$, and assume without loss of generality that the numbers are all black to start with.
Let $T=\left\{p_{1}, p_{2}, \ldots, p_{n-1}\right\}$, and define t to be the largest integer such that $t p_{n} \leq m$. We can assume $t \geq 1$ because otherwise we could ignore p_{n} and just use use the smaller set T, and we'd be done by our
induction hypothesis.
Now select the numbers in $R_{m}(T), R_{t}(T)$, and $p_{n} R_{t}(T)=\left\{p_{n} x \mid\right.$ $\left.x \in R_{t}(T)\right\}$, and consider the effect of this action on a number y :

- y is not a multiple of p_{n}. Selecting the numbers in $R_{m}(T)$ makes y white. Then if selecting $x \in R_{t}(T)$ changes y 's color, selecting $x p_{n}$ will change it back so that y will become white.
- y is a power of p_{n}. Selecting the numbers in $R_{m}(T)$ and $R_{t}(T)$ has no effect on y, but each of the $\left|R_{t}(T)\right|$ numbers in $x R_{t}(T)$ changes y 's color.
- $p_{n} \mid y$ but y is not a power of p_{n}. Selecting the numbers in $R_{m}(T)$ makes y white. Since $y \neq p_{n}^{i}$, it is divisible by some prime in T so selecting the numbers in $R_{t}(T)$ makes y black again. Finally, each of the $\left|R_{t}(T)\right|$ numbers in $x R_{t}(T)$ changes y 's color.
Therefore, all the multiples of p_{n} are the same color (black if $\left|R_{t}(T)\right|$ is even, white if $\left|R_{t}(T)\right|$ is odd), while all the other numbers in $Q_{m}(S)$ are white. If the multiples of p_{n} are still black, we can select p_{n} to make them white, and we are done.

Now back to the original problem: set $m=1000000$ and let S be the set of all primes under 1000000. Then from the lemma, we can select numbers between 2 and 1000000 so that all the numbers $2,3, \ldots, 1000000$ are white. And finally, we finish off by selecting 1 .

Problem 9.5 An equilateral triangle of side length n is drawn with sides along a triangular grid of side length 1 . What is the maximum number of grid segments on or inside the triangle that can be marked so that no three marked segments form a triangle?

Solution: The grid is made up of $\frac{n(n+1)}{2}$ small equilateral triangles of side length 1 . In each of these triangles, at most 2 segments can be marked so we can mark at most $\frac{2}{3} \cdot \frac{3 n(n+1)}{2}=n(n+1)$ segments in all. Every segment points in one of three directions, so we can achieve the maximum $n(n+1)$ by marking all the segments pointing in two of the directions.

Problem 9.6 Let $\{x\}=x-\lfloor x\rfloor$ denote the fractional part of x. Prove that for every natural number n,

$$
\sum_{k=1}^{n^{2}}\{\sqrt{k}\} \leq \frac{n^{2}-1}{2}
$$

Solution: We prove the claim by induction on n. For $n=1$, we have $0 \leq 0$. Now supposing that the claim is true for n, we prove it is true for $n+1$.

Each of the numbers $\sqrt{n^{2}+1}, \sqrt{n^{2}+2}, \ldots, \sqrt{n^{2}+2 n}$ is between n and $n+1$, and thus

$$
\begin{aligned}
& \left\{\sqrt{n^{2}+i}\right\}=\sqrt{n^{2}+i}-n \\
& \quad<\sqrt{n^{2}+i+\frac{i^{2}}{4 n^{2}}}-n \\
& \quad=\frac{i}{2 n}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \sum_{k=1}^{(n+1)^{2}}\{\sqrt{k}\}=\sum_{k=1}^{n^{2}}\{\sqrt{k}\}+\sum_{k=n^{2}+1}^{(n+1)^{2}}\{\sqrt{k}\} \\
& \quad<\frac{n^{2}-1}{2}+\frac{1}{2 n} \sum_{i=1}^{2 n} i+0 \\
& \quad=\frac{n^{2}-1}{2}+\frac{2 n+1}{2} \\
& =\frac{(n+1)^{2}-1}{2}
\end{aligned}
$$

completing the inductive step and the proof.
Problem 9.7 A circle passing through vertices A and B of triangle $A B C$ intersects side $B C$ again at D. A circle passing through vertices B and C intersects side $A B$ again at E, and intersects the first circle again at F. Suppose that the points A, E, D, C lie on a circle centered at O. Show that $\angle B F O$ is a right angle.

Solution: Since $A E D C$ is cyclic with O as its center,

$$
\begin{aligned}
& \angle C O A=2 \angle C D A=\angle C D A+\angle C E A \\
& =\left(180^{\circ}-\angle A D B\right)+\left(180^{\circ}-\angle B E C\right)
\end{aligned}
$$

Since $B D F A$ and $B E F C$ are cyclic, $\angle A D B=\angle A F B$ and $\angle B E C=$ $\angle B F C$. Hence

$$
\angle C O A=360^{\circ}-\angle A F B-\angle B F C=\angle C F A
$$

Hence $A F O C$ is cyclic. Therefore

$$
\angle O F A=180^{\circ}-\angle A C O=180^{\circ}-\frac{180^{\circ}-\angle C O A}{2}=90^{\circ}+\angle C D A
$$

Since $A B D F$ is cyclic,

$$
\angle O F A+\angle A F B=90^{\circ}+\angle C D A+\angle A D B=270^{\circ} .
$$

Hence $\angle B F O=90^{\circ}$, as desired.
Problem 9.8 A circuit board has 2000 contacts, any two of which are connected by a lead. The hooligans Vasya and Petya take turns cutting leads: Vasya (who goes first) always cuts one lead, while Petya cuts either one or three leads. The first person to cut the last lead from some contact loses. Who wins with correct play?

Solution: Petya wins with correct play; arrange the contacts in a circle and label them $1,2, \ldots, 2000$, and let (x, y) denote the lead between contacts x and y (where labels are taken modulo 2000).

If Vasya disconnects $(a, 1000+a)$, Petya can disconnect $(500+$ $a, 1500+a)$; otherwise, if Vasya disconnects (a, b), Petya can disconnect the three leads $(a+500, b+500),(a+1000, b+1000)$, and $(a+1500, b+1500)$. Notice that in each case, Petya and Vasya tamper with different contacts.

Using this strategy, after each of Petya's turns the circuit board is symmetrical under $90^{\circ}, 180^{\circ}$, and 270° rotations, ensuring that he can always make the above moves - for example, if $(a+1500, b+1500)$ were already disconnected during Petya's turn, then (a, b) must have been as well before Vasya's turn.

Also, Petya can never lose, because if he disconnected the last lead (x, y) from some contact x, then Vasya must have already disconnected the last lead $(x-1500, y-1500),(x-1000, y-1000)$, or $(x-500, y-500)$ from some other contact, a contradiction.

Problem 10.1 Three empty bowls are placed on a table. Three players A, B, C, whose order of play is determined randomly, take turns putting one token into a bowl. A can place a token in the first or second bowl, B in the second or third bowl, and C in the third or
first bowl. The first player to put the 1999th token into a bowl loses. Show that players A and B can work together to ensure that C will lose.

Solution: Suppose A plays only in the first bowl until it contains 1998 tokens, then always plays in the second bowl; and suppose B plays only in the third bowl until it contains 1998 tokens, then always plays in the second bowl as well.
Suppose by way of contradiction that C doesn't lose. Without loss of generality, say the first bowl fills up to 1998 tokens before the third bowl does - call this point in time the "critical point."
First suppose the third bowl never contains 1998 tokens. Then at most 999 round pass after the critical point since during each round, the third bowl gains 2 tokens (one from B, one from C). But then A plays at most 999 tokens into the second bowl and doesn't lose; thus nobody loses, a contradiction.

Thus the third bowl does contain 1998 tokens some $k \leq 999$ more rounds after the critical point. After this k-th round A has played at most k tokens into the second bowl, and B has possibly played at most one token into the second bowl during the k-th round; so the second bowl has at most 1000 tokens. However, the first and third bowls each have 1998 tokens, so during the next round C will lose.

Problem 10.2 Find all infinite bounded sequences a_{1}, a_{2}, \ldots of positive integers such that for all $n>2$,

$$
a_{n}=\frac{a_{n-1}+a_{n-2}}{\operatorname{gcd}\left(a_{n-1}, a_{n-2}\right)} .
$$

Solution: The only such sequence is $2,2,2, \ldots$.
Let $g_{n}=\operatorname{gcd}\left(a_{n}, a_{n+1}\right)$. Then g_{n+1} divides both a_{n+1} and a_{n+2}, so it divides $g_{n} a_{n+2}-a_{n+1}=a_{n}$ as well. Thus g_{n+1} divides both a_{n} and a_{n+1}, and it divides their greatest common divisor g_{n}.
Therefore, the g_{i} form a nonincreasing sequence of positive integers and eventually equal some positive constant g. At this point, the a_{i} satisfy the recursion

$$
g a_{n}=a_{n-1}+a_{n-2} .
$$

If $g=1$, then $a_{n}=a_{n-1}+a_{n-2}>a_{n-1}$ so the sequence is increasing and unbounded.

If $g \geq 3$, then $a_{n}=\frac{a_{n-1}+a_{n-2}}{g}<\frac{a_{n-1}+a_{n-2}}{2} \leq \max \left\{a_{n-1}, a_{n-2}\right\}$. Similarly, $a_{n+1}<\max \left\{a_{n-1}, a_{n}\right\} \leq \max \left\{a_{n-2}, a_{n-1}\right\}$, so that $\max \left\{a_{n}, a_{n+1}\right\}<\max \left\{a_{n-2}, a_{n-1}\right\}$. Therefore the maximum values of successive pairs of terms form an infinite decreasing sequence of positive integers, a contradiction.

Thus $g=2$ and eventually we have $2 a_{n}=a_{n-1}+a_{n-2}$ or $a_{n}-$ $a_{n-1}=-\frac{1}{2}\left(a_{n-1}-a_{n-2}\right)$. This implies that $a_{i}-a_{i-1}$ converges to 0 and that the a_{i} are eventually constant as well. From $2 a_{n}=$ $a_{n-1}+a_{n-2}$, this constant must be 2 .

Now if $a_{n}=a_{n+1}=2$ for $n>1$, then $\operatorname{gcd}\left(a_{n-1}, a_{n}\right)=\operatorname{gcd}\left(a_{n-1}, 2\right)$ either equals 1 or 2 . Since

$$
2=a_{n+1}=\frac{a_{n-1}+a_{n}}{\operatorname{gcd}\left(a_{n-1}, 2\right)}
$$

this either implies $a_{n-1}=0$ - which is impossible - or $a_{n-1}=2$. Therefore all the a_{i} equal 2, and this sequence indeed works.

Problem 10.3 The incircle of triangle $A B C$ touches sides $A B, B C$, $C A$ at K, L, M, respectively. For each two of the incircles of $A M K$, $B K L, C L M$ is drawn the common external tangent not lying along a side of $A B C$. Show that these three tangents pass through a single point.

Solution: Let D, E, F be the midpoints of minor arcs $M K, K L$, $L M$ of the incircle, respectively; and let S_{1}, S_{2}, S_{3} be the incircles of triangles $A M K, B K L$, and $C L M$, respectively.

Since $A K$ is tangent to the incircle, $\angle A K D=\angle K L D=\angle K M D=$ $\angle D K M$; similarly, $\angle A M D=\angle D M K$. Thus, D is the incenter of $A M K$ and the center of S_{1}.

Likewise, E is center of S_{2} and F is the center of S_{3}. By the result proved in Problem 9.3, the incenter I of triangle $K L M$ lies on a common external tangent to S_{1} and S_{2}. But it does not lie on $A B$, so it must lie on the other external tangent. Similarly, the common external tangent to S_{2} and S_{3} (not lying on $B C$) passes through I, as does the common external tangent to S_{3} and S_{1} (not lying on $C A$); so the three tangents all pass through I, as desired.

Problem 10.4 An $n \times n$ square is drawn on an infinite checkerboard. Each of the n^{2} cells contained in the square initially contains a token. A move consists of jumping a token over an adjacent token
(horizontally or vertically) into an empty square; the token jumped over is removed. A sequence of moves is carried out in such a way that at the end, no further moves are possible. Show that at least $\frac{n^{2}}{3}$ moves have been made.

Solution: At the end of the game no two adjacent squares contain tokens: otherwise (since no more jumps are possible) they would have to be in an infinitely long line of tokens, which is not allowed. Then during the game, each time a token on square A jumps over another token on square B, imagine putting a 1×2 domino over squares A and B. At the end, every tokenless square on the checkerboard is covered by a tile; so no two uncovered squares are adjacent. We now prove there must be at least $\frac{n^{2}}{3}$ dominoes, implying that at least $\frac{n^{2}}{3}$ moves have been made:
Lemma. If an $n \times n$ square board is covered with 1×2 rectangular dominoes (possibly overlapping, and possibly with one square off the board) in such a way that no two uncovered squares are adjacent, then at least $\frac{n^{2}}{3}$ tiles are on the board.

Proof: Call a pair of adjacent squares on the checkerboard a "tile." If a tile contains two squares on the border of the checkerboard, call it an "outer tile"; otherwise, call it an "inner tile."

Now for each domino D, consider any tile it partly covers. If this tile is partly covered by exactly m dominoes, say D destroys $\frac{1}{m}$ of that tile. Adding over all the tiles that D lies on, we find the total quantity a of outer tiles that D destroys, and the total quantity b of inner tiles that D destroys. Then say that D scores $1.5 a+b$ points.

Consider a vertical domino D wedged in the upper-left corner of the chessboard; it partly destroys two horizontal tiles. But one of the two squares immediately to D 's right must be covered; so if D destroys all of one horizontal tile, it can only destroy at most half of the other.

Armed with this type of analysis, some quick checking shows that any domino scores at most 6 points; and that any domino scoring 6 points must lie completely on the board, not be wedged in a corner, not overlap any other dominoes, and not have either length- 1 edge hit another domino.

Now in a valid arrangement of dominoes, every tile is destroyed completely; since there are $4(n-1)$ outer tiles and $2(n-1)(n-2)$ inner
tiles, this means that a total of $1.5 \cdot 4(n-1)+2(n-1)(n-2)=2\left(n^{2}-1\right)$ points are scored. Therefore, there must be at least $\left\lceil\frac{2\left(n^{2}-1\right)}{6}\right\rceil=$ $\left\lceil\frac{n^{2}-1}{3}\right\rceil$ dominoes.

Suppose by way of contradiction that we have exactly $\frac{n^{2}-1}{3}$ dominoes. First, for this to be an integer 3 cannot divide n. Second, the restrictions described two paragraphs ago must hold for every domino.

Suppose we have any horizontal domino not at the bottom of the chessboard; one of the two squares directly below it must be covered. But to satisfy our restrictions, it must be covered by a horizontal domino (not a vertical one). Thus we can find a chain of horizontal dominoes stretching to the bottom of the board, and similarly we can follow this chain to the top of the board.

Similarly, if there is any vertical domino then some chain of vertical dominoes stretches across the board. But we can't have both a horizontal and a vertical chain, so all the dominoes must have the same orientation: say, horizontal.

Now to cover the tiles in any given row while satisfying the restrictions, we must alternate between blank squares and horizontal dominoes. In the top row, since no dominoes are wedged in a corner we must start and end with blank squares; thus we must have $n \equiv 1(\bmod 3)$. But then in the second row, we must start with a horizontal domino (to cover the top-left vertical tiles); then after alternating between dominoes and blank squares, the end of the row will contain two blank squares - a contradiction. Thus it is impossible to cover the chessboard with exactly $\frac{n^{2}-1}{3}$ dominoes, and indeed at least $\frac{n^{2}}{3}$ dominoes are needed.

Note: When n is even, there is a simpler proof of the main result: split the n^{2} squares of the board into 2×2 mini-boards, each containing four (overlapping) 1×2 tiles. At the end of the game, none of these n^{2} tiles can contain two checkers (since no two checkers can be adjacent at the end of the game). But any jump removes a checker from at most three full tiles; therefore, there must be at least $\frac{n^{2}}{3}$ moves.
Sadly, a similar approach for odd n yields a lower bound of only $\frac{n^{2}-n-1}{3}$ moves. For large enough n though, we can count the number of tokens that end up completely outside the $(n+2) \times(n+2)$ area around the checkerboard - each made a jump that freed at most two full tiles, and from here we can show that $\frac{n^{2}}{3}$ moves are necessary.

Problem 10.5 The sum of the decimal digits of the natural number n is 100 , and that of $44 n$ is 800 . What is the sum of the digits of $3 n$?

Solution: The sum of the digits of $3 n$ is 300 .
Let $S(x)$ denote the sum of the digits of x. Then $S(a+b)$ equals $S(a)+S(b)$, minus nine times the number of carries in the addition $a+b$. Therefore, $S(a+b) \leq S(a)+S(b)$; applying this repeatedly, we have $S\left(a_{1}+\cdots+a_{k}\right) \leq S\left(a_{1}\right)+\cdots+S\left(a_{k}\right)$.

Also note that for a digit $d \leq 2$ we have $S(44 d)=8 d$; for $d=3$ we have $S(8 d)=6<8 d$; and for $d \geq 4,44 d \leq 44(9)$ has at most 3 digits so its sum is at most $27<8 d$.

Now write $n=\sum n_{i} \cdot 10^{i}$, so that the n_{i} are the digits of n in base 10. Then

$$
\sum 8 n_{i}=S(44 n) \leq \sum S\left(44 n_{i} \cdot 10^{i}\right)=\sum S\left(44 n_{i}\right) \leq \sum 8 n_{i}
$$

so equality must occur in the second inequality - that is, each of the n_{i} must equal 0,1 , or 2 . But then each digit of $3 n$ is simply three times the corresponding digit of n, and $S(3 n)=3 S(n)=300$, as claimed.

Problem 10.7 The positive real numbers x and y satisfy

$$
x^{2}+y^{3} \geq x^{3}+y^{4}
$$

Show that $x^{3}+y^{3} \leq 2$.

Solution: Equivalently we can prove that if $x^{3}+y^{3}>2$, then

$$
x^{2}+y^{3}<x^{3}+y^{4} .
$$

First notice that $\sqrt{\frac{x^{2}+y^{2}}{2}} \leq \sqrt[3]{\frac{x^{3}+y^{3}}{2}}$ by the Power-Mean Inequality, implying that

$$
\begin{aligned}
& x^{2}+y^{2} \leq\left(x^{3}+y^{3}\right)^{2 / 3} \cdot 2^{1 / 3} \\
& \quad<\left(x^{3}+y^{3}\right)^{2 / 3}\left(x^{3}+y^{3}\right)^{1 / 3} \\
& =x^{3}+y^{3},
\end{aligned}
$$

or $x^{2}-x^{3}<y^{3}-y^{2}$. But $0 \leq y^{2}(y-1)^{2} \Rightarrow y^{3}-y^{2} \leq y^{4}-y^{3}$, so that

$$
\begin{gathered}
x^{2}-x^{3}<y^{4}-y^{3} \\
\Rightarrow x^{2}+y^{3}<x^{3}+y^{4},
\end{gathered}
$$

as desired.

Problem 10.8 In a group of 12 people, among every 9 people one can find 5 people, any two of whom know each other. Show that there exist 6 people in the group, any two of whom know each other.

Solution: Suppose by way of contradiction that no 6 people know each other. Draw a complete graph with twelve vertices corresponding to the people, labeling the people (and their corresponding vertices) A, B, \ldots, L. Color the edge between two people red if they know each other, and blue otherwise. Then among every nine vertices there is at least one red K_{5}; and among any six vertices there is at least one blue edge.

We prove that there are no blue cycles of odd length in this graph. Suppose, for sake of contradiction, that there is a blue cycle of length (i) 3 or 5 , (ii) 7 , (iii) 9 , or (iv) 11 .
(i) First suppose there is a blue 3 -cycle (say, $A B C$) or a blue 5 -cycle (without loss of generality, $A B C D E$). In the first case, there is a blue edge among $D E F G H I$ (sat, $D E$); then any red K_{5} contains at most one vertex from $\{A, B, C\}$ and at most one vertex from $\{D, E\}$. In the second case, any K_{5} still contains at most two vertices from $\{A, B, C, D, E\}$.

Now, FGHIJK contains some other blue edge: without loss of generality, say $F G$ is blue. Now for each edge $V_{1} V_{2}$ in $H I J K L$, there must be a red K_{5} among $A B C D E F G V_{1} V_{2}$. From before, this K_{5} can contain at most two vertices from $\{A, B, C, D, E\}$; and it contains at most one vertex from each of $\{F, G\},\left\{V_{1}\right\}$, and $\left\{V_{2}\right\}$. Therefore V_{1} and V_{2} must be connected by a red edge, so HIJKL is a red K_{5}. Now FHIJKL cannot be a red K_{6}, so without loss of generality suppose $F H$ is blue. Similarly, GHIJKL cannot be a red K_{6}, so without loss of generality either $G H$ or $G I$ is blue. In either case, $A B C D E F G H I$ must contain some red K_{5}. If $G H$ is blue then this K_{5} contains at most four vertices, two from $\{A, B, C, D, E\}$ and one from each of $\{F, G, H\}$ and $\{I\}$; and if $G I$ is blue then this K_{5} again contains at most four vertices, two from $\{A, B, C, D, E\}$ and one from each of $\{F, H\}$ and $\{G, I\}$. Either possibility yields a contradiction.
(ii) If there is some blue 7-cycle, say without loss of generality it is $A B C D E F G$. As before, any K_{5} contains at most three vertices from $\{A, B, \ldots, G\}$, so $H I J K L$ must be a red K_{5}. Now for each of the $\binom{5}{2}=10$ choices of pairs $\left\{V_{1}, V_{2}\right\} \subset\{H, I, J, K, L\}$, there must be a red K_{5} among $A B C D E F G V_{1} V_{2}$; so for each edge in $H I J K L$, some red triangle in $A B C D E F G$ forms a red K_{5} with that edge. But $A B C D E F G$ contains at most 7 red triangles: $A C E, B D F, \ldots$, and $G B D$. Thus some triangle corresponds to two edges. Without loss of generality, either $A C E$ corresponds to both $H I$ and $H J$; or $A C E$ corresponds to both $H I$ and $J K$. In either case, $A C E H I J$ is a red K_{6}, a contradiction.
(iii) Next suppose that there is some blue 9-cycle; then among these nine vertices there can be no red K_{5}, a contradiction.
(iv) Finally, suppose that there is some blue 11-cycle; without loss of generality, say it is $A B C D E F G H I J K$. There is a red K_{5} among $\{A, B, C, D, E, F, G, H, I\}$, which must be $A C E G I$. Likewise, $D F H J A$ must be a red K_{5}, so $A C, A D, \ldots, A H$ are all red. Similarly, every edge in $A B C D E F G H I$ is red except for those in the blue 11-cycle.

Now among $\{A, B, C, D, E, F, G, H, L\}$ there is some red K_{5}, either $A C E G L$ or $B D F H L$. Without loss of generality, assume the former. Then since $A C E G L I$ and $A C E G L J$ can't be red 6 -cycles, $A I$ and $A J$ must be blue. But then $A I J$ is a blue 3 -cycle, a contradiction.

Thus there are indeed no blue cycles of odd length, so the blue edges form a bipartite graph: that is, the twelve vertices can be partitioned into two groups \mathcal{G}_{1} and \mathcal{G}_{2} containing no blue edges. One of these groups, say \mathcal{G}_{1}, has at least 6 vertices; but then \mathcal{G}_{1} is a red K_{6}, a contradiction. Therefore our original assumption was false; there is some red K_{6}, so some six people do indeed know each other.

Problem 11.1 Do there exist 19 distinct natural numbers which add to 1999 and which have the same sum of digits?

Solution: No such integers exist; suppose by way of contradiction they did.

The average of the numbers is $\frac{1999}{19}<106$, so one number is at most 105 and has digit sum at most 18.

Every number is congruent to its digit sum modulo 9, so all the numbers and their digit sums are congruent modulo 9 - say, congruent to k. Then $19 k \equiv 1999 \Rightarrow k \equiv 1(\bmod 9)$, so the common digit sum is either 1 or 10 .

If it is 1 then all the numbers equal $1,10,100$, or 1000 so that some two are equal - which is not allowed. Thus the common digit sum is 10 . Note that the twenty smallest numbers with digit sum 10 are:

$$
19,28,37, \ldots, 91,109,118,127, \ldots, 190,208
$$

The sum of the first nine numbers is $(10+20+\cdots+90)+(9+8+$ $\cdots+1)=450+45=495$, while the sum of the next nine numbers is $(900)+(10+20+\cdots+80)+(9+8+7+\cdots+1)=900+360+45=1305$, so the first eighteen numbers add up to 1800 .

Since $1800+190 \neq 1999$, the largest number among the nineteen must be at least 208. But then the smallest eighteen numbers add up to at least 1800, giving a total sum of at least $2028>1999$, a contradiction.

Problem 11.2 At each rational point on the real line is written an integer. Show that there exists a segment with rational endpoints, such that the sum of the numbers at the endpoints does not exceed twice the number at the midpoint.

First Solution: Let $f: \mathbb{Q} \rightarrow \mathbb{Z}$ be the function that maps each rational point to the integer written at that point. Suppose by way of contradiction that for all $q, r \in \mathbb{Q}$,

$$
f(q)+f(r)>2 f\left(\frac{q+r}{2}\right) .
$$

For $i \geq 0$, let $a_{i}=\frac{1}{2^{i}}$ and $b_{i}=-\frac{1}{2^{i}}$. We shall prove that for some $k, f\left(a_{k}\right)$ and $f\left(b_{k}\right)$ are both less than $f(0)$. Suppose that for some i, $f\left(a_{i}\right) \geq f(0)$. Now we apply the condition:

$$
f\left(a_{i+1}\right)<\frac{f\left(a_{i}\right)+f(0)}{2} \leq f\left(a_{i}\right)
$$

Since the range of f is the integers, $f\left(a_{i+1}\right) \leq f\left(a_{i}\right)-1$ as long as $f\left(a_{i}\right) \geq f(0)$. Therefore, there exists some m such that $f\left(a_{m}\right)<f(0)$. Then

$$
f\left(a_{m+1}\right)<\frac{f\left(a_{m}\right)+f(0)}{2}<\frac{2 f(0)}{2}
$$

so $f\left(a_{i}\right)<f(0)$ for $i \geq m$.

Similarly, there exists n such that $f\left(b_{i}\right)<f(0)$ for $i \geq n$. Now if we just take $k=\max \{m, n\}$, we have a contradiction:

$$
f\left(a_{k}\right)+f\left(b_{k}\right)<2 f(0) .
$$

Second Solution: Define f as in the first solution, and suppose by way of contradiction that there was no such segment; rewrite the inequality in the first solution as

$$
f(p)-f\left(\frac{p+q}{2}\right)>f\left(\frac{p+q}{2}\right)-f(q)
$$

For a continuous function, this would be equivalent to saying that f is strictly convex; however, f is not continuous. But we can still show a similar result for the set $\mathbb{F}=\left\{\left.\frac{i}{2^{j}} \right\rvert\, i, j \in \mathbb{Z}, j \geq 0\right\}$, fractions whose denominators are powers of 2 . For convenience, write P_{x} to represent $(x, f(x))$ on the graph of f in the $x y$-plane. Then we have the following result:
Lemma. For all $a, b, c \in \mathbb{F}$ with b between a and c, P_{b} is below the segment connecting P_{a} and P_{c}.

Proof: Equivalently we can prove that the average rate of change of f in the interval $[a, b]$ is smaller than the average rate of change of f in the interval $[b, c]$ - that is,

$$
\frac{f(b)-f(a)}{b-a}<\frac{f(c)-f(b)}{c-a}
$$

Partition $[a, b]$ and $[b, c]$ into sub-intervals of equal length δ. For example, if $a=\frac{\alpha}{2^{j}}, b=\frac{\beta}{2^{j}}$, and $c=\frac{\gamma}{2^{j}}$, we could use $\delta=\frac{1}{2^{j}}$.

Let $\Delta_{x}=\frac{f(x+\delta)-f(x)}{\delta}$, the average rate of change of f in the interval $[x, x+\delta]$. Then apply our inequality to find that

$$
\Delta_{a}<\Delta_{a+\delta}<\cdots<\Delta_{c-\delta}
$$

Thus,

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a} \leq \max \left\{\Delta_{a}, \Delta_{a+\delta}, \ldots, \Delta_{b-\delta}\right\} \\
& =\Delta_{b-\delta} \\
& <\Delta_{b} \\
& =\min \left\{\Delta_{b}, \Delta_{b+\delta}, \ldots, \Delta_{c-\delta}\right\}
\end{aligned}
$$

$$
\leq \frac{f(c)-f(b)}{c-b}
$$

as desired.

Now consider all numbers $x \in \mathbb{F}$ between 0 and 1. Since P_{x} lies below the segment connecting P_{0} and P_{1}, we have $f(x) \leq$ $\max \{f(0), f(1)\}$.

Pick some number $k \in \mathbb{F}$ between 0 and 1 . For $k<x<1$, P_{x} must lie above the line connecting P_{0} and P_{k}; otherwise, P_{k} would be above the segment connecting P_{0} and P_{x}, contradicting our lemma. Similarly, for $0<x<k, P_{x}$ must lie above the line connecting P_{k} and P_{1}.

Since there are infinitely many values $x \in \mathbb{F}$ in the interval $(0,1)$ but $f(x)$ is bounded from above and below in this interval, some three points have the same y-coordinate - contradicting our lemma. Therefore our original assumption was false and the segment described in the problem does exist.

Problem 11.3 A circle inscribed in quadrilateral $A B C D$ touches sides $D A, A B, B C, C D$ at K, L, M, N, respectively. Let S_{1}, S_{2}, S_{3}, S_{4} be the incircles of triangles $A K L, B L M, C M N, D N K$, respectively. The common external tangents to S_{1} and S_{2}, to S_{2} and S_{3}, to S_{3} and S_{4}, and to S_{4} and S_{1}, not lying on the sides of $A B C D$, are drawn. Show that the quadrilateral formed by these tangents is a rhombus.

Solution: Let P be the intersection of the two common external tangents involving S_{1}, and let Q, R, S be the intersections of the pairs of tangents involving S_{2}, S_{3}, S_{4}, respectively.

As in problem 10.3 , the centers of $S_{1}, S_{2}, S_{3}, S_{4}$ are the midpoints of $\operatorname{arcs} K L, L M, M N, N K$, respectively. $A B$ does not pass through the incenter I of triangle $K L M$, so by the result proved in problem 9.3 the other external tangent $P Q$ must pass through I and be parallel to $K M$. Likewise, $R S \| K M$ so we have $P Q \| R S$.

Similarly, $Q R\|L N\| S P$, so $P Q R S$ is a parallelogram.
Let $\langle X \mid \omega\rangle$ denote the length of the tangent from point X to circle ω, and let $\left\langle\omega_{1} \mid \omega_{2}\right\rangle$ denote the length of the external tangent to circles ω_{1} and ω_{2}. Then we also know

$$
A B=\left\langle A \mid S_{1}\right\rangle+\left\langle S_{1} \mid S_{2}\right\rangle+\left\langle S_{2} \mid B\right\rangle
$$

$$
=\left\langle A \mid S_{1}\right\rangle+\left\langle S_{1} \mid P\right\rangle+P Q+\left\langle Q \mid S_{2}\right\rangle+\left\langle S_{2} \mid B\right\rangle
$$

and three analogous equations. Substituting these into $A B+C D=$ $B C+D A$, which is true since $A B C D$ is circumscribed about a circle, we find that $P Q+R S=Q R+S P$.

But since $P Q R S$ is a parallelogram, $P Q=R S$ and $Q R=S P$, implying that $P Q=Q R=R S=S P$ and that $P Q R S$ is a rhombus.

Problem 11.5 Four natural numbers have the property that the square of the sum of any two of the numbers is divisible by the product of the other two. Show that at least three of the four numbers are equal.

Solution: Suppose by way of contradiction four such numbers did exist, and pick a counterexample a, b, c, d with minimum sum $a+b+c+d$. If some prime p divided both a and b, then from $a \mid(b+c)^{2}$ and $a \mid(b+d)^{2}$ we know that p divides c and d as well: but then $\frac{a}{p}$, $\frac{b}{p}, \frac{c}{p}, \frac{d}{p}$ are a counter-example with smaller sum. Therefore, the four numbers are pairwise relatively prime.

Suppose that some prime $p>2$ divided a. Then since a divides each of $(b+c)^{2},(c+d)^{2},(d+b)^{2}$, we know that p divides $b+c, c+d$, $d+b$. Hence p divides $(b+c)+(c+d)+(d+b)$ and thus $b+c+d$. Therefore $p \mid(b+c+d)-(b+c)=d$, and similarly $p \mid c$ and $p \mid b$, a contradiction.

Thus each of a, b, c, d are powers of 2 . But since they are pairwise relatively prime, three of them must equal 1 - a contradiction. Therefore our original assumption was false, and no such counterexample exists.

Problem 11.6 Show that three convex polygons in the plane cannot be intersected by a single line if and only if for each of the polygons, there exists a line intersecting none of the polygons, such that the given polygon lies on the opposite side of the line from the other two.

Solution: In this proof, "polygon" refers to both the border and interior of a polygon - the problem statement is not affected by this assumption, because a line hitting the interior of a polygon must hit its border as well.

Suppose that some line ℓ intersects all three polygons; orient the figure to make ℓ horizontal, and say it hits the polygons (from left to
right) at A, B, and C. Any line m not hitting any of the polygons is either parallel to ℓ; hits ℓ to the left of B; or hits ℓ to the right of B. In all of these cases, m does not separate B from both A and C, so m cannot separate the polygon containing B from the other polygons. (In the first two cases B and C are not separated; and in the first and third cases A and B are not separated.)

To prove the other direction, we begin by proving an intuitively obvious but nontrivial lemma:

Lemma. Given two non-intersecting polygons, there is a line that separates them.

Let V be the convex hull of the two polygons. If all its vertices are in one polygon, then this polygon contains the other - a contradiction. Also, for any four vertices A, B, C, D in that order on V (not necessarily adjacent), since $A C$ and $B D$ intersect we cannot have A and C in one polygon and B and D in the other. Thus one run of adjacent vertices V_{1}, \ldots, V_{m} is in one polygon P; and the remaining vertices W_{1}, \ldots, W_{n} are in the other polygon Q.

Then $V_{1} V_{m}$ is contained in polygon P, so line $V_{1} V_{m}$ does not intersect Q; therefore we can simply choose a line extremely close to $V_{1} V_{m}$ that doesn't hit P, and separates P and Q.

Now call the polygons T, U, V, and suppose no line intersects all three. Then every two polygons are disjoint - if M was in $T \cup U$ and $N \neq M$ was in V, then the line $M N$ hits all three polygons.

Triangulate the convex hull H of T and U (that is, divide it into triangles whose vertices are vertices of H). If V intersects H at some point M, then M is on or inside of these triangles, $X Y Z$. Without loss of generality say $X \in T$ and $Y, Z \in U$ (otherwise both triangle $X Y Z$ and M are inside either T or U, so this polygon intersects V). Then line $X M$ intersects both T and V; and since it hits $Y Z$, it intersects U as well - a contradiction.

Thus H is disjoint from V, and from the lemma we can draw a line separating the two - and thus separating T and U from V, as desired. We can repeat this construction for T and U, so we are done.

Problem 11.7 Through vertex A of tetrahedron $A B C D$ passes a plane tangent to the circumscribed sphere of the tetrahedron. Show that the lines of intersection of the plane with the planes $A B C, A C D$,
$A B D$ form six equal angles if and only if

$$
A B \cdot C D=A C \cdot B D=A D \cdot B C
$$

Solution: Perform an inversion about A with arbitrary radius r. Since the given plane P is tangent to the circumscribed sphere of $A B C D$, the sphere maps to a plane parallel to P containing B^{\prime}, C^{\prime}, D^{\prime}, the images of B, C, D under inversion. Planes $P, A B C, A C D$, and $A B D$ stay fixed under the inversion since they all contain A.

Now, since $C^{\prime} D^{\prime}$ is in a plane parallel to P, plane $A C D=A C^{\prime} D^{\prime}$ intersects P in a line parallel to $C^{\prime} D^{\prime}$. More rigorously, complete parallelogram $C^{\prime} D^{\prime} A X$. Then X is both in plane $A C^{\prime} D^{\prime}=A C D$ and in plane P (since $P X \| C^{\prime} D^{\prime}$), so the intersection of $A C D$ and P is the line $P X$, parallel to $C^{\prime} D^{\prime}$.

Similarly, plane $A D B$ intersects P in a line parallel to $D^{\prime} B^{\prime}$, and plane $A B C$ intersects P in a line parallel to $B^{\prime} C^{\prime}$. These lines form six equal angles if and only if $C^{\prime} D^{\prime}, D^{\prime} B^{\prime}, B^{\prime} C^{\prime}$ form equal angles: that is, if triangle $C^{\prime} D^{\prime} B^{\prime}$ is equilateral and $C^{\prime} D^{\prime}=D^{\prime} B^{\prime}=B^{\prime} C^{\prime}$. Under the inversion distance formula, this is true if and only if

$$
\frac{C D \cdot r^{2}}{A C \cdot A D}=\frac{D B \cdot r^{2}}{A D \cdot A B}=\frac{B C \cdot r^{2}}{A B \cdot A C}
$$

which (multiplying by $\frac{A B \cdot A C \cdot A D}{r^{2}}$) is equivalent to

$$
A B \cdot C D=A C \cdot B D=A D \cdot B C
$$

as desired.

1.18 Slovenia

Problem 1 The sequence of real numbers $a_{1}, a_{2}, a_{3}, \ldots$ satisfies the initial conditions $a_{1}=2, a_{2}=500, a_{3}=2000$ as well as the relation

$$
\frac{a_{n+2}+a_{n+1}}{a_{n+1}+a_{n-1}}=\frac{a_{n+1}}{a_{n-1}}
$$

for $n=2,3,4, \ldots$. Prove that all the terms of this sequence are positive integers and that 2^{2000} divides the number a_{2000}.

Solution: From the recursive relation it follows that $a_{n+2} a_{n-1}=$ a_{n+1}^{2} for $n=2,3, \ldots$. No term of our sequence can equal 0 , and hence it is possible to write

$$
\frac{a_{n+2}}{a_{n+1} a_{n}}=\frac{a_{n+1}}{a_{n} a_{n-1}}
$$

for $n=2,3, \ldots$. It follows by induction that the value of the expression $\frac{a_{n+1}}{a_{n} a_{n-1}}$ is constant, namely equal to $\frac{a_{3}}{a_{2} a_{1}}=2$. Thus $a_{n+2}=2 a_{n} a_{n+1}$ and all terms of the sequence are positive integers.

From this new relation, we also know that $\frac{a_{n+1}}{a_{n}}$ is an even integer for all positive integers n. Write $a_{2000}=\frac{a_{2000}}{a_{1999}} \frac{a_{1999}}{a_{1998}} \cdots \frac{a_{2}}{a_{1}} \cdot a_{1}$. In this product each of the 1999 fractions is divisible by 2 , and $a_{1}=2$ is even as well. Thus a_{2000} is indeed divisible by 2^{2000}.

Problem 2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the condition

$$
f(x-f(y))=1-x-y
$$

for all $x, y \in \mathbb{R}$.
Solution: For $x=0, y=1$ we get $f(-f(1))=0$. For $y=-f(1)$ it follows that $f(x)=1+f(1)-x$. Writing $a=1+f(1)$ and $f(x)=a-x$, we have

$$
1-x-y=f(x-f(y))=a-x+f(y)=2 a-x-y
$$

so that $a=\frac{1}{2}$. And indeed, the function $f(x)=\frac{1}{2}-x$ satisfies the functional equation.

Problem 3 Let E be the intersection of the diagonals in cyclic quadrilateral $A B C D$, and let F and G be the midpoints of sides $A B$ and $C D$, respectively. Prove that the three lines through G, F, E perpendicular to $\overline{A C}, \overline{B D}, \overline{A D}$, respectively, intersect at one point.

Solution: All angles are directed modulo 180°. Drop perpendicular $\overline{G P}$ to diagonal $A C$ and perpendicular $\overline{F Q}$ to diagonal $B D$. Let R be the intersection of lines $P G$ and $F Q$, and let H be the foot of the perpendicular from E to side $A D$. We wish to prove that H, E, R are collinear.

Since F and G are midpoints of corresponding sides in similar triangles $D E C$ and $A B E$ (with opposite orientations), triangles $D P E$ and $A Q E$ are similar with opposite orientations as well. Thus $\angle D P E=\angle E Q A$ and therefore $A Q P D$ is a cyclic quadrilateral. And because $\angle E Q R=90^{\circ}=\angle E P R$, the quadrilateral $E Q R P$ is cyclic, too. So

$$
\angle A D Q=\angle A P Q=\angle E P Q=\angle E R Q
$$

It follows that $\angle D E H=90^{\circ}-\angle A D Q=90^{\circ}-\angle E R Q=\angle Q E R$; and since D, E, Q are collinear then H, E, R must be as well.

Problem 4 Three boxes with at least one marble in each are given. In a step we choose two of the boxes, doubling the number of marbles in one of the boxes by taking the required number of marbles from the other box. Is it always possible to empty one of the boxes after a finite number of steps?

Solution: Without loss of generality suppose that the number of marbles in the boxes are a, b, and c with $a \leq b \leq c$. Write $b=q a+r$ where $0 \leq r<a$ and $q \geq 1$. Then express q in binary:

$$
q=m_{0}+2 m_{1}+\cdots+2^{k} m_{k},
$$

where each $m_{i} \in\{0,1\}$ and $m_{k}=1$. Now for each $i=0,1, \ldots, k$, add $2^{i} a$ marbles to the first box: if $m_{i}=1$ take these marbles from the second box; otherwise take them from the third box. In this way we take at most $\left(2^{k}-1\right) a<q a \leq b \leq c$ marbles from the third box and exactly $q a$ marbles from the second box altogether.
In the second box there are now $r<a$ marbles left. Thus the box with the least number of marbles now contains less than a marbles. Then by repeating the described procedure, we will eventually empty one of the boxes.

1.19 Taiwan

Problem 1 Determine all solutions (x, y, z) of positive integers such that

$$
(x+1)^{y+1}+1=(x+2)^{z+1}
$$

Solution: Let $a=x+1, b=y+1, c=z+1$. Then $a, b, c \geq 2$ and

$$
\begin{gathered}
a^{b}+1=(a+1)^{c} \\
((a+1)-1)^{b}+1=(a+1)^{c}
\end{gathered}
$$

Taking either equation $\bmod (a+1)$ yields $(-1)^{b}+1 \equiv 0$, so b is odd. Then taking the second equation mod $(a+1)^{2}$ after applying the binomial expansion yields

$$
\binom{b}{1}(a+1)(-1)^{b-1}+(-1)^{b}+1 \equiv 0 \quad\left(\bmod (a+1)^{2}\right)
$$

so $a+1 \mid b$ and a is even.
On the other hand, taking the first equation $\bmod a^{2}$ after applying the binomial expansion yields

$$
1 \equiv\binom{c}{1} a+1 \quad\left(\bmod a^{2}\right)
$$

so c is divisible by a and is even as well. Write $a=2 a_{1}$ and $c=2 c_{1}$. Then

$$
2^{b} a_{1}^{b}=a^{b}=(a+1)^{c}-1=\left((a+1)^{c_{1}}-1\right)\left((a+1)^{c_{1}}+1\right) .
$$

It follows that $\operatorname{gcd}\left((a+1)^{c_{1}}-1,(a+1)^{c_{1}}+1\right)=2$. Therefore, using the fact that $2 a_{1}$ is a divisor of $(a+1)^{c_{1}}-1$, we may conclude that

$$
\begin{aligned}
& (a+1)^{c_{1}}-1=2 a_{1}^{b} \\
& (a+1)^{c_{1}}+1=2^{b-1}
\end{aligned}
$$

We must have $2^{b-1}>2 a_{1}^{b} \Rightarrow a_{1}=1$. Then these equations give $c_{1}=1$ and $b=3$, and therefore the only solution is $(x, y, z)=(1,2,1)$.

Problem 2 There are 1999 people participating in an exhibition. Out of any 50 people, at least 2 do not know each other. Prove that we can find at least 41 people who each know at most 1958 other people.

Solution: Let Y be the set of people who know at least 1959 other people, and let $N(p)$ denote the set of people whom p knows. Assume by way of contradiction that less than 41 people each know at most 1958 people; then $|Y| \geq 1959$. We now show that some 50 people all know each other, a contradiction.

Pick a person $y_{1} \in Y$ and write $B_{1}=N\left(y_{1}\right)$ with $\left|B_{1}\right| \geq 1959$. Then $\left|B_{1}\right|+|Y|>1999$, and there is a person $y_{2} \in B_{1} \cap Y$.

Now write $B_{2}=N\left(y_{1}\right) \cap N\left(y_{2}\right)$ with $\left|B_{2}\right|=\left|B_{1}\right|+\left|N\left(y_{2}\right)\right|-\mid B_{1} \cup$ $N\left(y_{2}\right) \mid \geq 1959+1959-1999=1999-40 \cdot 2$. Then $\left|B_{2}\right|+|Y|>1999$, and there is a person $y_{3} \in B_{2} \cap Y$.

Now continue similarly: suppose we have $j \leq 48$ different people $y_{1}, y_{2}, \ldots, y_{j}$ in Y who all know each other; and suppose that $B_{j}=$ $N\left(y_{1}\right) \cap N\left(y_{2}\right) \cap \cdots \cap N\left(y_{j}\right)$ has at least $1999-40 j \geq 79>40$ elements. Then $\left|B_{j}\right|+|Y|>1999$, and there is a person $y_{j+1} \in B_{j} \cap Y$; and $B_{j+1}=B_{j} \cap N\left(y_{j+1}\right)$ has at least $\left|B_{j}\right|+\left|N\left(y_{j+1}\right)\right|-\left|B_{j} \cup N\left(y_{j+1}\right)\right| \geq$ $(1999-40 j)+1959-1999=1959-40(j+1)>0$ elements, and we can continue onward.

Thus we can find 49 people $y_{1}, y_{2}, \ldots, y_{49}$ such that $B_{49}=N\left(y_{1}\right) \cap$ $N\left(y_{2}\right) \cap \cdots \cap N\left(y_{49}\right)$ is nonempty. Thus there is a person $y_{50} \in B_{49}$; but then any two people from $y_{1}, y_{2}, \ldots, y_{50}$ know each other, a contradiction.

Problem 3 Let P^{*} denote all the odd primes less than 10000, and suppose $p \in P^{*}$. For each subset $S=\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$ of P^{*}, with $k \geq 2$ and not including p, there exists a $q \in P^{*} \backslash S$ such that

$$
q+1 \mid\left(p_{1}+1\right)\left(p_{2}+1\right) \cdots\left(p_{k}+1\right)
$$

Find all such possible values of p.

