





Preface

This work blends together classic inequality results with brand new problems,
some of which devised only a few days ago. What could be special about it when so
many inequality problem books have already been written? We strongly believe that
even if the topic we plunge into is so general and popular our book is very different.
Of course, it is quite easy to say this, so we will give some supporting arguments. This
book contains a large variety of problems involving inequalities, most of them difficult,
questions that became famous in competitions because of their beauty and difficulty.
And, even more importantly, throughout the text we employ our own solutions and
propose a large number of new original problems. There are memorable problems
in this book and memorable solutions as well. This is why this work will clearly
appeal to students who are used to use Cauchy-Schwarz as a verb and want to further
improve their algebraic skills and techniques. They will find here tough problems,
new results, and even problems that could lead to research. The student who is not
as keen in this field will also be exposed to a wide variety of moderate and easy
problems, ideas, techniques, and all the ingredients leading to a good preparation
for mathematical contests. Some of the problems we chose to present are known,
but we have included them here with new solutions which show the diversity of ideas
pertaining to inequalities. Anyone will find here a challenge to prove his or her skills. If
we have not convinced you, then please take a look at the last problems and hopefully
you will agree with us.

Finally, but not in the end, we would like to extend our deepest appreciation
to the proposers of the problems featured in this book and to apologize for not
giving all complete sources, even though we have given our best. Also, we would like
to thank Marian Tetiva, Dung Tran Nam, Constantin Tanasescu, Calin Popa and
Valentin Vornicu for the beautiful problems they have given us and for the precious
comments, to Cristian Babé, George Lascu and Calin Popa, for typesetting and for

the many pertinent observations they have provided.

The authors
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CHAPTER 1

Problems



8 Problems

1. Prove that the inequality

\/a2+(1—b)2+\/b2—{—(1—c)2—{—\/02—{—(1—a)2232ﬁ

holds for arbitrary real numbers a, b, c.
Komal

2. [ Dinu Serbénescu | If a,b, ¢ € (0,1) prove that
Vabe + /(1 —a)(1 —b)(1—¢) < 1.
Junior TST 2002, Romania

3. [ Mircea Lascu | Let a,b, ¢ be positive real numbers such that abe = 1. Prove
that

b+c c¢c+a a+bd
+ + > a+Vb+ e+ 3.
va o Vb Ve 2 Ve ve

Gazeta Matematica
4. If the equation z? + az® + 222 + br + 1 = 0 has at least one real root, then
a? +b% > 8.

Tournament of the Towns, 1993

5. Find the maximum value of the expression 2% + y® + 2° — 3zyz where 22 +y2 +
22 =1 and z,y, z are real numbers.

6. Let a,b, ¢, z,y, z be positive real numbers such that = +y + z = 1. Prove that

az +by +cz + 2/ (zy + yz + zx)(ab+ bc + ca) < a4 b+ c.
Ukraine, 2001

7. [ Darij Grinberg | If a, b, ¢ are three positive real numbers, then
a N b N c S 9
b+c)? (c+a)® (a+b)?  4a+b+c)

8. [ Hojoo Lee ] Let a, b, ¢ > 0. Prove that

Var + a8 + b+ /0 2 4 A+ e+ at >

> av/2a2 + be + bv/262 + ca + c\/2c2 + ab.

Gazeta Matematica

9. If a, b, ¢ are positive real numbers such that abe = 2, then

A+ +S>avb+c+bvVe+a+eva+b.
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When does equality hold?
JBMO 2002 Shortlist

10. [ Ioan Tomescu | Let z,y,z > 0. Prove that
zYz
(1+3x)(x +8y)(y +92)(z +6)
When do we have equality?

1
ﬁ.

<

Gazeta Matematica

11. [ Mihai Piticari, Dan Popescu | Prove that
5(a? + 02+ %) <6(a® +b° +¢°) +1,

for all a,b,¢ >0 witha+ b+ c=1.

12. [ Mircea Lascu | Let z1,%2,...,2, € R, n > 2 and a > 0 such that z; +

2
a T Prove that z; € [0, QG] , for all
n

:U2+...+xn:aandx?—i—x%—{—...—{—miS

1€{1,2,...,n}.

n —

13. [ Adrian Zahariuc | Prove that for any a,b, ¢ € (1,2) the following inequality
holds
/e

bya Vb >
—be

a
+ +
dby/ec—cva  dcyfa—avh  4avh

14. For positive real numbers a, b, ¢ such that abe < 1, prove that
a

b ¢
+-+->a+b+tec
b ¢ a

15. [ Vasile Cirtoaje, Mircea Lascu | Let a,b, ¢, z,y, z be positive real numbers
such that a+x > b4+y > c+z and a4+ b+c = z+y+z. Prove that ay + bx > ac+zz.

16. [ Vasile Cirtoaje, Mircea Lascu | Let a, b, ¢ be positive real numbers so that
abe = 1. Prove that
3 S 6
a+b+c ™ ab+ac+be
Junior TST 2003, Romania

1+

17. Let a, b, ¢ be positive real numbers. Prove that

a® b &P a2 b 2
S=+ts+5>2—+—+—.
b2 2 a2 T b c a

JBMO 2002 Shortlist



Problems
18. Prove that if n > 3 and z1,22,...,2, > 0 have product 1, then
1 1 1
+
1+.Z’1+.Z’1.772 1+Z’2+1’2$3

e —— > 1.
1+2x, +x,21

Russia, 2004
19. [ Marian Tetiva ] Let z,y, z be positive real numbers satisfying the condition

22+t 4+ 2% 4 20yz = 1.
Prove that

a < —:
)wyz_g,

3
b)m—l—y+z§§;
o) zy+zz+yz << <@t 4yt + 2%

d) zy + z2 +yz <

N | == o

+ 2xy2.

20. [ Marius Olteanu | Let x1, 2, 3, T4, 5 € R so that z1 +xs+ 23+ 24 +25 = 0.
Prove that

|coszy| + | cosxa| + |coszg| + | coszy| + | coszs| > 1.
Gazeta Matematici
21. [ Florina Carlan, Marian Tetiva | Prove that if , y, z > 0 satisfy the condition

r+y+z=xyz
then 2y + w2 +y2 >3+ Va2 + 1+ /2 + 1+ V22 + 1.

22. [ Laurentiu Panaitopol | Prove that

1+ 22 1492 1+ 22
I+y+22 1+z+22 1+ax+y> =7
for any real numbers x,y,2z > —1.

JBMO, 2003
23. Let a,b,¢ > 0 with a + b+ ¢ = 1. Show that

a?+b V+ec AE+4a
+ > 2.
b+c c+a a+b

24. Let a,b,c > 0 such that a* + b* + ¢* < 2(a?b? + b%c? + c?a?). Prove that

a® + b* + ¢* < 2(ab 4+ be + ca).

Kvant, 1988



Old and New Inequalities 11

25, Let n > 2 and x4, ..., T, be positive real numbers satisfying
1 L 1 - 1 1
z, +1998 5 +1998 7z, +1998 1998

Vhita-Tn xlxz‘l"x" > 1998.

n —

Prove that

Vietnam, 1998

26. [ Marian Tetiva | Consider positive real numbers x,y, z so that
%+ y2 +22 = TYZ.
Prove the following inequalities
a) xyz > 27;
b) zy + xz + yz > 27;
r+y+z>9
Dazy+rztyz>2@+y+2)+9.

27. Let z,y, z be positive real numbers with sum 3. Prove that

VT + Y+ 2>y +yz+ 2.
Russia, 2002

28. [ D. Olteanu ] Let a, b, ¢ be positive real numbers. Prove that
a+b a +b+c b +c+a c >3
b+c 2a+b+c c+a 2b+c+a a+b 2c+a+b T 4

Gazeta Matematica

29. For any positive real numbers a, b, ¢ show that the following inequality holds
a b c>c+a a+b b+c

b ¢ a~c+b a+c bta

India, 2002

30. Let a, b, ¢ be positive real numbers. Prove that
a® L b? L c? 3(ab + be + ca)
b2—bc+c? 2—ac+a® a?—ab+b* "  a+b+c
Proposed for the Balkan Mathematical Olympiad

31. [ Adrian Zahariuc | Consider the pairwise distinct integers x1, s, ..., Zn,
n > 0. Prove that

2P ad 422 >ame Faoxs + o+ 2 + 20— 3.
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32. [ Murray Klamkin ] Find the maximum value of the expression z%zs + 323 +
<422 1, + 222 when z1,22,...,2,_1,2, > 0add up to 1 and n > 2.
Crux Mathematicorum

33. Find the maximum value of the constant ¢ such that for any

T1,%2, .-y &Ly, >0 for which g1 > @1 + 22 + - - - + z1 for any k, the inequality

VEIL+ VI ot VE <oVt o+ 3,

also holds for any n.

IMO Shortlist, 1986

34. Given are positive real numbers a,b,c and z,y, z, for whicha+z =b+y =
¢+ z = 1. Prove that
1 1 1
(abc+xyz)(— +—+ —) > 3.
ay bz cx
Russia, 2002

35. [ Viorel V4jaitu, Alexandru Zaharescu | Let a, b, ¢ be positive real numbers.
Prove that

ab N be N ca <1(a—|—b—{—c)
a+b+2c b4+ec+2a cH+a+2b 4 )

Gazeta Matematica

36. Find the maximum value of the expression
ab+c+d) +b3(c+d+a)+cP(d+a+b)+d*(a+b+c)
where a, b, ¢, d are real numbers whose sum of squares is 1.

37. [ Walther Janous | Let z,y, z be positive real numbers. Prove that
x z

Yy
r+(z+y)(z+z) +y+\/(y+z)(y+m) +z+\/(z+x)(z+y) =

Crux Mathematicorum

38. Suppose that a1 < a2 < ... < a, are real numbers for some integer n > 2.
Prove that
ala;l + a2a§ + ...+ ana‘l1 > aQa‘l1 + agag + ...+ alafl.

Iran, 1999

39. [ Mircea Lascu | Let a, b, ¢ be positive real numbers. Prove that

b+c c¢c+a a+bd a b c
+ + >4 + + :
a b c b+¢ c¢c+a a+bd
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40, Let a1,a2,...,a, > 1 be positive integers. Prove that at least one of the

numbers «/az, %/as,..., *»~{/ay, *¢/01 is less than or equal to /3.

Adapted after a well-known problem

41. [ Mircea Lascu, Marian Tetiva | Let z,y, z be positive real numbers which
satisfy the condition
xzy +xz +yz+ 2zyz = 1.
Prove that the following inequalities hold

) <1
a) xyz < —;
y_ga

byx4+y+z>
1 1 1

c) —+-—+-—>4(x+y+2);
r Yy =z

1 11 (2z — 1)°

DO o

3

, where z = max {z,y, z}.

42. [ Manlio Marangelli | Prove that for any positive real numbers z,y, z,

3(xy + yPz + 222) (zy® + 2 + 22%) > zyz(z +y + 2)°%.

43. [ Gabriel Dospinescu | Prove that if a,b,¢ are real numbers such that
max{a,b,c} — min{a,b,c} < 1, then

1+ a® + 0% + ¢ + 6abe > 3a%b + 3b%c + 3c%a

44. [ Gabriel Dospinescu | Prove that for any positive real numbers a, b, ¢ we have

2 2 2 1 1 1
o7 (2+ ) (248 (22 Y s6arbro (4L a L)
be ca ab a b ¢

1 2 1
45, Let ag = 3 and agy1 = ag + a—k. Prove that 1 — — < a, < 1.
n n

TST Singapore

46. | Cilin Popa | Let a,b, ¢ be positive real numbers, with a,b,¢ € (0,1) such
that ab + bc + ca = 1. Prove that
a b ¢ 3(1—@2 1—82 1—c2>
+ p .

2 1-p 1221 P

47. [ Titu Andreescu, Gabriel Dospinescu | Let z,y,2 < 1l and 2 +y + 2z = 1.

Prove that
1 1 1 27

< —.
1—|—m2+1—{—y2+1—|—z2 — 10
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48. [ Gabriel Dospinescu | Prove that if \/z 4+ /y + +/z = 1, then

1 —2)*(1 = y)*(1 —2)* > 2Pzyz(z +y)(y + 2)(z + 2)

49, Let x,y, z be positive real numbers such that zyz = x + y + z + 2. Prove that
(1) zy +yz+ 22 > 2(2 +y + 2);
3
(2) Vo +y+vz< S VY.

50. Prove that if x,y, z are real numbers such that 22 + y? 4+ 22 = 2, then
r+y+z<ayz+2.
IMO Shortlist, 1987

51. [ Titu Andreescu, Gabriel Dospinescu | Prove that for any x1,22,...,2, €
(0,1) and for any permutation & of the set {1,2,...,n}, we have the inequality

n

" Z«r . )
21—:@2 1+ n '(21—;1;1-.9;0@))'

i=1 i=1

n
52. Let z1,29,..., 2, be positive real numbers such that Z = 1. Prove
=1

+ Z;
that

n i3 1
;\/EZ(”—D;ﬁ'

Vojtech Jarnik

53. [ Titu Andreescu | Let n > 3 and a4, 0o, ..., a, be real numbers such that
a1+as+...+a, >nandal+a3+...+a2 >n>. Prove that maz{ay,as,...,a,} > 2.

USAMO, 1999
54. [ Vasile Cirtoaje | If a, b, ¢, d are positive real numbers, then

a—b+b—c+c—d+d—a>0
b+c¢c c¢c+d d+a a+b~

55, If  and y are positive real numbers, show that z¥% + y* > 1.
France, 1996
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56. Prove that if a,b, ¢ > 0 have product 1, then
(a+b)b+c)c+a)>4(a+b+c—1).
MOSP, 2001

57. Prove that for any a,b,¢ > 0,

(> + b+ (a+b—c)(b+c—a)(c+a—b) < abelab+ be + ca).

58. [ D.P.Mavlo | Let a,b,c > 0. Prove that

1 1 1 b Hb+1 1
Statbrer tatplay b ey glar Dbl
a b ¢ b ¢ a 1+ abe

Kvant, 1988

59. [ Gabriel Dospinescu | Prove that for any positive real numbers 1, z2,...,2,

with product 1 we have the inequality

n n nq n
nnH(m?—{—l)Z(le—{—Zx—) .
] =1 i=1 %

=1

60. Let a,b,c,d > 0 such that a + b+ ¢ = 1. Prove that

11 d
3,13, .3 S mind - - )
a’+b°+c¢ +abcd_m1n{4,9+27}

Kvant, 1993
61. Prove that for any real numbers a, b, ¢ we have the inequality

Z(l + a1+ (a—c)?(b—c)?> > (14+ a1 +62)(1+*)(a—b)*(b—c)*(c—a)?.
AMM

62. [ Titu Andreescu, Mircea Lascu | Let o, 2, ¥, z be positive real numbers such
that zyz = 1 and a > 1. Prove that

% ye . P N §
y+z z+4+x x4y 2
63. Prove that for any real numbers x1,...,Zn,¥y1,..., Y, such that 22 +---+12 =

vty =1,

(z1y2 — 2291)” < 2 (1 = ZIk?M) :

k=1
Korea, 2001
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64. [ Laurentiu Panaitopol | Let a1, as, ..., ay, be pairwise distinct positive inte-
gers. Prove that
2n+1
3

aj+a3+-+al> (a1 +az + -+ +ay).

TST Romania

65. [ Cilin Popa | Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1.
Prove that
by/c N cva N avb S 3V3
a(v3c++Vab)  b(V3a+Vbe)  c¢(V3b++Jea) T 4

66. [ Titu Andreescu, Gabriel Dospinescu | Let a, b, ¢, d be real numbers such that
(1+a?)(1+b%)(1+c?)(1 + d?) = 16. Prove that

—3 < ab+bc+ cd+ da+ ac+ bd — abed < 5.

67. Prove that
(a® +2)(b* + 2)(c* +2) > 9(ab + bc + ca)

for any positive real numbers a, b, c.
APMO, 2004

68. [ Vasile Cirtoaje | Prove that if 0 < 2 <y < z and £ + y + z = 2yz + 2, then
a) (1 —zy)(1 —y2)(1 —zz) > 0;
b) 2%y < 1,23y < .
)ty < Lay" < o
69. [ Titu Andreescu ] Let a, b, ¢ be positive real numbers such that a+b+¢ > abe.
Prove that at least two of the inequalities
2 2 2
2,3, 0562,3, 0,462,393, 054
a b ¢ b ¢ a c a b
are true.
TST 2001, USA

70. [ Gabriel Dospinescu, Marian Tetiva | Let 2, y, #z > 0 such that
r+y+z=xyz.

Prove that
(z—1)(y—1)(z—1) < 6V3 —10.
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71. [ Marian Tetiva | Prove that for any positive real numbers a, b, ¢,

a3—b3+b3—c3+c‘°’—a3 < (a—b)2+(b—c)2+(c—a)2.
a+b b+c c+a 4

Moldova TST, 2004

72. [ Titu Andreescu | Let a, b, ¢ be positive real numbers. Prove that
(a® —a? +3)(B° = > +3) (S =2 +3) > (a+b+c).

USAMO, 2004

73. [ Gabriel Dospinescu | Let n > 2 and z1, s, ..., 2, > 0 such that
n n 1
— | =n?+1
k=1 k=1

(ixi) - (2”: iz) >n? +4+ L
k=1 k=1 Tk n(n - 1)

Prove that

74. [ Gabriel Dospinescu, Mircea Lascu, Marian Tetiva | Prove that for any po-
sitive real numbers a, b, ¢,

a2+ 0?2 +2abc+3> (1+a)(1+b)(1+¢).

75. [ Titu Andreescu, Zuming Feng ] Let a, b, ¢ be positive real numbers. Prove
that
(2a +b+¢)? (2b+a +c)? (2¢+a+b)? <8
202+ (b+c)?2 2024+ (a+c)?2 22+ (a+b)2 ~

USAMO, 2003

76. Prove that for any positive real numbers z,y and any positive integers m,n,
(’n—1)(m—1)(xm+n+ym+n)+(m+n_1)(xmyn+xnym) > mn(xm—i—n—ly_l_ym—i-n—lx).

Austrian-Polish Competition, 1995

77. Let a, b, c,d, e be positive real numbers such that abede = 1. Prove that

a + abe b+ bed ¢+ cde d + dea e+ eab
l1+ab+abed 1+bc+bede 1+cd+cdea 1+de+deab 1+ ea+ eabe

10
> —.
-3

Crux Mathematicorum
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78. [ Titu Andreescu ] Prove that for any a,b,¢, € (0, g) the following inequality
holds

sina - sin{a — b) - sin{a —¢) sinb-sin(b — ¢) - sin(b — a) sinc-sin(c — a) - sin(c — b)

sin(b + ¢) sin(c + a) sin{a + b)
TST 2003, USA

79. Prove that if a, b, ¢ are positive real numbers then,
Vat + b4+t +v/a2b? + b2¢2 + c2a? > \/adb + b3c + c3a + \/abd + bed + cad.

KMO Summer Program Test, 2001

80. [ Gabriel Dospinescu, Mircea Lascu | For a given n > 2 find the smallest
constant k, with the property: if a1,...,a, > 0 have product 1, then
a1Q2 as0a3 ayn a1
+ et <
(0 +ax)(a3 +a1) (a5 +as)(aj + a2) (a7, + a1)(af +an) ~

n .

81. [ Vasile Cirtoaje | For any real numbers a, b, ¢, z, 4, z prove that the inequality
holds

ax +by+cz+/(@2+02 + ) (22 +y2+22) > S(a+b+o)(z+y+2).

USR]

Kvant, 1989

82. [ Vasile Cirtoaje | Prove that the sides a, b, ¢ of a triangle satisfy the inequality
Y ) DY (A
b ¢ a a b ¢

83. [ Walther Janous | Let n > 2 and let 1, %2,...,2, > 0 add up to 1. Prove
that

Crux Mathematicorum

84. [ Vasile Cirtoaje, Gheorghe Eckstein | Consider positive real numbers
x1,%3, ..., Ly Such that z1xs...2,, = 1. Prove that
1
+ +..+—<1
n—14+x n—14+xo n—14+x,
TST 1999, Romania

85. [ Titu Andreescu ]| Prove that for any nonnegative real numbers a, b, ¢ such
that a2 + b% + ¢ + abe = 4 we have 0 < ab + be + ca — abe < 2.
USAMO, 2001

> 0.
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86. [ Titu Andreescu | Prove that for any positive real numbers a, b, ¢ the following
inequality holds

CEVEE  Yabe < maz((va VB, (VB Vo, (Ve Va)’).

TST 2000, USA

87. [ Kiran Kedlaya ] Let a,b,c be positive real numbers. Prove that

a+\/ﬁ+\3/abc< \S/a a—{—b-a+b+c
—s < _—

2 3

88. Find the greatest constant k such that for any positive integer n which is not

a square, |(1 + v/n)sin(rv/n)| > k.
Vietnamese IMO Training Camp, 1995

89. [ Dung Tran Nam ] Let z,y, 2 > 0 such that (z +y + 2)® = 32zyz. Find the
zt +yt + 2!

minimum and maximum of — -
(x+y+2)

Vietnam, 2004

90. [ George Tsintifas | Prove that for any a,b,¢,d > 0,
(a+b)3(b+c)(c+d)>(d+a)® > 16a°b*Pd*(a + b+ ¢+ d)*.

Crux Mathematicorum

91. [ Titu Andreescu, Gabriel Dospinescu | Find the maximum value of the ex-
pression
(@b (bc)” | (ca)”
1—ab 1—=be 1-—ca
where a, b, ¢ are nonnegative real numbers which add up to 1 and n is some positive

integer.

92. Let a, b, ¢ be positive real numbers. Prove that
1 1 1 3
+ + > 3 .
a(l+b)  b(l+c) c(l4+a) ~ Vabe(l+ Vabe)

93. [ Dung Tran Nam ] Prove that for any real numbers a, b, ¢ such that a? + b +
=9,
2(a+ b+ ¢) — abe < 10.
Vietnam, 2002
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94. [ Vasile Cirtoaje ]| Let a,b, ¢ be positive real numbers. Prove that
1 1 1 1 1 1
<a+——1> <b+——1>+<b+——1> <c+——1>+<c+——1> <a+——1> > 3.
b c c a a b

95. [ Gabriel Dospinescu | Let n be an integer greater than 2. Find the greatest
real number m,, and the least real number A,, such that for any positive real numbers

T1,%2,. .., 8y (With 2, = 2o, Tn1 = 21),

n
<
Mn = z; zi—1 + 2(n

1=

Zq
=Dy + 01 —

96. [ Vasile Cirtoaje | If z,y, z are positive real numbers, then
1 n 1 L 1 9
2 4ay+y? yityr+2? 2 tzz42? T (z4y+2)?

Gazeta Matematici
97. [ Vasile Cirtoaje | For any a,b,¢,d > 0 prove that
2(a® + 1)(6® + 1)(c® + 1)(d® + 1) > (1 + abed)(1 +a®)(1 + %) (1 + ) (1 + d?).
Gazeta Matematici
98. Prove that for any real numbers a, b, c,

(a+b)t+ b+t +(c+a)t > (e + 01+ ch).

SNIES

Vietnam TST, 1996

99. Prove that if a, b, ¢ are positive real numbers such that abe = 1, then
1 L 1 L 1 < 1 L 1 L 1
l1+a+b 14+b4+c l1+c+a~2+a 2+b 24c¢

Bulgaria, 1997

1 2 3
100. [ Dung Tran Nam | Find the minimum value of the expression — + = + —
¢

b
where a, b, ¢ are positive real numbers such that 21ab + 2bc + 8ca < 12.

Vietnam, 2001

101. [ Titu Andreescu, Gabriel Dospinescu ] Prove that for any z,y, z,a,b,¢ > 0
such that zy + yz + zz = 3,

g2+ ——(r+a) + —
btc cta a+b

(z+y) >3
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102. Let a, b, ¢ be positive real numbers. Prove that
(b+c—a)? (c+a—-b?2?  f(a+b—-¢c)® _3

(b+c)2+a? (c+a)2+b (a+b2+c2 5

Japan, 1997

103. [ Vasile Cirtoaje, Gabriel Dospinescu | Prove that if a;,as,...,a, > 0 then

ay+as+ -+ ap-1 >n
—ap
n—1

alt +af +---+a} —naas...a, > (n—1) (
where a,, is the least among the numbers a1, as, ..., an-

104. [ Turkevici | Prove that for all positive real numbers =, y, 2,1,

2t + y4 +2t 4t 2xyzt > x2y2 + y2z2 + 2282 % 4 22+ y2t2.

