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Abstract

We consider families of parametrized Thue equations

Fa(X, Y ) = ±1, a ∈
�
,

where Fa ∈ � [a][X,Y ] is a binary irreducible form with coefficients which are polynomials in some
parameter a.

We give a survey on known results.

1 Thue Equations

Let F ∈ Z[X, Y ] be a homogeneous, irreducible polynomial of degree n ≥ 3 and m be a nonzero integer.
Then the Diophantine equation

F (X, Y ) = m (1)

is called a Thue equation in honour of A. Thue, who proved in 1909 [57]:

Theorem 1 (Thue). (1) has only a finite number of solutions (x, y) ∈ Z2.

Thue’s proof is based on his approximation theorem: Let α be an algebraic number of degree n ≥ 2
and ε > 0. Then there exists a constant c1(α, ε), such that for all p ∈ Z and q ∈ N
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.

Since this approximation theorem is not effective, Thue’s theorem is neither effective.

2 Number of Solutions

We call a solution (x, y) to F (x, y) = m primitive, if x and y are coprime integers. The problem of
giving upper bounds (depending on m and the degree n) for the number of primitive solutions goes back
to Siegel. Such a bound has first been given by Evertse [14]. An improved version has been given by
Bombieri and Schmidt [6]:
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Theorem 2 (Bombieri-Schmidt [6]). There is an absolute constant c2 such that for all n ≥ c2 the
Diophantine equation F (X, Y ) = m has at most 215 · n1+ω(m) primitive solutions, where ω(m) denotes
the number of prime factors of m and solutions (x, y) and (−x,−y) are regarded as the same.

At least for m = ±1, this result is best possible (up to the constant 215), since the equation

Xn + (X − Y )(2X − Y ) . . . (nX − Y ) = ±1

has at least the n + 1 solutions ±{(1, 1), . . . , (1, n), (0, 1)}.
Sharper bounds have been obtained for special classes of Thue equations.
If only k coefficients of F (X, Y ) are nonzero, the number of solutions depends on k and m only (and

not on n). For k = 3, this is proved by Mueller and Schmidt [41]: There are at most O(m2/n) solutions.
The general case k ≥ 3 is proved in Mueller and Schmidt [42]: There are at most O(k2m2/n(1+log m1/n))
solutions. Thomas [56] gives absolute upper bounds for the number of solutions for m = 1 and k = 3: If
n ≥ 38, then there are at most 20 solutions (x, y) with |xy| ≥ 2, where solutions (x, y) and (−x,−y) are
only counted once. For smaller n, similar bounds are given.

If only 2 coefficients of F (X, Y ) are nonzero, we arrive at the special case axn − byn = ±1 and we
consider only the case ab 6= 0, x > 0, y > 0. This equation has been studied by many authors, starting
with Delone [11] and Nagell [43], who proved that there is at most one solution for n = 3. Several authors
have contributed to this question. Finally, Bennett [4] could prove that there is at most one solution
(x, y).

We now consider cubic Thue equations F (X, Y ) = 1. If the discriminant of F is negative, there are
at most 5 solutions, and the cases of 4 and 5 solutions can be listed explicitly. This has been shown
independently by Delaunay [10] and Nagell [44] in the 1920’s. If the discriminant is positive, there are
at most 10 solutions, as it has been proved by Bennett [3]. Okazaki [47] proves that if the discriminant
is at least 5.65 · 1065, then there are at most 7 solutions. It is conjectured by Nagell [45], Pethő [48], and
Lippok [35] that there are at most 5 solutions except for five equations (modulo equivalence) which have
6 or 9 solutions. We note that there are two families of cubic Thue equations which have exactly five
solutions, cf. items 2 and 3 in the list in Section 4.1.

Okazaki [46] considers the analogous problem for quartic Thue equations F (X, Y ) = ±1. If all roots
of F (x, 1) are real and the discriminant is larger than a computable constant c3, this equation has at
most 14 solutions, where solutions (x, y) and (−x,−y) are counted once.

