Lemmas In Olympiad Geometry

Navneel Singhal

July 14, 2016

Geometry is the art of correct reasoning from incorrectly drawn figures.

- Henri Poincaré

1 Introduction

Here is a collection of some useful lemmas in geometry, some of them well known, some obscure and some by the author himself. This list of lemmas is also intended to be a list of some easier problems and also as some configurations that frequently appear on contests. Usually these lemmas will be intermediate results that will help you reach the solution in many cases, and maybe even trivialize the problem. These will help you write some really elegant solutions (and will also help you to simplify your bashes in cases of some problems that don't yield easily to synthetic solutions.) So have fun proving these lemmas and using them to the fullest advantage in your Olympiad journey!

2 Some Notations

- By $(X Y Z)$ we denote the circumcircle of $\triangle X Y Z$, by $(X Y)$ the circle with $X Y$ as diameter, and by (M, r) the circle with centre M and radius r, the radius being dropped when the context is clear.
- We denote H as the orthocentre, O as the circumcentre, G as the centroid, N as the nine-point centre, I as the incentre, N_{a} as the Nagel point and G_{e} as the Gergonne point of $\triangle A B C$

3 Orthocenter related properties

- O and H are isogonal conjugates.
- Reflections of the orthocenter over the sides and the midpoints of the sides lie on $(A B C)$.
- The O is the orthocenter of the medial triangle. a consequence is that $A H=2 O M$.
- If $D E F$ is the orthic triangle of $\triangle A B C$ then $\{H, A, B, C\}$ is the set of in/excenters of $\triangle D E F$.
- Let A^{\prime}, B^{\prime} and C^{\prime} be the reflections of H over the sides $B C, C A$ and $A B$ respectively. Then A is the midpoint of arc $B^{\prime} C^{\prime}$ and so on.
- Let X and Y be the orthocenters of the triangles $A B C$ and $D B C$ of cyclic quadrilateral $A B C D$. Then $B C X Y$ is a parallelogram.
- Simson line of a point P on $(A B C)$ bisects $P H$.(can be quoted)
- Let $A B C D$ be a complete quadrilateral. $P=A D \cap B C$ and $Q=A B \cap C D$. Then circles with diameter $A C, B D$ and $P Q$ are coaxial and their radical axis is the line joining the orthocenters of the triangles $P A B, P C D, Q A D$ and $Q B C$.(Gauss - Bodenmiller's theorem). This line is perpendicular to the line joining the midpoints of $P Q, A C$ and $B D$ which is called the Steiner line of the complete quadrilateral $A B C D$.
- Let $A A_{1}, B B_{1}$ and $C C_{1}$ be three cevians. Then H is the radical center of the circles with diameters as $A A_{1}, B B_{1}$ and $C C_{1}$.

4 Symmedian Related Properties

Let the tangents to $(A B C)$ at B and C meet at X . Let $A X$ meet $(A B C)$ at K and $B C$ at J. Then the following properties hold:

- $\frac{B J}{J C}=\left(\frac{A B}{A C}\right)^{2}$
- Quadrilateral $B C A K$ is harmonic.
- $\triangle A B K \sim \triangle A M C$
- $(A O)$ and $(B O C)$ meet on the midpoint of $A K$.
- $B C$ is a symmedian in each of $\triangle B A K$ and $\triangle C A K$.
- $B C$ is also an angle bisector of $\angle A M K$ and $M K$ is its external angle bisector.
- Tangents at A and K to $(A B C)$ meet on $B C$.

Let the reflection of K in $B C$ be Y. Then

- Y is the image of M (midpoint of $B C$) under the inversion centered at A which sends H to the foot of the A-altitude.
- $(B H C),(A H), A M$, circles tangent to $B C$ at B and C and passing through A, and the circumcircle of the triangle formed by the midpoint of $A H, M$ and the circumcenter of $B H C$ (the reflection of O in $B C$), all pass through Y. The last triangle mentioned forms an isosceles trapezoid alongwith Y.
- The symmedians concur at the Symmedian point which is the unique point such that it is the centroid of its pedal triangle with respect to $A B C$.
- Let the foot of the A-altitude on $B C$ be D and on $(A B C)$ be A^{\prime}, and midpoint of $B C$ be M. Then $\left(D A^{\prime} M\right)$ cuts $(A B C)$ again at K, the intersection of the A-symmedian with the circumcircle.
- Let the foot of the A - and the B - altitudes on the sides be D and E. Then $A K, D E, B$-midline and the line antiparallel to $B C$ through B with respect to $\triangle A B C$ are concurrent.
- Let K^{\prime} be the symmedian point of $\triangle A B C$ and Q be the midpoint of the A-altitude. Then $K^{\prime} Q$ bisects $B C$.