Kvant,
105. Prove that for any real numbers ay, as, .. ., a, the following inequality holds
( ) )2 n ;
Z a; | < Z Q0.
i=1 i,j:1z+] -1
106. Prove that if ai,as,...,8x4,b1,-..,b, are real numbers between 1001 and

2002, inclusively, such that a? + a3 + -+ + a2 = b + b3 + - - - + b2, then we have the
inequality

a3 a3 a3 7
1 2 n 1 2 2 2
b, + b + + b, 1 (al +a5 + +(17)

TST Singapore

107. [ Titu Andreescu, Gabriel Dospinescu ] Prove that if a, b, ¢ are positive real

numbers which add up to 1, then
(a® + b)) (0% 4+ *)(c® + a®) > 8(a®b* + b>c? + c*a?)?.

108. [ Vasile Cirtoaje | If @, b, ¢, d are positive real numbers such that abed = 1,

then
1 1 1 1
>1

Uta? (402 (+o? O+d2="
Gazeta Matematica

109. [ Vasile Cirtoaje | Let a, b, ¢ be positive real numbers. Prove that
a2+b2+c2>a+b+c
B2+c2 24+a? a2+b2 T b+c ct+a a+b
Gazeta Matematici
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110. [ Gabriel Dospinescu | Let aq,a2,...,a, be real numbers and let S be a
non-empty subset of {1,2,...,n}. Prove that

(Z(%) < Z (ai+...+aj)2.

icS 1<i<j<n

TST 2004, Romania

111. [ Dung Tran Nam | Let z1, 22 . . . , £2004 be real numbers in the interval [—1, 1]
such that z§ + 23 +. ..+ 2350, = 0. Find the maximal value of the 21 +z2 +- - - + Z2004.

112. [ Gabriel Dospinescu, Calin Popa | Prove that if n > 2 and a1, as,...,a,
are real numbers with product 1, then
2n
n—1

ai+a5+--+al-n> -n—1(ay + a2+ -+ a, —n).

113. [ Vasile Cirtoaje | If a, b, ¢ are positive real numbers, then
2a 20 2c
+ + < 3.
a+b b+c c+a

114. Prove the following inequality for positive real numbers z,y, z

1 1 1 9
““y”z”“")(my)z Trer T <z+x>2> =

Gazeta Matematica

Iran, 1996

115. Prove that for any z,y in the interval [0, 1],
Vit +/1+2+V/0 22+ (1 —y)2 > (1+V5)(1 —zy).

116. [ Suranyi | Prove that for any positive real numbers aq,as,...,a, the fol-
lowing inequality holds

(n—=1)(a]+a5+---+al)+najaz...a, > (a1 +az+-- '+an)(a?_1+ag_1+' cdalh).

Miklos Schweitzer Competition

117. Prove that for any 1, 2-,...,z, > 0 with product 1,

Z (z; — z;)* > Xn:xf —n.
i=1

1<i<j<n

A generalization of Turkevici’s inequality
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118. [ Gabriel Dospinescu | Find the minimum value of the expression

Z a1a2 Gn
1—(n-— l)al

where a1, a2,...,0, < 1 add up to 1 and n > 2 is an integer.
n—
119. [ Vasile Cirtoaje | Let a1, as,-..,a, < 1 be nonnegative real numbers such
that
2. 2 2
a:\/a1+a2+...+an . @
n - 3

Prove that

I + _G2 + + _Gn > _na

1—a? 1-a} =~ 1-a2 = 1-—a?

120. [ Vasile Cirtoaje, Mircea Lascu | Let a, b, ¢, z, ¥, z be positive real numbers
such that
(a+b+c)(x+y+2)=(a®+b*+c*)(2® +9° 4+ 2°) = 4.

Prove that

bezyz < —
aocryz —
AT

121. [ Gabriel Dospinescu | For a given n > 2, find the minimal value of the
constant k,, such that if z1,zs,..., 2, > 0 have product 1, then

1 1
< n-1

1
+ 4
V1+k,zr V14 k2o V14 kaz,

Mathlinks Contest

122. [ Vasile Cirtoaje, Gabriel Dospinescu | For a given n > 2, find the maximal
value of the constant k,, such that for any z, zs,...,z, > 0 for which z? + 22+ --- +
22 =1 we have the inequality

(I1—z)(1—x2)...(L—zp) > knz122 ... T
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1. Prove that the inequality

\/a2+(1—b)2+\/b2—{—(1—c)2—{—\/02—{—(1—a)2232ﬁ

holds for arbitrary real numbers a, b, c.
Komal

First solution:
Applying Minkowsky’s Inequality to the left-hand side we have

Va2 + (1 =024+ (1 -2/ +(1—-a)2>{a+b+c)?+(B—a—-b—c)2.

Denoting a + b+ ¢ = « we get
3\ 9
(a+b+c)2+(3—a—b—c)2:2<m——> —{—5 >
and the conclusion follows.

Second solution:
We have the inequalities

Va2 + (1P + /B2 + (1 - +/e2+ (1-a) >
L lal+1=b, l+li—c , |el+]l-d

RVS) V2 V2
3V2

and because |z| + |1 — z| > 1 for all real numbers x the last quantity is at least 5

2. [ Dinu Serbénescu | If a, b, ¢ € (0,1) prove that
Vabe ++/(1—a)(1 =b)(1 —¢) < 1.
Junior TST 2002, Romania

First solution:
Observe that #z < z3 for = € (0,1). Thus

Vabe < Vabe,

and

VI —a)1=b)(1—c) < /(1 -a)(1-b)(1-c).
By the AM-GM Inequality,

@d@g_‘”g“,

and

Va9 < YI-ai-pi-g < L=9r0-b=0=0




Old and New Inequalities 27

Summing up, we obtain

1-— 1-— 1-—
Vabc+\/(1—a)(1—b)(1—c)<a+b+c+ §+ b+ C:l,

as desired.

Second solution:
We have
Vabe+ /(1 —a)1—b)(1—¢c) <Vb-ve+VI—b-V/1I—c<]1,

by the Cauchy-Schwarz Inequality.

Third solution:
T
Let a = sin?z,b = sin’y,¢ = sin®z, where z,y,2 € (0, 5) The inequality
becomes

sinz -siny -sinz 4+ cosx - cosy - cosz < 1

and it follows from the inequalities

sinz -siny-sinz + cosz - cosy - cosz < sinz - siny + cosx - cosy = cos(z —y) < 1

3. [ Mircea Lascu | Let a,b, ¢ be positive real numbers such that abe = 1. Prove

that
b+c c¢c+a a+bd

Vi T TR

> Va+Vb+ e+ 3.

Gazeta Matematica

Solution:
From the AM-GM Inequality, we have

(£ (550

2(va+Vb++e) > Va+vVb+ e+ 3Vabe = Va+ Vb + e+ 3.

(A%

4. If the equation z? + az® + 222 + bz + 1 = 0 has at least one real root, then
a® +b% > 8.
Tournament of the Towns, 1993
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Solution:
Let z be the real root of the equation. Using the Cauchy-Schwarz Inequality
we infer that )
(m4 + 222 + 1)
S N S et
z? 4 26
becanse the last inequality is equivalent to (22 — 1)* > 0.

a? +b° >

)

5. Find the maximum value of the expression x> + y® + 2° — 3zyz where 22 + ¢y +
22 =1 and z,y,  are real numbers.

Solution:
Let £ = xy + yz + zx. Let us observe that
(22 +1P 42 —3zy2)? = (x+y+2)°(1 —zy —yz — 22)? = (1 +26)(1 — 1)~
1
We also have ~3 <t < 1. Thus, we must find the maximum value of the expression

1
(1+2t)(1—1¢)2, where ~3 <t < 1. In this case we clearly have (1+2t)(t—1)2 < 1 &
t2(3—2t) > 0 and thus |2 +y3 +2° —3zyz| < 1. We have equality forz =1, y =2 =0
and thus the maximum value is 1.

6. Let a,b, ¢, z,y, z be positive real numbers such that = +y + z = 1. Prove that

az +by +cz + 2/ (zy + yz + zx)(ab+ bc + ca) < a4 b+ c.
Ukraine, 2001
First solution:

We will use the Cauchy-Schwarz Inequality twice. First, we can write az+by+
cz < Va2 + b2+ ¢ - /22 + 9% + 22 and then we apply again the Cauchy-Schwarz

Inequality to obtain:

arx +by +cz + 2/(zy+ yz + 2z)(ab+ be + ca) <
\/ZGQ-\/Zm2+\/2Zab'\/Qny§
\/Zx2+22xy~\/2a2+22ab22a.

IA

Second solution:
The inequality being homogeneous in a, b, ¢ we can assume that a+b+c=1. We
apply this time the AM-GM Inequality and we find that

ax+by+cz+2+/(zy +yz + zz)(ab + be + ca) < az+by+cz+zy+yz+za+ab+betca.

Consequently,

T g2 1222 1—q2—p2—_¢2
ry+yz+zr+ab+bc+ca= z 2y & a 5 ¢ <l-—azx—by—cz,




Old and New Inequalities 29
the last one being equivalent to (z —a)? + (y — b)*> + (z — ¢)? > 0.

7. [ Darij Grinberg | If a, b, ¢ are three positive real numbers, then

a n b n c S 9
(b+0)? (c+a)® (a+b)°  4(a+b+c)

First solution:
We rewrite the inequality as

Al©

a b c
7+ 7 T 7] 2
(b+c (c+a) (a+0b)
Applying the Cauchy-Schwarz Inequality we get

a b ¢ a b ¢\’
(a+b+c) 7 + 5 + 5 | > + + .
(b+¢)® (c+a) (a+Db) b+c c+a a+b

It remains to prove that

(a+b+c)(

a b c
+ +
b+c c+a a-+bd

S 3
-2
which is well-known.

Second solution:
Without loss of generality we may assume that a + b+ ¢ = 1. Now, consider
the function f : (0,1) — (0,00), f(z) = 5+ A short computation of derivatives

x
-2
shows that f is convex. Thus, we may apply Jensen’s Inequality and the conclusion

follows.
8. [ Hojoo Lee ] Let a, b, ¢ > 0. Prove that
Vart + a0 + b1+ /b1 + 02 + A+ e +at >
> av/2a2 + be + bv/262 + ca + c\/2c2 + ab.

Gazeta Matematica

Solution:
We start from (a? —b%)? > 0. We rewrite it as 4a* +4a%b?> +4b* > 3a* +6a2b* +3b*.

V3

It follows that va* + a?b? + b2 > T(a2 + b%).
Using this observation, we find that

(Z at +a2b2+b4)2 >3 (Zaz)Q.

But using the Cauchy-Schwarz Inequality we obtain

(Z a\/m>2 < (Z a2) (Z (2a® + bc)) <3 (Z a2>2

and the inequality is proved.
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9. If a, b, ¢ are positive real numbers such that abc = 2, then

A+ +S>avbt+e+bv/ect+a+ceva+b.

When does equality hold?
JBMO 2002 Shortlist

First solution:

Applying the Cauchy-Schwarz Inequality gives
3(a®> + b+ %) >3(a+b+¢)? (1)

and
(@®+b*+c*)P <(a+b+e)a®+63+c%). (2
These two inequalities combined yield
(@>+b>+c)(a+b+c)
3
(@®>+ 82+ )[(b+c)+ (a+c) + (a+b)
6
(avb+ c+bya+c+cva+b)?
- 6
Using the AM-GM Inequality we obtain

A+ +E >

3)

avb+c+b/atc+eva+b > 3<’/abc(\/(a+b)(b+c)(c+a)>

31/ abev/8abe = 39/8 = 6.
Thus

(aVb+c+bv/a+ec+cVa+b)®>6(avb+c+b/at+ec+ceva+b). (4)

(A%

The desired inequality follows from (3) and (4).

Second solution:
We have

avb+c+bv/eta+eva+b< 2@+ b2+ ) (a+b+c).
Using Chebyshev Inequality, we infer that

V2(@2 +62 4+ 2)(a+b+c) < /6(a3+ b3+ c3)

and so it is enough to prove that a® + b® + ¢® > 3abe, which is true by the AM-GM
Inequality. We have equality if a = b = ¢ = ¥/2.

10. [ Toan Tomescu | Let z,y, z > 0. Prove that
Yz < 1
14+ 3z)(z+8y)ly+92)(z+6) — 7

1
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When do we have equality?
Gazeta Matematici

Solution:
First, we write the inequality in the following form

(1+3x) <1+8j> <1+ZZ> <1+S> > 74

But this follows immediately from Huygens Inequality. We have equality for
xz?,y:;z:l.
11. [ Mihai Piticari, Dan Popescu | Prove that
5(a? + 02+ %) <6(a® +b° +¢°) +1,
forall a,b,c >0 witha+b+c=1.
Solution:

Because a + b+ ¢ = 1, we have a® + b® + ¢® = 3abc + a® + b + ¢ — ab — bc — ca.
The inequality becomes

5(a® + >+ %) < 18abe+6(a® +b* + ) —6(ab+be+ca) +1&

& 18abe+1—2(ab+bec+ca) + 1> 6{ab+bc+ca) &
< 8(ab+bc+ ca) <24 18abe & 4(ab+ be+ ca) < 1+ 9abe &
& (1 —2a)(1—2b)(1—2¢) < abe &

& (b+c—a)(c+a—-b)a+b—c)<abe,

which is equivalent to Schur’s Inequality.

12. [ Mircea Lascu ] Let x1,22,...,2, € B, n > 2 and a > 0 such that z; +

2 2
a T Prove that z; € [0, Fa} , for all

To+...+ T, =aand 23 + 25 +... + 22 <

i€ {1,2,...,n}

n —

Solution:
Using the Cauchy-Schwarz Inequality, we get

@—ar? S -D @+ 4+ <=1 (5 -

Thus,

2
a —2ax; + 27 <a*—(n -1z & (ml——a> <0
n

and the conclusion follows.



32 Solutions

13. [ Adrian Zahariuc | Prove that for any a,b, ¢ € (1,2) the following inequality
holds
bv/a cvb av/c
élb\/E—(:\/EjL 4c\/5—a\/l_)jL 4av/b — by/e =

Solution:
The fact that a,b,c € (1,2) makes all denominators positive. Then
bv/a a

4b\/E—c\/EZa+b+c & bla+b+c) > Valdby/c—cya) &
& (a+b)(b+c) > 4b/ac,

the last one coming from a + b > 2v/ab and b + ¢ > 2v/be. Writing the other two
inequalities and adding them up give the desired result.

14. For positive real numbers a, b, ¢ such that abe < 1, prove that
a

b
+2+Ssavb+e
b ¢ a

First solution:

If ab + bc + ca < a+ b+ ¢, then the Cauchy-Schwarz Inequality solves the
problem:

(a+b+c)?

1 1 1
E+§+E:a20+b2a+c2b> E+Z+E Sadbic
b ¢ a abc - abc - '

Otherwise, the same inequality gives

(ab + bc + ca)?
E+Q+C_a20+b2a+c2b> a+b+c
b ¢

(here we have used the fact that abe < 1).

>a+b+c

a abe abe

Second solution:

1
Replacing a, b, ¢ by ta, tb, tc with ¢ = ——= preserves the value of the quantity in
v abe
the left-hand side of the inequality and increases the value of the right-hand side and
makes at - bt - ¢t = abct® = 1. Hence we may assume without loss of generality that
abc = 1. Then there exist positive real numbers x, y, z such that a = Q’ b= i, c= z

x Y z
The Rearrangement Inequality gives

z° +y3 + 28 > :L’2y+y22+2233.
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Thus
b ¢ 2P4yt+28 S 22y +yiz + 2%z

> =a+b+c
b ¢ a xYz TYz

as desired.

Third solution:
Using the AM-GM Inequality, we deduce that

2a b s/ a?
— - > —_— > .
b_{_c_3 bc_3a

2b 2
Similarly, —+ ¢ > 3band i —|—% > 3c. Adding these three inequalities, the conclusion
¢ a a

is immediate.

Forth solution:

[ab* [cat [bct
Let ¢ = ¢ Y= v B2 = v oR Consequently, a = 2y?%,b = 222, ¢ = y22,

and also zyz < 1. Thus, using the Rearrangement Inequality, we find that
PIEED DR DEED DD DI
b yz — Yz - '

15. [ Vasile Cirtoaje, Mircea Lascu | Let a,b, ¢, z,y, z be positive real numbers
such thata+x > b+y > c+zand a+b+c =z +y+ 2. Prove that ay + bz > ac+ xz.

Solution:
We have

ay+br—ac—zz = a(y—c)+xz(b—2z) = ala+b—z—2)+z(b—2) = ala—z)+(a+x)(b—2) =
1 1,

2 2 _1 5 1 _
:§(a—a:) —|—§(a —x)+(a+x)(b—z)—§(a—a:) +§(a+m)(a—x+2b—22)—

:%(a—m)Q—{—%(a—l—I)(b—c—}—y—z)ZO.

The equality occurs when a =z, b=2,c =y and 2z > y + 2.

16. [ Vasile Cirtoaje, Mircea Lascu ] Let a, b, ¢ be positive real numbers so that

abe = 1. Prove that
3 6

a+b+c ™ ab+ac+bc
Junior TST 2003, Romania

1+

Solution: ) L
Weset z = —, y = R and observe that xyz = 1. The inequality is
a ¢
equivalent to
3 6
1+ >

xy+yz+zz " x+y+z
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From (z +y + 2)? > 3(zy + yz + 2x) we get
9
— 2> 1+
Ty + yz + zx (r+y+2)?
so it suffices to prove that

9 6
1+ > .
(4+y+2)? " z+y+z
3 2
The last inequality is equivalent to (1 - 7> > 0 and this ends the proof.
rT+y+z

17. Let a, b, ¢ be positive real numbers. Prove that
a ¥ e B2
b2 2 a2 = b ¢  a

JBMO 2002 Shortlist

First solution:
We have
a® _ a®
= > ?+a—b<:>a3+b3 > abla +b) & (a—b)*(a+b) >0,
which is clearly true. Writing the analogous inequalities and adding them up gives
(13 b3 C3 a2 b2 c2 2 b2 C2
-+ =+ —=>— —b+—+b—c+—+c—a=—+—+ —.
62+02+a2_b+a +C+ c+a+ca b+c+a
Second solution:
By the Cauchy-Schwarz Inequality we have
a® B a2 2 2\
(G,-l—b-l—c) (b—2+c—2+a—2> Z (—+—+—> 5
so we only have to prove that
a> b
—+—+—>a+b+c
b c a
But this follows immediately from the Cauchy-Schwarz Inequality.

18. Prove that if n > 3 and z1,22,...,2, > 0 have product 1, then
1 1 1
1+x1 +z122 1+ 20 + 2223 1+ 2z, +z,21

> 1.

Russia, 2004

Solution:
.. . o a2 a3 a1
We use a similar form of the classical substitution z1 = —, 20 = —, ..., 2, = —.
a1 a2 Gn,
In this case the inequality becomes
ay a9 a
B >1

a1 + as + as ao +as + ay a, +ai + as
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and it is clear, because n > 3 and a; + a;41 + @00 < a1 + a2 + - + a,, for all 4.

19. [ Marian Tetiva | Let z, ¥, # be positive real numbers satisfying the condition
2?2+ y? 4 2% 4 2eyz = 1.

Prove that

a < —:
)wyz_g,

3
b)m—l—y+z§§;
o) zy+zz+yz << <@t 4yt + 2%

d) zy + x2 + yz < = + 2xy2.

N | | 2

Solution:
a) This is very simple. From the AM-GM Inequality, we have
1
1=a2%+ 9% + 22 4+ 2zyz > 4v/2239y323 = 23y°2° < SRR

b) Clearly, we must have z,y, z € (0, 1). If we put s = z+y+2, we get immediately
from the given relation

0| =

2 -2 4+1=2(1-2)(1—9y)(1—2).

Then, again by the AM-GM Inequality (1 —z, 1 —y, 1 — 2 being positive), we

obtain
l—z+1—y+1-2\° —5\°
52—25+1§2< T 3y+ Z) :2(338) .

After some easy calculations this yields
2884952 —27<0& (25— 3) (s +3)°<0

and the conclusion is plain.

¢) These inequalities are simple consequences of a) and b):
(z+y+2)° 1 9 3
<TI0
Ty +rz+yz < 3 3171
and
2., .2 2 13
4y +z :1—2$yz21—2'§21.

d) This is more delicate; we first notice that there are always two of the three

1
numbers, both greater (or both less) than 3 Because of symmetry, we may assume

1 1
that z,y < 3 ,Or T,y > 3 and then

2z-1)2y—-1) >0 zc+y—2zy <

N | =
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On the other hand,
1 = 22 +y?+ 224 22yz > 22y + 22 4 2zy2 =
= 2y(1+2)<1—22=22zy<1-—2.
Now, we only have to multiply side by side the inequalities from above
T+y—2zxy < %

and
z<1-—2xy

to get the desired result:
1 1
xz + yz — 2xyz < a—myQIy—l—xz—i—yzS 5—{—2:5'1/2.
It is not important in the proof, but also notice that
1 1
T4+y—2xy=zy|—+--2] >0,
zr oy
1 1
because — and — are both greater than 1.
T Y
Remark.
1) One can obtain some other inequalities, using
z+2zy <1
and the two likes
y+2xz2<1,z+2yz<1.
For example, multiplying these inequalities by z, y,  respectively and adding the new
inequalities, we get
Pyl 4224 bayz<z+y+z,
or
14+4dzyz<x+y+ 2.
2) If ABC is any triangle, the numbers

x:sing,y:sin—,z:sin—

2 2
satisfy the condition of this problem; conversely, if z,y, z > 0 verify
2yt + 224 2eyz =1
then there is a triangle ABC' so that

r =sin—, y =sin —, z = sin —.
2’ 2’ 2

According to this, new proofs can be given for such inequalities.
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20. [ Marius Olteanu | Let x1, 22, 23, 4,25 € R sothat 1 +zo+23+24+25 = 0.
Prove that
|coszy| + | cosxa| + |coszg| + | coszy| + | coszs| > 1.

Gazeta Matematici
Solution:
It is immediate to prove that
|sin(z + y)| < min{|cosz| + | cosy|, |sinz| + | siny|}

and
| cos(z + y)| < min{|sinz| + | cosyl|,|siny| + | cosz|}.

Thus, we infer that

5 5
1=|cos (Z ml> | <|coszi|+]sin (Z mz> | <|coszi|+]|cosxza|+]|cos(zs+zstxs).

i=1 =2

But in the same manner we can prove that
|cos(zg + x4 + 5)| < |coszz| + |coszy| + | cos x|

and the conclusion follows.

21. [ Florina Cérlan, Marian Tetiva | Prove that if «,y, z > 0 satisly the condition

r+y+z=2xyz

then 2y + w2 +y2 >3+ Va2 + 1+ /2 + 1+ V22 + 1.

First solution:
We have

zyz=x+y+z>2/Ty+2= 2 /1Y)’ — 2/TY — 2 > 0.
Because the positive root of the trinomial zt? — 2t — z is

1++vV1422
= b
we get from here

1++v1 2
VTy > %@z\/af:yz 14+ V1422

Of course, we have two other similar inequalities. Then,

zy+xz+yz > zJyzr+yvrr+ 2Ty >
> 34V + 14V +1+V22 +1,

and we have both a proof of the given inequality, and a little improvement of it.
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Second solution:

Another improvement is as follows. Start from

1 1 1 1 1 1 2 2 2.2, 2.2 2 2. 2
ﬁ+y_2+z_22@+a+y_221:>wy ‘a2t YTt >atyteT,

which is equivalent to
(zy + 12 +y2)° > 2yz (x+y+2)+ 22’22 =3 (x+y+2)°.
Further on,

(zy+ 32 +yz—3)° = (zy + 52 +y2)° — 6 (wy + 32 + y2) + 9 >
23(m+y+z)2—6(xy+mz+yz)+9:3(m2+y2+z2)+9,

so that

Ty +az+yz>3+/3 (2 +y2+22)+9.
But

V3@ +22)+9> Vel 21+ + 1+ V22 + 1

is a consequence of the Cauchy-Schwarz Inequality and we have a second improve-
ment and proof for the desired inequality:

zy+az+yz > 3+/3(@2+y2+22)+9>
S3+VE2+1+P 142241

\4

22. [ Laurentiu Panaitopol | Prove that

1+ 22 1492 1+ 22
1+y+22 14+z422 14+z+y? "~

2

for any real numbers x,y,2z > —1.