Solution: A "Mersenne prime" is a prime of the form $2^{n}-1$ for some positive integer n. Notice that if $2^{n}-1$ is prime then $n>1$ and n is prime because otherwise we could either write (if n were even) $n=2 m$ and $2^{n}-1=\left(2^{m}-1\right)\left(2^{m}+1\right)$, or (if n were odd) $n=a b$ for odd a, b and $2^{n}-1=\left(2^{a}-1\right)\left(2^{(b-1) a}+2^{(b-2) a}+\cdots+2^{a}+1\right)$. Then some calculations show that the set T of Mersenne primes less than 10000 is

$$
\left\{M_{2}, M_{3}, M_{5}, M_{7}, M_{13}\right\}=\{3,7,31,127,8191\}
$$

where $M_{p}=2^{p}-1$. ($2^{11}-1$ is not prime: it equals $23 \cdot 89$.) We claim this is the set of all possible values of p.

If some prime p is not in T, then look at the set $S=T$. Then there must be some prime $q \notin S$ less than 10000 such that

$$
q+1 \mid\left(M_{2}+1\right)\left(M_{3}+1\right)\left(M_{5}+1\right)\left(M_{7}+1\right)\left(M_{13}+1\right)=2^{30}
$$

Thus, $q+1$ is a power of 2 and q is a Mersenne prime less than 10000 - and therefore $q \in T=S$, a contradiction.

On the other hand, suppose p is in T. Suppose we have a set $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\} \subset P^{*}$ not including p, with $k \geq 2$ and $p_{1}<p_{2}<$ $\cdots<p_{k}$. Suppose by way of contradiction that for all $q \in P^{*}$ such that $q+1 \mid\left(p_{1}+1\right) \cdots\left(p_{k}+1\right)$, we have $q \in S$. Then

$$
\begin{gathered}
4 \mid\left(p_{1}+1\right)\left(p_{2}+1\right) \Longrightarrow M_{2} \in S \\
8 \mid\left(M_{2}+1\right)\left(p_{2}+1\right) \Longrightarrow M_{3} \in S \\
32 \mid\left(M_{2}+1\right)\left(M_{3}+1\right) \Longrightarrow M_{5} \in S \\
128 \mid\left(M_{2}+1\right)\left(M_{5}+1\right) \Longrightarrow M_{7} \in S \\
8192 \mid\left(M_{3}+1\right)\left(M_{5}+1\right)\left(M_{7}+1\right) \Longrightarrow M_{13} \in S
\end{gathered}
$$

Then p, a Mersenne prime under 10000, must be in S - a contradiction. Therefore there is some prime $q<10000$ not in S with $q+1 \mid\left(p_{1}+1\right) \cdots\left(p_{k}+1\right)$, as desired. This completes the proof.

Problem 4 The altitudes through the vertices A, B, C of an acuteangled triangle $A B C$ meet the opposite sides at D, E, F, respectively, and $A B>A C$. The line $E F$ meets $B C$ at P, and the line through D parallel to $E F$ meets the lines $A C$ and $A B$ at Q and R, respectively. Let N be a point on the side $B C$ such that $\angle N Q P+\angle N R P<180^{\circ}$. Prove that $B N>C N$.

Solution: Let M be the midpoint of $B C$. We claim that P, Q, M, R are concyclic. Given this, we would have

$$
\angle M Q P+\angle M R P=180^{\circ}>\angle N Q P+\angle N R P
$$

This can only be true if N is between M and C; then $B N>C N$, as desired.

Since $\angle B E C=\angle B F C=90^{\circ}$, we observe that the points B, C, E, F are concyclic and thus $P B \cdot P C=P E \cdot P F$. Also, the points D, E, F, M lie on the nine-point circle of triangle $A B C$ so that
$P E \cdot P F=P D \cdot P M$. (Alternatively, it's easy to show that $D E F M$ is cyclic with some angle-chasing). These two equations yield

$$
\begin{equation*}
P B \cdot P C=P D \cdot P M \tag{1}
\end{equation*}
$$

On the other hand, since $\triangle A E F \sim \triangle A B C$ and $Q R \| E F$, we have $\angle R B C=\angle A E F=\angle C Q R$. Thus $C Q B R$ is cyclic and

$$
\begin{equation*}
D Q \cdot D R=D B \cdot D C \tag{2}
\end{equation*}
$$

Now let $M B=M C=a, M D=d, M P=p$. Then we have $P B=p+a, D B=a+d, P C=p-a, C D=a-d, D P=p-d$. Then equation (1) implies

$$
\begin{gathered}
(p+a)(p-a)=(p-d) p \\
\Longrightarrow a^{2}=d p \\
\Longrightarrow(a+d)(a-d)=(p-d) d
\end{gathered}
$$

or equivalently

$$
\begin{equation*}
D B \cdot D C=D P \cdot D M \tag{3}
\end{equation*}
$$

Combining (2) and (3) yields $D Q \cdot D R=D P \cdot D M$, so that the points P, Q, M, R are concyclic, as claimed.

Problem 5 There are 8 different symbols designed on n different T-shirts, where $n \geq 2$. It is known that each shirt contains at least one symbol, and for any two shirts, the symbols on them are not all the same. Also, for any k symbols, $1 \leq k \leq 7$, the number of shirts containing at least one of the k symbols is even. Find the value of n.

Solution: Let X be the set of 8 different symbols, and call a subset S of X "stylish" if some shirt contains exactly those symbols in S. Look at a stylish set A with the minimal number of symbols $|A| \geq 1$; since $n \geq 2$, we must have $|A| \leq 7$. Then all the other $n-1$ stylish sets contain at least one of the $k=8-|A|$ symbols in $X \backslash A$, so $n-1$ is even and n is odd.

Observe that any nonempty subset $S \subseteq X$ contains an odd number of stylish subsets: For $S=X$ this number is n; and for $|S| \leq 7$, an even number t of stylish sets contain some element of $X \backslash S$, so the remaining odd number $n-t$ of stylish sets are contained in S.

Then every nonempty subset of X is stylish. Otherwise, pick a minimal non-stylish subset $S \subseteq X$. Its only stylish subsets are its
$2^{|S|}-2$ proper subsets, which are all stylish by the minimal definition of S; but this is an even number, which is impossible. Thus there must be $2^{8}-1=255$ T-shirts; and indeed, given any k symbols $(1 \leq k \leq 7)$, an even number $2^{8}-2^{8-k}$ of T-shirts contain at least one of these k symbols.

1.20 Turkey

Problem 1 Let $A B C$ be an isosceles triangle with $A B=A C$. Let D be a point on $\overline{B C}$ such that $B D=2 D C$, and let P be a point on $\overline{A D}$ such that $\angle B A C=\angle B P D$. Prove that

$$
\angle B A C=2 \angle D P C .
$$

Solution: Draw X on $\overline{B P}$ such that $B X=A P$. Then $\angle A B X=$ $\angle A B P=\angle D P B-\angle P A B=\angle C A B-\angle P A B=\angle C A P$. And since $A B=C A$ and $B X=A P$, by SAS we have $\triangle A B X \cong \triangle C A P$. Hence $[A B X]=[C A P]$, and also $\angle D P C=180^{\circ}-\angle C P A=180^{\circ}-$ $\angle A X B=\angle P X A$.

Next, since $B D=2 C D$, the distance from B to line $A D$ is twice the distance from C to line $A D$. Therefore $[A B P]=2[C A P] \Longrightarrow$ $[A B X]+[A X P]=2[A B X]$. Hence $[A X P]=[A B X]$ and $X P=$ $B X=A P$. Hence $\angle P X A=\angle X A P$, and $\angle B A C=\angle B P D=$ $\angle P X A+\angle X A P=2 \angle P X A=2 \angle D P C$, as desired.

Problem 2 Prove that

$$
(a+3 b)(b+4 c)(c+2 a) \geq 60 a b c
$$

for all real numbers $0 \leq a \leq b \leq c$.
Solution: By AM-GM we have $a+b+b \geq 3 \sqrt[3]{a b^{2}}$; multiplying this and the analagous inequalities yields $(a+2 b)(b+2 c)(c+2 a) \geq 27 a b c$. Then

$$
\begin{aligned}
& (a+3 b)(b+4 c)(c+2 a) \\
& \geq\left(a+\frac{1}{3} a+\frac{8}{3} b\right)\left(b+\frac{2}{3} b+\frac{10}{3} c\right)(c+2 a) \\
& =\frac{20}{9}(a+2 b)(b+2 c)(c+2 a) \geq 60 a b c
\end{aligned}
$$

as desired.

Problem 3 The points on a circle are colored in three different colors. Prove that there exist infinitely many isosceles triangles with vertices on the circle and of the same color.

First Solution: Partition the points on the circle into infinitely many regular 13 -gons. In each 13 -gon, by the Pigeonhole Principle there are at least 5 vertices of the same color: say, red. Later we use some extensive case analysis to show that among these 5 vertices, some three form an isosceles triangle. Then for each 13 -gon there is a monochrome isosceles triangle; so there are infinitely many monochrome isosceles triangles, as desired.

It suffices now to prove the following claim:
Claim Suppose 5 vertices of a regular 13-gon are colored red. Then some three red vertices form an isosceles triangle.

Proof: Suppose none of these 5 vertices did form an isosceles triangle. Label the vertices P_{0}, \ldots, P_{12} (with indices taken modulo 13); first we prove that P_{i} and P_{i+2} cannot both be red. Assume they could be, and say without loss of generality that P_{12} and P_{1} were red; then P_{10}, P_{0}, and P_{3} cannot be red. Furthermore, at most one vertex from each pair $\left(P_{11}, P_{4}\right),\left(P_{4}, P_{7}\right)$, and $\left(P_{7}, P_{8}\right)$ is red since each of these pairs forms an isosceles triangle with P_{1}. Similarly, at most one vertex from each pair $\left(P_{2}, P_{9}\right),\left(P_{9}, P_{6}\right)$, and $\left(P_{6}, P_{5}\right)$ is red. Now three vertices from $\left\{P_{11}, P_{4}, P_{7}, P_{8}\right\} \cup\left\{P_{2}, P_{9}, P_{6}, P_{5}\right\}$ are red; assume without loss of generality that two vertices from $\left\{P_{11}, P_{4}, P_{7}, P_{8}\right\}$ are. Vertices P_{4} and P_{8} can't both be red because they form an isosceles triangle with P_{12}; so vertices P_{11} and P_{7} must be red. But then any remaining vertex forms an isosceles triangle with some two of $P_{1}, P_{7}, P_{11}, P_{12}$, so we can't have five red vertices, a contradiction.

Next we prove that P_{i} and P_{i+1} can't be red. If so, suppose without loss of generality that P_{6} and P_{7} are red. Then P_{4}, P_{5}, P_{8}, and P_{9} cannot be red from the result in the last paragraph. P_{0} cannot be red either, because triangle $P_{0} P_{6} P_{7}$ is isosceles. Now each pair $\left(P_{3}, P_{11}\right)$ and $\left(P_{11}, P_{1}\right)$ contains at most one red vertex because triangles $P_{3} P_{7} P_{11}$ and $P_{1} P_{6} P_{11}$ are isosceles. Also, P_{1} and P_{3} can't both be red from the result in the last paragraph. Thus at most one of $\left\{P_{1}, P_{3}, P_{11}\right\}$ can be red; similarly, at most one of $\left\{P_{12}, P_{10}, P_{2}\right\}$ can be red. But then we have at most four red vertices, again a contradiction.

Thus if P_{i} is red then $P_{i-2}, P_{i-1}, P_{i+1}, P_{i+2}$ cannot be red; but then
we can have at most four red vertices, a contradiction.

Second Solution: Suppose we have $k \geq 1$ colors and a number $n \geq 3$. Then Van der Warden's theorem states that we can find N such that for any coloring of the numbers $1,2, \ldots, N$ in the k colors, there are n numbers in arithmetic progression which are colored the same. Apply this theorem with $k=n=3$ to find such an N, and partition the points on the circle into infinitely many regular N-gons rather than 13 -gons. For each N-gon $P_{1} P_{2} \ldots P_{N}$, there exist i, j, k (between 1 and N) in arithmetic progression such that P_{i}, P_{j}, P_{k} are all the same color. Hence triangle $P_{i} P_{j} P_{k}$ is a monochrome isosceles triangle. It follows that since we have infinitely many such N-gons, there are infinitely many monochrome isosceles triangles.

Problem 4 Let $\angle X O Y$ be a given angle, and let M and N be two points on the rays $O X$ and $O Y$, respectively. Determine the locus of the midpoint of $\overline{M N}$ as M and N varies along the rays $O X$ and $O Y$ such that $O M+O N$ is constant.

Solution: Let \hat{x} and \hat{y} be the unit vectors pointing along rays $O X$ and $O Y$. Suppose we want $O M+O N$ to equal the constant k; then when $O M=c$ we have $O N=k-c$, and thus the midpoint of $\overline{M N}$ is $\frac{1}{2}(c \hat{x}+(k-c) \hat{y})$. As c varies from 0 to k, this traces out the line segment connecting $\frac{1}{2} k \hat{x}$ with $\frac{1}{2} k \hat{y}$; that is, the segment $\overline{M^{\prime} N^{\prime}}$ where $O M^{\prime}=O N^{\prime}=\frac{1}{2} k, M^{\prime} \in \overrightarrow{O X}$, and $N^{\prime} \in \overrightarrow{O Y}$.

Problem 5 Some of the vertices of the unit squares of an $n \times n$ chessboard are colored such that any $k \times k$ square formed by these unit squares has a colored point on at least one of its sides. If $l(n)$ denotes the minimum number of colored points required to ensure the above condition, prove that

$$
\lim _{n \rightarrow \infty} \frac{l(n)}{n^{2}}=\frac{2}{7}
$$

Solution: For each colored point P, consider any 1×1 square of the board it lies on. If this square contains m colored points, say that P gains $\frac{1}{m}$ points from that square. Adding over all the 1×1 squares that P lies on, we find the total number of points that P accrues.

Any colored point on the edge of the chessboard gains at most 2 points. As for a colored point P on the chessboard's interior, the 2×2 square centered at P must have a colored point Q on its border. Then P and Q both lie on some unit square, which P gains at most half a point from; thus P accrues at most $\frac{7}{2}$ points.

Therefore any colored point collects at most $\frac{7}{2}$ points, and $l(n)$ colored points collectively accrue at most $\frac{7}{2} l(n)$ points. But for the given condition to hold, the total number of points accrued must be n^{2}. It follows that $\frac{7}{2} l(n) \geq n^{2}$ and thus $\frac{l(n)}{n^{2}} \geq \frac{2}{7}$.

Now, given some $n \times n$ board, embed it as the corner of an $n^{\prime} \times n^{\prime}$ board where $7 \mid n^{\prime}+1$ and $n \leq n^{\prime} \leq n+6$. To each 7×7 grid of vertices on the $n^{\prime} \times n^{\prime}$ board, color the vertices as below:

Then any $k \times k$ square on the chessboard has a colored point on at least one of its sides. Since we color $\frac{2}{7}\left(n^{\prime}+1\right)^{2}$ vertices in this coloring, we have

$$
l(n) \leq \frac{2}{7}\left(n^{\prime}+1\right)^{2} \leq \frac{2}{7}(n+7)^{2}
$$

so that

$$
\frac{l(n)}{n^{2}} \leq \frac{2}{7}\left(\frac{n+7}{n}\right)^{2}
$$

As $n \rightarrow \infty$, the right hand side becomes arbitrarily close to $\frac{2}{7}$. Since from before $\frac{l(n)}{n^{2}} \geq \frac{2}{7}$ for all n, this implies that $\lim _{n \rightarrow \infty} \frac{l(n)}{n^{2}}$ exists and equals $\frac{2}{7}$.

Problem 6 Let $A B C D$ be a cyclic quadrilateral, and let L and N be the midpoints of diagonals $A C$ and $B D$, respectively. Suppose that $\overline{B D}$ bisects $\angle A N C$. Prove that $\overline{A C}$ bisects $\angle B L D$.

Solution: Suppose we have any cyclic quadrilateral $A B C D$ where L and N are the midpoints of $\overline{A C}$ and $\overline{B D}$. Perform an inversion about B with arbitrary radius; A, D, C map to collinear points $A^{\prime}, D^{\prime}, C^{\prime}$, while N maps to the point N^{\prime} such that D^{\prime} is the midpoint of $\overline{B N^{\prime}}$.

There are only two points X on line $A^{\prime} D^{\prime}$ such that $\angle B X N^{\prime}=$ $\angle B A^{\prime} N^{\prime}$: the point A^{\prime} itself, and the reflection of A^{\prime} across D^{\prime}. Then $\angle A N B=\angle B N C \Longleftrightarrow \angle B A^{\prime} N^{\prime}=\angle B C^{\prime} N^{\prime} \Longleftrightarrow A^{\prime} D^{\prime}=$ $D^{\prime} C^{\prime} \Longleftrightarrow \frac{A D}{B A \cdot B D}=\frac{D C}{B D \cdot B C} \Longleftrightarrow A D \cdot B C=B A \cdot D C$.

Similarly, $\angle B L A=\angle D L A \Longleftrightarrow A D \cdot B C=B A \cdot D C$. Therefore $\angle A N B=\angle B N C \Longleftrightarrow \angle B L A=\angle D L A$; that is, $\overline{B D}$ bisects $\angle A N C$ if and only if $\overline{A C}$ bisects $\angle B L D$, which implies the claim.

Problem 7 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the set

$$
\left\{\left.\frac{f(x)}{x} \right\rvert\, x \in \mathbb{R} \text { and } x \neq 0\right\}
$$

is finite and

$$
f(x-1-f(x))=f(x)-x-1
$$

for all $x \in \mathbb{R}$.

Solution: First we show that the set $\{x-f(x) \mid x \in \mathbb{R}\}$ is finite. If not, there exist infinitely many $k \neq 1$ such that for some x_{k}, $x_{k}-f\left(x_{k}\right)=k$. But then

$$
\frac{f(k-1)}{k-1}=\frac{f\left(x_{k}-1-f\left(x_{k}\right)\right)}{k-1}=\frac{f\left(x_{k}\right)-x_{k}-1}{k-1}=-1-\frac{2}{k-1} .
$$

Since k takes on infinitely many values, $\frac{f(k-1)}{k-1}$ does as well-a contradiction.

Now choose x_{0} so that $|x-f(x)|$ is maximal for $x=x_{0}$. Then for $y=x_{0}-1-f\left(x_{0}\right)$ we have

$$
y-f(y)=y-\left(f\left(x_{0}\right)-x_{0}-1\right)=2\left(x_{0}-f\left(x_{0}\right)\right) .
$$

Then because of the maximal definition of x_{0}, we must have $y-f(y)=$ $x_{0}-f\left(x_{0}\right)=0$. Therefore $f(x)=x$ for all x, and this function indeed satisfies the given conditions.

Problem 8 Let the area and the perimeter of a cyclic quadrilateral C be A_{C} and P_{C}, respectively. If the area and the perimeter of the quadrilateral which is tangent to the circumcircle of C at the vertices of C are A_{T} and P_{T}, respectively, prove that

$$
\frac{A_{C}}{A_{T}} \geq\left(\frac{P_{C}}{P_{T}}\right)^{2}
$$

Solution: Let the outer quadrilateral be $E F G H$ with angles $\angle E=$ $2 \alpha_{1}, \angle F=2 \alpha_{2}, \angle G=2 \alpha_{3}, \angle H=2 \alpha_{4}$; also let the circumcircle of C have radius r and center O. Say that sides $E F, F G, G H, H E$ are tangent to C at I, J, K, L.

In right triangle $E I O$, we have $I O=r$ and $\angle O E I=\alpha_{1}$ so that $E I=r \cot \alpha_{1}$. After finding $I F, F J, \ldots, L E$ similarly, we find that $P_{T}=2 r \sum_{i=1}^{4} \cot \alpha_{i}$. Also, $[E F O]=\frac{1}{2} E F \cdot I O=\frac{1}{2} E F \cdot r$; finding $[F G O],[G H O],[H E O]$ similarly shows that $A_{T}=\frac{1}{2} P_{T} \cdot r$.

As for quadrilateral $I J K L$, note that $I J=2 r \sin \angle I K J=$ $2 r \sin \angle F I J=2 r \sin \left(90^{\circ}-\alpha_{2}\right)=2 r \cos \alpha_{2}$. After finding $J K, K L, L I$ in a similar manner we have $P_{C}=2 r \sum_{i=1}^{4} \cos \alpha_{i}$. Also note that $\angle I O J=180^{\circ}-\angle J F I=180^{\circ}-2 \alpha_{2}$, and hence $[I O J]=$ $\frac{1}{2} O I \cdot O J \sin \angle I O J=\frac{1}{2} r^{2} \sin \left(2 \alpha_{2}\right)=r^{2} \sin \alpha_{2} \cos \alpha_{2}$. Adding this to the analogous expressions for $[J O K],[K O L],[L O I]$, we find that $A_{C}=r^{2} \sum_{i=1}^{4} \sin \alpha_{i} \cos \alpha_{i}$.

Therefore the inequality we wish to prove is

$$
\begin{aligned}
& A_{C} \cdot P_{T}^{2} \geq A_{T} \cdot P_{C}^{2} \\
& \quad \Longleftrightarrow r^{2} \sum_{i=1}^{4} \sin \alpha_{i} \cos \alpha_{i} \cdot P_{T}^{2} \geq\left(\frac{1}{2} P_{T} \cdot r\right) \cdot 4 r^{2}\left(\sum_{i=1}^{4} \cos \alpha_{i}\right)^{2} \\
& \quad \Longleftrightarrow P_{T} \cdot \sum_{i=1}^{4} \sin \alpha_{i} \cos \alpha_{i} \geq 2 r \cdot\left(\sum_{i=1}^{4} \cos \alpha_{i}\right)^{2} \\
& \quad \Longleftrightarrow \sum_{i=1}^{4} \cot \alpha_{i} \cdot \sum_{i=1}^{4} \sin \alpha_{i} \cos \alpha_{i} \geq\left(\sum_{i=1}^{4} \cos \alpha_{i}\right)^{2}
\end{aligned}
$$

But this is true by the Cauchy-Schwarz inequality $\sum a_{i}^{2} \sum b_{i}^{2} \geq$ $\left(\sum a_{i} b_{i}\right)^{2}$ applied with each $a_{i}=\sqrt{\cot \alpha_{i}}$ and $b_{i}=\sqrt{\sin \alpha_{i} \cos \alpha_{i}}$.

Problem 9 Prove that the plane is not a union of the inner regions of finitely many parabolas. (The outer region of a parabola is the union of the lines on the plane not intersecting the parabola. The inner region of a parabola is the set of points on the plane that do not belong to the outer region of the parabola.)

Solution: Suppose by way of contradiction we could cover the plane with the inner regions of finitely many parabolas - say, n of them. Choose some fixed positive acute angle $\theta<\left(\frac{360}{2 n}\right)^{\circ}$.

Take any of the parabolas and (temporarily) choose a coordinate system so that it satisfies the equation $y=a x^{2}$ with $a \geq 0$ (and where our coordinates are chosen to scale, so that one unit along the y-axis has the same length as one unit along the x-axis). Draw the tangents to the parabola at $x= \pm \frac{\cot \theta}{2 a}$; these lines have slopes $2 a x= \pm \cot \theta$. These lines meet on the y-axis at an angle of 2θ, forming a V-shaped region in the plane that contains the inner region of the parabola.

Performing the above procedure with all the parabolas, we obtain $n \mathrm{~V}$-shaped regions covering the entire plane. Again choose an x-axis, and say the rays bordering these regions make angles ϕ_{j} and $\phi_{j}+2 \theta$ with the positive x-axis (with angles taken modulo 360°). Then since $2 n \theta<360^{\circ}$, there is some angle ϕ^{\prime} not in any of the intervals $\left[\phi_{j}, \phi_{j}+2 \theta\right]$. Then consider the line passing through the origin and making angle of ϕ^{\prime} with the positive x-axis; far enough out, the points on this line cannot lie in any of the V -shaped regions, a contradiction. Thus our original assumption was false, and we cannot cover the plane with the inner regions of finitely many parabolas.

1.21 Ukraine

Problem 1 Let $P(x)$ be a polynomial with integer coefficients. The sequence $\left\{x_{n}\right\}_{n \geq 1}$ satisfies the conditions $x_{1}=x_{2000}=1999$, and $x_{n+1}=P\left(x_{n}\right)$ for $n \geq 1$. Calculate

$$
\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\cdots+\frac{x_{1999}}{x_{2000}} .
$$

Solution: Write $a_{i}=x_{i}-x_{i-1}$ for each i, where we take subscripts (of both the x_{i} and a_{i}) modulo 1999. Since $c-d$ divides $P(c)-P(d)$ for integers c and d, we have that $a_{i}=x_{i}-x_{i-1}$ divides $P\left(x_{i}\right)-P\left(x_{i-1}\right)=$ a_{i+1} for all i.

First suppose that all the $a_{i} \neq 0$. Then $\left|a_{i+1}\right| \geq\left|a_{i}\right|$ for all i but also $\left|a_{1}\right|=\left|a_{2000}\right|$; hence all the $\left|a_{i}\right|$ equal the same value $m>0$. But if n of the $a_{1}, a_{2}, \ldots, a_{1999}$ equal $m \neq 0$ and the other $1999-n$ equal $-m$, then their sum $0=x_{1999}-x_{0}=a_{1}+a_{2}+\cdots+a_{1999}$ equals $m(2 n-1999) \neq 0$, a contradiction.

Thus for some k we have $a_{k}=0$; then since a_{k} divides a_{k+1}, we have $a_{k+1}=0$ and similarly $a_{k+2}=0$, and so on. Thus all the x_{i} are equal and the given expression equals 1999.

Problem 2 For real numbers $0 \leq x_{1}, x_{2}, \ldots, x_{6} \leq 1$ prove the inequality

$$
\begin{aligned}
\frac{x_{1}^{3}}{x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}+x_{6}^{5}+5}+\frac{x_{2}^{3}}{x_{1}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}+x_{6}^{5}+5} \\
+\cdots+\frac{x_{6}^{3}}{x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}+x_{5}^{5}+5} \leq \frac{3}{5} .
\end{aligned}
$$

Solution: The condition $0 \leq x_{1}, x_{2}, \ldots, x_{6} \leq 1$ implies that the left hand side of the inequality is at most

$$
\sum_{i=1}^{6} \frac{x_{i}^{3}}{x_{1}^{5}+x_{2}^{5}+\cdots+x_{6}^{5}+4}=\frac{x_{1}^{3}+x_{2}^{3}+\cdots+x_{6}^{3}}{x_{1}^{5}+x_{2}^{5}+\cdots+x_{6}^{5}+4}
$$

For $t \geq 0$ we have $\frac{t^{5}+t^{5}+t^{5}+1+1}{5} \geq t^{3}$ by AM-GM. Adding up the six resulting inequalities for $t=x_{1}, x_{2}, \ldots, x_{6}$ and dividing by $\left(x_{1}^{5}+x_{2}^{5}+\right.$ $\cdots+x_{6}^{5}+4$) shows that the above expression is at most $\frac{3}{5}$.

Problem 3 Let $\overline{A A_{1}}, \overline{B B_{1}}, \overline{C C_{1}}$ be the altitudes of an acute triangle $A B C$, and let O be an arbitrary point inside the triangle $A_{1} B_{1} C_{1}$.

Let M, N, P, Q, R, S be the orthogonal projections of O onto lines $A A_{1}, B C, B B_{1}, C A, C C_{1}, A B$, respectively. Prove that lines $M N$, $P Q, R S$ are concurrent.

Solution: Observe that three lines passing through different vertices of a triangle are concurrent if and only if their reflections across the corresponding angle bisectors are also concurrent; this is easily proved using the trigonometric form of Ceva's Theorem.
Let A_{0}, B_{0}, C_{0} be the centers of rectangles $O M A_{1} N, O P B_{1} Q$, $O S C_{1} R$, respectively. Under the homothety with center O and ratio $\frac{1}{2}$, triangle $A_{1} B_{1} C_{1}$ maps to triangle $A_{0} B_{0} C_{0}$. Then since lines $A A_{1}, B B_{1}, C C_{1}$ are the angle bisectors of triangle $A_{1} B_{1} C_{1}$ (easily proved with angle-chasing), the angle bisectors of triangle $A_{0} B_{0} C_{0}$ are parallel to lines $A A_{1}, B B_{1}, C C_{1}$.
Because $O M A_{1} N$ is a rectangle, diagonals $O A_{1}$ and $M N$ are reflections of each across the line through A_{0} parallel to line $A A_{1}$. From above, this line is precisely the angle bisector of $\angle C_{0} A_{0} B_{0}$ in triangle $A_{0} B_{0} C_{0}$. Similarly, lines $O B_{1}$ and $O C_{1}$ are reflections of lines $P Q$ and $R S$ across the other angle bisectors. Then since lines $O A_{1}, O B_{1}, O C_{1}$ concur at O, from our initial observation lines $M N$, $P Q, R S$ concur as well.

1.22 United Kingdom

Problem 1 I have four children. The age in years of each child is a positive integer between 2 and 16 inclusive and all four ages are distinct. A year ago the square of the age of the oldest child was equal to sum of the squares of the ages of the other three. In one year's time the sum of the squares of the ages of the oldest and the youngest children will be equal to the sum of the squares of the other two children. Decide whether this information is sufficient to determine their ages uniquely, and find all possibilities for their ages.

Solution: Let the children's present ages be $a+1, b+1, c+1$, and $d+1$. We are given that $1 \leq a<b<c<d \leq 15$; note that $b \leq 13$ so that $b-a \leq 12$. We are also given

$$
\begin{equation*}
d^{2}=a^{2}+b^{2}+c^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(d+2)^{2}+(a+2)^{2}=(b+2)^{2}+(c+2)^{2} \tag{2}
\end{equation*}
$$

Subtracting (1) from (2) gives $4(a+d)+a^{2}=4(b+c)-a^{2}$, or

$$
\begin{equation*}
a^{2}=2(b+c-a-d) \tag{3}
\end{equation*}
$$

Then a must be even since its square is even. Furthermore, since $d>c$,

$$
a^{2}=2(b-a+(c-d))<2(b-a)<24
$$

and hence either $a=2$ and $a=4$.
If $a=4$ then, since $a^{2}<2(b-a)$, we have $2 b>a^{2}+2 a=24$ so that $b>12$. This forces $b=13, c=14$, and $d=15$, which contradicts the given conditions.

Thus $a=2$. Equation (3) gives $b+c-d=4$, so substituting $a=2$ and $d=b+c-4$ into (1) and simplifying yields

$$
(b-4)(c-4)=10=1 \cdot 10=2 \cdot 5
$$

Therefore we have $(b, c)=(5,14)$ or $(6,9)$, in which cases $d=15$ and $d=11$ respectively.

Hence the only possible solutions are $(a, b, c, d)=(2,5,14,15)$ or $(2,6,9,11)$, and these indeed satisfy (1) and (2). It follows that there is no unique solution, and it is not possible to determine the childrens' ages.

Problem 2 A circle has diameter $\overline{A B}$ and X is a fixed point on the segment $A B$. A point P, distinct from A and B, lies on the circle. Prove that, for all possible positions of P,

$$
\frac{\tan \angle A P X}{\tan \angle P A X}
$$

is a constant.
Solution: Let Q be the projection of X onto $\overline{A P}$. Note that $\angle A P B=90^{\circ}$, and thus $\tan \angle P A X=\frac{P B}{P A}$. Also, $X Q \| P B$ so $\triangle A Q X \sim \triangle A P B$. Therefore,

$$
\tan \angle A P X=\frac{Q X}{Q P}=\frac{\frac{A X \cdot B P}{A B}}{\frac{B X \cdot A P}{A B}}=\frac{A X \cdot B P}{B X \cdot A P}
$$

and

$$
\frac{\tan \angle A P X}{\tan \angle P A X}=\frac{A X}{B X}
$$

is fixed.
Problem 3 Determine a positive constant c such that the equation

$$
x y^{2}-y^{2}-x+y=c
$$

has exactly three solutions (x, y) in positive integers.
Solution: When $y=1$ the left hand side is 0 . Thus we can rewrite our equation as

$$
x=\frac{y(y-1)+c}{(y+1)(y-1)} .
$$

The numerator is congruent to $-1(-2)+c$ modulo $y+1$, and it is also congruent to c modulo $y-1$. Hence we must have $c \equiv-2(\bmod y+1)$ and $c \equiv 0(\bmod y-1)$. Since $c=y-1$ satisfies these congruences, we must have $c \equiv y-1(\bmod \operatorname{lcm}(y-1, y+1))$. When y is even, $\operatorname{lcm}(y-1, y+1)=y^{2}-1$; when y is odd, $\operatorname{lcm}(y-1, y+1)=\frac{1}{2}\left(y^{2}-1\right)$.

Then for $y=2,3,11$ we have $c \equiv 1(\bmod 3), c \equiv 2(\bmod 4)$, $c \equiv 10(\bmod 60)$. Hence, we try setting $c=10$. For x to be an integer we must have $y-1 \mid 10 \Rightarrow y=2,3,6$, or 11 ; these values give $x=4,2, \frac{2}{7}$, and 1 respectively. Thus there are exactly three solutions in positive integers, namely $(x, y)=(4,2),(2,3)$, and $(1,11)$.

Problem 4 Any positive integer m can be written uniquely in base 3 form as a string of 0 's, 1 's and 2's (not beginning with a zero). For
example,

$$
98=81+9+2 \times 3+2 \times 1=(10122)_{3}
$$

Let $c(m)$ denote the sum of the cubes of the digits of the base 3 form of m; thus, for instance

$$
c(98)=1^{3}+0^{3}+1^{3}+2^{3}+2^{3}=18
$$

Let n be any fixed positive integer. Define the sequence $\left\{u_{r}\right\}$ as

$$
u_{1}=n, \text { and } u_{r}=c\left(u_{r-1}\right) \text { for } r \geq 2
$$

Show that there is a positive integer r such that $u_{r}=1,2$, or 17 .
Solution: If m has $d \geq 5$ digits then we have $m \geq 3^{d-1}=$ $(80+1)^{(d-1) / 4} \geq 80 \cdot \frac{d-1}{4}+1>8 d$ by Bernoulli's inequality. Thus $m>c(m)$.

If $m>32$ has 4 digits in base 3 , then $c(m) \leq 2^{3}+2^{3}+2^{3}+2^{3}=$ $32<m$. And if $27 \leq m \leq 32$, then m starts with the digits 10 in base 3 and $c(m)<1^{3}+0^{3}+2^{3}+2^{3}=17<m$.

Therefore $0<c(m)<m$ for all $m \geq 27$, and hence eventually we have some positive $u_{s}<27$. Since u_{s} has at most three digits, u_{s+1} can only equal $8,16,24,1,9,17,2,10$, or 3 . If it equals 1,2 , or 17 we are already done; if it equals 3 or 9 then $u_{s+2}=1$; and otherwise a simple check shows that u_{r} will eventually equal 2 :

$$
\left.\begin{array}{rl}
8 & =(22)_{3} \\
24 & =(220)_{3}
\end{array}\right\} \rightarrow 16=(121)_{3} \rightarrow 10=(101)_{3} \rightarrow 2
$$

Problem 5 Consider all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
(i) for each positive integer m, there is a unique positive integer n such that $f(n)=m$;
(ii) for each positive integer $n, f(n+1)$ is either $4 f(n)-1$ or $f(n)-1$.

Find the set of positive integers p such that $f(1999)=p$ for some function f with properties (i) and (ii).

Solution: Imagine hopping along a sidewalk whose blocks are marked from left to right with the positive integers, where at time n we stand on the block marked $f(n)$. Note that if $f(n)-f(n+1)>0$ then $f(n)-f(n+1)=1$; that is, whenever we move to the left we move exactly one block. And whenever we move to the right from $f(n)$ we must move to $4 f(n)-1$.

Then suppose that we are at block $f(a)$ and that $f(a)-1$ is unvisited; if we move to the right (that is, if $f(a+1)>f(a))$ then at some point we must pass through block $f(a)$ to reach block $f(a)-1$ again- which is not allowed. Thus we must have $f(a+1)=f(a)-1$.

Therefore our path is completely determined by the value of $f(1)$: because whenever we are at $f(n)$, if $f(n)-1>0$ is unvisited we must have $f(n+1)=f(n)-1$. And otherwise, we must have $f(n+1)=4 f(n)-1$.

If $f(1)=1$ then consider the function f defined as follows: whenever $2^{k} \leq n<2^{k+1}$, set $f(n)=\left(3 \cdot 2^{k}-1\right)-n$. It is bijective since for $n=2^{k}, 2^{k}+1, \ldots, 2^{k+1}-1$ we have $f(n)=2^{k+1}-1,2^{k+1}-2, \ldots, 2^{k}$; and a quick check shows it satisfies condition (ii) as well. Thus from the previous paragraph this is the only function with $f(1)=1$, and in this case sice $2^{10} \leq 1999<2^{11}$ we have $f(1999)=\left(3 \cdot 2^{10}-1\right)-1999=$ 1072.

If $f(1)=2$ then consider instead the function f defined as follows: whenever $4^{k} \leq n<3 \cdot 4^{k}$, set $f(n)=\left(4^{k+1}-1\right)-n$; and if $3 \cdot 4^{k} \leq n<4^{k+1}$ set $f(n)=\left(7 \cdot 4^{k}-1\right)-n$. Again, we can check that this function satisfies the conditions; and again, this must be the only function with $f(1)=2$. In this case since $4^{5} \leq 1999<3 \cdot 4^{5}$, we have $f(1999)=\left(4^{6}-1\right)-1999=2096$.

Finally, suppose that $f(1) \geq 3$; first we must visit $f(1)-1, f(1)-$ $2, \ldots, 1$. It follows that $f(n)=3$ and $f(n+2)=1$ for some n. But then $f(n+3)=4 \cdot 1-1=3=f(n)$, a contradiction.

Therefore the only possible values of $f(1999)$ are 1072 and 2096.
Problem 6 For each positive integer n, let $S_{n}=\{1,2, \ldots, n\}$.
(a) For which values of n is it possible to express S_{n} as the union of two non-empty disjoint subsets so that the elements in the two subsets have equal sum?
(b) For which values of n is it possible to express S_{n} as the union of three non-empty disjoint subsets so that the elements in the three subsets have equal sum?

Solution:

(a) Let $\sigma(T)$ denote the sum of the elements in a set T. For the condition to hold $\sigma\left(S_{n}\right)=\frac{n(n+1)}{2}$ must be even, and hence we must have $n=4 k-1$ or $4 k$ where $k \in \mathbb{N}$. For such n, let A consist of the second and third elements of each of the sets
$\{n, n-1, n-2, n-3\},\{n-4, n-5, n-6, n-7\}, \ldots,\{4,3,2,1\}$ (or if $n=4 k-1$, the last set in this grouping will be $\{3,2,1\}$); and let $B=S_{n} \backslash A$. Then $\sigma(A)=\sigma(B)$, as desired.
(b) For the condition to hold, $\sigma\left(S_{n}\right)=\frac{n(n+1)}{2}$ must be divisible by 3 ; furthermore, the construction is impossible for $n=3$. Thus n must be of the form $3 k+2$ or $3 k+3$ where $k \in \mathbb{N}$. We prove all such n work by induction on n. We have $S_{5}=\{5\} \cup\{1,4\} \cup\{2,3\}$, $S_{6}=\{1,6\} \cup\{2,5\} \cup\{3,4\}, S_{8}=\{8,4\} \cup\{7,5\} \cup\{1,2,3,6\}$, and $S_{9}=\{9,6\} \cup\{8,7\} \cup\{1,2,3,4,5\}$. Now suppose that we can partition S_{n-6} into $A \cup B \cup C$ with $\sigma(A)=\sigma(B)=\sigma(C)$; then $\sigma(A \cup\{n-5, n\})=\sigma(B \cup\{n-4, n-1\})=\sigma(C \cup\{n-3, n-2\})$, completing the inductive step and the proof of our claim.

Problem 7 Let $A B C D E F$ be a hexagon which circumscribes a circle ω. The circle ω touches sides $A B, C D, E F$ at their respective midpoints P, Q, R. Let ω touch sides $B C, D E, F A$ at X, Y, Z respectively. Prove that lines $P Y, Q Z, R X$ are concurrent.

Solution: Let O be the center of ω. Since P is the midpoint of $\overline{A B}, A P=P B$; then by equal tangents, $Z A=A P=P B=B X$. Thus $\angle Z O A=\angle A O P=\angle P O B=\angle B O X$. It follows that $\angle Z O P=$ $\angle P O X$, and hence $\angle Z Y P=\angle P Y X$. Therefore line $Y P$ is the angle bisector of $\angle X Y Z$. Similarly lines $X R$ and $Z Q$ are the angle bisectors of $\angle Z X Y$ and $\angle Y Z X$, and therefore lines $P Y, Q Z, R X$ meet at the incenter of triangle $X Y Z$.

Problem 8 Some three non-negative real numbers p, q, r satisfy

$$
p+q+r=1
$$

Prove that

$$
7(p q+q r+r p) \leq 2+9 p q r
$$

Solution: Given a function f of three variables, let $\sum_{\text {cyc }} f(p, q, r)$ denote the "cyclic sum" $f(p, q, r)+f(q, r, p)+f(r, p, q)$; for example, $\sum_{\mathrm{cyc}}(p q r+p)=3 p q r+p+q+r$. Since $p+q+r=1$ the inequality is equivalent to

$$
\begin{aligned}
& 7(p q+q r+r p)(p+q+r) \leq 2(p+q+r)^{3}+9 p q r \\
& \quad \Longleftrightarrow 7 \sum_{\text {cyc }}\left(p^{2} q+p q^{2}+p q r\right)
\end{aligned}
$$

$$
\begin{gathered}
\leq 9 p q r+\sum_{\text {cyc }}\left(2 p^{3}+6 p^{2} q+6 p q^{2}+4 p q r\right) \\
\Longleftrightarrow \sum_{\text {cyc }} p^{2} q+\sum_{\text {cyc }} p q^{2} \leq \sum_{\text {cyc }} 2 p^{3}=\sum_{\text {cyc }} \frac{2 p^{3}+q^{3}}{3}+\sum_{\text {cyc }} \frac{p^{3}+2 q^{3}}{3},
\end{gathered}
$$

and this last inequality is true by weighted AM-GM.
Problem 9 Consider all numbers of the form $3 n^{2}+n+1$, where n is a positive integer.
(a) How small can the sum of the digits (in base 10) of such a number be?
(b) Can such a number have the sum of its digits (in base 10) equal to 1999 ?

Solution:

(a) Let $f(n)=3 n^{2}+n+1$. When $n=8$, the sum of the digits of $f(8)=201$ is 3 . Suppose that some $f(m)$ had a smaller sum of digits; then the last digit of $f(m)$ must be either 0 , 1 , or 2 . However, for any $n, f(n)=n(n+3)+1 \equiv 1(\bmod 2)$; thus $f(m)$ must have units digit 1 .

Because $f(n)$ can never equal 1 , this means we must have $3 m^{2}+m+1=10^{k}+1$ for some positive integer k, and $m(3 m+1)=$ 10^{k}. Since m and $3 m+1$ are relatively prime, and $m<3 m+1$, we must either have $(m, 3 m+1)=\left(1,10^{k}\right)$-which is impossible - or $(m, 3 m+1)=\left(2^{k}, 5^{k}\right)$. For $k=1,5^{k} \neq 3 \cdot 2^{k}+1$; and for $k>1$, we have $5^{k}=5^{k-2} \cdot 25>2^{k-2} \cdot(12+1) \geq 3 \cdot 2^{k}+1$. Therefore, $f(m)$ can't equal $10^{k}+1$, and 3 is indeed the minimum value for the sum of digits.
(b) Consider $n=10^{222}-1 . f(n)=3 \cdot 10^{444}-6 \cdot 10^{222}+3+10^{222}$. Thus, its decimal expansion is

$$
2 \underbrace{9 \ldots 9}_{221} 5 \underbrace{0 \ldots 0}_{221} 3,
$$

and the sum of the digits in $f\left(10^{222}-1\right)$ is 1999 .

1.23 United States of America

Problem 1 Some checkers placed on an $n \times n$ checkerboard satisfy the following conditions:
(i) every square that does not contain a checker shares a side with one that does;
(ii) given any pair of squares that contain checkers, there is a sequence of squares containing checkers, starting and ending with the given squares, such that every two consecutive squares of the sequence share a side.
Prove that at least $\frac{n^{2}-2}{3}$ checkers have been placed on the board.
Solution: It suffices to show that if m checkers are placed so as to satisfy condition (b), then the number of squares they either cover or are adjacent to is at most $3 m+2$. But this is easily seen by induction: it is obvious for $m=1$, and if m checkers are so placed, some checker can be removed so that the remaining checkers still satisfy (b); they cover at most $3 m-1$ squares, and the new checker allows us to count at most 3 new squares (since the square it occupies was already counted, and one of its neighbors is occupied).

Note. The exact number of checkers required is known for $m \times n$ checkerboards with m small, but only partial results are known in the general case. Contact the authors for more information.

Problem 2 Let $A B C D$ be a convex cyclic quadrilateral. Prove that

$$
|A B-C D|+|A D-B C| \geq 2|A C-B D| .
$$

First Solution: Let E be the intersection of $\overline{A C}$ and $\overline{B D}$. Then the triangles $A B E$ and $D C E$ are similar, so if we let $x=A E, y=$ $B E, z=A B$, then there exists k such that $k x=D E, k y=C E, k z=$ $C D$. Now

$$
|A B-C D|=|k-1| z
$$

and

$$
|A C-B D|=|(k x+y)-(k y+x)|=|k-1| \cdot|x-y| .
$$

Since $|x-y| \leq z$ by the triangle inequality, we conclude $|A B-C D| \geq$ $|A C-B D|$, and similarly $|A D-B C| \geq|A C-B D|$. These two inequalities imply the desired result.

Second Solution: Let $2 \alpha, 2 \beta, 2 \gamma, 2 \delta$ be the measures of the arcs subtended by $A B, B C, C D, D A$, respectively, and take the radius of the circumcircle of $A B C D$ to be 1. Assume without loss of generality that $\beta \leq \delta$. Then $\alpha+\beta+\gamma+\delta=\pi$, and (by the Extended Law of Sines)

$$
|A B-C D|=2|\sin \alpha-\sin \gamma|=4\left|\sin \frac{\alpha-\gamma}{2}\right|\left|\cos \frac{\alpha+\gamma}{2}\right|
$$

and

$$
\begin{aligned}
& |A C-B D|=2|\sin (\alpha+\beta)-\sin (\beta+\gamma)| \\
& \quad=4\left|\sin \frac{\alpha-\gamma}{2}\right|\left|\cos \left(\frac{\alpha+\gamma}{2}+\beta\right)\right|
\end{aligned}
$$

Since $0 \leq \frac{1}{2}(\alpha+\gamma) \leq \frac{1}{2}(\alpha+\gamma)+\beta \leq \frac{\pi}{2}$ (by the assumption $\beta \leq \delta)$ and the cosine function is nonnegative and decreasing on $\left[0, \frac{\pi}{2}\right]$, we conclude that $|A B-C D| \geq|A C-B D|$, and similarly $|A D-B C| \geq|A C-B D|$.

