30 characterizations of the symmedian line

Luis González

September 2015

Abstract

The symmedians of a triangle are defined as the isogonal conjugates of its medians, i.e. they are obtained reflecting the medians over the corresponding angle bisectors. Thus they are concurrent at the isogonal conjugate of its centroid (symmedian point or Lemoine point). Starting with a scalene triangle labeled $\triangle A B C$, we present 30 different characterizations of the symmedian line issuing from vertex A. Proofs are left to the reader.

1) The tangents to the circumcircle of $\triangle A B C$ at B and C meet at $S . A S$ is the A-symmedian.
2) X is a point on $\overline{B C}$ verifying that $X B: X C=A B^{2}: A C^{2} . A X$ is the A-symmedian
3) Let E and F be points on $A C$ and $A B$, such that $E F$ is antiparallel to $B C$ with respect to $A B, A C$, i.e. $\angle A E F=\angle A B C$. If M is the midpoint of $\overline{E F}$, then $A M$ is the A-symmedian.
4) The A-symmedian is the locus of the point P on the plane verifying that the ratio of its distances to $A B$ and $A C$ equals $\frac{A B}{A C}$.
5) P is a point on the plane. Parallel from P to $A C$ cuts $B C, B A$ at D, E and the parallel from P to $A B$ cuts $C B, C A$ at F, G. If D, E, F, G are concyclic, then $A P$ is the A-symmedian.
6) P is a point on the plane. Antiparallel to $A C$ through P cuts $B C, B A$ at D, E and the antiparallel to $A B$ through P cuts $C B, C A$ at F, G. If D, E, F, G are concyclic, then $A P$ is the A-symmedian.
7) Internal and external bisectors of $\angle B A C$ cut $B C$ at U and V. The circle with diameter $\overline{U V}$ cuts the circumcircle (O) of $\triangle A B C$ again at $S . A S$ is the A-symmedian.
8) Let E and F be the projections of B and C on $A C$ and $A B . M$ is the midpoint of $\overline{B C}$ and $A M$ cuts $E F$ at P. If X is the projection of P on $B C$, then $A X$ is the A-symmedian.
9) Squares $A C P Q$ and $A B R S$ are constructed outwardly. If $X \equiv P Q \cap R S$, then $A X$ is the Asymmedian.
10) The perpendicular bisectors of $\overline{A B}$ and $\overline{A C}$ intersect the A-altitude at P and $Q . O$ is the circumcenter of $\triangle A B C$ and J is the circumcenter of $\triangle O P Q . A J$ is the A-symmedian.
11) Parallel to $B C$ cuts $A B$ and $A C$ at Y and Z, respectively. $P \equiv B Z \cap C Y$ and the circles $\odot(P B Y)$ and $\odot(P C Z)$ meet again at $Q . A Q$ is the A-symmedian.
12) The two circles passing through A and touching $B C$ at B and C meet again at P. If Q is the reflection of P on $B C$, then $A Q$ is the A-symmedian.
13) The circle passing through A, B tangent to $A C$ and the circle passing through A, C tangent to $A B$ meet again at $P . A P$ is the A-symmedian and moreover if $A P$ cuts the circumcircle of $\triangle A B C$ again at Q, then P is midpoint of $\overline{A Q}$.
14) Assume that $\triangle A B C$ is acute. O is circumcenter and D is the projection of A on $B C$. Circle ω_{A} has center on $\overline{A D}$, passes through A and touches $\odot(O B C)$ externally at $X . A X$ is the A-symmedian.
15) Let E and F be the projections of B and C on $A C$ and $A B . M$ is the midpoint of $\overline{B C} . A M$ cuts $C F$ at X and the parallel from X to $A C$ cuts $B E$ at $Y . A Y$ is the A-symmedian.
16) Let N and L be the midpoints of $\overline{A C}$ and $\overline{A B}$, respectively and let D be the projection of A on $B C$. Circles $\odot(B D L)$ and $\odot(C D N)$ meet again at P. $A P$ is the A-symmedian.
17) Internal bisector of $\angle B A C$ cuts $B C$ at D and M is the midpoint of the arc $B A C$ of the circumcircle (O). If $M D$ cuts (O) again at X, then $A X$ is the A-symmedian.