JBMO, 2003
Solution:
1+42 9
Let us observe that y < and 14+y+ 2° >0, so
1+ 22 S 1+ 22
1 2 — 1 2
TS L ey Zy

and the similar relations. Setting a = 1 + 22, b= 14 y?, ¢ = 1 4+ 22, it is sufficient to
prove that
a b c
+ + >1
2c+b 2a+4+c¢c 2b+a

()
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for any a,b,c¢> 0. Let A=2¢c+b, B=2a+¢, C =2b+a. Thena =

9
A+4C -2B B+4A-2C

b= 9 ,c= 5 and the inequality (1) is rewritten as
¢ A B B C A
- >
A+B+C+4<A = C) 15.
Because A, B,C > 0, we have from the AM-GM Inequality that
¢ A B s/A B C
R N Y. U el -
Atgte=NB o a=?
C .
and 1 + 5 + — > 3 and the conclusion follows.

An alternative solution for (1) is by using the Cauchy-Schwarz Inequality:

L b L a’ N b? N c (a+b+c)?
2c4+b 2a4+c 2b+a 2ac+ab  2ab+cb  2bc+ac ~ 3(ab+bc+ca) T

23. Let a,b,c¢ > 0 with a + b + ¢ = 1. Show that
2 2 2
a +b+b +c+c +a22.
b+c c+a a+b

Solution:

Using the Cauchy-Schwarz Inequality, we find that

a” + (Za2+1>2
Zb+cb Za b+c) +Za +Zab

And so it is enough to prove that

1) )
Zaz(bgr%):JchlJrzabZQ & 1+(Za2) >2> a’(b+c)+2)  ab.

The last inequality can be transformed as follows
1+ (Za2)2 > QZaz(b—i—c) +2Zab & 1+ (Zcﬁ)
22@2 —2Za3+22ab & (Zaz) —1—22@ > Za

and it is true, because

I

(A%

2.
3

(Chebyshev’s Inequality)

and

(Fe) > =%

C+4B-24

)
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24. Let a,b,c > 0 such that a* + b* + ¢* < 2(a?b? + b%c? + c?a?). Prove that
a® + 0% +¢® < 2(ab + be + ca).
Kvant, 1988

Solution:
The condition

Za4 < 22(121)2
is equivalent to
(a+b+c)la+b—c)b+c—a)(c+a—-0b)>0.
Tn any of the casesa =b+ ¢, b=c+ a, ¢ =a + b, the inequality
Za2 < QZab

is clear. So, suppose a + b # ¢, b+ ¢ # a, ¢+ a # b. Because at most one of the
numbers b+ ¢ —a, ¢+ a —b, a+ b — c is negative and their product is nonnegative,
all of them are positive. Thus, we may assume that

a? < ab+ac, b* < bc+ba, * < ca+cb

and the conclusion follows.

25, Let n > 2 and x4, ..., T, be positive real numbers satisfying

1 1 1 1
1 + 1998 * To + 1998 T Tn,+ 1998 1998

Prove that
VE1T2-Tn > 1998.
n—
Vietnam, 1998
Solution:
1998 . .
Let 1998 1 2. = qa;. The problem reduces to proving that for any positive real
z;
numbers a1, as, ..., a4, Such that a; + as +--- + a,, = 1 we have the inequality
ﬁ 1_ 1) >(n-1)"
=1 @i B .

This inequality can be obtained by multiplying the inequalities

l—l _ @t taiataptocctan >
a; a;

al...0;-1Q;41...0p
=1/ 14

a;

(A%
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26. [ Marian Tetiva | Consider positive real numbers x,y, z so that

2% + y2 + 2% = TYZ.
Prove the following inequalities

a) zyz > 27;
b) zy + xz + yz > 27;
rty+z>9;

Dazy+rztyz>2@+y+2)+9.

Solution:

a), b), ¢) Using well-known inequalities, we have

zyz =12 +y? + 2% > 3V 12222 = (wy2)® > 27 (ay2)?,
which yields zyz > 27. Then

Ty + 12 +yz > 3¢/ (wyz2)® > 3V272 = 27
and

z4+y+z>3Fzyz >3V27=09.
d) We notice that 22 < xyz = z < yz and the likes. Consequently,

zy <yz-xz=1<22=2>1.

Hence all the three numbers must be greater than 1. Set

a=zx—1,b=y—1,c=2—1.
We then have a > 0,b> 0,¢ > 0 and

z=a+1l,y=0b+1,z=c+1.
Replacing these in the given condition we get

(a+ 1 +0B+1>2+(c+ 1)’ =(a+)(b+1)(c+1)
which is the same as

A+ +P+a+b+c+2=abc+ab+ac+be.
If we put ¢ = ab + ac + be, we have

g<a®+bv"+c*, \/3g<a+b+ec
and

(M)

abc < <§>% = (39 .

27
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Thus
g+/3¢+2 < P+ +c tatbtcet2=
3
V3
= abc+ab+ac+bc§%+q

and setting x = /3¢, we have

3
x+2§;—7<:>(;r:—6)(x+3)220.

Finally,
\/E:x26:>q:ab+ac+bc212.
Now, recall that a=z—1,b=y —1,c=2— 1, so we get
(z—1Dy-1) + (-1)E-D+w-1)E-1H)>12=
= zytazztyz>2(x+y+2)+9

and we are done.

One can also prove the stronger inequality
zy+azztyz>4d(x+y+2)—9.

Try it!

27. Let x,y, 2z be positive real numbers with sum 3. Prove that

VT + Y+ 2>y +yz+ 2.
Russia, 2002

Solution:

Rewrite the inequality in the form
A2V 2y 2V >t oyt 2 2ay + 2y + 20 &
e L 9/c P 2+ 222/ > 9.
Now, from the AM-GM Inequality, we have
2?+ 2z =22+ Vz + 5 > 3V2? -z = 3,

y*+ 2y > 3y, 22 +2V7 > 3z,
hence
x2—{—y2+z2+2(\/§+\/§+\/2> >3(z+y+2)>9.

28. [ D. Olteanu ] Let a, b, ¢ be positive real numbers. Prove that
a—i—b- a +b+c- b +c+a- c >§
b+c 2a+b+c c4+a 2b+c+a a+b 2c+a+b T 4
Gazeta Matematica
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Solution:

Weset x =a+b,y =b+cand z = a+cand after a few computations we obtain
the equivalent form

r Yy oz x y z 9
e + + > .
Yy z x T+y y+z z4+zx " 2
But using the Cauchy-Schwarz Inequality,
x z x z T+y+z)? T+y+z)?
T YL 2. LY Z( y+2) N (x+y J I
Yy z r x+y y+z z4+zr xytyztze zytyztzrt+art+ty+z
2(z +y+2)°* S 8(z +y +2)*

2(xy +yz + 2x)(zy + yz + 22 + 22 + y? + 27) (ry+tyz+tze+{z+y+ z)2)2
and the conclusion follows.

29. For any positive real numbers a, b, ¢ show that the following inequality holds
a b ¢_c+a a+b b+c
e .
b ¢ a c+b a+c b+a

India, 2002

Solution:

a b c
Let us take — =z, -
b c

=y, — = z. Observe that
a
a+c l4+zxy 1—=2
ey =T .
b+c 1+y 1+y
Using similar relations, the problem reduces to proving that if zyz = 1, then

& @ -De+D)+@-DE+D)+EE-Dy+1)>0 <
& szz—f—z.rz > Zx—l—?).
But this inequality is very easy. Indeed, using the AM-GM Inequality we have
szz > 3 and so it remains to prove that Zx2 > Zw, which follows from the

inequalities )
Z 22 > @ > Z .

30. Let a, b, ¢ be positive real numbers. Prove that

a® b? c? 3(ab + be + ca)
+ + >
b2—bc+c? 2—ac+a® a?—ab+b* "  a+b+c
Proposed for the Balkan Mathematical Olympiad
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First solution:

Sincea+b+c¢> w

a+b+c
a® b3 e
b2 — bc + ¢2 - c —ca+a? - a2 —ab+b
From the Cauchy-Schwartz Inequality, we get
2
S e 2 s
b2 —be+c2 = S a(b? —be+c?)

Thus we have to show that

, it suffices to prove that:

s >a+b+e

(> +b*+c*)? > (a+b+c) -X:a(b2 —be+c?).
This inequality is equivalent to
at + bt + ¢t +abe(a 4+ b+ ¢) > ab(a® + b?) + be(b* + ¢*) + ca(c® + a?),

which is just Schur’s Inequality.
Remark.
The inequality
a® N b3 N e
b2—bc+c?2 c2—cat+a? a2—ab+b?

>a+b+c

was proposed by Vasile Cartoaje in Gazeta Matematica as a special case (n = 3)
of the more general inequality
20" =" —c" 2" —c"—a”  2¢c" —a ="
> 0.

b2 — be + ¢? ¢ —ca + a? a2 —ab+b2 ~

Second solution:

Rewrite our inequality as

Z (b+c)a® S 3(ab + be + ca)
B+cd = a+bte
But this follows from a more general result:
Ifa,b,c,z,y,2z > 0 then

Za(y+z) S 329”3/
b+c ~ Zm ’
But this inequality is an immediate (and weaker) consequence of the result from
problem 101.

Third solution:

Let
3

a
A= —_—
Zb2—bc+c2
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and
B ¥4+ (b+c)(b* —bc+c?)
D DY v Rl D - v S DL
So we get
1
448 = (o) (Eppera) -

1 1 1 2
= 3 (Z(b +¢)(b? — be + 02)) (Z — +_02> > 3 (Z vb+ c) ,
from the Cauchy-Schwarz Inequality. Hence
A> % (Z\/b+c>2 —22(1: Z\/a+b~\/b+c—2a.
We denote

ab
A, =+vVe+a-vVb+a—a= Z

\/Zab+a2+a

2
and the similar relations with Ay and A.. So A > A,+As+A.. But because (Z a) >

3 (Z ab) we get

o _sye (o)
(o) (X4) 3

2
3 +a°+a
and also the similar inequalities are true. So we only need to prove that

2
2
> @j%ﬁ—a 2a+b+c¢>z\/%+<ﬁ> > 9

Ao >

1
We consider the convex function f(t) = \/5 + t2. Using Jensen’s Inequality

we finally deduce that
1 a 2
- — >2.
Sy (i) >

We have equality if and only if a = b = ¢.

31. [ Adrian Zahariuc | Consider the pairwise distinct integers x1, %2, ..., Tp,
n > 0. Prove that

x%—i—x%—{ﬂ"—l—xi2x1x2+x21‘3+---+$nx1+2n—3.
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Solution:

The inequality can be rewritten as

n
> (@i —mi41)? = 2(2n - 3).
i=1
Let 2, = min{z1,zo,...,2,} and xpyr = max{zy,z2,...,2,}. Suppose without loss
of generality that m < M. Let

S, = (.Z’m — $m+1)2 + -+ (.Z’M_l - .TM)2
and

So=(xpr —axpen)? + -+ (n—21)? + (1 —22)2 -+ (T — )2

2 2

k
1
The inequality Z ai > A (Z ai> (which follows from the Cauchy-Schwarz In-

i=1

=1
equality) implies that
(zar — 2m)?

>
512 M—-—m
and ( )2
TM — Tm
Sg > ——
2_n—(M—m)
So
" 1 1
2 _ 2
Dol = S+ 82 () (M—m+n—(M—m)>Z
4 4
> (n—12?==4n -8+ — > 4n —8.
n n
But ., .,
Z(ml — 1) = le —Z;41 = 0mod 2
=1 =1
SO

n

Z(l‘l — $i+1)2 Z n —6
=1

and the problem is solved.

32. [ Murray Klamkin ] Find the maximum value of the expression z%zs + z323 +
o422 xp+ 22z when z1,22,. .., 21,2, > 0add up to 1 and n > 2.

Crux Mathematicorum

Solution: A
First of all, it is clear that the maximum is at least 77 because this value is
2

1
attained for 1 = §,£E2 =3 r3 = --- = 2, = 0. Now, we will prove by induction that

2 2 2 2
1T + X323 + -+ Ty 1T T X7 < >
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for all z1,29,...,25-1,2, > 0 which add up to 1. Let us prove first the inductive
step. Suppose the inequality is true for n and we will prove it for n + 1. We can of
course assume that o = min{xy, 22, ..., Zpe1 . But this implies that

riwy +a5ry + -+ 2z < (v + 22)’ws F iy 4o+ 22z, 2 (2 22).
But from the inductive hypothesis we have

. 4
(x1 + 22)’z3 + 22xg + 4+ 22 2, + 22 (x) +12) < o7

. 4
and the inductive step is proved. Thus, it remains to prove that ab+ b%c + c?a < 5
if a + b+ ¢ = 1. We may of course assume that a is the greatest among a, b, ¢. In this

2
case the inequality ab + b%c + c?a < (a + E) . (b + g) follows immediately from

2
2 2
abe > be, % > ﬂ. Because

+5 a+te b+ &) (ar8)

a+=- a+-= 3 —Jla+ =

5. 0t5 e 0rg)(er5)

l=—=4+ —=4p4+->3

2 * 2 * +2_ 4 ’

4
we have proved that a?b+b’c+ c?a < > and this shows that the maximum is indeed
4
27
33. Find the maximum value of the constant ¢ such that for any
T1,%2, .-y &Ly, >0 for which g1 > @1 + 22 + - - - + z1 for any k, the inequality

VI T+, <evor Fxe+ -+ 2,

also holds for any n.

IMO Shortlist, 1986

Solution:

First, let us see what happens if ;1 and 21 +x2+- - -+ are close for any k. For
example, we can take z;, = 2¥, because in this case we have z; +xo+- -+ 25 = Tpy1—2.
Thus, we find that

k=1

>
k=1

for any n. Taking the limit, we find that ¢ > 1 + /2. Now, let us prove that 1 + /2
works. We will prove the inequality

VIL+ T2+ T < (L4 VT + 22 + - + 2,

¢>
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by induction. For n = 1 or n = 2 it is clear. Suppose it is true for n and we will

prove that /z1 + /T2 4+ - 4+ /Ty + /Tnt1 < (1+\/§)\/x1 +xo+ -+, F T

Of course, it is enough to prove that

Vot <+ V2) (Vo + o+ + o — Vo F oo+ + 2)

which is equivalent to

\/m1+m2+---+xn+\/x1 +Xo A+ Tpg §(1+\/§)\/$n+1~

But this one follows because

T+ X2+ Ty < Tpga.

34. Given are positive real numbers a, b, ¢ and z,y, z, for whicha+z =b+y =
¢+ z = 1. Prove that
1 1 1
(abc + :L'yz)(— +—+ —) > 3.
ay bz cx
Russia, 2002

Solution:
Let us observe that abe + zyz = (1 — b)(1 — ¢) + ac + ab — a. Thus,

1-c¢ c abc + xyz
+ -1= .
a 1-b a(l —1b)
Using these identities we deduce immediately that
34 + abe) 1_{_1_{_1 a_ b L +1—c+1—a+1—b
zyz+abe)| —+ —+ — ) = .
Y ay bz cx l1—-¢ 1—a 1-5b a b c
Now, all we have to do is apply the AM-GM Inequality
a b c l—-¢c 1—a 1-b
> 6.
1—c+1—a+1—b+ a - b - c =

35. [ Viorel V4jaitu, Alexandru Zaharescu | Let a,b, ¢ be positive real numbers.

Prove that b b 1
a c ca

< = b .

a+b+2c+b+c+2a+c+a+2b - 4(a—|— +0)

Gazeta Matematica

First solution:

We have the following chain of inequalities

ab ab ab 1 1 a+b+c
Za+b+2c Za+c+b+c_24(a+c+b+c> 4
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Second solution:
Because the inequality is homogeneous we can consider without loss of generality
that @ + b+ ¢ = 1 and so the inequality is equivalent to

1 1
yolieh
ala+1) — 4abe

1 1 1 . o .
We have 1) =TT so the inequality is equivalent to

1 1 1
- < —
Za _Za—{—l +4abc
We will prove now the following intercalation:
1 9 1 1 1
-4 — < —.
Za - 4+4abc_2a—{—1+4abc

The inequality in the right follows from the Cauchy-Schwarz Inequality:

(Za}q) (>@+n) =09

and the identity Z(a + 1) = 4. The inequality in the left can be written as Z ab <
1+ 9abc
4

, which is exactly Schur’s Inequality.

36. Find the maximum value of the expression
ab+c+d) +b3(c+d+a)+cP(d+a+b)+d*(a+b+c)

where a, b, ¢, d are real numbers whose sum of squares is 1.

Solution:

The idea is to observe that a®(b+c+d) +b3(c+d+a)+c(d+a+b)+d*(a+b+c) is
equal to Z ab(a® +b*). Now, because the expression ab(a? +b%) appears when writing
(a — b)*, let us see how the initial expression can be written:

Zab(a2+b2) _ Za4+b4+6a2b2—(a—b)4 _

4
_ 32 a6y - @b 3-Sa-b)t 3
B 4 B 4 =4

1
The maximum is attained fora=b=c=d = 2

37. [ Walther Janous | Let z,y, z be positive real numbers. Prove that
x z

Yy
r+(z+y)(z+z) +y+\/(y+z)(y+m) +z+\/(z+x)(z+y) =1

Crux Mathematicorum
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First solution:
We have (z+y)(z+2) = 2y + (z° +yz) +x2 > zy + 2z /yz + 12 = (/Y +/72)%
Hence

Zx—l— (@ +y)(z +2) SZH\/J;—H\/E'

vz =1
VERE

But

Zx+\/m_y+\/ﬁzz\/5+

and this solves the problem.

Second solution:

From Huygens Inequality we have \/(z + y)(z + 2) > = + \/yz and using this
inequality for the similar ones we get
x z

+ Y + <
T4/ (z+y)lz+2) y+Vly+aly+z) z+/(z+2)(z+y)
T Y z
2x+\/;y_z+2y+\/ﬁ+2z+\/w_y.
\/?J_va:\/%&:\/m'_y
x Y z

Now, we denote with a =

and the inequality becomes

1 1 1
2—|—a+ 2+b+ 24c¢—
From the above notations we can see that abe = 1, so the last inequality becomes
after clearing the denominators ab + bc 4+ ca > 3, which follows from the AM-GM
Inequality.

38. Suppose that a1 < as < ... < a,, are real numbers for some integer n > 2.

Prove that
4

n.

ala;l + agaé + ...+ ana‘l1 > aQa‘l1 + (I,g(lg + .. +aa

Iran, 1999

Solution:

A quick look shows that as soon as we prove the inequality for n = 3, it will be
proved by induction for larger n. Thus, we must prove that for any a < b < ¢ we have
ab(b® — a®) + be(c® — b%) > ca(c® — a®) & (¢ — b3)(ac — bc) < (b* — a®)(ab — ac).
Because a < b < ¢, the last inequality reduces to a(b? 4 ab + a?) < c(c® + be + b%).
And this last inequality is equivalent to (¢ —a)(a® + b% 4 ¢® +ab+ bc + ca) > 0, which

is clear.

39. [ Mircea Lascu | Let a, b, ¢ be positive real numbers. Prove that

b+c c¢c+a a+bd a b c
+ + >4 + + :
b+¢ c¢c+a a+bd

a b c
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Solution:

1 1 1
Using the inequality —— < — + — we infer that
r+y ~ dx Ay
4a Sg_{_g 4b Sé—{—lzand 4c
b+c—b ¢ a+c T a c a+b

Adding up these three inequalities, the conclusion follows.

< -+

)

[l e

el

40. Let ag,a9,...,a, > 1 be positive integers. Prove that at least one of the

numbers «/as, %/as,..., *»~{/ay, *¢/01 is less than or equal to /3.

Adapted after a well-known problem

Solution: .
Suppose we have a;!; > 35 for all 4. First, we will prove that nw < 33 for all
natural number n. For n = 1,2, 3,4 it is clear. Suppose the inequality is true for n > 3

and let us prove it for n + 1. This follows from the fact that

1 1 . . 1
1—{——§1+Z<\3/§:>3%:\3/§-35Zi~n:n+1.
n n

a 1
Thus, using this observation, we find that a;, > 35 > a; it = aip > a; for all i,

which means that a1 < as < --- < a,_1 < @, < a1, contradiction.

41. [ Mircea Lascu, Marian Tetiva | Let z,y, z be positive real numbers which
satisfy the condition
Yy +xz+yz+ 2xyz = 1.

Prove that the following inequalities hold

<7.
ey
b)m+y-{—z2§;
1 1 1
c) —+-—+-—>4(x+y+2);
xr Yy oz
1 1.1 2z —1)°
d)E+§+;—4(x+y+z)2m,wherez:ma}c{x,y,z}.
Solution:

a) We put #3 = 2yz; according to the AM-GM Inequality we have
l=gy+zz+yz+2zyz > 32+ 22 & (2t —1) (t+1)° <0,
therefore 2t — 1 <0 &t < %, this meaning that zyz < 1
b) Denote also s = x + y + z; the following inequalities are well-known
(x+y—+2)°> 3@y +z2+yz)

and
(x+y—+2)° > 2Ty
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then we have 2s® > bdayz = 27 — 27 (zy + xz + y2) > 27 — 952, i. e.
2584952 27> 0 & (25— 3) (s +3)° >0,

where from 25 —3> 0 & s > g

1
Or, because p < 3’ we have

2
5223q:3(1—2p)23<1——>:g'

if we put ¢ = zy + 22 + yz, p = xy=2.
Now, one can see the following is also true

A~

g=zy+zzt+yz >

1
¢) The three numbers z,y, z cannot be all less than 3 because, in this case we
get the contradiction
3 1
Yy +xz +yz+ 2xyz < Z—{—Qo 3 =1
1
because of symmetry we may assume then that z > 3"

We have 1 = 2z4+1)azy + z(z+y) > (22+1)zy + 2z,/zy, which can also
be written in the form ((2z+1)/zy — 1) (/zy + 1) < 0; and this one yields the
inequality

1

Ty < ——.
(22 + 1)

2
Wealsohave 1 = 2z + Doy +z2z(z+y) < (22 +1) @ty + 2z (x +y), conse-
quently ((2z+ 1) (z +y) — 2) (z + y + 2) > 0, which shows us that

Ty Z o

The inequality to be proved
1 1 1
—+ -+ -2>4(x+y+2)
xr Yy =z
can be also rearranged as

(z+ ) (%_4) > 4zz—1 _ (22—1)2(22—{—1).

From the above calculations we infer that

(@ +y) (% —4> > 2z2+1 (2241 —4) = 22z ;ler(izﬂ)
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1
(the assumption z > 5 allows the multiplication of the inequalities side by side), and
this means that the problem would be solved if we proved

222+ 3) S 2241

> S 422 462> 422 + 42 + 1,
22+1 z

1
but this follows for z > 3 and we are done.

1
d) Of course, if z is the greatest from the numbers z,y, z, then z > 55 we saw
that

1 1 1
1 _4 = — —4) > 2 1
Lol = G (n-d)2 e
2022 -1 -1’
(22 )(2z+3):4z_1+(2z 1)7
2z+1 z  z(2z+41)
where from we get our last inequality
111 (22 —1)°
St 4 > 2T
x+y+z (x+y+z)_z(2z+1)

Of course, in the right-hand side z could be replaced by any of the three numbers

which is > 5 (two such numbers could be, surely there is one).

Remark.

Tt is easy to see that the given condition implies the existence of positive numbers

b
a,b,c such that z = a Y = ,Z = € . And now a),b) and ¢) reduce
b+c c+a a+b

immediately to well-known inequalities! Try to prove using this substitution d).

42. [ Manlio Marangelli | Prove that for any positive real numbers z,y, z,

3(xy + yPz + 222) (zy® + y2® + 22?) > zyz(z +y + 2)°%.