Problem 3 Let $p>2$ be a prime and let a, b, c, d be integers not divisible by p, such that

$$
\left\{\frac{r a}{p}\right\}+\left\{\frac{r b}{p}\right\}+\left\{\frac{r c}{p}\right\}+\left\{\frac{r d}{p}\right\}=2
$$

for any integer r not divisible by p. Prove that at least two of the numbers $a+b, a+c, a+d, b+c, b+d, c+d$ are divisible by p. Here, for real numbers $x,\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x.

Solution: For convenience, we write $[x]$ for the unique integer in $\{0, \ldots, p-1\}$ congruent to x modulo p. In this notation, the given condition can be written

$$
\begin{equation*}
[r a]+[r b]+[r c]+[r d]=2 p \quad \text { for all } r \text { not divisible by } p \tag{1}
\end{equation*}
$$

The conditions of the problem are preserved by replacing a, b, c, d with $m a, m b, m c, m d$ for any integer m relatively prime to p. If we choose m so that $m a \equiv 1(\bmod p)$ and then replace a, b, c, d with $[m a],[m b],[m c],[m d]$, respectively, we end up in the case $a=1$ and
$b, c, d \in\{1, \ldots, p-1\}$. Applying (1) with $r=1$, we see moreover that $a+b+c+d=2 p$.

Now observe that

$$
[(r+1) x]-[r x]=\left\{\begin{array}{cl}
{[x]} & {[r x]<p-[x]} \\
-p+[x] & {[r x] \geq p-[x]}
\end{array}\right.
$$

Comparing (1) applied to two consecutive values of r and using the observation, we see that for each $r=1, \ldots, p-2$, two of the quantities

$$
p-a-[r a], p-b-[r b], p-c-[r c], p-d-[r d]
$$

are positive and two are negative. We say that a pair (r, x) is positive if $[r x]<p-[x]$ and negative otherwise; then for each $r<p-1,(r, 1)$ is positive, so exactly one of $(r, b),(r, c),(r, d)$ is also positive.
Lemma. If $r_{1}, r_{2}, x \in\{1, \ldots, p-1\}$ have the property that $\left(r_{1}, x\right)$ and $\left(r_{2}, x\right)$ are negative but (r, x) is positive for all $r_{1}<r<r_{2}$, then

$$
r_{2}-r_{1}=\left\lfloor\frac{p}{x}\right\rfloor \quad \text { or } \quad r_{2}-r_{1}=\left\lfloor\frac{p}{x}\right\rfloor+1
$$

Proof: Note that $\left(r^{\prime}, x\right)$ is negative if and only if $\left\{r^{\prime} x+1, r^{\prime} x+\right.$ $\left.2, \ldots,\left(r^{\prime}+1\right) x\right\}$ contains a multiple of p. In particular, exactly one multiple of p lies in $\left\{r_{1} x, r_{1} x+1, \ldots, r_{2} x\right\}$. Since $\left[r_{1} x\right]$ and $\left[r_{2} x\right]$ are distinct elements of $\{p-[x], \ldots, p-1\}$, we have

$$
p-x+1<r_{2} x-r_{1} x<p+x-1
$$

from which the lemma follows.

$[r x]$	9	10	$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10	$\mathbf{0}$
is $(r, x)+$ or $-?$	-			+			+			+			-	
r	$\underline{\mathbf{3}}$			4			5			6			$\mathbf{7}$	

(The above diagram illustrates the meanings of positive and negative in the case $x=3$ and $p=11$. Note that the difference between 7 and 3 here is $\left\lfloor\frac{p}{x}\right\rfloor+1$. The next r such that (r, x) is negative is $r=10 ; 10-7=\left\lfloor\frac{p}{x}\right\rfloor$.)

Recall that exactly one of $(1, b),(1, c),(1, d)$ is positive; we may as well assume $(1, b)$ is positive, which is to say $b<\frac{p}{2}$ and $c, d>\frac{p}{2}$. Put $s_{1}=\left\lfloor\frac{p}{b}\right\rfloor$, so that s_{1} is the smallest positive integer such that $\left(s_{1}, b\right)$ is negative. Then exactly one of $\left(s_{1}, c\right)$ and $\left(s_{1}, d\right)$ is positive, say the former. Since s_{1} is also the smallest positive integer such that $\left(s_{1}, c\right)$ is positive, or equivalently such that $\left(s_{1}, p-c\right)$ is negative, we have
$s_{1}=\left\lfloor\frac{p}{p-c}\right\rfloor$. The lemma states that consecutive values of r for which (r, b) is negative differ by either s_{1} or $s_{1}+1$. It also states (when applied with $x=p-c$) that consecutive values of r for which (r, c) is positive differ by either s_{1} or $s_{1}+1$. From these observations we will show that (r, d) is always negative.

r	1		s_{1}	$s_{1}+1$		s^{\prime}	$s^{\prime}+1$		s	$s+1 \stackrel{?}{=} t$
(r, b)	+		-	+		-	+		-	$-?$
(r, c)	-	\ldots	+	-	\ldots	+	-	\ldots	-	$+?$
(r, d)	-		-	-		-	-		+	$-?$

Indeed, if this were not the case, there would exist a smallest positive integer $s>s_{1}$ such that (s, d) is positive; then (s, b) and (s, c) are both negative. If s^{\prime} is the last integer before s such that $\left(s^{\prime}, b\right)$ is negative (possibly equal to $\left.s_{1}\right)$, then $\left(s^{\prime}, d\right)$ is negative as well (by the minimal definition of s). Also,

$$
s-s^{\prime}=s_{1} \quad \text { or } \quad s-s^{\prime}=s_{1}+1
$$

Likewise, if t were the next integer after s^{\prime} such that (t, c) were positive, then

$$
t-s^{\prime}=s_{1} \quad \text { or } \quad t-s^{\prime}=s_{1}+1
$$

From these we deduce that $|t-s| \leq 1$. However, we can't have $t \neq s$ because then both (s, b) and (t, b) would be negative - and any two values of r for which (r, b) is negative differ by at least $s_{1} \geq 2$, a contradiction. (The above diagram shows the hypothetical case when $t=s+1$.) But nor can we have $t=s$ because we already assumed that (s, c) is negative. Therefore we can't have $|t-s| \leq 1$, contradicting our findings and thus proving that (r, d) is indeed always negative.

Now if $d \neq p-1$, then the unique $s \in\{1, \ldots, p-1\}$ such that $[d s]=1$ is not equal to $p-1$; and (s, d) is positive, a contradiction. Thus $d=p-1$ and $a+d$ and $b+c$ are divisible by p, as desired.

Problem 4 Let $a_{1}, a_{2}, \ldots, a_{n}(n>3)$ be real numbers such that

$$
a_{1}+a_{2}+\cdots+a_{n} \geq n \quad \text { and } \quad a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} \geq n^{2}
$$

Prove that $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq 2$.
Solution: Let $b_{i}=2-a_{i}$, and let $S=\sum b_{i}$ and $T=\sum b_{i}^{2}$. Then
the given conditions are that

$$
\left(2-b_{1}\right)+\cdots+\left(2-b_{n}\right) \geq n
$$

and

$$
\left(4-4 b_{1}+b_{1}^{2}\right)+\cdots+\left(4-4 b_{n}+b_{n}^{2}\right) \geq n^{2}
$$

which is to say $S \leq n$ and $T \geq n^{2}-4 n+4 S$.
From these inequalities, we obtain

$$
T \geq n^{2}-4 n+4 S \geq(n-4) S+4 S=n S
$$

On the other hand, if $b_{i}>0$ for $i=1, \ldots, n$, then certainly $b_{i}<$ $\sum b_{i}=S \leq n$, and so

$$
T=b_{1}^{2}+\cdots+b_{n}^{2}<n b_{1}+\cdots+n b_{n}=n S
$$

Thus we cannot have $b_{i}>0$ for $i=1, \ldots, n$, so $b_{i} \leq 0$ for some i; then $a_{i} \geq 2$ for that i, proving the claim.

Note: The statement is false when $n \leq 3$. The example $a_{1}=a_{2}=$ $\cdots=a_{n-1}=2, a_{n}=2-n$ shows that the bound cannot be improved. Also, an alternate approach is to show that if $a_{i} \leq 2$ and $\sum a_{i} \geq n$, then $\sum a_{i}^{2} \leq n^{2}$ (with the equality case just mentioned), by noticing that replacing a pair a_{i}, a_{j} with $2, a_{i}+a_{j}-2$ increases the sum of squares.

Problem 5 The Y2K Game is played on a 1×2000 grid as follows. Two players in turn write either an S or an O in an empty square. The first player who produces three consecutive boxes that spell SOS wins. If all boxes are filled without producing SOS then the game is a draw. Prove that the second player has a winning strategy.

Solution: Call a partially filled board stable if there is no SOS and no single move can produce an SOS; otherwise call it unstable. For a stable board call an empty square bad if either an S or an O played in that square produces an unstable board. Thus a player will lose if the only empty squares available to him are bad, but otherwise he can at least be guaranteed another turn with a correct play.

Claim: A square is bad if and only if it is in a block of 4 consecutive squares of the form $\mathrm{S}-\mathrm{S}$.

Proof: If a square is bad, then an O played there must give an unstable board. Thus the bad square must have an S on one side and an empty square on the other side. An S played there must also give an unstable board, so there must be another S on the other side of the empty square.

From the claim it follows that there are always an even number of bad squares. Thus the second player has the following winning strategy:
(a) If the board is unstable at any time, play the winning move; otherwise continue as below.
(b) On the first move, play an S at least four squares away from either end and at least seven squares from the first player's first move. (The board is long enough that this is possible.)
(c) On the second move, play an S three squares away from the second player's first move, so that the squares in between are empty and so that the board remains stable. (Regardless of the first player's second move, this must be possible on at least one side.) This produces two bad squares; whoever plays in one of them first will lose. Thus the game will not be a draw.
(d) On any subsequent move, play in a square which is not badkeeping the board stable, of course. Such a square will always exist because if the board is stable, there will be an odd number of empty squares and an even number of bad squares.
Since there exist bad squares after the second player's second move, the game cannot end in a draw; and since the second player can always leave the board stable, the first player cannot win. Therefore eventually the second player will win.

Note: Some other names for the $\mathrm{S}-\mathrm{S}$ block, from submitted solutions, included arrangement, combo, configuration, formation, pattern, sandwich, segment, situation, and trap. (Thanks to Alexander Soifer and Zvezdelina Stankova-Frenkel for passing these along.)

Problem 6 Let $A B C D$ be an isosceles trapezoid with $A B \| C D$. The inscribed circle ω of triangle $B C D$ meets $C D$ at E. Let F be a point on the (internal) angle bisector of $\angle D A C$ such that $E F \perp C D$. Let the circumscribed circle of triangle $A C F$ meet line $C D$ at C and
G. Prove that the triangle $A F G$ is isosceles.
Solution: We will show that $F A=F G$. Let H be the center of the escribed circle of triangle $A C D$ opposite vertex A. Then H lies on the angle bisector $A F$. Let K be the point where this escribed circle touches $C D$. By a standard computation using equal tangents, we see that $C K=\frac{1}{2}(A D+C D-A C)$. By a similar computation in triangle $B C D$, we see that $C E=\frac{1}{2}(B C+C D-B D)=C K$. Therefore $E=K$ and $F=H$.

Since F is now known to be an excenter, we have that $F C$ is the external angle bisector of $\angle D C A=\angle G C A$. Therefore

$$
\angle G A F=\angle G C F=\frac{\pi}{2}-\frac{1}{2} \angle G C A=\frac{\pi}{2}-\frac{1}{2} \angle G F A .
$$

We conclude that the triangle $G A F$ is isosceles with $F A=F G$, as desired.

1.24 Vietnam

Problem 1 Solve the system of equations

$$
\begin{gathered}
\left(1+4^{2 x-y}\right) \cdot 5^{1-2 x+y}=1+2^{2 x-y+1} \\
y^{3}+4 x+1+\ln \left(y^{2}+2 x\right)=0
\end{gathered}
$$

Solution: The only solution is $(x, y)=(0,-1)$.
First solve the first equation for $t=2 x-y$. Multiplying the equation by 5^{t-1} yields

$$
\left(1-5^{t-1}\right)+4\left(4^{t-1}-10^{t-1}\right)=0
$$

This has the obvious solution $t=1$. There are no other solutions: if $t>1$ then both $1-5^{t-1}$ and $4^{t-1}-10^{t-1}$ are negative; and if $t<1$ then both these terms are positive. Therefore, $2 x-y=1$.

Substitute $2 x=y+1$ into the second equation to get

$$
y^{3}+2 y+3+\ln \left(y^{2}+y+1\right)=0
$$

This has the not-so-obvious solution $y=-1$. To prove this is the only solution, it suffices to show that $f(y)=y^{3}+2 y+3+\ln \left(y^{2}+y+1\right)$ is always increasing. Its derivative is

$$
f^{\prime}(y)=3 y^{2}+2+\frac{2 y+1}{y^{2}+y+1}
$$

But we know that

$$
\begin{aligned}
& 2(y+1)^{2}+1>0 \\
& \quad \Rightarrow 2 y+1>-2\left(y^{2}+y+1\right) \\
& \quad \Rightarrow \frac{2 y+1}{y^{2}+y+1}>-2
\end{aligned}
$$

where we can safely divide by $y^{2}+y+1=\left(y+\frac{1}{2}\right)^{2}+\frac{3}{4}>0$. Thus $f^{\prime}(y)>3 y^{2}>0$ for all y, as desired.

Problem 2 Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the respective midpoints of the arcs $B C, C A, A B$, not containing points A, B, C, respectively, of the circumcircle of the triangle $A B C$. The sides $B C, C A, A B$ meet the pairs of segments

$$
\left\{C^{\prime} A^{\prime}, A^{\prime} B^{\prime}\right\},\left\{A^{\prime} B^{\prime}, B^{\prime} C^{\prime}\right\},\left\{B^{\prime} C^{\prime}, C^{\prime} A^{\prime}\right\}
$$

at the pairs of points

$$
\{M, N\},\{P, Q\},\{R, S\},
$$

respectively. Prove that $M N=P Q=R S$ if and only if the triangle $A B C$ is equilateral.

Solution: If $A B C$ is equilateral then $M N=P Q=R S$ by symmetry.
Now suppose that $M N=P Q=R S$. Observe that $\angle N M A^{\prime}=$ $\angle B M S=\frac{1}{2}\left(\widehat{B C^{\prime}}+\widehat{C A^{\prime}}\right)=\frac{1}{2}(\angle C+\angle A)$ and similarly $\angle C^{\prime} S R=$ $\angle M S B=\frac{1}{2}(\angle A+\angle C)$. Furthermore, $\angle A^{\prime} B^{\prime} C^{\prime}=\angle A^{\prime} B^{\prime} B+$ $\angle B B^{\prime} C^{\prime}=\frac{1}{2}(\angle A+\angle C)$ as well.
Thus $M B=S B$, and also $\triangle C^{\prime} R S \sim \triangle C^{\prime} A^{\prime} B^{\prime} \sim \triangle N A^{\prime} M$. Next, by the law of sines in triangles $C^{\prime} S B$ and $A^{\prime} M B$ we have

$$
C^{\prime} S=S B \cdot \frac{\sin \angle C^{\prime} B S}{\sin \angle S C^{\prime} B}=S B \cdot \frac{\sin \frac{\angle C}{2}}{\sin \frac{\angle A}{2}}
$$

and

$$
M A^{\prime}=M B \cdot \frac{\sin \angle A^{\prime} B M}{\sin \angle M A^{\prime} B}=M B \cdot \frac{\sin \frac{\angle A}{2}}{\sin \frac{\angle C}{2}},
$$

giving $\frac{C^{\prime} S}{M A^{\prime}}=\left(\frac{\sin \frac{\angle C}{2}}{\sin \frac{2 A}{2 A}}\right)^{2}$.
Next, because $\triangle C^{\prime} R S \sim \triangle C^{\prime} A^{\prime} B^{\prime}$ we have $R S=A^{\prime} B^{\prime} \cdot \frac{C^{\prime} S}{C^{\prime} B^{\prime}}$; and because $\triangle N A^{\prime} M \sim \triangle C^{\prime} A^{\prime} B^{\prime}$ we have $M N=B^{\prime} C^{\prime} \cdot \frac{M A^{\prime}}{B^{\prime} A^{\prime}}$. Therefore since $R S=M N$ we have

$$
\begin{aligned}
& A^{\prime} B^{\prime} \cdot \frac{C^{\prime} S}{C^{\prime} B^{\prime}}=B^{\prime} C^{\prime} \cdot \frac{M A^{\prime}}{B^{\prime} A^{\prime}} \\
& \Longrightarrow \frac{C^{\prime} S}{M A^{\prime}}=\left(\frac{B^{\prime} C^{\prime}}{A^{\prime} B^{\prime}}\right)^{2}=\left(\frac{\sin \frac{1}{2}(\angle B+\angle C)}{\sin \frac{1}{2}(\angle B+\angle A)}\right)^{2}=\left(\frac{\cos \frac{\angle A}{2}}{\cos \frac{\angle C}{2}}\right)^{2} \\
& \Longrightarrow\left(\frac{\sin \frac{\angle C}{2}}{\sin \frac{\angle A}{2}}\right)^{2}=\left(\frac{\cos \frac{\angle A}{2}}{\cos \frac{\angle C}{2}}\right)^{2} \\
& \Longrightarrow\left(\sin \frac{\angle C}{2} \cos \frac{\angle C}{2}\right)^{2}=\left(\sin \frac{\angle A}{2} \cos \frac{\angle A}{2}\right)^{2} \\
& \Longrightarrow \frac{1}{4} \sin ^{2} \angle C=\frac{1}{4} \sin ^{2} \angle A \\
& \Longrightarrow \sin \angle C=\sin \angle A .
\end{aligned}
$$

Since $\angle A+\angle C<180^{\circ}$, we must have $\angle A=\angle C$. Similarly $\angle A=\angle B$, and therefore triangle $A B C$ is equilateral.

Problem 3 For $n=0,1,2, \ldots$, let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences defined recursively as follows:

$$
\begin{aligned}
& x_{0}=1, x_{1}=4, x_{n+2}=3 x_{n+1}-x_{n} \\
& y_{0}=1, y_{1}=2, y_{n+2}=3 y_{n+1}-y_{n} .
\end{aligned}
$$

(a) Prove that $x_{n}^{2}-5 y_{n}^{2}+4=0$ for all non-negative integers n.
(b) Suppose that a, b are two positive integers such that $a^{2}-5 b^{2}+4=$ 0 . Prove that there exists a non-negative integer k such that $x_{k}=a$ and $y_{k}=b$.

Solution: We first prove by induction on k that for $k \geq 0$, we have $\left(x_{k+1}, y_{k+1}\right)=\left(\frac{3 x_{k}+5 y_{k}}{2}, \frac{x_{k}+3 y_{k}}{2}\right)$. For $k=0$ we have $(4,2)=$ $\left(\frac{3+5}{2}, \frac{1+3}{2}\right)$, and for $k=1$ we have $(11,5)=\left(\frac{12+10}{2}, \frac{4+6}{2}\right)$. Now assuming it's true for k and $k+1$, we know that

$$
\left(x_{k+3}, y_{k+3}\right)=\left(3 x_{k+2}-x_{k+1}, 3 y_{k+2}-y_{k+1}\right)
$$

Substituting the expressions for $x_{k+2}, x_{k+1}, y_{k+2}, y_{k+1}$ from the induction hypothesis, this equals

$$
\begin{aligned}
& \left(\frac{3\left(3 x_{k+1}-x_{k}\right)+5\left(3 y_{k+1}-y_{k}\right)}{2}, \frac{\left(3 x_{k+1}-x_{k}\right)+3\left(3 y_{k+1}-y_{k}\right)}{2}\right) \\
& \quad=\left(\frac{3 x_{k+2}+5 y_{k+2}}{2}, \frac{x_{k+2}+3 y_{k+2}}{2}\right),
\end{aligned}
$$

completing the induction and the proof of our claim.
(a) We prove the claim by induction; for $n=0$ we have $1-5+4=0$. Now assuming it is true for n, we prove (with the help of our above observation) that it is true for $n+1$:

$$
\begin{aligned}
& x_{n+1}^{2}-5 y_{n+1}^{2} \\
& =\left(\frac{3 x_{n}+5 y_{n}}{2}\right)^{2}-5\left(\frac{x_{n}+3 y_{n}}{2}\right)^{2} \\
& \quad=\frac{9 x_{n}^{2}+30 x_{n} y_{n}+25 y_{n}^{2}}{4}-5 \cdot \frac{x_{n}^{2}+6 x_{n} y_{n}+9 y_{n}^{2}}{4} \\
& \quad=\frac{4 x_{n}^{2}-20 y_{n}^{2}}{4}=x_{n}^{2}-5 y_{n}^{2}=-4
\end{aligned}
$$

as desired.
(b) Suppose by way of contradiction that $a^{2}-5 b^{2}+4=0$ for integers $a, b>0$, and that there did not exist k such that $\left(x_{k}, y_{k}\right)=(a, b)$. Choose a counterexample that minimizes $a+b$.

Note that $0 \equiv a^{2}-5 b^{2}+4 \equiv a-b(\bmod 2)$. Next, $a^{2}=5 b^{2}-4<$ $9 b^{2} \Rightarrow a<3 b$. And there are no counterexamples with $a=1$ or 2 ; thus $a^{2}>5$ and $0=5 a^{2}-25 b^{2}+20<5 a^{2}-25 b^{2}+4 a^{2} \Rightarrow 3 a>5 b$.

Therefore $a^{\prime}=\frac{3 a-5 b}{2}$ and $b^{\prime}=\frac{3 b-a}{2}$ are positive integers. Then since $a^{2}-5 b^{2}=-4$, some quick algebra shows that $a^{\prime 2}-5 b^{\prime 2}=-4$ as well; but $a^{\prime}+b^{\prime}=\frac{3 a-5 b}{2}+\frac{3 b-a}{2}=a-b<a+b$. It follows from the minimal definition of (a, b) that there must exist some $\left(a_{k}, b_{k}\right)$ equal to $\left(a^{\prime}, b^{\prime}\right)$.

But then it is easy to verify that $(a, b)=\left(\frac{3 a^{\prime}+5 b^{\prime}}{2}, \frac{a^{\prime}+3 b^{\prime}}{2}\right)=$ $\left(a_{k+1}, b_{k+1}\right)$, a contradiction! This completes the proof.

Problem 4 Let a, b, c be real numbers such that $a b c+a+c=b$. Determine the greatest possible value of the expression

$$
P=\frac{2}{a^{2}+1}-\frac{2}{b^{2}+1}+\frac{3}{c^{2}+1}
$$

Solution: The condition is equivalent to $b=\frac{a+c}{1-a c}$, which suggests making the substitutions $A=\operatorname{Tan}^{-1} a$ and $C=\operatorname{Tan}^{-1} c$; then we have $b=\tan (A+C)$ and

$$
\begin{aligned}
P & =\frac{2}{\tan ^{2} A+1}-\frac{2}{\tan ^{2}(A+C)+1}+\frac{3}{\tan ^{2} C+1} \\
& =2 \cos ^{2} A-2 \cos ^{2}(A+C)+3 \cos ^{2} C \\
& =\left(2 \cos ^{2} A-1\right)-\left(2 \cos ^{2}(A+C)-1\right)+3 \cos ^{2} C \\
& =\cos (2 A)-\cos (2 A+2 C)+3 \cos ^{2} C \\
& =2 \sin (2 A+C) \sin C+3 \cos ^{2} C .
\end{aligned}
$$

Letting $u=|\sin C|$, this expression is at most

$$
\begin{aligned}
& 2 u+3\left(1-u^{2}\right)=-3 u^{2}+2 u+3 \\
& \quad=-3\left(u-\frac{1}{3}\right)^{2}+\frac{10}{3} \leq \frac{10}{3}
\end{aligned}
$$

Equality can be achieved when $\sin (2 A+C)=1$ and $\sin C=\frac{1}{3}$, which gives $(a, b, c)=\left(\frac{\sqrt{2}}{2}, \sqrt{2}, \frac{\sqrt{2}}{4}\right)$. Thus the maximum value of P is $\frac{10}{3}$.

Problem 5 In the three-dimensional space let $O x, O y, O z, O t$ be four nonplanar distinct rays such that the angles between any two of them have the same measure.
(a) Determine this common measure.
(b) Let $O r$ be another ray different from the above four rays. let $\alpha, \beta, \gamma, \delta$ be the angles formed by $O r$ with $O x, O y, O z, O t$, respectively. Put

$$
\begin{aligned}
& p=\cos \alpha+\cos \beta+\cos \gamma+\cos \delta \\
& q=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta
\end{aligned}
$$

Prove that p and q remain constant as $O r$ rotates about the point O.

Solution: Put O at the origin, and say the four rays hit the unit sphere at A, B, C, D. Then $A B C D$ is a regular tetrahedron, and (letting X also represent the vector $\overrightarrow{O X}$) we have $A+B+C+D=0$.
(a) Say the common angle is ϕ. Then
$0=A \cdot(A+B+C+D)=A \cdot A+A \cdot(B+C+D)=1+3 \cos \phi$, so $\phi=\cos ^{-1}\left(-\frac{1}{3}\right)$.
(b) Without loss of generality say that Or hits the unit sphere at $U=(1,0,0)$; also write $A=\left(x_{1}, y_{1}, z_{1}\right)$, and so on. Then

$$
\begin{aligned}
p & =U \cdot A+U \cdot B+U \cdot C+U \cdot D \\
& =U \cdot(A+B+C+D) \\
& =U \cdot \overrightarrow{0}=0
\end{aligned}
$$

a constant. Also, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\cos \alpha, \cos \beta, \cos \gamma, \cos \delta)$ and $q=\sum x_{i}^{2}$. The following lemma then implies that q will always equal $\frac{4}{3}$:
Lemma. Suppose we are given a regular tetrahedron T inscribed in the unit sphere and with vertices $\left(x_{i}, y_{i}, z_{i}\right)$ for $1 \leq i \leq 4$. Then we have $\sum x_{i}^{2}=\sum y_{i}^{2}=\sum z_{i}^{2}=\frac{4}{3}$ and $\sum x_{i} y_{i}=\sum y_{i} z_{i}=$ $\sum z_{i} x_{i}=0$.

Proof: This is easily verified when the vertices are at

$$
\begin{gathered}
A_{0}=(0,0,1), B_{0}=\left(\frac{2 \sqrt{2}}{3}, 0,-\frac{1}{3}\right), \\
C_{0}=\left(-\frac{\sqrt{2}}{3}, \frac{\sqrt{6}}{3},-\frac{1}{3}\right), D_{0}=\left(-\frac{\sqrt{2}}{3},-\frac{\sqrt{6}}{3},-\frac{1}{3}\right) .
\end{gathered}
$$

Now assume these equations are true for a tetrahedron $A B C D$, and rotate it about the z-axis through an angle θ. Then each $\left(x_{i}, y_{i}, z_{i}\right)$ becomes $\left(x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}\right)=\left(x_{i} \cos \theta-y_{i} \sin \theta, x_{i} \sin \theta+\right.$ $\left.y_{i} \cos \theta, z_{i}\right)$, and
$\sum x_{i}^{\prime 2}=\cos ^{2} \theta \sum x_{i}^{2}-2 \sin \theta \cos \theta \sum x_{i} y_{i}+\sin ^{2} \theta \sum y_{i}^{2}=\frac{4}{3}$
$\sum y_{i}^{\prime 2}=\sin ^{2} \theta \sum x_{i}^{2}+2 \sin \theta \cos \theta \sum x_{i} y_{i}+\cos ^{2} \theta \sum y_{i}^{2}=\frac{4}{3}$
$\sum z_{i}^{\prime 2}=\sum z_{i}^{2}=\frac{4}{3}$
$\sum x_{i}^{\prime} y_{i}^{\prime}=\sin \theta \cos \theta \sum\left(x_{i}^{2}-y_{i}^{2}\right)+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sum x_{i} y_{i}=0$
$\sum y_{i}^{\prime} z_{i}^{\prime}=\sin \theta \sum x_{i} z_{i}+\cos \theta \sum y_{i} z_{i}=0$
$\sum z_{i}^{\prime} x_{i}^{\prime}=\cos \theta \sum z_{i} x_{i}-\sin \theta \sum z_{i} y_{i}=0$.
Similarly, the equations remain true after rotating $A B C D$ about the y - and z-axes.

Now, first rotate our given tetrahedron T about the z-axis until one vertex is in the $y z$-plane; next rotate it about the x-axis until this vertex is at $(0,0,1)$; and finally rotate it about the z-axis again until the tetrahedron corresponds with the initial tetrahedron $A_{0} B_{0} C_{0} D_{0}$ described above. Since we know the above equations are true for $A_{0} B_{0} C_{0} D_{0}$, if we reverse the rotations to return to T the equations will remain true, as claimed.

Problem 6 Let $\mathcal{S}=\{0,1,2, \ldots, 1999\}$ and $\mathcal{T}=\{0,1,2, \ldots\}$. Find all functions $f: \mathcal{T} \rightarrow \mathcal{S}$ such that
(i) $f(s)=s$ for all $s \in \mathcal{S}$.
(ii) $f(m+n)=f(f(m)+f(n))$ for all $m, n \in \mathcal{T}$.

Solution: Suppose that $f(2000)=2000-t$, where $1 \leq t \leq 2000$. We prove by induction on n that for all $n \geq 2000$, we have $f(n)=f(n-t)$. By assumption it is true for $n=2000$. Then assuming it is true for
n, we have

$$
f(n+1)=f(f(n)+f(1))=f(f(n-t)+f(1))=f(n-t+1)
$$

completing the inductive step. Therefore the function is completely determined by the value of $f(2000)$, and it follows that there are at most 2000 such functions.

Conversely, given any $c=2000-t \in S$, let f be the function such that $f(s)=s$ for all $s \in \mathcal{S}$ while $f(n)=f(n-t)$ for all $n \geq 2000$. We prove by induction on $m+n$ that condition (ii) holds. If $m+n \leq 2000$ then $m, n \in \mathcal{S}$ and the claim is obvious. Otherwise, $m+n>2000$. Again, if $m, n \in \mathcal{S}$ the claim is obvious; otherwise assume without loss of generality that $n \geq 2000$. Then

$$
f(m+n)=f(m+n-t)=f(f(m)+f(n-t))=f(f(m)+f(n))
$$

where the first and third equalities come from our periodic definition of f, and the second equality comes from the induction hypothesis. Therefore there are exactly 2000 functions f.

Problem 7 For $n=1,2, \ldots$, let $\left\{u_{n}\right\}$ be a sequence defined by

$$
u_{1}=1, u_{2}=2, u_{n+2}=3 u_{n+1}-u_{n} .
$$

Prove that

$$
u_{n+2}+u_{n} \geq 2+\frac{u_{n+1}^{2}}{u_{n}}
$$

for all n.

Solution: We first prove by induction that for $n \geq 1$, we have $u_{n} u_{n+2}=u_{n+1}^{2}+1$. Since $u_{3}=5$, for $n=1$ we have $1 \cdot 5=2^{2}+1$, as desired.
Now assuming our claim is true for n, we have

$$
\begin{aligned}
& u_{n+2}^{2}+1=u_{n+2}\left(3 u_{n+1}-u_{n}\right)+1 \\
& \quad=3 u_{n+1} u_{n+2}-\left(u_{n} u_{n+2}-1\right) \\
& \quad=3 u_{n+1} u_{n+2}-u_{n+1}^{2} \\
& =u_{n+1}\left(3 u_{n+2}-u_{n+1}\right)=u_{n+1} u_{n+3},
\end{aligned}
$$

so it is true for $n+1$ as well and thus all $n \geq 1$.

Therefore, for all $n \geq 1$ we have

$$
u_{n+2}+u_{n}=\frac{u_{n+1}^{2}+1}{u_{n}}+u_{n}=\frac{u_{n+1}^{2}}{u_{n}}+\left(u_{n}+\frac{1}{u_{n}}\right) \geq \frac{u_{n+1}^{2}}{u_{n}}+2
$$

where $u_{n}+\frac{1}{u_{n}} \geq 2$ by AM-GM. This proves the inequality.
Problem 8 Let $A B C$ be a triangle inscribed in circle ω. Construct all points P in the plane $(A B C)$ and not lying on ω, with the property that the lines $P A, P B, P C$ meet ω again at points $A^{\prime}, B^{\prime}, C^{\prime}$ such that $A^{\prime} B^{\prime} \perp A^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime}=A^{\prime} C^{\prime}$.

Solution: All angles are directed modulo 180°. We solve a more general problem: suppose we have some fixed triangle $D E F$ and we want to find all points P such that when $A^{\prime}=P A \cap \omega, B^{\prime}=P B \cap \omega$, $C^{\prime}=P C \cap \omega$ then triangles $A^{\prime} B^{\prime} C^{\prime}$ and $D E F$ are similar with the same orientations. (In other words, we want $\angle B^{\prime} C^{\prime} A^{\prime}=\angle E F D$ and $\angle C^{\prime} A^{\prime} B^{\prime}=\angle F D E$.)

Given X, Y on ω, let $\angle \widehat{X Y}$ denote the angle $\angle X Z Y$ for any other point Z on ω. Now given a point P, we have $\angle B P A=\angle \widehat{B A}+$ $\angle \widehat{B^{\prime} A^{\prime}}=\angle B C A+\angle B^{\prime} C^{\prime} A^{\prime}$ and $\angle C P B=\angle \widehat{C B}+\angle \widehat{C^{\prime} B^{\prime}}=\angle C A B+$ $\angle C^{\prime} A^{\prime} B^{\prime}$. Thus $\angle B^{\prime} C^{\prime} A^{\prime}=\angle E F D$ if and only if $\angle B P A=\angle B C A+$ $\angle E F D$, while $\angle C^{\prime} A^{\prime} B^{\prime}=\angle F D E$ if and only if $\angle C P B=\angle C A B+$ $\angle F D E$. Therefore our desired point P is the intersection point, different than B, of the two circles $\left\{P^{\prime} \mid \angle B P^{\prime} A=\angle B C A+\angle E F D\right\}$ and $\left\{P^{\prime} \mid \angle C P^{\prime} B=\angle C A B+\angle F D E\right\}$.

Now back to our original problem: we wish to find P such that triangle $A^{\prime} B^{\prime} C^{\prime}$ is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with $\angle C^{\prime} A^{\prime} B^{\prime}=90^{\circ}$. Because our angles are directed, there are two possible orientations for such a triangle: either $\angle A^{\prime} B^{\prime} C^{\prime}=45^{\circ}$ or $\angle A^{\prime} B^{\prime} C^{\prime}=-45^{\circ}$. Applying the above construction twice with triangle $D E F$ defined appropriately yields the two desired possible locations of P.

Problem 9 Consider real numbers a, b such that $a \neq 0, a \neq b$ and all roots of the equation

$$
a x^{3}-x^{2}+b x-1=0
$$

are real and positive. Determine the smallest possible value of the expression

$$
P=\frac{5 a^{2}-3 a b+2}{a^{2}(b-a)} .
$$

Solution: When the roots of the equation are all $\sqrt{3}$, we have $a=\frac{1}{3 \sqrt{3}}, b=\sqrt{3}$, and $P=12 \sqrt{3}$. We prove that $12 \sqrt{3}$ is minimal.

Say the roots to $a x^{3}-x^{2}+b x-1$ are $p=\tan A, q=\tan B$, and $r=\tan C$ with $0<A, B, C<90^{\circ}$. Then

$$
\begin{gathered}
a x^{3}-x^{2}+b x-1=a(x-p)(x-q)(x-r) \\
=a x^{3}-a(p+q+r) x^{2}+a(p q+q r+r p) x-a(p q r) .
\end{gathered}
$$

Thus $a=\frac{1}{p+q+r}=\frac{1}{p q r}>0$ and $p+q+r=p q r$. Then

$$
\begin{aligned}
r & =\frac{p+q}{p q-1} \\
& =-\tan (A+B) \\
& =\tan \left(180^{\circ}-A-B\right)
\end{aligned}
$$

so $A+B+C=180^{\circ}$. Then since $\tan x$ is convex for $0<x<90^{\circ}$, we have

$$
\frac{1}{a}=\tan A+\tan B+\tan C \geq 3 \tan 60^{\circ}=3 \sqrt{3}
$$

so $a \leq \frac{1}{3 \sqrt{3}}$.
Also notice that

$$
\frac{b}{a}=p q+q r+r p \geq 3 \sqrt[3]{p^{2} q^{2} r^{2}}=3 \sqrt[3]{\frac{1}{a^{2}}} \geq 9>1
$$

so $b>a$. Thus the denominator of P is always positive and is an increasing function of b, while the numerator of P is a decreasing function of b. Therefore, for a constant a, P is a decreasing function of b.

Furthermore,

$$
\begin{aligned}
& (p-q)^{2}+(q-r)^{2}+(r-p)^{2} \geq 0 \\
& \quad \Longrightarrow(p+q+r)^{2} \geq 3(p q+q r+r p) \\
& \quad \Longrightarrow \frac{1}{a^{2}} \geq \frac{3 b}{a} \Longrightarrow b \leq \frac{1}{3 a}
\end{aligned}
$$

and

$$
P \geq \frac{5 a^{2}-3 a\left(\frac{1}{3 a}\right)+2}{a^{2}\left(\frac{1}{3 a}-a\right)}=\frac{5 a^{2}+1}{\frac{a}{3}-a^{3}}
$$

Thus for $0<a \leq \frac{1}{3 \sqrt{3}}$, it suffices to show that

$$
\begin{aligned}
& 5 a^{2}+1 \geq 12 \sqrt{3}\left(\frac{a}{3}-a^{3}\right)=4 \sqrt{3} a-12 \sqrt{3} a^{3} \\
& \Longleftrightarrow 12 \sqrt{3} a^{3}+5 a^{2}-4 \sqrt{3} a+1 \geq 0 \\
& \Longleftrightarrow 3\left(a-\frac{1}{3 \sqrt{3}}\right)\left(4 \sqrt{3} a^{2}+3 a-\sqrt{3}\right) \geq 0 \\
& \Longleftrightarrow 4 \sqrt{3} a^{2}+3 a-\sqrt{3} \leq 0
\end{aligned}
$$

But the last quadratic has one positive root

$$
\frac{-3+\sqrt{57}}{8 \sqrt{3}} \geq \frac{-3+7}{8 \sqrt{3}}=\frac{1}{2 \sqrt{3}}>\frac{1}{3 \sqrt{3}}
$$

so it is indeed negative when $0<a \leq \frac{1}{3 \sqrt{3}}$. This completes the proof.
Problem 10 Let $f(x)$ be a continuous function defined on $[0,1]$ such that
(i) $f(0)=f(1)=0$;
(ii) $2 f(x)+f(y)=3 f\left(\frac{2 x+y}{3}\right)$ for all $x, y \in[0,1]$.

Prove that $f(x)=0$ for all $x \in[0,1]$.
Solution: We prove by induction on k that $f\left(\frac{m}{3^{k}}\right)=0$ for all integers $k \geq 0$ and all integers $0 \leq m \leq 3^{k}$. The given conditions show this claim is true for $k=0$; now assuming it is true for $k-1$, we prove it is true for k.

If $m \equiv 0(\bmod 3)$ then $f\left(\frac{m}{3^{k}}\right)=f\left(\frac{\frac{m}{3}}{3^{k-1}}\right)=0$ by the induction hypothesis.

If $m \equiv 1(\bmod 3)$, then $1 \leq m \leq 3^{k}-2$ and

$$
3 f\left(\frac{m}{3^{k}}\right)=2 f\left(\frac{\frac{m-1}{3}}{3^{k-1}}\right)+f\left(\frac{\frac{m+2}{3}}{3^{k-1}}\right)=0+0=0 .
$$

Thus $f\left(\frac{m}{3^{k}}\right)=0$.
And if $m \equiv 2(\bmod 3)$, then $2 \leq m \leq 3^{k}-1$ and

$$
3 f\left(\frac{m}{3^{k}}\right)=2 f\left(\frac{\frac{m+1}{3}}{3^{k-1}}\right)+f\left(\frac{\frac{m-2}{3}}{3^{k-1}}\right)=0+0=0 .
$$

Hence $f\left(\frac{m}{3^{k}}\right)=0$, finishing our induction.

Now, for any $x \in[0,1]$ we can form a sequence of numbers of the form $\frac{m}{3^{k}}$ whose limit is x; then since f is continuous, it follows that $f(x)=0$ for all $x \in[0,1]$, as desired.

Problem 11 The base side and the altitude of a right regular hexagonal prism $A B C D E F-A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ are equal to a and h respectively.
(a) Prove that six planes

$$
\left(A B^{\prime} F^{\prime}\right),\left(C D^{\prime} B^{\prime}\right),\left(E F^{\prime} D^{\prime}\right),\left(D^{\prime} E C\right),\left(F^{\prime} A E\right),\left(B^{\prime} C A\right)
$$

touch the same sphere.
(b) Determine the center and the radius of the sphere.

Solution:

(a) Let O be the center of the prism. $\left(A B^{\prime} F^{\prime}\right)$ is tangent to a unique sphere centered at O. Now the other five planes are simply reflections and rotations of $\left(A B^{\prime} F^{\prime}\right)$ with respect to O; and since the sphere remains fixed under these transformations, it follows that all six planes are tangent to this same sphere.
(b) From part (a), the center of the sphere is the center O of the prism. Let P be the midpoint of $\overline{A E}$ and let P^{\prime} be the midpoint of $\overline{A^{\prime} E^{\prime}}$. Also let Q be the midpoint of $\overline{P F^{\prime}}$, and let $\overline{O R}$ be the perpendicular from O to line $P F^{\prime}$. Note that $P, P^{\prime}, Q, R, O, F^{\prime}$ all lie in one plane.

It is straightforward to calculate that $F^{\prime} P^{\prime}=\frac{a}{2}$ and $Q O=\frac{3 a}{4}$. Also, since $Q O \| F^{\prime} P^{\prime}$ we have $\angle R Q O=\angle P F^{\prime} P^{\prime}$; combined with $\angle O R Q=\angle P P^{\prime} F^{\prime}=90^{\circ}$, this gives $\triangle O R Q \sim \triangle P P^{\prime} F^{\prime}$. Hence the radius of the sphere is

$$
O R=P P^{\prime} \cdot \frac{O Q}{P F^{\prime}}=h \cdot \frac{\frac{3 a}{4}}{\sqrt{\left(\frac{a}{2}\right)^{2}+h^{2}}}=\frac{3 a h}{2 \sqrt{a^{2}+4 h^{2}}}
$$

Problem 12 For $n=1,2, \ldots$, two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are defined recursively by

$$
x_{1}=1, y_{1}=2, x_{n+1}=22 y_{n}-15 x_{n}, y_{n+1}=17 y_{n}-12 x_{n}
$$

(a) Prove that x_{n} and y_{n} are not equal to zero for all $n=1,2, \ldots$.
(b) Prove that each sequence contains infinitely many positive terms and infinitely many negative terms.
(c) For $n=1999^{1945}$, determine whether x_{n} and y_{n} are divisible by 7 or not.

Solution:

(a) The recursive equation for x_{n+1} gives $y_{n}=\frac{1}{22}\left(15 x_{n}+x_{n+1}\right)$ and thus also $y_{n+1}=\frac{1}{22}\left(15 x_{n+1}+x_{n+2}\right)$. Substituting these expressions into the other recursive equation gives

$$
x_{n+2}=2 x_{n+1}-9 x_{n}
$$

and similarly we can also find

$$
y_{n+2}=2 y_{n+1}-9 y_{n}
$$

Quick computation gives $x_{2}=29$ and $y_{2}=22$. Then x_{1}, x_{2} are odd, and if x_{n}, x_{n+1} are odd then x_{n+2} must be as well; thus all the x_{n} are odd and hence nozero. Similarly, all the y_{n} are congruent to $2(\bmod 4)$ and thus nonzero as well.
(b) Note that $x_{n+3}=2\left(2 x_{n+1}-9 x_{n}\right)-9 x_{n+1}=-5 x_{n+1}-18 x_{n}$. Thus if x_{n}, x_{n+1} are positive (or negative) then x_{n+3} is negative (or positive). Hence among every four consecutive terms x_{n} there is some positive number and some negative number. Therefore there are infinitely many positive terms and infinitely many negative terms in this sequence; and a similar proof holds for the y_{n}.
(c) All congruences are taken modulo 7 unless stated otherwise. Note that $x_{1} \equiv x_{2} \equiv 1$. Now if $x_{n} \equiv x_{n+1}$ and $x_{n} \not \equiv 0$, then we have $\left(x_{n+2}, x_{n+3}, x_{n+4}, x_{n+5}\right) \equiv\left(0,5 x_{n}, 3 x_{n}, 3 x_{n}\right)$ and $5 x_{n} \not \equiv 0$, $3 x_{n} \not \equiv 0$. This implies that $x_{3}, x_{7}, x_{11}, \ldots$ are all divisible by 7 but no other x_{n} are. Since $1999^{1945} \equiv 3^{1945} \equiv 3 \cdot 9^{1944 / 2} \equiv 3(\bmod 4)$, we indeed have $7 \mid x_{n}$ when $n=1999^{1945}$.

Now suppose by way of contradiction that $7 \mid y_{n^{\prime}}$ for some n^{\prime}, and choose the minimal such n^{\prime}. From the recursion for y_{n}, we have $y_{n} \equiv y_{n+1}+3 y_{n+2}$. Now if $n^{\prime} \geq 5$ then $y_{n^{\prime}-2} \equiv y_{n^{\prime}-1}$, $y_{n^{\prime}-3} \equiv 4 y_{n^{\prime}-1}$, and $y_{n^{\prime}-4} \equiv 0-$ contradicting the minimal choice of n^{\prime}. Thus we have $n^{\prime} \leq 4$, but we have $\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \equiv$ $(2,1,5,1)$. Therefore no term is divisible by 7 ; and specifically, $7 \not \backslash y_{n}$ when $n=1999^{1945}$.

1
 1999 Regional Contests: Problems and Solutions

1.1 Asian Pacific Mathematical Olympiad

Problem 1 Find the smallest positive integer n with the following property: There does not exist an arithmetic progression of 1999 real numbers containing exactly n integers.