3 Algorithmic Solution of Single Thue Equations

Studying linear forms in logarithms of algebraic numbers, A. Baker could give an effective upper bound
for the solutions of such a Thue equation in 1968 [1]:

Theorem 3 (Baker). Let κ > n + 1 and (x, y) ∈ Z2 be a solution of (1). Then

max{|x| , |y|} < c4e
logκ|m|,

where c4 = c4(n, κ, F ) is an effectively computable number.

Since that time, these bounds have been improved; Bugeaud and Győry [7] give the following bound:

Theorem 4 (Bugeaud-Győry). Let B ≥ max{|m| , e}, α be a root of F (X, 1), K := Q(α), R := RK

the regulator of K and r the unit rank of K. Let H ≥ 3 be an upper bound for the absolute values of the
coefficients of F .

Then all solutions (x, y) ∈ Z2 of (1) satisfy

max{|x| , |y|} < exp
(

c5 · R · max{log R, 1} · (R + log(HB))
)
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and

max{|x| , |y|} < exp
(

c6 · H2n−2 · log2n−1 H · log B
)

,

with c5 = 3r+27(r + 1)7r+19n2n+6r+14 and c6 = 33(n+9)n18(n+1).

The bounds for the solutions obtained by Baker’s method are rather large, thus the solutions practi-
cally cannot be found by simple enumeration. For a similar problem Baker and Davenport [2] proposed
a method to reduce drastically the bound by using continued fraction reduction. Pethő and Schulenberg
[50] replaced the continued fraction reduction by the LLL-algorithm and gave a general method to solve
(1) for the totally real case with m = 1 and arbitrary n. Tzanakis and de Weger [61] describe the general
case. Finally, Bilu and Hanrot [5] were able to replace the LLL-algorithm by the much faster continued
fraction method and solve Thue equations up to degree 1000.

4 Families of Thue Equations

We study families of Thue equations

Fa(X, Y ) = ±1, a ∈ N (2)

where Fa ∈ Z[a][X, Y ] is an irreducible binary form of degree of at least 3 with coefficients which are
integer polynomials in a. In the investigation of such families usually only two types of solutions appear:
Firstly, there are polynomial solutions X(a), Y (a) ∈ Z[a] which satisfy (2) in Z[a], and secondly, there
occur (sometimes) single solutions for a few small values of the parameter a. However, Lettl [30] points
out that the family X6 − (a − 1)Y 6 = a2 does not have any polynomial solution, but there are sporadic
solutions for infinitely many values of the parameter a.

The first infinite parametrized families of Thue equations were considered by Thue [58] himself: He
proved that the equation

(a + 1)Xn − aY n = 1, X > 0, Y > 0 (3)

has only the solution x = y = 1 for a suitably large in relation to prime n ≥ 3. For n = 3, the equation
(3) has only this solution for a ≥ 386. Of course, Bennett’s result [4] cited in Section 2 implies that this
is true for all n ≥ 3 and a ≥ 1.

For a description of the techniques used to solve families of Thue equations, we refer to Heuberger [20].
Some automated procedures are presented in [26].

4.1 Families of Fixed Degree

In 1990, Thomas [53] investigated for the first time a parametrized family of cubic Thue equations of
positive discriminant. Since 1990, the following particular families of Thue equations have been studied:

1. X3 − (a − 1)X2Y − (a + 2)XY 2 − Y 3 = 1.

Thomas [53] and Mignotte [36] proved that for a ≥ 4, the only solutions are (0,−1), (1, 0) and
(−1, +1), while for the cases 0 ≤ a ≤ 4 there exist some nontrivial solutions, too, which are given
explicitly in [53]. For the same form Fa(X, Y ), all solutions of the Thue inequality |Fa(X, Y )| ≤
2a + 1 have been found by Mignotte, Pethő, and Lemmermeyer [39].