Solution:
Using the AM-GM Inequality, we find that
1 Y2z zy? 3y dTyz

5T - —+ >
3 ylz+e+rty y2tza?+ayt T Y3 (v 4 22 + 2%y) - (y2? + 22 + 3y?)

and two other similar relations

1 n 2’z n yz® S 3z Yxyz
3 Yzt r+aty y+ar’+ay® T Y3 (Y22 + 22z + a2y) - (y2? + 2a? + xy?)
1 2y zx? 3z ¥xyz

- . — >
3 ylz+e+rty y2tza?t+ayt T Y3 (v 4 22 + 2%y - (y22 + 2a? + 3y?)
Then, adding up the three relations, we find exactly the desired inequality.
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43. [ Gabriel Dospinescu | Prove that if a,b,¢ are real numbers such that
max{a,b,c} — min{a,b,c} < 1, then

1+ a® + 5% + ¢ + 6abe > 3a%b + 3b%¢ + 3c%a
Solution:

Clearly, we may assume that ¢ = min{a, b, ¢} and let us write h = a+x,¢c = a+y,
where z,y € [0,1]. It is easy to see that a® +b® +¢* — 3abe = 3a(z? —zy +y?) +2° +4°
and a®b + b%c + c?a — 3abc = a(x? — zy + y?) + 2?y. So, the inequality becomes
1+ 2% + y3 > 32%y. But this follows from the fact that 1 + 2% + y® > 3zy > 322y,
because 0 < z,y < 1.

44. [ Gabriel Dospinescu | Prove that for any positive real numbers a, b, ¢ we have

2 2 2 1 1 1
27+ (24— 2+b— 2+ ) >6a+rb+o)(—++-).
be ca ab a b ¢

Solution:

By expanding the two sides, the inequality is equivalent to 2abc(a® + b3 + ¢ +
3abc — a*b — a*c — b%a — b?c — cta — 2b) + (a®b® + b3 + Pa® + 3a?b2? — aPbPe —
a’bc® — ab®c? — ab’c® — a%b3c — a?bc?) > 0. But this is true from Schur’s Inequality

applied for a, b, ¢ and ab, be, ca.

1 2 1
45. Let ag = 3 and ax11 = ap + a—k. Prove that 1 — — < a, < 1.
n

TST Singapore
Solution:
1 1

We have = — — and so
Q1 G ag +n

n—1 n—1
1 1 1 1
ay n+ ag a

a
k=0 k+1 k=0 n

1 n
>
n+ ag n+1

and from this inequality and the previous one we conclude immediately that

1
1-—-—<a, <1
n

n—1
. . 1
Now, because the sequence is increasing we also have 2 — — = E
Gn,
k=0

46. | Cilin Popa | Let a,b, ¢ be positive real numbers, with a,b,¢ € (0,1) such
that ab + bc + ca = 1. Prove that
a b ¢ 3(1—@2 1—82 1—c2>
+ + :

s 2
1—a2+1—b2+1—(32_4

a b c
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Solution:
It is known that in every triangle ABC the following identity holds

2
B c
tan 50 €= tan 7 The condition a,b,¢ € (0,1) tells us that the triangle ABC is
acute-angled. With this substitution, the inequality becomes

A B T A
Z tan £) tan 5 = 1 and because tan is bijective on [0, 7> we can set a = tan BX b=

A 5 A
2tan§ 1 —tan 5 1
272/123 7A¢>ZtanAZ3ZtanA<:>
1—tan e 2tan§

< tan A tan B tan C(tan A+tan B+tan C') > 3(tan A tan B+tan B tan C+tan C tan 4) <
& (tan A 4 tan B + tan C)? > 3(tan A tan B + tan Btan C + tan C tan A4),
clearly true because tan A, tan B,tan C > 0.

47. [ Titu Andreescu, Gabriel Dospinescu | Let z,y,z < land z +y + 2z = L.

Prove that
1 1 1 27

< —.
1—|—m2+1—{—y2+1—|—z2 — 10

Solution:
Using the fact that (4 — 3t)(1 — 3¢)? > 0 for any ¢ < 1, we find that
1 27
— < —(2—2x).
322 S5~
Writing two similar expressions for y and z and adding them up, we find the desired
inequality.
Remark.

Tough it may seem too easy, this problem helps us to prove the following difficult
inequality
(b+c—a)* _ 3
oo
a?+(b+c)? — 5
In fact, this problem is equivalent to that difficult one. Try to prove this!

48. [ Gabriel Dospinescu | Prove that if \/z 4+ /y + +/z = 1, then

1 —2)*(1 = y)*(1 —2)* > 2Pzyz(z +y)(y + 2)(z + 2)

Solution:

Weputa=+z,b=yandc=/z. Thenl —z=1-a*=(a+b+c)? —a? =
(b+ ¢)(2a + b+ ¢). Now we have to prove that ((a +b)(b+ ¢)(c+a)(2a+b+c)(a+
206+ c)(a+b+2c))? > 2?62 (a? + b*)(b? + ¢)(c® + a?). But this inequality is true
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Solutions

b 4
< % (this being
> 8(b+c)(c+a)(a+b).
49. Let z,y, z be positive real numbers such that zyz = x + y + z + 2. Prove that

as it follows from the following true inequalities ab(a® + b?)

equivalent to (a—b)* > 0) and (2a+b+c)(a+2b+c)(a+b+2c)

(1) oy +yz+22>2(x+y+2);
(2) \/E+\/z7+\/E§%\/W.

Solution:

The initial condition zyz = x + y + z + 2 can be rewritten as follows

1 1 1
+ =1.
1+z 14y 142
Now, let,
1 1 1
= a, :b, = C.
1+z 1+y 1+ 2
Then
1—-a b+c c+a a+b
Tr = = 7y: 7,2,’: .
a a b c
(1) We have
b+c ¢+a c¢+a a+b a+b b+c
zy+yz+ze > 2z+ytz)e . + . + : >
a b b c I a
b b
> 2( rte, cta ot ><:>a3+b3+c3+3abcz
a b ¢
>

ab(a + b) + be(b+ ¢) + calc+ a) & Za(a —b)(a—c) >0,
which is exactly Schur’s Inequality.
(2) Here we have

3
\/E+\/§+\/Z§§ TYZ &

- \/ a b N \/ b c a §
b+c c+a c+a a+b a+b b+c— 2
This can be proved by adding the inequality

c

a b 1 a b
. < + ,
b+c c+a~ 2\a+c
with the analogous ones.

b+ec

50. Prove that if x,y, # are real numbers such that z2 + y? 4+ 22 = 2, then

c+y+z<zyz+2.

IMO Shortlist, 1987
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First solution:
If one of z,y, z is negative, let us say = then

24 ayz—xz—y—2=02-y—2z)—xz(l —yz) >0,
24,2
Zry < 1. So we may assume that

because y + z < /2(y? + 2?) < 2 and zy <

0<zx<y<zIfz<1 then

24axyz—x—y—z=1—-2)1—ay)+ (1 —x)(1 —y) > 0.
Now, if z > 1 we have
z+(@+y) <V2(02 + (2 +y)?) =21 +ay <247y <2+ 1Yz,

This ends the proof.

Second solution:
Using the Cauchy-Schwarz Inequality, we find that

tty+tz—ayz=z(l—y2)+y+2</(22+(@y+2)2)- 1+ (1 —-y2)2).

So, it is enough to prove that this last quantity is at most 2, which is equivalent to
the inequality (2 + 2y2)(2 — 2yz + (y2)?) < 4 & 2(yz)® < 2(yz)?, which is clearly
true, because 2 > 4% + 22 > 2yz.

51. [ Titu Andreescu, Gabriel Dospinescu | Prove that for any x1,22,...,2, €
(0,1) and for any permutation o of the set {1,2,...,n}, we have the inequality

"
1 z;x’ =~ 1

1=
Zl—xiz 1+ n -(Zl_‘ri'xo(i)>'

i=1 =1

Solution:

1
Using the AM-GM Inequality and the fact that —— < — + —
r+y dr 4y

+
=
@
o
&
B

write the following chain of inequalities
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So, it is enough to prove the inequality

CS e () (B

1-—=
which is Chebyshev

Inequality for the systems (z1,22,...,%,) and
1 1 1
1—22’1—22""" "1 —22 )"
n
52. Let z1, 22, ..., 2, be positive real numbers such that Z = 1. Prove

i=1 T T
that
n n 1
Y VE -1y =
i=1 i=1 \/.T_

Vojtech Jarnik

First solution:

Let

= a;. The inequality becomes
14z

n

St e [ e Y s
>ni\/7wir<(2‘“)(ZM>

But the last inequality is a consequence of Chebyshev’s Inequality for the n-tuples
(a1,a9,...,a,) and

( 1 1 1 )
\/al(l —al)7 \/a2(1 —ag)’”.’ an(1 —ay) '

Solution 2:

With the same notations, we have to prove that

a;
n—1 <
( >;\/a1—{—a2+...+ai1—{—a¢+1—{—...—|— -

Gp,

n
a;+as+...+ai—1+ a1 +...+ap
<3y |
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But using the Cauchy-Schwarz Inequality and the AM-GM Inequality, we
deduce that

zn:\/al—{—ag—{—...—l-ai_l—{—aiﬂ—{—...—I—an N

a;

> iﬁ+¢£+...+¢m—_1+\/m+...+m:
i=1 \/m\/a_’
= - \/a_i ( 1 1 #_{_ L + .4 1 >>
“Vvn-1 \/_ \/_ Vai-1 /ait1 Van)
s (n—1)vn—1- & .
S O+ fa A+ e+ BT+ T+ an
n a;
> Z(”—1>\/a1+a2+~-~+ai1+ai+1+~-+an

Il
-

2

and we are done.

53. [ Titu Andreescu | Let n > 3 and a4, 0o, ..., a, be real numbers such that
a1 +as+...+a, >nandal+a3+...+a2 > n? Prove that maz{ay,as,...,a,} > 2.

USAMO, 1999

Solution:

The most natural idea is to suppose that a; < 2 for all i and to substitute

xz; =2 —a; > 0. Thenwehavez — ;) >n:>le<nandalq0
i=1 i=1

n <Za —22—% —4n—42x2+2x

=1

2
" n

Now, using the fact that x; > 0, we obtain Z mf < (Z xl> , which combined with
i=1 =1

the above inequality yields

n 2
n2<4n—4ixi+<2xi) <4n+(n—4)2mi
=1 i=1

i=1

n
(we have used the fact that Z‘TZ < n). Thus, we have (n — 4) (Z z; — n) 0,

i=1
n

which is clearly impossible since n > 4 and Z z; < m. S0, our assumption was wrong
=1
and consequently maz{ay,as,...,an} > 2.
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60
54. [ Vasile Cirtoaje | If a, b, ¢, d are positive real numbers, then
a—b b—c c¢c—d d-a
> 0.
b+c+c+d+d+a a—l—b_o
Solution:
We have
a—b+b—c+c—d+d—a_a+c b+d+c+a d+b_4_
b+¢ c¢+d d4+a a+b b+c c+d d+a a+b N
1 1 1 1
—<a+c>(m+m)+<b+d><m+a+b>—4~
Since
1 n 1 S 4 1 n 1 S 4
b+c d+a” (b+c)+(d+a)’c+d a+b = (c+d)+(a+b)
we get

a—b+b—c+c—d+d—a 4(a+c) 4(b+ d) 4—p
b+c c+d d+a a+b = (b+c)+(d+a) (c+d)+(a+b) -

Equality holds for a = c and b = d.

Conjecture (Vasile Cirtoage)
If a,b, ¢, d, e are positive real numbers, then

a—b+ b—c+ c—d_{_d—e +e—a S0
b+¢c c¢+d d+e e+a a+b~

55. If = and y are positive real numbers, show that 2% + y* > 1.
France, 1996

Solution:
We will prove that ab > ————
e . “a+b—ab
Inequality it follows that ! = (1 +a—- 1) <1+ (a—1)1—-b)=a+b—ab
and thus the conclusion. Now, it = or y is at least 1, we are done. Otherwise, let
0 < z,y < 1. In this case we apply the above observation and find that =¥ + y* >
x

for any a,b € (0,1). Indeed, from Bernoulli

+ + =
rTry—zy T+y—xY r+y Tty
56. Prove that if a,b, ¢ > 0 have product 1, then

(a+b)b+c)c+a)>4{a+b+c—1).
MOSP, 2001
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First solution:
Using the identity (a 4+ 5)(b+ ¢)(c+a) = (a + b+ ¢)(ab+ be + ca) — 1 we reduce
the problem to the following one
ab+bc+ca+ —— >
a+b+c
Now, we can apply the AM-GM Inequality in the following form

./ (ab + be + ca)?

b+b T — .
@ c+ca+a+b+c_ 9a+b+c)

And so it is enough to prove that
(ab+ be+ca)® > 9a+b+c).

But this is easy, because we clearly have ab + bc + ca > 3 and (ab + be + ca)? >
3abcla+b+c)=3(a+b+c).

Second solution: 5
We will use the fact that (a + b)(b + ¢)(c +a) > §(a + b+ ¢)(ab + be + ca).

2
So, it is enough to prove that 6(ab +bc+ ca) + > 1. Using the AM-GM

. a+b+c
Inequality, we can write

1 o/ (ab + be + ca)?

_ > — >1
a+b+c ™ 8lla+b+c) —

)

2
§(ab—{— be + ca) +

because

(ab+ be + ca)? > 3abc(a +b+c) = 3(a+b+c).

57. Prove that for any a,b,¢ > 0,

(> + b+ (a+b—c)(b+c—a)(c+a—b) < abelab+ be + ca).

Solution:

Clearly, if one of the factors in the left-hand side is negative, we are done. So,
we may assume that a, b, ¢ are the side lenghts of a triangle ABC. With the usnal
notations in a triangle, the inequality becomes

2

(a®+b%+-c?)- < abe(ab+tbetca) < (a+b+c)(ab+betca)R? > abe(a®+b*+c?).

a+b+ec
But this follows from the fact that (a + b+ ¢)(ab + be + ca) > 9abe and

0<OH?=9R? — a® — > — .
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58. [ D.P.Mavlo | Let a,b,c > 0. Prove that

1 1 1 b Hb+1 1
Statbrer tatplay b ey glar Dbl
a b ¢ b ¢ a 1+ abe

Kvant, 1988

Solution:
The inequality is equivalent to the following one

1 Zab—i—Za
DML IFED ML T

or
1 9 a
acha-l—ZEvLZa C+Zg > 2<Za+2ab>.
But this follows from the inequalities
2 b 2 c 2 a
a“bc + - > 2ab, b%ca + - > 2be, cab + 7 > 2ca
and

1 1 ‘ 1
a‘c+ = > 2a,b%a + — ZZb,czb—l—E > 2c.
e a

59. [ Gabriel Dospinescu | Prove that for any positive real numbers z1, 22, ..., 2,

with product 1 we have the inequality

nn.H(x;’—{—l)Z (le—{—Z%) .

i=1 =1

Solution:
Using the AM-GM Inequality, we deduce that

xy % Tn_q 1
+ +--+ + >
1+27 1+2% 142, 1420
T -
and
1 N 1 P 1 N xpn
1427 1427 1+27 , 1427 —

Thus, we have
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Of course, this is true for any other variable, so we can add all these inequalities to
obtain that

n
Hl—}—x >Zml+zx_l

i=1 i=1

which is the desired inequality.

60. Let a,b,c,d > 0 such that a + b+ ¢ = 1. Prove that

11
a®+b2+ 3 +abcd>mln{4 9 2d7}

Kvant, 1993

Solution:

1
Suppose the inequality is false. Then we have, taking into account that abc < 77

27

1
we will reach a contradiction proving that a® + % + ¢ + abed > T It is sufficient to

1 1 1
the inequality d (— — abc) >al+b3 43— 3 We may assume that abe < 77" Now,

prove that
1
a® + b+ ¢3 — - 1
1—9abc +a+b 3> =
— —abc 4
27
But this inequality is equivalent to 42@3 + 15abc > 1. We use now the identity
1+ 9abc
3 .
= 3abc+1-3 b and reduce th blem t that b< ——
Za abc+ Za and reduce the problem to proving tha Za < YR

which is Schur’s Inequality.

61. Prove that for any real numbers a, b, ¢ we have the inequality
Z(l + a1+ (a—c)?(b—c)?> > (14+ a1 +62)(1+*)(a—b)*(b—c)*(c—a)?.
AMM

Solution:
(1+a%)(1+ b?)

(1+c)(a—0b)?
assume that a,b, ¢ are distinct). Now, adding the inequalities

(1+a?)(1+ b%) (1+b2)(1+c2)>2 1+ b
I+ a=0)? (1+a®)(b—c)* = |a—Dbllc—D

(which can be found using the AM-GM Inequality) we deduce that

(1+a?)(1+ 6% 1+ b
Z(1+c2) )Q—Zlb—a o)l

The inequality can be also written as Z > 1 (of course, we may
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and so it is enough to prove that the last quantity is at least 1. But it follows from

1+0° 140 _
Z|b—a (b—0)] = Z(b—a)(b—c) =1

and the problem is solved.

62. [ Titu Andreescu, Mircea Lascu | Let o, 2, ¥, z be positive real numbers such
that zyz =1 and « > 1. Prove that

o4 o

x

Y 2% 3
+ >
y+z z4x x+y 2

First solution:
We may of course assume that x > y > z. Then we have
T oYy
y+z z4+x x+y

and z@ ! > y*~! > 2271, Using Chebyshev’s Inequality we infer that

Zy+z =3 (Zma 1><Zyiz>

Now, all we have to do is to observe that this follows from the inequalities Z 2% 1 >3
5 3
y+z 2

(from the AM-GM Inequality) and Z

Second solution:
According to the Cauchy-Schwarz Inequality, we have:

Yy z¢ 1ta 1ta 1ta )2
+ + 2(902 +y 2 +z2> .
y+z z+x zxr+y

o4 o

(oly+2) +u(e-)+2(e+)]
Thus it remains to show that
( =2 +1/ P ) > 3(xy + yz + zx).

Since (z +y + 2)? > 3(zy + yz + zx), it is enough to prove that

o o 1-— 1
T R R

and, similarly,

4o 1—a 14« e 1—a 14+«

Tz > N Tz > .

R R T R
Thus

a a a 31—« 1+«

m%—i-le—{—le—(x—l—y—{—z)Z ( )—{— (z+y+2)—(z+y+2)=
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—1 ~1
a2 (x+y+z—3)2QT(B{”/xyz—?)):O.
Equality holds for x =y = z = 1.

Remark:
Using the substitution § =a+1 (8 > 2) and z =
inequality becomes as follows
1 1 1
Fo+o)  Pleta) o+
For 3 = 3, we obtain one of the problems of IMO 1995 (proposed by Russia).

(abc = 1) the

S
o=

1
= -, z=
’y b’

3
> —.
-2

63. Prove that for any real numbers x1,...,Zn,y1,..., Y, such that 22 +---+12 =
yittyn =1,

k=1

n
(T1y2 — 22y1)? < 2 (1 - Z%%) .
Korea, 2001

Solution:

We clearly have the inequality

(@ys — 2201)* < D (mayy — j00)°

< 1, we find immediately that

n

Z TiYi

i=1

(1 — 2”: mzyz> (1 + i%@h) <2 (1 - i:%,%)
7=1 =1 =1

and the problem is solved.

Because we also have

64. [ Laurentiu Panaitopol | Let a1, as, ..., ay, be pairwise distinct positive inte-
gers. Prove that

2 1
af +a3+- +al > n3+

(@1 + a2 + -+ ayp).
TST Romania
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Solution:
Without loss of generality, we may assume that a1 < a9 < -+ < a, and hence
a; > i for all 4. Thus, we may take b; = a; — i > 0 and the inequality becomes

Zb2+22b n+16(2n+1 2n+1 zn:b (2n+1)

Now, using the fact that a;;; > a; we infer that b3 < by < .-+ < b, and from
Chebyshev’s Inequality we deduce that

" - n+1 &
i=1 i=1 ) i=1

and the conclusion is immediate. Also, from the above relations we can see imme-

diately that we have equality if and only if a1, as,...,a, is a permutation of the

numbers 1,2,...,n.

65. [ Cilin Popa | Let a, b, ¢ be positive real numbers such that a + b+ ¢ = 1.
Prove that

b\/c N cva N avb S 3vV3
a(v3c+Vab)  b(v/3a+Vbe)  c(V3b+fea) T 4

Solution:
Rewrite the inequality in the form

be
Z a S 3\/3‘
3ca -4
3 te

/b / fab
With the substitution = = —C,y = %,z = /2 the condition a +b+c=1
a ¢

becomes zy + yz + zz = 1 and the inequality turns into
T 33
PR
V3y +yz 4
But, by applying the Cauchy-Schwarz Inequality we obtain

z* > (Zx) 32’%' 33

Z\/_xy—i—xyz \/_—1—3:1:3,/,2_\/‘_’_7 4

?

where we used the inequalities

(Z x>2 >3 (Z my) and zyz < %
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66. [ Titu Andreescu, Gabriel Dospinescu | Let a, b, ¢, d be real numbers such that
(1+a?)(1+b%)(1+c?)(1 + d?) = 16. Prove that

-3 <ab+bc+cd+da—+ ac+ bd — abed < 5.

Solution:
Let us write the condition in the form 16 = H(z +a)- H(a —1). Using symmetric

sums, we can write this as follows

16 = (1—i2a—2ab+i2abc+abcd> <1+i2a—2ab—i2abc+abcd>.

So, we have the identity 16 = (1 —Y_ ab + abed)? + (3 a — 5~ abc)?. This means that
|1 =5 ab+ abed| < 4 and from here the conclusion follows.

67. Prove that
(a® +2)(b* + 2)(c* +2) > 9(ab + bc + ca)

for any positive real numbers a, b, c.
APMO, 2004

First solution:
We will prove even more: (a® + 2)(b* + 2)(c®> + 2) > 3(a + b + ¢)?. Because
(a+b+c)? < (la] +|b] + |e])?, we may assume that a, b, c are nonnegative. We will

use the fact that if z and y have the same sign then (14+2)(1+y) > 1+ z +y. So,

we write the inequality in the form

M("5 )z 5

and we have three cases

Ya)
i (2
i) If t least 1, th 1}]>1 > .
i) If a, b, ¢ are at least 1, enH( 3 + )_ +Z 2 ;

ii) If two of the three munbers are at least 1, let them be a and b, then we have

H a2—1+1 1+a2—1+b2—1 2 +2
3 3 3 3

(@®>+62+1) (12 + 12+ ) S (a+b+c)?
9 9 - 9
by the Cauchy-Schwarz Inequality.

(A%

iii) If all three numbers are at most 1, then by Bernoulli Inequality we have

(o) m it B

and the proof is complete.
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Second solution:

Expanding everything, we reduce the problem to proving that
(abe)? —{—22(121)2 +4Za2 +8> 9Zab.
Because 32(12 > 3Zab and 22:a2b2 +6 > 4Zab, we are left with the
inequality (abc)? + Z a’+2 > ZZab. Of course, we can assume that a,b, ¢ are
non-negative and we can write a = 22,b = 32, ¢ = 2%. In this case
22ab—2a2 =(zt+y+z2)zt+y—2)y+z—z)(z+z—y).

It is clear that if z,y,z are not side lengths of a triangle, then the inequality
is trivial. Otherwise, we can take £ = u + v,y = v + w, 2 = w + u and reduce the

inequality to

(u+v)(v+w)(w+u))* +2> 16(u + v + w)uvw.

We have ((u+v)(v +w)(w+u)' +14+1> 3¢/ (u+0v)* (v +w)*(u+w)* and
it remains to prove that the last quantity is at least 16(u + v + w)uvw. This comes

down to
3

(u+v) (v +w)(w+u)? > %(uvw)g’(u + v+ w)?.

But this follows from the known inequalities

8
(v +v)(v+ wi(w+u) > §(u+v + w)(uv + vw + wu),
8
(uv + vw + wu)* > 3 uvw)3, u+v+w > 3Yuw.

Third solution:

In the same manner as in the Second solution, we reduce the problem to proving

that
(abc)* +2 > ZZab— Za2.

Now, using Schur’s Inequality, we infer that

9ab
ZZab—ZaQS ﬁ

and as an immediate consequence of the AM-GM Inequality we have

Lbc < 3%/(abc)2.

a+b+c
This shows that as soon as we prove that

(abe)? +2 > 33/ (abe)?,

the problem is solved. But the last assertion follows from the AM-GM Inequality.
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68. [ Vasile Cirtoaje | Prove that if 0 < 2 <y < z and £ + y + z = 2yz + 2, then
8) (1= z)(1 — y2)(1 - 22) > 0;

b) 2%y < 1,23y < .

)ty < Lay" < o

Solution:
a) We have

(I—zy)(l-y2)=1l—ay—yzt+ay’z=1—-ay—yz+ylz+y+2-2)=(y—1)>>0
and similarly
(1—yz)(1—zz)=(1-2)>>0, (1—z22)(1—ay)=(1-2)>>0.