Solution: Look at the 1999-term arithmetic progression with common difference $\frac{1}{q}$ and beginning term $\frac{p}{q}$, where p and q are integers with $1<q<1999$; without loss of generality assume that $1 \leq p \leq q$. When $p=1$, the progression contains the integers $1,2, \ldots,\left\lfloor\frac{1999}{q}\right\rfloor$; when $p=q$, the progression contains the integers $1,2, \ldots, 1+\left\lfloor\frac{1998}{q}\right\rfloor$. Since 1999 is prime, q does not divide 1999 and hence $\left\lfloor\frac{1999}{q}\right\rfloor=\left\lfloor\frac{1998}{q}\right\rfloor$. Thus the progression contains either $\left\lfloor\frac{1999}{q}\right\rfloor$ or $\left\lfloor\frac{1999}{q}\right\rfloor+1$ integers, and any k of this form can be attained. Call such numbers good.

Conversely, suppose we have an arithmetic progression containing exactly k integers, where $1<k<1999$; without loss of generality, say its common difference is positive and say it contains 0 as its t-th term. Its common difference cannot be irrational, so it is of the form $\frac{p}{q}$ for some positive, relatively prime integers p, q. And since $1<k<1999$, $1<q<1999$. But then look at the arithmetic progression with common difference $\frac{1}{q}$ and 0 as its t-th term. It, too, contains exactly k integers; so from our previous argument, k is good.

Now, for $q \geq 32$ we have $1999<2 q(q+1) \Longrightarrow \frac{1999}{q}-\frac{1999}{q+1}<2$. Since $\left\lfloor\frac{1999}{32}\right\rfloor=62$ and $\left\lfloor\frac{1999}{1998}\right\rfloor=1$, this implies that every integer k between 1 and 63 is good. Also,

$$
\begin{gathered}
\left\lfloor\frac{1999}{31}\right\rfloor=64, \quad\left\lfloor\frac{1999}{30}\right\rfloor=66, \quad\left\lfloor\frac{1999}{29}\right\rfloor=68 \\
\left.\left\lfloor\frac{1999}{q}\right\rfloor \leq 62 \text { when } q \geq 32, \quad \frac{1999}{q}\right\rfloor \geq 71 \text { when } q \leq 28
\end{gathered}
$$

Thus 70 is the smallest integer that k cannot equal, and $n=70$.

Problem 2 Let a_{1}, a_{2}, \ldots be a sequence of real numbers satisfying

$$
a_{i+j} \leq a_{i}+a_{j}
$$

for all $i, j=1,2, \ldots$ Prove that

$$
a_{1}+\frac{a_{2}}{2}+\frac{a_{3}}{3}+\cdots+\frac{a_{n}}{n} \geq a_{n}
$$

for all positive integers n.

Solution:

Lemma. If m, n are positive integers with $m \geq n$, then $a_{1}+a_{2}+$ $\cdots+a_{n} \geq \frac{n(n+1)}{2 m} \cdot a_{m}$.

Proof: The result for $m=n$ comes from adding the inequalities $a_{1}+a_{n-1} \geq a_{n}, a_{2}+a_{n-2} \geq a_{n}, \ldots, a_{n-1}+a_{1} \geq a_{n}, 2 a_{n} \geq$ $2 a_{n}$, and then dividing by two. Now for positive integers j, write $\beta_{j}=\frac{a_{1}+a_{2}+\cdots+a_{j}}{1+2+\cdots+j}$. Then the inequality for $m=n=j=k+1$ is equivalent to both $\beta_{j} \geq \frac{a_{j}}{j}$ and $\beta_{k} \geq \beta_{k+1}$; so when $m \geq n$ we have $\beta_{n} \geq \beta_{n+1} \geq \cdots \geq \beta_{m} \geq \frac{a_{m}}{m}$, as desired.

The desired inequality now follows from expressing $a_{1}+\frac{a_{2}}{2}+\cdots+\frac{a_{n}}{n}$ as an Abel sum and then applying the lemma multiple times:

$$
\begin{aligned}
a_{1} & +\frac{a_{2}}{2}+\cdots+\frac{a_{n}}{n} \\
& =\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\sum_{j=1}^{n-1}\left(\frac{1}{j}-\frac{1}{j+1}\right)\left(a_{1}+a_{2}+\cdots+a_{j}\right) \\
& \geq \frac{1}{n} \frac{n(n+1)}{2 n} a_{n}+\sum_{j=1}^{n-1} \frac{1}{j(j+1)} \cdot \frac{j(j+1)}{2 n} a_{n} \\
& =a_{n}
\end{aligned}
$$

as desired.
Problem 3 Let ω_{1} and ω_{2} be two circles intersecting at P and Q. The common tangent, closer to P, of ω_{1} and ω_{2}, touches ω_{1} at A and ω_{2} at B. The tangent to ω_{1} at P meets ω_{2} again at C, and the extension of $A P$ meets $B C$ at R. Prove that the circumcircle of triangle $P Q R$ is tangent to $B P$ and $B R$.

Solution: We shall use directed angles. Using tangents and cyclic quadrilaterals, we have $\angle Q A R=\angle Q A P=\angle Q P C=\angle Q B C=$ $\angle Q B R$, so $Q A B R$ is cyclic.

Since $\angle B P R$ is an exterior angle to triangle $A B P$, we have $\angle B P R=\angle B A P+\angle P B A$. Then again using tangents and cyclic
quadrilaterals, we have $\angle B A P+\angle P B A=\angle B A R+\angle P C B=$ $\angle B Q R+\angle P Q B=\angle P Q R$. Thus $\angle B P R=\angle P Q R$, which implies that line $B P$ is tangent to the circumcircle of triangle $P Q R$.

Next, $\angle P R B$ is an exterior angle to triangle $C R P$ so $\angle P R B=$ $\angle P C R+\angle R P C$. We know that $\angle P C R=\angle P C B=\angle P Q B$; and letting T be the intersection of lines $C P$ and $A B$, we have $\angle R P C=$ $\angle A P T=\angle A Q P=\angle B A P=\angle B A R=\angle B Q R$. Therefore $\angle P R B=$ $\angle P Q B+\angle B Q R=\angle P Q R$, which implies that line $B R$ is tangent to the circumcircle of triangle $P Q R$ as well.

Problem 4 Determine all pairs (a, b) of integers for which the numbers $a^{2}+4 b$ and $b^{2}+4 a$ are both perfect squares.

Solution: If $a=0$ then b must be a perfect square, and vice versa. Now assume both a and b are nonzero. Also observe that $a^{2}+4 b$ and a^{2} have the same parity, and similarly $b^{2}+4 a$ and b^{2} have the same parity.

If b is positive then $a^{2}+4 b \geq(|a|+2)^{2}=a^{2}+4|a|+4$ so $|b| \geq|a|+1$. If b is negative then $a^{2}+4 b \leq(|a|-2)^{2}=a^{2}-4|a|+4$ so $|b| \geq|a|-1$. Similarly, $a>0 \Longrightarrow|a| \geq|b|+1$ and $a<0 \Longrightarrow|a| \geq|b|-1$.

Assume without loss of generality that $b>a$. If a and b are positive, then from the last paragraph we have $b \geq a+1$ and $a \geq b+1$, a contradiction.

If a and b are negative, then we have either $a=b$ or $a=b-1$. For $b \geq-5$, only $(a, b)=(-4,-4)$ and $(-6,-5)$ work. Otherwise, we have $(b+4)^{2}<b^{2}+4 a<(b+2)^{2}$, a contradiction.

Finally, if a is negative and b is positive, then we have both $|b| \geq$ $|a|+1$ and $|a| \geq|b|-1$. Then we must have $|b|=|a|+1$ and hence $a+b=1$. Any such pair works, since then $a^{2}+4 b=(a-2)^{2}$ and $b^{2}+4 a=(b-2)^{2}$ are both perfect squares.

Therefore the possible pairs (a, b) are $(-4,-4),(-6,-5),(-5,-6)$; and $\left(0, n^{2}\right),\left(n^{2}, 0\right)$, and $(n, 1-n)$ where n is any integer.

Problem 5 Let \mathcal{S} be a set of $2 n+1$ points in the plane such that no three are collinear and no four concyclic. A circle will be called good if it has 3 points of \mathcal{S} on its circumference, $n-1$ points in its interior, and $n-1$ in its exterior. Prove that the number of good circles has the same parity as n.

Solution:

Lemma. Suppose we have $2 n \geq 1$ given points in the plane with no three collinear, and one distinguished point A among them. Call a line "good" if it passes through A and one other given point, and if it separates the remaining $2 n-2$ points: that is, half of them lie on one side of the line, and the other half lie on the other. Then there are an odd number of good lines.

Proof: We prove the claim by induction. It is trivial for $n=1$; now assuming it is true for $n-1$, we prove it is true for n.

Without loss of generality, arrange the $2 n-1$ points different from A on a circle centered at A. From those $2 n-1$ points, choose two points, B and C, that are the greatest distance apart. Then if $P \neq A, B, C$ is a given point, B and C lie on different sides of line $A P$. Thus line $A P$ is good if and only if it separates the other $2 n-3$ points; and by the induction hypothesis, there are an odd number of such lines. Finally, line $A B$ is good if and only if line $A C$ is good - adding either 0 or 2 good lines to our count, so that our total count remains odd. This completes the inductive step.

Suppose we have a pair of points $\{A, B\}$ in \mathcal{S}. Perform an inversion about A with arbitrary radius. B and the other $2 n-1$ points $C_{1}, C_{2}, \ldots, C_{2 n-1}$ map to $2 n$ distinct points $B^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{2 n-1}^{\prime}$ (no three collinear); and the circle passing through A, B, C_{k} is good if and only if the corresponding line $B^{\prime} C_{k}^{\prime}$ separates the other C_{i}^{\prime}. By the lemma, there are an odd number of such lines; so an odd number of good circles pass through any pair of given points.

For each pair of points count the number of good circles passing through these points; each good circle is counted three times in this manner, so if there are k good circles then our count will be $3 k$. And there are $\binom{2 n+1}{2}=n(2 n+1)$ pairs of points, each contributing an odd amount to our count. Therefore $3 k \equiv n(2 n+1) \Longrightarrow k \equiv n(\bmod 2)$, as desired.

1.2 Austrian-Polish Mathematics Competition

Problem 1 Let n be a positive integer and $M=\{1,2, \ldots, n\}$. Find the number of ordered 6 -tuples $\left(A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right)$ which satisfy the following two conditions:
(a) $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ (not necessarily distinct) are subsets of M;
(b) each element of M belongs to either 0,3 , or 6 of the sets A_{1}, A_{2}, $A_{3}, A_{4}, A_{5}, A_{6}$.

Solution: Given $k \in M$, there are $\binom{6}{0}$ ways to put k into exactly 0 of the 6 sets; $\binom{6}{3}$ ways to put k into exactly 3 of the sets; and $\binom{6}{6}$ ways to put k into all 6 sets. This adds up to $1+20+1=22$ ways to put k into the sets. Every admissible 6 -tuple is uniquely determined by where each k is placed; therefore, there are 22^{n} possible distributions.

Problem 2 Find the largest real number C_{1} and the smallest real number C_{2} such that for all positive real numbers a, b, c, d, e the following inequalities hold:

$$
C_{1}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+e}+\frac{e}{e+a}<C_{2} .
$$

Solution: Let $f(a, b, c, d, e)=\frac{a}{a+b}+\cdots+\frac{e}{e+a}$. Note that $f(e, d, c, b, a)=5-f(a, b, c, d, e)$. Hence $f(a, b, c, d, e)$ can attain the value x if and only if it can attain the value $5-x$. Thus if we find C_{1}, then $C_{2}=5-C_{1}$.

If $a=\epsilon^{4}, b=\epsilon^{3}, c=\epsilon^{2}, d=\epsilon, e=1$, then

$$
f(a, b, c, d, e)=\frac{4 \epsilon}{1+\epsilon}+\frac{1}{1+\epsilon^{4}}
$$

which for small ϵ can become arbitrarily close to 1 . We now prove that $f(a, b, c, d, e)$ is always bigger than 1 . Since f is homogenous, we may assume without loss of generality that $a+b+c+d+e=1$. Now $g(x)=\frac{1}{x}$ is convex for all positive x; so by Jensen's inequality, $a g\left(x_{1}\right)+b g\left(x_{2}\right)+\cdots+e g\left(x_{5}\right) \geq g\left(a x_{1}+b x_{2}+\cdots+e x_{5}\right)$. Applying this inequality with $x_{1}=a+b, x_{2}=b+c, \ldots, x_{5}=e+a$, we find
that

$$
\begin{aligned}
& f(a, b, c, d, e) \geq \frac{1}{\sum_{\mathrm{cyc}} a(a+b)} \\
& \quad=\frac{(a+b+c+d+e)^{2}}{\sum_{\mathrm{cyc}} a(a+b)}>\frac{\sum_{\mathrm{cyc}} a(a+2 b)}{\sum_{\mathrm{cyc}} a(a+b)}>1
\end{aligned}
$$

as desired. (Here $\sum_{\text {cyc }} h(a, b, c, d, e)$ means $h(a, b, c, d, e)+h(b, c, d, e, a)+$ $\ldots+h(e, a, b, c, d)$.$) Hence C_{1}=1$; and from our initial arguments, $C_{2}=4$.

Problem 3 Let $n \geq 2$ be a given integer. Determine all systems of n functions $\left(f_{1}, \ldots, f_{n}\right)$ where $f_{i}: \mathbb{R} \rightarrow \mathbb{R}, i=1,2, \ldots, n$, such that for all $x, y \in \mathbb{R}$ the following equalities hold:

$$
\begin{aligned}
f_{1}(x)-f_{2}(x) f_{2}(y)+f_{1}(y) & =0 \\
f_{2}\left(x^{2}\right)-f_{3}(x) f_{3}(y)+f_{2}\left(y^{2}\right) & =0 \\
& \vdots \\
f_{n-1}\left(x^{n-1}\right)-f_{n}(x) f_{n}(y)+f_{n-1}\left(y^{n-1}\right) & =0 \\
f_{n}\left(x^{n}\right)-f_{1}(x) f_{1}(y)+f_{n}\left(y^{n}\right) & =0
\end{aligned}
$$

Solution: Setting $x=y$ into the k-th equation gives $2 f_{k}\left(x^{k}\right)=$ $f_{k+1}(x)^{2}$ (where we write $f_{n+1}=f_{1}$). Thus if $f_{k}(x)=0$ for all $x \in \mathbb{R}$, then $f_{k+1}(x)$ is also always zero; and similarly, all the f_{i} 's are identically zero. Now assume that no f_{k} is identically zero.

For odd k, given any real value r let $x=\sqrt[k]{r}$. Then $2 f_{k}(r)=$ $2 f_{k}\left(x^{k}\right)=f_{k+1}(x)^{2} \geq 0$ for all r. Similarly, for even $k, f_{k}(r) \geq 0$ whenever $r \geq 0$. Also observe that for even k, we cannot have some $f_{k}(x)<0$ and some $f_{k}(y)>0$ because then we'd have $f_{k-1}\left(x^{k-1}\right)-$ $f_{k}(x) f_{k}(y)+f_{k-1}\left(y^{k-1}\right)>0$, contradicting the $(k-1)$-th equation. And since $f_{k+1}(x) \neq 0$ for some x, we have $f_{k}\left(x^{k}\right)=\frac{1}{2} f_{k+1}(x)^{2}>0$. Therefore, we must have $f_{k}(x) \geq 0$ for all x and for all k.

We now prove by induction on k that f_{k} is a constant function. For $k=1$, plugging in $f_{2}(x)=\sqrt{2 f_{1}(x)}$ and $f_{2}(y)=\sqrt{2 f_{1}(y)}$ into the first equation gives $f_{1}(x)-2 \sqrt{f_{1}(x) f_{1}(y)}+f_{1}(y)=0$ for all $x, y \in \mathbb{R}$. By the arithmetic mean-geometric mean inequality, this is true only when $f_{1}(x)=f_{1}(y)$ for all $x, y \in \mathbb{R}$.

Now assume that $f_{k}(x)=f_{k}(y)$ for all x, y. Then $f_{k+1}(x)=$ $\sqrt{2 f_{k}\left(x^{k}\right)}=\sqrt{2 f_{k}\left(y^{k}\right)}=f_{k+1}(y)$ for any $x, y \in \mathbb{R}$, completing the inductive step.

Writing $f_{k}(x)=c_{k}$ (where we write $c_{n+1}=c_{1}$), observe that $c_{k}=\frac{1}{2} c_{k+1}^{2}$ for all k; since $f_{k}(x) \geq 0$ for all x but f_{k} is not identically zero, each c_{k} is positive. If $0<c_{k+1}<2$, then $0<c_{k}<c_{k+1}<2$. Thus $c_{n}>c_{n-1}>\cdots>c_{1}>c_{n}$, a contradiction. Similarly, if $c_{k+1}>2$ then $c_{k}>c_{k+1}>2$; so that $c_{n}<c_{n-1}<\cdots<c_{1}<c_{n}$, a contradiction. Hence, we must have $c_{k}=2$ for all k.

Therefore, the only possible functions are $f_{k}(x)=0$ for all x, k; and $f_{k}(x)=2$ for all x, k.

Problem 4 Three straight lines k, l, and m are drawn through some fixed point P inside a triangle $A B C$ such that:
(a) k meets the lines $A B$ and $A C$ in A_{1} and $A_{2}\left(A_{1} \neq A_{2}\right)$ respectively and $P A_{1}=P A_{2}$;
(b) l meets the lines $B C$ and $B A$ in B_{1} and $B_{2}\left(B_{1} \neq B_{2}\right)$ respectively and $P B_{1}=P B_{2}$;
(c) m meets the lines $C A$ and $C B$ in C_{1} and $C_{2}\left(C_{1} \neq C_{2}\right)$ respectively and $P C_{1}=P C_{2}$.
Prove that the lines k, l, m are uniquely determined by the above conditions. Find the point P (and prove that there exists exactly one such point) for which the triangles $A A_{1} A_{2}, B B_{1} B_{2}$, and $C C_{1} C_{2}$ have the same area.

Solution: Let ℓ be the reflection of line $A B$ about P; since A_{1} and A_{2} are also mirror images of each other across P, A_{2} must lie on ℓ. Thus A_{2} must be the intersection of ℓ and line $A C$, and this intersection point is unique since lines $A B$ and $A C$ are not parallel. Therefore k must be the line passing through P and this point, and conversely this line satisfies condition (a). Similarly, lines l and m are also uniquely determined.

Now suppose that triangles $A A_{1} A_{2}$ and $B B_{1} B_{2}$ have the same area. Let Q be the midpoint of $\overline{A A_{1}}$; then since P is the midpoint of $\overline{A_{1} A_{2}}$, we have $[A Q P]=\frac{1}{2}\left[A A_{1} P\right]=\frac{1}{4}\left[A A_{1} A_{2}\right]$. Similarly, let R be the midpoint of $\overline{B B_{2}}$; then $[B R P]=\frac{1}{2}\left[B B_{2} P\right]=\frac{1}{4}\left[B B_{1} B_{2}\right]$. Therefore $[A Q P]=[B R P]$; and since the heights from P in triangles $A Q P$ and $B R P$ are equal, we must have $A Q=B R$.

Now since P and Q are the midpoints of $\overline{A_{1} A_{2}}$ and $\overline{A_{1} A}$, we have $P Q \| A A_{2}$ and hence $P Q \| A C$. This implies that Q lies between A and B. Similarly, R lies between A and B as well. Then since $A Q=B R, Q$ and R are equidistant from the midpoint C^{\prime} of $\overline{A B}$. Therefore the homothety about C^{\prime} that maps A to Q also maps B to R. This homothety also maps line $A C$ to $Q P$ since $A C \| Q P$; and it maps line $B C$ to $R P$. Hence it maps C to P, so that C^{\prime}, P, C are collinear and P lies on the median from C in triangle $A B C$.

Similarly, P must lie on the medians from A and B in triangle $A B C$, so it must be the centroid G of triangle $A B C$. And conversely, if $P=G$ then k, l, m are parallel to lines $B C, C A, A B$ respectively, and $\left[A A_{1} A_{2}\right]=\left[B B_{1} B_{2}\right]=\left[C C_{1} C_{2}\right]=\frac{4}{9}[A B C]$.
Problem 5 A sequence of integers $\left\{a_{n}\right\}_{n \geq 1}$ satisfies the following recursive relation

$$
a_{n+1}=a_{n}^{3}+1999 \quad \text { for } n=1,2, \ldots
$$

Prove that there exists at most one n for which a_{n} is a perfect square.
Solution: Consider the possible values of $\left(a_{n}, a_{n+1}\right)$ modulo 4:

$$
\begin{array}{c|c|c|c|c}
a_{n} & 0 & 1 & 2 & 3 \\
\hline a_{n+1} & 3 & 0 & 3 & 2
\end{array}
$$

No matter what a_{1} is, the terms a_{3}, a_{4}, \ldots are all 2 or $3(\bmod 4)$; but all perfect squares are 0 or $1(\bmod 4)$, so at most two terms (a_{1} and a_{2}) can be perfect squares. But if a_{1} and a_{2} are both perfect squares, then writing $a_{1}=a^{2}, a_{2}=b^{2}$ we have $a^{6}+1999=b^{2}$ or $1999=b^{2}-\left(a^{3}\right)^{2}=\left(b+a^{3}\right)\left(b-a^{3}\right)$. But since 1999 is prime, $b-a^{3}=1$ and $b+a^{3}=1999$. Thus $a^{3}=\frac{1999-1}{2}=999$, which is impossible. Hence at most one term of the sequence is a perfect square.

Problem 6 Find all real numbers $x_{0}, x_{1}, x_{2}, \ldots, x_{1998} \geq 0$ which satisfy

$$
x_{i+1}^{2}+x_{i+1} x_{i}+x_{i}^{4}=1
$$

for $i=0,1, \ldots, 1998$, where $x_{1999}=x_{0}$.
Solution: Let R be the positive real root of $x^{4}+2 x^{2}-1=0$, found using the quadratic formula:

$$
R^{2}=\frac{-2+\sqrt{8}}{2}=-1+\sqrt{2} \quad \Longrightarrow \quad R=\sqrt{-1+\sqrt{2}}
$$

If $x_{n}, x_{n+1} \geq R$ then $1=x_{n+1}^{2}+x_{n+1} x_{n}+x_{n}^{4} \geq R^{2}+R^{2}+R^{4}=1$, with equality when $x_{n}=x_{n+1}=R$. Similarly, if $x_{n}, x_{n+1} \leq R$ then we must have $x_{n}=x_{n+1}=R$. Hence either $x_{n}=x_{n+1}=R$, $x_{n}<R<x_{n+1}$, or $x_{n}>R>x_{n+1}$.

Now if $x_{0}<R$ then $x_{1}>R, x_{2}<R, \ldots, x_{0}=x_{1999}>R$, a contradiction. Similarly, we cannot have $x_{0}>R$. Therefore $x_{0}=R$ and the only solution is

$$
x_{0}=x_{1}=\cdots=x_{1999}=R=\sqrt{-1+\sqrt{2}} .
$$

Problem 7 Find all pairs (x, y) of positive integers such that

$$
x^{x+y}=y^{y-x} .
$$

Solution: Let $\operatorname{gcd}(x, y)=c$, and write $a=\frac{x}{c}, b=\frac{y}{c}$. Then the equation becomes

$$
\begin{gathered}
(a c)^{c(a+b)}=(b c)^{c(b-a)} \\
(a c)^{a+b}=(b c)^{b-a} \\
a^{a+b} c^{2 a}=b^{b-a} .
\end{gathered}
$$

Thus $a^{a+b} \mid b^{b-a}$; then since $\operatorname{gcd}(a, b)=1, a$ must equal 1. Therefore

$$
b^{b-1}=c^{2}
$$

is a perfect square. This is true exactly when b is odd, or when b is a perfect square. If $b=2 n+1$ then $c=(2 n+1)^{n}$; and if $b=n^{2}$ then $c=n^{n^{2}-1}$. Therefore (x, y) equals either

$$
\left((2 n+1)^{n},(2 n+1)^{n+1}\right) \quad \text { or } \quad\left(n^{n^{2}-1}, n^{n^{2}+1}\right)
$$

for some positive integer n, and any such pair indeed satisfies the given equations.

Problem 8 Let ℓ be a given straight line and let the points P and Q lie on the same side of the line ℓ. The points M, N lie on the line ℓ and satisfy $P M \perp \ell$ and $Q N \perp \ell$. The point S lies between the lines $P M$ and $Q N$ such that $P M=P S$ and $Q N=Q S$. The perpendicular bisectors of $\overline{S M}$ and $\overline{S N}$ meet at R. Let T be the second intersection of the line $R S$ and the circumcircle of triangle $P Q R$. Prove that $R S=S T$.

Solution: All angles are directed modulo 180°. Let T^{\prime} be the reflection of R across S; we wish to prove that $P R Q T^{\prime}$ is cyclic.

Since $R M=R S=R N, \angle R M N=\angle M N R=x$. Note that $P M R S$ is a kite which is symmetric with respect to line $P R$. Hence $\angle P R M=\angle S R P=y, \angle M P R=\angle R P S=z$, and $\angle P S R=$ $\angle R M P=90^{\circ}+x . \quad$ Similarly, $\angle Q R S=\angle N R Q=u, \angle S Q R=$ $\angle R Q N=v$, and $\angle R S Q=\angle Q N R=90^{\circ}+x$. In triangle $M N R$, $2(x+y+u)=180^{\circ}$. In triangle $P M R, y+z+90^{\circ}+x=180^{\circ}$ so that $2(x+y+z)=180^{\circ}$. Hence $2 u=2 z$.

Orient our diagram so that line $M N$ is horizontal and so that P and Q are above line $M N$. From the given information, S is above line $M N$ and between lines $P M$ and $Q N$. Also, since since R is the circumcenter of triangle $M S N, R$ lies below between lines $P M$ and $Q N$ and below S. This information allows us to safely conclude that $u=z$, or $\angle S P R=\angle S R Q$.

Similarly, $y=v$ and $\angle P R S=\angle S Q R$. Thus $\triangle P S R \sim \triangle R S Q$. Let A and B be the midpoints of $\overline{P R}$ and $\overline{Q R}$, respectively. Then $\overline{S A}$ and $\overline{S B}$ are corresponding medians in similar triangles $P R S$ and $R Q S$. Hence $\triangle A S R \sim \triangle B S Q$. It follows that

$$
\angle A S B=\angle A S R+\angle R S B=\angle B S Q+\angle R S B=\angle R S Q=90^{\circ}+x
$$

Thus $\angle A S B+\angle A R B=\angle A S B+\angle P R Q=90^{\circ}+x+y+z=180^{\circ}$ and $A S R B$ is cyclic. Since $P R Q T^{\prime}$ is the image of $A R B S$ under a homothety about R with ratio 2, it follows that $P Q R T^{\prime}$ is cyclic as well.

Problem 9 Consider the following one player game. On the plane, a finite set of selected lattice points and segments is called a position in this game if the following hold:
(i) the endpoints of each selected segment are lattice points;
(ii) each selected segment is parallel to a coordinate axis, or to the line $y=x$, or to the line $y=-x$;
(iii) each selected segment contains exactly 5 lattice points and all of them are selected;
(iv) any two selected segments have at most one common point.

A move in this game consists of selecting a new lattice point and a new segment such that the new set of selected lattice points and
segments is a position. Prove or disprove that there exists an initial position such that the game has infinitely many moves.

Solution: There exists no position so that the game can last for infinitely many moves.

Given any segment, let its "extreme point" be its leftmost, upperleftmost, highest, or upper-rightmost point (depending on whether the segment is parallel to $y=0, y=-x, x=0$, or $y=x$); let its other four lattice points form the segment's "mini-segment." Observe that no two mini-segments pointing in the same direction can intersect.
Also, given any position, call a lattice point a "missing point" if it is the extreme point of a selected segment in one direction, but does not lie on any other selected segment pointing in the same direction. (Notice that during the game, a lattice point might switch between being missing and not-missing.)
Lemma. Given an integer $N>0$, if the game continues forever then at some point at least N missing points will exist at the same time.
Proof: Suppose we have k lines that contain at least one selected segment. Some $\left\lceil\frac{k}{4}\right\rceil$ of them must point in the same direction; then each of these lines contains at least one different missing point: its leftmost, upper-leftmost, highest, or upper- rightmost extreme point. Therefore it is enough to show that k gets arbitrarily large.

For sake of contradiction, suppose that k is bounded. Then all the selected segments will lie on some finite number of lines; these lines have only a finite set S of t intersection points, so from some position onward no new selected point will be in S. At this point say we have s selected segments, and p selected points outside of S.
After n more moves there will be $s+n$ mini-segments, and $p+n$ selected points outside of S. Each mini-segment contains 4 points for a total count of $4(s+n)$. On the other hand, each of the t points lies on at most 4 mini-segments; and each of the $p+n$ other points lies on at most 1 mini-segment, for a total count of at most $4 t+(p+n)$. Thus $4(s+n) \leq 4 t+(p+n)$, but this is false for large enough $n-$ a contradiction.

Now suppose in our original position we have s selected segments and p selected points. From the lemma, eventually we will have more than $4(p-s)$ missing points. Say this happens after n moves, when
we have $s+n$ selected segments and $p+n$ selected points. Then as in the lemma, we will have $s+n$ mini-segments each containing 4 points-for a total count of $4(s+n)$. On the other hand, each of the missing points lies on at most 3 mini-segments; and all the other selected points lie on at most 4 mini-segments each. Thus our total count is less than $3 \cdot 4(p-s)+4 \cdot(p+n-4(p-s))=4(s+n)$, a contradiction. This completes the proof.

1.3 Balkan Mathematical Olympiad

Problem 1 Given an acute-angled triangle $A B C$, let D be the midpoint of minor arc $\widehat{B C}$ of circumcircle $A B C$. Let E and F be the respective images of D under reflections about $B C$ and the center of the circumcircle. Finally, let K be the midpoint of $A E$. Prove that:
(a) the circle passing through the midpoints of the sides of the triangle $A B C$ also passes through K.
(b) the line passing through K and the midpoint of $B C$ is perpendicular to $A F$.

Solution:

(a) Let M, B_{1}, and C_{1} denote the midpoints of sides $B C, C A$, and $A B$, respectively; then $\triangle A B C \sim \triangle M B_{1} C_{1}$ and $\angle C_{1} M B_{1}=\angle A$. Also, $B E C D$ is a rhombus, with $\angle B E C=\angle C D B=180^{\circ}-\angle A$. The homothety centered at A with ratio $\frac{1}{2}$ maps triangle $B E C$ to triangle $C_{1} K B_{1}$. Thus, $\angle C_{1} K B_{1}+\angle C_{1} M B_{1}=\angle B E C+\angle A=$ 180°, so $M C_{1} K B_{1}$ is cyclic.
(b) Since $E D=2 E M$ and $E A=2 E K, M K \| A D$. But $\overline{D F}$ is a diameter, so $A D \perp A F$. Hence also $M K \perp A F$.

Problem 2 Let $p>2$ be a prime number such that $3 \mid(p-2)$. Let $\mathcal{S}=\left\{y^{2}-x^{3}-1 \mid x\right.$ and y are integers, $\left.0 \leq x, y \leq p-1\right\}$.

Prove that at most p elements of \mathcal{S} are divisible by p.

Solution:

Lemma. Given a prime p and a positive integer $k>1$, if k and $p-1$ are relatively prime then $x^{k} \equiv y^{k} \Rightarrow x \equiv y(\bmod p)$ for all x, y.

Proof: If $y \equiv 0(\bmod p)$ the claim is obvious. Otherwise, note that $x^{k} \equiv y^{k} \Longrightarrow\left(x y^{-1}\right)^{k} \equiv 1(\bmod p)$, so it suffices to prove that $a^{k} \equiv 1 \Longrightarrow a \equiv 1(\bmod p)$.

Since $\operatorname{gcd}(p-1, k)=1$, there exist integers b and c such that $b(p-1)+c k=1$. Thus, $a^{k} \equiv 1 \Longrightarrow a^{c} \equiv 1 \Longrightarrow a^{1-b(p-1)} \equiv 1(\bmod p)$. If $a=0$ this is impossible; otherwise, by Fermat's Little Theorem, $\left(a^{-b}\right)^{p-1} \equiv 1(\bmod p)$ so that $a \equiv 1(\bmod p)$, as desired.

Alternatively, again note that clearly $a \not \equiv 1(\bmod p)$. Then let d be the order of a, the smallest positive integer such that $a^{d} \equiv 1(\bmod p)$;
we have $d \mid k$. Take the set $\left\{1, a, a^{2}, \ldots, a^{d-1}\right\}$; if it does not contain all of $1,2, \ldots, p-1$ then pick some other element b and consider the set $\left\{b, b a, b a^{2}, \ldots, b a^{d-1}\right\}$. These two sets are disjoint, since otherwise $b a^{i} \equiv a^{j} \Rightarrow b \equiv a^{j-1}(\bmod p)$, a contradiction. Continuing similarly, we can partition $\{1,2, \ldots, p-1\}$ into d-element subsets, and hence $d \mid p-1$. But since $d \mid k$ and $\operatorname{gcd}(k, p-1)=1$, we must have $d=1$. Therefore $a \equiv a^{d} \equiv 1(\bmod p)$, as desired.

Since $3 \mid p-2, \operatorname{gcd}(3, p-1)=1$. Then from the claim, it follows that the set of elements $\left\{1^{3}, 2^{3}, \ldots, p^{3}\right\}$ equals $\{1,2, \ldots, p\}$ modulo p. Hence, for each y with $0 \leq y \leq p-1$, there is exactly one x between 0 and $p-1$ such that $x^{3} \equiv y^{2}-1(\bmod p)$: that is, such that $p \mid y^{2}-x^{3}-1$. Therefore \mathcal{S} contains at most p elements divisible by p, as desired.

Problem 3 Let $A B C$ be an acute triangle, and let M, N, and P be the feet of the perpendiculars from the centroid to the three sides. Prove that

$$
\frac{4}{27}<\frac{[M N P]}{[A B C]} \leq \frac{1}{4} .
$$

Solution: We begin by proving that $\frac{9[M N P]}{[A B C]}=\sin ^{2} A+\sin ^{2} B+$ $\sin ^{2} C$. Let G be the centroid of triangle $A B C$, and let M, N, and P be on sides $B C, A C$, and $A B$, respectively. Also let $A B=c, B C=a$, $C A=b$, and $K=[A B C]$.
We have $[A B G]=\frac{K}{3}=\frac{1}{2} c \cdot G P \Longrightarrow G P=\frac{2 K}{3 c}$. Similarly, $G N=\frac{2 K}{3 b}$, so

$$
[P G N]=\frac{1}{2} G P \cdot G N \sin A=\frac{2 K^{2} \sin A}{9 b c}=\frac{K^{2} a^{2}}{9 R a b c} .
$$

Summing this formula with the analogous ones for $[N G M]$ and [MGP] yields

$$
[M N P]=\frac{K^{2}\left(a^{2}+b^{2}+c^{2}\right)}{9 R a b c} .
$$

Dividing this by $[A B C]=K$ and then substituting $K=\frac{a b c}{4 R}$, $a=2 R \sin A, b=2 R \sin B$, and $c=2 R \sin C$ on the right yields $\frac{[M N P]}{[A B C]}=\frac{1}{9}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)$, as desired.

Hence the problem reduces to proving $\frac{4}{3}<\sin ^{2} A+\sin ^{2} B+\sin ^{2} C \leq$ $\frac{9}{4}$. Assume without loss of generality that $A \geq B \geq C$.

To prove the right inequality, first note that $A<\frac{\pi}{2} \Rightarrow B>\frac{\pi}{4}$. The function $\sin ^{2} x$ is concave on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$; applying Jensen's Inequality gives $\sin ^{2} A+\sin ^{2} B \leq 2 \sin ^{2}\left(\frac{A}{2}+\frac{B}{2}\right)=2 \cos ^{2}\left(\frac{C}{2}\right)$. Thus it suffices to prove $2 \cos ^{2}\left(\frac{C}{2}\right)+\sin ^{2} C \leq \frac{9}{4} \Longleftrightarrow 1+\cos C+1-\cos ^{2} C \leq \frac{9}{4} \Longleftrightarrow$ $-\left(\cos C+\frac{1}{2}\right)^{2} \leq 0$, which is true.

For the left inequality, note that $\sin ^{2} x$ is an increasing function on $\left[0, \frac{\pi}{2}\right]$. We have $B \geq \frac{\pi-A}{2}$, so $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C>\sin ^{2} A+$ $\cos ^{2}\left(\frac{A}{2}\right)=-\cos ^{2} A+\frac{1}{2} \cos A+\frac{3}{2}$. But since A is the largest angle, we have $\frac{\pi}{2}>A \geq \frac{\pi}{3}$ so $\frac{1}{2} \geq \cos A>0$; then $-\cos ^{2} A+\frac{1}{2} \cos A+\frac{3}{2} \geq$ $\frac{3}{2}>\frac{4}{3}$, as desired.

Problem 4 Let $\left\{x_{n}\right\}_{n \geq 0}$ be a nondecreasing sequence of nonnegative integers such that for every $k \geq 0$ the number of terms of the sequence which are less than or equal to k is finite; let this number be y_{k}. Prove that for all positive integers m and n,

$$
\sum_{i=0}^{n} x_{i}+\sum_{j=0}^{m} y_{j} \geq(n+1)(m+1)
$$

Solution: Under the given construction, $y_{s} \leq t$ if and only if $x_{t}>s$. But this condition is equivalent to saying that $y_{s}>t$ if and only if $x_{t} \leq s$. Thus the sequences $\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$ are dual, meaning that applying the given algorithm to $\left\{y_{j}\right\}$ will restore the original $\left\{x_{i}\right\}$.

To find $\sum_{i=0}^{n} x_{i}$, note that among $x_{0}, x_{1}, \ldots, x_{n}$ there are exactly y_{0} terms equal to $0, y_{1}-y_{0}$ terms equal to $1, \ldots$, and $y_{x_{n-1}}-y_{x_{n-2}}$ terms equal to x_{n-1}; and the remaining $n+1-x_{n-1}$ terms equal x_{n}. Hence,

$$
\begin{aligned}
\sum_{i=0}^{n} & x_{i}=0 \cdot\left(y_{0}\right)+1 \cdot\left(y_{1}-y_{0}\right)+\cdots \\
& \quad+\left(x_{n}-1\right) \cdot\left(y_{x_{n}-1}-y_{x_{n}-2}\right)+x_{n} \cdot\left(n+1-y_{x_{n}-1}\right) \\
= & -y_{0}-y_{1}-\cdots-y_{x_{n}-1}+(n+1) x_{n}
\end{aligned}
$$

First suppose that $x_{n}-1 \geq m$, and write $x_{n}-1=m+k$ for $k \geq 0$.
Since $x_{n}>m+k$, from our initial observations we have $y_{m+k} \leq n$.
But then $n+1 \geq y_{m+k} \geq y_{m+k-1} \geq \cdots \geq y_{m}$, so

$$
\sum_{i=0}^{n} x_{i}+\sum_{j=0}^{m} y_{j}=(n+1) x_{n}-\left(\sum_{j=0}^{x_{n-1}} y_{j}-\sum_{i=0}^{m} y_{i}\right)
$$

$$
\begin{aligned}
& =(n+1) x_{n}-\sum_{i=m+1}^{m+k} y_{i} \\
& \geq(n+1)(m+k+1)-k \cdot(n+1) \\
& =(n+1)(m+1),
\end{aligned}
$$

as desired.
Next suppose that $x_{n}-1<m$. Then $x_{n} \leq m \Longrightarrow y_{m}>n \Longrightarrow$ $y_{m}-1 \geq n$. Since $\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$ are dual, we may therefore apply the same argument with the roles of the two sequences reversed. This completes the proof.

1.4 Czech and Slovak Match

Problem 1 For arbitrary positive numbers a, b, c, prove the inequality

$$
\frac{a}{b+2 c}+\frac{b}{c+2 a}+\frac{c}{a+2 b} \geq 1
$$

First Solution: Set $x=b+2 c, y=c+2 a, z=a+2 b$. Then $a=\frac{1}{9}(4 y+z-2 x), b=\frac{1}{9}(4 z+x-2 y), c=\frac{1}{9}(4 x+y-2 z)$, so the desired inequality becomes

$$
\frac{4 y+z-2 x}{9 x}+\frac{4 z+x-2 y}{9 y}+\frac{4 x+y-2 z}{9 z} \geq 1
$$

which is equivalent to

$$
\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)+3 \cdot\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right) \geq 15 .
$$

But this is true because by AM-GM, the quantities in parentheses are at least $2,2,2$, and 3 , respectively; or alternatively, it is true by the AM-GM inequality on all 15 fractions of the form $\frac{x}{y}$ on the left-hand side (where $3 \cdot\left(\frac{y}{x}+\frac{x}{z}+\frac{z}{y}\right)$ contributes nine such fractions).

Second Solution: By the Cauchy-Schwarz inequality

$$
\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)^{2} \leq\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)
$$

the quantity $(a+b+c)^{2}$ is at most

$$
\left(\frac{a}{b+2 c}+\frac{b}{c+2 a}+\frac{c}{a+2 b}\right)[a(b+2 c)+b(c+2 a)+c(a+2 b)] .
$$

On the other hand, from the inequality $(a-b)^{2}+(b-c)^{2}+(c-a)^{2} \geq 0$ we have

$$
a(b+2 c)+b(c+2 a)+c(a+2 b) \leq(a+b+c)^{2}
$$

Combining these gives

$$
\begin{aligned}
& a(b+2 c)+b(c+2 a)+c(a+2 b) \\
& \quad \leq\left(\frac{a}{b+2 c}+\frac{b}{c+2 a}+\frac{c}{a+2 b}\right)[a(b+2 c)+b(c+2 a)+c(a+2 b)]
\end{aligned}
$$

which yields our desired inequality upon division by the (positive) expression $a(b+2 c)+b(c+2 a)+c(a+2 b)$.

Problem 2 Let $A B C$ be a nonisosceles acute triangle with altitudes $\overline{A D}, \overline{B E}$, and $\overline{C F}$. Let ℓ be the line through D parallel to line $E F$. Let $P=\overleftrightarrow{B C} \cap \overleftrightarrow{E F}, Q=\ell \cap \overleftrightarrow{A C}$, and $R=\ell \cap \overleftrightarrow{A B}$. Prove that the circumcircle of triangle $P Q R$ passes through the midpoint of $\overline{B C}$.

Solution: Let M be the midpoint of $\overline{B C}$. Without loss of generality we may assume that $A B>A C$. Then the order of the points in question on line $B C$ is B, M, D, C, P. Since $\angle B E C=\angle B F C=90^{\circ}$, $B C E F$ is cyclic so that $\angle Q C B=180^{\circ}-\angle B C E=\angle E F B=\angle Q R B$. Thus $R C Q B$ is cyclic as well and

$$
D B \cdot D C=D Q \cdot D R
$$

Quadrilateral $M R P Q$ is cyclic if and only if $D M \cdot D P=D Q$. $D R$, so it remains to prove that $D B \cdot D C=D P \cdot D M$. Since the points B, C, E, F are concyclic, we have $P B \cdot P C=P E \cdot P F$. The circumcircle of triangle $D E F$ (the so-called nine-point circle of triangle $A B C$) also passes through the midpoints of the sides of triangle $A B C$, which implies that $P E \cdot P F=P D \cdot P M$. Comparing both equalities shows that $P B \cdot P C=P D \cdot P M$. Denoting $M B=$ $M C=u, M D=d, M P=p$, the last equality reads $(p+u)(p-u)=$ $(p-d) p \Longleftrightarrow u^{2}=d p \Longleftrightarrow(u+d)(u-d)=(p-d) d \Longleftrightarrow$ $D B \cdot D C=D P \cdot D M$. This completes the proof.

Problem 3 Find all positive integers k for which there exists a ten-element set M of positive numbers such that there are exactly k different triangles whose side lengths are three (not necessarily distinct) elements of M. (Triangles are considered different if they are not congruent.)

Solution: Given any 10 -element set M of positive integers, there are exactly $\binom{12}{3}$ triples $x, y, z(x \leq y \leq z)$ chosen from the numbers in M; thus, we must have $k \leq\binom{ 12}{3}=220$. On the other hand, for each of the $\binom{11}{2}$ pairs x, y from M (with $x \leq y$) we can form the triangle with side lengths x, y, y; hence $k \geq\binom{ 11}{2}=55$. Then applying the following lemma, the possible values of k are then $55,56, \ldots, 220$.
Lemma. Suppose we have some positive integers n and k, with

$$
\binom{n+1}{2} \leq k \leq\binom{ n+2}{3}
$$

Then there exists an n-element set M of positive numbers, such that there are exactly k triangles whose side lengths are three (not necessarily distinct) elements of M.

Furthermore, there exists an n-element set S_{n} with numbers $x_{1}<$ $x_{2}<\cdots<x_{n}$ such that $x_{n}<2 x_{1}$ and such that all the $\binom{n+1}{2}$ pairwise sums

$$
x_{i}+x_{j} \quad(1 \leq i \leq j \leq n)
$$

are distinct. Exactly $\binom{n+2}{3}$ triangles can be formed from the elements of S_{n}.

Proof: We prove the claim by induction on n; it clearly holds for $n=1$. Now suppose the claim is true for n and that $\binom{n+2}{2} \leq k \leq$ $\binom{n+3}{3}$.
If $\binom{n+2}{2} \leq k \leq\binom{ n+2}{3}+(n+1)$, then first find the n-element set $M^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ from which exactly $k-(n+1)$ triangles can be formed. Choose $x_{n+1}>2 \cdot \max \left\{M^{\prime}\right\}$, and write $M=M^{\prime} \cup\left\{x_{n+1}\right\}$. Then exactly k triangles can be formed from the elements of M : $k-(n+1)$ triangles from $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$; and an additional $n+1$ triangles with side lengths x_{i}, x_{n+1}, x_{n+1} for $i=1,2, \ldots, n+1$.
Otherwise $k=\binom{n+2}{3}+n+1+q$, where $q \in\left\{1,2, \ldots,\binom{n+1}{2}\right\}$. To the set S_{n} described in the lemma, add an element x_{n+1} which is greater than x_{n} but smaller than precisely q of the $\binom{n+1}{2}$ original pairwise sums from S_{n}. This gives a set M from which exactly k triangles can be formed: $\binom{n+2}{3}$ triangles from $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} ; n+1$ additional triangles with side lengths x_{i}, x_{n+1}, x_{n+1}; and exactly q more triangles with side lengths x_{i}, x_{j}, x_{n+1} (where $i, j \neq n+1$).
None of the numbers $x_{i}+x_{n+1}$ equals any of the original pairwise sums. Thus we can construct S_{n+1}, completing the proof of the lemma.