2. X3 − aX2Y − (a + 1)XY 2 − Y 3 = X(X + Y )(X − (a + 1)Y ) − Y 3 = 1.

Lee [29] and independently Mignotte and Tzanakis [40] proved that for a ≥ 3.33 · 1023 there are
only the solutions

(1, 0), (0,−1), (1,−1), (−a− 1,−1), (1,−a).

Mignotte [37] could prove the same result for all a ≥ 3.
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3. Wakabayashi [66] proved that for a ≥ 1.35 · 1014, the equation X3 − a2XY 2 + Y 3 = 1 has exactly
the five solutions (0, 1), (1, 0), (1, a2), (±a, 1).

4. Togbe [60] considered the equation X3 − (n3 − 2n2 + 3n − 3)X2Y − n2XY 2 − Y 3 = ±1. If n ≥ 1,
the only solutions are (±1, 0) and (0,±1).

5. Wakabayashi [64]: |X3 + aXY 2 + bY 3| ≤ a + |b| + 1 for arbitrary b and a ≥ 360b4 as well as for
b ∈ {1, 2} and a ≥ 1. He uses Padé approximations.

6. Thomas [55]: Let b, c be nonzero integers such that the discriminant of t3 − bt2 + ct− 1 is negative,
∆ = 4c − b2 > 0, and c ≥ min{4.2 × 1041 × |b|2.32, 3.6 × 1041 × ∆1.1582}. Then the Thue equation
X3 − bX2Y + cXY 2 − Y 3 = 1 only has the trivial solutions (1, 0), (0,−1).

7. X(X − ad2Y )(X − ad3Y ) ± Y 3 = 1.

This family was investigated by Thomas [54]. He proved that for 0 < d2 < d3 and

a ≥
(

2 · 106 · (d2 + 2d3)
)4.85/(d3−d2)

nontrivial solutions cannot exist. He also investigated this family with ad1 and ad2 replaced by
monic polynomials in a of degrees d1 and d2, respectively (see Theorem 5).

8. X4 − aX3Y − X2Y 2 + aXY 3 + Y 4 = X(X − Y )(X + Y )(X − aY ) + Y 4 = ±1.

This quartic family was solved by Pethő [49] for large values of a; Mignotte, Pethő, and Roth
[38] solved it completely: The only solutions are ±{(0, 1), (1, 0), (1, 1), (1,−1), (a, 1), (1,−a)} for
|a| /∈ {2, 4}. If |a| = 4, four more solutions exist. If |a| = 2, the family is reducible.

9. X4 − aX3Y − 3X2Y 2 + aXY 3 + Y 4 = ±1 has been solved for a ≥ 9.9 · 1027 by Pethő [49].

10. |bX4 − aX3Y − 6bX2Y 2 + aXY 3 + bY 4| ≤ N .

For b = 1 and N = 1, this equation has been solved completely by Lettl and Pethő [31]; Chen
and Voutier [9] solved it independently by using the hypergeometric method. For the same form
binary form Fa,b(X, Y ), Lettl, Pethő and Voutier [33] proved that |Fa(X, Y )| ≤ 6a + 7 has only
trivial primitive solutions for a ≥ 58, if b = 1. Furthermore, x2 + y2 ≤ max{25a2/(64b2), 4N2/a} if
a > 308b4, cf. Yuan [67].

11. Togbé [59] gives all solutions to X4 − a2X3Y − (a3 + 2a2 + 4a + 2)X2Y 2 − a2XY 3 + Y 4 = 1 for
a ≥ 1.191 · 1019 and a, a + 2, a2 + 4 squarefree.

12. |X4 − a2X2Y 2 + Y 4| =
∣

∣X2(X − a)(X + a) + Y 4
∣

∣ ≤ a2 − 2

This family of Thue inequalities has only trivial solutions with |y| ≤ 1 for a ≥ 8 (Wakabayashi [62]).

13.
∣

∣X4 + 4aX3Y + 6aX2Y 2 + 4a2XY 3 + a2Y 4
∣

∣ ≤ a2 has been solved for a ≥ 205 by Chen and Voutier
[8].