So the expressions 1 — zy, 1 — yz and 1 — zz have the same sign.

b) We rewrite the relation z+y+z = zyz+2as (1-z)(1—-y)+(1-2)(1—=zy) = 0.
Ifz>1thenz>y>z>1andso (1 —x2)(1—y)+ (1—2)(1—xy) >0, impossible.
So we have < 1. Next we distinguish two cases 1) zy < 1; 2) 2y > 1.

1) myg1.Wehavem2y§x§landw3y2§x§1<ﬁ.

2) zy > 1. From y > \/zy we get y > 1. Next we rewrite the relation 2 +y 4+ 2 =
zyz+2asx+y—2 = (zy — 1)z. Because z > y gives x + y — 2 > (zy — D)y,
(y—1)(2—2z—=zy) > 0s0 2> z(1+y). Using the AM-GM Inequality, we have

1+y22\/gjand1+y:1+%+3z3,3/14-3.Thuswehave222m\/yand

2 2 2
5/ y° . 9 3 9 32
2> 3x T which means that z?y <1 and z°y° < 77"
32
The equality 22y = 1 takes place when # = y = 1 and the equality z%y? = 97
2

takes place when z = g y=z= 2.

69. [ Titu Andreescu | Let a, b, ¢ be positive real numbers such that a+b+c¢ > abe.

Prove that at least two of the inequalities

2 3 6 2 3 6 2 3 6
-4+ -4+-2>6,-+—-+->6,—+—-—4+ - >6,
a c b ¢ a c a

b b
are true.
TST 2001, USA
Solution: L ) L
The most natural idea is to male the substitution — = z, y =YL= Thus, we
a ¢

have x,y,2z > 0 and zy + yz + zz > 1 and we have to prove that at least two of the
inequalities 2z +3y+6z > 6, 2y+32+6x > 6, 22+ 3x+6y > 6 are true. Suppose this is
not the case. Then we may assume that 2z +3y+6z < 6 and 2z+ 3z +6y < 6. Adding,

1- 5-5
we find that 524+ 9y + 82 < 12. But we have z > vz Thus, 12 > Yz +9y+82
y+z ytz
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which is the same as 12(y+2) > 5+9y> + 82 + 12yz & (22— 1)*+ (3y + 22— 2)% < 0,
which is clearly impossible. Thus, the conclusion follows.

70. [ Gabriel Dospinescu, Marian Tetiva | Let z,y,z > 0 such that
r+y+z=xyz.

Prove that
(-1 (y—1)(z—1) <63 —10.

First solution:

Because of ¢ < zyz = yz > 1 (and the similar relations zz > 1, zy > 1) at most
one of the three numbers can be less than 1. Tn any of these cases (x < 1, y > 1,
z > 1 or the similar ones) the inequality to prove is clear. The only case we still have
to analyse is that when z > 1, y > 1 and 2z > 1.

In this situation denote

r—1=qag,y—1=bz—1=c.
Then a, b, ¢ are nonnegative real numbers and, because
z=a+1l,y=0b+1,2z=c+1,
they satisfy
a+1+4b+l4c+l=(a+1)(b+1)(c+1),
which means
abc + ab + ac + be = 2.

Now let @ = vabc; we have
ab + ac + be > 3V abache = 32,
that’s why we get
P +302 <28 (2+1)(2*+22-2)<0&
& (z+1) (z+1+v3) (z+1-v3) <.

For = > 0, this yields

Vabe =z < V3 -1,
or, equivalently

3

abe < (\/g — 1) ,

which is exactly
(z—1)(y—1)(z—1)<6V3—10.

The proof is complete.
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Second solution:
Like in the first solution (and due to the symmetry) we may suppose that z > 1,
y > 1; we can even assume that © > 1, y > 1 (for z = 1 the inequality is plain). Then
we get zy > 1 and from the given condition we have
Tty
xy—1°

The relation to prove is
(z-1)H-1)(-1)<6/3-10&
& 2zyr — (zy + 22 4+ yz) <63 -9,
or, with this expression of z,

Ty —zy—(z+y) it <6V3-9&
zy —1 zy —1
@(wy—x—yﬁ—{—(6\/3—10)a:y§6\/§—9,

after some calculations.

21y

Now, we put = a+ 1, y = b+ 1 and transform this into
a2b? + (6\/3 - 10) (a+b+ab) — 2ab > 0.

But
a+b> 2vV/ab
and 6/3 — 10 > 0, so it suffices to show that

a?b? + (6\/3 - 10) (2\/% + ab) — 2ab > 0.
The substitution ¢ = vab > 0 reduces this inequality to
o+ (6\/3—12){"4—2(6\/5—10)7520,
" t3+(6\/§—12)t+2(6\/§—10)20.

The derivative of the function

f(t):t3+(6\/3—12)t+2<6\/§—10),t20

F)=3 (t2 - (x/§ - 1)2>

and has only one positive zero. It is v/3 — 1 and it’s easy to see that this is a minimum

is

point for f in the interval [0, 0o). Consequently

F®=f(v3-1) =0,
and we are done.

A final observation: in fact we have

Ft) = (t—\/§+1)2 <t+2\/§—2),
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which shows that f (¢) > 0 for ¢t > 0.

71. [ Marian Tetiva | Prove that for any positive real numbers a, b, ¢,
=0 - &-a° <(a—b)2—{—(b—c)Q—{—(c—a)2
a+b b+c ct+a |~ 4 )
Moldova TST, 2004

First solution:
First of all, we observe that right hand side can be transformed into

a® — b3 3 .3 1 1 3 3 1 1
Z a+b (a _b)<a+b_a+c>+(b _c)(b—f—c_a—{—c)_

(a—b)(c—b)(a—¢) (Z ab)
(a+b)a+c)b+c)
and so we have to prove the inequality

[(a =b}(b—c)(c—a)|(ab+bc+eca) 1 5
(a+b)(b+c)(c+a) 5§<Za _Zab>'
It is also easy to prove that (a + b)(b+ ¢)(c+a) > g(a +b+c)(ab+be+ ca) and

so we are left with
T (o) = [[o-v).

Using the AM-GM Inequality, we reduce this inequality to the following one

27( ) ‘Ha_b‘

This one is easy. Just observe that we can assume that a > b > ¢ and in this case it

becomes
(a—)a—Ab-0) < o-(a+b+0)°

and it follows from the AM-GM Inequality.

Second solution (by Marian Tetiva):
It is easy to see that the inequality is not only cyclic, but symmetric. That is why
we may assume that a > b > ¢ > 0. The idea is to use the inequality

22 2
y Ty 'y x
v 2_ z+y =¥Ty

which is true if x > y > 0. The proof of this inequality is easy and we won’t insist.
Now, because a > b > ¢ > 0, we have the three inequalities

2 2 2 2
a+92a +ab+b S by ¢ b +bc+c
2 2 b+c

b
a+b 0+

(A%

b
> z
_c+2

[N ]

and of course
a2+ ac+c?
> c+

+c a
at+-=-—>— —.
2 a—+c 2

(A%
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That is why we can write
3 _ 13 2 2 2 2 2 2
Za b _ (a—b)a +ab+b +(b—c)b +bc+c 4 ca +ac+c S
a+b a+b b+c a+c
a b ¢
(a—b)<b+§>+(b—c)<c+§>—(a—c)<a+§)—

> (a—b)
=
Tn the same manner we can prove that

Za?’—b?’ < S(a —b)?
a+b — 4

(A%

and the conclusion follows.
72. [ Titu Andreescu | Let a, b, ¢ be positive real numbers. Prove that
(a® —a? +3)(0° —b* +3)(c® = > +3) > (a+ b+ ).
USAMO, 2004

Solution:
We start with the inequality a® —a* +3 > a®*+2 & (a® —1)(a® — 1) > 0. Thus,

it remains to show that 5
H(a3+2) > (Za) .
Using the AM-GM Inequality, one has
a® 1 1 3a

+ + > .
ad+2 b+2 c3+2—3/H(a3+2)

We write two similar inequalities and then add up all these relations. We will find

that 5
H(a3 +2)> (Za) )

which is what we wanted.

73. [ Gabriel Dospinescu | Let » > 2 and z1,22,...,z, > 0 such that

(é xk) (,cz: %) =n®+1.

(ix%) - (2”: iz) >n? 44+ L
k=1 k=1 Tk n(n o 1)

Prove that
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Solution:
Tn this problem, a combination between identities and the Cauchy-Schwarz
Inequality is the way to proceed. So, let us start with the expression

I; X; 2
1

> =422 .
— Tj X
1<i<j<n -

We can immediately see that
2 2 2
> <’+7—2> (;+§— Iy +6)
1<i<j<n NTI 1<icj<n \%i T L L

()25~

Thus we could find from the inequality

2
3 <ﬂ+m—J—2> >0

o Zj
1<i<j<n

(2x> (Z i) > n? 44,

Unfortunately, this is not enough. So, let us try to minimize

2
xT; x;
> (—f+m—j—2> .

— Zj
1<i<j<n

M

that

This could be done using the Cauchy-Schwarz Inequality:

> (G-

Because Z (ﬂ + T 2) =1, we deduce that
Zj Z;

(Zm) (; 1>>n +4+ﬁ,

which is what we wanted to prove. Of course, we should prove that we cannot have

i<i<j<n

equality. But equality would imply that z; = 5 = -+ = x,,, which contradicts the

)54+

assumption
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74. [ Gabriel Dospinescu, Mircea Lascu, Marian Tetiva | Prove that for any po-

sitive real numbers a, b, ¢,

a2+ 0?2 +2abc+3> (1+a)(1+b)(1+¢).

First solution:

Let f(a,b,c) =a® +b>+c2+abc+2—a—b—c— ab— bc— ca. We have to prove
that all values of f are nonnegative. If a, b, ¢ > 3, then we clearly have 2 + % + p <1,
which means that f(a,b,c) > a®> + b2 +c? +2—a—b—c > 0. So, we may assume

that a < 3 and let m = % Easy computations show that f(a,b,c) — f(a,m,m) =
(3—a)(b—0)®

1 > 0 and so it remains to prove that f(a, m,m) > 0, which is the same

as
(a+1)m? =2 a+1)m+a>—a+2>0.

This is clearly true, because the discriminant of the quadratic equation is —4(a +

(a—1)2<0.

Second solution:

Recall Turkevici’s Inequality
2t byttt 2myat > 22 + %2 4 228 4 120 4 202 4
for all positive real numbers z,y, z,t. Taking t = 1,0 = 22,b = y2, 2 = 2? and using
the fact that 2v/abe < abe + 1, we find the desired inequality.

75. [ Titu Andreescu, Zuming Feng ] Let a, b, ¢ be positive real numbers. Prove

that
(2a +b+¢)? (2b+a +c)? (2¢+a+b)? <8

262+ (b+c)2 2024+ (a+c)? 22+ (a+0b)? —
USAMO, 2003

First solution:
Because the inequality is homogeneous, we can assume that a + b+ ¢ = 3. Then

(2a+b+c)?  a>+6a+9 _1(1 5 4a+3 )

2a2+ (b+¢)> 3a2—-6a+9 3 24 (a—1)
1 da+3y 4da+4
< = . = .
—3(1+2 2 ) 3

Thus
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Second solution:

b b
Denote z = + C, Yy = et a,z S - . We have to prove that
a ¢

(x+2)2 2e+1 5 (x-1)2 _ 1
— < < = — > —.
P D B ) Dl 2=S

But, from the Cauchy-Schwarz Inequality, we have

z:(x—l)2 S (x+y+2—-3)2

?4+2 T 24y 42246

It remains to prove that
22 + P + 22+ 2y + 2yr + 220 — 62 — 6y — 62+ 9) > 22 Lyl + 2P 46 &

sty + 2+ 4y fyz+2x) — 120 +y+2)+12> 0.
Now zy +yz + zz > 33/22y%22 > 12 (because zyz > 8), so we still have to prove that
(x+y+2)2+24—12(x+y+ 2) + 12 > 0, which is equivalent to (z +y + 2z —6)2 > 0,
clearly true.

76. Prove that for any positive real numbers z,y and any positive integers m, n,
(’n—1)(m—1)(xm+n+ym+n)+(m+n_1)(xmyn+xnym) > mn(xm—i—n—ly_l_ym—i-n—lx).

Austrian-Polish Competition, 1995

Solution:

We transform the inequality as follows:

mn(z —y)(@™ T =y > (mtn - D™ - y™) (" - y") S

m+n—1 _ , m+n—1 m m n n

T z

x y S Aoy 2ty
(m+n—-1)(z-y) =~ mlx-y) nlz-y)
(we have assumed that z > y). The last relation can also be written

x T T
(m—y)/ tm+"’2dt2/ tmfldﬁ/ t"dt
Yy Yy Yy

and this follows from Chebyshev’s Inequality for integrals.

77. Let a, b, c,d, e be positive real numbers such that abede = 1. Prove that
a + abe L b+ bed L ¢+ cde L d + dea L e+ eab
l1+ab+abed 1+bc+bede 1+cd+cdea 1+ de+deab 1+ ea+ eabe

Crux Mathematicorum

>0
-3

Solution:
We consider the standard substitution
x Yy

z
a==b=>c=>,d=
Y 2z f
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with z,y, z,f,u > 0. It is clear that

1 N 1
atabc oy
-1 1 1-
1+ ab+ abed 2102
T oz u
”» . . 1 1 1 1
Writing the other relations as well, and denoting — = a1, — = aq, — = as, 7= a4, — =

x y z u

as, we have to prove that if a; > 0, then
1
3 _Gta 1
a1 +as+as — 3
Using the Cauchy-Schwarz Inequality, we minor the left-hand side with

452
282 — (a3 +a4)? — (a1 + a4)? — (a3 +a3)? — (az +a5)? — (a1 + az)?’

5
where S = Zai. By applying the Cauchy-Schwarz Inequality again for the

denominator Zo_flthe fraction, we obtain the conclusion.
78. [ Titu Andreescu | Prove that for any a, b, ¢, € (0, g) the following inequality
holds
sina - sin{a — b) - sin{a —¢) sinb-sin(b — ¢) - sin(b — a) sinc-sin(c — a) - sin(c — b) >0
sin(b + ¢) sin(c + a) sin(a + b) =
TST 2003, USA

Solution:

Let x = sina, y = sinb, z = sinec. Then we have z,y, z > 0. It is easy to see that
the following relations are true:

sina - sin(a — b) - sin(a — ¢) - sin(a + b) - sin(a + ¢) = z(z* — y*)(z® — 2%)
Using similar relations for the other terms, we have to prove that:
> a(@® —y?) (@t —y?) > 0.

With the substitution 2 = \/u, y = \/v, z = \/w the inequality becomes Z Vu(u —
v)(u — w) > 0. But this follows from Schur’s Inequality.

79. Prove that if a, b, ¢ are positive real numbers then,
Var + b4 4 et +/a2b? + b2¢2 + c2a2 > \/adb + b3c + Ba + Vabd + bed + cad.

KMO Summer Program Test, 2001

Solution:

It is clear that it suffices to prove the following inequalities

Za4+2a2b2 > Za3b+2ab3
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and

(>at) (X e?) = (o) ().

The first one follows from Schur’s Inequality

Za4 —{—acha > Za?’b—f—Zab?’
Za2b2 > acha.

The second one is a simple consequence of the Cauchy-Schwarz Inequality:

and the fact that

(a®b +b3c+ c*a)? < (a®b® + b2 + 2a®)(a + b + )

(ab® +bc® + ca®)? < (a®b? + b2 + 2a?)(a* + b + ).

80. [ Gabriel Dospinescu, Mircea Lascu | For a given n > 2 find the smallest
constant k, with the property: if a1,...,a, > 0 have product 1, then
a1az 203 andy
+ et <
(0 +ax)(a3 +a1) (a5 +as)(aj + a2) (a7, + a1)(af +an) ~

n .

Solution: L
Let us take first a1 =as =+ - = an_1 = 2,0, = — We infer that
AL
b 221 n n—2 S n—2
PRI )k eR (e
for all z > 0. Clearly, this implies k, > n — 2. Let us prove that n — 2 is a good

constant and the problem will be solved.
First, we will prove that (2 + y)(y? + ) > zy(1 + x)(1 + y). Indeed, this is the
same as (z + y)(z — y)? > 0. So, it suffices to prove that
1

+ et <n -2
(1+a1)(1+a2) (1+a2)(1+a3) (l—i-an)(l—{—al) -
Now, we take a; = ﬁ, ey Oy = In and the above inequality becomes
i I
- Thpt1T
Z (1 B k-+1Tk42 ) > 9,
= (@k + Ty 1) (Tt + Tt2)

which can be also written in the following from

n 2

x
D kil > 9.
wptThyr (T Tha1) (Tes1 + Trg2)
Clearly,
n n

Tk Tk
> =1
Tp + Tyt _,;ﬂﬁ T2+t T,
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So, we have to prove the inequality

n

2
Y SIS > 1.
= (T + T (Tha1 + Thg2) —

Using the Cauchy-Schwarz Inequality, we infer that

n 2
>
n 2
Tr41 S k41

kz::l (Tk + 1) (Tt + Tp2)

"
Z(mk + Tht1 ) (Tht1 + o)

and so it suffices to prove that

n 2 n " n
(Z a:k> > mi + ZkamkH + Z TpTh42.

k=1

But this one is equivalent to

n n
2 E Tix; > 2 E TpThy1 + Z-Tkmk+2
k=1 k=1

1<i<j<n

and it is clear. Thus, k, = n — 2.

81. [ Vasile Cirtoaje ] For any real numbers a, b, ¢, x,y, z prove that the inequality
holds

ar+by+ecz+/ (@2 +02+2) (@2 +y2+22)> Z(a+b+e)(z+y+2).

Lo Do

Kvant, 1989

Solution:

[22 +y? + 22 o
Let us denote t = / ————. Using the substitutions x = tp, y = tg and
a?+ b2 42 & Py =1

z = tr, which imply
PP+ =L 42

The given inequality becomes

2
w+m+m+f+§+@2§

—~

at+b+c)p+qg+r),

(a+p)?+(b+¢?+(c+r)?>(a+b+c)p+qg+r).

Lol =~

Since
dla+b+e)p+qg+r)<[la+b+e)+p+qg+71)

it suffices to prove that

| —

(a+p)?+ b+ +(c+r)?>[(a+p)+ (b+q) + (c+7r)>

w

€

This inequality is clearly true.
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82. [ Vasile Cirtoaje | Prove that the sides a, b, ¢ of a triangle satisfy the inequality
Y G By A
b ¢ a a b ¢

First solution: N
a c. After

We may assume that c is the smallest among a,b,c. Then let x = b—

some computations, the inequality becomes
(3a—20)x2—{—<m +c— %) (a—c)> >0 & (3a—2¢)(2b—a—c)*+(4b+2¢—3a)(a—c)? > 0

which follows immediately from 3a > 2¢,4b+2¢—3a=3(b+c¢—a) +b—c> 0.

Second solution:
Make the classical substitution a =y + z,b = z + z,¢ = £ + y and clear denomi-
nators. The problem reduces to proving that

22+ 4+ 2% 4 2(2%y + yPe 4 2r) > 3(wy? + oyt + 2a?).

We can of course assume that z is the smallest among z,y,z. Then we can write
y = +m,z = x + n with nonnegatives m and n. A short computation shows that
the inequality reduces to 2z(m? — mn + n?) + m® + n3 + 2m?n — 3n®m > 0. All we
need to prove is that m? +n® +2m?n > 3n’m < (n—m)®> — (n—m)m?+m*®> >0

and this follows immediately from the inequality > + 1 > 3, true for ¢t > —1.

83. [ Walther Janous | Let n > 2 and let 1, %2,...,2, > 0 add up to 1. Prove
that

Crux Mathematicorum

First solution:
The most natural idea is to use the fact that
n—=r; n—1

+ .
-z T+ T+ o+ T F i+ T

Thus, we have

- - 1
L)< 1
Zl;[l(].—l’z> _H< * "_\1/331372~-~'Ti—1mi+1~'1'n>

and we have to prove the inequality

H<1+—>2H<1+ )
T i "*\1/1’11‘2 L Li—1Ti41 .- - T

i=1
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But this one is not very hard, because it follows immediately by multiplying the
inequalities

n—1
1 1
H<1+—>2 1+ /[ =
i i i

obtained from Huygens Inequality.

Second solution:

We will prove even more, that

- 1 n2—1\" & 1
H(-5)= () U

i=1 v

It is clear that this inequality is stronger than the initial one. First, let us prove that

ﬁ1+mi> n+1 ”_
l—z; — \n-—-1

i=1

This follows from Jensen’s Inequality for the convex function f(z) = In(1 + z) —
In(1 — ). So, it suffices to prove that

(Zi—i>n a n?—1\"
AUSRYARN | (CRRPCR L )
Exi izl(l | >( )

But a quick look shows that this is exactly the inequality proved in the solution of
the problem 121.

84. [ Vasile Cirtoaje, Gheorghe Eckstein | Consider positive real numbers
1,3, ..., Ly Such that z1z5...2,, = 1. Prove that
1 1 1
+ o+ —— <1
n—14+z; n—-1+x n—1+z,
TST 1999, Romania

First solution:
Suppose the inequality is false for a certain system of n numbers. Then we can

find a number &£ > 1 and n numbers which add up to 1, let them be a;, such that
1

—— = ka;. Then we have
n—14x;

1:H<k;—n+1> <H(a%—n+1>.
1

=1 i=
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1

We have used here the fact that a; < —7 Now, we write 1 — (n — 1)ag = by, and
n n n=

we find that Z b, = 1 and also H(l —bi) < (n—1)"by...b,. But this contradicts

k=1 k=1
the fact that for each 7 we have

1—bj:b1+"'+bj_1+bj+1+"'—{—bnZ(’n—l) "7\1/b1...bj_1bj+1...bn.

Second solution:
Let us write the inequality in the form
z & z
LB L+ — >
n—14+x n—14+x9 n—1+z,

This inequality follows by summing the following inequalities

1—-1 1—1
X1 " Tn Tn "

I g > " T T
nooxy THry, T F.. Xy

_ = 1-1 1—1 1—1
ol m T TR L T by T
The first from these inequalities is equivalent to

1-1 1-1 1-1 _1
Z "z, "+t zy * 2 (n—Dx "

and follows from the AM-GM Inequality.

Remark.
Replacing the numbers z1, 22, ..., 2, with —, i, SN i respectively, the in-
equality becomes as follows e o
1 1 1
1+ (n— 1Dz - 1+ (n—1)z Tt 1+ (n—1Dz, =1

85. [ Titu Andreescu ]| Prove that for any nonnegative real numbers a, b, ¢ such
that a2 + b% + ¢ + abc = 4 we have 0 < ab + be + ca — abe < 2.
USAMO, 2001

First solution (by Richard Stong):

The lower bound is not difficult. Indeed, we have ab + bc + ca > 3va2b2c2 and
thus it is enough to prove that abe < 3va2b2c2, which follows from the fact that
abc < 4. The upper bound instead is hard. Let us first observe that there are two
numbers among the three ones, which are both greater or equal than 1 or smaller
than or equal to 1. Let them be b and ¢. Then we have

4>2bc+a’+abc= (2—a)(2+a)>bc(2+a)=bc<2—a.

Thus, ab+bc+ca— abe < ab+2 —a+ ac— abe and it is enough to prove the inequality
ab+2—a+tac—abc <2 b+e—be<1& (b—1)(c—1) >0, which is true due to
our choice.
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Second solution:

We won’t prove again the lower part, since this is an easy problem. Let us con-
centrate on the upper bound. Let ¢ > b > cand let a = 2 +y, b = © — y. The
hypothesis becomes z%(2 + ¢) + 4%(2 — ¢) = 4 — ¢® and we have to prove that

. 24

(2 —y>)1 —¢) < 2(1 — z¢). Since y* = 2 + ¢ — 5 ¢
42?2 — (4 — %)

2—c
and 0 < ¢* = 2+ ¢ — 3Hg? = 2?

z?, the problem asks to

(1 —-2¢) < 2(1 — cz). Of course, we have ¢ < 1

2 2—c¢c = x < v/2—c¢ (we have used
the fact that a > b = y > 0 and b 0 = x >y > 0). Now, consider the
422 — (4 — 2
function f : [0,vV2—¢] —» R, f(z) = 2(1 — cx) — %(1 —¢). We have
1—
fi(x) = —2¢c—8x- 2—_2 < 0 and thus f is decreasing and f(z) > f(v/2 — ¢). So, we
have to prove that

fV2=¢c)>02(0l-cvV2—0c) > (2-c)(1-c)©3>ct2V2—ce (1-vV2—-¢)*>0

clearly true. Thus, the problem is solved.

prove the inequality

86. [ Titu Andreescu ] Prove that for any positive real numbers a, b, ¢ the following
inequality holds

CEIEE Yabe < mas{(va VB, (V5 -V, (Ve - Va)')

TST 2000, USA

Solution:

A natural idea would be to assume the contrary, which means that

Lm—vgabcgaij—Q\/%

3
%m—vgabcgb—l—c—%/%
at+b+c

3 — Vabe < ¢+ a — 2v/ca.
Adding these inequalities, we find that

a+b+c—3Vabe > 2(a+ b+ c—Vab—vVbe —/ca).