Problem 4 Find all positive integers k for which the following assertion holds: if $F(x)$ is a polynomial with integer coefficients which satisfies $0 \leq F(c) \leq k$ for all $c \in\{0,1, \ldots, k+1\}$, then

$$
F(0)=F(1)=\cdots=F(k+1) .
$$

Solution: The claim is false for $k<4$; we have the counterexamples $F(x)=x(2-x)$ for $k=1, F(x)=x(3-x)$ for $k=2$, and $F(x)=x(4-x)(x-2)^{2}$ for $k=3$.

Now suppose $k \geq 4$ is fixed and that $F(x)$ has the described property. First of all $F(k+1)-F(0)=0$, because it is a multiple of $k+1$ whose absolute value is at most k. Hence $F(x)-F(0)=$ $x(x-k-1) G(x)$, where $G(x)$ is another polynomial with integer coefficients. Then we have

$$
k \geq|F(c)-F(0)|=c(k+1-c)|G(c)|
$$

for each $c=1,2, \ldots, k$. If $2 \leq c \leq k-1$ (such numbers c exist since $k \geq 4$) then

$$
c(k+1-c)=2(k-1)+(c-2)(k-1-c) \geq 2(k-1)>k
$$

which in view of our first inequality means that $|G(c)|<1 \Longrightarrow G(c)=$ 0 . Thus $2,3, \ldots, k-1$ are roots of the polynomial $G(x)$, so

$$
F(x)-F(0)=x(x-2)(x-3) \cdots(x-k+1)(x-k-1) H(x),
$$

where $H(x)$ is again a polynomial with integer coefficients. It remains to explain why $H(1)=H(k)=0$. But this is easy: both values $c=1$ and $c=k$ satisfy $k \geq|F(c)-F(0)|=(k-2)!\cdot k \cdot|H(c)|$; and since $(k-2)!>1$, we must have $H(1)=H(k)=0$.

Problem 5 Find all functions $f:(1, \infty) \rightarrow \mathbb{R}$ such that

$$
f(x)-f(y)=(y-x) f(x y)
$$

for all $x, y>1$.
Solution: For every $t>1$ we use the equation in turn for $(x, y)=$ $(t, 2),(t, 4)$ and (2t, 2):

$$
\begin{aligned}
f(t)-f(2) & =(2-t) f(2 t) \\
f(t)-f(4) & =(4-t) f(4 t) \\
f(2 t)-f(2) & =(2-2 t) f(4 t)
\end{aligned}
$$

We eliminate $f(t)$ by subtracting the second equation from the first, and then substitute for $f(2 t)$ from the third. This yields the equality

$$
f(4)+(t-3) f(2)=t(2 t-5) f(4 t)
$$

for any $t>1$. Taking $t=\frac{5}{2}$ we get $f(4)=\frac{1}{2} f(2)$, and feeding this back gives

$$
\left(t-\frac{5}{2}\right) f(2)=t(2 t-5) f(4 t)
$$

It follows that for any $t>1, t \neq \frac{5}{2}$,

$$
f(4 t)=\frac{f(2)}{2 t}
$$

so by the middle of the three equations in the beginning of this solution we obtain

$$
f(t)=f(4)+(4-t) f(4 t)=\frac{1}{2} f(2)+\frac{(4-t) f(2)}{2 t}=\frac{2 f(2)}{t}
$$

This formula for $f(t)$ holds even for $t=\frac{5}{2}$, as can now be checked directly by applying the original equation to $x=\frac{5}{2}$ and $y=2$ (and using $\left.f(5)=\frac{2 f(2)}{5}\right)$. Setting $c=2 f(2)$, we must have

$$
f(x)=\frac{c}{x}
$$

for all x; and this function has the required property for any choice of the real constant c.

Problem 6 Show that for any positive integer $n \geq 3$, the least common multiple of the numbers $1,2, \ldots, n$ is greater than 2^{n-1}.

Solution: Since for any $n \geq 3$ we have

$$
2^{n-1}=\sum_{k=0}^{n-1}\binom{n-1}{k}<\sum_{k=0}^{n-1}\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}=n \cdot\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}
$$

it suffices to show that the number $n \cdot\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}$ divides the least common multiple of $1,2, \ldots, n$. Using a prime factorization argument, we will prove the more general assertion that for each $k<n$ the least common multiple of the numbers $n, n-1, \ldots, n-k$ is divisible by $n \cdot\binom{n-1}{k}$.

Let k and n be fixed natural numbers with $k<n$, and let $p \leq n$ be an arbitrary prime. Let p^{α} be the highest power of p which divides $\operatorname{lcm}(n, n-1, \ldots, n-k)$, where $p^{\alpha} \mid n-\ell$ for some ℓ. Then for each $i \leq \alpha$, we know that $p^{i} \mid n-\ell$. Thus exactly $\left\lfloor\frac{\ell}{p^{i}}\right\rfloor$ of $\{n-\ell+1, n-\ell+2, \ldots, n\}$ and exactly $\left\lfloor\frac{k-\ell}{p^{i}}\right\rfloor$ of $\{n-\ell-1, n-$ $\ell-2, \ldots, n-k\}$ are multiples of p^{i}, so p^{i} divides $\left\lfloor\frac{\ell}{p^{i}}\right\rfloor+\left\lfloor\frac{k-\ell}{p^{i}}\right\rfloor \leq$ $\left\lfloor\frac{k}{p^{i}}\right\rfloor$ of the remaining k numbers - that is, at most the number of multiples of p^{i} between 1 and k. It follows that p divides $n \cdot\binom{n-1}{k}=$ $\frac{n(n-1) \cdots(n-\ell+1)(n-\ell-1) \cdots(n-k)}{k!} \cdot(n-\ell)$ at most α times, so that indeed $\left.n \cdot\binom{n-1}{k} \right\rvert\, \operatorname{lcm}(n, n-1, \ldots, n-k)$.

1.5 Hungary-Israel Binational Mathematical Competition

Individual Round

Problem 1 Let S be the set of all partitions $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of the number 2000, where $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ and $a_{1}+a_{2}+\cdots+a_{k}=$ 2000. Compute the smallest value that $k+a_{k}$ attains over all such partitions.

Solution: AM-GM gives

$$
k+a_{k} \geq 2 \sqrt{k a_{k}} \geq 2(\sqrt{2000})>89
$$

Thus since $k+a_{k}$ is an integer, it must be at least 90 . And 90 is attainable, since $k+a_{k}=90$ for the partition ($\underbrace{40,40, \cdots, 40}_{50})$.

Problem 2 Prove or disprove the following claim: For any positive integer k, there exists a positive integer $n>1$ such that the binomial coefficient $\binom{n}{i}$ is divisible by k for any $1 \leq i \leq n-1$.

First Solution: The statement is false. To prove this, take $k=4$ and assume by contradiction that there exists a positive integer $n>1$ for which $\binom{n}{i}$ is divisible by 4 for every $1 \leq i \leq n-1$. Then

$$
0 \equiv \sum_{i=1}^{n-1}\binom{n}{i}=2^{n}-2 \equiv-2 \quad(\bmod 4)
$$

a contradiction.

Second Solution: The claim is obviously true for $k=1$; we prove that the set of positive integers $k>1$ for which the claim holds is exactly the set of primes. First suppose that k is prime; then express n in base k, writing $n=n_{0}+n_{1} k+\cdots+n_{m} k^{m}$ where $0 \leq n_{0}, n_{1}, \ldots, n_{m} \leq k-1$ and $n_{m} \neq 0$. Also suppose we have $1 \leq i \leq n-1$, and write $i=i_{0}+i_{1} k+\cdots+i_{m} k^{m}$ where $0 \leq i_{0}, i_{1}, \ldots, i_{m} \leq k-1$ (although perhaps $i_{m}=0$). Lucas's Theorem states that

$$
\binom{n}{i} \equiv \prod_{j=0}^{m}\binom{n_{j}}{i_{j}} \quad(\bmod k)
$$

Now if $n=k^{m}$, then $n_{0}=n_{1}=\cdots=n_{m-1}=0$; and $1 \leq i \leq n-1$ so that $i_{m}=0$ but some other $i_{j^{\prime}}$ is nonzero. Then $\binom{\left.n_{j^{\prime}}\right)}{i_{j^{\prime}}}=0$, and indeed $\binom{n}{i} \equiv 0(\bmod k)$ for all $1 \leq i \leq n-1$.

However, suppose that $n \neq k^{m}$. If $n_{m}>1$ then letting $i=k^{m}<n$ we have $\binom{n}{i} \equiv\left(n_{m}\right)(1)(1) \cdots(1) \equiv n_{m} \not \equiv 0(\bmod k)$. Otherwise, some other $n_{j^{\prime}} \neq 0$; but then setting $i=n_{j^{\prime}} k^{j^{\prime}}<n$ we have $\binom{n}{i} \equiv(1)(1) \cdots(1) \equiv 1 \not \equiv 0(\bmod k)$. Therefore the claim holds for prime k exactly when $n=k^{m}$.

Now suppose the claim holds for some $k>1$ with the number n. If some prime p divides k, the claim must also hold for p with the number n. Thus n must equal a prime power p^{m} where $m \geq 1$. Then $k=p^{r}$ for some $r \geq 1$ as well, because if two primes p and q divided k then n would equal a perfect power of both p and q, which is impossible.

Choose $i=p^{m-1}$. Kummer's Theorem then states that $p^{t} \left\lvert\,\binom{ n}{i}\right.$ if and only if t is less than or equal to the number of carries in the addition $(n-i)+i$ in base p. But there is only one such carry, between the p^{m-1} and p^{m} places:

1

$$
\begin{array}{rrrrrr}
& 1 & 0 & 0 & \ldots & 0 \\
+ & p-1 & 0 & 0 & \ldots & 0 \\
\hline & 0 & 0 & 0 & \ldots & 0
\end{array}
$$

Thus, we must have $r \leq 1$ and k must be prime, as claimed.
(Alternatively, for $n=p^{m}$ and $i=p^{m-1}$ we have

$$
\binom{n}{i}=\prod_{j=0}^{p^{m-1}-1} \frac{p^{m}-j}{p^{m-1}-j}
$$

When $j=0$ then $\frac{p^{m}-j}{p^{m-1}-j}=p$. Otherwise, $0<j<p^{m-1}$ so that if $p^{t}<p^{m-1}$ is the highest power of p dividing j, then it is also the highest power of p dividing both $p^{m}-j$ and $p^{m-1}-j$. Therefore $\frac{p^{m}-j}{p^{m-1}-j}$ contributes one factor of p to $\binom{n}{i}$ when $j=0$ and zero factors of p when $j>0$. Thus $p^{2} X\binom{n}{i}$, and hence again $r \leq 1$.)

Problem 3 Let $A B C$ be a non-equilateral triangle with its incircle touching $\overline{B C}, \overline{C A}$, and $\overline{A B}$ at A_{1}, B_{1}, and C_{1}, respectively, and let H_{1} be the orthocenter of triangle $A_{1} B_{1} C_{1}$. Prove that H_{1} is on the line passing through the incenter and circumcenter of triangle $A B C$.

First Solution: Let $\omega_{1}, I, \omega_{2}$, and O be the incircle, incenter, circumcircle, and circumcenter of triangle $A B C$, respectively. Since $I \neq O$, line $I O$ is well defined.

Let T be the center of the homothety with positive ratio that sends ω_{1} to ω_{2} and hence I to O. Also let A_{2}, B_{2}, C_{2} be the midpoints of the $\operatorname{arcs} B C, C A, A B$ of ω_{2} not containing A, B, C, respectively. Since rays $I A_{1}$ and $O A_{2}$ point in the same direction, T must send A_{1} to A_{2} and similarly B_{1} to B_{2} and C_{1} to C_{2}.

Also, because the measures of arcs $A C_{2}$ and $A_{2} B_{2}$ add up to 180°, we know that $\overline{A A_{2}} \perp \overline{C_{2} B_{2}}$. Similarly, $\overline{B B_{2}} \perp \overline{C_{2} A_{2}}$ and $\overline{C C_{2}} \perp \overline{A_{2} B_{2}}$. Then since lines $A A_{2}, B B_{2}, C C_{2}$ intersect at I, I is the orthocenter of triangle $A_{2} B_{2} C_{2}$. Hence I is the image of H_{1} under the defined homothety. Therefore T, H_{1}, I are collinear; and from before T, I, O are collinear. It follows that H_{1}, I, O are collinear, as desired.

Second Solution: Define $\omega_{1}, I, \omega_{2}$, and O as before. Let ω_{3} be the nine-point circle of triangle $A_{1} B_{1} C_{1}$, and let S be its center. Since I is the circumcenter of triangle $A_{1} B_{1} C_{1}, S$ is the midpoint of $\overline{I H_{1}}$ and I, H_{1}, S are collinear.

Now invert the figure with respect to ω_{1}. The midpoints of $\overline{A_{1} B_{1}}, \overline{B_{1} C_{1}}, \overline{C_{1} A_{1}}$ are mapped to C, A, B, and thus ω_{3} is mapped to ω_{2}. Thus I, O, S are collinear; and so I, H_{1}, O, S are collinear, as desired.

Problem 4 Given a set X, define

$$
X^{\prime}=\{s-t \mid s, t \in X, s \neq t\}
$$

Let $S=\{1,2, \ldots, 2000\}$. Consider two sets $A, B \subseteq S$, such that $|A||B| \geq 3999$. Prove that $A^{\prime} \cap B^{\prime} \neq \emptyset$.

Solution: Consider all $|A| \cdot|B| \geq 3999$ sums, not necessarily distinct, of the form $a+b$ where $a \in A, b \in B$. If both 2 and 4000 are of this form, then both A and B contain 1 and 2000 so that $2000-1 \in A^{\prime} \cap B^{\prime}$. Otherwise, each sum $a+b$ takes on one of at most 3998 values either between 2 and 3999 , or between 3 and 4000 . Thus by the pigeonhole principle, two of our $|A| \cdot|B|$ sums $a_{1}+b_{1}$ and $a_{2}+b_{2}$ are equal with $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$, and $\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)$. Then $a_{1} \neq a_{2}$ (since otherwise we would have $b_{1}=b_{2}$ and $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$), and therefore $A^{\prime} \cap B^{\prime}$ is nonempty because it contains $a_{1}-a_{2}=b_{2}-b_{1}$.

Problem 5 Given an integer d, let

$$
S=\left\{m^{2}+d n^{2} \mid m, n \in \mathbb{Z}\right\}
$$

Let $p, q \in S$ be such that p is a prime and $r=\frac{q}{p}$ is an integer. Prove that $r \in S$.

Solution: Note that

$$
\left(x^{2}+d y^{2}\right)\left(u^{2}+d v^{2}\right)=(x u \pm d y v)^{2}+d(x v \mp y u)^{2} .
$$

Write $q=a^{2}+d b^{2}$ and $p=x^{2}+d y^{2}$ for integers a, b, x, y. Reversing the above construction yields the desired result. Indeed, solving for u and v after setting $a=x u+d y v, b=x v-y u$ and $a=x u-d y v, b=x v+y u$ gives

$$
u_{1}=\frac{a x-d b y}{p}, v_{1}=\frac{a y+b x}{p}, u_{2}=\frac{a x+d b y}{p}, v_{2}=\frac{a y-b x}{p} .
$$

Note that

$$
(a y+b x)(a y-b x)=\left(a^{2}+d b^{2}\right) y^{2}-\left(x^{2}+d y^{2}\right) b^{2} \equiv 0 \quad(\bmod p)
$$

Hence p divides one of $a y+b x, a y-b x$ so that one of v_{1}, v_{2} is an integer. Without loss of generality, assume that v_{1} is an integer. Then since $r=u_{1}^{2}+d v_{1}^{2}$ is an integer and u_{1} is rational, u_{1} is an integer as well and $r \in S$, as desired.

Problem 6 Let k and ℓ be two given positive integers, and let $a_{i j}$, $1 \leq i \leq k$ and $1 \leq j \leq \ell$, be $k \ell$ given positive numbers. Prove that if $q \geq p>0$ then

$$
\left(\sum_{j=1}^{\ell}\left(\sum_{i=1}^{k} a_{i j}^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}} \leq\left(\sum_{i=1}^{k}\left(\sum_{j=1}^{\ell} a_{i j}^{q}\right)^{\frac{p}{q}}\right)^{\frac{1}{p}} .
$$

First Solution: Define

$$
b_{j}=\sum_{i=1}^{k} a_{i j}^{p}
$$

and denote the left hand side of the required inequality by L and its right hand side by R. Then

$$
L^{q}=\sum_{j=1}^{\ell} b_{j}^{\frac{q}{p}}=\sum_{j=1}^{\ell}\left(b_{j}^{\frac{q-p}{p}}\left(\sum_{i=1}^{k} a_{i j}^{p}\right)\right)=\sum_{i=1}^{k}\left(\sum_{j=1}^{\ell} b_{j}^{\frac{q-p}{p}} a_{i j}^{p}\right) .
$$

Using Hölder's inequality it follows that

$$
\begin{gathered}
L^{q} \leq \sum_{i=1}^{k}\left[\left(\sum_{j=1}^{\ell}\left(b_{j}^{\frac{q-p}{p}}\right)^{\frac{q}{q-p}}\right)^{\frac{q-p}{q}}\left(\sum_{j=1}^{\ell}\left(a_{i j}^{p}\right)^{\frac{q}{p}}\right)^{\frac{p}{q}}\right] \\
=\sum_{i=1}^{k}\left[\left(\sum_{j=1}^{\ell} b_{j}^{\frac{q}{p}}\right)^{\frac{q-p}{q}}\left(\sum_{j=1}^{\ell} a_{i j}^{q}\right)^{\frac{p}{q}}\right] \\
=\left(\sum_{j=1}^{\ell} b_{j}^{\frac{q}{p}}\right)^{\frac{q-p}{q}} \cdot\left[\sum_{i=1}^{k}\left(\sum_{j=1}^{\ell} a_{i j}^{q}\right)^{\frac{p}{q}}\right]=L^{q-p} R^{p} .
\end{gathered}
$$

The inequality $L \leq R$ follows by dividing both sides of $L^{q} \leq L^{q-p} R^{p}$ by L^{q-p} and taking the p-th root.

Second Solution: Let $r=\frac{q}{p}, c_{i j}=a_{i j}^{p}$. Then $r \geq 1$, and the given inequality is equivalent to the following inequality:

$$
\left(\sum_{j=1}^{\ell}\left(\sum_{i=1}^{k} c_{i j}\right)^{r}\right)^{\frac{1}{r}} \leq \sum_{i=1}^{k}\left(\sum_{j=1}^{\ell} c_{i j}^{r}\right)^{\frac{1}{r}}
$$

We shall prove this inequality by induction on k. For $k=1$, we have equality. For $k=2$, the inequality becomes Minkowski's inequality.

Suppose that $k \geq 3$ and the inequality holds for $k-1$. Then by the induction assumption for $k-1$ we have

$$
\sum_{i=1}^{k-1}\left(\sum_{j=1}^{\ell} c_{i j}^{r}\right)^{\frac{1}{r}}+\left(\sum_{j=1}^{\ell} c_{k j}^{r}\right)^{\frac{1}{r}} \geq\left(\sum_{j=1}^{\ell}\left(\sum_{i=1}^{k-1} c_{i j}\right)^{r}\right)^{\frac{1}{r}}+\left(\sum_{j=1}^{\ell} c_{k j}^{r}\right)^{\frac{1}{r}}
$$

Using Minkowski's inequality with $\tilde{c}_{1 j}=\sum_{i=1}^{k-1} c_{i j}, \tilde{c}_{2 j}=c_{k j}$, we have

$$
\left(\sum_{j=1}^{\ell}\left(\sum_{i=1}^{k-1} c_{i j}\right)^{r}\right)^{\frac{1}{r}}+\left(\sum_{j=1}^{\ell} c_{k j}^{r}\right)^{\frac{1}{r}} \geq\left(\sum_{j=1}^{\ell}\left(\sum_{i=1}^{k} c_{i j}\right)^{r}\right)^{\frac{1}{r}}
$$

completing the inductive step.

Team Round

Problem 1 Let $A B C$ be a triangle and let P_{1} be a point inside triangle $A B C$.
(a) Prove that the lines obtained by reflecting lines $P_{1} A, P_{1} B, P_{1} C$ through the angle bisectors of $\angle A, \angle B, \angle C$, respectively, meet at a common point P_{2}.
(b) Let A_{1}, B_{1}, C_{1} be the feet of the perpendiculars from P_{1} to sides $B C, C A$ and $A B$, respectively. Let A_{2}, B_{2}, C_{2} be the feet of the perpendiculars from P_{2} to sides $B C, C A$ and $A B$, respectively. Prove that these six points $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ lie on a circle.
(c) Prove that the circle in part (b) touches the nine point circle (Feuerbach's circle) of triangle $A B C$ if and only if P_{1}, P_{2}, and the circumcenter of triangle $A B C$ are collinear.

First Solution:

(a) By the trigonometric form of Ceva's Theorem, we have

$$
\frac{\sin \angle A B P_{1} \sin \angle B C P_{1} \sin \angle C A P_{1}}{\sin \angle P_{1} B C \sin \angle P_{1} C A \sin \angle P_{1} A B}=1 .
$$

Now suppose that the given reflections of lines $P_{1} A, P_{1} B, P_{1} C$ meet sides $B C, C A, A B$ at points D, E, F, respectively. Then $\angle A B E=\angle P_{1} B C, \angle E B C=\angle A B P_{1}$, and so on; thus

$$
\frac{\sin \angle E B C \sin \angle F C A \sin \angle D A B}{\sin \angle B C F \sin \angle C A D \sin \angle A B E}=1
$$

as well. Therefore, again by the trigonometric form of Ceva's Theorem, the three new lines also concur.
(b) Note that $P_{1} A_{1} C B_{1}$ and $P_{2} A_{2} C B_{2}$ are both cyclic quadrilaterals because they each have two right angles opposite each other. Since $\angle P_{1} C B_{1}=\angle A_{2} C P_{2}$, we have $\angle B_{1} P_{1} C=\angle C P_{2} A_{2}$, and, by the previous statement, that implies $\angle B_{1} A_{1} C=\angle C B_{2} A_{2}$, whence $A_{1}, A_{2}, B_{1}, B_{2}$ are concyclic. For similar reasons, A_{1}, A_{2}, C_{1}, C_{2} are concyclic. Then all six points $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ must be concyclic, or else the radical axes of circles $A_{1} A_{2} B_{1} B_{2}$, $B_{1} B_{2} C_{1} C_{2}, C_{1} C_{2} A_{1} A_{2}$ would not concur, contradicting the radical axis theorem.

Problem 2 An ant is walking inside the region bounded by the curve whose equation is $x^{2}+y^{2}+x y=6$. Its path is formed by straight segments parallel to the coordinate axes. It starts at an arbitrary point on the curve and takes off inside the region. When reaching the boundary, it turns by 90° and continues its walk inside the region. When arriving at a point on the boundary which it has already visited, or where it cannot continue its walk according to the given rule, the ant stops. Prove that, sooner or later, and regardless of the starting point, the ant will stop.

First Solution: If the ant moves from (a, b) to (c, b), then a and c are the roots to $f(t)=t^{2}+b t+b^{2}-6$. Thus $c=-a-b$. Similarily, if the ant moves from (a, b) in a direction parallel to the y-axis, it meets the curve at $(a,-a-b)$.

Let (a, b) be the starting point of the ant, and assume that the ant starts walking in a direction parallel to the x-axis; the case when it starts walking parallel to the y-axis is analogous. If after five moves the ant is still walking, then it will return to its original position after six moves:

$$
\begin{aligned}
& (a, b) \rightarrow(-a-b, b) \rightarrow(-a-b, a) \rightarrow(b, a) \\
& \quad \rightarrow(b,-a-b) \rightarrow(a,-a-b) \rightarrow(a, b)
\end{aligned}
$$

Therefore, the ant stops moving after at most six steps.
Second Solution: Rotate the curve by 45°, where (x, y) is on our new curve \mathcal{C}_{1} when $\frac{1}{\sqrt{2}}(x-y, x+y)$ is on the original curve. The equation of the image of the curve under the rotation is

$$
3 x^{2}+y^{2}=12
$$

Hence the curve is an ellipse, while the new directions of the ant's motion are inclined by $\pm 45^{\circ}$ with respect to the x-axis. Next apply an affine transformation so that (x, y) is on our new curve \mathcal{C}_{2} when $(x, \sqrt{3} y)$ is on \mathcal{C}_{1}. The ant's curve then becomes

$$
x^{2}+y^{2}=4
$$

a circle with radius 2 , and the directions of the ant's paths are now inclined by $\pm 30^{\circ}$ with respect to the x-axis.

Thus if the ant moves from P_{1} to P_{2} to P_{3}, then $\angle P_{1} P_{2} P_{3}$ will either equal $0^{\circ}, 60^{\circ}$, or 120°. Thus as long as it continues moving, every two moves the ant travels to the other end of an arc measuring $0^{\circ}, 120^{\circ}$, or 240° along the circle; thus after at most six moves, he must return to a position he visited earlier.

Problem 3

(a) In the plane, we are given a circle ω with unknown center, and an arbitrary point P. Is it possible to construct, using only a straightedge, the line through P and the center of the circle?
(b) In the plane, we are given a circle ω with unknown center, and a point Q on the circle. Construct the tangent to ω at the point Q, using only a straightedge.
(c) In the plane, we are given two circles ω_{1} and ω_{2} with unknown centers. Construct, with a straightedge only, the line through their centers when:
(i) the two circles intersect;
(ii) the two circles touch each other, and their point of contact T is marked;
(iii) the two circles have no common point. This is an open question, and the construction might even be impossible; the problem does not belong to the official team contest, but any progress will be appreciated.

Solution:

(a) It is not possible. First we prove that given a circle with unknown center O, it is impossible to construct its center using only a straightedge. Assume by contradiction that this construction is possible; then perform a projective transformation on the figure, taking O to O^{\prime} and ω to another circle ω^{\prime}. The drawn lines remain lines, and thus they still yield the point O^{\prime}. On the other hand, those lines compose a construction which gives the center of ω^{\prime}. But O is not mapped to the center of ω^{\prime}, a contradiction.

Then the described construction must also be impossible. Otherwise, given a circle ω with unknown center O, we could mark a point P_{1} and draw the line $P_{1} O$; and then mark another point P_{2} not on ℓ_{1}, and draw the line $P_{2} O$. Then the intersection of these lines would yield O, which is impossible from above.
(b) Given a point A not on ω, suppose line ℓ_{1} passes through A and hits ω at B_{1} and C_{1}; and suppose another line ℓ_{2} also passes through A and hits ω at B_{2} and C_{2}. Then the line connecting $B_{1} B_{2} \cap C_{1} C_{2}$ and $B_{1} C_{2} \cap C_{1} B_{2}$ is the pole of A with respect to ω. Conversely, given any line ℓ we can pick two points on it that are not on ω, and construct the poles of these two points. If ℓ passes through the center of ω then these two poles are parallel; otherwise, they intersect at the polar of ℓ.

Now given ω and Q, mark another point R on the circle and then construct the polar T of line $Q R$. (If the polar is the point at infinity, pick another point for R.) But then line $T Q$ is the pole of Q - and this pole is tangent to ω at Q. Hence line $Q T$ is our desired line.
(c) (i) Draw the lines tangent to ω_{1} at P and Q; they intersect at a point X_{1}, which by symmetry must lie on our desired line. Next draw the lines tangent to ω_{2} at P and Q; they also intersect at a point X_{2} that lies on our desired line. Then line $X_{1} X_{2}$ passes through both circles' centers, as desired.
(ii)

Lemma. Suppose we have a trapezoid $A B C D$ with $A B \|$ $C D$. Suppose that lines $A D$ and $B C$ intersect at M and that lines $A C$ and $B D$ intersect at N. Then line $M N$ passes through the midpoints of $\overline{A B}$ and $\overline{C D}$.
Proof: Let line $M N$ hit lines $A B$ and $C D$ at Y_{1} and Y_{2}, respectively. Perform an affine transformation that sends $A B C D$ into isosceles trapezoid $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ (with $A^{\prime} D^{\prime}=$ $\left.B^{\prime} C^{\prime}\right)$ and sends points M, N, Y_{1}, Y_{2} to $M^{\prime}, N^{\prime}, Y_{1}^{\prime}, Y_{2}^{\prime}$. Then line $M^{\prime} N^{\prime}$ still passes through Y_{1}^{\prime} and Y_{2}^{\prime}, and by symmetry these points are the midpoints of $\overline{A^{\prime} B^{\prime}}$ and $\overline{C^{\prime} D^{\prime}}$. But since (using directed lengths) $\frac{A Y_{1}}{Y_{1} B}=\frac{A^{\prime} Y_{1}^{\prime}}{Y_{1}^{\prime} B^{\prime}}, Y_{1}$ must be the midpoint of $\overline{A B}$; and similarly, Y_{2} is the midpoint of $\overline{C D}$.

Now construct a line through T intersecting ω_{1} at A and ω_{2} at C; construct a different line through T hitting ω_{1} at B and ω_{2} at D. Under the homothety about T that maps ω_{1} to ω_{2}, segment $A B$ gets mapped to segment $C D$; thus, $A B \| C D$. If lines $A D$ and $B C$ are parallel, pick different A and C; otherwise, using the construction in the lemma we
can find the midpoint F_{1} of $\overline{C D}$. Next, from the construction described in part (b), we can find the polar F_{2} of line $C D$; then line $F_{1} F_{2}$ passes through the center O_{2} of ω_{2}.
Similarly, we can find a different line $G_{1} G_{2}$ passing through O_{2}; and hence O_{2} is the intersection of lines $F_{1} F_{2}$ and $G_{1} G_{2}$. We can likewise find the center O_{1} of ω_{1}; then drawing the line $O_{1} O_{2}$, we are done.

1.6 Iberoamerican Math Olympiad

Problem 1 Find all positive integers n less than 1000 such that n^{2} is equal to the cube of the sum of n 's digits.

Solution: In order for n^{2} to be a cube, n must be a cube itself; and since $n<1000$ we must have $n=1^{3}, 2^{3}, \ldots$, or 9^{3}. Quick checks show that $n=1$ and $n=27$ work while $n=8,64$, and 125 don't. And for $n \geq 6^{3}=216$, we have $n^{2} \geq 6^{6}>27^{3}$; but since the sum of n 's digits is at most $9+9+9=27$, this implies that no $n \geq 6^{3}$ works. Thus $n=1,27$ are the only answers.

Problem 2 Given two circles ω_{1} and ω_{2}, we say that ω_{1} bisects ω_{2} if they intersect and their common chord is a diameter of ω_{2}. (If ω_{1} and ω_{2} are identical, we still say that they bisect each other.) Consider two non-concentric fixed circles ω_{1} and ω_{2}.
(a) Show that there are infinitely many circles ω that bisect both ω_{1} and ω_{2}.
(b) Find the locus of the center of ω.

Solution:

Suppose we have any circle ω with center O and radius r. Then we show that given any point P, there is a unique circle centered at P bisecting ω; and that the radius of this circle is $\sqrt{r^{2}+O P^{2}}$. If $O=P$ the claim is obvious; otherwise, let $\overline{A B}$ be the diameter perpendicular to $O P$, so that $P A=P B=\sqrt{r^{2}+O P^{2}}$.

Since $P A=P B$, there is a circle centered at P and passing through both A and B; this circle indeed bisects ω. Conversely, if circle Γ centered at P bisects ω along diameter $A^{\prime} B^{\prime}$, then both O and P lie on the perpendicular bisector of $\overline{A^{\prime} B^{\prime}}$. Thus $A^{\prime} B^{\prime} \perp O P$, and we must have $\overline{A B}=\overline{A^{\prime} B^{\prime}}$ and hence indeed $P A^{\prime}=P B^{\prime}=P A=P B=$ $\sqrt{r^{2}+O P^{2}}$.

Now back to the original problem. Set up a coordinate system where ω_{1} is centered at the origin $O_{1}=(0,0)$ with radius r_{1}; and ω_{2} is centered at $O_{2}=(a, 0)$ with radius r_{2}. Given any point $P=(x, y)$, the circle centered at P bisecting ω_{1} is the same as the circle centered at P bisecting ω_{2} if and only if $\sqrt{r_{1}^{2}+O_{1} P^{2}}=\sqrt{r_{2}^{2}+O_{2} P^{2}}$; that is,
if and only if

$$
\begin{gathered}
r_{1}^{2}+x^{2}+y^{2}=r_{2}^{2}+(x-a)^{2}+y^{2} \\
2 a x=r_{2}^{2}-r_{1}^{2}+a^{2}
\end{gathered}
$$

Therefore given any point P along the line $x=\frac{r_{2}^{2}-r_{1}^{2}+a^{2}}{2 a}$, some circle ω centered at P bisects both ω_{1} and ω_{2}. Since there are infinitely many such points, there are infinitely many such circles.

And conversely, from above if ω does bisect both circles then it must be centered at a point on the given line - which is a line perpendicular to the line passing through the centers of ω_{1} and ω_{2}. In fact, recall that the radical axis of ω_{1} and ω_{2} is the line $2 a(a-x)=r_{2}^{2}-r_{1}^{2}+a^{2}$; therefore the desired locus is the radical axis of ω_{1} and ω_{2}, reflected across the perpendicular bisector of the segment joining the centers of the circles.

Problem 3 Let $P_{1}, P_{2}, \ldots, P_{n}(n \geq 2)$ be n distinct collinear points. Circles with diameter $P_{i} P_{j}(1 \leq i<j \leq n)$ are drawn and each circle is colored in one of k given colors. All points that belong to more than one circle are not colored. Such a configuration is called a (n, k)-cover. For any given k, find all n such that for any (n, k)-cover there exist two lines externally tangent to two circles of the same color.

Solution: Without loss of generality label the points so that $P_{1}, P_{2}, \ldots, P_{n}$ lie on the line in that order from left to right. If $n \leq k+1$ points, then color any circle $P_{i} P_{j}(1 \leq i<j \leq n)$ with the i-th color. Then any two circles sharing the same i-th color are internally tangent at P_{i}, so there do not exist two lines externally tangent to them.

However, if $n \geq k+2$ then some two of the circles with diameters $P_{1} P_{2}, P_{2} P_{3}, \ldots, P_{k+1} P_{k+2}$ must have the same color. Then there $d o$ exist two lines externally tangent to them. Therefore the solution is $n \geq k+2$.

Problem 4 Let n be an integer greater than 10 such that each of its digits belongs to the set $S=\{1,3,7,9\}$. Prove that n has some prime divisor greater than or equal to 11 .

Solution: Note that any product of any two numbers from $\{1,3,7,9\}$ taken modulo 20 is still in $\{1,3,7,9\}$. Therefore any finite
product of such numbers is still in this set; specifically, any number of the form $3^{j} 7^{k}$ is congruent to $1,3,7$, or $9(\bmod 20)$.

Now if all the digits of $n \geq 10$ are in S, then its tens digit is odd and we cannot have $n \equiv 1,3,7$, or $9(\bmod 20)$. Thus, n cannot be of the form $3^{j} 7^{k}$. Nor can n be divisible by 2 or 5 (otherwise, its last digit would not be $1,3,7$, or 9); so it must be divisible by some prime greater than or equal to 11 , as desired.

Problem 5 Let $A B C$ be an acute triangle with circumcircle ω centered at O. Let $\overline{A D}, \overline{B E}$, and $\overline{C F}$ be the altitudes of $A B C$. Let line $E F$ meet ω at P and Q.
(a) Prove that $A O \perp P Q$.
(b) If M is the midpoint of $\overline{B C}$, prove that

$$
A P^{2}=2 A D \cdot O M
$$

Solution: Let H be the orthocenter of triangle $A B C$, so that $A E H F, B F H D, C D H E$ are cyclic. Then $\angle A F E=\angle A H E=$ $\angle D H B=90^{\circ}-\angle H B D=90^{\circ}-\angle E B C=\angle B C E=C$, while $\angle O A F=\angle O A B=90^{\circ}-C$. Therefore $A O \perp E F$ and thus $A O \perp P Q$, as desired.

Say the circumradius of triangle $A B C$ is R. Draw diameter $A A^{\prime}$ perpendicular to $\overline{P Q}$, intersecting $\overline{P Q}$ at T. Then $A T=$ $A F \cos \left(90^{\circ}-C\right)=A F \sin C=A C \cos A \sin C=2 R \cos A \sin B \sin C$. By symmetry, $P T=T Q$; then by Power of a Point, $P T^{2}=$ $P T \cdot T Q=A T \cdot T A^{\prime}=A T(2 R-A T)$. Thus $A P^{2}=A T^{2}+P T^{2}=$ $A T^{2}+A T(2 R-A T)=2 R \cdot A T=4 R^{2} \cos A \sin B \sin C$.

On the other hand, $A D=A C \sin C=2 R \sin B \sin C$, while $O M=$ $O C \sin \angle O C M=R \sin \left(90^{\circ}-A\right)=R \cos A$. Thus

$$
A P^{2}=4 R^{2} \cos A \sin B \sin C=2 A D \cdot O M
$$

as desired.
Problem 6 Let $A B$ be a segment and C a point on its perpendicular bisector. Construct $C_{1}, C_{2}, \ldots, C_{n}, \ldots$ as follows: $C_{1}=C$, and for $n \geq 1$, if C_{n} is not on $\overline{A B}$, then C_{n+1} is the circumcenter of triangle $A B C_{n}$. Find all points C such that the sequence $\left\{C_{n}\right\}_{n \geq 1}$ is well defined for all n and such that the sequence eventually becomes periodic.

Solution: All angles are directed modulo 180° unless otherwise indicated. Then C_{n} is uniquely determined by $\theta_{n}=\angle A C_{n} B$; and furthermore, we have $\theta_{n+1}=2 \theta_{n}$ for all n. For this to be eventually periodic we must have $\theta_{j+1}=\theta_{k+1}$ or $2^{j} \theta_{1}=2^{k} \theta_{1}$ for some j, k; that is, 180° must divide $\left(2^{k}-2^{j}\right) \theta$ for some k and (not using directed angles) $180^{\circ} \cdot r=\left(2^{k}-2^{j}\right) \theta_{1}$ for some integers p, k.

Therefore $\theta_{1}=180^{\circ} \cdot \frac{r}{2^{k}-2^{j}}$ must be a rational multiple $\frac{p}{q} \cdot 180^{\circ}$ with p, q relatively prime. And for the sequence to be well-defined, q must not be a power of two; because if $q=2^{n}$ then $\theta_{n+1}=180^{\circ} \cdot p=180^{\circ}$, which we cannot have.

Conversely, suppose we have such an angle $\frac{p}{q} \cdot 180^{\circ}$ where p, q are relatively prime and q is not a power of 2 . First, the sequence of points is well-defined because $\frac{2^{n} p}{q}$ will always have a nontrivial odd divisor in its denominator; so it will never be an integer and $\theta_{n+1}=\frac{2^{n} p}{q} \cdot 180^{\circ}$ will never equal 180°.

Next write $q=2^{j} t$ for odd t, and let $k=\phi(t)+j$. Then since $t \mid 2^{\phi(t)}-1$ we have

$$
\theta_{k+1}=2^{k} \cdot \theta_{1}=2^{\phi(t)+j} \cdot \frac{p}{q} \cdot 180^{\circ}=2^{\phi(t)} \cdot \frac{p}{t} \cdot 180^{\circ} \equiv \frac{p}{t} \cdot 180^{\circ}
$$

while

$$
\theta_{j+1} \equiv 2^{j} \frac{p}{q} \cdot 180^{\circ}=\frac{p}{t} \cdot 180^{\circ}
$$

Thus $\theta_{j+1} \equiv \theta_{k+1}$, so the sequence is indeed periodic.
Therefore the set of valid points C is all points C such that $\angle A C B$ (no longer directed) equals $\frac{p}{q} \cdot 180^{\circ}$ for relatively prime positive integers p, q, where q is not a power of 2 .

1.7 Olimpiada de mayo

Problem 1 Find the smallest positive integer n such that the 73 fractions

$$
\frac{19}{n+21}, \frac{20}{n+22}, \frac{21}{n+23}, \cdots, \frac{91}{n+93}
$$

are all irreducible.

Solution: Note that the difference between the numerator and denominator of each fraction is $n+2$. Then $n+2$ must be relatively prime to each of the integers from 19 to 91 . Since this list contains a multiple of each prime p less than or equal to $91, n+2$ must only have prime factors greater than 91 . The smallest such number is 97 , so $n=95$.

Problem 2 Let $A B C$ be a triangle with $\angle A=90^{\circ}$. Construct point P on $\overline{B C}$ such that if Q is the foot of the perpendicular from P to $\overline{A C}$ then $P Q^{2}=P B \cdot P C$.

Solution: Draw D on ray $A B$ such that $A B=B D$, and draw E on ray $A C$ such that $A C=C E$. Next draw F on $\overline{D E}$ such that $\angle F B D=\angle B C A$. Finally, draw the line through F perpendicular to $\overline{A C}$; we claim that it intersects $\overline{B C}$ and $\overline{A C}$ at our desired points P and Q.

Since $B D \| F Q$ we have $\angle B F Q=\angle F B D=\angle B C A=\angle B C Q$, so $B F C Q$ is cyclic. And since $B D=B A$ and $D A \| F Q$, we have $P F=$ $P Q$. Thus by Power of a Point, we have $P B \cdot P C=P F \cdot P Q=P Q^{2}$, as desired.

Problem 3 There are 1999 balls in a row. Each ball is colored either red or blue. Underneath each ball we write a number equal to the sum of the number of red balls to its right and blue balls to its left. Exactly three numbers each appear on an odd number of balls; determine these three numbers.

First Solution: Call of a coloring of $4 n-1$ balls "good" if exactly 3 numbers each appear on an odd number of balls; we claim that these three numbers will then be $2 n-2,2 n-1$, and $2 n$. Let b_{1}, b_{2}, \ldots represent the ball colors (either B or R), and let x_{1}, x_{2}, \ldots represent the numbers under the respective balls. Then $x_{k+1}-x_{k}=1$ if
$b_{k}=b_{k+1}=B ; x_{k+1}-x_{k}=-1$ if $b_{k}=b_{k+1}=R$; and $x_{k}=x_{k+1}$ if $b_{k} \neq b_{k+1}$. Now, when $n=1$, the only good colorings are $R R R$ and $B B B$, which both satisfy the claim. For the sake of contradiction, let $n_{0}>1$ be the least n for which the claim no longer holds. Now, let a "couple" be a pair of adjacent, different-colored balls; then for our coloring of n_{0} balls, one of the following cases is true:
(i) There exist two or more disjoint couples in the coloring. Removing the two couples decreases all the other x_{i} by exactly 2 , while the numbers originally on the four removed balls are removed in pairs. Thus we have constructed a good coloring of $4\left(n_{0}-1\right)-1$ balls for which the claim does not hold, a contradiction.
(ii) The balls are colored $R R \cdots R B R R \cdots R$ or $B B \cdots B R B B \cdots B$. Then $\left\{x_{i}\right\}$ is a nondecreasing series, with equality only under the balls $B R B$ or $R B R$. Then $\left(4 n_{0}-1\right)-2$ numbers appear an odd number of times, but this cannot equal 3 .
(iii) There exists exactly one couple in the coloring. Suppose, without loss of generality, that we have a string of m blue balls followed by a string of n red balls. It is trivial to check that m and n cannot equal 1. Then by removing the final two blue balls and the first two red balls, we construct an impossible coloring of $4\left(n_{0}-1\right)-1$ balls as in case (i).
(iv) All the balls are of the same color. We then have $4 n_{0}-1>3$ distinct numbers, a contradiction.
Thus, all good colorings satisfy our claim; so for $n_{0}=500$, we find that the three numbers must be 998,999 , and 1000.

Second Solution: If a ball has the number m on it, call it an " m-ball." Also let $x_{1}, x_{2}, \ldots, x_{1999}$ represent both the balls and the numbers written on them; and let $\langle i, j\rangle$ denote the i-th through j-th balls, inclusive.

Read from left to right, the numbers on the balls increase by 1 when two blue balls are adjacent, decrease by 1 when two red balls are adjacent, and otherwise remain constant. This implies that when viewed from left to right, the m-balls in our line alternate in color. Also, if $m<x_{i}$ (or $m>x_{i}$) then the first m-ball after x_{i} must be red (or blue) while the last m-ball before it must be blue (or red). It follows that in $\langle i, j\rangle$, there are an odd number of m-balls if $\min \left(x_{i}, x_{j}\right)<m<\max \left(x_{i}, x_{j}\right)$, and an even number of m-balls if
$m<\min \left(x_{i}, x_{j}\right)$ or $m>\max \left(x_{i}, x_{j}\right)$.
This result implies that the three given numbers are consecutive: say they are $k-1, k, k+1$. Without loss of generality say that $x_{1} \leq k$, and suppose that x_{r} is the rightmost $(k+1)$-ball. If any $x_{j} \leq k+1$ for $j>r$ then in $\langle 1, j\rangle$ there are an even number of $(k+1)$-balls, a contradiction.

Then in $\langle 1, r-1\rangle$, for $m \neq k-1, k$ there are an even number of m-balls so that the number of red m-balls equals the number of blue m-balls. As for $m=k-1, k$, there are an odd number of m-balls in $\langle 1, r-1\rangle$ and the last such m-ball is blue. It follows that there must be $\frac{r+2}{2}$ blue balls and $\frac{r-2}{2}$ red balls in $\langle 1, r-1\rangle$.
And in $\langle r+1,1999\rangle$, the number of red m-balls equals the number of blue m-balls for all m; this is because there are no such m-balls for $m \leq k+1$, and for $m \geq k+2$ an even number of m-balls are in $\langle 1, r-1\rangle$ so in $\langle r+1,1999\rangle$ an even number of m-balls must remain. Thus there are $\frac{1998-r}{2}$ blue balls and $\frac{1998-r}{2}$ red balls in $\langle r, 1999\rangle$. Hence $k+1=x_{r}=\frac{r+2}{2}+\frac{1998-r}{2}=1000$, and the three numbers are 998, 999, and 1000.

Problem 4 Let A be a number with six digits, three of which are colored and are equal to $1,2,4$. Prove that it is always possible to obtain a multiple of 7 by doing one of the following:
(1) eliminate the three colored numbers;
(2) write the digits of A in a different order.

Solution: Note that modulo 7, the six numbers 421, 142, 241, 214, 124, 412 are congruent to $1,2,3,4,5,6$, respectively. Let the other digits besides 1,2 , and 4 be x, y, and z, appearing in that order from left to right. If the 3 -digit number $x y z$ is divisible by 7 , we may eliminate the three colored numbers. If not, the 6 -digit number $x y z 000$ is also not divisible by 7 , and we may add the appropriate permutation $a b c$ of 124 to $x y z 000$ to make $x y z a b c$ divisible by 7 .