14. Dujella and Jadrijević [12], [13] prove that
∣

∣X4 − 4cX3Y + (6c + 2)X2Y 2 + 4cXY 3 + Y 4
∣

∣ ≤ 6c + 4
has only trivial solutions for all c ≥ 3.

15. X(X − Y )(X − aY )(X − bY ) − Y 4 = ±1.

All solutions of this two-parametric family are known for 102·1028

< a+1 < b ≤ a(1+ (log a)−4), cf.
Pethő and Tichy [51]. The case of b = a + 1 has been considered by Heuberger, Pethő and Tichy
[23], where all solutions could be determined for all a ∈ Z.

16. Jadrijević [27] proves that for every 0.5 < s ≤ 1, there is an effectively computable constant P (s)
such that if a 6= 0 and max{|a| , |b|} ≥ P (s) and gcd(a, b) ≥ max{|a|s , |b|s}, then the equation
X4 − 2abX3Y + 2(a2 − b2 + 1)X2Y 2 + 2abXY 3 + Y 4 = 1 only has trivial solutions. In particular,
P (0.999) = 1027 and P (0.501) = 1036836.
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17. Wakabayashi [63] found all solutions of |X4 − a2X2Y 2 − bY 4| ≤ a2 + b − 1 for a ≥ 5.3 · 1010b6.22.

18. X(X2 − Y 2)(X2 − a2Y 2) − Y 5 = ±1.

For a > 3.6 · 1019, all solutions have been found by Heuberger [18].

19. Gaál and Lettl [15] investigated the family X5 + (a − 1)X4Y − (2a3 + 4a + 4)X3Y 2 + (a4 + a3 +
2a2 + 4a− 3)X2Y 3 + (a3 + a2 + 5a + 3)XY 4 + Y 5 = ±1 and found all solutions for |a| ≥ 3.3 · 1015.
The remaining cases have been solved in Gaál and Lettl [16].

20. Levesque and Mignotte [34] found all solutions of the equation X5 + 2X4Y + (a + 3)X3Y 2 + (2a +
3)X2Y 3 + (a + 1)XY 4 − Y 5 = ±1 for sufficiently large a.

21. X6−2aX5Y −(5a+15)X4Y 2−20X3Y 3+5aX2Y 4+(2a+6)XY 5+Y 6 ∈ {±1,±27} was investigated
by Lettl, Pethő, and Voutier. They found all solutions for a ≥ 89 by hypergeometric methods
[33] and all solutions for a < 89 by using Baker’s method [32]. In [33], they also proved that
|Fa(X, Y )| ≤ 120a + 323 (for the form Fa(X, Y ) considered) has only trivial primitive solutions for
a ≥ 89.

22. X8 − 8nX7Y − 28X6Y 2 + 56nX5Y 3 + 70X4Y 4 − 56nX3Y 5 − 28nX2Y 6 + 8nXY 7 + Y 8 = ±1 has
only trivial solutions for n ∈ {a ∈ Z : a + b

√
2 = (1 +

√
2)2k+1, k ∈ N} with n ≥ 6.71 · 1032.

(Heuberger, Togbé and Ziegler [26]).

A more detailed survey on cubic families is contained in Wakabayashi [65].

4.2 Families of Relative Thue Equations

A few families of relative Thue equations have also been solved, i.e., families where the parameters and
the solutions are elements of the same imaginary quadratic number field.

So let D > 0 be an integer, k := Q(
√
−D), ok its ring of algebraic integers, and µ a root of unity in

ok.

1. For t ∈ ok with |t| ≥ 3.03·109, the only solutions (x, y) ∈ o2
k to X3−(t−1)X2Y −(t+2)XY 2−Y 3 = µ

satisfy max{|x| , |y|} ≤ 1 and can be listed explicitly (Heuberger, Pethő, and Tichy[24]).

2. For t ∈ ok with |t| > 2.88 · 1033, the only solutions (x, y) ∈ o2
k to X3 − tX2Y − (t+1)XY 2 −Y 3 = µ

satisfy min{|x| , |y|} ≤ 1 and can be listed explicitly (Ziegler [68]).