Now, we will prove that a + b+ ¢ — 3v/abe < 2(a + b+ ¢ — vab— Vbe — \/ca) and the
problem will be solved. Since the above inequality is homogeneous, we may assume
that abc = 1. Then, it becomes 2vab + 2vbc + 2y/ca — a — b — ¢ < 3. Now, using
Schur’s inequality, we find that for any positive reals x,y,z we have:

9
2ry + 2yz + 22 — x? —y? — 2% < _TYE < 33/x2y222
rT+y+z

All we have to do is take z = v/a, y = Vb, z = /¢ in the above inequality.
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87. [ Kiran Kedlaya ] Let a,b,c be positive real numbers. Prove that

a+\/ﬁ+\3/abc<\3/a a+b a+b+c
3 - 2 3 ’

Solution (by Anh Cuong):
We have that

a+m+v3abc§a+\3/aba;—b+\/gabc.

Now we will prove that

a+\3/aba;b+v3abc§ \3/a~a_2{_b-%b+c.

By the AM-GM Inequality, we have

14 2a n 3a
\3/1' 20 3¢ _ " atb a+btc
a+b a+bt+c— 3 ’
3b
94 20
sf1.1._3%0 Taibic
at+b+c— 3 ’
14 2b N 3¢
\3/1_ 2b 3¢ < a+b a+b+c
a+b a+b+c ™ 3 )

Now, just add them up and we have the desired inequality. The equality occurs when
a=b=c.

88. Find the greatest constant k such that for any positive integer n which is not

a square, |(1 + v/n)sin(rv/n)| > k.
Vietnamese IMO Training Camp, 1995

Solution:

™
We will prove that 3 is the best constant. We must clearly have k <

(1++i2+1) |sin (732 + 1) | for all positive integers i. Because |sin (V42 + 1) | =

si W e deduce that u > si z > i

in ————, we deduce that > sin ,
i+Vi2+1 i+ Vit +1 i+VviZ+1l 1+ vi2+1

where it follows that k& < g Now, let us prove that this constant is good. Clearly, the

from

inequality can be written

sin (7T' {\/ﬁ}) > m

We have two cases



Old and New Inequalities 85

1
i) The first case is when {\/n} < 5 Of course,

1

{\/E}Z\/——\/F:\/E_{_i =1

3
x
and because sinxz > = — - we find that

sin(w{y/n}) > sin T > ( T ) _1 <+>3
T Vn-1+vn T \vVn—-1++n 6 \vn—1++n/
T
Let us prove that the last quantity is at least —————. This comes down to
P duantity 2(1+ +/n)

2+vn -V -1 2
1+ n 3(Va+yn—1)°

or 6(yv/n++vn—1)24+3(vn++vn—1) > 7%(1+ /n) and it is clear.

1 1
ii) The second case is when {\/n} > 3 Let z = 1 —{y/n} < 3 and let n =
1
k* + p,1 < p < 2k. Because {\/n} > 3 =P > k + 1. Then it is easy to see that

and so it suffices to prove that

1
x>
T E+1+VE2+2k

T T
sin > .
k+1+VE2+2k ~ 20 +VEk2+ k)

3
Using again the inequality sinz > x — o we infer that,

2\/k2+k—\/k2+2k—k+1> 72
1+VEk*+k 3(1+k+VE2+2k)°

But from the Cauchy-Schwarz Inequality we have 2vk2 +k — k2 +2k — &k > 0.

2
Because the inequality (1 +Ek+VE+ 2k)2 > % (1 +VE2+ k) holds, this case is
also solved. ‘

89. [ Dung Tran Nam ] Let 2,y, 2 > 0 such that (z +y + 2)® = 32zyz. Find the
zt +yt + 2!

minimum and maximum of — -
(x+y+2)

Vietnam, 2004

First solution (by Tran Nam Dung):
We may of course assume that © +y + z = 4 and zyz = 2. Thus, we have to find the
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zt +yt+ 2t

extremal values of 1

. Now, we have
syt 4t = (m2+y2+z2)2—22m2y2=

(16 — 2 ny)2 - 2(2 zy)? +dayz(zr +y+2) =
— 20% — 6da + 288,

2
where a = zy+yz+2x. Because y+ 2z = 4— 1z and yz = —, we must have (4 — 1)
x

2>
which implies that 3 — /5 < < 2. Due to symmetry, we have 2,3,z € [3 — /5,
This means that (z — 2)(y — 2)(z — 2) < 0 and also

(z—3+V5)(y—3+V5)(z—3+V5) > 0.

o8 oo

)

Clearing paranthesis, we deduce that

a € lf),ng_l].

gt +yt+2 (a—16)2 — 112
44 B 128
-1 9 1 1

383 — 16515 (3_\/57 +5 +¢5)7

But because

, we find that the extremal values of the

expression are

256 ' 198 attained for the triples 53

respectively (2,1, 1).

Second solution:

As in the above solution, we must find the extremal values of 22 + y? + 2% when

1
z+y+z=1lzayz = 32 because after that the extremal values of the expression

a
2% + y* + 2* can be immediately found. Let us make the substitution z = -,y =

4
b 2 L b2 + 42
177 g,where abc=1,a+b+2c=4. Then 22+ 9% + 22 = % and so we

. 2
must find the extremal values of a® + b2 4 4¢>. Now, a® +b> +4¢® = (4—2¢)? — = +4¢?
c

1
and the problem reduces to finding the maximum and minimum of 4c? — 8¢ — — where
c
there are positive numbers a, b, ¢ such that abe = 1,a + b + 2¢ = 4. Of course, this
3-V56

1
9 )

. But this reduces to the study

\/571]

1 _
of the function f(z) = 42* — 8z — - defined for lST

4
comes down to (4 —2¢)? > —, or to c € l
¢

, which is an easy task.

90. [ George Tsintifas | Prove that for any a,b,¢,d > 0,
(a+b)3(b+c)3(c+d)?(d+a)® > 1602V’ Pd*(a + b+ ¢+ d)*.

Crux Mathematicorum
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Solution:
Let us apply Mac-Laurin Inequality for
x = abc,y = bed, 2 = cda, t = dab.
We will find that

Z abe ’ N Z abe - bed -eda  a?b2Ed? Z a
_ - ]

4 = 4 o

Thus, it is enough to prove the stronger inequality
(a+b)(b+ c)c+d)(d+a) > (a+ b+ c+ d)(abe + bed + cda + dab).
Now, let us observe that
(a+b)(b+c)(c+d)(d+a) = (ac+ bd + ad + be)(ac + bd + ab + cd) =
= (ac + bd)? + 5" a?(bc + bd + cd) > 4abed + 5" a®(be + bd + cd) =
= (a+ b+ c+d)(abe + bed + cda + dab).

And so the problem is solved.

91. [ Titu Andreescu, Gabriel Dospinescu | Find the maximum value of the ex-
pression
(ab)™ (be)™ (ca)™
l—ab 1—-bc 1-—ca
where a, b, ¢ are nonnegative real numbers which add up to 1 and n is some positive

integer.

Solution:
First, we will treat the case n > 1. We will prove that the maximum value is

; 1
3 a1 It is clear that ab, bc, ca < 1 and so

(@), (e, (o)

T—ab  1—be 1—ca> g ((ab)"™ + (be)™ + (ca)™) .

1
Thus, we have to prove that (ab)” + (bc)"™ + (ca)”™ < TR Let a the maximum among

a,b,c. Then we have

1
47 > an(l _a)n — an(b+c)n > ab” + e +nanbn—lc > ab" + be” + ca”.

1
So, we have proved that in this case the maximum is at most YT But for
1 o
a=>5b= 5= 0 this value is attained and this shows that the maximum value is

for n > 1. Now, suppose that n = 1. In this case we have

ab 1
E:1—ab:§:1—ab_3'

3. 4n—1
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Using the fact that a + b+ ¢ = 1, it is not difficult to prove that

1 . 1 . I 3—2Zab+abc
l—ab 1-bc 1_Ca_1—2ab+abc—a2b202‘

b 3
1 i = < 3 With the above observations, this reduces to
Z ab < 3 — 27(abc)? + 19abc.
11
But using Schur’s Inequality we infer that

1+ 9abe
b ————
doab< —

We will prove that Z

and so it is enough to show that

9abc + 1 < 3 — 27(abc)? + 19abc
4 - 11

& 108(abc)? + 23abe < 1,

1
which is true because abe < >

3
Hence for n = 1, the maximum value is 3 attained for a = b =c.

92. Let a, b, ¢ be positive real numbers. Prove that

1 1 1 3
a(1+b)+b(1+c)+6(1+a) = Vabe(1 4 Vabe)

Solution:

The following observation is crucial

1 1 1 1+ abc+a+ab
(1+abc)<a(1+b)+b(1+c)+c(1+a)>+3 = Xy -

_ 1+a blc+1)
B Za(1+b)+2 1+b
We use now twice the AM-GM Inequality to find that

1+a blc+1) 3 s
E _ E > 3V abc.
a + + abc

(1+b) L+b = abe
And so we are left with the inequality
3 3
+ 3Vabc—3
v abc 3

> k)
1+ abe ~ Vabe(l + Vabe)
which is in fact an identity!

93. [ Dung Tran Nam ] Prove that for any real numbers a, b, ¢ such that a? + b +
2 =9,
2(a+ b+ ¢) — abe < 10.
Vietnam, 2002
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First solution (by Gheorghe Eckstein):
Because max{a, b, c} < 3 and |abc| < 10, it is enough to consider only the cases
when a,b,c > 0 or exactly of the three numbers is negative. First, we will suppose

that a, b, ¢ are nonnegative. If abc > 1, then we are done, because
2(a+b+c) —abe < 24/3(a® + b2 + %) — 1 < 10.

Otherwise, we may assume that a < 1. In this case we have

B2 1 2
2(a+b+c)—abc§2(a+2 +C>:2a+2\/18—2a2§10.

2

Now, assume that not all three numbers are nonnegative and let ¢ < 0.

Thus, the problem reduces to proving that for any nonnegative x,y,z whose
sum of squares is 9 we have 4(x + y — 2z) + 2zyz < 20. But we can write this as
(1—2)2+(y—2)2+(2—1)? > 2zyz — 6z — 2. Because 2zyz—62—2 < x(y>+2?)—62—2 =
—234+32—-2=—(2 —1)%(z + 2) <0, the inequality follows.

Second solution:

Of course, we have |al,|b],|c| < 3 and |a + b + ¢|,|abe] < 3v/3. Also, we may
assume of course that a,b, ¢ are non-zero and that a < b < ¢. If ¢ < 0 then we have
2(a4b+c)—abe < —abc < 3v/3 < 10. Also, if a < b < 0 < ¢ then we have 2(a+b+c¢) <
2¢ < 6 < 10 + abe because abe > 0. If a < 0 < b < ¢, using the Cauchy-Schwarz
Inequality we find that 2b+2c—a < 9. Thus, 2(a+b+¢) =2b+2¢c—a+3a <9+3a
and it remains to prove that3 3a — 1 < agbe. But a < 0 and 2bc < 9 — a2, so that it

>3a—1¢ (a+1)%(a—2) <0, which follows. So, we
just have to threat the case 0 < a < b < ¢. In this case we have 26+ 2¢ + a < 9 and
2(a+b+c) <9+ a. So, we need to prove that a < 1+ abe. This is clear if @ < 1 and
if a > 1 we have b,¢ > 1 and the inequality is again. Thus, the problem is solved.

remains to show that

94. [ Vasile Cirtoaje | Let a, b, ¢ be positive real numbers. Prove that
1 1 1 1 1 1
a+r—1){b+>=1)+{b+=-—-1){c+=—-1)+[c+==1)[at+-—1)>3
b c c a a b

First solution: ) L L
With the notations z = a + 5 l,y=5b+4+—-—1, 2z =c+ — — 1, the inequality
c a
becomes

xzy +yz+ zx > 3.

We consider without loss of generality that # = max{z,y, z}. From

1 1 1 1 1 11
(z+1)(y+1)(z+1) = abe+ —+a+b+c+—+—+— > 24+a+btct+—+-+— = 5+z+y+z,
abc a b c a b c
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we get

xyz +ay +yz + zx >4,

> 0 we distinguish

(c—1)?

with equality if and only if abc = 1. Because y+z = l—I—b—i—
two cases a) x> 0, yz < 0; b)x> 0,y> 0,z> 0. ¢

a) x> 0, yz < 0. We have zyz < 0 and from zyz + zy + yz + 2z > 4 we get
zy +yz+zzx>4>3.

b) x> 0,y> 0,z> 0. We denote zy + yz + zzx = 3d* with d > 0. From the mean
inequalities we have

Yy +yz + 2z > 3/ x2y222,

from which we deduce that zyz < d3. On the basis of this result, from the inequality
xyz + 2y +yz + 2z > 4, we obtain d® +3d®> > 4, (d— 1)(d+2)2 > 0,d > 1 so
xy + yz + zz > 3. With this the given inequality is proved. We have equality in the
casea=b=c=1.

Second solution:
Let u=x+1,v=y+1,w =2+ 1. Then we have

1
uvw:u+v+w+abc+72u+v+w+2.
abe

Now, consider the function f(¢) = 2¢3+#>(u+v+w)—uvw. Because Jim f(t) = o0 and
f(1) €0, we can find a real number 7 > 1 such that f(r) = 0. Consider the numbers
m= E,n = E,p _— They verify mnp = m +n + p + 2 we deduce from problem 49
that Jm—l—n;+pmg 2im+n+p) = wtowtwu > 2r(u+v+w) > 2(u+v+w).
But because u = z 4+ 1,v = y + 1,w = 2z + 1, this last relation is equivalent to

zy + yz + zz > 3, which is what we wanted.

95. [ Gabriel Dospinescu | Let n be an integer greater than 2. Find the greatest

real number m,, and the least real number A, such that for any positive real numbers

T1,L2,...,Tn (Wlth Tp = Loy, Tpt1 — .’L’l),
my, < ! < M,.
"= ; ;1 + 2(71 — 1)%1 + Tip1 "
Solution: 1 L
We will prove that m,, = ﬁ, M, = 5 First, let us see that the inequality
n—

— T; 1+ 2(77, — l)xl + X1 2(77, - 1)

i=1
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is trivial, because z; 1 + 2(n — Dx; + 2501 < 2(n — 1) - Z z;, for all 4. This shows
k=1

1 .
that m,, > ———. Taking x; = z*, the expression becomes

2(n—1)

1 (n—2)x gn~t

r+avt+2(n-1) +1+2(n—1)a:—|—x2 o 1+2(n—1)gn1 4+ zgn—2

1
and taking the limit when z approaches 0, we find that m, < ———— and thus

2(n—1)
1
My = m
Now, we will prove that A, > % Of course, it suffices to prove that for any
X1,%2,---,Ty > 0 we have

n

x; 1
2 <3
— ;1 + 2(71 - 1).%1 + Tit1 2

=1
But it is clear that

n

— T; 1 + 2(71 — 1)%1 + Tip1 = 2/Ti—1 " xir1 + 2(n — 1)%1

=1

n
1
=2 Vi1 Tt

i=ln—1+
€;
Taking Vol i a;, we have to prove that if Hai = 1 then
x; L.
n ) =1
Z R < 1. But this has already been proved in the problem 84. Thus,
- n — a;
=1
1

M, > 3 and because for z; = o2 = -+ = z, we have equality, we deduce that

1
M, = 3 which solves the problem.

96. [ Vasile Cirtoaje | If z,y, z are positive real numbers, then

1 1 1 9
2 : T2 : T 2 3 2 2"
22ray+y? yPPtyztz 22+ zx+ 2 (x4+y+2)

Gazeta Matematica

Solution:

Considering the relation

Prary+y’=(@+y+2)°—(ey+yz+zz)— (@+y+2)2,
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we get
(x+y+2)? 1
m2+xy+y2_1_xy+yz+zx_ z ’
(z+y+2)> z+y+z
or
(x+y+2)? 1
224+ xy+y?  1—(ab+bc+ca)—c’
where a = z , b= Y , C = “ . The inequality can be rewritten
r4+y+z r4+y+z r4+y+z
as
1 1 1
+ + > 9,

l—-d—¢ 1—-d-b 1—-d-a—
where a, b, ¢ are positive reals with a + b+ ¢ =1 and d = ab + bc + ca. After making

some computations the inequality becomes
9d® — 6d> — 3d + 1 + 9abc > 0

or
d(3d — 1)? + (1 — 4d + 9abc) > 0.

which is Schur’s Inequality.
97. [ Vasile Cirtoaje | For any a,b,¢,d > 0 prove that
2(a® + 1)(6® + 1)(c® + 1)(d® + 1) > (1 + abed)(1 +a®)(1 + %) (1 + ) (1 + d?).
Gazeta Matematica
Solution:
Using Huygens Inequality
H(l +a*) > (1 + abed)?,
we notice that it is enough to show that that
2 TJ(@® +1)* = JJ(1 + a*) (1 + a®)*.
Of course, it suffices to prove that 2(a® + 1)* > (a* 4 1)(a® 4 1)* for any positive

real a. But (a®+1)* < (a+1)2(a®+1)? and we are left with the inequality 2(a®+1)% >
(a+1)%*a*+1) & 2a?—a+1)2>a*+1 & (a—1)* >0, which follows.

98. Prove that for any real numbers a, b, c,

(a+b)t+ b+t +(c+a)t > (e + 01+ ch).

SNIES

Vietnam TST, 1996
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Solution:
Let us make the substitution a + b = 2z,b+ ¢ = 2x,¢ + a = 2y. The inequality
becomes Z(y +z—x)t <28 Z z*. Now, we have the following chain of identities

Syre-ot=Y" (Z:ﬁ + 2yz — 20y — 2mz)2 —3 (Zm2)2 +4 (sz’)
(Swz -y —a2) +4 ey + 22— 922 =3 (X 22) —4(Lay) (X7 +

+16 3 2%y — 4 (ny)2 —4 (Z:ﬁf +16 2%y - (Zz)4 <28%
becanse (32?) <3304, Y a%y? < 3,

99. Prove that if a, b, ¢ are positive real numbers such that abc = 1, then
1 1 1 1 1 1
1+a+lﬂL 1+b+cjL l+c+a = 2+cﬂL 2+ijL 2+4¢
Bulgaria, 1997

Solution:

Let z = a+ b+ c and y = ab + be + ca. Using brute-force, it is easy to see that
22 +4r+y+3 12+4x+y

the left hand side is , while the right hand side is . Now,
22 +2r+y+ oy 9+ 4z + 2y
the inequality becomes
> +4r+y+3 1<12+4m+y 204+ 3 —zy 3—y
22 +2x +y+ay T 9+4dr+ 2y 22+ 2r+y+xy — 9+4r+ 2y

For the last inequality, we clear denominators. Then using the inequalities © > 3,y >
3,22 > 3y, we have

5 2
§m2y > 5x?, % > y? ay® > 9z, 5zy > 15z, zy > 3y and 2%y > 27.

Summing up these inequalities, the desired inequality follows.

1 3
100. [ Dung Tran Nam | Find the minimum value of the expression — + 5 + =
a ¢

where a, b, ¢ are positive real numbers such that 21ab + 2bc + 8ca < 12.
Vietnam, 2001

First solution (by Dung Tran Nam):

1 2
Let — =, 5= y, — = z. Then it is easy to check that the condition of the problem
a c
becomes 2xyz > 2z + 4y + 7z. And we need to minimize z + y + z. But
2zy > 7
2Q2zy —7) > 22 + 4y = 22 + 4y

>
Z‘2my—7
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Now, we transform the expression so that after one application of the AM-GM

20+ 4
Inequality the numerator 3zy — 7 should vanish z +y + 2 > 2 4+ y + Zm + g =
Ty —
14
11 7 2r+— 11 7
x4+ —4y— —+—=L >gp 4 — +24/1+ —. But, it is immediate to prove
2z 20 2xy -7 2z x?

7 3t 3 9 _ 15
that 24/1+ — > 2"" andsoz+y+2z> §+x+—2 5 We have equality for
x x

15
. Therefore, in the initial problem the answer is EX achieved for

Second solution:

We use the same substitution and reduce the problem to finding the minimum
value of z + y + z when 2zyz > 2z + 4y + 7z. Applying the weighted the AM-GM
Inequality we find that

2
5o\ F 152 T
:L’—I—y+z2<7x> (3y) ({) .

And also 2z + 4y + 7z > 105 - 125 - 575 - 25 - y3 - 275 This means that (z+
225
+y 4+ 2)2 2z +4y + T2) > — Y. Because 2zyz > 2x + 4y + 7z, we will have

225 15
(37+y+z)227=>$+?/+225

5
with equality for x = 3,y = E= 2.

101. [ Titu Andreescu, Gabriel Dospinescu ] Prove that for any z,y,2,a,b,¢ >0
such that zy + yz + zz = 3,

(z+y) >3.

a (y+2)+ b
4 c+a

c
b+c (z—{—m)—{—a

+b

Solution:

We will prove the inequality

b
(y+z)+c+—a(z+m)+ (x +y) > V3zy +yz + 2x)

b+c a+b

for any a, b, ¢, x,y, z. Because the inequality is homogeneous in z,y, z we can assume
that z+y+ 2 = 1. But then we can apply the Cauchy-Schwarz Inequality so that
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to obtain
a
3 <
b—l—cx * c+a a+b (ey +yz +27) <
a \’ 3 3
< V2 (52) VT2 iEa s
a 2 3 a 2 3
d 2 — 2
< VX (55) s WEE = () <5
>3
Thus, we are left with the inequality Z b—f—c) 3 = Z— But this one
is equivalent to Za—b 3 , which is trivial.
v ed (c+a)(c+b)
Remark.

A stronger inequality is the following:

htec x—i—y >Z\/:U—I—y r+z)—(x+y+2),

which may be obtained by applymg the Cauchy-Schwarz Inequality, as follows

L)t (b a)

a b c
b+c preW Tt >+c+a<z+m> a—l—b(x—'—y)

y+z z4+zr x4y
+ + —2(z+y+z
b+c c+a a—l—b) (z+y+2) 2

2z +y+2)=Y VE+ty)l@+z)—(z+y+2).

A good exercise for readers is to show that

Z\/(x+y)(x+z)2m+y+z+\/3(my+yz+zx).

WyFz+Vztz+y/r+y)-

L\')I»—l

(a+b+c)<

102. Let a, b, ¢ be positive real numbers. Prove that

(b+c—a)? (c+a-b? (a+b-2c)?
(b+c)2+a*> (c+a)2+b (a+b)?+c* ™~

3
5
Japan, 1997

First solution:

+c c+a a+b . . .
Let . = Y = , 2= . The inequality can be written
a c

b
e
Z—(x DRSS
241 — 5

Using the Cauchy-Schwarz Inequality, we find that

z:(x—l)2 S (x+y+2-3)2

22+1 T2+ y? 2243



96 Solutions

and so it is enough to prove that

(z+y+2-3)° _3 5
T ae3Z; O Q-1 w43} ay+1820.

But from Schur’s Inequality, after some computations, we deduce that
Zmy > 2295. Thus, we have

(Zm)2—152m+32my+182 (Zx>2—92x+1820,

the last one being clearly true since Z z > 6.

Second solution:
Of course, we may take a 4+ b+ ¢ = 2. The inequality becomes

4(1 — a)? 3 1 27
> = —_—
z:2+2(1—a)2 25 < Z1+(1—a)2 =70
But with the substitution 1 —a = z,1 — b = y,1 — ¢ = z, the inequality reduces to
that from problem 47.