Problem 5 Consider a square of side length 1. Let S be a set of finitely many points on the sides of the square. Prove that there is a vertex of the square such that the arithmetic mean of the squares of the distances from the vertex to all the points in S is no less than $\frac{3}{4}$.

Solution: Let the four vertices of the square be V_{1}, V_{2}, V_{3}, and V_{4}, and let the set of points be $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$. For a given P_{k}, we may assume without loss of generality that P_{k} lies on side $V_{1} V_{2}$. Writing $x=P_{k} V_{1}$, we have
$\sum_{i=1}^{4} P_{k} V_{i}^{2}=x^{2}+(1-x)^{2}+\left(1+x^{2}\right)+\left(1+(1-x)^{2}\right)=4\left(x-\frac{1}{2}\right)^{2}+3 \geq 3$.
Hence $\sum_{i=1}^{4} \sum_{j=1}^{n} P_{j} V_{i}^{2} \geq 3 n$, or $\sum_{i=1}^{4}\left(\frac{1}{n} \sum_{j=1}^{n} P_{j} V_{i}^{2}\right) \geq 3$. Thus the average of $\frac{1}{n} \sum_{j=1}^{n} P_{j} V_{i}^{2}$ (for $i=1,2,3,4$) is at least $\frac{3}{4}$; so if we select the V_{i} for which $\frac{1}{n} \sum_{j=1}^{n} P_{j} V_{i}^{2}$ is maximized, we are guaranteed it will be at least $\frac{3}{4}$.

Problem 6 An ant crosses a circular disc of radius r and it advances in a straight line, but sometimes it stops. Whenever it stops, it turns 60°, each time in the opposite direction. (If the last time it turned 60° clockwise, this time it will turn 60° counterclockwise, and vice versa.) Find the maximum length of the ant's path.

Solution: Suppose the ant begins its path at P_{0}, stops at P_{1}, P_{2}, \ldots, P_{n-1} and ends at P_{n}. Note that all the segments $P_{2 i} P_{2 i+1}$ are parallel to each other and that all the segments $P_{2 i+1} P_{2 i+2}$ are parallel to each other. We may then translate all the segments so as to form two segments $P_{0} Q$ and $Q P_{n}$ where $\angle P_{0} Q P_{n}=120^{\circ}$. Then $P_{0} P_{n} \leq 2 r$, and the length of the initial path is equal to $P_{0} Q+Q P_{n}$. Let $P_{0} P_{n}=c, P_{0} Q=a$, and $Q P_{n}=b$. Then

$$
(2 r)^{2} \geq c^{2}=a^{2}+b^{2}+a b=(a+b)^{2}-a b \geq(a+b)^{2}-\frac{1}{4}(a+b)^{2}
$$

so $\frac{4}{\sqrt{3}} r \geq a+b$ with equality iff $a=b$. The maximum is therefore $\frac{4}{\sqrt{3}} r$; this can be attained with the path where $\overline{P_{0} P_{2}}$ is a diameter of the circle, and $P_{0} P_{1}=P_{1} P_{2}=\frac{2}{\sqrt{3}} r$.

1.8 St. Petersburg City Mathematical Olympiad (Russia)

Problem 9.1 Let $x_{0}>x_{1}>\cdots>x_{n}$ be real numbers. Prove that

$$
x_{0}+\frac{1}{x_{0}-x_{1}}+\frac{1}{x_{1}-x_{2}}+\cdots+\frac{1}{x_{n-1}-x_{n}} \geq x_{n}+2 n .
$$

Solution: For $i=0,1, \ldots, n-1$, we have $x_{i}-x_{i+1}>0$ so that by AM-GM,

$$
\left(x_{i}-x_{i+1}\right)+\frac{1}{\left(x_{i}-x_{i+1}\right)} \geq 2
$$

Adding up these inequalities for $i=0,1, \ldots, n-1$ gives the desired result.

Problem 9.2 Let $f(x)=x^{2}+a x+b$ be a quadratic trinomial with integral coefficients and $|b| \leq 800$. It is known also that $f(120)$ is prime. Prove that $f(x)=0$ has no integer roots.

Solution: Suppose by way of contradiction $f(x)$ had an integer root r_{1}; then writing $f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)$, we see that its other root must be $r_{2}=-a-r_{1}$, also an integer.

Since $f(120)=\left(120-r_{1}\right)\left(120-r_{2}\right)$ is prime, one of $\left|120-r_{1}\right|$ and $\left|120-r_{2}\right|$ equals 1 , and the other equals some prime p.

Without loss of generality say $\left|120-r_{1}\right|=1$, so that $r_{1}=119$ or 121 , and $\left|r_{1}\right| \geq 119$. Then $\left|120-r_{2}\right|$ is a prime, but the numbers $114,115, \ldots, 126$ are all composite: $119=7 \cdot 17$, and all the other numbers are clearly divisible by $2,3,5$, or 11 . Therefore $\left|r_{2}\right| \geq 7$, and $|b|=\left|r_{1} r_{2}\right| \geq|119 \cdot 7|>800$, a contradiction.

Problem 9.3 The vertices of a regular n-gon $(n \geq 3)$ are labeled with distinct integers from $\{1,2, \ldots, n\}$. For any three vertices A, B, C with $A B=A C$, the number at A is either larger than numbers at B and C, or less than both of them. Find all possible values of n.

Solution: Suppose that $n=2^{s} t$, where $t \geq 3$ is odd. Look at the regular t-gon $P_{1} \cdots P_{t}$ formed by every 2^{s}-th point. In this t-gon, some

[^1]vertex A has the second-smallest number, and some vertex B has the smallest number. But then at the third vertex C with $A B=A C$ (which exists since t is odd), the number must also be smaller than A 's number - a contradiction.

Alternatively, if P_{1} has a bigger number than P_{t} and P_{2}, then P_{2} has a smaller number than P_{3}, P_{3} has a bigger number than P_{4}, and so on around the circle - so that P_{t} has a bigger number than P_{1}, a contradiction.

Now we prove by induction on $s \geq 0$ that we can satisfy the conditions for $n=2^{s}$. For $s=1$, label the single point 1. And if we can label a regular 2^{s}-gon with the numbers $a_{1}, \ldots, a_{2^{s}}$ in that order, then we can label a regular 2^{s+1}-gon with the numbers $a_{1}, a_{1}+2^{s}, a_{2}, a_{2}+2^{s}, \ldots, a_{2^{s}}, a_{2^{s}}+2^{s}$, as desired.
(Alternatively, when $n=2^{s}$ one could label the vertices as follows. For $i=1,2, \ldots, 2^{s}$, reverse each digit of the s-bit binary expansion of $i-1$ and then add 1 to the result. Label the i-th vertex with this number.)

Problem 9.4 Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of an isosceles triangle $A B C \quad(A B=B C)$. It is known that $\angle B C_{1} A_{1}=\angle C A_{1} B_{1}=\angle A$. Let $B B_{1}$ and $C C_{1}$ meet at P. Prove that $A B_{1} P C_{1}$ is cyclic.

Solution: All angles are directed modulo 180°.
Let the circumcircles of triangles $A B_{1} C_{1}$ and $A_{1} B_{1} C$ intersect at P^{\prime}, so that $A B_{1} P^{\prime} C_{1}$ and $C B_{1} P^{\prime} A_{1}$ are cyclic. Then

$$
\begin{aligned}
& \angle A_{1} P^{\prime} C_{1}=\left(180^{\circ}-\angle C_{1} P^{\prime} B_{1}\right)+\left(180^{\circ}-\angle B_{1} P^{\prime} A_{1}\right) \\
& =\angle B_{1} A C_{1}+\angle A_{1} C B_{1}=\angle C A B+\angle B C A \\
& =180^{\circ}-\angle A B C=180^{\circ}-\angle C_{1} B A_{1},
\end{aligned}
$$

so $B A_{1} P^{\prime} C_{1}$ is cyclic as well.
Now, $\angle B C_{1} A_{1}=\angle A=\angle C$ implies that $\triangle B C_{1} A_{1} \sim \triangle B C A$, so $B C_{1} \cdot B A=B A_{1} \cdot B C$. Thus B has equal power with respect to the circumcircles of triangles $A B_{1} C_{1}$ and $A_{1} B_{1} C$, so it lies on their radical axis $B_{1} P^{\prime}$.

Similarly, $\angle C A_{1} B_{1}=\angle A$ implies that $\triangle A B C \sim \triangle A_{1} B_{1} C$, so $C A \cdot C B_{1}=C B \cdot C A_{1}$. Thus C has equal power with respect to the circumcircles of triangles $B_{1} A C_{1}$ and $A_{1} B C_{1}$, so it lies on their radical axis $C_{1} P^{\prime}$.

Then P^{\prime} lies on both $C C_{1}$ and $B B_{1}$, so it must equal P. Therefore $A B_{1} P C_{1}$ is indeed cyclic, as desired.

Problem 9.5 Find the set of possible values of the expression

$$
f(x, y, z)=\left\{\frac{x y z}{x y+y z+z x}\right\}
$$

for positive integers x, y, z. Here $\{x\}=x-\lfloor x\rfloor$ is the fractional part of x.

Solution: Clearly $f(x, y, z)$ must be a nonnegative rational number below 1; we claim all such numbers are in the range of f. Suppose we have nonnegative integers p and q with $p<q$; let $x_{1}=y_{1}=2(q-1)$ and let $z_{1}=1$. Then

$$
f\left(x_{1}, y_{1}, z_{1}\right)=\left\{\frac{4(q-1)^{2}}{4(q-1)^{2}+4(q-1)}\right\}=\frac{q-1}{q}
$$

Writing $X=\frac{x y z}{x y+y z+z x}$, notice that for any nonzero integer k we have

$$
f(k x, k y, k z)=\{k X\}=\{k\lfloor X\rfloor+k\{X\}\}=\{k \cdot f(x, y, z)\} .
$$

Then $f\left(p(q-1) \cdot x_{1}, p(q-1) \cdot y_{1}, p(q-1) \cdot z_{1}\right)=\frac{p}{q}$, so every nonnegative rational $\frac{p}{q}<1$ is indeed in the range of f.

Problem 9.6 Let $\overline{A L}$ be the angle bisector of triangle $A B C$. Parallel lines ℓ_{1} and ℓ_{2} equidistant from A are drawn through B and C respectively. Points M and N are chosen on ℓ_{1} and ℓ_{2} respectively such that lines $A B$ and $A C$ meet lines $L M$ and $L N$ at the midpoints of $\overline{L M}$ and $\overline{L N}$ respectively. Prove that $L M=L N$.

Solution: Let A, B, C also represent the angles at those points in triangle $A B C$.

Let line ℓ pass through A perpendicular to $A L$. Next, draw M^{\prime} and N^{\prime} on ℓ so that $\angle A L M^{\prime}=\angle A L N^{\prime}=\frac{A}{2}$ (with M^{\prime} and N^{\prime} on the same sides of line $A L$ as B and C, respectively). Finally, let ℓ hit ℓ_{1} at Q.

We claim that M^{\prime} lies on ℓ_{1}. Orient the figure so that ℓ_{1} and ℓ_{2} are vertical, and let $x=\angle Q B A$. Note that $A M^{\prime}=A L \tan \angle A L M^{\prime}=$ $A L \tan \frac{A}{2}$, so the horizontal distance between A and M^{\prime} is

$$
A M^{\prime} \sin \left(180^{\circ}-\angle A Q B\right)
$$

$$
\begin{aligned}
& =A L \tan \frac{A}{2} \cdot \sin (\angle Q B A+\angle B A Q) \\
& =A L \tan \frac{A}{2} \cdot \sin \left(x+90^{\circ}-\frac{A}{2}\right) \\
& =A L \tan \frac{A}{2} \cdot \cos \left(\frac{A}{2}-x\right)
\end{aligned}
$$

On the other hand, the horizontal distance between A and ℓ_{1} is $A B \sin x$. Thus we need only prove that

$$
A B \sin x=A L \tan \frac{A}{2} \cdot \cos \left(\frac{A}{2}-x\right) .
$$

By the law of sines on triangle $A B L$, we know that $A L \sin \left(\frac{A}{2}+B\right)=$ $A B \sin B$. Hence we must prove

$$
\begin{aligned}
\sin & \left(\frac{A}{2}+B\right) \cdot \sin x=\sin B \cdot \tan \frac{A}{2} \cdot \cos \left(\frac{A}{2}-x\right) \\
& \Longleftrightarrow \sin \left(\frac{A}{2}+B\right) \cdot \cos \frac{A}{2} \cdot \sin x=\sin B \cdot \sin \frac{A}{2} \cdot \cos \left(\frac{A}{2}-x\right) \\
& \Longleftrightarrow(\sin (A+B)+\sin B) \cdot \sin x=\sin B \cdot(\sin (A-x)+\sin x) \\
& \Longleftrightarrow \sin C \cdot \sin x=\sin B \cdot \sin (A-x) \\
& \Longleftrightarrow A B \sin x=A C \sin (A-x) .
\end{aligned}
$$

But $A B \sin x$ is the distance between A and ℓ_{1}, and $A C \sin (A-x)$ is the distance between A and ℓ_{2} - and these distances are equal. Therefore, M^{\prime} indeed lies on ℓ_{1}.

Now say that lines $A B$ and $L M^{\prime}$ intersect at P. Then since $\angle L A P=$ $\angle P L A=\frac{A}{2}, \overline{A P}$ is the median to the hypotenuse of right triangle $M^{\prime} A L$. Thus line $A B$ hits the midpoint of $\overline{L M^{\prime}}$, so $M=M^{\prime}$.

Similarly, $N=N^{\prime}$. But then $\angle L M N=90^{\circ}-\frac{A}{2}=\angle L N M$, so $L M=L N$, as desired.

Problem 9.7 A corner is the figure resulted by removing 1 unit square from a 2×2 square. Prove that the number of ways to cut a 998×999 rectangle into corners, where two corners can form a 2×3 rectangle, does not exceed the number of ways to cut a 1998×2000 rectangle into corners, so that no two form a 2×3 rectangle.

Solution: Take any tiling of a 998×999 rectangle with corners, and add a 2×999 block underneath also tiled with corners:

Next, enlarge this 1000×999 board to twice its size, and replace each large corner by four normal-sized corners as follows:

For each corner in the tiling of the 1000×999 board, none of the four new corners can be half of a 2×3 rectangle. Also, the "central" corners (like the one marked with x's above) have the same orientations as the original corners tiling the 1000×999 rectangle.

Thus, different tilings of a 998×999 rectangle turn into different tilings of a 2000×1998 board where no two corners form a 2×3 rectangle - which implies the desired result.

Problem 9.8 A convex n-gon $(n>3)$ is divided into triangles by non-intersecting diagonals. Prove that one can mark $n-1$ segments among these diagonals and sides of the polygon so that no set of marked segments forms a closed polygon and no vertex belongs to exactly two segments.

Solution: After we mark some segments, let the degree $d(V)$ of a vertex V be the number of marked segments it is on. Also, say we mark up a triangulated n-gon with respect to side $A B$ if we mark $n-1$ segments, no marked segments form a closed polygon, and none of the $n-2$ vertices besides A and B have degree 2 .
Lemma. Given any triangulated convex n-gon ($n \geq 3$) and any two adjacent vertices A and B, we can mark up the n-gon with respect to side $A B$ in three ways (i), (ii), (iii), each satisfying the corresponding condition from the following list:
(i) $\overline{A B}$ is marked, and $d(A) \geq 2$.
(ii) $\overline{A B}$ is marked, and $d(A) \neq 2$.
(iii) $(d(A), d(B)) \neq(1,1)$ or $(2,2)$.

Proof: For $n=3$, given a triangle $A B C$ we can mark sides $A B$ and (i) $A C$, (ii) $B C$, and (iii) $A C$. Now suppose that $n \geq 4$ and that the claims are true for all smaller n; we prove that they are true for n as well.
$\overline{A B}$ must be part of some triangle $A B C$ of drawn segments. Then either (a) $\overline{A C}$ is a side of the polygon but $\overline{B C}$ is not; (b) $\overline{B C}$ is a side but $\overline{A C}$ is not; or (c) neither $\overline{A C}$ nor $\overline{B C}$ is a side.
(a) Let P be the $(n-1)$-gon formed by the vertices not including A.
(i) Apply (ii) to P so that $d(C) \neq 2$ and $\overline{B C}$ is marked; then unmark $\overline{B C}$, and mark $\overline{A C}$ and $\overline{A B}$.
(ii) Apply (ii) to P so that $d(C) \neq 2$ and $\overline{B C}$ is marked; then mark $\overline{A B}$.
(iii) Apply (i) to P so that $d(B) \geq 2$ and $\overline{B C}$ is marked. If $d(C) \neq 2$, then mark $\overline{A B}$; otherwise mark $\overline{A C}$.
(b) Let P be the $(n-1)$-gon formed by the vertices besides B.
(i) Apply (ii) to P so that $d(C) \neq 2$ and $\overline{A C}$ is marked; then mark $\overline{A B}$.
(ii) Apply (ii) to P so that $d(C) \neq 2$ and $\overline{A C}$ is marked. If $d(A)=2$, then mark $\overline{A B}$; otherwise unmark $\overline{A C}$ and mark $\overline{A B}$ and $\overline{B C}$.
(iii) Repeat the construction in (i).
(c) Let P be the polygon formed by A, C, and the vertices in between (not on the same side of line $A C$ as B); and let Q be the polygon formed by B, C, and the vertices in between (not on the same side of line $B C$ as A).
(i) Apply (i) to P and Q so that $d(C) \geq 2+2=4$ and $\overline{A C}, \overline{B C}$ are marked; then unmark $\overline{B C}$ and mark $\overline{A B}$.
(ii) Apply (i) to P and Q so that $d(C) \geq 2+2=4$ and $\overline{A C}$, $\overline{B C}$ are marked. If $d(A)=2$, unmark $\overline{B C}$ and mark $\overline{A B}$; otherwise, unmark $\overline{A C}$ and mark $\overline{A B}$.
(iii) Repeat the construction in (ii).

Now to the main result. Since there are $n \geq 4$ sides but only $n-2$ triangles, some triangle contains two adjacent sides $X Y$ and $Y Z$. Let P be the $(n-1)$-gon formed by the vertices not including Y, and apply (iii) to P and vertices X, Z.

Then if $d(X)$ or $d(Z)$ equals 2 , mark $\overline{X Y}$ or $\overline{Y Z}$, respectively. Otherwise, if $d(X)$ or $d(Z)$ equals 1 , mark $\overline{Y Z}$ or $\overline{X Y}$, respectively. Otherwise, both $d(X)$ and $d(Z)$ are at least 3 , and we can mark either $\overline{X Y}$ or $\overline{Y Z}$ to finish off.
Problem 10.1 The sequence $\left\{x_{n}\right\}$ of positive integers is formed by the following rule: $x_{1}=10^{999}+1$, and for every $n \geq 2$, the number x_{n} is obtained from the number $11 x_{n-1}$ by rubbing out its first digit. Is the sequence bounded?

Solution: If x_{n-1} has k digits, then $x_{n-1}<10^{k}$ so that $11 x_{n-1}<$ $11 \cdot 10^{k}=1100 \ldots 0$. Thus if $11 x_{n-1}$ has $k+2$ digits, its first two digits are 1 and 0 ; and rubbing out its first digit leaves x_{n} with at most k digits. Otherwise, $11 x_{n-1}$ has at most $k+1$ digits, so rubbing out its first digit still leaves x_{n} with at most k digits. Therefore the number of digits in each x_{n} is bounded, so the x_{n} are bounded as well.

Problem 10.2 Prove that any positive integer less than n ! can be represented as a sum of no more than n positive integer divisors of $n!$.

Solution: Fix n, and write $a_{k}=\frac{n!}{k!}$ for each $k=1,2, \ldots, n$. Suppose we have some number m with $a_{k} \leq m<a_{k-1}$ where $2 \leq k \leq n$. Then consider the number $d=a_{k}\left\lfloor\frac{m}{a_{k}}\right\rfloor$. We have $0 \leq m-d<a_{k}$; and furthermore, since $s=\left\lfloor\frac{m}{a_{k}}\right\rfloor<\frac{a_{k-1}}{a_{k}}=k$, we know that $\frac{n!}{d}=\frac{k!}{s}$ is an integer. Thus from m we can subtract d, a factor of n !, to obtain a number less than a_{k}.

Then if we start with any positive integer $m<n!=a_{1}$, then by subtracting at most one factor of $n!$ from m we can obtain an integer less than a_{2}; by subtracting at most one more factor of n ! we can obtain an integer less than a_{3}; and so on, so that we can represent m as the sum of at most $n-1$ positive integer divisors of n !.
Problem 10.5 How many 10-digit numbers divisible by 66667 are there whose decimal representation contains only the digits $3,4,5$, and 6 ?

Solution: Suppose that $66667 n$ had 10 digits, all of which were 3 , 4,5 , and 6 . Then

$$
3333333333 \leq 66667 n \leq 66666666666 \quad \Rightarrow \quad 50000 \leq n \leq 99999
$$

Now consider the following cases:
(i) $n \equiv 0(\bmod 3)$. Then

$$
66667 n=\frac{2}{3} n \cdot 10^{5}+\frac{1}{3} n
$$

the five digits of $2 \cdot \frac{n}{3}$ followed by the five digits of $\frac{n}{3}$. These digits are all $3,4,5$, or 6 if and only if $\frac{n}{3}=33333$ and $n=99999$.
(ii) $n \equiv 1(\bmod 3)$. Then

$$
66667 n=\frac{2}{3}(n-1) \cdot 10^{5}+\frac{1}{3}(n+2)+66666
$$

the five digits of $\frac{2}{3}(n-1)$ followed by the five digits of $\frac{1}{3}(n+2)+$ 66666. But $\frac{1}{3}(n+2)+66666$ must be between 66667 and 99999 , so its digits cannot all be $3,4,5$, or 6 . Therefore there are no satisfactory $n \equiv 1(\bmod 3)$.
(iii) $n \equiv 2(\bmod 3)$. Let $a=\frac{1}{3}(n-2)$. Then

$$
66667 n=\left(\frac{2}{3}(n-2)+1\right) \cdot 10^{5}+\frac{1}{3}(n-2)+33334
$$

the five digits of $x=2 a+1$ followed by the five digits of $y=$ $a+33334$. The units digits in x and y are between 3 and 6 if and only if the units digit in a is 1 or 2 ; then the other digits in x and y are all between 3 and 6 if and only if the other digits in a are 2 or 3 . Thus there are thirty-two satisfactory a - we can choose each of its five digits from two options - and each a corresponds to a satisfactory $n=3 a+2$.
Therefore there is exactly one satisfactory $n \equiv 0(\bmod 3)$, and thirty-two satisfactory $n \equiv 2(\bmod 3)$ —making a total of thirty-three values of n and thirty-three ten-digit numbers.

Problem 10.6 The numbers $1,2, \ldots, 100$ are arranged in the squares of a 10×10 table in the following way: the numbers $1, \ldots, 10$ are in the bottom row in increasing order, numbers $11, \ldots, 20$ are in the next row in increasing order, and so on. One can choose any number and two of its neighbors in two opposite directions (horizontal, vertical, or diagonal). Then either the number is increased by 2 and its neighbors are decreased by 1 , or the number is decreased by 2 and its neighbors are increased by 1. After several such operations the
table again contains all the numbers $1,2, \ldots, 100$. Prove that they are in the original order.

Solution: Label the table entries a_{11}, a_{12}, \ldots, with $a_{i j}$ in the i th row and j th column, where the bottom-left corner is in the first row and first column. Also, let $b_{i j}=10(i-1)+j$ be the number originally in the i th row and j th column.

Observe that

$$
P=\sum_{i, j=1}^{10} a_{i j} b_{i j}
$$

is invariant - this is because every time entries $a_{m n}, a_{p q}, a_{r s}$ are changed (with $m+r=2 p$ and $n+s=2 q$), P increases or decreases by $b_{m n}-2 b_{p q}+b_{r s}$, or

$$
10((m-1)+(r-1)-2(p-1))+(n+s-2 q)=0
$$

(For example, if entries a_{35}, a_{46}, a_{57} are changed then P changes by $\pm(35-2 \cdot 46+57)=0$.)

At first, $P=\sum_{i, j=1}^{10} b_{i j} b_{i j}$; at the end, the entries $a_{i j}$ equal the $b_{i j}$ in some order, and we now have $P=\sum_{i, j=1}^{10} a_{i j} b_{i j}$. By the rearrangement inequality, this is at least $\sum_{i, j=1}^{10} b_{i j} b_{i j}$, with equality only when each $a_{i j}=b_{i j}$.

But we know equality does occur since P is invariant. Therefore the $a_{i j}$ do indeed equal the $b_{i j}$ in the same order, and thus the entries $1,2, \ldots, 100$ appear in their original order.

Problem 10.7 Quadrilateral $A B C D$ is inscribed in circle ω centered at O. The bisector of $\angle A B D$ meets $\overline{A D}$ and ω at points K and M respectively. The bisector of $\angle C B D$ meets $\overline{C D}$ and ω at points L and N respectively. Suppose that $K L \| M N$. Prove that the circumcircle of triangle $M O N$ goes through the midpoint of $\overline{B D}$.

Solution: All angles are directed modulo 180°. Let P, Q, R be the midpoints of $\overline{D B}, \overline{D A}, \overline{D C}$ respectively. Points M and N are the midpoints of arcs $A D$ and $D C$, respectively; so M, Q, O and N, R, O are collinear, so that $\angle M O N=\angle Q O R$. But since $\angle D Q O=$ $\angle D R O=90^{\circ}, D Q O R$ is cyclic and $\angle Q O R=180^{\circ}-\angle R D Q=$ $180^{\circ}-\angle C D A=\angle A B C$.

In addition, $\angle Q P R=\angle Q P D+\angle D P R=\angle A B D+\angle D B C=$ $\angle A B C$. Then to prove our claim, it suffices to show that $\triangle P Q M \sim$ $\triangle P R N$ (with the same orientation) since then
$\angle M P N=\angle Q P R-\angle Q P M+\angle R P N=\angle Q P R=\angle A B C=\angle M O N$ so that MPON would be cyclic. (Alternatively, it is possible that triangles $P Q M$ and $P R N$ are both degenerate.)

Now, let $a=A B, b=B C, c=C D, D=D A, e=A C$, and $f=B D$. Suppose line $M N$ hits lines $A D$ and $C D$ at E and F, respectively. Then

$$
\begin{aligned}
& \angle D E F=\frac{1}{2}(\widehat{D N}+\widehat{A M}) \\
& =\frac{1}{2}(\widehat{N C}+\widehat{M D}) \\
& =\angle E F D,
\end{aligned}
$$

so $D E=D F$. Then since $K L \| E F$, we have $D K=D L$. And by the Angle Bisector Theorem on triangles $A B D$ and $C B D, D K=d \cdot \frac{f}{a+f}$ and $D L=c \cdot \frac{f}{b+f}$, so that

$$
\begin{align*}
& d(b+f)=c(a+f) \\
& (c-d) f=b d-a c \tag{1}
\end{align*}
$$

If $c=d$ then we must have $b d=a c$, so $a=b$. But then $B D$ is a diameter of ω so $P=O$ and the claim is obvious. Otherwise $c-d, b d-a c \neq 0$, and $f=\frac{b d-a c}{c-d}$.

Now we prove that $\triangle P Q M \sim \triangle P R N$. Observe that

$$
\begin{aligned}
& \angle P Q M=\angle P Q D+\angle D Q M=\angle B A D+90^{\circ} \\
& \quad=\angle B C D+90^{\circ}=\angle P R D+\angle D R N=\angle P R N
\end{aligned}
$$

and also note that $\angle P Q M$ and $\angle P R N$ are both obtuse.
So, we need only prove that

$$
\begin{gathered}
\frac{P Q}{Q M}=\frac{P R}{R N} \\
\Longleftrightarrow \frac{\frac{B A}{2}}{A Q \tan \angle M A Q}=\frac{\frac{B C}{2}}{C R \tan \angle R C N} \\
\Longleftrightarrow \frac{\frac{B A}{2}}{\frac{A D}{2} \tan \angle M C D}=\frac{\frac{B C}{2}}{\frac{C D}{2} \tan \angle D A N}
\end{gathered}
$$

$$
\begin{equation*}
\Longleftrightarrow \frac{a}{d \tan \angle A C M}=\frac{b}{c \tan \angle N A C} \tag{2}
\end{equation*}
$$

Since lines $C M, A N$ are angle bisectors of $\angle A C D, \angle D A C$, they intersect at the incenter I of triangle $A C D$. Also, let T be the point where the incircle of triangle $A C D$ hits $\overline{A C}$. Then $\tan \angle A C M=$ $\frac{I T}{T C}=\frac{I T}{\frac{1}{2}(e+c-d)}$ and $\tan \angle N A C=\frac{I T}{T A}=\frac{I T}{\frac{1}{2}(e+d-c)}$, so $\frac{\tan \angle A C M}{\tan \angle N A C}=$ $\frac{e+d-c}{e+c-d}$. Thus (2) is equivalent to

$$
\begin{gathered}
a c(e+c-d)=b d(e+d-c) \\
\quad \Longleftrightarrow e=\frac{(a c+b d)(c-d)}{b d-a c}
\end{gathered}
$$

But by Ptolemy's Theorem and (1), we have

$$
e=\frac{a c+b d}{f}=\frac{(a c+b d)(c-d)}{b d-a c}
$$

as desired. Therefore triangle $P Q M$ is similar to triangle $P R N$, $\angle M P N=\angle M O N$, and $M P O N$ is indeed cyclic!

Problem 11.1 There are 150 red, 150 blue, and 150 green balls flying under the big top in the circus. There are exactly 13 green balls inside every blue one, and exactly 5 blue balls and 19 green balls inside every red one. (A ball is considered to be "inside" another ball even if it is not immediately inside it; for example, if a green ball is inside a blue ball and that blue ball is inside a red ball, then the green ball is also inside the red ball.) Prove that some green ball is not contained in any of the other 449 balls.

Solution: Suppose by way of contradiction that every green ball were in some other ball. Notice that no red ball is inside a blue ball, since then the blue ball would contain at least 19 green balls.

Look at the red balls that are not inside any other red balls - say there are m of them, and throw them away along with all the balls they contain. Then we throw all the red balls and anything inside a red ball, including 19 m green balls. Also, since no red ball is inside a blue ball, there are still exactly 13 green balls inside each of the remaining blue balls.

Now look at the blue balls left that are not inside any other blue balls - say there are n of them, and throw them away along with all the balls they contain. Then we throw away all the remaining blue balls and the $13 n$ more green balls inside.

At this point, all the green balls are gone and hence we must have $150=19 m+13 n$. Taking this equation modulo 13 , we find that $7 \equiv 6 m \Rightarrow m \equiv 12(\bmod 13)$. Then $m \geq 12$ and $150=19 m+13 n \geq$ $19 \cdot 12=228$, a contradiction. Thus our original assumption was false, and some green ball is contained in no other ball.

Problem 11.3 Let $\left\{a_{n}\right\}$ be an arithmetic sequence of positive integers. For every n, let p_{n} be the largest prime divisor of a_{n}. Prove that the sequence $\left\{\frac{a_{n}}{p_{n}}\right\}$ is unbounded.

Solution: Let d be the common difference of the arithmetic sequence and N be an arbitrary number. Choose primes $p<q$ bigger than N and relatively prime to d; then there is some term a_{k} divisible by $p q$. Since $p_{k} \geq q>p$, we have $p \left\lvert\, \frac{a_{k}}{p_{k}}\right.$ so that

$$
\frac{a_{k}}{p_{k}} \geq p>N
$$

Thus for any N, there exists k such that $\frac{a_{k}}{p_{k}}>N$, so the sequence $\left\{\frac{a_{n}}{p_{n}}\right\}$ is unbounded.

Problem 11.4 All positive integers not exceeding 100 are written on both sides of 50 cards (each number is written exactly once). The cards are put on a table so that Vasya only knows the numbers on the top side of each card. Vasya can choose several cards, turn them upside down, and then find the sum of all 50 numbers now on top. What is the maximum sum Vasya can be sure to obtain or beat?

Solution: The answer is $2525=\frac{1}{2}(1+2+3+\cdots+100)$. Vasya can always obtain or beat this: if the 50 numbers on top add to this or more, he is done; otherwise, if they add to less, Vasya can flip all of them.

Sadly, this might be the best Vasya can do. Suppose that Vasya has horrible luck and the numbers on top are $26,27,28, \ldots, 75$, with sum 2525 ; and that the numbers on the cards he flips over are, in order, $1,2, \ldots, 25,76,77, \ldots, 100$ (although of course he might not flip over all of the cards). If he flips over 0 through 25 cards, his sum decreases; and if he flips over more, his sum is at most $1+2+\cdots+25+76+77+\cdots+100=2525$. Either way, Vasya cannot obtain a sum of more than 2525 , as claimed.

Problem 11.5 Two players play the following game. They in turn write on a blackboard different divisors of 100 ! (except 1). A player loses if after his turn, the greatest common divisor of the all the numbers written becomes 1 . Which of the players has a winning strategy?

Solution: The second player has a winning strategy. Notice that every prime $p<100$ divides an even number of factors of 100 : the factors it divides can be split into disjoint pairs $(k, 97 k)$ - or, if $p=97$, into the pairs $(k, 89 k)$. (Note that none of these factors is 1 , since 1 is not divisible by p.)
If the first player writes down a prime p, the second player can write down any other number divisible by p; if the first player writes down a composite number, the second player can write down a prime p dividing that number. Either way, from now on the players can write down a new number $q \mid 100$! without losing if and only if it is divisible by p. Since there are an even number of such q, the second player will write down the last acceptable number and the first player will lose.

Problem 11.7 A connected graph G has 500 vertices, each with degree 1,2 , or 3 . We call a black-and-white coloring of these vertices interesting if more than half of the vertices are white but no two white vertices are connected. Prove that it is possible to choose several vertices of G so that in any interesting coloring, more than half of the chosen vertices are black.

Solution: We first give an algorithm to (temporarily) erase edges from G so that our graph consists of "chains" of vertices-sequences of vertices V_{1}, \ldots, V_{n} where each V_{i} is adjacent to V_{i+1}-and possibly one leftover vertex.
First, as long as G still contains any cycle erase an edge from that cycle; this eventually makes G a tree (a connected graph with no cycles). Look at the leaves (vertices with degree 1) that are not part of a chain yet. If all of them are adjacent to a degree-3 vertex, then we must have exactly four unchained vertices left with one central vertex adjacent to the other 3 ; remove one of the edges, and we are done. Otherwise, one of the leaves is not adjacent to a degree-3 vertex. Travel along the graph from this vertex until we reach a
degree-3 vertex V, and erase the edge going into V. This creates a new chain, while leaving all the unchained vertices in a smaller, still-connected tree; we can then repeat the algorithm on this tree until we are finished.

Besides our lone vertex, every vertex is in an "odd chain" (a chain with an odd number of vertices) or an "even chain" (a chain with an even number of vertices). For our chosen vertices, in each odd chain pick one vertex adjacent to one of the ends. Even with all the original edges back in place, for any interesting coloring observe that in any of our chains at most every other vertex can be white. Thus in any even chain, at most half the vertices are white. Furthermore, if a chosen vertex is white, then in its odd chain there is at least one more black vertex than white; and if a chosen vertex is black, then there is at most one more white vertex than black.

Suppose there are b odd chains with a black chosen vertex, and w odd chains with a white chosen vertex. If there is a lone vertex, there are at most $1+b-w$ more white vertices than black in our graph so that $1+b-w>0$. But we know $1+b-w$ must be even since $1+b+w \equiv 500(\bmod 2)$. Then $1+b-w \geq 2$ and $b-w \geq 1$, implying that we have more black chosen vertices than white.
And if there is no lone vertex, then there are at most $b-w$ more white vertices than black in our graph. Thus $b-w>0$ and we still have more black chosen vertices than white. Therefore either way, for every interesting coloring we have more black chosen vertices than white, as desired.

Problem 11.8 Three conjurers show a trick. They give a spectator a pack of cards with numbers $1,2, \ldots, 2 n+1(n>6)$. The spectator takes one card and arbitrarily distributes the rest evenly between the first and the second conjurers. Without communicating with each other, these conjurers study their cards, each chooses an ordered pair of their cards, and gives these pairs to the third conjurer. The third conjurer studies these four cards and announces which card is taken by the spectator. Explain how such a trick can be done.

Solution: We will have each of the first two conjurers use their ordered pairs to communicate the sums of their card values modulo $2 n+1$. With this information, the third conjurer can simply subtract
these two sums from $1+2+\cdots+(2 n+1)=(2 n+1)(n+1) \equiv$ $0(\bmod 2 n+1)$ to determine the remaining card.

From now on, all entries of ordered pairs are taken modulo $2 n+1$; also, let $(a, b)_{k}$ denote the ordered pair $(a+k, b+k)$ and say its "difference" is $b-a$ (taken modulo $2 n+1$ between 1 and $2 n$).

Let $(0,2 n)_{k},(0,1)_{k},(n, 2)_{k},(n, 2 n-1)_{k},(4, n+1)_{k}$, and $(2 n-3, n+$ $1)_{k}$ all represent the sum $k(\bmod 2 n+1)$. These pairs' differences are $2 n, 1, n+3, n-1, n-3, n+5$; because $n>5$, these differences are all distinct.

If n is odd then let $(1,2 n)_{k},(2,2 n-1)_{k}, \ldots,(n-1, n+2)_{k}$ also represent the sum $k(\bmod 2 n+1)$. These pairs' differences are all odd: $2 n-1,2 n-3, \ldots, 3$. Furthermore, they are all different from the one odd difference, 1 , that we found in the last paragraph.

Similarly, if n is even then let $(2 n, 1)_{k},(2 n-1,2)_{k}, \ldots,(n+2, n-1)_{k}$ represent the sum $k(\bmod 2 n+1)$. These pairs' differences are all even: $2,4, \ldots, 2 n-2$; and they are all different from the one even difference, $2 n$, that we found two paragraphs ago.

Note that if two of the assigned pairs $\left(a_{1}, b_{1}\right)_{k_{1}}$ and $\left(a_{2}, b_{2}\right)_{k_{2}}$ are equal, then their differences must be equal and we must have $b_{1}-a_{1} \equiv b_{2}-a_{2}(\bmod 2 n+1)$. But because we found that the differences $b-a$ are distinct, we must have $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$ and therefore $k_{1}=k_{2}$ as well. Thus any pair (a, b) is assigned to at most one sum, and our choices are well-defined.

Now, say that one of the first two conjurers has cards whose values sum to $k(\bmod 2 n+1)$; suppose by way of contradiction that he could not give any pair $(a, b)_{k}$ described above. Then, letting $S_{k}=$ $\{s+k \mid s \in S\}$, he has at most one card from each of the three triples $\{0,1,2 n\}_{k},\{2, n, 2 n-1\}_{k},\{4, n+1,2 n-3\}_{k}$; and he has at most one card from each of the $n-4$ pairs $\{3,2 n-2\}_{k},\{5,2 n-4\}_{k},\{6,2 n-5\}_{k}$, $\ldots,\{n-1, n+2\}_{k}$. But these sets partition all of $\{0,1,2, \ldots, 2 n\}$, so the magician must then have at most $3+(n-4)=n-1$ cards-a contradiction. Thus our assumption was false, and both conjurers can indeed communicate the desired sums. This completes the proof.

2
 2000 National Contests: Problems

2.1 Belarus

Problem 1 Find all pairs of positive integers (m, n) which satisfy the equality

$$
(m-n)^{2}\left(n^{2}-m\right)=4 m^{2} n
$$

Problem 2 Let M be the intersection point of the diagonals $A C$ and $B D$ of a convex quadrilateral $A B C D$. The bisector of angle $A C D$ hits ray $B A$ at K. If $M A \cdot M C+M A \cdot C D=M B \cdot M D$, prove that $\angle B K C=\angle C D B$.

Problem 3 An equilateral triangle of side n is divided into n^{2} equilateral triangles of side 1 by lines parallel to the sides of the triangle. Each point that is a vertex of at least one of these unit triangles is labeled with a number; exactly one of these points is labeled with -1 , all the others with 1's. On each move one can choose a line passing through the side of one of the small triangles and change the signs of the numbers at all the labeled points on this line. Determine all possible initial arrangements (the value of n and the position of the -1) from which one can obtain an arrangement of all 1's using the described operations.

Problem 4 Tom and Jerry play the following game. They alternate putting pawns onto empty squares of an initially empty 25×25 chessboard, with Tom going first. A player wins if after his move, some four pawns are the vertices of a rectangle with sides parallel to the sides of the board. Which player has a winning strategy?

Problem 5

(a) We are given a rectangle $A B C D$. Prove that for any point X in the plane, some three of the segments $X A, X B, X C$, and $X D$ could be the sides of a triangle.
(b) Is the previous statement for any parallelogram $A B C D$?

Problem 6 Pit and Bill play the following game. Pit writes a number a on a blackboard, then Bill writes a number b, and finally Pit writes a number c. Can Pit choose his numbers so that the three polynomials $x^{3}+a x^{2}+b x+c, x^{3}+b x^{2}+c x+a$, and $x^{3}+c x^{2}+a x+b$ have
(a) a common real root?
(b) a common negative root?

Problem 7 How many pairs (n, q) satisfy $\left\{q^{2}\right\}=\left\{\frac{n!}{2000}\right\}$, where n is a positive integer and q is a nonintegral rational number between 0 and 2000?

Problem 8 Let $n \geq 5$ be a positive integer. Define a sign-sequence to be a sequence of n numbers all equal to 1 or -1 , and let a move consist of changing the signs of any five consecutive terms of a signsequence. Two sign-sequences are said to be similar if one of them can be obtained from the other with a finite number of moves. Find the maximum number m such that there exist m sign-sequences, no two of which are similar to each other.

Problem 9 A line ℓ intersects the lateral sides and diagonals of a trapezoid. It is known that the portion of ℓ between the lateral sides is divided by the diagonals into three equal parts. Does it follow that the line ℓ is parallel to the bases of the trapezoid?

Problem 10 Nine points are marked on a plane, no three of them collinear. Each pair of marked points is connected with a segment. Is it possible to color each segment with one of twelve colors, such that the segments of each color form a triangle?

Problem 11 A vertex of a tetrahedron is called perfect if one could construct a triangle with the edges from this vertex as its sides. Find all n such that some tetrahedron has exactly n perfect vertices.

Problem 12

(a) Find all positive integers n such that the equation $\left(a^{a}\right)^{n}=b^{b}$ has at least one solution in integers $a, b>1$.
(b) Find all positive integers a and b which satisfy $\left(a^{a}\right)^{5}=b^{b}$.

Problem 13 The sides of scalene triangle $A B C$ have lengths a, b, and c, measured in meters. Its angles, measured in radians, are α, β, and γ. The set $\{a, b, c, \alpha, \beta, \gamma\}$ contains exactly n distinct elements. Find the minimum possible value of n.

Problem 14 On a 5×7 board, we call two squares adjacent if they are distinct and share one common side. Find the minimum number of squares on the board that must be painted so that any unpainted square has exactly one adjacent square which is painted.

Problem 15 We are given triangle $A B C$ with $\angle C=90^{\circ}$. Let M be the midpoint of the hypotenuse $\overline{A B}, H$ be the foot of the altitude $\overline{C H}$, and P be a point inside the triangle such that $A P=A C$. Prove that $\overline{P M}$ bisects angle $B P H$ if and only if $\angle A=60^{\circ}$.

Problem 16 Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f(f(n-1))=f(n+1)-f(n)
$$

for all $n \geq 2$?
Problem 17 Five points A, B, C, D, E lie on a sphere of diameter 1, and that $A B=B C=C D=D E=E A=\ell$. Prove that $\ell \leq \sin 72^{\circ}$.

Problem 18 In a convex polyhedron with m triangular faces, exactly four edges meet at each vertex. Find the minimum possible value of m.

Problem 19 We call two lattice points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in the Cartesian plane connected if either $\left(a_{1}, b_{1}\right)=\left(-a_{2}, b_{2} \pm 1\right)$ or $\left(a_{1}, b_{1}\right)=$ $\left(a_{2} \pm 1,-b_{2}\right)$. Prove that it is possible to construct an infinite sequence $\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right), \ldots$ of lattice points such that any two consecutive points of the sequence are connected, and each lattice point in the plane appears exactly once in this sequence.

Problem 20 In triangle $A B C, a \neq b$ where $a=B C$ and $b=A C$. Points E and F are on the sides $A C$ and $B C$, respectively, such that $A E=B F=\frac{a b}{a+b}$. Let M be the midpoint of $\overline{A B}, N$ be the midpoint of $\overline{E F}$, and P be the intersection point of $\overline{E F}$ and the bisector of angle $A C B$. Find $\frac{[C P M N]}{[A B C]}$.

Problem 21 In triangle $A B C$, let m_{a} and m_{b} be the lengths of the medians from the vertices A and B, respectively. Find all real λ such that $m_{a}+\lambda B C=m_{b}+\lambda A C$ implies that $B C=A C$.

Problem 22
(a) Prove that $\{n \sqrt{3}\}>\frac{1}{n \sqrt{3}}$ for every positive integer n, where $\{x\}$ denotes the fractional part of x.
(b) Does there exist a constant $c>1$ such that $\{n \sqrt{3}\}>\frac{c}{n \sqrt{3}}$ for every positive integer n ?

Problem 23 A graph has 15 vertices and n edges. Each edge of the graph is colored either red or blue such that no three vertices A, B, C are connected pairwise with edges of the same color. Determine the largest possible value of n.

Problem 24 Find all functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x+y^{3}\right)+g\left(x^{3}+y\right)=h(x y)
$$

for all $x, y \in \mathbb{R}$.
Problem 25 Let $M=\{1,2, \ldots, 40\}$. Find the smallest positive integer n for which it is possible to partition M into n disjoint subsets such that whenever a, b, and c (not necessarily distinct) are in the same subset, $a \neq b+c$.

Problem 26 A positive integer is called monotonic if its digits in base 10, read from left to right, are in nondecreasing order. Prove that for each $n \in \mathbb{N}$, there exists an n-digit monotonic number which is a perfect square.
Problem 27 Given a pair (\vec{a}, \vec{b}) of vectors in the plane, a move consists of choosing a nonzero integer k and then changing (\vec{a}, \vec{b}) to either (i) $(\vec{a}+2 k \vec{b}, \vec{b})$ or (ii) $(\vec{a}, \vec{b}+2 k \vec{a})$. A game consists of applying a finite sequence of moves, alternating between moves of types (i) and (ii), to some initial pair of vectors.
(a) Is it possible to obtain the pair $((1,0),(2,1))$ during a game with initial pair $((1,0),(0,1))$, if our first move is of type (i)?
(b) Find all pairs $((a, b),(c, d))$ that can be obtained during a game with initial pair $((1,0),(0,1))$, where our first move can be of either type.