5 In/excenter related properties

Let the touchpoint of the incircle with $B C, C A, A B$ be D, E and F respectively. The A-excircle touches the side $B C$ at D^{\prime}.

- (Diameter of incircle) Let the diameter of the incircle through D be $D D^{\prime \prime}$. Then $A, D^{\prime \prime}$ and D^{\prime} are collinear and D and D^{\prime} are isotomic points with respect to side $B C$.
- (Diameter of excircle)Let the diameter of the excircle through D^{\prime} be $D^{\prime} D_{1}$. Then A, D and D_{1} are collinear.
- (Fact 5) The midpoints of the arcs $B C, C A$ and $A B$ are equidistant from the incenter, respective endpoints of the arcs and the respective excenter.
- The diameter of the incircle $D D^{\prime \prime}$, the A-median and the A-touch-chord of the incircle are concurrent.
- Let the A-touch chord of the incircle be $E F$ with E on $A C$ and F on $A B$. Then the B-midline, C-bisector, $E F$ and the circle with $B C$ as diameter concur at X such that $F X I D B$ is a cyclic pentagon.
- Let I_{A}, I_{B} and I_{C} be the excenters, M_{A}, M_{B} and M_{C} be the arc midpoints of the arcs of $(A B C)$ cut off by the sides containing exactly 2 vertices, $M_{A}^{\prime}, M_{B}^{\prime}$ and M_{C}^{\prime} be the antipodes of M_{A}, M_{B} and M_{C} respectively. Then I is the orthocenter of $I_{A} I_{B} I_{C} . M_{A}^{\prime}, M_{B}^{\prime}$ and M_{C}^{\prime} are the midpoints of the sides of $\triangle I_{A} I_{B} I_{C}$ and $\triangle A B C$ is the orthic triangle of $\triangle I_{A} I_{B} I_{C}$, with $(A B C)$ being the nine-point circle of $\triangle I_{A} I_{B} I_{C}$. Also, $I_{C} I_{B} C B$ is cyclic with $I_{C} I_{B}$ as the diameter. The contact triangle is also homothetic with $\triangle I_{A} I_{B} I_{C}$.
- $D I_{A}, D^{\prime} I$ concur on the midpoint of the A-altitude.
- Let $E F$ meet $B C$ at Z. Then $I K \perp A D$ and K is the pole of the line $A D$ with respect to the incircle. Also, $\{B, C, D, K\}$ is harmonic. Consequences include: The tangent to the incircle at $A D \cap(I)$ passes through $X, A D$ bisects $\angle B(A D \cap I K) C$.
- Antipode of A in $(A B C)$, the foot of the D-altitude in the contact triangle and I lie on a line which passes through the second intersection of $(A B C)$ and (AEIF).
- $O I$ is the Euler line of the contact triangle.
- $\angle A M_{A}^{\prime} I=\angle I M B$ where M is the midpoint of $B C$.
- (Curvilinear Incircles) A curvilinear incircle ω is a circle tangent to an arc of $(A B C)$ containing all three vertices of $A B C$ and also tangent to one of its sides. For the sake of definiteness we assume that the circle is tangent to the side $A B$ at K, to $\operatorname{arc} A C B$ at T, and $C D$ is a cevian tangent to ω at L. Then the following hold true:

1. M_{C}, K, T are collinear and $M_{C} K \cdot M_{C} T=M_{C} B^{2}=M_{C} A^{2}$
2. $C I L T$ is a cyclic quadrilateral.
3. $I \in K L$

- (Mixtilinear Incircles) The A-mixtilinear incircle ω_{A} is the circle tangent to $A B$ and $A C$ and $(A B C)$ at K, L, T respectively. Then the following hold true:

1. I is the midpoint of $K L$.
2. $T I$ passes through M_{A}^{\prime}, and is isogonal to $T A$ in the triangle $T K L$ (look for symmedians).
3. BKIT and CLIT are cyclic, with $C I$ and $B I$ being tangent to them..
4. $A T$ and $A D^{\prime}$ are isogonal in $\triangle A B C . A T$ and $D T$ are isogonal in $\triangle T B C$.
5. $A T$ passes through the insimilicenter of the incircle and $(A B C)$ which is on $O I$.
6. The circumcircle of the triangle formed by the intersections of the A-bisector and $B C$ and $(A B C)$ and D passes through T.
7. $B C, K L$ and $T M_{A}$ are concurrent.
8. $\angle A T M_{C}=\angle M_{B} T I$
9. $T M_{A}$ and $A D$ meet on the mixtilinear incircle.
10. $A D^{\prime}$ and $T I$ meet on the mixtilinear incircle.
11. ω_{A} is the image of the A-excircle under the composition of an inversion at A with radius $\sqrt{b c}$ and a reflection over the angle bisector of $\angle B A C$.

- If Y and Z are the feet of the B - and the C - bisectors on the opposite sides then $O I_{A} \perp Y Z$.
- A circle through A cuts the sides $A B$ and $A C$ at B^{\prime} and C^{\prime} such that $B B^{\prime}=C C^{\prime}$ iff it passes through M_{A}^{\prime}.
- The medial triangle and the triangle homothetic to $\triangle A B C$ at N_{a} with ratio $\frac{1}{2}$ share a common incircle.
- N_{a} is the incenter of the antimedial triangle, or we can say that I is the Nagel point of the medial triangle.

6 Feet of the altitudes and the midpoints

Here we denote by M the midpoint of $B C$ and by D the foot of the A-altitude.

- Reflection of A in N coincides with the reflection of O in M.
- $(A H),(A M),(A B C)$ and $H M$ concur at a point. The midpoints of $A H$ and $A M$ are collinear with O.
- Ray $D G \cap(A B C)$ forms an isosceles trapezoid with $A B C$.
- Let P and Q be the midpoints of $A B$ and $A C$ and the feet of B - and C altitudes be E and F. Let H^{\prime} be the midpoint of $A H$. Then $P D M Q$ is an isosceles trapezoid, H^{\prime} and M are the midpoints of the arcs formed by E and F in the nine-point circle.
- The triangle formed by the reflections of A, B and C over D, E and F is homothetic with the triangle formed by the reflections of N over the sides at O with ratio 2 . (In fact, this is equivalent to the fact that the reflections of H over the sides lie on the circumcircle and also with the fact that $A H=2 O M$. Prove this!).
- Let E be the foot of the B-altitude and P be the point on $A C$ such that $B P$ is antiparallel to $B C$ wrt $\triangle A B C$. Then the A-symmedian, B-midline, $D E$ and $B P$ concur at a point.