103. [ Vasile Cirtoaje, Gabriel Dospinescu | Prove that if a;,as,...,a, > 0 then

a1+ a2+ -+ ap—1 >n
—ap
n—1

a?—{—a?—{—---—{—aﬁ—nalaz...anz(n—l)(

where a,, is the least among the numbers a1, as, ..., an-

Solution:
Let a; —a, =x; > 0forie {1,2,...,n — 1}. Now, let us look at

n n
7 i=1
av—n-Hai—n—l —an
Sar—n-JLo- - | =
=1 i=1

as a polynomial in a = a,. It is in fact

a”—l—i(a—l—mi)"—naﬁ(a—kmi)—(n—l)(

T+ T+ -+ Tph_1 "
n—1

We will prove that the coefficient of a* is nonnegative for all k € {0,1,...,n—1},
because clearly the degree of this polynomial is at most n — 1. For & = 0, this follows

from the convexity of the function f(z) = 2"

n—1
>
i=1

n—1

n—1
> el > (n-1)
i=1
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For k£ > 0, the coefficient of a* is
n n—1
§ : n—k § :
(k) &€, —n Lij 1 Ljg oo - Tihpy e
i=1 1<61 < <ip_p<n—1

Let us prove that this is nonnegative. From the AM-GM Inequality we have

n E Tiy Ly -+ Tiy_, <
1<i1<ig < <l <n—1

n—1
n —k —k &\ _ _k n —k
— g (mfl + 3 +~'+x?n_k>—n_1-(k> E z]

" 1<i) <ig <o <in_p<n—1 i=1

n—1
n
which is clearly smaller than (k) Z z7F. This shows that each coefficient of the
i=1
polynomial is nonnegative and so this polynomial takes nonnegative values when

restricted to nonnegative numbers.
104. [ Turkevici | Prove that for all positive real numbers x, vy, 2, t,
gt 4yt + 2 1 2eyzt > 2%y g2 22 2 4 22 4 %R
Kvant,
Solution:
Clearly, it is enough to prove the inequality if zyzt = 1 and so the problem
becomes

If a, b, c,d have product 1, then a? + 6% +c? +d> +2 > ab+bc+ cd+ da + ac + bd.
Let d the minimum among a, b, ¢, d and let m = v/abc. We will prove that

a® +b* 4+ 4 d® +2 — (ab+ be+ cd + da + ac + bd) > d* + 3m* 4+ 2 — (3m? + 3md),
which is in fact
a2+b2+c2—ab—bc—cazd(a-i-b—i—c—?)m).

Because d < Vabe, proving this first inequality comes down to the inequality

a?+b2+c® —ab—be—ca> m<a+b+c—3m>.

a b ¢
Vabe' "~ Yabe'" Vabe
W+ 0P +w? +3>u+v+w+ w4 ow + wu

which is exactly a + 5% + ¢ — ab — be — ca > m(a—i—b—{—c— 3\3/%). Thus, it
remains to prove that d2 + 2 > 3md < d? + 2 > 3V/d?, which is clear.

Take u =

Using problem 74, we find that
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Solutions

105. Prove that for any real numbers ay, as, .. ., a, the following inequality holds

Solution:
Observe that

> ——aa; =
e i+73—1

Now, using the Cauchy-Schwarz

i

=1

)

n 1
Z iai -jaj/ tl+]_2dt =
0

ij=1

1 n
/ > iaq - jag -t ) de =
4]

ij=1

fEe)

Inequality for integrals, we get

2

[ (S s ([ (Sort)a) = (£0)

which ends the proof.

106. Prove that if ay,as, ..

-5 Qn, bl, ..
2002, inclusively, such that a7 + a3 +

., b, are real numbers between 1001 and
4 a® =02+ b3+ -+ b2, then we have the

inequality
al a3 a? 17 .
S 2B (o] +ah et a))
bi bo n 1
TST Singapore
Solution: . .
The key ideas are that % € [2, 2} for any 4 and that for all x € [2, 2} we have

5
the inequality 22 + 1 < 5%

Consequently, we have

5 a; a2 5
2.t hat § Caih: > a2 Lp?
5 bi_1+b%:>2albl_az+bl
and also
5 i3 n n
§Zaibi > Z(a?—{—b?) ZQZa? (1)
i=1 i=1 i=1
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af
Now, the observation that —& = and the inequality ~- = > 1+ 5 allow us to
. ) 2 CL? . . oL .
write —ai > n + a;b; and adding up these inequalities yields
i
n

CL3 " CL3 n
5 ()55

—~ b; A b (2)
=1 =1
Using (1) and (2) we find that
? 3 3T .
AL gl (@ ald-tal),
bi bo |
which is the desired inequality.

107. [ Titu Andreescu, Gabriel Dospinescu ] Prove that if a, b, ¢ are positive real
numbers which add up to 1, then

(a® + b)) (0% 4+ *)(c® + a®) > 8(a®b* + b>c? + c*a?)?.

Solution:

1 1
Letx:—,y: E’Z_

1 1 1
—. We find the equivalent form if — + — + — =1 then
c r Yy z

(® + )" + 2" +27) 2 8(” +y” +27)7
We will prove the following inequality

11 1\’
(2® +y*)(y? + 22) (2 + 27) (E ot ;) > 8(z® +y° +2°)°

Write 22 + y? = 2¢,y? + 2% = 2a, 2% + 2? = 2b. Then the inequality becomes

abe
PR e DL
Recall Schur’s Inequality

Za4 +abc(a+b+c¢) > Za?’(b—i—c) & abe(a+b+c¢) > Za?’(b—i—c—a).
Now, using H6lder’s Inequality, we find that

for any positive numbers z,y, 2.

ad

Za?’(b—i—c—a)zz (Za)

1 72 1 2
(vb+c—a> (Z\/b+c—a>
Combining the two inequalities, we find that

b
Y.z 2

and so the inequality is proved.
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108. [ Vasile Cirtoaje | If a, b, ¢, d are positive real numbers such that abed = 1,

then
1 n 1 n 1 n 1 > 1
(14+a)2 (1402 (14¢?2 (A+d)?> ™~

Gazeta Matematica

Solution:

If follows by summing the inequalities

1 n 1 S 1
1+a)? (14062~ 1+ab
1 1 1

> .
(I+0? (+d2=1+cd
The first from these inequalities follows from
1 N 1 _ab(a® +b%) —a’b? —2ab+1
(1+a)? (1402 1+ab (14a)2(1+b)2(1+¢)2
ab(a — b)? + (ab —1)?
- > 0.
(1+a)?*(1+b)2(1+ab) —

Equality holdsifa=b=c=d = 1.

109. [ Vasile Cirtoaje | Let a, b, ¢ be positive real numbers. Prove that
a® N b2 N c? a N b N c
B2+c2 24+a? a2+b2 T b+c ct+a a+b
Gazeta Matematici

Solution:
We have the following identities

a® a _ abla—b)+acla—c)
R+ bt+c  (b+c)(b?+c?)
b? b be(b—c) +ablb—a)
2+a® c+a  (c+a)P +a?)
c? ¢ aclc—a)+be(c—b)
a2+ a+b  (b+a)b®+a?)

Thus, we have
a’ a abla—b)  abla—b) B
Zm_zb—l—_c_z[(lH—c)(lﬂ—c?) (@a+o)(a>+c2)]

ab(a — b)?
(b + C)(C + a)(b2 + 62)(62 T CI,2) Z 0.

= (a2+b2+c2+ab+bc+ca)-2
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110. [ Gabriel Dospinescu | Let aq,a2,...,a, be real numbers and let S be a
non-empty subset of {1,2,...,n}. Prove that

(Z(%) < Z (ai+...+aj)2.

ies 1<i<j<n
TST 2004, Romania

First solution:

Denote s = ay + -+ + a for k= 1,n and also s, ., = 0. Define now
,_[1 ities
1o , otherwise

Using Abel’s summation we find that

Zai = aiby +asbs +-- -+ anb, =
€S

= 81 (b1 — b2) + 52(b2 — bg) + -0+ Sn—l(bn—l — bn) + Snbn + Sn+1(—b1)

NOW, put b1 — b2 = .’L’l,bQ — bg = T2,.. -abn—l — bn = .’L’n_l,bn = ZnyTnt1 = —bl. So
we have
n+1
Zai = Z Z;8;
icS i=1
n+1
and also z; € {—1,0,1}. Clearly, le = 0. On the other hand, using Lagrange
i=1

identity we find that

Z (ai + -+ +a;)’

n
S T o=
=1

1<i<j<n 1<i<j<n
n+1 ntl 2
2 2
=Y (esl=menY s (s
1<i<j<nt1 i=1 i=1

So we need to prove that

n+1 n+l 2 n+l 2
(n+1) Z 57> (Z slmz> + (Z sl> .
=1 i=1 i=1

But it is clear that

n+tl 2 n+1 2 n+1
i=1 =1

i=1

+ 2 Z SiSj(Q?Z‘JJj + 1)
1<i<j<n+1
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Now, using the fact that 2s;s; < 5;” + 53, 1+ z;2; > 0, we can write
2 Z sisj(wimy; +1) < Z (57 + s?)(l +zx;) =
1<i<jn+1 1<i<j<n—+1
no(sT+-tshy) Fsimi(Te+ a3t an) + o+ snza(v +

+ rot et agg) = —siad — o — 822 fn(s? -+ 52).
So,
n+1 2 ntl \ 2 n+1 nt1
(z ) . (z ) < SR )=
i=1 i=1 k=1 k=1
n+1
=(n+1) Z st and we are done.
k1
Second solution (by Andrei Negut):
First, let us prove a lemma
Lemma
For any aj,as,...,a;11 € R we have the inequality
i 2
2
(z) < T wrotay
=0 1<i<j<2k+1

Proof of the lemma
Let us take s = a1 + -+ + ax. We have
k
Za2i+1 =81+ 83— 82+ -+ Sapp1 — 82
i=0

and so the left hand side in the lemma is

2k+1
E s7+2 E 82i4+152j+1 + 2 E §2;895 — 2 E 82i+182;
0<i<j<k 1<i<j<k 0<i<k
1<j<k

and the right hand side is just

2k+1
(2]6 + 1) Z S? -2 Z §;8;-
i=1 1<i<j<2k+1
Thus, we need to prove that
2k+1
2k Z S; > 4 Z 82i4+18525+1 +4 Z 824525
0<i<j<k 1<i<j<k

and it comes by adding up the inequalities

2 2 2 2
282j+182i+1 < 82i41 + 825415 QSQiSQj < S5; + 894+
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Now, let us turn back to the solution of the problem. Let us call a succession
of a;’s a sequence and call a sequence that is missing from S a gap. We group the
successive sequences from S and thus S will look like this

S = {ai'l7ai'l+17"'7ai1+k17ai27ai2+17"’7ai2+k27"'7ai7’7"'7air+k5r}

where 4; + k; < ;41 — 1. Thus, we write S as a sequence, followed by a gap, followed
by a sequence, then a gap and so on. Now, take s1 = a;, ++ -+ @i 14, , 52 = Qiy 4k +1+
et Qip—1,e e, 82p—1 = @y, 0 F Gtk

Then,

2
(Zai) =(s1+s3+-Fs52,-1)° <
i€S
Z (Si+"'+8j)2 < Z (ai+---+aj)2

1<i<j<2r—1 1<i<j<n
the last inequality being clearly true, because the terms in the left hand side are
among those from the right hand side.

Third solution:

We will prove the inequality using induction. For n = 2 and n = 3 it’s easy.
Suppose the inequality is true for all ¥ < n and let us prove it for n. 7t 1 ¢ S, then

we just apply the inductive step for the numbers as, . .., a,, because the right hand
side doesn’t decrease. Now, suppose 1 € S. If 2 € S, then we apply the inductive step
with the numbers a1 + as, as, - . ., a,. Thus, we may assume that 2 ¢ S. It is easy to

b 2
see that (@ +b+c)? +¢% > % > 2ab and thus we have (a; +as + -+ + ax)? +
(a2 +az+---+ap_1)? > 2a1a; (¥). Also, the inductive step for as, ..., a, shows that

2

ol X @wrvay)
ieS\{1} 3<i<j<n

So, it suffices to show that

n n

al + 2a Z a; gZ(al+'-'+ai)2+2(ag+~-+ai)2
ies\{1} i=1 =2
But this is clear from the fact that a? appears in the right hand side and by summing
up the inequalities from (*).

111. [ Dung Tran Nam | Let z1, 22 . . . , £2004 be real numbers in the interval [—1, 1]
such that z§ + 23 +. ..+ 2350, = 0. Find the maximal value of the 21 +z2 +- - - + Z2004.

Solution: )
Let us take a; = 2¥ and the function f : [-1,1] = R, f(z) = 3. We will prove
first the following properties of f:
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1L fle+y+ 1)+ f(-1)> fl@&)+ fly) if -1 <=z,y <O0.

2. f is convex on [—1,0] and concave on [0, 1].

3.z >0andy <0and z+y <0then f(z)+ fly) < f(=1)+ flx+y+1) and if
z +y > 0then f(z)+ f(y) < f(z +y). The proofs of these results are easy. Indeed,
for the first one we make the substitution + = —a?,y = —b® and it comes down to
1> a®4+63+(1—a—b)® < 1> (a+b)(a®—ab+b?)+1-3(a+b)+3(a+b)?>—(a+b)® <
& 3(a+b)(1—a)(1—b) > 0, which follows. The second statement is clear and the
third one can be easily deduced in the same manner as 1.

From these arguments we deduce that if (¢1,%,...,%t2004) = ¢ is the point where
the maximum value of the function g : 4 = {x € [-1,1]*°|2y +--- + 2, =0} =
2004
= R, g(z1,...,T2004) = Z f{xg) (this maximum exists because this function is
k=1

defined on a compact) is attained then we have that all positive components of ¢ are
equal to each other and all negative ones are —1. So, suppose we have k components

equal to —1 and 2004—k& components equal to a number a. Because t{ +to+- - -+tog04 =
k

0 we find that a = kR and the value of g in this point is (2004—k) { 2000 — % —k.

2004 — k
k

2004 — k
the set {0,1,...,2004}. A short analysis with derivatives shows that the maximum is

attained when k& = 223 and so the maximum value is /223 - V17812 — 223.

Thus we have to find the maximum value of (2004 — k) { — k, when k is in

112. [ Gabriel Dospinescu, Calin Popa | Prove that if n > 2 and a1, as,...,a,
are real numbers with product 1, then
2n
n—1

-¥n—1(ay + a2+ - -+ a, —n).

a%—{—ag—{—n-—l—ai—nz

Solution:

We will prove the inequality by induction. For n = 2 it is trivial. Now, suppose the
inequality is true for n— 1 numbers and let us prove it for n. First, it is easy to see that
it is enough to prove it for aq,...,a, > 0 (otherwise we replace aj,as,...,a, with
la1], lazl, . - ., |as|, which have product 1. Yet, the right hand side increases). Now,
let @, the maximum number among a;,das, ..., a, and let G the geometric mean of
ai,as,...,a,_1. First, we will prove that
2n

2 2 2
a)t+ay+--+a,—n-—

1 Vn—1(ag+a2+---+a,—n)>

2n

>al+(n—-1)G*—n-—

T Yn—1(a, + (n —1)G —n)
which is equivalent to

ai+ai+-+al | —(m—-1)""{/a%a}...a2_| >

3N
—
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>2n

2" Vn—1(ai+ax+ - +a,1—(n—1)"Yaraz...an_1)-
Because, »~Yai1as .- -ap—1 < land a1 +as+--+ap—1—(n—1) ~~Ya1az - .- ap—1 >

0, it is enough to prove the inequality

2
Qi+t = (=D > = V=1 G (a4 + a1 — (0= 1)),

a O
Now, we apply the inductive hypothesis for the numbers —1, ceey nG L which have

G

product 1 and we infer that

2 2
ai+---+a;_; 2(n—-1) __, ar+--+ap_1

and so it suffices to prove that

2(n —1 2
E:‘_ 5 ) "~Yn — 2(a1+. . .—|—an_1—(n—1)G) > . —nl I — 1(a1_|_. . '+an_1—(n—1)G),
L. 1 Y — 1 .
which is the same as 1 + > . This becomes

nn—2) — "Yn—-2

and it follows for n > 4 from

1 n(n—1)
1+ — 2
('*Mn—m) g
and

(n—1)n=! 1 1 1 \"? e 1
= 1+ —) (1 1 2.
(n—2)7 n—2 +n—2 +n—2 <n—2 +n—2 <

For n = 3 and n = 4 it is easy to check.

Thus, we have proved that
2n

2 2 2
a)t+ay+--+a,—n-—

1-\"/n—l(al—{—ag—{—'--—l—an—n)z

2
>al+(n—-1)G*—n— n
n—

1-M(an+(n—1)G—n)

and it is enough to prove that

m2("_1)—{—n_1—n2 2n -m(ﬂ‘_l—{——n_l—n)
x

2 n—1

1
for all > 1 (we took = —). Let us consider the function

T

-1 2 -1
f(x)Zmz("_1)+n —p— -"n—l(x”_1+n——n>.
T n—1 T

We have
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because

n—1 1 n—1 1 1 1
2T o=t >nt .
x (n— Dz (n— 1z (n— 1)1

Thus, f is increasing and so f(z) > f(1) = 0. This proves the inequality.

113. [ Vasile Cirtoaje | If a, b, ¢ are positive real numbers, then

2a 2b 2c
+ + <3.
a+b b+c c+a

Gazeta Matematica

First solution:

b c a
With the notations = = \/j LY = \/% , 2= \/j the problem reduces to proving
a c

that xyz = 1 implies
\/ 2 L 2 +\/ 2 <3
1+ a2 1+y? T+22 -7

We presume that x < y < z, which implies zy < 1 and z > 1. We have

2
2 2 2 2 1 — x2y?
<2{——+—— ) =41+ —— 7| <
(\/1+m2+\/1+y2> - (1+m2+1+y2> [+(1+x2)(1+y2) -

1 —2%y? } 8 8z
(1+2y)?

_1—{—my:z+1’
\/2 +\/ 2 _, /2
14 22 1+y2 — z+1
and we need to prove that
2z 2
2 + < 3.
\/z+1 \/1—|—z2_

2 2
Lt =
V1i4+22 = 1+2

2z L 2 <3
z4+1 142z

i+

SO

Because

we only need to prove that

This inequality is equivalent to
1+32—2/22(1+2)>0,(V22 —Vz+1)2 >0,

and we are done.
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Second solution:
Clearly, the problem asks to prove that if zyz = 1 then

2
Z x+1§3

We have two cases. The first and easy one is when zy + yz + zz > = + y + z. In this

case we can apply the Cauchy-Schwarz Inequality to get
2 2
<4/3 .
Z \/m +1 - \/ Z z+1

1 3
Z Si & ZQ(my+x+y+1)§3(2+x+y+z+my+yz+zx)<:>

& zrzty+z<zy+yz+zz

and so in this case the inequality is proved.
The second case is when zy + yz + 2z < £ + y + 2. Thus,

(z—Dy-1z-1)=z4+y+z—ay—yz—zz>0

and so exactly two of the numbers z, ¥, z are smaller than 1, let them be x and y. So,

we must prove that if  and y are smaller than 1, then

2 2 2xy
+ + <3.
z+1 y+1 zy+1

Using the Cauchy-Schwarz Inequality, we get

2 2 2zy 1 1 2zy
+ + <2 + +
z+1 y+1 zy +1 z+1 y+1 xy+1

and so it is enough to prove that this last quantity is at most 3. But this comes down

to
1 1 1_ 2zy
] z+1 y+1 zy + 1
2
1+ L
:1:+1 7,/—|—1 \/ zy + 1
Because we have —— + —— > 1, the left hand side is at most
x+1 y+1
1 1 1—=zy

b 1=
z+1 y+1 (z+D(y+1)

and so we are left with the inequality

1—=zy 1—zy

— = <
(z+Dy+1) ~ 2zy
({1 —_—
(zy +1) + zy+1
< zyt+l+z4+y & z+y > 2zy(ay+ 1)

which follows from +/2zy(zy + 1) < 2,/zy <  + y. The problem is solved.

2zy <
zy+17—

& oyt 1+ (zy+1)
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114. Prove the following inequality for positive real numbers z,y, z

1 1 1 9
v+ (G Gt eer) 2 6

Iran, 1996

First solution (by Iurie Boreico):
With the substitution z+y = ¢,y + 2 = a, z +x = b, the inequality becomes after

some easy computations

2 1
= - = J(a=b?2>0.
S (2%
Let a > b > c. If 2¢> > ab, each term in the above expression is positive and
we are done. So, let 2¢2 < ab. First, we prove that 2b> > ac,2a® > be. Suppose that

2b% < ac. Then (b+ ¢)? < 2(b% +¢?) < a(b+ ¢) and s0 b + ¢ < a, false. Clearly, we
can write the inequality like that

(Z-5) -+ (2-%) -0 (5-2) @-w

We can immediately see that the inequality (a — ¢)? > (a — b)? + (b — ¢)? holds
and thus if suffices to prove that

11 2 2 11\’
But it is clear that -+ - — — — — < | - — — | and so the right hand side
b2 2 ab ac ¢

(a—b)*(b—c)?

is at most — . Also, it is easy to see that
h2¢2
_ 12
2,2 1 11 1 (a=b?
ac  be a? b2 T ac be b2c?
(a—b6)*(b—¢)®

which shows that the left hand side is at least and this ends the

b2c?
solution.

Second solution:
Since the inequality is homogenous, we may assume that zy + yz + zz = 3. Also,
we make the substitution z +y + 2z = 3a. From (z + y + 2)? > 3(zy + yz + 2z), we
get a > 1. Now we write the inequality as follows
1 1 1
(3a — 2)? o (3a — y)? o (3a — x)

4(zy + 3a2)* + (yz + 3az)? + (22 + 3ay)?] > 3(%a — zyz)?,
4(27a* — 18a* + 3 + dazyz) > (9a — zyz)?,
3(12a* — 1)(3a® — 4) + 2y2(34a — zy2) > 0, (1)

3
2217
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12(3a® — 1)* +208a® > (17a — zyz)>.  (2)

We have two cases.
i) Case 3a® — 4 > 0. Since

1
3Ma — zyz = 5[34(1’ +y+ 2)(xy +yz + 2z) — 9zyz] > 0,

the inequality (1) is true.
ii) Case 3a® — 4 < 0. From Schur’s Inequality

(x+y+2)°—d@+y+2)(ey +yz+2z) + 92yz > 0,
it follows that 3a® — 4a + zyz > 0. Thus,
12(3a® — 1)? 4 208a® — (17a — zyz)? > 12(3a* — 1)? + 2084 — a*(3a® + 13)? =

=3(4 — 11a® + 10a* — 3a%) = 3(1 — a®)*(4 — 3a*)* > 0.

115. Prove that for any z,y in the interval [0, 1],

Vita?+/1+22+ V0 —2)2+ 1 —y)2 > (1+V5)(1 —ay).

Solution (by Faruk F. Abi-Khuzam and Roy Barbara - ”A sharp in-
equality and the iradius conjecture”):

Let the function F : [0,1]> — R, F(z,y) = V1+22 + /1+92 +
VI =22+ (1 —-9)% - (1++5)(1 —2y). It is clear that F' is symmetric in = and
y and also the convexity of the function = — v/1 + 22 shows that F(z,0) > 0 for all
z. Now, suppose we fix y and consider F' as a function in x. It’s derivatives are

T 11—z
Vi t1 JI—22 +(1-y)p

flz) = (1 +V5)y+

and
1 (1—y)’

+ .
VAT @ a4 (- )’

Thus, fis convex and its derivative is increasing. Now, let

f'(x) =

_ 6vV3
r= 1—m,c—1+\/5

1
The first case we will discuss is y > 1 It is easy to see that in this case we have cy >

1
2
Y 20+ 2

and so f'(0) > 0. Because f' is increasing, we have f'(z) > 0 and so f is increasing
with f(0) = F(0,y) = F(y,0) > 0. Thus, in this case the inequality is proved.