Problem 28 Prove that

$$
\frac{a^{3}}{x}+\frac{b^{3}}{y}+\frac{c^{3}}{z} \geq \frac{(a+b+c)^{3}}{3(x+y+z)}
$$

for all positive real numbers a, b, c, x, y, z.
Problem 29 Let P be the intersection point of the diagonals $A C$ and $B D$ of the convex quadrilateral $A B C D$ in which $A B=A C=$ $B D$. Let O and I be the circumcenter and incenter of triangle $A B P$, respectively. Prove that if $O \neq I$, then lines $O I$ and $C D$ are perpendicular.

2.2 Bulgaria

Problem 1 Let $F=x^{3} y+x y^{3}$ for some real numbers x and y. If $x^{2}+x y+y^{2}=1$,
(a) prove that $F \geq-2$;
(b) find the greatest possible value of F.

Problem 2 A line ℓ is drawn through the orthocenter of acute triangle $A B C$. Prove that the reflections of ℓ across the sides of the triangle are concurrent.

Problem 3 There are 2000 white balls in a box. There are also unlimited supplies of white, green, and red balls, initially outside the box. During each turn, we can replace two balls in the box with one or two balls as follows: two whites with a green, two reds with a green, two greens with a white and red, a white and green with a red, or a green and red with a white.
(a) After finitely many of the above operations there are three balls left in the box. Prove that at least one of them is a green ball.
(b) Is it possible after finitely many operations to have only one ball left in the box?

Problem 4 Solve the equation $\sqrt{x}+\sqrt[3]{x+7}=\sqrt[4]{x+80}$ in real numbers.

Problem 5 The incircle of the isosceles triangle $A B C$ touches the legs $A C$ and $B C$ at points M and N respectively. A line t is drawn tangent to minor arc $\widehat{M N}$, intersecting $\overline{N C}$ and $\overline{M C}$ at points P and Q, respectively. Let T be the intersection point of lines $A P$ and $B Q$.
(a) Prove that T lies on $\overline{M N}$;
(b) Prove that the sum of the areas of triangles $A T Q$ and $B T P$ is smallest when t is parallel to line $A B$.
Problem 6 We are given $n \geq 4$ points in the plane such that the distance between any two of them is an integer. Prove that at least $\frac{1}{6}$ of these distances are divisible by 3 .
Problem 7 In triangle $A B C, \overline{C H}$ is an altitude, and cevians $\overline{C M}$ and $\overline{C N}$ bisect angles $A C H$ and $B C H$, respectively. The circumcenter of triangle $C M N$ coincides with the incenter of triangle $A B C$. Prove that $[A B C]=\frac{A N \cdot B M}{2}$.

Problem 8 Let a_{1}, a_{2}, \ldots be a sequence such that $a_{1}=43, a_{2}=$ 142 , and $a_{n+1}=3 a_{n}+a_{n-1}$ for all $n \geq 2$. Prove that
(a) a_{n} and a_{n+1} are relatively prime for all $n \geq 1$;
(b) for every natural number m, there exist infinitely many natural numbers n such that $a_{n}-1$ and $a_{n+1}-1$ are both divisible by m.

Problem 9 In convex quadrilateral $A B C D, \angle B C D=\angle C D A$. The bisector of angle $A B C$ intersects $\overline{C D}$ at point E. Prove that $\angle A E B=90^{\circ}$ if and only if $A B=A D+B C$.

Problem 10 Prove that for any two real numbers a and b there exists a real number $c \in(0,1)$ such that

$$
\left|a c+b+\frac{1}{c+1}\right|>\frac{1}{24}
$$

Problem 11 Find all sets S of four distinct points in the plane such that if any two circles k_{1} and k_{2} have diameters whose endpoints are in S, then k_{1} and k_{2} intersect at a point in S.

Problem 12 In the coordinate plane, a set of 2000 points $\left\{\left(x_{1}, y_{1}\right)\right.$, $\left.\left(x_{2}, y_{2}\right), \ldots,\left(x_{2000}, y_{2000}\right)\right\}$ is called good if $0 \leq x_{i} \leq 83,0 \leq y_{i} \leq 1$ for $i=1,2, \ldots, 2000$ and $x_{i} \neq x_{j}$ when $i \neq j$. Find the largest positive integer n such that, for any good set, some unit square contains at least n of the points in the set.

Problem 13 We are given the acute triangle $A B C$.
(a) Prove that there exist unique points A_{1}, B_{1}, and C_{1} on $\overline{B C}, \overline{C A}$, and $\overline{A B}$, respectively, with the following property: If we project any two of the points onto the corresponding side, the midpoint of the projected segment is the third point.
(b) Prove that triangle $A_{1} B_{1} C_{1}$ is similar to the triangle formed by the medians of triangle $A B C$.
Problem 14 Let $p \geq 3$ be a prime number and $a_{1}, a_{2}, \ldots, a_{p-2}$ be a sequence of positive integers such that p does not divide either a_{k} or $a_{k}^{k}-1$ for all $k=1,2, \ldots, p-2$. Prove that the product of some terms of the sequence is congruent to 2 modulo p.
Problem 15 Find all polynomials $P(x)$ with real coefficients such that

$$
P(x) P(x+1)=P\left(x^{2}\right)
$$

for all real x.
Problem 16 Let D be the midpoint of base $A B$ of the isosceles acute triangle $A B C$. Choose a point E on $\overline{A B}$, and let O be the circumcenter of triangle $A C E$. Prove that the line through D perpendicular to $\overline{D O}$, the line through E perpendicular to $\overline{B C}$, and the line through B parallel to $\overline{A C}$ are concurrent.

Problem 17 Let n be a positive integer. A binary sequence of length n is a sequence of n integers, all equal to 0 or 1 . Let \mathcal{A} be the set of all such sequences, and let $\mathbf{0} \in \mathcal{A}$ be the sequence of all zeroes. The sequence $c=c_{1}, c_{2}, \ldots, c_{n}$ is called the sum $a+b$ of $a=a_{1}, a_{2}, \ldots, a_{n}$ and $b=b_{1}, b_{2}, \ldots, b_{n}$ if $c_{i}=0$ when $a_{i}=b_{i}$ and $c_{i}=1$ when $a_{i} \neq b_{i}$. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a function with $f(\mathbf{0})=\mathbf{0}$ such that whenever the sequences a and b differ in exactly k terms, the sequences $f(a)$ and $f(b)$ also differ in exactly k terms. Prove that if a, b, and c are sequences from \mathcal{A} such that $a+b+c=\mathbf{0}$, then $f(a)+f(b)+f(c)=\mathbf{0}$.

2.3 Canada

Problem 1 At 12:00 noon, Anne, Beth, and Carmen begin running laps around a circular track of length three hundred meters, all starting from the same point on the track. Each jogger maintains a constant speed in one of the two possible directions for an indefinite period of time. Show that if Anne's speed is different from the other two speeds, then at some later time Anne will be at least one hundred meters from each of the other runners. (Here, distance is measured along the shorter of the two arcs separating two runners.)

Problem 2 Given a permutation $\left(a_{1}, a_{2}, \ldots, a_{100}\right)$ of the integers 1901, 1902, ..., 2000, we form the sequence of partial sums

$$
s_{1}=a_{1}, s_{2}=a_{1}+a_{2}, \ldots, s_{100}=a_{1}+a_{2}+\cdots+a_{100}
$$

For how many such permutations will no terms of the corresponding sequence $s_{1}, s_{2}, \ldots, s_{100}$ be divisible by three?

Problem 3 Let $a_{1}, a_{2}, \ldots, a_{2000}$ be a sequence of integers each lying in the interval $[-1000,1000]$. Suppose that $\sum_{i=1}^{1000} a_{i}=1$. Show that the terms in some nonempty subsequence of $a_{1}, a_{2}, \ldots, a_{2000}$ sum to zero.

Problem 4 Let $A B C D$ be a quadrilateral with $\angle C B D=2 \angle A D B$, $\angle A B D=2 \angle C D B$, and $A B=C B$. Prove that $A D=C D$.

Problem 5 Suppose that the real numbers $a_{1}, a_{2}, \ldots, a_{100}$ satisfy (i) $a_{1} \geq a_{2} \geq \cdots \geq a_{100} \geq 0$, (ii) $a_{1}+a_{2} \leq 100$, and (iii) $a_{3}+$ $a_{4}+\cdots+a_{100} \leq 100$. Determine the maximum possible value of $a_{1}^{2}+a_{2}^{2}+\cdots+a_{100}^{2}$, and find all possible sequences $a_{1}, a_{2}, \ldots, a_{100}$ for which this maximum is achieved.

2.4 China

Problem 1 In triangle $A B C, B C \leq C A \leq A B$. Let R and r be the circumradius and inradius, respectively, of triangle $A B C$. As a function of $\angle C$, determine whether $B C+C A-2 R-2 r$ is positive, negative, or zero.

Problem 2 Define the infinite sequence a_{1}, a_{2}, \ldots recursively as follows: $a_{1}=0, a_{2}=1$, and

$$
a_{n}=\frac{1}{2} n a_{n-1}+\frac{1}{2} n(n-1) a_{n-2}+(-1)^{n}\left(1-\frac{n}{2}\right)
$$

for all $n \geq 3$. Find an explicit formula for

$$
f_{n}=a_{n}+2\binom{n}{1} a_{n-1}+3\binom{n}{2} a_{n-2}+\cdots+n\binom{n}{n-1} a_{1} .
$$

Problem 3 A table tennis club wishes to organize a doubles tournament, a series of matches where in each match one pair of players competes against a pair of two different players. Let a player's match number for a tournament be the number of matches he or she participates in. We are given a set $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of distinct positive integers all divisible by 6 . Find with proof the minimal number of players among whom we can schedule a doubles tournament such that
(i) each participant belongs to at most 2 pairs;
(ii) any two different pairs have at most 1 match against each other;
(iii) if two participants belong to the same pair, they never compete against each other; and
(iv) the set of the participants' match numbers is exactly A.

Problem 4 We are given an integer $n \geq 2$. For any ordered n-tuple of real numbers $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, let A's domination score be the number of values $k \in\{1,2, \ldots, n\}$ such that $a_{k}>a_{j}$ for all $1 \leq j \leq k$. Consider all permutations $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$ with domination score 2. Find with proof the arithmetic mean of the first elements a_{1} of these permutations.

Problem 5 Find all positive integers n such that there exist integers $n_{1}, n_{2}, \ldots, n_{k} \geq 3$ with

$$
n=n_{1} n_{2} \cdots n_{k}=2^{\frac{1}{2^{k}}\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{k}-1\right)}-1 .
$$

Problem 6 An exam paper consists of 5 multiple-choice questions, each with 4 different choices; 2000 students take the test, and each student chooses exactly one answer per question. Find the least possible value of n such that among any n of the students' answer sheets, there exist 4 of them among which no two have exactly the same answers chosen.

2.5 Czech and Slovak Republics

Problem 1 Determine all real numbers p for which the system of equations

$$
\begin{aligned}
(x-y)^{2} & =p^{2} \\
x^{3}-y^{3} & =16
\end{aligned}
$$

has precisely one solution in real numbers x, y.
Problem 2 Cevians $\overline{A K}, \overline{B L}$, and $\overline{C M}$ of triangle $A B C$ intersect at a point U inside the triangle. Prove that if $[A M U]=[K C U]=P$ and $[M B U]=[C L U]=Q$, then $P=Q$.

Problem 3 Find the smallest natural number k such that among any k distinct numbers from the set $\{1,2,3, \ldots, 2000\}$, there exist two whose sum or difference equals 667 .

Problem 4 Let $P(x)$ be a quadratic polynomial with $P(-2)=0$. Find all roots of the equation

$$
P\left(x^{2}+4 x-7\right)=0,
$$

given that the equation has at least one double root.
Problem 5 An isosceles trapezoid $U V S T$ is given in which $3 S T<$ $2 U V$. Show how to construct an isosceles triangle $A B C$ with base $A B$ so that the points B, C lie on the line $V S$; the point U lies on the line $A B$; and the point T is the centroid of the triangle $A B C$.

Problem 6 Show that

$$
\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}} \leq \sqrt[3]{2(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)}
$$

for all positive real numbers a and b, and determine when equality occurs.

Problem 7 Find all convex quadrilaterals $A B C D$ for which there exists a point E inside the quadrilateral with the following property: Any line which passes through E and intersects sides $\overline{A B}$ and $\overline{C D}$ divides the quadrilateral $A B C D$ into two parts of equal area.

Problem 8 An isosceles triangle $A B C$ is given with base $\overline{A B}$ and altitude $\overline{C D}$. Let E be the intersection of line $A P$ with side $B C$, and let F be the intersection of line $B P$ with side $A C$. Point P is chosen on $\overline{C D}$ so that the incircles of triangle $A B P$ and quadrilateral $P E C F$ are congruent. Show that the incircles of the triangles $A D P$ and $B C P$ are also congruent.

Problem 9 In the plane are given 2000 congruent triangles of area 1 , which are images of a single triangle under different translations. Each of these triangles contains the centroids of all the others. Show that the area of the union of these triangles is less than $\frac{22}{9}$.

Problem 10 For which quadratic functions $f(x)$ does there exist a quadratic function $g(x)$ such that the equation $g(f(x))=0$ has four distinct roots in arithmetic progression, which are also real roots of the equation $f(x) g(x)=0$?

Problem 11 Monica constructed a paper model of a triangular pyramid, the base of which was a right triangle. When she cut the model along the two legs of the base and along a median of one of the faces, upon unfolding it into the plane she obtained a square with side a. Determine the volume of the pyramid.

2.6 Estonia

Problem 1 Five real numbers are given such that, no matter which three of them we choose, the difference between the sum of these three numbers and the sum of the remaining two numbers is positive. Prove that the product of all these 10 differences (corresponding to all the possible triples of chosen numbers) is less than or equal to the product of the squares of these five numbers.

Problem 2 Prove that it is not possible to divide any set of 18 consecutive positive integers into two disjoint sets A and B, such that the product of elements in A equals the product of elements in B.

Problem 3 Let M, N, and K be the points of tangency of the incircle of triangle $A B C$ with the sides of the triangle, and let Q be the center of the circle drawn through the midpoints of $\overline{M N}, \overline{N K}$, and $\overline{K M}$. Prove that the incenter and circumcenter of triangle $A B C$ are collinear with Q.

Problem 4 Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that

$$
f(f(f(n)))+f(f(n))+f(n)=3 n
$$

for all $n \in \mathbb{Z}^{+}$.
Problem 5 In a triangle $A B C$ we have $A C \neq B C$. Take a point X in the interior of this triangle and let $\alpha=\angle A, \beta=\angle B, \phi=\angle A C X$, and $\psi=\angle B C X$. Prove that

$$
\frac{\sin \alpha \sin \beta}{\sin (\alpha-\beta)}=\frac{\sin \phi \sin \psi}{\sin (\phi-\psi)}
$$

if and only if X lies on the median of triangle $A B C$ drawn from the vertex C.

Problem 6 We call an infinite sequence of positive integers an F-sequence if every term of this sequence (starting from the third term) equals the sum of the two preceding terms. Is it possible to decompose the set of all positive integers into
(a) a finite;
(b) an infinite
number of F-sequences having no common members?

2.7 Georgia

Problem 1 Do there exist positive integers x and y such that $x^{3}+2 x y+x+2 y+1$ and $y^{3}+2 x y+y+2 x+1$ are both perfect cubes?

Problem 2 The positive numbers a, b, c satisfy the inequality $a b c \geq$ $\frac{1}{64}$. Prove that

$$
a^{2}+b^{2}+c^{2}+\frac{1}{4}(a+b+c) \geq \frac{1}{4}(\sqrt{a}+\sqrt{b}+\sqrt{c})
$$

and determine when equality occurs.
Problem 3 For any positive integer n, let $a(n)$ denote the product of all its positive divisors.
(a) Prove that $a(400)>10^{19}$.
(b) Find all solutions of the equation $a\left(n^{3}\right)=n^{60}$ which do not exceed 100.
(c) Find all solutions of the equation $a\left(n^{2}\right)=(a(n))^{9}$ which do not exceed 2000.

Problem 4 From a point P lying outside a circle ω the tangents $\overline{P A_{1}}$ and $\overline{P A_{2}}$ are drawn. Let K be a point inside ω with $P K=P A_{1}$. Chords $\overline{A_{1} B_{1}}$ and $\overline{A_{2} B_{2}}$ are drawn in ω through K. Prove that $\overline{B_{1} B_{2}}$ is a diameter of ω.

2.8 Hungary

Problem 1 Let H be a set consisting of positive and negative real numbers, with 2000 elements in all. Let N be the number of 4 -element subsets of H whose elements have a negative product. How many negative elements should H have in order to maximize N ?

Problem 2 In the scalene triangle $A B C$, let C_{1}, A_{1}, and B_{1} be the midpoints of sides $A B, B C$, and $C A$, respectively. Let B_{2} denote the midpoint of the broken-line path leading from A to B to C; define points A_{2} and C_{2} similarly. Prove that $\overline{A_{1} A_{2}}, \overline{B_{1} B_{2}}$, and $\overline{C_{1} C_{2}}$ are concurrent.

Problem 3 Let a_{n} denote the closest integer to \sqrt{n}. Determine the value of $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{k}}$, where $k=1999 \cdot 2000$.

Problem 4 Find all positive primes p for which there exist positive integers n, x, y such that $p^{n}=x^{3}+y^{3}$.

Problem 5 In the tetrahedron $A B C P$, edges $P A, P B, P C$ are pairwise perpendicular. Let S be a sphere such that the circumcircle of $A B C$ is a great circle on S, and let $\overline{X Y}$ be the diameter of S perpendicular to plane $(A B C)$. Let S^{\prime} be the ellipsoid which passes through X and Y, is symmetric about axis $\overline{X Y}$, and intersects plane $(A B C)$ in a circle of diameter $X Y / \sqrt{2}$. Prove that P lies on S^{\prime}.

Problem 6 Is there a polynomial f of degree 1999 with integer coefficients, such that $f(n), f(f(n)), f(f(f(n))), \ldots$ are pairwise relatively prime for any integer n ?

Problem 7 Let p be a polynomial with odd degree and integer coefficients. Prove that there are only finitely many pairs of integers a, b such that the points $(a, p(a))$ and $(b, p(b))$ are an integral distance apart.

Problem 8 The feet of the angle bisectors of triangle $A B C$ are X, Y, and Z. The circumcircle of triangle $X Y Z$ cuts off three segments from lines $A B, B C$, and $C A$. Prove that two of these segments' lengths add up to the third segment's length.

Problem 9 Let k and t be relatively prime integers greater than 1 . Starting from the permutation $(1,2, \ldots, n)$ of the numbers $1,2, \ldots, n$,
we may swap two numbers if their difference is either k or t. Prove that we can get any permutation of $1,2, \ldots, n$ with such steps if and only if $n \geq k+t-1$.

Problem 10 For any positive integer k, let $e(k)$ denote the number of positive even divisors of k, and let $o(k)$ denote the number of positive odd divisors of k. For all $n \geq 1$, prove that $\sum_{k=1}^{n} e(k)$ and $\sum_{k=1}^{n} o(k)$ differ by at most n.

Problem 11 Given a triangle in the plane, show how to construct a point P inside the triangle which satisfies the following condition: if we drop perpendiculars from P to the sides of the triangle, the feet of the perpendiculars determine a triangle whose centroid is P.

Problem 12 Given a natural number k and more than 2^{k} different integers, prove that a set S of $k+2$ of these numbers can be selected such that for any positive integer $m \leq k+2$, all the m-element subsets of S have different sums of elements.

2.9 India

Problem 1 Let $A B C$ be a nonequilateral triangle. Suppose there is an interior point P such that the three cevians through P all have the same length λ where $\lambda<\min \{A B, B C, C A\}$. Show that there is another interior point $P^{\prime} \neq P$ such that the three cevians through P^{\prime} also are of equal length.

Problem 2 Find all ordered pairs of prime numbers (p, q) such that $p \mid 5^{q}+1$ and $q \mid 5^{p}+1$.

Problem 3 Determine whether or not it is possible to label each vertex of a cube with a natural number such that two vertices are connected by an edge of the cube if and only if one of their corresponding labels a divides the other label b.

Problem 4 Let $A B C$ be an acute triangle and let $\overline{A D}$ be the altitude from A. Let the internal bisectors of angles B and C meet $\overline{A D}$ at E and F, respectively. If $B E=C F$, prove that $A B=A C$.

Problem 5 Let n, k be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists an integer m which is divisible by n and whose digits have sum k.

Problem 6 Let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ be n real numbers such that $\sum_{j=1}^{n} a_{j}=0$. Show that

$$
n a_{1} a_{n}+\sum_{j=1}^{n} a_{j}^{2} \leq 0
$$

Problem 7 Let $p>3$ be a prime number. Let E be the set of all $(p-1)$-tuples $\left(x_{1}, x_{2}, \ldots, x_{p-1}\right)$ such that each $x_{i} \in\{0,1,2\}$ and $x_{1}+2 x_{2}+\cdots+(p-1) x_{p-1}$ is divisible by p. Show that the number of elements in E is $\left(3^{p-1}+p-1\right) / p$.

Problem 8 Let m, n be positive integers such that $m \leq n^{2} / 4$ and every prime divisor of m is less than or equal to n. Show that m divides n !.

Problem 9 Determine whether there exists a sequence x_{1}, x_{2}, \ldots of distinct positive real numbers such that $x_{n+2}=\sqrt{x_{n+1}}-\sqrt{x_{n}}$ for all positive integers n.

Problem 10 Let G be a graph with $n \geq 4$ vertices and m edges. If $m>n(\sqrt{4 n-3}+1) / 4$ show that G has a 4 -cycle.

Problem 11 Suppose $f: \mathbb{Q} \rightarrow\{0,1\}$ is a function with the property that for $x, y \in \mathbb{Q}$, if $f(x)=f(y)$ then $f(x)=f((x+y) / 2)=f(y)$. If $f(0)=0$ and $f(1)=1$ show that $f(q)=1$ for all rational numbers q greater than or equal to 1 .

Problem 12 Let $n \geq 1$ be an integer. A Catalan path from $(0,0)$ to (n, n) in the $x y$-plane is a sequence of unit moves either to the right (a move denoted by E) or upwards (a move denoted by N), where the path never crosses above the line $y=x$. A step in a Catalan path is the occurrence of two consecutive unit moves of the form $E N$. For $1 \leq s \leq n$, show that the number of Catalan paths from $(0,0)$ to (n, n) that contain exactly s steps is

$$
\frac{1}{s}\binom{n-1}{s-1}\binom{n}{s-1} .
$$

2.10 Iran

Problem 1 Does there exist a natural number N which is a power of 2 whose digits (in base 10) can be permuted to form a different power of 2 ?

Problem 2 Call two circles in three-dimensional space pairwise tangent at a point P if they both pass through P and the lines tangent to each circle at P coincide. Three circles not all lying in a plane are pairwise tangent at three distinct points. Prove that there exists a sphere which passes through the three circles.

Problem 3 We are given a sequence c_{1}, c_{2}, \ldots of natural numbers. For any natural numbers m, n with $1 \leq m \leq \sum_{i=1}^{n} c_{i}$, we can choose natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
m=\sum_{i=1}^{n} \frac{c_{i}}{a_{i}}
$$

For each n, find the maximum value of c_{n}.
Problem 4 Circles C_{1} and C_{2} with centers O_{1} and O_{2}, respectively, meet at points A and B. Lines $O_{1} B$ and $O_{2} B$ intersect C_{2} and C_{1} at F and E, respectively. The line parallel to $E F$ through B meets C_{1} and C_{2} at M and N. Prove $M N=A E+A F$.

Problem 5 Two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ lie in three-dimensional space. The sides of triangle $A B C$ have lengths greater than or equal to a, and the sides of triangle $A^{\prime} B^{\prime} C^{\prime}$ have lengths greater than or equal to a^{\prime}. Prove that one can select one vertex from triangle $A B C$ and one vertex from triangle $A^{\prime} B^{\prime} C^{\prime}$ such that the distance between them is at least $\sqrt{\frac{a^{2}+a^{\prime 2}}{3}}$.

Problem 6 The function $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined recursively with $f(1)=1$ and

$$
f(n+1)= \begin{cases}f(n+2) & \text { if } n=f(f(n)-n+1) \\ f(n)+1 & \text { otherwise }\end{cases}
$$

for all $n \geq 1$.
(a) Prove that $f(f(n)-n+1) \in\{n, n+1\}$.
(b) Find an explicit formula for f.

Problem 7 Let H equal $\{(x, y) \mid y>0\}$, the upper half of the $x y$-plane. A semi-line is a curve in H which equals $C \cap H$ for some circle C centered on the x-axis; in other words, it is any semi-circle whose "center" is on the x-axis, with its endpoints removed. Let the interior of a semi-line S denote the set of points in the interior of the corresponding circle C which are also in H. Given two semi-lines S_{1} and S_{2} which intersect at a point A, the tangents to S_{1} and S_{2} at A form an angle α. Then the bisector of S_{1} and S_{2} is the semi-line S_{3} passing through A such that the tangent to S_{3} at A bisects α and passes through the region common to the interiors of S_{1} and S_{2}. Prove that if three different semi-lines intersect pairwise, then the bisectors of the three pairs of semi-lines pass through a common point.

Problem 8 Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that
(i) $f(m)=1$ if and only if $m=1$;
(ii) if $d=\operatorname{gcd}(m, n)$, then $f(m n)=\frac{f(m) f(n)}{f(d)}$; and
(iii) for every $m \in \mathbb{N}$, we have $f^{2000}(m)=m$.

Problem 9 On a circle are given n points, and $n k+1$ of the chords between these points are drawn where $2 k+1<n$. Prove that it is possible to select $k+1$ of the chords such that no two of them intersect.

Problem 10 The n tennis players, $A_{1}, A_{2}, \ldots, A_{n}$, participate in a tournament. Any two players play against each other at most once, and $k \leq \frac{n(n-1)}{2}$ matches take place. No draws occur, and in each match the winner adds 1 point to his tournament score while the loser adds 0 . For nonnegative integers $d_{1}, d_{2}, \ldots, d_{n}$, prove that it is possible for $A_{1}, A_{2}, \ldots, A_{n}$ to obtain the tournament scores $d_{1}, d_{2}, \ldots, d_{n}$, respectively, if and only if the following conditions are satisfied:
(i) $\sum_{i=1}^{n} d_{i}=k$.
(ii) For every subset $X \subseteq\left\{A_{1}, \ldots, A_{n}\right\}$, the number of matches taking place among the players in X is at most $\sum_{A_{j} \in X} d_{j}$.
Problem 11 Isosceles triangles $A_{3} A_{1} O_{2}$ and $A_{1} A_{2} O_{3}$ are constructed externally along the sides of a triangle $A_{1} A_{2} A_{3}$ with $O_{2} A_{3}=$ $O_{2} A_{1}$ and $O_{3} A_{1}=O_{3} A_{2}$. Let O_{1} be a point on the opposite side of line $A_{2} A_{3}$ as A_{1} with $\angle O_{1} A_{3} A_{2}=\frac{1}{2} \angle A_{1} O_{3} A_{2}$ and $\angle O_{1} A_{2} A_{3}=$ $\frac{1}{2} \angle A_{1} O_{2} A_{3}$, and let T be the foot of the perpendicular from O_{1} to $\overline{A_{2} A_{3}}$. Prove that $A_{1} O_{1} \perp O_{2} O_{3}$ and that $\frac{A_{1} O_{1}}{O_{2} O_{3}}=2 \frac{O_{1} T}{A_{2} A_{3}}$.

Problem 12 Given a circle Γ, a line d is drawn not intersecting $\Gamma . M, N$ are two points varying on line d such that the circle with diameter $\overline{M N}$ is tangent to Γ. Prove that there exists a point P in the plane such that for any such segment $M N, \angle M P N$ is constant.

Problem 13 Let n be a positive integer. S is a set containing ordered n-tuples of nonnegative integers such that if $\left(a_{1}, \ldots, a_{n}\right) \in S$, then every $\left(b_{1}, \ldots, b_{n}\right)$ for which $b_{i} \leq a_{i}(1 \leq i \leq n)$ is also in S. Let $h_{m}(S)$ be the number of n-tuples in S whose sum of components equals m. Show that for some N, h_{m} is a polynomial in m for all $m \geq N$.

Problem 14 Suppose that a, b, c are real numbers such that for any positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$, we have

$$
\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)^{a} \cdot\left(\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}\right)^{b} \cdot\left(\frac{\sum_{i=1}^{n} x_{i}^{3}}{n}\right)^{c} \geq 1
$$

Prove that the vector (a, b, c) can be represented in the form $p(-2,1,0)+$ $q(1,-2,1)$ for nonnegative real numbers p and q.

2.11 Ireland

Problem 1 The sequence of real numbers $a_{1}, a_{2}, \ldots, a_{n}$ is called a weak arithmetic progression of length n if there exist real numbers c and d such that $c+(k-1) d \leq a_{k}<c+k d$ for $k=1,2, \ldots, n$.
(a) Prove that if $a_{1}<a_{2}<a_{3}$ then a_{1}, a_{2}, a_{3} is a weak arithmetic progression of length 3 .
(b) Let A be a subset of $\{0,1,2,3, \ldots, 999\}$ with at least 730 mem bers. Prove that some ten elements of A form a weak arithmetic progression of length 10 .

Problem 2 Let $x \geq 0, y \geq 0$ be real numbers with $x+y=2$. Prove that

$$
x^{2} y^{2}\left(x^{2}+y^{2}\right) \leq 2
$$

Problem 3 For each positive integer n, determine with proof all positive integers m such that there exist positive integers $x_{1}<x_{2}<$ $\cdots<x_{n}$ with $\frac{1}{x_{1}}+\frac{2}{x_{2}}+\frac{3}{x_{3}}+\cdots+\frac{n}{x_{n}}=m$.

Problem 4 Prove that in each set of ten consecutive integers there is one which is relatively prime to each of the other integers.

Problem 5 Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial with non-negative real coefficients. Suppose that $p(4)=2$ and that $p(16)=8$. Prove that $p(8) \leq 4$ and find with proof all such polynomials with $p(8)=4$.

2.12 Israel

Problem 1 Define $f(n)=n!$. Let

$$
a=0 . f(1) f(2) f(3) \ldots
$$

In other words, to obtain the decimal representation of a write the decimal representations of $f(1), f(2), f(3), \ldots$ in a row. Is a rational?

Problem $2 A B C$ is a triangle whose vertices are lattice points. Two of its sides have lengths which belong to the set $\{\sqrt{17}, \sqrt{1999}$, $\sqrt{2000}\}$. What is the maximum possible area of triangle $A B C$?

Problem 3

(a) Do there exist three positive integers a, b, d such that

$$
\frac{a^{3}+b^{3}}{a^{3}+d^{3}}=\frac{2000}{1999} ?
$$

(b) Do there exist four positive integers a, b, c, d such that

$$
\frac{a^{3}+b^{3}}{c^{3}+d^{3}}=\frac{2000}{999} ?
$$

Problem 4 The points A, B, C, D, E, F lie on a circle, and the lines $A D, B E, C F$ concur. Let P, Q, R be the midpoints of $\overline{A D}, \overline{B E}, \overline{C F}$, respectively. Two chords $A G, A H$ are drawn such that $A G \| B E$ and $A H \| C F$. Prove that triangles $P Q R$ and $D G H$ are similar.

Problem 5 A square $A B C D$ is given. A triangulation of the square is a partition of the square into triangles such that any two triangles are either disjoint, share only a common vertex, or share only a common side. A good triangulation of the square is a triangulation in which all the triangles are acute.
(a) Give an example of a good triangulation of the square.
(b) What is the minimal number of triangles required for a good triangulation?

2.13 Italy

Problem 1 Three odd numbers $a<b<c$ are called consecutive if $c-b=b-a=2$. A positive integer is called special if its digits in base 10 are all equal and if it is the sum of the squares of three consecutive odd integers.
(a) Determine all special numbers with 4 digits.
(b) Are there any special numbers with 2000 digits?

Problem 2 Let $A B C D$ be a convex quadrilateral, and write $\alpha=$ $\angle D A B ; \beta=\angle A D B ; \gamma=\angle A C B ; \delta=\angle D B C$; and $\epsilon=\angle D B A$. Assuming that $\alpha<90^{\circ}, \beta+\gamma=90^{\circ}$, and $\delta+2 \epsilon=180^{\circ}$, prove that

$$
(D B+B C)^{2}=A D^{2}+A C^{2}
$$

Problem 3 Given a fixed integer $n>1$, Alberto and Barbara play the following game, starting with the first step and then alternating between the second and third:

- Alberto chooses a positive integer.
- Barbara picks an integer greater than 1 which is a multiple or divisor of Alberto's number, possibly choosing Alberto's number itself.
- Alberto adds or subtracts 1 from Barbara's number.

Barbara wins if she succeeds in picking n by her fiftieth move. For which values of n does she have a winning strategy?

Problem 4 Let $p(x)$ be a polynomial with integer coefficients such that $p(0)=0$ and $0 \leq p(1) \leq 10^{7}$, and such that there exist integers a, b satisfying $p(a)=1999$ and $p(b)=2001$. Determine the possible values of $p(1)$.

2.14 Japan

Problem 1 Let O be the origin $(0,0)$ and A be the point $\left(0, \frac{1}{2}\right)$ in the coordinate plane. Prove there is no finite sequence of points $P_{1}, P_{2}, \ldots, P_{n}$ in the plane, each of whose x - and y - coordinates are both rational numbers, such that

$$
O P_{1}=P_{1} P_{2}=P_{2} P_{3}=\cdots=P_{n-1} P_{n}=P_{n} A=1 .
$$

Problem 2 We shuffle a line of cards labeled $a_{1}, a_{2}, \ldots, a_{3 n}$ from left to right by rearranging the cards into the new order

$$
a_{3}, a_{6}, \ldots, a_{3 n}, a_{2}, a_{5}, \ldots, a_{3 n-1}, a_{1}, a_{4}, \cdots, a_{3 n-2}
$$

For example, if six cards are labeled $1,2, \ldots, 6$ from left to right, then shuffling them twice changes their order as follows:

$$
1,2,3,4,5,6 \longrightarrow 3,6,2,5,1,4 \longrightarrow 2,4,6,1,3,5 .
$$

Starting with 192 cards labeled $1,2, \ldots, 192$ from left to right, is it possible to obtain the order $192,191, \ldots, 1$ after a finite number of shuffles?

Problem 3 In the plane are given distinct points A, B, C, P, Q, no three of which are collinear. Prove that

$$
A B+B C+C A+P Q<A P+A Q+B P+B Q+C P+C Q
$$

Problem 4 Given a natural number $n \geq 3$, prove that there exists a set A_{n} with the following two properties:
(i) A_{n} consists of n distinct natural numbers.
(ii) For any $a \in A_{n}$, the product of all the other elements in A_{n} has remainder 1 when divided by a.

Problem 5 We are given finitely many lines in the plane. Let an intersection point be a point where at least two of these lines meet, and let a good intersection point be a point where exactly two of these lines meet. Given that there are at least two intersection points, find the minimum number of good intersection points.

2.15 Korea

Problem 1 Show that given any prime p, there exist integers x, y, z, w satisfying $x^{2}+y^{2}+z^{2}-w p=0$ and $0<w<p$.

Problem 2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{2}-y^{2}\right)=(x-y)(f(x)+f(y))
$$

for all $x, y \in \mathbb{R}$.
Problem 3 For a quadrilateral $A B C D$ inscribed in a circle with center O, let P, Q, R, S be the intersections of the exterior angle bisectors of $\angle A B D$ and $\angle A D B, \angle D A B$ and $\angle D B A, \angle A C D$ and $\angle A D C, \angle D A C$ and $\angle D C A$, respectively. Show that the four points P, Q, R, S are concyclic.

Problem 4 Let p be a prime number such that $p \equiv 1(\bmod 4)$. Evaluate

$$
\sum_{k=1}^{p-1}\left(\left\lfloor\frac{2 k^{2}}{p}\right\rfloor-2\left\lfloor\frac{k^{2}}{p}\right\rfloor\right)
$$

Problem 5 Consider the following L-shaped figures, each made of four unit squares:

Let m and n be integers greater than 1 . Prove that an $m \times n$ rectangular region can be tiled with such figures if and only if $m n$ is a multiple of 8 .

Problem 6 The real numbers a, b, c, x, y, z satisfy $a \geq b \geq c>0$ and $x \geq y \geq z>0$. Prove that

$$
\frac{a^{2} x^{2}}{(b y+c z)(b z+c y)}+\frac{b^{2} y^{2}}{(c z+a x)(c x+a z)}+\frac{c^{2} z^{2}}{(a x+b y)(a y+b x)}
$$

is at least $\frac{3}{4}$.

2.16 Lithuania

Problem 1 In the triangle $A B C, D$ is the midpoint of side $A B$. Point E divides $\overline{B C}$ in the ratio $B E: E C=2: 1$. Given that $\angle A D C=\angle B A E$, determine $\angle B A C$.

Problem 2 A competition consisting of several tests has been organized for the three pilots K, L, and M , including a reaction-time test and a running test. In each test, no ties can occur; the first-place pilot in the test is awarded A points, the second-place pilot B points, and the third-place pilot C points for some fixed positive integers $A>B>C$. During the competition, K scores 22 points, and L and M each gather 9 points. If L won the reaction-time test, who took second place in the running test?

Problem 3 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy the equality

$$
(x+y)(f(x)-f(y))=f\left(x^{2}\right)-f\left(y^{2}\right)
$$

for all $x, y \in \mathbb{R}$.
Problem 4 Prove that infinitely many 4 -tuples (x, y, z, u) of positive integers satisfy the equation $x^{2}+y^{2}+z^{2}+u^{2}=x y z u+6$.

2.17 Mongolia

Problem 1 Let $\operatorname{rad}(1)=1$, and for $k>1$ let $\operatorname{rad}(k)$ equal the product of the prime divisors of k. A sequence of natural numbers a_{1}, a_{2}, \ldots with arbitrary first term a_{1} is defined recursively by the relation $a_{n+1}=a_{n}+\operatorname{rad}\left(a_{n}\right)$. Show that for any positive integer N, the sequence a_{1}, a_{2}, \ldots contains some N consecutive terms in arithmetic progression.
Problem 2 The circles $\omega_{1}, \omega_{2}, \omega_{3}$ in the plane are pairwise externally tangent to each other. Let P_{1} be the point of tangency between circles ω_{1} and ω_{3}, and let P_{2} be the point of tangency between circles ω_{2} and $\omega_{3} . A$ and B, both different from P_{1} and P_{2}, are points on ω_{3} such that $\overline{A B}$ is a diameter of ω_{3}. Line $A P_{1}$ intersects ω_{1} again at X, line $B P_{2}$ intersects ω_{2} again at Y, and lines $A P_{2}$ and $B P_{1}$ intersect at Z. Prove that X, Y, and Z are collinear.

Problem 3 A function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following conditions:
(i) $|f(a)-f(b)| \leq|a-b|$ for any real numbers $a, b \in \mathbb{R}$.
(ii) $f(f(f(0)))=0$.

Prove that $f(0)=0$.
Problem 4 Given a natural number n, find the number of quadruples (x, y, u, v) of natural numbers such that the eight numbers x, y, $u, v, v+x-y, x+y-u, u+v-y$, and $v+x-u$ are all integers between 1 and n inclusive.
Problem 5 The bisectors of angles A, B, C of a triangle $A B C$ intersect its sides at points A_{1}, B_{1}, C_{1}. Prove that if the quadrilateral $B A_{1} B_{1} C_{1}$ is cyclic, then

$$
\frac{B C}{A C+A B}=\frac{A C}{A B+B C}-\frac{A B}{B C+A C}
$$

Problem 6 Which integers can be represented in the form $\frac{(x+y+z)^{2}}{x y z}$ where x, y, and z are positive integers?

Problem 7 In a country with n towns the cost of travel from the i-th town to the j-th town is $x_{i j}$. Suppose that the total cost of any route passing through each town exactly once and ending at its starting point does not depend on which route is chosen. Prove that there exist numbers a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} such that $x_{i j}=a_{i}+b_{j}$ for all integers i, j with $1 \leq i<j \leq n$.

2.18 Poland

Problem 1 Given an integer $n \geq 2$ find the number of solutions of the system of equations

$$
\begin{aligned}
& x_{1}+x_{n}^{2}=4 x_{n} \\
& x_{2}+x_{1}^{2}=4 x_{1} \\
& \vdots \\
& x_{n}+x_{n-1}^{2}=4 x_{n-1}
\end{aligned}
$$

in nonnegative reals $x_{1}, x_{2}, \ldots, x_{n}$.
Problem 2 The sides $A C$ and $B C$ of a triangle $A B C$ have equal length. Let P be a point inside triangle $A B C$ such that $\angle P A B=$ $\angle P B C$ and let M be the midpoint of $\overline{A B}$. Prove that $\angle A P M+$ $\angle B P C=180^{\circ}$.

Problem 3 A sequence p_{1}, p_{2}, \ldots of prime numbers satisfies the following condition: for $n \geq 3, p_{n}$ is the greatest prime divisor of $p_{n-1}+p_{n-2}+2000$. Prove that the sequence is bounded.

Problem 4 For an integer $n \geq 3$ consider a pyramid with vertex S and the regular n-gon $A_{1} A_{2} \ldots A_{n}$ as a base, such that all the angles between lateral edges and the base equal 60°. Points B_{2}, B_{3}, \ldots lie on $\overline{A_{2} S}, \overline{A_{3} S}, \ldots, \overline{A_{n} S}$, respectively, such that $A_{1} B_{2}+B_{2} B_{3}+\cdots+$ $B_{n-1} B_{n}+B_{n} A_{1}<2 A_{1} S$. For which n is this possible?

Problem 5 Given a natural number $n \geq 2$, find the smallest integer k with the following property: Every set consisting of k cells of an $n \times n$ table contains a nonempty subset S such that in every row and in every column of the table, there is an even number of cells belonging to S.

Problem 6 Let P be a polynomial of odd degree satisfying the identity

$$
P\left(x^{2}-1\right)=P(x)^{2}-1
$$

Prove that $P(x)=x$ for all real x.

2.19 Romania

Problem 1 The sequence x_{1}, x_{2}, \ldots is defined recursively by setting $x_{1}=3$ and setting $x_{n+1}=\left\lfloor x_{n} \sqrt{2}\right\rfloor$ for every $n \geq 1$. Find all n for which x_{n}, x_{n+1}, and x_{n+2} are in arithmetic progression.

Problem 2 Two nonzero complex numbers a and b satisfy

$$
a \cdot 2^{|a|}+b \cdot 2^{|b|}=(a+b) \cdot 2^{|a+b|}
$$

Prove that $a^{6}=b^{6}$.
Problem 3 Let f be a third-degree polynomial with rational coefficients, having roots x_{1}, x_{2}, and x_{3}. Prove that if there exist nonzero rational numbers a and b such that $a x_{1}+b x_{2}$ is rational, then x_{3} is also a rational number.

Problem 4 A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called olympic if it has the following property: given $n \geq 3$ distinct points A_{1}, A_{2}, \ldots, $A_{n} \in \mathbb{R}^{2}$, if $f\left(A_{1}\right)=f\left(A_{2}\right)=\cdots=f\left(A_{n}\right)$ then the points A_{1}, A_{2}, \ldots, A_{n} are the vertices of a convex polygon. Let $P \in \mathbb{C}[X]$ be a non-constant polynomial. Prove that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $f(x, y)=|P(x+i y)|$, is olympic if and only if all the roots of P are equal.

Problem 5 Let $n \geq 2$ be a positive integer. Find the number of functions $f:\{1,2, \ldots, n\} \rightarrow\{1,2,3,4,5\}$ which have the following property: $|f(k+1)-f(k)| \geq 3$ for $k=1,2, \ldots, n-1$.

Problem 6 Let $n \geq 1$ be a positive integer and $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that $\left|x_{k+1}-x_{k}\right| \leq 1$ for $k=1,2, \ldots, n-1$. Show that

$$
\sum_{k=1}^{n}\left|x_{k}\right|-\left|\sum_{k=1}^{n} x_{k}\right| \leq \frac{n^{2}-1}{4}
$$

Problem 7 Let n, k be arbitrary positive integers. Show that there exist positive integers $a_{1}>a_{2}>a_{3}>a_{4}>a_{5}>k$ such that

$$
n= \pm\binom{ a_{1}}{3} \pm\binom{ a_{2}}{3} \pm\binom{ a_{3}}{3} \pm\binom{ a_{4}}{3} \pm\binom{ a_{5}}{3}
$$

where $\binom{a}{3}=\frac{a(a-1)(a-2)}{6}$.

Problem 8 Let $P_{1} P_{2} \cdots P_{n}$ be a convex polygon in the plane. Assume that for any pair of vertices P_{i}, P_{j}, there exists a vertex V of the polygon such that $\angle P_{i} V P_{j}=60^{\circ}$. Show that $n=3$.

Problem 9 Show that there exist infinitely many 4-tuples of positive integers (x, y, z, t) such that the four numbers' greatest common divisor is 1 and such that

$$
x^{3}+y^{3}+z^{2}=t^{4}
$$

Problem 10 Consider the following figure, made of three unit squares:

Determine all pairs m, n of positive integers such that a $m \times n$ rectangle can be tiled with such pieces.

Problem 11 Find the least positive integer n such that for all odd integers $a, 2^{2000}$ is a divisor of $a^{n}-1$.

Problem 12 Let $A B C$ be an acute triangle and let M be the midpoint of segment $B C$. Consider the interior point N such that $\angle A B N=\angle B A M$ and $\angle A C N=\angle C A M$. Prove that $\angle B A N=$ $\angle C A M$.

Problem 13 Let \mathcal{S} be the set of interior points of a unit sphere, and let \mathcal{C} be the set of interior points of a unit circle. Find, with proof, whether there exists a function $f: \mathcal{S} \rightarrow \mathcal{C}$ such that the distance between $f(A)$ and $f(B)$ is greater than or equal to $A B$ for all points A and B in \mathcal{S}.

Problem 14 Let $n \geq 3$ be an odd integer and $m \geq n^{2}-n+1$ be an integer. The sequence of polygons $P_{1}, P_{2}, \ldots, P_{m}$ is defined as follows:
(i) P_{1} is a regular polygon with n vertices.
(ii) For $k>1, P_{k}$ is the regular polygon whose vertices are the midpoints of the sides of P_{k-1}.
Find, with proof, the maximum number of colors which can be used such that for every coloring of the vertices of these polygons, one can find four vertices A, B, C, D which have the same color and form an isosceles trapezoid.

Problem 15 Prove that if p and q are monic polynomials with complex coefficients such that $p(p(x))=q(q(x))$, then $p(x)$ and $q(x)$ are equal.

2.20 Russia

Problem 1 Sasha tries to determine some positive integer $X \leq 100$. He can choose any two positive integers M and N that are less than 100 and ask the question, "What is the greatest common divisor of the numbers $X+M$ and N ?" Prove that Sasha can determine the value of X after 7 questions.