7 Triangle centers

- (Nagel Line) G, I and N_{a} are collinear, and $G N_{a}=2 I G$.
- (Isogonal Conjugate) Q is said to be the isogonal conjugate of a point P not on the sides of $\triangle A B C$ if $P A$ and $Q A$ are reflections of each other in the angle bisector of $\angle A, P B$ and $Q B$ are reflections of each other in the angle bisector of $\angle B$, and $P C$ and $Q C$ are reflections of each other in the angle bisector of $\angle C$.
- The triangle formed by the reflections of a point P in the sides of $\triangle A B C$ has the circumcenter as the isogonal conjugate of P. Also the circumcircles of the triangle of reflections as (described above) of a point and its isogonal conjugate are congruent. Consequences: the pedal triangles (triangle formed by feet of perpendiculars from a point to the sides of $\triangle A B C$) of a point and its isogonal conjugate are concyclic, the center is the midpoint of the line segment joining them, Simson's line, and also the existence of the isogonal conjugate.
- If P and Q are isogonal conjugates, then $P A, P B$ and $P C$ are perpendicular to the sides of the pedal triangle of Q.
- The cevian triangle of a point P with respect to $A B C$ is the triangle formed by the points of intersection of the lines joining P to vertices and the opposite sides. The isotomic conjugate of a point P is defined as the point of intersection of the cevians formed by a vertex and the reflection of the corresponding vertex of the cevian triangle in the midpoint of the corresponding side of $\triangle A B C$. Then the cevian triangles of a point and its isotomic conjugate have the same area.
- N_{a} is the isotomic conjugate of G_{e}.
- The isogonal conjugate of N_{a} is the insimilicenter of the incircle and the circumcircle, and that of G_{e} is the exsimilicenter of the incircle and the circumcircle.
- (Brocard Points) The first Brocard point is the point Q_{1} such that $\angle Q_{1} A B=$ $\angle Q_{1} B C=\angle Q_{1} C A$. The second Brocard point is the point Q_{2} such that $\angle Q_{2} B A=\angle Q_{2} C B=\angle Q_{2} A C$. Note that they are isogonal conjugates. Let the common angle be ω. Then a useful result is that $\cot \omega=$ $\cot A+\cot B+\cot C$.
- (Feuerbach point) The nine-point circle of a non-equilateral triangle is tangent to the incircle and the excircles. The point of tangency with the incircle is called the Feuerbach point of the triangle.
- (Poncelet point) For a quadruple $\{W, X, Y, Z\}$ of points, the nine point circles of the triangles formed by points in this set, the pedal circles of the points with respect to the triangle formed by the other three are concurrent at the Poncelet point of the quadruple. Note that the Feuerbach point is the Poncelet point of the quadruple $\{A, B, C, I\}$.

8 Miscellaneous useful properties

Note that some of the properties mentioned out here are theorems and not lemmas.

- The locus of the geometric transform is the transform of the locus. (incredibly useful)
- (Spiral Similarity Lemma) Let $A B$ and $C D$ be two segments and let $A C \cap$ $B D=X$. Let $(A B X)$ and $(C D X)$ intersect again at Y. Then Y is the center of spiral similarity sending $A B$ to $C D$ and sending $A C$ to $B D$. (useful)
- (Three Homotheties) The center of the composition of 2 homotheties lies on the line joining centers of them. (useful)
- The center of inversion swapping 2 circles is collinear with their centers. (useful)
- Let $\operatorname{pow}(O, \omega)$ be the power of a point O with respect to the circle ω. Then the locus of points such that $\frac{\operatorname{pow}\left(P, \omega_{1}\right)}{\operatorname{pow}\left(P, \omega_{2}\right)}$ is constant is a circle coaxial with ω_{1} and ω_{2}.
- See Monge's theorem, Monge - deAlembart's theorem. (Hint for proof: Think 3D, think cones).
- (Cevian Nest) If $A_{1} B_{1} C_{1}$ is the cevian triangle of a point P wrt $A B C$ and if $A_{2} B_{2} C_{2}$ is the cevian triangle of Q wrt $A_{1} B_{1} C_{1}$ then $A A_{2}, B B_{2}$ and $C C_{2}$ concur at a point.
- (Apollonius circles) The circle with ends of the diameter as the feet of the A-bisectors onto $B C$ is the locus of points P such that $\frac{P B}{P C}=\frac{A B}{A C}$.
- See Brocard's Theorem (about the self polarity of the triangle formed by intersections of opposite sides of a cyclic quadrilateral).
- (Miquel Point) Let P, Q, R be points on $B C, C A, A B$ respectively. Then $(A Q R),(P B R),(P Q C)$ concur at a point M. The centers of the circles form a triangle similar to $\triangle A B C$.
- (Also Miquel Point) Let $A B C D$ be a quadrilateral. $A B \cap C D=P, A D \cap$ $B C=Q, A C \cap B D=R$. Then $(P A D),(P B C),(Q A B),(Q C D)$ concur at M which is called the Miquel point M. It is concyclic with the centers of the circles. M is the center of spiral similarity sending $A B$ to $C D$ and $B C$ to $D A$. If $A B C D$ is cyclic, then many beautiful properties emerge. Let the center be O.

1. $(O A C)$ and $(O B D)$ also pass through M.
2. M is the inverse of R in (O) and thus lies on $P Q$, and is the foot of (O) on $P Q$.
3. $M O$ bisects $\angle A M C$ and $\angle B M D$.