(the derivative of the function y — y2c?(y? — 2y + 2) — 1 is positive)
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Due to case 1 and to symmetry, it remains to show that the inequality holds in

1 1 1
the cases z € [O, Z] ,y €[0,r] and z € [r, ﬂ Y € [r, ﬂ

Tn the first case we deduce immediately that

' x _ 1—=x
f(x)ST(H\/gH\/Hx? V1t (z—1)2

1 1
Thus, we have f' (Z) < 0, which shows that f is decreasing on [O, ﬂ . Because from

1
the first case discussed we have f (Z) > 0, we will have F(x,y) = f(z) > 0 for all
1
points (z,y) with o € [0, ﬂ ,y € 10,7).

1 1
Now, let us discuss the most important case, when z € {r, ﬂ Y € [r, Z] Let

the points O(0,0), A(1,0), B(1,1),C(0,1), M(1,y), N{(z,1). The triangle OMN has

perimeter

1—
Vita2+/1+2+/ (1 —2)2+ (1 —y)? and area 2$y.

But it is trivial to show that in any triangle with perimeter P and area S we have the
2

P
inequality S < ——=. Thus, we find that v/1 + 22++/1 + y2+/(1 —2)2 + (1 —y)2 >

12V/3
V6v3y/T —zy > (1++/5)(1—zy) due to the fact that zy > r2. The proof is complete.

116. [ Suranyi | Prove that for any positive real numbers aq,as,...,a, the fol-
lowing inequality holds

(n—1D(al+ad+---+al)+naias ...a, > (a1 +as+-- '+an)(a?_1+ag_1+' . 4—&2‘1).

Miklos Schweitzer Competition

Solution:

Again, we will use induction to prove this inequality, but the proof of the inductive
step will be again highly non-trivial. Indeed, suppose the inequality is true for n
numbers and let us prove it for n + 1 numbers.

Due to the symmetry and homogeneity of the inequality, it is enough to prove it
under the conditions a1 > as > -+ > an1 and a1 + a2 + -+ -+ a,, = 1. We have to
prove that

i3 n i3 n
nZa?‘H + naZﬂ +nan,1 - H a; + anay - Hai — (14 anpt1) (Z ay + aZH) > 0.
=1 i=1

i=1 i=1

But from the inductive hypothesis we have

(n—1)(af +af + -+ a?) +najas...ap >at a4 g a7t
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and so
n—1 _
nanHllaZZanHE a; n—lanHE ay

Using this last 1nequahty7 1t remains to prove that

n n n n
n+1 n—1
nE a; —E ay | — any1 ng a?—g a; +
i=1 i=1 i=1

i=1

+an 11 (H a; +(n—Day, | — aZﬁ) > 0.
i=1

Now, we will break this inequality into

Un+1 (Hal (n—1a an g —an >>()
and
n n n n
(n Za?“ — Z a?) — 1 (nZa;’ — Za?1> > 0.
i=1 i=1 i=1 i=1

Let us justify these two inequalities. The first one is pretty obvious

n

n
Hai +(n—1an, — n+} = H(ai — g1 + pp1) + (R —Llag, — GZH >
i i=1

n

-1 -1
>an, +ay;c Z(ai —any1)+(n—1Day, —ay 1 =0.
=1
Now, let us prove the second inequality. It can be written as

n i3 n n
n+1 n n n—1
ngai —EaiZanH ngai—gai .
i=1 i=1 i=1

=1
n n 1
Because n Z al’ — Z a?~' > 0 (using Chebyshev’s Inequality) and a,1 < —, it
n

i=1 i=1
is enough to prove that

3
(]
o
i
|
(]
SQS
v
3=

n n
n n—1
n E a; — E a, .
i=1 i=1

1
but this one follows, because na?™" + —a?~' > a? for all i. Thus, the inductive step
n

is proved.

117. Prove that for any z1, 2o, ...,z, > 0 with product 1,

n
> enz e
=1

1<i<j<n

A generalization of Turkevici’s inequality
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Solution:
Of course, the inequality can be written in the following form

n>—(n-1) (ka>+<éxk>z

We will prove this inequality by induction. The case n = 2 is trivial. Suppose the
inequality is true for n — 1 and let us prove it for n. Let

flzi,@e,.. . 2y) = —(n—1) (Zxk>+<2mk>
k=1

and let G = "»~/xsx3 ... %,, where we have already chosen z1 = min{zi,xs,...,2,}.
Tt is easy to see that the inequality f(z1,%2,...,z,) < flz1, G, G, ..., G) is equivalent
to

(n— 1)2% - (ka> > 2z (ka —(n— 1)G> .
k=2 k=2

k=2

Clearly, we have z1 < G and Z zr > (n — 1)G, so it suffices to prove that
k=2

(n— 1)2% - (Xn:mk> >2G (Xn:mk —(n-— 1)G> .
k=2 k=2

k=2
We will prove that this inequality holds for all z», ..., z, > 0. Because the inequality
is homogeneous, it is enough to prove it when (¢ = 1. In this case, from the induction
step we already have

(n—Q)Z:ci—i—n—lZ (Zxk>
k=2

k=2

and so it suffices to prove that

n

imi—{—n—l > ika & Z(mk —1)?
k=2 k=2 k=2

clearly true.
Thus, we have proved that f(z1,22,...,2,) < f(z1,G,G,...,G). Now, to com-
plete the inductive step, we will prove that f(z1,G,G,...,G) < 0. Because clearly

the last assertion reduces to proving that

1
I = Gn—17

1 1\
(n—l) ((n—l)(ﬂ—{— C—W) +n > ((n—l)G-l— G"1>
which comes down to
n—2 2n — 2
G2n—2 Z Gn—2
and this one is an immediate consequence of the AM-GM Inequality.
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118. [ Gabriel Dospinescu | Find the minimum value of the expression
Z ai a2 _Md2...0n
1—(n-— l)al

1
1 add up to 1 and n > 2 is an integer.

where a1, a2,...,0, <

Solution:

We will prove that the minimal value is = Indeed, using Suranyi’s In-

nn
equality, we find that

(n— 1)2(1? +najas...a, > Za?fl = Na1as ... Gy > Za?fl(l — (n—1)a;).

i=1 i=1 i=1

Now, let us observe that

[

3
)
Zaz 1= (n—1)ag) = Z 3
k=1 k=1 ( 71 )
1—(n—-1ag

and so, by an immediate application of Hélder Inequality, we have

n . 3
n (ZakS >
Z Y1 —(n—1)a;) > h=1

— n 1 >
(ICZ:; 1—(n—1)ak)

But for n > 3, we can apply Jensen’s Inequality to deduce that

n i n 3
3
Sat (L)
k=1 Z =1 — —
n n n-3s_

Thus, combining all these inequalities, we have proved the inequality for n > 3.
For n = 3 it reduces to proving that

b
Yoz

which was proved in the solution of the problem 107.

119. [ Vasile Cirtoaje | Let a1, as, ..., a, < 1 be nonnegative real nmunbers such
that

_\/a%+a§+ Fay V3 %3
B n 3
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Prove that
ai 4 a 4 4 Ap S na
1—a? 1-a} =~ 1-a2 = 1-—a?

Solution:
We proceed by induction. Clearly, the inequality is trivial for n= 1. Now we
suppose that the inequality is valid for n = k — 1, k > 2 and will prove that

ai a2 ag ka
et — > —
1—a§+ * +1—ai_1—a2’

2
1— a3

for

(A%

¢ﬁ+@+m+@
a =

k
We assume, without loss of generality, that a1 > a2

al+a?+---+ai_, ka? — a3
Tr = =
k-1 k-1~

3
from a > ay it follows that z > a > % Thus, by the inductive hypothesis, we have

V3

3
> ... > ag, therefore a > ay.
Using the notation

a1 as ap_1 (k— 1z
1—a?+ +H'+1—ai71_ 1—g22 "

2
1—aj

and it remains to show that
ag (k— 1z S ka

1—a%+ 1—22 —1—a2
From ) ) ) R
we obtain ( \( )
a— agjla+ag
k-1 —q)= ——FF-
(k= 1) — ) = =2
and

ay, (k— 1z ka ay, a x a B
1—a%+ 1—22 1-a® (1—@% _1—a2>+(k_1) (1—.2:2 _m> B
—(a —ap)(1 +aar) (k—1)(z—a)(1+ az) _a—ap [—(l—i-aak) (a—{—ak)(l—{—a;r:)} _
(1-a3)(1-a? (1—22)(1 —a?) 1—a? 1—aj (1—22)(z + a)
(@ —ap)(z — ap)[—1 + 2% + a2 + zay, + a(z + ax) + a® + azvay(z + ai) + a®zay]
(1-a®)(1—-a3)(1—2%)(z+a)
Since 22 — a? — ka®> — a? 2 kla —ag)(a + ag)
B k-1 ko k-1
k(a —ax)*(a + ag)
(k=1 (z+ay) — 7

, it follows that

(a —ap)(x—a) =
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and hence we have to show that
22 +al +zay, +alz + ai) + a® + azvap(z + ap) + a’zap > 1.

In order to show this inequality, we notice that

ka® + (k — 2)a? ka®
2, 2 _ k
7 = k—1 “ k-1

T4ap >/ +a?>a L
= =T

22 +ak +fzap +alz +ap) +a® +azap(z +ap) + a’zay > (22 +al) +alz +ap) +a® >

k [k
> v - ,2 2:
_(k_l-{— k:—1+1>0 > 3a 1,

and the proof is complete. Equality holds when a1 = a2 = ... = a,.

and

Consequently, we have

Remarks.
1. From the final solution, we can easily see that the inequality is valid for the
larger condition

1
a > )
S

This is the largest range for a, because for a; = a2 = --- = ap,-1 =z and a,, =0

-1 1
(therefore a = x4/ n—), from the given inequality we get a >
n

n—I1

, V3.
2. The special casen =3 and a = 5 is a problem from Crux 2003.
120. [ Vasile Cirtoaje, Mircea Lascu | Let a, b, ¢, 2, y, z be positive real numbers
such that
(a+b+c)(x+y+2)=(a®+b*+c*)(2® +9° 4+ 2°) = 4.

Prove that

bezyz < —
aocryz —_—.
Y%= 36

Solution:
Using the AM-GM Inequality, we have

4(abtbctca)(zy+yz+zz) = [(a+b+c)? — (@® + 0>+ )| [(z+y +2)° — (@® +y* +27)] =
=20—(a+b+e)’@+y?+2)— (A2 +V+ Dz +y+2)° <
<20-2/(a+b+¢)?(@? +y? + 20 (@ + 02 + )z +y +2)2 =4,
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therefore

(ab+ be+ ca)(zy + yz + za) < 1. (1)
By multiplying the well-known inequalities
ab+bc+ca)” > 3abcla+b+c), (ry+yz+zx)” > 3zyz(zr+y+2),
b+b > > 3ab b >3
it, follows that
(ab+ be + ca)*(zy + yz + zx)* > abcxryz(a + b+ c)(z +y + 2),
or
(ab + be + ca)(zy + yz + zz) > 36abczryz. (2)

From (1) and (2), we conclude that
1 < (ab+ bec+ ca)(zy + yz + zzx) > 36abexyz,

therefore 1 < 36abcxyz.

To have 1 = 36abcryz, the equalities (ab + be + ca)? = 3abe(a + b + ¢) and
(zy +yz+2x)? = 3zyz(x+y+ 2) are necessary. But these conditions imply a = b = ¢
and * = y = z, which contradict the relations (a + b+ ¢)(z +y + 2) = (a® + b* +
) (2% +y? + 22) = 4. Thus, it follows that 1 > 36abcryz.

121. [ Gabriel Dospinescu | For a given n > 2, find the minimal value of the
constant ky,, such that if x1,x2,...,2, > 0 have product 1, then
1 1 1
V1+k,zr V14 k2o V14 kaz,

<n-—1.

Mathlinks Contest

Solution: 5 )
We will prove that k, = (7171)2 Taking ©1 = x5 = --- = x,, = 1, we find that
n—
2n—1
kn > il So, it remains to show that
(n—1)2
n
1
> <n-1
= 1+ 2n—1
o _
(n—1>"
it -zg----- z, = 1. Suppose this inequality doesn’t hold for a certain system of n
numbers with product 1, z1,29,...,2, > 0. Thus, we can find a number M >n — 1

and some numbers a; > 0 which add up to 1, such that

1
2n —1 -
(n—1)2""

:Mak.

1+
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Thus, ai <

| [ EC S ()|

n
Now, denote 1 — (n — 1)agy = by > 0 and observe that Zbk = 1. Also, the above
k=1

1 and we have

inequality becomes

1)%" ﬁ by - ﬁ(? —bg) > (2n —1)" (ﬁ(l - bk)> )
k=1

k=1 k=1
Because from the AM-GM Inequality we have

n

[Te-b< <2nn_1>"’

k=1

our assumption leads to

n

-1 2n
[T —5)? < %blbg...bn.

k=1
So, it is enough to prove that for any positive numbers a1, as,.. ., a, the inequality
n 2n
2 (TL - 1) n
H(al tax+-tap 1 tagptootan)” > ———aaz...ap(a1 +ar +- - +ap)
k=1 n
holds.

This strong inequality will be proved by induction. For n = 3, it follows from the

fact that
e G

Suppose the inequality is true for all systems of n numbers. Let aq,az,...,a,11

be positive real numbers. Because the inequality is symmetric and homogeneous, we
may assume that a1 < as < --- < anyq and also that aq +as+---+a, = 1. Applying
the inductive hypothesis we get the inequality

n

n—1 2n
H(]. - G,i)2 Z %alaz [P ¢ 799
=1 n
To prove the inductive step, we must prove that

n ) n2n+2
H(an+1 +1-a;)° > e

i=1

1
a1as ... 00y i1(1+ anr)"™ .

Thus, it is enough to prove the stronger inequality

“ Ap+1 2 3n+42 "
n
H <1 1o az) = (n—1)2n - (n+ 1)n+1 apt1 (14 an+1)"".

i=1
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Now, using Huygens Inequality and the AM-GM Inequality, we find that

2n

n a 2
<1+ "+1> > 1+
. 1—a;

=1

and so we are left with the inequality

Nant1 " et 1 n+1
Y1) 2o oy e (L ann)

n(l+ any1)

=1+ z, where x is
n+1

1
if app1 > max{ai,as,...,a,} > —. So, we can put
n
nonnegative. So, the inequality becomes
14 z 2n>1+(n+1)x.
n(z +1) = (z+ 1t
Using Bernoulli Inequality, we find immediately that

2n
14 x 23@“—1—1.
n(z+1) x+1

Also, (1+ )1 > 1+ (n — 1)z and so it is enough to prove that

3x—l—1> 1+ (n+ Dz
z+1 T 1+(n—-1x

which is trivial.
So, we have reached a contradiction assuming the inequality doesn’t hold for a

certain system of n numbers with product 1, which shows that in fact the inequality

2n —1
" 5 and that this is the value asked by the problem.

(n—1)

is true for k,, =

Remark.

For n = 3, we find an inequality stronger than a problem given in China Math-
ematical Olympiad in 2003. Also, the case n = 3 represents a problem proposed by
Vasile Cartoaje in Gazeta Matematici, Seria A.

122. [ Vasile Cirtoaje, Gabriel Dospinescu | For a given n > 2, find the maximal
value of the constant k,, such that for any z1,2,...,2, > 0 for which 23 + 25 +---+
22 =1 we have the inequality

(I1—z)(1—x2)...(L—zp) > knz122 ... T
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Solution:
We will prove that this constant is (v/n — 1)". Indeed, let a; = z7. We must find
the minimal value of the expression

n

[T - va)

i=1
n
[Ivai
=1

when a; +as+---+a, = 1. Let us observe that proving that this minimum is (y/n—1)"
reduces to proving that

n

[[a-a)>n-1" H\/a_l HH\@

=1
But from the result proved in the solution of the problem 121, we find that

n

H(l—ai)22<n_1 ) Haz

i=1
So, it is enough to prove that
" 1 "
il:[l(l+\/a7)§ <1+W> .
But this is an easy task, because from the AM-GM Inequality we get

i=1

[

the last one being a simple consequence of the Cauchy-Schwarz Inequality.
Remark.
The case n = 4 was proposed by Vasile Cartoaje in Gazeta Matematica Annual
Contest, 2001.






Glossary

(1) Abel’s Summation Formula
If a1, a0, ..., a0y, b1,bs,...,b, are real or complex numbers, and

Si=a1+a+...+a;i=1,2...n,

then
n n—1

Z a;b; = Z Sz(bl — bi—l—l) + S,.b,.
i=1 i=1

AM-GM (Arithmetic Mean-Geometric Mean) Inequality

(2)
If ay, as, ..., a, are nonnegative real numbers, then
1 1
- E a; Z (alag...an)n,
n 4
i

with equality if and only if a1 = a2 = ... = a,. This inequality is a special

case of the Power Mean Inequality.

Arithmetic Mean-Harmonic Mean (AM-HM) Inequality

If a1, as, ..., ay, are positive real numbers, then

1 1
- Z a; > ———
B 9P
i
with equality if and only if a1 = a2 = ... = a,. This inequality is a special

case of the Power Mean Inequality.

(4) Bernoulli’s Inequality
For any real numbers z > —1 and a > 1 we have (1 + 2)* > 1 + ax.

121



122

Solutions
(5) Cauchy-Schwarz’s Inequality
For any real numbers a1, a2, ...,an and b1, bs, ..., b,
(a2 +a3+...+al) (b3 +05+ ... +b2) >
> (a1b1 + asby + ... + anbn)2,

with equality if and only if a; and b; are proportional, i =1,2,....n.

(6) Cauchy-Schwarz’s Inequality for integrals
If @, b are real numbers, a < b, and f, g : [a,b] = R are integrable functions,

then
( / bf(:f:)g(:f:)dw> < ( / bf2(m)dw> : ( / bg%x)czx) .

(7) Chebyshev’s Inequality
Ifa, <as <...<a,and by, bs,...,b, are real numbers, then

=1 =1 =1
i=1 i=1 i=1

(8) Chebyshev’s Inequality for integrals
If a,b are real numbers, a < b, and f, g : [a,b] = R are integrable functions

and having the same monotonicity, then

o= [ ' f)g(e)ds > / ' flayde / " (@)

and if one is increasing, while the other is decreasing the reversed inequality

is true.

(9) Convex function
A real-valued function f defined on an interval 7 of real numbers is convex

if, for any z,y in I and any nonnegative numbers ¢, § with sum 1,

flaz + By) < af(z) + Bf(y)-

(10) Convexity
A function f(z) is concave up (down) on [a,b] C R if f(z) lies under
(over) the line connecting (a1, f(a1)) and (b1, f(b1)) for all

a<ar <z<b <b.

A function g(z) is concave up (down) on the Euclidean plane if it is concave
up (down) on each line in the plane, where we identify the line naturally



(14)
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with R.

Concave up and down functions are also called convex and concave, re-
spectively.

If f is concave up on an interval [a,b] and A1, Ao, ..., A, are nonnegative
numbers wit sum equal to 1, then

)\1f(l‘1) + )\gf(l‘g) + ...+ )\nf(xn) > f()\lml + Aoy + ...+ )\nl‘n)

for any x1,x2,...,Zn, in the interval [a,b]. If the function is concave down,

the inequality is reversed. This is Jensen’s Inequality.

Cyclic Sum
Let n be a positive integer. Given a function f of n variables, define the
cyclic sum of variables (x1,z2, ..., x,) as

Zf(xl,mg,...,mn) = flz1, 22, ...y zpn) + f(x2, T3, .., Tn, T1)

cyc

+oo+ flan, 01,02, s Gp_1)-

Hoélder’s Inequality

1 1
If r, s are positive real numbers such that — + — = 1, then for any positive
r s

real numbers a1, as, ..., 0n,

bi,ba, ..., by,

s

3=

n n n
i=1 < i=1 i=1

n n n

Huygens Inequality
If p1,po, -, Pn,Q1,0Q0,...,0n,01,b2,...,b, are positive real numbers with
pr+p+...+p, =1, then

n n n
[Ttei+ 007 > [T o + ]T0r.
i=1 i=1

=1

Mac Laurin’s Inequality

For any positive real numbers z1,z2,...,%n,

S128>...2 5,
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where

E Tiy =Ty = v v v - Ty,

k| 1<i1<ie<...<ix<n

n
k
(15) Minkowski’s Inequality
For any real number # > 1 and any positive real numbers

Sy =

a17a27"'7an7blab2a"'abna

(Xn:(ai-i-biy)r < ( Y ai’)r + (ib:)r .

(16) Power Mean Inequality
For any positive real numbers a1,as9,...,a, with sum equal to 1, and
any positive real numbers z1,2s, ..., Ty, we define M, = (a12] + a2z} +
...+ apzh)* if v is a non-zero real and M, = zPtag?alr, My =
maz{r1,Ta,...,In}t, M oo = min{zy,xa,..., 2, }. Then for any reals s < ¢

we have M_o, < My, < M; < M.

(17) Root Mean Square Inequality
If a1, ao, ..., a, are nonnegative real numbers, then

- )

\/a%—!—a%—{—...—i—a% S Mtat..tan
n n

with equality if and only if a; = a2 = ... = ay.

(18) Schur’s Inequality
For any positive real numbers z,y,z and any r > 0, " (x —y)(x — 2) +y" (y —
2)y—x)+2"(z —x)(z —y) > 0. The most common case is r = 1, which has

the following equivalent forms:

1) 22+ + 23+ 3y > ay(z +y) +yz(y + 2) + 2a(z + 2);
2) wyzz (x+y—2)(y+z—-2)(z+z—y)

149
3) if z+y+z=1 then :L'y—{—yz—{—z.rgy.

(19) Suranyi’s Inequality

For any nonnegative real numbers a1, ao, ..., Gn,

(n— 1)Za2+nH ai > (Zak> . (Za21> .
k=1 k=1 k=1

k=1
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(20) Turkeviei’s Inequality

For any positive real numbers z,y, z, t,

st 4yt + 2 1 2eyat > 2%y + 2%+ 22+ 2 4 222 %R

(21) Weighted AM-GM Inequality
For any nonnegative real numbers aq, as, ..., an, if w1, ws, ..., w, are nonneg-
ative real numbers (weights) with sum 1, then

w1, W n
w1a + wes + ... Fwpa, > aytay”’ . oay

with equality if and only if a1 = a2 = ... = ay.






Further reading

1. Andreescu, T.; Feng, Z., 101 Problems in Algebra from the Training of the USA
IMO Team, Australian Mathematics Trust, 2001.

2. Andreescu, T.; Feng, Z., USA and International Mathematical Olympiads 2000,
2001, 2002, 2003, MAA.

3. Andreescu, T.; Feng, 7., Mathematical Olympiads: Problems and Solutions from
around the World, 1998-1999, 1999-2000, MAA.

4. Andreescu, T.; Kedlaya, K., Mathematical Contests 1995-1996, 1996-1997,
1997-1998: Olympiad Problems from around the World, with Solutions, AMC.

5. Andreescu, T.; Enescu, B., Mathematical Olympiad Treasures, Birkhduser, 2003.
6. Andreescu, T.; Gelca, R., Mathematical Olympiad Challenges, Birkhauser, 2000.
7. Andreescu, T.; Andrica, D., 360 Problems for Mathematical Contests, GIL
Publishing House, 2002.

8. Becheanu, M., Enescu, B., Inegalitati elementare. .. si mai pufin elementare, GIL
Publishing House, 2002

9. Beckenbach, E., Bellman, R. Inequalities, Springer Verlag, Berlin, 1961

10. Drimbe, M.O., Inegalitati idei si metode, GIL Publishing House, 2003

11. Engel, A., Problem-Solving Strategies, Problem Books in Mathematics, Springer,
1998.

12. G.H. Littlewood, J.E. Polya, G., Inequalities, Cambridge University Press, 1967
13. Klamkin, M., International Mathematical Olympiads, 1978-1985, New
Mathematical Library, Vol. 31, MAA, 1986.

14. Larson, L. C., Problem-Solving Through Problems, Springer-Verlag, 1983.

15. Lascu, M., Inegalitdti, GIL Publishing House, 1994

16. Liu, A., Hungarian Problem Book III, New Mathematical Library, Vol. 42,
MAA, 2001.

17. Lozansky, E; Rousseau, C., Winning Solutions, Springer, 1996.

18. Mitrinovic, D.S., Analytic inequalities, Springer Verlag, 1970

19. Panaitopol, L., Bandila, V., Lascu, M., Inegalitati, GIL Publishing House, 1995
20. Savchev, S.; Andreescu, T., Mathematical Miniatures, Anneli Lax New
Mathematical Library, Vol. 43, MAA.

www.mathlinks.ro - Powered by www.gil.ro

127