3. For s, t ∈ ok with |t| ≥ 5.3 · 1010|s|12.44 or s = 1 and |t| >
√

550, all solutions (x, y) ∈ o2
k to

|X4 − t2X2Y 2 + s2Y 4| ≤ |t|2 − |s|2 − 2 are explicitly known (Ziegler [69]).

4.3 Families of Arbitrary Degree

Moreover, some general families of arbitrary degree have been considered. Apart from (3), the investigated
general families are of the shape

Fa(X, Y ) :=

n
∏

i=1

(X − pi(a)Y ) − Y n = ±1, (4)

where p1, . . . , pn ∈ Z[a] are polynomials, which have been called split families by E. Thomas [54]. For
i = 1, . . . , n it can easily be seen that (X, Y ) ∈ {±(pi, 1), (±1, 0)} are solutions. Thomas conjectured
that if

p1 = 0, deg p2 < · · · < deg pn

and the polynomials are monic, there are no further solutions for sufficiently large values of the parameter
a. In [54] he proved this conjecture for n = 3 under some technical hypothesis:
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Theorem 5. Let u = ±1, a(t), b(t) ∈ Z[t] be monic polynomials and a := deg a(t), b := deg b(t) with
0 < a < b. We write A(t) := a(t)/ta − 1 and B(t) := b(t)/tb − 1 and define for n ≥ 1

W (n) :=

∞
∑

j=1

(−1)j+1

j
(b · A(n)j − a · B(n)j),

which can be written in powers of 1/n as W (n) =
∑n

j=1 wjn
−j . Further we define J := min{j ∈ N : wj 6=

0}.
If J 6= b − a or J = b − a ∧ 3wJ + 2b + a 6= 0 ∧ 3wJ − 2(b − a) 6= 0, then there is an effectively

computable constant c7 depending on the coefficients of a(t) and b(t) such that for n ≥ c7 the family of
Thue equations

X(X − a(n)Y )(X − b(n)Y ) + uY 3 = ±1

only has the solutions
±{(1, 0), (0, u), (a(n)u, u), (b(n)u, u)}.

Halter-Koch, Lettl, Pethő and Tichy [17] considered (4) for p1 = 0, p2 = d2, . . . , pn−1 = dn−1 and
pn = a, where d2, . . . , dn−1 are fixed distinct integers. They found all solutions for sufficiently large values
of a assuming a conjecture of Lang and Waldschmidt [28]—which is a very sharp bound for linear forms
in logarithms of algebraic numbers—:

Theorem 6. Let n ≥ 3, p1 = 0, p2 = d2, . . . , pn−1 = dn−1 be distinct integers and pn = a. Let α = α(a)
be a zero of P (x) =

∏n
i=1(x− pi)− d with d = ±1 and suppose that the index I of 〈α − d1, . . . , α − dn−1〉

in O×, the group of units of O := Z[α], is bounded by a constant J = J(d1, . . . , dn−1, n) for every a
from some subset Ω ∈ Z. Assume further that the Lang-Waldschmidt conjecture is true. Then for all but
finitely many values of a ∈ Ω the Diophantine equation

n
∏

i=1

(x − piy) − dyn = ±1

has only solutions (x, y) ∈ Z2 with |y| ≤ 1, except for the cases of n = 3 and |d2| = 1 or n = 4 and
(d2, d3) ∈ {(1,−1), (±1,±2)}, where it has exactly one more solution for every value of a.

If Q(α) is primitive over Q — especially if n is prime — then there exists a bound J = J(d1, . . . ,
dn−1, n) for the index I by lower bounds for the regulator of O (cf. Pohst and Zassenhaus [52], chapter
5.6, (6.22)). Applying the theory of Hilbertian fields and results on thin sets, primitivity is proved for
almost all choices (in the sense of density) of the parameters, cf. [17].