18) Let M be the midpoint of $\overline{B C}$. The perpendicular bisectors of $\overline{A C}$ and $\overline{A B}$ cut $A M$ at B^{\prime} and C^{\prime}, respectively. If $A^{\prime} \equiv C B^{\prime} \cap B C^{\prime}$, then $A A^{\prime}$ is the A-symmedian.
19) D, E, F are the projections of A, B, C on $B C, C A, A B$ and M, L are the midpoints of $B C, B A$. If $X \equiv D E \cap M L$, then $A X$ is the A-symmedian and moreover $B X \| E F$.
20) Assume that $\triangle A B C$ is acute with orthocenter $H . M$ is the midpoint of $B C$ and $A M$ cuts $\odot(H B C)$ at $P(P$ is between A and $M) . B P$ and $C P$ cut $A C$ and $A B$ at U and $V . N$ is the midpoint of $\overline{U V}$ and X is the projection of N on $B C . A X$ is the A-symmedian.
21) Let M be the midpoint of $\overline{B C}$ and let D be the projection of A on $B C . A^{\prime}$ is the reflection of A on M. P is the projection of A on $A^{\prime} B$ and Q is the reflection of P on B. If $T \equiv C Q \cap D A^{\prime}$, then $A T$ is the A-symmedian.
22) Ω_{2} is the second Brocard point of $\triangle A B C$ (i.e. the point Ω_{2} inside $\triangle A B C$ verifying $\left.\angle \Omega_{2} C B=\angle \Omega_{2} B A=\angle \Omega_{2} A C\right)$ and L is midpoint of $\overline{A B}$. If $P \equiv C L \cap B \Omega_{2}, A P$ is the A-symmedian.
23) The mixtilinear incircles ω_{B} and ω_{C} againts B and C touch the circumcircle (O) at B^{\prime} and C^{\prime}, respectively. $B B^{\prime}$ and $C C^{\prime}$ cut ω_{B} and ω_{C} again at $B^{\prime \prime}$ and $C^{\prime \prime}$. Tangents of ω_{B} and ω_{C} at $B^{\prime \prime}$ and $C^{\prime \prime}$, respectively, meet at $P . A P$ is the A -symmedian.
24) P is a variable point on $B C$. Parallels fom P to $A B$ and $A C$ cut $A C$ and $A B$ at B^{\prime}, C^{\prime}. Circles $\odot\left(A B^{\prime} C^{\prime}\right)$ go through to fixed points A and $Q . A Q$ is the A-symmedian.
25) P is an arbitrary point on the circumcircle (O) of $\triangle A B C$. AP cuts the tangents of (O) through B, C at M, N, respectively. $S \equiv C M \cap B N$ and $P S$ cuts $B C$ at $X . A X$ is the A-symmedian.
26) Let E and F be the projections of B and C on $A C$ and $A B$ and let Y and Z be the midpoints of $\overline{C E}$ and $\overline{B F}$, respectively. P is an arbitrary point on the perpendicular bisector of $\overline{B C}$. Perpendiculars from B and C to $P Z$ and $P Y$, respectively, meet at $Q . A Q$ is the A-symmedian.
27) U and V are two points on $\overline{B C}$, such that $A U$ and $A V$ are isogonals with respect to $\angle B A C$. A circle passes through U, V and touches the circumcircle (O) of $\triangle A B C$ at $X(X$ and A are on different sides of the line $B C)$. $A X$ is the A-symmedian.
28) U and V are two isotomic points with respect to B, C (i.e. $\overline{U V}$ and $\overline{B C}$ have the same midpoint). The isogonals of $A U, A V$ with respect to $\angle B A C$ hit the circumcircle (O) of $\triangle A B C$ again at X, Y and the tangents of (O) at X, Y meet at $S . A S$ is the A-symmedian.
Corollary: The A-mixtilinear incircle and the A-mixtilinear excircle touch (O) at X, Y. If the tangents of (O) at X, Y meet at S, then $A S$ is the A-symmedian.
29) P is a variable point on $B C$. Parallels fom P to $A B$ and $A C$ cut $A C$ and $A B$ at B^{\prime}, C^{\prime}. The perpendicular from P to $B^{\prime} C^{\prime}$ envelopes a parabola with focus F. $A F$ is the A-symmedian.
30) \mathcal{H}_{A} is the rectangular hyperbola that passes through A, B, C and whose center is the midpoint of $\overline{B C}$. The tangent of \mathcal{H}_{A} at A is the A -symmedian.

References

[1] Art of Problem Solving / http://www.artofproblemsolving.com/community.
[2] The Triangles Web / http://www.xtec.cat/ qcastell/ttw/ttweng/portada.html.
[3] Geometrikon / http://www.math.uoc.gr/ pamfilos/eGallery/Gallery.html.