- See butterfly theorem and its generalizations.
- Given any quadrilateral $A B C D$ and the midpoints X, Y, Z, W, U, V of $A B, B C, C D, D A, A C, B D$, and the centroids $G_{1}, G_{2}, G_{3}, G_{4}$ of the triangles $B C D, C D A, D A B, A B C$ then $X Z, Y W, U V, A G_{1}, B G_{2}, C G_{3}, D G_{4}$
are all concurrent at a point P which bisects the first three segments and divides the last four in a ratio 3:1.
- If in the above lemma the quadrilateral is cyclic and the orthocentres of the triangles $B C D, C D A, D A B, A B C$ are $H_{1}, H_{2}, H_{3}, H_{4}$ respectively then $\mathrm{AH}_{1}, \mathrm{BH}_{2}, \mathrm{CH}_{3}, D \mathrm{H}_{4}$ are concurrent at the reflection of the centre of the circle in P , say Q . Also Q is the midpoint of each of these segments.
- If a line makes equal angles with the opposite sides of a cyclic quadrilateral, then circles can be drawn tangent to each pair, where this line meets them, and these circles are coaxial with the original circle.
- Given an angle and a circle through the vertex of the angle, cutting its bisector at a fixed point. Then the sum of the intercepts of the circle on the sides of the angle is invariant.
- (Utkarsh's Isogonal Line Lemma) $A X$ and $A Y$ are isogonal wrt $\angle A$. $B X$ meets $C Y$ in Z_{1} and $B Y$ meets $C X$ in Z_{2}. then $A Z_{1}, A Z_{2}$ are isogonal wrt $\angle A$.
- Let ω_{1} and ω_{2} be two circles with the center of ω_{1} lying on ω_{2}. Then the inverse of ω_{1} with respect to ω_{2} is their radical axis.

9 General tips and tricks

Here are some general tips and tricks which were found to be useful to the author during Olympiads.

- Create phantom points: This means creating a point which satisfies a property that is to be proved and showing that it is unique and satisfies the problem condition.
- Negative inversion at H sending the nine-point circle to the circumcircle.
- Inversion about the circumcircle.
- "Maximum irritating circles" inversion: try to get rid of as many irritating circles you can (this is of course based on your intuition).
- Inversion about the incircle (quite useful for many problems, most of them involving the contact triangle and $(A B C)$).
- Inversion at A. This one sends the circumcenter to the reflection of A in the line joining the inverses of B and C. Inversion at A is most useful (as far as I think) in the following 2 cases:

1. Inversion with radius $\sqrt{A H . A D}$ where D is the $A H \cap B C$. This one sends the foot of the B-altitude to C, foot of the C-altitude to B and H to D.
2. The composition of an inversion with radius $\sqrt{b c}$ and flip over $A I$. This is quite famous and preserves the original triangle and is incredibly powerful for overlays. It sends $B C$ to the circumcircle of $A B C$.

- To show two circles are orthogonal, you may show that the inverse of one circle in the other is itself, or try to show that the endpoints of a diameter of a circle lie on the polars of one another with respect to the other circle.
- To show that 2 circles are tangent, the following can be used:

1. Show that they are homothetic at a point lying on one of the circles, usually done by finding 2 triangles homothetic at a point on one of the circles, having their circumcircles as the given circles.
2. Or draw a tangent to the circle at an intersection point (after showing that they intersect!) and then show that it is tangent to the other circle too.
3. Or show that the distance between the centers is either the sum or the difference of their radii.

- Another useful trick worth mentioning is point circles. They are especially useful for radical axes, because the radical axis of 2 point circles is their perpendicular bisector, and the radical axis of a point circle P and a nonpoint circle is the P-midline of the triangle formed by P and the contact points of the tangents from P to the circle.

10 References

1. Yufei Zhao's Notes http://yufeizhao.com/olympiad.html
2. Darij Grinberg's website http://web.mit.edu/ darij/www/
3. Evan Chen's book "Euclidean Geometry in Mathematical Olympiads"
4. I.F. Sharygin "Problems in Plane geometry"
5. Mathematical Reflections Journal
6. "107 Geometry Problems" - Titu Andreescu
7. Various posts and blogs at http://artofproblemsolving.com
8. Discussions at IMOTC-2016 India