Problem 2 Let I be the center of the incircle ω of an acute-angled triangle $A B C$. The circle ω_{1} with center K passes through the points A, I, C and intersects sides $A B$ and $B C$ at points M and N. Let L be the reflection of K across line $M N$. Prove that $B L \perp A C$.

Problem 3 There are several cities in a state and a set of roads, each road connecting two cities. It is known that at least 3 roads go out of every city. Prove that there exists a cyclic path (that is, a path where the last road ends where the first road begins) such that the number of roads in the path is not divisible by 3 .

Problem 4 Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers, satisfying the conditions $-1<x_{1}<x_{2}<\cdots<x_{n}<1$ and

$$
x_{1}^{13}+x_{2}^{13}+\cdots+x_{n}^{13}=x_{1}+x_{2}+\cdots+x_{n} .
$$

Prove that

$$
x_{1}^{13} y_{1}+x_{2}^{13} y_{2}+\cdots+x_{n}^{13} y_{n}<x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

for any real numbers $y_{1}<y_{2}<\cdots<y_{n}$.
Problem 5 Let $\overline{A A_{1}}$ and $\overline{C C_{1}}$ be the altitudes of an acute-angled nonisosceles triangle $A B C$. The bisector of the acute angle between lines $A A_{1}$ and $C C_{1}$ intersects sides $A B$ and $B C$ at P and Q, respectively. Let H be the orthocenter of triangle $A B C$ and let M be the midpoint of $\overline{A C}$; and let the bisector of $\angle A B C$ intersect $\overline{H M}$ at R. Prove that $P B Q R$ is cyclic.
Problem 6 Five stones which appear identical all have different weights; Oleg knows the weight of each stone. Given any stone x, let $m(x)$ denote its weight. Dmitrii tries to determine the order of the weights of the stones. He is allowed to choose any three stones A, B, C and ask Oleg the question, "Is it true that $m(A)<m(B)<m(C)$?" Oleg then responds "yes" or "no." Can Dmitrii determine the order of the weights with at most nine questions?

Problem 7 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the inequality

$$
f(x+y)+f(y+z)+f(z+x) \geq 3 f(x+2 y+3 z)
$$

for all $x, y, z \in \mathbb{R}$.
Problem 8 Prove that the set of all positive integers can be partitioned into 100 nonempty subsets such that if three positive integers a, b, c satisfy $a+99 b=c$, then two of them belong to the same subset.

Problem 9 Let $A B C D E$ be a convex pentagon on the coordinate plane. Each of its vertices are lattice points. The five diagonals of $A B C D E$ form a convex pentagon $A_{1} B_{1} C_{1} D_{1} E_{1}$ inside of $A B C D E$. Prove that this smaller pentagon contains a lattice point on its boundary or within its interior.

Problem 10 Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of nonnegative real numbers. For $1 \leq k \leq n$, let

$$
m_{k}=\max _{1 \leq i \leq k} \frac{a_{k-i+1}+a_{k-i+2}+\cdots+a_{k}}{i}
$$

Prove that for any $\alpha>0$, the number of integers k which satisfy $m_{k}>\alpha$ is less than $\frac{a_{1}+a_{2}+\cdots+a_{n}}{\alpha}$.
Problem 11 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence with $a_{1}=1$ satisfying the recursion

$$
a_{n+1}= \begin{cases}a_{n}-2 & \text { if } a_{n}-2 \notin\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \text { and } a_{n}-2>0 \\ a_{n}+3 \text { otherwise } .\end{cases}
$$

Prove that for every positive integer k, we have $a_{n}=k^{2}=a_{n-1}+3$ for some n.

Problem 12 There are black and white checkers on some squares of a $2 n \times 2 n$ board, with at most one checker on each square. First, we remove every black checker that is in the same column as any white checker. Next, we remove every white checker that is in the same row as any remaining black checker. Prove that for some color, at most n^{2} checkers of this color remain.

Problem 13 Let E be a point on the median $C D$ of triangle $A B C$. Let S_{1} be the circle passing through E and tangent to line $A B$ at A, intersecting side $A C$ again at M; let S_{2} be the circle passing through E and tangent to line $A B$ at B, intersecting side $B C$ again at N.

Prove that the circumcircle of triangle $C M N$ is tangent to circles S_{1} and S_{2}.

Problem 14 One hundred positive integers, with no common divisor greater than one, are arranged in a circle. To any number, we can add the greatest common divisor of its neighboring numbers. Prove that using this operation, we can transform these numbers into a new set of pairwise coprime numbers.

Problem $15 M$ is a finite set of real numbers such that given three distinct elements from M, we can choose two of them whose sum also belongs to M. What is the largest number of elements that M can have?

Problem 16 A positive integer n is called perfect if the sum of all its positive divisors, excluding n itself, equals n. For example, 6 is perfect since $6=1+2+3$. Prove that
(a) if a perfect number larger than 6 is divisible by 3 , then it is also divisible by 9 .
(b) if a perfect number larger than 28 is divisible by 7 , then it is also divisible by 49 .

Problem 17 Circles ω_{1} and ω_{2} are internally tangent at N. The chords $B A$ and $B C$ of ω_{1} are tangent to ω_{2} at K and M, respectively. Let Q and P be the midpoints of the $\operatorname{arcs} A B$ and $B C$ not containing the point N. Let the circumcircles of triangles $B Q K$ and $B P M$ intersect at B and B_{1}. Prove that $B P B_{1} Q$ is a parallelogram.

Problem 18 There is a finite set of congruent square cards, placed on a rectangular table with their sides parallel to the sides of the table. Each card is colored in one of k colors. For any k cards of different colors, it is possible to pierce some two of them with a single pin. Prove that all the cards can be pierced by $2 k-2$ pins.

Problem 19 Prove the inequality

$$
\sin ^{n}(2 x)+\left(\sin ^{n} x-\cos ^{n} x\right)^{2} \leq 1
$$

Problem 20 The circle ω is inscribed in the quadrilateral $A B C D$, and O is the intersection point of the lines $A B$ and $C D$. The circle ω_{1} is tangent to side $B C$ at K and is tangent to lines $A B$ and $C D$ at points lying outside $A B C D$; the circle ω_{2} is tangent to side $A D$
at L and is also tangent to lines $A B$ and $C D$ at points lying outside $A B C D$. If O, K, L are collinear, prove that the midpoint of side $B C$, the midpoint of side $A D$, and the center of ω are collinear.

Problem 21 Every cell of a 100×100 board is colored in one of 4 colors so that there are exactly 25 cells of each color in every column and in every row. Prove that one can choose two columns and two rows so that the four cells where they intersect are colored in four different colors.

Problem 22 The non-zero real numbers a, b satisfy the equation

$$
a^{2} b^{2}\left(a^{2} b^{2}+4\right)=2\left(a^{6}+b^{6}\right)
$$

Prove that a and b are not both rational.
Problem 23 In a country, each road either connects two towns or starts from a town and goes out of the country. Some of the roads are colored in one of three colors. For every town, exactly three of the roads that go out of this town are colored, and the colors of these roads are different. If exactly three of the colored roads go out of the country, prove that the colors of these roads are different.

Problem 24 Find the smallest odd integer n such that some n-gon (not necessarily convex) can be partitioned into parallelograms whose interiors do not overlap.

Problem 25 Two pirates divide their loot, consisting of two sacks of coins and one diamond. They decide to use the following rules. On each turn, one pirate chooses a sack and takes $2 m$ coins from it, keeping m for himself and putting the rest into the other sack. The pirates alternate taking turns until no more moves are possible; the pirate who makes the last move takes the diamond. For what initial amounts of coins can the first pirate guarantee that he will obtain the diamond?

Problem 26 The coefficients a and b of an equation $x^{2}+a x+b=0$ and its roots c and d are four different numbers. Given a, b, c, d in some order, is it possible to determine which is a and which is b ?

Problem 27 Do there exist coprime integers $a, b, c>1$ such that $2^{a}+1$ is divisible by $b, 2^{b}+1$ is divisible by c, and $2^{c}+1$ is divisible by a ?

Problem $282 n+1$ segments are marked on a line. Each of the segments intersects at least n other segments. Prove that one of these segments intersects all the other segments.

Problem 29 The circles S_{1} and S_{2} intersect at points M and N. Let A and D be points on S_{1} and S_{2} such that lines $A M$ and $A N$ intersect S_{2} at B and C, lines $D M$ and $D N$ intersect S_{1} at E and F, and the triples A, E, F and D, B, C lie on opposite sides of line $M N$. Prove that there is a fixed point O such that for any points A and D that satisfy the condition $A B=D E$, the quadrilateral $A F C D$ is cyclic.

Problem 30 Let the set M consist of the 2000 numbers $10^{1}+$ $1,10^{2}+1, \ldots, 10^{2000}+1$. Prove that at least 99% of the elements of M are not prime.

Problem 31 There are 2 counterfeit coins among 5 coins that look identical. Both counterfeit coins have the same weight and the other three real coins have the same weight. The five coins do not all weight the same, but it is unknown whether the weight of each counterfeit coin is more or less than the weight of each real coin. Find the minimal number of weighings needed to find at least one real coin, and describe how to do so. (The balance scale reports the difference between the weights of the objects in two pans.)

Problem 32 Let $A B C D$ be a parallelogram with $\angle A=60^{\circ}$. Let O be the circumcenter of triangle $A B D$. Line $A O$ intersects the external angle bisector of angle $B C D$ at K. Find the value $\frac{A O}{O K}$.

Problem 33 Find the smallest integer n such that an $n \times n$ square can be partitioned into 40×40 and 49×49 squares, with both types of squares present in the partition.

Problem 34 Prove that there exist 10 distinct real numbers a_{1}, a_{2}, \ldots, a_{10} such that the equation

$$
\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{10}\right)=\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{10}\right)
$$

has exactly 5 different real roots.
Problem 35 We are given a cylindrical region in space, whose altitude is 1 and whose base has radius 1 . Find the minimal number of balls of radius 1 needed to cover this region.

Problem 36 The sequence $a_{1}, a_{2}, \ldots, a_{2000}$ of real numbers satisfies the condition

$$
a_{1}^{3}+a_{2}^{3}+\cdots+a_{n}^{3}=\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}
$$

for all $n, 1 \leq n \leq 2000$. Prove that every element of the sequence is an integer.
(The balance scale reports the difference between the weights of the objects in two pans.)

Problem 37 The bisectors $\overline{A D}$ and $\overline{C E}$ of a triangle $A B C$ intersect at I. Let ℓ_{1} be the reflection of line $A B$ across line $C E$, and let ℓ_{2} be the reflection of line $B C$ across line $A D$. If lines ℓ_{1} and ℓ_{2} intersect at K, prove that $K I \perp A C$.

Problem 38 There are 2000 cities in a country, some pairs of which are connected by a direct airplane flight. For every city A the number of cities connected with A by direct flights equals $1,2,4, \ldots$, or 1024 . Let $S(A)$ be the number of routes from A to other cities (different from A) with at most one intermediate landing. Prove that the sum of $S(A)$ over all 2000 cities A cannot be equal to 10000 .

Problem 39 A heap of balls consists of one thousand 10-gram balls and one thousand 9.9 -gram balls. We wish to pick out two heaps of balls with equal numbers of balls in them but different total weights. What is the minimal number of weighings needed to do this?

Problem 40 Let D be a point on side $A B$ of triangle $A B C$. The circumcircle of triangle $B C D$ intersects line $A C$ at C and M, and the circumcircle of triangle $C M N$ intersects line $B C$ at C and N. Let O be the center of the circumcircle of triangle $C M N$. Prove that $O D \perp A B$.

Problem 41 Every cell of a 200×200 table is colored black or white. The difference between the number of black and white cells is 404. Prove that some 2×2 square contains an odd number of white cells.

Problem 42 Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
|f(x+y)+\sin x+\sin y|<2
$$

for all $x, y \in \mathbb{R}$?

Problem 43 For any integer $a_{0}>5$, consider the sequence $a_{0}, a_{1}, a_{2}, \ldots$, where

$$
a_{n+1}= \begin{cases}a_{n}^{2}-5 & \text { if } a_{n} \text { is odd } \\ \frac{a_{n}}{2} & \text { if } a_{n} \text { is even }\end{cases}
$$

for all $n \geq 0$. Prove that this sequence is not bounded.
Problem 44 Let $\ell_{a}, \ell_{b}, \ell_{c}$, and ℓ_{d} be the external angle bisectors of angles $D A B, A B C, B C D$, and $C D A$, respectively. The pairs of lines ℓ_{a} and ℓ_{b}, ℓ_{b} and ℓ_{c}, ℓ_{c} and ℓ_{d}, ℓ_{d} and ℓ_{a} intersect at points K, L, M, N, respectively. Suppose that the perpendiculars to line $A B$ passing through K, to line $B C$ passing through L, and to line $C D$ passing through M are concurrent. Prove that $A B C D$ can be inscribed in a circle.

Problem 45 There are 2000 cities in a country, and each pair of cities is connected by either no roads or exactly one road. A cyclic path is a collection of roads such that each city is at the end of either 0 or 2 roads in the path. For every city, there at most N cyclic paths which both pass through this city and contain an odd number of roads. Prove that the country can be separated into $2 N+2$ republics such that any two cities from the same republic are not connected by a road.

Problem 46 Prove the inequality

$$
\frac{1}{\sqrt{1+x^{2}}}+\frac{1}{\sqrt{1+y^{2}}} \leq \frac{2}{\sqrt{1+x y}}
$$

for $0 \leq x, y \leq 1$.
Problem 47 The incircle of triangle $A B C$ touches side $A C$ at K. A second circle S with the same center intersects all the sides of the triangle. Let E and F be the intersection points on $\overline{A B}$ and $\overline{B C}$ closer to B; let B_{1} and B_{2} be the intersection points on $\overline{A C}$ with B_{1} closer to A. Finally, let P be the intersection point of segments $B_{2} E$ and $B_{1} F$. Prove that points B, K, P are collinear.

Problem 48 Each of the numbers $1,2, \ldots, N$ is colored black or white. We are allowed to simultaneously change the colors of any three numbers in arithmetic progression. For which numbers N can we always make all the numbers white?

2.21 Taiwan

Problem 1 Find all possible pairs (x, y) of positive integers such that

$$
y^{x^{2}}=x^{y+2} .
$$

Problem 2 In an acute triangle $A B C, A C>B C$ and M is the midpoint of $\overline{A B}$. Let altitudes $\overline{A P}$ and $\overline{B Q}$ meet at H, and let lines $A B$ and $P Q$ meet at R. Prove that the two lines $R H$ and $C M$ are perpendicular.

Problem 3 Let $S=\{1,2, \ldots, 100\}$, and let \mathcal{P} denote the family of all 49-element subsets T of S. Each set T in \mathcal{P} is labeled with some number from S. Show that there exists a 50 -element subset M of S such that for each $x \in M$, the set $M \backslash\{x\}$ is not labeled with x.

Problem 4 Let $\phi(k)$ denote the number of positive integers n satisfying $\operatorname{gcd}(n, k)=1$ and $n \leq k$. Suppose that $\phi\left(5^{m}-1\right)=5^{n}-1$ for some positive integers m, n. Prove that $\operatorname{gcd}(m, n)>1$.

Problem 5 Let $A=\{1,2, \ldots, n\}$, where n is a positive integer. A subset of A is connected if it is a nonempty set which consists of one element or of consecutive integers. Determine the greatest integer k for which A contains k distinct subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that the intersection of any two distinct sets A_{i} and A_{j} is connected.

Problem 6 Let $f: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ be defined recursively by $f(1)=0$ and

$$
f(n)=\max _{1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor}\{f(j)+f(n-j)+j\}
$$

for all $n \geq 2$. Determine $f(2000)$.

2.22 Turkey

Problem 1 Find the number of ordered quadruples (x, y, z, w) of integers with $0 \leq x, y, z, w \leq 36$ such that

$$
x^{2}+y^{2} \equiv z^{3}+w^{3} \quad(\bmod 37)
$$

Problem 2 Given a circle with center O, the two tangent lines from a point S outside the circle touch the circle at points P and Q. Line $S O$ intersects the circle at A and B, with B closer to S. Let X be an interior point of minor arc $P B$, and let line $O S$ intersect lines $Q X$ and $P X$ at C and D, respectively. Prove that

$$
\frac{1}{A C}+\frac{1}{A D}=\frac{2}{A B}
$$

Problem 3 For any two positive integers n and p, prove that there are exactly $(p+1)^{n+1}-p^{n+1}$ functions

$$
f:\{1,2, \ldots, n\} \rightarrow\{-p,-p+1, \ldots, p\}
$$

such that $|f(i)-f(j)| \leq p$ for all $i, j \in\{1,2, \ldots, n\}$.
Problem 4 Find all sequences $a_{1}, a_{2}, \ldots, a_{2000}$ of real numbers such that $\sum_{n=1}^{2000} a_{n}=1999$ and such that $\frac{1}{2}<a_{n}<1$ and $a_{n+1}=$ $a_{n}\left(2-a_{n}\right)$ for all $n \geq 1$.

Problem 5 In an acute triangle $A B C$ with circumradius R, altitudes $\overline{A D}, \overline{B E}, \overline{C F}$ have lengths h_{1}, h_{2}, h_{3}, respectively. If t_{1}, t_{2}, t_{3} are the lengths of the tangents from A, B, C, respectively, to the circumcircle of triangle $D E F$, prove that

$$
\sum_{i=1}^{3}\left(\frac{t_{i}}{\sqrt{h_{i}}}\right)^{2} \leq \frac{3}{2} R
$$

Problem 6

(a) Prove that for each positive integer n, the number of ordered pairs (x, y) of integers satisfying

$$
x^{2}-x y+y^{2}=n
$$

is finite and divisible by 6 .
(b) Find all ordered pairs (x, y) of integers satisfying

$$
x^{2}-x y+y^{2}=727
$$

Problem 7 Given a triangle $A B C$, the internal and external bisectors of angle A intersect line $B C$ at points D and E, respectively. Let F be the point (different from A) where line $A C$ intersects the circle ω with diameter $\overline{D E}$. Finally, draw the tangent at A to the circumcircle of triangle $A B F$, and let it hit ω at A and G. Prove that $A F=A G$.

Problem 8 Let $P(x)=x+1$ and $Q(x)=x^{2}+1$. We form all sequences of ordered pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ with $\left(x_{1}, y_{1}\right)=(1,3)$ and

$$
\left(x_{k+1}, y_{k+1}\right) \in\left\{\left(P\left(x_{k}\right), Q\left(y_{k}\right)\right),\left(Q\left(x_{k}\right), P\left(y_{k}\right)\right)\right\}
$$

for each positive integer k. Find all positive integers n such that $x_{n}=y_{n}$ in at least one of these sequences.

Problem 9 Show that it is possible to cut any triangular prism of infinite length with a plane such that the resulting intersection is an equilateral triangle.

Problem 10 Given a square $A B C D$, the points M, N, K, L are chosen on sides $A B, B C, C D, D A$, respectively, such that lines $M N$ and $L K$ are parallel and such that the distance between lines $M N$ and $L K$ equals $A B$. Show that the circumcircles of triangles $A L M$ and $N C K$ intersect each other, while those of triangles $L D K$ and $M B N$ do not.

Problem 11 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\mid f(x+$ $y)-f(x)-f(y) \mid \leq 1$ for all $x, y \in \mathbb{R}$. Show that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $|f(x)-g(x)| \leq 1$ for all $x \in \mathbb{R}$, and with $g(x+y)=g(x)+g(y)$ for all $x, y \in \mathbb{R}$.

2.23 Ukraine

Problem 1 Let n numbers greater than 1 be given. During each step, we replace any two numbers a, b with the number $\frac{a b \sqrt{2}}{a+b}$. Prove that after $n-1$ steps, the remaining number is at least $\frac{1}{\sqrt{n}}$.

Problem 2 Acute triangle $P N K$ is inscribed in a circle with diameter $\overline{N M}$. Let A be the intersection point of $\overline{M N}$ and $\overline{P K}$, and let H be a point on minor $\operatorname{arc} P N$. The circumcircle of triangle $P A H$ intersects lines $M N$ and $P N$ again at points B and D, respectively; the circle with diameter $\overline{B N}$ intersects lines $P N$ and $N K$ at points F and Q, respectively. Let C be the intersection point of lines $M N$ and $F Q$, and let E be the intersection point different from D of line $C D$ with the circumcircle of triangle $P A H$. Prove that the points H, E, N are collinear.

Problem 3 Let $\overline{A A_{1}}, \overline{B B_{1}}, \overline{C C_{1}}$ be the altitudes of acute triangle $A B C$. Let A_{2}, B_{2}, C_{2} be the tangency points of the incircle of triangle $A_{1} B_{1} C_{1}$ with sides $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$, respectively. Prove that the lines $A A_{2}, B B_{2}, C C_{2}$ are concurrent.
Problem 4 Do there exist positive integers m, n such that $\frac{m^{2}+1}{n^{2}-1}$ is an integer?

2.24 United Kingdom

Problem 1 Two intersecting circles C_{1} and C_{2} have a common tangent which touches C_{1} at P and C_{2} at Q. The two circles intersect at M and N. Prove that the triangles $M N P$ and $M N Q$ have equal areas.

Problem 2 Given that x, y, z are positive real numbers satisfying $x y z=32$, find the minimum value of

$$
x^{2}+4 x y+4 y^{2}+2 z^{2} .
$$

Problem 3 Find positive integers a and b such that

$$
(\sqrt[3]{a}+\sqrt[3]{b}-1)^{2}=49+20 \sqrt[3]{6}
$$

Problem 4

(a) Find a set A of ten positive integers such that no six distinct elements of A have a sum which is divisible by 6 .
(b) Is it possible to find such a set if "ten" is replaced by "eleven"?

2.25 United States of America

Problem 1 Call a real-valued function f very convex if

$$
\frac{f(x)+f(y)}{2} \geq f\left(\frac{x+y}{2}\right)+|x-y|
$$

holds for all real numbers x and y. Prove that no very convex function exists.

Problem 2 Let S be the set of all triangles $A B C$ for which

$$
5\left(\frac{1}{A P}+\frac{1}{B Q}+\frac{1}{C R}\right)-\frac{3}{\min \{A P, B Q, C R\}}=\frac{6}{r}
$$

where r is the inradius and P, Q, R are the points of tangency of the incircle with sides $A B, B C, C A$, respectively. Prove that all triangles in S are isosceles and similar to one another.

Problem 3 A game of solitaire is played with R red cards, W white cards, and B blue cards. A player plays all the cards one at a time. With each play he accumulates a penalty. If he plays a blue card, then he is charged a penalty which is the number of white cards still in his hand. If he plays a white card, then he is charged a penalty which is twice the number of red cards still in his hand. If he plays a red card, then he is charged a penalty which is three times the number of blue cards still in his hand. Find, as a function of R, W, and B, the minimal total penalty a player can amass and all the ways in which this minimum can be achieved.

Problem 4 Find the smallest positive integer n such that if n unit squares of a 1000×1000 unit-square board are colored, then there will exist three colored unit squares whose centers form a right triangle with legs parallel to the edges of the board.

Problem 5 Let $A_{1} A_{2} A_{3}$ be a triangle and let ω_{1} be a circle in its plane passing through A_{1} and A_{2}. Suppose there exist circles ω_{2}, ω_{3}, \ldots, ω_{7} such that for $k=2,3, \ldots, 7, \omega_{k}$ is externally tangent to ω_{k-1} and passes through A_{k} and A_{k+1}, where $A_{n+3}=A_{n}$ for all $n \geq 1$. Prove that $\omega_{7}=\omega_{1}$.

Problem 6 Let $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}$ be nonnegative real numbers. Prove that

$$
\sum_{i, j=1}^{n} \min \left\{a_{i} a_{j}, b_{i} b_{j}\right\} \leq \sum_{i, j=1}^{n} \min \left\{a_{i} b_{j}, a_{j} b_{i}\right\} .
$$

2.26 Vietnam

Problem 1 Given a real number $c>2$, a sequence x_{1}, x_{2}, \ldots of real numbers is defined recursively by $x_{1}=0$ and

$$
x_{n+1}=\sqrt{c-\sqrt{c+x_{n}}}
$$

for all $n \geq 1$. Prove that the sequence x_{1}, x_{2}, \ldots is defined for all n and has a finite limit.

Problem 2 Two circles ω_{1} and ω_{2} are given in the plane, with centers O_{1} and O_{2}, respectively. Let M_{1}^{\prime} and M_{2}^{\prime} be two points on ω_{1} and ω_{2}, respectively, such that the lines $O_{1} M_{1}^{\prime}$ and $O_{2} M_{2}^{\prime}$ intersect. Let M_{1} and M_{2} be points on ω_{1} and ω_{2}, respectively, such that when measured clockwise the angles $\angle M_{1}^{\prime} O M_{1}$ and $\angle M_{2}^{\prime} O M_{2}$ are equal.
(a) Determine the locus of the midpoint of $\overline{M_{1} M_{2}}$.
(b) Let P be the point of intersection of lines $O_{1} M_{1}$ and $O_{2} M_{2}$. The circumcircle of triangle $M_{1} P M_{2}$ intersects the circumcircle of triangle $O_{1} P O_{2}$ at P and another point Q. Prove that Q is fixed, independent of the locations of M_{1} and M_{2}.

Problem 3 Given the polynomial

$$
P(x)=x^{3}-9 x^{2}+24 x-97,
$$

prove that for each positive integer n there exists a positive integer a_{n} for which $P\left(a_{n}\right)$ is divisible by 3^{n}.

Problem 4 Given an angle $\alpha \in(0, \pi)$, find a quadratic polynomial of the form $f(x)=x^{2}+a x+b$ such that for every $n \geq 3$, the polynomial

$$
P_{n}(x)=x^{n} \sin \alpha-x \sin n \alpha+\sin (n-1) \alpha
$$

is divisible by $f(x)$.
Problem 5 Suppose that all circumcircles of the four faces of a tetrahedron have congruent radii. Show that any two opposite edges of the tetrahedron are congruent.

Problem 6 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
x^{2} f(x)+f(1-x)=2 x-x^{4}
$$

for all $x \in \mathbb{R}$.

Problem 7 Two circles \mathcal{C}_{1} and \mathcal{C}_{2} intersect at two points P and Q. The common tangent of \mathcal{C}_{1} and \mathcal{C}_{2} closer to P than to Q touches \mathcal{C}_{1} and \mathcal{C}_{2} at A and B, respectively. The tangent to \mathcal{C}_{1} at P intersects \mathcal{C}_{2} at E (distinct from P) and the tangent to \mathcal{C}_{2} at P intersects \mathcal{C}_{1} at F (distinct from P). Let H and K be two points on the rays $A F$ and $B E$, respectively, such that $A H=A P, B K=B P$. Prove that the five points A, H, Q, K, B lie on the same circle.

Problem 8 Given a positive integer k, let $x_{1}=1$ and define the sequence x_{1}, x_{2}, \ldots of positive integers recursively as follows: for each integer $n \geq 1$, let x_{n+1} be the smallest positive integer not belonging to the set $\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{1}+k, x_{2}+2 k, \ldots, x_{n}+n k\right\}$. Show that there exists a real number a such that

$$
x_{n}=\lfloor a n\rfloor
$$

for all $n=1,2, \ldots$.
Problem 9 Let a, b, c be pairwise relatively prime positive integers. The positive integer n is said to be stubborn if it cannot be written in the form

$$
n=b c x+c a y+a b z
$$

for any positive integers x, y, z. Determine, as a function of a, b, and c, the number of stubborn integers.

Problem 10 Let \mathbb{R}^{+}denote the set of positive real numbers, and let $a, r>1$ be real numbers.
(a) Suppose that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ is a function satisfying the following conditions:
(i) $f(f(x)) \leq a x^{r} f\left(\frac{x}{a}\right)$ for all $x>0$.
(ii) $f(x)<2^{2000}$ for all $x<\frac{1}{2^{2000}}$.

Prove that $f(x) \leq x^{r} a^{1-r}$ for all $x>0$.
(b) Construct a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfying condition (i) such that $f(x)>x^{r} a^{1-r}$ for all $x>0$.

3
 2000 Regional Contests: Problems

3.1 Asian Pacific Mathematical Olympiad

Problem 1 Compute the sum

$$
S=\sum_{i=0}^{101} \frac{x_{i}^{3}}{1-3 x_{i}+3 x_{i}^{2}}
$$

where $x_{i}=\frac{i}{101}$ for $i=0,1, \ldots, 101$.
Problem 2 We are given an arrangement of nine circular slots along three sides of a triangle: one slot at each corner, and two more along each side. Each of the numbers $1,2, \ldots, 9$ is to be written into exactly one of these circles, so that
(i) the sums of the four numbers on each side of the triangle are equal;
(ii) the sums of the squares of the four numbers on each side of the triangle are equal.
Find all ways in which this can be done.
Problem 3 Let $A B C$ be a triangle with median $\overline{A M}$ and angle bisector $\overline{A N}$. Draw the perpendicular to line $N A$ through N, hitting lines $M A$ and $B A$ at Q and P, respectively. Also let O be the point where the perpendicular to line $B A$ through P meets line $A N$. Prove that $Q O \perp B C$.

Problem 4 Let n, k be positive integers with $n>k$. Prove that

$$
\frac{1}{n+1} \cdot \frac{n^{n}}{k^{k}(n-k)^{n-k}}<\frac{n!}{k!(n-k)!}<\frac{n^{n}}{k^{k}(n-k)^{n-k}} .
$$

Problem 5 Given a permutation $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ of the sequence $0,1, \ldots, n$, a transposition of a_{i} with a_{j} is called legal if $a_{i}=0, i>0$, and $a_{i-1}+1=a_{j}$. The permutation $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is called regular if after finitely many legal transpositions it becomes $(1,2, \ldots, n, 0)$. For which numbers n is the permutation ($1, n, n-1, \ldots, 3,2,0$) regular?

3.2 Austrian-Polish Mathematics Competition

Problem 1 Determine all polynomials $P(x)$ with real coefficients such that for some positive integer n, the equality

$$
\sum_{k=1}^{2 n+1}(-1)^{k}\left\lfloor\frac{k}{2}\right\rfloor P(x+k)=0
$$

holds for infinitely many real numbers x.
Problem 2 We are given a $1 \times 1 \times 1$ unit cube with opposite faces $A B C D$ and $E F G H$, where $\overline{A E}, \overline{B F}, \overline{C G}$, and $\overline{D H}$ are edges of the cube. X is a point on the incircle of square $A B C D$, and Y is a point on the circumcircle of triangle $B D G$. Find the minimum possible value of $X Y$.

Problem 3 For each positive integer $n \geq 3$, find all n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers that satisfy the following system of equations:

$$
\begin{aligned}
x_{n}^{3} & =x_{1}+x_{2}+1 \\
x_{1}^{3} & =x_{2}+x_{3}+1 \\
& \vdots \\
x_{n-1}^{3} & =x_{n}+x_{1}+1 .
\end{aligned}
$$

Problem 4 Find all positive integers N whose only prime divisors are 2 and 5 , such that the number $N+25$ is a perfect square.

Problem 5 For which integers $n \geq 5$ is it possible to color the vertices of a regular n-gon using at most 6 colors such that any 5 consecutive vertices have different colors?

Problem 6 Let the 3-cross be the solid made up of one central unit cube with six other unit cubes attached to its faces, such as the solid made of the seven unit cubes centered at $(0,0,0),(\pm 1,0,0)$, $(0, \pm 1,0)$, and $(0,0, \pm 1)$. Prove or disprove that the space can be tiled with 3 -crosses in such a way that no two of them share any interior points.

Problem 7 In the plane the triangle $A_{0} B_{0} C_{0}$ is given. Consider all triangles $A B C$ satisfying the following conditions: (i) lines $A B$, $B C$, and $C A$ pass through points C_{0}, A_{0}, and B_{0}, respectively; (ii) $\angle A B C=\angle A_{0} B_{0} C_{0}, \angle B C A=\angle B_{0} C_{0} A_{0}$, and $\angle C A B=\angle C_{0} A_{0} B_{0}$. Find the locus of the circumcenter of all such triangles $A B C$.

Problem 8 We are given a set of 27 distinct points in the plane, no three collinear. Four points from this set are vertices of a unit square; the other 23 points lie inside this square. Prove that there exist three distinct points X, Y, Z in this set such that $[X Y Z] \leq \frac{1}{48}$.

Problem 9 For all real numbers $a, b, c \geq 0$ such that $a+b+c=1$, prove that

$$
2 \leq\left(1-a^{2}\right)^{2}+\left(1-b^{2}\right)^{2}+\left(1-c^{2}\right)^{2} \leq(1+a)(1+b)(1+c)
$$

and determine when equality occurs for each of the two inequalities.

3.3 Balkan Mathematical Olympiad

Problem 1 Let E be a point inside nonisosceles acute triangle $A B C$ lying on median $\overline{A D}$, and drop perpendicular $\overline{E F}$ to line $B C$. Let M be an arbitrary point on segment $E F$, and let N and P be the orthogonal projections of M onto lines $A C$ and $A B$, respectively. Prove that the angle bisectors of $\angle P M N$ and $\angle P E N$ are parallel.

Problem 2 Find the maximum number of $1 \times 10 \sqrt{2}$ rectangles one can remove from a 50×90 rectangle by using cuts parallel to the edges of the original rectangle.

Problem 3 Call a positive integer r a perfect power if it is of the form $r=t^{s}$ for some integers s, t greater than 1 . Show that for any positive integer n there exists a set S of n distinct perfect powers, such that for any nonempty subset T of S, the arithmetic mean of the elements in T is also a perfect power.

3.4 Czech-Slovak Match

Problem 1 A triangle $A B C$ with incircle k is given. Circle k_{a} passes through B and C and is orthogonal to k; circles k_{b} and k_{c} are defined similarly. (Two circles are said to be orthogonal if they intersect and their tangents at any common point are perpendicular.) Let k_{a} and k_{b} intersect again at C^{\prime}, and define A^{\prime} and B^{\prime} similarly. Show that the circumradius of triangle $A^{\prime} B^{\prime} C^{\prime}$ equals half the radius of k.

Problem 2 Let $P(x)$ be a polynomial with integer coefficients. Show that the polynomial

$$
Q(x)=P\left(x^{4}\right) P\left(x^{3}\right) P\left(x^{2}\right) P(x)+1
$$

has no integer roots.
Problem 3 Let $A B C D$ be an isosceles trapezoid with bases $A B$ and $C D$. The incircle of the triangle $B C D$ touches side $C D$ at a point E. Let F be the point on the internal bisector of $\angle D A C$ such that $E F \perp C D$. The circumcircle of triangle $A C F$ intersects the line $C D$ at two points C and G. Show that triangle $A F G$ is isosceles.

3.5 Mediterranean Mathematical Competition

Problem 1 We are given n different positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ and the set $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}$, where each $\sigma_{i} \in\{-1,1\}$. Prove that there exist a permutation $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and a set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ where each $\beta_{i} \in\{-1,1\}$, such that the sign of $\sum_{j=1}^{i} \beta_{j} b_{j}$ equals the sign of σ_{i} for all $1 \leq i \leq n$.

Problem 2 In the convex quadrilteral $A B C D, A C=B D$. Outwards along its sides are constructed equilateral triangles $W A B$, $X B C, Y C D, Z D A$ with centroids $S_{1}, S_{2}, S_{3}, S_{4}$, respectively. Prove that $S_{1} S_{3} \perp S_{2} S_{4}$ if and only if $A C \perp B D$.

Problem 3 For a positive integer $n \geq 2$, let c_{1}, \ldots, c_{n} and b_{1}, \ldots, b_{n} be positive real numbers. Prove that the equation

$$
\sum_{i=1}^{n} c_{i} \sqrt{x_{i}-b_{i}}=\frac{1}{2} \sum_{i=1}^{n} x_{i}
$$

has exactly one solution if and only if

$$
\sum_{i=1}^{n} c_{i}^{2}=\sum_{i=1}^{n} b_{i}
$$

Problem $4 P, Q, R, S$ are the midpoints of sides $B C, C D, D A$, $A B$, respectively, of convex quadrilateral $A B C D$. Prove that

$$
4\left(A P^{2}+B Q^{2}+C R^{2}+D S^{2}\right) \leq 5\left(A B^{2}+B C^{2}+C D^{2}+D A^{2}\right)
$$

3.6 Nordic Mathematical Contest

Problem 1 In how many ways can the number 2000 be written as a sum of three positive integers $a_{1} \leq a_{2} \leq a_{3}$?

Problem 2 People $P_{1}, P_{2}, \ldots, P_{n}$, sitting around a table in that order, have $m+n-1, m+n-2, \ldots, m$ coins, respectively. P_{i} gives P_{i+1} exactly i coins for $i=1,2, \ldots$ in that order (where $P_{i+n}=P_{i}$ for all i) until one person no longer has enough coins to continue. At this moment, it turns out that some person has exactly five times as many coins as one of his neighbors. Determine m and n.

Problem 3 In triangle $A B C$, internal angle bisectors $\overline{A D}$ and $\overline{C E}$ meet at I. If $I D=I E$, prove that either triangle $A B C$ is isosceles or $\angle A B C=60^{\circ}$.

Problem 4 The function $f:[0,1] \rightarrow \mathbb{R}$ satisfies $f(0)=0, f(1)=1$, and

$$
\frac{1}{2} \leq \frac{f(z)-f(y)}{f(y)-f(x)} \leq 2
$$

for all $0 \leq x<y<z \leq 1$ with $z-y=y-x$. Prove that

$$
\frac{1}{7} \leq f\left(\frac{1}{3}\right) \leq \frac{4}{7}
$$

3.7 St. Petersburg City Mathematical Olympiad (Russia)

Problem 1 Do there exist four quadratic polynomials such that if you put them in any order, there exists a number such that the values of the polynomials at that number, in the chosen order, are strictly increasing?

Problem 2 Let S_{1} and S_{2} be two nonintersecting circles. A common external tangent meets S_{1} and S_{2} at A and B, respectively. Let S_{3} be a circle passing through A and B, and let C and D be its second intersections with S_{1} and S_{2}, respectively. Let K be the point where the tangents to S_{1} and S_{2} at C and D, respectively, meet. Prove that $K C=K D$.

Problem 3 On a 1001×1001 checkerboard, call two (unit) squares adjacent if they share an edge. Several squares are chosen, no two adjacent, such that the number of squares adjacent to chosen squares is less than the number of chosen squares. How many squares have been chosen?

Problem 4 Let S be a set of 1000 positive integers. For each nonempty subset A of B, let $g(A)$ be the greatest common divisor of the elements in A. Is it possible that $g\left(A_{1}\right) \neq g\left(A_{2}\right)$ for any two distinct subsets A_{1}, A_{2} of B ?

Problem 5 Let $\overline{A A_{1}}, \overline{B B_{1}}, \overline{C C_{1}}$ be the altitudes of an acute triangle $A B C$. The points A_{2} and C_{2} on line $A_{1} C_{1}$ are such that line $C C_{1}$ bisects $\overline{A_{2} B_{1}}$ and line $A A_{1}$ bisects $\overline{C_{2} B_{1}}$. Lines $A_{2} B_{1}$ and $A A_{1}$ meet at K, and lines $C_{2} B_{1}$ and $C C_{1}$ meet at L. Prove that lines $K L$ and $A C$ are parallel.

Problem 6 One hundred points are chosen in the coordinate plane. Show that at most $2025=45^{2}$ rectangles with vertices among these points have sides parallel to the axes.

Problem 7 Find all pairs of distinct positive integers a, b such that $b^{2}+a \mid a^{2}+b$ and $b^{2}+a$ is a power of a prime.

Problem 8 In a country of 2000 airports, there are initially no airlines. Two airlines take turns introducing new nonstop flights,
and given any two cities only one airline may offer flights between them. Each airline attempts to introduce enough flights so that if any airport is shut down, it can still offer trips from any airport to any other airport, possibly with transfers. Which airline can ensure that it achieves this goal first?

Problem 9 We are given several monic quadratic polynomials, all with the same discriminant. The sum of any two of the polynomials has distinct real roots. Show that the sum of all of the polynomials also has distinct real roots.

Problem 10 Let a and b be distinct positive integers greater than 1 such that $a^{2}+b-1$ is divisible by $b^{2}+a-1$. Prove that $b^{2}+a-1$ has at least two distinct prime factors.

Problem 11 On an infinite checkerboard are placed 111 nonoverlapping corners, L-shaped figures made of 3 unit squares. The collection has the following property: for any corner, the 2×2 square containing it is entirely covered by the corners. Prove that one can remove between 1 and 110 of the corners so that the property will be preserved.

Problem 12 We are given distinct positive integers $a_{1}, a_{2}, \ldots, a_{20}$. The set of pairwise sums $\left\{a_{i}+a_{j} \mid 1 \leq i \leq j \leq 20\right\}$ contains 201 elements. What is the smallest possible number of elements in the set $\left\{\left|a_{i}-a_{j}\right| \mid 1 \leq i<j \leq 20\right\}$, the set of (positive) differences between the integers?

Problem 13 Let $A B C D$ be an isoceles trapezoid with bases $A D$ and $B C$. An arbitrary circle tangent to lines $A B$ and $A C$ intersects $\overline{B C}$ at M and N. Let X and Y be the intersections closer to D of the incircle of triangle $B C D$ with $\overline{D M}$ and $\overline{D N}$, respectively. Show that line $X Y$ is parallel to line $A D$.

Problem 14 In each square of a chessboard is written a positive real number such that the sum of the numbers in each row is 1 . It is known that for any eight squares, no two in the same row or column, the product of the numbers in these squares is no greater than the product of the numbers on the main diagonal. Prove that the sum of the numbers on the main diagonal is at least 1 .

Problem 15 Is it possible to draw finitely many segments in three-dimensional space such that any two segments either share an endpoint or do not intersect, any endpoint of a segment is the endpoint of exactly two other segments, and any closed polygon made from these segments has at least 30 sides?

Problem 16 Does there exist a quadratic polynomial f with positive coefficients such that for every positive real number x, the equality $\lfloor f(x)\rfloor=f(\lfloor x\rfloor)$ holds?

Problem 17 What is the smallest number of weighings on a balance scale needed to identify the individual weights of a set of objects known to weigh $1,3,3^{2}, \ldots, 3^{26}$ in some order? (The balance scale reports the difference between the weights of the objects in two pans.)

Problem 18 The line ℓ is tangent to the circumcircle of acute triangle $A B C$ at B. Let K be the projection of the orthocenter of $A B C$ onto ℓ, and let L be the midpoint of side $A C$. Show that triangle $B K L$ is isosceles.

Problem 19 Two points move within a vertical 1×1 square at the same constant speed. Each travels in a straight path except when it hits a wall, in which case it reflects off the wall so that its angle of incidence equals its angle of reflection. Show that a spider, moving at the same speed as the balls, can descend straight down on a string from the top edge of the square to the bottom so that while the spider is within in the square, neither the spider nor its string is touching one of the balls.

Problem 20 Let $n \geq 3$ be an integer. Prove that for positive numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\frac{x_{n} x_{1}}{x_{2}}+\frac{x_{1} x_{2}}{x_{3}}+\cdots+\frac{x_{n-1} x_{n}}{x_{1}} \geq x_{1}+x_{2}+\cdots+x_{n}
$$

Problem 21 In the plane is given a convex n-gon \mathcal{P} with area less than 1. For each point X in the plane, let $F(X)$ denote the area of the union of all segments joining X to points of \mathcal{P}. Show that the set of points X such that $F(X)=1$ is a convex polygon with at most $2 n$ sides.

Problem 22 What is the smallest number of unit segments that can be erased from the interior of a 2000×3000 rectangular grid so that no smaller rectangle remains intact?

Problem 23 Let x, y, z, t be pairwise relatively prime positive integers such that $x y+y z+z t=x t$. Prove that the sum of the squares of some two of these numbers equals twice the sum of the squares of the other two.

Problem 24 Let $\overline{A A_{1}}$ and $\overline{C C_{1}}$ be altitudes of acute triangle $A B C$. The line through the incenters of triangles $A A_{1} C$ and $A C_{1} C$ meets lines $A B$ and $B C$ at X and Y, respectively. Prove that $B X=B Y$.

Problem 25 Does there exist a 30 -digit number such that the number obtained by taking any five of its consecutive digits is divisible by 13 ?

Problem 26 One hundred volleyball teams play in a round-robin tournament, where each pair of teams plays against each other exactly once. Each game of the tournament is played at a different time, and no game ends in a draw. It turns out that in each match, the two teams playing the match have the same number of victories up to that point. If the minimum number of games won by any team is m, find all possible values of m.

Problem 27 Let $A B C D$ be a convex quadrilateral, and M and N the midpoints of $\overline{A D}$ and $\overline{B C}$, respectively. Suppose A, B, M, N lie on a circle such that $\overline{A B}$ is tangent to the circumcircle of triangle $B M C$. Prove that $\overline{A B}$ is also tangent to the circumcircle of triangle $A N D$.

Problem 28 Let $n \geq 3$ be a positive integer. For all positive numbers $a_{1}, a_{2}, \ldots, a_{n}$, show that

$$
\frac{a_{1}+a_{2}}{2} \frac{a_{2}+a_{3}}{2} \ldots \frac{a_{n}+a_{1}}{2} \leq \frac{a_{1}+a_{2}+a_{3}}{2 \sqrt{2}} \frac{a_{2}+a_{3}+a_{4}}{2 \sqrt{2}} \cdots \frac{a_{n}+a_{1}+a_{2}}{2 \sqrt{2}}
$$

Problem 29 A connected graph is said to be 2-connected if after removing any single vertex, the graph remains connected. Prove that given any 2 -connected graph in which the degree of every vertex is greater than 2 , it is possible to remove a vertex (and all edges adjacent to that vertex) so that the remaining graph is still 2-connected.

Problem 30 Let m be a positive integer. Prove that there exist infinitely many prime numbers p such that $m+p^{3}$ is composite.

Problem 31 The perpendicular bisectors of sides $A B$ and $B C$ of nonequilateral triangle $A B C$ meet lines $B C$ and $A B$ at A_{1} and C_{1},
respectively. Let the bisectors of angles $A_{1} A C$ and $C_{1} C A$ meet at B^{\prime}, and define C^{\prime} and A^{\prime} analogously. Prove that the points $A^{\prime}, B^{\prime}, C^{\prime}$ lie on a line passing through the circumcenter of triangle $A B C$.

Problem 32 Is it possible to select 102 17-element subsets of a 102 -element set, such that the intersection of any two of the subsets has at most 3 elements?

[^0]: 1 Problems are numbered as they appeared in the contests. Problems that appeared more than once in the contests are only printed once in this book.

[^1]: 1 Problems are numbered as they appeared in the contests. Problems that appeared more than once in the contests are only printed once in this book.