The two exceptional families are those considered under 2 and 8 in the list in Section 4.1.
A similar family has been considered by Heuberger in [19], however, in this case, the result is uncon-

ditionally true:

Theorem 7. Let n ≥ 4 be an integer, d2, . . . , dn−1 pairwise distinct integers and a an integral parameter.
Furthermore we assume

d2 + · · · + dn−1 6= 0 or d2 · · · dn−1 6= 0.

Let
Fa(X, Y ) := (X + aY )(X − d2Y )(X − d3Y ) · · · (X − dn−1Y )(X − aY ) − Y n.

Then there exists a (computable) constant c8 depending only on the degree n and d2, . . . , dn−1, such that
for all a ≥ c8, the only solutions (x, y) ∈ Z2 of the Diophantine equation

Fa(X, Y ) = ±1

are ±{(1, 0), (−a, 1), (d2, 1), (d3, 1), . . . , (dn−1, 1), (a, 1)}.
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In [25], Heuberger and Tichy considered a multivariate version of (4):

Theorem 8. Let n ≥ 4, r ≥ 1, pi ∈ Z[A1, . . . , Ar] for 1 ≤ i ≤ n. We make the following assumptions on
the polynomials pi:

deg p1 < · · · < deg pn−2 < deg pn−1 = deg pn,

LH(pn) = LH(pn−1), but pn 6= pn−1.

Furthermore we suppose that for p ∈ {p1, . . . , pn, pn−pn−1}, there exist positive constants tp, cp such that

|(LH(p))(a1, . . . , ar)| ≥ cp · (min
k

ak)deg p for a1, . . . , ar ≥ tp.

Let

Fa1,...,ar
(X, Y ) :=

n
∏

i=1

(X − pi(a1, . . . , ar)Y ) − Y n.

For every constant C > 1 there is a constant t0 such that for all integers a1, . . . , ar satisfying t0 ≤ mink ak

and
max

k
ak ≤ C · min

k
ak,

the Diophantine equation
Fa1,...,ar

(x, y) = ±1

considered for x, y ∈ Z only has the solutions {(±1, 0)} ∪ {±(pi(a1, . . . , ar), 1) : 1 ≤ i ≤ n}.
In Heuberger [21] Thomas’ conjecture is proved under some technical hypothesis:

Theorem 9. Let n ∈ N, n ≥ 3 and pi ∈ Z[a] be monic polynomials for i = 1, . . . , n. We write

pi(a) = adi + kia
di−1 + terms of lower degree, i = 2, . . . , n,

allow p1 = 0 and assume

d1 < d2 < · · · < dn−1 < dn and n + d2 ≥ 4.

Let

δi :=

{

1 if di − di−1 = 1,

0 otherwise
and e :=

n
∑

i=2

di.

If δ4 = 1 or

(e − d2 + 2d3)(k2 − δ2) + (−e − 2d2 + d3)k3 + (d3 − d2)

n
∑

i=4

ki /∈ {2δ3,−(e + d3)δ3}, (5)

then there is a (computable) constant c9 = c9(p1, . . . , pn) depending on the coefficients of the polynomials
pi such that for all integers a ≥ c9 the Diophantine equation

Fa(X, Y ) :=

n
∏

i=1

(X − pi(a)Y ) − Y n = ±1

only has the solutions
(±1, 0) and ± (pi(a), 1), 1 ≤ i ≤ n.

In [21], there is also a version with a stronger technical hypothesis than that in (5). For n = 3, that
version improves Theorem 5.

Especially there are only trivial solutions if

max(deg p1, 0) < deg p2 < deg p3 < · · · < deg pn

max(deg p1, 0) + deg p2 + . . . + deg pn < 15.

In Heuberger [22], an explicit constant c9 for Theorem 9 is given:

c9 = exp

(

1.01(n + 1)(n − 1)!(n − 1)n−2 exp
(

1.04(n− 2)(ndn − n + 3)
)

(

ndn − 1

n − 3

)

(2P + 1)ndn

)

,

where dj = deg pj and P is an upper bound for the absolute values of the coefficients of the pj , j = 1, . . . , n.
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